2001-02-04 Philip Blundell <philb@gnu.org>
[deliverable/binutils-gdb.git] / gdb / symm-nat.c
1 /* Sequent Symmetry host interface, for GDB when running under Unix.
2 Copyright 1986, 1987, 1989, 1991, 1992, 1994 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
20
21 /* FIXME, some 387-specific items of use taken from i387-tdep.c -- ought to be
22 merged back in. */
23
24 #include "defs.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "symtab.h"
28 #include "target.h"
29
30 /* FIXME: What is the _INKERNEL define for? */
31 #define _INKERNEL
32 #include <signal.h>
33 #undef _INKERNEL
34 #include <sys/wait.h>
35 #include <sys/param.h>
36 #include <sys/user.h>
37 #include <sys/proc.h>
38 #include <sys/dir.h>
39 #include <sys/ioctl.h>
40 #include "gdb_stat.h"
41 #ifdef _SEQUENT_
42 #include <sys/ptrace.h>
43 #else
44 /* Dynix has only machine/ptrace.h, which is already included by sys/user.h */
45 /* Dynix has no mptrace call */
46 #define mptrace ptrace
47 #endif
48 #include "gdbcore.h"
49 #include <fcntl.h>
50 #include <sgtty.h>
51 #define TERMINAL struct sgttyb
52
53 #include "gdbcore.h"
54
55 void
56 store_inferior_registers (int regno)
57 {
58 struct pt_regset regs;
59 int i;
60
61 /* FIXME: Fetching the registers is a kludge to initialize all elements
62 in the fpu and fpa status. This works for normal debugging, but
63 might cause problems when calling functions in the inferior.
64 At least fpu_control and fpa_pcr (probably more) should be added
65 to the registers array to solve this properly. */
66 mptrace (XPT_RREGS, inferior_pid, (PTRACE_ARG3_TYPE) & regs, 0);
67
68 regs.pr_eax = *(int *) &registers[REGISTER_BYTE (0)];
69 regs.pr_ebx = *(int *) &registers[REGISTER_BYTE (5)];
70 regs.pr_ecx = *(int *) &registers[REGISTER_BYTE (2)];
71 regs.pr_edx = *(int *) &registers[REGISTER_BYTE (1)];
72 regs.pr_esi = *(int *) &registers[REGISTER_BYTE (6)];
73 regs.pr_edi = *(int *) &registers[REGISTER_BYTE (7)];
74 regs.pr_esp = *(int *) &registers[REGISTER_BYTE (14)];
75 regs.pr_ebp = *(int *) &registers[REGISTER_BYTE (15)];
76 regs.pr_eip = *(int *) &registers[REGISTER_BYTE (16)];
77 regs.pr_flags = *(int *) &registers[REGISTER_BYTE (17)];
78 for (i = 0; i < 31; i++)
79 {
80 regs.pr_fpa.fpa_regs[i] =
81 *(int *) &registers[REGISTER_BYTE (FP1_REGNUM + i)];
82 }
83 memcpy (regs.pr_fpu.fpu_stack[0], &registers[REGISTER_BYTE (ST0_REGNUM)], 10);
84 memcpy (regs.pr_fpu.fpu_stack[1], &registers[REGISTER_BYTE (ST1_REGNUM)], 10);
85 memcpy (regs.pr_fpu.fpu_stack[2], &registers[REGISTER_BYTE (ST2_REGNUM)], 10);
86 memcpy (regs.pr_fpu.fpu_stack[3], &registers[REGISTER_BYTE (ST3_REGNUM)], 10);
87 memcpy (regs.pr_fpu.fpu_stack[4], &registers[REGISTER_BYTE (ST4_REGNUM)], 10);
88 memcpy (regs.pr_fpu.fpu_stack[5], &registers[REGISTER_BYTE (ST5_REGNUM)], 10);
89 memcpy (regs.pr_fpu.fpu_stack[6], &registers[REGISTER_BYTE (ST6_REGNUM)], 10);
90 memcpy (regs.pr_fpu.fpu_stack[7], &registers[REGISTER_BYTE (ST7_REGNUM)], 10);
91 mptrace (XPT_WREGS, inferior_pid, (PTRACE_ARG3_TYPE) & regs, 0);
