0cd51192f814b4a1d13aa910dda4afb43adf3bda
[deliverable/binutils-gdb.git] / gdb / symtab.c
1 /* Symbol table lookup for the GNU debugger, GDB.
2
3 Copyright (C) 1986-2019 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "gdbcore.h"
24 #include "frame.h"
25 #include "target.h"
26 #include "value.h"
27 #include "symfile.h"
28 #include "objfiles.h"
29 #include "gdbcmd.h"
30 #include "gdb_regex.h"
31 #include "expression.h"
32 #include "language.h"
33 #include "demangle.h"
34 #include "inferior.h"
35 #include "source.h"
36 #include "filenames.h" /* for FILENAME_CMP */
37 #include "objc-lang.h"
38 #include "d-lang.h"
39 #include "ada-lang.h"
40 #include "go-lang.h"
41 #include "p-lang.h"
42 #include "addrmap.h"
43 #include "cli/cli-utils.h"
44 #include "fnmatch.h"
45 #include "hashtab.h"
46 #include "typeprint.h"
47
48 #include "gdb_obstack.h"
49 #include "block.h"
50 #include "dictionary.h"
51
52 #include <sys/types.h>
53 #include <fcntl.h>
54 #include <sys/stat.h>
55 #include <ctype.h>
56 #include "cp-abi.h"
57 #include "cp-support.h"
58 #include "observable.h"
59 #include "solist.h"
60 #include "macrotab.h"
61 #include "macroscope.h"
62
63 #include "parser-defs.h"
64 #include "completer.h"
65 #include "progspace-and-thread.h"
66 #include "common/gdb_optional.h"
67 #include "filename-seen-cache.h"
68 #include "arch-utils.h"
69 #include <algorithm>
70 #include "common/pathstuff.h"
71
72 /* Forward declarations for local functions. */
73
74 static void rbreak_command (const char *, int);
75
76 static int find_line_common (struct linetable *, int, int *, int);
77
78 static struct block_symbol
79 lookup_symbol_aux (const char *name,
80 symbol_name_match_type match_type,
81 const struct block *block,
82 const domain_enum domain,
83 enum language language,
84 struct field_of_this_result *);
85
86 static
87 struct block_symbol lookup_local_symbol (const char *name,
88 symbol_name_match_type match_type,
89 const struct block *block,
90 const domain_enum domain,
91 enum language language);
92
93 static struct block_symbol
94 lookup_symbol_in_objfile (struct objfile *objfile, int block_index,
95 const char *name, const domain_enum domain);
96
97 /* See symtab.h. */
98 const struct block_symbol null_block_symbol = { NULL, NULL };
99
100 /* Program space key for finding name and language of "main". */
101
102 static const struct program_space_data *main_progspace_key;
103
104 /* Type of the data stored on the program space. */
105
106 struct main_info
107 {
108 /* Name of "main". */
109
110 char *name_of_main;
111
112 /* Language of "main". */
113
114 enum language language_of_main;
115 };
116
117 /* Program space key for finding its symbol cache. */
118
119 static const struct program_space_data *symbol_cache_key;
120
121 /* The default symbol cache size.
122 There is no extra cpu cost for large N (except when flushing the cache,
123 which is rare). The value here is just a first attempt. A better default
124 value may be higher or lower. A prime number can make up for a bad hash
125 computation, so that's why the number is what it is. */
126 #define DEFAULT_SYMBOL_CACHE_SIZE 1021
127
128 /* The maximum symbol cache size.
129 There's no method to the decision of what value to use here, other than
130 there's no point in allowing a user typo to make gdb consume all memory. */
131 #define MAX_SYMBOL_CACHE_SIZE (1024*1024)
132
133 /* symbol_cache_lookup returns this if a previous lookup failed to find the
134 symbol in any objfile. */
135 #define SYMBOL_LOOKUP_FAILED \
136 ((struct block_symbol) {(struct symbol *) 1, NULL})
137 #define SYMBOL_LOOKUP_FAILED_P(SIB) (SIB.symbol == (struct symbol *) 1)
138
139 /* Recording lookups that don't find the symbol is just as important, if not
140 more so, than recording found symbols. */
141
142 enum symbol_cache_slot_state
143 {
144 SYMBOL_SLOT_UNUSED,
145 SYMBOL_SLOT_NOT_FOUND,
146 SYMBOL_SLOT_FOUND
147 };
148
149 struct symbol_cache_slot
150 {
151 enum symbol_cache_slot_state state;
152
153 /* The objfile that was current when the symbol was looked up.
154 This is only needed for global blocks, but for simplicity's sake
155 we allocate the space for both. If data shows the extra space used
156 for static blocks is a problem, we can split things up then.
157
158 Global blocks need cache lookup to include the objfile context because
159 we need to account for gdbarch_iterate_over_objfiles_in_search_order
160 which can traverse objfiles in, effectively, any order, depending on
161 the current objfile, thus affecting which symbol is found. Normally,
162 only the current objfile is searched first, and then the rest are
163 searched in recorded order; but putting cache lookup inside
164 gdbarch_iterate_over_objfiles_in_search_order would be awkward.
165 Instead we just make the current objfile part of the context of
166 cache lookup. This means we can record the same symbol multiple times,
167 each with a different "current objfile" that was in effect when the
168 lookup was saved in the cache, but cache space is pretty cheap. */
169 const struct objfile *objfile_context;
170
171 union
172 {
173 struct block_symbol found;
174 struct
175 {
176 char *name;
177 domain_enum domain;
178 } not_found;
179 } value;
180 };
181
182 /* Symbols don't specify global vs static block.
183 So keep them in separate caches. */
184
185 struct block_symbol_cache
186 {
187 unsigned int hits;
188 unsigned int misses;
189 unsigned int collisions;
190
191 /* SYMBOLS is a variable length array of this size.
192 One can imagine that in general one cache (global/static) should be a
193 fraction of the size of the other, but there's no data at the moment
194 on which to decide. */
195 unsigned int size;
196
197 struct symbol_cache_slot symbols[1];
198 };
199
200 /* The symbol cache.
201
202 Searching for symbols in the static and global blocks over multiple objfiles
203 again and again can be slow, as can searching very big objfiles. This is a
204 simple cache to improve symbol lookup performance, which is critical to
205 overall gdb performance.
206
207 Symbols are hashed on the name, its domain, and block.
208 They are also hashed on their objfile for objfile-specific lookups. */
209
210 struct symbol_cache
211 {
212 struct block_symbol_cache *global_symbols;
213 struct block_symbol_cache *static_symbols;
214 };
215
216 /* When non-zero, print debugging messages related to symtab creation. */
217 unsigned int symtab_create_debug = 0;
218
219 /* When non-zero, print debugging messages related to symbol lookup. */
220 unsigned int symbol_lookup_debug = 0;
221
222 /* The size of the cache is staged here. */
223 static unsigned int new_symbol_cache_size = DEFAULT_SYMBOL_CACHE_SIZE;
224
225 /* The current value of the symbol cache size.
226 This is saved so that if the user enters a value too big we can restore
227 the original value from here. */
228 static unsigned int symbol_cache_size = DEFAULT_SYMBOL_CACHE_SIZE;
229
230 /* Non-zero if a file may be known by two different basenames.
231 This is the uncommon case, and significantly slows down gdb.
232 Default set to "off" to not slow down the common case. */
233 int basenames_may_differ = 0;
234
235 /* Allow the user to configure the debugger behavior with respect
236 to multiple-choice menus when more than one symbol matches during
237 a symbol lookup. */
238
239 const char multiple_symbols_ask[] = "ask";
240 const char multiple_symbols_all[] = "all";
241 const char multiple_symbols_cancel[] = "cancel";
242 static const char *const multiple_symbols_modes[] =
243 {
244 multiple_symbols_ask,
245 multiple_symbols_all,
246 multiple_symbols_cancel,
247 NULL
248 };
249 static const char *multiple_symbols_mode = multiple_symbols_all;
250
251 /* Read-only accessor to AUTO_SELECT_MODE. */
252
253 const char *
254 multiple_symbols_select_mode (void)
255 {
256 return multiple_symbols_mode;
257 }
258
259 /* Return the name of a domain_enum. */
260
261 const char *
262 domain_name (domain_enum e)
263 {
264 switch (e)
265 {
266 case UNDEF_DOMAIN: return "UNDEF_DOMAIN";
267 case VAR_DOMAIN: return "VAR_DOMAIN";
268 case STRUCT_DOMAIN: return "STRUCT_DOMAIN";
269 case MODULE_DOMAIN: return "MODULE_DOMAIN";
270 case LABEL_DOMAIN: return "LABEL_DOMAIN";
271 case COMMON_BLOCK_DOMAIN: return "COMMON_BLOCK_DOMAIN";
272 default: gdb_assert_not_reached ("bad domain_enum");
273 }
274 }
275
276 /* Return the name of a search_domain . */
277
278 const char *
279 search_domain_name (enum search_domain e)
280 {
281 switch (e)
282 {
283 case VARIABLES_DOMAIN: return "VARIABLES_DOMAIN";
284 case FUNCTIONS_DOMAIN: return "FUNCTIONS_DOMAIN";
285 case TYPES_DOMAIN: return "TYPES_DOMAIN";
286 case ALL_DOMAIN: return "ALL_DOMAIN";
287 default: gdb_assert_not_reached ("bad search_domain");
288 }
289 }
290
291 /* See symtab.h. */
292
293 struct symtab *
294 compunit_primary_filetab (const struct compunit_symtab *cust)
295 {
296 gdb_assert (COMPUNIT_FILETABS (cust) != NULL);
297
298 /* The primary file symtab is the first one in the list. */
299 return COMPUNIT_FILETABS (cust);
300 }
301
302 /* See symtab.h. */
303
304 enum language
305 compunit_language (const struct compunit_symtab *cust)
306 {
307 struct symtab *symtab = compunit_primary_filetab (cust);
308
309 /* The language of the compunit symtab is the language of its primary
310 source file. */
311 return SYMTAB_LANGUAGE (symtab);
312 }
313
314 /* See whether FILENAME matches SEARCH_NAME using the rule that we
315 advertise to the user. (The manual's description of linespecs
316 describes what we advertise). Returns true if they match, false
317 otherwise. */
318
319 int
320 compare_filenames_for_search (const char *filename, const char *search_name)
321 {
322 int len = strlen (filename);
323 size_t search_len = strlen (search_name);
324
325 if (len < search_len)
326 return 0;
327
328 /* The tail of FILENAME must match. */
329 if (FILENAME_CMP (filename + len - search_len, search_name) != 0)
330 return 0;
331
332 /* Either the names must completely match, or the character
333 preceding the trailing SEARCH_NAME segment of FILENAME must be a
334 directory separator.
335
336 The check !IS_ABSOLUTE_PATH ensures SEARCH_NAME "/dir/file.c"
337 cannot match FILENAME "/path//dir/file.c" - as user has requested
338 absolute path. The sama applies for "c:\file.c" possibly
339 incorrectly hypothetically matching "d:\dir\c:\file.c".
340
341 The HAS_DRIVE_SPEC purpose is to make FILENAME "c:file.c"
342 compatible with SEARCH_NAME "file.c". In such case a compiler had
343 to put the "c:file.c" name into debug info. Such compatibility
344 works only on GDB built for DOS host. */
345 return (len == search_len
346 || (!IS_ABSOLUTE_PATH (search_name)
347 && IS_DIR_SEPARATOR (filename[len - search_len - 1]))
348 || (HAS_DRIVE_SPEC (filename)
349 && STRIP_DRIVE_SPEC (filename) == &filename[len - search_len]));
350 }
351
352 /* Same as compare_filenames_for_search, but for glob-style patterns.
353 Heads up on the order of the arguments. They match the order of
354 compare_filenames_for_search, but it's the opposite of the order of
355 arguments to gdb_filename_fnmatch. */
356
357 int
358 compare_glob_filenames_for_search (const char *filename,
359 const char *search_name)
360 {
361 /* We rely on the property of glob-style patterns with FNM_FILE_NAME that
362 all /s have to be explicitly specified. */
363 int file_path_elements = count_path_elements (filename);
364 int search_path_elements = count_path_elements (search_name);
365
366 if (search_path_elements > file_path_elements)
367 return 0;
368
369 if (IS_ABSOLUTE_PATH (search_name))
370 {
371 return (search_path_elements == file_path_elements
372 && gdb_filename_fnmatch (search_name, filename,
373 FNM_FILE_NAME | FNM_NOESCAPE) == 0);
374 }
375
376 {
377 const char *file_to_compare
378 = strip_leading_path_elements (filename,
379 file_path_elements - search_path_elements);
380
381 return gdb_filename_fnmatch (search_name, file_to_compare,
382 FNM_FILE_NAME | FNM_NOESCAPE) == 0;
383 }
384 }
385
386 /* Check for a symtab of a specific name by searching some symtabs.
387 This is a helper function for callbacks of iterate_over_symtabs.
388
389 If NAME is not absolute, then REAL_PATH is NULL
390 If NAME is absolute, then REAL_PATH is the gdb_realpath form of NAME.
391
392 The return value, NAME, REAL_PATH and CALLBACK are identical to the
393 `map_symtabs_matching_filename' method of quick_symbol_functions.
394
395 FIRST and AFTER_LAST indicate the range of compunit symtabs to search.
396 Each symtab within the specified compunit symtab is also searched.
397 AFTER_LAST is one past the last compunit symtab to search; NULL means to
398 search until the end of the list. */
399
400 bool
401 iterate_over_some_symtabs (const char *name,
402 const char *real_path,
403 struct compunit_symtab *first,
404 struct compunit_symtab *after_last,
405 gdb::function_view<bool (symtab *)> callback)
406 {
407 struct compunit_symtab *cust;
408 struct symtab *s;
409 const char* base_name = lbasename (name);
410
411 for (cust = first; cust != NULL && cust != after_last; cust = cust->next)
412 {
413 ALL_COMPUNIT_FILETABS (cust, s)
414 {
415 if (compare_filenames_for_search (s->filename, name))
416 {
417 if (callback (s))
418 return true;
419 continue;
420 }
421
422 /* Before we invoke realpath, which can get expensive when many
423 files are involved, do a quick comparison of the basenames. */
424 if (! basenames_may_differ
425 && FILENAME_CMP (base_name, lbasename (s->filename)) != 0)
426 continue;
427
428 if (compare_filenames_for_search (symtab_to_fullname (s), name))
429 {
430 if (callback (s))
431 return true;
432 continue;
433 }
434
435 /* If the user gave us an absolute path, try to find the file in
436 this symtab and use its absolute path. */
437 if (real_path != NULL)
438 {
439 const char *fullname = symtab_to_fullname (s);
440
441 gdb_assert (IS_ABSOLUTE_PATH (real_path));
442 gdb_assert (IS_ABSOLUTE_PATH (name));
443 if (FILENAME_CMP (real_path, fullname) == 0)
444 {
445 if (callback (s))
446 return true;
447 continue;
448 }
449 }
450 }
451 }
452
453 return false;
454 }
455
456 /* Check for a symtab of a specific name; first in symtabs, then in
457 psymtabs. *If* there is no '/' in the name, a match after a '/'
458 in the symtab filename will also work.
459
460 Calls CALLBACK with each symtab that is found. If CALLBACK returns
461 true, the search stops. */
462
463 void
464 iterate_over_symtabs (const char *name,
465 gdb::function_view<bool (symtab *)> callback)
466 {
467 gdb::unique_xmalloc_ptr<char> real_path;
468
469 /* Here we are interested in canonicalizing an absolute path, not
470 absolutizing a relative path. */
471 if (IS_ABSOLUTE_PATH (name))
472 {
473 real_path = gdb_realpath (name);
474 gdb_assert (IS_ABSOLUTE_PATH (real_path.get ()));
475 }
476
477 for (objfile *objfile : all_objfiles (current_program_space))
478 {
479 if (iterate_over_some_symtabs (name, real_path.get (),
480 objfile->compunit_symtabs, NULL,
481 callback))
482 return;
483 }
484
485 /* Same search rules as above apply here, but now we look thru the
486 psymtabs. */
487
488 for (objfile *objfile : all_objfiles (current_program_space))
489 {
490 if (objfile->sf
491 && objfile->sf->qf->map_symtabs_matching_filename (objfile,
492 name,
493 real_path.get (),
494 callback))
495 return;
496 }
497 }
498
499 /* A wrapper for iterate_over_symtabs that returns the first matching
500 symtab, or NULL. */
501
502 struct symtab *
503 lookup_symtab (const char *name)
504 {
505 struct symtab *result = NULL;
506
507 iterate_over_symtabs (name, [&] (symtab *symtab)
508 {
509 result = symtab;
510 return true;
511 });
512
513 return result;
514 }
515
516 \f
517 /* Mangle a GDB method stub type. This actually reassembles the pieces of the
518 full method name, which consist of the class name (from T), the unadorned
519 method name from METHOD_ID, and the signature for the specific overload,
520 specified by SIGNATURE_ID. Note that this function is g++ specific. */
521
522 char *
523 gdb_mangle_name (struct type *type, int method_id, int signature_id)
524 {
525 int mangled_name_len;
526 char *mangled_name;
527 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
528 struct fn_field *method = &f[signature_id];
529 const char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
530 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
531 const char *newname = TYPE_NAME (type);
532
533 /* Does the form of physname indicate that it is the full mangled name
534 of a constructor (not just the args)? */
535 int is_full_physname_constructor;
536
537 int is_constructor;
538 int is_destructor = is_destructor_name (physname);
539 /* Need a new type prefix. */
540 const char *const_prefix = method->is_const ? "C" : "";
541 const char *volatile_prefix = method->is_volatile ? "V" : "";
542 char buf[20];
543 int len = (newname == NULL ? 0 : strlen (newname));
544
545 /* Nothing to do if physname already contains a fully mangled v3 abi name
546 or an operator name. */
547 if ((physname[0] == '_' && physname[1] == 'Z')
548 || is_operator_name (field_name))
549 return xstrdup (physname);
550
551 is_full_physname_constructor = is_constructor_name (physname);
552
553 is_constructor = is_full_physname_constructor
554 || (newname && strcmp (field_name, newname) == 0);
555
556 if (!is_destructor)
557 is_destructor = (startswith (physname, "__dt"));
558
559 if (is_destructor || is_full_physname_constructor)
560 {
561 mangled_name = (char *) xmalloc (strlen (physname) + 1);
562 strcpy (mangled_name, physname);
563 return mangled_name;
564 }
565
566 if (len == 0)
567 {
568 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
569 }
570 else if (physname[0] == 't' || physname[0] == 'Q')
571 {
572 /* The physname for template and qualified methods already includes
573 the class name. */
574 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
575 newname = NULL;
576 len = 0;
577 }
578 else
579 {
580 xsnprintf (buf, sizeof (buf), "__%s%s%d", const_prefix,
581 volatile_prefix, len);
582 }
583 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
584 + strlen (buf) + len + strlen (physname) + 1);
585
586 mangled_name = (char *) xmalloc (mangled_name_len);
587 if (is_constructor)
588 mangled_name[0] = '\0';
589 else
590 strcpy (mangled_name, field_name);
591
592 strcat (mangled_name, buf);
593 /* If the class doesn't have a name, i.e. newname NULL, then we just
594 mangle it using 0 for the length of the class. Thus it gets mangled
595 as something starting with `::' rather than `classname::'. */
596 if (newname != NULL)
597 strcat (mangled_name, newname);
598
599 strcat (mangled_name, physname);
600 return (mangled_name);
601 }
602
603 /* Set the demangled name of GSYMBOL to NAME. NAME must be already
604 correctly allocated. */
605
606 void
607 symbol_set_demangled_name (struct general_symbol_info *gsymbol,
608 const char *name,
609 struct obstack *obstack)
610 {
611 if (gsymbol->language == language_ada)
612 {
613 if (name == NULL)
614 {
615 gsymbol->ada_mangled = 0;
616 gsymbol->language_specific.obstack = obstack;
617 }
618 else
619 {
620 gsymbol->ada_mangled = 1;
621 gsymbol->language_specific.demangled_name = name;
622 }
623 }
624 else
625 gsymbol->language_specific.demangled_name = name;
626 }
627
628 /* Return the demangled name of GSYMBOL. */
629
630 const char *
631 symbol_get_demangled_name (const struct general_symbol_info *gsymbol)
632 {
633 if (gsymbol->language == language_ada)
634 {
635 if (!gsymbol->ada_mangled)
636 return NULL;
637 /* Fall through. */
638 }
639
640 return gsymbol->language_specific.demangled_name;
641 }
642
643 \f
644 /* Initialize the language dependent portion of a symbol
645 depending upon the language for the symbol. */
646
647 void
648 symbol_set_language (struct general_symbol_info *gsymbol,
649 enum language language,
650 struct obstack *obstack)
651 {
652 gsymbol->language = language;
653 if (gsymbol->language == language_cplus
654 || gsymbol->language == language_d
655 || gsymbol->language == language_go
656 || gsymbol->language == language_objc
657 || gsymbol->language == language_fortran)
658 {
659 symbol_set_demangled_name (gsymbol, NULL, obstack);
660 }
661 else if (gsymbol->language == language_ada)
662 {
663 gdb_assert (gsymbol->ada_mangled == 0);
664 gsymbol->language_specific.obstack = obstack;
665 }
666 else
667 {
668 memset (&gsymbol->language_specific, 0,
669 sizeof (gsymbol->language_specific));
670 }
671 }
672
673 /* Functions to initialize a symbol's mangled name. */
674
675 /* Objects of this type are stored in the demangled name hash table. */
676 struct demangled_name_entry
677 {
678 const char *mangled;
679 char demangled[1];
680 };
681
682 /* Hash function for the demangled name hash. */
683
684 static hashval_t
685 hash_demangled_name_entry (const void *data)
686 {
687 const struct demangled_name_entry *e
688 = (const struct demangled_name_entry *) data;
689
690 return htab_hash_string (e->mangled);
691 }
692
693 /* Equality function for the demangled name hash. */
694
695 static int
696 eq_demangled_name_entry (const void *a, const void *b)
697 {
698 const struct demangled_name_entry *da
699 = (const struct demangled_name_entry *) a;
700 const struct demangled_name_entry *db
701 = (const struct demangled_name_entry *) b;
702
703 return strcmp (da->mangled, db->mangled) == 0;
704 }
705
706 /* Create the hash table used for demangled names. Each hash entry is
707 a pair of strings; one for the mangled name and one for the demangled
708 name. The entry is hashed via just the mangled name. */
709
710 static void
711 create_demangled_names_hash (struct objfile *objfile)
712 {
713 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
714 The hash table code will round this up to the next prime number.
715 Choosing a much larger table size wastes memory, and saves only about
716 1% in symbol reading. */
717
718 objfile->per_bfd->demangled_names_hash = htab_create_alloc
719 (256, hash_demangled_name_entry, eq_demangled_name_entry,
720 NULL, xcalloc, xfree);
721 }
722
723 /* Try to determine the demangled name for a symbol, based on the
724 language of that symbol. If the language is set to language_auto,
725 it will attempt to find any demangling algorithm that works and
726 then set the language appropriately. The returned name is allocated
727 by the demangler and should be xfree'd. */
728
729 static char *
730 symbol_find_demangled_name (struct general_symbol_info *gsymbol,
731 const char *mangled)
732 {
733 char *demangled = NULL;
734 int i;
735
736 if (gsymbol->language == language_unknown)
737 gsymbol->language = language_auto;
738
739 if (gsymbol->language != language_auto)
740 {
741 const struct language_defn *lang = language_def (gsymbol->language);
742
743 language_sniff_from_mangled_name (lang, mangled, &demangled);
744 return demangled;
745 }
746
747 for (i = language_unknown; i < nr_languages; ++i)
748 {
749 enum language l = (enum language) i;
750 const struct language_defn *lang = language_def (l);
751
752 if (language_sniff_from_mangled_name (lang, mangled, &demangled))
753 {
754 gsymbol->language = l;
755 return demangled;
756 }
757 }
758
759 return NULL;
760 }
761
762 /* Set both the mangled and demangled (if any) names for GSYMBOL based
763 on LINKAGE_NAME and LEN. Ordinarily, NAME is copied onto the
764 objfile's obstack; but if COPY_NAME is 0 and if NAME is
765 NUL-terminated, then this function assumes that NAME is already
766 correctly saved (either permanently or with a lifetime tied to the
767 objfile), and it will not be copied.
768
769 The hash table corresponding to OBJFILE is used, and the memory
770 comes from the per-BFD storage_obstack. LINKAGE_NAME is copied,
771 so the pointer can be discarded after calling this function. */
772
773 void
774 symbol_set_names (struct general_symbol_info *gsymbol,
775 const char *linkage_name, int len, int copy_name,
776 struct objfile *objfile)
777 {
778 struct demangled_name_entry **slot;
779 /* A 0-terminated copy of the linkage name. */
780 const char *linkage_name_copy;
781 struct demangled_name_entry entry;
782 struct objfile_per_bfd_storage *per_bfd = objfile->per_bfd;
783
784 if (gsymbol->language == language_ada)
785 {
786 /* In Ada, we do the symbol lookups using the mangled name, so
787 we can save some space by not storing the demangled name. */
788 if (!copy_name)
789 gsymbol->name = linkage_name;
790 else
791 {
792 char *name = (char *) obstack_alloc (&per_bfd->storage_obstack,
793 len + 1);
794
795 memcpy (name, linkage_name, len);
796 name[len] = '\0';
797 gsymbol->name = name;
798 }
799 symbol_set_demangled_name (gsymbol, NULL, &per_bfd->storage_obstack);
800
801 return;
802 }
803
804 if (per_bfd->demangled_names_hash == NULL)
805 create_demangled_names_hash (objfile);
806
807 if (linkage_name[len] != '\0')
808 {
809 char *alloc_name;
810
811 alloc_name = (char *) alloca (len + 1);
812 memcpy (alloc_name, linkage_name, len);
813 alloc_name[len] = '\0';
814
815 linkage_name_copy = alloc_name;
816 }
817 else
818 linkage_name_copy = linkage_name;
819
820 /* Set the symbol language. */
821 char *demangled_name_ptr
822 = symbol_find_demangled_name (gsymbol, linkage_name_copy);
823 gdb::unique_xmalloc_ptr<char> demangled_name (demangled_name_ptr);
824
825 entry.mangled = linkage_name_copy;
826 slot = ((struct demangled_name_entry **)
827 htab_find_slot (per_bfd->demangled_names_hash,
828 &entry, INSERT));
829
830 /* If this name is not in the hash table, add it. */
831 if (*slot == NULL
832 /* A C version of the symbol may have already snuck into the table.
