* defs.h (strlen_paddr, paddr, paddr_nz): Remove.
[deliverable/binutils-gdb.git] / gdb / symtab.c
1 /* Symbol table lookup for the GNU debugger, GDB.
2
3 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2007, 2008, 2009
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "symtab.h"
24 #include "gdbtypes.h"
25 #include "gdbcore.h"
26 #include "frame.h"
27 #include "target.h"
28 #include "value.h"
29 #include "symfile.h"
30 #include "objfiles.h"
31 #include "gdbcmd.h"
32 #include "call-cmds.h"
33 #include "gdb_regex.h"
34 #include "expression.h"
35 #include "language.h"
36 #include "demangle.h"
37 #include "inferior.h"
38 #include "linespec.h"
39 #include "source.h"
40 #include "filenames.h" /* for FILENAME_CMP */
41 #include "objc-lang.h"
42 #include "ada-lang.h"
43 #include "p-lang.h"
44 #include "addrmap.h"
45
46 #include "hashtab.h"
47
48 #include "gdb_obstack.h"
49 #include "block.h"
50 #include "dictionary.h"
51
52 #include <sys/types.h>
53 #include <fcntl.h>
54 #include "gdb_string.h"
55 #include "gdb_stat.h"
56 #include <ctype.h>
57 #include "cp-abi.h"
58 #include "cp-support.h"
59 #include "observer.h"
60 #include "gdb_assert.h"
61 #include "solist.h"
62 #include "macrotab.h"
63 #include "macroscope.h"
64
65 /* Prototypes for local functions */
66
67 static void completion_list_add_name (char *, char *, int, char *, char *);
68
69 static void rbreak_command (char *, int);
70
71 static void types_info (char *, int);
72
73 static void functions_info (char *, int);
74
75 static void variables_info (char *, int);
76
77 static void sources_info (char *, int);
78
79 static void output_source_filename (const char *, int *);
80
81 static int find_line_common (struct linetable *, int, int *);
82
83 /* This one is used by linespec.c */
84
85 char *operator_chars (char *p, char **end);
86
87 static struct symbol *lookup_symbol_aux (const char *name,
88 const char *linkage_name,
89 const struct block *block,
90 const domain_enum domain,
91 enum language language,
92 int *is_a_field_of_this);
93
94 static
95 struct symbol *lookup_symbol_aux_local (const char *name,
96 const char *linkage_name,
97 const struct block *block,
98 const domain_enum domain);
99
100 static
101 struct symbol *lookup_symbol_aux_symtabs (int block_index,
102 const char *name,
103 const char *linkage_name,
104 const domain_enum domain);
105
106 static
107 struct symbol *lookup_symbol_aux_psymtabs (int block_index,
108 const char *name,
109 const char *linkage_name,
110 const domain_enum domain);
111
112 static int file_matches (char *, char **, int);
113
114 static void print_symbol_info (domain_enum,
115 struct symtab *, struct symbol *, int, char *);
116
117 static void print_msymbol_info (struct minimal_symbol *);
118
119 static void symtab_symbol_info (char *, domain_enum, int);
120
121 void _initialize_symtab (void);
122
123 /* */
124
125 /* Allow the user to configure the debugger behavior with respect
126 to multiple-choice menus when more than one symbol matches during
127 a symbol lookup. */
128
129 const char multiple_symbols_ask[] = "ask";
130 const char multiple_symbols_all[] = "all";
131 const char multiple_symbols_cancel[] = "cancel";
132 static const char *multiple_symbols_modes[] =
133 {
134 multiple_symbols_ask,
135 multiple_symbols_all,
136 multiple_symbols_cancel,
137 NULL
138 };
139 static const char *multiple_symbols_mode = multiple_symbols_all;
140
141 /* Read-only accessor to AUTO_SELECT_MODE. */
142
143 const char *
144 multiple_symbols_select_mode (void)
145 {
146 return multiple_symbols_mode;
147 }
148
149 /* Block in which the most recently searched-for symbol was found.
150 Might be better to make this a parameter to lookup_symbol and
151 value_of_this. */
152
153 const struct block *block_found;
154
155 /* Check for a symtab of a specific name; first in symtabs, then in
156 psymtabs. *If* there is no '/' in the name, a match after a '/'
157 in the symtab filename will also work. */
158
159 struct symtab *
160 lookup_symtab (const char *name)
161 {
162 struct symtab *s;
163 struct partial_symtab *ps;
164 struct objfile *objfile;
165 char *real_path = NULL;
166 char *full_path = NULL;
167
168 /* Here we are interested in canonicalizing an absolute path, not
169 absolutizing a relative path. */
170 if (IS_ABSOLUTE_PATH (name))
171 {
172 full_path = xfullpath (name);
173 make_cleanup (xfree, full_path);
174 real_path = gdb_realpath (name);
175 make_cleanup (xfree, real_path);
176 }
177
178 got_symtab:
179
180 /* First, search for an exact match */
181
182 ALL_SYMTABS (objfile, s)
183 {
184 if (FILENAME_CMP (name, s->filename) == 0)
185 {
186 return s;
187 }
188
189 /* If the user gave us an absolute path, try to find the file in
190 this symtab and use its absolute path. */
191
192 if (full_path != NULL)
193 {
194 const char *fp = symtab_to_fullname (s);
195 if (fp != NULL && FILENAME_CMP (full_path, fp) == 0)
196 {
197 return s;
198 }
199 }
200
201 if (real_path != NULL)
202 {
203 char *fullname = symtab_to_fullname (s);
204 if (fullname != NULL)
205 {
206 char *rp = gdb_realpath (fullname);
207 make_cleanup (xfree, rp);
208 if (FILENAME_CMP (real_path, rp) == 0)
209 {
210 return s;
211 }
212 }
213 }
214 }
215
216 /* Now, search for a matching tail (only if name doesn't have any dirs) */
217
218 if (lbasename (name) == name)
219 ALL_SYMTABS (objfile, s)
220 {
221 if (FILENAME_CMP (lbasename (s->filename), name) == 0)
222 return s;
223 }
224
225 /* Same search rules as above apply here, but now we look thru the
226 psymtabs. */
227
228 ps = lookup_partial_symtab (name);
229 if (!ps)
230 return (NULL);
231
232 if (ps->readin)
233 error (_("Internal: readin %s pst for `%s' found when no symtab found."),
234 ps->filename, name);
235
236 s = PSYMTAB_TO_SYMTAB (ps);
237
238 if (s)
239 return s;
240
241 /* At this point, we have located the psymtab for this file, but
242 the conversion to a symtab has failed. This usually happens
243 when we are looking up an include file. In this case,
244 PSYMTAB_TO_SYMTAB doesn't return a symtab, even though one has
245 been created. So, we need to run through the symtabs again in
246 order to find the file.
247 XXX - This is a crock, and should be fixed inside of the the
248 symbol parsing routines. */
249 goto got_symtab;
250 }
251
252 /* Lookup the partial symbol table of a source file named NAME.
253 *If* there is no '/' in the name, a match after a '/'
254 in the psymtab filename will also work. */
255
256 struct partial_symtab *
257 lookup_partial_symtab (const char *name)
258 {
259 struct partial_symtab *pst;
260 struct objfile *objfile;
261 char *full_path = NULL;
262 char *real_path = NULL;
263
264 /* Here we are interested in canonicalizing an absolute path, not
265 absolutizing a relative path. */
266 if (IS_ABSOLUTE_PATH (name))
267 {
268 full_path = xfullpath (name);
269 make_cleanup (xfree, full_path);
270 real_path = gdb_realpath (name);
271 make_cleanup (xfree, real_path);
272 }
273
274 ALL_PSYMTABS (objfile, pst)
275 {
276 if (FILENAME_CMP (name, pst->filename) == 0)
277 {
278 return (pst);
279 }
280
281 /* If the user gave us an absolute path, try to find the file in
282 this symtab and use its absolute path. */
283 if (full_path != NULL)
284 {
285 psymtab_to_fullname (pst);
286 if (pst->fullname != NULL
287 && FILENAME_CMP (full_path, pst->fullname) == 0)
288 {
289 return pst;
290 }
291 }
292
293 if (real_path != NULL)
294 {
295 char *rp = NULL;
296 psymtab_to_fullname (pst);
297 if (pst->fullname != NULL)
298 {
299 rp = gdb_realpath (pst->fullname);
300 make_cleanup (xfree, rp);
301 }
302 if (rp != NULL && FILENAME_CMP (real_path, rp) == 0)
303 {
304 return pst;
305 }
306 }
307 }
308
309 /* Now, search for a matching tail (only if name doesn't have any dirs) */
310
311 if (lbasename (name) == name)
312 ALL_PSYMTABS (objfile, pst)
313 {
314 if (FILENAME_CMP (lbasename (pst->filename), name) == 0)
315 return (pst);
316 }
317
318 return (NULL);
319 }
320 \f
321 /* Mangle a GDB method stub type. This actually reassembles the pieces of the
322 full method name, which consist of the class name (from T), the unadorned
323 method name from METHOD_ID, and the signature for the specific overload,
324 specified by SIGNATURE_ID. Note that this function is g++ specific. */
325
326 char *
327 gdb_mangle_name (struct type *type, int method_id, int signature_id)
328 {
329 int mangled_name_len;
330 char *mangled_name;
331 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
332 struct fn_field *method = &f[signature_id];
333 char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
334 char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
335 char *newname = type_name_no_tag (type);
336
337 /* Does the form of physname indicate that it is the full mangled name
338 of a constructor (not just the args)? */
339 int is_full_physname_constructor;
340
341 int is_constructor;
342 int is_destructor = is_destructor_name (physname);
343 /* Need a new type prefix. */
344 char *const_prefix = method->is_const ? "C" : "";
345 char *volatile_prefix = method->is_volatile ? "V" : "";
346 char buf[20];
347 int len = (newname == NULL ? 0 : strlen (newname));
348
349 /* Nothing to do if physname already contains a fully mangled v3 abi name
350 or an operator name. */
351 if ((physname[0] == '_' && physname[1] == 'Z')
352 || is_operator_name (field_name))
353 return xstrdup (physname);
354
355 is_full_physname_constructor = is_constructor_name (physname);
356
357 is_constructor =
358 is_full_physname_constructor || (newname && strcmp (field_name, newname) == 0);
359
360 if (!is_destructor)
361 is_destructor = (strncmp (physname, "__dt", 4) == 0);
362
363 if (is_destructor || is_full_physname_constructor)
364 {
365 mangled_name = (char *) xmalloc (strlen (physname) + 1);
366 strcpy (mangled_name, physname);
367 return mangled_name;
368 }
369
370 if (len == 0)
371 {
372 sprintf (buf, "__%s%s", const_prefix, volatile_prefix);
373 }
374 else if (physname[0] == 't' || physname[0] == 'Q')
375 {
376 /* The physname for template and qualified methods already includes
377 the class name. */
378 sprintf (buf, "__%s%s", const_prefix, volatile_prefix);
379 newname = NULL;
380 len = 0;
381 }
382 else
383 {
384 sprintf (buf, "__%s%s%d", const_prefix, volatile_prefix, len);
385 }
386 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
387 + strlen (buf) + len + strlen (physname) + 1);
388
389 {
390 mangled_name = (char *) xmalloc (mangled_name_len);
391 if (is_constructor)
392 mangled_name[0] = '\0';
393 else
394 strcpy (mangled_name, field_name);
395 }
396 strcat (mangled_name, buf);
397 /* If the class doesn't have a name, i.e. newname NULL, then we just
398 mangle it using 0 for the length of the class. Thus it gets mangled
399 as something starting with `::' rather than `classname::'. */
400 if (newname != NULL)
401 strcat (mangled_name, newname);
402
403 strcat (mangled_name, physname);
404 return (mangled_name);
405 }
406
407 \f
408 /* Initialize the language dependent portion of a symbol
409 depending upon the language for the symbol. */
410 void
411 symbol_init_language_specific (struct general_symbol_info *gsymbol,
412 enum language language)
413 {
414 gsymbol->language = language;
415 if (gsymbol->language == language_cplus
416 || gsymbol->language == language_java
417 || gsymbol->language == language_objc)
418 {
419 gsymbol->language_specific.cplus_specific.demangled_name = NULL;
420 }
421 else
422 {
423 memset (&gsymbol->language_specific, 0,
424 sizeof (gsymbol->language_specific));
425 }
426 }
427
428 /* Functions to initialize a symbol's mangled name. */
429
430 /* Create the hash table used for demangled names. Each hash entry is
431 a pair of strings; one for the mangled name and one for the demangled
432 name. The entry is hashed via just the mangled name. */
433
434 static void
435 create_demangled_names_hash (struct objfile *objfile)
436 {
437 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
438 The hash table code will round this up to the next prime number.
439 Choosing a much larger table size wastes memory, and saves only about
440 1% in symbol reading. */
441
442 objfile->demangled_names_hash = htab_create_alloc
443 (256, htab_hash_string, (int (*) (const void *, const void *)) streq,
444 NULL, xcalloc, xfree);
445 }
446
447 /* Try to determine the demangled name for a symbol, based on the
448 language of that symbol. If the language is set to language_auto,
449 it will attempt to find any demangling algorithm that works and
450 then set the language appropriately. The returned name is allocated
451 by the demangler and should be xfree'd. */
452
453 static char *
454 symbol_find_demangled_name (struct general_symbol_info *gsymbol,
455 const char *mangled)
456 {
457 char *demangled = NULL;
458
459 if (gsymbol->language == language_unknown)
460 gsymbol->language = language_auto;
461
462 if (gsymbol->language == language_objc
463 || gsymbol->language == language_auto)
464 {
465 demangled =
466 objc_demangle (mangled, 0);
467 if (demangled != NULL)
468 {
469 gsymbol->language = language_objc;
470 return demangled;
471 }
472 }
473 if (gsymbol->language == language_cplus
474 || gsymbol->language == language_auto)
475 {
476 demangled =
477 cplus_demangle (mangled, DMGL_PARAMS | DMGL_ANSI);
478 if (demangled != NULL)
479 {
480 gsymbol->language = language_cplus;
481 return demangled;
482 }
483 }
484 if (gsymbol->language == language_java)
485 {
486 demangled =
487 cplus_demangle (mangled,
488 DMGL_PARAMS | DMGL_ANSI | DMGL_JAVA);
489 if (demangled != NULL)
490 {
491 gsymbol->language = language_java;
492 return demangled;
493 }
494 }
495 return NULL;
496 }
497
498 /* Set both the mangled and demangled (if any) names for GSYMBOL based
499 on LINKAGE_NAME and LEN. The hash table corresponding to OBJFILE
500 is used, and the memory comes from that objfile's objfile_obstack.
501 LINKAGE_NAME is copied, so the pointer can be discarded after
502 calling this function. */
503
504 /* We have to be careful when dealing with Java names: when we run
505 into a Java minimal symbol, we don't know it's a Java symbol, so it
506 gets demangled as a C++ name. This is unfortunate, but there's not
507 much we can do about it: but when demangling partial symbols and
508 regular symbols, we'd better not reuse the wrong demangled name.
509 (See PR gdb/1039.) We solve this by putting a distinctive prefix
510 on Java names when storing them in the hash table. */
511
512 /* FIXME: carlton/2003-03-13: This is an unfortunate situation. I
513 don't mind the Java prefix so much: different languages have
514 different demangling requirements, so it's only natural that we
515 need to keep language data around in our demangling cache. But
516 it's not good that the minimal symbol has the wrong demangled name.
517 Unfortunately, I can't think of any easy solution to that
518 problem. */
519
520 #define JAVA_PREFIX "##JAVA$$"
521 #define JAVA_PREFIX_LEN 8
522
523 void
524 symbol_set_names (struct general_symbol_info *gsymbol,
525 const char *linkage_name, int len, struct objfile *objfile)
526 {
527 char **slot;
528 /* A 0-terminated copy of the linkage name. */
529 const char *linkage_name_copy;
530 /* A copy of the linkage name that might have a special Java prefix
531 added to it, for use when looking names up in the hash table. */
532 const char *lookup_name;
533 /* The length of lookup_name. */
534 int lookup_len;
535
536 if (objfile->demangled_names_hash == NULL)
537 create_demangled_names_hash (objfile);
538
539 if (gsymbol->language == language_ada)
540 {
541 /* In Ada, we do the symbol lookups using the mangled name, so
542 we can save some space by not storing the demangled name.
543
544 As a side note, we have also observed some overlap between
545 the C++ mangling and Ada mangling, similarly to what has
546 been observed with Java. Because we don't store the demangled
547 name with the symbol, we don't need to use the same trick
548 as Java. */
549 gsymbol->name = obstack_alloc (&objfile->objfile_obstack, len + 1);
550 memcpy (gsymbol->name, linkage_name, len);
551 gsymbol->name[len] = '\0';
552 gsymbol->language_specific.cplus_specific.demangled_name = NULL;
553
554 return;
555 }
556
557 /* The stabs reader generally provides names that are not
558 NUL-terminated; most of the other readers don't do this, so we
559 can just use the given copy, unless we're in the Java case. */
560 if (gsymbol->language == language_java)
561 {
562 char *alloc_name;
563 lookup_len = len + JAVA_PREFIX_LEN;
564
565 alloc_name = alloca (lookup_len + 1);
566 memcpy (alloc_name, JAVA_PREFIX, JAVA_PREFIX_LEN);
567 memcpy (alloc_name + JAVA_PREFIX_LEN, linkage_name, len);
568 alloc_name[lookup_len] = '\0';
569
570 lookup_name = alloc_name;
571 linkage_name_copy = alloc_name + JAVA_PREFIX_LEN;
572 }
573 else if (linkage_name[len] != '\0')
574 {
575 char *alloc_name;
576 lookup_len = len;
577
578 alloc_name = alloca (lookup_len + 1);
579 memcpy (alloc_name, linkage_name, len);
580 alloc_name[lookup_len] = '\0';
581
582 lookup_name = alloc_name;
583 linkage_name_copy = alloc_name;
584 }
585 else
586 {
587 lookup_len = len;
588 lookup_name = linkage_name;
589 linkage_name_copy = linkage_name;
590 }
591
592 slot = (char **) htab_find_slot (objfile->demangled_names_hash,
593 lookup_name, INSERT);
594
595 /* If this name is not in the hash table, add it. */
596 if (*slot == NULL)
597 {
598 char *demangled_name = symbol_find_demangled_name (gsymbol,
599 linkage_name_copy);
600 int demangled_len = demangled_name ? strlen (demangled_name) : 0;
601
602 /* If there is a demangled name, place it right after the mangled name.
603 Otherwise, just place a second zero byte after the end of the mangled
604 name. */
605 *slot = obstack_alloc (&objfile->objfile_obstack,
606 lookup_len + demangled_len + 2);
607 memcpy (*slot, lookup_name, lookup_len + 1);
608 if (demangled_name != NULL)
609 {
610 memcpy (*slot + lookup_len + 1, demangled_name, demangled_len + 1);
611 xfree (demangled_name);
612 }
613 else
614 (*slot)[lookup_len + 1] = '\0';
615 }
616
617 gsymbol->name = *slot + lookup_len - len;
618 if ((*slot)[lookup_len + 1] != '\0')
619 gsymbol->language_specific.cplus_specific.demangled_name
620 = &(*slot)[lookup_len + 1];
621 else
622 gsymbol->language_specific.cplus_specific.demangled_name = NULL;
623 }
624
625 /* Return the source code name of a symbol. In languages where
626 demangling is necessary, this is the demangled name. */
627
628 char *
629 symbol_natural_name (const struct general_symbol_info *gsymbol)
630 {
631 switch (gsymbol->language)
632 {
633 case language_cplus:
634 case language_java:
635 case language_objc:
636 if (gsymbol->language_specific.cplus_specific.demangled_name != NULL)
637 return gsymbol->language_specific.cplus_specific.demangled_name;
638 break;
639 case language_ada:
640 if (gsymbol->language_specific.cplus_specific.demangled_name != NULL)
641 return gsymbol->language_specific.cplus_specific.demangled_name;
642 else
643 return ada_decode_symbol (gsymbol);
644 break;
645 default:
646 break;
647 }
648 return gsymbol->name;
649 }
650
651 /* Return the demangled name for a symbol based on the language for
652 that symbol. If no demangled name exists, return NULL. */
653 char *
654 symbol_demangled_name (const struct general_symbol_info *gsymbol)
655 {
656 switch (gsymbol->language)
657 {
658 case language_cplus:
659 case language_java:
660 case language_objc:
661 if (gsymbol->language_specific.cplus_specific.demangled_name != NULL)
662 return gsymbol->language_specific.cplus_specific.demangled_name;
663 break;
664 case language_ada:
665 if (gsymbol->language_specific.cplus_specific.demangled_name != NULL)
666 return gsymbol->language_specific.cplus_specific.demangled_name;
667 else
668 return ada_decode_symbol (gsymbol);
669 break;
670 default:
671 break;
672 }
673 return NULL;
674 }
675
676 /* Return the search name of a symbol---generally the demangled or
677 linkage name of the symbol, depending on how it will be searched for.
