change minsym representation
[deliverable/binutils-gdb.git] / gdb / symfile.c
1 /* Generic symbol file reading for the GNU debugger, GDB.
2
3 Copyright (C) 1990-2014 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "arch-utils.h"
24 #include "bfdlink.h"
25 #include "symtab.h"
26 #include "gdbtypes.h"
27 #include "gdbcore.h"
28 #include "frame.h"
29 #include "target.h"
30 #include "value.h"
31 #include "symfile.h"
32 #include "objfiles.h"
33 #include "source.h"
34 #include "gdbcmd.h"
35 #include "breakpoint.h"
36 #include "language.h"
37 #include "complaints.h"
38 #include "demangle.h"
39 #include "inferior.h"
40 #include "regcache.h"
41 #include "filenames.h" /* for DOSish file names */
42 #include "gdb-stabs.h"
43 #include "gdb_obstack.h"
44 #include "completer.h"
45 #include "bcache.h"
46 #include "hashtab.h"
47 #include "readline/readline.h"
48 #include "gdb_assert.h"
49 #include "block.h"
50 #include "observer.h"
51 #include "exec.h"
52 #include "parser-defs.h"
53 #include "varobj.h"
54 #include "elf-bfd.h"
55 #include "solib.h"
56 #include "remote.h"
57 #include "stack.h"
58 #include "gdb_bfd.h"
59 #include "cli/cli-utils.h"
60
61 #include <sys/types.h>
62 #include <fcntl.h>
63 #include <string.h>
64 #include <sys/stat.h>
65 #include <ctype.h>
66 #include <time.h>
67 #include <sys/time.h>
68
69 #include "psymtab.h"
70
71 int (*deprecated_ui_load_progress_hook) (const char *section,
72 unsigned long num);
73 void (*deprecated_show_load_progress) (const char *section,
74 unsigned long section_sent,
75 unsigned long section_size,
76 unsigned long total_sent,
77 unsigned long total_size);
78 void (*deprecated_pre_add_symbol_hook) (const char *);
79 void (*deprecated_post_add_symbol_hook) (void);
80
81 static void clear_symtab_users_cleanup (void *ignore);
82
83 /* Global variables owned by this file. */
84 int readnow_symbol_files; /* Read full symbols immediately. */
85
86 /* Functions this file defines. */
87
88 static void load_command (char *, int);
89
90 static void symbol_file_add_main_1 (const char *args, int from_tty, int flags);
91
92 static void add_symbol_file_command (char *, int);
93
94 static const struct sym_fns *find_sym_fns (bfd *);
95
96 static void decrement_reading_symtab (void *);
97
98 static void overlay_invalidate_all (void);
99
100 static void overlay_auto_command (char *, int);
101
102 static void overlay_manual_command (char *, int);
103
104 static void overlay_off_command (char *, int);
105
106 static void overlay_load_command (char *, int);
107
108 static void overlay_command (char *, int);
109
110 static void simple_free_overlay_table (void);
111
112 static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
113 enum bfd_endian);
114
115 static int simple_read_overlay_table (void);
116
117 static int simple_overlay_update_1 (struct obj_section *);
118
119 static void add_filename_language (char *ext, enum language lang);
120
121 static void info_ext_lang_command (char *args, int from_tty);
122
123 static void init_filename_language_table (void);
124
125 static void symfile_find_segment_sections (struct objfile *objfile);
126
127 void _initialize_symfile (void);
128
129 /* List of all available sym_fns. On gdb startup, each object file reader
130 calls add_symtab_fns() to register information on each format it is
131 prepared to read. */
132
133 typedef struct
134 {
135 /* BFD flavour that we handle. */
136 enum bfd_flavour sym_flavour;
137
138 /* The "vtable" of symbol functions. */
139 const struct sym_fns *sym_fns;
140 } registered_sym_fns;
141
142 DEF_VEC_O (registered_sym_fns);
143
144 static VEC (registered_sym_fns) *symtab_fns = NULL;
145
146 /* If non-zero, shared library symbols will be added automatically
147 when the inferior is created, new libraries are loaded, or when
148 attaching to the inferior. This is almost always what users will
149 want to have happen; but for very large programs, the startup time
150 will be excessive, and so if this is a problem, the user can clear
151 this flag and then add the shared library symbols as needed. Note
152 that there is a potential for confusion, since if the shared
153 library symbols are not loaded, commands like "info fun" will *not*
154 report all the functions that are actually present. */
155
156 int auto_solib_add = 1;
157 \f
158
159 /* True if we are reading a symbol table. */
160
161 int currently_reading_symtab = 0;
162
163 static void
164 decrement_reading_symtab (void *dummy)
165 {
166 currently_reading_symtab--;
167 gdb_assert (currently_reading_symtab >= 0);
168 }
169
170 /* Increment currently_reading_symtab and return a cleanup that can be
171 used to decrement it. */
172
173 struct cleanup *
174 increment_reading_symtab (void)
175 {
176 ++currently_reading_symtab;
177 gdb_assert (currently_reading_symtab > 0);
178 return make_cleanup (decrement_reading_symtab, NULL);
179 }
180
181 /* Remember the lowest-addressed loadable section we've seen.
182 This function is called via bfd_map_over_sections.
183
184 In case of equal vmas, the section with the largest size becomes the
185 lowest-addressed loadable section.
186
187 If the vmas and sizes are equal, the last section is considered the
188 lowest-addressed loadable section. */
189
190 void
191 find_lowest_section (bfd *abfd, asection *sect, void *obj)
192 {
193 asection **lowest = (asection **) obj;
194
195 if (0 == (bfd_get_section_flags (abfd, sect) & (SEC_ALLOC | SEC_LOAD)))
196 return;
197 if (!*lowest)
198 *lowest = sect; /* First loadable section */
199 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
200 *lowest = sect; /* A lower loadable section */
201 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
202 && (bfd_section_size (abfd, (*lowest))
203 <= bfd_section_size (abfd, sect)))
204 *lowest = sect;
205 }
206
207 /* Create a new section_addr_info, with room for NUM_SECTIONS. The
208 new object's 'num_sections' field is set to 0; it must be updated
209 by the caller. */
210
211 struct section_addr_info *
212 alloc_section_addr_info (size_t num_sections)
213 {
214 struct section_addr_info *sap;
215 size_t size;
216
217 size = (sizeof (struct section_addr_info)
218 + sizeof (struct other_sections) * (num_sections - 1));
219 sap = (struct section_addr_info *) xmalloc (size);
220 memset (sap, 0, size);
221
222 return sap;
223 }
224
225 /* Build (allocate and populate) a section_addr_info struct from
226 an existing section table. */
227
228 extern struct section_addr_info *
229 build_section_addr_info_from_section_table (const struct target_section *start,
230 const struct target_section *end)
231 {
232 struct section_addr_info *sap;
233 const struct target_section *stp;
234 int oidx;
235
236 sap = alloc_section_addr_info (end - start);
237
238 for (stp = start, oidx = 0; stp != end; stp++)
239 {
240 struct bfd_section *asect = stp->the_bfd_section;
241 bfd *abfd = asect->owner;
242
243 if (bfd_get_section_flags (abfd, asect) & (SEC_ALLOC | SEC_LOAD)
244 && oidx < end - start)
245 {
246 sap->other[oidx].addr = stp->addr;
247 sap->other[oidx].name = xstrdup (bfd_section_name (abfd, asect));
248 sap->other[oidx].sectindex = gdb_bfd_section_index (abfd, asect);
249 oidx++;
250 }
251 }
252
253 sap->num_sections = oidx;
254
255 return sap;
256 }
257
258 /* Create a section_addr_info from section offsets in ABFD. */
259
260 static struct section_addr_info *
261 build_section_addr_info_from_bfd (bfd *abfd)
262 {
263 struct section_addr_info *sap;
264 int i;
265 struct bfd_section *sec;
266
267 sap = alloc_section_addr_info (bfd_count_sections (abfd));
268 for (i = 0, sec = abfd->sections; sec != NULL; sec = sec->next)
269 if (bfd_get_section_flags (abfd, sec) & (SEC_ALLOC | SEC_LOAD))
270 {
271 sap->other[i].addr = bfd_get_section_vma (abfd, sec);
272 sap->other[i].name = xstrdup (bfd_get_section_name (abfd, sec));
273 sap->other[i].sectindex = gdb_bfd_section_index (abfd, sec);
274 i++;
275 }
276
277 sap->num_sections = i;
278
279 return sap;
280 }
281
282 /* Create a section_addr_info from section offsets in OBJFILE. */
283
284 struct section_addr_info *
285 build_section_addr_info_from_objfile (const struct objfile *objfile)
286 {
287 struct section_addr_info *sap;
288 int i;
289
290 /* Before reread_symbols gets rewritten it is not safe to call:
291 gdb_assert (objfile->num_sections == bfd_count_sections (objfile->obfd));
292 */
293 sap = build_section_addr_info_from_bfd (objfile->obfd);
294 for (i = 0; i < sap->num_sections; i++)
295 {
296 int sectindex = sap->other[i].sectindex;
297
298 sap->other[i].addr += objfile->section_offsets->offsets[sectindex];
299 }
300 return sap;
301 }
302
303 /* Free all memory allocated by build_section_addr_info_from_section_table. */
304
305 extern void
306 free_section_addr_info (struct section_addr_info *sap)
307 {
308 int idx;
309
310 for (idx = 0; idx < sap->num_sections; idx++)
311 xfree (sap->other[idx].name);
312 xfree (sap);
313 }
314
315 /* Initialize OBJFILE's sect_index_* members. */
316
317 static void
318 init_objfile_sect_indices (struct objfile *objfile)
319 {
320 asection *sect;
321 int i;
322
323 sect = bfd_get_section_by_name (objfile->obfd, ".text");
324 if (sect)
325 objfile->sect_index_text = sect->index;
326
327 sect = bfd_get_section_by_name (objfile->obfd, ".data");
328 if (sect)
329 objfile->sect_index_data = sect->index;
330
331 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
332 if (sect)
333 objfile->sect_index_bss = sect->index;
334
335 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
336 if (sect)
337 objfile->sect_index_rodata = sect->index;
338
339 /* This is where things get really weird... We MUST have valid
340 indices for the various sect_index_* members or gdb will abort.
341 So if for example, there is no ".text" section, we have to
342 accomodate that. First, check for a file with the standard
343 one or two segments. */
344
345 symfile_find_segment_sections (objfile);
346
347 /* Except when explicitly adding symbol files at some address,
348 section_offsets contains nothing but zeros, so it doesn't matter
349 which slot in section_offsets the individual sect_index_* members
350 index into. So if they are all zero, it is safe to just point
351 all the currently uninitialized indices to the first slot. But
352 beware: if this is the main executable, it may be relocated
353 later, e.g. by the remote qOffsets packet, and then this will
354 be wrong! That's why we try segments first. */
355
356 for (i = 0; i < objfile->num_sections; i++)
357 {
358 if (ANOFFSET (objfile->section_offsets, i) != 0)
359 {
360 break;
361 }
362 }
363 if (i == objfile->num_sections)
364 {
365 if (objfile->sect_index_text == -1)
366 objfile->sect_index_text = 0;
367 if (objfile->sect_index_data == -1)
368 objfile->sect_index_data = 0;
369 if (objfile->sect_index_bss == -1)
370 objfile->sect_index_bss = 0;
371 if (objfile->sect_index_rodata == -1)
372 objfile->sect_index_rodata = 0;
373 }
374 }
375
376 /* The arguments to place_section. */
377
378 struct place_section_arg
379 {
380 struct section_offsets *offsets;
381 CORE_ADDR lowest;
382 };
383
384 /* Find a unique offset to use for loadable section SECT if
385 the user did not provide an offset. */
386
387 static void
388 place_section (bfd *abfd, asection *sect, void *obj)
389 {
390 struct place_section_arg *arg = obj;
391 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
392 int done;
393 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
394
395 /* We are only interested in allocated sections. */
396 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
397 return;
398
399 /* If the user specified an offset, honor it. */
400 if (offsets[gdb_bfd_section_index (abfd, sect)] != 0)
401 return;
402
403 /* Otherwise, let's try to find a place for the section. */
404 start_addr = (arg->lowest + align - 1) & -align;
405
406 do {
407 asection *cur_sec;
408
409 done = 1;
410
411 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
412 {
413 int indx = cur_sec->index;
414
415 /* We don't need to compare against ourself. */
416 if (cur_sec == sect)
417 continue;
418
419 /* We can only conflict with allocated sections. */
420 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
421 continue;
422
423 /* If the section offset is 0, either the section has not been placed
424 yet, or it was the lowest section placed (in which case LOWEST
425 will be past its end). */
426 if (offsets[indx] == 0)
427 continue;
428
429 /* If this section would overlap us, then we must move up. */
430 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
431 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
432 {
433 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
434 start_addr = (start_addr + align - 1) & -align;
435 done = 0;
436 break;
437 }
438
439 /* Otherwise, we appear to be OK. So far. */
440 }
441 }
442 while (!done);
443
444 offsets[gdb_bfd_section_index (abfd, sect)] = start_addr;
445 arg->lowest = start_addr + bfd_get_section_size (sect);
446 }
447
448 /* Store struct section_addr_info as prepared (made relative and with SECTINDEX
449 filled-in) by addr_info_make_relative into SECTION_OFFSETS of NUM_SECTIONS
450 entries. */
451
452 void
453 relative_addr_info_to_section_offsets (struct section_offsets *section_offsets,
454 int num_sections,
455 const struct section_addr_info *addrs)
456 {
457 int i;
458
459 memset (section_offsets, 0, SIZEOF_N_SECTION_OFFSETS (num_sections));
460
461 /* Now calculate offsets for section that were specified by the caller. */
462 for (i = 0; i < addrs->num_sections; i++)
463 {
464 const struct other_sections *osp;
465
466 osp = &addrs->other[i];
467 if (osp->sectindex == -1)
468 continue;
469
470 /* Record all sections in offsets. */
471 /* The section_offsets in the objfile are here filled in using
472 the BFD index. */
473 section_offsets->offsets[osp->sectindex] = osp->addr;
474 }
475 }
476
477 /* Transform section name S for a name comparison. prelink can split section
478 `.bss' into two sections `.dynbss' and `.bss' (in this order). Similarly
479 prelink can split `.sbss' into `.sdynbss' and `.sbss'. Use virtual address
480 of the new `.dynbss' (`.sdynbss') section as the adjacent new `.bss'
481 (`.sbss') section has invalid (increased) virtual address. */
482
483 static const char *
484 addr_section_name (const char *s)
485 {
486 if (strcmp (s, ".dynbss") == 0)
487 return ".bss";
488 if (strcmp (s, ".sdynbss") == 0)
489 return ".sbss";
490
491 return s;
492 }
493
494 /* qsort comparator for addrs_section_sort. Sort entries in ascending order by
495 their (name, sectindex) pair. sectindex makes the sort by name stable. */
496
497 static int
498 addrs_section_compar (const void *ap, const void *bp)
499 {
500 const struct other_sections *a = *((struct other_sections **) ap);
501 const struct other_sections *b = *((struct other_sections **) bp);
502 int retval;
503
504 retval = strcmp (addr_section_name (a->name), addr_section_name (b->name));
505 if (retval)
506 return retval;
507
508 return a->sectindex - b->sectindex;
509 }
510
511 /* Provide sorted array of pointers to sections of ADDRS. The array is
512 terminated by NULL. Caller is responsible to call xfree for it. */
513
514 static struct other_sections **
515 addrs_section_sort (struct section_addr_info *addrs)
516 {
517 struct other_sections **array;
518 int i;
519
520 /* `+ 1' for the NULL terminator. */
521 array = xmalloc (sizeof (*array) * (addrs->num_sections + 1));
522 for (i = 0; i < addrs->num_sections; i++)
523 array[i] = &addrs->other[i];
524 array[i] = NULL;
525
526 qsort (array, i, sizeof (*array), addrs_section_compar);
527
528 return array;
529 }
530
531 /* Relativize absolute addresses in ADDRS into offsets based on ABFD. Fill-in
532 also SECTINDEXes specific to ABFD there. This function can be used to
533 rebase ADDRS to start referencing different BFD than before. */
534
535 void
536 addr_info_make_relative (struct section_addr_info *addrs, bfd *abfd)
537 {
538 asection *lower_sect;
539 CORE_ADDR lower_offset;
540 int i;
541 struct cleanup *my_cleanup;
542 struct section_addr_info *abfd_addrs;
543 struct other_sections **addrs_sorted, **abfd_addrs_sorted;
544 struct other_sections **addrs_to_abfd_addrs;
545
546 /* Find lowest loadable section to be used as starting point for
547 continguous sections. */
548 lower_sect = NULL;
549 bfd_map_over_sections (abfd, find_lowest_section, &lower_sect);
550 if (lower_sect == NULL)
551 {
552 warning (_("no loadable sections found in added symbol-file %s"),
553 bfd_get_filename (abfd));
554 lower_offset = 0;
555 }
556 else
557 lower_offset = bfd_section_vma (bfd_get_filename (abfd), lower_sect);
558
559 /* Create ADDRS_TO_ABFD_ADDRS array to map the sections in ADDRS to sections
560 in ABFD. Section names are not unique - there can be multiple sections of
561 the same name. Also the sections of the same name do not have to be
562 adjacent to each other. Some sections may be present only in one of the
563 files. Even sections present in both files do not have to be in the same
564 order.
