* gdb.base/maint.exp: Treat $EXEEXT as optional in output.
[deliverable/binutils-gdb.git] / gdb / symm-nat.c
1 /* Sequent Symmetry host interface, for GDB when running under Unix.
2 Copyright 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1999, 2000,
3 2001
4 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 /* FIXME, some 387-specific items of use taken from i387-tdep.c -- ought to be
24 merged back in. */
25
26 #include "defs.h"
27 #include "frame.h"
28 #include "inferior.h"
29 #include "symtab.h"
30 #include "target.h"
31 #include "regcache.h"
32
33 /* FIXME: What is the _INKERNEL define for? */
34 #define _INKERNEL
35 #include <signal.h>
36 #undef _INKERNEL
37 #include <sys/wait.h>
38 #include <sys/param.h>
39 #include <sys/user.h>
40 #include <sys/proc.h>
41 #include <sys/dir.h>
42 #include <sys/ioctl.h>
43 #include "gdb_stat.h"
44 #ifdef _SEQUENT_
45 #include <sys/ptrace.h>
46 #else
47 /* Dynix has only machine/ptrace.h, which is already included by sys/user.h */
48 /* Dynix has no mptrace call */
49 #define mptrace ptrace
50 #endif
51 #include "gdbcore.h"
52 #include <fcntl.h>
53 #include <sgtty.h>
54 #define TERMINAL struct sgttyb
55
56 #include "gdbcore.h"
57
58 void
59 store_inferior_registers (int regno)
60 {
61 struct pt_regset regs;
62 int i;
63
64 /* FIXME: Fetching the registers is a kludge to initialize all elements
65 in the fpu and fpa status. This works for normal debugging, but
66 might cause problems when calling functions in the inferior.
67 At least fpu_control and fpa_pcr (probably more) should be added
68 to the registers array to solve this properly. */
69 mptrace (XPT_RREGS, PIDGET (inferior_ptid), (PTRACE_ARG3_TYPE) & regs, 0);
70
71 regs.pr_eax = *(int *) &registers[REGISTER_BYTE (0)];
72 regs.pr_ebx = *(int *) &registers[REGISTER_BYTE (5)];
73 regs.pr_ecx = *(int *) &registers[REGISTER_BYTE (2)];
74 regs.pr_edx = *(int *) &registers[REGISTER_BYTE (1)];
75 regs.pr_esi = *(int *) &registers[REGISTER_BYTE (6)];
76 regs.pr_edi = *(int *) &registers[REGISTER_BYTE (7)];
77 regs.pr_esp = *(int *) &registers[REGISTER_BYTE (14)];
78 regs.pr_ebp = *(int *) &registers[REGISTER_BYTE (15)];
79 regs.pr_eip = *(int *) &registers[REGISTER_BYTE (16)];
80 regs.pr_flags = *(int *) &registers[REGISTER_BYTE (17)];
81 for (i = 0; i < 31; i++)
82 {
83 regs.pr_fpa.fpa_regs[i] =
84 *(int *) &registers[REGISTER_BYTE (FP1_REGNUM + i)];
85 }
86 memcpy (regs.pr_fpu.fpu_stack[0], &registers[REGISTER_BYTE (ST0_REGNUM)], 10);
87 memcpy (regs.pr_fpu.fpu_stack[1], &registers[REGISTER_BYTE (ST1_REGNUM)], 10);
88 memcpy (regs.pr_fpu.fpu_stack[2], &registers[REGISTER_BYTE (ST2_REGNUM)], 10);
89 memcpy (regs.pr_fpu.fpu_stack[3], &registers[REGISTER_BYTE (ST3_REGNUM)], 10);
90 memcpy (regs.pr_fpu.fpu_stack[4], &registers[REGISTER_BYTE (ST4_REGNUM)], 10);
91 memcpy (regs.pr_fpu.fpu_stack[5], &registers[REGISTER_BYTE (ST5_REGNUM)], 10);
92 memcpy (regs.pr_fpu.fpu_stack[6], &registers[REGISTER_BYTE (ST6_REGNUM)], 10);
93 memcpy (regs.pr_fpu.fpu_stack[7], &registers[REGISTER_BYTE (ST7_REGNUM)], 10);
