Convert symbol_cache to type-safe registry API
[deliverable/binutils-gdb.git] / gdb / symtab.c
1 /* Symbol table lookup for the GNU debugger, GDB.
2
3 Copyright (C) 1986-2019 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "gdbcore.h"
24 #include "frame.h"
25 #include "target.h"
26 #include "value.h"
27 #include "symfile.h"
28 #include "objfiles.h"
29 #include "gdbcmd.h"
30 #include "gdb_regex.h"
31 #include "expression.h"
32 #include "language.h"
33 #include "demangle.h"
34 #include "inferior.h"
35 #include "source.h"
36 #include "filenames.h" /* for FILENAME_CMP */
37 #include "objc-lang.h"
38 #include "d-lang.h"
39 #include "ada-lang.h"
40 #include "go-lang.h"
41 #include "p-lang.h"
42 #include "addrmap.h"
43 #include "cli/cli-utils.h"
44 #include "cli/cli-style.h"
45 #include "fnmatch.h"
46 #include "hashtab.h"
47 #include "typeprint.h"
48
49 #include "gdb_obstack.h"
50 #include "block.h"
51 #include "dictionary.h"
52
53 #include <sys/types.h>
54 #include <fcntl.h>
55 #include <sys/stat.h>
56 #include <ctype.h>
57 #include "cp-abi.h"
58 #include "cp-support.h"
59 #include "observable.h"
60 #include "solist.h"
61 #include "macrotab.h"
62 #include "macroscope.h"
63
64 #include "parser-defs.h"
65 #include "completer.h"
66 #include "progspace-and-thread.h"
67 #include "common/gdb_optional.h"
68 #include "filename-seen-cache.h"
69 #include "arch-utils.h"
70 #include <algorithm>
71 #include "common/pathstuff.h"
72
73 /* Forward declarations for local functions. */
74
75 static void rbreak_command (const char *, int);
76
77 static int find_line_common (struct linetable *, int, int *, int);
78
79 static struct block_symbol
80 lookup_symbol_aux (const char *name,
81 symbol_name_match_type match_type,
82 const struct block *block,
83 const domain_enum domain,
84 enum language language,
85 struct field_of_this_result *);
86
87 static
88 struct block_symbol lookup_local_symbol (const char *name,
89 symbol_name_match_type match_type,
90 const struct block *block,
91 const domain_enum domain,
92 enum language language);
93
94 static struct block_symbol
95 lookup_symbol_in_objfile (struct objfile *objfile, int block_index,
96 const char *name, const domain_enum domain);
97
98 /* Type of the data stored on the program space. */
99
100 struct main_info
101 {
102 main_info () = default;
103
104 ~main_info ()
105 {
106 xfree (name_of_main);
107 }
108
109 /* Name of "main". */
110
111 char *name_of_main = nullptr;
112
113 /* Language of "main". */
114
115 enum language language_of_main = language_unknown;
116 };
117
118 /* Program space key for finding name and language of "main". */
119
120 static const program_space_key<main_info> main_progspace_key;
121
122 /* The default symbol cache size.
123 There is no extra cpu cost for large N (except when flushing the cache,
124 which is rare). The value here is just a first attempt. A better default
125 value may be higher or lower. A prime number can make up for a bad hash
126 computation, so that's why the number is what it is. */
127 #define DEFAULT_SYMBOL_CACHE_SIZE 1021
128
129 /* The maximum symbol cache size.
130 There's no method to the decision of what value to use here, other than
131 there's no point in allowing a user typo to make gdb consume all memory. */
132 #define MAX_SYMBOL_CACHE_SIZE (1024*1024)
133
134 /* symbol_cache_lookup returns this if a previous lookup failed to find the
135 symbol in any objfile. */
136 #define SYMBOL_LOOKUP_FAILED \
137 ((struct block_symbol) {(struct symbol *) 1, NULL})
138 #define SYMBOL_LOOKUP_FAILED_P(SIB) (SIB.symbol == (struct symbol *) 1)
139
140 /* Recording lookups that don't find the symbol is just as important, if not
141 more so, than recording found symbols. */
142
143 enum symbol_cache_slot_state
144 {
145 SYMBOL_SLOT_UNUSED,
146 SYMBOL_SLOT_NOT_FOUND,
147 SYMBOL_SLOT_FOUND
148 };
149
150 struct symbol_cache_slot
151 {
152 enum symbol_cache_slot_state state;
153
154 /* The objfile that was current when the symbol was looked up.
155 This is only needed for global blocks, but for simplicity's sake
156 we allocate the space for both. If data shows the extra space used
157 for static blocks is a problem, we can split things up then.
158
159 Global blocks need cache lookup to include the objfile context because
160 we need to account for gdbarch_iterate_over_objfiles_in_search_order
161 which can traverse objfiles in, effectively, any order, depending on
162 the current objfile, thus affecting which symbol is found. Normally,
163 only the current objfile is searched first, and then the rest are
164 searched in recorded order; but putting cache lookup inside
165 gdbarch_iterate_over_objfiles_in_search_order would be awkward.
166 Instead we just make the current objfile part of the context of
167 cache lookup. This means we can record the same symbol multiple times,
168 each with a different "current objfile" that was in effect when the
169 lookup was saved in the cache, but cache space is pretty cheap. */
170 const struct objfile *objfile_context;
171
172 union
173 {
174 struct block_symbol found;
175 struct
176 {
177 char *name;
178 domain_enum domain;
179 } not_found;
180 } value;
181 };
182
183 /* Symbols don't specify global vs static block.
184 So keep them in separate caches. */
185
186 struct block_symbol_cache
187 {
188 unsigned int hits;
189 unsigned int misses;
190 unsigned int collisions;
191
192 /* SYMBOLS is a variable length array of this size.
193 One can imagine that in general one cache (global/static) should be a
194 fraction of the size of the other, but there's no data at the moment
195 on which to decide. */
196 unsigned int size;
197
198 struct symbol_cache_slot symbols[1];
199 };
200
201 /* The symbol cache.
202
203 Searching for symbols in the static and global blocks over multiple objfiles
204 again and again can be slow, as can searching very big objfiles. This is a
205 simple cache to improve symbol lookup performance, which is critical to
206 overall gdb performance.
207
208 Symbols are hashed on the name, its domain, and block.
209 They are also hashed on their objfile for objfile-specific lookups. */
210
211 struct symbol_cache
212 {
213 symbol_cache () = default;
214
215 ~symbol_cache ()
216 {
217 xfree (global_symbols);
218 xfree (static_symbols);
219 }
220
221 struct block_symbol_cache *global_symbols = nullptr;
222 struct block_symbol_cache *static_symbols = nullptr;
223 };
224
225 /* Program space key for finding its symbol cache. */
226
227 static const program_space_key<symbol_cache> symbol_cache_key;
228
229 /* When non-zero, print debugging messages related to symtab creation. */
230 unsigned int symtab_create_debug = 0;
231
232 /* When non-zero, print debugging messages related to symbol lookup. */
233 unsigned int symbol_lookup_debug = 0;
234
235 /* The size of the cache is staged here. */
236 static unsigned int new_symbol_cache_size = DEFAULT_SYMBOL_CACHE_SIZE;
237
238 /* The current value of the symbol cache size.
239 This is saved so that if the user enters a value too big we can restore
240 the original value from here. */
241 static unsigned int symbol_cache_size = DEFAULT_SYMBOL_CACHE_SIZE;
242
243 /* Non-zero if a file may be known by two different basenames.
244 This is the uncommon case, and significantly slows down gdb.
245 Default set to "off" to not slow down the common case. */
246 int basenames_may_differ = 0;
247
248 /* Allow the user to configure the debugger behavior with respect
249 to multiple-choice menus when more than one symbol matches during
250 a symbol lookup. */
251
252 const char multiple_symbols_ask[] = "ask";
253 const char multiple_symbols_all[] = "all";
254 const char multiple_symbols_cancel[] = "cancel";
255 static const char *const multiple_symbols_modes[] =
256 {
257 multiple_symbols_ask,
258 multiple_symbols_all,
259 multiple_symbols_cancel,
260 NULL
261 };
262 static const char *multiple_symbols_mode = multiple_symbols_all;
263
264 /* Read-only accessor to AUTO_SELECT_MODE. */
265
266 const char *
267 multiple_symbols_select_mode (void)
268 {
269 return multiple_symbols_mode;
270 }
271
272 /* Return the name of a domain_enum. */
273
274 const char *
275 domain_name (domain_enum e)
276 {
277 switch (e)
278 {
279 case UNDEF_DOMAIN: return "UNDEF_DOMAIN";
280 case VAR_DOMAIN: return "VAR_DOMAIN";
281 case STRUCT_DOMAIN: return "STRUCT_DOMAIN";
282 case MODULE_DOMAIN: return "MODULE_DOMAIN";
283 case LABEL_DOMAIN: return "LABEL_DOMAIN";
284 case COMMON_BLOCK_DOMAIN: return "COMMON_BLOCK_DOMAIN";
285 default: gdb_assert_not_reached ("bad domain_enum");
286 }
287 }
288
289 /* Return the name of a search_domain . */
290
291 const char *
292 search_domain_name (enum search_domain e)
293 {
294 switch (e)
295 {
296 case VARIABLES_DOMAIN: return "VARIABLES_DOMAIN";
297 case FUNCTIONS_DOMAIN: return "FUNCTIONS_DOMAIN";
298 case TYPES_DOMAIN: return "TYPES_DOMAIN";
299 case ALL_DOMAIN: return "ALL_DOMAIN";
300 default: gdb_assert_not_reached ("bad search_domain");
301 }
302 }
303
304 /* See symtab.h. */
305
306 struct symtab *
307 compunit_primary_filetab (const struct compunit_symtab *cust)
308 {
309 gdb_assert (COMPUNIT_FILETABS (cust) != NULL);
310
311 /* The primary file symtab is the first one in the list. */
312 return COMPUNIT_FILETABS (cust);
313 }
314
315 /* See symtab.h. */
316
317 enum language
318 compunit_language (const struct compunit_symtab *cust)
319 {
320 struct symtab *symtab = compunit_primary_filetab (cust);
321
322 /* The language of the compunit symtab is the language of its primary
323 source file. */
324 return SYMTAB_LANGUAGE (symtab);
325 }
326
327 /* See symtab.h. */
328
329 bool
330 minimal_symbol::data_p () const
331 {
332 return type == mst_data
333 || type == mst_bss
334 || type == mst_abs
335 || type == mst_file_data
336 || type == mst_file_bss;
337 }
338
339 /* See symtab.h. */
340
341 bool
342 minimal_symbol::text_p () const
343 {
344 return type == mst_text
345 || type == mst_text_gnu_ifunc
346 || type == mst_data_gnu_ifunc
347 || type == mst_slot_got_plt
348 || type == mst_solib_trampoline
349 || type == mst_file_text;
350 }
351
352 /* See whether FILENAME matches SEARCH_NAME using the rule that we
353 advertise to the user. (The manual's description of linespecs
354 describes what we advertise). Returns true if they match, false
355 otherwise. */
356
357 int
358 compare_filenames_for_search (const char *filename, const char *search_name)
359 {
360 int len = strlen (filename);
361 size_t search_len = strlen (search_name);
362
363 if (len < search_len)
364 return 0;
365
366 /* The tail of FILENAME must match. */
367 if (FILENAME_CMP (filename + len - search_len, search_name) != 0)
368 return 0;
369
370 /* Either the names must completely match, or the character
371 preceding the trailing SEARCH_NAME segment of FILENAME must be a
372 directory separator.