565
566 Use stable sort by name for the sections in both files. Then linearly
567 scan both lists matching as most of the entries as possible. */
568
569 addrs_sorted = addrs_section_sort (addrs);
570 my_cleanup = make_cleanup (xfree, addrs_sorted);
571
572 abfd_addrs = build_section_addr_info_from_bfd (abfd);
573 make_cleanup_free_section_addr_info (abfd_addrs);
574 abfd_addrs_sorted = addrs_section_sort (abfd_addrs);
575 make_cleanup (xfree, abfd_addrs_sorted);
576
577 /* Now create ADDRS_TO_ABFD_ADDRS from ADDRS_SORTED and
578 ABFD_ADDRS_SORTED. */
579
580 addrs_to_abfd_addrs = xzalloc (sizeof (*addrs_to_abfd_addrs)
581 * addrs->num_sections);
582 make_cleanup (xfree, addrs_to_abfd_addrs);
583
584 while (*addrs_sorted)
585 {
586 const char *sect_name = addr_section_name ((*addrs_sorted)->name);
587
588 while (*abfd_addrs_sorted
589 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
590 sect_name) < 0)
591 abfd_addrs_sorted++;
592
593 if (*abfd_addrs_sorted
594 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
595 sect_name) == 0)
596 {
597 int index_in_addrs;
598
599 /* Make the found item directly addressable from ADDRS. */
600 index_in_addrs = *addrs_sorted - addrs->other;
601 gdb_assert (addrs_to_abfd_addrs[index_in_addrs] == NULL);
602 addrs_to_abfd_addrs[index_in_addrs] = *abfd_addrs_sorted;
603
604 /* Never use the same ABFD entry twice. */
605 abfd_addrs_sorted++;
606 }
607
608 addrs_sorted++;
609 }
610
611 /* Calculate offsets for the loadable sections.
612 FIXME! Sections must be in order of increasing loadable section
613 so that contiguous sections can use the lower-offset!!!
614
615 Adjust offsets if the segments are not contiguous.
616 If the section is contiguous, its offset should be set to
617 the offset of the highest loadable section lower than it
618 (the loadable section directly below it in memory).
619 this_offset = lower_offset = lower_addr - lower_orig_addr */
620
621 for (i = 0; i < addrs->num_sections; i++)
622 {
623 struct other_sections *sect = addrs_to_abfd_addrs[i];
624
625 if (sect)
626 {
627 /* This is the index used by BFD. */
628 addrs->other[i].sectindex = sect->sectindex;
629
630 if (addrs->other[i].addr != 0)
631 {
632 addrs->other[i].addr -= sect->addr;
633 lower_offset = addrs->other[i].addr;
634 }
635 else
636 addrs->other[i].addr = lower_offset;
637 }
638 else
639 {
640 /* addr_section_name transformation is not used for SECT_NAME. */
641 const char *sect_name = addrs->other[i].name;
642
643 /* This section does not exist in ABFD, which is normally
644 unexpected and we want to issue a warning.
645
646 However, the ELF prelinker does create a few sections which are
647 marked in the main executable as loadable (they are loaded in
648 memory from the DYNAMIC segment) and yet are not present in
649 separate debug info files. This is fine, and should not cause
650 a warning. Shared libraries contain just the section
651 ".gnu.liblist" but it is not marked as loadable there. There is
652 no other way to identify them than by their name as the sections
653 created by prelink have no special flags.
654
655 For the sections `.bss' and `.sbss' see addr_section_name. */
656
657 if (!(strcmp (sect_name, ".gnu.liblist") == 0
658 || strcmp (sect_name, ".gnu.conflict") == 0
659 || (strcmp (sect_name, ".bss") == 0
660 && i > 0
661 && strcmp (addrs->other[i - 1].name, ".dynbss") == 0
662 && addrs_to_abfd_addrs[i - 1] != NULL)
663 || (strcmp (sect_name, ".sbss") == 0
664 && i > 0
665 && strcmp (addrs->other[i - 1].name, ".sdynbss") == 0
666 && addrs_to_abfd_addrs[i - 1] != NULL)))
667 warning (_("section %s not found in %s"), sect_name,
668 bfd_get_filename (abfd));
669
670 addrs->other[i].addr = 0;
671 addrs->other[i].sectindex = -1;
672 }
673 }
674
675 do_cleanups (my_cleanup);
676 }
677
678 /* Parse the user's idea of an offset for dynamic linking, into our idea
679 of how to represent it for fast symbol reading. This is the default
680 version of the sym_fns.sym_offsets function for symbol readers that
681 don't need to do anything special. It allocates a section_offsets table
682 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
683
684 void
685 default_symfile_offsets (struct objfile *objfile,
686 const struct section_addr_info *addrs)
687 {
688 objfile->num_sections = gdb_bfd_count_sections (objfile->obfd);
689 objfile->section_offsets = (struct section_offsets *)
690 obstack_alloc (&objfile->objfile_obstack,
691 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
692 relative_addr_info_to_section_offsets (objfile->section_offsets,
693 objfile->num_sections, addrs);
694
695 /* For relocatable files, all loadable sections will start at zero.
696 The zero is meaningless, so try to pick arbitrary addresses such
697 that no loadable sections overlap. This algorithm is quadratic,
698 but the number of sections in a single object file is generally
699 small. */
700 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
701 {
702 struct place_section_arg arg;
703 bfd *abfd = objfile->obfd;
704 asection *cur_sec;
705
706 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
707 /* We do not expect this to happen; just skip this step if the
708 relocatable file has a section with an assigned VMA. */
709 if (bfd_section_vma (abfd, cur_sec) != 0)
710 break;
711
712 if (cur_sec == NULL)
713 {
714 CORE_ADDR *offsets = objfile->section_offsets->offsets;
715
716 /* Pick non-overlapping offsets for sections the user did not
717 place explicitly. */
718 arg.offsets = objfile->section_offsets;
719 arg.lowest = 0;
720 bfd_map_over_sections (objfile->obfd, place_section, &arg);
721
722 /* Correctly filling in the section offsets is not quite
723 enough. Relocatable files have two properties that
724 (most) shared objects do not:
725
726 - Their debug information will contain relocations. Some
727 shared libraries do also, but many do not, so this can not
728 be assumed.
729
730 - If there are multiple code sections they will be loaded
731 at different relative addresses in memory than they are
732 in the objfile, since all sections in the file will start
733 at address zero.
734
735 Because GDB has very limited ability to map from an
736 address in debug info to the correct code section,
737 it relies on adding SECT_OFF_TEXT to things which might be
738 code. If we clear all the section offsets, and set the
739 section VMAs instead, then symfile_relocate_debug_section
740 will return meaningful debug information pointing at the
741 correct sections.
742
743 GDB has too many different data structures for section
744 addresses - a bfd, objfile, and so_list all have section
745 tables, as does exec_ops. Some of these could probably
746 be eliminated. */
747
748 for (cur_sec = abfd->sections; cur_sec != NULL;
749 cur_sec = cur_sec->next)
750 {
751 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
752 continue;
753
754 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
755 exec_set_section_address (bfd_get_filename (abfd),
756 cur_sec->index,
757 offsets[cur_sec->index]);
758 offsets[cur_sec->index] = 0;
759 }
760 }
761 }
762
763 /* Remember the bfd indexes for the .text, .data, .bss and
764 .rodata sections. */
765 init_objfile_sect_indices (objfile);
766 }
767
768 /* Divide the file into segments, which are individual relocatable units.
769 This is the default version of the sym_fns.sym_segments function for
770 symbol readers that do not have an explicit representation of segments.
771 It assumes that object files do not have segments, and fully linked
772 files have a single segment. */
773
774 struct symfile_segment_data *
775 default_symfile_segments (bfd *abfd)
776 {
777 int num_sections, i;
778 asection *sect;
779 struct symfile_segment_data *data;
780 CORE_ADDR low, high;
781
782 /* Relocatable files contain enough information to position each
783 loadable section independently; they should not be relocated
784 in segments. */
785 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
786 return NULL;
787
788 /* Make sure there is at least one loadable section in the file. */
789 for (sect = abfd->sections; sect != NULL; sect = sect->next)
790 {
791 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
792 continue;
793
794 break;
795 }
796 if (sect == NULL)
797 return NULL;
798
799 low = bfd_get_section_vma (abfd, sect);
800 high = low + bfd_get_section_size (sect);
801
802 data = XCNEW (struct symfile_segment_data);
803 data->num_segments = 1;
804 data->segment_bases = XCNEW (CORE_ADDR);
805 data->segment_sizes = XCNEW (CORE_ADDR);
806
807 num_sections = bfd_count_sections (abfd);
808 data->segment_info = XCNEWVEC (int, num_sections);
809
810 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
811 {
812 CORE_ADDR vma;
813
814 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
815 continue;
816
817 vma = bfd_get_section_vma (abfd, sect);
818 if (vma < low)
819 low = vma;
820 if (vma + bfd_get_section_size (sect) > high)
821 high = vma + bfd_get_section_size (sect);
822
823 data->segment_info[i] = 1;
824 }
825
826 data->segment_bases[0] = low;
827 data->segment_sizes[0] = high - low;
828
829 return data;
830 }
831
832 /* This is a convenience function to call sym_read for OBJFILE and
833 possibly force the partial symbols to be read. */
834
835 static void
836 read_symbols (struct objfile *objfile, int add_flags)
837 {
838 (*objfile->sf->sym_read) (objfile, add_flags);
839
840 /* find_separate_debug_file_in_section should be called only if there is
841 single binary with no existing separate debug info file. */
842 if (!objfile_has_partial_symbols (objfile)
843 && objfile->separate_debug_objfile == NULL
844 && objfile->separate_debug_objfile_backlink == NULL)
845 {
846 bfd *abfd = find_separate_debug_file_in_section (objfile);
847 struct cleanup *cleanup = make_cleanup_bfd_unref (abfd);
848
849 if (abfd != NULL)
850 {
851 /* find_separate_debug_file_in_section uses the same filename for the
852 virtual section-as-bfd like the bfd filename containing the
853 section. Therefore use also non-canonical name form for the same
854 file containing the section. */
855 symbol_file_add_separate (abfd, objfile->original_name, add_flags,
856 objfile);
857 }
858
859 do_cleanups (cleanup);
860 }
861 if ((add_flags & SYMFILE_NO_READ) == 0)
862 require_partial_symbols (objfile, 0);
863 }
864
865 /* Initialize entry point information for this objfile. */
866
867 static void
868 init_entry_point_info (struct objfile *objfile)
869 {
870 struct entry_info *ei = &objfile->per_bfd->ei;
871
872 if (ei->initialized)
873 return;
874 ei->initialized = 1;
875
876 /* Save startup file's range of PC addresses to help blockframe.c
877 decide where the bottom of the stack is. */
878
879 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
880 {
881 /* Executable file -- record its entry point so we'll recognize
882 the startup file because it contains the entry point. */
883 ei->entry_point = bfd_get_start_address (objfile->obfd);
884 ei->entry_point_p = 1;
885 }
886 else if (bfd_get_file_flags (objfile->obfd) & DYNAMIC
887 && bfd_get_start_address (objfile->obfd) != 0)
888 {
889 /* Some shared libraries may have entry points set and be
890 runnable. There's no clear way to indicate this, so just check
891 for values other than zero. */
892 ei->entry_point = bfd_get_start_address (objfile->obfd);
893 ei->entry_point_p = 1;
894 }
895 else
896 {
897 /* Examination of non-executable.o files. Short-circuit this stuff. */
898 ei->entry_point_p = 0;
899 }
900
901 if (ei->entry_point_p)
902 {
903 struct obj_section *osect;
904 CORE_ADDR entry_point = ei->entry_point;
905 int found;
906
907 /* Make certain that the address points at real code, and not a
908 function descriptor. */
909 entry_point
910 = gdbarch_convert_from_func_ptr_addr (get_objfile_arch (objfile),
911 entry_point,
912 &current_target);
913
914 /* Remove any ISA markers, so that this matches entries in the
915 symbol table. */
916 ei->entry_point
917 = gdbarch_addr_bits_remove (get_objfile_arch (objfile), entry_point);
918
919 found = 0;
920 ALL_OBJFILE_OSECTIONS (objfile, osect)
921 {
922 struct bfd_section *sect = osect->the_bfd_section;
923
924 if (entry_point >= bfd_get_section_vma (objfile->obfd, sect)
925 && entry_point < (bfd_get_section_vma (objfile->obfd, sect)
926 + bfd_get_section_size (sect)))
927 {
928 ei->the_bfd_section_index
929 = gdb_bfd_section_index (objfile->obfd, sect);
930 found = 1;
931 break;
932 }
933 }
934
935 if (!found)
936 ei->the_bfd_section_index = SECT_OFF_TEXT (objfile);
937 }
938 }
939
940 /* Process a symbol file, as either the main file or as a dynamically
941 loaded file.
942
943 This function does not set the OBJFILE's entry-point info.
944
945 OBJFILE is where the symbols are to be read from.
946
947 ADDRS is the list of section load addresses. If the user has given
948 an 'add-symbol-file' command, then this is the list of offsets and
949 addresses he or she provided as arguments to the command; or, if
950 we're handling a shared library, these are the actual addresses the
951 sections are loaded at, according to the inferior's dynamic linker
952 (as gleaned by GDB's shared library code). We convert each address
953 into an offset from the section VMA's as it appears in the object
954 file, and then call the file's sym_offsets function to convert this
955 into a format-specific offset table --- a `struct section_offsets'.
956
957 ADD_FLAGS encodes verbosity level, whether this is main symbol or
958 an extra symbol file such as dynamically loaded code, and wether
959 breakpoint reset should be deferred. */
960
961 static void
962 syms_from_objfile_1 (struct objfile *objfile,
963 struct section_addr_info *addrs,
964 int add_flags)
965 {
966 struct section_addr_info *local_addr = NULL;
967 struct cleanup *old_chain;
968 const int mainline = add_flags & SYMFILE_MAINLINE;
969
970 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
971
972 if (objfile->sf == NULL)
973 {
974 /* No symbols to load, but we still need to make sure
975 that the section_offsets table is allocated. */
976 int num_sections = gdb_bfd_count_sections (objfile->obfd);
977 size_t size = SIZEOF_N_SECTION_OFFSETS (num_sections);
978
979 objfile->num_sections = num_sections;
980 objfile->section_offsets
981 = obstack_alloc (&objfile->objfile_obstack, size);
982 memset (objfile->section_offsets, 0, size);
983 return;
984 }
985
986 /* Make sure that partially constructed symbol tables will be cleaned up
987 if an error occurs during symbol reading. */
988 old_chain = make_cleanup_free_objfile (objfile);
989
990 /* If ADDRS is NULL, put together a dummy address list.
991 We now establish the convention that an addr of zero means
992 no load address was specified. */
993 if (! addrs)
994 {
995 local_addr = alloc_section_addr_info (1);
996 make_cleanup (xfree, local_addr);
997 addrs = local_addr;
998 }
999
1000 if (mainline)
1001 {
1002 /* We will modify the main symbol table, make sure that all its users
1003 will be cleaned up if an error occurs during symbol reading. */
1004 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
1005
1006 /* Since no error yet, throw away the old symbol table. */
1007
1008 if (symfile_objfile != NULL)
1009 {
1010 free_objfile (symfile_objfile);
1011 gdb_assert (symfile_objfile == NULL);
1012 }
1013
1014 /* Currently we keep symbols from the add-symbol-file command.
1015 If the user wants to get rid of them, they should do "symbol-file"
1016 without arguments first. Not sure this is the best behavior
1017 (PR 2207). */
1018
1019 (*objfile->sf->sym_new_init) (objfile);
1020 }
1021
1022 /* Convert addr into an offset rather than an absolute address.
1023 We find the lowest address of a loaded segment in the objfile,
1024 and assume that <addr> is where that got loaded.