94 mptrace (XPT_WREGS, PIDGET (inferior_ptid), (PTRACE_ARG3_TYPE) & regs, 0);
95 }
96
97 void
98 fetch_inferior_registers (int regno)
99 {
100 int i;
101 struct pt_regset regs;
102
103 registers_fetched ();
104
105 mptrace (XPT_RREGS, PIDGET (inferior_ptid), (PTRACE_ARG3_TYPE) & regs, 0);
106 *(int *) &registers[REGISTER_BYTE (EAX_REGNUM)] = regs.pr_eax;
107 *(int *) &registers[REGISTER_BYTE (EBX_REGNUM)] = regs.pr_ebx;
108 *(int *) &registers[REGISTER_BYTE (ECX_REGNUM)] = regs.pr_ecx;
109 *(int *) &registers[REGISTER_BYTE (EDX_REGNUM)] = regs.pr_edx;
110 *(int *) &registers[REGISTER_BYTE (ESI_REGNUM)] = regs.pr_esi;
111 *(int *) &registers[REGISTER_BYTE (EDI_REGNUM)] = regs.pr_edi;
112 *(int *) &registers[REGISTER_BYTE (EBP_REGNUM)] = regs.pr_ebp;
113 *(int *) &registers[REGISTER_BYTE (ESP_REGNUM)] = regs.pr_esp;
114 *(int *) &registers[REGISTER_BYTE (EIP_REGNUM)] = regs.pr_eip;
115 *(int *) &registers[REGISTER_BYTE (EFLAGS_REGNUM)] = regs.pr_flags;
116 for (i = 0; i < FPA_NREGS; i++)
117 {
118 *(int *) &registers[REGISTER_BYTE (FP1_REGNUM + i)] =
119 regs.pr_fpa.fpa_regs[i];
120 }
121 memcpy (&registers[REGISTER_BYTE (ST0_REGNUM)], regs.pr_fpu.fpu_stack[0], 10);
122 memcpy (&registers[REGISTER_BYTE (ST1_REGNUM)], regs.pr_fpu.fpu_stack[1], 10);
123 memcpy (&registers[REGISTER_BYTE (ST2_REGNUM)], regs.pr_fpu.fpu_stack[2], 10);
124 memcpy (&registers[REGISTER_BYTE (ST3_REGNUM)], regs.pr_fpu.fpu_stack[3], 10);
125 memcpy (&registers[REGISTER_BYTE (ST4_REGNUM)], regs.pr_fpu.fpu_stack[4], 10);
126 memcpy (&registers[REGISTER_BYTE (ST5_REGNUM)], regs.pr_fpu.fpu_stack[5], 10);
127 memcpy (&registers[REGISTER_BYTE (ST6_REGNUM)], regs.pr_fpu.fpu_stack[6], 10);
128 memcpy (&registers[REGISTER_BYTE (ST7_REGNUM)], regs.pr_fpu.fpu_stack[7], 10);
129 }
130 \f
131 /* FIXME: This should be merged with i387-tdep.c as well. */
132 static
133 print_fpu_status (struct pt_regset ep)
134 {
135 int i;
136 int bothstatus;
137 int top;
138 int fpreg;
139 unsigned char *p;
140
141 printf_unfiltered ("80387:");
142 if (ep.pr_fpu.fpu_ip == 0)
143 {
144 printf_unfiltered (" not in use.\n");
145 return;
146 }
147 else
148 {
149 printf_unfiltered ("\n");
150 }
151 if (ep.pr_fpu.fpu_status != 0)
152 {
153 print_387_status_word (ep.pr_fpu.fpu_status);
154 }
155 print_387_control_word (ep.pr_fpu.fpu_control);
156 printf_unfiltered ("last exception: ");
157 printf_unfiltered ("opcode 0x%x; ", ep.pr_fpu.fpu_rsvd4);
158 printf_unfiltered ("pc 0x%x:0x%x; ", ep.pr_fpu.fpu_cs, ep.pr_fpu.fpu_ip);
159 printf_unfiltered ("operand 0x%x:0x%x\n", ep.pr_fpu.fpu_data_offset, ep.pr_fpu.fpu_op_sel);
160
161 top = (ep.pr_fpu.fpu_status >> 11) & 7;
162
163 printf_unfiltered ("regno tag msb lsb value\n");
164 for (fpreg = 7; fpreg >= 0; fpreg--)
165 {
166 double val;
167
168 printf_unfiltered ("%s %d: ", fpreg == top ? "=>" : " ", fpreg);
169
170 switch ((ep.pr_fpu.fpu_tag >> (fpreg * 2)) & 3)
171 {
172 case 0:
173 printf_unfiltered ("valid ");
174 break;
175 case 1:
176 printf_unfiltered ("zero ");
177 break;
178 case 2:
179 printf_unfiltered ("trap ");
180 break;