678 If there is no distinct demangled name, then returns the same value
679 (same pointer) as SYMBOL_LINKAGE_NAME. */
680 char *
681 symbol_search_name (const struct general_symbol_info *gsymbol)
682 {
683 if (gsymbol->language == language_ada)
684 return gsymbol->name;
685 else
686 return symbol_natural_name (gsymbol);
687 }
688
689 /* Initialize the structure fields to zero values. */
690 void
691 init_sal (struct symtab_and_line *sal)
692 {
693 sal->symtab = 0;
694 sal->section = 0;
695 sal->line = 0;
696 sal->pc = 0;
697 sal->end = 0;
698 sal->explicit_pc = 0;
699 sal->explicit_line = 0;
700 }
701 \f
702
703 /* Return 1 if the two sections are the same, or if they could
704 plausibly be copies of each other, one in an original object
705 file and another in a separated debug file. */
706
707 int
708 matching_obj_sections (struct obj_section *obj_first,
709 struct obj_section *obj_second)
710 {
711 asection *first = obj_first? obj_first->the_bfd_section : NULL;
712 asection *second = obj_second? obj_second->the_bfd_section : NULL;
713 struct objfile *obj;
714
715 /* If they're the same section, then they match. */
716 if (first == second)
717 return 1;
718
719 /* If either is NULL, give up. */
720 if (first == NULL || second == NULL)
721 return 0;
722
723 /* This doesn't apply to absolute symbols. */
724 if (first->owner == NULL || second->owner == NULL)
725 return 0;
726
727 /* If they're in the same object file, they must be different sections. */
728 if (first->owner == second->owner)
729 return 0;
730
731 /* Check whether the two sections are potentially corresponding. They must
732 have the same size, address, and name. We can't compare section indexes,
733 which would be more reliable, because some sections may have been
734 stripped. */
735 if (bfd_get_section_size (first) != bfd_get_section_size (second))
736 return 0;
737
738 /* In-memory addresses may start at a different offset, relativize them. */
739 if (bfd_get_section_vma (first->owner, first)
740 - bfd_get_start_address (first->owner)
741 != bfd_get_section_vma (second->owner, second)
742 - bfd_get_start_address (second->owner))
743 return 0;
744
745 if (bfd_get_section_name (first->owner, first) == NULL
746 || bfd_get_section_name (second->owner, second) == NULL
747 || strcmp (bfd_get_section_name (first->owner, first),
748 bfd_get_section_name (second->owner, second)) != 0)
749 return 0;
750
751 /* Otherwise check that they are in corresponding objfiles. */
752
753 ALL_OBJFILES (obj)
754 if (obj->obfd == first->owner)
755 break;
756 gdb_assert (obj != NULL);
757
758 if (obj->separate_debug_objfile != NULL
759 && obj->separate_debug_objfile->obfd == second->owner)
760 return 1;
761 if (obj->separate_debug_objfile_backlink != NULL
762 && obj->separate_debug_objfile_backlink->obfd == second->owner)
763 return 1;
764
765 return 0;
766 }
767
768 /* Find which partial symtab contains PC and SECTION starting at psymtab PST.
769 We may find a different psymtab than PST. See FIND_PC_SECT_PSYMTAB. */
770
771 static struct partial_symtab *
772 find_pc_sect_psymtab_closer (CORE_ADDR pc, struct obj_section *section,
773 struct partial_symtab *pst,
774 struct minimal_symbol *msymbol)
775 {
776 struct objfile *objfile = pst->objfile;
777 struct partial_symtab *tpst;
778 struct partial_symtab *best_pst = pst;
779 CORE_ADDR best_addr = pst->textlow;
780
781 /* An objfile that has its functions reordered might have
782 many partial symbol tables containing the PC, but
783 we want the partial symbol table that contains the
784 function containing the PC. */
785 if (!(objfile->flags & OBJF_REORDERED) &&
786 section == 0) /* can't validate section this way */
787 return pst;
788
789 if (msymbol == NULL)
790 return (pst);
791
792 /* The code range of partial symtabs sometimes overlap, so, in
793 the loop below, we need to check all partial symtabs and
794 find the one that fits better for the given PC address. We
795 select the partial symtab that contains a symbol whose
796 address is closest to the PC address. By closest we mean
797 that find_pc_sect_symbol returns the symbol with address
798 that is closest and still less than the given PC. */
799 for (tpst = pst; tpst != NULL; tpst = tpst->next)
800 {
801 if (pc >= tpst->textlow && pc < tpst->texthigh)
802 {
803 struct partial_symbol *p;
804 CORE_ADDR this_addr;
805
806 /* NOTE: This assumes that every psymbol has a
807 corresponding msymbol, which is not necessarily
808 true; the debug info might be much richer than the
809 object's symbol table. */
810 p = find_pc_sect_psymbol (tpst, pc, section);
811 if (p != NULL
812 && SYMBOL_VALUE_ADDRESS (p)
813 == SYMBOL_VALUE_ADDRESS (msymbol))
814 return tpst;
815
816 /* Also accept the textlow value of a psymtab as a
817 "symbol", to provide some support for partial
818 symbol tables with line information but no debug
819 symbols (e.g. those produced by an assembler). */
820 if (p != NULL)
821 this_addr = SYMBOL_VALUE_ADDRESS (p);
822 else
823 this_addr = tpst->textlow;
824
825 /* Check whether it is closer than our current
826 BEST_ADDR. Since this symbol address is
827 necessarily lower or equal to PC, the symbol closer
828 to PC is the symbol which address is the highest.
829 This way we return the psymtab which contains such
830 best match symbol. This can help in cases where the
831 symbol information/debuginfo is not complete, like
832 for instance on IRIX6 with gcc, where no debug info
833 is emitted for statics. (See also the nodebug.exp
834 testcase.) */
835 if (this_addr > best_addr)
836 {
837 best_addr = this_addr;
838 best_pst = tpst;
839 }
840 }
841 }
842 return best_pst;
843 }
844
845 /* Find which partial symtab contains PC and SECTION. Return 0 if
846 none. We return the psymtab that contains a symbol whose address
847 exactly matches PC, or, if we cannot find an exact match, the
848 psymtab that contains a symbol whose address is closest to PC. */
849 struct partial_symtab *
850 find_pc_sect_psymtab (CORE_ADDR pc, struct obj_section *section)
851 {
852 struct objfile *objfile;
853 struct minimal_symbol *msymbol;
854
855 /* If we know that this is not a text address, return failure. This is
856 necessary because we loop based on texthigh and textlow, which do
857 not include the data ranges. */
858 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
859 if (msymbol
860 && (MSYMBOL_TYPE (msymbol) == mst_data
861 || MSYMBOL_TYPE (msymbol) == mst_bss
862 || MSYMBOL_TYPE (msymbol) == mst_abs
863 || MSYMBOL_TYPE (msymbol) == mst_file_data
864 || MSYMBOL_TYPE (msymbol) == mst_file_bss))
865 return NULL;
866
867 /* Try just the PSYMTABS_ADDRMAP mapping first as it has better granularity
868 than the later used TEXTLOW/TEXTHIGH one. */
869
870 ALL_OBJFILES (objfile)
871 if (objfile->psymtabs_addrmap != NULL)
872 {
873 struct partial_symtab *pst;
874
875 pst = addrmap_find (objfile->psymtabs_addrmap, pc);
876 if (pst != NULL)
877 {
878 /* FIXME: addrmaps currently do not handle overlayed sections,
879 so fall back to the non-addrmap case if we're debugging
880 overlays and the addrmap returned the wrong section. */
881 if (overlay_debugging && msymbol && section)
882 {
883 struct partial_symbol *p;
884 /* NOTE: This assumes that every psymbol has a
885 corresponding msymbol, which is not necessarily
886 true; the debug info might be much richer than the
887 object's symbol table. */
888 p = find_pc_sect_psymbol (pst, pc, section);
889 if (!p
890 || SYMBOL_VALUE_ADDRESS (p)
891 != SYMBOL_VALUE_ADDRESS (msymbol))
892 continue;
893 }
894
895 /* We do not try to call FIND_PC_SECT_PSYMTAB_CLOSER as
896 PSYMTABS_ADDRMAP we used has already the best 1-byte
897 granularity and FIND_PC_SECT_PSYMTAB_CLOSER may mislead us into
898 a worse chosen section due to the TEXTLOW/TEXTHIGH ranges
899 overlap. */
900
901 return pst;
902 }
903 }
904
905 /* Existing PSYMTABS_ADDRMAP mapping is present even for PARTIAL_SYMTABs
906 which still have no corresponding full SYMTABs read. But it is not
907 present for non-DWARF2 debug infos not supporting PSYMTABS_ADDRMAP in GDB
908 so far. */
909
910 ALL_OBJFILES (objfile)
911 {
912 struct partial_symtab *pst;
913
914 /* Check even OBJFILE with non-zero PSYMTABS_ADDRMAP as only several of
915 its CUs may be missing in PSYMTABS_ADDRMAP as they may be varying
916 debug info type in single OBJFILE. */
917
918 ALL_OBJFILE_PSYMTABS (objfile, pst)
919 if (pc >= pst->textlow && pc < pst->texthigh)
920 {
921 struct partial_symtab *best_pst;
922
923 best_pst = find_pc_sect_psymtab_closer (pc, section, pst,
924 msymbol);
925 if (best_pst != NULL)
926 return best_pst;
927 }
928 }
929
930 return NULL;
931 }
932
933 /* Find which partial symtab contains PC. Return 0 if none.
934 Backward compatibility, no section */
935
936 struct partial_symtab *
937 find_pc_psymtab (CORE_ADDR pc)
938 {
939 return find_pc_sect_psymtab (pc, find_pc_mapped_section (pc));
940 }
941
942 /* Find which partial symbol within a psymtab matches PC and SECTION.
943 Return 0 if none. Check all psymtabs if PSYMTAB is 0. */
944
945 struct partial_symbol *
946 find_pc_sect_psymbol (struct partial_symtab *psymtab, CORE_ADDR pc,
947 struct obj_section *section)
948 {
949 struct partial_symbol *best = NULL, *p, **pp;
950 CORE_ADDR best_pc;
951
952 if (!psymtab)
953 psymtab = find_pc_sect_psymtab (pc, section);
954 if (!psymtab)
955 return 0;
956
957 /* Cope with programs that start at address 0 */
958 best_pc = (psymtab->textlow != 0) ? psymtab->textlow - 1 : 0;
959
960 /* Search the global symbols as well as the static symbols, so that
961 find_pc_partial_function doesn't use a minimal symbol and thus
962 cache a bad endaddr. */
963 for (pp = psymtab->objfile->global_psymbols.list + psymtab->globals_offset;
964 (pp - (psymtab->objfile->global_psymbols.list + psymtab->globals_offset)
965 < psymtab->n_global_syms);
966 pp++)
967 {
968 p = *pp;
969 if (SYMBOL_DOMAIN (p) == VAR_DOMAIN
970 && SYMBOL_CLASS (p) == LOC_BLOCK
971 && pc >= SYMBOL_VALUE_ADDRESS (p)
972 && (SYMBOL_VALUE_ADDRESS (p) > best_pc
973 || (psymtab->textlow == 0
974 && best_pc == 0 && SYMBOL_VALUE_ADDRESS (p) == 0)))
975 {
976 if (section) /* match on a specific section */
977 {
978 fixup_psymbol_section (p, psymtab->objfile);
979 if (!matching_obj_sections (SYMBOL_OBJ_SECTION (p), section))
980 continue;
981 }
982 best_pc = SYMBOL_VALUE_ADDRESS (p);
983 best = p;
984 }
985 }
986
987 for (pp = psymtab->objfile->static_psymbols.list + psymtab->statics_offset;
988 (pp - (psymtab->objfile->static_psymbols.list + psymtab->statics_offset)
989 < psymtab->n_static_syms);
990 pp++)
991 {
992 p = *pp;
993 if (SYMBOL_DOMAIN (p) == VAR_DOMAIN
994 && SYMBOL_CLASS (p) == LOC_BLOCK
995 && pc >= SYMBOL_VALUE_ADDRESS (p)
996 && (SYMBOL_VALUE_ADDRESS (p) > best_pc
997 || (psymtab->textlow == 0
998 && best_pc == 0 && SYMBOL_VALUE_ADDRESS (p) == 0)))
999 {
1000 if (section) /* match on a specific section */
1001 {
1002 fixup_psymbol_section (p, psymtab->objfile);
1003 if (!matching_obj_sections (SYMBOL_OBJ_SECTION (p), section))
1004 continue;
1005 }
1006 best_pc = SYMBOL_VALUE_ADDRESS (p);
1007 best = p;
1008 }
1009 }
1010
1011 return best;
1012 }
1013
1014 /* Find which partial symbol within a psymtab matches PC. Return 0 if none.
1015 Check all psymtabs if PSYMTAB is 0. Backwards compatibility, no section. */
1016
1017 struct partial_symbol *
1018 find_pc_psymbol (struct partial_symtab *psymtab, CORE_ADDR pc)
1019 {
1020 return find_pc_sect_psymbol (psymtab, pc, find_pc_mapped_section (pc));
1021 }
1022 \f
1023 /* Debug symbols usually don't have section information. We need to dig that
1024 out of the minimal symbols and stash that in the debug symbol. */
1025
1026 static void
1027 fixup_section (struct general_symbol_info *ginfo,
1028 CORE_ADDR addr, struct objfile *objfile)
1029 {
1030 struct minimal_symbol *msym;
1031
1032 /* First, check whether a minimal symbol with the same name exists
1033 and points to the same address. The address check is required
1034 e.g. on PowerPC64, where the minimal symbol for a function will
1035 point to the function descriptor, while the debug symbol will
1036 point to the actual function code. */
1037 msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->name, objfile);
1038 if (msym)
1039 {
1040 ginfo->obj_section = SYMBOL_OBJ_SECTION (msym);
1041 ginfo->section = SYMBOL_SECTION (msym);
1042 }
1043 else
1044 {
1045 /* Static, function-local variables do appear in the linker
1046 (minimal) symbols, but are frequently given names that won't
1047 be found via lookup_minimal_symbol(). E.g., it has been
1048 observed in frv-uclinux (ELF) executables that a static,
1049 function-local variable named "foo" might appear in the
1050 linker symbols as "foo.6" or "foo.3". Thus, there is no
1051 point in attempting to extend the lookup-by-name mechanism to
1052 handle this case due to the fact that there can be multiple
1053 names.
1054
1055 So, instead, search the section table when lookup by name has
1056 failed. The ``addr'' and ``endaddr'' fields may have already
1057 been relocated. If so, the relocation offset (i.e. the
1058 ANOFFSET value) needs to be subtracted from these values when
1059 performing the comparison. We unconditionally subtract it,
1060 because, when no relocation has been performed, the ANOFFSET
1061 value will simply be zero.
1062
1063 The address of the symbol whose section we're fixing up HAS
1064 NOT BEEN adjusted (relocated) yet. It can't have been since
1065 the section isn't yet known and knowing the section is
1066 necessary in order to add the correct relocation value. In
1067 other words, we wouldn't even be in this function (attempting
1068 to compute the section) if it were already known.
1069
1070 Note that it is possible to search the minimal symbols
1071 (subtracting the relocation value if necessary) to find the
1072 matching minimal symbol, but this is overkill and much less
1073 efficient. It is not necessary to find the matching minimal
1074 symbol, only its section.
1075
1076 Note that this technique (of doing a section table search)
1077 can fail when unrelocated section addresses overlap. For
1078 this reason, we still attempt a lookup by name prior to doing
1079 a search of the section table. */
1080
1081 struct obj_section *s;
1082 ALL_OBJFILE_OSECTIONS (objfile, s)
1083 {
1084 int idx = s->the_bfd_section->index;
1085 CORE_ADDR offset = ANOFFSET (objfile->section_offsets, idx);
1086
1087 if (obj_section_addr (s) - offset <= addr
1088 && addr < obj_section_endaddr (s) - offset)
1089 {
1090 ginfo->obj_section = s;
1091 ginfo->section = idx;
1092 return;
1093 }
1094 }
1095 }
1096 }
1097
1098 struct symbol *
1099 fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
1100 {
1101 CORE_ADDR addr;
1102
1103 if (!sym)
1104 return NULL;
1105
1106 if (SYMBOL_OBJ_SECTION (sym))
1107 return sym;
1108
1109 /* We either have an OBJFILE, or we can get at it from the sym's
1110 symtab. Anything else is a bug. */
1111 gdb_assert (objfile || SYMBOL_SYMTAB (sym));
1112
1113 if (objfile == NULL)
1114 objfile = SYMBOL_SYMTAB (sym)->objfile;
1115
1116 /* We should have an objfile by now. */
1117 gdb_assert (objfile);
1118
1119 switch (SYMBOL_CLASS (sym))
1120 {
1121 case LOC_STATIC:
1122 case LOC_LABEL:
1123 addr = SYMBOL_VALUE_ADDRESS (sym);
1124 break;
1125 case LOC_BLOCK:
1126 addr = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
1127 break;
1128
1129 default:
1130 /* Nothing else will be listed in the minsyms -- no use looking
1131 it up. */
1132 return sym;
1133 }
1134
1135 fixup_section (&sym->ginfo, addr, objfile);
1136
1137 return sym;
1138 }
1139
1140 struct partial_symbol *
1141 fixup_psymbol_section (struct partial_symbol *psym, struct objfile *objfile)
1142 {
1143 CORE_ADDR addr;
1144
1145 if (!psym)
1146 return NULL;
1147
1148 if (SYMBOL_OBJ_SECTION (psym))
1149 return psym;
1150
1151 gdb_assert (objfile);
1152
1153 switch (SYMBOL_CLASS (psym))
1154 {
1155 case LOC_STATIC:
1156 case LOC_LABEL:
1157 case LOC_BLOCK:
1158 addr = SYMBOL_VALUE_ADDRESS (psym);
1159 break;
1160 default:
1161 /* Nothing else will be listed in the minsyms -- no use looking
1162 it up. */
1163 return psym;
1164 }
1165
1166 fixup_section (&psym->ginfo, addr, objfile);
1167
1168 return psym;
1169 }
1170
1171 /* Find the definition for a specified symbol name NAME
1172 in domain DOMAIN, visible from lexical block BLOCK.
1173 Returns the struct symbol pointer, or zero if no symbol is found.
1174 C++: if IS_A_FIELD_OF_THIS is nonzero on entry, check to see if
1175 NAME is a field of the current implied argument `this'. If so set
1176 *IS_A_FIELD_OF_THIS to 1, otherwise set it to zero.
