1 /* Definitions for reading symbol files into GDB.
3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4 2000, 2001, 2002, 2003, 2004, 2007, 2008, 2009, 2010, 2011
5 Free Software Foundation, Inc.
7 This file is part of GDB.
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22 #if !defined (SYMFILE_H)
25 /* This file requires that you first include "bfd.h". */
28 /* Opaque declarations. */
29 struct target_section
;
35 /* Comparison function for symbol look ups. */
37 typedef int (symbol_compare_ftype
) (const char *string1
,
40 /* Partial symbols are stored in the psymbol_cache and pointers to
41 them are kept in a dynamically grown array that is obtained from
42 malloc and grown as necessary via realloc. Each objfile typically
43 has two of these, one for global symbols and one for static
44 symbols. Although this adds a level of indirection for storing or
45 accessing the partial symbols, it allows us to throw away duplicate
46 psymbols and set all pointers to the single saved instance. */
48 struct psymbol_allocation_list
51 /* Pointer to beginning of dynamically allocated array of pointers
52 to partial symbols. The array is dynamically expanded as
53 necessary to accommodate more pointers. */
55 struct partial_symbol
**list
;
57 /* Pointer to next available slot in which to store a pointer to a
60 struct partial_symbol
**next
;
62 /* Number of allocated pointer slots in current dynamic array (not
63 the number of bytes of storage). The "next" pointer will always
64 point somewhere between list[0] and list[size], and when at
65 list[size] the array will be expanded on the next attempt to
71 /* Define an array of addresses to accommodate non-contiguous dynamic
72 loading of modules. This is for use when entering commands, so we
73 can keep track of the section names until we read the file and can
74 map them to bfd sections. This structure is also used by solib.c
75 to communicate the section addresses in shared objects to
76 symbol_file_add (). */
78 struct section_addr_info
80 /* The number of sections for which address information is
83 /* Sections whose names are file format dependent. */
89 /* SECTINDEX must be valid for associated BFD if ADDR is not zero. */
95 /* A table listing the load segments in a symfile, and which segment
96 each BFD section belongs to. */
97 struct symfile_segment_data
99 /* How many segments are present in this file. If there are
100 two, the text segment is the first one and the data segment
101 is the second one. */
104 /* If NUM_SEGMENTS is greater than zero, the original base address
106 CORE_ADDR
*segment_bases
;
108 /* If NUM_SEGMENTS is greater than zero, the memory size of each
110 CORE_ADDR
*segment_sizes
;
112 /* If NUM_SEGMENTS is greater than zero, this is an array of entries
113 recording which segment contains each BFD section.
114 SEGMENT_INFO[I] is S+1 if the I'th BFD section belongs to segment
115 S, or zero if it is not in any segment. */
119 /* The "quick" symbol functions exist so that symbol readers can
120 avoiding an initial read of all the symbols. For example, symbol
121 readers might choose to use the "partial symbol table" utilities,
122 which is one implementation of the quick symbol functions.
124 The quick symbol functions are generally opaque: the underlying
125 representation is hidden from the caller.
127 In general, these functions should only look at whatever special
128 index the symbol reader creates -- looking through the symbol
129 tables themselves is handled by generic code. If a function is
130 defined as returning a "symbol table", this means that the function
131 should only return a newly-created symbol table; it should not
132 examine pre-existing ones.
134 The exact list of functions here was determined in an ad hoc way
135 based on gdb's history. */
137 struct quick_symbol_functions
139 /* Return true if this objfile has any "partial" symbols
141 int (*has_symbols
) (struct objfile
*objfile
);
143 /* Return the symbol table for the "last" file appearing in
145 struct symtab
*(*find_last_source_symtab
) (struct objfile
*objfile
);
147 /* Forget all cached full file names for OBJFILE. */
148 void (*forget_cached_source_info
) (struct objfile
*objfile
);