373
374 The check !IS_ABSOLUTE_PATH ensures SEARCH_NAME "/dir/file.c"
375 cannot match FILENAME "/path//dir/file.c" - as user has requested
376 absolute path. The sama applies for "c:\file.c" possibly
377 incorrectly hypothetically matching "d:\dir\c:\file.c".
378
379 The HAS_DRIVE_SPEC purpose is to make FILENAME "c:file.c"
380 compatible with SEARCH_NAME "file.c". In such case a compiler had
381 to put the "c:file.c" name into debug info. Such compatibility
382 works only on GDB built for DOS host. */
383 return (len == search_len
384 || (!IS_ABSOLUTE_PATH (search_name)
385 && IS_DIR_SEPARATOR (filename[len - search_len - 1]))
386 || (HAS_DRIVE_SPEC (filename)
387 && STRIP_DRIVE_SPEC (filename) == &filename[len - search_len]));
388 }
389
390 /* Same as compare_filenames_for_search, but for glob-style patterns.
391 Heads up on the order of the arguments. They match the order of
392 compare_filenames_for_search, but it's the opposite of the order of
393 arguments to gdb_filename_fnmatch. */
394
395 int
396 compare_glob_filenames_for_search (const char *filename,
397 const char *search_name)
398 {
399 /* We rely on the property of glob-style patterns with FNM_FILE_NAME that
400 all /s have to be explicitly specified. */
401 int file_path_elements = count_path_elements (filename);
402 int search_path_elements = count_path_elements (search_name);
403
404 if (search_path_elements > file_path_elements)
405 return 0;
406
407 if (IS_ABSOLUTE_PATH (search_name))
408 {
409 return (search_path_elements == file_path_elements
410 && gdb_filename_fnmatch (search_name, filename,
411 FNM_FILE_NAME | FNM_NOESCAPE) == 0);
412 }
413
414 {
415 const char *file_to_compare
416 = strip_leading_path_elements (filename,
417 file_path_elements - search_path_elements);
418
419 return gdb_filename_fnmatch (search_name, file_to_compare,
420 FNM_FILE_NAME | FNM_NOESCAPE) == 0;
421 }
422 }
423
424 /* Check for a symtab of a specific name by searching some symtabs.
425 This is a helper function for callbacks of iterate_over_symtabs.
426
427 If NAME is not absolute, then REAL_PATH is NULL
428 If NAME is absolute, then REAL_PATH is the gdb_realpath form of NAME.
429
430 The return value, NAME, REAL_PATH and CALLBACK are identical to the
431 `map_symtabs_matching_filename' method of quick_symbol_functions.
432
433 FIRST and AFTER_LAST indicate the range of compunit symtabs to search.
434 Each symtab within the specified compunit symtab is also searched.
435 AFTER_LAST is one past the last compunit symtab to search; NULL means to
436 search until the end of the list. */
437
438 bool
439 iterate_over_some_symtabs (const char *name,
440 const char *real_path,
441 struct compunit_symtab *first,
442 struct compunit_symtab *after_last,
443 gdb::function_view<bool (symtab *)> callback)
444 {
445 struct compunit_symtab *cust;
446 const char* base_name = lbasename (name);
447
448 for (cust = first; cust != NULL && cust != after_last; cust = cust->next)
449 {
450 for (symtab *s : compunit_filetabs (cust))
451 {
452 if (compare_filenames_for_search (s->filename, name))
453 {
454 if (callback (s))
455 return true;
456 continue;
457 }
458
459 /* Before we invoke realpath, which can get expensive when many
460 files are involved, do a quick comparison of the basenames. */
461 if (! basenames_may_differ
462 && FILENAME_CMP (base_name, lbasename (s->filename)) != 0)
463 continue;
464
465 if (compare_filenames_for_search (symtab_to_fullname (s), name))
466 {
467 if (callback (s))
468 return true;
469 continue;
470 }
471
472 /* If the user gave us an absolute path, try to find the file in
473 this symtab and use its absolute path. */
474 if (real_path != NULL)
475 {
476 const char *fullname = symtab_to_fullname (s);
477
478 gdb_assert (IS_ABSOLUTE_PATH (real_path));
479 gdb_assert (IS_ABSOLUTE_PATH (name));
480 if (FILENAME_CMP (real_path, fullname) == 0)
481 {
482 if (callback (s))
483 return true;
484 continue;
485 }
486 }
487 }
488 }
489
490 return false;
491 }
492
493 /* Check for a symtab of a specific name; first in symtabs, then in
494 psymtabs. *If* there is no '/' in the name, a match after a '/'
495 in the symtab filename will also work.
496
497 Calls CALLBACK with each symtab that is found. If CALLBACK returns
498 true, the search stops. */
499
500 void
501 iterate_over_symtabs (const char *name,
502 gdb::function_view<bool (symtab *)> callback)
503 {
504 gdb::unique_xmalloc_ptr<char> real_path;
505
506 /* Here we are interested in canonicalizing an absolute path, not
507 absolutizing a relative path. */
508 if (IS_ABSOLUTE_PATH (name))
509 {
510 real_path = gdb_realpath (name);
511 gdb_assert (IS_ABSOLUTE_PATH (real_path.get ()));
512 }
513
514 for (objfile *objfile : current_program_space->objfiles ())
515 {
516 if (iterate_over_some_symtabs (name, real_path.get (),
517 objfile->compunit_symtabs, NULL,
518 callback))
519 return;
520 }
521
522 /* Same search rules as above apply here, but now we look thru the
523 psymtabs. */
524
525 for (objfile *objfile : current_program_space->objfiles ())
526 {
527 if (objfile->sf
528 && objfile->sf->qf->map_symtabs_matching_filename (objfile,
529 name,
530 real_path.get (),
531 callback))
532 return;
533 }
534 }
535
536 /* A wrapper for iterate_over_symtabs that returns the first matching
537 symtab, or NULL. */
538
539 struct symtab *
540 lookup_symtab (const char *name)
541 {
542 struct symtab *result = NULL;
543
544 iterate_over_symtabs (name, [&] (symtab *symtab)
545 {
546 result = symtab;
547 return true;
548 });
549
550 return result;
551 }
552
553 \f
554 /* Mangle a GDB method stub type. This actually reassembles the pieces of the
555 full method name, which consist of the class name (from T), the unadorned
556 method name from METHOD_ID, and the signature for the specific overload,
557 specified by SIGNATURE_ID. Note that this function is g++ specific. */
558
559 char *
560 gdb_mangle_name (struct type *type, int method_id, int signature_id)
561 {
562 int mangled_name_len;
563 char *mangled_name;
564 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
565 struct fn_field *method = &f[signature_id];
566 const char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
567 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
568 const char *newname = TYPE_NAME (type);
569
570 /* Does the form of physname indicate that it is the full mangled name
571 of a constructor (not just the args)? */
572 int is_full_physname_constructor;
573
574 int is_constructor;
575 int is_destructor = is_destructor_name (physname);
576 /* Need a new type prefix. */
577 const char *const_prefix = method->is_const ? "C" : "";
578 const char *volatile_prefix = method->is_volatile ? "V" : "";
579 char buf[20];
580 int len = (newname == NULL ? 0 : strlen (newname));
581
582 /* Nothing to do if physname already contains a fully mangled v3 abi name
583 or an operator name. */
584 if ((physname[0] == '_' && physname[1] == 'Z')
585 || is_operator_name (field_name))
586 return xstrdup (physname);
587
588 is_full_physname_constructor = is_constructor_name (physname);
589
590 is_constructor = is_full_physname_constructor
591 || (newname && strcmp (field_name, newname) == 0);
592
593 if (!is_destructor)
594 is_destructor = (startswith (physname, "__dt"));
595
596 if (is_destructor || is_full_physname_constructor)
597 {
598 mangled_name = (char *) xmalloc (strlen (physname) + 1);
599 strcpy (mangled_name, physname);
600 return mangled_name;
601 }
602
603 if (len == 0)
604 {
605 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
606 }
607 else if (physname[0] == 't' || physname[0] == 'Q')
608 {
609 /* The physname for template and qualified methods already includes
610 the class name. */
611 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
612 newname = NULL;
613 len = 0;
614 }
615 else
616 {
617 xsnprintf (buf, sizeof (buf), "__%s%s%d", const_prefix,
618 volatile_prefix, len);
619 }
620 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
621 + strlen (buf) + len + strlen (physname) + 1);
622
623 mangled_name = (char *) xmalloc (mangled_name_len);
624 if (is_constructor)
625 mangled_name[0] = '\0';
626 else
627 strcpy (mangled_name, field_name);
628
629 strcat (mangled_name, buf);
630 /* If the class doesn't have a name, i.e. newname NULL, then we just
631 mangle it using 0 for the length of the class. Thus it gets mangled
632 as something starting with `::' rather than `classname::'. */
633 if (newname != NULL)
634 strcat (mangled_name, newname);
635
636 strcat (mangled_name, physname);
637 return (mangled_name);
638 }
639
640 /* Set the demangled name of GSYMBOL to NAME. NAME must be already
641 correctly allocated. */
642
643 void
644 symbol_set_demangled_name (struct general_symbol_info *gsymbol,
645 const char *name,
646 struct obstack *obstack)
647 {
648 if (gsymbol->language == language_ada)
649 {
650 if (name == NULL)
651 {
652 gsymbol->ada_mangled = 0;
653 gsymbol->language_specific.obstack = obstack;
654 }
655 else
656 {
657 gsymbol->ada_mangled = 1;
658 gsymbol->language_specific.demangled_name = name;
659 }
660 }
661 else
662 gsymbol->language_specific.demangled_name = name;
663 }
664
665 /* Return the demangled name of GSYMBOL. */
666
667 const char *
668 symbol_get_demangled_name (const struct general_symbol_info *gsymbol)
669 {
670 if (gsymbol->language == language_ada)
671 {
672 if (!gsymbol->ada_mangled)
673 return NULL;
674 /* Fall through. */
675 }
676
677 return gsymbol->language_specific.demangled_name;
678 }
679
680 \f
681 /* Initialize the language dependent portion of a symbol
682 depending upon the language for the symbol. */
683
684 void
685 symbol_set_language (struct general_symbol_info *gsymbol,
686 enum language language,
687 struct obstack *obstack)
688 {
689 gsymbol->language = language;
690 if (gsymbol->language == language_cplus
691 || gsymbol->language == language_d
692 || gsymbol->language == language_go
693 || gsymbol->language == language_objc
694 || gsymbol->language == language_fortran)
695 {
696 symbol_set_demangled_name (gsymbol, NULL, obstack);
697 }
698 else if (gsymbol->language == language_ada)
699 {
700 gdb_assert (gsymbol->ada_mangled == 0);
701 gsymbol->language_specific.obstack = obstack;
702 }
703 else
704 {
705 memset (&gsymbol->language_specific, 0,
706 sizeof (gsymbol->language_specific));
707 }
708 }
709
710 /* Functions to initialize a symbol's mangled name. */
711
712 /* Objects of this type are stored in the demangled name hash table. */
713 struct demangled_name_entry
714 {
715 const char *mangled;
716 char demangled[1];
717 };
718
719 /* Hash function for the demangled name hash. */
720
721 static hashval_t
722 hash_demangled_name_entry (const void *data)
723 {
724 const struct demangled_name_entry *e
725 = (const struct demangled_name_entry *) data;
726
727 return htab_hash_string (e->mangled);
728 }
729
730 /* Equality function for the demangled name hash. */
731
732 static int
733 eq_demangled_name_entry (const void *a, const void *b)
734 {
735 const struct demangled_name_entry *da
736 = (const struct demangled_name_entry *) a;
737 const struct demangled_name_entry *db
738 = (const struct demangled_name_entry *) b;
739
740 return strcmp (da->mangled, db->mangled) == 0;
741 }
742
743 /* Create the hash table used for demangled names. Each hash entry is
744 a pair of strings; one for the mangled name and one for the demangled
745 name. The entry is hashed via just the mangled name. */
746
747 static void
748 create_demangled_names_hash (struct objfile_per_bfd_storage *per_bfd)