1177 BLOCK_FOUND is set to the block in which NAME is found (in the case of
1178 a field of `this', value_of_this sets BLOCK_FOUND to the proper value.) */
1179
1180 /* This function has a bunch of loops in it and it would seem to be
1181 attractive to put in some QUIT's (though I'm not really sure
1182 whether it can run long enough to be really important). But there
1183 are a few calls for which it would appear to be bad news to quit
1184 out of here: find_proc_desc in alpha-tdep.c and mips-tdep.c. (Note
1185 that there is C++ code below which can error(), but that probably
1186 doesn't affect these calls since they are looking for a known
1187 variable and thus can probably assume it will never hit the C++
1188 code). */
1189
1190 struct symbol *
1191 lookup_symbol_in_language (const char *name, const struct block *block,
1192 const domain_enum domain, enum language lang,
1193 int *is_a_field_of_this)
1194 {
1195 char *demangled_name = NULL;
1196 const char *modified_name = NULL;
1197 const char *mangled_name = NULL;
1198 struct symbol *returnval;
1199 struct cleanup *cleanup = make_cleanup (null_cleanup, 0);
1200
1201 modified_name = name;
1202
1203 /* If we are using C++ or Java, demangle the name before doing a lookup, so
1204 we can always binary search. */
1205 if (lang == language_cplus)
1206 {
1207 demangled_name = cplus_demangle (name, DMGL_ANSI | DMGL_PARAMS);
1208 if (demangled_name)
1209 {
1210 mangled_name = name;
1211 modified_name = demangled_name;
1212 make_cleanup (xfree, demangled_name);
1213 }
1214 else
1215 {
1216 /* If we were given a non-mangled name, canonicalize it
1217 according to the language (so far only for C++). */
1218 demangled_name = cp_canonicalize_string (name);
1219 if (demangled_name)
1220 {
1221 modified_name = demangled_name;
1222 make_cleanup (xfree, demangled_name);
1223 }
1224 }
1225 }
1226 else if (lang == language_java)
1227 {
1228 demangled_name = cplus_demangle (name,
1229 DMGL_ANSI | DMGL_PARAMS | DMGL_JAVA);
1230 if (demangled_name)
1231 {
1232 mangled_name = name;
1233 modified_name = demangled_name;
1234 make_cleanup (xfree, demangled_name);
1235 }
1236 }
1237
1238 if (case_sensitivity == case_sensitive_off)
1239 {
1240 char *copy;
1241 int len, i;
1242
1243 len = strlen (name);
1244 copy = (char *) alloca (len + 1);
1245 for (i= 0; i < len; i++)
1246 copy[i] = tolower (name[i]);
1247 copy[len] = 0;
1248 modified_name = copy;
1249 }
1250
1251 returnval = lookup_symbol_aux (modified_name, mangled_name, block,
1252 domain, lang, is_a_field_of_this);
1253 do_cleanups (cleanup);
1254
1255 return returnval;
1256 }
1257
1258 /* Behave like lookup_symbol_in_language, but performed with the
1259 current language. */
1260
1261 struct symbol *
1262 lookup_symbol (const char *name, const struct block *block,
1263 domain_enum domain, int *is_a_field_of_this)
1264 {
1265 return lookup_symbol_in_language (name, block, domain,
1266 current_language->la_language,
1267 is_a_field_of_this);
1268 }
1269
1270 /* Behave like lookup_symbol except that NAME is the natural name
1271 of the symbol that we're looking for and, if LINKAGE_NAME is
1272 non-NULL, ensure that the symbol's linkage name matches as
1273 well. */
1274
1275 static struct symbol *
1276 lookup_symbol_aux (const char *name, const char *linkage_name,
1277 const struct block *block, const domain_enum domain,
1278 enum language language, int *is_a_field_of_this)
1279 {
1280 struct symbol *sym;
1281 const struct language_defn *langdef;
1282
1283 /* Make sure we do something sensible with is_a_field_of_this, since
1284 the callers that set this parameter to some non-null value will
1285 certainly use it later and expect it to be either 0 or 1.
1286 If we don't set it, the contents of is_a_field_of_this are
1287 undefined. */
1288 if (is_a_field_of_this != NULL)
1289 *is_a_field_of_this = 0;
1290
1291 /* Search specified block and its superiors. Don't search
1292 STATIC_BLOCK or GLOBAL_BLOCK. */
1293
1294 sym = lookup_symbol_aux_local (name, linkage_name, block, domain);
1295 if (sym != NULL)
1296 return sym;
1297
1298 /* If requested to do so by the caller and if appropriate for LANGUAGE,
1299 check to see if NAME is a field of `this'. */
1300
1301 langdef = language_def (language);
1302
1303 if (langdef->la_name_of_this != NULL && is_a_field_of_this != NULL
1304 && block != NULL)
1305 {
1306 struct symbol *sym = NULL;
1307 /* 'this' is only defined in the function's block, so find the
1308 enclosing function block. */
1309 for (; block && !BLOCK_FUNCTION (block);
1310 block = BLOCK_SUPERBLOCK (block));
1311
1312 if (block && !dict_empty (BLOCK_DICT (block)))
1313 sym = lookup_block_symbol (block, langdef->la_name_of_this,
1314 NULL, VAR_DOMAIN);
1315 if (sym)
1316 {
1317 struct type *t = sym->type;
1318
1319 /* I'm not really sure that type of this can ever
1320 be typedefed; just be safe. */
1321 CHECK_TYPEDEF (t);
1322 if (TYPE_CODE (t) == TYPE_CODE_PTR
1323 || TYPE_CODE (t) == TYPE_CODE_REF)
1324 t = TYPE_TARGET_TYPE (t);
1325
1326 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
1327 && TYPE_CODE (t) != TYPE_CODE_UNION)
1328 error (_("Internal error: `%s' is not an aggregate"),
1329 langdef->la_name_of_this);
1330
1331 if (check_field (t, name))
1332 {
1333 *is_a_field_of_this = 1;
1334 return NULL;
1335 }
1336 }
1337 }
1338
1339 /* Now do whatever is appropriate for LANGUAGE to look
1340 up static and global variables. */
1341
1342 sym = langdef->la_lookup_symbol_nonlocal (name, linkage_name, block, domain);
1343 if (sym != NULL)
1344 return sym;
1345
1346 /* Now search all static file-level symbols. Not strictly correct,
1347 but more useful than an error. Do the symtabs first, then check
1348 the psymtabs. If a psymtab indicates the existence of the
1349 desired name as a file-level static, then do psymtab-to-symtab
1350 conversion on the fly and return the found symbol. */
1351
1352 sym = lookup_symbol_aux_symtabs (STATIC_BLOCK, name, linkage_name, domain);
1353 if (sym != NULL)
1354 return sym;
1355
1356 sym = lookup_symbol_aux_psymtabs (STATIC_BLOCK, name, linkage_name, domain);
1357 if (sym != NULL)
1358 return sym;
1359
1360 return NULL;
1361 }
1362
1363 /* Check to see if the symbol is defined in BLOCK or its superiors.
1364 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
1365
1366 static struct symbol *
1367 lookup_symbol_aux_local (const char *name, const char *linkage_name,
1368 const struct block *block,
1369 const domain_enum domain)
1370 {
1371 struct symbol *sym;
1372 const struct block *static_block = block_static_block (block);
1373
1374 /* Check if either no block is specified or it's a global block. */
1375
1376 if (static_block == NULL)
1377 return NULL;
1378
1379 while (block != static_block)
1380 {
1381 sym = lookup_symbol_aux_block (name, linkage_name, block, domain);
1382 if (sym != NULL)
1383 return sym;
1384
1385 if (BLOCK_FUNCTION (block) != NULL && block_inlined_p (block))
1386 break;
1387 block = BLOCK_SUPERBLOCK (block);
1388 }
1389
1390 /* We've reached the edge of the function without finding a result. */
1391
1392 return NULL;
1393 }
1394
1395 /* Look up OBJFILE to BLOCK. */
1396
1397 static struct objfile *
1398 lookup_objfile_from_block (const struct block *block)
1399 {
1400 struct objfile *obj;
1401 struct symtab *s;
1402
1403 if (block == NULL)
1404 return NULL;
1405
1406 block = block_global_block (block);
1407 /* Go through SYMTABS. */
1408 ALL_SYMTABS (obj, s)
1409 if (block == BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK))
1410 return obj;
1411
1412 return NULL;
1413 }
1414
1415 /* Look up a symbol in a block; if found, fixup the symbol, and set
1416 block_found appropriately. */
1417
1418 struct symbol *
1419 lookup_symbol_aux_block (const char *name, const char *linkage_name,
1420 const struct block *block,
1421 const domain_enum domain)
1422 {
1423 struct symbol *sym;
1424
1425 sym = lookup_block_symbol (block, name, linkage_name, domain);
1426 if (sym)
1427 {
1428 block_found = block;
1429 return fixup_symbol_section (sym, NULL);
1430 }
1431
1432 return NULL;
1433 }
1434
1435 /* Check all global symbols in OBJFILE in symtabs and
1436 psymtabs. */
1437
1438 struct symbol *
1439 lookup_global_symbol_from_objfile (const struct objfile *objfile,
1440 const char *name,
1441 const char *linkage_name,
1442 const domain_enum domain)
1443 {
1444 struct symbol *sym;
1445 struct blockvector *bv;
1446 const struct block *block;
1447 struct symtab *s;
1448 struct partial_symtab *ps;
1449
1450 /* Go through symtabs. */
1451 ALL_OBJFILE_SYMTABS (objfile, s)
1452 {
1453 bv = BLOCKVECTOR (s);
1454 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1455 sym = lookup_block_symbol (block, name, linkage_name, domain);
1456 if (sym)
1457 {
1458 block_found = block;
1459 return fixup_symbol_section (sym, (struct objfile *)objfile);
1460 }
1461 }
1462
1463 /* Now go through psymtabs. */
1464 ALL_OBJFILE_PSYMTABS (objfile, ps)
1465 {
1466 if (!ps->readin
1467 && lookup_partial_symbol (ps, name, linkage_name,
1468 1, domain))
1469 {
1470 s = PSYMTAB_TO_SYMTAB (ps);
1471 bv = BLOCKVECTOR (s);
1472 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1473 sym = lookup_block_symbol (block, name, linkage_name, domain);
1474 return fixup_symbol_section (sym, (struct objfile *)objfile);
1475 }
1476 }
1477
1478 if (objfile->separate_debug_objfile)
1479 return lookup_global_symbol_from_objfile (objfile->separate_debug_objfile,
1480 name, linkage_name, domain);
1481
1482 return NULL;
1483 }
1484
1485 /* Check to see if the symbol is defined in one of the symtabs.
1486 BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
1487 depending on whether or not we want to search global symbols or
1488 static symbols. */
1489
1490 static struct symbol *
1491 lookup_symbol_aux_symtabs (int block_index,
1492 const char *name, const char *linkage_name,
1493 const domain_enum domain)
1494 {
1495 struct symbol *sym;
1496 struct objfile *objfile;
1497 struct blockvector *bv;
1498 const struct block *block;
1499 struct symtab *s;
1500
1501 ALL_PRIMARY_SYMTABS (objfile, s)
1502 {
1503 bv = BLOCKVECTOR (s);
1504 block = BLOCKVECTOR_BLOCK (bv, block_index);
1505 sym = lookup_block_symbol (block, name, linkage_name, domain);
1506 if (sym)
1507 {
1508 block_found = block;
1509 return fixup_symbol_section (sym, objfile);
1510 }
1511 }
1512
1513 return NULL;
1514 }
1515
1516 /* Check to see if the symbol is defined in one of the partial
1517 symtabs. BLOCK_INDEX should be either GLOBAL_BLOCK or
1518 STATIC_BLOCK, depending on whether or not we want to search global
1519 symbols or static symbols. */
1520
1521 static struct symbol *
1522 lookup_symbol_aux_psymtabs (int block_index, const char *name,
1523 const char *linkage_name,
1524 const domain_enum domain)
1525 {
1526 struct symbol *sym;
1527 struct objfile *objfile;
1528 struct blockvector *bv;
1529 const struct block *block;
1530 struct partial_symtab *ps;
1531 struct symtab *s;
1532 const int psymtab_index = (block_index == GLOBAL_BLOCK ? 1 : 0);
1533
1534 ALL_PSYMTABS (objfile, ps)
1535 {
1536 if (!ps->readin
1537 && lookup_partial_symbol (ps, name, linkage_name,
1538 psymtab_index, domain))
1539 {
1540 s = PSYMTAB_TO_SYMTAB (ps);
1541 bv = BLOCKVECTOR (s);
1542 block = BLOCKVECTOR_BLOCK (bv, block_index);
1543 sym = lookup_block_symbol (block, name, linkage_name, domain);
1544 if (!sym)
1545 {
1546 /* This shouldn't be necessary, but as a last resort try
1547 looking in the statics even though the psymtab claimed
1548 the symbol was global, or vice-versa. It's possible
1549 that the psymtab gets it wrong in some cases. */
1550
1551 /* FIXME: carlton/2002-09-30: Should we really do that?
1552 If that happens, isn't it likely to be a GDB error, in
1553 which case we should fix the GDB error rather than
1554 silently dealing with it here? So I'd vote for
1555 removing the check for the symbol in the other
1556 block. */
1557 block = BLOCKVECTOR_BLOCK (bv,
1558 block_index == GLOBAL_BLOCK ?
1559 STATIC_BLOCK : GLOBAL_BLOCK);
1560 sym = lookup_block_symbol (block, name, linkage_name, domain);
1561 if (!sym)
1562 error (_("Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n%s may be an inlined function, or may be a template function\n(if a template, try specifying an instantiation: %s<type>)."),
1563 block_index == GLOBAL_BLOCK ? "global" : "static",
1564 name, ps->filename, name, name);
1565 }
1566 return fixup_symbol_section (sym, objfile);
1567 }
1568 }
1569
1570 return NULL;
1571 }
1572
1573 /* A default version of lookup_symbol_nonlocal for use by languages
1574 that can't think of anything better to do. This implements the C
1575 lookup rules. */
1576
1577 struct symbol *
1578 basic_lookup_symbol_nonlocal (const char *name,
1579 const char *linkage_name,
1580 const struct block *block,
1581 const domain_enum domain)
1582 {
1583 struct symbol *sym;
1584
1585 /* NOTE: carlton/2003-05-19: The comments below were written when
1586 this (or what turned into this) was part of lookup_symbol_aux;
1587 I'm much less worried about these questions now, since these
1588 decisions have turned out well, but I leave these comments here
1589 for posterity. */
1590
1591 /* NOTE: carlton/2002-12-05: There is a question as to whether or
1592 not it would be appropriate to search the current global block
1593 here as well. (That's what this code used to do before the
1594 is_a_field_of_this check was moved up.) On the one hand, it's
1595 redundant with the lookup_symbol_aux_symtabs search that happens
1596 next. On the other hand, if decode_line_1 is passed an argument
1597 like filename:var, then the user presumably wants 'var' to be
1598 searched for in filename. On the third hand, there shouldn't be
1599 multiple global variables all of which are named 'var', and it's
1600 not like decode_line_1 has ever restricted its search to only
1601 global variables in a single filename. All in all, only
1602 searching the static block here seems best: it's correct and it's
1603 cleanest. */
1604
1605 /* NOTE: carlton/2002-12-05: There's also a possible performance
1606 issue here: if you usually search for global symbols in the
1607 current file, then it would be slightly better to search the
1608 current global block before searching all the symtabs. But there
1609 are other factors that have a much greater effect on performance
1610 than that one, so I don't think we should worry about that for
1611 now. */
1612
1613 sym = lookup_symbol_static (name, linkage_name, block, domain);
1614 if (sym != NULL)
1615 return sym;
1616
1617 return lookup_symbol_global (name, linkage_name, block, domain);
1618 }
1619
1620 /* Lookup a symbol in the static block associated to BLOCK, if there
1621 is one; do nothing if BLOCK is NULL or a global block. */
1622
1623 struct symbol *
1624 lookup_symbol_static (const char *name,
1625 const char *linkage_name,
1626 const struct block *block,
1627 const domain_enum domain)
1628 {
1629 const struct block *static_block = block_static_block (block);
1630
1631 if (static_block != NULL)
1632 return lookup_symbol_aux_block (name, linkage_name, static_block, domain);
1633 else
1634 return NULL;
1635 }
1636
1637 /* Lookup a symbol in all files' global blocks (searching psymtabs if
1638 necessary). */
1639
1640 struct symbol *
1641 lookup_symbol_global (const char *name,
1642 const char *linkage_name,
1643 const struct block *block,
1644 const domain_enum domain)
1645 {
1646 struct symbol *sym = NULL;
1647 struct objfile *objfile = NULL;
1648
1649 /* Call library-specific lookup procedure. */
1650 objfile = lookup_objfile_from_block (block);
1651 if (objfile != NULL)
1652 sym = solib_global_lookup (objfile, name, linkage_name, domain);
1653 if (sym != NULL)
1654 return sym;
1655
1656 sym = lookup_symbol_aux_symtabs (GLOBAL_BLOCK, name, linkage_name, domain);
1657 if (sym != NULL)
1658 return sym;
1659
1660 return lookup_symbol_aux_psymtabs (GLOBAL_BLOCK, name, linkage_name, domain);
1661 }
1662
1663 int
1664 symbol_matches_domain (enum language symbol_language,
1665 domain_enum symbol_domain,
1666 domain_enum domain)
1667 {
1668 /* For C++ "struct foo { ... }" also defines a typedef for "foo".
1669 A Java class declaration also defines a typedef for the class.
1670 Similarly, any Ada type declaration implicitly defines a typedef. */
1671 if (symbol_language == language_cplus
1672 || symbol_language == language_java
1673 || symbol_language == language_ada)
1674 {
1675 if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN)
1676 && symbol_domain == STRUCT_DOMAIN)
1677 return 1;
1678 }
1679 /* For all other languages, strict match is required. */
1680 return (symbol_domain == domain);
1681 }
1682
1683 /* Look, in partial_symtab PST, for symbol whose natural name is NAME.
1684 If LINKAGE_NAME is non-NULL, check in addition that the symbol's
1685 linkage name matches it. Check the global symbols if GLOBAL, the
1686 static symbols if not */
1687
1688 struct partial_symbol *
1689 lookup_partial_symbol (struct partial_symtab *pst, const char *name,
1690 const char *linkage_name, int global,
1691 domain_enum domain)
1692 {
1693 struct partial_symbol *temp;
1694 struct partial_symbol **start, **psym;
1695 struct partial_symbol **top, **real_top, **bottom, **center;
1696 int length = (global ? pst->n_global_syms : pst->n_static_syms);
1697 int do_linear_search = 1;
1698
1699 if (length == 0)
1700 {
1701 return (NULL);
1702 }
1703 start = (global ?
1704 pst->objfile->global_psymbols.list + pst->globals_offset :
1705 pst->objfile->static_psymbols.list + pst->statics_offset);
1706
1707 if (global) /* This means we can use a binary search. */
1708 {
1709 do_linear_search = 0;
1710
1711 /* Binary search. This search is guaranteed to end with center
1712 pointing at the earliest partial symbol whose name might be
1713 correct. At that point *all* partial symbols with an
1714 appropriate name will be checked against the correct
1715 domain. */
1716
1717 bottom = start;
1718 top = start + length - 1;
1719 real_top = top;
1720 while (top > bottom)
1721 {
1722 center = bottom + (top - bottom) / 2;
1723 if (!(center < top))
1724 internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
1725 if (!do_linear_search
1726 && (SYMBOL_LANGUAGE (*center) == language_java))
1727 {
1728 do_linear_search = 1;
1729 }
1730 if (strcmp_iw_ordered (SYMBOL_SEARCH_NAME (*center), name) >= 0)
1731 {
1732 top = center;
1733 }
1734 else
1735 {
1736 bottom = center + 1;
1737 }
1738 }
1739 if (!(top == bottom))
1740 internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
1741
1742 while (top <= real_top
1743 && (linkage_name != NULL
1744 ? strcmp (SYMBOL_LINKAGE_NAME (*top), linkage_name) == 0
1745 : SYMBOL_MATCHES_SEARCH_NAME (*top,name)))
1746 {
1747 if (symbol_matches_domain (SYMBOL_LANGUAGE (*top),
1748 SYMBOL_DOMAIN (*top), domain))
1749 return (*top);
1750 top++;
1751 }
1752 }
1753
1754 /* Can't use a binary search or else we found during the binary search that
1755 we should also do a linear search. */
1756
1757 if (do_linear_search)
1758 {
1759 for (psym = start; psym < start + length; psym++)
1760 {
1761 if (symbol_matches_domain (SYMBOL_LANGUAGE (*psym),
1762 SYMBOL_DOMAIN (*psym), domain))
1763 {
1764 if (linkage_name != NULL
1765 ? strcmp (SYMBOL_LINKAGE_NAME (*psym), linkage_name) == 0
1766 : SYMBOL_MATCHES_SEARCH_NAME (*psym, name))
1767 {
1768 return (*psym);
1769 }
1770 }
1771 }
1772 }
1773
1774 return (NULL);
1775 }
1776
1777 /* Look up a type named NAME in the struct_domain. The type returned
1778 must not be opaque -- i.e., must have at least one field
1779 defined. */
1780
1781 struct type *
1782 lookup_transparent_type (const char *name)
1783 {
1784 return current_language->la_lookup_transparent_type (name);
1785 }
1786
1787 /* The standard implementation of lookup_transparent_type. This code
1788 was modeled on lookup_symbol -- the parts not relevant to looking
1789 up types were just left out. In particular it's assumed here that
1790 types are available in struct_domain and only at file-static or
1791 global blocks. */
1792
1793 struct type *
1794 basic_lookup_transparent_type (const char *name)
1795 {
1796 struct symbol *sym;
1797 struct symtab *s = NULL;
1798 struct partial_symtab *ps;
1799 struct blockvector *bv;
1800 struct objfile *objfile;
1801 struct block *block;
1802
1803 /* Now search all the global symbols. Do the symtab's first, then
1804 check the psymtab's. If a psymtab indicates the existence
1805 of the desired name as a global, then do psymtab-to-symtab
1806 conversion on the fly and return the found symbol. */
1807
1808 ALL_PRIMARY_SYMTABS (objfile, s)
1809 {
1810 bv = BLOCKVECTOR (s);
1811 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1812 sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN);
1813 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1814 {
1815 return SYMBOL_TYPE (sym);
1816 }
1817 }
1818
1819 ALL_PSYMTABS (objfile, ps)
1820 {
1821 if (!ps->readin && lookup_partial_symbol (ps, name, NULL,
1822 1, STRUCT_DOMAIN))
1823 {
1824 s = PSYMTAB_TO_SYMTAB (ps);
1825 bv = BLOCKVECTOR (s);
1826 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1827 sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN);
1828 if (!sym)
1829 {
1830 /* This shouldn't be necessary, but as a last resort
1831 * try looking in the statics even though the psymtab
1832 * claimed the symbol was global. It's possible that
1833 * the psymtab gets it wrong in some cases.
