089c63de8efe32ed7170ac76f58ec4a08e04baec
[deliverable/binutils-gdb.git] / gdb / symtab.c
1 /* Symbol table lookup for the GNU debugger, GDB.
2
3 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2007, 2008
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "symtab.h"
24 #include "gdbtypes.h"
25 #include "gdbcore.h"
26 #include "frame.h"
27 #include "target.h"
28 #include "value.h"
29 #include "symfile.h"
30 #include "objfiles.h"
31 #include "gdbcmd.h"
32 #include "call-cmds.h"
33 #include "gdb_regex.h"
34 #include "expression.h"
35 #include "language.h"
36 #include "demangle.h"
37 #include "inferior.h"
38 #include "linespec.h"
39 #include "source.h"
40 #include "filenames.h" /* for FILENAME_CMP */
41 #include "objc-lang.h"
42 #include "ada-lang.h"
43 #include "p-lang.h"
44 #include "addrmap.h"
45
46 #include "hashtab.h"
47
48 #include "gdb_obstack.h"
49 #include "block.h"
50 #include "dictionary.h"
51
52 #include <sys/types.h>
53 #include <fcntl.h>
54 #include "gdb_string.h"
55 #include "gdb_stat.h"
56 #include <ctype.h>
57 #include "cp-abi.h"
58 #include "observer.h"
59 #include "gdb_assert.h"
60 #include "solist.h"
61
62 /* Prototypes for local functions */
63
64 static void completion_list_add_name (char *, char *, int, char *, char *);
65
66 static void rbreak_command (char *, int);
67
68 static void types_info (char *, int);
69
70 static void functions_info (char *, int);
71
72 static void variables_info (char *, int);
73
74 static void sources_info (char *, int);
75
76 static void output_source_filename (const char *, int *);
77
78 static int find_line_common (struct linetable *, int, int *);
79
80 /* This one is used by linespec.c */
81
82 char *operator_chars (char *p, char **end);
83
84 static struct symbol *lookup_symbol_aux (const char *name,
85 const char *linkage_name,
86 const struct block *block,
87 const domain_enum domain,
88 enum language language,
89 int *is_a_field_of_this);
90
91 static
92 struct symbol *lookup_symbol_aux_local (const char *name,
93 const char *linkage_name,
94 const struct block *block,
95 const domain_enum domain);
96
97 static
98 struct symbol *lookup_symbol_aux_symtabs (int block_index,
99 const char *name,
100 const char *linkage_name,
101 const domain_enum domain);
102
103 static
104 struct symbol *lookup_symbol_aux_psymtabs (int block_index,
105 const char *name,
106 const char *linkage_name,
107 const domain_enum domain);
108
109 static int file_matches (char *, char **, int);
110
111 static void print_symbol_info (domain_enum,
112 struct symtab *, struct symbol *, int, char *);
113
114 static void print_msymbol_info (struct minimal_symbol *);
115
116 static void symtab_symbol_info (char *, domain_enum, int);
117
118 void _initialize_symtab (void);
119
120 /* */
121
122 /* Allow the user to configure the debugger behavior with respect
123 to multiple-choice menus when more than one symbol matches during
124 a symbol lookup. */
125
126 const char multiple_symbols_ask[] = "ask";
127 const char multiple_symbols_all[] = "all";
128 const char multiple_symbols_cancel[] = "cancel";
129 static const char *multiple_symbols_modes[] =
130 {
131 multiple_symbols_ask,
132 multiple_symbols_all,
133 multiple_symbols_cancel,
134 NULL
135 };
136 static const char *multiple_symbols_mode = multiple_symbols_all;
137
138 /* Read-only accessor to AUTO_SELECT_MODE. */
139
140 const char *
141 multiple_symbols_select_mode (void)
142 {
143 return multiple_symbols_mode;
144 }
145
146 /* The single non-language-specific builtin type */
147 struct type *builtin_type_error;
148
149 /* Block in which the most recently searched-for symbol was found.
150 Might be better to make this a parameter to lookup_symbol and
151 value_of_this. */
152
153 const struct block *block_found;
154
155 /* Check for a symtab of a specific name; first in symtabs, then in
156 psymtabs. *If* there is no '/' in the name, a match after a '/'
157 in the symtab filename will also work. */
158
159 struct symtab *
160 lookup_symtab (const char *name)
161 {
162 struct symtab *s;
163 struct partial_symtab *ps;
164 struct objfile *objfile;
165 char *real_path = NULL;
166 char *full_path = NULL;
167
168 /* Here we are interested in canonicalizing an absolute path, not
169 absolutizing a relative path. */
170 if (IS_ABSOLUTE_PATH (name))
171 {
172 full_path = xfullpath (name);
173 make_cleanup (xfree, full_path);
174 real_path = gdb_realpath (name);
175 make_cleanup (xfree, real_path);
176 }
177
178 got_symtab:
179
180 /* First, search for an exact match */
181
182 ALL_SYMTABS (objfile, s)
183 {
184 if (FILENAME_CMP (name, s->filename) == 0)
185 {
186 return s;
187 }
188
189 /* If the user gave us an absolute path, try to find the file in
190 this symtab and use its absolute path. */
191
192 if (full_path != NULL)
193 {
194 const char *fp = symtab_to_fullname (s);
195 if (fp != NULL && FILENAME_CMP (full_path, fp) == 0)
196 {
197 return s;
198 }
199 }
200
201 if (real_path != NULL)
202 {
203 char *fullname = symtab_to_fullname (s);
204 if (fullname != NULL)
205 {
206 char *rp = gdb_realpath (fullname);
207 make_cleanup (xfree, rp);
208 if (FILENAME_CMP (real_path, rp) == 0)
209 {
210 return s;
211 }
212 }
213 }
214 }
215
216 /* Now, search for a matching tail (only if name doesn't have any dirs) */
217
218 if (lbasename (name) == name)
219 ALL_SYMTABS (objfile, s)
220 {
221 if (FILENAME_CMP (lbasename (s->filename), name) == 0)
222 return s;
223 }
224
225 /* Same search rules as above apply here, but now we look thru the
226 psymtabs. */
227
228 ps = lookup_partial_symtab (name);
229 if (!ps)
230 return (NULL);
231
232 if (ps->readin)
233 error (_("Internal: readin %s pst for `%s' found when no symtab found."),
234 ps->filename, name);
235
236 s = PSYMTAB_TO_SYMTAB (ps);
237
238 if (s)
239 return s;
240
241 /* At this point, we have located the psymtab for this file, but
242 the conversion to a symtab has failed. This usually happens
243 when we are looking up an include file. In this case,
244 PSYMTAB_TO_SYMTAB doesn't return a symtab, even though one has
245 been created. So, we need to run through the symtabs again in
246 order to find the file.
247 XXX - This is a crock, and should be fixed inside of the the
248 symbol parsing routines. */
249 goto got_symtab;
250 }
251
252 /* Lookup the partial symbol table of a source file named NAME.
253 *If* there is no '/' in the name, a match after a '/'
254 in the psymtab filename will also work. */
255
256 struct partial_symtab *
257 lookup_partial_symtab (const char *name)
258 {
259 struct partial_symtab *pst;
260 struct objfile *objfile;
261 char *full_path = NULL;
262 char *real_path = NULL;
263
264 /* Here we are interested in canonicalizing an absolute path, not
265 absolutizing a relative path. */
266 if (IS_ABSOLUTE_PATH (name))
267 {
268 full_path = xfullpath (name);
269 make_cleanup (xfree, full_path);
270 real_path = gdb_realpath (name);
271 make_cleanup (xfree, real_path);
272 }
273
274 ALL_PSYMTABS (objfile, pst)
275 {
276 if (FILENAME_CMP (name, pst->filename) == 0)
277 {
278 return (pst);
279 }
280
281 /* If the user gave us an absolute path, try to find the file in
282 this symtab and use its absolute path. */
283 if (full_path != NULL)
284 {
285 psymtab_to_fullname (pst);
286 if (pst->fullname != NULL
287 && FILENAME_CMP (full_path, pst->fullname) == 0)
288 {
289 return pst;
290 }
291 }
292
293 if (real_path != NULL)
294 {
295 char *rp = NULL;
296 psymtab_to_fullname (pst);
297 if (pst->fullname != NULL)
298 {
299 rp = gdb_realpath (pst->fullname);
300 make_cleanup (xfree, rp);
301 }
302 if (rp != NULL && FILENAME_CMP (real_path, rp) == 0)
303 {
304 return pst;
305 }
306 }
307 }
308
309 /* Now, search for a matching tail (only if name doesn't have any dirs) */
310
311 if (lbasename (name) == name)
312 ALL_PSYMTABS (objfile, pst)
313 {
314 if (FILENAME_CMP (lbasename (pst->filename), name) == 0)
315 return (pst);
316 }
317
318 return (NULL);
319 }
320 \f
321 /* Mangle a GDB method stub type. This actually reassembles the pieces of the
322 full method name, which consist of the class name (from T), the unadorned
323 method name from METHOD_ID, and the signature for the specific overload,
324 specified by SIGNATURE_ID. Note that this function is g++ specific. */
325
326 char *
327 gdb_mangle_name (struct type *type, int method_id, int signature_id)
328 {
329 int mangled_name_len;
330 char *mangled_name;
331 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
332 struct fn_field *method = &f[signature_id];
333 char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
334 char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
335 char *newname = type_name_no_tag (type);
336
337 /* Does the form of physname indicate that it is the full mangled name
338 of a constructor (not just the args)? */
339 int is_full_physname_constructor;
340
341 int is_constructor;
342 int is_destructor = is_destructor_name (physname);
343 /* Need a new type prefix. */
344 char *const_prefix = method->is_const ? "C" : "";
345 char *volatile_prefix = method->is_volatile ? "V" : "";
346 char buf[20];
347 int len = (newname == NULL ? 0 : strlen (newname));
348
349 /* Nothing to do if physname already contains a fully mangled v3 abi name
350 or an operator name. */
351 if ((physname[0] == '_' && physname[1] == 'Z')
352 || is_operator_name (field_name))
353 return xstrdup (physname);
354
355 is_full_physname_constructor = is_constructor_name (physname);
356
357 is_constructor =
358 is_full_physname_constructor || (newname && strcmp (field_name, newname) == 0);
359
360 if (!is_destructor)
361 is_destructor = (strncmp (physname, "__dt", 4) == 0);
362
363 if (is_destructor || is_full_physname_constructor)
364 {
365 mangled_name = (char *) xmalloc (strlen (physname) + 1);
366 strcpy (mangled_name, physname);
367 return mangled_name;
368 }
369
370 if (len == 0)
371 {
372 sprintf (buf, "__%s%s", const_prefix, volatile_prefix);
373 }
374 else if (physname[0] == 't' || physname[0] == 'Q')
375 {
376 /* The physname for template and qualified methods already includes
377 the class name. */
378 sprintf (buf, "__%s%s", const_prefix, volatile_prefix);
379 newname = NULL;
380 len = 0;
381 }
382 else
383 {
384 sprintf (buf, "__%s%s%d", const_prefix, volatile_prefix, len);
385 }
386 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
387 + strlen (buf) + len + strlen (physname) + 1);
388
389 {
390 mangled_name = (char *) xmalloc (mangled_name_len);
391 if (is_constructor)
392 mangled_name[0] = '\0';
393 else
394 strcpy (mangled_name, field_name);
395 }
396 strcat (mangled_name, buf);
397 /* If the class doesn't have a name, i.e. newname NULL, then we just
398 mangle it using 0 for the length of the class. Thus it gets mangled
399 as something starting with `::' rather than `classname::'. */
400 if (newname != NULL)
401 strcat (mangled_name, newname);
402
403 strcat (mangled_name, physname);
404 return (mangled_name);
405 }
406
407 \f
408 /* Initialize the language dependent portion of a symbol
409 depending upon the language for the symbol. */
410 void
411 symbol_init_language_specific (struct general_symbol_info *gsymbol,
412 enum language language)
413 {
414 gsymbol->language = language;
415 if (gsymbol->language == language_cplus
416 || gsymbol->language == language_java
417 || gsymbol->language == language_objc)
418 {
419 gsymbol->language_specific.cplus_specific.demangled_name = NULL;
420 }
421 else
422 {
423 memset (&gsymbol->language_specific, 0,
424 sizeof (gsymbol->language_specific));
425 }
426 }
427
428 /* Functions to initialize a symbol's mangled name. */
429
430 /* Create the hash table used for demangled names. Each hash entry is
431 a pair of strings; one for the mangled name and one for the demangled
432 name. The entry is hashed via just the mangled name. */
433
434 static void
435 create_demangled_names_hash (struct objfile *objfile)
436 {
437 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
438 The hash table code will round this up to the next prime number.
439 Choosing a much larger table size wastes memory, and saves only about
440 1% in symbol reading. */
441
442 objfile->demangled_names_hash = htab_create_alloc
443 (256, htab_hash_string, (int (*) (const void *, const void *)) streq,
444 NULL, xcalloc, xfree);
445 }
446
447 /* Try to determine the demangled name for a symbol, based on the
448 language of that symbol. If the language is set to language_auto,
449 it will attempt to find any demangling algorithm that works and
450 then set the language appropriately. The returned name is allocated
451 by the demangler and should be xfree'd. */
452
453 static char *
454 symbol_find_demangled_name (struct general_symbol_info *gsymbol,
455 const char *mangled)
456 {
457 char *demangled = NULL;
458
459 if (gsymbol->language == language_unknown)
460 gsymbol->language = language_auto;
461
462 if (gsymbol->language == language_objc
463 || gsymbol->language == language_auto)
464 {
465 demangled =
466 objc_demangle (mangled, 0);
467 if (demangled != NULL)
468 {
469 gsymbol->language = language_objc;
470 return demangled;
471 }
472 }
473 if (gsymbol->language == language_cplus
474 || gsymbol->language == language_auto)
475 {
476 demangled =
477 cplus_demangle (mangled, DMGL_PARAMS | DMGL_ANSI);
478 if (demangled != NULL)
479 {
480 gsymbol->language = language_cplus;
481 return demangled;
482 }
483 }
484 if (gsymbol->language == language_java)
485 {
486 demangled =
487 cplus_demangle (mangled,
488 DMGL_PARAMS | DMGL_ANSI | DMGL_JAVA);
489 if (demangled != NULL)
490 {
491 gsymbol->language = language_java;
492 return demangled;
493 }
494 }
495 return NULL;
496 }
497
498 /* Set both the mangled and demangled (if any) names for GSYMBOL based
499 on LINKAGE_NAME and LEN. The hash table corresponding to OBJFILE
500 is used, and the memory comes from that objfile's objfile_obstack.
501 LINKAGE_NAME is copied, so the pointer can be discarded after
502 calling this function. */
503
504 /* We have to be careful when dealing with Java names: when we run
505 into a Java minimal symbol, we don't know it's a Java symbol, so it
506 gets demangled as a C++ name. This is unfortunate, but there's not
507 much we can do about it: but when demangling partial symbols and
508 regular symbols, we'd better not reuse the wrong demangled name.
509 (See PR gdb/1039.) We solve this by putting a distinctive prefix
510 on Java names when storing them in the hash table. */
511
512 /* FIXME: carlton/2003-03-13: This is an unfortunate situation. I
513 don't mind the Java prefix so much: different languages have
514 different demangling requirements, so it's only natural that we
515 need to keep language data around in our demangling cache. But
516 it's not good that the minimal symbol has the wrong demangled name.
517 Unfortunately, I can't think of any easy solution to that
518 problem. */
519
520 #define JAVA_PREFIX "##JAVA$$"
521 #define JAVA_PREFIX_LEN 8
522
523 void
524 symbol_set_names (struct general_symbol_info *gsymbol,
525 const char *linkage_name, int len, struct objfile *objfile)
526 {
527 char **slot;
528 /* A 0-terminated copy of the linkage name. */
529 const char *linkage_name_copy;
530 /* A copy of the linkage name that might have a special Java prefix
531 added to it, for use when looking names up in the hash table. */
532 const char *lookup_name;
533 /* The length of lookup_name. */
534 int lookup_len;
535
536 if (objfile->demangled_names_hash == NULL)
537 create_demangled_names_hash (objfile);
538
539 if (gsymbol->language == language_ada)
540 {
541 /* In Ada, we do the symbol lookups using the mangled name, so
542 we can save some space by not storing the demangled name.
543
544 As a side note, we have also observed some overlap between
545 the C++ mangling and Ada mangling, similarly to what has
546 been observed with Java. Because we don't store the demangled
547 name with the symbol, we don't need to use the same trick
548 as Java. */
549 gsymbol->name = obstack_alloc (&objfile->objfile_obstack, len + 1);
550 memcpy (gsymbol->name, linkage_name, len);
551 gsymbol->name[len] = '\0';
552 gsymbol->language_specific.cplus_specific.demangled_name = NULL;
553
554 return;
555 }
556
557 /* The stabs reader generally provides names that are not
558 NUL-terminated; most of the other readers don't do this, so we
559 can just use the given copy, unless we're in the Java case. */
560 if (gsymbol->language == language_java)
561 {
562 char *alloc_name;
563 lookup_len = len + JAVA_PREFIX_LEN;
564
565 alloc_name = alloca (lookup_len + 1);
566 memcpy (alloc_name, JAVA_PREFIX, JAVA_PREFIX_LEN);
567 memcpy (alloc_name + JAVA_PREFIX_LEN, linkage_name, len);
568 alloc_name[lookup_len] = '\0';
569
570 lookup_name = alloc_name;
571 linkage_name_copy = alloc_name + JAVA_PREFIX_LEN;
572 }
573 else if (linkage_name[len] != '\0')
574 {
575 char *alloc_name;
576 lookup_len = len;
577
578 alloc_name = alloca (lookup_len + 1);
579 memcpy (alloc_name, linkage_name, len);
580 alloc_name[lookup_len] = '\0';
581
582 lookup_name = alloc_name;
583 linkage_name_copy = alloc_name;
584 }
585 else
586 {
587 lookup_len = len;
588 lookup_name = linkage_name;
589 linkage_name_copy = linkage_name;
590 }
591
592 slot = (char **) htab_find_slot (objfile->demangled_names_hash,
593 lookup_name, INSERT);
594
595 /* If this name is not in the hash table, add it. */
596 if (*slot == NULL)
597 {
598 char *demangled_name = symbol_find_demangled_name (gsymbol,
599 linkage_name_copy);
600 int demangled_len = demangled_name ? strlen (demangled_name) : 0;
601
602 /* If there is a demangled name, place it right after the mangled name.