92 }
93
94 void
95 fetch_inferior_registers (int regno)
96 {
97 int i;
98 struct pt_regset regs;
99
100 registers_fetched ();
101
102 mptrace (XPT_RREGS, inferior_pid, (PTRACE_ARG3_TYPE) & regs, 0);
103 *(int *) &registers[REGISTER_BYTE (EAX_REGNUM)] = regs.pr_eax;
104 *(int *) &registers[REGISTER_BYTE (EBX_REGNUM)] = regs.pr_ebx;
105 *(int *) &registers[REGISTER_BYTE (ECX_REGNUM)] = regs.pr_ecx;
106 *(int *) &registers[REGISTER_BYTE (EDX_REGNUM)] = regs.pr_edx;
107 *(int *) &registers[REGISTER_BYTE (ESI_REGNUM)] = regs.pr_esi;
108 *(int *) &registers[REGISTER_BYTE (EDI_REGNUM)] = regs.pr_edi;
109 *(int *) &registers[REGISTER_BYTE (EBP_REGNUM)] = regs.pr_ebp;
110 *(int *) &registers[REGISTER_BYTE (ESP_REGNUM)] = regs.pr_esp;
111 *(int *) &registers[REGISTER_BYTE (EIP_REGNUM)] = regs.pr_eip;
112 *(int *) &registers[REGISTER_BYTE (EFLAGS_REGNUM)] = regs.pr_flags;
113 for (i = 0; i < FPA_NREGS; i++)
114 {
115 *(int *) &registers[REGISTER_BYTE (FP1_REGNUM + i)] =
116 regs.pr_fpa.fpa_regs[i];
117 }
118 memcpy (&registers[REGISTER_BYTE (ST0_REGNUM)], regs.pr_fpu.fpu_stack[0], 10);
119 memcpy (&registers[REGISTER_BYTE (ST1_REGNUM)], regs.pr_fpu.fpu_stack[1], 10);
120 memcpy (&registers[REGISTER_BYTE (ST2_REGNUM)], regs.pr_fpu.fpu_stack[2], 10);
121 memcpy (&registers[REGISTER_BYTE (ST3_REGNUM)], regs.pr_fpu.fpu_stack[3], 10);
122 memcpy (&registers[REGISTER_BYTE (ST4_REGNUM)], regs.pr_fpu.fpu_stack[4], 10);
123 memcpy (&registers[REGISTER_BYTE (ST5_REGNUM)], regs.pr_fpu.fpu_stack[5], 10);
124 memcpy (&registers[REGISTER_BYTE (ST6_REGNUM)], regs.pr_fpu.fpu_stack[6], 10);
125 memcpy (&registers[REGISTER_BYTE (ST7_REGNUM)], regs.pr_fpu.fpu_stack[7], 10);
126 }
127 \f
128 /* FIXME: This should be merged with i387-tdep.c as well. */
129 static
130 print_fpu_status (struct pt_regset ep)
131 {
132 int i;
133 int bothstatus;
134 int top;
135 int fpreg;
136 unsigned char *p;
137
138 printf_unfiltered ("80387:");
139 if (ep.pr_fpu.fpu_ip == 0)
140 {
141 printf_unfiltered (" not in use.\n");
142 return;
143 }
144 else
145 {
146 printf_unfiltered ("\n");
147 }
148 if (ep.pr_fpu.fpu_status != 0)
149 {
150 print_387_status_word (ep.pr_fpu.fpu_status);
151 }
152 print_387_control_word (ep.pr_fpu.fpu_control);
153 printf_unfiltered ("last exception: ");
154 printf_unfiltered ("opcode 0x%x; ", ep.pr_fpu.fpu_rsvd4);
155 printf_unfiltered ("pc 0x%x:0x%x; ", ep.pr_fpu.fpu_cs, ep.pr_fpu.fpu_ip);
156 printf_unfiltered ("operand 0x%x:0x%x\n", ep.pr_fpu.fpu_data_offset, ep.pr_fpu.fpu_op_sel);
157
158 top = (ep.pr_fpu.fpu_status >> 11) & 7;
159
160 printf_unfiltered ("regno tag msb lsb value\n");
161 for (fpreg = 7; fpreg >= 0; fpreg--)
162 {
163 double val;
164
165 printf_unfiltered ("%s %d: ", fpreg == top ? "=>" : " ", fpreg);
166
167 switch ((ep.pr_fpu.fpu_tag >> (fpreg * 2)) & 3)
168 {
169 case 0:
170 printf_unfiltered ("valid ");
171 break;
172 case 1:
173 printf_unfiltered ("zero ");
174 break;
175 case 2:
176 printf_unfiltered ("trap ");
177 break;
178 case 3:
179 printf_unfiltered ("empty ");