833 This happens to, e.g., main.init (__go_init_main). Cope. */
834 || (gsymbol->language == language_go
835 && (*slot)->demangled[0] == '\0'))
836 {
837 int demangled_len = demangled_name ? strlen (demangled_name.get ()) : 0;
838
839 /* Suppose we have demangled_name==NULL, copy_name==0, and
840 linkage_name_copy==linkage_name. In this case, we already have the
841 mangled name saved, and we don't have a demangled name. So,
842 you might think we could save a little space by not recording
843 this in the hash table at all.
844
845 It turns out that it is actually important to still save such
846 an entry in the hash table, because storing this name gives
847 us better bcache hit rates for partial symbols. */
848 if (!copy_name && linkage_name_copy == linkage_name)
849 {
850 *slot
851 = ((struct demangled_name_entry *)
852 obstack_alloc (&per_bfd->storage_obstack,
853 offsetof (struct demangled_name_entry, demangled)
854 + demangled_len + 1));
855 (*slot)->mangled = linkage_name;
856 }
857 else
858 {
859 char *mangled_ptr;
860
861 /* If we must copy the mangled name, put it directly after
862 the demangled name so we can have a single
863 allocation. */
864 *slot
865 = ((struct demangled_name_entry *)
866 obstack_alloc (&per_bfd->storage_obstack,
867 offsetof (struct demangled_name_entry, demangled)
868 + len + demangled_len + 2));
869 mangled_ptr = &((*slot)->demangled[demangled_len + 1]);
870 strcpy (mangled_ptr, linkage_name_copy);
871 (*slot)->mangled = mangled_ptr;
872 }
873
874 if (demangled_name != NULL)
875 strcpy ((*slot)->demangled, demangled_name.get());
876 else
877 (*slot)->demangled[0] = '\0';
878 }
879
880 gsymbol->name = (*slot)->mangled;
881 if ((*slot)->demangled[0] != '\0')
882 symbol_set_demangled_name (gsymbol, (*slot)->demangled,
883 &per_bfd->storage_obstack);
884 else
885 symbol_set_demangled_name (gsymbol, NULL, &per_bfd->storage_obstack);
886 }
887
888 /* Return the source code name of a symbol. In languages where
889 demangling is necessary, this is the demangled name. */
890
891 const char *
892 symbol_natural_name (const struct general_symbol_info *gsymbol)
893 {
894 switch (gsymbol->language)
895 {
896 case language_cplus:
897 case language_d:
898 case language_go:
899 case language_objc:
900 case language_fortran:
901 if (symbol_get_demangled_name (gsymbol) != NULL)
902 return symbol_get_demangled_name (gsymbol);
903 break;
904 case language_ada:
905 return ada_decode_symbol (gsymbol);
906 default:
907 break;
908 }
909 return gsymbol->name;
910 }
911
912 /* Return the demangled name for a symbol based on the language for
913 that symbol. If no demangled name exists, return NULL. */
914
915 const char *
916 symbol_demangled_name (const struct general_symbol_info *gsymbol)
917 {
918 const char *dem_name = NULL;
919
920 switch (gsymbol->language)
921 {
922 case language_cplus:
923 case language_d:
924 case language_go:
925 case language_objc:
926 case language_fortran:
927 dem_name = symbol_get_demangled_name (gsymbol);
928 break;
929 case language_ada:
930 dem_name = ada_decode_symbol (gsymbol);
931 break;
932 default:
933 break;
934 }
935 return dem_name;
936 }
937
938 /* Return the search name of a symbol---generally the demangled or
939 linkage name of the symbol, depending on how it will be searched for.
940 If there is no distinct demangled name, then returns the same value
941 (same pointer) as SYMBOL_LINKAGE_NAME. */
942
943 const char *
944 symbol_search_name (const struct general_symbol_info *gsymbol)
945 {
946 if (gsymbol->language == language_ada)
947 return gsymbol->name;
948 else
949 return symbol_natural_name (gsymbol);
950 }
951
952 /* See symtab.h. */
953
954 bool
955 symbol_matches_search_name (const struct general_symbol_info *gsymbol,
956 const lookup_name_info &name)
957 {
958 symbol_name_matcher_ftype *name_match
959 = get_symbol_name_matcher (language_def (gsymbol->language), name);
960 return name_match (symbol_search_name (gsymbol), name, NULL);
961 }
962
963 \f
964
965 /* Return 1 if the two sections are the same, or if they could
966 plausibly be copies of each other, one in an original object
967 file and another in a separated debug file. */
968
969 int
970 matching_obj_sections (struct obj_section *obj_first,
971 struct obj_section *obj_second)
972 {
973 asection *first = obj_first? obj_first->the_bfd_section : NULL;
974 asection *second = obj_second? obj_second->the_bfd_section : NULL;
975 struct objfile *obj;
976
977 /* If they're the same section, then they match. */
978 if (first == second)
979 return 1;
980
981 /* If either is NULL, give up. */
982 if (first == NULL || second == NULL)
983 return 0;
984
985 /* This doesn't apply to absolute symbols. */
986 if (first->owner == NULL || second->owner == NULL)
987 return 0;
988
989 /* If they're in the same object file, they must be different sections. */
990 if (first->owner == second->owner)
991 return 0;
992
993 /* Check whether the two sections are potentially corresponding. They must
994 have the same size, address, and name. We can't compare section indexes,
995 which would be more reliable, because some sections may have been
996 stripped. */
997 if (bfd_get_section_size (first) != bfd_get_section_size (second))
998 return 0;
999
1000 /* In-memory addresses may start at a different offset, relativize them. */
1001 if (bfd_get_section_vma (first->owner, first)
1002 - bfd_get_start_address (first->owner)
1003 != bfd_get_section_vma (second->owner, second)
1004 - bfd_get_start_address (second->owner))
1005 return 0;
1006
1007 if (bfd_get_section_name (first->owner, first) == NULL
1008 || bfd_get_section_name (second->owner, second) == NULL
1009 || strcmp (bfd_get_section_name (first->owner, first),
1010 bfd_get_section_name (second->owner, second)) != 0)
1011 return 0;
1012
1013 /* Otherwise check that they are in corresponding objfiles. */
1014
1015 for (objfile *objfile : all_objfiles (current_program_space))
1016 if (objfile->obfd == first->owner)
1017 {
1018 obj = objfile;
1019 break;
1020 }
1021 gdb_assert (obj != NULL);
1022
1023 if (obj->separate_debug_objfile != NULL
1024 && obj->separate_debug_objfile->obfd == second->owner)
1025 return 1;
1026 if (obj->separate_debug_objfile_backlink != NULL
1027 && obj->separate_debug_objfile_backlink->obfd == second->owner)
1028 return 1;
1029
1030 return 0;
1031 }
1032
1033 /* See symtab.h. */
1034
1035 void
1036 expand_symtab_containing_pc (CORE_ADDR pc, struct obj_section *section)
1037 {
1038 struct bound_minimal_symbol msymbol;
1039
1040 /* If we know that this is not a text address, return failure. This is
1041 necessary because we loop based on texthigh and textlow, which do
1042 not include the data ranges. */
1043 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
1044 if (msymbol.minsym
1045 && (MSYMBOL_TYPE (msymbol.minsym) == mst_data
1046 || MSYMBOL_TYPE (msymbol.minsym) == mst_bss
1047 || MSYMBOL_TYPE (msymbol.minsym) == mst_abs
1048 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_data
1049 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_bss))
1050 return;
1051
1052 for (objfile *objfile : all_objfiles (current_program_space))
1053 {
1054 struct compunit_symtab *cust = NULL;
1055
1056 if (objfile->sf)
1057 cust = objfile->sf->qf->find_pc_sect_compunit_symtab (objfile, msymbol,
1058 pc, section, 0);
1059 if (cust)
1060 return;
1061 }
1062 }
1063 \f
1064 /* Hash function for the symbol cache. */
1065
1066 static unsigned int
1067 hash_symbol_entry (const struct objfile *objfile_context,
1068 const char *name, domain_enum domain)
1069 {
1070 unsigned int hash = (uintptr_t) objfile_context;
1071
1072 if (name != NULL)
1073 hash += htab_hash_string (name);
1074
1075 /* Because of symbol_matches_domain we need VAR_DOMAIN and STRUCT_DOMAIN
1076 to map to the same slot. */
1077 if (domain == STRUCT_DOMAIN)
1078 hash += VAR_DOMAIN * 7;
1079 else
1080 hash += domain * 7;
1081
1082 return hash;
1083 }
1084
1085 /* Equality function for the symbol cache. */
1086
1087 static int
1088 eq_symbol_entry (const struct symbol_cache_slot *slot,
1089 const struct objfile *objfile_context,
1090 const char *name, domain_enum domain)
1091 {
1092 const char *slot_name;
1093 domain_enum slot_domain;
1094
1095 if (slot->state == SYMBOL_SLOT_UNUSED)
1096 return 0;
1097
1098 if (slot->objfile_context != objfile_context)
1099 return 0;
1100
1101 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1102 {
1103 slot_name = slot->value.not_found.name;
1104 slot_domain = slot->value.not_found.domain;
1105 }
1106 else
1107 {
1108 slot_name = SYMBOL_SEARCH_NAME (slot->value.found.symbol);
1109 slot_domain = SYMBOL_DOMAIN (slot->value.found.symbol);
1110 }
1111
1112 /* NULL names match. */
1113 if (slot_name == NULL && name == NULL)
1114 {
1115 /* But there's no point in calling symbol_matches_domain in the
1116 SYMBOL_SLOT_FOUND case. */
1117 if (slot_domain != domain)
1118 return 0;
1119 }
1120 else if (slot_name != NULL && name != NULL)
1121 {
1122 /* It's important that we use the same comparison that was done
1123 the first time through. If the slot records a found symbol,
1124 then this means using the symbol name comparison function of
1125 the symbol's language with SYMBOL_SEARCH_NAME. See
1126 dictionary.c. It also means using symbol_matches_domain for
1127 found symbols. See block.c.
1128
1129 If the slot records a not-found symbol, then require a precise match.
1130 We could still be lax with whitespace like strcmp_iw though. */
1131
1132 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1133 {
1134 if (strcmp (slot_name, name) != 0)
1135 return 0;
1136 if (slot_domain != domain)
1137 return 0;
1138 }
1139 else
1140 {
1141 struct symbol *sym = slot->value.found.symbol;
1142 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
1143
1144 if (!SYMBOL_MATCHES_SEARCH_NAME (sym, lookup_name))
1145 return 0;
1146
1147 if (!symbol_matches_domain (SYMBOL_LANGUAGE (sym),
1148 slot_domain, domain))
1149 return 0;
1150 }
1151 }
1152 else
1153 {
1154 /* Only one name is NULL. */
1155 return 0;
1156 }
1157
1158 return 1;
1159 }
1160
1161 /* Given a cache of size SIZE, return the size of the struct (with variable
1162 length array) in bytes. */
1163
1164 static size_t
1165 symbol_cache_byte_size (unsigned int size)
1166 {
1167 return (sizeof (struct block_symbol_cache)
1168 + ((size - 1) * sizeof (struct symbol_cache_slot)));
1169 }
1170
1171 /* Resize CACHE. */
1172
1173 static void
1174 resize_symbol_cache (struct symbol_cache *cache, unsigned int new_size)
1175 {
1176 /* If there's no change in size, don't do anything.
1177 All caches have the same size, so we can just compare with the size
1178 of the global symbols cache. */
1179 if ((cache->global_symbols != NULL
1180 && cache->global_symbols->size == new_size)
1181 || (cache->global_symbols == NULL
1182 && new_size == 0))
1183 return;
1184
1185 xfree (cache->global_symbols);
1186 xfree (cache->static_symbols);
1187
1188 if (new_size == 0)
1189 {
1190 cache->global_symbols = NULL;
1191 cache->static_symbols = NULL;
1192 }
1193 else
1194 {
1195 size_t total_size = symbol_cache_byte_size (new_size);
1196
1197 cache->global_symbols
1198 = (struct block_symbol_cache *) xcalloc (1, total_size);
1199 cache->static_symbols
1200 = (struct block_symbol_cache *) xcalloc (1, total_size);
1201 cache->global_symbols->size = new_size;
1202 cache->static_symbols->size = new_size;
1203 }
1204 }
1205
1206 /* Make a symbol cache of size SIZE. */
1207
1208 static struct symbol_cache *
1209 make_symbol_cache (unsigned int size)
1210 {
1211 struct symbol_cache *cache;
1212
1213 cache = XCNEW (struct symbol_cache);
1214 resize_symbol_cache (cache, symbol_cache_size);
1215 return cache;
1216 }
1217
1218 /* Free the space used by CACHE. */
1219
1220 static void
1221 free_symbol_cache (struct symbol_cache *cache)
1222 {
1223 xfree (cache->global_symbols);
1224 xfree (cache->static_symbols);
1225 xfree (cache);
1226 }
1227
1228 /* Return the symbol cache of PSPACE.
1229 Create one if it doesn't exist yet. */
1230
1231 static struct symbol_cache *
1232 get_symbol_cache (struct program_space *pspace)
1233 {
1234 struct symbol_cache *cache
1235 = (struct symbol_cache *) program_space_data (pspace, symbol_cache_key);
1236
1237 if (cache == NULL)
1238 {
1239 cache = make_symbol_cache (symbol_cache_size);
1240 set_program_space_data (pspace, symbol_cache_key, cache);
1241 }
1242
1243 return cache;
1244 }
1245
1246 /* Delete the symbol cache of PSPACE.
1247 Called when PSPACE is destroyed. */
1248
1249 static void
1250 symbol_cache_cleanup (struct program_space *pspace, void *data)
1251 {
1252 struct symbol_cache *cache = (struct symbol_cache *) data;
1253
1254 free_symbol_cache (cache);
1255 }
1256
1257 /* Set the size of the symbol cache in all program spaces. */
1258
1259 static void
1260 set_symbol_cache_size (unsigned int new_size)
1261 {
1262 struct program_space *pspace;
1263
1264 ALL_PSPACES (pspace)
1265 {
1266 struct symbol_cache *cache
1267 = (struct symbol_cache *) program_space_data (pspace, symbol_cache_key);
1268
1269 /* The pspace could have been created but not have a cache yet. */
1270 if (cache != NULL)
1271 resize_symbol_cache (cache, new_size);
1272 }
1273 }
1274
1275 /* Called when symbol-cache-size is set. */
1276
1277 static void
1278 set_symbol_cache_size_handler (const char *args, int from_tty,
1279 struct cmd_list_element *c)
1280 {
1281 if (new_symbol_cache_size > MAX_SYMBOL_CACHE_SIZE)
1282 {
1283 /* Restore the previous value.
1284 This is the value the "show" command prints. */
1285 new_symbol_cache_size = symbol_cache_size;
1286
1287 error (_("Symbol cache size is too large, max is %u."),
1288 MAX_SYMBOL_CACHE_SIZE);
1289 }
1290 symbol_cache_size = new_symbol_cache_size;
1291
1292 set_symbol_cache_size (symbol_cache_size);
1293 }
1294
1295 /* Lookup symbol NAME,DOMAIN in BLOCK in the symbol cache of PSPACE.
1296 OBJFILE_CONTEXT is the current objfile, which may be NULL.
1297 The result is the symbol if found, SYMBOL_LOOKUP_FAILED if a previous lookup
1298 failed (and thus this one will too), or NULL if the symbol is not present
1299 in the cache.
1300 If the symbol is not present in the cache, then *BSC_PTR and *SLOT_PTR are
1301 set to the cache and slot of the symbol to save the result of a full lookup
1302 attempt. */
1303
1304 static struct block_symbol
1305 symbol_cache_lookup (struct symbol_cache *cache,
1306 struct objfile *objfile_context, int block,
1307 const char *name, domain_enum domain,
1308 struct block_symbol_cache **bsc_ptr,
1309 struct symbol_cache_slot **slot_ptr)
1310 {
1311 struct block_symbol_cache *bsc;
1312 unsigned int hash;
1313 struct symbol_cache_slot *slot;
1314
1315 if (block == GLOBAL_BLOCK)
1316 bsc = cache->global_symbols;
1317 else
1318 bsc = cache->static_symbols;
1319 if (bsc == NULL)
1320 {
1321 *bsc_ptr = NULL;
1322 *slot_ptr = NULL;
1323 return (struct block_symbol) {NULL, NULL};
1324 }
1325
1326 hash = hash_symbol_entry (objfile_context, name, domain);
1327 slot = bsc->symbols + hash % bsc->size;
1328
1329 if (eq_symbol_entry (slot, objfile_context, name, domain))
1330 {
1331 if (symbol_lookup_debug)
1332 fprintf_unfiltered (gdb_stdlog,
1333 "%s block symbol cache hit%s for %s, %s\n",
1334 block == GLOBAL_BLOCK ? "Global" : "Static",
1335 slot->state == SYMBOL_SLOT_NOT_FOUND
1336 ? " (not found)" : "",
1337 name, domain_name (domain));
1338 ++bsc->hits;
1339 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1340 return SYMBOL_LOOKUP_FAILED;
1341 return slot->value.found;
1342 }
1343
1344 /* Symbol is not present in the cache. */
1345
1346 *bsc_ptr = bsc;
1347 *slot_ptr = slot;
1348
1349 if (symbol_lookup_debug)
1350 {
1351 fprintf_unfiltered (gdb_stdlog,
1352 "%s block symbol cache miss for %s, %s\n",
1353 block == GLOBAL_BLOCK ? "Global" : "Static",
1354 name, domain_name (domain));
1355 }
1356 ++bsc->misses;
1357 return (struct block_symbol) {NULL, NULL};
1358 }
1359
1360 /* Clear out SLOT. */
1361
1362 static void
1363 symbol_cache_clear_slot (struct symbol_cache_slot *slot)
1364 {
1365 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1366 xfree (slot->value.not_found.name);
1367 slot->state = SYMBOL_SLOT_UNUSED;
1368 }
1369
1370 /* Mark SYMBOL as found in SLOT.
1371 OBJFILE_CONTEXT is the current objfile when the lookup was done, or NULL
1372 if it's not needed to distinguish lookups (STATIC_BLOCK). It is *not*
1373 necessarily the objfile the symbol was found in. */
1374
1375 static void
1376 symbol_cache_mark_found (struct block_symbol_cache *bsc,
1377 struct symbol_cache_slot *slot,
1378 struct objfile *objfile_context,
1379 struct symbol *symbol,
1380 const struct block *block)
1381 {
1382 if (bsc == NULL)
1383 return;
1384 if (slot->state != SYMBOL_SLOT_UNUSED)
1385 {
1386 ++bsc->collisions;
1387 symbol_cache_clear_slot (slot);
1388 }
1389 slot->state = SYMBOL_SLOT_FOUND;
1390 slot->objfile_context = objfile_context;
1391 slot->value.found.symbol = symbol;
1392 slot->value.found.block = block;
1393 }
1394
1395 /* Mark symbol NAME, DOMAIN as not found in SLOT.
1396 OBJFILE_CONTEXT is the current objfile when the lookup was done, or NULL
1397 if it's not needed to distinguish lookups (STATIC_BLOCK). */
1398
1399 static void
1400 symbol_cache_mark_not_found (struct block_symbol_cache *bsc,
1401 struct symbol_cache_slot *slot,
1402 struct objfile *objfile_context,
1403 const char *name, domain_enum domain)
1404 {
1405 if (bsc == NULL)
1406 return;
1407 if (slot->state != SYMBOL_SLOT_UNUSED)
1408 {
1409 ++bsc->collisions;
1410 symbol_cache_clear_slot (slot);
1411 }
1412 slot->state = SYMBOL_SLOT_NOT_FOUND;
1413 slot->objfile_context = objfile_context;
1414 slot->value.not_found.name = xstrdup (name);
1415 slot->value.not_found.domain = domain;
1416 }
1417
1418 /* Flush the symbol cache of PSPACE. */
1419
1420 static void
1421 symbol_cache_flush (struct program_space *pspace)
1422 {
1423 struct symbol_cache *cache
1424 = (struct symbol_cache *) program_space_data (pspace, symbol_cache_key);
1425 int pass;
1426
1427 if (cache == NULL)
1428 return;
1429 if (cache->global_symbols == NULL)
1430 {
1431 gdb_assert (symbol_cache_size == 0);
1432 gdb_assert (cache->static_symbols == NULL);
1433 return;
1434 }
1435
1436 /* If the cache is untouched since the last flush, early exit.
1437 This is important for performance during the startup of a program linked
1438 with 100s (or 1000s) of shared libraries. */
1439 if (cache->global_symbols->misses == 0
1440 && cache->static_symbols->misses == 0)
1441 return;
1442
1443 gdb_assert (cache->global_symbols->size == symbol_cache_size);
1444 gdb_assert (cache->static_symbols->size == symbol_cache_size);
1445
1446 for (pass = 0; pass < 2; ++pass)
1447 {
1448 struct block_symbol_cache *bsc
1449 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1450 unsigned int i;
1451
1452 for (i = 0; i < bsc->size; ++i)
1453 symbol_cache_clear_slot (&bsc->symbols[i]);
1454 }
1455
1456 cache->global_symbols->hits = 0;
1457 cache->global_symbols->misses = 0;
1458 cache->global_symbols->collisions = 0;
1459 cache->static_symbols->hits = 0;
1460 cache->static_symbols->misses = 0;
1461 cache->static_symbols->collisions = 0;
1462 }
1463
1464 /* Dump CACHE. */
1465
1466 static void
1467 symbol_cache_dump (const struct symbol_cache *cache)
1468 {
1469 int pass;
1470
1471 if (cache->global_symbols == NULL)
1472 {
1473 printf_filtered (" <disabled>\n");
1474 return;
1475 }
1476
1477 for (pass = 0; pass < 2; ++pass)
1478 {
1479 const struct block_symbol_cache *bsc
1480 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1481 unsigned int i;
1482
1483 if (pass == 0)
1484 printf_filtered ("Global symbols:\n");
1485 else
1486 printf_filtered ("Static symbols:\n");
1487
1488 for (i = 0; i < bsc->size; ++i)
1489 {
1490 const struct symbol_cache_slot *slot = &bsc->symbols[i];
1491
1492 QUIT;
1493
1494 switch (slot->state)
1495 {
1496 case SYMBOL_SLOT_UNUSED:
1497 break;
1498 case SYMBOL_SLOT_NOT_FOUND:
1499 printf_filtered (" [%4u] = %s, %s %s (not found)\n", i,
1500 host_address_to_string (slot->objfile_context),
1501 slot->value.not_found.name,
1502 domain_name (slot->value.not_found.domain));
1503 break;
1504 case SYMBOL_SLOT_FOUND:
1505 {
1506 struct symbol *found = slot->value.found.symbol;
1507 const struct objfile *context = slot->objfile_context;
1508
1509 printf_filtered (" [%4u] = %s, %s %s\n", i,
1510 host_address_to_string (context),
1511 SYMBOL_PRINT_NAME (found),
1512 domain_name (SYMBOL_DOMAIN (found)));
1513 break;
1514 }
1515 }
1516 }
1517 }
1518 }
1519
1520 /* The "mt print symbol-cache" command. */
1521
1522 static void
1523 maintenance_print_symbol_cache (const char *args, int from_tty)
1524 {
1525 struct program_space *pspace;
1526
1527 ALL_PSPACES (pspace)
1528 {
1529 struct symbol_cache *cache;
1530
1531 printf_filtered (_("Symbol cache for pspace %d\n%s:\n"),
1532 pspace->num,
1533 pspace->symfile_object_file != NULL
1534 ? objfile_name (pspace->symfile_object_file)
1535 : "(no object file)");
1536
1537 /* If the cache hasn't been created yet, avoid creating one. */
1538 cache
1539 = (struct symbol_cache *) program_space_data (pspace, symbol_cache_key);
1540 if (cache == NULL)
1541 printf_filtered (" <empty>\n");
1542 else
1543 symbol_cache_dump (cache);
1544 }
1545 }
1546
1547 /* The "mt flush-symbol-cache" command. */
1548
1549 static void
1550 maintenance_flush_symbol_cache (const char *args, int from_tty)
1551 {
1552 struct program_space *pspace;
1553
1554 ALL_PSPACES (pspace)
1555 {
1556 symbol_cache_flush (pspace);
1557 }
1558 }
1559
1560 /* Print usage statistics of CACHE. */
1561
1562 static void
1563 symbol_cache_stats (struct symbol_cache *cache)
1564 {
1565 int pass;
1566
1567 if (cache->global_symbols == NULL)
1568 {
1569 printf_filtered (" <disabled>\n");
1570 return;
1571 }
1572
1573 for (pass = 0; pass < 2; ++pass)
1574 {
1575 const struct block_symbol_cache *bsc
1576 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1577
1578 QUIT;
1579
1580 if (pass == 0)
1581 printf_filtered ("Global block cache stats:\n");
1582 else
1583 printf_filtered ("Static block cache stats:\n");
1584
1585 printf_filtered (" size: %u\n", bsc->size);
1586 printf_filtered (" hits: %u\n", bsc->hits);
1587 printf_filtered (" misses: %u\n", bsc->misses);
1588 printf_filtered (" collisions: %u\n", bsc->collisions);
1589 }
1590 }
1591
1592 /* The "mt print symbol-cache-statistics" command. */
1593
1594 static void
1595 maintenance_print_symbol_cache_statistics (const char *args, int from_tty)
1596 {
1597 struct program_space *pspace;
1598
1599 ALL_PSPACES (pspace)
1600 {
1601 struct symbol_cache *cache;
1602
1603 printf_filtered (_("Symbol cache statistics for pspace %d\n%s:\n"),
1604 pspace->num,
1605 pspace->symfile_object_file != NULL
1606 ? objfile_name (pspace->symfile_object_file)
1607 : "(no object file)");
1608
1609 /* If the cache hasn't been created yet, avoid creating one. */
1610 cache
1611 = (struct symbol_cache *) program_space_data (pspace, symbol_cache_key);
1612 if (cache == NULL)
1613 printf_filtered (" empty, no stats available\n");
1614 else
1615 symbol_cache_stats (cache);
1616 }
1617 }
1618
1619 /* This module's 'new_objfile' observer. */
1620
1621 static void
1622 symtab_new_objfile_observer (struct objfile *objfile)
1623 {
1624 /* Ideally we'd use OBJFILE->pspace, but OBJFILE may be NULL. */
1625 symbol_cache_flush (current_program_space);
1626 }
1627
1628 /* This module's 'free_objfile' observer. */
1629
1630 static void
1631 symtab_free_objfile_observer (struct objfile *objfile)
1632 {
1633 symbol_cache_flush (objfile->pspace);
1634 }
1635 \f
1636 /* Debug symbols usually don't have section information. We need to dig that
1637 out of the minimal symbols and stash that in the debug symbol. */
1638
1639 void
1640 fixup_section (struct general_symbol_info *ginfo,
1641 CORE_ADDR addr, struct objfile *objfile)
1642 {
1643 struct minimal_symbol *msym;
1644
1645 /* First, check whether a minimal symbol with the same name exists
1646 and points to the same address. The address check is required
1647 e.g. on PowerPC64, where the minimal symbol for a function will
1648 point to the function descriptor, while the debug symbol will
1649 point to the actual function code. */
1650 msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->name, objfile);
1651 if (msym)
1652 ginfo->section = MSYMBOL_SECTION (msym);
1653 else
1654 {
1655 /* Static, function-local variables do appear in the linker
1656 (minimal) symbols, but are frequently given names that won't
1657 be found via lookup_minimal_symbol(). E.g., it has been
1658 observed in frv-uclinux (ELF) executables that a static,
1659 function-local variable named "foo" might appear in the
1660 linker symbols as "foo.6" or "foo.3". Thus, there is no
1661 point in attempting to extend the lookup-by-name mechanism to
1662 handle this case due to the fact that there can be multiple
1663 names.