181 case 3:
182 printf_unfiltered ("empty ");
183 break;
184 }
185 for (i = 9; i >= 0; i--)
186 printf_unfiltered ("%02x", ep.pr_fpu.fpu_stack[fpreg][i]);
187
188 i387_to_double ((char *) ep.pr_fpu.fpu_stack[fpreg], (char *) &val);
189 printf_unfiltered (" %g\n", val);
190 }
191 if (ep.pr_fpu.fpu_rsvd1)
192 warning ("rsvd1 is 0x%x\n", ep.pr_fpu.fpu_rsvd1);
193 if (ep.pr_fpu.fpu_rsvd2)
194 warning ("rsvd2 is 0x%x\n", ep.pr_fpu.fpu_rsvd2);
195 if (ep.pr_fpu.fpu_rsvd3)
196 warning ("rsvd3 is 0x%x\n", ep.pr_fpu.fpu_rsvd3);
197 if (ep.pr_fpu.fpu_rsvd5)
198 warning ("rsvd5 is 0x%x\n", ep.pr_fpu.fpu_rsvd5);
199 }
200
201
202 print_1167_control_word (unsigned int pcr)
203 {
204 int pcr_tmp;
205
206 pcr_tmp = pcr & FPA_PCR_MODE;
207 printf_unfiltered ("\tMODE= %#x; RND= %#x ", pcr_tmp, pcr_tmp & 12);
208 switch (pcr_tmp & 12)
209 {
210 case 0:
211 printf_unfiltered ("RN (Nearest Value)");
212 break;
213 case 1:
214 printf_unfiltered ("RZ (Zero)");
215 break;
216 case 2:
217 printf_unfiltered ("RP (Positive Infinity)");
218 break;
219 case 3:
220 printf_unfiltered ("RM (Negative Infinity)");
221 break;
222 }
223 printf_unfiltered ("; IRND= %d ", pcr_tmp & 2);
224 if (0 == pcr_tmp & 2)
225 {
226 printf_unfiltered ("(same as RND)\n");
227 }
228 else
229 {
230 printf_unfiltered ("(toward zero)\n");
231 }
232 pcr_tmp = pcr & FPA_PCR_EM;
233 printf_unfiltered ("\tEM= %#x", pcr_tmp);
234 if (pcr_tmp & FPA_PCR_EM_DM)
235 printf_unfiltered (" DM");
236 if (pcr_tmp & FPA_PCR_EM_UOM)
237 printf_unfiltered (" UOM");
238 if (pcr_tmp & FPA_PCR_EM_PM)
239 printf_unfiltered (" PM");
240 if (pcr_tmp & FPA_PCR_EM_UM)
241 printf_unfiltered (" UM");
242 if (pcr_tmp & FPA_PCR_EM_OM)
243 printf_unfiltered (" OM");
244 if (pcr_tmp & FPA_PCR_EM_ZM)
245 printf_unfiltered (" ZM");
246 if (pcr_tmp & FPA_PCR_EM_IM)
247 printf_unfiltered (" IM");
248 printf_unfiltered ("\n");
249 pcr_tmp = FPA_PCR_CC;
250 printf_unfiltered ("\tCC= %#x", pcr_tmp);
251 if (pcr_tmp & FPA_PCR_20MHZ)
252 printf_unfiltered (" 20MHZ");
253 if (pcr_tmp & FPA_PCR_CC_Z)
254 printf_unfiltered (" Z");
255 if (pcr_tmp & FPA_PCR_CC_C2)
256 printf_unfiltered (" C2");
257
258 /* Dynix defines FPA_PCR_CC_C0 to 0x100 and ptx defines
259 FPA_PCR_CC_C1 to 0x100. Use whichever is defined and assume
260 the OS knows what it is doing. */
261 #ifdef FPA_PCR_CC_C1
262 if (pcr_tmp & FPA_PCR_CC_C1)
263 printf_unfiltered (" C1");
264 #else
265 if (pcr_tmp & FPA_PCR_CC_C0)
266 printf_unfiltered (" C0");
267 #endif
268
269 switch (pcr_tmp)
270 {
271 case FPA_PCR_CC_Z:
272 printf_unfiltered (" (Equal)");
273 break;
274 #ifdef FPA_PCR_CC_C1
275 case FPA_PCR_CC_C1:
276 #else
277 case FPA_PCR_CC_C0:
278 #endif
279 printf_unfiltered (" (Less than)");
280 break;
281 case 0:
282 printf_unfiltered (" (Greater than)");
283 break;
284 case FPA_PCR_CC_Z |
285 #ifdef FPA_PCR_CC_C1
286 FPA_PCR_CC_C1
287 #else
288 FPA_PCR_CC_C0
289 #endif
290 | FPA_PCR_CC_C2:
291 printf_unfiltered (" (Unordered)");
292 break;
293 default:
294 printf_unfiltered (" (Undefined)");
295 break;
296 }
297 printf_unfiltered ("\n");