180 break;
181 }
182 for (i = 9; i >= 0; i--)
183 printf_unfiltered ("%02x", ep.pr_fpu.fpu_stack[fpreg][i]);
184
185 i387_to_double ((char *) ep.pr_fpu.fpu_stack[fpreg], (char *) &val);
186 printf_unfiltered (" %g\n", val);
187 }
188 if (ep.pr_fpu.fpu_rsvd1)
189 warning ("rsvd1 is 0x%x\n", ep.pr_fpu.fpu_rsvd1);
190 if (ep.pr_fpu.fpu_rsvd2)
191 warning ("rsvd2 is 0x%x\n", ep.pr_fpu.fpu_rsvd2);
192 if (ep.pr_fpu.fpu_rsvd3)
193 warning ("rsvd3 is 0x%x\n", ep.pr_fpu.fpu_rsvd3);
194 if (ep.pr_fpu.fpu_rsvd5)
195 warning ("rsvd5 is 0x%x\n", ep.pr_fpu.fpu_rsvd5);
196 }
197
198
199 print_1167_control_word (unsigned int pcr)
200 {
201 int pcr_tmp;
202
203 pcr_tmp = pcr & FPA_PCR_MODE;
204 printf_unfiltered ("\tMODE= %#x; RND= %#x ", pcr_tmp, pcr_tmp & 12);
205 switch (pcr_tmp & 12)
206 {
207 case 0:
208 printf_unfiltered ("RN (Nearest Value)");
209 break;
210 case 1:
211 printf_unfiltered ("RZ (Zero)");
212 break;
213 case 2:
214 printf_unfiltered ("RP (Positive Infinity)");
215 break;
216 case 3:
217 printf_unfiltered ("RM (Negative Infinity)");
218 break;
219 }
220 printf_unfiltered ("; IRND= %d ", pcr_tmp & 2);
221 if (0 == pcr_tmp & 2)
222 {
223 printf_unfiltered ("(same as RND)\n");
224 }
225 else
226 {
227 printf_unfiltered ("(toward zero)\n");
228 }
229 pcr_tmp = pcr & FPA_PCR_EM;
230 printf_unfiltered ("\tEM= %#x", pcr_tmp);
231 if (pcr_tmp & FPA_PCR_EM_DM)
232 printf_unfiltered (" DM");
233 if (pcr_tmp & FPA_PCR_EM_UOM)
234 printf_unfiltered (" UOM");
235 if (pcr_tmp & FPA_PCR_EM_PM)
236 printf_unfiltered (" PM");
237 if (pcr_tmp & FPA_PCR_EM_UM)
238 printf_unfiltered (" UM");
239 if (pcr_tmp & FPA_PCR_EM_OM)
240 printf_unfiltered (" OM");
241 if (pcr_tmp & FPA_PCR_EM_ZM)
242 printf_unfiltered (" ZM");
243 if (pcr_tmp & FPA_PCR_EM_IM)
244 printf_unfiltered (" IM");
245 printf_unfiltered ("\n");
246 pcr_tmp = FPA_PCR_CC;
247 printf_unfiltered ("\tCC= %#x", pcr_tmp);
248 if (pcr_tmp & FPA_PCR_20MHZ)
249 printf_unfiltered (" 20MHZ");
250 if (pcr_tmp & FPA_PCR_CC_Z)
251 printf_unfiltered (" Z");
252 if (pcr_tmp & FPA_PCR_CC_C2)
253 printf_unfiltered (" C2");
254
255 /* Dynix defines FPA_PCR_CC_C0 to 0x100 and ptx defines
256 FPA_PCR_CC_C1 to 0x100. Use whichever is defined and assume
257 the OS knows what it is doing. */
258 #ifdef FPA_PCR_CC_C1
259 if (pcr_tmp & FPA_PCR_CC_C1)
260 printf_unfiltered (" C1");
261 #else
262 if (pcr_tmp & FPA_PCR_CC_C0)
263 printf_unfiltered (" C0");
264 #endif
265
266 switch (pcr_tmp)
267 {
268 case FPA_PCR_CC_Z:
269 printf_unfiltered (" (Equal)");
270 break;
271 #ifdef FPA_PCR_CC_C1
272 case FPA_PCR_CC_C1:
273 #else
274 case FPA_PCR_CC_C0:
275 #endif
276 printf_unfiltered (" (Less than)");
277 break;
278 case 0:
279 printf_unfiltered (" (Greater than)");
280 break;
281 case FPA_PCR_CC_Z |
282 #ifdef FPA_PCR_CC_C1
283 FPA_PCR_CC_C1
284 #else
285 FPA_PCR_CC_C0
286 #endif
287 | FPA_PCR_CC_C2:
288 printf_unfiltered (" (Unordered)");
289 break;
290 default:
291 printf_unfiltered (" (Undefined)");
292 break;
293 }
294 printf_unfiltered ("\n");