603 Otherwise, just place a second zero byte after the end of the mangled
604 name. */
605 *slot = obstack_alloc (&objfile->objfile_obstack,
606 lookup_len + demangled_len + 2);
607 memcpy (*slot, lookup_name, lookup_len + 1);
608 if (demangled_name != NULL)
609 {
610 memcpy (*slot + lookup_len + 1, demangled_name, demangled_len + 1);
611 xfree (demangled_name);
612 }
613 else
614 (*slot)[lookup_len + 1] = '\0';
615 }
616
617 gsymbol->name = *slot + lookup_len - len;
618 if ((*slot)[lookup_len + 1] != '\0')
619 gsymbol->language_specific.cplus_specific.demangled_name
620 = &(*slot)[lookup_len + 1];
621 else
622 gsymbol->language_specific.cplus_specific.demangled_name = NULL;
623 }
624
625 /* Return the source code name of a symbol. In languages where
626 demangling is necessary, this is the demangled name. */
627
628 char *
629 symbol_natural_name (const struct general_symbol_info *gsymbol)
630 {
631 switch (gsymbol->language)
632 {
633 case language_cplus:
634 case language_java:
635 case language_objc:
636 if (gsymbol->language_specific.cplus_specific.demangled_name != NULL)
637 return gsymbol->language_specific.cplus_specific.demangled_name;
638 break;
639 case language_ada:
640 if (gsymbol->language_specific.cplus_specific.demangled_name != NULL)
641 return gsymbol->language_specific.cplus_specific.demangled_name;
642 else
643 return ada_decode_symbol (gsymbol);
644 break;
645 default:
646 break;
647 }
648 return gsymbol->name;
649 }
650
651 /* Return the demangled name for a symbol based on the language for
652 that symbol. If no demangled name exists, return NULL. */
653 char *
654 symbol_demangled_name (struct general_symbol_info *gsymbol)
655 {
656 switch (gsymbol->language)
657 {
658 case language_cplus:
659 case language_java:
660 case language_objc:
661 if (gsymbol->language_specific.cplus_specific.demangled_name != NULL)
662 return gsymbol->language_specific.cplus_specific.demangled_name;
663 break;
664 case language_ada:
665 if (gsymbol->language_specific.cplus_specific.demangled_name != NULL)
666 return gsymbol->language_specific.cplus_specific.demangled_name;
667 else
668 return ada_decode_symbol (gsymbol);
669 break;
670 default:
671 break;
672 }
673 return NULL;
674 }
675
676 /* Return the search name of a symbol---generally the demangled or
677 linkage name of the symbol, depending on how it will be searched for.
678 If there is no distinct demangled name, then returns the same value
679 (same pointer) as SYMBOL_LINKAGE_NAME. */
680 char *
681 symbol_search_name (const struct general_symbol_info *gsymbol)
682 {
683 if (gsymbol->language == language_ada)
684 return gsymbol->name;
685 else
686 return symbol_natural_name (gsymbol);
687 }
688
689 /* Initialize the structure fields to zero values. */
690 void
691 init_sal (struct symtab_and_line *sal)
692 {
693 sal->symtab = 0;
694 sal->section = 0;
695 sal->line = 0;
696 sal->pc = 0;
697 sal->end = 0;
698 sal->explicit_pc = 0;
699 sal->explicit_line = 0;
700 }
701 \f
702
703 /* Return 1 if the two sections are the same, or if they could
704 plausibly be copies of each other, one in an original object
705 file and another in a separated debug file. */
706
707 int
708 matching_bfd_sections (asection *first, asection *second)
709 {
710 struct objfile *obj;
711
712 /* If they're the same section, then they match. */
713 if (first == second)
714 return 1;
715
716 /* If either is NULL, give up. */
717 if (first == NULL || second == NULL)
718 return 0;
719
720 /* This doesn't apply to absolute symbols. */
721 if (first->owner == NULL || second->owner == NULL)
722 return 0;
723
724 /* If they're in the same object file, they must be different sections. */
725 if (first->owner == second->owner)
726 return 0;
727
728 /* Check whether the two sections are potentially corresponding. They must
729 have the same size, address, and name. We can't compare section indexes,
730 which would be more reliable, because some sections may have been
731 stripped. */
732 if (bfd_get_section_size (first) != bfd_get_section_size (second))
733 return 0;
734
735 /* In-memory addresses may start at a different offset, relativize them. */
736 if (bfd_get_section_vma (first->owner, first)
737 - bfd_get_start_address (first->owner)
738 != bfd_get_section_vma (second->owner, second)
739 - bfd_get_start_address (second->owner))
740 return 0;
741
742 if (bfd_get_section_name (first->owner, first) == NULL
743 || bfd_get_section_name (second->owner, second) == NULL
744 || strcmp (bfd_get_section_name (first->owner, first),
745 bfd_get_section_name (second->owner, second)) != 0)
746 return 0;
747
748 /* Otherwise check that they are in corresponding objfiles. */
749
750 ALL_OBJFILES (obj)
751 if (obj->obfd == first->owner)
752 break;
753 gdb_assert (obj != NULL);
754
755 if (obj->separate_debug_objfile != NULL
756 && obj->separate_debug_objfile->obfd == second->owner)
757 return 1;
758 if (obj->separate_debug_objfile_backlink != NULL
759 && obj->separate_debug_objfile_backlink->obfd == second->owner)
760 return 1;
761
762 return 0;
763 }
764
765 /* Find which partial symtab contains PC and SECTION starting at psymtab PST.
766 We may find a different psymtab than PST. See FIND_PC_SECT_PSYMTAB. */
767
768 struct partial_symtab *
769 find_pc_sect_psymtab_closer (CORE_ADDR pc, asection *section,
770 struct partial_symtab *pst,
771 struct minimal_symbol *msymbol)
772 {
773 struct objfile *objfile = pst->objfile;
774 struct partial_symtab *tpst;
775 struct partial_symtab *best_pst = pst;
776 CORE_ADDR best_addr = pst->textlow;
777
778 /* An objfile that has its functions reordered might have
779 many partial symbol tables containing the PC, but
780 we want the partial symbol table that contains the
781 function containing the PC. */
782 if (!(objfile->flags & OBJF_REORDERED) &&
783 section == 0) /* can't validate section this way */
784 return pst;
785
786 if (msymbol == NULL)
787 return (pst);
788
789 /* The code range of partial symtabs sometimes overlap, so, in
790 the loop below, we need to check all partial symtabs and
791 find the one that fits better for the given PC address. We
792 select the partial symtab that contains a symbol whose
793 address is closest to the PC address. By closest we mean
794 that find_pc_sect_symbol returns the symbol with address
795 that is closest and still less than the given PC. */
796 for (tpst = pst; tpst != NULL; tpst = tpst->next)
797 {
798 if (pc >= tpst->textlow && pc < tpst->texthigh)
799 {
800 struct partial_symbol *p;
801 CORE_ADDR this_addr;
802
803 /* NOTE: This assumes that every psymbol has a
804 corresponding msymbol, which is not necessarily
805 true; the debug info might be much richer than the
806 object's symbol table. */
807 p = find_pc_sect_psymbol (tpst, pc, section);
808 if (p != NULL
809 && SYMBOL_VALUE_ADDRESS (p)
810 == SYMBOL_VALUE_ADDRESS (msymbol))
811 return tpst;
812
813 /* Also accept the textlow value of a psymtab as a
814 "symbol", to provide some support for partial
815 symbol tables with line information but no debug
816 symbols (e.g. those produced by an assembler). */
817 if (p != NULL)
818 this_addr = SYMBOL_VALUE_ADDRESS (p);
819 else
820 this_addr = tpst->textlow;
821
822 /* Check whether it is closer than our current
823 BEST_ADDR. Since this symbol address is
824 necessarily lower or equal to PC, the symbol closer
825 to PC is the symbol which address is the highest.
826 This way we return the psymtab which contains such
827 best match symbol. This can help in cases where the
828 symbol information/debuginfo is not complete, like
829 for instance on IRIX6 with gcc, where no debug info
830 is emitted for statics. (See also the nodebug.exp
831 testcase.) */
832 if (this_addr > best_addr)
833 {
834 best_addr = this_addr;
835 best_pst = tpst;
836 }
837 }
838 }
839 return best_pst;
840 }
841
842 /* Find which partial symtab contains PC and SECTION. Return 0 if
843 none. We return the psymtab that contains a symbol whose address
844 exactly matches PC, or, if we cannot find an exact match, the
845 psymtab that contains a symbol whose address is closest to PC. */
846 struct partial_symtab *
847 find_pc_sect_psymtab (CORE_ADDR pc, asection *section)
848 {
849 struct objfile *objfile;
850 struct minimal_symbol *msymbol;
851
852 /* If we know that this is not a text address, return failure. This is
853 necessary because we loop based on texthigh and textlow, which do
854 not include the data ranges. */
855 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
856 if (msymbol
857 && (msymbol->type == mst_data
858 || msymbol->type == mst_bss
859 || msymbol->type == mst_abs
860 || msymbol->type == mst_file_data
861 || msymbol->type == mst_file_bss))
862 return NULL;
863
864 /* Try just the PSYMTABS_ADDRMAP mapping first as it has better granularity
865 than the later used TEXTLOW/TEXTHIGH one. */
866
867 ALL_OBJFILES (objfile)
868 if (objfile->psymtabs_addrmap != NULL)
869 {
870 struct partial_symtab *pst;
871
872 pst = addrmap_find (objfile->psymtabs_addrmap, pc);
873 if (pst != NULL)
874 {
875 /* FIXME: addrmaps currently do not handle overlayed sections,
876 so fall back to the non-addrmap case if we're debugging
877 overlays and the addrmap returned the wrong section. */
878 if (overlay_debugging && msymbol && section)
879 {
880 struct partial_symbol *p;
881 /* NOTE: This assumes that every psymbol has a
882 corresponding msymbol, which is not necessarily
883 true; the debug info might be much richer than the
884 object's symbol table. */
885 p = find_pc_sect_psymbol (pst, pc, section);
886 if (!p
887 || SYMBOL_VALUE_ADDRESS (p)
888 != SYMBOL_VALUE_ADDRESS (msymbol))
889 continue;
890 }
891
892 /* We do not try to call FIND_PC_SECT_PSYMTAB_CLOSER as
893 PSYMTABS_ADDRMAP we used has already the best 1-byte
894 granularity and FIND_PC_SECT_PSYMTAB_CLOSER may mislead us into
895 a worse chosen section due to the TEXTLOW/TEXTHIGH ranges
896 overlap. */
897
898 return pst;
899 }
900 }
901
902 /* Existing PSYMTABS_ADDRMAP mapping is present even for PARTIAL_SYMTABs
903 which still have no corresponding full SYMTABs read. But it is not
904 present for non-DWARF2 debug infos not supporting PSYMTABS_ADDRMAP in GDB
905 so far. */
906
907 ALL_OBJFILES (objfile)
908 {
909 struct partial_symtab *pst;
910
911 /* Check even OBJFILE with non-zero PSYMTABS_ADDRMAP as only several of
912 its CUs may be missing in PSYMTABS_ADDRMAP as they may be varying
913 debug info type in single OBJFILE. */
914
915 ALL_OBJFILE_PSYMTABS (objfile, pst)
916 if (pc >= pst->textlow && pc < pst->texthigh)
917 {
918 struct partial_symtab *best_pst;
919
920 best_pst = find_pc_sect_psymtab_closer (pc, section, pst,
921 msymbol);
922 if (best_pst != NULL)
923 return best_pst;
924 }
925 }
926
927 return NULL;
928 }
929
930 /* Find which partial symtab contains PC. Return 0 if none.
931 Backward compatibility, no section */
932
933 struct partial_symtab *
934 find_pc_psymtab (CORE_ADDR pc)
935 {
936 return find_pc_sect_psymtab (pc, find_pc_mapped_section (pc));
937 }
938
939 /* Find which partial symbol within a psymtab matches PC and SECTION.
940 Return 0 if none. Check all psymtabs if PSYMTAB is 0. */
941
942 struct partial_symbol *
943 find_pc_sect_psymbol (struct partial_symtab *psymtab, CORE_ADDR pc,
944 asection *section)
945 {
946 struct partial_symbol *best = NULL, *p, **pp;
947 CORE_ADDR best_pc;
948
949 if (!psymtab)
950 psymtab = find_pc_sect_psymtab (pc, section);
951 if (!psymtab)
952 return 0;
953
954 /* Cope with programs that start at address 0 */
955 best_pc = (psymtab->textlow != 0) ? psymtab->textlow - 1 : 0;
956
957 /* Search the global symbols as well as the static symbols, so that
958 find_pc_partial_function doesn't use a minimal symbol and thus
959 cache a bad endaddr. */
960 for (pp = psymtab->objfile->global_psymbols.list + psymtab->globals_offset;
961 (pp - (psymtab->objfile->global_psymbols.list + psymtab->globals_offset)
962 < psymtab->n_global_syms);
963 pp++)
964 {
965 p = *pp;
966 if (SYMBOL_DOMAIN (p) == VAR_DOMAIN
967 && SYMBOL_CLASS (p) == LOC_BLOCK
968 && pc >= SYMBOL_VALUE_ADDRESS (p)
969 && (SYMBOL_VALUE_ADDRESS (p) > best_pc
970 || (psymtab->textlow == 0
971 && best_pc == 0 && SYMBOL_VALUE_ADDRESS (p) == 0)))
972 {
973 if (section) /* match on a specific section */
974 {
975 fixup_psymbol_section (p, psymtab->objfile);
976 if (!matching_bfd_sections (SYMBOL_BFD_SECTION (p), section))
977 continue;
978 }
979 best_pc = SYMBOL_VALUE_ADDRESS (p);
980 best = p;
981 }
982 }
983
984 for (pp = psymtab->objfile->static_psymbols.list + psymtab->statics_offset;
985 (pp - (psymtab->objfile->static_psymbols.list + psymtab->statics_offset)
986 < psymtab->n_static_syms);
987 pp++)
988 {
989 p = *pp;
990 if (SYMBOL_DOMAIN (p) == VAR_DOMAIN
991 && SYMBOL_CLASS (p) == LOC_BLOCK
992 && pc >= SYMBOL_VALUE_ADDRESS (p)
993 && (SYMBOL_VALUE_ADDRESS (p) > best_pc
994 || (psymtab->textlow == 0
995 && best_pc == 0 && SYMBOL_VALUE_ADDRESS (p) == 0)))
996 {
997 if (section) /* match on a specific section */
998 {
999 fixup_psymbol_section (p, psymtab->objfile);
1000 if (!matching_bfd_sections (SYMBOL_BFD_SECTION (p), section))
1001 continue;
1002 }
1003 best_pc = SYMBOL_VALUE_ADDRESS (p);
1004 best = p;
1005 }
1006 }
1007
1008 return best;
1009 }
1010
1011 /* Find which partial symbol within a psymtab matches PC. Return 0 if none.
1012 Check all psymtabs if PSYMTAB is 0. Backwards compatibility, no section. */
1013
1014 struct partial_symbol *
1015 find_pc_psymbol (struct partial_symtab *psymtab, CORE_ADDR pc)
1016 {
1017 return find_pc_sect_psymbol (psymtab, pc, find_pc_mapped_section (pc));
1018 }
1019 \f
1020 /* Debug symbols usually don't have section information. We need to dig that
1021 out of the minimal symbols and stash that in the debug symbol. */
1022
1023 static void
1024 fixup_section (struct general_symbol_info *ginfo,
1025 CORE_ADDR addr, struct objfile *objfile)
1026 {
1027 struct minimal_symbol *msym;
1028
1029 /* First, check whether a minimal symbol with the same name exists
1030 and points to the same address. The address check is required
1031 e.g. on PowerPC64, where the minimal symbol for a function will
1032 point to the function descriptor, while the debug symbol will
1033 point to the actual function code. */
1034 msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->name, objfile);
1035 if (msym)
1036 {
1037 ginfo->bfd_section = SYMBOL_BFD_SECTION (msym);
1038 ginfo->section = SYMBOL_SECTION (msym);
1039 }
1040 else
1041 {
1042 /* Static, function-local variables do appear in the linker
1043 (minimal) symbols, but are frequently given names that won't
1044 be found via lookup_minimal_symbol(). E.g., it has been
1045 observed in frv-uclinux (ELF) executables that a static,
1046 function-local variable named "foo" might appear in the
1047 linker symbols as "foo.6" or "foo.3". Thus, there is no
1048 point in attempting to extend the lookup-by-name mechanism to
1049 handle this case due to the fact that there can be multiple
1050 names.
1051
1052 So, instead, search the section table when lookup by name has
1053 failed. The ``addr'' and ``endaddr'' fields may have already
1054 been relocated. If so, the relocation offset (i.e. the
1055 ANOFFSET value) needs to be subtracted from these values when
1056 performing the comparison. We unconditionally subtract it,
1057 because, when no relocation has been performed, the ANOFFSET
1058 value will simply be zero.
1059
1060 The address of the symbol whose section we're fixing up HAS
1061 NOT BEEN adjusted (relocated) yet. It can't have been since
1062 the section isn't yet known and knowing the section is
1063 necessary in order to add the correct relocation value. In
1064 other words, we wouldn't even be in this function (attempting
1065 to compute the section) if it were already known.
1066
1067 Note that it is possible to search the minimal symbols
1068 (subtracting the relocation value if necessary) to find the
1069 matching minimal symbol, but this is overkill and much less
1070 efficient. It is not necessary to find the matching minimal
1071 symbol, only its section.
1072
1073 Note that this technique (of doing a section table search)
1074 can fail when unrelocated section addresses overlap. For
1075 this reason, we still attempt a lookup by name prior to doing
1076 a search of the section table. */
1077
1078 struct obj_section *s;
1079 ALL_OBJFILE_OSECTIONS (objfile, s)
1080 {
1081 int idx = s->the_bfd_section->index;
1082 CORE_ADDR offset = ANOFFSET (objfile->section_offsets, idx);
1083
1084 if (s->addr - offset <= addr && addr < s->endaddr - offset)
1085 {
1086 ginfo->bfd_section = s->the_bfd_section;
1087 ginfo->section = idx;
1088 return;
1089 }
1090 }
1091 }
1092 }
1093
1094 struct symbol *
1095 fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
1096 {
1097 CORE_ADDR addr;
1098
1099 if (!sym)
1100 return NULL;
1101
1102 if (SYMBOL_BFD_SECTION (sym))
1103 return sym;
1104
1105 /* We either have an OBJFILE, or we can get at it from the sym's
1106 symtab. Anything else is a bug. */
1107 gdb_assert (objfile || SYMBOL_SYMTAB (sym));
1108
1109 if (objfile == NULL)
1110 objfile = SYMBOL_SYMTAB (sym)->objfile;
1111
1112 /* We should have an objfile by now. */
1113 gdb_assert (objfile);
1114
1115 switch (SYMBOL_CLASS (sym))
1116 {
1117 case LOC_STATIC:
1118 case LOC_LABEL:
1119 addr = SYMBOL_VALUE_ADDRESS (sym);
1120 break;
1121 case LOC_BLOCK:
1122 addr = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
1123 break;
1124
1125 default:
1126 /* Nothing else will be listed in the minsyms -- no use looking
1127 it up. */
1128 return sym;
1129 }
1130
1131 fixup_section (&sym->ginfo, addr, objfile);
1132
1133 return sym;
1134 }
1135
1136 struct partial_symbol *
1137 fixup_psymbol_section (struct partial_symbol *psym, struct objfile *objfile)
1138 {
1139 CORE_ADDR addr;
1140
1141 if (!psym)
1142 return NULL;
1143
1144 if (SYMBOL_BFD_SECTION (psym))
1145 return psym;
1146
1147 gdb_assert (objfile);
1148
1149 switch (SYMBOL_CLASS (psym))
1150 {
1151 case LOC_STATIC:
1152 case LOC_LABEL:
1153 case LOC_BLOCK:
1154 addr = SYMBOL_VALUE_ADDRESS (psym);
1155 break;
1156 default:
1157 /* Nothing else will be listed in the minsyms -- no use looking
1158 it up. */
1159 return psym;
1160 }
1161
1162 fixup_section (&psym->ginfo, addr, objfile);
1163
1164 return psym;
1165 }
1166
1167 /* Find the definition for a specified symbol name NAME
1168 in domain DOMAIN, visible from lexical block BLOCK.