749 {
750 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
751 The hash table code will round this up to the next prime number.
752 Choosing a much larger table size wastes memory, and saves only about
753 1% in symbol reading. */
754
755 per_bfd->demangled_names_hash.reset (htab_create_alloc
756 (256, hash_demangled_name_entry, eq_demangled_name_entry,
757 NULL, xcalloc, xfree));
758 }
759
760 /* Try to determine the demangled name for a symbol, based on the
761 language of that symbol. If the language is set to language_auto,
762 it will attempt to find any demangling algorithm that works and
763 then set the language appropriately. The returned name is allocated
764 by the demangler and should be xfree'd. */
765
766 static char *
767 symbol_find_demangled_name (struct general_symbol_info *gsymbol,
768 const char *mangled)
769 {
770 char *demangled = NULL;
771 int i;
772
773 if (gsymbol->language == language_unknown)
774 gsymbol->language = language_auto;
775
776 if (gsymbol->language != language_auto)
777 {
778 const struct language_defn *lang = language_def (gsymbol->language);
779
780 language_sniff_from_mangled_name (lang, mangled, &demangled);
781 return demangled;
782 }
783
784 for (i = language_unknown; i < nr_languages; ++i)
785 {
786 enum language l = (enum language) i;
787 const struct language_defn *lang = language_def (l);
788
789 if (language_sniff_from_mangled_name (lang, mangled, &demangled))
790 {
791 gsymbol->language = l;
792 return demangled;
793 }
794 }
795
796 return NULL;
797 }
798
799 /* Set both the mangled and demangled (if any) names for GSYMBOL based
800 on LINKAGE_NAME and LEN. Ordinarily, NAME is copied onto the
801 objfile's obstack; but if COPY_NAME is 0 and if NAME is
802 NUL-terminated, then this function assumes that NAME is already
803 correctly saved (either permanently or with a lifetime tied to the
804 objfile), and it will not be copied.
805
806 The hash table corresponding to OBJFILE is used, and the memory
807 comes from the per-BFD storage_obstack. LINKAGE_NAME is copied,
808 so the pointer can be discarded after calling this function. */
809
810 void
811 symbol_set_names (struct general_symbol_info *gsymbol,
812 const char *linkage_name, int len, int copy_name,
813 struct objfile_per_bfd_storage *per_bfd)
814 {
815 struct demangled_name_entry **slot;
816 /* A 0-terminated copy of the linkage name. */
817 const char *linkage_name_copy;
818 struct demangled_name_entry entry;
819
820 if (gsymbol->language == language_ada)
821 {
822 /* In Ada, we do the symbol lookups using the mangled name, so
823 we can save some space by not storing the demangled name. */
824 if (!copy_name)
825 gsymbol->name = linkage_name;
826 else
827 {
828 char *name = (char *) obstack_alloc (&per_bfd->storage_obstack,
829 len + 1);
830
831 memcpy (name, linkage_name, len);
832 name[len] = '\0';
833 gsymbol->name = name;
834 }
835 symbol_set_demangled_name (gsymbol, NULL, &per_bfd->storage_obstack);
836
837 return;
838 }
839
840 if (per_bfd->demangled_names_hash == NULL)
841 create_demangled_names_hash (per_bfd);
842
843 if (linkage_name[len] != '\0')
844 {
845 char *alloc_name;
846
847 alloc_name = (char *) alloca (len + 1);
848 memcpy (alloc_name, linkage_name, len);
849 alloc_name[len] = '\0';
850
851 linkage_name_copy = alloc_name;
852 }
853 else
854 linkage_name_copy = linkage_name;
855
856 /* Set the symbol language. */
857 char *demangled_name_ptr
858 = symbol_find_demangled_name (gsymbol, linkage_name_copy);
859 gdb::unique_xmalloc_ptr<char> demangled_name (demangled_name_ptr);
860
861 entry.mangled = linkage_name_copy;
862 slot = ((struct demangled_name_entry **)
863 htab_find_slot (per_bfd->demangled_names_hash.get (),
864 &entry, INSERT));
865
866 /* If this name is not in the hash table, add it. */
867 if (*slot == NULL
868 /* A C version of the symbol may have already snuck into the table.
869 This happens to, e.g., main.init (__go_init_main). Cope. */
870 || (gsymbol->language == language_go
871 && (*slot)->demangled[0] == '\0'))
872 {
873 int demangled_len = demangled_name ? strlen (demangled_name.get ()) : 0;
874
875 /* Suppose we have demangled_name==NULL, copy_name==0, and
876 linkage_name_copy==linkage_name. In this case, we already have the
877 mangled name saved, and we don't have a demangled name. So,
878 you might think we could save a little space by not recording
879 this in the hash table at all.
880
881 It turns out that it is actually important to still save such
882 an entry in the hash table, because storing this name gives
883 us better bcache hit rates for partial symbols. */
884 if (!copy_name && linkage_name_copy == linkage_name)
885 {
886 *slot
887 = ((struct demangled_name_entry *)
888 obstack_alloc (&per_bfd->storage_obstack,
889 offsetof (struct demangled_name_entry, demangled)
890 + demangled_len + 1));
891 (*slot)->mangled = linkage_name;
892 }
893 else
894 {
895 char *mangled_ptr;
896
897 /* If we must copy the mangled name, put it directly after
898 the demangled name so we can have a single
899 allocation. */
900 *slot
901 = ((struct demangled_name_entry *)
902 obstack_alloc (&per_bfd->storage_obstack,
903 offsetof (struct demangled_name_entry, demangled)
904 + len + demangled_len + 2));
905 mangled_ptr = &((*slot)->demangled[demangled_len + 1]);
906 strcpy (mangled_ptr, linkage_name_copy);
907 (*slot)->mangled = mangled_ptr;
908 }
909
910 if (demangled_name != NULL)
911 strcpy ((*slot)->demangled, demangled_name.get());
912 else
913 (*slot)->demangled[0] = '\0';
914 }
915
916 gsymbol->name = (*slot)->mangled;
917 if ((*slot)->demangled[0] != '\0')
918 symbol_set_demangled_name (gsymbol, (*slot)->demangled,
919 &per_bfd->storage_obstack);
920 else
921 symbol_set_demangled_name (gsymbol, NULL, &per_bfd->storage_obstack);
922 }
923
924 /* Return the source code name of a symbol. In languages where
925 demangling is necessary, this is the demangled name. */
926
927 const char *
928 symbol_natural_name (const struct general_symbol_info *gsymbol)
929 {
930 switch (gsymbol->language)
931 {
932 case language_cplus:
933 case language_d:
934 case language_go:
935 case language_objc:
936 case language_fortran:
937 if (symbol_get_demangled_name (gsymbol) != NULL)
938 return symbol_get_demangled_name (gsymbol);
939 break;
940 case language_ada:
941 return ada_decode_symbol (gsymbol);
942 default:
943 break;
944 }
945 return gsymbol->name;
946 }
947
948 /* Return the demangled name for a symbol based on the language for
949 that symbol. If no demangled name exists, return NULL. */
950
951 const char *
952 symbol_demangled_name (const struct general_symbol_info *gsymbol)
953 {
954 const char *dem_name = NULL;
955
956 switch (gsymbol->language)
957 {
958 case language_cplus:
959 case language_d:
960 case language_go:
961 case language_objc:
962 case language_fortran:
963 dem_name = symbol_get_demangled_name (gsymbol);
964 break;
965 case language_ada:
966 dem_name = ada_decode_symbol (gsymbol);
967 break;
968 default:
969 break;
970 }
971 return dem_name;
972 }
973
974 /* Return the search name of a symbol---generally the demangled or
975 linkage name of the symbol, depending on how it will be searched for.