1664
1665 So, instead, search the section table when lookup by name has
1666 failed. The ``addr'' and ``endaddr'' fields may have already
1667 been relocated. If so, the relocation offset (i.e. the
1668 ANOFFSET value) needs to be subtracted from these values when
1669 performing the comparison. We unconditionally subtract it,
1670 because, when no relocation has been performed, the ANOFFSET
1671 value will simply be zero.
1672
1673 The address of the symbol whose section we're fixing up HAS
1674 NOT BEEN adjusted (relocated) yet. It can't have been since
1675 the section isn't yet known and knowing the section is
1676 necessary in order to add the correct relocation value. In
1677 other words, we wouldn't even be in this function (attempting
1678 to compute the section) if it were already known.
1679
1680 Note that it is possible to search the minimal symbols
1681 (subtracting the relocation value if necessary) to find the
1682 matching minimal symbol, but this is overkill and much less
1683 efficient. It is not necessary to find the matching minimal
1684 symbol, only its section.
1685
1686 Note that this technique (of doing a section table search)
1687 can fail when unrelocated section addresses overlap. For
1688 this reason, we still attempt a lookup by name prior to doing
1689 a search of the section table. */
1690
1691 struct obj_section *s;
1692 int fallback = -1;
1693
1694 ALL_OBJFILE_OSECTIONS (objfile, s)
1695 {
1696 int idx = s - objfile->sections;
1697 CORE_ADDR offset = ANOFFSET (objfile->section_offsets, idx);
1698
1699 if (fallback == -1)
1700 fallback = idx;
1701
1702 if (obj_section_addr (s) - offset <= addr
1703 && addr < obj_section_endaddr (s) - offset)
1704 {
1705 ginfo->section = idx;
1706 return;
1707 }
1708 }
1709
1710 /* If we didn't find the section, assume it is in the first
1711 section. If there is no allocated section, then it hardly
1712 matters what we pick, so just pick zero. */
1713 if (fallback == -1)
1714 ginfo->section = 0;
1715 else
1716 ginfo->section = fallback;
1717 }
1718 }
1719
1720 struct symbol *
1721 fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
1722 {
1723 CORE_ADDR addr;
1724
1725 if (!sym)
1726 return NULL;
1727
1728 if (!SYMBOL_OBJFILE_OWNED (sym))
1729 return sym;
1730
1731 /* We either have an OBJFILE, or we can get at it from the sym's
1732 symtab. Anything else is a bug. */
1733 gdb_assert (objfile || symbol_symtab (sym));
1734
1735 if (objfile == NULL)
1736 objfile = symbol_objfile (sym);
1737
1738 if (SYMBOL_OBJ_SECTION (objfile, sym))
1739 return sym;
1740
1741 /* We should have an objfile by now. */
1742 gdb_assert (objfile);
1743
1744 switch (SYMBOL_CLASS (sym))
1745 {
1746 case LOC_STATIC:
1747 case LOC_LABEL:
1748 addr = SYMBOL_VALUE_ADDRESS (sym);
1749 break;
1750 case LOC_BLOCK:
1751 addr = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym));
1752 break;
1753
1754 default:
1755 /* Nothing else will be listed in the minsyms -- no use looking
1756 it up. */
1757 return sym;
1758 }
1759
1760 fixup_section (&sym->ginfo, addr, objfile);
1761
1762 return sym;
1763 }
1764
1765 /* See symtab.h. */
1766
1767 demangle_for_lookup_info::demangle_for_lookup_info
1768 (const lookup_name_info &lookup_name, language lang)
1769 {
1770 demangle_result_storage storage;
1771
1772 if (lookup_name.ignore_parameters () && lang == language_cplus)
1773 {
1774 gdb::unique_xmalloc_ptr<char> without_params
1775 = cp_remove_params_if_any (lookup_name.name ().c_str (),
1776 lookup_name.completion_mode ());
1777
1778 if (without_params != NULL)
1779 {
1780 if (lookup_name.match_type () != symbol_name_match_type::SEARCH_NAME)
1781 m_demangled_name = demangle_for_lookup (without_params.get (),
1782 lang, storage);
1783 return;
1784 }
1785 }
1786
1787 if (lookup_name.match_type () == symbol_name_match_type::SEARCH_NAME)
1788 m_demangled_name = lookup_name.name ();
1789 else
1790 m_demangled_name = demangle_for_lookup (lookup_name.name ().c_str (),
1791 lang, storage);
1792 }
1793
1794 /* See symtab.h. */
1795
1796 const lookup_name_info &
1797 lookup_name_info::match_any ()
1798 {
1799 /* Lookup any symbol that "" would complete. I.e., this matches all
1800 symbol names. */
1801 static const lookup_name_info lookup_name ({}, symbol_name_match_type::FULL,
1802 true);
1803
1804 return lookup_name;
1805 }
1806
1807 /* Compute the demangled form of NAME as used by the various symbol
1808 lookup functions. The result can either be the input NAME
1809 directly, or a pointer to a buffer owned by the STORAGE object.
1810
1811 For Ada, this function just returns NAME, unmodified.
1812 Normally, Ada symbol lookups are performed using the encoded name
1813 rather than the demangled name, and so it might seem to make sense
1814 for this function to return an encoded version of NAME.
1815 Unfortunately, we cannot do this, because this function is used in
1816 circumstances where it is not appropriate to try to encode NAME.
1817 For instance, when displaying the frame info, we demangle the name
1818 of each parameter, and then perform a symbol lookup inside our
1819 function using that demangled name. In Ada, certain functions
1820 have internally-generated parameters whose name contain uppercase
1821 characters. Encoding those name would result in those uppercase
1822 characters to become lowercase, and thus cause the symbol lookup
1823 to fail. */
1824
1825 const char *
1826 demangle_for_lookup (const char *name, enum language lang,
1827 demangle_result_storage &storage)
1828 {
1829 /* If we are using C++, D, or Go, demangle the name before doing a
1830 lookup, so we can always binary search. */
1831 if (lang == language_cplus)
1832 {
1833 char *demangled_name = gdb_demangle (name, DMGL_ANSI | DMGL_PARAMS);
1834 if (demangled_name != NULL)
1835 return storage.set_malloc_ptr (demangled_name);
1836
1837 /* If we were given a non-mangled name, canonicalize it
1838 according to the language (so far only for C++). */
1839 std::string canon = cp_canonicalize_string (name);
1840 if (!canon.empty ())
1841 return storage.swap_string (canon);
1842 }
1843 else if (lang == language_d)
1844 {
1845 char *demangled_name = d_demangle (name, 0);
1846 if (demangled_name != NULL)
1847 return storage.set_malloc_ptr (demangled_name);
1848 }
1849 else if (lang == language_go)
1850 {
1851 char *demangled_name = go_demangle (name, 0);
1852 if (demangled_name != NULL)
1853 return storage.set_malloc_ptr (demangled_name);
1854 }
1855
1856 return name;
1857 }
1858
1859 /* See symtab.h. */
1860
1861 unsigned int
1862 search_name_hash (enum language language, const char *search_name)
1863 {
1864 return language_def (language)->la_search_name_hash (search_name);
1865 }
1866
1867 /* See symtab.h.
1868
1869 This function (or rather its subordinates) have a bunch of loops and
1870 it would seem to be attractive to put in some QUIT's (though I'm not really
1871 sure whether it can run long enough to be really important). But there
1872 are a few calls for which it would appear to be bad news to quit
1873 out of here: e.g., find_proc_desc in alpha-mdebug-tdep.c. (Note
1874 that there is C++ code below which can error(), but that probably
1875 doesn't affect these calls since they are looking for a known
1876 variable and thus can probably assume it will never hit the C++
1877 code). */
1878
1879 struct block_symbol
1880 lookup_symbol_in_language (const char *name, const struct block *block,
1881 const domain_enum domain, enum language lang,
1882 struct field_of_this_result *is_a_field_of_this)
1883 {
1884 demangle_result_storage storage;
1885 const char *modified_name = demangle_for_lookup (name, lang, storage);
1886
1887 return lookup_symbol_aux (modified_name,
1888 symbol_name_match_type::FULL,
1889 block, domain, lang,
1890 is_a_field_of_this);
1891 }
1892
1893 /* See symtab.h. */
1894
1895 struct block_symbol
1896 lookup_symbol (const char *name, const struct block *block,
1897 domain_enum domain,
1898 struct field_of_this_result *is_a_field_of_this)
1899 {
1900 return lookup_symbol_in_language (name, block, domain,
1901 current_language->la_language,
1902 is_a_field_of_this);
1903 }
1904
1905 /* See symtab.h. */
1906
1907 struct block_symbol
1908 lookup_symbol_search_name (const char *search_name, const struct block *block,
1909 domain_enum domain)
1910 {
1911 return lookup_symbol_aux (search_name, symbol_name_match_type::SEARCH_NAME,
1912 block, domain, language_asm, NULL);
1913 }
1914
1915 /* See symtab.h. */
1916
1917 struct block_symbol
1918 lookup_language_this (const struct language_defn *lang,
1919 const struct block *block)
1920 {
1921 if (lang->la_name_of_this == NULL || block == NULL)
1922 return (struct block_symbol) {NULL, NULL};
1923
1924 if (symbol_lookup_debug > 1)
1925 {
1926 struct objfile *objfile = lookup_objfile_from_block (block);
1927
1928 fprintf_unfiltered (gdb_stdlog,
1929 "lookup_language_this (%s, %s (objfile %s))",
1930 lang->la_name, host_address_to_string (block),
1931 objfile_debug_name (objfile));
1932 }
1933
1934 while (block)
1935 {
1936 struct symbol *sym;
1937
1938 sym = block_lookup_symbol (block, lang->la_name_of_this,
1939 symbol_name_match_type::SEARCH_NAME,
1940 VAR_DOMAIN);
1941 if (sym != NULL)
1942 {
1943 if (symbol_lookup_debug > 1)
1944 {
1945 fprintf_unfiltered (gdb_stdlog, " = %s (%s, block %s)\n",
1946 SYMBOL_PRINT_NAME (sym),
1947 host_address_to_string (sym),
1948 host_address_to_string (block));
1949 }
1950 return (struct block_symbol) {sym, block};
1951 }
1952 if (BLOCK_FUNCTION (block))
1953 break;
1954 block = BLOCK_SUPERBLOCK (block);
1955 }
1956
1957 if (symbol_lookup_debug > 1)
1958 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
1959 return (struct block_symbol) {NULL, NULL};
1960 }
1961
1962 /* Given TYPE, a structure/union,
1963 return 1 if the component named NAME from the ultimate target
1964 structure/union is defined, otherwise, return 0. */
1965
1966 static int
1967 check_field (struct type *type, const char *name,
1968 struct field_of_this_result *is_a_field_of_this)
1969 {
1970 int i;
1971
1972 /* The type may be a stub. */
1973 type = check_typedef (type);
1974
1975 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1976 {
1977 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1978
1979 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1980 {
1981 is_a_field_of_this->type = type;
1982 is_a_field_of_this->field = &TYPE_FIELD (type, i);
1983 return 1;
1984 }
1985 }
1986
1987 /* C++: If it was not found as a data field, then try to return it
1988 as a pointer to a method. */
1989
1990 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
1991 {
1992 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
1993 {
1994 is_a_field_of_this->type = type;
1995 is_a_field_of_this->fn_field = &TYPE_FN_FIELDLIST (type, i);
1996 return 1;
1997 }
1998 }
1999
2000 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2001 if (check_field (TYPE_BASECLASS (type, i), name, is_a_field_of_this))
2002 return 1;
2003
2004 return 0;
2005 }
2006
2007 /* Behave like lookup_symbol except that NAME is the natural name
2008 (e.g., demangled name) of the symbol that we're looking for. */
2009
2010 static struct block_symbol
2011 lookup_symbol_aux (const char *name, symbol_name_match_type match_type,
2012 const struct block *block,
2013 const domain_enum domain, enum language language,
2014 struct field_of_this_result *is_a_field_of_this)
2015 {
2016 struct block_symbol result;
2017 const struct language_defn *langdef;
2018
2019 if (symbol_lookup_debug)
2020 {
2021 struct objfile *objfile = lookup_objfile_from_block (block);
2022
2023 fprintf_unfiltered (gdb_stdlog,
2024 "lookup_symbol_aux (%s, %s (objfile %s), %s, %s)\n",
2025 name, host_address_to_string (block),
2026 objfile != NULL
2027 ? objfile_debug_name (objfile) : "NULL",
2028 domain_name (domain), language_str (language));
2029 }
2030
2031 /* Make sure we do something sensible with is_a_field_of_this, since
2032 the callers that set this parameter to some non-null value will
2033 certainly use it later. If we don't set it, the contents of
2034 is_a_field_of_this are undefined. */
2035 if (is_a_field_of_this != NULL)
2036 memset (is_a_field_of_this, 0, sizeof (*is_a_field_of_this));
2037
2038 /* Search specified block and its superiors. Don't search
2039 STATIC_BLOCK or GLOBAL_BLOCK. */
2040
2041 result = lookup_local_symbol (name, match_type, block, domain, language);
2042 if (result.symbol != NULL)
2043 {
2044 if (symbol_lookup_debug)
2045 {
2046 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2047 host_address_to_string (result.symbol));
2048 }
2049 return result;
2050 }
2051
2052 /* If requested to do so by the caller and if appropriate for LANGUAGE,
2053 check to see if NAME is a field of `this'. */
2054
2055 langdef = language_def (language);
2056
2057 /* Don't do this check if we are searching for a struct. It will
2058 not be found by check_field, but will be found by other
2059 means. */
2060 if (is_a_field_of_this != NULL && domain != STRUCT_DOMAIN)
2061 {
2062 result = lookup_language_this (langdef, block);
2063
2064 if (result.symbol)
2065 {
2066 struct type *t = result.symbol->type;
2067
2068 /* I'm not really sure that type of this can ever
2069 be typedefed; just be safe. */
2070 t = check_typedef (t);
2071 if (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_IS_REFERENCE (t))
2072 t = TYPE_TARGET_TYPE (t);
2073
2074 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2075 && TYPE_CODE (t) != TYPE_CODE_UNION)
2076 error (_("Internal error: `%s' is not an aggregate"),
2077 langdef->la_name_of_this);
2078
2079 if (check_field (t, name, is_a_field_of_this))
2080 {
2081 if (symbol_lookup_debug)
2082 {
2083 fprintf_unfiltered (gdb_stdlog,
2084 "lookup_symbol_aux (...) = NULL\n");
2085 }
2086 return (struct block_symbol) {NULL, NULL};
2087 }
2088 }
2089 }
2090
2091 /* Now do whatever is appropriate for LANGUAGE to look
2092 up static and global variables. */
2093
2094 result = langdef->la_lookup_symbol_nonlocal (langdef, name, block, domain);
2095 if (result.symbol != NULL)
2096 {
2097 if (symbol_lookup_debug)
2098 {
2099 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2100 host_address_to_string (result.symbol));
2101 }
2102 return result;
2103 }
2104
2105 /* Now search all static file-level symbols. Not strictly correct,
2106 but more useful than an error. */
2107
2108 result = lookup_static_symbol (name, domain);
2109 if (symbol_lookup_debug)
2110 {
2111 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2112 result.symbol != NULL
2113 ? host_address_to_string (result.symbol)
2114 : "NULL");
2115 }
2116 return result;
2117 }
2118
2119 /* Check to see if the symbol is defined in BLOCK or its superiors.
2120 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
2121
2122 static struct block_symbol
2123 lookup_local_symbol (const char *name,
2124 symbol_name_match_type match_type,
2125 const struct block *block,
2126 const domain_enum domain,
2127 enum language language)
2128 {
2129 struct symbol *sym;
2130 const struct block *static_block = block_static_block (block);
2131 const char *scope = block_scope (block);
2132
2133 /* Check if either no block is specified or it's a global block. */
2134
2135 if (static_block == NULL)
2136 return (struct block_symbol) {NULL, NULL};
2137
2138 while (block != static_block)
2139 {
2140 sym = lookup_symbol_in_block (name, match_type, block, domain);
2141 if (sym != NULL)
2142 return (struct block_symbol) {sym, block};
2143
2144 if (language == language_cplus || language == language_fortran)
2145 {
2146 struct block_symbol blocksym
2147 = cp_lookup_symbol_imports_or_template (scope, name, block,
2148 domain);
2149
2150 if (blocksym.symbol != NULL)
2151 return blocksym;
2152 }
2153
2154 if (BLOCK_FUNCTION (block) != NULL && block_inlined_p (block))
2155 break;
2156 block = BLOCK_SUPERBLOCK (block);
2157 }
2158
2159 /* We've reached the end of the function without finding a result. */
2160
2161 return (struct block_symbol) {NULL, NULL};
2162 }
2163
2164 /* See symtab.h. */
2165
2166 struct objfile *
2167 lookup_objfile_from_block (const struct block *block)
2168 {
2169 struct objfile *obj;
2170
2171 if (block == NULL)
2172 return NULL;
2173
2174 block = block_global_block (block);
2175 /* Look through all blockvectors. */
2176 ALL_COMPUNITS (obj, cust)
2177 if (block == BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust),
2178 GLOBAL_BLOCK))
2179 {
2180 if (obj->separate_debug_objfile_backlink)
2181 obj = obj->separate_debug_objfile_backlink;
2182
2183 return obj;
2184 }
2185
2186 return NULL;
2187 }
2188
2189 /* See symtab.h. */
2190
2191 struct symbol *
2192 lookup_symbol_in_block (const char *name, symbol_name_match_type match_type,
2193 const struct block *block,
2194 const domain_enum domain)
2195 {
2196 struct symbol *sym;
2197
2198 if (symbol_lookup_debug > 1)
2199 {
2200 struct objfile *objfile = lookup_objfile_from_block (block);
2201
2202 fprintf_unfiltered (gdb_stdlog,
2203 "lookup_symbol_in_block (%s, %s (objfile %s), %s)",
2204 name, host_address_to_string (block),
2205 objfile_debug_name (objfile),
2206 domain_name (domain));
2207 }
2208
2209 sym = block_lookup_symbol (block, name, match_type, domain);
2210 if (sym)
2211 {
2212 if (symbol_lookup_debug > 1)
2213 {
2214 fprintf_unfiltered (gdb_stdlog, " = %s\n",
2215 host_address_to_string (sym));
2216 }
2217 return fixup_symbol_section (sym, NULL);
2218 }
2219
2220 if (symbol_lookup_debug > 1)
2221 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
2222 return NULL;
2223 }
2224
2225 /* See symtab.h. */
2226
2227 struct block_symbol
2228 lookup_global_symbol_from_objfile (struct objfile *main_objfile,
2229 const char *name,
2230 const domain_enum domain)
2231 {
2232 struct objfile *objfile;
2233
2234 for (objfile = main_objfile;
2235 objfile;
2236 objfile = objfile_separate_debug_iterate (main_objfile, objfile))
2237 {
2238 struct block_symbol result
2239 = lookup_symbol_in_objfile (objfile, GLOBAL_BLOCK, name, domain);
2240
2241 if (result.symbol != NULL)
2242 return result;
2243 }
2244
2245 return (struct block_symbol) {NULL, NULL};
2246 }
2247
2248 /* Check to see if the symbol is defined in one of the OBJFILE's
2249 symtabs. BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
2250 depending on whether or not we want to search global symbols or
2251 static symbols. */
2252
2253 static struct block_symbol
2254 lookup_symbol_in_objfile_symtabs (struct objfile *objfile, int block_index,
2255 const char *name, const domain_enum domain)
2256 {
2257 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2258
2259 if (symbol_lookup_debug > 1)
2260 {
2261 fprintf_unfiltered (gdb_stdlog,
2262 "lookup_symbol_in_objfile_symtabs (%s, %s, %s, %s)",
2263 objfile_debug_name (objfile),
2264 block_index == GLOBAL_BLOCK
2265 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2266 name, domain_name (domain));
2267 }
2268
2269 for (compunit_symtab *cust : objfile_compunits (objfile))
2270 {
2271 const struct blockvector *bv;
2272 const struct block *block;
2273 struct block_symbol result;
2274
2275 bv = COMPUNIT_BLOCKVECTOR (cust);
2276 block = BLOCKVECTOR_BLOCK (bv, block_index);
2277 result.symbol = block_lookup_symbol_primary (block, name, domain);
2278 result.block = block;
2279 if (result.symbol != NULL)
2280 {
2281 if (symbol_lookup_debug > 1)
2282 {
2283 fprintf_unfiltered (gdb_stdlog, " = %s (block %s)\n",
2284 host_address_to_string (result.symbol),
2285 host_address_to_string (block));
2286 }
2287 result.symbol = fixup_symbol_section (result.symbol, objfile);
2288 return result;
2289
2290 }
2291 }
2292
2293 if (symbol_lookup_debug > 1)
2294 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
2295 return (struct block_symbol) {NULL, NULL};
2296 }
2297
2298 /* Wrapper around lookup_symbol_in_objfile_symtabs for search_symbols.
2299 Look up LINKAGE_NAME in DOMAIN in the global and static blocks of OBJFILE
2300 and all associated separate debug objfiles.