1169 Returns the struct symbol pointer, or zero if no symbol is found.
1170 C++: if IS_A_FIELD_OF_THIS is nonzero on entry, check to see if
1171 NAME is a field of the current implied argument `this'. If so set
1172 *IS_A_FIELD_OF_THIS to 1, otherwise set it to zero.
1173 BLOCK_FOUND is set to the block in which NAME is found (in the case of
1174 a field of `this', value_of_this sets BLOCK_FOUND to the proper value.) */
1175
1176 /* This function has a bunch of loops in it and it would seem to be
1177 attractive to put in some QUIT's (though I'm not really sure
1178 whether it can run long enough to be really important). But there
1179 are a few calls for which it would appear to be bad news to quit
1180 out of here: find_proc_desc in alpha-tdep.c and mips-tdep.c. (Note
1181 that there is C++ code below which can error(), but that probably
1182 doesn't affect these calls since they are looking for a known
1183 variable and thus can probably assume it will never hit the C++
1184 code). */
1185
1186 struct symbol *
1187 lookup_symbol_in_language (const char *name, const struct block *block,
1188 const domain_enum domain, enum language lang,
1189 int *is_a_field_of_this)
1190 {
1191 char *demangled_name = NULL;
1192 const char *modified_name = NULL;
1193 const char *mangled_name = NULL;
1194 int needtofreename = 0;
1195 struct symbol *returnval;
1196
1197 modified_name = name;
1198
1199 /* If we are using C++ or Java, demangle the name before doing a lookup, so
1200 we can always binary search. */
1201 if (lang == language_cplus)
1202 {
1203 demangled_name = cplus_demangle (name, DMGL_ANSI | DMGL_PARAMS);
1204 if (demangled_name)
1205 {
1206 mangled_name = name;
1207 modified_name = demangled_name;
1208 needtofreename = 1;
1209 }
1210 }
1211 else if (lang == language_java)
1212 {
1213 demangled_name = cplus_demangle (name,
1214 DMGL_ANSI | DMGL_PARAMS | DMGL_JAVA);
1215 if (demangled_name)
1216 {
1217 mangled_name = name;
1218 modified_name = demangled_name;
1219 needtofreename = 1;
1220 }
1221 }
1222
1223 if (case_sensitivity == case_sensitive_off)
1224 {
1225 char *copy;
1226 int len, i;
1227
1228 len = strlen (name);
1229 copy = (char *) alloca (len + 1);
1230 for (i= 0; i < len; i++)
1231 copy[i] = tolower (name[i]);
1232 copy[len] = 0;
1233 modified_name = copy;
1234 }
1235
1236 returnval = lookup_symbol_aux (modified_name, mangled_name, block,
1237 domain, lang, is_a_field_of_this);
1238 if (needtofreename)
1239 xfree (demangled_name);
1240
1241 return returnval;
1242 }
1243
1244 /* Behave like lookup_symbol_in_language, but performed with the
1245 current language. */
1246
1247 struct symbol *
1248 lookup_symbol (const char *name, const struct block *block,
1249 domain_enum domain, int *is_a_field_of_this)
1250 {
1251 return lookup_symbol_in_language (name, block, domain,
1252 current_language->la_language,
1253 is_a_field_of_this);
1254 }
1255
1256 /* Behave like lookup_symbol except that NAME is the natural name
1257 of the symbol that we're looking for and, if LINKAGE_NAME is
1258 non-NULL, ensure that the symbol's linkage name matches as
1259 well. */
1260
1261 static struct symbol *
1262 lookup_symbol_aux (const char *name, const char *linkage_name,
1263 const struct block *block, const domain_enum domain,
1264 enum language language, int *is_a_field_of_this)
1265 {
1266 struct symbol *sym;
1267 const struct language_defn *langdef;
1268
1269 /* Make sure we do something sensible with is_a_field_of_this, since
1270 the callers that set this parameter to some non-null value will
1271 certainly use it later and expect it to be either 0 or 1.
1272 If we don't set it, the contents of is_a_field_of_this are
1273 undefined. */
1274 if (is_a_field_of_this != NULL)
1275 *is_a_field_of_this = 0;
1276
1277 /* Search specified block and its superiors. Don't search
1278 STATIC_BLOCK or GLOBAL_BLOCK. */
1279
1280 sym = lookup_symbol_aux_local (name, linkage_name, block, domain);
1281 if (sym != NULL)
1282 return sym;
1283
1284 /* If requested to do so by the caller and if appropriate for LANGUAGE,
1285 check to see if NAME is a field of `this'. */
1286
1287 langdef = language_def (language);
1288
1289 if (langdef->la_name_of_this != NULL && is_a_field_of_this != NULL
1290 && block != NULL)
1291 {
1292 struct symbol *sym = NULL;
1293 /* 'this' is only defined in the function's block, so find the
1294 enclosing function block. */
1295 for (; block && !BLOCK_FUNCTION (block);
1296 block = BLOCK_SUPERBLOCK (block));
1297
1298 if (block && !dict_empty (BLOCK_DICT (block)))
1299 sym = lookup_block_symbol (block, langdef->la_name_of_this,
1300 NULL, VAR_DOMAIN);
1301 if (sym)
1302 {
1303 struct type *t = sym->type;
1304
1305 /* I'm not really sure that type of this can ever
1306 be typedefed; just be safe. */
1307 CHECK_TYPEDEF (t);
1308 if (TYPE_CODE (t) == TYPE_CODE_PTR
1309 || TYPE_CODE (t) == TYPE_CODE_REF)
1310 t = TYPE_TARGET_TYPE (t);
1311
1312 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
1313 && TYPE_CODE (t) != TYPE_CODE_UNION)
1314 error (_("Internal error: `%s' is not an aggregate"),
1315 langdef->la_name_of_this);
1316
1317 if (check_field (t, name))
1318 {
1319 *is_a_field_of_this = 1;
1320 return NULL;
1321 }
1322 }
1323 }
1324
1325 /* Now do whatever is appropriate for LANGUAGE to look
1326 up static and global variables. */
1327
1328 sym = langdef->la_lookup_symbol_nonlocal (name, linkage_name, block, domain);
1329 if (sym != NULL)
1330 return sym;
1331
1332 /* Now search all static file-level symbols. Not strictly correct,
1333 but more useful than an error. Do the symtabs first, then check
1334 the psymtabs. If a psymtab indicates the existence of the
1335 desired name as a file-level static, then do psymtab-to-symtab
1336 conversion on the fly and return the found symbol. */
1337
1338 sym = lookup_symbol_aux_symtabs (STATIC_BLOCK, name, linkage_name, domain);
1339 if (sym != NULL)
1340 return sym;
1341
1342 sym = lookup_symbol_aux_psymtabs (STATIC_BLOCK, name, linkage_name, domain);
1343 if (sym != NULL)
1344 return sym;
1345
1346 return NULL;
1347 }
1348
1349 /* Check to see if the symbol is defined in BLOCK or its superiors.
1350 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
1351
1352 static struct symbol *
1353 lookup_symbol_aux_local (const char *name, const char *linkage_name,
1354 const struct block *block,
1355 const domain_enum domain)
1356 {
1357 struct symbol *sym;
1358 const struct block *static_block = block_static_block (block);
1359
1360 /* Check if either no block is specified or it's a global block. */
1361
1362 if (static_block == NULL)
1363 return NULL;
1364
1365 while (block != static_block)
1366 {
1367 sym = lookup_symbol_aux_block (name, linkage_name, block, domain);
1368 if (sym != NULL)
1369 return sym;
1370 block = BLOCK_SUPERBLOCK (block);
1371 }
1372
1373 /* We've reached the static block without finding a result. */
1374
1375 return NULL;
1376 }
1377
1378 /* Look up OBJFILE to BLOCK. */
1379
1380 static struct objfile *
1381 lookup_objfile_from_block (const struct block *block)
1382 {
1383 struct objfile *obj;
1384 struct symtab *s;
1385
1386 if (block == NULL)
1387 return NULL;
1388
1389 block = block_global_block (block);
1390 /* Go through SYMTABS. */
1391 ALL_SYMTABS (obj, s)
1392 if (block == BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK))
1393 return obj;
1394
1395 return NULL;
1396 }
1397
1398 /* Look up a symbol in a block; if found, fixup the symbol, and set
1399 block_found appropriately. */
1400
1401 struct symbol *
1402 lookup_symbol_aux_block (const char *name, const char *linkage_name,
1403 const struct block *block,
1404 const domain_enum domain)
1405 {
1406 struct symbol *sym;
1407
1408 sym = lookup_block_symbol (block, name, linkage_name, domain);
1409 if (sym)
1410 {
1411 block_found = block;
1412 return fixup_symbol_section (sym, NULL);
1413 }
1414
1415 return NULL;
1416 }
1417
1418 /* Check all global symbols in OBJFILE in symtabs and
1419 psymtabs. */
1420
1421 struct symbol *
1422 lookup_global_symbol_from_objfile (const struct objfile *objfile,
1423 const char *name,
1424 const char *linkage_name,
1425 const domain_enum domain)
1426 {
1427 struct symbol *sym;
1428 struct blockvector *bv;
1429 const struct block *block;
1430 struct symtab *s;
1431 struct partial_symtab *ps;
1432
1433 /* Go through symtabs. */
1434 ALL_OBJFILE_SYMTABS (objfile, s)
1435 {
1436 bv = BLOCKVECTOR (s);
1437 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1438 sym = lookup_block_symbol (block, name, linkage_name, domain);
1439 if (sym)
1440 {
1441 block_found = block;
1442 return fixup_symbol_section (sym, (struct objfile *)objfile);
1443 }
1444 }
1445
1446 /* Now go through psymtabs. */
1447 ALL_OBJFILE_PSYMTABS (objfile, ps)
1448 {
1449 if (!ps->readin
1450 && lookup_partial_symbol (ps, name, linkage_name,
1451 1, domain))
1452 {
1453 s = PSYMTAB_TO_SYMTAB (ps);
1454 bv = BLOCKVECTOR (s);
1455 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1456 sym = lookup_block_symbol (block, name, linkage_name, domain);
1457 return fixup_symbol_section (sym, (struct objfile *)objfile);
1458 }
1459 }
1460
1461 if (objfile->separate_debug_objfile)
1462 return lookup_global_symbol_from_objfile (objfile->separate_debug_objfile,
1463 name, linkage_name, domain);
1464
1465 return NULL;
1466 }
1467
1468 /* Check to see if the symbol is defined in one of the symtabs.
1469 BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
1470 depending on whether or not we want to search global symbols or
1471 static symbols. */
1472
1473 static struct symbol *
1474 lookup_symbol_aux_symtabs (int block_index,
1475 const char *name, const char *linkage_name,
1476 const domain_enum domain)
1477 {
1478 struct symbol *sym;
1479 struct objfile *objfile;
1480 struct blockvector *bv;
1481 const struct block *block;
1482 struct symtab *s;
1483
1484 ALL_PRIMARY_SYMTABS (objfile, s)
1485 {
1486 bv = BLOCKVECTOR (s);
1487 block = BLOCKVECTOR_BLOCK (bv, block_index);
1488 sym = lookup_block_symbol (block, name, linkage_name, domain);
1489 if (sym)
1490 {
1491 block_found = block;
1492 return fixup_symbol_section (sym, objfile);
1493 }
1494 }
1495
1496 return NULL;
1497 }
1498
1499 /* Check to see if the symbol is defined in one of the partial
1500 symtabs. BLOCK_INDEX should be either GLOBAL_BLOCK or
1501 STATIC_BLOCK, depending on whether or not we want to search global
1502 symbols or static symbols. */
1503
1504 static struct symbol *
1505 lookup_symbol_aux_psymtabs (int block_index, const char *name,
1506 const char *linkage_name,
1507 const domain_enum domain)
1508 {
1509 struct symbol *sym;
1510 struct objfile *objfile;
1511 struct blockvector *bv;
1512 const struct block *block;
1513 struct partial_symtab *ps;
1514 struct symtab *s;
1515 const int psymtab_index = (block_index == GLOBAL_BLOCK ? 1 : 0);
1516
1517 ALL_PSYMTABS (objfile, ps)
1518 {
1519 if (!ps->readin
1520 && lookup_partial_symbol (ps, name, linkage_name,
1521 psymtab_index, domain))
1522 {
1523 s = PSYMTAB_TO_SYMTAB (ps);
1524 bv = BLOCKVECTOR (s);
1525 block = BLOCKVECTOR_BLOCK (bv, block_index);
1526 sym = lookup_block_symbol (block, name, linkage_name, domain);
1527 if (!sym)
1528 {
1529 /* This shouldn't be necessary, but as a last resort try
1530 looking in the statics even though the psymtab claimed
1531 the symbol was global, or vice-versa. It's possible
1532 that the psymtab gets it wrong in some cases. */
1533
1534 /* FIXME: carlton/2002-09-30: Should we really do that?
1535 If that happens, isn't it likely to be a GDB error, in
1536 which case we should fix the GDB error rather than
1537 silently dealing with it here? So I'd vote for
1538 removing the check for the symbol in the other
1539 block. */
1540 block = BLOCKVECTOR_BLOCK (bv,
1541 block_index == GLOBAL_BLOCK ?
1542 STATIC_BLOCK : GLOBAL_BLOCK);
1543 sym = lookup_block_symbol (block, name, linkage_name, domain);
1544 if (!sym)
1545 error (_("Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n%s may be an inlined function, or may be a template function\n(if a template, try specifying an instantiation: %s<type>)."),
1546 block_index == GLOBAL_BLOCK ? "global" : "static",
1547 name, ps->filename, name, name);
1548 }
1549 return fixup_symbol_section (sym, objfile);
1550 }
1551 }
1552
1553 return NULL;
1554 }
1555
1556 /* A default version of lookup_symbol_nonlocal for use by languages
1557 that can't think of anything better to do. This implements the C
1558 lookup rules. */
1559
1560 struct symbol *
1561 basic_lookup_symbol_nonlocal (const char *name,
1562 const char *linkage_name,
1563 const struct block *block,
1564 const domain_enum domain)
1565 {
1566 struct symbol *sym;
1567
1568 /* NOTE: carlton/2003-05-19: The comments below were written when
1569 this (or what turned into this) was part of lookup_symbol_aux;
1570 I'm much less worried about these questions now, since these
1571 decisions have turned out well, but I leave these comments here
1572 for posterity. */
1573
1574 /* NOTE: carlton/2002-12-05: There is a question as to whether or
1575 not it would be appropriate to search the current global block
1576 here as well. (That's what this code used to do before the
1577 is_a_field_of_this check was moved up.) On the one hand, it's
1578 redundant with the lookup_symbol_aux_symtabs search that happens
1579 next. On the other hand, if decode_line_1 is passed an argument
1580 like filename:var, then the user presumably wants 'var' to be
1581 searched for in filename. On the third hand, there shouldn't be
1582 multiple global variables all of which are named 'var', and it's
1583 not like decode_line_1 has ever restricted its search to only
1584 global variables in a single filename. All in all, only
1585 searching the static block here seems best: it's correct and it's
1586 cleanest. */
1587
1588 /* NOTE: carlton/2002-12-05: There's also a possible performance
1589 issue here: if you usually search for global symbols in the
1590 current file, then it would be slightly better to search the
1591 current global block before searching all the symtabs. But there
1592 are other factors that have a much greater effect on performance
1593 than that one, so I don't think we should worry about that for
1594 now. */
1595
1596 sym = lookup_symbol_static (name, linkage_name, block, domain);
1597 if (sym != NULL)
1598 return sym;
1599
1600 return lookup_symbol_global (name, linkage_name, block, domain);
1601 }
1602
1603 /* Lookup a symbol in the static block associated to BLOCK, if there
1604 is one; do nothing if BLOCK is NULL or a global block. */
1605
1606 struct symbol *
1607 lookup_symbol_static (const char *name,
1608 const char *linkage_name,
1609 const struct block *block,
1610 const domain_enum domain)
1611 {
1612 const struct block *static_block = block_static_block (block);
1613
1614 if (static_block != NULL)
1615 return lookup_symbol_aux_block (name, linkage_name, static_block, domain);
1616 else
1617 return NULL;
1618 }
1619
1620 /* Lookup a symbol in all files' global blocks (searching psymtabs if
1621 necessary). */
1622
1623 struct symbol *
1624 lookup_symbol_global (const char *name,
1625 const char *linkage_name,
1626 const struct block *block,
1627 const domain_enum domain)
1628 {
1629 struct symbol *sym = NULL;
1630 struct objfile *objfile = NULL;
1631
1632 /* Call library-specific lookup procedure. */
1633 objfile = lookup_objfile_from_block (block);
1634 if (objfile != NULL)
1635 sym = solib_global_lookup (objfile, name, linkage_name, domain);
1636 if (sym != NULL)
1637 return sym;
1638
1639 sym = lookup_symbol_aux_symtabs (GLOBAL_BLOCK, name, linkage_name, domain);
1640 if (sym != NULL)
1641 return sym;
1642
1643 return lookup_symbol_aux_psymtabs (GLOBAL_BLOCK, name, linkage_name, domain);
1644 }
1645
1646 int
1647 symbol_matches_domain (enum language symbol_language,
1648 domain_enum symbol_domain,
1649 domain_enum domain)
1650 {
1651 /* For C++ "struct foo { ... }" also defines a typedef for "foo".
1652 A Java class declaration also defines a typedef for the class.
1653 Similarly, any Ada type declaration implicitly defines a typedef. */
1654 if (symbol_language == language_cplus
1655 || symbol_language == language_java
1656 || symbol_language == language_ada)
1657 {
1658 if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN)
1659 && symbol_domain == STRUCT_DOMAIN)
1660 return 1;
1661 }
1662 /* For all other languages, strict match is required. */
1663 return (symbol_domain == domain);
1664 }
1665
1666 /* Look, in partial_symtab PST, for symbol whose natural name is NAME.
1667 If LINKAGE_NAME is non-NULL, check in addition that the symbol's
1668 linkage name matches it. Check the global symbols if GLOBAL, the
1669 static symbols if not */
1670
1671 struct partial_symbol *
1672 lookup_partial_symbol (struct partial_symtab *pst, const char *name,
1673 const char *linkage_name, int global,
1674 domain_enum domain)
1675 {
1676 struct partial_symbol *temp;
1677 struct partial_symbol **start, **psym;
1678 struct partial_symbol **top, **real_top, **bottom, **center;
1679 int length = (global ? pst->n_global_syms : pst->n_static_syms);
1680 int do_linear_search = 1;
1681
1682 if (length == 0)
1683 {
1684 return (NULL);
1685 }
1686 start = (global ?