1025
1026 We no longer warn if the lowest section is not a text segment (as
1027 happens for the PA64 port. */
1028 if (addrs->num_sections > 0)
1029 addr_info_make_relative (addrs, objfile->obfd);
1030
1031 /* Initialize symbol reading routines for this objfile, allow complaints to
1032 appear for this new file, and record how verbose to be, then do the
1033 initial symbol reading for this file. */
1034
1035 (*objfile->sf->sym_init) (objfile);
1036 clear_complaints (&symfile_complaints, 1, add_flags & SYMFILE_VERBOSE);
1037
1038 (*objfile->sf->sym_offsets) (objfile, addrs);
1039
1040 read_symbols (objfile, add_flags);
1041
1042 /* Discard cleanups as symbol reading was successful. */
1043
1044 discard_cleanups (old_chain);
1045 xfree (local_addr);
1046 }
1047
1048 /* Same as syms_from_objfile_1, but also initializes the objfile
1049 entry-point info. */
1050
1051 static void
1052 syms_from_objfile (struct objfile *objfile,
1053 struct section_addr_info *addrs,
1054 int add_flags)
1055 {
1056 syms_from_objfile_1 (objfile, addrs, add_flags);
1057 init_entry_point_info (objfile);
1058 }
1059
1060 /* Perform required actions after either reading in the initial
1061 symbols for a new objfile, or mapping in the symbols from a reusable
1062 objfile. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
1063
1064 void
1065 new_symfile_objfile (struct objfile *objfile, int add_flags)
1066 {
1067 /* If this is the main symbol file we have to clean up all users of the
1068 old main symbol file. Otherwise it is sufficient to fixup all the
1069 breakpoints that may have been redefined by this symbol file. */
1070 if (add_flags & SYMFILE_MAINLINE)
1071 {
1072 /* OK, make it the "real" symbol file. */
1073 symfile_objfile = objfile;
1074
1075 clear_symtab_users (add_flags);
1076 }
1077 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
1078 {
1079 breakpoint_re_set ();
1080 }
1081
1082 /* We're done reading the symbol file; finish off complaints. */
1083 clear_complaints (&symfile_complaints, 0, add_flags & SYMFILE_VERBOSE);
1084 }
1085
1086 /* Process a symbol file, as either the main file or as a dynamically
1087 loaded file.
1088
1089 ABFD is a BFD already open on the file, as from symfile_bfd_open.
1090 A new reference is acquired by this function.
1091
1092 For NAME description see allocate_objfile's definition.
1093
1094 ADD_FLAGS encodes verbosity, whether this is main symbol file or
1095 extra, such as dynamically loaded code, and what to do with breakpoins.
1096
1097 ADDRS is as described for syms_from_objfile_1, above.
1098 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
1099
1100 PARENT is the original objfile if ABFD is a separate debug info file.
1101 Otherwise PARENT is NULL.
1102
1103 Upon success, returns a pointer to the objfile that was added.
1104 Upon failure, jumps back to command level (never returns). */
1105
1106 static struct objfile *
1107 symbol_file_add_with_addrs (bfd *abfd, const char *name, int add_flags,
1108 struct section_addr_info *addrs,
1109 int flags, struct objfile *parent)
1110 {
1111 struct objfile *objfile;
1112 const int from_tty = add_flags & SYMFILE_VERBOSE;
1113 const int mainline = add_flags & SYMFILE_MAINLINE;
1114 const int should_print = ((from_tty || info_verbose)
1115 && (readnow_symbol_files
1116 || (add_flags & SYMFILE_NO_READ) == 0));
1117
1118 if (readnow_symbol_files)
1119 {
1120 flags |= OBJF_READNOW;
1121 add_flags &= ~SYMFILE_NO_READ;
1122 }
1123
1124 /* Give user a chance to burp if we'd be
1125 interactively wiping out any existing symbols. */
1126
1127 if ((have_full_symbols () || have_partial_symbols ())
1128 && mainline
1129 && from_tty
1130 && !query (_("Load new symbol table from \"%s\"? "), name))
1131 error (_("Not confirmed."));
1132
1133 objfile = allocate_objfile (abfd, name,
1134 flags | (mainline ? OBJF_MAINLINE : 0));
1135
1136 if (parent)
1137 add_separate_debug_objfile (objfile, parent);
1138
1139 /* We either created a new mapped symbol table, mapped an existing
1140 symbol table file which has not had initial symbol reading
1141 performed, or need to read an unmapped symbol table. */
1142 if (should_print)
1143 {
1144 if (deprecated_pre_add_symbol_hook)
1145 deprecated_pre_add_symbol_hook (name);
1146 else
1147 {
1148 printf_unfiltered (_("Reading symbols from %s..."), name);
1149 wrap_here ("");
1150 gdb_flush (gdb_stdout);
1151 }
1152 }
1153 syms_from_objfile (objfile, addrs, add_flags);
1154
1155 /* We now have at least a partial symbol table. Check to see if the
1156 user requested that all symbols be read on initial access via either
1157 the gdb startup command line or on a per symbol file basis. Expand
1158 all partial symbol tables for this objfile if so. */
1159
1160 if ((flags & OBJF_READNOW))
1161 {
1162 if (should_print)
1163 {
1164 printf_unfiltered (_("expanding to full symbols..."));
1165 wrap_here ("");
1166 gdb_flush (gdb_stdout);
1167 }
1168
1169 if (objfile->sf)
1170 objfile->sf->qf->expand_all_symtabs (objfile);
1171 }
1172
1173 if (should_print && !objfile_has_symbols (objfile))
1174 {
1175 wrap_here ("");
1176 printf_unfiltered (_("(no debugging symbols found)..."));
1177 wrap_here ("");
1178 }
1179
1180 if (should_print)
1181 {
1182 if (deprecated_post_add_symbol_hook)
1183 deprecated_post_add_symbol_hook ();
1184 else
1185 printf_unfiltered (_("done.\n"));
1186 }
1187
1188 /* We print some messages regardless of whether 'from_tty ||
1189 info_verbose' is true, so make sure they go out at the right
1190 time. */
1191 gdb_flush (gdb_stdout);
1192
1193 if (objfile->sf == NULL)
1194 {
1195 observer_notify_new_objfile (objfile);
1196 return objfile; /* No symbols. */
1197 }
1198
1199 new_symfile_objfile (objfile, add_flags);
1200
1201 observer_notify_new_objfile (objfile);
1202
1203 bfd_cache_close_all ();
1204 return (objfile);
1205 }
1206
1207 /* Add BFD as a separate debug file for OBJFILE. For NAME description
1208 see allocate_objfile's definition. */
1209
1210 void
1211 symbol_file_add_separate (bfd *bfd, const char *name, int symfile_flags,
1212 struct objfile *objfile)
1213 {
1214 struct objfile *new_objfile;
1215 struct section_addr_info *sap;
1216 struct cleanup *my_cleanup;
1217
1218 /* Create section_addr_info. We can't directly use offsets from OBJFILE
1219 because sections of BFD may not match sections of OBJFILE and because
1220 vma may have been modified by tools such as prelink. */
1221 sap = build_section_addr_info_from_objfile (objfile);
1222 my_cleanup = make_cleanup_free_section_addr_info (sap);
1223
1224 new_objfile = symbol_file_add_with_addrs
1225 (bfd, name, symfile_flags, sap,
1226 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
1227 | OBJF_USERLOADED),
1228 objfile);
1229
1230 do_cleanups (my_cleanup);
1231 }
1232
1233 /* Process the symbol file ABFD, as either the main file or as a
1234 dynamically loaded file.
1235 See symbol_file_add_with_addrs's comments for details. */
1236
1237 struct objfile *
1238 symbol_file_add_from_bfd (bfd *abfd, const char *name, int add_flags,
1239 struct section_addr_info *addrs,
1240 int flags, struct objfile *parent)
1241 {
1242 return symbol_file_add_with_addrs (abfd, name, add_flags, addrs, flags,
1243 parent);
1244 }
1245
1246 /* Process a symbol file, as either the main file or as a dynamically
1247 loaded file. See symbol_file_add_with_addrs's comments for details. */
1248
1249 struct objfile *
1250 symbol_file_add (const char *name, int add_flags,
1251 struct section_addr_info *addrs, int flags)
1252 {
1253 bfd *bfd = symfile_bfd_open (name);
1254 struct cleanup *cleanup = make_cleanup_bfd_unref (bfd);
1255 struct objfile *objf;
1256
1257 objf = symbol_file_add_from_bfd (bfd, name, add_flags, addrs, flags, NULL);
1258 do_cleanups (cleanup);
1259 return objf;
1260 }
1261
1262 /* Call symbol_file_add() with default values and update whatever is
1263 affected by the loading of a new main().
1264 Used when the file is supplied in the gdb command line
1265 and by some targets with special loading requirements.
1266 The auxiliary function, symbol_file_add_main_1(), has the flags
1267 argument for the switches that can only be specified in the symbol_file
1268 command itself. */
1269
1270 void
1271 symbol_file_add_main (const char *args, int from_tty)
1272 {
1273 symbol_file_add_main_1 (args, from_tty, 0);
1274 }
1275
1276 static void
1277 symbol_file_add_main_1 (const char *args, int from_tty, int flags)
1278 {
1279 const int add_flags = (current_inferior ()->symfile_flags
1280 | SYMFILE_MAINLINE | (from_tty ? SYMFILE_VERBOSE : 0));
1281
1282 symbol_file_add (args, add_flags, NULL, flags);
1283
1284 /* Getting new symbols may change our opinion about
1285 what is frameless. */
1286 reinit_frame_cache ();
1287
1288 if ((flags & SYMFILE_NO_READ) == 0)
1289 set_initial_language ();
1290 }
1291
1292 void
1293 symbol_file_clear (int from_tty)
1294 {
1295 if ((have_full_symbols () || have_partial_symbols ())
1296 && from_tty
1297 && (symfile_objfile
1298 ? !query (_("Discard symbol table from `%s'? "),
1299 objfile_name (symfile_objfile))
1300 : !query (_("Discard symbol table? "))))
1301 error (_("Not confirmed."));
1302
1303 /* solib descriptors may have handles to objfiles. Wipe them before their
1304 objfiles get stale by free_all_objfiles. */
1305 no_shared_libraries (NULL, from_tty);
1306
1307 free_all_objfiles ();
1308
1309 gdb_assert (symfile_objfile == NULL);
1310 if (from_tty)
1311 printf_unfiltered (_("No symbol file now.\n"));
1312 }
1313
1314 static int
1315 separate_debug_file_exists (const char *name, unsigned long crc,
1316 struct objfile *parent_objfile)
1317 {
1318 unsigned long file_crc;
1319 int file_crc_p;
1320 bfd *abfd;
1321 struct stat parent_stat, abfd_stat;
1322 int verified_as_different;
1323
1324 /* Find a separate debug info file as if symbols would be present in
1325 PARENT_OBJFILE itself this function would not be called. .gnu_debuglink
1326 section can contain just the basename of PARENT_OBJFILE without any
1327 ".debug" suffix as "/usr/lib/debug/path/to/file" is a separate tree where
1328 the separate debug infos with the same basename can exist. */
1329
1330 if (filename_cmp (name, objfile_name (parent_objfile)) == 0)
1331 return 0;
1332
1333 abfd = gdb_bfd_open_maybe_remote (name);
1334
1335 if (!abfd)
1336 return 0;
1337
1338 /* Verify symlinks were not the cause of filename_cmp name difference above.
1339
1340 Some operating systems, e.g. Windows, do not provide a meaningful
1341 st_ino; they always set it to zero. (Windows does provide a
1342 meaningful st_dev.) Do not indicate a duplicate library in that
1343 case. While there is no guarantee that a system that provides
1344 meaningful inode numbers will never set st_ino to zero, this is
1345 merely an optimization, so we do not need to worry about false
1346 negatives. */
1347
1348 if (bfd_stat (abfd, &abfd_stat) == 0
1349 && abfd_stat.st_ino != 0
1350 && bfd_stat (parent_objfile->obfd, &parent_stat) == 0)
1351 {
1352 if (abfd_stat.st_dev == parent_stat.st_dev
1353 && abfd_stat.st_ino == parent_stat.st_ino)
1354 {
1355 gdb_bfd_unref (abfd);
1356 return 0;
1357 }
1358 verified_as_different = 1;
1359 }
1360 else
1361 verified_as_different = 0;
1362
1363 file_crc_p = gdb_bfd_crc (abfd, &file_crc);
1364
1365 gdb_bfd_unref (abfd);
1366
1367 if (!file_crc_p)
1368 return 0;
1369
1370 if (crc != file_crc)
1371 {
1372 unsigned long parent_crc;
1373
1374 /* If one (or both) the files are accessed for example the via "remote:"
1375 gdbserver way it does not support the bfd_stat operation. Verify
1376 whether those two files are not the same manually. */
1377
1378 if (!verified_as_different)
1379 {
1380 if (!gdb_bfd_crc (parent_objfile->obfd, &parent_crc))
1381 return 0;
1382 }
1383
1384 if (verified_as_different || parent_crc != file_crc)
1385 warning (_("the debug information found in \"%s\""
1386 " does not match \"%s\" (CRC mismatch).\n"),
1387 name, objfile_name (parent_objfile));
1388
1389 return 0;
1390 }
1391
1392 return 1;
1393 }
1394
1395 char *debug_file_directory = NULL;
1396 static void
1397 show_debug_file_directory (struct ui_file *file, int from_tty,
1398 struct cmd_list_element *c, const char *value)
1399 {
1400 fprintf_filtered (file,
1401 _("The directory where separate debug "
1402 "symbols are searched for is \"%s\".\n"),
1403 value);
1404 }
1405
1406 #if ! defined (DEBUG_SUBDIRECTORY)
1407 #define DEBUG_SUBDIRECTORY ".debug"
1408 #endif
1409
1410 /* Find a separate debuginfo file for OBJFILE, using DIR as the directory
1411 where the original file resides (may not be the same as
1412 dirname(objfile->name) due to symlinks), and DEBUGLINK as the file we are
1413 looking for. CANON_DIR is the "realpath" form of DIR.
1414 DIR must contain a trailing '/'.
1415 Returns the path of the file with separate debug info, of NULL. */
1416
1417 static char *
1418 find_separate_debug_file (const char *dir,
1419 const char *canon_dir,
1420 const char *debuglink,
1421 unsigned long crc32, struct objfile *objfile)
1422 {
1423 char *debugdir;
1424 char *debugfile;
1425 int i;
1426 VEC (char_ptr) *debugdir_vec;
1427 struct cleanup *back_to;
1428 int ix;
1429
1430 /* Set I to max (strlen (canon_dir), strlen (dir)). */
1431 i = strlen (dir);
1432 if (canon_dir != NULL && strlen (canon_dir) > i)
1433 i = strlen (canon_dir);
1434
1435 debugfile = xmalloc (strlen (debug_file_directory) + 1
1436 + i
1437 + strlen (DEBUG_SUBDIRECTORY)
1438 + strlen ("/")
1439 + strlen (debuglink)
1440 + 1);
1441
1442 /* First try in the same directory as the original file. */
1443 strcpy (debugfile, dir);
1444 strcat (debugfile, debuglink);
1445
1446 if (separate_debug_file_exists (debugfile, crc32, objfile))
1447 return debugfile;
1448
1449 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1450 strcpy (debugfile, dir);
1451 strcat (debugfile, DEBUG_SUBDIRECTORY);
1452 strcat (debugfile, "/");
1453 strcat (debugfile, debuglink);
1454
1455 if (separate_debug_file_exists (debugfile, crc32, objfile))
1456 return debugfile;
1457
1458 /* Then try in the global debugfile directories.
1459
1460 Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1461 cause "/..." lookups. */
1462
1463 debugdir_vec = dirnames_to_char_ptr_vec (debug_file_directory);
1464 back_to = make_cleanup_free_char_ptr_vec (debugdir_vec);
1465
1466 for (ix = 0; VEC_iterate (char_ptr, debugdir_vec, ix, debugdir); ++ix)
1467 {
1468 strcpy (debugfile, debugdir);
1469 strcat (debugfile, "/");
1470 strcat (debugfile, dir);
1471 strcat (debugfile, debuglink);
1472
1473 if (separate_debug_file_exists (debugfile, crc32, objfile))
1474 {
1475 do_cleanups (back_to);
1476 return debugfile;
1477 }
1478
1479 /* If the file is in the sysroot, try using its base path in the
1480 global debugfile directory. */
1481 if (canon_dir != NULL
1482 && filename_ncmp (canon_dir, gdb_sysroot,
1483 strlen (gdb_sysroot)) == 0
1484 && IS_DIR_SEPARATOR (canon_dir[strlen (gdb_sysroot)]))
1485 {
1486 strcpy (debugfile, debugdir);
1487 strcat (debugfile, canon_dir + strlen (gdb_sysroot));
1488 strcat (debugfile, "/");
1489 strcat (debugfile, debuglink);
1490
1491 if (separate_debug_file_exists (debugfile, crc32, objfile))
1492 {
1493 do_cleanups (back_to);
1494 return debugfile;
1495 }
1496 }
1497 }
1498
1499 do_cleanups (back_to);
1500 xfree (debugfile);
1501 return NULL;
1502 }
1503
1504 /* Modify PATH to contain only "[/]directory/" part of PATH.