2301
2302 Normally we only look in OBJFILE, and not any separate debug objfiles
2303 because the outer loop will cause them to be searched too. This case is
2304 different. Here we're called from search_symbols where it will only
2305 call us for the the objfile that contains a matching minsym. */
2306
2307 static struct block_symbol
2308 lookup_symbol_in_objfile_from_linkage_name (struct objfile *objfile,
2309 const char *linkage_name,
2310 domain_enum domain)
2311 {
2312 enum language lang = current_language->la_language;
2313 struct objfile *main_objfile, *cur_objfile;
2314
2315 demangle_result_storage storage;
2316 const char *modified_name = demangle_for_lookup (linkage_name, lang, storage);
2317
2318 if (objfile->separate_debug_objfile_backlink)
2319 main_objfile = objfile->separate_debug_objfile_backlink;
2320 else
2321 main_objfile = objfile;
2322
2323 for (cur_objfile = main_objfile;
2324 cur_objfile;
2325 cur_objfile = objfile_separate_debug_iterate (main_objfile, cur_objfile))
2326 {
2327 struct block_symbol result;
2328
2329 result = lookup_symbol_in_objfile_symtabs (cur_objfile, GLOBAL_BLOCK,
2330 modified_name, domain);
2331 if (result.symbol == NULL)
2332 result = lookup_symbol_in_objfile_symtabs (cur_objfile, STATIC_BLOCK,
2333 modified_name, domain);
2334 if (result.symbol != NULL)
2335 return result;
2336 }
2337
2338 return (struct block_symbol) {NULL, NULL};
2339 }
2340
2341 /* A helper function that throws an exception when a symbol was found
2342 in a psymtab but not in a symtab. */
2343
2344 static void ATTRIBUTE_NORETURN
2345 error_in_psymtab_expansion (int block_index, const char *name,
2346 struct compunit_symtab *cust)
2347 {
2348 error (_("\
2349 Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n\
2350 %s may be an inlined function, or may be a template function\n \
2351 (if a template, try specifying an instantiation: %s<type>)."),
2352 block_index == GLOBAL_BLOCK ? "global" : "static",
2353 name,
2354 symtab_to_filename_for_display (compunit_primary_filetab (cust)),
2355 name, name);
2356 }
2357
2358 /* A helper function for various lookup routines that interfaces with
2359 the "quick" symbol table functions. */
2360
2361 static struct block_symbol
2362 lookup_symbol_via_quick_fns (struct objfile *objfile, int block_index,
2363 const char *name, const domain_enum domain)
2364 {
2365 struct compunit_symtab *cust;
2366 const struct blockvector *bv;
2367 const struct block *block;
2368 struct block_symbol result;
2369
2370 if (!objfile->sf)
2371 return (struct block_symbol) {NULL, NULL};
2372
2373 if (symbol_lookup_debug > 1)
2374 {
2375 fprintf_unfiltered (gdb_stdlog,
2376 "lookup_symbol_via_quick_fns (%s, %s, %s, %s)\n",
2377 objfile_debug_name (objfile),
2378 block_index == GLOBAL_BLOCK
2379 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2380 name, domain_name (domain));
2381 }
2382
2383 cust = objfile->sf->qf->lookup_symbol (objfile, block_index, name, domain);
2384 if (cust == NULL)
2385 {
2386 if (symbol_lookup_debug > 1)
2387 {
2388 fprintf_unfiltered (gdb_stdlog,
2389 "lookup_symbol_via_quick_fns (...) = NULL\n");
2390 }
2391 return (struct block_symbol) {NULL, NULL};
2392 }
2393
2394 bv = COMPUNIT_BLOCKVECTOR (cust);
2395 block = BLOCKVECTOR_BLOCK (bv, block_index);
2396 result.symbol = block_lookup_symbol (block, name,
2397 symbol_name_match_type::FULL, domain);
2398 if (result.symbol == NULL)
2399 error_in_psymtab_expansion (block_index, name, cust);
2400
2401 if (symbol_lookup_debug > 1)
2402 {
2403 fprintf_unfiltered (gdb_stdlog,
2404 "lookup_symbol_via_quick_fns (...) = %s (block %s)\n",
2405 host_address_to_string (result.symbol),
2406 host_address_to_string (block));
2407 }
2408
2409 result.symbol = fixup_symbol_section (result.symbol, objfile);
2410 result.block = block;
2411 return result;
2412 }
2413
2414 /* See symtab.h. */
2415
2416 struct block_symbol
2417 basic_lookup_symbol_nonlocal (const struct language_defn *langdef,
2418 const char *name,
2419 const struct block *block,
2420 const domain_enum domain)
2421 {
2422 struct block_symbol result;
2423
2424 /* NOTE: carlton/2003-05-19: The comments below were written when
2425 this (or what turned into this) was part of lookup_symbol_aux;
2426 I'm much less worried about these questions now, since these
2427 decisions have turned out well, but I leave these comments here
2428 for posterity. */
2429
2430 /* NOTE: carlton/2002-12-05: There is a question as to whether or
2431 not it would be appropriate to search the current global block
2432 here as well. (That's what this code used to do before the
2433 is_a_field_of_this check was moved up.) On the one hand, it's
2434 redundant with the lookup in all objfiles search that happens
2435 next. On the other hand, if decode_line_1 is passed an argument
2436 like filename:var, then the user presumably wants 'var' to be
2437 searched for in filename. On the third hand, there shouldn't be
2438 multiple global variables all of which are named 'var', and it's
2439 not like decode_line_1 has ever restricted its search to only
2440 global variables in a single filename. All in all, only
2441 searching the static block here seems best: it's correct and it's
2442 cleanest. */
2443
2444 /* NOTE: carlton/2002-12-05: There's also a possible performance
2445 issue here: if you usually search for global symbols in the
2446 current file, then it would be slightly better to search the
2447 current global block before searching all the symtabs. But there
2448 are other factors that have a much greater effect on performance
2449 than that one, so I don't think we should worry about that for
2450 now. */
2451
2452 /* NOTE: dje/2014-10-26: The lookup in all objfiles search could skip
2453 the current objfile. Searching the current objfile first is useful
2454 for both matching user expectations as well as performance. */
2455
2456 result = lookup_symbol_in_static_block (name, block, domain);
2457 if (result.symbol != NULL)
2458 return result;
2459
2460 /* If we didn't find a definition for a builtin type in the static block,
2461 search for it now. This is actually the right thing to do and can be
2462 a massive performance win. E.g., when debugging a program with lots of
2463 shared libraries we could search all of them only to find out the
2464 builtin type isn't defined in any of them. This is common for types
2465 like "void". */
2466 if (domain == VAR_DOMAIN)
2467 {
2468 struct gdbarch *gdbarch;
2469
2470 if (block == NULL)
2471 gdbarch = target_gdbarch ();
2472 else
2473 gdbarch = block_gdbarch (block);
2474 result.symbol = language_lookup_primitive_type_as_symbol (langdef,
2475 gdbarch, name);
2476 result.block = NULL;
2477 if (result.symbol != NULL)
2478 return result;
2479 }
2480
2481 return lookup_global_symbol (name, block, domain);
2482 }
2483
2484 /* See symtab.h. */
2485
2486 struct block_symbol
2487 lookup_symbol_in_static_block (const char *name,
2488 const struct block *block,
2489 const domain_enum domain)
2490 {
2491 const struct block *static_block = block_static_block (block);
2492 struct symbol *sym;
2493
2494 if (static_block == NULL)
2495 return (struct block_symbol) {NULL, NULL};
2496
2497 if (symbol_lookup_debug)
2498 {
2499 struct objfile *objfile = lookup_objfile_from_block (static_block);
2500
2501 fprintf_unfiltered (gdb_stdlog,
2502 "lookup_symbol_in_static_block (%s, %s (objfile %s),"
2503 " %s)\n",
2504 name,
2505 host_address_to_string (block),
2506 objfile_debug_name (objfile),
2507 domain_name (domain));
2508 }
2509
2510 sym = lookup_symbol_in_block (name,
2511 symbol_name_match_type::FULL,
2512 static_block, domain);
2513 if (symbol_lookup_debug)
2514 {
2515 fprintf_unfiltered (gdb_stdlog,
2516 "lookup_symbol_in_static_block (...) = %s\n",
2517 sym != NULL ? host_address_to_string (sym) : "NULL");
2518 }
2519 return (struct block_symbol) {sym, static_block};
2520 }
2521
2522 /* Perform the standard symbol lookup of NAME in OBJFILE:
2523 1) First search expanded symtabs, and if not found
2524 2) Search the "quick" symtabs (partial or .gdb_index).
2525 BLOCK_INDEX is one of GLOBAL_BLOCK or STATIC_BLOCK. */
2526
2527 static struct block_symbol
2528 lookup_symbol_in_objfile (struct objfile *objfile, int block_index,
2529 const char *name, const domain_enum domain)
2530 {
2531 struct block_symbol result;
2532
2533 if (symbol_lookup_debug)
2534 {
2535 fprintf_unfiltered (gdb_stdlog,
2536 "lookup_symbol_in_objfile (%s, %s, %s, %s)\n",
2537 objfile_debug_name (objfile),
2538 block_index == GLOBAL_BLOCK
2539 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2540 name, domain_name (domain));
2541 }
2542
2543 result = lookup_symbol_in_objfile_symtabs (objfile, block_index,
2544 name, domain);
2545 if (result.symbol != NULL)
2546 {
2547 if (symbol_lookup_debug)
2548 {
2549 fprintf_unfiltered (gdb_stdlog,
2550 "lookup_symbol_in_objfile (...) = %s"
2551 " (in symtabs)\n",
2552 host_address_to_string (result.symbol));
2553 }
2554 return result;
2555 }
2556
2557 result = lookup_symbol_via_quick_fns (objfile, block_index,
2558 name, domain);
2559 if (symbol_lookup_debug)
2560 {
2561 fprintf_unfiltered (gdb_stdlog,
2562 "lookup_symbol_in_objfile (...) = %s%s\n",
2563 result.symbol != NULL
2564 ? host_address_to_string (result.symbol)
2565 : "NULL",
2566 result.symbol != NULL ? " (via quick fns)" : "");
2567 }
2568 return result;
2569 }
2570
2571 /* See symtab.h. */
2572
2573 struct block_symbol
2574 lookup_static_symbol (const char *name, const domain_enum domain)
2575 {
2576 struct symbol_cache *cache = get_symbol_cache (current_program_space);
2577 struct block_symbol result;
2578 struct block_symbol_cache *bsc;
2579 struct symbol_cache_slot *slot;
2580
2581 /* Lookup in STATIC_BLOCK is not current-objfile-dependent, so just pass
2582 NULL for OBJFILE_CONTEXT. */
2583 result = symbol_cache_lookup (cache, NULL, STATIC_BLOCK, name, domain,
2584 &bsc, &slot);
2585 if (result.symbol != NULL)
2586 {
2587 if (SYMBOL_LOOKUP_FAILED_P (result))
2588 return (struct block_symbol) {NULL, NULL};
2589 return result;
2590 }
2591
2592 for (objfile *objfile : all_objfiles (current_program_space))
2593 {
2594 result = lookup_symbol_in_objfile (objfile, STATIC_BLOCK, name, domain);
2595 if (result.symbol != NULL)
2596 {
2597 /* Still pass NULL for OBJFILE_CONTEXT here. */
2598 symbol_cache_mark_found (bsc, slot, NULL, result.symbol,
2599 result.block);
2600 return result;
2601 }
2602 }
2603
2604 /* Still pass NULL for OBJFILE_CONTEXT here. */
2605 symbol_cache_mark_not_found (bsc, slot, NULL, name, domain);
2606 return (struct block_symbol) {NULL, NULL};
2607 }
2608
2609 /* Private data to be used with lookup_symbol_global_iterator_cb. */
2610
2611 struct global_sym_lookup_data
2612 {
2613 /* The name of the symbol we are searching for. */
2614 const char *name;
2615
2616 /* The domain to use for our search. */
2617 domain_enum domain;
2618
2619 /* The field where the callback should store the symbol if found.
2620 It should be initialized to {NULL, NULL} before the search is started. */
2621 struct block_symbol result;
2622 };
2623
2624 /* A callback function for gdbarch_iterate_over_objfiles_in_search_order.
2625 It searches by name for a symbol in the GLOBAL_BLOCK of the given
2626 OBJFILE. The arguments for the search are passed via CB_DATA,
2627 which in reality is a pointer to struct global_sym_lookup_data. */
2628
2629 static int
2630 lookup_symbol_global_iterator_cb (struct objfile *objfile,
2631 void *cb_data)
2632 {
2633 struct global_sym_lookup_data *data =
2634 (struct global_sym_lookup_data *) cb_data;
2635
2636 gdb_assert (data->result.symbol == NULL
2637 && data->result.block == NULL);
2638
2639 data->result = lookup_symbol_in_objfile (objfile, GLOBAL_BLOCK,
2640 data->name, data->domain);
2641
2642 /* If we found a match, tell the iterator to stop. Otherwise,
2643 keep going. */
2644 return (data->result.symbol != NULL);
2645 }
2646
2647 /* See symtab.h. */
2648
2649 struct block_symbol
2650 lookup_global_symbol (const char *name,
2651 const struct block *block,
2652 const domain_enum domain)
2653 {
2654 struct symbol_cache *cache = get_symbol_cache (current_program_space);
2655 struct block_symbol result;
2656 struct objfile *objfile;
2657 struct global_sym_lookup_data lookup_data;
2658 struct block_symbol_cache *bsc;
2659 struct symbol_cache_slot *slot;
2660
2661 objfile = lookup_objfile_from_block (block);
2662
2663 /* First see if we can find the symbol in the cache.
2664 This works because we use the current objfile to qualify the lookup. */
2665 result = symbol_cache_lookup (cache, objfile, GLOBAL_BLOCK, name, domain,
2666 &bsc, &slot);
2667 if (result.symbol != NULL)
2668 {
2669 if (SYMBOL_LOOKUP_FAILED_P (result))
2670 return (struct block_symbol) {NULL, NULL};
2671 return result;
2672 }
2673
2674 /* Call library-specific lookup procedure. */
2675 if (objfile != NULL)
2676 result = solib_global_lookup (objfile, name, domain);
2677
2678 /* If that didn't work go a global search (of global blocks, heh). */
2679 if (result.symbol == NULL)
2680 {
2681 memset (&lookup_data, 0, sizeof (lookup_data));
2682 lookup_data.name = name;
2683 lookup_data.domain = domain;
2684 gdbarch_iterate_over_objfiles_in_search_order
2685 (objfile != NULL ? get_objfile_arch (objfile) : target_gdbarch (),
2686 lookup_symbol_global_iterator_cb, &lookup_data, objfile);
2687 result = lookup_data.result;
2688 }
2689
2690 if (result.symbol != NULL)
2691 symbol_cache_mark_found (bsc, slot, objfile, result.symbol, result.block);
2692 else
2693 symbol_cache_mark_not_found (bsc, slot, objfile, name, domain);
2694
2695 return result;
2696 }
2697
2698 int
2699 symbol_matches_domain (enum language symbol_language,
2700 domain_enum symbol_domain,
2701 domain_enum domain)
2702 {
2703 /* For C++ "struct foo { ... }" also defines a typedef for "foo".
2704 Similarly, any Ada type declaration implicitly defines a typedef. */
2705 if (symbol_language == language_cplus
2706 || symbol_language == language_d
2707 || symbol_language == language_ada
2708 || symbol_language == language_rust)
2709 {
2710 if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN)
2711 && symbol_domain == STRUCT_DOMAIN)
2712 return 1;
2713 }
2714 /* For all other languages, strict match is required. */
2715 return (symbol_domain == domain);
2716 }
2717
2718 /* See symtab.h. */
2719
2720 struct type *
2721 lookup_transparent_type (const char *name)
2722 {
2723 return current_language->la_lookup_transparent_type (name);
2724 }
2725
2726 /* A helper for basic_lookup_transparent_type that interfaces with the
2727 "quick" symbol table functions. */
2728
2729 static struct type *
2730 basic_lookup_transparent_type_quick (struct objfile *objfile, int block_index,
2731 const char *name)
2732 {
2733 struct compunit_symtab *cust;
2734 const struct blockvector *bv;
2735 struct block *block;
2736 struct symbol *sym;
2737
2738 if (!objfile->sf)
2739 return NULL;
2740 cust = objfile->sf->qf->lookup_symbol (objfile, block_index, name,
2741 STRUCT_DOMAIN);
2742 if (cust == NULL)
2743 return NULL;
2744
2745 bv = COMPUNIT_BLOCKVECTOR (cust);
2746 block = BLOCKVECTOR_BLOCK (bv, block_index);
2747 sym = block_find_symbol (block, name, STRUCT_DOMAIN,
2748 block_find_non_opaque_type, NULL);
2749 if (sym == NULL)
2750 error_in_psymtab_expansion (block_index, name, cust);
2751 gdb_assert (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)));
2752 return SYMBOL_TYPE (sym);
2753 }
2754
2755 /* Subroutine of basic_lookup_transparent_type to simplify it.
2756 Look up the non-opaque definition of NAME in BLOCK_INDEX of OBJFILE.
2757 BLOCK_INDEX is either GLOBAL_BLOCK or STATIC_BLOCK. */
2758
2759 static struct type *
2760 basic_lookup_transparent_type_1 (struct objfile *objfile, int block_index,
2761 const char *name)
2762 {
2763 const struct blockvector *bv;
2764 const struct block *block;
2765 const struct symbol *sym;
2766
2767 for (compunit_symtab *cust : objfile_compunits (objfile))
2768 {
2769 bv = COMPUNIT_BLOCKVECTOR (cust);
2770 block = BLOCKVECTOR_BLOCK (bv, block_index);
2771 sym = block_find_symbol (block, name, STRUCT_DOMAIN,
2772 block_find_non_opaque_type, NULL);
2773 if (sym != NULL)
2774 {
2775 gdb_assert (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)));
2776 return SYMBOL_TYPE (sym);
2777 }
2778 }
2779
2780 return NULL;
2781 }
2782
2783 /* The standard implementation of lookup_transparent_type. This code
2784 was modeled on lookup_symbol -- the parts not relevant to looking
2785 up types were just left out. In particular it's assumed here that
2786 types are available in STRUCT_DOMAIN and only in file-static or
2787 global blocks. */
2788
2789 struct type *
2790 basic_lookup_transparent_type (const char *name)
2791 {
2792 struct type *t;
2793
2794 /* Now search all the global symbols. Do the symtab's first, then
2795 check the psymtab's. If a psymtab indicates the existence
2796 of the desired name as a global, then do psymtab-to-symtab
2797 conversion on the fly and return the found symbol. */
2798
2799 for (objfile *objfile : all_objfiles (current_program_space))
2800 {
2801 t = basic_lookup_transparent_type_1 (objfile, GLOBAL_BLOCK, name);
2802 if (t)
2803 return t;
2804 }
2805
2806 for (objfile *objfile : all_objfiles (current_program_space))
2807 {
2808 t = basic_lookup_transparent_type_quick (objfile, GLOBAL_BLOCK, name);
2809 if (t)
2810 return t;
2811 }
2812
2813 /* Now search the static file-level symbols.
2814 Not strictly correct, but more useful than an error.
2815 Do the symtab's first, then
2816 check the psymtab's. If a psymtab indicates the existence
2817 of the desired name as a file-level static, then do psymtab-to-symtab
2818 conversion on the fly and return the found symbol. */
2819
2820 for (objfile *objfile : all_objfiles (current_program_space))
2821 {
2822 t = basic_lookup_transparent_type_1 (objfile, STATIC_BLOCK, name);
2823 if (t)
2824 return t;
2825 }
2826
2827 for (objfile *objfile : all_objfiles (current_program_space))
2828 {
2829 t = basic_lookup_transparent_type_quick (objfile, STATIC_BLOCK, name);
2830 if (t)
2831 return t;
2832 }
2833
2834 return (struct type *) 0;
2835 }
2836
2837 /* Iterate over the symbols named NAME, matching DOMAIN, in BLOCK.
2838
2839 For each symbol that matches, CALLBACK is called. The symbol is
2840 passed to the callback.
2841
2842 If CALLBACK returns false, the iteration ends. Otherwise, the
2843 search continues. */
2844
2845 void
2846 iterate_over_symbols (const struct block *block,
2847 const lookup_name_info &name,
2848 const domain_enum domain,
2849 gdb::function_view<symbol_found_callback_ftype> callback)
2850 {
2851 struct block_iterator iter;
2852 struct symbol *sym;
2853
2854 ALL_BLOCK_SYMBOLS_WITH_NAME (block, name, iter, sym)
2855 {
2856 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
2857 SYMBOL_DOMAIN (sym), domain))
2858 {
2859 struct block_symbol block_sym = {sym, block};
2860
2861 if (!callback (&block_sym))
2862 return;
2863 }
2864 }
2865 }
2866
2867 /* Find the compunit symtab associated with PC and SECTION.
2868 This will read in debug info as necessary. */
2869
2870 struct compunit_symtab *
2871 find_pc_sect_compunit_symtab (CORE_ADDR pc, struct obj_section *section)
2872 {
2873 struct compunit_symtab *best_cust = NULL;
2874 struct objfile *obj_file;
2875 CORE_ADDR distance = 0;
2876 struct bound_minimal_symbol msymbol;
2877
2878 /* If we know that this is not a text address, return failure. This is
2879 necessary because we loop based on the block's high and low code
2880 addresses, which do not include the data ranges, and because
2881 we call find_pc_sect_psymtab which has a similar restriction based
2882 on the partial_symtab's texthigh and textlow. */
2883 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
2884 if (msymbol.minsym
2885 && (MSYMBOL_TYPE (msymbol.minsym) == mst_data
2886 || MSYMBOL_TYPE (msymbol.minsym) == mst_bss
2887 || MSYMBOL_TYPE (msymbol.minsym) == mst_abs
2888 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_data
2889 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_bss))
2890 return NULL;
2891
2892 /* Search all symtabs for the one whose file contains our address, and which
2893 is the smallest of all the ones containing the address. This is designed
2894 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
2895 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
2896 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
2897
2898 This happens for native ecoff format, where code from included files
2899 gets its own symtab. The symtab for the included file should have
2900 been read in already via the dependency mechanism.
2901 It might be swifter to create several symtabs with the same name
2902 like xcoff does (I'm not sure).
2903
2904 It also happens for objfiles that have their functions reordered.
2905 For these, the symtab we are looking for is not necessarily read in. */
2906
2907 ALL_COMPUNITS (obj_file, cust)
2908 {
2909 struct block *b;
2910 const struct blockvector *bv;
2911
2912 bv = COMPUNIT_BLOCKVECTOR (cust);
2913 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
2914
2915 if (BLOCK_START (b) <= pc
2916 && BLOCK_END (b) > pc
2917 && (distance == 0
2918 || BLOCK_END (b) - BLOCK_START (b) < distance))
2919 {
2920 /* For an objfile that has its functions reordered,
2921 find_pc_psymtab will find the proper partial symbol table
2922 and we simply return its corresponding symtab. */
2923 /* In order to better support objfiles that contain both
2924 stabs and coff debugging info, we continue on if a psymtab
2925 can't be found. */
2926 if ((obj_file->flags & OBJF_REORDERED) && obj_file->sf)
2927 {
2928 struct compunit_symtab *result;
2929
2930 result
2931 = obj_file->sf->qf->find_pc_sect_compunit_symtab (obj_file,
2932 msymbol,
2933 pc, section,
2934 0);
2935 if (result != NULL)
2936 return result;
2937 }
2938 if (section != 0)
2939 {
2940 struct block_iterator iter;
2941 struct symbol *sym = NULL;
2942
2943 ALL_BLOCK_SYMBOLS (b, iter, sym)
2944 {
2945 fixup_symbol_section (sym, obj_file);
2946 if (matching_obj_sections (SYMBOL_OBJ_SECTION (obj_file, sym),
2947 section))
2948 break;
2949 }
2950 if (sym == NULL)
2951 continue; /* No symbol in this symtab matches
2952 section. */
2953 }
2954 distance = BLOCK_END (b) - BLOCK_START (b);
2955 best_cust = cust;
2956 }
2957 }
2958
2959 if (best_cust != NULL)
2960 return best_cust;
2961
2962 /* Not found in symtabs, search the "quick" symtabs (e.g. psymtabs). */
2963
2964 for (objfile *objf : all_objfiles (current_program_space))
2965 {
2966 struct compunit_symtab *result;
2967
2968 if (!objf->sf)
2969 continue;
2970 result = objf->sf->qf->find_pc_sect_compunit_symtab (objf,
2971 msymbol,
2972 pc, section,
2973 1);
2974 if (result != NULL)
2975 return result;
2976 }
2977
2978 return NULL;
2979 }
2980
2981 /* Find the compunit symtab associated with PC.
2982 This will read in debug info as necessary.
2983 Backward compatibility, no section. */
2984
2985 struct compunit_symtab *
2986 find_pc_compunit_symtab (CORE_ADDR pc)
2987 {
2988 return find_pc_sect_compunit_symtab (pc, find_pc_mapped_section (pc));
2989 }
2990
2991 /* See symtab.h. */
2992
2993 struct symbol *
2994 find_symbol_at_address (CORE_ADDR address)
2995 {
2996 for (objfile *objfile : all_objfiles (current_program_space))
2997 {
2998 if (objfile->sf == NULL
2999 || objfile->sf->qf->find_compunit_symtab_by_address == NULL)
3000 continue;
3001
3002 struct compunit_symtab *symtab
3003 = objfile->sf->qf->find_compunit_symtab_by_address (objfile, address);
3004 if (symtab != NULL)
3005 {
3006 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (symtab);
3007
3008 for (int i = GLOBAL_BLOCK; i <= STATIC_BLOCK; ++i)
3009 {
3010 struct block *b = BLOCKVECTOR_BLOCK (bv, i);
3011 struct block_iterator iter;
3012 struct symbol *sym;
3013
3014 ALL_BLOCK_SYMBOLS (b, iter, sym)
3015 {
3016 if (SYMBOL_CLASS (sym) == LOC_STATIC
3017 && SYMBOL_VALUE_ADDRESS (sym) == address)
3018 return sym;
3019 }
3020 }
3021 }
3022 }
3023
3024 return NULL;
3025 }
3026
3027 \f
3028
3029 /* Find the source file and line number for a given PC value and SECTION.
3030 Return a structure containing a symtab pointer, a line number,
3031 and a pc range for the entire source line.
3032 The value's .pc field is NOT the specified pc.
3033 NOTCURRENT nonzero means, if specified pc is on a line boundary,
3034 use the line that ends there. Otherwise, in that case, the line
3035 that begins there is used. */
3036
3037 /* The big complication here is that a line may start in one file, and end just
3038 before the start of another file. This usually occurs when you #include
3039 code in the middle of a subroutine. To properly find the end of a line's PC
3040 range, we must search all symtabs associated with this compilation unit, and
3041 find the one whose first PC is closer than that of the next line in this
3042 symtab. */
3043
3044 struct symtab_and_line
3045 find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent)
3046 {
3047 struct compunit_symtab *cust;
3048 struct symtab *iter_s;
3049 struct linetable *l;
3050 int len;
3051 struct linetable_entry *item;
3052 const struct blockvector *bv;
3053 struct bound_minimal_symbol msymbol;
3054
3055 /* Info on best line seen so far, and where it starts, and its file. */
3056
3057 struct linetable_entry *best = NULL;
3058 CORE_ADDR best_end = 0;
3059 struct symtab *best_symtab = 0;
3060
3061 /* Store here the first line number
3062 of a file which contains the line at the smallest pc after PC.
3063 If we don't find a line whose range contains PC,
3064 we will use a line one less than this,
3065 with a range from the start of that file to the first line's pc. */
3066 struct linetable_entry *alt = NULL;
3067
3068 /* Info on best line seen in this file. */
3069
3070 struct linetable_entry *prev;
3071
3072 /* If this pc is not from the current frame,
3073 it is the address of the end of a call instruction.