1834 */
1835 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
1836 sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN);
1837 if (!sym)
1838 error (_("Internal: global symbol `%s' found in %s psymtab but not in symtab.\n\
1839 %s may be an inlined function, or may be a template function\n\
1840 (if a template, try specifying an instantiation: %s<type>)."),
1841 name, ps->filename, name, name);
1842 }
1843 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1844 return SYMBOL_TYPE (sym);
1845 }
1846 }
1847
1848 /* Now search the static file-level symbols.
1849 Not strictly correct, but more useful than an error.
1850 Do the symtab's first, then
1851 check the psymtab's. If a psymtab indicates the existence
1852 of the desired name as a file-level static, then do psymtab-to-symtab
1853 conversion on the fly and return the found symbol.
1854 */
1855
1856 ALL_PRIMARY_SYMTABS (objfile, s)
1857 {
1858 bv = BLOCKVECTOR (s);
1859 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
1860 sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN);
1861 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1862 {
1863 return SYMBOL_TYPE (sym);
1864 }
1865 }
1866
1867 ALL_PSYMTABS (objfile, ps)
1868 {
1869 if (!ps->readin && lookup_partial_symbol (ps, name, NULL, 0, STRUCT_DOMAIN))
1870 {
1871 s = PSYMTAB_TO_SYMTAB (ps);
1872 bv = BLOCKVECTOR (s);
1873 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
1874 sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN);
1875 if (!sym)
1876 {
1877 /* This shouldn't be necessary, but as a last resort
1878 * try looking in the globals even though the psymtab
1879 * claimed the symbol was static. It's possible that
1880 * the psymtab gets it wrong in some cases.
1881 */
1882 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1883 sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN);
1884 if (!sym)
1885 error (_("Internal: static symbol `%s' found in %s psymtab but not in symtab.\n\
1886 %s may be an inlined function, or may be a template function\n\
1887 (if a template, try specifying an instantiation: %s<type>)."),
1888 name, ps->filename, name, name);
1889 }
1890 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1891 return SYMBOL_TYPE (sym);
1892 }
1893 }
1894 return (struct type *) 0;
1895 }
1896
1897
1898 /* Find the psymtab containing main(). */
1899 /* FIXME: What about languages without main() or specially linked
1900 executables that have no main() ? */
1901
1902 struct partial_symtab *
1903 find_main_psymtab (void)
1904 {
1905 struct partial_symtab *pst;
1906 struct objfile *objfile;
1907
1908 ALL_PSYMTABS (objfile, pst)
1909 {
1910 if (lookup_partial_symbol (pst, main_name (), NULL, 1, VAR_DOMAIN))
1911 {
1912 return (pst);
1913 }
1914 }
1915 return (NULL);
1916 }
1917
1918 /* Search BLOCK for symbol NAME in DOMAIN.
1919
1920 Note that if NAME is the demangled form of a C++ symbol, we will fail
1921 to find a match during the binary search of the non-encoded names, but
1922 for now we don't worry about the slight inefficiency of looking for
1923 a match we'll never find, since it will go pretty quick. Once the
1924 binary search terminates, we drop through and do a straight linear
1925 search on the symbols. Each symbol which is marked as being a ObjC/C++
1926 symbol (language_cplus or language_objc set) has both the encoded and
1927 non-encoded names tested for a match.
1928
1929 If LINKAGE_NAME is non-NULL, verify that any symbol we find has this
1930 particular mangled name.
1931 */
1932
1933 struct symbol *
1934 lookup_block_symbol (const struct block *block, const char *name,
1935 const char *linkage_name,
1936 const domain_enum domain)
1937 {
1938 struct dict_iterator iter;
1939 struct symbol *sym;
1940
1941 if (!BLOCK_FUNCTION (block))
1942 {
1943 for (sym = dict_iter_name_first (BLOCK_DICT (block), name, &iter);
1944 sym != NULL;
1945 sym = dict_iter_name_next (name, &iter))
1946 {
1947 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
1948 SYMBOL_DOMAIN (sym), domain)
1949 && (linkage_name != NULL
1950 ? strcmp (SYMBOL_LINKAGE_NAME (sym), linkage_name) == 0 : 1))
1951 return sym;
1952 }
1953 return NULL;
1954 }
1955 else
1956 {
1957 /* Note that parameter symbols do not always show up last in the
1958 list; this loop makes sure to take anything else other than
1959 parameter symbols first; it only uses parameter symbols as a
1960 last resort. Note that this only takes up extra computation
1961 time on a match. */
1962
1963 struct symbol *sym_found = NULL;
1964
1965 for (sym = dict_iter_name_first (BLOCK_DICT (block), name, &iter);
1966 sym != NULL;
1967 sym = dict_iter_name_next (name, &iter))
1968 {
1969 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
1970 SYMBOL_DOMAIN (sym), domain)
1971 && (linkage_name != NULL
1972 ? strcmp (SYMBOL_LINKAGE_NAME (sym), linkage_name) == 0 : 1))
1973 {
1974 sym_found = sym;
1975 if (!SYMBOL_IS_ARGUMENT (sym))
1976 {
1977 break;
1978 }
1979 }
1980 }
1981 return (sym_found); /* Will be NULL if not found. */
1982 }
1983 }
1984
1985 /* Find the symtab associated with PC and SECTION. Look through the
1986 psymtabs and read in another symtab if necessary. */
1987
1988 struct symtab *
1989 find_pc_sect_symtab (CORE_ADDR pc, struct obj_section *section)
1990 {
1991 struct block *b;
1992 struct blockvector *bv;
1993 struct symtab *s = NULL;
1994 struct symtab *best_s = NULL;
1995 struct partial_symtab *ps;
1996 struct objfile *objfile;
1997 CORE_ADDR distance = 0;
1998 struct minimal_symbol *msymbol;
1999
2000 /* If we know that this is not a text address, return failure. This is
2001 necessary because we loop based on the block's high and low code
2002 addresses, which do not include the data ranges, and because
2003 we call find_pc_sect_psymtab which has a similar restriction based
2004 on the partial_symtab's texthigh and textlow. */
2005 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
2006 if (msymbol
2007 && (MSYMBOL_TYPE (msymbol) == mst_data
2008 || MSYMBOL_TYPE (msymbol) == mst_bss
2009 || MSYMBOL_TYPE (msymbol) == mst_abs
2010 || MSYMBOL_TYPE (msymbol) == mst_file_data
2011 || MSYMBOL_TYPE (msymbol) == mst_file_bss))
2012 return NULL;
2013
2014 /* Search all symtabs for the one whose file contains our address, and which
2015 is the smallest of all the ones containing the address. This is designed
2016 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
2017 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
2018 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
2019
2020 This happens for native ecoff format, where code from included files
2021 gets its own symtab. The symtab for the included file should have
2022 been read in already via the dependency mechanism.
2023 It might be swifter to create several symtabs with the same name
2024 like xcoff does (I'm not sure).
2025
2026 It also happens for objfiles that have their functions reordered.
2027 For these, the symtab we are looking for is not necessarily read in. */
2028
2029 ALL_PRIMARY_SYMTABS (objfile, s)
2030 {
2031 bv = BLOCKVECTOR (s);
2032 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
2033
2034 if (BLOCK_START (b) <= pc
2035 && BLOCK_END (b) > pc
2036 && (distance == 0
2037 || BLOCK_END (b) - BLOCK_START (b) < distance))
2038 {
2039 /* For an objfile that has its functions reordered,
2040 find_pc_psymtab will find the proper partial symbol table
2041 and we simply return its corresponding symtab. */
2042 /* In order to better support objfiles that contain both
2043 stabs and coff debugging info, we continue on if a psymtab
2044 can't be found. */
2045 if ((objfile->flags & OBJF_REORDERED) && objfile->psymtabs)
2046 {
2047 ps = find_pc_sect_psymtab (pc, section);
2048 if (ps)
2049 return PSYMTAB_TO_SYMTAB (ps);
2050 }
2051 if (section != 0)
2052 {
2053 struct dict_iterator iter;
2054 struct symbol *sym = NULL;
2055
2056 ALL_BLOCK_SYMBOLS (b, iter, sym)
2057 {
2058 fixup_symbol_section (sym, objfile);
2059 if (matching_obj_sections (SYMBOL_OBJ_SECTION (sym), section))
2060 break;
2061 }
2062 if (sym == NULL)
2063 continue; /* no symbol in this symtab matches section */
2064 }
2065 distance = BLOCK_END (b) - BLOCK_START (b);
2066 best_s = s;
2067 }
2068 }
2069
2070 if (best_s != NULL)
2071 return (best_s);
2072
2073 s = NULL;
2074 ps = find_pc_sect_psymtab (pc, section);
2075 if (ps)
2076 {
2077 if (ps->readin)
2078 /* Might want to error() here (in case symtab is corrupt and
2079 will cause a core dump), but maybe we can successfully
2080 continue, so let's not. */
2081 warning (_("\
2082 (Internal error: pc %s in read in psymtab, but not in symtab.)\n"),
2083 paddress (get_objfile_arch (ps->objfile), pc));
2084 s = PSYMTAB_TO_SYMTAB (ps);
2085 }
2086 return (s);
2087 }
2088
2089 /* Find the symtab associated with PC. Look through the psymtabs and
2090 read in another symtab if necessary. Backward compatibility, no section */
2091
2092 struct symtab *
2093 find_pc_symtab (CORE_ADDR pc)
2094 {
2095 return find_pc_sect_symtab (pc, find_pc_mapped_section (pc));
2096 }
2097 \f
2098
2099 /* Find the source file and line number for a given PC value and SECTION.
2100 Return a structure containing a symtab pointer, a line number,
2101 and a pc range for the entire source line.
2102 The value's .pc field is NOT the specified pc.
2103 NOTCURRENT nonzero means, if specified pc is on a line boundary,
2104 use the line that ends there. Otherwise, in that case, the line
2105 that begins there is used. */
2106
2107 /* The big complication here is that a line may start in one file, and end just
2108 before the start of another file. This usually occurs when you #include
2109 code in the middle of a subroutine. To properly find the end of a line's PC
2110 range, we must search all symtabs associated with this compilation unit, and
2111 find the one whose first PC is closer than that of the next line in this
2112 symtab. */
2113
2114 /* If it's worth the effort, we could be using a binary search. */
2115
2116 struct symtab_and_line
2117 find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent)
2118 {
2119 struct symtab *s;
2120 struct linetable *l;
2121 int len;
2122 int i;
2123 struct linetable_entry *item;
2124 struct symtab_and_line val;
2125 struct blockvector *bv;
2126 struct minimal_symbol *msymbol;
2127 struct minimal_symbol *mfunsym;
2128
2129 /* Info on best line seen so far, and where it starts, and its file. */
2130
2131 struct linetable_entry *best = NULL;
2132 CORE_ADDR best_end = 0;
2133 struct symtab *best_symtab = 0;
2134
2135 /* Store here the first line number
2136 of a file which contains the line at the smallest pc after PC.
2137 If we don't find a line whose range contains PC,
2138 we will use a line one less than this,
2139 with a range from the start of that file to the first line's pc. */
2140 struct linetable_entry *alt = NULL;
2141 struct symtab *alt_symtab = 0;
2142
2143 /* Info on best line seen in this file. */
2144
2145 struct linetable_entry *prev;
2146
2147 /* If this pc is not from the current frame,
2148 it is the address of the end of a call instruction.
2149 Quite likely that is the start of the following statement.
2150 But what we want is the statement containing the instruction.
2151 Fudge the pc to make sure we get that. */
2152
2153 init_sal (&val); /* initialize to zeroes */
2154
2155 /* It's tempting to assume that, if we can't find debugging info for
2156 any function enclosing PC, that we shouldn't search for line
2157 number info, either. However, GAS can emit line number info for
2158 assembly files --- very helpful when debugging hand-written
2159 assembly code. In such a case, we'd have no debug info for the
2160 function, but we would have line info. */
2161
2162 if (notcurrent)
2163 pc -= 1;
2164
2165 /* elz: added this because this function returned the wrong
2166 information if the pc belongs to a stub (import/export)
2167 to call a shlib function. This stub would be anywhere between
2168 two functions in the target, and the line info was erroneously
2169 taken to be the one of the line before the pc.
2170 */
2171 /* RT: Further explanation:
2172
2173 * We have stubs (trampolines) inserted between procedures.
2174 *
2175 * Example: "shr1" exists in a shared library, and a "shr1" stub also
2176 * exists in the main image.
2177 *
2178 * In the minimal symbol table, we have a bunch of symbols
2179 * sorted by start address. The stubs are marked as "trampoline",
2180 * the others appear as text. E.g.:
2181 *
2182 * Minimal symbol table for main image
2183 * main: code for main (text symbol)
2184 * shr1: stub (trampoline symbol)
2185 * foo: code for foo (text symbol)
2186 * ...
2187 * Minimal symbol table for "shr1" image:
2188 * ...
2189 * shr1: code for shr1 (text symbol)
2190 * ...
2191 *
2192 * So the code below is trying to detect if we are in the stub
2193 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
2194 * and if found, do the symbolization from the real-code address
2195 * rather than the stub address.
2196 *
2197 * Assumptions being made about the minimal symbol table:
2198 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
2199 * if we're really in the trampoline. If we're beyond it (say
2200 * we're in "foo" in the above example), it'll have a closer
2201 * symbol (the "foo" text symbol for example) and will not
2202 * return the trampoline.
2203 * 2. lookup_minimal_symbol_text() will find a real text symbol
2204 * corresponding to the trampoline, and whose address will
2205 * be different than the trampoline address. I put in a sanity
2206 * check for the address being the same, to avoid an
2207 * infinite recursion.
2208 */
2209 msymbol = lookup_minimal_symbol_by_pc (pc);
2210 if (msymbol != NULL)
2211 if (MSYMBOL_TYPE (msymbol) == mst_solib_trampoline)
2212 {
2213 mfunsym = lookup_minimal_symbol_text (SYMBOL_LINKAGE_NAME (msymbol),
2214 NULL);
2215 if (mfunsym == NULL)
2216 /* I eliminated this warning since it is coming out
2217 * in the following situation:
2218 * gdb shmain // test program with shared libraries
2219 * (gdb) break shr1 // function in shared lib
2220 * Warning: In stub for ...
2221 * In the above situation, the shared lib is not loaded yet,
2222 * so of course we can't find the real func/line info,
2223 * but the "break" still works, and the warning is annoying.
2224 * So I commented out the warning. RT */
2225 /* warning ("In stub for %s; unable to find real function/line info", SYMBOL_LINKAGE_NAME (msymbol)) */ ;
2226 /* fall through */
2227 else if (SYMBOL_VALUE_ADDRESS (mfunsym) == SYMBOL_VALUE_ADDRESS (msymbol))
2228 /* Avoid infinite recursion */
2229 /* See above comment about why warning is commented out */
2230 /* warning ("In stub for %s; unable to find real function/line info", SYMBOL_LINKAGE_NAME (msymbol)) */ ;
2231 /* fall through */
2232 else
2233 return find_pc_line (SYMBOL_VALUE_ADDRESS (mfunsym), 0);
2234 }
2235
2236
2237 s = find_pc_sect_symtab (pc, section);
2238 if (!s)
2239 {
2240 /* if no symbol information, return previous pc */
2241 if (notcurrent)
2242 pc++;
2243 val.pc = pc;
2244 return val;
2245 }
2246
2247 bv = BLOCKVECTOR (s);
2248
2249 /* Look at all the symtabs that share this blockvector.
2250 They all have the same apriori range, that we found was right;
2251 but they have different line tables. */
2252
2253 for (; s && BLOCKVECTOR (s) == bv; s = s->next)
2254 {
2255 /* Find the best line in this symtab. */
2256 l = LINETABLE (s);
2257 if (!l)
2258 continue;
2259 len = l->nitems;
2260 if (len <= 0)
2261 {
2262 /* I think len can be zero if the symtab lacks line numbers
2263 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
2264 I'm not sure which, and maybe it depends on the symbol
2265 reader). */
2266 continue;
2267 }
2268
2269 prev = NULL;
2270 item = l->item; /* Get first line info */
2271
2272 /* Is this file's first line closer than the first lines of other files?
2273 If so, record this file, and its first line, as best alternate. */
2274 if (item->pc > pc && (!alt || item->pc < alt->pc))
2275 {
2276 alt = item;
2277 alt_symtab = s;
2278 }
2279
2280 for (i = 0; i < len; i++, item++)
2281 {
2282 /* Leave prev pointing to the linetable entry for the last line
2283 that started at or before PC. */
2284 if (item->pc > pc)
2285 break;
2286
2287 prev = item;
2288 }
2289
2290 /* At this point, prev points at the line whose start addr is <= pc, and
2291 item points at the next line. If we ran off the end of the linetable
2292 (pc >= start of the last line), then prev == item. If pc < start of
2293 the first line, prev will not be set. */
2294
2295 /* Is this file's best line closer than the best in the other files?
2296 If so, record this file, and its best line, as best so far. Don't
2297 save prev if it represents the end of a function (i.e. line number
2298 0) instead of a real line. */
2299
2300 if (prev && prev->line && (!best || prev->pc > best->pc))
2301 {
2302 best = prev;
2303 best_symtab = s;
2304
2305 /* Discard BEST_END if it's before the PC of the current BEST. */
2306 if (best_end <= best->pc)
2307 best_end = 0;
2308 }
2309
2310 /* If another line (denoted by ITEM) is in the linetable and its
2311 PC is after BEST's PC, but before the current BEST_END, then
2312 use ITEM's PC as the new best_end. */
2313 if (best && i < len && item->pc > best->pc
2314 && (best_end == 0 || best_end > item->pc))
2315 best_end = item->pc;
2316 }
2317
2318 if (!best_symtab)
2319 {
2320 /* If we didn't find any line number info, just return zeros.
2321 We used to return alt->line - 1 here, but that could be
2322 anywhere; if we don't have line number info for this PC,
2323 don't make some up. */
2324 val.pc = pc;
2325 }
2326 else if (best->line == 0)
2327 {
2328 /* If our best fit is in a range of PC's for which no line
2329 number info is available (line number is zero) then we didn't
2330 find any valid line information. */
2331 val.pc = pc;
2332 }
2333 else
2334 {
2335 val.symtab = best_symtab;
2336 val.line = best->line;
2337 val.pc = best->pc;
2338 if (best_end && (!alt || best_end < alt->pc))
2339 val.end = best_end;
2340 else if (alt)
2341 val.end = alt->pc;
2342 else
2343 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
2344 }
2345 val.section = section;
2346 return val;
2347 }
2348
2349 /* Backward compatibility (no section) */
2350
2351 struct symtab_and_line
2352 find_pc_line (CORE_ADDR pc, int notcurrent)
2353 {
2354 struct obj_section *section;
2355
2356 section = find_pc_overlay (pc);
2357 if (pc_in_unmapped_range (pc, section))
2358 pc = overlay_mapped_address (pc, section);
2359 return find_pc_sect_line (pc, section, notcurrent);
2360 }
2361 \f
2362 /* Find line number LINE in any symtab whose name is the same as
2363 SYMTAB.
2364
2365 If found, return the symtab that contains the linetable in which it was
2366 found, set *INDEX to the index in the linetable of the best entry
2367 found, and set *EXACT_MATCH nonzero if the value returned is an
2368 exact match.