1505 If there were no directory separators in PATH, PATH will be empty
1506 string on return. */
1507
1508 static void
1509 terminate_after_last_dir_separator (char *path)
1510 {
1511 int i;
1512
1513 /* Strip off the final filename part, leaving the directory name,
1514 followed by a slash. The directory can be relative or absolute. */
1515 for (i = strlen(path) - 1; i >= 0; i--)
1516 if (IS_DIR_SEPARATOR (path[i]))
1517 break;
1518
1519 /* If I is -1 then no directory is present there and DIR will be "". */
1520 path[i + 1] = '\0';
1521 }
1522
1523 /* Find separate debuginfo for OBJFILE (using .gnu_debuglink section).
1524 Returns pathname, or NULL. */
1525
1526 char *
1527 find_separate_debug_file_by_debuglink (struct objfile *objfile)
1528 {
1529 char *debuglink;
1530 char *dir, *canon_dir;
1531 char *debugfile;
1532 unsigned long crc32;
1533 struct cleanup *cleanups;
1534
1535 debuglink = bfd_get_debug_link_info (objfile->obfd, &crc32);
1536
1537 if (debuglink == NULL)
1538 {
1539 /* There's no separate debug info, hence there's no way we could
1540 load it => no warning. */
1541 return NULL;
1542 }
1543
1544 cleanups = make_cleanup (xfree, debuglink);
1545 dir = xstrdup (objfile_name (objfile));
1546 make_cleanup (xfree, dir);
1547 terminate_after_last_dir_separator (dir);
1548 canon_dir = lrealpath (dir);
1549
1550 debugfile = find_separate_debug_file (dir, canon_dir, debuglink,
1551 crc32, objfile);
1552 xfree (canon_dir);
1553
1554 if (debugfile == NULL)
1555 {
1556 #ifdef HAVE_LSTAT
1557 /* For PR gdb/9538, try again with realpath (if different from the
1558 original). */
1559
1560 struct stat st_buf;
1561
1562 if (lstat (objfile_name (objfile), &st_buf) == 0
1563 && S_ISLNK (st_buf.st_mode))
1564 {
1565 char *symlink_dir;
1566
1567 symlink_dir = lrealpath (objfile_name (objfile));
1568 if (symlink_dir != NULL)
1569 {
1570 make_cleanup (xfree, symlink_dir);
1571 terminate_after_last_dir_separator (symlink_dir);
1572 if (strcmp (dir, symlink_dir) != 0)
1573 {
1574 /* Different directory, so try using it. */
1575 debugfile = find_separate_debug_file (symlink_dir,
1576 symlink_dir,
1577 debuglink,
1578 crc32,
1579 objfile);
1580 }
1581 }
1582 }
1583 #endif /* HAVE_LSTAT */
1584 }
1585
1586 do_cleanups (cleanups);
1587 return debugfile;
1588 }
1589
1590 /* This is the symbol-file command. Read the file, analyze its
1591 symbols, and add a struct symtab to a symtab list. The syntax of
1592 the command is rather bizarre:
1593
1594 1. The function buildargv implements various quoting conventions
1595 which are undocumented and have little or nothing in common with
1596 the way things are quoted (or not quoted) elsewhere in GDB.
1597
1598 2. Options are used, which are not generally used in GDB (perhaps
1599 "set mapped on", "set readnow on" would be better)
1600
1601 3. The order of options matters, which is contrary to GNU
1602 conventions (because it is confusing and inconvenient). */
1603
1604 void
1605 symbol_file_command (char *args, int from_tty)
1606 {
1607 dont_repeat ();
1608
1609 if (args == NULL)
1610 {
1611 symbol_file_clear (from_tty);
1612 }
1613 else
1614 {
1615 char **argv = gdb_buildargv (args);
1616 int flags = OBJF_USERLOADED;
1617 struct cleanup *cleanups;
1618 char *name = NULL;
1619
1620 cleanups = make_cleanup_freeargv (argv);
1621 while (*argv != NULL)
1622 {
1623 if (strcmp (*argv, "-readnow") == 0)
1624 flags |= OBJF_READNOW;
1625 else if (**argv == '-')
1626 error (_("unknown option `%s'"), *argv);
1627 else
1628 {
1629 symbol_file_add_main_1 (*argv, from_tty, flags);
1630 name = *argv;
1631 }
1632
1633 argv++;
1634 }
1635
1636 if (name == NULL)
1637 error (_("no symbol file name was specified"));
1638
1639 do_cleanups (cleanups);
1640 }
1641 }
1642
1643 /* Set the initial language.
1644
1645 FIXME: A better solution would be to record the language in the
1646 psymtab when reading partial symbols, and then use it (if known) to
1647 set the language. This would be a win for formats that encode the
1648 language in an easily discoverable place, such as DWARF. For
1649 stabs, we can jump through hoops looking for specially named
1650 symbols or try to intuit the language from the specific type of
1651 stabs we find, but we can't do that until later when we read in
1652 full symbols. */
1653
1654 void
1655 set_initial_language (void)
1656 {
1657 enum language lang = main_language ();
1658
1659 if (lang == language_unknown)
1660 {
1661 char *name = main_name ();
1662 struct symbol *sym = lookup_symbol (name, NULL, VAR_DOMAIN, NULL);
1663
1664 if (sym != NULL)
1665 lang = SYMBOL_LANGUAGE (sym);
1666 }
1667
1668 if (lang == language_unknown)
1669 {
1670 /* Make C the default language */
1671 lang = language_c;
1672 }
1673
1674 set_language (lang);
1675 expected_language = current_language; /* Don't warn the user. */
1676 }
1677
1678 /* If NAME is a remote name open the file using remote protocol, otherwise
1679 open it normally. Returns a new reference to the BFD. On error,
1680 returns NULL with the BFD error set. */
1681
1682 bfd *
1683 gdb_bfd_open_maybe_remote (const char *name)
1684 {
1685 bfd *result;
1686
1687 if (remote_filename_p (name))
1688 result = remote_bfd_open (name, gnutarget);
1689 else
1690 result = gdb_bfd_open (name, gnutarget, -1);
1691
1692 return result;
1693 }
1694
1695 /* Open the file specified by NAME and hand it off to BFD for
1696 preliminary analysis. Return a newly initialized bfd *, which
1697 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1698 absolute). In case of trouble, error() is called. */
1699
1700 bfd *
1701 symfile_bfd_open (const char *cname)
1702 {
1703 bfd *sym_bfd;
1704 int desc;
1705 char *name, *absolute_name;
1706 struct cleanup *back_to;
1707
1708 if (remote_filename_p (cname))
1709 {
1710 sym_bfd = remote_bfd_open (cname, gnutarget);
1711 if (!sym_bfd)
1712 error (_("`%s': can't open to read symbols: %s."), cname,
1713 bfd_errmsg (bfd_get_error ()));
1714
1715 if (!bfd_check_format (sym_bfd, bfd_object))
1716 {
1717 make_cleanup_bfd_unref (sym_bfd);
1718 error (_("`%s': can't read symbols: %s."), cname,
1719 bfd_errmsg (bfd_get_error ()));
1720 }
1721
1722 return sym_bfd;
1723 }
1724
1725 name = tilde_expand (cname); /* Returns 1st new malloc'd copy. */
1726
1727 /* Look down path for it, allocate 2nd new malloc'd copy. */
1728 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH, name,
1729 O_RDONLY | O_BINARY, &absolute_name);
1730 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1731 if (desc < 0)
1732 {
1733 char *exename = alloca (strlen (name) + 5);
1734
1735 strcat (strcpy (exename, name), ".exe");
1736 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
1737 exename, O_RDONLY | O_BINARY, &absolute_name);
1738 }
1739 #endif
1740 if (desc < 0)
1741 {
1742 make_cleanup (xfree, name);
1743 perror_with_name (name);
1744 }
1745
1746 xfree (name);
1747 name = absolute_name;
1748 back_to = make_cleanup (xfree, name);
1749
1750 sym_bfd = gdb_bfd_open (name, gnutarget, desc);
1751 if (!sym_bfd)
1752 error (_("`%s': can't open to read symbols: %s."), name,
1753 bfd_errmsg (bfd_get_error ()));
1754 bfd_set_cacheable (sym_bfd, 1);
1755
1756 if (!bfd_check_format (sym_bfd, bfd_object))
1757 {
1758 make_cleanup_bfd_unref (sym_bfd);
1759 error (_("`%s': can't read symbols: %s."), name,
1760 bfd_errmsg (bfd_get_error ()));
1761 }
1762
1763 do_cleanups (back_to);
1764
1765 return sym_bfd;
1766 }
1767
1768 /* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1769 the section was not found. */
1770
1771 int
1772 get_section_index (struct objfile *objfile, char *section_name)
1773 {
1774 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1775
1776 if (sect)
1777 return sect->index;
1778 else
1779 return -1;
1780 }
1781
1782 /* Link SF into the global symtab_fns list.
1783 FLAVOUR is the file format that SF handles.
1784 Called on startup by the _initialize routine in each object file format
1785 reader, to register information about each format the reader is prepared
1786 to handle. */
1787
1788 void
1789 add_symtab_fns (enum bfd_flavour flavour, const struct sym_fns *sf)
1790 {
1791 registered_sym_fns fns = { flavour, sf };
1792
1793 VEC_safe_push (registered_sym_fns, symtab_fns, &fns);
1794 }
1795
1796 /* Initialize OBJFILE to read symbols from its associated BFD. It
1797 either returns or calls error(). The result is an initialized
1798 struct sym_fns in the objfile structure, that contains cached
1799 information about the symbol file. */
1800
1801 static const struct sym_fns *
1802 find_sym_fns (bfd *abfd)
1803 {
1804 registered_sym_fns *rsf;
1805 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
1806 int i;
1807
1808 if (our_flavour == bfd_target_srec_flavour
1809 || our_flavour == bfd_target_ihex_flavour
1810 || our_flavour == bfd_target_tekhex_flavour)
1811 return NULL; /* No symbols. */
1812
1813 for (i = 0; VEC_iterate (registered_sym_fns, symtab_fns, i, rsf); ++i)
1814 if (our_flavour == rsf->sym_flavour)
1815 return rsf->sym_fns;
1816
1817 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
1818 bfd_get_target (abfd));
1819 }
1820 \f
1821
1822 /* This function runs the load command of our current target. */
1823
1824 static void
1825 load_command (char *arg, int from_tty)
1826 {
1827 struct cleanup *cleanup = make_cleanup (null_cleanup, NULL);
1828
1829 dont_repeat ();
1830
1831 /* The user might be reloading because the binary has changed. Take
1832 this opportunity to check. */
1833 reopen_exec_file ();
1834 reread_symbols ();
1835
1836 if (arg == NULL)
1837 {
1838 char *parg;
1839 int count = 0;
1840
1841 parg = arg = get_exec_file (1);
1842
1843 /* Count how many \ " ' tab space there are in the name. */
1844 while ((parg = strpbrk (parg, "\\\"'\t ")))
1845 {
1846 parg++;
1847 count++;
1848 }
1849
1850 if (count)
1851 {
1852 /* We need to quote this string so buildargv can pull it apart. */
1853 char *temp = xmalloc (strlen (arg) + count + 1 );
1854 char *ptemp = temp;
1855 char *prev;
1856
1857 make_cleanup (xfree, temp);
1858
1859 prev = parg = arg;
1860 while ((parg = strpbrk (parg, "\\\"'\t ")))
1861 {
1862 strncpy (ptemp, prev, parg - prev);
1863 ptemp += parg - prev;
1864 prev = parg++;
1865 *ptemp++ = '\\';
1866 }
1867 strcpy (ptemp, prev);
1868
1869 arg = temp;
1870 }
1871 }
1872
1873 target_load (arg, from_tty);
1874
1875 /* After re-loading the executable, we don't really know which
1876 overlays are mapped any more. */
1877 overlay_cache_invalid = 1;
1878
1879 do_cleanups (cleanup);
1880 }
1881
1882 /* This version of "load" should be usable for any target. Currently
1883 it is just used for remote targets, not inftarg.c or core files,
1884 on the theory that only in that case is it useful.