1687 pst->objfile->global_psymbols.list + pst->globals_offset :
1688 pst->objfile->static_psymbols.list + pst->statics_offset);
1689
1690 if (global) /* This means we can use a binary search. */
1691 {
1692 do_linear_search = 0;
1693
1694 /* Binary search. This search is guaranteed to end with center
1695 pointing at the earliest partial symbol whose name might be
1696 correct. At that point *all* partial symbols with an
1697 appropriate name will be checked against the correct
1698 domain. */
1699
1700 bottom = start;
1701 top = start + length - 1;
1702 real_top = top;
1703 while (top > bottom)
1704 {
1705 center = bottom + (top - bottom) / 2;
1706 if (!(center < top))
1707 internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
1708 if (!do_linear_search
1709 && (SYMBOL_LANGUAGE (*center) == language_java))
1710 {
1711 do_linear_search = 1;
1712 }
1713 if (strcmp_iw_ordered (SYMBOL_SEARCH_NAME (*center), name) >= 0)
1714 {
1715 top = center;
1716 }
1717 else
1718 {
1719 bottom = center + 1;
1720 }
1721 }
1722 if (!(top == bottom))
1723 internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
1724
1725 while (top <= real_top
1726 && (linkage_name != NULL
1727 ? strcmp (SYMBOL_LINKAGE_NAME (*top), linkage_name) == 0
1728 : SYMBOL_MATCHES_SEARCH_NAME (*top,name)))
1729 {
1730 if (symbol_matches_domain (SYMBOL_LANGUAGE (*top),
1731 SYMBOL_DOMAIN (*top), domain))
1732 return (*top);
1733 top++;
1734 }
1735 }
1736
1737 /* Can't use a binary search or else we found during the binary search that
1738 we should also do a linear search. */
1739
1740 if (do_linear_search)
1741 {
1742 for (psym = start; psym < start + length; psym++)
1743 {
1744 if (symbol_matches_domain (SYMBOL_LANGUAGE (*psym),
1745 SYMBOL_DOMAIN (*psym), domain))
1746 {
1747 if (linkage_name != NULL
1748 ? strcmp (SYMBOL_LINKAGE_NAME (*psym), linkage_name) == 0
1749 : SYMBOL_MATCHES_SEARCH_NAME (*psym, name))
1750 {
1751 return (*psym);
1752 }
1753 }
1754 }
1755 }
1756
1757 return (NULL);
1758 }
1759
1760 /* Look up a type named NAME in the struct_domain. The type returned
1761 must not be opaque -- i.e., must have at least one field
1762 defined. */
1763
1764 struct type *
1765 lookup_transparent_type (const char *name)
1766 {
1767 return current_language->la_lookup_transparent_type (name);
1768 }
1769
1770 /* The standard implementation of lookup_transparent_type. This code
1771 was modeled on lookup_symbol -- the parts not relevant to looking
1772 up types were just left out. In particular it's assumed here that
1773 types are available in struct_domain and only at file-static or
1774 global blocks. */
1775
1776 struct type *
1777 basic_lookup_transparent_type (const char *name)
1778 {
1779 struct symbol *sym;
1780 struct symtab *s = NULL;
1781 struct partial_symtab *ps;
1782 struct blockvector *bv;
1783 struct objfile *objfile;
1784 struct block *block;
1785
1786 /* Now search all the global symbols. Do the symtab's first, then
1787 check the psymtab's. If a psymtab indicates the existence
1788 of the desired name as a global, then do psymtab-to-symtab
1789 conversion on the fly and return the found symbol. */
1790
1791 ALL_PRIMARY_SYMTABS (objfile, s)
1792 {
1793 bv = BLOCKVECTOR (s);
1794 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1795 sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN);
1796 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1797 {
1798 return SYMBOL_TYPE (sym);
1799 }
1800 }
1801
1802 ALL_PSYMTABS (objfile, ps)
1803 {
1804 if (!ps->readin && lookup_partial_symbol (ps, name, NULL,
1805 1, STRUCT_DOMAIN))
1806 {
1807 s = PSYMTAB_TO_SYMTAB (ps);
1808 bv = BLOCKVECTOR (s);
1809 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1810 sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN);
1811 if (!sym)
1812 {
1813 /* This shouldn't be necessary, but as a last resort
1814 * try looking in the statics even though the psymtab
1815 * claimed the symbol was global. It's possible that
1816 * the psymtab gets it wrong in some cases.
1817 */
1818 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
1819 sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN);
1820 if (!sym)
1821 error (_("Internal: global symbol `%s' found in %s psymtab but not in symtab.\n\
1822 %s may be an inlined function, or may be a template function\n\
1823 (if a template, try specifying an instantiation: %s<type>)."),
1824 name, ps->filename, name, name);
1825 }
1826 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1827 return SYMBOL_TYPE (sym);
1828 }
1829 }
1830
1831 /* Now search the static file-level symbols.
1832 Not strictly correct, but more useful than an error.
1833 Do the symtab's first, then
1834 check the psymtab's. If a psymtab indicates the existence
1835 of the desired name as a file-level static, then do psymtab-to-symtab
1836 conversion on the fly and return the found symbol.
1837 */
1838
1839 ALL_PRIMARY_SYMTABS (objfile, s)
1840 {
1841 bv = BLOCKVECTOR (s);
1842 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
1843 sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN);
1844 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1845 {
1846 return SYMBOL_TYPE (sym);
1847 }
1848 }
1849
1850 ALL_PSYMTABS (objfile, ps)
1851 {
1852 if (!ps->readin && lookup_partial_symbol (ps, name, NULL, 0, STRUCT_DOMAIN))
1853 {
1854 s = PSYMTAB_TO_SYMTAB (ps);
1855 bv = BLOCKVECTOR (s);
1856 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
1857 sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN);
1858 if (!sym)
1859 {
1860 /* This shouldn't be necessary, but as a last resort
1861 * try looking in the globals even though the psymtab
1862 * claimed the symbol was static. It's possible that
1863 * the psymtab gets it wrong in some cases.
1864 */
1865 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1866 sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN);
1867 if (!sym)
1868 error (_("Internal: static symbol `%s' found in %s psymtab but not in symtab.\n\
1869 %s may be an inlined function, or may be a template function\n\
1870 (if a template, try specifying an instantiation: %s<type>)."),
1871 name, ps->filename, name, name);
1872 }
1873 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1874 return SYMBOL_TYPE (sym);
1875 }
1876 }
1877 return (struct type *) 0;
1878 }
1879
1880
1881 /* Find the psymtab containing main(). */
1882 /* FIXME: What about languages without main() or specially linked
1883 executables that have no main() ? */
1884
1885 struct partial_symtab *
1886 find_main_psymtab (void)
1887 {
1888 struct partial_symtab *pst;
1889 struct objfile *objfile;
1890
1891 ALL_PSYMTABS (objfile, pst)
1892 {
1893 if (lookup_partial_symbol (pst, main_name (), NULL, 1, VAR_DOMAIN))
1894 {
1895 return (pst);
1896 }
1897 }
1898 return (NULL);
1899 }
1900
1901 /* Search BLOCK for symbol NAME in DOMAIN.
1902
1903 Note that if NAME is the demangled form of a C++ symbol, we will fail
1904 to find a match during the binary search of the non-encoded names, but
1905 for now we don't worry about the slight inefficiency of looking for
1906 a match we'll never find, since it will go pretty quick. Once the
1907 binary search terminates, we drop through and do a straight linear
1908 search on the symbols. Each symbol which is marked as being a ObjC/C++
1909 symbol (language_cplus or language_objc set) has both the encoded and
1910 non-encoded names tested for a match.
1911
1912 If LINKAGE_NAME is non-NULL, verify that any symbol we find has this
1913 particular mangled name.
1914 */
1915
1916 struct symbol *
1917 lookup_block_symbol (const struct block *block, const char *name,
1918 const char *linkage_name,
1919 const domain_enum domain)
1920 {
1921 struct dict_iterator iter;
1922 struct symbol *sym;
1923
1924 if (!BLOCK_FUNCTION (block))
1925 {
1926 for (sym = dict_iter_name_first (BLOCK_DICT (block), name, &iter);
1927 sym != NULL;
1928 sym = dict_iter_name_next (name, &iter))
1929 {
1930 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
1931 SYMBOL_DOMAIN (sym), domain)
1932 && (linkage_name != NULL
1933 ? strcmp (SYMBOL_LINKAGE_NAME (sym), linkage_name) == 0 : 1))
1934 return sym;
1935 }
1936 return NULL;
1937 }
1938 else
1939 {
1940 /* Note that parameter symbols do not always show up last in the
1941 list; this loop makes sure to take anything else other than
1942 parameter symbols first; it only uses parameter symbols as a
1943 last resort. Note that this only takes up extra computation
1944 time on a match. */
1945
1946 struct symbol *sym_found = NULL;
1947
1948 for (sym = dict_iter_name_first (BLOCK_DICT (block), name, &iter);
1949 sym != NULL;
1950 sym = dict_iter_name_next (name, &iter))
1951 {
1952 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
1953 SYMBOL_DOMAIN (sym), domain)
1954 && (linkage_name != NULL
1955 ? strcmp (SYMBOL_LINKAGE_NAME (sym), linkage_name) == 0 : 1))
1956 {
1957 sym_found = sym;
1958 if (SYMBOL_CLASS (sym) != LOC_ARG &&
1959 SYMBOL_CLASS (sym) != LOC_REF_ARG &&
1960 SYMBOL_CLASS (sym) != LOC_REGPARM &&
1961 SYMBOL_CLASS (sym) != LOC_REGPARM_ADDR &&
1962 SYMBOL_CLASS (sym) != LOC_BASEREG_ARG &&
1963 SYMBOL_CLASS (sym) != LOC_COMPUTED_ARG)
1964 {
1965 break;
1966 }
1967 }
1968 }
1969 return (sym_found); /* Will be NULL if not found. */
1970 }
1971 }
1972
1973 /* Find the symtab associated with PC and SECTION. Look through the
1974 psymtabs and read in another symtab if necessary. */
1975
1976 struct symtab *
1977 find_pc_sect_symtab (CORE_ADDR pc, asection *section)
1978 {
1979 struct block *b;
1980 struct blockvector *bv;
1981 struct symtab *s = NULL;
1982 struct symtab *best_s = NULL;
1983 struct partial_symtab *ps;
1984 struct objfile *objfile;
1985 CORE_ADDR distance = 0;
1986 struct minimal_symbol *msymbol;
1987
1988 /* If we know that this is not a text address, return failure. This is
1989 necessary because we loop based on the block's high and low code
1990 addresses, which do not include the data ranges, and because
1991 we call find_pc_sect_psymtab which has a similar restriction based
1992 on the partial_symtab's texthigh and textlow. */
1993 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
1994 if (msymbol
1995 && (msymbol->type == mst_data
1996 || msymbol->type == mst_bss
1997 || msymbol->type == mst_abs
1998 || msymbol->type == mst_file_data
1999 || msymbol->type == mst_file_bss))
2000 return NULL;
2001
2002 /* Search all symtabs for the one whose file contains our address, and which
2003 is the smallest of all the ones containing the address. This is designed
2004 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
2005 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
2006 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
2007
2008 This happens for native ecoff format, where code from included files
2009 gets its own symtab. The symtab for the included file should have
2010 been read in already via the dependency mechanism.
2011 It might be swifter to create several symtabs with the same name
2012 like xcoff does (I'm not sure).
2013
2014 It also happens for objfiles that have their functions reordered.
2015 For these, the symtab we are looking for is not necessarily read in. */
2016
2017 ALL_PRIMARY_SYMTABS (objfile, s)
2018 {
2019 bv = BLOCKVECTOR (s);
2020 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
2021
2022 if (BLOCK_START (b) <= pc
2023 && BLOCK_END (b) > pc
2024 && (distance == 0
2025 || BLOCK_END (b) - BLOCK_START (b) < distance))
2026 {
2027 /* For an objfile that has its functions reordered,
2028 find_pc_psymtab will find the proper partial symbol table
2029 and we simply return its corresponding symtab. */
2030 /* In order to better support objfiles that contain both
2031 stabs and coff debugging info, we continue on if a psymtab
2032 can't be found. */
2033 if ((objfile->flags & OBJF_REORDERED) && objfile->psymtabs)
2034 {
2035 ps = find_pc_sect_psymtab (pc, section);
2036 if (ps)
2037 return PSYMTAB_TO_SYMTAB (ps);
2038 }
2039 if (section != 0)
2040 {
2041 struct dict_iterator iter;
2042 struct symbol *sym = NULL;
2043
2044 ALL_BLOCK_SYMBOLS (b, iter, sym)
2045 {
2046 fixup_symbol_section (sym, objfile);
2047 if (matching_bfd_sections (SYMBOL_BFD_SECTION (sym), section))
2048 break;
2049 }
2050 if (sym == NULL)
2051 continue; /* no symbol in this symtab matches section */
2052 }
2053 distance = BLOCK_END (b) - BLOCK_START (b);
2054 best_s = s;
2055 }
2056 }
2057
2058 if (best_s != NULL)
2059 return (best_s);
2060
2061 s = NULL;
2062 ps = find_pc_sect_psymtab (pc, section);
2063 if (ps)
2064 {
2065 if (ps->readin)
2066 /* Might want to error() here (in case symtab is corrupt and
2067 will cause a core dump), but maybe we can successfully
2068 continue, so let's not. */
2069 warning (_("\
2070 (Internal error: pc 0x%s in read in psymtab, but not in symtab.)\n"),
2071 paddr_nz (pc));
2072 s = PSYMTAB_TO_SYMTAB (ps);
2073 }
2074 return (s);
2075 }
2076
2077 /* Find the symtab associated with PC. Look through the psymtabs and
2078 read in another symtab if necessary. Backward compatibility, no section */
2079
2080 struct symtab *
2081 find_pc_symtab (CORE_ADDR pc)
2082 {
2083 return find_pc_sect_symtab (pc, find_pc_mapped_section (pc));
2084 }
2085 \f
2086
2087 /* Find the source file and line number for a given PC value and SECTION.
2088 Return a structure containing a symtab pointer, a line number,
2089 and a pc range for the entire source line.
2090 The value's .pc field is NOT the specified pc.
2091 NOTCURRENT nonzero means, if specified pc is on a line boundary,
2092 use the line that ends there. Otherwise, in that case, the line
2093 that begins there is used. */
2094
2095 /* The big complication here is that a line may start in one file, and end just
2096 before the start of another file. This usually occurs when you #include
2097 code in the middle of a subroutine. To properly find the end of a line's PC
2098 range, we must search all symtabs associated with this compilation unit, and
2099 find the one whose first PC is closer than that of the next line in this
2100 symtab. */
2101
2102 /* If it's worth the effort, we could be using a binary search. */
2103
2104 struct symtab_and_line
2105 find_pc_sect_line (CORE_ADDR pc, struct bfd_section *section, int notcurrent)
2106 {
2107 struct symtab *s;
2108 struct linetable *l;
2109 int len;
2110 int i;
2111 struct linetable_entry *item;
2112 struct symtab_and_line val;
2113 struct blockvector *bv;
2114 struct minimal_symbol *msymbol;
2115 struct minimal_symbol *mfunsym;
2116
2117 /* Info on best line seen so far, and where it starts, and its file. */
2118
2119 struct linetable_entry *best = NULL;
2120 CORE_ADDR best_end = 0;
2121 struct symtab *best_symtab = 0;
2122
2123 /* Store here the first line number
2124 of a file which contains the line at the smallest pc after PC.
2125 If we don't find a line whose range contains PC,
2126 we will use a line one less than this,
2127 with a range from the start of that file to the first line's pc. */
2128 struct linetable_entry *alt = NULL;
2129 struct symtab *alt_symtab = 0;
2130
2131 /* Info on best line seen in this file. */
2132
2133 struct linetable_entry *prev;
2134
2135 /* If this pc is not from the current frame,
2136 it is the address of the end of a call instruction.
2137 Quite likely that is the start of the following statement.
2138 But what we want is the statement containing the instruction.
2139 Fudge the pc to make sure we get that. */
2140
2141 init_sal (&val); /* initialize to zeroes */
2142
2143 /* It's tempting to assume that, if we can't find debugging info for
2144 any function enclosing PC, that we shouldn't search for line
2145 number info, either. However, GAS can emit line number info for
2146 assembly files --- very helpful when debugging hand-written
2147 assembly code. In such a case, we'd have no debug info for the
2148 function, but we would have line info. */
2149
2150 if (notcurrent)
2151 pc -= 1;
2152
2153 /* elz: added this because this function returned the wrong
2154 information if the pc belongs to a stub (import/export)
2155 to call a shlib function. This stub would be anywhere between
2156 two functions in the target, and the line info was erroneously
2157 taken to be the one of the line before the pc.
2158 */
2159 /* RT: Further explanation:
2160
2161 * We have stubs (trampolines) inserted between procedures.
2162 *
2163 * Example: "shr1" exists in a shared library, and a "shr1" stub also
2164 * exists in the main image.
2165 *
2166 * In the minimal symbol table, we have a bunch of symbols
2167 * sorted by start address. The stubs are marked as "trampoline",
2168 * the others appear as text. E.g.:
2169 *
2170 * Minimal symbol table for main image
2171 * main: code for main (text symbol)
2172 * shr1: stub (trampoline symbol)
2173 * foo: code for foo (text symbol)
2174 * ...
2175 * Minimal symbol table for "shr1" image:
2176 * ...
2177 * shr1: code for shr1 (text symbol)
2178 * ...
2179 *
2180 * So the code below is trying to detect if we are in the stub
2181 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
2182 * and if found, do the symbolization from the real-code address
2183 * rather than the stub address.
2184 *
2185 * Assumptions being made about the minimal symbol table:
2186 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
2187 * if we're really in the trampoline. If we're beyond it (say
2188 * we're in "foo" in the above example), it'll have a closer
2189 * symbol (the "foo" text symbol for example) and will not
2190 * return the trampoline.
2191 * 2. lookup_minimal_symbol_text() will find a real text symbol
2192 * corresponding to the trampoline, and whose address will
2193 * be different than the trampoline address. I put in a sanity
2194 * check for the address being the same, to avoid an
2195 * infinite recursion.
2196 */
2197 msymbol = lookup_minimal_symbol_by_pc (pc);
2198 if (msymbol != NULL)
2199 if (MSYMBOL_TYPE (msymbol) == mst_solib_trampoline)
2200 {
2201 mfunsym = lookup_minimal_symbol_text (SYMBOL_LINKAGE_NAME (msymbol),
2202 NULL);
2203 if (mfunsym == NULL)
2204 /* I eliminated this warning since it is coming out
2205 * in the following situation:
2206 * gdb shmain // test program with shared libraries
2207 * (gdb) break shr1 // function in shared lib
2208 * Warning: In stub for ...
2209 * In the above situation, the shared lib is not loaded yet,
2210 * so of course we can't find the real func/line info,
2211 * but the "break" still works, and the warning is annoying.