295 pcr_tmp = pcr & FPA_PCR_AE;
296 printf_unfiltered ("\tAE= %#x", pcr_tmp);
297 if (pcr_tmp & FPA_PCR_AE_DE)
298 printf_unfiltered (" DE");
299 if (pcr_tmp & FPA_PCR_AE_UOE)
300 printf_unfiltered (" UOE");
301 if (pcr_tmp & FPA_PCR_AE_PE)
302 printf_unfiltered (" PE");
303 if (pcr_tmp & FPA_PCR_AE_UE)
304 printf_unfiltered (" UE");
305 if (pcr_tmp & FPA_PCR_AE_OE)
306 printf_unfiltered (" OE");
307 if (pcr_tmp & FPA_PCR_AE_ZE)
308 printf_unfiltered (" ZE");
309 if (pcr_tmp & FPA_PCR_AE_EE)
310 printf_unfiltered (" EE");
311 if (pcr_tmp & FPA_PCR_AE_IE)
312 printf_unfiltered (" IE");
313 printf_unfiltered ("\n");
314 }
315
316 print_1167_regs (long regs[FPA_NREGS])
317 {
318 int i;
319
320 union
321 {
322 double d;
323 long l[2];
324 }
325 xd;
326 union
327 {
328 float f;
329 long l;
330 }
331 xf;
332
333
334 for (i = 0; i < FPA_NREGS; i++)
335 {
336 xf.l = regs[i];
337 printf_unfiltered ("%%fp%d: raw= %#x, single= %f", i + 1, regs[i], xf.f);
338 if (!(i & 1))
339 {
340 printf_unfiltered ("\n");
341 }
342 else
343 {
344 xd.l[1] = regs[i];
345 xd.l[0] = regs[i + 1];
346 printf_unfiltered (", double= %f\n", xd.d);
347 }
348 }
349 }
350
351 print_fpa_status (struct pt_regset ep)
352 {
353
354 printf_unfiltered ("WTL 1167:");
355 if (ep.pr_fpa.fpa_pcr != 0)
356 {
357 printf_unfiltered ("\n");
358 print_1167_control_word (ep.pr_fpa.fpa_pcr);
359 print_1167_regs (ep.pr_fpa.fpa_regs);
360 }
361 else
362 {
363 printf_unfiltered (" not in use.\n");
364 }
365 }
366
367 #if 0 /* disabled because it doesn't go through the target vector. */
368 i386_float_info (void)
369 {
370 char ubuf[UPAGES * NBPG];
371 struct pt_regset regset;
372
373 if (have_inferior_p ())
374 {
375 PTRACE_READ_REGS (inferior_pid, (PTRACE_ARG3_TYPE) & regset);
376 }
377 else
378 {
379 int corechan = bfd_cache_lookup (core_bfd);
380 if (lseek (corechan, 0, 0) < 0)
381 {
382 perror ("seek on core file");
383 }
384 if (myread (corechan, ubuf, UPAGES * NBPG) < 0)
385 {
386 perror ("read on core file");
387 }
388 /* only interested in the floating point registers */
389 regset.pr_fpu = ((struct user *) ubuf)->u_fpusave;
390 regset.pr_fpa = ((struct user *) ubuf)->u_fpasave;
391 }
392 print_fpu_status (regset);
393 print_fpa_status (regset);
394 }
395 #endif
396
397 static volatile int got_sigchld;
398
399 /*ARGSUSED */
400 /* This will eventually be more interesting. */
401 void
402 sigchld_handler (int signo)
403 {
404 got_sigchld++;
405 }
406
407 /*
408 * Signals for which the default action does not cause the process
409 * to die. See <sys/signal.h> for where this came from (alas, we
410 * can't use those macros directly)
411 */
412 #ifndef sigmask
413 #define sigmask(s) (1 << ((s) - 1))
414 #endif
415 #define SIGNALS_DFL_SAFE sigmask(SIGSTOP) | sigmask(SIGTSTP) | \
416 sigmask(SIGTTIN) | sigmask(SIGTTOU) | sigmask(SIGCHLD) | \
417 sigmask(SIGCONT) | sigmask(SIGWINCH) | sigmask(SIGPWR) | \
418 sigmask(SIGURG) | sigmask(SIGPOLL)
419
420 #ifdef ATTACH_DETACH
421 /*
422 * Thanks to XPT_MPDEBUGGER, we have to mange child_wait().