1885
1886 Avoiding xmodem and the like seems like a win (a) because we don't have
1887 to worry about finding it, and (b) On VMS, fork() is very slow and so
1888 we don't want to run a subprocess. On the other hand, I'm not sure how
1889 performance compares. */
1890
1891 static int validate_download = 0;
1892
1893 /* Callback service function for generic_load (bfd_map_over_sections). */
1894
1895 static void
1896 add_section_size_callback (bfd *abfd, asection *asec, void *data)
1897 {
1898 bfd_size_type *sum = data;
1899
1900 *sum += bfd_get_section_size (asec);
1901 }
1902
1903 /* Opaque data for load_section_callback. */
1904 struct load_section_data {
1905 CORE_ADDR load_offset;
1906 struct load_progress_data *progress_data;
1907 VEC(memory_write_request_s) *requests;
1908 };
1909
1910 /* Opaque data for load_progress. */
1911 struct load_progress_data {
1912 /* Cumulative data. */
1913 unsigned long write_count;
1914 unsigned long data_count;
1915 bfd_size_type total_size;
1916 };
1917
1918 /* Opaque data for load_progress for a single section. */
1919 struct load_progress_section_data {
1920 struct load_progress_data *cumulative;
1921
1922 /* Per-section data. */
1923 const char *section_name;
1924 ULONGEST section_sent;
1925 ULONGEST section_size;
1926 CORE_ADDR lma;
1927 gdb_byte *buffer;
1928 };
1929
1930 /* Target write callback routine for progress reporting. */
1931
1932 static void
1933 load_progress (ULONGEST bytes, void *untyped_arg)
1934 {
1935 struct load_progress_section_data *args = untyped_arg;
1936 struct load_progress_data *totals;
1937
1938 if (args == NULL)
1939 /* Writing padding data. No easy way to get at the cumulative
1940 stats, so just ignore this. */
1941 return;
1942
1943 totals = args->cumulative;
1944
1945 if (bytes == 0 && args->section_sent == 0)
1946 {
1947 /* The write is just starting. Let the user know we've started
1948 this section. */
1949 ui_out_message (current_uiout, 0, "Loading section %s, size %s lma %s\n",
1950 args->section_name, hex_string (args->section_size),
1951 paddress (target_gdbarch (), args->lma));
1952 return;
1953 }
1954
1955 if (validate_download)
1956 {
1957 /* Broken memories and broken monitors manifest themselves here
1958 when bring new computers to life. This doubles already slow
1959 downloads. */
1960 /* NOTE: cagney/1999-10-18: A more efficient implementation
1961 might add a verify_memory() method to the target vector and
1962 then use that. remote.c could implement that method using
1963 the ``qCRC'' packet. */
1964 gdb_byte *check = xmalloc (bytes);
1965 struct cleanup *verify_cleanups = make_cleanup (xfree, check);
1966
1967 if (target_read_memory (args->lma, check, bytes) != 0)
1968 error (_("Download verify read failed at %s"),
1969 paddress (target_gdbarch (), args->lma));
1970 if (memcmp (args->buffer, check, bytes) != 0)
1971 error (_("Download verify compare failed at %s"),
1972 paddress (target_gdbarch (), args->lma));
1973 do_cleanups (verify_cleanups);
1974 }
1975 totals->data_count += bytes;
1976 args->lma += bytes;
1977 args->buffer += bytes;
1978 totals->write_count += 1;
1979 args->section_sent += bytes;
1980 if (check_quit_flag ()
1981 || (deprecated_ui_load_progress_hook != NULL
1982 && deprecated_ui_load_progress_hook (args->section_name,
1983 args->section_sent)))
1984 error (_("Canceled the download"));
1985
1986 if (deprecated_show_load_progress != NULL)
1987 deprecated_show_load_progress (args->section_name,
1988 args->section_sent,
1989 args->section_size,
1990 totals->data_count,
1991 totals->total_size);
1992 }
1993
1994 /* Callback service function for generic_load (bfd_map_over_sections). */
1995
1996 static void
1997 load_section_callback (bfd *abfd, asection *asec, void *data)
1998 {
1999 struct memory_write_request *new_request;
2000 struct load_section_data *args = data;
2001 struct load_progress_section_data *section_data;
2002 bfd_size_type size = bfd_get_section_size (asec);
2003 gdb_byte *buffer;
2004 const char *sect_name = bfd_get_section_name (abfd, asec);
2005
2006 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
2007 return;
2008
2009 if (size == 0)
2010 return;
2011
2012 new_request = VEC_safe_push (memory_write_request_s,
2013 args->requests, NULL);
2014 memset (new_request, 0, sizeof (struct memory_write_request));
2015 section_data = xcalloc (1, sizeof (struct load_progress_section_data));
2016 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
2017 new_request->end = new_request->begin + size; /* FIXME Should size
2018 be in instead? */
2019 new_request->data = xmalloc (size);
2020 new_request->baton = section_data;
2021
2022 buffer = new_request->data;
2023
2024 section_data->cumulative = args->progress_data;
2025 section_data->section_name = sect_name;
2026 section_data->section_size = size;
2027 section_data->lma = new_request->begin;
2028 section_data->buffer = buffer;
2029
2030 bfd_get_section_contents (abfd, asec, buffer, 0, size);
2031 }
2032
2033 /* Clean up an entire memory request vector, including load
2034 data and progress records. */
2035
2036 static void
2037 clear_memory_write_data (void *arg)
2038 {
2039 VEC(memory_write_request_s) **vec_p = arg;
2040 VEC(memory_write_request_s) *vec = *vec_p;
2041 int i;
2042 struct memory_write_request *mr;
2043
2044 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
2045 {
2046 xfree (mr->data);
2047 xfree (mr->baton);
2048 }
2049 VEC_free (memory_write_request_s, vec);
2050 }
2051
2052 void
2053 generic_load (char *args, int from_tty)
2054 {
2055 bfd *loadfile_bfd;
2056 struct timeval start_time, end_time;
2057 char *filename;
2058 struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
2059 struct load_section_data cbdata;
2060 struct load_progress_data total_progress;
2061 struct ui_out *uiout = current_uiout;
2062
2063 CORE_ADDR entry;
2064 char **argv;
2065
2066 memset (&cbdata, 0, sizeof (cbdata));
2067 memset (&total_progress, 0, sizeof (total_progress));
2068 cbdata.progress_data = &total_progress;
2069
2070 make_cleanup (clear_memory_write_data, &cbdata.requests);
2071
2072 if (args == NULL)
2073 error_no_arg (_("file to load"));
2074
2075 argv = gdb_buildargv (args);
2076 make_cleanup_freeargv (argv);
2077
2078 filename = tilde_expand (argv[0]);
2079 make_cleanup (xfree, filename);
2080
2081 if (argv[1] != NULL)
2082 {
2083 const char *endptr;
2084
2085 cbdata.load_offset = strtoulst (argv[1], &endptr, 0);
2086
2087 /* If the last word was not a valid number then
2088 treat it as a file name with spaces in. */
2089 if (argv[1] == endptr)
2090 error (_("Invalid download offset:%s."), argv[1]);
2091
2092 if (argv[2] != NULL)
2093 error (_("Too many parameters."));
2094 }
2095
2096 /* Open the file for loading. */
2097 loadfile_bfd = gdb_bfd_open (filename, gnutarget, -1);
2098 if (loadfile_bfd == NULL)
2099 {
2100 perror_with_name (filename);
2101 return;
2102 }
2103
2104 make_cleanup_bfd_unref (loadfile_bfd);
2105
2106 if (!bfd_check_format (loadfile_bfd, bfd_object))
2107 {
2108 error (_("\"%s\" is not an object file: %s"), filename,
2109 bfd_errmsg (bfd_get_error ()));
2110 }
2111
2112 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
2113 (void *) &total_progress.total_size);
2114
2115 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
2116
2117 gettimeofday (&start_time, NULL);
2118
2119 if (target_write_memory_blocks (cbdata.requests, flash_discard,
2120 load_progress) != 0)
2121 error (_("Load failed"));
2122
2123 gettimeofday (&end_time, NULL);
2124
2125 entry = bfd_get_start_address (loadfile_bfd);
2126 entry = gdbarch_addr_bits_remove (target_gdbarch (), entry);
2127 ui_out_text (uiout, "Start address ");
2128 ui_out_field_fmt (uiout, "address", "%s", paddress (target_gdbarch (), entry));
2129 ui_out_text (uiout, ", load size ");
2130 ui_out_field_fmt (uiout, "load-size", "%lu", total_progress.data_count);
2131 ui_out_text (uiout, "\n");
2132 /* We were doing this in remote-mips.c, I suspect it is right
2133 for other targets too. */
2134 regcache_write_pc (get_current_regcache (), entry);
2135
2136 /* Reset breakpoints, now that we have changed the load image. For
2137 instance, breakpoints may have been set (or reset, by
2138 post_create_inferior) while connected to the target but before we
2139 loaded the program. In that case, the prologue analyzer could
2140 have read instructions from the target to find the right
2141 breakpoint locations. Loading has changed the contents of that
2142 memory. */
2143
2144 breakpoint_re_set ();
2145
2146 /* FIXME: are we supposed to call symbol_file_add or not? According
2147 to a comment from remote-mips.c (where a call to symbol_file_add
2148 was commented out), making the call confuses GDB if more than one
2149 file is loaded in. Some targets do (e.g., remote-vx.c) but
2150 others don't (or didn't - perhaps they have all been deleted). */
2151
2152 print_transfer_performance (gdb_stdout, total_progress.data_count,
2153 total_progress.write_count,
2154 &start_time, &end_time);
2155
2156 do_cleanups (old_cleanups);
2157 }
2158
2159 /* Report how fast the transfer went. */
2160
2161 void
2162 print_transfer_performance (struct ui_file *stream,
2163 unsigned long data_count,
2164 unsigned long write_count,
2165 const struct timeval *start_time,
2166 const struct timeval *end_time)
2167 {
2168 ULONGEST time_count;
2169 struct ui_out *uiout = current_uiout;
2170
2171 /* Compute the elapsed time in milliseconds, as a tradeoff between
2172 accuracy and overflow. */
2173 time_count = (end_time->tv_sec - start_time->tv_sec) * 1000;
2174 time_count += (end_time->tv_usec - start_time->tv_usec) / 1000;
2175
2176 ui_out_text (uiout, "Transfer rate: ");
2177 if (time_count > 0)
2178 {
2179 unsigned long rate = ((ULONGEST) data_count * 1000) / time_count;
2180
2181 if (ui_out_is_mi_like_p (uiout))
2182 {
2183 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate * 8);
2184 ui_out_text (uiout, " bits/sec");
2185 }
2186 else if (rate < 1024)
2187 {
2188 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate);
2189 ui_out_text (uiout, " bytes/sec");
2190 }
2191 else
2192 {
2193 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate / 1024);
2194 ui_out_text (uiout, " KB/sec");
2195 }
2196 }
2197 else
2198 {
2199 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
2200 ui_out_text (uiout, " bits in <1 sec");
2201 }
2202 if (write_count > 0)
2203 {
2204 ui_out_text (uiout, ", ");
2205 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
2206 ui_out_text (uiout, " bytes/write");
2207 }
2208 ui_out_text (uiout, ".\n");
2209 }
2210
2211 /* This function allows the addition of incrementally linked object files.
2212 It does not modify any state in the target, only in the debugger. */
2213 /* Note: ezannoni 2000-04-13 This function/command used to have a
2214 special case syntax for the rombug target (Rombug is the boot
2215 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2216 rombug case, the user doesn't need to supply a text address,
2217 instead a call to target_link() (in target.c) would supply the
2218 value to use. We are now discontinuing this type of ad hoc syntax. */
2219
2220 static void
2221 add_symbol_file_command (char *args, int from_tty)
2222 {
2223 struct gdbarch *gdbarch = get_current_arch ();
2224 char *filename = NULL;
2225 int flags = OBJF_USERLOADED;
2226 char *arg;
2227 int section_index = 0;
2228 int argcnt = 0;
2229 int sec_num = 0;
2230 int i;
2231 int expecting_sec_name = 0;
2232 int expecting_sec_addr = 0;
2233 char **argv;
2234 struct objfile *objf;
2235
2236 struct sect_opt
2237 {
2238 char *name;
2239 char *value;
2240 };
2241
2242 struct section_addr_info *section_addrs;
2243 struct sect_opt *sect_opts = NULL;
2244 size_t num_sect_opts = 0;
2245 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
2246
2247 num_sect_opts = 16;
2248 sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
2249 * sizeof (struct sect_opt));
2250
2251 dont_repeat ();
2252
2253 if (args == NULL)
2254 error (_("add-symbol-file takes a file name and an address"));
2255
2256 argv = gdb_buildargv (args);
2257 make_cleanup_freeargv (argv);
2258
2259 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2260 {
2261 /* Process the argument. */
2262 if (argcnt == 0)
2263 {
2264 /* The first argument is the file name. */
2265 filename = tilde_expand (arg);
2266 make_cleanup (xfree, filename);
2267 }
2268 else if (argcnt == 1)
2269 {
2270 /* The second argument is always the text address at which
2271 to load the program. */
2272 sect_opts[section_index].name = ".text";
2273 sect_opts[section_index].value = arg;
2274 if (++section_index >= num_sect_opts)
2275 {
2276 num_sect_opts *= 2;
2277 sect_opts = ((struct sect_opt *)
2278 xrealloc (sect_opts,
2279 num_sect_opts
2280 * sizeof (struct sect_opt)));
2281 }
2282 }
2283 else
2284 {
2285 /* It's an option (starting with '-') or it's an argument
2286 to an option. */
2287 if (expecting_sec_name)
2288 {
2289 sect_opts[section_index].name = arg;
2290 expecting_sec_name = 0;
2291 }
2292 else if (expecting_sec_addr)
2293 {
2294 sect_opts[section_index].value = arg;
2295 expecting_sec_addr = 0;
2296 if (++section_index >= num_sect_opts)
2297 {
2298 num_sect_opts *= 2;
2299 sect_opts = ((struct sect_opt *)
2300 xrealloc (sect_opts,
2301 num_sect_opts
2302 * sizeof (struct sect_opt)));
2303 }
2304 }
2305 else if (strcmp (arg, "-readnow") == 0)
2306 flags |= OBJF_READNOW;
2307 else if (strcmp (arg, "-s") == 0)
2308 {
2309 expecting_sec_name = 1;
2310 expecting_sec_addr = 1;
2311 }
2312 else
2313 error (_("USAGE: add-symbol-file <filename> <textaddress>"
2314 " [-readnow] [-s <secname> <addr>]*"));
2315 }
2316 }
2317
2318 /* This command takes at least two arguments. The first one is a
2319 filename, and the second is the address where this file has been
2320 loaded. Abort now if this address hasn't been provided by the
2321 user. */
2322 if (section_index < 1)
2323 error (_("The address where %s has been loaded is missing"), filename);
2324
2325 /* Print the prompt for the query below. And save the arguments into
2326 a sect_addr_info structure to be passed around to other
2327 functions. We have to split this up into separate print
2328 statements because hex_string returns a local static
2329 string. */
2330
2331 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
2332 section_addrs = alloc_section_addr_info (section_index);
2333 make_cleanup (xfree, section_addrs);
2334 for (i = 0; i < section_index; i++)
2335 {
2336 CORE_ADDR addr;
2337 char *val = sect_opts[i].value;
2338 char *sec = sect_opts[i].name;
2339
2340 addr = parse_and_eval_address (val);
2341
2342 /* Here we store the section offsets in the order they were
2343 entered on the command line. */
2344 section_addrs->other[sec_num].name = sec;
2345 section_addrs->other[sec_num].addr = addr;
2346 printf_unfiltered ("\t%s_addr = %s\n", sec,
2347 paddress (gdbarch, addr));
2348 sec_num++;
2349
2350 /* The object's sections are initialized when a
2351 call is made to build_objfile_section_table (objfile).
2352 This happens in reread_symbols.
2353 At this point, we don't know what file type this is,
2354 so we can't determine what section names are valid. */
2355 }
2356 section_addrs->num_sections = sec_num;
2357
2358 if (from_tty && (!query ("%s", "")))
2359 error (_("Not confirmed."));
2360
2361 objf = symbol_file_add (filename, from_tty ? SYMFILE_VERBOSE : 0,
2362 section_addrs, flags);
2363
2364 add_target_sections_of_objfile (objf);
2365
2366 /* Getting new symbols may change our opinion about what is
2367 frameless. */
2368 reinit_frame_cache ();
2369 do_cleanups (my_cleanups);
2370 }
2371 \f
2372
2373 /* This function removes a symbol file that was added via add-symbol-file. */
2374
2375 static void
2376 remove_symbol_file_command (char *args, int from_tty)
2377 {
2378 char **argv;
2379 struct objfile *objf = NULL;
2380 struct cleanup *my_cleanups;
2381 struct program_space *pspace = current_program_space;
2382 struct gdbarch *gdbarch = get_current_arch ();
2383
2384 dont_repeat ();
2385
2386 if (args == NULL)
2387 error (_("remove-symbol-file: no symbol file provided"));
2388
2389 my_cleanups = make_cleanup (null_cleanup, NULL);
2390
2391 argv = gdb_buildargv (args);
2392
2393 if (strcmp (argv[0], "-a") == 0)
2394 {
2395 /* Interpret the next argument as an address. */
2396 CORE_ADDR addr;
2397
2398 if (argv[1] == NULL)
2399 error (_("Missing address argument"));
2400
2401 if (argv[2] != NULL)
2402 error (_("Junk after %s"), argv[1]);
2403
2404 addr = parse_and_eval_address (argv[1]);
2405
2406 ALL_OBJFILES (objf)
2407 {
2408 if (objf != 0
2409 && objf->flags & OBJF_USERLOADED
2410 && objf->pspace == pspace && is_addr_in_objfile (addr, objf))
2411 break;
2412 }
2413 }
2414 else if (argv[0] != NULL)
2415 {
2416 /* Interpret the current argument as a file name. */
2417 char *filename;
2418
2419 if (argv[1] != NULL)
2420 error (_("Junk after %s"), argv[0]);
2421
2422 filename = tilde_expand (argv[0]);
2423 make_cleanup (xfree, filename);
2424
2425 ALL_OBJFILES (objf)
2426 {
2427 if (objf != 0
2428 && objf->flags & OBJF_USERLOADED
2429 && objf->pspace == pspace
2430 && filename_cmp (filename, objfile_name (objf)) == 0)
2431 break;
2432 }
2433 }
2434
2435 if (objf == NULL)
2436 error (_("No symbol file found"));
2437
2438 if (from_tty
2439 && !query (_("Remove symbol table from file \"%s\"? "),
2440 objfile_name (objf)))
2441 error (_("Not confirmed."));
2442
2443 free_objfile (objf);
2444 clear_symtab_users (0);
2445
2446 do_cleanups (my_cleanups);
2447 }
2448
2449 typedef struct objfile *objfilep;
2450
2451 DEF_VEC_P (objfilep);
2452
2453 /* Re-read symbols if a symbol-file has changed. */
2454
2455 void
2456 reread_symbols (void)
2457 {
2458 struct objfile *objfile;
2459 long new_modtime;
2460 struct stat new_statbuf;
2461 int res;
2462 VEC (objfilep) *new_objfiles = NULL;
2463 struct cleanup *all_cleanups;
2464
2465 all_cleanups = make_cleanup (VEC_cleanup (objfilep), &new_objfiles);
2466
2467 /* With the addition of shared libraries, this should be modified,
2468 the load time should be saved in the partial symbol tables, since
2469 different tables may come from different source files. FIXME.
2470 This routine should then walk down each partial symbol table
2471 and see if the symbol table that it originates from has been changed. */
2472
2473 for (objfile = object_files; objfile; objfile = objfile->next)
2474 {
2475 if (objfile->obfd == NULL)
2476 continue;
2477
2478 /* Separate debug objfiles are handled in the main objfile. */
2479 if (objfile->separate_debug_objfile_backlink)
2480 continue;
2481
2482 /* If this object is from an archive (what you usually create with
2483 `ar', often called a `static library' on most systems, though
2484 a `shared library' on AIX is also an archive), then you should
2485 stat on the archive name, not member name. */
2486 if (objfile->obfd->my_archive)
2487 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2488 else
2489 res = stat (objfile_name (objfile), &new_statbuf);
2490 if (res != 0)
2491 {
2492 /* FIXME, should use print_sys_errmsg but it's not filtered. */
2493 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
2494 objfile_name (objfile));
2495 continue;
2496 }
2497 new_modtime = new_statbuf.st_mtime;
2498 if (new_modtime != objfile->mtime)
2499 {
2500 struct cleanup *old_cleanups;
2501 struct section_offsets *offsets;
2502 int num_offsets;
2503 char *original_name;
2504
2505 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
2506 objfile_name (objfile));
2507
2508 /* There are various functions like symbol_file_add,
2509 symfile_bfd_open, syms_from_objfile, etc., which might
2510 appear to do what we want. But they have various other
2511 effects which we *don't* want. So we just do stuff
2512 ourselves. We don't worry about mapped files (for one thing,
2513 any mapped file will be out of date). */
2514
2515 /* If we get an error, blow away this objfile (not sure if
2516 that is the correct response for things like shared
2517 libraries). */
2518 old_cleanups = make_cleanup_free_objfile (objfile);
2519 /* We need to do this whenever any symbols go away. */
2520 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
2521
2522 if (exec_bfd != NULL
2523 && filename_cmp (bfd_get_filename (objfile->obfd),
2524 bfd_get_filename (exec_bfd)) == 0)
2525 {
2526 /* Reload EXEC_BFD without asking anything. */
2527
2528 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2529 }
2530
2531 /* Keep the calls order approx. the same as in free_objfile. */
2532
2533 /* Free the separate debug objfiles. It will be
2534 automatically recreated by sym_read. */
2535 free_objfile_separate_debug (objfile);
2536
2537 /* Remove any references to this objfile in the global
2538 value lists. */
2539 preserve_values (objfile);
2540
2541 /* Nuke all the state that we will re-read. Much of the following
2542 code which sets things to NULL really is necessary to tell
2543 other parts of GDB that there is nothing currently there.