2369
2370 If not found, return NULL. */
2371
2372 struct symtab *
2373 find_line_symtab (struct symtab *symtab, int line, int *index, int *exact_match)
2374 {
2375 int exact = 0; /* Initialized here to avoid a compiler warning. */
2376
2377 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
2378 so far seen. */
2379
2380 int best_index;
2381 struct linetable *best_linetable;
2382 struct symtab *best_symtab;
2383
2384 /* First try looking it up in the given symtab. */
2385 best_linetable = LINETABLE (symtab);
2386 best_symtab = symtab;
2387 best_index = find_line_common (best_linetable, line, &exact);
2388 if (best_index < 0 || !exact)
2389 {
2390 /* Didn't find an exact match. So we better keep looking for
2391 another symtab with the same name. In the case of xcoff,
2392 multiple csects for one source file (produced by IBM's FORTRAN
2393 compiler) produce multiple symtabs (this is unavoidable
2394 assuming csects can be at arbitrary places in memory and that
2395 the GLOBAL_BLOCK of a symtab has a begin and end address). */
2396
2397 /* BEST is the smallest linenumber > LINE so far seen,
2398 or 0 if none has been seen so far.
2399 BEST_INDEX and BEST_LINETABLE identify the item for it. */
2400 int best;
2401
2402 struct objfile *objfile;
2403 struct symtab *s;
2404 struct partial_symtab *p;
2405
2406 if (best_index >= 0)
2407 best = best_linetable->item[best_index].line;
2408 else
2409 best = 0;
2410
2411 ALL_PSYMTABS (objfile, p)
2412 {
2413 if (strcmp (symtab->filename, p->filename) != 0)
2414 continue;
2415 PSYMTAB_TO_SYMTAB (p);
2416 }
2417
2418 ALL_SYMTABS (objfile, s)
2419 {
2420 struct linetable *l;
2421 int ind;
2422
2423 if (strcmp (symtab->filename, s->filename) != 0)
2424 continue;
2425 l = LINETABLE (s);
2426 ind = find_line_common (l, line, &exact);
2427 if (ind >= 0)
2428 {
2429 if (exact)
2430 {
2431 best_index = ind;
2432 best_linetable = l;
2433 best_symtab = s;
2434 goto done;
2435 }
2436 if (best == 0 || l->item[ind].line < best)
2437 {
2438 best = l->item[ind].line;
2439 best_index = ind;
2440 best_linetable = l;
2441 best_symtab = s;
2442 }
2443 }
2444 }
2445 }
2446 done:
2447 if (best_index < 0)
2448 return NULL;
2449
2450 if (index)
2451 *index = best_index;
2452 if (exact_match)
2453 *exact_match = exact;
2454
2455 return best_symtab;
2456 }
2457 \f
2458 /* Set the PC value for a given source file and line number and return true.
2459 Returns zero for invalid line number (and sets the PC to 0).
2460 The source file is specified with a struct symtab. */
2461
2462 int
2463 find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
2464 {
2465 struct linetable *l;
2466 int ind;
2467
2468 *pc = 0;
2469 if (symtab == 0)
2470 return 0;
2471
2472 symtab = find_line_symtab (symtab, line, &ind, NULL);
2473 if (symtab != NULL)
2474 {
2475 l = LINETABLE (symtab);
2476 *pc = l->item[ind].pc;
2477 return 1;
2478 }
2479 else
2480 return 0;
2481 }
2482
2483 /* Find the range of pc values in a line.
2484 Store the starting pc of the line into *STARTPTR
2485 and the ending pc (start of next line) into *ENDPTR.
2486 Returns 1 to indicate success.
2487 Returns 0 if could not find the specified line. */
2488
2489 int
2490 find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
2491 CORE_ADDR *endptr)
2492 {
2493 CORE_ADDR startaddr;
2494 struct symtab_and_line found_sal;
2495
2496 startaddr = sal.pc;
2497 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
2498 return 0;
2499
2500 /* This whole function is based on address. For example, if line 10 has
2501 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
2502 "info line *0x123" should say the line goes from 0x100 to 0x200
2503 and "info line *0x355" should say the line goes from 0x300 to 0x400.
2504 This also insures that we never give a range like "starts at 0x134
2505 and ends at 0x12c". */
2506
2507 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
2508 if (found_sal.line != sal.line)
2509 {
2510 /* The specified line (sal) has zero bytes. */
2511 *startptr = found_sal.pc;
2512 *endptr = found_sal.pc;
2513 }
2514 else
2515 {
2516 *startptr = found_sal.pc;
2517 *endptr = found_sal.end;
2518 }
2519 return 1;
2520 }
2521
2522 /* Given a line table and a line number, return the index into the line
2523 table for the pc of the nearest line whose number is >= the specified one.
2524 Return -1 if none is found. The value is >= 0 if it is an index.
2525
2526 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
2527
2528 static int
2529 find_line_common (struct linetable *l, int lineno,
2530 int *exact_match)
2531 {
2532 int i;
2533 int len;
2534
2535 /* BEST is the smallest linenumber > LINENO so far seen,
2536 or 0 if none has been seen so far.
2537 BEST_INDEX identifies the item for it. */
2538
2539 int best_index = -1;
2540 int best = 0;
2541
2542 *exact_match = 0;
2543
2544 if (lineno <= 0)
2545 return -1;
2546 if (l == 0)
2547 return -1;
2548
2549 len = l->nitems;
2550 for (i = 0; i < len; i++)
2551 {
2552 struct linetable_entry *item = &(l->item[i]);
2553
2554 if (item->line == lineno)
2555 {
2556 /* Return the first (lowest address) entry which matches. */
2557 *exact_match = 1;
2558 return i;
2559 }
2560
2561 if (item->line > lineno && (best == 0 || item->line < best))
2562 {
2563 best = item->line;
2564 best_index = i;
2565 }
2566 }
2567
2568 /* If we got here, we didn't get an exact match. */
2569 return best_index;
2570 }
2571
2572 int
2573 find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
2574 {
2575 struct symtab_and_line sal;
2576 sal = find_pc_line (pc, 0);
2577 *startptr = sal.pc;
2578 *endptr = sal.end;
2579 return sal.symtab != 0;
2580 }
2581
2582 /* Given a function start address PC and SECTION, find the first
2583 address after the function prologue. */
2584 CORE_ADDR
2585 find_function_start_pc (struct gdbarch *gdbarch,
2586 CORE_ADDR pc, struct obj_section *section)
2587 {
2588 /* If the function is in an unmapped overlay, use its unmapped LMA address,
2589 so that gdbarch_skip_prologue has something unique to work on. */
2590 if (section_is_overlay (section) && !section_is_mapped (section))
2591 pc = overlay_unmapped_address (pc, section);
2592
2593 pc += gdbarch_deprecated_function_start_offset (gdbarch);
2594 pc = gdbarch_skip_prologue (gdbarch, pc);
2595
2596 /* For overlays, map pc back into its mapped VMA range. */
2597 pc = overlay_mapped_address (pc, section);
2598
2599 return pc;
2600 }
2601
2602 /* Given a function start address FUNC_ADDR and SYMTAB, find the first
2603 address for that function that has an entry in SYMTAB's line info
2604 table. If such an entry cannot be found, return FUNC_ADDR
2605 unaltered. */
2606 CORE_ADDR
2607 skip_prologue_using_lineinfo (CORE_ADDR func_addr, struct symtab *symtab)
2608 {
2609 CORE_ADDR func_start, func_end;
2610 struct linetable *l;
2611 int ind, i, len;
2612 int best_lineno = 0;
2613 CORE_ADDR best_pc = func_addr;
2614
2615 /* Give up if this symbol has no lineinfo table. */
2616 l = LINETABLE (symtab);
2617 if (l == NULL)
2618 return func_addr;
2619
2620 /* Get the range for the function's PC values, or give up if we
2621 cannot, for some reason. */
2622 if (!find_pc_partial_function (func_addr, NULL, &func_start, &func_end))
2623 return func_addr;
2624
2625 /* Linetable entries are ordered by PC values, see the commentary in
2626 symtab.h where `struct linetable' is defined. Thus, the first
2627 entry whose PC is in the range [FUNC_START..FUNC_END[ is the
2628 address we are looking for. */
2629 for (i = 0; i < l->nitems; i++)
2630 {
2631 struct linetable_entry *item = &(l->item[i]);
2632
2633 /* Don't use line numbers of zero, they mark special entries in
2634 the table. See the commentary on symtab.h before the
2635 definition of struct linetable. */
2636 if (item->line > 0 && func_start <= item->pc && item->pc < func_end)
2637 return item->pc;
2638 }
2639
2640 return func_addr;
2641 }
2642
2643 /* Given a function symbol SYM, find the symtab and line for the start
2644 of the function.
2645 If the argument FUNFIRSTLINE is nonzero, we want the first line
2646 of real code inside the function. */
2647
2648 struct symtab_and_line
2649 find_function_start_sal (struct symbol *sym, int funfirstline)
2650 {
2651 struct block *block = SYMBOL_BLOCK_VALUE (sym);
2652 struct objfile *objfile = lookup_objfile_from_block (block);
2653 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2654
2655 CORE_ADDR pc;
2656 struct symtab_and_line sal;
2657 struct block *b, *function_block;
2658
2659 pc = BLOCK_START (block);
2660 fixup_symbol_section (sym, objfile);
2661 if (funfirstline)
2662 {
2663 /* Skip "first line" of function (which is actually its prologue). */
2664 pc = find_function_start_pc (gdbarch, pc, SYMBOL_OBJ_SECTION (sym));
2665 }
2666 sal = find_pc_sect_line (pc, SYMBOL_OBJ_SECTION (sym), 0);
2667
2668 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
2669 line is still part of the same function. */
2670 if (sal.pc != pc
2671 && BLOCK_START (block) <= sal.end
2672 && sal.end < BLOCK_END (block))
2673 {
2674 /* First pc of next line */
2675 pc = sal.end;
2676 /* Recalculate the line number (might not be N+1). */
2677 sal = find_pc_sect_line (pc, SYMBOL_OBJ_SECTION (sym), 0);
2678 }
2679
2680 /* On targets with executable formats that don't have a concept of
2681 constructors (ELF with .init has, PE doesn't), gcc emits a call
2682 to `__main' in `main' between the prologue and before user
2683 code. */
2684 if (funfirstline
2685 && gdbarch_skip_main_prologue_p (gdbarch)
2686 && SYMBOL_LINKAGE_NAME (sym)
2687 && strcmp (SYMBOL_LINKAGE_NAME (sym), "main") == 0)
2688 {
2689 pc = gdbarch_skip_main_prologue (gdbarch, pc);
2690 /* Recalculate the line number (might not be N+1). */
2691 sal = find_pc_sect_line (pc, SYMBOL_OBJ_SECTION (sym), 0);
2692 }
2693
2694 /* If we still don't have a valid source line, try to find the first
2695 PC in the lineinfo table that belongs to the same function. This
2696 happens with COFF debug info, which does not seem to have an
2697 entry in lineinfo table for the code after the prologue which has
2698 no direct relation to source. For example, this was found to be
2699 the case with the DJGPP target using "gcc -gcoff" when the
2700 compiler inserted code after the prologue to make sure the stack
2701 is aligned. */
2702 if (funfirstline && sal.symtab == NULL)
2703 {
2704 pc = skip_prologue_using_lineinfo (pc, SYMBOL_SYMTAB (sym));
2705 /* Recalculate the line number. */
2706 sal = find_pc_sect_line (pc, SYMBOL_OBJ_SECTION (sym), 0);
2707 }
2708
2709 sal.pc = pc;
2710
2711 /* Check if we are now inside an inlined function. If we can,
2712 use the call site of the function instead. */
2713 b = block_for_pc_sect (sal.pc, SYMBOL_OBJ_SECTION (sym));
2714 function_block = NULL;
2715 while (b != NULL)
2716 {
2717 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
2718 function_block = b;
2719 else if (BLOCK_FUNCTION (b) != NULL)
2720 break;
2721 b = BLOCK_SUPERBLOCK (b);
2722 }
2723 if (function_block != NULL
2724 && SYMBOL_LINE (BLOCK_FUNCTION (function_block)) != 0)
2725 {
2726 sal.line = SYMBOL_LINE (BLOCK_FUNCTION (function_block));
2727 sal.symtab = SYMBOL_SYMTAB (BLOCK_FUNCTION (function_block));
2728 }
2729
2730 return sal;
2731 }
2732
2733 /* If P is of the form "operator[ \t]+..." where `...' is
2734 some legitimate operator text, return a pointer to the
2735 beginning of the substring of the operator text.
2736 Otherwise, return "". */
2737 char *
2738 operator_chars (char *p, char **end)
2739 {
2740 *end = "";
2741 if (strncmp (p, "operator", 8))
2742 return *end;
2743 p += 8;
2744
2745 /* Don't get faked out by `operator' being part of a longer
2746 identifier. */
2747 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
2748 return *end;
2749
2750 /* Allow some whitespace between `operator' and the operator symbol. */
2751 while (*p == ' ' || *p == '\t')
2752 p++;
2753
2754 /* Recognize 'operator TYPENAME'. */
2755
2756 if (isalpha (*p) || *p == '_' || *p == '$')
2757 {
2758 char *q = p + 1;
2759 while (isalnum (*q) || *q == '_' || *q == '$')
2760 q++;
2761 *end = q;
2762 return p;
2763 }
2764
2765 while (*p)
2766 switch (*p)
2767 {
2768 case '\\': /* regexp quoting */
2769 if (p[1] == '*')
2770 {
2771 if (p[2] == '=') /* 'operator\*=' */
2772 *end = p + 3;
2773 else /* 'operator\*' */
2774 *end = p + 2;
2775 return p;
2776 }
2777 else if (p[1] == '[')
2778 {
2779 if (p[2] == ']')
2780 error (_("mismatched quoting on brackets, try 'operator\\[\\]'"));
2781 else if (p[2] == '\\' && p[3] == ']')
2782 {
2783 *end = p + 4; /* 'operator\[\]' */
2784 return p;
2785 }
2786 else
2787 error (_("nothing is allowed between '[' and ']'"));
2788 }
2789 else
2790 {
2791 /* Gratuitous qoute: skip it and move on. */
2792 p++;
2793 continue;
2794 }
2795 break;
2796 case '!':
2797 case '=':
2798 case '*':
2799 case '/':
2800 case '%':
2801 case '^':
2802 if (p[1] == '=')
2803 *end = p + 2;
2804 else
2805 *end = p + 1;
2806 return p;
2807 case '<':
2808 case '>':
2809 case '+':
2810 case '-':
2811 case '&':
2812 case '|':
2813 if (p[0] == '-' && p[1] == '>')
2814 {
2815 /* Struct pointer member operator 'operator->'. */
2816 if (p[2] == '*')
2817 {
2818 *end = p + 3; /* 'operator->*' */
2819 return p;
2820 }
2821 else if (p[2] == '\\')
2822 {
2823 *end = p + 4; /* Hopefully 'operator->\*' */
2824 return p;
2825 }
2826 else
2827 {
2828 *end = p + 2; /* 'operator->' */
2829 return p;
2830 }
2831 }
2832 if (p[1] == '=' || p[1] == p[0])
2833 *end = p + 2;
2834 else
2835 *end = p + 1;
2836 return p;
2837 case '~':
2838 case ',':
2839 *end = p + 1;
2840 return p;
2841 case '(':
2842 if (p[1] != ')')
2843 error (_("`operator ()' must be specified without whitespace in `()'"));
2844 *end = p + 2;
2845 return p;
2846 case '?':
2847 if (p[1] != ':')
2848 error (_("`operator ?:' must be specified without whitespace in `?:'"));
2849 *end = p + 2;
2850 return p;
2851 case '[':
2852 if (p[1] != ']')
2853 error (_("`operator []' must be specified without whitespace in `[]'"));
2854 *end = p + 2;
2855 return p;
2856 default:
2857 error (_("`operator %s' not supported"), p);
2858 break;
2859 }
2860
2861 *end = "";
2862 return *end;
2863 }
2864 \f
2865
2866 /* If FILE is not already in the table of files, return zero;
2867 otherwise return non-zero. Optionally add FILE to the table if ADD
2868 is non-zero. If *FIRST is non-zero, forget the old table
2869 contents. */
2870 static int
2871 filename_seen (const char *file, int add, int *first)
2872 {
2873 /* Table of files seen so far. */
2874 static const char **tab = NULL;
2875 /* Allocated size of tab in elements.
2876 Start with one 256-byte block (when using GNU malloc.c).
2877 24 is the malloc overhead when range checking is in effect. */
2878 static int tab_alloc_size = (256 - 24) / sizeof (char *);
2879 /* Current size of tab in elements. */
2880 static int tab_cur_size;
2881 const char **p;
2882
2883 if (*first)
2884 {
2885 if (tab == NULL)
2886 tab = (const char **) xmalloc (tab_alloc_size * sizeof (*tab));
2887 tab_cur_size = 0;
2888 }
2889
2890 /* Is FILE in tab? */
2891 for (p = tab; p < tab + tab_cur_size; p++)
2892 if (strcmp (*p, file) == 0)
2893 return 1;
2894
2895 /* No; maybe add it to tab. */
2896 if (add)
2897 {
2898 if (tab_cur_size == tab_alloc_size)
2899 {
2900 tab_alloc_size *= 2;
2901 tab = (const char **) xrealloc ((char *) tab,
2902 tab_alloc_size * sizeof (*tab));
2903 }
2904 tab[tab_cur_size++] = file;
2905 }
2906
2907 return 0;
2908 }
2909
2910 /* Slave routine for sources_info. Force line breaks at ,'s.