150 /* Look up the symbol table, in OBJFILE, of a source file named
151 NAME. If there is no '/' in the name, a match after a '/' in the
152 symbol table's file name will also work. FULL_PATH is the
153 absolute file name, and REAL_PATH is the same, run through
156 If no such symbol table can be found, returns 0.
158 Otherwise, sets *RESULT to the symbol table and returns 1. This
159 might return 1 and set *RESULT to NULL if the requested file is
160 an include file that does not have a symtab of its own. */
161 int (*lookup_symtab
) (struct objfile
*objfile
,
163 const char *full_path
,
164 const char *real_path
,
165 struct symtab
**result
);
167 /* Check to see if the symbol is defined in a "partial" symbol table
168 of OBJFILE. KIND should be either GLOBAL_BLOCK or STATIC_BLOCK,
169 depending on whether we want to search global symbols or static
170 symbols. NAME is the name of the symbol to look for. DOMAIN
171 indicates what sort of symbol to search for.
173 Returns the newly-expanded symbol table in which the symbol is
174 defined, or NULL if no such symbol table exists. */
175 struct symtab
*(*lookup_symbol
) (struct objfile
*objfile
,
176 int kind
, const char *name
,
179 /* This is called to expand symbol tables before looking up a
180 symbol. A backend can choose to implement this and then have its
181 `lookup_symbol' hook always return NULL, or the reverse. (It
182 doesn't make sense to implement both.) The arguments are as for
184 void (*pre_expand_symtabs_matching
) (struct objfile
*objfile
,
185 int kind
, const char *name
,
188 /* Print statistics about any indices loaded for OBJFILE. The
189 statistics should be printed to gdb_stdout. This is used for
190 "maint print statistics". */
191 void (*print_stats
) (struct objfile
*objfile
);
193 /* Dump any indices loaded for OBJFILE. The dump should go to
194 gdb_stdout. This is used for "maint print objfiles". */
195 void (*dump
) (struct objfile
*objfile
);
197 /* This is called by objfile_relocate to relocate any indices loaded
199 void (*relocate
) (struct objfile
*objfile
,
200 struct section_offsets
*new_offsets
,
201 struct section_offsets
*delta
);
203 /* Find all the symbols in OBJFILE named FUNC_NAME, and ensure that
204 the corresponding symbol tables are loaded. */
205 void (*expand_symtabs_for_function
) (struct objfile
*objfile
,
206 const char *func_name
);
208 /* Read all symbol tables associated with OBJFILE. */
209 void (*expand_all_symtabs
) (struct objfile
*objfile
);
211 /* Read all symbol tables associated with OBJFILE which have the
213 This is for the purposes of examining code only, e.g., expand_line_sal.
214 The routine may ignore debug info that is known to not be useful with
215 code, e.g., DW_TAG_type_unit for dwarf debug info. */
216 void (*expand_symtabs_with_filename
) (struct objfile
*objfile
,
217 const char *filename
);
219 /* Return the file name of the file holding the symbol in OBJFILE
220 named NAME. If no such symbol exists in OBJFILE, return NULL. */
221 const char *(*find_symbol_file
) (struct objfile
*objfile
, const char *name
);
223 /* Find global or static symbols in all tables that are in NAMESPACE
224 and for which MATCH (symbol name, NAME) == 0, passing each to
225 CALLBACK, reading in partial symbol symbol tables as needed. Look
226 through global symbols if GLOBAL and otherwise static symbols.
227 Passes NAME, NAMESPACE, and DATA to CALLBACK with each symbol
228 found. After each block is processed, passes NULL to CALLBACK.
229 MATCH must be weaker than strcmp_iw in the sense that
230 strcmp_iw(x,y) == 0 --> MATCH(x,y) == 0. ORDERED_COMPARE, if
231 non-null, must be an ordering relation compatible with strcmp_iw
233 strcmp(x,y) == 0 --> ORDERED_COMPARE(x,y) == 0
235 strcmp(x,y) <= 0 --> ORDERED_COMPARE(x,y) <= 0
236 (allowing strcmp(x,y) < 0 while ORDERED_COMPARE(x, y) == 0).