298 pcr_tmp = pcr & FPA_PCR_AE;
299 printf_unfiltered ("\tAE= %#x", pcr_tmp);
300 if (pcr_tmp & FPA_PCR_AE_DE)
301 printf_unfiltered (" DE");
302 if (pcr_tmp & FPA_PCR_AE_UOE)
303 printf_unfiltered (" UOE");
304 if (pcr_tmp & FPA_PCR_AE_PE)
305 printf_unfiltered (" PE");
306 if (pcr_tmp & FPA_PCR_AE_UE)
307 printf_unfiltered (" UE");
308 if (pcr_tmp & FPA_PCR_AE_OE)
309 printf_unfiltered (" OE");
310 if (pcr_tmp & FPA_PCR_AE_ZE)
311 printf_unfiltered (" ZE");
312 if (pcr_tmp & FPA_PCR_AE_EE)
313 printf_unfiltered (" EE");
314 if (pcr_tmp & FPA_PCR_AE_IE)
315 printf_unfiltered (" IE");
316 printf_unfiltered ("\n");
317 }
318
319 print_1167_regs (long regs[FPA_NREGS])
320 {
321 int i;
322
323 union
324 {
325 double d;
326 long l[2];
327 }
328 xd;
329 union
330 {
331 float f;
332 long l;
333 }
334 xf;
335
336
337 for (i = 0; i < FPA_NREGS; i++)
338 {
339 xf.l = regs[i];
340 printf_unfiltered ("%%fp%d: raw= %#x, single= %f", i + 1, regs[i], xf.f);
341 if (!(i & 1))
342 {
343 printf_unfiltered ("\n");
344 }
345 else
346 {
347 xd.l[1] = regs[i];
348 xd.l[0] = regs[i + 1];
349 printf_unfiltered (", double= %f\n", xd.d);
350 }
351 }
352 }
353
354 print_fpa_status (struct pt_regset ep)
355 {
356
357 printf_unfiltered ("WTL 1167:");
358 if (ep.pr_fpa.fpa_pcr != 0)
359 {
360 printf_unfiltered ("\n");
361 print_1167_control_word (ep.pr_fpa.fpa_pcr);
362 print_1167_regs (ep.pr_fpa.fpa_regs);
363 }
364 else
365 {
366 printf_unfiltered (" not in use.\n");
367 }
368 }
369
370 #if 0 /* disabled because it doesn't go through the target vector. */
371 i386_float_info (void)
372 {
373 char ubuf[UPAGES * NBPG];
374 struct pt_regset regset;
375
376 if (have_inferior_p ())
377 {
378 PTRACE_READ_REGS (PIDGET (inferior_ptid), (PTRACE_ARG3_TYPE) & regset);
379 }
380 else
381 {
382 int corechan = bfd_cache_lookup (core_bfd);
383 if (lseek (corechan, 0, 0) < 0)
384 {
385 perror ("seek on core file");
386 }
387 if (myread (corechan, ubuf, UPAGES * NBPG) < 0)
388 {
389 perror ("read on core file");
390 }
391 /* only interested in the floating point registers */
392 regset.pr_fpu = ((struct user *) ubuf)->u_fpusave;
393 regset.pr_fpa = ((struct user *) ubuf)->u_fpasave;
394 }
395 print_fpu_status (regset);
396 print_fpa_status (regset);
397 }
398 #endif
399
400 static volatile int got_sigchld;
401
402 /*ARGSUSED */
403 /* This will eventually be more interesting. */
404 void
405 sigchld_handler (int signo)
406 {
407 got_sigchld++;
408 }
409
410 /*
411 * Signals for which the default action does not cause the process
412 * to die. See <sys/signal.h> for where this came from (alas, we
413 * can't use those macros directly)
414 */
415 #ifndef sigmask
416 #define sigmask(s) (1 << ((s) - 1))
417 #endif
418 #define SIGNALS_DFL_SAFE sigmask(SIGSTOP) | sigmask(SIGTSTP) | \
419 sigmask(SIGTTIN) | sigmask(SIGTTOU) | sigmask(SIGCHLD) | \
420 sigmask(SIGCONT) | sigmask(SIGWINCH) | sigmask(SIGPWR) | \
421 sigmask(SIGURG) | sigmask(SIGPOLL)
422
423 #ifdef ATTACH_DETACH
424 /*
425 * Thanks to XPT_MPDEBUGGER, we have to mange child_wait().