2544
2545 Try to keep the freeing order compatible with free_objfile. */
2546
2547 if (objfile->sf != NULL)
2548 {
2549 (*objfile->sf->sym_finish) (objfile);
2550 }
2551
2552 clear_objfile_data (objfile);
2553
2554 /* Clean up any state BFD has sitting around. */
2555 {
2556 struct bfd *obfd = objfile->obfd;
2557 char *obfd_filename;
2558
2559 obfd_filename = bfd_get_filename (objfile->obfd);
2560 /* Open the new BFD before freeing the old one, so that
2561 the filename remains live. */
2562 objfile->obfd = gdb_bfd_open_maybe_remote (obfd_filename);
2563 if (objfile->obfd == NULL)
2564 {
2565 /* We have to make a cleanup and error here, rather
2566 than erroring later, because once we unref OBFD,
2567 OBFD_FILENAME will be freed. */
2568 make_cleanup_bfd_unref (obfd);
2569 error (_("Can't open %s to read symbols."), obfd_filename);
2570 }
2571 gdb_bfd_unref (obfd);
2572 }
2573
2574 original_name = xstrdup (objfile->original_name);
2575 make_cleanup (xfree, original_name);
2576
2577 /* bfd_openr sets cacheable to true, which is what we want. */
2578 if (!bfd_check_format (objfile->obfd, bfd_object))
2579 error (_("Can't read symbols from %s: %s."), objfile_name (objfile),
2580 bfd_errmsg (bfd_get_error ()));
2581
2582 /* Save the offsets, we will nuke them with the rest of the
2583 objfile_obstack. */
2584 num_offsets = objfile->num_sections;
2585 offsets = ((struct section_offsets *)
2586 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2587 memcpy (offsets, objfile->section_offsets,
2588 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2589
2590 /* FIXME: Do we have to free a whole linked list, or is this
2591 enough? */
2592 if (objfile->global_psymbols.list)
2593 xfree (objfile->global_psymbols.list);
2594 memset (&objfile->global_psymbols, 0,
2595 sizeof (objfile->global_psymbols));
2596 if (objfile->static_psymbols.list)
2597 xfree (objfile->static_psymbols.list);
2598 memset (&objfile->static_psymbols, 0,
2599 sizeof (objfile->static_psymbols));
2600
2601 /* Free the obstacks for non-reusable objfiles. */
2602 psymbol_bcache_free (objfile->psymbol_cache);
2603 objfile->psymbol_cache = psymbol_bcache_init ();
2604 obstack_free (&objfile->objfile_obstack, 0);
2605 objfile->sections = NULL;
2606 objfile->symtabs = NULL;
2607 objfile->psymtabs = NULL;
2608 objfile->psymtabs_addrmap = NULL;
2609 objfile->free_psymtabs = NULL;
2610 objfile->template_symbols = NULL;
2611 objfile->msymbols = NULL;
2612 objfile->minimal_symbol_count = 0;
2613 memset (&objfile->msymbol_hash, 0,
2614 sizeof (objfile->msymbol_hash));
2615 memset (&objfile->msymbol_demangled_hash, 0,
2616 sizeof (objfile->msymbol_demangled_hash));
2617
2618 /* obstack_init also initializes the obstack so it is
2619 empty. We could use obstack_specify_allocation but
2620 gdb_obstack.h specifies the alloc/dealloc functions. */
2621 obstack_init (&objfile->objfile_obstack);
2622
2623 /* set_objfile_per_bfd potentially allocates the per-bfd
2624 data on the objfile's obstack (if sharing data across
2625 multiple users is not possible), so it's important to
2626 do it *after* the obstack has been initialized. */
2627 set_objfile_per_bfd (objfile);
2628
2629 objfile->original_name = obstack_copy0 (&objfile->objfile_obstack,
2630 original_name,
2631 strlen (original_name));
2632
2633 /* Reset the sym_fns pointer. The ELF reader can change it
2634 based on whether .gdb_index is present, and we need it to
2635 start over. PR symtab/15885 */
2636 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
2637
2638 build_objfile_section_table (objfile);
2639 terminate_minimal_symbol_table (objfile);
2640
2641 /* We use the same section offsets as from last time. I'm not
2642 sure whether that is always correct for shared libraries. */
2643 objfile->section_offsets = (struct section_offsets *)
2644 obstack_alloc (&objfile->objfile_obstack,
2645 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2646 memcpy (objfile->section_offsets, offsets,
2647 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2648 objfile->num_sections = num_offsets;
2649
2650 /* What the hell is sym_new_init for, anyway? The concept of
2651 distinguishing between the main file and additional files
2652 in this way seems rather dubious. */
2653 if (objfile == symfile_objfile)
2654 {
2655 (*objfile->sf->sym_new_init) (objfile);
2656 }
2657
2658 (*objfile->sf->sym_init) (objfile);
2659 clear_complaints (&symfile_complaints, 1, 1);
2660
2661 objfile->flags &= ~OBJF_PSYMTABS_READ;
2662 read_symbols (objfile, 0);
2663
2664 if (!objfile_has_symbols (objfile))
2665 {
2666 wrap_here ("");
2667 printf_unfiltered (_("(no debugging symbols found)\n"));
2668 wrap_here ("");
2669 }
2670
2671 /* We're done reading the symbol file; finish off complaints. */
2672 clear_complaints (&symfile_complaints, 0, 1);
2673
2674 /* Getting new symbols may change our opinion about what is
2675 frameless. */
2676
2677 reinit_frame_cache ();
2678
2679 /* Discard cleanups as symbol reading was successful. */
2680 discard_cleanups (old_cleanups);
2681
2682 /* If the mtime has changed between the time we set new_modtime
2683 and now, we *want* this to be out of date, so don't call stat
2684 again now. */
2685 objfile->mtime = new_modtime;
2686 init_entry_point_info (objfile);
2687
2688 VEC_safe_push (objfilep, new_objfiles, objfile);
2689 }
2690 }
2691
2692 if (new_objfiles)
2693 {
2694 int ix;
2695
2696 /* Notify objfiles that we've modified objfile sections. */
2697 objfiles_changed ();
2698
2699 clear_symtab_users (0);
2700
2701 /* clear_objfile_data for each objfile was called before freeing it and
2702 observer_notify_new_objfile (NULL) has been called by
2703 clear_symtab_users above. Notify the new files now. */
2704 for (ix = 0; VEC_iterate (objfilep, new_objfiles, ix, objfile); ix++)
2705 observer_notify_new_objfile (objfile);
2706
2707 /* At least one objfile has changed, so we can consider that
2708 the executable we're debugging has changed too. */
2709 observer_notify_executable_changed ();
2710 }
2711
2712 do_cleanups (all_cleanups);
2713 }
2714 \f
2715
2716 typedef struct
2717 {
2718 char *ext;
2719 enum language lang;
2720 }
2721 filename_language;
2722
2723 static filename_language *filename_language_table;
2724 static int fl_table_size, fl_table_next;
2725
2726 static void
2727 add_filename_language (char *ext, enum language lang)
2728 {
2729 if (fl_table_next >= fl_table_size)
2730 {
2731 fl_table_size += 10;
2732 filename_language_table =
2733 xrealloc (filename_language_table,
2734 fl_table_size * sizeof (*filename_language_table));
2735 }
2736
2737 filename_language_table[fl_table_next].ext = xstrdup (ext);
2738 filename_language_table[fl_table_next].lang = lang;
2739 fl_table_next++;
2740 }
2741
2742 static char *ext_args;
2743 static void
2744 show_ext_args (struct ui_file *file, int from_tty,
2745 struct cmd_list_element *c, const char *value)
2746 {
2747 fprintf_filtered (file,
2748 _("Mapping between filename extension "
2749 "and source language is \"%s\".\n"),
2750 value);
2751 }
2752
2753 static void
2754 set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
2755 {
2756 int i;
2757 char *cp = ext_args;
2758 enum language lang;
2759
2760 /* First arg is filename extension, starting with '.' */
2761 if (*cp != '.')
2762 error (_("'%s': Filename extension must begin with '.'"), ext_args);
2763
2764 /* Find end of first arg. */
2765 while (*cp && !isspace (*cp))
2766 cp++;
2767
2768 if (*cp == '\0')
2769 error (_("'%s': two arguments required -- "
2770 "filename extension and language"),
2771 ext_args);
2772
2773 /* Null-terminate first arg. */
2774 *cp++ = '\0';
2775
2776 /* Find beginning of second arg, which should be a source language. */
2777 cp = skip_spaces (cp);
2778
2779 if (*cp == '\0')
2780 error (_("'%s': two arguments required -- "
2781 "filename extension and language"),
2782 ext_args);
2783
2784 /* Lookup the language from among those we know. */
2785 lang = language_enum (cp);
2786
2787 /* Now lookup the filename extension: do we already know it? */
2788 for (i = 0; i < fl_table_next; i++)
2789 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2790 break;
2791
2792 if (i >= fl_table_next)
2793 {
2794 /* New file extension. */
2795 add_filename_language (ext_args, lang);
2796 }
2797 else
2798 {
2799 /* Redefining a previously known filename extension. */
2800
2801 /* if (from_tty) */
2802 /* query ("Really make files of type %s '%s'?", */
2803 /* ext_args, language_str (lang)); */
2804
2805 xfree (filename_language_table[i].ext);
2806 filename_language_table[i].ext = xstrdup (ext_args);
2807 filename_language_table[i].lang = lang;
2808 }
2809 }
2810
2811 static void
2812 info_ext_lang_command (char *args, int from_tty)
2813 {
2814 int i;
2815
2816 printf_filtered (_("Filename extensions and the languages they represent:"));
2817 printf_filtered ("\n\n");
2818 for (i = 0; i < fl_table_next; i++)
2819 printf_filtered ("\t%s\t- %s\n",
2820 filename_language_table[i].ext,
2821 language_str (filename_language_table[i].lang));
2822 }
2823
2824 static void
2825 init_filename_language_table (void)
2826 {
2827 if (fl_table_size == 0) /* Protect against repetition. */
2828 {
2829 fl_table_size = 20;
2830 fl_table_next = 0;
2831 filename_language_table =
2832 xmalloc (fl_table_size * sizeof (*filename_language_table));
2833 add_filename_language (".c", language_c);
2834 add_filename_language (".d", language_d);
2835 add_filename_language (".C", language_cplus);
2836 add_filename_language (".cc", language_cplus);
2837 add_filename_language (".cp", language_cplus);
2838 add_filename_language (".cpp", language_cplus);
2839 add_filename_language (".cxx", language_cplus);
2840 add_filename_language (".c++", language_cplus);
2841 add_filename_language (".java", language_java);
2842 add_filename_language (".class", language_java);
2843 add_filename_language (".m", language_objc);
2844 add_filename_language (".f", language_fortran);
2845 add_filename_language (".F", language_fortran);
2846 add_filename_language (".for", language_fortran);
2847 add_filename_language (".FOR", language_fortran);
2848 add_filename_language (".ftn", language_fortran);
2849 add_filename_language (".FTN", language_fortran);
2850 add_filename_language (".fpp", language_fortran);
2851 add_filename_language (".FPP", language_fortran);
2852 add_filename_language (".f90", language_fortran);
2853 add_filename_language (".F90", language_fortran);
2854 add_filename_language (".f95", language_fortran);
2855 add_filename_language (".F95", language_fortran);
2856 add_filename_language (".f03", language_fortran);
2857 add_filename_language (".F03", language_fortran);
2858 add_filename_language (".f08", language_fortran);
2859 add_filename_language (".F08", language_fortran);
2860 add_filename_language (".s", language_asm);
2861 add_filename_language (".sx", language_asm);
2862 add_filename_language (".S", language_asm);
2863 add_filename_language (".pas", language_pascal);
2864 add_filename_language (".p", language_pascal);
2865 add_filename_language (".pp", language_pascal);
2866 add_filename_language (".adb", language_ada);
2867 add_filename_language (".ads", language_ada);
2868 add_filename_language (".a", language_ada);
2869 add_filename_language (".ada", language_ada);
2870 add_filename_language (".dg", language_ada);
2871 }
2872 }
2873
2874 enum language
2875 deduce_language_from_filename (const char *filename)
2876 {
2877 int i;
2878 char *cp;
2879
2880 if (filename != NULL)
2881 if ((cp = strrchr (filename, '.')) != NULL)
2882 for (i = 0; i < fl_table_next; i++)
2883 if (strcmp (cp, filename_language_table[i].ext) == 0)
2884 return filename_language_table[i].lang;
2885
2886 return language_unknown;
2887 }
2888 \f
2889 /* allocate_symtab:
2890
2891 Allocate and partly initialize a new symbol table. Return a pointer
2892 to it. error() if no space.
2893
2894 Caller must set these fields:
2895 LINETABLE(symtab)
2896 symtab->blockvector
2897 symtab->dirname
2898 symtab->free_code
2899 symtab->free_ptr
2900 */
2901
2902 struct symtab *
2903 allocate_symtab (const char *filename, struct objfile *objfile)
2904 {
2905 struct symtab *symtab;
2906
2907 symtab = (struct symtab *)
2908 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symtab));
2909 memset (symtab, 0, sizeof (*symtab));
2910 symtab->filename = bcache (filename, strlen (filename) + 1,
2911 objfile->per_bfd->filename_cache);
2912 symtab->fullname = NULL;
2913 symtab->language = deduce_language_from_filename (filename);
2914 symtab->debugformat = "unknown";
2915
2916 /* Hook it to the objfile it comes from. */
2917
2918 symtab->objfile = objfile;
2919 symtab->next = objfile->symtabs;
2920 objfile->symtabs = symtab;
2921
2922 /* This can be very verbose with lots of headers.
2923 Only print at higher debug levels. */
2924 if (symtab_create_debug >= 2)
2925 {
2926 /* Be a bit clever with debugging messages, and don't print objfile
2927 every time, only when it changes. */
2928 static char *last_objfile_name = NULL;
2929
2930 if (last_objfile_name == NULL
2931 || strcmp (last_objfile_name, objfile_name (objfile)) != 0)
2932 {
2933 xfree (last_objfile_name);
2934 last_objfile_name = xstrdup (objfile_name (objfile));
2935 fprintf_unfiltered (gdb_stdlog,
2936 "Creating one or more symtabs for objfile %s ...\n",
2937 last_objfile_name);
2938 }
2939 fprintf_unfiltered (gdb_stdlog,
2940 "Created symtab %s for module %s.\n",
2941 host_address_to_string (symtab), filename);
2942 }
2943
2944 return (symtab);
2945 }
2946 \f
2947
2948 /* Reset all data structures in gdb which may contain references to symbol
2949 table data. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
2950
2951 void
2952 clear_symtab_users (int add_flags)
2953 {
2954 /* Someday, we should do better than this, by only blowing away
2955 the things that really need to be blown. */
2956
2957 /* Clear the "current" symtab first, because it is no longer valid.
2958 breakpoint_re_set may try to access the current symtab. */
2959 clear_current_source_symtab_and_line ();
2960
2961 clear_displays ();
2962 if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
2963 breakpoint_re_set ();
2964 clear_last_displayed_sal ();
2965 clear_pc_function_cache ();
2966 observer_notify_new_objfile (NULL);
2967
2968 /* Clear globals which might have pointed into a removed objfile.
2969 FIXME: It's not clear which of these are supposed to persist
2970 between expressions and which ought to be reset each time. */
2971 expression_context_block = NULL;
2972 innermost_block = NULL;
2973
2974 /* Varobj may refer to old symbols, perform a cleanup. */
2975 varobj_invalidate ();
2976
2977 }
2978
2979 static void
2980 clear_symtab_users_cleanup (void *ignore)
2981 {
2982 clear_symtab_users (0);
2983 }
2984 \f
2985 /* OVERLAYS:
2986 The following code implements an abstraction for debugging overlay sections.
2987
2988 The target model is as follows:
2989 1) The gnu linker will permit multiple sections to be mapped into the
2990 same VMA, each with its own unique LMA (or load address).
2991 2) It is assumed that some runtime mechanism exists for mapping the
2992 sections, one by one, from the load address into the VMA address.
2993 3) This code provides a mechanism for gdb to keep track of which
2994 sections should be considered to be mapped from the VMA to the LMA.
2995 This information is used for symbol lookup, and memory read/write.
2996 For instance, if a section has been mapped then its contents
2997 should be read from the VMA, otherwise from the LMA.
2998
2999 Two levels of debugger support for overlays are available. One is
3000 "manual", in which the debugger relies on the user to tell it which
3001 overlays are currently mapped. This level of support is
3002 implemented entirely in the core debugger, and the information about
3003 whether a section is mapped is kept in the objfile->obj_section table.