237 CALLBACK returns 0 to indicate that the scan should continue, or
238 non-zero to indicate that the scan should be terminated. */
240 void (*map_matching_symbols
) (const char *name
, domain_enum
namespace,
241 struct objfile
*, int global
,
242 int (*callback
) (struct block
*,
243 struct symbol
*, void *),
245 symbol_compare_ftype
*match
,
246 symbol_compare_ftype
*ordered_compare
);
248 /* Expand all symbol tables in OBJFILE matching some criteria.
250 FILE_MATCHER is called for each file in OBJFILE. The file name
251 and the DATA argument are passed to it. If it returns zero, this
254 Otherwise, if the file is not skipped, then NAME_MATCHER is
255 called for each symbol defined in the file. The symbol's
256 "natural" name and DATA are passed to NAME_MATCHER.
258 If NAME_MATCHER returns zero, then this symbol is skipped.
260 Otherwise, if this symbol is not skipped, and it matches KIND,
261 then this symbol's symbol table is expanded.
263 DATA is user data that is passed unmodified to the callback
265 void (*expand_symtabs_matching
) (struct objfile
*objfile
,
266 int (*file_matcher
) (const char *, void *),
267 int (*name_matcher
) (const char *, void *),
271 /* Return the symbol table from OBJFILE that contains PC and
272 SECTION. Return NULL if there is no such symbol table. This
273 should return the symbol table that contains a symbol whose
274 address exactly matches PC, or, if there is no exact match, the
275 symbol table that contains a symbol whose address is closest to
277 struct symtab
*(*find_pc_sect_symtab
) (struct objfile
*objfile
,
278 struct minimal_symbol
*msymbol
,
280 struct obj_section
*section
,
283 /* Call a callback for every symbol defined in OBJFILE. FUN is the
284 callback. It is passed the symbol's natural name, and the DATA
285 passed to this function. */
286 void (*map_symbol_names
) (struct objfile
*objfile
,
287 void (*fun
) (const char *, void *),
290 /* Call a callback for every file defined in OBJFILE whose symtab is
291 not already read in. FUN is the callback. It is passed the file's name,
292 the file's full name, and the DATA passed to this function. */
293 void (*map_symbol_filenames
) (struct objfile
*objfile
,
294 void (*fun
) (const char *, const char *,
299 /* Structure to keep track of symbol reading functions for various
300 object file types. */
305 /* BFD flavour that we handle, or (as a special kludge, see
306 xcoffread.c, (enum bfd_flavour)-1 for xcoff). */
308 enum bfd_flavour sym_flavour
;
310 /* Initializes anything that is global to the entire symbol table.
311 It is called during symbol_file_add, when we begin debugging an
312 entirely new program. */
314 void (*sym_new_init
) (struct objfile
*);
316 /* Reads any initial information from a symbol file, and initializes
317 the struct sym_fns SF in preparation for sym_read(). It is
318 called every time we read a symbol file for any reason. */
320 void (*sym_init
) (struct objfile
*);
322 /* sym_read (objfile, symfile_flags) Reads a symbol file into a psymtab
323 (or possibly a symtab). OBJFILE is the objfile struct for the
324 file we are reading. SYMFILE_FLAGS are the flags passed to
325 symbol_file_add & co. */
327 void (*sym_read
) (struct objfile
*, int);
329 /* Called when we are finished with an objfile. Should do all
330 cleanup that is specific to the object file format for the
331 particular objfile. */
333 void (*sym_finish
) (struct objfile
*);
335 /* This function produces a file-dependent section_offsets
336 structure, allocated in the objfile's storage, and based on the
337 parameter. The parameter is currently a CORE_ADDR (FIXME!) for
338 backward compatibility with the higher levels of GDB. It should
339 probably be changed to a string, where NULL means the default,
340 and others are parsed in a file dependent way. */