423 */
424 int
425 child_wait (int pid, struct target_waitstatus *status)
426 {
427 int save_errno, rv, xvaloff, saoff, sa_hand;
428 struct pt_stop pt;
429 struct user u;
430 sigset_t set;
431 /* Host signal number for a signal which the inferior terminates with, or
432 0 if it hasn't terminated due to a signal. */
433 static int death_by_signal = 0;
434 #ifdef SVR4_SHARED_LIBS /* use this to distinguish ptx 2 vs ptx 4 */
435 prstatus_t pstatus;
436 #endif
437
438 do
439 {
440 set_sigint_trap (); /* Causes SIGINT to be passed on to the
441 attached process. */
442 save_errno = errno;
443
444 got_sigchld = 0;
445
446 sigemptyset (&set);
447
448 while (got_sigchld == 0)
449 {
450 sigsuspend (&set);
451 }
452
453 clear_sigint_trap ();
454
455 rv = mptrace (XPT_STOPSTAT, 0, (char *) &pt, 0);
456 if (-1 == rv)
457 {
458 printf ("XPT_STOPSTAT: errno %d\n", errno); /* DEBUG */
459 continue;
460 }
461
462 pid = pt.ps_pid;
463
464 if (pid != inferior_pid)
465 {
466 /* NOTE: the mystery fork in csh/tcsh needs to be ignored.
467 * We should not return new children for the initial run
468 * of a process until it has done the exec.
469 */
470 /* inferior probably forked; send it on its way */
471 rv = mptrace (XPT_UNDEBUG, pid, 0, 0);
472 if (-1 == rv)
473 {
474 printf ("child_wait: XPT_UNDEBUG: pid %d: %s\n", pid,
475 safe_strerror (errno));
476 }
477 continue;
478 }
479 /* FIXME: Do we deal with fork notification correctly? */
480 switch (pt.ps_reason)
481 {
482 case PTS_FORK:
483 /* multi proc: treat like PTS_EXEC */
484 /*
485 * Pretend this didn't happen, since gdb isn't set up
486 * to deal with stops on fork.
487 */
488 rv = ptrace (PT_CONTSIG, pid, 1, 0);
489 if (-1 == rv)
490 {
491 printf ("PTS_FORK: PT_CONTSIG: error %d\n", errno);
492 }
493 continue;
494 case PTS_EXEC:
495 /*
496 * Pretend this is a SIGTRAP.
497 */
498 status->kind = TARGET_WAITKIND_STOPPED;
499 status->value.sig = TARGET_SIGNAL_TRAP;
500 break;
501 case PTS_EXIT:
502 /*
503 * Note: we stop before the exit actually occurs. Extract
504 * the exit code from the uarea. If we're stopped in the
505 * exit() system call, the exit code will be in
506 * u.u_ap[0]. An exit due to an uncaught signal will have
507 * something else in here, see the comment in the default:
508 * case, below. Finally,let the process exit.
509 */
510 if (death_by_signal)
511 {
512 status->kind = TARGET_WAITKIND_SIGNALED;
513 status->value.sig = target_signal_from_host (death_by_signal);
514 death_by_signal = 0;
515 break;
516 }
517 xvaloff = (unsigned long) &u.u_ap[0] - (unsigned long) &u;
518 errno = 0;
519 rv = ptrace (PT_RUSER, pid, (char *) xvaloff, 0);
520 status->kind = TARGET_WAITKIND_EXITED;
521 status->value.integer = rv;
522 /*
523 * addr & data to mptrace() don't matter here, since
524 * the process is already dead.