2212 * So I commented out the warning. RT */
2213 /* warning ("In stub for %s; unable to find real function/line info", SYMBOL_LINKAGE_NAME (msymbol)) */ ;
2214 /* fall through */
2215 else if (SYMBOL_VALUE_ADDRESS (mfunsym) == SYMBOL_VALUE_ADDRESS (msymbol))
2216 /* Avoid infinite recursion */
2217 /* See above comment about why warning is commented out */
2218 /* warning ("In stub for %s; unable to find real function/line info", SYMBOL_LINKAGE_NAME (msymbol)) */ ;
2219 /* fall through */
2220 else
2221 return find_pc_line (SYMBOL_VALUE_ADDRESS (mfunsym), 0);
2222 }
2223
2224
2225 s = find_pc_sect_symtab (pc, section);
2226 if (!s)
2227 {
2228 /* if no symbol information, return previous pc */
2229 if (notcurrent)
2230 pc++;
2231 val.pc = pc;
2232 return val;
2233 }
2234
2235 bv = BLOCKVECTOR (s);
2236
2237 /* Look at all the symtabs that share this blockvector.
2238 They all have the same apriori range, that we found was right;
2239 but they have different line tables. */
2240
2241 for (; s && BLOCKVECTOR (s) == bv; s = s->next)
2242 {
2243 /* Find the best line in this symtab. */
2244 l = LINETABLE (s);
2245 if (!l)
2246 continue;
2247 len = l->nitems;
2248 if (len <= 0)
2249 {
2250 /* I think len can be zero if the symtab lacks line numbers
2251 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
2252 I'm not sure which, and maybe it depends on the symbol
2253 reader). */
2254 continue;
2255 }
2256
2257 prev = NULL;
2258 item = l->item; /* Get first line info */
2259
2260 /* Is this file's first line closer than the first lines of other files?
2261 If so, record this file, and its first line, as best alternate. */
2262 if (item->pc > pc && (!alt || item->pc < alt->pc))
2263 {
2264 alt = item;
2265 alt_symtab = s;
2266 }
2267
2268 for (i = 0; i < len; i++, item++)
2269 {
2270 /* Leave prev pointing to the linetable entry for the last line
2271 that started at or before PC. */
2272 if (item->pc > pc)
2273 break;
2274
2275 prev = item;
2276 }
2277
2278 /* At this point, prev points at the line whose start addr is <= pc, and
2279 item points at the next line. If we ran off the end of the linetable
2280 (pc >= start of the last line), then prev == item. If pc < start of
2281 the first line, prev will not be set. */
2282
2283 /* Is this file's best line closer than the best in the other files?
2284 If so, record this file, and its best line, as best so far. Don't
2285 save prev if it represents the end of a function (i.e. line number
2286 0) instead of a real line. */
2287
2288 if (prev && prev->line && (!best || prev->pc > best->pc))
2289 {
2290 best = prev;
2291 best_symtab = s;
2292
2293 /* Discard BEST_END if it's before the PC of the current BEST. */
2294 if (best_end <= best->pc)
2295 best_end = 0;
2296 }
2297
2298 /* If another line (denoted by ITEM) is in the linetable and its
2299 PC is after BEST's PC, but before the current BEST_END, then
2300 use ITEM's PC as the new best_end. */
2301 if (best && i < len && item->pc > best->pc
2302 && (best_end == 0 || best_end > item->pc))
2303 best_end = item->pc;
2304 }
2305
2306 if (!best_symtab)
2307 {
2308 /* If we didn't find any line number info, just return zeros.
2309 We used to return alt->line - 1 here, but that could be
2310 anywhere; if we don't have line number info for this PC,
2311 don't make some up. */
2312 val.pc = pc;
2313 }
2314 else if (best->line == 0)
2315 {
2316 /* If our best fit is in a range of PC's for which no line
2317 number info is available (line number is zero) then we didn't
2318 find any valid line information. */
2319 val.pc = pc;
2320 }
2321 else
2322 {
2323 val.symtab = best_symtab;
2324 val.line = best->line;
2325 val.pc = best->pc;
2326 if (best_end && (!alt || best_end < alt->pc))
2327 val.end = best_end;
2328 else if (alt)
2329 val.end = alt->pc;
2330 else
2331 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
2332 }
2333 val.section = section;
2334 return val;
2335 }
2336
2337 /* Backward compatibility (no section) */
2338
2339 struct symtab_and_line
2340 find_pc_line (CORE_ADDR pc, int notcurrent)
2341 {
2342 asection *section;
2343
2344 section = find_pc_overlay (pc);
2345 if (pc_in_unmapped_range (pc, section))
2346 pc = overlay_mapped_address (pc, section);
2347 return find_pc_sect_line (pc, section, notcurrent);
2348 }
2349 \f
2350 /* Find line number LINE in any symtab whose name is the same as
2351 SYMTAB.
2352
2353 If found, return the symtab that contains the linetable in which it was
2354 found, set *INDEX to the index in the linetable of the best entry
2355 found, and set *EXACT_MATCH nonzero if the value returned is an
2356 exact match.
2357
2358 If not found, return NULL. */
2359
2360 struct symtab *
2361 find_line_symtab (struct symtab *symtab, int line, int *index, int *exact_match)
2362 {
2363 int exact;
2364
2365 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
2366 so far seen. */
2367
2368 int best_index;
2369 struct linetable *best_linetable;
2370 struct symtab *best_symtab;
2371
2372 /* First try looking it up in the given symtab. */
2373 best_linetable = LINETABLE (symtab);
2374 best_symtab = symtab;
2375 best_index = find_line_common (best_linetable, line, &exact);
2376 if (best_index < 0 || !exact)
2377 {
2378 /* Didn't find an exact match. So we better keep looking for
2379 another symtab with the same name. In the case of xcoff,
2380 multiple csects for one source file (produced by IBM's FORTRAN
2381 compiler) produce multiple symtabs (this is unavoidable
2382 assuming csects can be at arbitrary places in memory and that
2383 the GLOBAL_BLOCK of a symtab has a begin and end address). */
2384
2385 /* BEST is the smallest linenumber > LINE so far seen,
2386 or 0 if none has been seen so far.
2387 BEST_INDEX and BEST_LINETABLE identify the item for it. */
2388 int best;
2389
2390 struct objfile *objfile;
2391 struct symtab *s;
2392 struct partial_symtab *p;
2393
2394 if (best_index >= 0)
2395 best = best_linetable->item[best_index].line;
2396 else
2397 best = 0;
2398
2399 ALL_PSYMTABS (objfile, p)
2400 {
2401 if (strcmp (symtab->filename, p->filename) != 0)
2402 continue;
2403 PSYMTAB_TO_SYMTAB (p);
2404 }
2405
2406 ALL_SYMTABS (objfile, s)
2407 {
2408 struct linetable *l;
2409 int ind;
2410
2411 if (strcmp (symtab->filename, s->filename) != 0)
2412 continue;
2413 l = LINETABLE (s);
2414 ind = find_line_common (l, line, &exact);
2415 if (ind >= 0)
2416 {
2417 if (exact)
2418 {
2419 best_index = ind;
2420 best_linetable = l;
2421 best_symtab = s;
2422 goto done;
2423 }
2424 if (best == 0 || l->item[ind].line < best)
2425 {
2426 best = l->item[ind].line;
2427 best_index = ind;
2428 best_linetable = l;
2429 best_symtab = s;
2430 }
2431 }
2432 }
2433 }
2434 done:
2435 if (best_index < 0)
2436 return NULL;
2437
2438 if (index)
2439 *index = best_index;
2440 if (exact_match)
2441 *exact_match = exact;
2442
2443 return best_symtab;
2444 }
2445 \f
2446 /* Set the PC value for a given source file and line number and return true.
2447 Returns zero for invalid line number (and sets the PC to 0).
2448 The source file is specified with a struct symtab. */
2449
2450 int
2451 find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
2452 {
2453 struct linetable *l;
2454 int ind;
2455
2456 *pc = 0;
2457 if (symtab == 0)
2458 return 0;
2459
2460 symtab = find_line_symtab (symtab, line, &ind, NULL);
2461 if (symtab != NULL)
2462 {
2463 l = LINETABLE (symtab);
2464 *pc = l->item[ind].pc;
2465 return 1;
2466 }
2467 else
2468 return 0;
2469 }
2470
2471 /* Find the range of pc values in a line.
2472 Store the starting pc of the line into *STARTPTR
2473 and the ending pc (start of next line) into *ENDPTR.
2474 Returns 1 to indicate success.
2475 Returns 0 if could not find the specified line. */
2476
2477 int
2478 find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
2479 CORE_ADDR *endptr)
2480 {
2481 CORE_ADDR startaddr;
2482 struct symtab_and_line found_sal;
2483
2484 startaddr = sal.pc;
2485 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
2486 return 0;
2487
2488 /* This whole function is based on address. For example, if line 10 has
2489 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
2490 "info line *0x123" should say the line goes from 0x100 to 0x200
2491 and "info line *0x355" should say the line goes from 0x300 to 0x400.
2492 This also insures that we never give a range like "starts at 0x134
2493 and ends at 0x12c". */
2494
2495 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
2496 if (found_sal.line != sal.line)
2497 {
2498 /* The specified line (sal) has zero bytes. */
2499 *startptr = found_sal.pc;
2500 *endptr = found_sal.pc;
2501 }
2502 else
2503 {
2504 *startptr = found_sal.pc;
2505 *endptr = found_sal.end;
2506 }
2507 return 1;
2508 }
2509
2510 /* Given a line table and a line number, return the index into the line
2511 table for the pc of the nearest line whose number is >= the specified one.
2512 Return -1 if none is found. The value is >= 0 if it is an index.
2513
2514 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
2515
2516 static int
2517 find_line_common (struct linetable *l, int lineno,
2518 int *exact_match)
2519 {
2520 int i;
2521 int len;
2522
2523 /* BEST is the smallest linenumber > LINENO so far seen,
2524 or 0 if none has been seen so far.
2525 BEST_INDEX identifies the item for it. */
2526
2527 int best_index = -1;
2528 int best = 0;
2529
2530 *exact_match = 0;
2531
2532 if (lineno <= 0)
2533 return -1;
2534 if (l == 0)
2535 return -1;
2536
2537 len = l->nitems;
2538 for (i = 0; i < len; i++)
2539 {
2540 struct linetable_entry *item = &(l->item[i]);
2541
2542 if (item->line == lineno)
2543 {
2544 /* Return the first (lowest address) entry which matches. */
2545 *exact_match = 1;
2546 return i;
2547 }
2548
2549 if (item->line > lineno && (best == 0 || item->line < best))
2550 {
2551 best = item->line;
2552 best_index = i;
2553 }
2554 }
2555
2556 /* If we got here, we didn't get an exact match. */
2557 return best_index;
2558 }
2559
2560 int
2561 find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
2562 {
2563 struct symtab_and_line sal;
2564 sal = find_pc_line (pc, 0);
2565 *startptr = sal.pc;
2566 *endptr = sal.end;
2567 return sal.symtab != 0;
2568 }
2569
2570 /* Given a function start address PC and SECTION, find the first
2571 address after the function prologue. */
2572 CORE_ADDR
2573 find_function_start_pc (struct gdbarch *gdbarch,
2574 CORE_ADDR pc, asection *section)
2575 {
2576 /* If the function is in an unmapped overlay, use its unmapped LMA address,
2577 so that gdbarch_skip_prologue has something unique to work on. */
2578 if (section_is_overlay (section) && !section_is_mapped (section))
2579 pc = overlay_unmapped_address (pc, section);
2580
2581 pc += gdbarch_deprecated_function_start_offset (gdbarch);
2582 pc = gdbarch_skip_prologue (gdbarch, pc);
2583
2584 /* For overlays, map pc back into its mapped VMA range. */
2585 pc = overlay_mapped_address (pc, section);
2586
2587 return pc;
2588 }
2589
2590 /* Given a function symbol SYM, find the symtab and line for the start
2591 of the function.
2592 If the argument FUNFIRSTLINE is nonzero, we want the first line
2593 of real code inside the function. */
2594
2595 struct symtab_and_line
2596 find_function_start_sal (struct symbol *sym, int funfirstline)
2597 {
2598 struct block *block = SYMBOL_BLOCK_VALUE (sym);
2599 struct objfile *objfile = lookup_objfile_from_block (block);
2600 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2601
2602 CORE_ADDR pc;
2603 struct symtab_and_line sal;
2604
2605 pc = BLOCK_START (block);
2606 fixup_symbol_section (sym, objfile);
2607 if (funfirstline)
2608 {
2609 /* Skip "first line" of function (which is actually its prologue). */
2610 pc = find_function_start_pc (gdbarch, pc, SYMBOL_BFD_SECTION (sym));
2611 }
2612 sal = find_pc_sect_line (pc, SYMBOL_BFD_SECTION (sym), 0);
2613
2614 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
2615 line is still part of the same function. */
2616 if (sal.pc != pc
2617 && BLOCK_START (block) <= sal.end
2618 && sal.end < BLOCK_END (block))
2619 {
2620 /* First pc of next line */
2621 pc = sal.end;
2622 /* Recalculate the line number (might not be N+1). */
2623 sal = find_pc_sect_line (pc, SYMBOL_BFD_SECTION (sym), 0);
2624 }
2625 sal.pc = pc;
2626
2627 return sal;
2628 }
2629
2630 /* If P is of the form "operator[ \t]+..." where `...' is
2631 some legitimate operator text, return a pointer to the
2632 beginning of the substring of the operator text.
2633 Otherwise, return "". */
2634 char *
2635 operator_chars (char *p, char **end)
2636 {
2637 *end = "";
2638 if (strncmp (p, "operator", 8))
2639 return *end;
2640 p += 8;
2641
2642 /* Don't get faked out by `operator' being part of a longer
2643 identifier. */
2644 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
2645 return *end;
2646
2647 /* Allow some whitespace between `operator' and the operator symbol. */
2648 while (*p == ' ' || *p == '\t')
2649 p++;
2650
2651 /* Recognize 'operator TYPENAME'. */
2652
2653 if (isalpha (*p) || *p == '_' || *p == '$')
2654 {
2655 char *q = p + 1;
2656 while (isalnum (*q) || *q == '_' || *q == '$')
2657 q++;
2658 *end = q;
2659 return p;
2660 }
2661
2662 while (*p)
2663 switch (*p)
2664 {
2665 case '\\': /* regexp quoting */
2666 if (p[1] == '*')
2667 {
2668 if (p[2] == '=') /* 'operator\*=' */
2669 *end = p + 3;
2670 else /* 'operator\*' */
2671 *end = p + 2;
2672 return p;
2673 }
2674 else if (p[1] == '[')
2675 {
2676 if (p[2] == ']')
2677 error (_("mismatched quoting on brackets, try 'operator\\[\\]'"));
2678 else if (p[2] == '\\' && p[3] == ']')
2679 {
2680 *end = p + 4; /* 'operator\[\]' */
2681 return p;
2682 }
2683 else
2684 error (_("nothing is allowed between '[' and ']'"));
2685 }
2686 else
2687 {
2688 /* Gratuitous qoute: skip it and move on. */
2689 p++;
2690 continue;
2691 }
2692 break;
2693 case '!':
2694 case '=':
2695 case '*':
2696 case '/':
2697 case '%':
2698 case '^':
2699 if (p[1] == '=')
2700 *end = p + 2;
2701 else
2702 *end = p + 1;
2703 return p;
2704 case '<':
2705 case '>':
2706 case '+':
2707 case '-':
2708 case '&':
2709 case '|':
2710 if (p[0] == '-' && p[1] == '>')
2711 {
2712 /* Struct pointer member operator 'operator->'. */
2713 if (p[2] == '*')
2714 {
2715 *end = p + 3; /* 'operator->*' */
2716 return p;
2717 }
2718 else if (p[2] == '\\')
2719 {
2720 *end = p + 4; /* Hopefully 'operator->\*' */
2721 return p;
2722 }
2723 else
2724 {
2725 *end = p + 2; /* 'operator->' */
2726 return p;
2727 }
2728 }
2729 if (p[1] == '=' || p[1] == p[0])
2730 *end = p + 2;
2731 else
2732 *end = p + 1;
2733 return p;
2734 case '~':
2735 case ',':
2736 *end = p + 1;
2737 return p;
2738 case '(':
2739 if (p[1] != ')')
2740 error (_("`operator ()' must be specified without whitespace in `()'"));
2741 *end = p + 2;
2742 return p;
2743 case '?':
2744 if (p[1] != ':')
2745 error (_("`operator ?:' must be specified without whitespace in `?:'"));
2746 *end = p + 2;
2747 return p;
2748 case '[':
2749 if (p[1] != ']')
2750 error (_("`operator []' must be specified without whitespace in `[]'"));
2751 *end = p + 2;
2752 return p;
2753 default:
2754 error (_("`operator %s' not supported"), p);
2755 break;
2756 }
2757
2758 *end = "";
2759 return *end;
2760 }
2761 \f
2762
2763 /* If FILE is not already in the table of files, return zero;
2764 otherwise return non-zero. Optionally add FILE to the table if ADD
2765 is non-zero. If *FIRST is non-zero, forget the old table
2766 contents. */
2767 static int
2768 filename_seen (const char *file, int add, int *first)
2769 {
2770 /* Table of files seen so far. */
2771 static const char **tab = NULL;
2772 /* Allocated size of tab in elements.
2773 Start with one 256-byte block (when using GNU malloc.c).
2774 24 is the malloc overhead when range checking is in effect. */
2775 static int tab_alloc_size = (256 - 24) / sizeof (char *);
2776 /* Current size of tab in elements. */
2777 static int tab_cur_size;
2778 const char **p;
2779
2780 if (*first)
2781 {
2782 if (tab == NULL)
2783 tab = (const char **) xmalloc (tab_alloc_size * sizeof (*tab));
2784 tab_cur_size = 0;
2785 }
2786
2787 /* Is FILE in tab? */
2788 for (p = tab; p < tab + tab_cur_size; p++)
2789 if (strcmp (*p, file) == 0)
2790 return 1;
2791
2792 /* No; maybe add it to tab. */
2793 if (add)
2794 {
2795 if (tab_cur_size == tab_alloc_size)
2796 {
2797 tab_alloc_size *= 2;
2798 tab = (const char **) xrealloc ((char *) tab,
2799 tab_alloc_size * sizeof (*tab));
2800 }
2801 tab[tab_cur_size++] = file;
2802 }
2803
2804 return 0;
2805 }
2806
2807 /* Slave routine for sources_info. Force line breaks at ,'s.