3004
3005 The second level of support is "automatic", and is only available if
3006 the target-specific code provides functionality to read the target's
3007 overlay mapping table, and translate its contents for the debugger
3008 (by updating the mapped state information in the obj_section tables).
3009
3010 The interface is as follows:
3011 User commands:
3012 overlay map <name> -- tell gdb to consider this section mapped
3013 overlay unmap <name> -- tell gdb to consider this section unmapped
3014 overlay list -- list the sections that GDB thinks are mapped
3015 overlay read-target -- get the target's state of what's mapped
3016 overlay off/manual/auto -- set overlay debugging state
3017 Functional interface:
3018 find_pc_mapped_section(pc): if the pc is in the range of a mapped
3019 section, return that section.
3020 find_pc_overlay(pc): find any overlay section that contains
3021 the pc, either in its VMA or its LMA
3022 section_is_mapped(sect): true if overlay is marked as mapped
3023 section_is_overlay(sect): true if section's VMA != LMA
3024 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
3025 pc_in_unmapped_range(...): true if pc belongs to section's LMA
3026 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
3027 overlay_mapped_address(...): map an address from section's LMA to VMA
3028 overlay_unmapped_address(...): map an address from section's VMA to LMA
3029 symbol_overlayed_address(...): Return a "current" address for symbol:
3030 either in VMA or LMA depending on whether
3031 the symbol's section is currently mapped. */
3032
3033 /* Overlay debugging state: */
3034
3035 enum overlay_debugging_state overlay_debugging = ovly_off;
3036 int overlay_cache_invalid = 0; /* True if need to refresh mapped state. */
3037
3038 /* Function: section_is_overlay (SECTION)
3039 Returns true if SECTION has VMA not equal to LMA, ie.
3040 SECTION is loaded at an address different from where it will "run". */
3041
3042 int
3043 section_is_overlay (struct obj_section *section)
3044 {
3045 if (overlay_debugging && section)
3046 {
3047 bfd *abfd = section->objfile->obfd;
3048 asection *bfd_section = section->the_bfd_section;
3049
3050 if (bfd_section_lma (abfd, bfd_section) != 0
3051 && bfd_section_lma (abfd, bfd_section)
3052 != bfd_section_vma (abfd, bfd_section))
3053 return 1;
3054 }
3055
3056 return 0;
3057 }
3058
3059 /* Function: overlay_invalidate_all (void)
3060 Invalidate the mapped state of all overlay sections (mark it as stale). */
3061
3062 static void
3063 overlay_invalidate_all (void)
3064 {
3065 struct objfile *objfile;
3066 struct obj_section *sect;
3067
3068 ALL_OBJSECTIONS (objfile, sect)
3069 if (section_is_overlay (sect))
3070 sect->ovly_mapped = -1;
3071 }
3072
3073 /* Function: section_is_mapped (SECTION)
3074 Returns true if section is an overlay, and is currently mapped.
3075
3076 Access to the ovly_mapped flag is restricted to this function, so
3077 that we can do automatic update. If the global flag
3078 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
3079 overlay_invalidate_all. If the mapped state of the particular
3080 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
3081
3082 int
3083 section_is_mapped (struct obj_section *osect)
3084 {
3085 struct gdbarch *gdbarch;
3086
3087 if (osect == 0 || !section_is_overlay (osect))
3088 return 0;
3089
3090 switch (overlay_debugging)
3091 {
3092 default:
3093 case ovly_off:
3094 return 0; /* overlay debugging off */
3095 case ovly_auto: /* overlay debugging automatic */
3096 /* Unles there is a gdbarch_overlay_update function,
3097 there's really nothing useful to do here (can't really go auto). */
3098 gdbarch = get_objfile_arch (osect->objfile);
3099 if (gdbarch_overlay_update_p (gdbarch))
3100 {
3101 if (overlay_cache_invalid)
3102 {
3103 overlay_invalidate_all ();
3104 overlay_cache_invalid = 0;
3105 }
3106 if (osect->ovly_mapped == -1)
3107 gdbarch_overlay_update (gdbarch, osect);
3108 }
3109 /* fall thru to manual case */
3110 case ovly_on: /* overlay debugging manual */
3111 return osect->ovly_mapped == 1;
3112 }
3113 }
3114
3115 /* Function: pc_in_unmapped_range
3116 If PC falls into the lma range of SECTION, return true, else false. */
3117
3118 CORE_ADDR
3119 pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
3120 {
3121 if (section_is_overlay (section))
3122 {
3123 bfd *abfd = section->objfile->obfd;
3124 asection *bfd_section = section->the_bfd_section;
3125
3126 /* We assume the LMA is relocated by the same offset as the VMA. */
3127 bfd_vma size = bfd_get_section_size (bfd_section);
3128 CORE_ADDR offset = obj_section_offset (section);
3129
3130 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
3131 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
3132 return 1;
3133 }
3134
3135 return 0;
3136 }
3137
3138 /* Function: pc_in_mapped_range
3139 If PC falls into the vma range of SECTION, return true, else false. */
3140
3141 CORE_ADDR
3142 pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
3143 {
3144 if (section_is_overlay (section))
3145 {
3146 if (obj_section_addr (section) <= pc
3147 && pc < obj_section_endaddr (section))
3148 return 1;
3149 }
3150
3151 return 0;
3152 }
3153
3154 /* Return true if the mapped ranges of sections A and B overlap, false
3155 otherwise. */
3156
3157 static int
3158 sections_overlap (struct obj_section *a, struct obj_section *b)
3159 {
3160 CORE_ADDR a_start = obj_section_addr (a);
3161 CORE_ADDR a_end = obj_section_endaddr (a);
3162 CORE_ADDR b_start = obj_section_addr (b);
3163 CORE_ADDR b_end = obj_section_endaddr (b);
3164
3165 return (a_start < b_end && b_start < a_end);
3166 }
3167
3168 /* Function: overlay_unmapped_address (PC, SECTION)
3169 Returns the address corresponding to PC in the unmapped (load) range.
3170 May be the same as PC. */
3171
3172 CORE_ADDR
3173 overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
3174 {
3175 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
3176 {
3177 bfd *abfd = section->objfile->obfd;
3178 asection *bfd_section = section->the_bfd_section;
3179
3180 return pc + bfd_section_lma (abfd, bfd_section)
3181 - bfd_section_vma (abfd, bfd_section);
3182 }
3183
3184 return pc;
3185 }
3186
3187 /* Function: overlay_mapped_address (PC, SECTION)
3188 Returns the address corresponding to PC in the mapped (runtime) range.
3189 May be the same as PC. */
3190
3191 CORE_ADDR
3192 overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
3193 {
3194 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3195 {
3196 bfd *abfd = section->objfile->obfd;
3197 asection *bfd_section = section->the_bfd_section;
3198
3199 return pc + bfd_section_vma (abfd, bfd_section)
3200 - bfd_section_lma (abfd, bfd_section);
3201 }
3202
3203 return pc;
3204 }
3205
3206 /* Function: symbol_overlayed_address
3207 Return one of two addresses (relative to the VMA or to the LMA),
3208 depending on whether the section is mapped or not. */
3209
3210 CORE_ADDR
3211 symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
3212 {
3213 if (overlay_debugging)
3214 {
3215 /* If the symbol has no section, just return its regular address. */
3216 if (section == 0)
3217 return address;
3218 /* If the symbol's section is not an overlay, just return its
3219 address. */
3220 if (!section_is_overlay (section))
3221 return address;
3222 /* If the symbol's section is mapped, just return its address. */
3223 if (section_is_mapped (section))
3224 return address;
3225 /*
3226 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3227 * then return its LOADED address rather than its vma address!!
3228 */
3229 return overlay_unmapped_address (address, section);
3230 }
3231 return address;
3232 }
3233
3234 /* Function: find_pc_overlay (PC)
3235 Return the best-match overlay section for PC:
3236 If PC matches a mapped overlay section's VMA, return that section.
3237 Else if PC matches an unmapped section's VMA, return that section.
3238 Else if PC matches an unmapped section's LMA, return that section. */
3239
3240 struct obj_section *
3241 find_pc_overlay (CORE_ADDR pc)
3242 {
3243 struct objfile *objfile;
3244 struct obj_section *osect, *best_match = NULL;
3245
3246 if (overlay_debugging)
3247 ALL_OBJSECTIONS (objfile, osect)
3248 if (section_is_overlay (osect))
3249 {
3250 if (pc_in_mapped_range (pc, osect))
3251 {
3252 if (section_is_mapped (osect))
3253 return osect;
3254 else
3255 best_match = osect;
3256 }
3257 else if (pc_in_unmapped_range (pc, osect))
3258 best_match = osect;
3259 }
3260 return best_match;
3261 }
3262
3263 /* Function: find_pc_mapped_section (PC)
3264 If PC falls into the VMA address range of an overlay section that is
3265 currently marked as MAPPED, return that section. Else return NULL. */
3266
3267 struct obj_section *
3268 find_pc_mapped_section (CORE_ADDR pc)
3269 {
3270 struct objfile *objfile;
3271 struct obj_section *osect;
3272
3273 if (overlay_debugging)
3274 ALL_OBJSECTIONS (objfile, osect)
3275 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3276 return osect;
3277
3278 return NULL;
3279 }
3280
3281 /* Function: list_overlays_command
3282 Print a list of mapped sections and their PC ranges. */
3283
3284 static void
3285 list_overlays_command (char *args, int from_tty)
3286 {
3287 int nmapped = 0;
3288 struct objfile *objfile;
3289 struct obj_section *osect;
3290
3291 if (overlay_debugging)
3292 ALL_OBJSECTIONS (objfile, osect)
3293 if (section_is_mapped (osect))
3294 {
3295 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3296 const char *name;
3297 bfd_vma lma, vma;
3298 int size;
3299
3300 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3301 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3302 size = bfd_get_section_size (osect->the_bfd_section);
3303 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3304
3305 printf_filtered ("Section %s, loaded at ", name);
3306 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
3307 puts_filtered (" - ");
3308 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
3309 printf_filtered (", mapped at ");
3310 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
3311 puts_filtered (" - ");
3312 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
3313 puts_filtered ("\n");
3314
3315 nmapped++;
3316 }
3317 if (nmapped == 0)
3318 printf_filtered (_("No sections are mapped.\n"));
3319 }
3320
3321 /* Function: map_overlay_command
3322 Mark the named section as mapped (ie. residing at its VMA address). */
3323
3324 static void
3325 map_overlay_command (char *args, int from_tty)
3326 {
3327 struct objfile *objfile, *objfile2;
3328 struct obj_section *sec, *sec2;
3329
3330 if (!overlay_debugging)
3331 error (_("Overlay debugging not enabled. Use "
3332 "either the 'overlay auto' or\n"
3333 "the 'overlay manual' command."));
3334
3335 if (args == 0 || *args == 0)
3336 error (_("Argument required: name of an overlay section"));
3337
3338 /* First, find a section matching the user supplied argument. */
3339 ALL_OBJSECTIONS (objfile, sec)
3340 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3341 {
3342 /* Now, check to see if the section is an overlay. */
3343 if (!section_is_overlay (sec))
3344 continue; /* not an overlay section */
3345
3346 /* Mark the overlay as "mapped". */
3347 sec->ovly_mapped = 1;
3348
3349 /* Next, make a pass and unmap any sections that are
3350 overlapped by this new section: */
3351 ALL_OBJSECTIONS (objfile2, sec2)
3352 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
3353 {
3354 if (info_verbose)
3355 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
3356 bfd_section_name (objfile->obfd,
3357 sec2->the_bfd_section));
3358 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2. */
3359 }
3360 return;
3361 }
3362 error (_("No overlay section called %s"), args);
3363 }
3364
3365 /* Function: unmap_overlay_command
3366 Mark the overlay section as unmapped
3367 (ie. resident in its LMA address range, rather than the VMA range). */
3368
3369 static void
3370 unmap_overlay_command (char *args, int from_tty)
3371 {
3372 struct objfile *objfile;
3373 struct obj_section *sec;
3374
3375 if (!overlay_debugging)
3376 error (_("Overlay debugging not enabled. "
3377 "Use either the 'overlay auto' or\n"
3378 "the 'overlay manual' command."));
3379
3380 if (args == 0 || *args == 0)
3381 error (_("Argument required: name of an overlay section"));
3382
3383 /* First, find a section matching the user supplied argument. */
3384 ALL_OBJSECTIONS (objfile, sec)
3385 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3386 {
3387 if (!sec->ovly_mapped)
3388 error (_("Section %s is not mapped"), args);
3389 sec->ovly_mapped = 0;
3390 return;
3391 }
3392 error (_("No overlay section called %s"), args);
3393 }
3394
3395 /* Function: overlay_auto_command
3396 A utility command to turn on overlay debugging.
3397 Possibly this should be done via a set/show command. */
3398
3399 static void
3400 overlay_auto_command (char *args, int from_tty)
3401 {
3402 overlay_debugging = ovly_auto;
3403 enable_overlay_breakpoints ();
3404 if (info_verbose)
3405 printf_unfiltered (_("Automatic overlay debugging enabled."));
3406 }
3407
3408 /* Function: overlay_manual_command
3409 A utility command to turn on overlay debugging.
3410 Possibly this should be done via a set/show command. */
3411
3412 static void
3413 overlay_manual_command (char *args, int from_tty)
3414 {
3415 overlay_debugging = ovly_on;
3416 disable_overlay_breakpoints ();
3417 if (info_verbose)
3418 printf_unfiltered (_("Overlay debugging enabled."));
3419 }
3420
3421 /* Function: overlay_off_command
3422 A utility command to turn on overlay debugging.
3423 Possibly this should be done via a set/show command. */
3424
3425 static void
3426 overlay_off_command (char *args, int from_tty)
3427 {
3428 overlay_debugging = ovly_off;
3429 disable_overlay_breakpoints ();
3430 if (info_verbose)
3431 printf_unfiltered (_("Overlay debugging disabled."));
3432 }
3433
3434 static void
3435 overlay_load_command (char *args, int from_tty)
3436 {
3437 struct gdbarch *gdbarch = get_current_arch ();
3438
3439 if (gdbarch_overlay_update_p (gdbarch))
3440 gdbarch_overlay_update (gdbarch, NULL);
3441 else
3442 error (_("This target does not know how to read its overlay state."));
3443 }
3444
3445 /* Function: overlay_command
3446 A place-holder for a mis-typed command. */
3447
3448 /* Command list chain containing all defined "overlay" subcommands. */
3449 static struct cmd_list_element *overlaylist;
3450
3451 static void
3452 overlay_command (char *args, int from_tty)
3453 {
3454 printf_unfiltered
3455 ("\"overlay\" must be followed by the name of an overlay command.\n");
3456 help_list (overlaylist, "overlay ", -1, gdb_stdout);
3457 }
3458
3459 /* Target Overlays for the "Simplest" overlay manager:
3460
3461 This is GDB's default target overlay layer. It works with the
3462 minimal overlay manager supplied as an example by Cygnus. The
3463 entry point is via a function pointer "gdbarch_overlay_update",
3464 so targets that use a different runtime overlay manager can
3465 substitute their own overlay_update function and take over the
3466 function pointer.
3467
3468 The overlay_update function pokes around in the target's data structures
3469 to see what overlays are mapped, and updates GDB's overlay mapping with
3470 this information.
3471
3472 In this simple implementation, the target data structures are as follows:
3473 unsigned _novlys; /# number of overlay sections #/
3474 unsigned _ovly_table[_novlys][4] = {
3475 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3476 {..., ..., ..., ...},
3477 }
3478 unsigned _novly_regions; /# number of overlay regions #/
3479 unsigned _ovly_region_table[_novly_regions][3] = {
3480 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3481 {..., ..., ...},
3482 }
3483 These functions will attempt to update GDB's mappedness state in the
3484 symbol section table, based on the target's mappedness state.
3485
3486 To do this, we keep a cached copy of the target's _ovly_table, and
3487 attempt to detect when the cached copy is invalidated. The main
3488 entry point is "simple_overlay_update(SECT), which looks up SECT in
3489 the cached table and re-reads only the entry for that section from
3490 the target (whenever possible). */
3491
3492 /* Cached, dynamically allocated copies of the target data structures: */
3493 static unsigned (*cache_ovly_table)[4] = 0;
3494 static unsigned cache_novlys = 0;
3495 static CORE_ADDR cache_ovly_table_base = 0;
3496 enum ovly_index
3497 {
3498 VMA, SIZE, LMA, MAPPED
3499 };
3500
3501 /* Throw away the cached copy of _ovly_table. */
3502
3503 static void
3504 simple_free_overlay_table (void)
3505 {
3506 if (cache_ovly_table)
3507 xfree (cache_ovly_table);
3508 cache_novlys = 0;
3509 cache_ovly_table = NULL;
3510 cache_ovly_table_base = 0;
3511 }
3512
3513 /* Read an array of ints of size SIZE from the target into a local buffer.