525 */
526 rv = mptrace (XPT_UNDEBUG, pid, 0, 0);
527 if (-1 == rv)
528 {
529 printf ("child_wait: PTS_EXIT: XPT_UNDEBUG: pid %d error %d\n", pid,
530 errno);
531 }
532 break;
533 case PTS_WATCHPT_HIT:
534 internal_error ("PTS_WATCHPT_HIT\n");
535 break;
536 default:
537 /* stopped by signal */
538 status->kind = TARGET_WAITKIND_STOPPED;
539 status->value.sig = target_signal_from_host (pt.ps_reason);
540 death_by_signal = 0;
541
542 if (0 == (SIGNALS_DFL_SAFE & sigmask (pt.ps_reason)))
543 {
544 break;
545 }
546 /* else default action of signal is to die */
547 #ifdef SVR4_SHARED_LIBS
548 rv = ptrace (PT_GET_PRSTATUS, pid, (char *) &pstatus, 0);
549 if (-1 == rv)
550 error ("child_wait: signal %d PT_GET_PRSTATUS: %s\n",
551 pt.ps_reason, safe_strerror (errno));
552 if (pstatus.pr_cursig != pt.ps_reason)
553 {
554 printf ("pstatus signal %d, pt signal %d\n",
555 pstatus.pr_cursig, pt.ps_reason);
556 }
557 sa_hand = (int) pstatus.pr_action.sa_handler;
558 #else
559 saoff = (unsigned long) &u.u_sa[0] - (unsigned long) &u;
560 saoff += sizeof (struct sigaction) * (pt.ps_reason - 1);
561 errno = 0;
562 sa_hand = ptrace (PT_RUSER, pid, (char *) saoff, 0);
563 if (errno)
564 error ("child_wait: signal %d: RUSER: %s\n",
565 pt.ps_reason, safe_strerror (errno));
566 #endif
567 if ((int) SIG_DFL == sa_hand)
568 {
569 /* we will be dying */
570 death_by_signal = pt.ps_reason;
571 }
572 break;
573 }
574
575 }
576 while (pid != inferior_pid); /* Some other child died or stopped */
577
578 return pid;
579 }
580 #else /* !ATTACH_DETACH */
581 /*
582 * Simple child_wait() based on inftarg.c child_wait() for use until
583 * the MPDEBUGGER child_wait() works properly. This will go away when
584 * that is fixed.
585 */
586 child_wait (int pid, struct target_waitstatus *ourstatus)
587 {
588 int save_errno;
589 int status;
590
591 do
592 {
593 pid = wait (&status);
594 save_errno = errno;
595
596 if (pid == -1)
597 {
598 if (save_errno == EINTR)
599 continue;
600 fprintf (stderr, "Child process unexpectedly missing: %s.\n",
601 safe_strerror (save_errno));
602 ourstatus->kind = TARGET_WAITKIND_SIGNALLED;
603 ourstatus->value.sig = TARGET_SIGNAL_UNKNOWN;
604 return -1;
605 }
606 }
607 while (pid != inferior_pid); /* Some other child died or stopped */
608 store_waitstatus (ourstatus, status);
609 return pid;
610 }
611 #endif /* ATTACH_DETACH */
612 \f
613
614
615 /* This function simply calls ptrace with the given arguments.
616 It exists so that all calls to ptrace are isolated in this
617 machine-dependent file. */
618 int
619 call_ptrace (int request, int pid, PTRACE_ARG3_TYPE addr, int data)
620 {
621 return ptrace (request, pid, addr, data);
622 }
623
624 int
625 call_mptrace (int request, int pid, PTRACE_ARG3_TYPE addr, int data)
626 {
627 return mptrace (request, pid, addr, data);
628 }
629
630 #if defined (DEBUG_PTRACE)
631 /* For the rest of the file, use an extra level of indirection */
632 /* This lets us breakpoint usefully on call_ptrace. */
633 #define ptrace call_ptrace
634 #define mptrace call_mptrace
635 #endif
636
637 void
638 kill_inferior (void)
639 {
640 if (inferior_pid == 0)
641 return;
642
643 /* For MPDEBUGGER, don't use PT_KILL, since the child will stop
644 again with a PTS_EXIT. Just hit him with SIGKILL (so he stops)
645 and detach. */
646
647 kill (inferior_pid, SIGKILL);
648 #ifdef ATTACH_DETACH
649 detach (SIGKILL);
650 #else /* ATTACH_DETACH */
651 ptrace (PT_KILL, inferior_pid, 0, 0);
652 wait ((int *) NULL);
653 #endif /* ATTACH_DETACH */
654 target_mourn_inferior ();
655 }
656
657 /* Resume execution of the inferior process.