3074 Quite likely that is the start of the following statement.
3075 But what we want is the statement containing the instruction.
3076 Fudge the pc to make sure we get that. */
3077
3078 /* It's tempting to assume that, if we can't find debugging info for
3079 any function enclosing PC, that we shouldn't search for line
3080 number info, either. However, GAS can emit line number info for
3081 assembly files --- very helpful when debugging hand-written
3082 assembly code. In such a case, we'd have no debug info for the
3083 function, but we would have line info. */
3084
3085 if (notcurrent)
3086 pc -= 1;
3087
3088 /* elz: added this because this function returned the wrong
3089 information if the pc belongs to a stub (import/export)
3090 to call a shlib function. This stub would be anywhere between
3091 two functions in the target, and the line info was erroneously
3092 taken to be the one of the line before the pc. */
3093
3094 /* RT: Further explanation:
3095
3096 * We have stubs (trampolines) inserted between procedures.
3097 *
3098 * Example: "shr1" exists in a shared library, and a "shr1" stub also
3099 * exists in the main image.
3100 *
3101 * In the minimal symbol table, we have a bunch of symbols
3102 * sorted by start address. The stubs are marked as "trampoline",
3103 * the others appear as text. E.g.:
3104 *
3105 * Minimal symbol table for main image
3106 * main: code for main (text symbol)
3107 * shr1: stub (trampoline symbol)
3108 * foo: code for foo (text symbol)
3109 * ...
3110 * Minimal symbol table for "shr1" image:
3111 * ...
3112 * shr1: code for shr1 (text symbol)
3113 * ...
3114 *
3115 * So the code below is trying to detect if we are in the stub
3116 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
3117 * and if found, do the symbolization from the real-code address
3118 * rather than the stub address.
3119 *
3120 * Assumptions being made about the minimal symbol table:
3121 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
3122 * if we're really in the trampoline.s If we're beyond it (say
3123 * we're in "foo" in the above example), it'll have a closer
3124 * symbol (the "foo" text symbol for example) and will not
3125 * return the trampoline.
3126 * 2. lookup_minimal_symbol_text() will find a real text symbol
3127 * corresponding to the trampoline, and whose address will
3128 * be different than the trampoline address. I put in a sanity
3129 * check for the address being the same, to avoid an
3130 * infinite recursion.
3131 */
3132 msymbol = lookup_minimal_symbol_by_pc (pc);
3133 if (msymbol.minsym != NULL)
3134 if (MSYMBOL_TYPE (msymbol.minsym) == mst_solib_trampoline)
3135 {
3136 struct bound_minimal_symbol mfunsym
3137 = lookup_minimal_symbol_text (MSYMBOL_LINKAGE_NAME (msymbol.minsym),
3138 NULL);
3139
3140 if (mfunsym.minsym == NULL)
3141 /* I eliminated this warning since it is coming out
3142 * in the following situation:
3143 * gdb shmain // test program with shared libraries
3144 * (gdb) break shr1 // function in shared lib
3145 * Warning: In stub for ...
3146 * In the above situation, the shared lib is not loaded yet,
3147 * so of course we can't find the real func/line info,
3148 * but the "break" still works, and the warning is annoying.
3149 * So I commented out the warning. RT */
3150 /* warning ("In stub for %s; unable to find real function/line info",
3151 SYMBOL_LINKAGE_NAME (msymbol)); */
3152 ;
3153 /* fall through */
3154 else if (BMSYMBOL_VALUE_ADDRESS (mfunsym)
3155 == BMSYMBOL_VALUE_ADDRESS (msymbol))
3156 /* Avoid infinite recursion */
3157 /* See above comment about why warning is commented out. */
3158 /* warning ("In stub for %s; unable to find real function/line info",
3159 SYMBOL_LINKAGE_NAME (msymbol)); */
3160 ;
3161 /* fall through */
3162 else
3163 return find_pc_line (BMSYMBOL_VALUE_ADDRESS (mfunsym), 0);
3164 }
3165
3166 symtab_and_line val;
3167 val.pspace = current_program_space;
3168
3169 cust = find_pc_sect_compunit_symtab (pc, section);
3170 if (cust == NULL)
3171 {
3172 /* If no symbol information, return previous pc. */
3173 if (notcurrent)
3174 pc++;
3175 val.pc = pc;
3176 return val;
3177 }
3178
3179 bv = COMPUNIT_BLOCKVECTOR (cust);
3180
3181 /* Look at all the symtabs that share this blockvector.
3182 They all have the same apriori range, that we found was right;
3183 but they have different line tables. */
3184
3185 ALL_COMPUNIT_FILETABS (cust, iter_s)
3186 {
3187 /* Find the best line in this symtab. */
3188 l = SYMTAB_LINETABLE (iter_s);
3189 if (!l)
3190 continue;
3191 len = l->nitems;
3192 if (len <= 0)
3193 {
3194 /* I think len can be zero if the symtab lacks line numbers
3195 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
3196 I'm not sure which, and maybe it depends on the symbol
3197 reader). */
3198 continue;
3199 }
3200
3201 prev = NULL;
3202 item = l->item; /* Get first line info. */
3203
3204 /* Is this file's first line closer than the first lines of other files?
3205 If so, record this file, and its first line, as best alternate. */
3206 if (item->pc > pc && (!alt || item->pc < alt->pc))
3207 alt = item;
3208
3209 auto pc_compare = [](const CORE_ADDR & comp_pc,
3210 const struct linetable_entry & lhs)->bool
3211 {
3212 return comp_pc < lhs.pc;
3213 };
3214
3215 struct linetable_entry *first = item;
3216 struct linetable_entry *last = item + len;
3217 item = std::upper_bound (first, last, pc, pc_compare);
3218 if (item != first)
3219 prev = item - 1; /* Found a matching item. */
3220
3221 /* At this point, prev points at the line whose start addr is <= pc, and
3222 item points at the next line. If we ran off the end of the linetable
3223 (pc >= start of the last line), then prev == item. If pc < start of
3224 the first line, prev will not be set. */
3225
3226 /* Is this file's best line closer than the best in the other files?
3227 If so, record this file, and its best line, as best so far. Don't
3228 save prev if it represents the end of a function (i.e. line number
3229 0) instead of a real line. */
3230
3231 if (prev && prev->line && (!best || prev->pc > best->pc))
3232 {
3233 best = prev;
3234 best_symtab = iter_s;
3235
3236 /* Discard BEST_END if it's before the PC of the current BEST. */
3237 if (best_end <= best->pc)
3238 best_end = 0;
3239 }
3240
3241 /* If another line (denoted by ITEM) is in the linetable and its
3242 PC is after BEST's PC, but before the current BEST_END, then
3243 use ITEM's PC as the new best_end. */
3244 if (best && item < last && item->pc > best->pc
3245 && (best_end == 0 || best_end > item->pc))
3246 best_end = item->pc;
3247 }
3248
3249 if (!best_symtab)
3250 {
3251 /* If we didn't find any line number info, just return zeros.
3252 We used to return alt->line - 1 here, but that could be
3253 anywhere; if we don't have line number info for this PC,
3254 don't make some up. */
3255 val.pc = pc;
3256 }
3257 else if (best->line == 0)
3258 {
3259 /* If our best fit is in a range of PC's for which no line
3260 number info is available (line number is zero) then we didn't
3261 find any valid line information. */
3262 val.pc = pc;
3263 }
3264 else
3265 {
3266 val.symtab = best_symtab;
3267 val.line = best->line;
3268 val.pc = best->pc;
3269 if (best_end && (!alt || best_end < alt->pc))
3270 val.end = best_end;
3271 else if (alt)
3272 val.end = alt->pc;
3273 else
3274 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
3275 }
3276 val.section = section;
3277 return val;
3278 }
3279
3280 /* Backward compatibility (no section). */
3281
3282 struct symtab_and_line
3283 find_pc_line (CORE_ADDR pc, int notcurrent)
3284 {
3285 struct obj_section *section;
3286
3287 section = find_pc_overlay (pc);
3288 if (pc_in_unmapped_range (pc, section))
3289 pc = overlay_mapped_address (pc, section);
3290 return find_pc_sect_line (pc, section, notcurrent);
3291 }
3292
3293 /* See symtab.h. */
3294
3295 struct symtab *
3296 find_pc_line_symtab (CORE_ADDR pc)
3297 {
3298 struct symtab_and_line sal;
3299
3300 /* This always passes zero for NOTCURRENT to find_pc_line.
3301 There are currently no callers that ever pass non-zero. */
3302 sal = find_pc_line (pc, 0);
3303 return sal.symtab;
3304 }
3305 \f
3306 /* Find line number LINE in any symtab whose name is the same as
3307 SYMTAB.
3308
3309 If found, return the symtab that contains the linetable in which it was
3310 found, set *INDEX to the index in the linetable of the best entry
3311 found, and set *EXACT_MATCH nonzero if the value returned is an
3312 exact match.
3313
3314 If not found, return NULL. */
3315
3316 struct symtab *
3317 find_line_symtab (struct symtab *symtab, int line,
3318 int *index, int *exact_match)
3319 {
3320 int exact = 0; /* Initialized here to avoid a compiler warning. */
3321
3322 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
3323 so far seen. */
3324
3325 int best_index;
3326 struct linetable *best_linetable;
3327 struct symtab *best_symtab;
3328
3329 /* First try looking it up in the given symtab. */
3330 best_linetable = SYMTAB_LINETABLE (symtab);
3331 best_symtab = symtab;
3332 best_index = find_line_common (best_linetable, line, &exact, 0);
3333 if (best_index < 0 || !exact)
3334 {
3335 /* Didn't find an exact match. So we better keep looking for
3336 another symtab with the same name. In the case of xcoff,
3337 multiple csects for one source file (produced by IBM's FORTRAN
3338 compiler) produce multiple symtabs (this is unavoidable
3339 assuming csects can be at arbitrary places in memory and that
3340 the GLOBAL_BLOCK of a symtab has a begin and end address). */
3341
3342 /* BEST is the smallest linenumber > LINE so far seen,
3343 or 0 if none has been seen so far.
3344 BEST_INDEX and BEST_LINETABLE identify the item for it. */
3345 int best;
3346
3347 struct symtab *s;
3348
3349 if (best_index >= 0)
3350 best = best_linetable->item[best_index].line;
3351 else
3352 best = 0;
3353
3354 for (objfile *objfile : all_objfiles (current_program_space))
3355 {
3356 if (objfile->sf)
3357 objfile->sf->qf->expand_symtabs_with_fullname
3358 (objfile, symtab_to_fullname (symtab));
3359 }
3360
3361 struct objfile *objfile;
3362 ALL_FILETABS (objfile, cu, s)
3363 {
3364 struct linetable *l;
3365 int ind;
3366
3367 if (FILENAME_CMP (symtab->filename, s->filename) != 0)
3368 continue;
3369 if (FILENAME_CMP (symtab_to_fullname (symtab),
3370 symtab_to_fullname (s)) != 0)
3371 continue;
3372 l = SYMTAB_LINETABLE (s);
3373 ind = find_line_common (l, line, &exact, 0);
3374 if (ind >= 0)
3375 {
3376 if (exact)
3377 {
3378 best_index = ind;
3379 best_linetable = l;
3380 best_symtab = s;
3381 goto done;
3382 }
3383 if (best == 0 || l->item[ind].line < best)
3384 {
3385 best = l->item[ind].line;
3386 best_index = ind;
3387 best_linetable = l;
3388 best_symtab = s;
3389 }
3390 }
3391 }
3392 }
3393 done:
3394 if (best_index < 0)
3395 return NULL;
3396
3397 if (index)
3398 *index = best_index;
3399 if (exact_match)
3400 *exact_match = exact;
3401
3402 return best_symtab;
3403 }
3404
3405 /* Given SYMTAB, returns all the PCs function in the symtab that
3406 exactly match LINE. Returns an empty vector if there are no exact
3407 matches, but updates BEST_ITEM in this case. */
3408
3409 std::vector<CORE_ADDR>
3410 find_pcs_for_symtab_line (struct symtab *symtab, int line,
3411 struct linetable_entry **best_item)
3412 {
3413 int start = 0;
3414 std::vector<CORE_ADDR> result;
3415
3416 /* First, collect all the PCs that are at this line. */
3417 while (1)
3418 {
3419 int was_exact;
3420 int idx;
3421
3422 idx = find_line_common (SYMTAB_LINETABLE (symtab), line, &was_exact,
3423 start);
3424 if (idx < 0)
3425 break;
3426
3427 if (!was_exact)
3428 {
3429 struct linetable_entry *item = &SYMTAB_LINETABLE (symtab)->item[idx];
3430
3431 if (*best_item == NULL || item->line < (*best_item)->line)
3432 *best_item = item;
3433
3434 break;
3435 }
3436
3437 result.push_back (SYMTAB_LINETABLE (symtab)->item[idx].pc);
3438 start = idx + 1;
3439 }
3440
3441 return result;
3442 }
3443
3444 \f
3445 /* Set the PC value for a given source file and line number and return true.
3446 Returns zero for invalid line number (and sets the PC to 0).
3447 The source file is specified with a struct symtab. */
3448
3449 int
3450 find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
3451 {
3452 struct linetable *l;
3453 int ind;
3454
3455 *pc = 0;
3456 if (symtab == 0)
3457 return 0;
3458
3459 symtab = find_line_symtab (symtab, line, &ind, NULL);
3460 if (symtab != NULL)
3461 {
3462 l = SYMTAB_LINETABLE (symtab);
3463 *pc = l->item[ind].pc;
3464 return 1;
3465 }
3466 else
3467 return 0;
3468 }
3469
3470 /* Find the range of pc values in a line.
3471 Store the starting pc of the line into *STARTPTR
3472 and the ending pc (start of next line) into *ENDPTR.
3473 Returns 1 to indicate success.
3474 Returns 0 if could not find the specified line. */
3475
3476 int
3477 find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
3478 CORE_ADDR *endptr)
3479 {
3480 CORE_ADDR startaddr;
3481 struct symtab_and_line found_sal;
3482
3483 startaddr = sal.pc;
3484 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
3485 return 0;
3486
3487 /* This whole function is based on address. For example, if line 10 has
3488 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
3489 "info line *0x123" should say the line goes from 0x100 to 0x200
3490 and "info line *0x355" should say the line goes from 0x300 to 0x400.
3491 This also insures that we never give a range like "starts at 0x134
3492 and ends at 0x12c". */
3493
3494 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
3495 if (found_sal.line != sal.line)
3496 {
3497 /* The specified line (sal) has zero bytes. */
3498 *startptr = found_sal.pc;
3499 *endptr = found_sal.pc;
3500 }
3501 else
3502 {
3503 *startptr = found_sal.pc;
3504 *endptr = found_sal.end;
3505 }
3506 return 1;
3507 }
3508
3509 /* Given a line table and a line number, return the index into the line
3510 table for the pc of the nearest line whose number is >= the specified one.
3511 Return -1 if none is found. The value is >= 0 if it is an index.
3512 START is the index at which to start searching the line table.
3513
3514 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
3515
3516 static int
3517 find_line_common (struct linetable *l, int lineno,
3518 int *exact_match, int start)
3519 {
3520 int i;
3521 int len;
3522
3523 /* BEST is the smallest linenumber > LINENO so far seen,
3524 or 0 if none has been seen so far.
3525 BEST_INDEX identifies the item for it. */
3526
3527 int best_index = -1;
3528 int best = 0;
3529
3530 *exact_match = 0;
3531
3532 if (lineno <= 0)
3533 return -1;
3534 if (l == 0)
3535 return -1;
3536
3537 len = l->nitems;
3538 for (i = start; i < len; i++)
3539 {
3540 struct linetable_entry *item = &(l->item[i]);
3541
3542 if (item->line == lineno)
3543 {
3544 /* Return the first (lowest address) entry which matches. */
3545 *exact_match = 1;
3546 return i;
3547 }
3548
3549 if (item->line > lineno && (best == 0 || item->line < best))
3550 {
3551 best = item->line;
3552 best_index = i;
3553 }
3554 }
3555
3556 /* If we got here, we didn't get an exact match. */
3557 return best_index;
3558 }
3559
3560 int
3561 find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
3562 {
3563 struct symtab_and_line sal;
3564
3565 sal = find_pc_line (pc, 0);
3566 *startptr = sal.pc;
3567 *endptr = sal.end;
3568 return sal.symtab != 0;
3569 }
3570
3571 /* Helper for find_function_start_sal. Does most of the work, except
3572 setting the sal's symbol. */
3573
3574 static symtab_and_line
3575 find_function_start_sal_1 (CORE_ADDR func_addr, obj_section *section,
3576 bool funfirstline)
3577 {
3578 symtab_and_line sal = find_pc_sect_line (func_addr, section, 0);
3579
3580 if (funfirstline && sal.symtab != NULL
3581 && (COMPUNIT_LOCATIONS_VALID (SYMTAB_COMPUNIT (sal.symtab))
3582 || SYMTAB_LANGUAGE (sal.symtab) == language_asm))
3583 {
3584 struct gdbarch *gdbarch = get_objfile_arch (SYMTAB_OBJFILE (sal.symtab));
3585
3586 sal.pc = func_addr;
3587 if (gdbarch_skip_entrypoint_p (gdbarch))
3588 sal.pc = gdbarch_skip_entrypoint (gdbarch, sal.pc);
3589 return sal;
3590 }
3591
3592 /* We always should have a line for the function start address.
3593 If we don't, something is odd. Create a plain SAL referring
3594 just the PC and hope that skip_prologue_sal (if requested)
3595 can find a line number for after the prologue. */
3596 if (sal.pc < func_addr)
3597 {
3598 sal = {};
3599 sal.pspace = current_program_space;
3600 sal.pc = func_addr;
3601 sal.section = section;
3602 }
3603
3604 if (funfirstline)
3605 skip_prologue_sal (&sal);
3606
3607 return sal;
3608 }
3609
3610 /* See symtab.h. */
3611
3612 symtab_and_line
3613 find_function_start_sal (CORE_ADDR func_addr, obj_section *section,
3614 bool funfirstline)
3615 {
3616 symtab_and_line sal
3617 = find_function_start_sal_1 (func_addr, section, funfirstline);
3618
3619 /* find_function_start_sal_1 does a linetable search, so it finds
3620 the symtab and linenumber, but not a symbol. Fill in the
3621 function symbol too. */
3622 sal.symbol = find_pc_sect_containing_function (sal.pc, sal.section);
3623
3624 return sal;
3625 }
3626
3627 /* See symtab.h. */
3628
3629 symtab_and_line
3630 find_function_start_sal (symbol *sym, bool funfirstline)
3631 {
3632 fixup_symbol_section (sym, NULL);
3633 symtab_and_line sal
3634 = find_function_start_sal_1 (BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)),
3635 SYMBOL_OBJ_SECTION (symbol_objfile (sym), sym),
3636 funfirstline);
3637 sal.symbol = sym;
3638 return sal;
3639 }
3640
3641
3642 /* Given a function start address FUNC_ADDR and SYMTAB, find the first
3643 address for that function that has an entry in SYMTAB's line info
3644 table. If such an entry cannot be found, return FUNC_ADDR
3645 unaltered. */
3646
3647 static CORE_ADDR
3648 skip_prologue_using_lineinfo (CORE_ADDR func_addr, struct symtab *symtab)
3649 {
3650 CORE_ADDR func_start, func_end;
3651 struct linetable *l;
3652 int i;
3653
3654 /* Give up if this symbol has no lineinfo table. */
3655 l = SYMTAB_LINETABLE (symtab);
3656 if (l == NULL)
3657 return func_addr;
3658
3659 /* Get the range for the function's PC values, or give up if we
3660 cannot, for some reason. */
3661 if (!find_pc_partial_function (func_addr, NULL, &func_start, &func_end))
3662 return func_addr;
3663
3664 /* Linetable entries are ordered by PC values, see the commentary in
3665 symtab.h where `struct linetable' is defined. Thus, the first
3666 entry whose PC is in the range [FUNC_START..FUNC_END[ is the
3667 address we are looking for. */
3668 for (i = 0; i < l->nitems; i++)
3669 {
3670 struct linetable_entry *item = &(l->item[i]);
3671
3672 /* Don't use line numbers of zero, they mark special entries in
3673 the table. See the commentary on symtab.h before the
3674 definition of struct linetable. */
3675 if (item->line > 0 && func_start <= item->pc && item->pc < func_end)
3676 return item->pc;
3677 }
3678
3679 return func_addr;
3680 }
3681
3682 /* Adjust SAL to the first instruction past the function prologue.
3683 If the PC was explicitly specified, the SAL is not changed.
3684 If the line number was explicitly specified, at most the SAL's PC
3685 is updated. If SAL is already past the prologue, then do nothing. */
3686
3687 void
3688 skip_prologue_sal (struct symtab_and_line *sal)
3689 {
3690 struct symbol *sym;
3691 struct symtab_and_line start_sal;
3692 CORE_ADDR pc, saved_pc;
3693 struct obj_section *section;
3694 const char *name;
3695 struct objfile *objfile;
3696 struct gdbarch *gdbarch;
3697 const struct block *b, *function_block;
3698 int force_skip, skip;
3699
3700 /* Do not change the SAL if PC was specified explicitly. */
3701 if (sal->explicit_pc)
3702 return;
3703
3704 scoped_restore_current_pspace_and_thread restore_pspace_thread;
3705
3706 switch_to_program_space_and_thread (sal->pspace);
3707
3708 sym = find_pc_sect_function (sal->pc, sal->section);
3709 if (sym != NULL)
3710 {
3711 fixup_symbol_section (sym, NULL);
3712
3713 objfile = symbol_objfile (sym);
3714 pc = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym));
3715 section = SYMBOL_OBJ_SECTION (objfile, sym);
3716 name = SYMBOL_LINKAGE_NAME (sym);
3717 }
3718 else
3719 {
3720 struct bound_minimal_symbol msymbol
3721 = lookup_minimal_symbol_by_pc_section (sal->pc, sal->section);
3722
3723 if (msymbol.minsym == NULL)
3724 return;
3725
3726 objfile = msymbol.objfile;
3727 pc = BMSYMBOL_VALUE_ADDRESS (msymbol);
3728 section = MSYMBOL_OBJ_SECTION (objfile, msymbol.minsym);
3729 name = MSYMBOL_LINKAGE_NAME (msymbol.minsym);
3730 }
3731
3732 gdbarch = get_objfile_arch (objfile);
3733
3734 /* Process the prologue in two passes. In the first pass try to skip the
3735 prologue (SKIP is true) and verify there is a real need for it (indicated
3736 by FORCE_SKIP). If no such reason was found run a second pass where the
3737 prologue is not skipped (SKIP is false). */
3738
3739 skip = 1;
3740 force_skip = 1;
3741
3742 /* Be conservative - allow direct PC (without skipping prologue) only if we
3743 have proven the CU (Compilation Unit) supports it. sal->SYMTAB does not
3744 have to be set by the caller so we use SYM instead. */
3745 if (sym != NULL
3746 && COMPUNIT_LOCATIONS_VALID (SYMTAB_COMPUNIT (symbol_symtab (sym))))
3747 force_skip = 0;
3748
3749 saved_pc = pc;
3750 do
3751 {
3752 pc = saved_pc;
3753
3754 /* If the function is in an unmapped overlay, use its unmapped LMA address,
3755 so that gdbarch_skip_prologue has something unique to work on. */
3756 if (section_is_overlay (section) && !section_is_mapped (section))
3757 pc = overlay_unmapped_address (pc, section);
3758
3759 /* Skip "first line" of function (which is actually its prologue). */
3760 pc += gdbarch_deprecated_function_start_offset (gdbarch);
3761 if (gdbarch_skip_entrypoint_p (gdbarch))
3762 pc = gdbarch_skip_entrypoint (gdbarch, pc);
3763 if (skip)
3764 pc = gdbarch_skip_prologue_noexcept (gdbarch, pc);
3765
3766 /* For overlays, map pc back into its mapped VMA range. */
3767 pc = overlay_mapped_address (pc, section);
3768
3769 /* Calculate line number. */
3770 start_sal = find_pc_sect_line (pc, section, 0);
3771
3772 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
3773 line is still part of the same function. */
3774 if (skip && start_sal.pc != pc
3775 && (sym ? (BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)) <= start_sal.end
3776 && start_sal.end < BLOCK_END (SYMBOL_BLOCK_VALUE (sym)))
3777 : (lookup_minimal_symbol_by_pc_section (start_sal.end, section).minsym
3778 == lookup_minimal_symbol_by_pc_section (pc, section).minsym)))
3779 {
3780 /* First pc of next line */
3781 pc = start_sal.end;
3782 /* Recalculate the line number (might not be N+1). */
3783 start_sal = find_pc_sect_line (pc, section, 0);
3784 }
3785
3786 /* On targets with executable formats that don't have a concept of
3787 constructors (ELF with .init has, PE doesn't), gcc emits a call
3788 to `__main' in `main' between the prologue and before user
3789 code. */
3790 if (gdbarch_skip_main_prologue_p (gdbarch)
3791 && name && strcmp_iw (name, "main") == 0)
3792 {
3793 pc = gdbarch_skip_main_prologue (gdbarch, pc);
3794 /* Recalculate the line number (might not be N+1). */
3795 start_sal = find_pc_sect_line (pc, section, 0);
3796 force_skip = 1;
3797 }
3798 }
3799 while (!force_skip && skip--);
3800
3801 /* If we still don't have a valid source line, try to find the first
3802 PC in the lineinfo table that belongs to the same function. This
3803 happens with COFF debug info, which does not seem to have an
3804 entry in lineinfo table for the code after the prologue which has
3805 no direct relation to source. For example, this was found to be
3806 the case with the DJGPP target using "gcc -gcoff" when the
3807 compiler inserted code after the prologue to make sure the stack
3808 is aligned. */
3809 if (!force_skip && sym && start_sal.symtab == NULL)
3810 {
3811 pc = skip_prologue_using_lineinfo (pc, symbol_symtab (sym));
3812 /* Recalculate the line number. */
3813 start_sal = find_pc_sect_line (pc, section, 0);
3814 }
3815
3816 /* If we're already past the prologue, leave SAL unchanged. Otherwise
3817 forward SAL to the end of the prologue. */
3818 if (sal->pc >= pc)
3819 return;
3820
3821 sal->pc = pc;
3822 sal->section = section;
3823
3824 /* Unless the explicit_line flag was set, update the SAL line
3825 and symtab to correspond to the modified PC location. */
3826 if (sal->explicit_line)
3827 return;
3828
3829 sal->symtab = start_sal.symtab;
3830 sal->line = start_sal.line;
3831 sal->end = start_sal.end;
3832
3833 /* Check if we are now inside an inlined function. If we can,
3834 use the call site of the function instead. */
3835 b = block_for_pc_sect (sal->pc, sal->section);
3836 function_block = NULL;
3837 while (b != NULL)
3838 {
3839 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
3840 function_block = b;
3841 else if (BLOCK_FUNCTION (b) != NULL)
3842 break;
3843 b = BLOCK_SUPERBLOCK (b);
3844 }
3845 if (function_block != NULL
3846 && SYMBOL_LINE (BLOCK_FUNCTION (function_block)) != 0)
3847 {
3848 sal->line = SYMBOL_LINE (BLOCK_FUNCTION (function_block));
3849 sal->symtab = symbol_symtab (BLOCK_FUNCTION (function_block));
3850 }
3851 }
3852
3853 /* Given PC at the function's start address, attempt to find the
3854 prologue end using SAL information. Return zero if the skip fails.