2808 NAME is the name to print and *FIRST is nonzero if this is the first
2809 name printed. Set *FIRST to zero. */
2810 static void
2811 output_source_filename (const char *name, int *first)
2812 {
2813 /* Since a single source file can result in several partial symbol
2814 tables, we need to avoid printing it more than once. Note: if
2815 some of the psymtabs are read in and some are not, it gets
2816 printed both under "Source files for which symbols have been
2817 read" and "Source files for which symbols will be read in on
2818 demand". I consider this a reasonable way to deal with the
2819 situation. I'm not sure whether this can also happen for
2820 symtabs; it doesn't hurt to check. */
2821
2822 /* Was NAME already seen? */
2823 if (filename_seen (name, 1, first))
2824 {
2825 /* Yes; don't print it again. */
2826 return;
2827 }
2828 /* No; print it and reset *FIRST. */
2829 if (*first)
2830 {
2831 *first = 0;
2832 }
2833 else
2834 {
2835 printf_filtered (", ");
2836 }
2837
2838 wrap_here ("");
2839 fputs_filtered (name, gdb_stdout);
2840 }
2841
2842 static void
2843 sources_info (char *ignore, int from_tty)
2844 {
2845 struct symtab *s;
2846 struct partial_symtab *ps;
2847 struct objfile *objfile;
2848 int first;
2849
2850 if (!have_full_symbols () && !have_partial_symbols ())
2851 {
2852 error (_("No symbol table is loaded. Use the \"file\" command."));
2853 }
2854
2855 printf_filtered ("Source files for which symbols have been read in:\n\n");
2856
2857 first = 1;
2858 ALL_SYMTABS (objfile, s)
2859 {
2860 const char *fullname = symtab_to_fullname (s);
2861 output_source_filename (fullname ? fullname : s->filename, &first);
2862 }
2863 printf_filtered ("\n\n");
2864
2865 printf_filtered ("Source files for which symbols will be read in on demand:\n\n");
2866
2867 first = 1;
2868 ALL_PSYMTABS (objfile, ps)
2869 {
2870 if (!ps->readin)
2871 {
2872 const char *fullname = psymtab_to_fullname (ps);
2873 output_source_filename (fullname ? fullname : ps->filename, &first);
2874 }
2875 }
2876 printf_filtered ("\n");
2877 }
2878
2879 static int
2880 file_matches (char *file, char *files[], int nfiles)
2881 {
2882 int i;
2883
2884 if (file != NULL && nfiles != 0)
2885 {
2886 for (i = 0; i < nfiles; i++)
2887 {
2888 if (strcmp (files[i], lbasename (file)) == 0)
2889 return 1;
2890 }
2891 }
2892 else if (nfiles == 0)
2893 return 1;
2894 return 0;
2895 }
2896
2897 /* Free any memory associated with a search. */
2898 void
2899 free_search_symbols (struct symbol_search *symbols)
2900 {
2901 struct symbol_search *p;
2902 struct symbol_search *next;
2903
2904 for (p = symbols; p != NULL; p = next)
2905 {
2906 next = p->next;
2907 xfree (p);
2908 }
2909 }
2910
2911 static void
2912 do_free_search_symbols_cleanup (void *symbols)
2913 {
2914 free_search_symbols (symbols);
2915 }
2916
2917 struct cleanup *
2918 make_cleanup_free_search_symbols (struct symbol_search *symbols)
2919 {
2920 return make_cleanup (do_free_search_symbols_cleanup, symbols);
2921 }
2922
2923 /* Helper function for sort_search_symbols and qsort. Can only
2924 sort symbols, not minimal symbols. */
2925 static int
2926 compare_search_syms (const void *sa, const void *sb)
2927 {
2928 struct symbol_search **sym_a = (struct symbol_search **) sa;
2929 struct symbol_search **sym_b = (struct symbol_search **) sb;
2930
2931 return strcmp (SYMBOL_PRINT_NAME ((*sym_a)->symbol),
2932 SYMBOL_PRINT_NAME ((*sym_b)->symbol));
2933 }
2934
2935 /* Sort the ``nfound'' symbols in the list after prevtail. Leave
2936 prevtail where it is, but update its next pointer to point to
2937 the first of the sorted symbols. */
2938 static struct symbol_search *
2939 sort_search_symbols (struct symbol_search *prevtail, int nfound)
2940 {
2941 struct symbol_search **symbols, *symp, *old_next;
2942 int i;
2943
2944 symbols = (struct symbol_search **) xmalloc (sizeof (struct symbol_search *)
2945 * nfound);
2946 symp = prevtail->next;
2947 for (i = 0; i < nfound; i++)
2948 {
2949 symbols[i] = symp;
2950 symp = symp->next;
2951 }
2952 /* Generally NULL. */
2953 old_next = symp;
2954
2955 qsort (symbols, nfound, sizeof (struct symbol_search *),
2956 compare_search_syms);
2957
2958 symp = prevtail;
2959 for (i = 0; i < nfound; i++)
2960 {
2961 symp->next = symbols[i];
2962 symp = symp->next;
2963 }
2964 symp->next = old_next;
2965
2966 xfree (symbols);
2967 return symp;
2968 }
2969
2970 /* Search the symbol table for matches to the regular expression REGEXP,
2971 returning the results in *MATCHES.
2972
2973 Only symbols of KIND are searched:
2974 FUNCTIONS_DOMAIN - search all functions
2975 TYPES_DOMAIN - search all type names
2976 METHODS_DOMAIN - search all methods NOT IMPLEMENTED
2977 VARIABLES_DOMAIN - search all symbols, excluding functions, type names,
2978 and constants (enums)
2979
2980 free_search_symbols should be called when *MATCHES is no longer needed.
2981
2982 The results are sorted locally; each symtab's global and static blocks are
2983 separately alphabetized.
2984 */
2985 void
2986 search_symbols (char *regexp, domain_enum kind, int nfiles, char *files[],
2987 struct symbol_search **matches)
2988 {
2989 struct symtab *s;
2990 struct partial_symtab *ps;
2991 struct blockvector *bv;
2992 struct block *b;
2993 int i = 0;
2994 struct dict_iterator iter;
2995 struct symbol *sym;
2996 struct partial_symbol **psym;
2997 struct objfile *objfile;
2998 struct minimal_symbol *msymbol;
2999 char *val;
3000 int found_misc = 0;
3001 static enum minimal_symbol_type types[]
3002 =
3003 {mst_data, mst_text, mst_abs, mst_unknown};
3004 static enum minimal_symbol_type types2[]
3005 =
3006 {mst_bss, mst_file_text, mst_abs, mst_unknown};
3007 static enum minimal_symbol_type types3[]
3008 =
3009 {mst_file_data, mst_solib_trampoline, mst_abs, mst_unknown};
3010 static enum minimal_symbol_type types4[]
3011 =
3012 {mst_file_bss, mst_text, mst_abs, mst_unknown};
3013 enum minimal_symbol_type ourtype;
3014 enum minimal_symbol_type ourtype2;
3015 enum minimal_symbol_type ourtype3;
3016 enum minimal_symbol_type ourtype4;
3017 struct symbol_search *sr;
3018 struct symbol_search *psr;
3019 struct symbol_search *tail;
3020 struct cleanup *old_chain = NULL;
3021
3022 if (kind < VARIABLES_DOMAIN)
3023 error (_("must search on specific domain"));
3024
3025 ourtype = types[(int) (kind - VARIABLES_DOMAIN)];
3026 ourtype2 = types2[(int) (kind - VARIABLES_DOMAIN)];
3027 ourtype3 = types3[(int) (kind - VARIABLES_DOMAIN)];
3028 ourtype4 = types4[(int) (kind - VARIABLES_DOMAIN)];
3029
3030 sr = *matches = NULL;
3031 tail = NULL;
3032
3033 if (regexp != NULL)
3034 {
3035 /* Make sure spacing is right for C++ operators.
3036 This is just a courtesy to make the matching less sensitive
3037 to how many spaces the user leaves between 'operator'
3038 and <TYPENAME> or <OPERATOR>. */
3039 char *opend;
3040 char *opname = operator_chars (regexp, &opend);
3041 if (*opname)
3042 {
3043 int fix = -1; /* -1 means ok; otherwise number of spaces needed. */
3044 if (isalpha (*opname) || *opname == '_' || *opname == '$')
3045 {
3046 /* There should 1 space between 'operator' and 'TYPENAME'. */
3047 if (opname[-1] != ' ' || opname[-2] == ' ')
3048 fix = 1;
3049 }
3050 else
3051 {
3052 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
3053 if (opname[-1] == ' ')
3054 fix = 0;
3055 }
3056 /* If wrong number of spaces, fix it. */
3057 if (fix >= 0)
3058 {
3059 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
3060 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
3061 regexp = tmp;
3062 }
3063 }
3064
3065 if (0 != (val = re_comp (regexp)))
3066 error (_("Invalid regexp (%s): %s"), val, regexp);
3067 }
3068
3069 /* Search through the partial symtabs *first* for all symbols
3070 matching the regexp. That way we don't have to reproduce all of
3071 the machinery below. */
3072
3073 ALL_PSYMTABS (objfile, ps)
3074 {
3075 struct partial_symbol **bound, **gbound, **sbound;
3076 int keep_going = 1;
3077
3078 if (ps->readin)
3079 continue;
3080
3081 gbound = objfile->global_psymbols.list + ps->globals_offset + ps->n_global_syms;
3082 sbound = objfile->static_psymbols.list + ps->statics_offset + ps->n_static_syms;
3083 bound = gbound;
3084
3085 /* Go through all of the symbols stored in a partial
3086 symtab in one loop. */
3087 psym = objfile->global_psymbols.list + ps->globals_offset;
3088 while (keep_going)
3089 {
3090 if (psym >= bound)
3091 {
3092 if (bound == gbound && ps->n_static_syms != 0)
3093 {
3094 psym = objfile->static_psymbols.list + ps->statics_offset;
3095 bound = sbound;
3096 }
3097 else
3098 keep_going = 0;
3099 continue;
3100 }
3101 else
3102 {
3103 QUIT;
3104
3105 /* If it would match (logic taken from loop below)
3106 load the file and go on to the next one. We check the
3107 filename here, but that's a bit bogus: we don't know
3108 what file it really comes from until we have full
3109 symtabs. The symbol might be in a header file included by
3110 this psymtab. This only affects Insight. */
3111 if (file_matches (ps->filename, files, nfiles)
3112 && ((regexp == NULL
3113 || re_exec (SYMBOL_NATURAL_NAME (*psym)) != 0)
3114 && ((kind == VARIABLES_DOMAIN && SYMBOL_CLASS (*psym) != LOC_TYPEDEF
3115 && SYMBOL_CLASS (*psym) != LOC_BLOCK)
3116 || (kind == FUNCTIONS_DOMAIN && SYMBOL_CLASS (*psym) == LOC_BLOCK)
3117 || (kind == TYPES_DOMAIN && SYMBOL_CLASS (*psym) == LOC_TYPEDEF)
3118 || (kind == METHODS_DOMAIN && SYMBOL_CLASS (*psym) == LOC_BLOCK))))
3119 {
3120 PSYMTAB_TO_SYMTAB (ps);
3121 keep_going = 0;
3122 }
3123 }
3124 psym++;
3125 }
3126 }
3127
3128 /* Here, we search through the minimal symbol tables for functions
3129 and variables that match, and force their symbols to be read.
3130 This is in particular necessary for demangled variable names,
3131 which are no longer put into the partial symbol tables.
3132 The symbol will then be found during the scan of symtabs below.
3133
3134 For functions, find_pc_symtab should succeed if we have debug info
3135 for the function, for variables we have to call lookup_symbol
3136 to determine if the variable has debug info.
3137 If the lookup fails, set found_misc so that we will rescan to print
3138 any matching symbols without debug info.
3139 */
3140
3141 if (nfiles == 0 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
3142 {
3143 ALL_MSYMBOLS (objfile, msymbol)
3144 {
3145 if (MSYMBOL_TYPE (msymbol) == ourtype ||
3146 MSYMBOL_TYPE (msymbol) == ourtype2 ||
3147 MSYMBOL_TYPE (msymbol) == ourtype3 ||
3148 MSYMBOL_TYPE (msymbol) == ourtype4)
3149 {
3150 if (regexp == NULL
3151 || re_exec (SYMBOL_NATURAL_NAME (msymbol)) != 0)
3152 {
3153 if (0 == find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol)))
3154 {
3155 /* FIXME: carlton/2003-02-04: Given that the
3156 semantics of lookup_symbol keeps on changing
3157 slightly, it would be a nice idea if we had a
3158 function lookup_symbol_minsym that found the
3159 symbol associated to a given minimal symbol (if
3160 any). */
3161 if (kind == FUNCTIONS_DOMAIN
3162 || lookup_symbol (SYMBOL_LINKAGE_NAME (msymbol),
3163 (struct block *) NULL,
3164 VAR_DOMAIN, 0)
3165 == NULL)
3166 found_misc = 1;
3167 }
3168 }
3169 }
3170 }
3171 }
3172
3173 ALL_PRIMARY_SYMTABS (objfile, s)
3174 {
3175 bv = BLOCKVECTOR (s);
3176 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
3177 {
3178 struct symbol_search *prevtail = tail;
3179 int nfound = 0;
3180 b = BLOCKVECTOR_BLOCK (bv, i);
3181 ALL_BLOCK_SYMBOLS (b, iter, sym)
3182 {
3183 struct symtab *real_symtab = SYMBOL_SYMTAB (sym);
3184 QUIT;
3185
3186 if (file_matches (real_symtab->filename, files, nfiles)
3187 && ((regexp == NULL
3188 || re_exec (SYMBOL_NATURAL_NAME (sym)) != 0)
3189 && ((kind == VARIABLES_DOMAIN && SYMBOL_CLASS (sym) != LOC_TYPEDEF
3190 && SYMBOL_CLASS (sym) != LOC_BLOCK
3191 && SYMBOL_CLASS (sym) != LOC_CONST)
3192 || (kind == FUNCTIONS_DOMAIN && SYMBOL_CLASS (sym) == LOC_BLOCK)
3193 || (kind == TYPES_DOMAIN && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
3194 || (kind == METHODS_DOMAIN && SYMBOL_CLASS (sym) == LOC_BLOCK))))
3195 {
3196 /* match */
3197 psr = (struct symbol_search *) xmalloc (sizeof (struct symbol_search));
3198 psr->block = i;
3199 psr->symtab = real_symtab;
3200 psr->symbol = sym;
3201 psr->msymbol = NULL;
3202 psr->next = NULL;
3203 if (tail == NULL)
3204 sr = psr;
3205 else
3206 tail->next = psr;
3207 tail = psr;
3208 nfound ++;
3209 }
3210 }
3211 if (nfound > 0)
3212 {
3213 if (prevtail == NULL)
3214 {
3215 struct symbol_search dummy;
3216
3217 dummy.next = sr;
3218 tail = sort_search_symbols (&dummy, nfound);
3219 sr = dummy.next;
3220
3221 old_chain = make_cleanup_free_search_symbols (sr);
3222 }
3223 else
3224 tail = sort_search_symbols (prevtail, nfound);
3225 }
3226 }
3227 }
3228
3229 /* If there are no eyes, avoid all contact. I mean, if there are
3230 no debug symbols, then print directly from the msymbol_vector. */
3231
3232 if (found_misc || kind != FUNCTIONS_DOMAIN)
3233 {
3234 ALL_MSYMBOLS (objfile, msymbol)
3235 {
3236 if (MSYMBOL_TYPE (msymbol) == ourtype ||
3237 MSYMBOL_TYPE (msymbol) == ourtype2 ||
3238 MSYMBOL_TYPE (msymbol) == ourtype3 ||
3239 MSYMBOL_TYPE (msymbol) == ourtype4)
3240 {
3241 if (regexp == NULL
3242 || re_exec (SYMBOL_NATURAL_NAME (msymbol)) != 0)
3243 {
3244 /* Functions: Look up by address. */
3245 if (kind != FUNCTIONS_DOMAIN ||
3246 (0 == find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol))))
3247 {
3248 /* Variables/Absolutes: Look up by name */
3249 if (lookup_symbol (SYMBOL_LINKAGE_NAME (msymbol),
3250 (struct block *) NULL, VAR_DOMAIN, 0)
3251 == NULL)
3252 {
3253 /* match */
3254 psr = (struct symbol_search *) xmalloc (sizeof (struct symbol_search));
3255 psr->block = i;
3256 psr->msymbol = msymbol;
3257 psr->symtab = NULL;
3258 psr->symbol = NULL;
3259 psr->next = NULL;
3260 if (tail == NULL)
3261 {
3262 sr = psr;
3263 old_chain = make_cleanup_free_search_symbols (sr);
3264 }
3265 else
3266 tail->next = psr;
3267 tail = psr;
3268 }
3269 }
3270 }
3271 }
3272 }
3273 }
3274
3275 *matches = sr;
3276 if (sr != NULL)
3277 discard_cleanups (old_chain);
3278 }
3279
3280 /* Helper function for symtab_symbol_info, this function uses
3281 the data returned from search_symbols() to print information
3282 regarding the match to gdb_stdout.
3283 */
3284 static void
3285 print_symbol_info (domain_enum kind, struct symtab *s, struct symbol *sym,
3286 int block, char *last)
3287 {
3288 if (last == NULL || strcmp (last, s->filename) != 0)
3289 {
3290 fputs_filtered ("\nFile ", gdb_stdout);
3291 fputs_filtered (s->filename, gdb_stdout);
3292 fputs_filtered (":\n", gdb_stdout);
3293 }
3294
3295 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
3296 printf_filtered ("static ");
3297
3298 /* Typedef that is not a C++ class */
3299 if (kind == TYPES_DOMAIN
3300 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
3301 typedef_print (SYMBOL_TYPE (sym), sym, gdb_stdout);
3302 /* variable, func, or typedef-that-is-c++-class */
3303 else if (kind < TYPES_DOMAIN ||
3304 (kind == TYPES_DOMAIN &&
3305 SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
3306 {
3307 type_print (SYMBOL_TYPE (sym),
3308 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
3309 ? "" : SYMBOL_PRINT_NAME (sym)),
3310 gdb_stdout, 0);
3311
3312 printf_filtered (";\n");
3313 }
3314 }
3315
3316 /* This help function for symtab_symbol_info() prints information
3317 for non-debugging symbols to gdb_stdout.
3318 */
3319 static void
3320 print_msymbol_info (struct minimal_symbol *msymbol)
3321 {
3322 char *tmp;
3323
3324 if (gdbarch_addr_bit (current_gdbarch) <= 32)
3325 tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol)
3326 & (CORE_ADDR) 0xffffffff,
3327 8);
3328 else
3329 tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol),
3330 16);
3331 printf_filtered ("%s %s\n",
3332 tmp, SYMBOL_PRINT_NAME (msymbol));
3333 }
3334
3335 /* This is the guts of the commands "info functions", "info types", and
3336 "info variables". It calls search_symbols to find all matches and then
3337 print_[m]symbol_info to print out some useful information about the
3338 matches.