426 */
427 ptid_t
428 child_wait (ptid_t ptid, struct target_waitstatus *status)
429 {
430 int save_errno, rv, xvaloff, saoff, sa_hand;
431 struct pt_stop pt;
432 struct user u;
433 sigset_t set;
434 /* Host signal number for a signal which the inferior terminates with, or
435 0 if it hasn't terminated due to a signal. */
436 static int death_by_signal = 0;
437 #ifdef SVR4_SHARED_LIBS /* use this to distinguish ptx 2 vs ptx 4 */
438 prstatus_t pstatus;
439 #endif
440 int pid = PIDGET (ptid);
441
442 do
443 {
444 set_sigint_trap (); /* Causes SIGINT to be passed on to the
445 attached process. */
446 save_errno = errno;
447
448 got_sigchld = 0;
449
450 sigemptyset (&set);
451
452 while (got_sigchld == 0)
453 {
454 sigsuspend (&set);
455 }
456
457 clear_sigint_trap ();
458
459 rv = mptrace (XPT_STOPSTAT, 0, (char *) &pt, 0);
460 if (-1 == rv)
461 {
462 printf ("XPT_STOPSTAT: errno %d\n", errno); /* DEBUG */
463 continue;
464 }
465
466 pid = pt.ps_pid;
467
468 if (pid != PIDGET (inferior_ptid))
469 {
470 /* NOTE: the mystery fork in csh/tcsh needs to be ignored.
471 * We should not return new children for the initial run
472 * of a process until it has done the exec.
473 */
474 /* inferior probably forked; send it on its way */
475 rv = mptrace (XPT_UNDEBUG, pid, 0, 0);
476 if (-1 == rv)
477 {
478 printf ("child_wait: XPT_UNDEBUG: pid %d: %s\n", pid,
479 safe_strerror (errno));
480 }
481 continue;
482 }
483 /* FIXME: Do we deal with fork notification correctly? */
484 switch (pt.ps_reason)
485 {
486 case PTS_FORK:
487 /* multi proc: treat like PTS_EXEC */
488 /*
489 * Pretend this didn't happen, since gdb isn't set up
490 * to deal with stops on fork.
491 */
492 rv = ptrace (PT_CONTSIG, pid, 1, 0);
493 if (-1 == rv)
494 {
495 printf ("PTS_FORK: PT_CONTSIG: error %d\n", errno);
496 }
497 continue;
498 case PTS_EXEC:
499 /*
500 * Pretend this is a SIGTRAP.
501 */
502 status->kind = TARGET_WAITKIND_STOPPED;
503 status->value.sig = TARGET_SIGNAL_TRAP;
504 break;
505 case PTS_EXIT:
506 /*
507 * Note: we stop before the exit actually occurs. Extract
508 * the exit code from the uarea. If we're stopped in the
509 * exit() system call, the exit code will be in
510 * u.u_ap[0]. An exit due to an uncaught signal will have
511 * something else in here, see the comment in the default:
512 * case, below. Finally,let the process exit.
513 */
514 if (death_by_signal)
515 {
516 status->kind = TARGET_WAITKIND_SIGNALED;
517 status->value.sig = target_signal_from_host (death_by_signal);
518 death_by_signal = 0;
519 break;
520 }
521 xvaloff = (unsigned long) &u.u_ap[0] - (unsigned long) &u;
522 errno = 0;
523 rv = ptrace (PT_RUSER, pid, (char *) xvaloff, 0);
524 status->kind = TARGET_WAITKIND_EXITED;
525 status->value.integer = rv;
526 /*
527 * addr & data to mptrace() don't matter here, since
528 * the process is already dead.