976 If there is no distinct demangled name, then returns the same value
977 (same pointer) as SYMBOL_LINKAGE_NAME. */
978
979 const char *
980 symbol_search_name (const struct general_symbol_info *gsymbol)
981 {
982 if (gsymbol->language == language_ada)
983 return gsymbol->name;
984 else
985 return symbol_natural_name (gsymbol);
986 }
987
988 /* See symtab.h. */
989
990 bool
991 symbol_matches_search_name (const struct general_symbol_info *gsymbol,
992 const lookup_name_info &name)
993 {
994 symbol_name_matcher_ftype *name_match
995 = get_symbol_name_matcher (language_def (gsymbol->language), name);
996 return name_match (symbol_search_name (gsymbol), name, NULL);
997 }
998
999 \f
1000
1001 /* Return 1 if the two sections are the same, or if they could
1002 plausibly be copies of each other, one in an original object
1003 file and another in a separated debug file. */
1004
1005 int
1006 matching_obj_sections (struct obj_section *obj_first,
1007 struct obj_section *obj_second)
1008 {
1009 asection *first = obj_first? obj_first->the_bfd_section : NULL;
1010 asection *second = obj_second? obj_second->the_bfd_section : NULL;
1011
1012 /* If they're the same section, then they match. */
1013 if (first == second)
1014 return 1;
1015
1016 /* If either is NULL, give up. */
1017 if (first == NULL || second == NULL)
1018 return 0;
1019
1020 /* This doesn't apply to absolute symbols. */
1021 if (first->owner == NULL || second->owner == NULL)
1022 return 0;
1023
1024 /* If they're in the same object file, they must be different sections. */
1025 if (first->owner == second->owner)
1026 return 0;
1027
1028 /* Check whether the two sections are potentially corresponding. They must
1029 have the same size, address, and name. We can't compare section indexes,
1030 which would be more reliable, because some sections may have been
1031 stripped. */
1032 if (bfd_get_section_size (first) != bfd_get_section_size (second))
1033 return 0;
1034
1035 /* In-memory addresses may start at a different offset, relativize them. */
1036 if (bfd_get_section_vma (first->owner, first)
1037 - bfd_get_start_address (first->owner)
1038 != bfd_get_section_vma (second->owner, second)
1039 - bfd_get_start_address (second->owner))
1040 return 0;
1041
1042 if (bfd_get_section_name (first->owner, first) == NULL
1043 || bfd_get_section_name (second->owner, second) == NULL
1044 || strcmp (bfd_get_section_name (first->owner, first),
1045 bfd_get_section_name (second->owner, second)) != 0)
1046 return 0;
1047
1048 /* Otherwise check that they are in corresponding objfiles. */
1049
1050 struct objfile *obj = NULL;
1051 for (objfile *objfile : current_program_space->objfiles ())
1052 if (objfile->obfd == first->owner)
1053 {
1054 obj = objfile;
1055 break;
1056 }
1057 gdb_assert (obj != NULL);
1058
1059 if (obj->separate_debug_objfile != NULL
1060 && obj->separate_debug_objfile->obfd == second->owner)
1061 return 1;
1062 if (obj->separate_debug_objfile_backlink != NULL
1063 && obj->separate_debug_objfile_backlink->obfd == second->owner)
1064 return 1;
1065
1066 return 0;
1067 }
1068
1069 /* See symtab.h. */
1070
1071 void
1072 expand_symtab_containing_pc (CORE_ADDR pc, struct obj_section *section)
1073 {
1074 struct bound_minimal_symbol msymbol;
1075
1076 /* If we know that this is not a text address, return failure. This is
1077 necessary because we loop based on texthigh and textlow, which do
1078 not include the data ranges. */
1079 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
1080 if (msymbol.minsym && msymbol.minsym->data_p ())
1081 return;
1082
1083 for (objfile *objfile : current_program_space->objfiles ())
1084 {
1085 struct compunit_symtab *cust = NULL;
1086
1087 if (objfile->sf)
1088 cust = objfile->sf->qf->find_pc_sect_compunit_symtab (objfile, msymbol,
1089 pc, section, 0);
1090 if (cust)
1091 return;
1092 }
1093 }
1094 \f
1095 /* Hash function for the symbol cache. */
1096
1097 static unsigned int
1098 hash_symbol_entry (const struct objfile *objfile_context,
1099 const char *name, domain_enum domain)
1100 {
1101 unsigned int hash = (uintptr_t) objfile_context;
1102
1103 if (name != NULL)
1104 hash += htab_hash_string (name);
1105
1106 /* Because of symbol_matches_domain we need VAR_DOMAIN and STRUCT_DOMAIN
1107 to map to the same slot. */
1108 if (domain == STRUCT_DOMAIN)
1109 hash += VAR_DOMAIN * 7;
1110 else
1111 hash += domain * 7;
1112
1113 return hash;
1114 }
1115
1116 /* Equality function for the symbol cache. */
1117
1118 static int
1119 eq_symbol_entry (const struct symbol_cache_slot *slot,
1120 const struct objfile *objfile_context,
1121 const char *name, domain_enum domain)
1122 {
1123 const char *slot_name;
1124 domain_enum slot_domain;
1125
1126 if (slot->state == SYMBOL_SLOT_UNUSED)
1127 return 0;
1128
1129 if (slot->objfile_context != objfile_context)
1130 return 0;
1131
1132 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1133 {
1134 slot_name = slot->value.not_found.name;
1135 slot_domain = slot->value.not_found.domain;
1136 }
1137 else
1138 {
1139 slot_name = SYMBOL_SEARCH_NAME (slot->value.found.symbol);
1140 slot_domain = SYMBOL_DOMAIN (slot->value.found.symbol);
1141 }
1142
1143 /* NULL names match. */
1144 if (slot_name == NULL && name == NULL)
1145 {
1146 /* But there's no point in calling symbol_matches_domain in the
1147 SYMBOL_SLOT_FOUND case. */
1148 if (slot_domain != domain)
1149 return 0;
1150 }
1151 else if (slot_name != NULL && name != NULL)
1152 {
1153 /* It's important that we use the same comparison that was done
1154 the first time through. If the slot records a found symbol,
1155 then this means using the symbol name comparison function of
1156 the symbol's language with SYMBOL_SEARCH_NAME. See
1157 dictionary.c. It also means using symbol_matches_domain for
1158 found symbols. See block.c.
1159
1160 If the slot records a not-found symbol, then require a precise match.
1161 We could still be lax with whitespace like strcmp_iw though. */
1162
1163 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1164 {
1165 if (strcmp (slot_name, name) != 0)
1166 return 0;
1167 if (slot_domain != domain)
1168 return 0;
1169 }
1170 else
1171 {
1172 struct symbol *sym = slot->value.found.symbol;
1173 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
1174
1175 if (!SYMBOL_MATCHES_SEARCH_NAME (sym, lookup_name))
1176 return 0;
1177
1178 if (!symbol_matches_domain (SYMBOL_LANGUAGE (sym),
1179 slot_domain, domain))
1180 return 0;
1181 }
1182 }
1183 else
1184 {
1185 /* Only one name is NULL. */
1186 return 0;
1187 }
1188
1189 return 1;
1190 }
1191
1192 /* Given a cache of size SIZE, return the size of the struct (with variable
1193 length array) in bytes. */
1194
1195 static size_t
1196 symbol_cache_byte_size (unsigned int size)
1197 {
1198 return (sizeof (struct block_symbol_cache)
1199 + ((size - 1) * sizeof (struct symbol_cache_slot)));
1200 }
1201
1202 /* Resize CACHE. */
1203
1204 static void
1205 resize_symbol_cache (struct symbol_cache *cache, unsigned int new_size)
1206 {
1207 /* If there's no change in size, don't do anything.
1208 All caches have the same size, so we can just compare with the size
1209 of the global symbols cache. */
1210 if ((cache->global_symbols != NULL
1211 && cache->global_symbols->size == new_size)
1212 || (cache->global_symbols == NULL
1213 && new_size == 0))
1214 return;
1215
1216 xfree (cache->global_symbols);
1217 xfree (cache->static_symbols);
1218
1219 if (new_size == 0)
1220 {
1221 cache->global_symbols = NULL;
1222 cache->static_symbols = NULL;
1223 }
1224 else
1225 {
1226 size_t total_size = symbol_cache_byte_size (new_size);
1227
1228 cache->global_symbols
1229 = (struct block_symbol_cache *) xcalloc (1, total_size);
1230 cache->static_symbols
1231 = (struct block_symbol_cache *) xcalloc (1, total_size);
1232 cache->global_symbols->size = new_size;
1233 cache->static_symbols->size = new_size;
1234 }
1235 }
1236
1237 /* Return the symbol cache of PSPACE.
1238 Create one if it doesn't exist yet. */
1239
1240 static struct symbol_cache *
1241 get_symbol_cache (struct program_space *pspace)
1242 {
1243 struct symbol_cache *cache = symbol_cache_key.get (pspace);
1244
1245 if (cache == NULL)
1246 {
1247 cache = symbol_cache_key.emplace (pspace);
1248 resize_symbol_cache (cache, symbol_cache_size);
1249 }
1250
1251 return cache;
1252 }
1253
1254 /* Set the size of the symbol cache in all program spaces. */
1255
1256 static void
1257 set_symbol_cache_size (unsigned int new_size)
1258 {
1259 struct program_space *pspace;
1260
1261 ALL_PSPACES (pspace)
1262 {
1263 struct symbol_cache *cache = symbol_cache_key.get (pspace);
1264
1265 /* The pspace could have been created but not have a cache yet. */
1266 if (cache != NULL)
1267 resize_symbol_cache (cache, new_size);
1268 }
1269 }
1270
1271 /* Called when symbol-cache-size is set. */
1272
1273 static void
1274 set_symbol_cache_size_handler (const char *args, int from_tty,
1275 struct cmd_list_element *c)
1276 {
1277 if (new_symbol_cache_size > MAX_SYMBOL_CACHE_SIZE)
1278 {
1279 /* Restore the previous value.
1280 This is the value the "show" command prints. */
1281 new_symbol_cache_size = symbol_cache_size;
1282
1283 error (_("Symbol cache size is too large, max is %u."),
1284 MAX_SYMBOL_CACHE_SIZE);
1285 }
1286 symbol_cache_size = new_symbol_cache_size;
1287
1288 set_symbol_cache_size (symbol_cache_size);
1289 }
1290
1291 /* Lookup symbol NAME,DOMAIN in BLOCK in the symbol cache of PSPACE.
1292 OBJFILE_CONTEXT is the current objfile, which may be NULL.
1293 The result is the symbol if found, SYMBOL_LOOKUP_FAILED if a previous lookup
1294 failed (and thus this one will too), or NULL if the symbol is not present
1295 in the cache.
1296 If the symbol is not present in the cache, then *BSC_PTR and *SLOT_PTR are
1297 set to the cache and slot of the symbol to save the result of a full lookup
1298 attempt. */
1299
1300 static struct block_symbol
1301 symbol_cache_lookup (struct symbol_cache *cache,
1302 struct objfile *objfile_context, int block,
1303 const char *name, domain_enum domain,
1304 struct block_symbol_cache **bsc_ptr,
1305 struct symbol_cache_slot **slot_ptr)
1306 {
1307 struct block_symbol_cache *bsc;
1308 unsigned int hash;
1309 struct symbol_cache_slot *slot;
1310
1311 if (block == GLOBAL_BLOCK)
1312 bsc = cache->global_symbols;
1313 else
1314 bsc = cache->static_symbols;
1315 if (bsc == NULL)
1316 {
1317 *bsc_ptr = NULL;
1318 *slot_ptr = NULL;
1319 return {};
1320 }
1321
1322 hash = hash_symbol_entry (objfile_context, name, domain);
1323 slot = bsc->symbols + hash % bsc->size;
1324
1325 if (eq_symbol_entry (slot, objfile_context, name, domain))
1326 {
1327 if (symbol_lookup_debug)
1328 fprintf_unfiltered (gdb_stdlog,
1329 "%s block symbol cache hit%s for %s, %s\n",
1330 block == GLOBAL_BLOCK ? "Global" : "Static",
1331 slot->state == SYMBOL_SLOT_NOT_FOUND
1332 ? " (not found)" : "",
1333 name, domain_name (domain));
1334 ++bsc->hits;
1335 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1336 return SYMBOL_LOOKUP_FAILED;
1337 return slot->value.found;
1338 }
1339
1340 /* Symbol is not present in the cache. */
1341
1342 *bsc_ptr = bsc;
1343 *slot_ptr = slot;
1344
1345 if (symbol_lookup_debug)
1346 {
1347 fprintf_unfiltered (gdb_stdlog,
1348 "%s block symbol cache miss for %s, %s\n",
1349 block == GLOBAL_BLOCK ? "Global" : "Static",
1350 name, domain_name (domain));
1351 }
1352 ++bsc->misses;
1353 return {};
1354 }
1355
1356 /* Clear out SLOT. */
1357
1358 static void
1359 symbol_cache_clear_slot (struct symbol_cache_slot *slot)
1360 {
1361 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1362 xfree (slot->value.not_found.name);
1363 slot->state = SYMBOL_SLOT_UNUSED;
1364 }
1365
1366 /* Mark SYMBOL as found in SLOT.