3339 */
3340 static void
3341 symtab_symbol_info (char *regexp, domain_enum kind, int from_tty)
3342 {
3343 static char *classnames[]
3344 =
3345 {"variable", "function", "type", "method"};
3346 struct symbol_search *symbols;
3347 struct symbol_search *p;
3348 struct cleanup *old_chain;
3349 char *last_filename = NULL;
3350 int first = 1;
3351
3352 /* must make sure that if we're interrupted, symbols gets freed */
3353 search_symbols (regexp, kind, 0, (char **) NULL, &symbols);
3354 old_chain = make_cleanup_free_search_symbols (symbols);
3355
3356 printf_filtered (regexp
3357 ? "All %ss matching regular expression \"%s\":\n"
3358 : "All defined %ss:\n",
3359 classnames[(int) (kind - VARIABLES_DOMAIN)], regexp);
3360
3361 for (p = symbols; p != NULL; p = p->next)
3362 {
3363 QUIT;
3364
3365 if (p->msymbol != NULL)
3366 {
3367 if (first)
3368 {
3369 printf_filtered ("\nNon-debugging symbols:\n");
3370 first = 0;
3371 }
3372 print_msymbol_info (p->msymbol);
3373 }
3374 else
3375 {
3376 print_symbol_info (kind,
3377 p->symtab,
3378 p->symbol,
3379 p->block,
3380 last_filename);
3381 last_filename = p->symtab->filename;
3382 }
3383 }
3384
3385 do_cleanups (old_chain);
3386 }
3387
3388 static void
3389 variables_info (char *regexp, int from_tty)
3390 {
3391 symtab_symbol_info (regexp, VARIABLES_DOMAIN, from_tty);
3392 }
3393
3394 static void
3395 functions_info (char *regexp, int from_tty)
3396 {
3397 symtab_symbol_info (regexp, FUNCTIONS_DOMAIN, from_tty);
3398 }
3399
3400
3401 static void
3402 types_info (char *regexp, int from_tty)
3403 {
3404 symtab_symbol_info (regexp, TYPES_DOMAIN, from_tty);
3405 }
3406
3407 /* Breakpoint all functions matching regular expression. */
3408
3409 void
3410 rbreak_command_wrapper (char *regexp, int from_tty)
3411 {
3412 rbreak_command (regexp, from_tty);
3413 }
3414
3415 static void
3416 rbreak_command (char *regexp, int from_tty)
3417 {
3418 struct symbol_search *ss;
3419 struct symbol_search *p;
3420 struct cleanup *old_chain;
3421
3422 search_symbols (regexp, FUNCTIONS_DOMAIN, 0, (char **) NULL, &ss);
3423 old_chain = make_cleanup_free_search_symbols (ss);
3424
3425 for (p = ss; p != NULL; p = p->next)
3426 {
3427 if (p->msymbol == NULL)
3428 {
3429 char *string = alloca (strlen (p->symtab->filename)
3430 + strlen (SYMBOL_LINKAGE_NAME (p->symbol))
3431 + 4);
3432 strcpy (string, p->symtab->filename);
3433 strcat (string, ":'");
3434 strcat (string, SYMBOL_LINKAGE_NAME (p->symbol));
3435 strcat (string, "'");
3436 break_command (string, from_tty);
3437 print_symbol_info (FUNCTIONS_DOMAIN,
3438 p->symtab,
3439 p->symbol,
3440 p->block,
3441 p->symtab->filename);
3442 }
3443 else
3444 {
3445 char *string = alloca (strlen (SYMBOL_LINKAGE_NAME (p->msymbol))
3446 + 3);
3447 strcpy (string, "'");
3448 strcat (string, SYMBOL_LINKAGE_NAME (p->msymbol));
3449 strcat (string, "'");
3450
3451 break_command (string, from_tty);
3452 printf_filtered ("<function, no debug info> %s;\n",
3453 SYMBOL_PRINT_NAME (p->msymbol));
3454 }
3455 }
3456
3457 do_cleanups (old_chain);
3458 }
3459 \f
3460
3461 /* Helper routine for make_symbol_completion_list. */
3462
3463 static int return_val_size;
3464 static int return_val_index;
3465 static char **return_val;
3466
3467 #define COMPLETION_LIST_ADD_SYMBOL(symbol, sym_text, len, text, word) \
3468 completion_list_add_name \
3469 (SYMBOL_NATURAL_NAME (symbol), (sym_text), (len), (text), (word))
3470
3471 /* Test to see if the symbol specified by SYMNAME (which is already
3472 demangled for C++ symbols) matches SYM_TEXT in the first SYM_TEXT_LEN
3473 characters. If so, add it to the current completion list. */
3474
3475 static void
3476 completion_list_add_name (char *symname, char *sym_text, int sym_text_len,
3477 char *text, char *word)
3478 {
3479 int newsize;
3480 int i;
3481
3482 /* clip symbols that cannot match */
3483
3484 if (strncmp (symname, sym_text, sym_text_len) != 0)
3485 {
3486 return;
3487 }
3488
3489 /* We have a match for a completion, so add SYMNAME to the current list
3490 of matches. Note that the name is moved to freshly malloc'd space. */
3491
3492 {
3493 char *new;
3494 if (word == sym_text)
3495 {
3496 new = xmalloc (strlen (symname) + 5);
3497 strcpy (new, symname);
3498 }
3499 else if (word > sym_text)
3500 {
3501 /* Return some portion of symname. */
3502 new = xmalloc (strlen (symname) + 5);
3503 strcpy (new, symname + (word - sym_text));
3504 }
3505 else
3506 {
3507 /* Return some of SYM_TEXT plus symname. */
3508 new = xmalloc (strlen (symname) + (sym_text - word) + 5);
3509 strncpy (new, word, sym_text - word);
3510 new[sym_text - word] = '\0';
3511 strcat (new, symname);
3512 }
3513
3514 if (return_val_index + 3 > return_val_size)
3515 {
3516 newsize = (return_val_size *= 2) * sizeof (char *);
3517 return_val = (char **) xrealloc ((char *) return_val, newsize);
3518 }
3519 return_val[return_val_index++] = new;
3520 return_val[return_val_index] = NULL;
3521 }
3522 }
3523
3524 /* ObjC: In case we are completing on a selector, look as the msymbol
3525 again and feed all the selectors into the mill. */
3526
3527 static void
3528 completion_list_objc_symbol (struct minimal_symbol *msymbol, char *sym_text,
3529 int sym_text_len, char *text, char *word)
3530 {
3531 static char *tmp = NULL;
3532 static unsigned int tmplen = 0;
3533
3534 char *method, *category, *selector;
3535 char *tmp2 = NULL;
3536
3537 method = SYMBOL_NATURAL_NAME (msymbol);
3538
3539 /* Is it a method? */
3540 if ((method[0] != '-') && (method[0] != '+'))
3541 return;
3542
3543 if (sym_text[0] == '[')
3544 /* Complete on shortened method method. */
3545 completion_list_add_name (method + 1, sym_text, sym_text_len, text, word);
3546
3547 while ((strlen (method) + 1) >= tmplen)
3548 {
3549 if (tmplen == 0)
3550 tmplen = 1024;
3551 else
3552 tmplen *= 2;
3553 tmp = xrealloc (tmp, tmplen);
3554 }
3555 selector = strchr (method, ' ');
3556 if (selector != NULL)
3557 selector++;
3558
3559 category = strchr (method, '(');
3560
3561 if ((category != NULL) && (selector != NULL))
3562 {
3563 memcpy (tmp, method, (category - method));
3564 tmp[category - method] = ' ';
3565 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
3566 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
3567 if (sym_text[0] == '[')
3568 completion_list_add_name (tmp + 1, sym_text, sym_text_len, text, word);
3569 }
3570
3571 if (selector != NULL)
3572 {
3573 /* Complete on selector only. */
3574 strcpy (tmp, selector);
3575 tmp2 = strchr (tmp, ']');
3576 if (tmp2 != NULL)
3577 *tmp2 = '\0';
3578
3579 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
3580 }
3581 }
3582
3583 /* Break the non-quoted text based on the characters which are in
3584 symbols. FIXME: This should probably be language-specific. */
3585
3586 static char *
3587 language_search_unquoted_string (char *text, char *p)
3588 {
3589 for (; p > text; --p)
3590 {
3591 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
3592 continue;
3593 else
3594 {
3595 if ((current_language->la_language == language_objc))
3596 {
3597 if (p[-1] == ':') /* might be part of a method name */
3598 continue;
3599 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
3600 p -= 2; /* beginning of a method name */
3601 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
3602 { /* might be part of a method name */
3603 char *t = p;
3604
3605 /* Seeing a ' ' or a '(' is not conclusive evidence
3606 that we are in the middle of a method name. However,
3607 finding "-[" or "+[" should be pretty un-ambiguous.
3608 Unfortunately we have to find it now to decide. */
3609
3610 while (t > text)
3611 if (isalnum (t[-1]) || t[-1] == '_' ||
3612 t[-1] == ' ' || t[-1] == ':' ||
3613 t[-1] == '(' || t[-1] == ')')
3614 --t;
3615 else
3616 break;
3617
3618 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
3619 p = t - 2; /* method name detected */
3620 /* else we leave with p unchanged */
3621 }
3622 }
3623 break;
3624 }
3625 }
3626 return p;
3627 }
3628
3629 char **
3630 default_make_symbol_completion_list (char *text, char *word)
3631 {
3632 /* Problem: All of the symbols have to be copied because readline
3633 frees them. I'm not going to worry about this; hopefully there
3634 won't be that many. */
3635
3636 struct symbol *sym;
3637 struct symtab *s;
3638 struct partial_symtab *ps;
3639 struct minimal_symbol *msymbol;
3640 struct objfile *objfile;
3641 struct block *b, *surrounding_static_block = 0;
3642 struct dict_iterator iter;
3643 int j;
3644 struct partial_symbol **psym;
3645 /* The symbol we are completing on. Points in same buffer as text. */
3646 char *sym_text;
3647 /* Length of sym_text. */
3648 int sym_text_len;
3649
3650 /* Now look for the symbol we are supposed to complete on. */
3651 {
3652 char *p;
3653 char quote_found;
3654 char *quote_pos = NULL;
3655
3656 /* First see if this is a quoted string. */
3657 quote_found = '\0';
3658 for (p = text; *p != '\0'; ++p)
3659 {
3660 if (quote_found != '\0')
3661 {
3662 if (*p == quote_found)
3663 /* Found close quote. */
3664 quote_found = '\0';
3665 else if (*p == '\\' && p[1] == quote_found)
3666 /* A backslash followed by the quote character
3667 doesn't end the string. */
3668 ++p;
3669 }
3670 else if (*p == '\'' || *p == '"')
3671 {
3672 quote_found = *p;
3673 quote_pos = p;
3674 }
3675 }
3676 if (quote_found == '\'')
3677 /* A string within single quotes can be a symbol, so complete on it. */
3678 sym_text = quote_pos + 1;
3679 else if (quote_found == '"')
3680 /* A double-quoted string is never a symbol, nor does it make sense
3681 to complete it any other way. */
3682 {
3683 return_val = (char **) xmalloc (sizeof (char *));
3684 return_val[0] = NULL;
3685 return return_val;
3686 }
3687 else
3688 {
3689 /* It is not a quoted string. Break it based on the characters
3690 which are in symbols. */
3691 while (p > text)
3692 {
3693 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
3694 --p;
3695 else
3696 break;
3697 }
3698 sym_text = p;
3699 }
3700 }
3701
3702 sym_text_len = strlen (sym_text);
3703
3704 return_val_size = 100;
3705 return_val_index = 0;
3706 return_val = (char **) xmalloc ((return_val_size + 1) * sizeof (char *));
3707 return_val[0] = NULL;
3708
3709 /* Look through the partial symtabs for all symbols which begin
3710 by matching SYM_TEXT. Add each one that you find to the list. */
3711
3712 ALL_PSYMTABS (objfile, ps)
3713 {
3714 /* If the psymtab's been read in we'll get it when we search
3715 through the blockvector. */
3716 if (ps->readin)
3717 continue;
3718
3719 for (psym = objfile->global_psymbols.list + ps->globals_offset;
3720 psym < (objfile->global_psymbols.list + ps->globals_offset
3721 + ps->n_global_syms);
3722 psym++)
3723 {
3724 /* If interrupted, then quit. */
3725 QUIT;
3726 COMPLETION_LIST_ADD_SYMBOL (*psym, sym_text, sym_text_len, text, word);
3727 }
3728
3729 for (psym = objfile->static_psymbols.list + ps->statics_offset;
3730 psym < (objfile->static_psymbols.list + ps->statics_offset
3731 + ps->n_static_syms);
3732 psym++)
3733 {
3734 QUIT;
3735 COMPLETION_LIST_ADD_SYMBOL (*psym, sym_text, sym_text_len, text, word);
3736 }
3737 }
3738
3739 /* At this point scan through the misc symbol vectors and add each
3740 symbol you find to the list. Eventually we want to ignore
3741 anything that isn't a text symbol (everything else will be
3742 handled by the psymtab code above). */
3743
3744 ALL_MSYMBOLS (objfile, msymbol)
3745 {
3746 QUIT;
3747 COMPLETION_LIST_ADD_SYMBOL (msymbol, sym_text, sym_text_len, text, word);
3748
3749 completion_list_objc_symbol (msymbol, sym_text, sym_text_len, text, word);
3750 }
3751
3752 /* Search upwards from currently selected frame (so that we can
3753 complete on local vars. */
3754
3755 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
3756 {
3757 if (!BLOCK_SUPERBLOCK (b))
3758 {
3759 surrounding_static_block = b; /* For elmin of dups */
3760 }
3761
3762 /* Also catch fields of types defined in this places which match our
3763 text string. Only complete on types visible from current context. */
3764
3765 ALL_BLOCK_SYMBOLS (b, iter, sym)
3766 {
3767 QUIT;
3768 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
3769 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
3770 {
3771 struct type *t = SYMBOL_TYPE (sym);
3772 enum type_code c = TYPE_CODE (t);
3773
3774 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
3775 {
3776 for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++)
3777 {
3778 if (TYPE_FIELD_NAME (t, j))
3779 {
3780 completion_list_add_name (TYPE_FIELD_NAME (t, j),
3781 sym_text, sym_text_len, text, word);
3782 }
3783 }
3784 }
3785 }
3786 }
3787 }
3788
3789 /* Go through the symtabs and check the externs and statics for
3790 symbols which match. */
3791
3792 ALL_PRIMARY_SYMTABS (objfile, s)
3793 {
3794 QUIT;
3795 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
3796 ALL_BLOCK_SYMBOLS (b, iter, sym)
3797 {
3798 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
3799 }
3800 }
3801
3802 ALL_PRIMARY_SYMTABS (objfile, s)
3803 {
3804 QUIT;
3805 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
3806 /* Don't do this block twice. */
3807 if (b == surrounding_static_block)
3808 continue;
3809 ALL_BLOCK_SYMBOLS (b, iter, sym)
3810 {
3811 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
3812 }
3813 }
3814
3815 return (return_val);
3816 }
3817
3818 /* Return a NULL terminated array of all symbols (regardless of class)
3819 which begin by matching TEXT. If the answer is no symbols, then
3820 the return value is an array which contains only a NULL pointer. */
3821
3822 char **
3823 make_symbol_completion_list (char *text, char *word)
3824 {
3825 return current_language->la_make_symbol_completion_list (text, word);
3826 }
3827
3828 /* Like make_symbol_completion_list, but returns a list of symbols
3829 defined in a source file FILE. */
3830
3831 char **
3832 make_file_symbol_completion_list (char *text, char *word, char *srcfile)
3833 {
3834 struct symbol *sym;
3835 struct symtab *s;
3836 struct block *b;
3837 struct dict_iterator iter;
3838 /* The symbol we are completing on. Points in same buffer as text. */
3839 char *sym_text;
3840 /* Length of sym_text. */
3841 int sym_text_len;
3842
3843 /* Now look for the symbol we are supposed to complete on.
3844 FIXME: This should be language-specific. */
3845 {
3846 char *p;
3847 char quote_found;
3848 char *quote_pos = NULL;
3849
3850 /* First see if this is a quoted string. */
3851 quote_found = '\0';
3852 for (p = text; *p != '\0'; ++p)
3853 {
3854 if (quote_found != '\0')
3855 {
3856 if (*p == quote_found)
3857 /* Found close quote. */
3858 quote_found = '\0';
3859 else if (*p == '\\' && p[1] == quote_found)
3860 /* A backslash followed by the quote character
3861 doesn't end the string. */
3862 ++p;
3863 }
3864 else if (*p == '\'' || *p == '"')
3865 {
3866 quote_found = *p;
3867 quote_pos = p;
3868 }
3869 }
3870 if (quote_found == '\'')
3871 /* A string within single quotes can be a symbol, so complete on it. */
3872 sym_text = quote_pos + 1;
3873 else if (quote_found == '"')
3874 /* A double-quoted string is never a symbol, nor does it make sense
3875 to complete it any other way. */
3876 {
3877 return_val = (char **) xmalloc (sizeof (char *));
3878 return_val[0] = NULL;
3879 return return_val;
3880 }
3881 else
3882 {
3883 /* Not a quoted string. */
3884 sym_text = language_search_unquoted_string (text, p);
3885 }
3886 }
3887
3888 sym_text_len = strlen (sym_text);
3889
3890 return_val_size = 10;
3891 return_val_index = 0;
3892 return_val = (char **) xmalloc ((return_val_size + 1) * sizeof (char *));
3893 return_val[0] = NULL;
3894
3895 /* Find the symtab for SRCFILE (this loads it if it was not yet read
3896 in). */
3897 s = lookup_symtab (srcfile);
3898 if (s == NULL)
3899 {
3900 /* Maybe they typed the file with leading directories, while the
3901 symbol tables record only its basename. */
3902 const char *tail = lbasename (srcfile);
3903
3904 if (tail > srcfile)
3905 s = lookup_symtab (tail);
3906 }
3907
3908 /* If we have no symtab for that file, return an empty list. */
3909 if (s == NULL)
3910 return (return_val);
3911
3912 /* Go through this symtab and check the externs and statics for
3913 symbols which match. */
3914
3915 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
3916 ALL_BLOCK_SYMBOLS (b, iter, sym)
3917 {
3918 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
3919 }
3920
3921 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
3922 ALL_BLOCK_SYMBOLS (b, iter, sym)
3923 {
3924 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
3925 }
3926
3927 return (return_val);
3928 }
3929
3930 /* A helper function for make_source_files_completion_list. It adds
3931 another file name to a list of possible completions, growing the
3932 list as necessary. */
3933
3934 static void
3935 add_filename_to_list (const char *fname, char *text, char *word,
3936 char ***list, int *list_used, int *list_alloced)
3937 {
3938 char *new;
3939 size_t fnlen = strlen (fname);
3940
3941 if (*list_used + 1 >= *list_alloced)
3942 {
3943 *list_alloced *= 2;
3944 *list = (char **) xrealloc ((char *) *list,
3945 *list_alloced * sizeof (char *));
3946 }
3947
3948 if (word == text)
3949 {
3950 /* Return exactly fname. */
3951 new = xmalloc (fnlen + 5);
3952 strcpy (new, fname);
3953 }
3954 else if (word > text)
3955 {
3956 /* Return some portion of fname. */
3957 new = xmalloc (fnlen + 5);
3958 strcpy (new, fname + (word - text));
3959 }
3960 else
3961 {
3962 /* Return some of TEXT plus fname. */
3963 new = xmalloc (fnlen + (text - word) + 5);
3964 strncpy (new, word, text - word);
3965 new[text - word] = '\0';
3966 strcat (new, fname);
3967 }
3968 (*list)[*list_used] = new;
3969 (*list)[++*list_used] = NULL;
3970 }
3971
3972 static int
3973 not_interesting_fname (const char *fname)
3974 {
3975 static const char *illegal_aliens[] = {
3976 "_globals_", /* inserted by coff_symtab_read */
3977 NULL
3978 };
3979 int i;
3980
3981 for (i = 0; illegal_aliens[i]; i++)
3982 {
3983 if (strcmp (fname, illegal_aliens[i]) == 0)
3984 return 1;
3985 }
3986 return 0;
3987 }
3988
3989 /* Return a NULL terminated array of all source files whose names
3990 begin with matching TEXT. The file names are looked up in the
3991 symbol tables of this program. If the answer is no matchess, then
3992 the return value is an array which contains only a NULL pointer. */
3993
3994 char **
3995 make_source_files_completion_list (char *text, char *word)
3996 {
3997 struct symtab *s;
3998 struct partial_symtab *ps;
3999 struct objfile *objfile;
4000 int first = 1;
4001 int list_alloced = 1;
4002 int list_used = 0;
4003 size_t text_len = strlen (text);
4004 char **list = (char **) xmalloc (list_alloced * sizeof (char *));
4005 const char *base_name;
4006
4007 list[0] = NULL;
4008
4009 if (!have_full_symbols () && !have_partial_symbols ())
4010 return list;
4011
4012 ALL_SYMTABS (objfile, s)
4013 {
4014 if (not_interesting_fname (s->filename))
4015 continue;
4016 if (!filename_seen (s->filename, 1, &first)
4017 #if HAVE_DOS_BASED_FILE_SYSTEM
4018 && strncasecmp (s->filename, text, text_len) == 0
4019 #else
4020 && strncmp (s->filename, text, text_len) == 0
4021 #endif
4022 )
4023 {
4024 /* This file matches for a completion; add it to the current
4025 list of matches. */
4026 add_filename_to_list (s->filename, text, word,
4027 &list, &list_used, &list_alloced);
4028 }
4029 else
4030 {
4031 /* NOTE: We allow the user to type a base name when the
4032 debug info records leading directories, but not the other
4033 way around. This is what subroutines of breakpoint
4034 command do when they parse file names. */
4035 base_name = lbasename (s->filename);
4036 if (base_name != s->filename
4037 && !filename_seen (base_name, 1, &first)
4038 #if HAVE_DOS_BASED_FILE_SYSTEM
4039 && strncasecmp (base_name, text, text_len) == 0
4040 #else
4041 && strncmp (base_name, text, text_len) == 0
4042 #endif
4043 )
4044 add_filename_to_list (base_name, text, word,
4045 &list, &list_used, &list_alloced);
4046 }
4047 }
4048
4049 ALL_PSYMTABS (objfile, ps)
4050 {
4051 if (not_interesting_fname (ps->filename))
4052 continue;
4053 if (!ps->readin)
4054 {
4055 if (!filename_seen (ps->filename, 1, &first)
4056 #if HAVE_DOS_BASED_FILE_SYSTEM
4057 && strncasecmp (ps->filename, text, text_len) == 0
4058 #else
4059 && strncmp (ps->filename, text, text_len) == 0
4060 #endif
4061 )
4062 {
4063 /* This file matches for a completion; add it to the
4064 current list of matches. */
4065 add_filename_to_list (ps->filename, text, word,
4066 &list, &list_used, &list_alloced);
4067
4068 }
4069 else
4070 {
4071 base_name = lbasename (ps->filename);
4072 if (base_name != ps->filename
4073 && !filename_seen (base_name, 1, &first)
4074 #if HAVE_DOS_BASED_FILE_SYSTEM
4075 && strncasecmp (base_name, text, text_len) == 0
4076 #else
4077 && strncmp (base_name, text, text_len) == 0
4078 #endif
4079 )
4080 add_filename_to_list (base_name, text, word,
4081 &list, &list_used, &list_alloced);
4082 }
4083 }
4084 }
4085
4086 return list;
4087 }
4088
4089 /* Determine if PC is in the prologue of a function. The prologue is the area
4090 between the first instruction of a function, and the first executable line.