658 If STEP is nonzero, single-step it.
659 If SIGNAL is nonzero, give it that signal. */
660
661 void
662 child_resume (int pid, int step, enum target_signal signal)
663 {
664 errno = 0;
665
666 if (pid == -1)
667 pid = inferior_pid;
668
669 /* An address of (PTRACE_ARG3_TYPE)1 tells ptrace to continue from where
670 it was. (If GDB wanted it to start some other way, we have already
671 written a new PC value to the child.)
672
673 If this system does not support PT_SSTEP, a higher level function will
674 have called single_step() to transmute the step request into a
675 continue request (by setting breakpoints on all possible successor
676 instructions), so we don't have to worry about that here. */
677
678 if (step)
679 ptrace (PT_SSTEP, pid, (PTRACE_ARG3_TYPE) 1, signal);
680 else
681 ptrace (PT_CONTSIG, pid, (PTRACE_ARG3_TYPE) 1, signal);
682
683 if (errno)
684 perror_with_name ("ptrace");
685 }
686 \f
687 #ifdef ATTACH_DETACH
688 /* Start debugging the process whose number is PID. */
689 int
690 attach (int pid)
691 {
692 sigset_t set;
693 int rv;
694
695 rv = mptrace (XPT_DEBUG, pid, 0, 0);
696 if (-1 == rv)
697 {
698 error ("mptrace(XPT_DEBUG): %s", safe_strerror (errno));
699 }
700 rv = mptrace (XPT_SIGNAL, pid, 0, SIGSTOP);
701 if (-1 == rv)
702 {
703 error ("mptrace(XPT_SIGNAL): %s", safe_strerror (errno));
704 }
705 attach_flag = 1;
706 return pid;
707 }
708
709 void
710 detach (int signo)
711 {
712 int rv;
713
714 rv = mptrace (XPT_UNDEBUG, inferior_pid, 1, signo);
715 if (-1 == rv)
716 {
717 error ("mptrace(XPT_UNDEBUG): %s", safe_strerror (errno));
718 }
719 attach_flag = 0;
720 }
721
722 #endif /* ATTACH_DETACH */
723 \f
724 /* Default the type of the ptrace transfer to int. */
725 #ifndef PTRACE_XFER_TYPE
726 #define PTRACE_XFER_TYPE int
727 #endif
728 \f
729
730 /* NOTE! I tried using PTRACE_READDATA, etc., to read and write memory
731 in the NEW_SUN_PTRACE case.