342 void (*sym_offsets
) (struct objfile
*, struct section_addr_info
*);
344 /* This function produces a format-independent description of
345 the segments of ABFD. Each segment is a unit of the file
346 which may be relocated independently. */
348 struct symfile_segment_data
*(*sym_segments
) (bfd
*abfd
);
350 /* This function should read the linetable from the objfile when
351 the line table cannot be read while processing the debugging
354 void (*sym_read_linetable
) (void);
356 /* Relocate the contents of a debug section SECTP. The
357 contents are stored in BUF if it is non-NULL, or returned in a
358 malloc'd buffer otherwise. */
360 bfd_byte
*(*sym_relocate
) (struct objfile
*, asection
*sectp
, bfd_byte
*buf
);
362 /* The "quick" (aka partial) symbol functions for this symbol
364 const struct quick_symbol_functions
*qf
;
367 extern struct section_addr_info
*
368 build_section_addr_info_from_objfile (const struct objfile
*objfile
);
370 extern void relative_addr_info_to_section_offsets
371 (struct section_offsets
*section_offsets
, int num_sections
,
372 struct section_addr_info
*addrs
);
374 extern void addr_info_make_relative (struct section_addr_info
*addrs
,
377 /* The default version of sym_fns.sym_offsets for readers that don't
378 do anything special. */
380 extern void default_symfile_offsets (struct objfile
*objfile
,
381 struct section_addr_info
*);
383 /* The default version of sym_fns.sym_segments for readers that don't
384 do anything special. */
386 extern struct symfile_segment_data
*default_symfile_segments (bfd
*abfd
);
388 /* The default version of sym_fns.sym_relocate for readers that don't
389 do anything special. */
391 extern bfd_byte
*default_symfile_relocate (struct objfile
*objfile
,
392 asection
*sectp
, bfd_byte
*buf
);
394 extern struct symtab
*allocate_symtab (const char *, struct objfile
*);
396 extern void add_symtab_fns (const struct sym_fns
*);
398 /* This enum encodes bit-flags passed as ADD_FLAGS parameter to
399 syms_from_objfile, symbol_file_add, etc. */
401 enum symfile_add_flags
403 /* Be chatty about what you are doing. */
404 SYMFILE_VERBOSE
= 1 << 1,
406 /* This is the main symbol file (as opposed to symbol file for dynamically
408 SYMFILE_MAINLINE
= 1 << 2,
410 /* Do not call breakpoint_re_set when adding this symbol file. */
411 SYMFILE_DEFER_BP_RESET
= 1 << 3
414 extern void syms_from_objfile (struct objfile
*,
415 struct section_addr_info
*,
416 struct section_offsets
*, int, int);
418 extern void new_symfile_objfile (struct objfile
*, int);
420 extern struct objfile
*symbol_file_add (char *, int,
421 struct section_addr_info
*, int);
423 extern struct objfile
*symbol_file_add_from_bfd (bfd
*, int,
424 struct section_addr_info
*,
427 extern void symbol_file_add_separate (bfd
*, int, struct objfile
*);
429 extern char *find_separate_debug_file_by_debuglink (struct objfile
*);
431 /* Create a new section_addr_info, with room for NUM_SECTIONS. */
433 extern struct section_addr_info
*alloc_section_addr_info (size_t
436 /* Build (allocate and populate) a section_addr_info struct from an
437 existing section table. */
439 extern struct section_addr_info
440 *build_section_addr_info_from_section_table (const struct target_section
442 const struct target_section
445 /* Free all memory allocated by
446 build_section_addr_info_from_section_table. */
448 extern void free_section_addr_info (struct section_addr_info
*);
451 /* Make a copy of the string at PTR with SIZE characters in the symbol
452 obstack (and add a null character at the end in the copy). Returns
453 the address of the copy. */
455 extern char *obsavestring (const char *, int, struct obstack
*);
457 /* Concatenate NULL terminated variable argument list of `const char
458 *' strings; return the new string. Space is found in the OBSTACKP.