529 */
530 rv = mptrace (XPT_UNDEBUG, pid, 0, 0);
531 if (-1 == rv)
532 {
533 printf ("child_wait: PTS_EXIT: XPT_UNDEBUG: pid %d error %d\n", pid,
534 errno);
535 }
536 break;
537 case PTS_WATCHPT_HIT:
538 internal_error (__FILE__, __LINE__,
539 "PTS_WATCHPT_HIT\n");
540 break;
541 default:
542 /* stopped by signal */
543 status->kind = TARGET_WAITKIND_STOPPED;
544 status->value.sig = target_signal_from_host (pt.ps_reason);
545 death_by_signal = 0;
546
547 if (0 == (SIGNALS_DFL_SAFE & sigmask (pt.ps_reason)))
548 {
549 break;
550 }
551 /* else default action of signal is to die */
552 #ifdef SVR4_SHARED_LIBS
553 rv = ptrace (PT_GET_PRSTATUS, pid, (char *) &pstatus, 0);
554 if (-1 == rv)
555 error ("child_wait: signal %d PT_GET_PRSTATUS: %s\n",
556 pt.ps_reason, safe_strerror (errno));
557 if (pstatus.pr_cursig != pt.ps_reason)
558 {
559 printf ("pstatus signal %d, pt signal %d\n",
560 pstatus.pr_cursig, pt.ps_reason);
561 }
562 sa_hand = (int) pstatus.pr_action.sa_handler;
563 #else
564 saoff = (unsigned long) &u.u_sa[0] - (unsigned long) &u;
565 saoff += sizeof (struct sigaction) * (pt.ps_reason - 1);
566 errno = 0;
567 sa_hand = ptrace (PT_RUSER, pid, (char *) saoff, 0);
568 if (errno)
569 error ("child_wait: signal %d: RUSER: %s\n",
570 pt.ps_reason, safe_strerror (errno));
571 #endif
572 if ((int) SIG_DFL == sa_hand)
573 {
574 /* we will be dying */
575 death_by_signal = pt.ps_reason;
576 }
577 break;
578 }
579
580 }
581 while (pid != PIDGET (inferior_ptid)); /* Some other child died or stopped */
582
583 return pid_to_ptid (pid);
584 }
585 #else /* !ATTACH_DETACH */
586 /*
587 * Simple child_wait() based on inftarg.c child_wait() for use until
588 * the MPDEBUGGER child_wait() works properly. This will go away when
589 * that is fixed.
590 */
591 ptid_t
592 child_wait (ptid_t ptid, struct target_waitstatus *ourstatus)
593 {
594 int save_errno;
595 int status;
596 int pid = PIDGET (ptid);
597
598 do
599 {
600 pid = wait (&status);
601 save_errno = errno;
602
603 if (pid == -1)
604 {
605 if (save_errno == EINTR)
606 continue;
607 fprintf (stderr, "Child process unexpectedly missing: %s.\n",
608 safe_strerror (save_errno));
609 ourstatus->kind = TARGET_WAITKIND_SIGNALLED;
610 ourstatus->value.sig = TARGET_SIGNAL_UNKNOWN;
611 return pid_to_ptid (-1);
612 }
613 }
614 while (pid != PIDGET (inferior_ptid)); /* Some other child died or stopped */
615 store_waitstatus (ourstatus, status);
616 return pid_to_ptid (pid);
617 }
618 #endif /* ATTACH_DETACH */
619 \f
620
621
622 /* This function simply calls ptrace with the given arguments.
623 It exists so that all calls to ptrace are isolated in this
624 machine-dependent file. */
625 int
626 call_ptrace (int request, int pid, PTRACE_ARG3_TYPE addr, int data)
627 {
628 return ptrace (request, pid, addr, data);
629 }
630
631 int
632 call_mptrace (int request, int pid, PTRACE_ARG3_TYPE addr, int data)
633 {
634 return mptrace (request, pid, addr, data);
635 }
636
637 #if defined (DEBUG_PTRACE)
638 /* For the rest of the file, use an extra level of indirection */
639 /* This lets us breakpoint usefully on call_ptrace. */
640 #define ptrace call_ptrace
641 #define mptrace call_mptrace
642 #endif
643
644 void
645 kill_inferior (void)
646 {
647 if (ptid_equal (inferior_ptid, null_ptid))
648 return;
649
650 /* For MPDEBUGGER, don't use PT_KILL, since the child will stop
651 again with a PTS_EXIT. Just hit him with SIGKILL (so he stops)
652 and detach. */
653
654 kill (PIDGET (inferior_ptid), SIGKILL);
655 #ifdef ATTACH_DETACH
656 detach (SIGKILL);
657 #else /* ATTACH_DETACH */
658 ptrace (PT_KILL, PIDGET (inferior_ptid), 0, 0);
659 wait ((int *) NULL);
660 #endif /* ATTACH_DETACH */
661 target_mourn_inferior ();
662 }
663
664 /* Resume execution of the inferior process.