1367 OBJFILE_CONTEXT is the current objfile when the lookup was done, or NULL
1368 if it's not needed to distinguish lookups (STATIC_BLOCK). It is *not*
1369 necessarily the objfile the symbol was found in. */
1370
1371 static void
1372 symbol_cache_mark_found (struct block_symbol_cache *bsc,
1373 struct symbol_cache_slot *slot,
1374 struct objfile *objfile_context,
1375 struct symbol *symbol,
1376 const struct block *block)
1377 {
1378 if (bsc == NULL)
1379 return;
1380 if (slot->state != SYMBOL_SLOT_UNUSED)
1381 {
1382 ++bsc->collisions;
1383 symbol_cache_clear_slot (slot);
1384 }
1385 slot->state = SYMBOL_SLOT_FOUND;
1386 slot->objfile_context = objfile_context;
1387 slot->value.found.symbol = symbol;
1388 slot->value.found.block = block;
1389 }
1390
1391 /* Mark symbol NAME, DOMAIN as not found in SLOT.
1392 OBJFILE_CONTEXT is the current objfile when the lookup was done, or NULL
1393 if it's not needed to distinguish lookups (STATIC_BLOCK). */
1394
1395 static void
1396 symbol_cache_mark_not_found (struct block_symbol_cache *bsc,
1397 struct symbol_cache_slot *slot,
1398 struct objfile *objfile_context,
1399 const char *name, domain_enum domain)
1400 {
1401 if (bsc == NULL)
1402 return;
1403 if (slot->state != SYMBOL_SLOT_UNUSED)
1404 {
1405 ++bsc->collisions;
1406 symbol_cache_clear_slot (slot);
1407 }
1408 slot->state = SYMBOL_SLOT_NOT_FOUND;
1409 slot->objfile_context = objfile_context;
1410 slot->value.not_found.name = xstrdup (name);
1411 slot->value.not_found.domain = domain;
1412 }
1413
1414 /* Flush the symbol cache of PSPACE. */
1415
1416 static void
1417 symbol_cache_flush (struct program_space *pspace)
1418 {
1419 struct symbol_cache *cache = symbol_cache_key.get (pspace);
1420 int pass;
1421
1422 if (cache == NULL)
1423 return;
1424 if (cache->global_symbols == NULL)
1425 {
1426 gdb_assert (symbol_cache_size == 0);
1427 gdb_assert (cache->static_symbols == NULL);
1428 return;
1429 }
1430
1431 /* If the cache is untouched since the last flush, early exit.
1432 This is important for performance during the startup of a program linked
1433 with 100s (or 1000s) of shared libraries. */
1434 if (cache->global_symbols->misses == 0
1435 && cache->static_symbols->misses == 0)
1436 return;
1437
1438 gdb_assert (cache->global_symbols->size == symbol_cache_size);
1439 gdb_assert (cache->static_symbols->size == symbol_cache_size);
1440
1441 for (pass = 0; pass < 2; ++pass)
1442 {
1443 struct block_symbol_cache *bsc
1444 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1445 unsigned int i;
1446
1447 for (i = 0; i < bsc->size; ++i)
1448 symbol_cache_clear_slot (&bsc->symbols[i]);
1449 }
1450
1451 cache->global_symbols->hits = 0;
1452 cache->global_symbols->misses = 0;
1453 cache->global_symbols->collisions = 0;
1454 cache->static_symbols->hits = 0;
1455 cache->static_symbols->misses = 0;
1456 cache->static_symbols->collisions = 0;
1457 }
1458
1459 /* Dump CACHE. */
1460
1461 static void
1462 symbol_cache_dump (const struct symbol_cache *cache)
1463 {
1464 int pass;
1465
1466 if (cache->global_symbols == NULL)
1467 {
1468 printf_filtered (" <disabled>\n");
1469 return;
1470 }
1471
1472 for (pass = 0; pass < 2; ++pass)
1473 {
1474 const struct block_symbol_cache *bsc
1475 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1476 unsigned int i;
1477
1478 if (pass == 0)
1479 printf_filtered ("Global symbols:\n");
1480 else
1481 printf_filtered ("Static symbols:\n");
1482
1483 for (i = 0; i < bsc->size; ++i)
1484 {
1485 const struct symbol_cache_slot *slot = &bsc->symbols[i];
1486
1487 QUIT;
1488
1489 switch (slot->state)
1490 {
1491 case SYMBOL_SLOT_UNUSED:
1492 break;
1493 case SYMBOL_SLOT_NOT_FOUND:
1494 printf_filtered (" [%4u] = %s, %s %s (not found)\n", i,
1495 host_address_to_string (slot->objfile_context),
1496 slot->value.not_found.name,
1497 domain_name (slot->value.not_found.domain));
1498 break;
1499 case SYMBOL_SLOT_FOUND:
1500 {
1501 struct symbol *found = slot->value.found.symbol;
1502 const struct objfile *context = slot->objfile_context;
1503
1504 printf_filtered (" [%4u] = %s, %s %s\n", i,
1505 host_address_to_string (context),
1506 SYMBOL_PRINT_NAME (found),
1507 domain_name (SYMBOL_DOMAIN (found)));
1508 break;
1509 }
1510 }
1511 }
1512 }
1513 }
1514
1515 /* The "mt print symbol-cache" command. */
1516
1517 static void
1518 maintenance_print_symbol_cache (const char *args, int from_tty)
1519 {
1520 struct program_space *pspace;
1521
1522 ALL_PSPACES (pspace)
1523 {
1524 struct symbol_cache *cache;
1525
1526 printf_filtered (_("Symbol cache for pspace %d\n%s:\n"),
1527 pspace->num,
1528 pspace->symfile_object_file != NULL
1529 ? objfile_name (pspace->symfile_object_file)
1530 : "(no object file)");
1531
1532 /* If the cache hasn't been created yet, avoid creating one. */
1533 cache = symbol_cache_key.get (pspace);
1534 if (cache == NULL)
1535 printf_filtered (" <empty>\n");
1536 else
1537 symbol_cache_dump (cache);
1538 }
1539 }
1540
1541 /* The "mt flush-symbol-cache" command. */
1542
1543 static void
1544 maintenance_flush_symbol_cache (const char *args, int from_tty)
1545 {
1546 struct program_space *pspace;
1547
1548 ALL_PSPACES (pspace)
1549 {
1550 symbol_cache_flush (pspace);
1551 }
1552 }
1553
1554 /* Print usage statistics of CACHE. */
1555
1556 static void
1557 symbol_cache_stats (struct symbol_cache *cache)
1558 {
1559 int pass;
1560
1561 if (cache->global_symbols == NULL)
1562 {
1563 printf_filtered (" <disabled>\n");
1564 return;
1565 }
1566
1567 for (pass = 0; pass < 2; ++pass)
1568 {
1569 const struct block_symbol_cache *bsc
1570 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1571
1572 QUIT;
1573
1574 if (pass == 0)
1575 printf_filtered ("Global block cache stats:\n");
1576 else
1577 printf_filtered ("Static block cache stats:\n");
1578
1579 printf_filtered (" size: %u\n", bsc->size);
1580 printf_filtered (" hits: %u\n", bsc->hits);
1581 printf_filtered (" misses: %u\n", bsc->misses);
1582 printf_filtered (" collisions: %u\n", bsc->collisions);
1583 }
1584 }
1585
1586 /* The "mt print symbol-cache-statistics" command. */
1587
1588 static void
1589 maintenance_print_symbol_cache_statistics (const char *args, int from_tty)
1590 {
1591 struct program_space *pspace;
1592
1593 ALL_PSPACES (pspace)
1594 {
1595 struct symbol_cache *cache;
1596
1597 printf_filtered (_("Symbol cache statistics for pspace %d\n%s:\n"),
1598 pspace->num,
1599 pspace->symfile_object_file != NULL
1600 ? objfile_name (pspace->symfile_object_file)
1601 : "(no object file)");
1602
1603 /* If the cache hasn't been created yet, avoid creating one. */
1604 cache = symbol_cache_key.get (pspace);
1605 if (cache == NULL)
1606 printf_filtered (" empty, no stats available\n");
1607 else
1608 symbol_cache_stats (cache);
1609 }
1610 }
1611
1612 /* This module's 'new_objfile' observer. */
1613
1614 static void
1615 symtab_new_objfile_observer (struct objfile *objfile)
1616 {
1617 /* Ideally we'd use OBJFILE->pspace, but OBJFILE may be NULL. */
1618 symbol_cache_flush (current_program_space);
1619 }
1620
1621 /* This module's 'free_objfile' observer. */
1622
1623 static void
1624 symtab_free_objfile_observer (struct objfile *objfile)
1625 {
1626 symbol_cache_flush (objfile->pspace);
1627 }
1628 \f
1629 /* Debug symbols usually don't have section information. We need to dig that
1630 out of the minimal symbols and stash that in the debug symbol. */
1631
1632 void
1633 fixup_section (struct general_symbol_info *ginfo,
1634 CORE_ADDR addr, struct objfile *objfile)
1635 {
1636 struct minimal_symbol *msym;
1637
1638 /* First, check whether a minimal symbol with the same name exists
1639 and points to the same address. The address check is required
1640 e.g. on PowerPC64, where the minimal symbol for a function will
1641 point to the function descriptor, while the debug symbol will
1642 point to the actual function code. */
1643 msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->name, objfile);
1644 if (msym)
1645 ginfo->section = MSYMBOL_SECTION (msym);
1646 else
1647 {
1648 /* Static, function-local variables do appear in the linker
1649 (minimal) symbols, but are frequently given names that won't
1650 be found via lookup_minimal_symbol(). E.g., it has been
1651 observed in frv-uclinux (ELF) executables that a static,
1652 function-local variable named "foo" might appear in the
1653 linker symbols as "foo.6" or "foo.3". Thus, there is no
1654 point in attempting to extend the lookup-by-name mechanism to
1655 handle this case due to the fact that there can be multiple
1656 names.
1657
1658 So, instead, search the section table when lookup by name has
1659 failed. The ``addr'' and ``endaddr'' fields may have already
1660 been relocated. If so, the relocation offset (i.e. the
1661 ANOFFSET value) needs to be subtracted from these values when
1662 performing the comparison. We unconditionally subtract it,
1663 because, when no relocation has been performed, the ANOFFSET
1664 value will simply be zero.
1665
1666 The address of the symbol whose section we're fixing up HAS
1667 NOT BEEN adjusted (relocated) yet. It can't have been since
1668 the section isn't yet known and knowing the section is
1669 necessary in order to add the correct relocation value. In
1670 other words, we wouldn't even be in this function (attempting
1671 to compute the section) if it were already known.
1672
1673 Note that it is possible to search the minimal symbols
1674 (subtracting the relocation value if necessary) to find the
1675 matching minimal symbol, but this is overkill and much less
1676 efficient. It is not necessary to find the matching minimal
1677 symbol, only its section.