2911 NAME is the name to print and *FIRST is nonzero if this is the first
2912 name printed. Set *FIRST to zero. */
2913 static void
2914 output_source_filename (const char *name, int *first)
2915 {
2916 /* Since a single source file can result in several partial symbol
2917 tables, we need to avoid printing it more than once. Note: if
2918 some of the psymtabs are read in and some are not, it gets
2919 printed both under "Source files for which symbols have been
2920 read" and "Source files for which symbols will be read in on
2921 demand". I consider this a reasonable way to deal with the
2922 situation. I'm not sure whether this can also happen for
2923 symtabs; it doesn't hurt to check. */
2924
2925 /* Was NAME already seen? */
2926 if (filename_seen (name, 1, first))
2927 {
2928 /* Yes; don't print it again. */
2929 return;
2930 }
2931 /* No; print it and reset *FIRST. */
2932 if (*first)
2933 {
2934 *first = 0;
2935 }
2936 else
2937 {
2938 printf_filtered (", ");
2939 }
2940
2941 wrap_here ("");
2942 fputs_filtered (name, gdb_stdout);
2943 }
2944
2945 static void
2946 sources_info (char *ignore, int from_tty)
2947 {
2948 struct symtab *s;
2949 struct partial_symtab *ps;
2950 struct objfile *objfile;
2951 int first;
2952
2953 if (!have_full_symbols () && !have_partial_symbols ())
2954 {
2955 error (_("No symbol table is loaded. Use the \"file\" command."));
2956 }
2957
2958 printf_filtered ("Source files for which symbols have been read in:\n\n");
2959
2960 first = 1;
2961 ALL_SYMTABS (objfile, s)
2962 {
2963 const char *fullname = symtab_to_fullname (s);
2964 output_source_filename (fullname ? fullname : s->filename, &first);
2965 }
2966 printf_filtered ("\n\n");
2967
2968 printf_filtered ("Source files for which symbols will be read in on demand:\n\n");
2969
2970 first = 1;
2971 ALL_PSYMTABS (objfile, ps)
2972 {
2973 if (!ps->readin)
2974 {
2975 const char *fullname = psymtab_to_fullname (ps);
2976 output_source_filename (fullname ? fullname : ps->filename, &first);
2977 }
2978 }
2979 printf_filtered ("\n");
2980 }
2981
2982 static int
2983 file_matches (char *file, char *files[], int nfiles)
2984 {
2985 int i;
2986
2987 if (file != NULL && nfiles != 0)
2988 {
2989 for (i = 0; i < nfiles; i++)
2990 {
2991 if (strcmp (files[i], lbasename (file)) == 0)
2992 return 1;
2993 }
2994 }
2995 else if (nfiles == 0)
2996 return 1;
2997 return 0;
2998 }
2999
3000 /* Free any memory associated with a search. */
3001 void
3002 free_search_symbols (struct symbol_search *symbols)
3003 {
3004 struct symbol_search *p;
3005 struct symbol_search *next;
3006
3007 for (p = symbols; p != NULL; p = next)
3008 {
3009 next = p->next;
3010 xfree (p);
3011 }
3012 }
3013
3014 static void
3015 do_free_search_symbols_cleanup (void *symbols)
3016 {
3017 free_search_symbols (symbols);
3018 }
3019
3020 struct cleanup *
3021 make_cleanup_free_search_symbols (struct symbol_search *symbols)
3022 {
3023 return make_cleanup (do_free_search_symbols_cleanup, symbols);
3024 }
3025
3026 /* Helper function for sort_search_symbols and qsort. Can only
3027 sort symbols, not minimal symbols. */
3028 static int
3029 compare_search_syms (const void *sa, const void *sb)
3030 {
3031 struct symbol_search **sym_a = (struct symbol_search **) sa;
3032 struct symbol_search **sym_b = (struct symbol_search **) sb;
3033
3034 return strcmp (SYMBOL_PRINT_NAME ((*sym_a)->symbol),
3035 SYMBOL_PRINT_NAME ((*sym_b)->symbol));
3036 }
3037
3038 /* Sort the ``nfound'' symbols in the list after prevtail. Leave
3039 prevtail where it is, but update its next pointer to point to
3040 the first of the sorted symbols. */
3041 static struct symbol_search *
3042 sort_search_symbols (struct symbol_search *prevtail, int nfound)
3043 {
3044 struct symbol_search **symbols, *symp, *old_next;
3045 int i;
3046
3047 symbols = (struct symbol_search **) xmalloc (sizeof (struct symbol_search *)
3048 * nfound);
3049 symp = prevtail->next;
3050 for (i = 0; i < nfound; i++)
3051 {
3052 symbols[i] = symp;
3053 symp = symp->next;
3054 }
3055 /* Generally NULL. */
3056 old_next = symp;
3057
3058 qsort (symbols, nfound, sizeof (struct symbol_search *),
3059 compare_search_syms);
3060
3061 symp = prevtail;
3062 for (i = 0; i < nfound; i++)
3063 {
3064 symp->next = symbols[i];
3065 symp = symp->next;
3066 }
3067 symp->next = old_next;
3068
3069 xfree (symbols);
3070 return symp;
3071 }
3072
3073 /* Search the symbol table for matches to the regular expression REGEXP,
3074 returning the results in *MATCHES.
3075
3076 Only symbols of KIND are searched:
3077 FUNCTIONS_DOMAIN - search all functions
3078 TYPES_DOMAIN - search all type names
3079 VARIABLES_DOMAIN - search all symbols, excluding functions, type names,
3080 and constants (enums)
3081
3082 free_search_symbols should be called when *MATCHES is no longer needed.
3083
3084 The results are sorted locally; each symtab's global and static blocks are
3085 separately alphabetized.
3086 */
3087 void
3088 search_symbols (char *regexp, domain_enum kind, int nfiles, char *files[],
3089 struct symbol_search **matches)
3090 {
3091 struct symtab *s;
3092 struct partial_symtab *ps;
3093 struct blockvector *bv;
3094 struct block *b;
3095 int i = 0;
3096 struct dict_iterator iter;
3097 struct symbol *sym;
3098 struct partial_symbol **psym;
3099 struct objfile *objfile;
3100 struct minimal_symbol *msymbol;
3101 char *val;
3102 int found_misc = 0;
3103 static enum minimal_symbol_type types[]
3104 =
3105 {mst_data, mst_text, mst_abs, mst_unknown};
3106 static enum minimal_symbol_type types2[]
3107 =
3108 {mst_bss, mst_file_text, mst_abs, mst_unknown};
3109 static enum minimal_symbol_type types3[]
3110 =
3111 {mst_file_data, mst_solib_trampoline, mst_abs, mst_unknown};
3112 static enum minimal_symbol_type types4[]
3113 =
3114 {mst_file_bss, mst_text, mst_abs, mst_unknown};
3115 enum minimal_symbol_type ourtype;
3116 enum minimal_symbol_type ourtype2;
3117 enum minimal_symbol_type ourtype3;
3118 enum minimal_symbol_type ourtype4;
3119 struct symbol_search *sr;
3120 struct symbol_search *psr;
3121 struct symbol_search *tail;
3122 struct cleanup *old_chain = NULL;
3123
3124 if (kind < VARIABLES_DOMAIN)
3125 error (_("must search on specific domain"));
3126
3127 ourtype = types[(int) (kind - VARIABLES_DOMAIN)];
3128 ourtype2 = types2[(int) (kind - VARIABLES_DOMAIN)];
3129 ourtype3 = types3[(int) (kind - VARIABLES_DOMAIN)];
3130 ourtype4 = types4[(int) (kind - VARIABLES_DOMAIN)];
3131
3132 sr = *matches = NULL;
3133 tail = NULL;
3134
3135 if (regexp != NULL)
3136 {
3137 /* Make sure spacing is right for C++ operators.
3138 This is just a courtesy to make the matching less sensitive
3139 to how many spaces the user leaves between 'operator'
3140 and <TYPENAME> or <OPERATOR>. */
3141 char *opend;
3142 char *opname = operator_chars (regexp, &opend);
3143 if (*opname)
3144 {
3145 int fix = -1; /* -1 means ok; otherwise number of spaces needed. */
3146 if (isalpha (*opname) || *opname == '_' || *opname == '$')
3147 {
3148 /* There should 1 space between 'operator' and 'TYPENAME'. */
3149 if (opname[-1] != ' ' || opname[-2] == ' ')
3150 fix = 1;
3151 }
3152 else
3153 {
3154 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
3155 if (opname[-1] == ' ')
3156 fix = 0;
3157 }
3158 /* If wrong number of spaces, fix it. */
3159 if (fix >= 0)
3160 {
3161 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
3162 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
3163 regexp = tmp;
3164 }
3165 }
3166
3167 if (0 != (val = re_comp (regexp)))
3168 error (_("Invalid regexp (%s): %s"), val, regexp);
3169 }
3170
3171 /* Search through the partial symtabs *first* for all symbols
3172 matching the regexp. That way we don't have to reproduce all of
3173 the machinery below. */
3174
3175 ALL_PSYMTABS (objfile, ps)
3176 {
3177 struct partial_symbol **bound, **gbound, **sbound;
3178 int keep_going = 1;
3179
3180 if (ps->readin)
3181 continue;
3182
3183 gbound = objfile->global_psymbols.list + ps->globals_offset + ps->n_global_syms;
3184 sbound = objfile->static_psymbols.list + ps->statics_offset + ps->n_static_syms;
3185 bound = gbound;
3186
3187 /* Go through all of the symbols stored in a partial
3188 symtab in one loop. */
3189 psym = objfile->global_psymbols.list + ps->globals_offset;
3190 while (keep_going)
3191 {
3192 if (psym >= bound)
3193 {
3194 if (bound == gbound && ps->n_static_syms != 0)
3195 {
3196 psym = objfile->static_psymbols.list + ps->statics_offset;
3197 bound = sbound;
3198 }
3199 else
3200 keep_going = 0;
3201 continue;
3202 }
3203 else
3204 {
3205 QUIT;
3206
3207 /* If it would match (logic taken from loop below)
3208 load the file and go on to the next one. We check the
3209 filename here, but that's a bit bogus: we don't know
3210 what file it really comes from until we have full
3211 symtabs. The symbol might be in a header file included by
3212 this psymtab. This only affects Insight. */
3213 if (file_matches (ps->filename, files, nfiles)
3214 && ((regexp == NULL
3215 || re_exec (SYMBOL_NATURAL_NAME (*psym)) != 0)
3216 && ((kind == VARIABLES_DOMAIN && SYMBOL_CLASS (*psym) != LOC_TYPEDEF
3217 && SYMBOL_CLASS (*psym) != LOC_BLOCK)
3218 || (kind == FUNCTIONS_DOMAIN && SYMBOL_CLASS (*psym) == LOC_BLOCK)
3219 || (kind == TYPES_DOMAIN && SYMBOL_CLASS (*psym) == LOC_TYPEDEF))))
3220 {
3221 PSYMTAB_TO_SYMTAB (ps);
3222 keep_going = 0;
3223 }
3224 }
3225 psym++;
3226 }
3227 }
3228
3229 /* Here, we search through the minimal symbol tables for functions
3230 and variables that match, and force their symbols to be read.
3231 This is in particular necessary for demangled variable names,
3232 which are no longer put into the partial symbol tables.
3233 The symbol will then be found during the scan of symtabs below.
3234
3235 For functions, find_pc_symtab should succeed if we have debug info
3236 for the function, for variables we have to call lookup_symbol
3237 to determine if the variable has debug info.
3238 If the lookup fails, set found_misc so that we will rescan to print
3239 any matching symbols without debug info.
3240 */
3241
3242 if (nfiles == 0 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
3243 {
3244 ALL_MSYMBOLS (objfile, msymbol)
3245 {
3246 if (MSYMBOL_TYPE (msymbol) == ourtype ||
3247 MSYMBOL_TYPE (msymbol) == ourtype2 ||
3248 MSYMBOL_TYPE (msymbol) == ourtype3 ||
3249 MSYMBOL_TYPE (msymbol) == ourtype4)
3250 {
3251 if (regexp == NULL
3252 || re_exec (SYMBOL_NATURAL_NAME (msymbol)) != 0)
3253 {
3254 if (0 == find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol)))
3255 {
3256 /* FIXME: carlton/2003-02-04: Given that the
3257 semantics of lookup_symbol keeps on changing
3258 slightly, it would be a nice idea if we had a
3259 function lookup_symbol_minsym that found the
3260 symbol associated to a given minimal symbol (if
3261 any). */
3262 if (kind == FUNCTIONS_DOMAIN
3263 || lookup_symbol (SYMBOL_LINKAGE_NAME (msymbol),
3264 (struct block *) NULL,
3265 VAR_DOMAIN, 0)
3266 == NULL)
3267 found_misc = 1;
3268 }
3269 }
3270 }
3271 }
3272 }
3273
3274 ALL_PRIMARY_SYMTABS (objfile, s)
3275 {
3276 bv = BLOCKVECTOR (s);
3277 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
3278 {
3279 struct symbol_search *prevtail = tail;
3280 int nfound = 0;
3281 b = BLOCKVECTOR_BLOCK (bv, i);
3282 ALL_BLOCK_SYMBOLS (b, iter, sym)
3283 {
3284 struct symtab *real_symtab = SYMBOL_SYMTAB (sym);
3285 QUIT;
3286
3287 if (file_matches (real_symtab->filename, files, nfiles)
3288 && ((regexp == NULL
3289 || re_exec (SYMBOL_NATURAL_NAME (sym)) != 0)
3290 && ((kind == VARIABLES_DOMAIN && SYMBOL_CLASS (sym) != LOC_TYPEDEF
3291 && SYMBOL_CLASS (sym) != LOC_BLOCK
3292 && SYMBOL_CLASS (sym) != LOC_CONST)
3293 || (kind == FUNCTIONS_DOMAIN && SYMBOL_CLASS (sym) == LOC_BLOCK)
3294 || (kind == TYPES_DOMAIN && SYMBOL_CLASS (sym) == LOC_TYPEDEF))))
3295 {
3296 /* match */
3297 psr = (struct symbol_search *) xmalloc (sizeof (struct symbol_search));
3298 psr->block = i;
3299 psr->symtab = real_symtab;
3300 psr->symbol = sym;
3301 psr->msymbol = NULL;
3302 psr->next = NULL;
3303 if (tail == NULL)
3304 sr = psr;
3305 else
3306 tail->next = psr;
3307 tail = psr;
3308 nfound ++;
3309 }
3310 }
3311 if (nfound > 0)
3312 {
3313 if (prevtail == NULL)
3314 {
3315 struct symbol_search dummy;
3316
3317 dummy.next = sr;
3318 tail = sort_search_symbols (&dummy, nfound);
3319 sr = dummy.next;
3320
3321 old_chain = make_cleanup_free_search_symbols (sr);
3322 }
3323 else
3324 tail = sort_search_symbols (prevtail, nfound);
3325 }
3326 }
3327 }
3328
3329 /* If there are no eyes, avoid all contact. I mean, if there are
3330 no debug symbols, then print directly from the msymbol_vector. */
3331
3332 if (found_misc || kind != FUNCTIONS_DOMAIN)
3333 {
3334 ALL_MSYMBOLS (objfile, msymbol)
3335 {
3336 if (MSYMBOL_TYPE (msymbol) == ourtype ||
3337 MSYMBOL_TYPE (msymbol) == ourtype2 ||
3338 MSYMBOL_TYPE (msymbol) == ourtype3 ||
3339 MSYMBOL_TYPE (msymbol) == ourtype4)
3340 {
3341 if (regexp == NULL
3342 || re_exec (SYMBOL_NATURAL_NAME (msymbol)) != 0)
3343 {
3344 /* Functions: Look up by address. */
3345 if (kind != FUNCTIONS_DOMAIN ||
3346 (0 == find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol))))
3347 {
3348 /* Variables/Absolutes: Look up by name */
3349 if (lookup_symbol (SYMBOL_LINKAGE_NAME (msymbol),
3350 (struct block *) NULL, VAR_DOMAIN, 0)
3351 == NULL)
3352 {
3353 /* match */
3354 psr = (struct symbol_search *) xmalloc (sizeof (struct symbol_search));
3355 psr->block = i;
3356 psr->msymbol = msymbol;
3357 psr->symtab = NULL;
3358 psr->symbol = NULL;
3359 psr->next = NULL;
3360 if (tail == NULL)
3361 {
3362 sr = psr;
3363 old_chain = make_cleanup_free_search_symbols (sr);
3364 }
3365 else
3366 tail->next = psr;
3367 tail = psr;
3368 }
3369 }
3370 }
3371 }
3372 }
3373 }
3374
3375 *matches = sr;
3376 if (sr != NULL)
3377 discard_cleanups (old_chain);
3378 }
3379
3380 /* Helper function for symtab_symbol_info, this function uses
3381 the data returned from search_symbols() to print information
3382 regarding the match to gdb_stdout.
3383 */
3384 static void
3385 print_symbol_info (domain_enum kind, struct symtab *s, struct symbol *sym,
3386 int block, char *last)
3387 {
3388 if (last == NULL || strcmp (last, s->filename) != 0)
3389 {
3390 fputs_filtered ("\nFile ", gdb_stdout);
3391 fputs_filtered (s->filename, gdb_stdout);
3392 fputs_filtered (":\n", gdb_stdout);
3393 }
3394
3395 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
3396 printf_filtered ("static ");
3397
3398 /* Typedef that is not a C++ class */
3399 if (kind == TYPES_DOMAIN
3400 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
3401 typedef_print (SYMBOL_TYPE (sym), sym, gdb_stdout);
3402 /* variable, func, or typedef-that-is-c++-class */
3403 else if (kind < TYPES_DOMAIN ||
3404 (kind == TYPES_DOMAIN &&
3405 SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
3406 {
3407 type_print (SYMBOL_TYPE (sym),
3408 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
3409 ? "" : SYMBOL_PRINT_NAME (sym)),
3410 gdb_stdout, 0);
3411
3412 printf_filtered (";\n");
3413 }
3414 }
3415
3416 /* This help function for symtab_symbol_info() prints information
3417 for non-debugging symbols to gdb_stdout.
3418 */
3419 static void
3420 print_msymbol_info (struct minimal_symbol *msymbol)
3421 {
3422 struct gdbarch *gdbarch = get_objfile_arch (msymbol_objfile (msymbol));
3423 char *tmp;
3424
3425 if (gdbarch_addr_bit (gdbarch) <= 32)
3426 tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol)
3427 & (CORE_ADDR) 0xffffffff,
3428 8);
3429 else
3430 tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol),
3431 16);
3432 printf_filtered ("%s %s\n",
3433 tmp, SYMBOL_PRINT_NAME (msymbol));
3434 }
3435
3436 /* This is the guts of the commands "info functions", "info types", and
3437 "info variables". It calls search_symbols to find all matches and then
3438 print_[m]symbol_info to print out some useful information about the
3439 matches.