3855
3856 A non-optimized prologue traditionally has one SAL for the function
3857 and a second for the function body. A single line function has
3858 them both pointing at the same line.
3859
3860 An optimized prologue is similar but the prologue may contain
3861 instructions (SALs) from the instruction body. Need to skip those
3862 while not getting into the function body.
3863
3864 The functions end point and an increasing SAL line are used as
3865 indicators of the prologue's endpoint.
3866
3867 This code is based on the function refine_prologue_limit
3868 (found in ia64). */
3869
3870 CORE_ADDR
3871 skip_prologue_using_sal (struct gdbarch *gdbarch, CORE_ADDR func_addr)
3872 {
3873 struct symtab_and_line prologue_sal;
3874 CORE_ADDR start_pc;
3875 CORE_ADDR end_pc;
3876 const struct block *bl;
3877
3878 /* Get an initial range for the function. */
3879 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
3880 start_pc += gdbarch_deprecated_function_start_offset (gdbarch);
3881
3882 prologue_sal = find_pc_line (start_pc, 0);
3883 if (prologue_sal.line != 0)
3884 {
3885 /* For languages other than assembly, treat two consecutive line
3886 entries at the same address as a zero-instruction prologue.
3887 The GNU assembler emits separate line notes for each instruction
3888 in a multi-instruction macro, but compilers generally will not
3889 do this. */
3890 if (prologue_sal.symtab->language != language_asm)
3891 {
3892 struct linetable *linetable = SYMTAB_LINETABLE (prologue_sal.symtab);
3893 int idx = 0;
3894
3895 /* Skip any earlier lines, and any end-of-sequence marker
3896 from a previous function. */
3897 while (linetable->item[idx].pc != prologue_sal.pc
3898 || linetable->item[idx].line == 0)
3899 idx++;
3900
3901 if (idx+1 < linetable->nitems
3902 && linetable->item[idx+1].line != 0
3903 && linetable->item[idx+1].pc == start_pc)
3904 return start_pc;
3905 }
3906
3907 /* If there is only one sal that covers the entire function,
3908 then it is probably a single line function, like
3909 "foo(){}". */
3910 if (prologue_sal.end >= end_pc)
3911 return 0;
3912
3913 while (prologue_sal.end < end_pc)
3914 {
3915 struct symtab_and_line sal;
3916
3917 sal = find_pc_line (prologue_sal.end, 0);
3918 if (sal.line == 0)
3919 break;
3920 /* Assume that a consecutive SAL for the same (or larger)
3921 line mark the prologue -> body transition. */
3922 if (sal.line >= prologue_sal.line)
3923 break;
3924 /* Likewise if we are in a different symtab altogether
3925 (e.g. within a file included via #include).  */
3926 if (sal.symtab != prologue_sal.symtab)
3927 break;
3928
3929 /* The line number is smaller. Check that it's from the
3930 same function, not something inlined. If it's inlined,
3931 then there is no point comparing the line numbers. */
3932 bl = block_for_pc (prologue_sal.end);
3933 while (bl)
3934 {
3935 if (block_inlined_p (bl))
3936 break;
3937 if (BLOCK_FUNCTION (bl))
3938 {
3939 bl = NULL;
3940 break;
3941 }
3942 bl = BLOCK_SUPERBLOCK (bl);
3943 }
3944 if (bl != NULL)
3945 break;
3946
3947 /* The case in which compiler's optimizer/scheduler has
3948 moved instructions into the prologue. We look ahead in
3949 the function looking for address ranges whose
3950 corresponding line number is less the first one that we
3951 found for the function. This is more conservative then
3952 refine_prologue_limit which scans a large number of SALs
3953 looking for any in the prologue. */
3954 prologue_sal = sal;
3955 }
3956 }
3957
3958 if (prologue_sal.end < end_pc)
3959 /* Return the end of this line, or zero if we could not find a
3960 line. */
3961 return prologue_sal.end;
3962 else
3963 /* Don't return END_PC, which is past the end of the function. */
3964 return prologue_sal.pc;
3965 }
3966
3967 /* See symtab.h. */
3968
3969 symbol *
3970 find_function_alias_target (bound_minimal_symbol msymbol)
3971 {
3972 CORE_ADDR func_addr;
3973 if (!msymbol_is_function (msymbol.objfile, msymbol.minsym, &func_addr))
3974 return NULL;
3975
3976 symbol *sym = find_pc_function (func_addr);
3977 if (sym != NULL
3978 && SYMBOL_CLASS (sym) == LOC_BLOCK
3979 && BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)) == func_addr)
3980 return sym;
3981
3982 return NULL;
3983 }
3984
3985 \f
3986 /* If P is of the form "operator[ \t]+..." where `...' is
3987 some legitimate operator text, return a pointer to the
3988 beginning of the substring of the operator text.
3989 Otherwise, return "". */
3990
3991 static const char *
3992 operator_chars (const char *p, const char **end)
3993 {
3994 *end = "";
3995 if (!startswith (p, CP_OPERATOR_STR))
3996 return *end;
3997 p += CP_OPERATOR_LEN;
3998
3999 /* Don't get faked out by `operator' being part of a longer
4000 identifier. */
4001 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
4002 return *end;
4003
4004 /* Allow some whitespace between `operator' and the operator symbol. */
4005 while (*p == ' ' || *p == '\t')
4006 p++;
4007
4008 /* Recognize 'operator TYPENAME'. */
4009
4010 if (isalpha (*p) || *p == '_' || *p == '$')
4011 {
4012 const char *q = p + 1;
4013
4014 while (isalnum (*q) || *q == '_' || *q == '$')
4015 q++;
4016 *end = q;
4017 return p;
4018 }
4019
4020 while (*p)
4021 switch (*p)
4022 {
4023 case '\\': /* regexp quoting */
4024 if (p[1] == '*')
4025 {
4026 if (p[2] == '=') /* 'operator\*=' */
4027 *end = p + 3;
4028 else /* 'operator\*' */
4029 *end = p + 2;
4030 return p;
4031 }
4032 else if (p[1] == '[')
4033 {
4034 if (p[2] == ']')
4035 error (_("mismatched quoting on brackets, "
4036 "try 'operator\\[\\]'"));
4037 else if (p[2] == '\\' && p[3] == ']')
4038 {
4039 *end = p + 4; /* 'operator\[\]' */
4040 return p;
4041 }
4042 else
4043 error (_("nothing is allowed between '[' and ']'"));
4044 }
4045 else
4046 {
4047 /* Gratuitous qoute: skip it and move on. */
4048 p++;
4049 continue;
4050 }
4051 break;
4052 case '!':
4053 case '=':
4054 case '*':
4055 case '/':
4056 case '%':
4057 case '^':
4058 if (p[1] == '=')
4059 *end = p + 2;
4060 else
4061 *end = p + 1;
4062 return p;
4063 case '<':
4064 case '>':
4065 case '+':
4066 case '-':
4067 case '&':
4068 case '|':
4069 if (p[0] == '-' && p[1] == '>')
4070 {
4071 /* Struct pointer member operator 'operator->'. */
4072 if (p[2] == '*')
4073 {
4074 *end = p + 3; /* 'operator->*' */
4075 return p;
4076 }
4077 else if (p[2] == '\\')
4078 {
4079 *end = p + 4; /* Hopefully 'operator->\*' */
4080 return p;
4081 }
4082 else
4083 {
4084 *end = p + 2; /* 'operator->' */
4085 return p;
4086 }
4087 }
4088 if (p[1] == '=' || p[1] == p[0])
4089 *end = p + 2;
4090 else
4091 *end = p + 1;
4092 return p;
4093 case '~':
4094 case ',':
4095 *end = p + 1;
4096 return p;
4097 case '(':
4098 if (p[1] != ')')
4099 error (_("`operator ()' must be specified "
4100 "without whitespace in `()'"));
4101 *end = p + 2;
4102 return p;
4103 case '?':
4104 if (p[1] != ':')
4105 error (_("`operator ?:' must be specified "
4106 "without whitespace in `?:'"));
4107 *end = p + 2;
4108 return p;
4109 case '[':
4110 if (p[1] != ']')
4111 error (_("`operator []' must be specified "
4112 "without whitespace in `[]'"));
4113 *end = p + 2;
4114 return p;
4115 default:
4116 error (_("`operator %s' not supported"), p);
4117 break;
4118 }
4119
4120 *end = "";
4121 return *end;
4122 }
4123 \f
4124
4125 /* Data structure to maintain printing state for output_source_filename. */
4126
4127 struct output_source_filename_data
4128 {
4129 /* Cache of what we've seen so far. */
4130 struct filename_seen_cache *filename_seen_cache;
4131
4132 /* Flag of whether we're printing the first one. */
4133 int first;
4134 };
4135
4136 /* Slave routine for sources_info. Force line breaks at ,'s.
4137 NAME is the name to print.
4138 DATA contains the state for printing and watching for duplicates. */
4139
4140 static void
4141 output_source_filename (const char *name,
4142 struct output_source_filename_data *data)
4143 {
4144 /* Since a single source file can result in several partial symbol
4145 tables, we need to avoid printing it more than once. Note: if
4146 some of the psymtabs are read in and some are not, it gets
4147 printed both under "Source files for which symbols have been
4148 read" and "Source files for which symbols will be read in on
4149 demand". I consider this a reasonable way to deal with the
4150 situation. I'm not sure whether this can also happen for
4151 symtabs; it doesn't hurt to check. */
4152
4153 /* Was NAME already seen? */
4154 if (data->filename_seen_cache->seen (name))
4155 {
4156 /* Yes; don't print it again. */
4157 return;
4158 }
4159
4160 /* No; print it and reset *FIRST. */
4161 if (! data->first)
4162 printf_filtered (", ");
4163 data->first = 0;
4164
4165 wrap_here ("");
4166 fputs_filtered (name, gdb_stdout);
4167 }
4168
4169 /* A callback for map_partial_symbol_filenames. */
4170
4171 static void
4172 output_partial_symbol_filename (const char *filename, const char *fullname,
4173 void *data)
4174 {
4175 output_source_filename (fullname ? fullname : filename,
4176 (struct output_source_filename_data *) data);
4177 }
4178
4179 static void
4180 info_sources_command (const char *ignore, int from_tty)
4181 {
4182 struct symtab *s;
4183 struct objfile *objfile;
4184 struct output_source_filename_data data;
4185
4186 if (!have_full_symbols () && !have_partial_symbols ())
4187 {
4188 error (_("No symbol table is loaded. Use the \"file\" command."));
4189 }
4190
4191 filename_seen_cache filenames_seen;
4192
4193 data.filename_seen_cache = &filenames_seen;
4194
4195 printf_filtered ("Source files for which symbols have been read in:\n\n");
4196
4197 data.first = 1;
4198 ALL_FILETABS (objfile, cu, s)
4199 {
4200 const char *fullname = symtab_to_fullname (s);
4201
4202 output_source_filename (fullname, &data);
4203 }
4204 printf_filtered ("\n\n");
4205
4206 printf_filtered ("Source files for which symbols "
4207 "will be read in on demand:\n\n");
4208
4209 filenames_seen.clear ();
4210 data.first = 1;
4211 map_symbol_filenames (output_partial_symbol_filename, &data,
4212 1 /*need_fullname*/);
4213 printf_filtered ("\n");
4214 }
4215
4216 /* Compare FILE against all the NFILES entries of FILES. If BASENAMES is
4217 non-zero compare only lbasename of FILES. */
4218
4219 static int
4220 file_matches (const char *file, const char *files[], int nfiles, int basenames)
4221 {
4222 int i;
4223
4224 if (file != NULL && nfiles != 0)
4225 {
4226 for (i = 0; i < nfiles; i++)
4227 {
4228 if (compare_filenames_for_search (file, (basenames
4229 ? lbasename (files[i])
4230 : files[i])))
4231 return 1;
4232 }
4233 }
4234 else if (nfiles == 0)
4235 return 1;
4236 return 0;
4237 }
4238
4239 /* Helper function for sort_search_symbols_remove_dups and qsort. Can only
4240 sort symbols, not minimal symbols. */
4241
4242 int
4243 symbol_search::compare_search_syms (const symbol_search &sym_a,
4244 const symbol_search &sym_b)
4245 {
4246 int c;
4247
4248 c = FILENAME_CMP (symbol_symtab (sym_a.symbol)->filename,
4249 symbol_symtab (sym_b.symbol)->filename);
4250 if (c != 0)
4251 return c;
4252
4253 if (sym_a.block != sym_b.block)
4254 return sym_a.block - sym_b.block;
4255
4256 return strcmp (SYMBOL_PRINT_NAME (sym_a.symbol),
4257 SYMBOL_PRINT_NAME (sym_b.symbol));
4258 }
4259
4260 /* Returns true if the type_name of symbol_type of SYM matches TREG.
4261 If SYM has no symbol_type or symbol_name, returns false. */
4262
4263 bool
4264 treg_matches_sym_type_name (const compiled_regex &treg,
4265 const struct symbol *sym)
4266 {
4267 struct type *sym_type;
4268 std::string printed_sym_type_name;
4269
4270 if (symbol_lookup_debug > 1)
4271 {
4272 fprintf_unfiltered (gdb_stdlog,
4273 "treg_matches_sym_type_name\n sym %s\n",
4274 SYMBOL_NATURAL_NAME (sym));
4275 }
4276
4277 sym_type = SYMBOL_TYPE (sym);
4278 if (sym_type == NULL)
4279 return false;
4280
4281 {
4282 scoped_switch_to_sym_language_if_auto l (sym);
4283
4284 printed_sym_type_name = type_to_string (sym_type);
4285 }
4286
4287
4288 if (symbol_lookup_debug > 1)
4289 {
4290 fprintf_unfiltered (gdb_stdlog,
4291 " sym_type_name %s\n",
4292 printed_sym_type_name.c_str ());
4293 }
4294
4295
4296 if (printed_sym_type_name.empty ())
4297 return false;
4298
4299 return treg.exec (printed_sym_type_name.c_str (), 0, NULL, 0) == 0;
4300 }
4301
4302
4303 /* Sort the symbols in RESULT and remove duplicates. */
4304
4305 static void
4306 sort_search_symbols_remove_dups (std::vector<symbol_search> *result)
4307 {
4308 std::sort (result->begin (), result->end ());
4309 result->erase (std::unique (result->begin (), result->end ()),
4310 result->end ());
4311 }
4312
4313 /* Search the symbol table for matches to the regular expression REGEXP,
4314 returning the results.
4315
4316 Only symbols of KIND are searched:
4317 VARIABLES_DOMAIN - search all symbols, excluding functions, type names,
4318 and constants (enums).
4319 if T_REGEXP is not NULL, only returns var that have
4320 a type matching regular expression T_REGEXP.
4321 FUNCTIONS_DOMAIN - search all functions
4322 TYPES_DOMAIN - search all type names
4323 ALL_DOMAIN - an internal error for this function
4324
4325 Within each file the results are sorted locally; each symtab's global and
4326 static blocks are separately alphabetized.
4327 Duplicate entries are removed. */
4328
4329 std::vector<symbol_search>
4330 search_symbols (const char *regexp, enum search_domain kind,
4331 const char *t_regexp,
4332 int nfiles, const char *files[])
4333 {
4334 const struct blockvector *bv;
4335 struct block *b;
4336 int i = 0;
4337 struct block_iterator iter;
4338 struct symbol *sym;
4339 int found_misc = 0;
4340 static const enum minimal_symbol_type types[]
4341 = {mst_data, mst_text, mst_abs};
4342 static const enum minimal_symbol_type types2[]
4343 = {mst_bss, mst_file_text, mst_abs};
4344 static const enum minimal_symbol_type types3[]
4345 = {mst_file_data, mst_solib_trampoline, mst_abs};
4346 static const enum minimal_symbol_type types4[]
4347 = {mst_file_bss, mst_text_gnu_ifunc, mst_abs};
4348 enum minimal_symbol_type ourtype;
4349 enum minimal_symbol_type ourtype2;
4350 enum minimal_symbol_type ourtype3;
4351 enum minimal_symbol_type ourtype4;
4352 std::vector<symbol_search> result;
4353 gdb::optional<compiled_regex> preg;
4354 gdb::optional<compiled_regex> treg;
4355
4356 gdb_assert (kind <= TYPES_DOMAIN);
4357
4358 ourtype = types[kind];
4359 ourtype2 = types2[kind];
4360 ourtype3 = types3[kind];
4361 ourtype4 = types4[kind];
4362
4363 if (regexp != NULL)
4364 {
4365 /* Make sure spacing is right for C++ operators.
4366 This is just a courtesy to make the matching less sensitive
4367 to how many spaces the user leaves between 'operator'
4368 and <TYPENAME> or <OPERATOR>. */
4369 const char *opend;
4370 const char *opname = operator_chars (regexp, &opend);
4371
4372 if (*opname)
4373 {
4374 int fix = -1; /* -1 means ok; otherwise number of
4375 spaces needed. */
4376
4377 if (isalpha (*opname) || *opname == '_' || *opname == '$')
4378 {
4379 /* There should 1 space between 'operator' and 'TYPENAME'. */
4380 if (opname[-1] != ' ' || opname[-2] == ' ')
4381 fix = 1;
4382 }
4383 else
4384 {
4385 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
4386 if (opname[-1] == ' ')
4387 fix = 0;
4388 }
4389 /* If wrong number of spaces, fix it. */
4390 if (fix >= 0)
4391 {
4392 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
4393
4394 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
4395 regexp = tmp;
4396 }
4397 }
4398
4399 int cflags = REG_NOSUB | (case_sensitivity == case_sensitive_off
4400 ? REG_ICASE : 0);
4401 preg.emplace (regexp, cflags, _("Invalid regexp"));
4402 }
4403
4404 if (t_regexp != NULL)
4405 {
4406 int cflags = REG_NOSUB | (case_sensitivity == case_sensitive_off
4407 ? REG_ICASE : 0);
4408 treg.emplace (t_regexp, cflags, _("Invalid regexp"));
4409 }
4410
4411 /* Search through the partial symtabs *first* for all symbols
4412 matching the regexp. That way we don't have to reproduce all of
4413 the machinery below. */
4414 expand_symtabs_matching ([&] (const char *filename, bool basenames)
4415 {
4416 return file_matches (filename, files, nfiles,
4417 basenames);
4418 },
4419 lookup_name_info::match_any (),
4420 [&] (const char *symname)
4421 {
4422 return (!preg.has_value ()
4423 || preg->exec (symname,
4424 0, NULL, 0) == 0);
4425 },
4426 NULL,
4427 kind);
4428
4429 /* Here, we search through the minimal symbol tables for functions
4430 and variables that match, and force their symbols to be read.
4431 This is in particular necessary for demangled variable names,
4432 which are no longer put into the partial symbol tables.
4433 The symbol will then be found during the scan of symtabs below.
4434
4435 For functions, find_pc_symtab should succeed if we have debug info
4436 for the function, for variables we have to call
4437 lookup_symbol_in_objfile_from_linkage_name to determine if the variable
4438 has debug info.
4439 If the lookup fails, set found_misc so that we will rescan to print
4440 any matching symbols without debug info.