4091 Returns 1 if PC *might* be in prologue, 0 if definately *not* in prologue.
4092
4093 If non-zero, func_start is where we think the prologue starts, possibly
4094 by previous examination of symbol table information.
4095 */
4096
4097 int
4098 in_prologue (CORE_ADDR pc, CORE_ADDR func_start)
4099 {
4100 struct symtab_and_line sal;
4101 CORE_ADDR func_addr, func_end;
4102
4103 /* We have several sources of information we can consult to figure
4104 this out.
4105 - Compilers usually emit line number info that marks the prologue
4106 as its own "source line". So the ending address of that "line"
4107 is the end of the prologue. If available, this is the most
4108 reliable method.
4109 - The minimal symbols and partial symbols, which can usually tell
4110 us the starting and ending addresses of a function.
4111 - If we know the function's start address, we can call the
4112 architecture-defined gdbarch_skip_prologue function to analyze the
4113 instruction stream and guess where the prologue ends.
4114 - Our `func_start' argument; if non-zero, this is the caller's
4115 best guess as to the function's entry point. At the time of
4116 this writing, handle_inferior_event doesn't get this right, so
4117 it should be our last resort. */
4118
4119 /* Consult the partial symbol table, to find which function
4120 the PC is in. */
4121 if (! find_pc_partial_function (pc, NULL, &func_addr, &func_end))
4122 {
4123 CORE_ADDR prologue_end;
4124
4125 /* We don't even have minsym information, so fall back to using
4126 func_start, if given. */
4127 if (! func_start)
4128 return 1; /* We *might* be in a prologue. */
4129
4130 prologue_end = gdbarch_skip_prologue (current_gdbarch, func_start);
4131
4132 return func_start <= pc && pc < prologue_end;
4133 }
4134
4135 /* If we have line number information for the function, that's
4136 usually pretty reliable. */
4137 sal = find_pc_line (func_addr, 0);
4138
4139 /* Now sal describes the source line at the function's entry point,
4140 which (by convention) is the prologue. The end of that "line",
4141 sal.end, is the end of the prologue.
4142
4143 Note that, for functions whose source code is all on a single
4144 line, the line number information doesn't always end up this way.
4145 So we must verify that our purported end-of-prologue address is
4146 *within* the function, not at its start or end. */
4147 if (sal.line == 0
4148 || sal.end <= func_addr
4149 || func_end <= sal.end)
4150 {
4151 /* We don't have any good line number info, so use the minsym
4152 information, together with the architecture-specific prologue
4153 scanning code. */
4154 CORE_ADDR prologue_end = gdbarch_skip_prologue
4155 (current_gdbarch, func_addr);
4156
4157 return func_addr <= pc && pc < prologue_end;
4158 }
4159
4160 /* We have line number info, and it looks good. */
4161 return func_addr <= pc && pc < sal.end;
4162 }
4163
4164 /* Given PC at the function's start address, attempt to find the
4165 prologue end using SAL information. Return zero if the skip fails.
4166
4167 A non-optimized prologue traditionally has one SAL for the function
4168 and a second for the function body. A single line function has
4169 them both pointing at the same line.
4170
4171 An optimized prologue is similar but the prologue may contain
4172 instructions (SALs) from the instruction body. Need to skip those
4173 while not getting into the function body.
4174
4175 The functions end point and an increasing SAL line are used as
4176 indicators of the prologue's endpoint.
4177
4178 This code is based on the function refine_prologue_limit (versions
4179 found in both ia64 and ppc). */
4180
4181 CORE_ADDR
4182 skip_prologue_using_sal (CORE_ADDR func_addr)
4183 {
4184 struct symtab_and_line prologue_sal;
4185 CORE_ADDR start_pc;
4186 CORE_ADDR end_pc;
4187
4188 /* Get an initial range for the function. */
4189 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
4190 start_pc += gdbarch_deprecated_function_start_offset (current_gdbarch);
4191
4192 prologue_sal = find_pc_line (start_pc, 0);
4193 if (prologue_sal.line != 0)
4194 {
4195 /* If there is only one sal that covers the entire function,
4196 then it is probably a single line function, like
4197 "foo(){}". */
4198 if (prologue_sal.end >= end_pc)
4199 return 0;
4200 while (prologue_sal.end < end_pc)
4201 {
4202 struct symtab_and_line sal;
4203
4204 sal = find_pc_line (prologue_sal.end, 0);
4205 if (sal.line == 0)
4206 break;
4207 /* Assume that a consecutive SAL for the same (or larger)
4208 line mark the prologue -> body transition. */
4209 if (sal.line >= prologue_sal.line)
4210 break;
4211 /* The case in which compiler's optimizer/scheduler has
4212 moved instructions into the prologue. We look ahead in
4213 the function looking for address ranges whose
4214 corresponding line number is less the first one that we
4215 found for the function. This is more conservative then
4216 refine_prologue_limit which scans a large number of SALs
4217 looking for any in the prologue */
4218 prologue_sal = sal;
4219 }
4220 }
4221 return prologue_sal.end;
4222 }
4223 \f
4224 struct symtabs_and_lines
4225 decode_line_spec (char *string, int funfirstline)
4226 {
4227 struct symtabs_and_lines sals;
4228 struct symtab_and_line cursal;
4229
4230 if (string == 0)
4231 error (_("Empty line specification."));
4232
4233 /* We use whatever is set as the current source line. We do not try
4234 and get a default or it will recursively call us! */
4235 cursal = get_current_source_symtab_and_line ();
4236
4237 sals = decode_line_1 (&string, funfirstline,
4238 cursal.symtab, cursal.line,
4239 (char ***) NULL, NULL);
4240
4241 if (*string)
4242 error (_("Junk at end of line specification: %s"), string);
4243 return sals;
4244 }
4245
4246 /* Track MAIN */
4247 static char *name_of_main;
4248
4249 void
4250 set_main_name (const char *name)
4251 {
4252 if (name_of_main != NULL)
4253 {
4254 xfree (name_of_main);
4255 name_of_main = NULL;
4256 }
4257 if (name != NULL)
4258 {
4259 name_of_main = xstrdup (name);
4260 }
4261 }
4262
4263 /* Deduce the name of the main procedure, and set NAME_OF_MAIN
4264 accordingly. */
4265
4266 static void
4267 find_main_name (void)
4268 {
4269 const char *new_main_name;
4270
4271 /* Try to see if the main procedure is in Ada. */
4272 /* FIXME: brobecker/2005-03-07: Another way of doing this would
4273 be to add a new method in the language vector, and call this
4274 method for each language until one of them returns a non-empty
4275 name. This would allow us to remove this hard-coded call to
4276 an Ada function. It is not clear that this is a better approach
4277 at this point, because all methods need to be written in a way
4278 such that false positives never be returned. For instance, it is
4279 important that a method does not return a wrong name for the main
4280 procedure if the main procedure is actually written in a different
4281 language. It is easy to guaranty this with Ada, since we use a
4282 special symbol generated only when the main in Ada to find the name
4283 of the main procedure. It is difficult however to see how this can
4284 be guarantied for languages such as C, for instance. This suggests
4285 that order of call for these methods becomes important, which means
4286 a more complicated approach. */
4287 new_main_name = ada_main_name ();
4288 if (new_main_name != NULL)
4289 {
4290 set_main_name (new_main_name);
4291 return;
4292 }
4293
4294 new_main_name = pascal_main_name ();
4295 if (new_main_name != NULL)
4296 {
4297 set_main_name (new_main_name);
4298 return;
4299 }
4300
4301 /* The languages above didn't identify the name of the main procedure.
4302 Fallback to "main". */
4303 set_main_name ("main");
4304 }
4305
4306 char *
4307 main_name (void)
4308 {
4309 if (name_of_main == NULL)
4310 find_main_name ();
4311
4312 return name_of_main;
4313 }
4314
4315 /* Handle ``executable_changed'' events for the symtab module. */
4316
4317 static void
4318 symtab_observer_executable_changed (void *unused)
4319 {
4320 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
4321 set_main_name (NULL);
4322 }
4323
4324 /* Helper to expand_line_sal below. Appends new sal to SAL,
4325 initializing it from SYMTAB, LINENO and PC. */
4326 static void
4327 append_expanded_sal (struct symtabs_and_lines *sal,
4328 struct symtab *symtab,
4329 int lineno, CORE_ADDR pc)
4330 {
4331 CORE_ADDR func_addr, func_end;
4332
4333 sal->sals = xrealloc (sal->sals,
4334 sizeof (sal->sals[0])
4335 * (sal->nelts + 1));
4336 init_sal (sal->sals + sal->nelts);
4337 sal->sals[sal->nelts].symtab = symtab;
4338 sal->sals[sal->nelts].section = NULL;
4339 sal->sals[sal->nelts].end = 0;
4340 sal->sals[sal->nelts].line = lineno;
4341 sal->sals[sal->nelts].pc = pc;
4342 ++sal->nelts;
4343 }
4344
4345 /* Compute a set of all sals in
4346 the entire program that correspond to same file
4347 and line as SAL and return those. If there
4348 are several sals that belong to the same block,
4349 only one sal for the block is included in results. */
4350
4351 struct symtabs_and_lines
4352 expand_line_sal (struct symtab_and_line sal)
4353 {
4354 struct symtabs_and_lines ret, this_line;
4355 int i, j;
4356 struct objfile *objfile;
4357 struct partial_symtab *psymtab;
4358 struct symtab *symtab;
4359 int lineno;
4360 int deleted = 0;
4361 struct block **blocks = NULL;
4362 int *filter;
4363
4364 ret.nelts = 0;
4365 ret.sals = NULL;
4366
4367 if (sal.symtab == NULL || sal.line == 0 || sal.pc != 0)
4368 {
4369 ret.sals = xmalloc (sizeof (struct symtab_and_line));
4370 ret.sals[0] = sal;
4371 ret.nelts = 1;
4372 return ret;
4373 }
4374 else
4375 {
4376 struct linetable_entry *best_item = 0;
4377 struct symtab *best_symtab = 0;
4378 int exact = 0;
4379
4380 lineno = sal.line;
4381
4382 /* We meed to find all symtabs for a file which name
4383 is described by sal. We cannot just directly
4384 iterate over symtabs, since a symtab might not be
4385 yet created. We also cannot iterate over psymtabs,
4386 calling PSYMTAB_TO_SYMTAB and working on that symtab,
4387 since PSYMTAB_TO_SYMTAB will return NULL for psymtab
4388 corresponding to an included file. Therefore, we do
4389 first pass over psymtabs, reading in those with
4390 the right name. Then, we iterate over symtabs, knowing
4391 that all symtabs we're interested in are loaded. */
4392
4393 ALL_PSYMTABS (objfile, psymtab)
4394 {
4395 if (strcmp (sal.symtab->filename,
4396 psymtab->filename) == 0)
4397 PSYMTAB_TO_SYMTAB (psymtab);
4398 }
4399
4400
4401 /* For each symtab, we add all pcs to ret.sals. I'm actually
4402 not sure what to do if we have exact match in one symtab,
4403 and non-exact match on another symtab.
4404 */
4405 ALL_SYMTABS (objfile, symtab)
4406 {
4407 if (strcmp (sal.symtab->filename,
4408 symtab->filename) == 0)
4409 {
4410 struct linetable *l;
4411 int len;
4412 l = LINETABLE (symtab);
4413 if (!l)
4414 continue;
4415 len = l->nitems;
4416
4417 for (j = 0; j < len; j++)
4418 {
4419 struct linetable_entry *item = &(l->item[j]);
4420
4421 if (item->line == lineno)
4422 {
4423 exact = 1;
4424 append_expanded_sal (&ret, symtab, lineno, item->pc);
4425 }
4426 else if (!exact && item->line > lineno
4427 && (best_item == NULL || item->line < best_item->line))
4428
4429 {
4430 best_item = item;
4431 best_symtab = symtab;
4432 }
4433 }
4434 }
4435 }
4436 if (!exact && best_item)
4437 append_expanded_sal (&ret, best_symtab, lineno, best_item->pc);
4438 }
4439
4440 /* For optimized code, compiler can scatter one source line accross
4441 disjoint ranges of PC values, even when no duplicate functions
4442 or inline functions are involved. For example, 'for (;;)' inside
4443 non-template non-inline non-ctor-or-dtor function can result
4444 in two PC ranges. In this case, we don't want to set breakpoint
4445 on first PC of each range. To filter such cases, we use containing
4446 blocks -- for each PC found above we see if there are other PCs
4447 that are in the same block. If yes, the other PCs are filtered out. */
4448
4449 filter = xmalloc (ret.nelts * sizeof (int));
4450 blocks = xmalloc (ret.nelts * sizeof (struct block *));
4451 for (i = 0; i < ret.nelts; ++i)
4452 {
4453 filter[i] = 1;
4454 blocks[i] = block_for_pc (ret.sals[i].pc);
4455 }
4456
4457 for (i = 0; i < ret.nelts; ++i)
4458 if (blocks[i] != NULL)
4459 for (j = i+1; j < ret.nelts; ++j)
4460 if (blocks[j] == blocks[i])
4461 {
4462 filter[j] = 0;
4463 ++deleted;
4464 break;
4465 }
4466
4467 {
4468 struct symtab_and_line *final =
4469 xmalloc (sizeof (struct symtab_and_line) * (ret.nelts-deleted));
4470
4471 for (i = 0, j = 0; i < ret.nelts; ++i)
4472 if (filter[i])
4473 final[j++] = ret.sals[i];
4474
4475 ret.nelts -= deleted;
4476 xfree (ret.sals);
4477 ret.sals = final;
4478 }
4479
4480 return ret;
4481 }
4482
4483
4484 void
4485 _initialize_symtab (void)
4486 {
4487 add_info ("variables", variables_info, _("\
4488 All global and static variable names, or those matching REGEXP."));
4489 if (dbx_commands)
4490 add_com ("whereis", class_info, variables_info, _("\
4491 All global and static variable names, or those matching REGEXP."));
4492
4493 add_info ("functions", functions_info,
4494 _("All function names, or those matching REGEXP."));
4495
4496
4497 /* FIXME: This command has at least the following problems:
4498 1. It prints builtin types (in a very strange and confusing fashion).
4499 2. It doesn't print right, e.g. with
4500 typedef struct foo *FOO
4501 type_print prints "FOO" when we want to make it (in this situation)
4502 print "struct foo *".
4503 I also think "ptype" or "whatis" is more likely to be useful (but if
4504 there is much disagreement "info types" can be fixed). */
4505 add_info ("types", types_info,
4506 _("All type names, or those matching REGEXP."));
4507
4508 add_info ("sources", sources_info,
4509 _("Source files in the program."));
4510
4511 add_com ("rbreak", class_breakpoint, rbreak_command,
4512 _("Set a breakpoint for all functions matching REGEXP."));
4513
4514 if (xdb_commands)
4515 {
4516 add_com ("lf", class_info, sources_info,
4517 _("Source files in the program"));
4518 add_com ("lg", class_info, variables_info, _("\
4519 All global and static variable names, or those matching REGEXP."));
4520 }
4521
4522 add_setshow_enum_cmd ("multiple-symbols", no_class,
4523 multiple_symbols_modes, &multiple_symbols_mode,
4524 _("\
4525 Set the debugger behavior when more than one symbol are possible matches\n\
4526 in an expression."), _("\
4527 Show how the debugger handles ambiguities in expressions."), _("\
4528 Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
4529 NULL, NULL, &setlist, &showlist);
4530
4531 /* Initialize the one built-in type that isn't language dependent... */
4532 builtin_type_error = init_type (TYPE_CODE_ERROR, 0, 0,
4533 "<unknown type>", (struct objfile *) NULL);
4534
4535 observer_attach_executable_changed (symtab_observer_executable_changed);
4536 }
This page took 0.116215 seconds and 3 git commands to generate.