665 If STEP is nonzero, single-step it.
666 If SIGNAL is nonzero, give it that signal. */
667
668 void
669 child_resume (ptid_t ptid, int step, enum target_signal signal)
670 {
671 int pid = PIDGET (ptid);
672
673 errno = 0;
674
675 if (pid == -1)
676 pid = PIDGET (inferior_ptid);
677
678 /* An address of (PTRACE_ARG3_TYPE)1 tells ptrace to continue from where
679 it was. (If GDB wanted it to start some other way, we have already
680 written a new PC value to the child.)
681
682 If this system does not support PT_SSTEP, a higher level function will
683 have called single_step() to transmute the step request into a
684 continue request (by setting breakpoints on all possible successor
685 instructions), so we don't have to worry about that here. */
686
687 if (step)
688 ptrace (PT_SSTEP, pid, (PTRACE_ARG3_TYPE) 1, signal);
689 else
690 ptrace (PT_CONTSIG, pid, (PTRACE_ARG3_TYPE) 1, signal);
691
692 if (errno)
693 perror_with_name ("ptrace");
694 }
695 \f
696 #ifdef ATTACH_DETACH
697 /* Start debugging the process whose number is PID. */
698 int
699 attach (int pid)
700 {
701 sigset_t set;
702 int rv;
703
704 rv = mptrace (XPT_DEBUG, pid, 0, 0);
705 if (-1 == rv)
706 {
707 error ("mptrace(XPT_DEBUG): %s", safe_strerror (errno));
708 }
709 rv = mptrace (XPT_SIGNAL, pid, 0, SIGSTOP);
710 if (-1 == rv)
711 {
712 error ("mptrace(XPT_SIGNAL): %s", safe_strerror (errno));
713 }
714 attach_flag = 1;
715 return pid;
716 }
717
718 void
719 detach (int signo)
720 {
721 int rv;
722
723 rv = mptrace (XPT_UNDEBUG, PIDGET (inferior_ptid), 1, signo);
724 if (-1 == rv)
725 {
726 error ("mptrace(XPT_UNDEBUG): %s", safe_strerror (errno));
727 }
728 attach_flag = 0;
729 }
730
731 #endif /* ATTACH_DETACH */
732 \f
733 /* Default the type of the ptrace transfer to int. */
734 #ifndef PTRACE_XFER_TYPE
735 #define PTRACE_XFER_TYPE int
736 #endif
737 \f
738
739 /* NOTE! I tried using PTRACE_READDATA, etc., to read and write memory
740 in the NEW_SUN_PTRACE case.