1678
1679 Note that this technique (of doing a section table search)
1680 can fail when unrelocated section addresses overlap. For
1681 this reason, we still attempt a lookup by name prior to doing
1682 a search of the section table. */
1683
1684 struct obj_section *s;
1685 int fallback = -1;
1686
1687 ALL_OBJFILE_OSECTIONS (objfile, s)
1688 {
1689 int idx = s - objfile->sections;
1690 CORE_ADDR offset = ANOFFSET (objfile->section_offsets, idx);
1691
1692 if (fallback == -1)
1693 fallback = idx;
1694
1695 if (obj_section_addr (s) - offset <= addr
1696 && addr < obj_section_endaddr (s) - offset)
1697 {
1698 ginfo->section = idx;
1699 return;
1700 }
1701 }
1702
1703 /* If we didn't find the section, assume it is in the first
1704 section. If there is no allocated section, then it hardly
1705 matters what we pick, so just pick zero. */
1706 if (fallback == -1)
1707 ginfo->section = 0;
1708 else
1709 ginfo->section = fallback;
1710 }
1711 }
1712
1713 struct symbol *
1714 fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
1715 {
1716 CORE_ADDR addr;
1717
1718 if (!sym)
1719 return NULL;
1720
1721 if (!SYMBOL_OBJFILE_OWNED (sym))
1722 return sym;
1723
1724 /* We either have an OBJFILE, or we can get at it from the sym's
1725 symtab. Anything else is a bug. */
1726 gdb_assert (objfile || symbol_symtab (sym));
1727
1728 if (objfile == NULL)
1729 objfile = symbol_objfile (sym);
1730
1731 if (SYMBOL_OBJ_SECTION (objfile, sym))
1732 return sym;
1733
1734 /* We should have an objfile by now. */
1735 gdb_assert (objfile);
1736
1737 switch (SYMBOL_CLASS (sym))
1738 {
1739 case LOC_STATIC:
1740 case LOC_LABEL:
1741 addr = SYMBOL_VALUE_ADDRESS (sym);
1742 break;
1743 case LOC_BLOCK:
1744 addr = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym));
1745 break;
1746
1747 default:
1748 /* Nothing else will be listed in the minsyms -- no use looking
1749 it up. */
1750 return sym;
1751 }
1752
1753 fixup_section (&sym->ginfo, addr, objfile);
1754
1755 return sym;
1756 }
1757
1758 /* See symtab.h. */
1759
1760 demangle_for_lookup_info::demangle_for_lookup_info
1761 (const lookup_name_info &lookup_name, language lang)
1762 {
1763 demangle_result_storage storage;
1764
1765 if (lookup_name.ignore_parameters () && lang == language_cplus)
1766 {
1767 gdb::unique_xmalloc_ptr<char> without_params
1768 = cp_remove_params_if_any (lookup_name.name ().c_str (),
1769 lookup_name.completion_mode ());
1770
1771 if (without_params != NULL)
1772 {
1773 if (lookup_name.match_type () != symbol_name_match_type::SEARCH_NAME)
1774 m_demangled_name = demangle_for_lookup (without_params.get (),
1775 lang, storage);
1776 return;
1777 }
1778 }
1779
1780 if (lookup_name.match_type () == symbol_name_match_type::SEARCH_NAME)
1781 m_demangled_name = lookup_name.name ();
1782 else
1783 m_demangled_name = demangle_for_lookup (lookup_name.name ().c_str (),
1784 lang, storage);
1785 }
1786
1787 /* See symtab.h. */
1788
1789 const lookup_name_info &
1790 lookup_name_info::match_any ()
1791 {
1792 /* Lookup any symbol that "" would complete. I.e., this matches all
1793 symbol names. */
1794 static const lookup_name_info lookup_name ({}, symbol_name_match_type::FULL,
1795 true);
1796
1797 return lookup_name;
1798 }
1799
1800 /* Compute the demangled form of NAME as used by the various symbol
1801 lookup functions. The result can either be the input NAME
1802 directly, or a pointer to a buffer owned by the STORAGE object.
1803
1804 For Ada, this function just returns NAME, unmodified.
1805 Normally, Ada symbol lookups are performed using the encoded name
1806 rather than the demangled name, and so it might seem to make sense
1807 for this function to return an encoded version of NAME.
1808 Unfortunately, we cannot do this, because this function is used in
1809 circumstances where it is not appropriate to try to encode NAME.
1810 For instance, when displaying the frame info, we demangle the name
1811 of each parameter, and then perform a symbol lookup inside our
1812 function using that demangled name. In Ada, certain functions
1813 have internally-generated parameters whose name contain uppercase
1814 characters. Encoding those name would result in those uppercase
1815 characters to become lowercase, and thus cause the symbol lookup
1816 to fail. */
1817
1818 const char *
1819 demangle_for_lookup (const char *name, enum language lang,
1820 demangle_result_storage &storage)
1821 {
1822 /* If we are using C++, D, or Go, demangle the name before doing a
1823 lookup, so we can always binary search. */
1824 if (lang == language_cplus)
1825 {
1826 char *demangled_name = gdb_demangle (name, DMGL_ANSI | DMGL_PARAMS);
1827 if (demangled_name != NULL)
1828 return storage.set_malloc_ptr (demangled_name);
1829
1830 /* If we were given a non-mangled name, canonicalize it
1831 according to the language (so far only for C++). */
1832 std::string canon = cp_canonicalize_string (name);
1833 if (!canon.empty ())
1834 return storage.swap_string (canon);
1835 }
1836 else if (lang == language_d)
1837 {
1838 char *demangled_name = d_demangle (name, 0);
1839 if (demangled_name != NULL)
1840 return storage.set_malloc_ptr (demangled_name);
1841 }
1842 else if (lang == language_go)
1843 {
1844 char *demangled_name = go_demangle (name, 0);
1845 if (demangled_name != NULL)
1846 return storage.set_malloc_ptr (demangled_name);
1847 }
1848
1849 return name;
1850 }
1851
1852 /* See symtab.h. */
1853
1854 unsigned int
1855 search_name_hash (enum language language, const char *search_name)
1856 {
1857 return language_def (language)->la_search_name_hash (search_name);
1858 }
1859
1860 /* See symtab.h.
1861
1862 This function (or rather its subordinates) have a bunch of loops and
1863 it would seem to be attractive to put in some QUIT's (though I'm not really
1864 sure whether it can run long enough to be really important). But there
1865 are a few calls for which it would appear to be bad news to quit
1866 out of here: e.g., find_proc_desc in alpha-mdebug-tdep.c. (Note
1867 that there is C++ code below which can error(), but that probably
1868 doesn't affect these calls since they are looking for a known
1869 variable and thus can probably assume it will never hit the C++
1870 code). */
1871
1872 struct block_symbol
1873 lookup_symbol_in_language (const char *name, const struct block *block,
1874 const domain_enum domain, enum language lang,
1875 struct field_of_this_result *is_a_field_of_this)
1876 {
1877 demangle_result_storage storage;
1878 const char *modified_name = demangle_for_lookup (name, lang, storage);
1879
1880 return lookup_symbol_aux (modified_name,
1881 symbol_name_match_type::FULL,
1882 block, domain, lang,
1883 is_a_field_of_this);
1884 }
1885
1886 /* See symtab.h. */
1887
1888 struct block_symbol
1889 lookup_symbol (const char *name, const struct block *block,
1890 domain_enum domain,
1891 struct field_of_this_result *is_a_field_of_this)
1892 {
1893 return lookup_symbol_in_language (name, block, domain,
1894 current_language->la_language,
1895 is_a_field_of_this);
1896 }
1897
1898 /* See symtab.h. */
1899
1900 struct block_symbol
1901 lookup_symbol_search_name (const char *search_name, const struct block *block,
1902 domain_enum domain)
1903 {
1904 return lookup_symbol_aux (search_name, symbol_name_match_type::SEARCH_NAME,
1905 block, domain, language_asm, NULL);
1906 }
1907
1908 /* See symtab.h. */
1909
1910 struct block_symbol
1911 lookup_language_this (const struct language_defn *lang,
1912 const struct block *block)
1913 {
1914 if (lang->la_name_of_this == NULL || block == NULL)
1915 return {};
1916
1917 if (symbol_lookup_debug > 1)
1918 {
1919 struct objfile *objfile = lookup_objfile_from_block (block);
1920
1921 fprintf_unfiltered (gdb_stdlog,
1922 "lookup_language_this (%s, %s (objfile %s))",
1923 lang->la_name, host_address_to_string (block),
1924 objfile_debug_name (objfile));
1925 }
1926
1927 while (block)
1928 {
1929 struct symbol *sym;
1930
1931 sym = block_lookup_symbol (block, lang->la_name_of_this,
1932 symbol_name_match_type::SEARCH_NAME,
1933 VAR_DOMAIN);
1934 if (sym != NULL)
1935 {
1936 if (symbol_lookup_debug > 1)
1937 {
1938 fprintf_unfiltered (gdb_stdlog, " = %s (%s, block %s)\n",
1939 SYMBOL_PRINT_NAME (sym),
1940 host_address_to_string (sym),
1941 host_address_to_string (block));
1942 }
1943 return (struct block_symbol) {sym, block};
1944 }
1945 if (BLOCK_FUNCTION (block))
1946 break;
1947 block = BLOCK_SUPERBLOCK (block);
1948 }
1949
1950 if (symbol_lookup_debug > 1)
1951 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
1952 return {};
1953 }
1954
1955 /* Given TYPE, a structure/union,
1956 return 1 if the component named NAME from the ultimate target
1957 structure/union is defined, otherwise, return 0. */
1958
1959 static int
1960 check_field (struct type *type, const char *name,
1961 struct field_of_this_result *is_a_field_of_this)
1962 {
1963 int i;
1964
1965 /* The type may be a stub. */
1966 type = check_typedef (type);
1967
1968 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1969 {
1970 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1971
1972 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1973 {
1974 is_a_field_of_this->type = type;
1975 is_a_field_of_this->field = &TYPE_FIELD (type, i);
1976 return 1;
1977 }
1978 }
1979
1980 /* C++: If it was not found as a data field, then try to return it
1981 as a pointer to a method. */
1982
1983 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
1984 {
1985 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
1986 {
1987 is_a_field_of_this->type = type;
1988 is_a_field_of_this->fn_field = &TYPE_FN_FIELDLIST (type, i);
1989 return 1;
1990 }
1991 }
1992
1993 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1994 if (check_field (TYPE_BASECLASS (type, i), name, is_a_field_of_this))
1995 return 1;
1996
1997 return 0;
1998 }
1999
2000 /* Behave like lookup_symbol except that NAME is the natural name
2001 (e.g., demangled name) of the symbol that we're looking for. */
2002
2003 static struct block_symbol
2004 lookup_symbol_aux (const char *name, symbol_name_match_type match_type,
2005 const struct block *block,
2006 const domain_enum domain, enum language language,
2007 struct field_of_this_result *is_a_field_of_this)
2008 {
2009 struct block_symbol result;
2010 const struct language_defn *langdef;
2011
2012 if (symbol_lookup_debug)
2013 {
2014 struct objfile *objfile = lookup_objfile_from_block (block);
2015
2016 fprintf_unfiltered (gdb_stdlog,
2017 "lookup_symbol_aux (%s, %s (objfile %s), %s, %s)\n",
2018 name, host_address_to_string (block),
2019 objfile != NULL
2020 ? objfile_debug_name (objfile) : "NULL",
2021 domain_name (domain), language_str (language));
2022 }
2023
2024 /* Make sure we do something sensible with is_a_field_of_this, since
2025 the callers that set this parameter to some non-null value will
2026 certainly use it later. If we don't set it, the contents of
2027 is_a_field_of_this are undefined. */
2028 if (is_a_field_of_this != NULL)
2029 memset (is_a_field_of_this, 0, sizeof (*is_a_field_of_this));
2030
2031 /* Search specified block and its superiors. Don't search
2032 STATIC_BLOCK or GLOBAL_BLOCK. */
2033
2034 result = lookup_local_symbol (name, match_type, block, domain, language);
2035 if (result.symbol != NULL)
2036 {
2037 if (symbol_lookup_debug)
2038 {
2039 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2040 host_address_to_string (result.symbol));
2041 }
2042 return result;
2043 }
2044
2045 /* If requested to do so by the caller and if appropriate for LANGUAGE,
2046 check to see if NAME is a field of `this'. */
2047
2048 langdef = language_def (language);
2049
2050 /* Don't do this check if we are searching for a struct. It will
2051 not be found by check_field, but will be found by other
2052 means. */
2053 if (is_a_field_of_this != NULL && domain != STRUCT_DOMAIN)
2054 {
2055 result = lookup_language_this (langdef, block);
2056
2057 if (result.symbol)
2058 {
2059 struct type *t = result.symbol->type;
2060
2061 /* I'm not really sure that type of this can ever
2062 be typedefed; just be safe. */
2063 t = check_typedef (t);
2064 if (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_IS_REFERENCE (t))
2065 t = TYPE_TARGET_TYPE (t);
2066
2067 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2068 && TYPE_CODE (t) != TYPE_CODE_UNION)
2069 error (_("Internal error: `%s' is not an aggregate"),
2070 langdef->la_name_of_this);
2071
2072 if (check_field (t, name, is_a_field_of_this))
2073 {
2074 if (symbol_lookup_debug)
2075 {
2076 fprintf_unfiltered (gdb_stdlog,
2077 "lookup_symbol_aux (...) = NULL\n");
2078 }
2079 return {};
2080 }
2081 }
2082 }
2083
2084 /* Now do whatever is appropriate for LANGUAGE to look
2085 up static and global variables. */
2086
2087 result = langdef->la_lookup_symbol_nonlocal (langdef, name, block, domain);
2088 if (result.symbol != NULL)
2089 {
2090 if (symbol_lookup_debug)
2091 {
2092 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2093 host_address_to_string (result.symbol));
2094 }
2095 return result;
2096 }
2097
2098 /* Now search all static file-level symbols. Not strictly correct,
2099 but more useful than an error. */
2100
2101 result = lookup_static_symbol (name, domain);
2102 if (symbol_lookup_debug)
2103 {
2104 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2105 result.symbol != NULL
2106 ? host_address_to_string (result.symbol)
2107 : "NULL");
2108 }
2109 return result;
2110 }
2111
2112 /* Check to see if the symbol is defined in BLOCK or its superiors.