459 Argument list must be terminated by a sentinel expression `(char *)
462 extern char *obconcat (struct obstack
*obstackp
, ...) ATTRIBUTE_SENTINEL
;
466 /* If non-zero, shared library symbols will be added automatically
467 when the inferior is created, new libraries are loaded, or when
468 attaching to the inferior. This is almost always what users will
469 want to have happen; but for very large programs, the startup time
470 will be excessive, and so if this is a problem, the user can clear
471 this flag and then add the shared library symbols as needed. Note
472 that there is a potential for confusion, since if the shared
473 library symbols are not loaded, commands like "info fun" will *not*
474 report all the functions that are actually present. */
476 extern int auto_solib_add
;
478 /* For systems that support it, a threshold size in megabytes. If
479 automatically adding a new library's symbol table to those already
480 known to the debugger would cause the total shared library symbol
481 size to exceed this threshhold, then the shlib's symbols are not
482 added. The threshold is ignored if the user explicitly asks for a
483 shlib to be added, such as when using the "sharedlibrary" command. */
485 extern int auto_solib_limit
;
489 extern void set_initial_language (void);
491 extern void find_lowest_section (bfd
*, asection
*, void *);
493 extern bfd
*symfile_bfd_open (char *);
495 extern bfd
*bfd_open_maybe_remote (const char *);
497 extern int get_section_index (struct objfile
*, char *);
499 /* Utility functions for overlay sections: */
500 extern enum overlay_debugging_state
506 extern int overlay_cache_invalid
;
508 /* Return the "mapped" overlay section containing the PC. */
509 extern struct obj_section
*find_pc_mapped_section (CORE_ADDR
);
511 /* Return any overlay section containing the PC (even in its LMA
513 extern struct obj_section
*find_pc_overlay (CORE_ADDR
);
515 /* Return true if the section is an overlay. */
516 extern int section_is_overlay (struct obj_section
*);
518 /* Return true if the overlay section is currently "mapped". */
519 extern int section_is_mapped (struct obj_section
*);
521 /* Return true if pc belongs to section's VMA. */
522 extern CORE_ADDR
pc_in_mapped_range (CORE_ADDR
, struct obj_section
*);
524 /* Return true if pc belongs to section's LMA. */
525 extern CORE_ADDR
pc_in_unmapped_range (CORE_ADDR
, struct obj_section
*);
527 /* Map an address from a section's LMA to its VMA. */
528 extern CORE_ADDR
overlay_mapped_address (CORE_ADDR
, struct obj_section
*);
530 /* Map an address from a section's VMA to its LMA. */
531 extern CORE_ADDR
overlay_unmapped_address (CORE_ADDR
, struct obj_section
*);
533 /* Convert an address in an overlay section (force into VMA range). */
534 extern CORE_ADDR
symbol_overlayed_address (CORE_ADDR
, struct obj_section
*);
536 /* Load symbols from a file. */
537 extern void symbol_file_add_main (char *args
, int from_tty
);
539 /* Clear GDB symbol tables. */
540 extern void symbol_file_clear (int from_tty
);
542 /* Default overlay update function. */
543 extern void simple_overlay_update (struct obj_section
*);
545 extern bfd_byte
*symfile_relocate_debug_section (struct objfile
*, asection
*,
548 extern int symfile_map_offsets_to_segments (bfd
*,
549 struct symfile_segment_data
*,
550 struct section_offsets
*,
551 int, const CORE_ADDR
*);
552 struct symfile_segment_data
*get_symfile_segment_data (bfd
*abfd
);
553 void free_symfile_segment_data (struct symfile_segment_data
*data
);
555 extern struct cleanup
*increment_reading_symtab (void);
557 /* From dwarf2read.c */
559 extern int dwarf2_has_info (struct objfile
*);
561 extern int dwarf2_initialize_objfile (struct objfile
*);
562 extern void dwarf2_build_psymtabs (struct objfile
*);
563 extern void dwarf2_build_frame_info (struct objfile
*);
565 void dwarf2_free_objfile (struct objfile
*);
567 /* From mdebugread.c */
569 /* Hack to force structures to exist before use in parameter list. */
570 struct ecoff_debug_hack
572 struct ecoff_debug_swap
*a
;
573 struct ecoff_debug_info
*b
;
576 extern void mdebug_build_psymtabs (struct objfile
*,
577 const struct ecoff_debug_swap
*,
578 struct ecoff_debug_info
*);
580 extern void elfmdebug_build_psymtabs (struct objfile
*,
581 const struct ecoff_debug_swap
*,
584 #endif /* !defined(SYMFILE_H) */