3440 */
3441 static void
3442 symtab_symbol_info (char *regexp, domain_enum kind, int from_tty)
3443 {
3444 static char *classnames[]
3445 =
3446 {"variable", "function", "type", "method"};
3447 struct symbol_search *symbols;
3448 struct symbol_search *p;
3449 struct cleanup *old_chain;
3450 char *last_filename = NULL;
3451 int first = 1;
3452
3453 /* must make sure that if we're interrupted, symbols gets freed */
3454 search_symbols (regexp, kind, 0, (char **) NULL, &symbols);
3455 old_chain = make_cleanup_free_search_symbols (symbols);
3456
3457 printf_filtered (regexp
3458 ? "All %ss matching regular expression \"%s\":\n"
3459 : "All defined %ss:\n",
3460 classnames[(int) (kind - VARIABLES_DOMAIN)], regexp);
3461
3462 for (p = symbols; p != NULL; p = p->next)
3463 {
3464 QUIT;
3465
3466 if (p->msymbol != NULL)
3467 {
3468 if (first)
3469 {
3470 printf_filtered ("\nNon-debugging symbols:\n");
3471 first = 0;
3472 }
3473 print_msymbol_info (p->msymbol);
3474 }
3475 else
3476 {
3477 print_symbol_info (kind,
3478 p->symtab,
3479 p->symbol,
3480 p->block,
3481 last_filename);
3482 last_filename = p->symtab->filename;
3483 }
3484 }
3485
3486 do_cleanups (old_chain);
3487 }
3488
3489 static void
3490 variables_info (char *regexp, int from_tty)
3491 {
3492 symtab_symbol_info (regexp, VARIABLES_DOMAIN, from_tty);
3493 }
3494
3495 static void
3496 functions_info (char *regexp, int from_tty)
3497 {
3498 symtab_symbol_info (regexp, FUNCTIONS_DOMAIN, from_tty);
3499 }
3500
3501
3502 static void
3503 types_info (char *regexp, int from_tty)
3504 {
3505 symtab_symbol_info (regexp, TYPES_DOMAIN, from_tty);
3506 }
3507
3508 /* Breakpoint all functions matching regular expression. */
3509
3510 void
3511 rbreak_command_wrapper (char *regexp, int from_tty)
3512 {
3513 rbreak_command (regexp, from_tty);
3514 }
3515
3516 static void
3517 rbreak_command (char *regexp, int from_tty)
3518 {
3519 struct symbol_search *ss;
3520 struct symbol_search *p;
3521 struct cleanup *old_chain;
3522
3523 search_symbols (regexp, FUNCTIONS_DOMAIN, 0, (char **) NULL, &ss);
3524 old_chain = make_cleanup_free_search_symbols (ss);
3525
3526 for (p = ss; p != NULL; p = p->next)
3527 {
3528 if (p->msymbol == NULL)
3529 {
3530 char *string = alloca (strlen (p->symtab->filename)
3531 + strlen (SYMBOL_LINKAGE_NAME (p->symbol))
3532 + 4);
3533 strcpy (string, p->symtab->filename);
3534 strcat (string, ":'");
3535 strcat (string, SYMBOL_LINKAGE_NAME (p->symbol));
3536 strcat (string, "'");
3537 break_command (string, from_tty);
3538 print_symbol_info (FUNCTIONS_DOMAIN,
3539 p->symtab,
3540 p->symbol,
3541 p->block,
3542 p->symtab->filename);
3543 }
3544 else
3545 {
3546 char *string = alloca (strlen (SYMBOL_LINKAGE_NAME (p->msymbol))
3547 + 3);
3548 strcpy (string, "'");
3549 strcat (string, SYMBOL_LINKAGE_NAME (p->msymbol));
3550 strcat (string, "'");
3551
3552 break_command (string, from_tty);
3553 printf_filtered ("<function, no debug info> %s;\n",
3554 SYMBOL_PRINT_NAME (p->msymbol));
3555 }
3556 }
3557
3558 do_cleanups (old_chain);
3559 }
3560 \f
3561
3562 /* Helper routine for make_symbol_completion_list. */
3563
3564 static int return_val_size;
3565 static int return_val_index;
3566 static char **return_val;
3567
3568 #define COMPLETION_LIST_ADD_SYMBOL(symbol, sym_text, len, text, word) \
3569 completion_list_add_name \
3570 (SYMBOL_NATURAL_NAME (symbol), (sym_text), (len), (text), (word))
3571
3572 /* Test to see if the symbol specified by SYMNAME (which is already
3573 demangled for C++ symbols) matches SYM_TEXT in the first SYM_TEXT_LEN
3574 characters. If so, add it to the current completion list. */
3575
3576 static void
3577 completion_list_add_name (char *symname, char *sym_text, int sym_text_len,
3578 char *text, char *word)
3579 {
3580 int newsize;
3581 int i;
3582
3583 /* clip symbols that cannot match */
3584
3585 if (strncmp (symname, sym_text, sym_text_len) != 0)
3586 {
3587 return;
3588 }
3589
3590 /* We have a match for a completion, so add SYMNAME to the current list
3591 of matches. Note that the name is moved to freshly malloc'd space. */
3592
3593 {
3594 char *new;
3595 if (word == sym_text)
3596 {
3597 new = xmalloc (strlen (symname) + 5);
3598 strcpy (new, symname);
3599 }
3600 else if (word > sym_text)
3601 {
3602 /* Return some portion of symname. */
3603 new = xmalloc (strlen (symname) + 5);
3604 strcpy (new, symname + (word - sym_text));
3605 }
3606 else
3607 {
3608 /* Return some of SYM_TEXT plus symname. */
3609 new = xmalloc (strlen (symname) + (sym_text - word) + 5);
3610 strncpy (new, word, sym_text - word);
3611 new[sym_text - word] = '\0';
3612 strcat (new, symname);
3613 }
3614
3615 if (return_val_index + 3 > return_val_size)
3616 {
3617 newsize = (return_val_size *= 2) * sizeof (char *);
3618 return_val = (char **) xrealloc ((char *) return_val, newsize);
3619 }
3620 return_val[return_val_index++] = new;
3621 return_val[return_val_index] = NULL;
3622 }
3623 }
3624
3625 /* ObjC: In case we are completing on a selector, look as the msymbol
3626 again and feed all the selectors into the mill. */
3627
3628 static void
3629 completion_list_objc_symbol (struct minimal_symbol *msymbol, char *sym_text,
3630 int sym_text_len, char *text, char *word)
3631 {
3632 static char *tmp = NULL;
3633 static unsigned int tmplen = 0;
3634
3635 char *method, *category, *selector;
3636 char *tmp2 = NULL;
3637
3638 method = SYMBOL_NATURAL_NAME (msymbol);
3639
3640 /* Is it a method? */
3641 if ((method[0] != '-') && (method[0] != '+'))
3642 return;
3643
3644 if (sym_text[0] == '[')
3645 /* Complete on shortened method method. */
3646 completion_list_add_name (method + 1, sym_text, sym_text_len, text, word);
3647
3648 while ((strlen (method) + 1) >= tmplen)
3649 {
3650 if (tmplen == 0)
3651 tmplen = 1024;
3652 else
3653 tmplen *= 2;
3654 tmp = xrealloc (tmp, tmplen);
3655 }
3656 selector = strchr (method, ' ');
3657 if (selector != NULL)
3658 selector++;
3659
3660 category = strchr (method, '(');
3661
3662 if ((category != NULL) && (selector != NULL))
3663 {
3664 memcpy (tmp, method, (category - method));
3665 tmp[category - method] = ' ';
3666 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
3667 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
3668 if (sym_text[0] == '[')
3669 completion_list_add_name (tmp + 1, sym_text, sym_text_len, text, word);
3670 }
3671
3672 if (selector != NULL)
3673 {
3674 /* Complete on selector only. */
3675 strcpy (tmp, selector);
3676 tmp2 = strchr (tmp, ']');
3677 if (tmp2 != NULL)
3678 *tmp2 = '\0';
3679
3680 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
3681 }
3682 }
3683
3684 /* Break the non-quoted text based on the characters which are in
3685 symbols. FIXME: This should probably be language-specific. */
3686
3687 static char *
3688 language_search_unquoted_string (char *text, char *p)
3689 {
3690 for (; p > text; --p)
3691 {
3692 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
3693 continue;
3694 else
3695 {
3696 if ((current_language->la_language == language_objc))
3697 {
3698 if (p[-1] == ':') /* might be part of a method name */
3699 continue;
3700 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
3701 p -= 2; /* beginning of a method name */
3702 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
3703 { /* might be part of a method name */
3704 char *t = p;
3705
3706 /* Seeing a ' ' or a '(' is not conclusive evidence
3707 that we are in the middle of a method name. However,
3708 finding "-[" or "+[" should be pretty un-ambiguous.
3709 Unfortunately we have to find it now to decide. */
3710
3711 while (t > text)
3712 if (isalnum (t[-1]) || t[-1] == '_' ||
3713 t[-1] == ' ' || t[-1] == ':' ||
3714 t[-1] == '(' || t[-1] == ')')
3715 --t;
3716 else
3717 break;
3718
3719 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
3720 p = t - 2; /* method name detected */
3721 /* else we leave with p unchanged */
3722 }
3723 }
3724 break;
3725 }
3726 }
3727 return p;
3728 }
3729
3730 static void
3731 completion_list_add_fields (struct symbol *sym, char *sym_text,
3732 int sym_text_len, char *text, char *word)
3733 {
3734 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
3735 {
3736 struct type *t = SYMBOL_TYPE (sym);
3737 enum type_code c = TYPE_CODE (t);
3738 int j;
3739
3740 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
3741 for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++)
3742 if (TYPE_FIELD_NAME (t, j))
3743 completion_list_add_name (TYPE_FIELD_NAME (t, j),
3744 sym_text, sym_text_len, text, word);
3745 }
3746 }
3747
3748 /* Type of the user_data argument passed to add_macro_name. The
3749 contents are simply whatever is needed by
3750 completion_list_add_name. */
3751 struct add_macro_name_data
3752 {
3753 char *sym_text;
3754 int sym_text_len;
3755 char *text;
3756 char *word;
3757 };
3758
3759 /* A callback used with macro_for_each and macro_for_each_in_scope.
3760 This adds a macro's name to the current completion list. */
3761 static void
3762 add_macro_name (const char *name, const struct macro_definition *ignore,
3763 void *user_data)
3764 {
3765 struct add_macro_name_data *datum = (struct add_macro_name_data *) user_data;
3766 completion_list_add_name ((char *) name,
3767 datum->sym_text, datum->sym_text_len,
3768 datum->text, datum->word);
3769 }
3770
3771 char **
3772 default_make_symbol_completion_list (char *text, char *word)
3773 {
3774 /* Problem: All of the symbols have to be copied because readline
3775 frees them. I'm not going to worry about this; hopefully there
3776 won't be that many. */
3777
3778 struct symbol *sym;
3779 struct symtab *s;
3780 struct partial_symtab *ps;
3781 struct minimal_symbol *msymbol;
3782 struct objfile *objfile;
3783 struct block *b;
3784 const struct block *surrounding_static_block, *surrounding_global_block;
3785 struct dict_iterator iter;
3786 struct partial_symbol **psym;
3787 /* The symbol we are completing on. Points in same buffer as text. */
3788 char *sym_text;
3789 /* Length of sym_text. */
3790 int sym_text_len;
3791
3792 /* Now look for the symbol we are supposed to complete on. */
3793 {
3794 char *p;
3795 char quote_found;
3796 char *quote_pos = NULL;
3797
3798 /* First see if this is a quoted string. */
3799 quote_found = '\0';
3800 for (p = text; *p != '\0'; ++p)
3801 {
3802 if (quote_found != '\0')
3803 {
3804 if (*p == quote_found)
3805 /* Found close quote. */
3806 quote_found = '\0';
3807 else if (*p == '\\' && p[1] == quote_found)
3808 /* A backslash followed by the quote character
3809 doesn't end the string. */
3810 ++p;
3811 }
3812 else if (*p == '\'' || *p == '"')
3813 {
3814 quote_found = *p;
3815 quote_pos = p;
3816 }
3817 }
3818 if (quote_found == '\'')
3819 /* A string within single quotes can be a symbol, so complete on it. */
3820 sym_text = quote_pos + 1;
3821 else if (quote_found == '"')
3822 /* A double-quoted string is never a symbol, nor does it make sense
3823 to complete it any other way. */
3824 {
3825 return_val = (char **) xmalloc (sizeof (char *));
3826 return_val[0] = NULL;
3827 return return_val;
3828 }
3829 else
3830 {
3831 /* It is not a quoted string. Break it based on the characters
3832 which are in symbols. */
3833 while (p > text)
3834 {
3835 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
3836 --p;
3837 else
3838 break;
3839 }
3840 sym_text = p;
3841 }
3842 }
3843
3844 sym_text_len = strlen (sym_text);
3845
3846 return_val_size = 100;
3847 return_val_index = 0;
3848 return_val = (char **) xmalloc ((return_val_size + 1) * sizeof (char *));
3849 return_val[0] = NULL;
3850
3851 /* Look through the partial symtabs for all symbols which begin
3852 by matching SYM_TEXT. Add each one that you find to the list. */
3853
3854 ALL_PSYMTABS (objfile, ps)
3855 {
3856 /* If the psymtab's been read in we'll get it when we search
3857 through the blockvector. */
3858 if (ps->readin)
3859 continue;
3860
3861 for (psym = objfile->global_psymbols.list + ps->globals_offset;
3862 psym < (objfile->global_psymbols.list + ps->globals_offset
3863 + ps->n_global_syms);
3864 psym++)
3865 {
3866 /* If interrupted, then quit. */
3867 QUIT;
3868 COMPLETION_LIST_ADD_SYMBOL (*psym, sym_text, sym_text_len, text, word);
3869 }
3870
3871 for (psym = objfile->static_psymbols.list + ps->statics_offset;
3872 psym < (objfile->static_psymbols.list + ps->statics_offset
3873 + ps->n_static_syms);
3874 psym++)
3875 {
3876 QUIT;
3877 COMPLETION_LIST_ADD_SYMBOL (*psym, sym_text, sym_text_len, text, word);
3878 }
3879 }
3880
3881 /* At this point scan through the misc symbol vectors and add each
3882 symbol you find to the list. Eventually we want to ignore
3883 anything that isn't a text symbol (everything else will be
3884 handled by the psymtab code above). */
3885
3886 ALL_MSYMBOLS (objfile, msymbol)
3887 {
3888 QUIT;
3889 COMPLETION_LIST_ADD_SYMBOL (msymbol, sym_text, sym_text_len, text, word);
3890
3891 completion_list_objc_symbol (msymbol, sym_text, sym_text_len, text, word);
3892 }
3893
3894 /* Search upwards from currently selected frame (so that we can
3895 complete on local vars). Also catch fields of types defined in
3896 this places which match our text string. Only complete on types
3897 visible from current context. */
3898
3899 b = get_selected_block (0);
3900 surrounding_static_block = block_static_block (b);
3901 surrounding_global_block = block_global_block (b);
3902 if (surrounding_static_block != NULL)
3903 while (b != surrounding_static_block)
3904 {
3905 QUIT;
3906
3907 ALL_BLOCK_SYMBOLS (b, iter, sym)
3908 {
3909 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text,
3910 word);
3911 completion_list_add_fields (sym, sym_text, sym_text_len, text,
3912 word);
3913 }
3914
3915 /* Stop when we encounter an enclosing function. Do not stop for
3916 non-inlined functions - the locals of the enclosing function
3917 are in scope for a nested function. */
3918 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
3919 break;
3920 b = BLOCK_SUPERBLOCK (b);
3921 }
3922
3923 /* Add fields from the file's types; symbols will be added below. */
3924
3925 if (surrounding_static_block != NULL)
3926 ALL_BLOCK_SYMBOLS (surrounding_static_block, iter, sym)
3927 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
3928
3929 if (surrounding_global_block != NULL)
3930 ALL_BLOCK_SYMBOLS (surrounding_global_block, iter, sym)
3931 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
3932
3933 /* Go through the symtabs and check the externs and statics for
3934 symbols which match. */
3935
3936 ALL_PRIMARY_SYMTABS (objfile, s)
3937 {
3938 QUIT;
3939 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
3940 ALL_BLOCK_SYMBOLS (b, iter, sym)
3941 {
3942 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
3943 }
3944 }
3945
3946 ALL_PRIMARY_SYMTABS (objfile, s)
3947 {
3948 QUIT;
3949 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
3950 ALL_BLOCK_SYMBOLS (b, iter, sym)
3951 {
3952 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
3953 }
3954 }
3955
3956 if (current_language->la_macro_expansion == macro_expansion_c)
3957 {
3958 struct macro_scope *scope;
3959 struct add_macro_name_data datum;
3960
3961 datum.sym_text = sym_text;
3962 datum.sym_text_len = sym_text_len;
3963 datum.text = text;
3964 datum.word = word;
3965
3966 /* Add any macros visible in the default scope. Note that this
3967 may yield the occasional wrong result, because an expression
3968 might be evaluated in a scope other than the default. For
3969 example, if the user types "break file:line if <TAB>", the
3970 resulting expression will be evaluated at "file:line" -- but
3971 at there does not seem to be a way to detect this at
3972 completion time. */
3973 scope = default_macro_scope ();
3974 if (scope)
3975 {
3976 macro_for_each_in_scope (scope->file, scope->line,
3977 add_macro_name, &datum);
3978 xfree (scope);
3979 }
3980
3981 /* User-defined macros are always visible. */
3982 macro_for_each (macro_user_macros, add_macro_name, &datum);
3983 }
3984
3985 return (return_val);
3986 }
3987
3988 /* Return a NULL terminated array of all symbols (regardless of class)
3989 which begin by matching TEXT. If the answer is no symbols, then
3990 the return value is an array which contains only a NULL pointer. */
3991
3992 char **
3993 make_symbol_completion_list (char *text, char *word)
3994 {
3995 return current_language->la_make_symbol_completion_list (text, word);
3996 }
3997
3998 /* Like make_symbol_completion_list, but suitable for use as a
3999 completion function. */
4000
4001 char **
4002 make_symbol_completion_list_fn (struct cmd_list_element *ignore,
4003 char *text, char *word)
4004 {
4005 return make_symbol_completion_list (text, word);
4006 }
4007
4008 /* Like make_symbol_completion_list, but returns a list of symbols
4009 defined in a source file FILE. */
4010
4011 char **
4012 make_file_symbol_completion_list (char *text, char *word, char *srcfile)
4013 {
4014 struct symbol *sym;
4015 struct symtab *s;
4016 struct block *b;
4017 struct dict_iterator iter;
4018 /* The symbol we are completing on. Points in same buffer as text. */
4019 char *sym_text;
4020 /* Length of sym_text. */
4021 int sym_text_len;
4022
4023 /* Now look for the symbol we are supposed to complete on.
4024 FIXME: This should be language-specific. */
4025 {
4026 char *p;
4027 char quote_found;
4028 char *quote_pos = NULL;
4029
4030 /* First see if this is a quoted string. */
4031 quote_found = '\0';
4032 for (p = text; *p != '\0'; ++p)
4033 {
4034 if (quote_found != '\0')
4035 {
4036 if (*p == quote_found)
4037 /* Found close quote. */
4038 quote_found = '\0';
4039 else if (*p == '\\' && p[1] == quote_found)
4040 /* A backslash followed by the quote character
4041 doesn't end the string. */
4042 ++p;
4043 }
4044 else if (*p == '\'' || *p == '"')
4045 {
4046 quote_found = *p;
4047 quote_pos = p;
4048 }
4049 }
4050 if (quote_found == '\'')
4051 /* A string within single quotes can be a symbol, so complete on it. */
4052 sym_text = quote_pos + 1;
4053 else if (quote_found == '"')
4054 /* A double-quoted string is never a symbol, nor does it make sense
4055 to complete it any other way. */
4056 {
4057 return_val = (char **) xmalloc (sizeof (char *));
4058 return_val[0] = NULL;
4059 return return_val;
4060 }
4061 else
4062 {
4063 /* Not a quoted string. */
4064 sym_text = language_search_unquoted_string (text, p);
4065 }
4066 }
4067
4068 sym_text_len = strlen (sym_text);
4069
4070 return_val_size = 10;
4071 return_val_index = 0;
4072 return_val = (char **) xmalloc ((return_val_size + 1) * sizeof (char *));
4073 return_val[0] = NULL;
4074
4075 /* Find the symtab for SRCFILE (this loads it if it was not yet read
4076 in). */
4077 s = lookup_symtab (srcfile);
4078 if (s == NULL)
4079 {
4080 /* Maybe they typed the file with leading directories, while the
4081 symbol tables record only its basename. */
4082 const char *tail = lbasename (srcfile);
4083
4084 if (tail > srcfile)
4085 s = lookup_symtab (tail);
4086 }
4087
4088 /* If we have no symtab for that file, return an empty list. */
4089 if (s == NULL)
4090 return (return_val);
4091
4092 /* Go through this symtab and check the externs and statics for
4093 symbols which match. */
4094
4095 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
4096 ALL_BLOCK_SYMBOLS (b, iter, sym)
4097 {
4098 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4099 }
4100
4101 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
4102 ALL_BLOCK_SYMBOLS (b, iter, sym)
4103 {
4104 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4105 }
4106
4107 return (return_val);
4108 }
4109
4110 /* A helper function for make_source_files_completion_list. It adds
4111 another file name to a list of possible completions, growing the
4112 list as necessary. */
4113
4114 static void
4115 add_filename_to_list (const char *fname, char *text, char *word,
4116 char ***list, int *list_used, int *list_alloced)
4117 {
4118 char *new;
4119 size_t fnlen = strlen (fname);
4120
4121 if (*list_used + 1 >= *list_alloced)
4122 {
4123 *list_alloced *= 2;
4124 *list = (char **) xrealloc ((char *) *list,
4125 *list_alloced * sizeof (char *));
4126 }
4127
4128 if (word == text)
4129 {
4130 /* Return exactly fname. */
4131 new = xmalloc (fnlen + 5);
4132 strcpy (new, fname);
4133 }
4134 else if (word > text)
4135 {
4136 /* Return some portion of fname. */
4137 new = xmalloc (fnlen + 5);
4138 strcpy (new, fname + (word - text));
4139 }
4140 else
4141 {
4142 /* Return some of TEXT plus fname. */
4143 new = xmalloc (fnlen + (text - word) + 5);
4144 strncpy (new, word, text - word);
4145 new[text - word] = '\0';
4146 strcat (new, fname);
4147 }
4148 (*list)[*list_used] = new;
4149 (*list)[++*list_used] = NULL;
4150 }
4151
4152 static int
4153 not_interesting_fname (const char *fname)
4154 {
4155 static const char *illegal_aliens[] = {
4156 "_globals_", /* inserted by coff_symtab_read */
4157 NULL
4158 };
4159 int i;
4160
4161 for (i = 0; illegal_aliens[i]; i++)
4162 {
4163 if (strcmp (fname, illegal_aliens[i]) == 0)
4164 return 1;
4165 }
4166 return 0;
4167 }
4168
4169 /* Return a NULL terminated array of all source files whose names
4170 begin with matching TEXT. The file names are looked up in the
4171 symbol tables of this program. If the answer is no matchess, then
4172 the return value is an array which contains only a NULL pointer. */
4173
4174 char **
4175 make_source_files_completion_list (char *text, char *word)
4176 {
4177 struct symtab *s;
4178 struct partial_symtab *ps;
4179 struct objfile *objfile;
4180 int first = 1;
4181 int list_alloced = 1;
4182 int list_used = 0;
4183 size_t text_len = strlen (text);
4184 char **list = (char **) xmalloc (list_alloced * sizeof (char *));
4185 const char *base_name;
4186
4187 list[0] = NULL;
4188
4189 if (!have_full_symbols () && !have_partial_symbols ())
4190 return list;
4191
4192 ALL_SYMTABS (objfile, s)
4193 {
4194 if (not_interesting_fname (s->filename))
4195 continue;
4196 if (!filename_seen (s->filename, 1, &first)
4197 #if HAVE_DOS_BASED_FILE_SYSTEM
4198 && strncasecmp (s->filename, text, text_len) == 0
4199 #else
4200 && strncmp (s->filename, text, text_len) == 0
4201 #endif
4202 )
4203 {
4204 /* This file matches for a completion; add it to the current
4205 list of matches. */
4206 add_filename_to_list (s->filename, text, word,
4207 &list, &list_used, &list_alloced);
4208 }
4209 else
4210 {
4211 /* NOTE: We allow the user to type a base name when the
4212 debug info records leading directories, but not the other
4213 way around. This is what subroutines of breakpoint
4214 command do when they parse file names. */
4215 base_name = lbasename (s->filename);
4216 if (base_name != s->filename
4217 && !filename_seen (base_name, 1, &first)
4218 #if HAVE_DOS_BASED_FILE_SYSTEM
4219 && strncasecmp (base_name, text, text_len) == 0
4220 #else
4221 && strncmp (base_name, text, text_len) == 0
4222 #endif
4223 )
4224 add_filename_to_list (base_name, text, word,
4225 &list, &list_used, &list_alloced);
4226 }
4227 }
4228
4229 ALL_PSYMTABS (objfile, ps)
4230 {
4231 if (not_interesting_fname (ps->filename))
4232 continue;
4233 if (!ps->readin)
4234 {
4235 if (!filename_seen (ps->filename, 1, &first)
4236 #if HAVE_DOS_BASED_FILE_SYSTEM
4237 && strncasecmp (ps->filename, text, text_len) == 0
4238 #else
4239 && strncmp (ps->filename, text, text_len) == 0
4240 #endif
4241 )
4242 {
4243 /* This file matches for a completion; add it to the
4244 current list of matches. */
4245 add_filename_to_list (ps->filename, text, word,
4246 &list, &list_used, &list_alloced);
4247
4248 }
4249 else
4250 {
4251 base_name = lbasename (ps->filename);
4252 if (base_name != ps->filename
4253 && !filename_seen (base_name, 1, &first)
4254 #if HAVE_DOS_BASED_FILE_SYSTEM
4255 && strncasecmp (base_name, text, text_len) == 0
4256 #else
4257 && strncmp (base_name, text, text_len) == 0
4258 #endif
4259 )
4260 add_filename_to_list (base_name, text, word,
4261 &list, &list_used, &list_alloced);
4262 }
4263 }
4264 }
4265
4266 return list;
4267 }
4268
4269 /* Determine if PC is in the prologue of a function. The prologue is the area
4270 between the first instruction of a function, and the first executable line.