2113 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
2114
2115 static struct block_symbol
2116 lookup_local_symbol (const char *name,
2117 symbol_name_match_type match_type,
2118 const struct block *block,
2119 const domain_enum domain,
2120 enum language language)
2121 {
2122 struct symbol *sym;
2123 const struct block *static_block = block_static_block (block);
2124 const char *scope = block_scope (block);
2125
2126 /* Check if either no block is specified or it's a global block. */
2127
2128 if (static_block == NULL)
2129 return {};
2130
2131 while (block != static_block)
2132 {
2133 sym = lookup_symbol_in_block (name, match_type, block, domain);
2134 if (sym != NULL)
2135 return (struct block_symbol) {sym, block};
2136
2137 if (language == language_cplus || language == language_fortran)
2138 {
2139 struct block_symbol blocksym
2140 = cp_lookup_symbol_imports_or_template (scope, name, block,
2141 domain);
2142
2143 if (blocksym.symbol != NULL)
2144 return blocksym;
2145 }
2146
2147 if (BLOCK_FUNCTION (block) != NULL && block_inlined_p (block))
2148 break;
2149 block = BLOCK_SUPERBLOCK (block);
2150 }
2151
2152 /* We've reached the end of the function without finding a result. */
2153
2154 return {};
2155 }
2156
2157 /* See symtab.h. */
2158
2159 struct objfile *
2160 lookup_objfile_from_block (const struct block *block)
2161 {
2162 if (block == NULL)
2163 return NULL;
2164
2165 block = block_global_block (block);
2166 /* Look through all blockvectors. */
2167 for (objfile *obj : current_program_space->objfiles ())
2168 {
2169 for (compunit_symtab *cust : obj->compunits ())
2170 if (block == BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust),
2171 GLOBAL_BLOCK))
2172 {
2173 if (obj->separate_debug_objfile_backlink)
2174 obj = obj->separate_debug_objfile_backlink;
2175
2176 return obj;
2177 }
2178 }
2179
2180 return NULL;
2181 }
2182
2183 /* See symtab.h. */
2184
2185 struct symbol *
2186 lookup_symbol_in_block (const char *name, symbol_name_match_type match_type,
2187 const struct block *block,
2188 const domain_enum domain)
2189 {
2190 struct symbol *sym;
2191
2192 if (symbol_lookup_debug > 1)
2193 {
2194 struct objfile *objfile = lookup_objfile_from_block (block);
2195
2196 fprintf_unfiltered (gdb_stdlog,
2197 "lookup_symbol_in_block (%s, %s (objfile %s), %s)",
2198 name, host_address_to_string (block),
2199 objfile_debug_name (objfile),
2200 domain_name (domain));
2201 }
2202
2203 sym = block_lookup_symbol (block, name, match_type, domain);
2204 if (sym)
2205 {
2206 if (symbol_lookup_debug > 1)
2207 {
2208 fprintf_unfiltered (gdb_stdlog, " = %s\n",
2209 host_address_to_string (sym));
2210 }
2211 return fixup_symbol_section (sym, NULL);
2212 }
2213
2214 if (symbol_lookup_debug > 1)
2215 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
2216 return NULL;
2217 }
2218
2219 /* See symtab.h. */
2220
2221 struct block_symbol
2222 lookup_global_symbol_from_objfile (struct objfile *main_objfile,
2223 const char *name,
2224 const domain_enum domain)
2225 {
2226 for (objfile *objfile : main_objfile->separate_debug_objfiles ())
2227 {
2228 struct block_symbol result
2229 = lookup_symbol_in_objfile (objfile, GLOBAL_BLOCK, name, domain);
2230
2231 if (result.symbol != NULL)
2232 return result;
2233 }
2234
2235 return {};
2236 }
2237
2238 /* Check to see if the symbol is defined in one of the OBJFILE's
2239 symtabs. BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
2240 depending on whether or not we want to search global symbols or
2241 static symbols. */
2242
2243 static struct block_symbol
2244 lookup_symbol_in_objfile_symtabs (struct objfile *objfile, int block_index,
2245 const char *name, const domain_enum domain)
2246 {
2247 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2248
2249 if (symbol_lookup_debug > 1)
2250 {
2251 fprintf_unfiltered (gdb_stdlog,
2252 "lookup_symbol_in_objfile_symtabs (%s, %s, %s, %s)",
2253 objfile_debug_name (objfile),
2254 block_index == GLOBAL_BLOCK
2255 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2256 name, domain_name (domain));
2257 }
2258
2259 for (compunit_symtab *cust : objfile->compunits ())
2260 {
2261 const struct blockvector *bv;
2262 const struct block *block;
2263 struct block_symbol result;
2264
2265 bv = COMPUNIT_BLOCKVECTOR (cust);
2266 block = BLOCKVECTOR_BLOCK (bv, block_index);
2267 result.symbol = block_lookup_symbol_primary (block, name, domain);
2268 result.block = block;
2269 if (result.symbol != NULL)
2270 {
2271 if (symbol_lookup_debug > 1)
2272 {
2273 fprintf_unfiltered (gdb_stdlog, " = %s (block %s)\n",
2274 host_address_to_string (result.symbol),
2275 host_address_to_string (block));
2276 }
2277 result.symbol = fixup_symbol_section (result.symbol, objfile);
2278 return result;
2279
2280 }
2281 }
2282
2283 if (symbol_lookup_debug > 1)
2284 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
2285 return {};
2286 }
2287
2288 /* Wrapper around lookup_symbol_in_objfile_symtabs for search_symbols.
2289 Look up LINKAGE_NAME in DOMAIN in the global and static blocks of OBJFILE
2290 and all associated separate debug objfiles.