741 It ought to be straightforward. But it appears that writing did
742 not write the data that I specified. I cannot understand where
743 it got the data that it actually did write. */
744
745 /* Copy LEN bytes to or from inferior's memory starting at MEMADDR
746 to debugger memory starting at MYADDR. Copy to inferior if
747 WRITE is nonzero. TARGET is ignored.
748
749 Returns the length copied, which is either the LEN argument or zero.
750 This xfer function does not do partial moves, since child_ops
751 doesn't allow memory operations to cross below us in the target stack
752 anyway. */
753
754 int
755 child_xfer_memory (CORE_ADDR memaddr, char *myaddr, int len, int write,
756 struct mem_attrib *attrib,
757 struct target_ops *target)
758 {
759 register int i;
760 /* Round starting address down to longword boundary. */
761 register CORE_ADDR addr = memaddr & -(CORE_ADDR) sizeof (PTRACE_XFER_TYPE);
762 /* Round ending address up; get number of longwords that makes. */
763 register int count
764 = (((memaddr + len) - addr) + sizeof (PTRACE_XFER_TYPE) - 1)
765 / sizeof (PTRACE_XFER_TYPE);
766 /* Allocate buffer of that many longwords. */
767 register PTRACE_XFER_TYPE *buffer
768 = (PTRACE_XFER_TYPE *) alloca (count * sizeof (PTRACE_XFER_TYPE));
769
770 if (write)
771 {
772 /* Fill start and end extra bytes of buffer with existing memory data. */
773
774 if (addr != memaddr || len < (int) sizeof (PTRACE_XFER_TYPE))
775 {
776 /* Need part of initial word -- fetch it. */
777 buffer[0] = ptrace (PT_RTEXT, PIDGET (inferior_ptid), (PTRACE_ARG3_TYPE) addr,
778 0);
779 }
780
781 if (count > 1) /* FIXME, avoid if even boundary */
782 {
783 buffer[count - 1]
784 = ptrace (PT_RTEXT, PIDGET (inferior_ptid),
785 ((PTRACE_ARG3_TYPE)
786 (addr + (count - 1) * sizeof (PTRACE_XFER_TYPE))),
787 0);
788 }
789
790 /* Copy data to be written over corresponding part of buffer */
791
792 memcpy ((char *) buffer + (memaddr & (sizeof (PTRACE_XFER_TYPE) - 1)),
793 myaddr,
794 len);
795
796 /* Write the entire buffer. */
797
798 for (i = 0; i < count; i++, addr += sizeof (PTRACE_XFER_TYPE))
799 {
800 errno = 0;
801 ptrace (PT_WDATA, PIDGET (inferior_ptid), (PTRACE_ARG3_TYPE) addr,
802 buffer[i]);
803 if (errno)
804 {
805 /* Using the appropriate one (I or D) is necessary for
806 Gould NP1, at least. */
807 errno = 0;
808 ptrace (PT_WTEXT, PIDGET (inferior_ptid), (PTRACE_ARG3_TYPE) addr,
809 buffer[i]);
810 }
811 if (errno)
812 return 0;
813 }
814 }
815 else
816 {
817 /* Read all the longwords */
818 for (i = 0; i < count; i++, addr += sizeof (PTRACE_XFER_TYPE))
819 {
820 errno = 0;
821 buffer[i] = ptrace (PT_RTEXT, PIDGET (inferior_ptid),
822 (PTRACE_ARG3_TYPE) addr, 0);
823 if (errno)
824 return 0;
825 QUIT;
826 }
827
828 /* Copy appropriate bytes out of the buffer. */
829 memcpy (myaddr,
830 (char *) buffer + (memaddr & (sizeof (PTRACE_XFER_TYPE) - 1)),
831 len);
832 }
833 return len;
834 }
835
836
837 void
838 _initialize_symm_nat (void)
839 {
840 #ifdef ATTACH_DETACH
841 /*
842 * the MPDEBUGGER is necessary for process tree debugging and attach
843 * to work, but it alters the behavior of debugged processes, so other
844 * things (at least child_wait()) will have to change to accomodate
845 * that.
846 *
847 * Note that attach is not implemented in dynix 3, and not in ptx
848 * until version 2.1 of the OS.
849 */
850 int rv;
851 sigset_t set;
852 struct sigaction sact;
853
854 rv = mptrace (XPT_MPDEBUGGER, 0, 0, 0);
855 if (-1 == rv)
856 {
857 internal_error (__FILE__, __LINE__,
858 "_initialize_symm_nat(): mptrace(XPT_MPDEBUGGER): %s",
859 safe_strerror (errno));
860 }
861
862 /*
863 * Under MPDEBUGGER, we get SIGCLHD when a traced process does
864 * anything of interest.
865 */
866
867 /*
868 * Block SIGCHLD. We leave it blocked all the time, and then
869 * call sigsuspend() in child_wait() to wait for the child
870 * to do something. None of these ought to fail, but check anyway.
871 */
872 sigemptyset (&set);
873 rv = sigaddset (&set, SIGCHLD);
874 if (-1 == rv)
875 {
876 internal_error (__FILE__, __LINE__,
877 "_initialize_symm_nat(): sigaddset(SIGCHLD): %s",
878 safe_strerror (errno));
879 }
880 rv = sigprocmask (SIG_BLOCK, &set, (sigset_t *) NULL);
881 if (-1 == rv)
882 {
883 internal_error (__FILE__, __LINE__,
884 "_initialize_symm_nat(): sigprocmask(SIG_BLOCK): %s",
885 safe_strerror (errno));
886 }
887
888 sact.sa_handler = sigchld_handler;
889 sigemptyset (&sact.sa_mask);
890 sact.sa_flags = SA_NOCLDWAIT; /* keep the zombies away */
891 rv = sigaction (SIGCHLD, &sact, (struct sigaction *) NULL);
892 if (-1 == rv)
893 {
894 internal_error (__FILE__, __LINE__,
895 "_initialize_symm_nat(): sigaction(SIGCHLD): %s",
896 safe_strerror (errno));
897 }
898 #endif
899 }
This page took 0.048739 seconds and 4 git commands to generate.