4441 We only search the objfile the msymbol came from, we no longer search
4442 all objfiles. In large programs (1000s of shared libs) searching all
4443 objfiles is not worth the pain. */
4444
4445 if (nfiles == 0 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
4446 {
4447 for (objfile *objfile : all_objfiles (current_program_space))
4448 {
4449 for (minimal_symbol *msymbol : objfile_msymbols (objfile))
4450 {
4451 QUIT;
4452
4453 if (msymbol->created_by_gdb)
4454 continue;
4455
4456 if (MSYMBOL_TYPE (msymbol) == ourtype
4457 || MSYMBOL_TYPE (msymbol) == ourtype2
4458 || MSYMBOL_TYPE (msymbol) == ourtype3
4459 || MSYMBOL_TYPE (msymbol) == ourtype4)
4460 {
4461 if (!preg.has_value ()
4462 || preg->exec (MSYMBOL_NATURAL_NAME (msymbol), 0,
4463 NULL, 0) == 0)
4464 {
4465 /* Note: An important side-effect of these
4466 lookup functions is to expand the symbol
4467 table if msymbol is found, for the benefit of
4468 the next loop on ALL_COMPUNITS. */
4469 if (kind == FUNCTIONS_DOMAIN
4470 ? (find_pc_compunit_symtab
4471 (MSYMBOL_VALUE_ADDRESS (objfile, msymbol))
4472 == NULL)
4473 : (lookup_symbol_in_objfile_from_linkage_name
4474 (objfile, MSYMBOL_LINKAGE_NAME (msymbol),
4475 VAR_DOMAIN)
4476 .symbol == NULL))
4477 found_misc = 1;
4478 }
4479 }
4480 }
4481 }
4482 }
4483
4484 {
4485 struct objfile *objfile;
4486 ALL_COMPUNITS (objfile, cust)
4487 {
4488 bv = COMPUNIT_BLOCKVECTOR (cust);
4489 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
4490 {
4491 b = BLOCKVECTOR_BLOCK (bv, i);
4492 ALL_BLOCK_SYMBOLS (b, iter, sym)
4493 {
4494 struct symtab *real_symtab = symbol_symtab (sym);
4495
4496 QUIT;
4497
4498 /* Check first sole REAL_SYMTAB->FILENAME. It does
4499 not need to be a substring of symtab_to_fullname as
4500 it may contain "./" etc. */
4501 if ((file_matches (real_symtab->filename, files, nfiles, 0)
4502 || ((basenames_may_differ
4503 || file_matches (lbasename (real_symtab->filename),
4504 files, nfiles, 1))
4505 && file_matches (symtab_to_fullname (real_symtab),
4506 files, nfiles, 0)))
4507 && ((!preg.has_value ()
4508 || preg->exec (SYMBOL_NATURAL_NAME (sym), 0,
4509 NULL, 0) == 0)
4510 && ((kind == VARIABLES_DOMAIN
4511 && SYMBOL_CLASS (sym) != LOC_TYPEDEF
4512 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
4513 && SYMBOL_CLASS (sym) != LOC_BLOCK
4514 /* LOC_CONST can be used for more than
4515 just enums, e.g., c++ static const
4516 members. We only want to skip enums
4517 here. */
4518 && !(SYMBOL_CLASS (sym) == LOC_CONST
4519 && (TYPE_CODE (SYMBOL_TYPE (sym))
4520 == TYPE_CODE_ENUM))
4521 && (!treg.has_value ()
4522 || treg_matches_sym_type_name (*treg, sym)))
4523 || (kind == FUNCTIONS_DOMAIN
4524 && SYMBOL_CLASS (sym) == LOC_BLOCK
4525 && (!treg.has_value ()
4526 || treg_matches_sym_type_name (*treg,
4527 sym)))
4528 || (kind == TYPES_DOMAIN
4529 && SYMBOL_CLASS (sym) == LOC_TYPEDEF))))
4530 {
4531 /* match */
4532 result.emplace_back (i, sym);
4533 }
4534 }
4535 }
4536 }
4537 }
4538
4539 if (!result.empty ())
4540 sort_search_symbols_remove_dups (&result);
4541
4542 /* If there are no eyes, avoid all contact. I mean, if there are
4543 no debug symbols, then add matching minsyms. But if the user wants
4544 to see symbols matching a type regexp, then never give a minimal symbol,
4545 as we assume that a minimal symbol does not have a type. */
4546
4547 if ((found_misc || (nfiles == 0 && kind != FUNCTIONS_DOMAIN))
4548 && !treg.has_value ())
4549 {
4550 for (objfile *objfile : all_objfiles (current_program_space))
4551 {
4552 for (minimal_symbol *msymbol : objfile_msymbols (objfile))
4553 {
4554 QUIT;
4555
4556 if (msymbol->created_by_gdb)
4557 continue;
4558
4559 if (MSYMBOL_TYPE (msymbol) == ourtype
4560 || MSYMBOL_TYPE (msymbol) == ourtype2
4561 || MSYMBOL_TYPE (msymbol) == ourtype3
4562 || MSYMBOL_TYPE (msymbol) == ourtype4)
4563 {
4564 if (!preg.has_value ()
4565 || preg->exec (MSYMBOL_NATURAL_NAME (msymbol), 0,
4566 NULL, 0) == 0)
4567 {
4568 /* For functions we can do a quick check of whether the
4569 symbol might be found via find_pc_symtab. */
4570 if (kind != FUNCTIONS_DOMAIN
4571 || (find_pc_compunit_symtab
4572 (MSYMBOL_VALUE_ADDRESS (objfile, msymbol))
4573 == NULL))
4574 {
4575 if (lookup_symbol_in_objfile_from_linkage_name
4576 (objfile, MSYMBOL_LINKAGE_NAME (msymbol),
4577 VAR_DOMAIN)
4578 .symbol == NULL)
4579 {
4580 /* match */
4581 result.emplace_back (i, msymbol, objfile);
4582 }
4583 }
4584 }
4585 }
4586 }
4587 }
4588 }
4589
4590 return result;
4591 }
4592
4593 /* Helper function for symtab_symbol_info, this function uses
4594 the data returned from search_symbols() to print information
4595 regarding the match to gdb_stdout. If LAST is not NULL,
4596 print file and line number information for the symbol as
4597 well. Skip printing the filename if it matches LAST. */
4598
4599 static void
4600 print_symbol_info (enum search_domain kind,
4601 struct symbol *sym,
4602 int block, const char *last)
4603 {
4604 scoped_switch_to_sym_language_if_auto l (sym);
4605 struct symtab *s = symbol_symtab (sym);
4606
4607 if (last != NULL)
4608 {
4609 const char *s_filename = symtab_to_filename_for_display (s);
4610
4611 if (filename_cmp (last, s_filename) != 0)
4612 {
4613 fputs_filtered ("\nFile ", gdb_stdout);
4614 fputs_filtered (s_filename, gdb_stdout);
4615 fputs_filtered (":\n", gdb_stdout);
4616 }
4617
4618 if (SYMBOL_LINE (sym) != 0)
4619 printf_filtered ("%d:\t", SYMBOL_LINE (sym));
4620 else
4621 puts_filtered ("\t");
4622 }
4623
4624 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
4625 printf_filtered ("static ");
4626
4627 /* Typedef that is not a C++ class. */
4628 if (kind == TYPES_DOMAIN
4629 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
4630 typedef_print (SYMBOL_TYPE (sym), sym, gdb_stdout);
4631 /* variable, func, or typedef-that-is-c++-class. */
4632 else if (kind < TYPES_DOMAIN
4633 || (kind == TYPES_DOMAIN
4634 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
4635 {
4636 type_print (SYMBOL_TYPE (sym),
4637 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
4638 ? "" : SYMBOL_PRINT_NAME (sym)),
4639 gdb_stdout, 0);
4640
4641 printf_filtered (";\n");
4642 }
4643 }
4644
4645 /* This help function for symtab_symbol_info() prints information
4646 for non-debugging symbols to gdb_stdout. */
4647
4648 static void
4649 print_msymbol_info (struct bound_minimal_symbol msymbol)
4650 {
4651 struct gdbarch *gdbarch = get_objfile_arch (msymbol.objfile);
4652 char *tmp;
4653
4654 if (gdbarch_addr_bit (gdbarch) <= 32)
4655 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol)
4656 & (CORE_ADDR) 0xffffffff,
4657 8);
4658 else
4659 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol),
4660 16);
4661 printf_filtered ("%s %s\n",
4662 tmp, MSYMBOL_PRINT_NAME (msymbol.minsym));
4663 }
4664
4665 /* This is the guts of the commands "info functions", "info types", and
4666 "info variables". It calls search_symbols to find all matches and then
4667 print_[m]symbol_info to print out some useful information about the
4668 matches. */
4669
4670 static void
4671 symtab_symbol_info (bool quiet,
4672 const char *regexp, enum search_domain kind,
4673 const char *t_regexp, int from_tty)
4674 {
4675 static const char * const classnames[] =
4676 {"variable", "function", "type"};
4677 const char *last_filename = "";
4678 int first = 1;
4679
4680 gdb_assert (kind <= TYPES_DOMAIN);
4681
4682 /* Must make sure that if we're interrupted, symbols gets freed. */
4683 std::vector<symbol_search> symbols = search_symbols (regexp, kind,
4684 t_regexp, 0, NULL);
4685
4686 if (!quiet)
4687 {
4688 if (regexp != NULL)
4689 {
4690 if (t_regexp != NULL)
4691 printf_filtered
4692 (_("All %ss matching regular expression \"%s\""
4693 " with type matching regulation expression \"%s\":\n"),
4694 classnames[kind], regexp, t_regexp);
4695 else
4696 printf_filtered (_("All %ss matching regular expression \"%s\":\n"),
4697 classnames[kind], regexp);
4698 }
4699 else
4700 {
4701 if (t_regexp != NULL)
4702 printf_filtered
4703 (_("All defined %ss"
4704 " with type matching regulation expression \"%s\" :\n"),
4705 classnames[kind], t_regexp);
4706 else
4707 printf_filtered (_("All defined %ss:\n"), classnames[kind]);
4708 }
4709 }
4710
4711 for (const symbol_search &p : symbols)
4712 {
4713 QUIT;
4714
4715 if (p.msymbol.minsym != NULL)
4716 {
4717 if (first)
4718 {
4719 if (!quiet)
4720 printf_filtered (_("\nNon-debugging symbols:\n"));
4721 first = 0;
4722 }
4723 print_msymbol_info (p.msymbol);
4724 }
4725 else
4726 {
4727 print_symbol_info (kind,
4728 p.symbol,
4729 p.block,
4730 last_filename);
4731 last_filename
4732 = symtab_to_filename_for_display (symbol_symtab (p.symbol));
4733 }
4734 }
4735 }
4736
4737 static void
4738 info_variables_command (const char *args, int from_tty)
4739 {
4740 std::string regexp;
4741 std::string t_regexp;
4742 bool quiet = false;
4743
4744 while (args != NULL
4745 && extract_info_print_args (&args, &quiet, &regexp, &t_regexp))
4746 ;
4747
4748 if (args != NULL)
4749 report_unrecognized_option_error ("info variables", args);
4750
4751 symtab_symbol_info (quiet,
4752 regexp.empty () ? NULL : regexp.c_str (),
4753 VARIABLES_DOMAIN,
4754 t_regexp.empty () ? NULL : t_regexp.c_str (),
4755 from_tty);
4756 }
4757
4758
4759 static void
4760 info_functions_command (const char *args, int from_tty)
4761 {
4762 std::string regexp;
4763 std::string t_regexp;
4764 bool quiet = false;
4765
4766 while (args != NULL
4767 && extract_info_print_args (&args, &quiet, &regexp, &t_regexp))
4768 ;
4769
4770 if (args != NULL)
4771 report_unrecognized_option_error ("info functions", args);
4772
4773 symtab_symbol_info (quiet,
4774 regexp.empty () ? NULL : regexp.c_str (),
4775 FUNCTIONS_DOMAIN,
4776 t_regexp.empty () ? NULL : t_regexp.c_str (),
4777 from_tty);
4778 }
4779
4780
4781 static void
4782 info_types_command (const char *regexp, int from_tty)
4783 {
4784 symtab_symbol_info (false, regexp, TYPES_DOMAIN, NULL, from_tty);
4785 }
4786
4787 /* Breakpoint all functions matching regular expression. */
4788
4789 void
4790 rbreak_command_wrapper (char *regexp, int from_tty)
4791 {
4792 rbreak_command (regexp, from_tty);
4793 }
4794
4795 static void
4796 rbreak_command (const char *regexp, int from_tty)
4797 {
4798 std::string string;
4799 const char **files = NULL;
4800 const char *file_name;
4801 int nfiles = 0;
4802
4803 if (regexp)
4804 {
4805 const char *colon = strchr (regexp, ':');
4806
4807 if (colon && *(colon + 1) != ':')
4808 {
4809 int colon_index;
4810 char *local_name;
4811
4812 colon_index = colon - regexp;
4813 local_name = (char *) alloca (colon_index + 1);
4814 memcpy (local_name, regexp, colon_index);
4815 local_name[colon_index--] = 0;
4816 while (isspace (local_name[colon_index]))
4817 local_name[colon_index--] = 0;
4818 file_name = local_name;
4819 files = &file_name;
4820 nfiles = 1;
4821 regexp = skip_spaces (colon + 1);
4822 }
4823 }
4824
4825 std::vector<symbol_search> symbols = search_symbols (regexp,
4826 FUNCTIONS_DOMAIN,
4827 NULL,
4828 nfiles, files);
4829
4830 scoped_rbreak_breakpoints finalize;
4831 for (const symbol_search &p : symbols)
4832 {
4833 if (p.msymbol.minsym == NULL)
4834 {
4835 struct symtab *symtab = symbol_symtab (p.symbol);
4836 const char *fullname = symtab_to_fullname (symtab);
4837
4838 string = string_printf ("%s:'%s'", fullname,
4839 SYMBOL_LINKAGE_NAME (p.symbol));
4840 break_command (&string[0], from_tty);
4841 print_symbol_info (FUNCTIONS_DOMAIN, p.symbol, p.block, NULL);
4842 }
4843 else
4844 {
4845 string = string_printf ("'%s'",
4846 MSYMBOL_LINKAGE_NAME (p.msymbol.minsym));
4847
4848 break_command (&string[0], from_tty);
4849 printf_filtered ("<function, no debug info> %s;\n",
4850 MSYMBOL_PRINT_NAME (p.msymbol.minsym));
4851 }
4852 }
4853 }
4854 \f
4855
4856 /* Evaluate if SYMNAME matches LOOKUP_NAME. */
4857
4858 static int
4859 compare_symbol_name (const char *symbol_name, language symbol_language,
4860 const lookup_name_info &lookup_name,
4861 completion_match_result &match_res)
4862 {
4863 const language_defn *lang = language_def (symbol_language);
4864
4865 symbol_name_matcher_ftype *name_match
4866 = get_symbol_name_matcher (lang, lookup_name);
4867
4868 return name_match (symbol_name, lookup_name, &match_res);
4869 }
4870
4871 /* See symtab.h. */
4872
4873 void
4874 completion_list_add_name (completion_tracker &tracker,
4875 language symbol_language,
4876 const char *symname,
4877 const lookup_name_info &lookup_name,
4878 const char *text, const char *word)
4879 {
4880 completion_match_result &match_res
4881 = tracker.reset_completion_match_result ();
4882
4883 /* Clip symbols that cannot match. */
4884 if (!compare_symbol_name (symname, symbol_language, lookup_name, match_res))
4885 return;
4886
4887 /* Refresh SYMNAME from the match string. It's potentially
4888 different depending on language. (E.g., on Ada, the match may be
4889 the encoded symbol name wrapped in "<>"). */
4890 symname = match_res.match.match ();
4891 gdb_assert (symname != NULL);
4892
4893 /* We have a match for a completion, so add SYMNAME to the current list
4894 of matches. Note that the name is moved to freshly malloc'd space. */
4895
4896 {
4897 gdb::unique_xmalloc_ptr<char> completion
4898 = make_completion_match_str (symname, text, word);
4899
4900 /* Here we pass the match-for-lcd object to add_completion. Some
4901 languages match the user text against substrings of symbol
4902 names in some cases. E.g., in C++, "b push_ba" completes to
4903 "std::vector::push_back", "std::string::push_back", etc., and
4904 in this case we want the completion lowest common denominator
4905 to be "push_back" instead of "std::". */
4906 tracker.add_completion (std::move (completion),
4907 &match_res.match_for_lcd, text, word);
4908 }
4909 }
4910
4911 /* completion_list_add_name wrapper for struct symbol. */
4912
4913 static void
4914 completion_list_add_symbol (completion_tracker &tracker,
4915 symbol *sym,
4916 const lookup_name_info &lookup_name,
4917 const char *text, const char *word)
4918 {
4919 completion_list_add_name (tracker, SYMBOL_LANGUAGE (sym),
4920 SYMBOL_NATURAL_NAME (sym),
4921 lookup_name, text, word);
4922 }
4923
4924 /* completion_list_add_name wrapper for struct minimal_symbol. */
4925
4926 static void
4927 completion_list_add_msymbol (completion_tracker &tracker,
4928 minimal_symbol *sym,
4929 const lookup_name_info &lookup_name,
4930 const char *text, const char *word)
4931 {
4932 completion_list_add_name (tracker, MSYMBOL_LANGUAGE (sym),
4933 MSYMBOL_NATURAL_NAME (sym),
4934 lookup_name, text, word);
4935 }
4936
4937
4938 /* ObjC: In case we are completing on a selector, look as the msymbol
4939 again and feed all the selectors into the mill. */
4940
4941 static void
4942 completion_list_objc_symbol (completion_tracker &tracker,
4943 struct minimal_symbol *msymbol,
4944 const lookup_name_info &lookup_name,
4945 const char *text, const char *word)
4946 {
4947 static char *tmp = NULL;
4948 static unsigned int tmplen = 0;
4949
4950 const char *method, *category, *selector;
4951 char *tmp2 = NULL;
4952
4953 method = MSYMBOL_NATURAL_NAME (msymbol);
4954
4955 /* Is it a method? */
4956 if ((method[0] != '-') && (method[0] != '+'))
4957 return;
4958
4959 if (text[0] == '[')
4960 /* Complete on shortened method method. */
4961 completion_list_add_name (tracker, language_objc,
4962 method + 1,
4963 lookup_name,
4964 text, word);
4965
4966 while ((strlen (method) + 1) >= tmplen)
4967 {
4968 if (tmplen == 0)
4969 tmplen = 1024;
4970 else
4971 tmplen *= 2;
4972 tmp = (char *) xrealloc (tmp, tmplen);
4973 }
4974 selector = strchr (method, ' ');
4975 if (selector != NULL)
4976 selector++;
4977
4978 category = strchr (method, '(');
4979
4980 if ((category != NULL) && (selector != NULL))
4981 {
4982 memcpy (tmp, method, (category - method));
4983 tmp[category - method] = ' ';
4984 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
4985 completion_list_add_name (tracker, language_objc, tmp,
4986 lookup_name, text, word);
4987 if (text[0] == '[')
4988 completion_list_add_name (tracker, language_objc, tmp + 1,
4989 lookup_name, text, word);
4990 }
4991
4992 if (selector != NULL)
4993 {
4994 /* Complete on selector only. */
4995 strcpy (tmp, selector);
4996 tmp2 = strchr (tmp, ']');
4997 if (tmp2 != NULL)
4998 *tmp2 = '\0';
4999
5000 completion_list_add_name (tracker, language_objc, tmp,
5001 lookup_name, text, word);
5002 }
5003 }
5004
5005 /* Break the non-quoted text based on the characters which are in
5006 symbols. FIXME: This should probably be language-specific. */
5007
5008 static const char *
5009 language_search_unquoted_string (const char *text, const char *p)
5010 {
5011 for (; p > text; --p)
5012 {
5013 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
5014 continue;
5015 else
5016 {
5017 if ((current_language->la_language == language_objc))
5018 {
5019 if (p[-1] == ':') /* Might be part of a method name. */
5020 continue;
5021 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
5022 p -= 2; /* Beginning of a method name. */
5023 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
5024 { /* Might be part of a method name. */
5025 const char *t = p;
5026
5027 /* Seeing a ' ' or a '(' is not conclusive evidence
5028 that we are in the middle of a method name. However,
5029 finding "-[" or "+[" should be pretty un-ambiguous.
5030 Unfortunately we have to find it now to decide. */
5031
5032 while (t > text)
5033 if (isalnum (t[-1]) || t[-1] == '_' ||
5034 t[-1] == ' ' || t[-1] == ':' ||
5035 t[-1] == '(' || t[-1] == ')')
5036 --t;
5037 else
5038 break;
5039
5040 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
5041 p = t - 2; /* Method name detected. */
5042 /* Else we leave with p unchanged. */
5043 }
5044 }
5045 break;
5046 }
5047 }
5048 return p;
5049 }
5050
5051 static void
5052 completion_list_add_fields (completion_tracker &tracker,
5053 struct symbol *sym,
5054 const lookup_name_info &lookup_name,
5055 const char *text, const char *word)
5056 {
5057 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5058 {
5059 struct type *t = SYMBOL_TYPE (sym);
5060 enum type_code c = TYPE_CODE (t);
5061 int j;
5062
5063 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
5064 for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++)
5065 if (TYPE_FIELD_NAME (t, j))
5066 completion_list_add_name (tracker, SYMBOL_LANGUAGE (sym),
5067 TYPE_FIELD_NAME (t, j),
5068 lookup_name, text, word);
5069 }
5070 }
5071
5072 /* See symtab.h. */
5073
5074 bool
5075 symbol_is_function_or_method (symbol *sym)
5076 {
5077 switch (TYPE_CODE (SYMBOL_TYPE (sym)))
5078 {
5079 case TYPE_CODE_FUNC:
5080 case TYPE_CODE_METHOD:
5081 return true;
5082 default:
5083 return false;
5084 }
5085 }
5086
5087 /* See symtab.h. */
5088
5089 bool
5090 symbol_is_function_or_method (minimal_symbol *msymbol)
5091 {
5092 switch (MSYMBOL_TYPE (msymbol))
5093 {
5094 case mst_text:
5095 case mst_text_gnu_ifunc:
5096 case mst_solib_trampoline:
5097 case mst_file_text:
5098 return true;
5099 default:
5100 return false;
5101 }
5102 }
5103
5104 /* See symtab.h. */
5105
5106 bound_minimal_symbol
5107 find_gnu_ifunc (const symbol *sym)
5108 {
5109 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
5110 return {};
5111
5112 lookup_name_info lookup_name (SYMBOL_SEARCH_NAME (sym),
5113 symbol_name_match_type::SEARCH_NAME);
5114 struct objfile *objfile = symbol_objfile (sym);
5115
5116 CORE_ADDR address = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym));
5117 minimal_symbol *ifunc = NULL;
5118
5119 iterate_over_minimal_symbols (objfile, lookup_name,
5120 [&] (minimal_symbol *minsym)
5121 {
5122 if (MSYMBOL_TYPE (minsym) == mst_text_gnu_ifunc
5123 || MSYMBOL_TYPE (minsym) == mst_data_gnu_ifunc)
5124 {
5125 CORE_ADDR msym_addr = MSYMBOL_VALUE_ADDRESS (objfile, minsym);
5126 if (MSYMBOL_TYPE (minsym) == mst_data_gnu_ifunc)
5127 {
5128 struct gdbarch *gdbarch = get_objfile_arch (objfile);
5129 msym_addr
5130 = gdbarch_convert_from_func_ptr_addr (gdbarch,
5131 msym_addr,
5132 current_top_target ());
5133 }
5134 if (msym_addr == address)
5135 {
5136 ifunc = minsym;
5137 return true;
5138 }
5139 }
5140 return false;
5141 });
5142
5143 if (ifunc != NULL)
5144 return {ifunc, objfile};
5145 return {};
5146 }
5147
5148 /* Add matching symbols from SYMTAB to the current completion list. */
5149
5150 static void
5151 add_symtab_completions (struct compunit_symtab *cust,
5152 completion_tracker &tracker,
5153 complete_symbol_mode mode,
5154 const lookup_name_info &lookup_name,
5155 const char *text, const char *word,
5156 enum type_code code)
5157 {
5158 struct symbol *sym;
5159 const struct block *b;
5160 struct block_iterator iter;
5161 int i;
5162
5163 if (cust == NULL)
5164 return;
5165
5166 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
5167 {
5168 QUIT;
5169 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust), i);
5170 ALL_BLOCK_SYMBOLS (b, iter, sym)
5171 {
5172 if (completion_skip_symbol (mode, sym))
5173 continue;
5174
5175 if (code == TYPE_CODE_UNDEF
5176 || (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
5177 && TYPE_CODE (SYMBOL_TYPE (sym)) == code))
5178 completion_list_add_symbol (tracker, sym,
5179 lookup_name,
5180 text, word);
5181 }
5182 }
5183 }
5184
5185 void
5186 default_collect_symbol_completion_matches_break_on
5187 (completion_tracker &tracker, complete_symbol_mode mode,
5188 symbol_name_match_type name_match_type,
5189 const char *text, const char *word,
5190 const char *break_on, enum type_code code)
5191 {
5192 /* Problem: All of the symbols have to be copied because readline
5193 frees them. I'm not going to worry about this; hopefully there
5194 won't be that many. */
5195
5196 struct symbol *sym;
5197 const struct block *b;
5198 const struct block *surrounding_static_block, *surrounding_global_block;
5199 struct block_iterator iter;
5200 /* The symbol we are completing on. Points in same buffer as text. */
5201 const char *sym_text;
5202
5203 /* Now look for the symbol we are supposed to complete on. */
5204 if (mode == complete_symbol_mode::LINESPEC)
5205 sym_text = text;
5206 else
5207 {
5208 const char *p;
5209 char quote_found;
5210 const char *quote_pos = NULL;
5211
5212 /* First see if this is a quoted string. */
5213 quote_found = '\0';
5214 for (p = text; *p != '\0'; ++p)
5215 {
5216 if (quote_found != '\0')
5217 {
5218 if (*p == quote_found)
5219 /* Found close quote. */
5220 quote_found = '\0';
5221 else if (*p == '\\' && p[1] == quote_found)
5222 /* A backslash followed by the quote character
5223 doesn't end the string. */
5224 ++p;
5225 }
5226 else if (*p == '\'' || *p == '"')
5227 {
5228 quote_found = *p;
5229 quote_pos = p;
5230 }
5231 }
5232 if (quote_found == '\'')
5233 /* A string within single quotes can be a symbol, so complete on it. */
5234 sym_text = quote_pos + 1;
5235 else if (quote_found == '"')
5236 /* A double-quoted string is never a symbol, nor does it make sense
5237 to complete it any other way. */
5238 {
5239 return;
5240 }
5241 else
5242 {
5243 /* It is not a quoted string. Break it based on the characters
5244 which are in symbols. */
5245 while (p > text)
5246 {
5247 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0'
5248 || p[-1] == ':' || strchr (break_on, p[-1]) != NULL)
5249 --p;
5250 else
5251 break;
5252 }
5253 sym_text = p;
5254 }
5255 }
5256
5257 lookup_name_info lookup_name (sym_text, name_match_type, true);
5258
5259 /* At this point scan through the misc symbol vectors and add each
5260 symbol you find to the list. Eventually we want to ignore
5261 anything that isn't a text symbol (everything else will be
5262 handled by the psymtab code below). */
5263
5264 if (code == TYPE_CODE_UNDEF)
5265 {
5266 for (objfile *objfile : all_objfiles (current_program_space))
5267 {
5268 for (minimal_symbol *msymbol : objfile_msymbols (objfile))
5269 {
5270 QUIT;
5271
5272 if (completion_skip_symbol (mode, msymbol))
5273 continue;
5274
5275 completion_list_add_msymbol (tracker, msymbol, lookup_name,
5276 sym_text, word);
5277
5278 completion_list_objc_symbol (tracker, msymbol, lookup_name,
5279 sym_text, word);
5280 }
5281 }
5282 }
5283
5284 /* Add completions for all currently loaded symbol tables. */
5285 struct objfile *objfile;
5286 ALL_COMPUNITS (objfile, cust)
5287 add_symtab_completions (cust, tracker, mode, lookup_name,
5288 sym_text, word, code);
5289
5290 /* Look through the partial symtabs for all symbols which begin by
5291 matching SYM_TEXT. Expand all CUs that you find to the list. */
5292 expand_symtabs_matching (NULL,
5293 lookup_name,
5294 NULL,
5295 [&] (compunit_symtab *symtab) /* expansion notify */
5296 {
5297 add_symtab_completions (symtab,
5298 tracker, mode, lookup_name,
5299 sym_text, word, code);
5300 },
5301 ALL_DOMAIN);
5302
5303 /* Search upwards from currently selected frame (so that we can
5304 complete on local vars). Also catch fields of types defined in
5305 this places which match our text string. Only complete on types
5306 visible from current context. */
5307
5308 b = get_selected_block (0);
5309 surrounding_static_block = block_static_block (b);
5310 surrounding_global_block = block_global_block (b);
5311 if (surrounding_static_block != NULL)
5312 while (b != surrounding_static_block)
5313 {
5314 QUIT;
5315
5316 ALL_BLOCK_SYMBOLS (b, iter, sym)
5317 {
5318 if (code == TYPE_CODE_UNDEF)
5319 {
5320 completion_list_add_symbol (tracker, sym, lookup_name,
5321 sym_text, word);
5322 completion_list_add_fields (tracker, sym, lookup_name,
5323 sym_text, word);
5324 }
5325 else if (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
5326 && TYPE_CODE (SYMBOL_TYPE (sym)) == code)
5327 completion_list_add_symbol (tracker, sym, lookup_name,
5328 sym_text, word);
5329 }
5330
5331 /* Stop when we encounter an enclosing function. Do not stop for
5332 non-inlined functions - the locals of the enclosing function
5333 are in scope for a nested function. */
5334 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
5335 break;
5336 b = BLOCK_SUPERBLOCK (b);
5337 }
5338
5339 /* Add fields from the file's types; symbols will be added below. */
5340
5341 if (code == TYPE_CODE_UNDEF)
5342 {
5343 if (surrounding_static_block != NULL)
5344 ALL_BLOCK_SYMBOLS (surrounding_static_block, iter, sym)
5345 completion_list_add_fields (tracker, sym, lookup_name,
5346 sym_text, word);
5347
5348 if (surrounding_global_block != NULL)
5349 ALL_BLOCK_SYMBOLS (surrounding_global_block, iter, sym)
5350 completion_list_add_fields (tracker, sym, lookup_name,
5351 sym_text, word);
5352 }
5353
5354 /* Skip macros if we are completing a struct tag -- arguable but
5355 usually what is expected. */
5356 if (current_language->la_macro_expansion == macro_expansion_c
5357 && code == TYPE_CODE_UNDEF)
5358 {
5359 gdb::unique_xmalloc_ptr<struct macro_scope> scope;
5360
5361 /* This adds a macro's name to the current completion list. */
5362 auto add_macro_name = [&] (const char *macro_name,
5363 const macro_definition *,
5364 macro_source_file *,
5365 int)
5366 {
5367 completion_list_add_name (tracker, language_c, macro_name,
5368 lookup_name, sym_text, word);
5369 };
5370
5371 /* Add any macros visible in the default scope. Note that this
5372 may yield the occasional wrong result, because an expression
5373 might be evaluated in a scope other than the default. For
5374 example, if the user types "break file:line if <TAB>", the
5375 resulting expression will be evaluated at "file:line" -- but
5376 at there does not seem to be a way to detect this at
5377 completion time. */
5378 scope = default_macro_scope ();
5379 if (scope)
5380 macro_for_each_in_scope (scope->file, scope->line,
5381 add_macro_name);
5382
5383 /* User-defined macros are always visible. */
5384 macro_for_each (macro_user_macros, add_macro_name);
5385 }
5386 }
5387
5388 void
5389 default_collect_symbol_completion_matches (completion_tracker &tracker,
5390 complete_symbol_mode mode,
5391 symbol_name_match_type name_match_type,
5392 const char *text, const char *word,
5393 enum type_code code)
5394 {
5395 return default_collect_symbol_completion_matches_break_on (tracker, mode,
5396 name_match_type,
5397 text, word, "",
5398 code);
5399 }
5400
5401 /* Collect all symbols (regardless of class) which begin by matching
5402 TEXT. */
5403
5404 void
5405 collect_symbol_completion_matches (completion_tracker &tracker,
5406 complete_symbol_mode mode,
5407 symbol_name_match_type name_match_type,
5408 const char *text, const char *word)
5409 {
5410 current_language->la_collect_symbol_completion_matches (tracker, mode,
5411 name_match_type,
5412 text, word,
5413 TYPE_CODE_UNDEF);
5414 }
5415
5416 /* Like collect_symbol_completion_matches, but only collect
5417 STRUCT_DOMAIN symbols whose type code is CODE. */
5418
5419 void
5420 collect_symbol_completion_matches_type (completion_tracker &tracker,
5421 const char *text, const char *word,
5422 enum type_code code)
5423 {
5424 complete_symbol_mode mode = complete_symbol_mode::EXPRESSION;
5425 symbol_name_match_type name_match_type = symbol_name_match_type::EXPRESSION;
5426
5427 gdb_assert (code == TYPE_CODE_UNION
5428 || code == TYPE_CODE_STRUCT
5429 || code == TYPE_CODE_ENUM);
5430 current_language->la_collect_symbol_completion_matches (tracker, mode,
5431 name_match_type,
5432 text, word, code);
5433 }
5434
5435 /* Like collect_symbol_completion_matches, but collects a list of
5436 symbols defined in all source files named SRCFILE. */
5437
5438 void
5439 collect_file_symbol_completion_matches (completion_tracker &tracker,
5440 complete_symbol_mode mode,
5441 symbol_name_match_type name_match_type,
5442 const char *text, const char *word,
5443 const char *srcfile)
5444 {
5445 /* The symbol we are completing on. Points in same buffer as text. */
5446 const char *sym_text;
5447
5448 /* Now look for the symbol we are supposed to complete on.