732 It ought to be straightforward. But it appears that writing did
733 not write the data that I specified. I cannot understand where
734 it got the data that it actually did write. */
735
736 /* Copy LEN bytes to or from inferior's memory starting at MEMADDR
737 to debugger memory starting at MYADDR. Copy to inferior if
738 WRITE is nonzero. TARGET is ignored.
739
740 Returns the length copied, which is either the LEN argument or zero.
741 This xfer function does not do partial moves, since child_ops
742 doesn't allow memory operations to cross below us in the target stack
743 anyway. */
744
745 int
746 child_xfer_memory (CORE_ADDR memaddr, char *myaddr, int len, int write,
747 struct target_ops *target)
748 {
749 register int i;
750 /* Round starting address down to longword boundary. */
751 register CORE_ADDR addr = memaddr & -sizeof (PTRACE_XFER_TYPE);
752 /* Round ending address up; get number of longwords that makes. */
753 register int count
754 = (((memaddr + len) - addr) + sizeof (PTRACE_XFER_TYPE) - 1)
755 / sizeof (PTRACE_XFER_TYPE);
756 /* Allocate buffer of that many longwords. */
757 register PTRACE_XFER_TYPE *buffer
758 = (PTRACE_XFER_TYPE *) alloca (count * sizeof (PTRACE_XFER_TYPE));
759
760 if (write)
761 {
762 /* Fill start and end extra bytes of buffer with existing memory data. */
763
764 if (addr != memaddr || len < (int) sizeof (PTRACE_XFER_TYPE))
765 {
766 /* Need part of initial word -- fetch it. */
767 buffer[0] = ptrace (PT_RTEXT, inferior_pid, (PTRACE_ARG3_TYPE) addr,
768 0);
769 }
770
771 if (count > 1) /* FIXME, avoid if even boundary */
772 {
773 buffer[count - 1]
774 = ptrace (PT_RTEXT, inferior_pid,
775 ((PTRACE_ARG3_TYPE)
776 (addr + (count - 1) * sizeof (PTRACE_XFER_TYPE))),
777 0);
778 }
779
780 /* Copy data to be written over corresponding part of buffer */
781
782 memcpy ((char *) buffer + (memaddr & (sizeof (PTRACE_XFER_TYPE) - 1)),
783 myaddr,
784 len);
785
786 /* Write the entire buffer. */
787
788 for (i = 0; i < count; i++, addr += sizeof (PTRACE_XFER_TYPE))
789 {
790 errno = 0;
791 ptrace (PT_WDATA, inferior_pid, (PTRACE_ARG3_TYPE) addr,
792 buffer[i]);
793 if (errno)
794 {
795 /* Using the appropriate one (I or D) is necessary for
796 Gould NP1, at least. */
797 errno = 0;
798 ptrace (PT_WTEXT, inferior_pid, (PTRACE_ARG3_TYPE) addr,
799 buffer[i]);
800 }
801 if (errno)
802 return 0;
803 }
804 }
805 else
806 {
807 /* Read all the longwords */
808 for (i = 0; i < count; i++, addr += sizeof (PTRACE_XFER_TYPE))
809 {
810 errno = 0;
811 buffer[i] = ptrace (PT_RTEXT, inferior_pid,
812 (PTRACE_ARG3_TYPE) addr, 0);
813 if (errno)
814 return 0;
815 QUIT;
816 }
817
818 /* Copy appropriate bytes out of the buffer. */
819 memcpy (myaddr,
820 (char *) buffer + (memaddr & (sizeof (PTRACE_XFER_TYPE) - 1)),
821 len);
822 }
823 return len;
824 }
825
826
827 void
828 _initialize_symm_nat (void)
829 {
830 #ifdef ATTACH_DETACH
831 /*
832 * the MPDEBUGGER is necessary for process tree debugging and attach
833 * to work, but it alters the behavior of debugged processes, so other
834 * things (at least child_wait()) will have to change to accomodate
835 * that.
836 *
837 * Note that attach is not implemented in dynix 3, and not in ptx
838 * until version 2.1 of the OS.
839 */
840 int rv;
841 sigset_t set;
842 struct sigaction sact;
843
844 rv = mptrace (XPT_MPDEBUGGER, 0, 0, 0);
845 if (-1 == rv)
846 {
847 internal_error ("_initialize_symm_nat(): mptrace(XPT_MPDEBUGGER): %s",
848 safe_strerror (errno));
849 }
850
851 /*
852 * Under MPDEBUGGER, we get SIGCLHD when a traced process does
853 * anything of interest.
854 */
855
856 /*
857 * Block SIGCHLD. We leave it blocked all the time, and then
858 * call sigsuspend() in child_wait() to wait for the child
859 * to do something. None of these ought to fail, but check anyway.
860 */
861 sigemptyset (&set);
862 rv = sigaddset (&set, SIGCHLD);
863 if (-1 == rv)
864 {
865 internal_error ("_initialize_symm_nat(): sigaddset(SIGCHLD): %s",
866 safe_strerror (errno));
867 }
868 rv = sigprocmask (SIG_BLOCK, &set, (sigset_t *) NULL);
869 if (-1 == rv)
870 {
871 internal_error ("_initialize_symm_nat(): sigprocmask(SIG_BLOCK): %s",
872 safe_strerror (errno));
873 }
874
875 sact.sa_handler = sigchld_handler;
876 sigemptyset (&sact.sa_mask);
877 sact.sa_flags = SA_NOCLDWAIT; /* keep the zombies away */
878 rv = sigaction (SIGCHLD, &sact, (struct sigaction *) NULL);
879 if (-1 == rv)
880 {
881 internal_error ("_initialize_symm_nat(): sigaction(SIGCHLD): %s",
882 safe_strerror (errno));
883 }
884 #endif
885 }
This page took 0.07996 seconds and 4 git commands to generate.