4271 Returns 1 if PC *might* be in prologue, 0 if definately *not* in prologue.
4272
4273 If non-zero, func_start is where we think the prologue starts, possibly
4274 by previous examination of symbol table information.
4275 */
4276
4277 int
4278 in_prologue (struct gdbarch *gdbarch, CORE_ADDR pc, CORE_ADDR func_start)
4279 {
4280 struct symtab_and_line sal;
4281 CORE_ADDR func_addr, func_end;
4282
4283 /* We have several sources of information we can consult to figure
4284 this out.
4285 - Compilers usually emit line number info that marks the prologue
4286 as its own "source line". So the ending address of that "line"
4287 is the end of the prologue. If available, this is the most
4288 reliable method.
4289 - The minimal symbols and partial symbols, which can usually tell
4290 us the starting and ending addresses of a function.
4291 - If we know the function's start address, we can call the
4292 architecture-defined gdbarch_skip_prologue function to analyze the
4293 instruction stream and guess where the prologue ends.
4294 - Our `func_start' argument; if non-zero, this is the caller's
4295 best guess as to the function's entry point. At the time of
4296 this writing, handle_inferior_event doesn't get this right, so
4297 it should be our last resort. */
4298
4299 /* Consult the partial symbol table, to find which function
4300 the PC is in. */
4301 if (! find_pc_partial_function (pc, NULL, &func_addr, &func_end))
4302 {
4303 CORE_ADDR prologue_end;
4304
4305 /* We don't even have minsym information, so fall back to using
4306 func_start, if given. */
4307 if (! func_start)
4308 return 1; /* We *might* be in a prologue. */
4309
4310 prologue_end = gdbarch_skip_prologue (gdbarch, func_start);
4311
4312 return func_start <= pc && pc < prologue_end;
4313 }
4314
4315 /* If we have line number information for the function, that's
4316 usually pretty reliable. */
4317 sal = find_pc_line (func_addr, 0);
4318
4319 /* Now sal describes the source line at the function's entry point,
4320 which (by convention) is the prologue. The end of that "line",
4321 sal.end, is the end of the prologue.
4322
4323 Note that, for functions whose source code is all on a single
4324 line, the line number information doesn't always end up this way.
4325 So we must verify that our purported end-of-prologue address is
4326 *within* the function, not at its start or end. */
4327 if (sal.line == 0
4328 || sal.end <= func_addr
4329 || func_end <= sal.end)
4330 {
4331 /* We don't have any good line number info, so use the minsym
4332 information, together with the architecture-specific prologue
4333 scanning code. */
4334 CORE_ADDR prologue_end = gdbarch_skip_prologue (gdbarch, func_addr);
4335
4336 return func_addr <= pc && pc < prologue_end;
4337 }
4338
4339 /* We have line number info, and it looks good. */
4340 return func_addr <= pc && pc < sal.end;
4341 }
4342
4343 /* Given PC at the function's start address, attempt to find the
4344 prologue end using SAL information. Return zero if the skip fails.
4345
4346 A non-optimized prologue traditionally has one SAL for the function
4347 and a second for the function body. A single line function has
4348 them both pointing at the same line.
4349
4350 An optimized prologue is similar but the prologue may contain
4351 instructions (SALs) from the instruction body. Need to skip those
4352 while not getting into the function body.
4353
4354 The functions end point and an increasing SAL line are used as
4355 indicators of the prologue's endpoint.
4356
4357 This code is based on the function refine_prologue_limit (versions
4358 found in both ia64 and ppc). */
4359
4360 CORE_ADDR
4361 skip_prologue_using_sal (struct gdbarch *gdbarch, CORE_ADDR func_addr)
4362 {
4363 struct symtab_and_line prologue_sal;
4364 CORE_ADDR start_pc;
4365 CORE_ADDR end_pc;
4366 struct block *bl;
4367
4368 /* Get an initial range for the function. */
4369 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
4370 start_pc += gdbarch_deprecated_function_start_offset (gdbarch);
4371
4372 prologue_sal = find_pc_line (start_pc, 0);
4373 if (prologue_sal.line != 0)
4374 {
4375 /* For langauges other than assembly, treat two consecutive line
4376 entries at the same address as a zero-instruction prologue.
4377 The GNU assembler emits separate line notes for each instruction
4378 in a multi-instruction macro, but compilers generally will not
4379 do this. */
4380 if (prologue_sal.symtab->language != language_asm)
4381 {
4382 struct linetable *linetable = LINETABLE (prologue_sal.symtab);
4383 int exact;
4384 int idx = 0;
4385
4386 /* Skip any earlier lines, and any end-of-sequence marker
4387 from a previous function. */
4388 while (linetable->item[idx].pc != prologue_sal.pc
4389 || linetable->item[idx].line == 0)
4390 idx++;
4391
4392 if (idx+1 < linetable->nitems
4393 && linetable->item[idx+1].line != 0
4394 && linetable->item[idx+1].pc == start_pc)
4395 return start_pc;
4396 }
4397
4398 /* If there is only one sal that covers the entire function,
4399 then it is probably a single line function, like
4400 "foo(){}". */
4401 if (prologue_sal.end >= end_pc)
4402 return 0;
4403
4404 while (prologue_sal.end < end_pc)
4405 {
4406 struct symtab_and_line sal;
4407
4408 sal = find_pc_line (prologue_sal.end, 0);
4409 if (sal.line == 0)
4410 break;
4411 /* Assume that a consecutive SAL for the same (or larger)
4412 line mark the prologue -> body transition. */
4413 if (sal.line >= prologue_sal.line)
4414 break;
4415
4416 /* The line number is smaller. Check that it's from the
4417 same function, not something inlined. If it's inlined,
4418 then there is no point comparing the line numbers. */
4419 bl = block_for_pc (prologue_sal.end);
4420 while (bl)
4421 {
4422 if (block_inlined_p (bl))
4423 break;
4424 if (BLOCK_FUNCTION (bl))
4425 {
4426 bl = NULL;
4427 break;
4428 }
4429 bl = BLOCK_SUPERBLOCK (bl);
4430 }
4431 if (bl != NULL)
4432 break;
4433
4434 /* The case in which compiler's optimizer/scheduler has
4435 moved instructions into the prologue. We look ahead in
4436 the function looking for address ranges whose
4437 corresponding line number is less the first one that we
4438 found for the function. This is more conservative then
4439 refine_prologue_limit which scans a large number of SALs
4440 looking for any in the prologue */
4441 prologue_sal = sal;
4442 }
4443 }
4444
4445 if (prologue_sal.end < end_pc)
4446 /* Return the end of this line, or zero if we could not find a
4447 line. */
4448 return prologue_sal.end;
4449 else
4450 /* Don't return END_PC, which is past the end of the function. */
4451 return prologue_sal.pc;
4452 }
4453 \f
4454 struct symtabs_and_lines
4455 decode_line_spec (char *string, int funfirstline)
4456 {
4457 struct symtabs_and_lines sals;
4458 struct symtab_and_line cursal;
4459
4460 if (string == 0)
4461 error (_("Empty line specification."));
4462
4463 /* We use whatever is set as the current source line. We do not try
4464 and get a default or it will recursively call us! */
4465 cursal = get_current_source_symtab_and_line ();
4466
4467 sals = decode_line_1 (&string, funfirstline,
4468 cursal.symtab, cursal.line,
4469 (char ***) NULL, NULL);
4470
4471 if (*string)
4472 error (_("Junk at end of line specification: %s"), string);
4473 return sals;
4474 }
4475
4476 /* Track MAIN */
4477 static char *name_of_main;
4478
4479 void
4480 set_main_name (const char *name)
4481 {
4482 if (name_of_main != NULL)
4483 {
4484 xfree (name_of_main);
4485 name_of_main = NULL;
4486 }
4487 if (name != NULL)
4488 {
4489 name_of_main = xstrdup (name);
4490 }
4491 }
4492
4493 /* Deduce the name of the main procedure, and set NAME_OF_MAIN
4494 accordingly. */
4495
4496 static void
4497 find_main_name (void)
4498 {
4499 const char *new_main_name;
4500
4501 /* Try to see if the main procedure is in Ada. */
4502 /* FIXME: brobecker/2005-03-07: Another way of doing this would
4503 be to add a new method in the language vector, and call this
4504 method for each language until one of them returns a non-empty
4505 name. This would allow us to remove this hard-coded call to
4506 an Ada function. It is not clear that this is a better approach
4507 at this point, because all methods need to be written in a way
4508 such that false positives never be returned. For instance, it is
4509 important that a method does not return a wrong name for the main
4510 procedure if the main procedure is actually written in a different
4511 language. It is easy to guaranty this with Ada, since we use a
4512 special symbol generated only when the main in Ada to find the name
4513 of the main procedure. It is difficult however to see how this can
4514 be guarantied for languages such as C, for instance. This suggests
4515 that order of call for these methods becomes important, which means
4516 a more complicated approach. */
4517 new_main_name = ada_main_name ();
4518 if (new_main_name != NULL)
4519 {
4520 set_main_name (new_main_name);
4521 return;
4522 }
4523
4524 new_main_name = pascal_main_name ();
4525 if (new_main_name != NULL)
4526 {
4527 set_main_name (new_main_name);
4528 return;
4529 }
4530
4531 /* The languages above didn't identify the name of the main procedure.
4532 Fallback to "main". */
4533 set_main_name ("main");
4534 }
4535
4536 char *
4537 main_name (void)
4538 {
4539 if (name_of_main == NULL)
4540 find_main_name ();
4541
4542 return name_of_main;
4543 }
4544
4545 /* Handle ``executable_changed'' events for the symtab module. */
4546
4547 static void
4548 symtab_observer_executable_changed (void)
4549 {
4550 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
4551 set_main_name (NULL);
4552 }
4553
4554 /* Helper to expand_line_sal below. Appends new sal to SAL,
4555 initializing it from SYMTAB, LINENO and PC. */
4556 static void
4557 append_expanded_sal (struct symtabs_and_lines *sal,
4558 struct symtab *symtab,
4559 int lineno, CORE_ADDR pc)
4560 {
4561 sal->sals = xrealloc (sal->sals,
4562 sizeof (sal->sals[0])
4563 * (sal->nelts + 1));
4564 init_sal (sal->sals + sal->nelts);
4565 sal->sals[sal->nelts].symtab = symtab;
4566 sal->sals[sal->nelts].section = NULL;
4567 sal->sals[sal->nelts].end = 0;
4568 sal->sals[sal->nelts].line = lineno;
4569 sal->sals[sal->nelts].pc = pc;
4570 ++sal->nelts;
4571 }
4572
4573 /* Helper to expand_line_sal below. Search in the symtabs for any
4574 linetable entry that exactly matches FILENAME and LINENO and append
4575 them to RET. If there is at least one match, return 1; otherwise,
4576 return 0, and return the best choice in BEST_ITEM and BEST_SYMTAB. */
4577
4578 static int
4579 append_exact_match_to_sals (char *filename, int lineno,
4580 struct symtabs_and_lines *ret,
4581 struct linetable_entry **best_item,
4582 struct symtab **best_symtab)
4583 {
4584 struct objfile *objfile;
4585 struct symtab *symtab;
4586 int exact = 0;
4587 int j;
4588 *best_item = 0;
4589 *best_symtab = 0;
4590
4591 ALL_SYMTABS (objfile, symtab)
4592 {
4593 if (strcmp (filename, symtab->filename) == 0)
4594 {
4595 struct linetable *l;
4596 int len;
4597 l = LINETABLE (symtab);
4598 if (!l)
4599 continue;
4600 len = l->nitems;
4601
4602 for (j = 0; j < len; j++)
4603 {
4604 struct linetable_entry *item = &(l->item[j]);
4605
4606 if (item->line == lineno)
4607 {
4608 exact = 1;
4609 append_expanded_sal (ret, symtab, lineno, item->pc);
4610 }
4611 else if (!exact && item->line > lineno
4612 && (*best_item == NULL
4613 || item->line < (*best_item)->line))
4614 {
4615 *best_item = item;
4616 *best_symtab = symtab;
4617 }
4618 }
4619 }
4620 }
4621 return exact;
4622 }
4623
4624 /* Compute a set of all sals in
4625 the entire program that correspond to same file
4626 and line as SAL and return those. If there
4627 are several sals that belong to the same block,
4628 only one sal for the block is included in results. */
4629
4630 struct symtabs_and_lines
4631 expand_line_sal (struct symtab_and_line sal)
4632 {
4633 struct symtabs_and_lines ret, this_line;
4634 int i, j;
4635 struct objfile *objfile;
4636 struct partial_symtab *psymtab;
4637 struct symtab *symtab;
4638 int lineno;
4639 int deleted = 0;
4640 struct block **blocks = NULL;
4641 int *filter;
4642
4643 ret.nelts = 0;
4644 ret.sals = NULL;
4645
4646 if (sal.symtab == NULL || sal.line == 0 || sal.pc != 0)
4647 {
4648 ret.sals = xmalloc (sizeof (struct symtab_and_line));
4649 ret.sals[0] = sal;
4650 ret.nelts = 1;
4651 return ret;
4652 }
4653 else
4654 {
4655 struct linetable_entry *best_item = 0;
4656 struct symtab *best_symtab = 0;
4657 int exact = 0;
4658
4659 lineno = sal.line;
4660
4661 /* We need to find all symtabs for a file which name
4662 is described by sal. We cannot just directly
4663 iterate over symtabs, since a symtab might not be
4664 yet created. We also cannot iterate over psymtabs,
4665 calling PSYMTAB_TO_SYMTAB and working on that symtab,
4666 since PSYMTAB_TO_SYMTAB will return NULL for psymtab
4667 corresponding to an included file. Therefore, we do
4668 first pass over psymtabs, reading in those with
4669 the right name. Then, we iterate over symtabs, knowing
4670 that all symtabs we're interested in are loaded. */
4671
4672 ALL_PSYMTABS (objfile, psymtab)
4673 {
4674 if (strcmp (sal.symtab->filename,
4675 psymtab->filename) == 0)
4676 PSYMTAB_TO_SYMTAB (psymtab);
4677 }
4678
4679 /* Now search the symtab for exact matches and append them. If
4680 none is found, append the best_item and all its exact
4681 matches. */
4682 exact = append_exact_match_to_sals (sal.symtab->filename, lineno,
4683 &ret, &best_item, &best_symtab);
4684 if (!exact && best_item)
4685 append_exact_match_to_sals (best_symtab->filename, best_item->line,
4686 &ret, &best_item, &best_symtab);
4687 }
4688
4689 /* For optimized code, compiler can scatter one source line accross
4690 disjoint ranges of PC values, even when no duplicate functions
4691 or inline functions are involved. For example, 'for (;;)' inside
4692 non-template non-inline non-ctor-or-dtor function can result
4693 in two PC ranges. In this case, we don't want to set breakpoint
4694 on first PC of each range. To filter such cases, we use containing
4695 blocks -- for each PC found above we see if there are other PCs
4696 that are in the same block. If yes, the other PCs are filtered out. */
4697
4698 filter = alloca (ret.nelts * sizeof (int));
4699 blocks = alloca (ret.nelts * sizeof (struct block *));
4700 for (i = 0; i < ret.nelts; ++i)
4701 {
4702 filter[i] = 1;
4703 blocks[i] = block_for_pc (ret.sals[i].pc);
4704 }
4705
4706 for (i = 0; i < ret.nelts; ++i)
4707 if (blocks[i] != NULL)
4708 for (j = i+1; j < ret.nelts; ++j)
4709 if (blocks[j] == blocks[i])
4710 {
4711 filter[j] = 0;
4712 ++deleted;
4713 break;
4714 }
4715
4716 {
4717 struct symtab_and_line *final =
4718 xmalloc (sizeof (struct symtab_and_line) * (ret.nelts-deleted));
4719
4720 for (i = 0, j = 0; i < ret.nelts; ++i)
4721 if (filter[i])
4722 final[j++] = ret.sals[i];
4723
4724 ret.nelts -= deleted;
4725 xfree (ret.sals);
4726 ret.sals = final;
4727 }
4728
4729 return ret;
4730 }
4731
4732
4733 void
4734 _initialize_symtab (void)
4735 {
4736 add_info ("variables", variables_info, _("\
4737 All global and static variable names, or those matching REGEXP."));
4738 if (dbx_commands)
4739 add_com ("whereis", class_info, variables_info, _("\
4740 All global and static variable names, or those matching REGEXP."));
4741
4742 add_info ("functions", functions_info,
4743 _("All function names, or those matching REGEXP."));
4744
4745 /* FIXME: This command has at least the following problems:
4746 1. It prints builtin types (in a very strange and confusing fashion).
4747 2. It doesn't print right, e.g. with
4748 typedef struct foo *FOO
4749 type_print prints "FOO" when we want to make it (in this situation)
4750 print "struct foo *".
4751 I also think "ptype" or "whatis" is more likely to be useful (but if
4752 there is much disagreement "info types" can be fixed). */
4753 add_info ("types", types_info,
4754 _("All type names, or those matching REGEXP."));
4755
4756 add_info ("sources", sources_info,
4757 _("Source files in the program."));
4758
4759 add_com ("rbreak", class_breakpoint, rbreak_command,
4760 _("Set a breakpoint for all functions matching REGEXP."));
4761
4762 if (xdb_commands)
4763 {
4764 add_com ("lf", class_info, sources_info,
4765 _("Source files in the program"));
4766 add_com ("lg", class_info, variables_info, _("\
4767 All global and static variable names, or those matching REGEXP."));
4768 }
4769
4770 add_setshow_enum_cmd ("multiple-symbols", no_class,
4771 multiple_symbols_modes, &multiple_symbols_mode,
4772 _("\
4773 Set the debugger behavior when more than one symbol are possible matches\n\
4774 in an expression."), _("\
4775 Show how the debugger handles ambiguities in expressions."), _("\
4776 Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
4777 NULL, NULL, &setlist, &showlist);
4778
4779 observer_attach_executable_changed (symtab_observer_executable_changed);
4780 }
This page took 0.134216 seconds and 4 git commands to generate.