5449 FIXME: This should be language-specific. */
5450 if (mode == complete_symbol_mode::LINESPEC)
5451 sym_text = text;
5452 else
5453 {
5454 const char *p;
5455 char quote_found;
5456 const char *quote_pos = NULL;
5457
5458 /* First see if this is a quoted string. */
5459 quote_found = '\0';
5460 for (p = text; *p != '\0'; ++p)
5461 {
5462 if (quote_found != '\0')
5463 {
5464 if (*p == quote_found)
5465 /* Found close quote. */
5466 quote_found = '\0';
5467 else if (*p == '\\' && p[1] == quote_found)
5468 /* A backslash followed by the quote character
5469 doesn't end the string. */
5470 ++p;
5471 }
5472 else if (*p == '\'' || *p == '"')
5473 {
5474 quote_found = *p;
5475 quote_pos = p;
5476 }
5477 }
5478 if (quote_found == '\'')
5479 /* A string within single quotes can be a symbol, so complete on it. */
5480 sym_text = quote_pos + 1;
5481 else if (quote_found == '"')
5482 /* A double-quoted string is never a symbol, nor does it make sense
5483 to complete it any other way. */
5484 {
5485 return;
5486 }
5487 else
5488 {
5489 /* Not a quoted string. */
5490 sym_text = language_search_unquoted_string (text, p);
5491 }
5492 }
5493
5494 lookup_name_info lookup_name (sym_text, name_match_type, true);
5495
5496 /* Go through symtabs for SRCFILE and check the externs and statics
5497 for symbols which match. */
5498 iterate_over_symtabs (srcfile, [&] (symtab *s)
5499 {
5500 add_symtab_completions (SYMTAB_COMPUNIT (s),
5501 tracker, mode, lookup_name,
5502 sym_text, word, TYPE_CODE_UNDEF);
5503 return false;
5504 });
5505 }
5506
5507 /* A helper function for make_source_files_completion_list. It adds
5508 another file name to a list of possible completions, growing the
5509 list as necessary. */
5510
5511 static void
5512 add_filename_to_list (const char *fname, const char *text, const char *word,
5513 completion_list *list)
5514 {
5515 list->emplace_back (make_completion_match_str (fname, text, word));
5516 }
5517
5518 static int
5519 not_interesting_fname (const char *fname)
5520 {
5521 static const char *illegal_aliens[] = {
5522 "_globals_", /* inserted by coff_symtab_read */
5523 NULL
5524 };
5525 int i;
5526
5527 for (i = 0; illegal_aliens[i]; i++)
5528 {
5529 if (filename_cmp (fname, illegal_aliens[i]) == 0)
5530 return 1;
5531 }
5532 return 0;
5533 }
5534
5535 /* An object of this type is passed as the user_data argument to
5536 map_partial_symbol_filenames. */
5537 struct add_partial_filename_data
5538 {
5539 struct filename_seen_cache *filename_seen_cache;
5540 const char *text;
5541 const char *word;
5542 int text_len;
5543 completion_list *list;
5544 };
5545
5546 /* A callback for map_partial_symbol_filenames. */
5547
5548 static void
5549 maybe_add_partial_symtab_filename (const char *filename, const char *fullname,
5550 void *user_data)
5551 {
5552 struct add_partial_filename_data *data
5553 = (struct add_partial_filename_data *) user_data;
5554
5555 if (not_interesting_fname (filename))
5556 return;
5557 if (!data->filename_seen_cache->seen (filename)
5558 && filename_ncmp (filename, data->text, data->text_len) == 0)
5559 {
5560 /* This file matches for a completion; add it to the
5561 current list of matches. */
5562 add_filename_to_list (filename, data->text, data->word, data->list);
5563 }
5564 else
5565 {
5566 const char *base_name = lbasename (filename);
5567
5568 if (base_name != filename
5569 && !data->filename_seen_cache->seen (base_name)
5570 && filename_ncmp (base_name, data->text, data->text_len) == 0)
5571 add_filename_to_list (base_name, data->text, data->word, data->list);
5572 }
5573 }
5574
5575 /* Return a list of all source files whose names begin with matching
5576 TEXT. The file names are looked up in the symbol tables of this
5577 program. */
5578
5579 completion_list
5580 make_source_files_completion_list (const char *text, const char *word)
5581 {
5582 struct symtab *s;
5583 struct objfile *objfile;
5584 size_t text_len = strlen (text);
5585 completion_list list;
5586 const char *base_name;
5587 struct add_partial_filename_data datum;
5588
5589 if (!have_full_symbols () && !have_partial_symbols ())
5590 return list;
5591
5592 filename_seen_cache filenames_seen;
5593
5594 ALL_FILETABS (objfile, cu, s)
5595 {
5596 if (not_interesting_fname (s->filename))
5597 continue;
5598 if (!filenames_seen.seen (s->filename)
5599 && filename_ncmp (s->filename, text, text_len) == 0)
5600 {
5601 /* This file matches for a completion; add it to the current
5602 list of matches. */
5603 add_filename_to_list (s->filename, text, word, &list);
5604 }
5605 else
5606 {
5607 /* NOTE: We allow the user to type a base name when the
5608 debug info records leading directories, but not the other
5609 way around. This is what subroutines of breakpoint
5610 command do when they parse file names. */
5611 base_name = lbasename (s->filename);
5612 if (base_name != s->filename
5613 && !filenames_seen.seen (base_name)
5614 && filename_ncmp (base_name, text, text_len) == 0)
5615 add_filename_to_list (base_name, text, word, &list);
5616 }
5617 }
5618
5619 datum.filename_seen_cache = &filenames_seen;
5620 datum.text = text;
5621 datum.word = word;
5622 datum.text_len = text_len;
5623 datum.list = &list;
5624 map_symbol_filenames (maybe_add_partial_symtab_filename, &datum,
5625 0 /*need_fullname*/);
5626
5627 return list;
5628 }
5629 \f
5630 /* Track MAIN */
5631
5632 /* Return the "main_info" object for the current program space. If
5633 the object has not yet been created, create it and fill in some
5634 default values. */
5635
5636 static struct main_info *
5637 get_main_info (void)
5638 {
5639 struct main_info *info
5640 = (struct main_info *) program_space_data (current_program_space,
5641 main_progspace_key);
5642
5643 if (info == NULL)
5644 {
5645 /* It may seem strange to store the main name in the progspace
5646 and also in whatever objfile happens to see a main name in
5647 its debug info. The reason for this is mainly historical:
5648 gdb returned "main" as the name even if no function named
5649 "main" was defined the program; and this approach lets us
5650 keep compatibility. */
5651 info = XCNEW (struct main_info);
5652 info->language_of_main = language_unknown;
5653 set_program_space_data (current_program_space, main_progspace_key,
5654 info);
5655 }
5656
5657 return info;
5658 }
5659
5660 /* A cleanup to destroy a struct main_info when a progspace is
5661 destroyed. */
5662
5663 static void
5664 main_info_cleanup (struct program_space *pspace, void *data)
5665 {
5666 struct main_info *info = (struct main_info *) data;
5667
5668 if (info != NULL)
5669 xfree (info->name_of_main);
5670 xfree (info);
5671 }
5672
5673 static void
5674 set_main_name (const char *name, enum language lang)
5675 {
5676 struct main_info *info = get_main_info ();
5677
5678 if (info->name_of_main != NULL)
5679 {
5680 xfree (info->name_of_main);
5681 info->name_of_main = NULL;
5682 info->language_of_main = language_unknown;
5683 }
5684 if (name != NULL)
5685 {
5686 info->name_of_main = xstrdup (name);
5687 info->language_of_main = lang;
5688 }
5689 }
5690
5691 /* Deduce the name of the main procedure, and set NAME_OF_MAIN
5692 accordingly. */
5693
5694 static void
5695 find_main_name (void)
5696 {
5697 const char *new_main_name;
5698
5699 /* First check the objfiles to see whether a debuginfo reader has
5700 picked up the appropriate main name. Historically the main name
5701 was found in a more or less random way; this approach instead
5702 relies on the order of objfile creation -- which still isn't
5703 guaranteed to get the correct answer, but is just probably more
5704 accurate. */
5705 for (objfile *objfile : all_objfiles (current_program_space))
5706 {
5707 if (objfile->per_bfd->name_of_main != NULL)
5708 {
5709 set_main_name (objfile->per_bfd->name_of_main,
5710 objfile->per_bfd->language_of_main);
5711 return;
5712 }
5713 }
5714
5715 /* Try to see if the main procedure is in Ada. */
5716 /* FIXME: brobecker/2005-03-07: Another way of doing this would
5717 be to add a new method in the language vector, and call this
5718 method for each language until one of them returns a non-empty
5719 name. This would allow us to remove this hard-coded call to
5720 an Ada function. It is not clear that this is a better approach
5721 at this point, because all methods need to be written in a way
5722 such that false positives never be returned. For instance, it is
5723 important that a method does not return a wrong name for the main
5724 procedure if the main procedure is actually written in a different
5725 language. It is easy to guaranty this with Ada, since we use a
5726 special symbol generated only when the main in Ada to find the name
5727 of the main procedure. It is difficult however to see how this can
5728 be guarantied for languages such as C, for instance. This suggests
5729 that order of call for these methods becomes important, which means
5730 a more complicated approach. */
5731 new_main_name = ada_main_name ();
5732 if (new_main_name != NULL)
5733 {
5734 set_main_name (new_main_name, language_ada);
5735 return;
5736 }
5737
5738 new_main_name = d_main_name ();
5739 if (new_main_name != NULL)
5740 {
5741 set_main_name (new_main_name, language_d);
5742 return;
5743 }
5744
5745 new_main_name = go_main_name ();
5746 if (new_main_name != NULL)
5747 {
5748 set_main_name (new_main_name, language_go);
5749 return;
5750 }
5751
5752 new_main_name = pascal_main_name ();
5753 if (new_main_name != NULL)
5754 {
5755 set_main_name (new_main_name, language_pascal);
5756 return;
5757 }
5758
5759 /* The languages above didn't identify the name of the main procedure.
5760 Fallback to "main". */
5761 set_main_name ("main", language_unknown);
5762 }
5763
5764 char *
5765 main_name (void)
5766 {
5767 struct main_info *info = get_main_info ();
5768
5769 if (info->name_of_main == NULL)
5770 find_main_name ();
5771
5772 return info->name_of_main;
5773 }
5774
5775 /* Return the language of the main function. If it is not known,
5776 return language_unknown. */
5777
5778 enum language
5779 main_language (void)
5780 {
5781 struct main_info *info = get_main_info ();
5782
5783 if (info->name_of_main == NULL)
5784 find_main_name ();
5785
5786 return info->language_of_main;
5787 }
5788
5789 /* Handle ``executable_changed'' events for the symtab module. */
5790
5791 static void
5792 symtab_observer_executable_changed (void)
5793 {
5794 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
5795 set_main_name (NULL, language_unknown);
5796 }
5797
5798 /* Return 1 if the supplied producer string matches the ARM RealView
5799 compiler (armcc). */
5800
5801 int
5802 producer_is_realview (const char *producer)
5803 {
5804 static const char *const arm_idents[] = {
5805 "ARM C Compiler, ADS",
5806 "Thumb C Compiler, ADS",
5807 "ARM C++ Compiler, ADS",
5808 "Thumb C++ Compiler, ADS",
5809 "ARM/Thumb C/C++ Compiler, RVCT",
5810 "ARM C/C++ Compiler, RVCT"
5811 };
5812 int i;
5813
5814 if (producer == NULL)
5815 return 0;
5816
5817 for (i = 0; i < ARRAY_SIZE (arm_idents); i++)
5818 if (startswith (producer, arm_idents[i]))
5819 return 1;
5820
5821 return 0;
5822 }
5823
5824 \f
5825
5826 /* The next index to hand out in response to a registration request. */
5827
5828 static int next_aclass_value = LOC_FINAL_VALUE;
5829
5830 /* The maximum number of "aclass" registrations we support. This is
5831 constant for convenience. */
5832 #define MAX_SYMBOL_IMPLS (LOC_FINAL_VALUE + 10)
5833
5834 /* The objects representing the various "aclass" values. The elements
5835 from 0 up to LOC_FINAL_VALUE-1 represent themselves, and subsequent
5836 elements are those registered at gdb initialization time. */
5837
5838 static struct symbol_impl symbol_impl[MAX_SYMBOL_IMPLS];
5839
5840 /* The globally visible pointer. This is separate from 'symbol_impl'
5841 so that it can be const. */
5842
5843 const struct symbol_impl *symbol_impls = &symbol_impl[0];
5844
5845 /* Make sure we saved enough room in struct symbol. */
5846
5847 gdb_static_assert (MAX_SYMBOL_IMPLS <= (1 << SYMBOL_ACLASS_BITS));
5848
5849 /* Register a computed symbol type. ACLASS must be LOC_COMPUTED. OPS
5850 is the ops vector associated with this index. This returns the new
5851 index, which should be used as the aclass_index field for symbols
5852 of this type. */
5853
5854 int
5855 register_symbol_computed_impl (enum address_class aclass,
5856 const struct symbol_computed_ops *ops)
5857 {
5858 int result = next_aclass_value++;
5859
5860 gdb_assert (aclass == LOC_COMPUTED);
5861 gdb_assert (result < MAX_SYMBOL_IMPLS);
5862 symbol_impl[result].aclass = aclass;
5863 symbol_impl[result].ops_computed = ops;
5864
5865 /* Sanity check OPS. */
5866 gdb_assert (ops != NULL);
5867 gdb_assert (ops->tracepoint_var_ref != NULL);
5868 gdb_assert (ops->describe_location != NULL);
5869 gdb_assert (ops->get_symbol_read_needs != NULL);
5870 gdb_assert (ops->read_variable != NULL);
5871
5872 return result;
5873 }
5874
5875 /* Register a function with frame base type. ACLASS must be LOC_BLOCK.
5876 OPS is the ops vector associated with this index. This returns the
5877 new index, which should be used as the aclass_index field for symbols
5878 of this type. */
5879
5880 int
5881 register_symbol_block_impl (enum address_class aclass,
5882 const struct symbol_block_ops *ops)
5883 {
5884 int result = next_aclass_value++;
5885
5886 gdb_assert (aclass == LOC_BLOCK);
5887 gdb_assert (result < MAX_SYMBOL_IMPLS);
5888 symbol_impl[result].aclass = aclass;
5889 symbol_impl[result].ops_block = ops;
5890
5891 /* Sanity check OPS. */
5892 gdb_assert (ops != NULL);
5893 gdb_assert (ops->find_frame_base_location != NULL);
5894
5895 return result;
5896 }
5897
5898 /* Register a register symbol type. ACLASS must be LOC_REGISTER or
5899 LOC_REGPARM_ADDR. OPS is the register ops vector associated with
5900 this index. This returns the new index, which should be used as
5901 the aclass_index field for symbols of this type. */
5902
5903 int
5904 register_symbol_register_impl (enum address_class aclass,
5905 const struct symbol_register_ops *ops)
5906 {
5907 int result = next_aclass_value++;
5908
5909 gdb_assert (aclass == LOC_REGISTER || aclass == LOC_REGPARM_ADDR);
5910 gdb_assert (result < MAX_SYMBOL_IMPLS);
5911 symbol_impl[result].aclass = aclass;
5912 symbol_impl[result].ops_register = ops;
5913
5914 return result;
5915 }
5916
5917 /* Initialize elements of 'symbol_impl' for the constants in enum
5918 address_class. */
5919
5920 static void
5921 initialize_ordinary_address_classes (void)
5922 {
5923 int i;
5924
5925 for (i = 0; i < LOC_FINAL_VALUE; ++i)
5926 symbol_impl[i].aclass = (enum address_class) i;
5927 }
5928
5929 \f
5930
5931 /* Helper function to initialize the fields of an objfile-owned symbol.
5932 It assumed that *SYM is already all zeroes. */
5933
5934 static void
5935 initialize_objfile_symbol_1 (struct symbol *sym)
5936 {
5937 SYMBOL_OBJFILE_OWNED (sym) = 1;
5938 SYMBOL_SECTION (sym) = -1;
5939 }
5940
5941 /* Initialize the symbol SYM, and mark it as being owned by an objfile. */
5942
5943 void
5944 initialize_objfile_symbol (struct symbol *sym)
5945 {
5946 memset (sym, 0, sizeof (*sym));
5947 initialize_objfile_symbol_1 (sym);
5948 }
5949
5950 /* Allocate and initialize a new 'struct symbol' on OBJFILE's
5951 obstack. */
5952
5953 struct symbol *
5954 allocate_symbol (struct objfile *objfile)
5955 {
5956 struct symbol *result;
5957
5958 result = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symbol);
5959 initialize_objfile_symbol_1 (result);
5960
5961 return result;
5962 }
5963
5964 /* Allocate and initialize a new 'struct template_symbol' on OBJFILE's
5965 obstack. */
5966
5967 struct template_symbol *
5968 allocate_template_symbol (struct objfile *objfile)
5969 {
5970 struct template_symbol *result;
5971
5972 result = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct template_symbol);
5973 initialize_objfile_symbol_1 (result);
5974
5975 return result;
5976 }
5977
5978 /* See symtab.h. */
5979
5980 struct objfile *
5981 symbol_objfile (const struct symbol *symbol)
5982 {
5983 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
5984 return SYMTAB_OBJFILE (symbol->owner.symtab);
5985 }
5986
5987 /* See symtab.h. */
5988
5989 struct gdbarch *
5990 symbol_arch (const struct symbol *symbol)
5991 {
5992 if (!SYMBOL_OBJFILE_OWNED (symbol))
5993 return symbol->owner.arch;
5994 return get_objfile_arch (SYMTAB_OBJFILE (symbol->owner.symtab));
5995 }
5996
5997 /* See symtab.h. */
5998
5999 struct symtab *
6000 symbol_symtab (const struct symbol *symbol)
6001 {
6002 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
6003 return symbol->owner.symtab;
6004 }
6005
6006 /* See symtab.h. */
6007
6008 void
6009 symbol_set_symtab (struct symbol *symbol, struct symtab *symtab)
6010 {
6011 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
6012 symbol->owner.symtab = symtab;
6013 }
6014
6015 \f
6016
6017 void
6018 _initialize_symtab (void)
6019 {
6020 initialize_ordinary_address_classes ();
6021
6022 main_progspace_key
6023 = register_program_space_data_with_cleanup (NULL, main_info_cleanup);
6024
6025 symbol_cache_key
6026 = register_program_space_data_with_cleanup (NULL, symbol_cache_cleanup);
6027
6028 add_info ("variables", info_variables_command,
6029 info_print_args_help (_("\
6030 All global and static variable names or those matching REGEXPs.\n\
6031 Usage: info variables [-q] [-t TYPEREGEXP] [NAMEREGEXP]\n\
6032 Prints the global and static variables.\n"),
6033 _("global and static variables")));
6034 if (dbx_commands)
6035 add_com ("whereis", class_info, info_variables_command,
6036 info_print_args_help (_("\
6037 All global and static variable names, or those matching REGEXPs.\n\
6038 Usage: whereis [-q] [-t TYPEREGEXP] [NAMEREGEXP]\n\
6039 Prints the global and static variables.\n"),
6040 _("global and static variables")));
6041
6042 add_info ("functions", info_functions_command,
6043 info_print_args_help (_("\
6044 All function names or those matching REGEXPs.\n\
6045 Usage: info functions [-q] [-t TYPEREGEXP] [NAMEREGEXP]\n\
6046 Prints the functions.\n"),
6047 _("functions")));
6048
6049 /* FIXME: This command has at least the following problems:
6050 1. It prints builtin types (in a very strange and confusing fashion).
6051 2. It doesn't print right, e.g. with
6052 typedef struct foo *FOO
6053 type_print prints "FOO" when we want to make it (in this situation)
6054 print "struct foo *".
6055 I also think "ptype" or "whatis" is more likely to be useful (but if
6056 there is much disagreement "info types" can be fixed). */
6057 add_info ("types", info_types_command,
6058 _("All type names, or those matching REGEXP."));
6059
6060 add_info ("sources", info_sources_command,
6061 _("Source files in the program."));
6062
6063 add_com ("rbreak", class_breakpoint, rbreak_command,
6064 _("Set a breakpoint for all functions matching REGEXP."));
6065
6066 add_setshow_enum_cmd ("multiple-symbols", no_class,
6067 multiple_symbols_modes, &multiple_symbols_mode,
6068 _("\
6069 Set the debugger behavior when more than one symbol are possible matches\n\
6070 in an expression."), _("\
6071 Show how the debugger handles ambiguities in expressions."), _("\
6072 Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
6073 NULL, NULL, &setlist, &showlist);
6074
6075 add_setshow_boolean_cmd ("basenames-may-differ", class_obscure,
6076 &basenames_may_differ, _("\
6077 Set whether a source file may have multiple base names."), _("\
6078 Show whether a source file may have multiple base names."), _("\
6079 (A \"base name\" is the name of a file with the directory part removed.\n\
6080 Example: The base name of \"/home/user/hello.c\" is \"hello.c\".)\n\
6081 If set, GDB will canonicalize file names (e.g., expand symlinks)\n\
6082 before comparing them. Canonicalization is an expensive operation,\n\
6083 but it allows the same file be known by more than one base name.\n\
6084 If not set (the default), all source files are assumed to have just\n\
6085 one base name, and gdb will do file name comparisons more efficiently."),
6086 NULL, NULL,
6087 &setlist, &showlist);
6088
6089 add_setshow_zuinteger_cmd ("symtab-create", no_class, &symtab_create_debug,
6090 _("Set debugging of symbol table creation."),
6091 _("Show debugging of symbol table creation."), _("\
6092 When enabled (non-zero), debugging messages are printed when building\n\
6093 symbol tables. A value of 1 (one) normally provides enough information.\n\
6094 A value greater than 1 provides more verbose information."),
6095 NULL,
6096 NULL,
6097 &setdebuglist, &showdebuglist);
6098
6099 add_setshow_zuinteger_cmd ("symbol-lookup", no_class, &symbol_lookup_debug,
6100 _("\
6101 Set debugging of symbol lookup."), _("\
6102 Show debugging of symbol lookup."), _("\
6103 When enabled (non-zero), symbol lookups are logged."),
6104 NULL, NULL,
6105 &setdebuglist, &showdebuglist);
6106
6107 add_setshow_zuinteger_cmd ("symbol-cache-size", no_class,
6108 &new_symbol_cache_size,
6109 _("Set the size of the symbol cache."),
6110 _("Show the size of the symbol cache."), _("\
6111 The size of the symbol cache.\n\
6112 If zero then the symbol cache is disabled."),
6113 set_symbol_cache_size_handler, NULL,
6114 &maintenance_set_cmdlist,
6115 &maintenance_show_cmdlist);
6116
6117 add_cmd ("symbol-cache", class_maintenance, maintenance_print_symbol_cache,
6118 _("Dump the symbol cache for each program space."),
6119 &maintenanceprintlist);
6120
6121 add_cmd ("symbol-cache-statistics", class_maintenance,
6122 maintenance_print_symbol_cache_statistics,
6123 _("Print symbol cache statistics for each program space."),
6124 &maintenanceprintlist);
6125
6126 add_cmd ("flush-symbol-cache", class_maintenance,
6127 maintenance_flush_symbol_cache,
6128 _("Flush the symbol cache for each program space."),
6129 &maintenancelist);
6130
6131 gdb::observers::executable_changed.attach (symtab_observer_executable_changed);
6132 gdb::observers::new_objfile.attach (symtab_new_objfile_observer);
6133 gdb::observers::free_objfile.attach (symtab_free_objfile_observer);
6134 }
This page took 0.235154 seconds and 4 git commands to generate.