3514 Convert to host order. int LEN is number of ints. */
3515
3516 static void
3517 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
3518 int len, int size, enum bfd_endian byte_order)
3519 {
3520 /* FIXME (alloca): Not safe if array is very large. */
3521 gdb_byte *buf = alloca (len * size);
3522 int i;
3523
3524 read_memory (memaddr, buf, len * size);
3525 for (i = 0; i < len; i++)
3526 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
3527 }
3528
3529 /* Find and grab a copy of the target _ovly_table
3530 (and _novlys, which is needed for the table's size). */
3531
3532 static int
3533 simple_read_overlay_table (void)
3534 {
3535 struct minimal_symbol *novlys_msym;
3536 struct bound_minimal_symbol ovly_table_msym;
3537 struct gdbarch *gdbarch;
3538 int word_size;
3539 enum bfd_endian byte_order;
3540
3541 simple_free_overlay_table ();
3542 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3543 if (! novlys_msym)
3544 {
3545 error (_("Error reading inferior's overlay table: "
3546 "couldn't find `_novlys' variable\n"
3547 "in inferior. Use `overlay manual' mode."));
3548 return 0;
3549 }
3550
3551 ovly_table_msym = lookup_bound_minimal_symbol ("_ovly_table");
3552 if (! ovly_table_msym.minsym)
3553 {
3554 error (_("Error reading inferior's overlay table: couldn't find "
3555 "`_ovly_table' array\n"
3556 "in inferior. Use `overlay manual' mode."));
3557 return 0;
3558 }
3559
3560 gdbarch = get_objfile_arch (ovly_table_msym.objfile);
3561 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3562 byte_order = gdbarch_byte_order (gdbarch);
3563
3564 cache_novlys = read_memory_integer (MSYMBOL_VALUE_ADDRESS (novlys_msym),
3565 4, byte_order);
3566 cache_ovly_table
3567 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3568 cache_ovly_table_base = MSYMBOL_VALUE_ADDRESS (ovly_table_msym.minsym);
3569 read_target_long_array (cache_ovly_table_base,
3570 (unsigned int *) cache_ovly_table,
3571 cache_novlys * 4, word_size, byte_order);
3572
3573 return 1; /* SUCCESS */
3574 }
3575
3576 /* Function: simple_overlay_update_1
3577 A helper function for simple_overlay_update. Assuming a cached copy
3578 of _ovly_table exists, look through it to find an entry whose vma,
3579 lma and size match those of OSECT. Re-read the entry and make sure
3580 it still matches OSECT (else the table may no longer be valid).
3581 Set OSECT's mapped state to match the entry. Return: 1 for
3582 success, 0 for failure. */
3583
3584 static int
3585 simple_overlay_update_1 (struct obj_section *osect)
3586 {
3587 int i, size;
3588 bfd *obfd = osect->objfile->obfd;
3589 asection *bsect = osect->the_bfd_section;
3590 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3591 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3592 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3593
3594 size = bfd_get_section_size (osect->the_bfd_section);
3595 for (i = 0; i < cache_novlys; i++)
3596 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3597 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3598 /* && cache_ovly_table[i][SIZE] == size */ )
3599 {
3600 read_target_long_array (cache_ovly_table_base + i * word_size,
3601 (unsigned int *) cache_ovly_table[i],
3602 4, word_size, byte_order);
3603 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3604 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3605 /* && cache_ovly_table[i][SIZE] == size */ )
3606 {
3607 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3608 return 1;
3609 }
3610 else /* Warning! Warning! Target's ovly table has changed! */
3611 return 0;
3612 }
3613 return 0;
3614 }
3615
3616 /* Function: simple_overlay_update
3617 If OSECT is NULL, then update all sections' mapped state
3618 (after re-reading the entire target _ovly_table).
3619 If OSECT is non-NULL, then try to find a matching entry in the
3620 cached ovly_table and update only OSECT's mapped state.
3621 If a cached entry can't be found or the cache isn't valid, then
3622 re-read the entire cache, and go ahead and update all sections. */
3623
3624 void
3625 simple_overlay_update (struct obj_section *osect)
3626 {
3627 struct objfile *objfile;
3628
3629 /* Were we given an osect to look up? NULL means do all of them. */
3630 if (osect)
3631 /* Have we got a cached copy of the target's overlay table? */
3632 if (cache_ovly_table != NULL)
3633 {
3634 /* Does its cached location match what's currently in the
3635 symtab? */
3636 struct minimal_symbol *minsym
3637 = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3638
3639 if (minsym == NULL)
3640 error (_("Error reading inferior's overlay table: couldn't "
3641 "find `_ovly_table' array\n"
3642 "in inferior. Use `overlay manual' mode."));
3643
3644 if (cache_ovly_table_base == MSYMBOL_VALUE_ADDRESS (minsym))
3645 /* Then go ahead and try to look up this single section in
3646 the cache. */
3647 if (simple_overlay_update_1 (osect))
3648 /* Found it! We're done. */
3649 return;
3650 }
3651
3652 /* Cached table no good: need to read the entire table anew.
3653 Or else we want all the sections, in which case it's actually
3654 more efficient to read the whole table in one block anyway. */
3655
3656 if (! simple_read_overlay_table ())
3657 return;
3658
3659 /* Now may as well update all sections, even if only one was requested. */
3660 ALL_OBJSECTIONS (objfile, osect)
3661 if (section_is_overlay (osect))
3662 {
3663 int i, size;
3664 bfd *obfd = osect->objfile->obfd;
3665 asection *bsect = osect->the_bfd_section;
3666
3667 size = bfd_get_section_size (bsect);
3668 for (i = 0; i < cache_novlys; i++)
3669 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3670 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3671 /* && cache_ovly_table[i][SIZE] == size */ )
3672 { /* obj_section matches i'th entry in ovly_table. */
3673 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3674 break; /* finished with inner for loop: break out. */
3675 }
3676 }
3677 }
3678
3679 /* Set the output sections and output offsets for section SECTP in
3680 ABFD. The relocation code in BFD will read these offsets, so we
3681 need to be sure they're initialized. We map each section to itself,
3682 with no offset; this means that SECTP->vma will be honored. */
3683
3684 static void
3685 symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3686 {
3687 sectp->output_section = sectp;
3688 sectp->output_offset = 0;
3689 }
3690
3691 /* Default implementation for sym_relocate. */
3692
3693 bfd_byte *
3694 default_symfile_relocate (struct objfile *objfile, asection *sectp,
3695 bfd_byte *buf)
3696 {
3697 /* Use sectp->owner instead of objfile->obfd. sectp may point to a
3698 DWO file. */
3699 bfd *abfd = sectp->owner;
3700
3701 /* We're only interested in sections with relocation
3702 information. */
3703 if ((sectp->flags & SEC_RELOC) == 0)
3704 return NULL;
3705
3706 /* We will handle section offsets properly elsewhere, so relocate as if
3707 all sections begin at 0. */
3708 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3709
3710 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3711 }
3712
3713 /* Relocate the contents of a debug section SECTP in ABFD. The
3714 contents are stored in BUF if it is non-NULL, or returned in a
3715 malloc'd buffer otherwise.
3716
3717 For some platforms and debug info formats, shared libraries contain
3718 relocations against the debug sections (particularly for DWARF-2;
3719 one affected platform is PowerPC GNU/Linux, although it depends on
3720 the version of the linker in use). Also, ELF object files naturally
3721 have unresolved relocations for their debug sections. We need to apply
3722 the relocations in order to get the locations of symbols correct.
3723 Another example that may require relocation processing, is the
3724 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3725 debug section. */
3726
3727 bfd_byte *
3728 symfile_relocate_debug_section (struct objfile *objfile,
3729 asection *sectp, bfd_byte *buf)
3730 {
3731 gdb_assert (objfile->sf->sym_relocate);
3732
3733 return (*objfile->sf->sym_relocate) (objfile, sectp, buf);
3734 }
3735
3736 struct symfile_segment_data *
3737 get_symfile_segment_data (bfd *abfd)
3738 {
3739 const struct sym_fns *sf = find_sym_fns (abfd);
3740
3741 if (sf == NULL)
3742 return NULL;
3743
3744 return sf->sym_segments (abfd);
3745 }
3746
3747 void
3748 free_symfile_segment_data (struct symfile_segment_data *data)
3749 {
3750 xfree (data->segment_bases);
3751 xfree (data->segment_sizes);
3752 xfree (data->segment_info);
3753 xfree (data);
3754 }
3755
3756 /* Given:
3757 - DATA, containing segment addresses from the object file ABFD, and
3758 the mapping from ABFD's sections onto the segments that own them,
3759 and
3760 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3761 segment addresses reported by the target,
3762 store the appropriate offsets for each section in OFFSETS.
3763
3764 If there are fewer entries in SEGMENT_BASES than there are segments
3765 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3766
3767 If there are more entries, then ignore the extra. The target may
3768 not be able to distinguish between an empty data segment and a
3769 missing data segment; a missing text segment is less plausible. */
3770
3771 int
3772 symfile_map_offsets_to_segments (bfd *abfd,
3773 const struct symfile_segment_data *data,
3774 struct section_offsets *offsets,
3775 int num_segment_bases,
3776 const CORE_ADDR *segment_bases)
3777 {
3778 int i;
3779 asection *sect;
3780
3781 /* It doesn't make sense to call this function unless you have some
3782 segment base addresses. */
3783 gdb_assert (num_segment_bases > 0);
3784
3785 /* If we do not have segment mappings for the object file, we
3786 can not relocate it by segments. */
3787 gdb_assert (data != NULL);
3788 gdb_assert (data->num_segments > 0);
3789
3790 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3791 {
3792 int which = data->segment_info[i];
3793
3794 gdb_assert (0 <= which && which <= data->num_segments);
3795
3796 /* Don't bother computing offsets for sections that aren't
3797 loaded as part of any segment. */
3798 if (! which)
3799 continue;
3800
3801 /* Use the last SEGMENT_BASES entry as the address of any extra
3802 segments mentioned in DATA->segment_info. */
3803 if (which > num_segment_bases)
3804 which = num_segment_bases;
3805
3806 offsets->offsets[i] = (segment_bases[which - 1]
3807 - data->segment_bases[which - 1]);
3808 }
3809
3810 return 1;
3811 }
3812
3813 static void
3814 symfile_find_segment_sections (struct objfile *objfile)
3815 {
3816 bfd *abfd = objfile->obfd;
3817 int i;
3818 asection *sect;
3819 struct symfile_segment_data *data;
3820
3821 data = get_symfile_segment_data (objfile->obfd);
3822 if (data == NULL)
3823 return;
3824
3825 if (data->num_segments != 1 && data->num_segments != 2)
3826 {
3827 free_symfile_segment_data (data);
3828 return;
3829 }
3830
3831 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3832 {
3833 int which = data->segment_info[i];
3834
3835 if (which == 1)
3836 {
3837 if (objfile->sect_index_text == -1)
3838 objfile->sect_index_text = sect->index;
3839
3840 if (objfile->sect_index_rodata == -1)
3841 objfile->sect_index_rodata = sect->index;
3842 }
3843 else if (which == 2)
3844 {
3845 if (objfile->sect_index_data == -1)
3846 objfile->sect_index_data = sect->index;
3847
3848 if (objfile->sect_index_bss == -1)
3849 objfile->sect_index_bss = sect->index;
3850 }
3851 }
3852
3853 free_symfile_segment_data (data);
3854 }
3855
3856 /* Listen for free_objfile events. */
3857
3858 static void
3859 symfile_free_objfile (struct objfile *objfile)
3860 {
3861 /* Remove the target sections of user-added objfiles. */
3862 if (objfile != 0 && objfile->flags & OBJF_USERLOADED)
3863 remove_target_sections ((void *) objfile);
3864 }
3865
3866 /* Wrapper around the quick_symbol_functions expand_symtabs_matching "method".
3867 Expand all symtabs that match the specified criteria.
3868 See quick_symbol_functions.expand_symtabs_matching for details. */
3869
3870 void
3871 expand_symtabs_matching (expand_symtabs_file_matcher_ftype *file_matcher,
3872 expand_symtabs_symbol_matcher_ftype *symbol_matcher,
3873 enum search_domain kind,
3874 void *data)
3875 {
3876 struct objfile *objfile;
3877
3878 ALL_OBJFILES (objfile)
3879 {
3880 if (objfile->sf)
3881 objfile->sf->qf->expand_symtabs_matching (objfile, file_matcher,
3882 symbol_matcher, kind,
3883 data);
3884 }
3885 }
3886
3887 /* Wrapper around the quick_symbol_functions map_symbol_filenames "method".
3888 Map function FUN over every file.
3889 See quick_symbol_functions.map_symbol_filenames for details. */
3890
3891 void
3892 map_symbol_filenames (symbol_filename_ftype *fun, void *data,
3893 int need_fullname)
3894 {
3895 struct objfile *objfile;
3896
3897 ALL_OBJFILES (objfile)
3898 {
3899 if (objfile->sf)
3900 objfile->sf->qf->map_symbol_filenames (objfile, fun, data,
3901 need_fullname);
3902 }
3903 }
3904
3905 void
3906 _initialize_symfile (void)
3907 {
3908 struct cmd_list_element *c;
3909
3910 observer_attach_free_objfile (symfile_free_objfile);
3911
3912 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3913 Load symbol table from executable file FILE.\n\
3914 The `file' command can also load symbol tables, as well as setting the file\n\
3915 to execute."), &cmdlist);
3916 set_cmd_completer (c, filename_completer);
3917
3918 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
3919 Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
3920 Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR>\
3921 ...]\nADDR is the starting address of the file's text.\n\
3922 The optional arguments are section-name section-address pairs and\n\
3923 should be specified if the data and bss segments are not contiguous\n\
3924 with the text. SECT is a section name to be loaded at SECT_ADDR."),
3925 &cmdlist);
3926 set_cmd_completer (c, filename_completer);
3927
3928 c = add_cmd ("remove-symbol-file", class_files,
3929 remove_symbol_file_command, _("\
3930 Remove a symbol file added via the add-symbol-file command.\n\
3931 Usage: remove-symbol-file FILENAME\n\
3932 remove-symbol-file -a ADDRESS\n\
3933 The file to remove can be identified by its filename or by an address\n\
3934 that lies within the boundaries of this symbol file in memory."),
3935 &cmdlist);
3936
3937 c = add_cmd ("load", class_files, load_command, _("\
3938 Dynamically load FILE into the running program, and record its symbols\n\
3939 for access from GDB.\n\
3940 A load OFFSET may also be given."), &cmdlist);
3941 set_cmd_completer (c, filename_completer);
3942
3943 add_prefix_cmd ("overlay", class_support, overlay_command,
3944 _("Commands for debugging overlays."), &overlaylist,
3945 "overlay ", 0, &cmdlist);
3946
3947 add_com_alias ("ovly", "overlay", class_alias, 1);
3948 add_com_alias ("ov", "overlay", class_alias, 1);
3949
3950 add_cmd ("map-overlay", class_support, map_overlay_command,
3951 _("Assert that an overlay section is mapped."), &overlaylist);
3952
3953 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
3954 _("Assert that an overlay section is unmapped."), &overlaylist);
3955
3956 add_cmd ("list-overlays", class_support, list_overlays_command,
3957 _("List mappings of overlay sections."), &overlaylist);
3958
3959 add_cmd ("manual", class_support, overlay_manual_command,
3960 _("Enable overlay debugging."), &overlaylist);
3961 add_cmd ("off", class_support, overlay_off_command,
3962 _("Disable overlay debugging."), &overlaylist);
3963 add_cmd ("auto", class_support, overlay_auto_command,
3964 _("Enable automatic overlay debugging."), &overlaylist);
3965 add_cmd ("load-target", class_support, overlay_load_command,
3966 _("Read the overlay mapping state from the target."), &overlaylist);
3967
3968 /* Filename extension to source language lookup table: */
3969 init_filename_language_table ();
3970 add_setshow_string_noescape_cmd ("extension-language", class_files,
3971 &ext_args, _("\
3972 Set mapping between filename extension and source language."), _("\
3973 Show mapping between filename extension and source language."), _("\
3974 Usage: set extension-language .foo bar"),
3975 set_ext_lang_command,
3976 show_ext_args,
3977 &setlist, &showlist);
3978
3979 add_info ("extensions", info_ext_lang_command,
3980 _("All filename extensions associated with a source language."));
3981
3982 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
3983 &debug_file_directory, _("\
3984 Set the directories where separate debug symbols are searched for."), _("\
3985 Show the directories where separate debug symbols are searched for."), _("\
3986 Separate debug symbols are first searched for in the same\n\
3987 directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
3988 and lastly at the path of the directory of the binary with\n\
3989 each global debug-file-directory component prepended."),
3990 NULL,
3991 show_debug_file_directory,
3992 &setlist, &showlist);
3993 }
This page took 0.119586 seconds and 5 git commands to generate.