2291
2292 Normally we only look in OBJFILE, and not any separate debug objfiles
2293 because the outer loop will cause them to be searched too. This case is
2294 different. Here we're called from search_symbols where it will only
2295 call us for the objfile that contains a matching minsym. */
2296
2297 static struct block_symbol
2298 lookup_symbol_in_objfile_from_linkage_name (struct objfile *objfile,
2299 const char *linkage_name,
2300 domain_enum domain)
2301 {
2302 enum language lang = current_language->la_language;
2303 struct objfile *main_objfile;
2304
2305 demangle_result_storage storage;
2306 const char *modified_name = demangle_for_lookup (linkage_name, lang, storage);
2307
2308 if (objfile->separate_debug_objfile_backlink)
2309 main_objfile = objfile->separate_debug_objfile_backlink;
2310 else
2311 main_objfile = objfile;
2312
2313 for (::objfile *cur_objfile : main_objfile->separate_debug_objfiles ())
2314 {
2315 struct block_symbol result;
2316
2317 result = lookup_symbol_in_objfile_symtabs (cur_objfile, GLOBAL_BLOCK,
2318 modified_name, domain);
2319 if (result.symbol == NULL)
2320 result = lookup_symbol_in_objfile_symtabs (cur_objfile, STATIC_BLOCK,
2321 modified_name, domain);
2322 if (result.symbol != NULL)
2323 return result;
2324 }
2325
2326 return {};
2327 }
2328
2329 /* A helper function that throws an exception when a symbol was found
2330 in a psymtab but not in a symtab. */
2331
2332 static void ATTRIBUTE_NORETURN
2333 error_in_psymtab_expansion (int block_index, const char *name,
2334 struct compunit_symtab *cust)
2335 {
2336 error (_("\
2337 Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n\
2338 %s may be an inlined function, or may be a template function\n \
2339 (if a template, try specifying an instantiation: %s<type>)."),
2340 block_index == GLOBAL_BLOCK ? "global" : "static",
2341 name,
2342 symtab_to_filename_for_display (compunit_primary_filetab (cust)),
2343 name, name);
2344 }
2345
2346 /* A helper function for various lookup routines that interfaces with
2347 the "quick" symbol table functions. */
2348
2349 static struct block_symbol
2350 lookup_symbol_via_quick_fns (struct objfile *objfile, int block_index,
2351 const char *name, const domain_enum domain)
2352 {
2353 struct compunit_symtab *cust;
2354 const struct blockvector *bv;
2355 const struct block *block;
2356 struct block_symbol result;
2357
2358 if (!objfile->sf)
2359 return {};
2360
2361 if (symbol_lookup_debug > 1)
2362 {
2363 fprintf_unfiltered (gdb_stdlog,
2364 "lookup_symbol_via_quick_fns (%s, %s, %s, %s)\n",
2365 objfile_debug_name (objfile),
2366 block_index == GLOBAL_BLOCK
2367 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2368 name, domain_name (domain));
2369 }
2370
2371 cust = objfile->sf->qf->lookup_symbol (objfile, block_index, name, domain);
2372 if (cust == NULL)
2373 {
2374 if (symbol_lookup_debug > 1)
2375 {
2376 fprintf_unfiltered (gdb_stdlog,
2377 "lookup_symbol_via_quick_fns (...) = NULL\n");
2378 }
2379 return {};
2380 }
2381
2382 bv = COMPUNIT_BLOCKVECTOR (cust);
2383 block = BLOCKVECTOR_BLOCK (bv, block_index);
2384 result.symbol = block_lookup_symbol (block, name,
2385 symbol_name_match_type::FULL, domain);
2386 if (result.symbol == NULL)
2387 error_in_psymtab_expansion (block_index, name, cust);
2388
2389 if (symbol_lookup_debug > 1)
2390 {
2391 fprintf_unfiltered (gdb_stdlog,
2392 "lookup_symbol_via_quick_fns (...) = %s (block %s)\n",
2393 host_address_to_string (result.symbol),
2394 host_address_to_string (block));
2395 }
2396
2397 result.symbol = fixup_symbol_section (result.symbol, objfile);
2398 result.block = block;
2399 return result;
2400 }
2401
2402 /* See symtab.h. */
2403
2404 struct block_symbol
2405 basic_lookup_symbol_nonlocal (const struct language_defn *langdef,
2406 const char *name,
2407 const struct block *block,
2408 const domain_enum domain)
2409 {
2410 struct block_symbol result;
2411
2412 /* NOTE: carlton/2003-05-19: The comments below were written when
2413 this (or what turned into this) was part of lookup_symbol_aux;
2414 I'm much less worried about these questions now, since these
2415 decisions have turned out well, but I leave these comments here
2416 for posterity. */
2417
2418 /* NOTE: carlton/2002-12-05: There is a question as to whether or
2419 not it would be appropriate to search the current global block
2420 here as well. (That's what this code used to do before the
2421 is_a_field_of_this check was moved up.) On the one hand, it's
2422 redundant with the lookup in all objfiles search that happens
2423 next. On the other hand, if decode_line_1 is passed an argument
2424 like filename:var, then the user presumably wants 'var' to be
2425 searched for in filename. On the third hand, there shouldn't be
2426 multiple global variables all of which are named 'var', and it's
2427 not like decode_line_1 has ever restricted its search to only
2428 global variables in a single filename. All in all, only
2429 searching the static block here seems best: it's correct and it's
2430 cleanest. */
2431
2432 /* NOTE: carlton/2002-12-05: There's also a possible performance
2433 issue here: if you usually search for global symbols in the
2434 current file, then it would be slightly better to search the
2435 current global block before searching all the symtabs. But there
2436 are other factors that have a much greater effect on performance
2437 than that one, so I don't think we should worry about that for
2438 now. */
2439
2440 /* NOTE: dje/2014-10-26: The lookup in all objfiles search could skip
2441 the current objfile. Searching the current objfile first is useful
2442 for both matching user expectations as well as performance. */
2443
2444 result = lookup_symbol_in_static_block (name, block, domain);
2445 if (result.symbol != NULL)
2446 return result;
2447
2448 /* If we didn't find a definition for a builtin type in the static block,
2449 search for it now. This is actually the right thing to do and can be
2450 a massive performance win. E.g., when debugging a program with lots of
2451 shared libraries we could search all of them only to find out the
2452 builtin type isn't defined in any of them. This is common for types
2453 like "void". */
2454 if (domain == VAR_DOMAIN)
2455 {
2456 struct gdbarch *gdbarch;
2457
2458 if (block == NULL)
2459 gdbarch = target_gdbarch ();
2460 else
2461 gdbarch = block_gdbarch (block);
2462 result.symbol = language_lookup_primitive_type_as_symbol (langdef,
2463 gdbarch, name);
2464 result.block = NULL;
2465 if (result.symbol != NULL)
2466 return result;
2467 }
2468
2469 return lookup_global_symbol (name, block, domain);
2470 }
2471
2472 /* See symtab.h. */
2473
2474 struct block_symbol
2475 lookup_symbol_in_static_block (const char *name,
2476 const struct block *block,
2477 const domain_enum domain)
2478 {
2479 const struct block *static_block = block_static_block (block);
2480 struct symbol *sym;
2481
2482 if (static_block == NULL)
2483 return {};
2484
2485 if (symbol_lookup_debug)
2486 {
2487 struct objfile *objfile = lookup_objfile_from_block (static_block);
2488
2489 fprintf_unfiltered (gdb_stdlog,
2490 "lookup_symbol_in_static_block (%s, %s (objfile %s),"
2491 " %s)\n",
2492 name,
2493 host_address_to_string (block),
2494 objfile_debug_name (objfile),
2495 domain_name (domain));
2496 }
2497
2498 sym = lookup_symbol_in_block (name,
2499 symbol_name_match_type::FULL,
2500 static_block, domain);
2501 if (symbol_lookup_debug)
2502 {
2503 fprintf_unfiltered (gdb_stdlog,
2504 "lookup_symbol_in_static_block (...) = %s\n",
2505 sym != NULL ? host_address_to_string (sym) : "NULL");
2506 }
2507 return (struct block_symbol) {sym, static_block};
2508 }
2509
2510 /* Perform the standard symbol lookup of NAME in OBJFILE:
2511 1) First search expanded symtabs, and if not found
2512 2) Search the "quick" symtabs (partial or .gdb_index).
2513 BLOCK_INDEX is one of GLOBAL_BLOCK or STATIC_BLOCK. */
2514
2515 static struct block_symbol
2516 lookup_symbol_in_objfile (struct objfile *objfile, int block_index,
2517 const char *name, const domain_enum domain)
2518 {
2519 struct block_symbol result;
2520
2521 if (symbol_lookup_debug)
2522 {
2523 fprintf_unfiltered (gdb_stdlog,
2524 "lookup_symbol_in_objfile (%s, %s, %s, %s)\n",
2525 objfile_debug_name (objfile),
2526 block_index == GLOBAL_BLOCK
2527 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2528 name, domain_name (domain));
2529 }
2530
2531 result = lookup_symbol_in_objfile_symtabs (objfile, block_index,
2532 name, domain);
2533 if (result.symbol != NULL)
2534 {
2535 if (symbol_lookup_debug)
2536 {
2537 fprintf_unfiltered (gdb_stdlog,
2538 "lookup_symbol_in_objfile (...) = %s"
2539 " (in symtabs)\n",
2540 host_address_to_string (result.symbol));
2541 }
2542 return result;
2543 }
2544
2545 result = lookup_symbol_via_quick_fns (objfile, block_index,
2546 name, domain);
2547 if (symbol_lookup_debug)
2548 {
2549 fprintf_unfiltered (gdb_stdlog,
2550 "lookup_symbol_in_objfile (...) = %s%s\n",
2551 result.symbol != NULL
2552 ? host_address_to_string (result.symbol)
2553 : "NULL",
2554 result.symbol != NULL ? " (via quick fns)" : "");
2555 }
2556 return result;
2557 }
2558
2559 /* See symtab.h. */
2560
2561 struct block_symbol
2562 lookup_static_symbol (const char *name, const domain_enum domain)
2563 {
2564 struct symbol_cache *cache = get_symbol_cache (current_program_space);
2565 struct block_symbol result;
2566 struct block_symbol_cache *bsc;
2567 struct symbol_cache_slot *slot;
2568
2569 /* Lookup in STATIC_BLOCK is not current-objfile-dependent, so just pass
2570 NULL for OBJFILE_CONTEXT. */
2571 result = symbol_cache_lookup (cache, NULL, STATIC_BLOCK, name, domain,
2572 &bsc, &slot);
2573 if (result.symbol != NULL)
2574 {
2575 if (SYMBOL_LOOKUP_FAILED_P (result))
2576 return {};
2577 return result;
2578 }
2579
2580 for (objfile *objfile : current_program_space->objfiles ())
2581 {
2582 result = lookup_symbol_in_objfile (objfile, STATIC_BLOCK, name, domain);
2583 if (result.symbol != NULL)
2584 {
2585 /* Still pass NULL for OBJFILE_CONTEXT here. */
2586 symbol_cache_mark_found (bsc, slot, NULL, result.symbol,
2587 result.block);
2588 return result;
2589 }
2590 }
2591
2592 /* Still pass NULL for OBJFILE_CONTEXT here. */
2593 symbol_cache_mark_not_found (bsc, slot, NULL, name, domain);
2594 return {};
2595 }
2596
2597 /* Private data to be used with lookup_symbol_global_iterator_cb. */
2598
2599 struct global_sym_lookup_data
2600 {
2601 /* The name of the symbol we are searching for. */
2602 const char *name;
2603
2604 /* The domain to use for our search. */
2605 domain_enum domain;
2606
2607 /* The field where the callback should store the symbol if found.
2608 It should be initialized to {NULL, NULL} before the search is started. */
2609 struct block_symbol result;
2610 };
2611
2612 /* A callback function for gdbarch_iterate_over_objfiles_in_search_order.
2613 It searches by name for a symbol in the GLOBAL_BLOCK of the given
2614 OBJFILE. The arguments for the search are passed via CB_DATA,
2615 which in reality is a pointer to struct global_sym_lookup_data. */
2616
2617 static int
2618 lookup_symbol_global_iterator_cb (struct objfile *objfile,
2619 void *cb_data)
2620 {
2621 struct global_sym_lookup_data *data =
2622 (struct global_sym_lookup_data *) cb_data;
2623
2624 gdb_assert (data->result.symbol == NULL
2625 && data->result.block == NULL);
2626
2627 data->result = lookup_symbol_in_objfile (objfile, GLOBAL_BLOCK,
2628 data->name, data->domain);
2629
2630 /* If we found a match, tell the iterator to stop. Otherwise,
2631 keep going. */
2632 return (data->result.symbol != NULL);
2633 }
2634
2635 /* See symtab.h. */
2636
2637 struct block_symbol
2638 lookup_global_symbol (const char *name,
2639 const struct block *block,
2640 const domain_enum domain)
2641 {
2642 struct symbol_cache *cache = get_symbol_cache (current_program_space);
2643 struct block_symbol result;
2644 struct objfile *objfile;
2645 struct global_sym_lookup_data lookup_data;
2646 struct block_symbol_cache *bsc;
2647 struct symbol_cache_slot *slot;
2648
2649 objfile = lookup_objfile_from_block (block);
2650
2651 /* First see if we can find the symbol in the cache.
2652 This works because we use the current objfile to qualify the lookup. */
2653 result = symbol_cache_lookup (cache, objfile, GLOBAL_BLOCK, name, domain,
2654 &bsc, &slot);
2655 if (result.symbol != NULL)
2656 {
2657 if (SYMBOL_LOOKUP_FAILED_P (result))
2658 return {};
2659 return result;
2660 }
2661
2662 /* Call library-specific lookup procedure. */
2663 if (objfile != NULL)
2664 result = solib_global_lookup (objfile, name, domain);
2665
2666 /* If that didn't work go a global search (of global blocks, heh). */
2667 if (result.symbol == NULL)
2668 {
2669 memset (&lookup_data, 0, sizeof (lookup_data));
2670 lookup_data.name = name;
2671 lookup_data.domain = domain;
2672 gdbarch_iterate_over_objfiles_in_search_order
2673 (objfile != NULL ? get_objfile_arch (objfile) : target_gdbarch (),
2674 lookup_symbol_global_iterator_cb, &lookup_data, objfile);
2675 result = lookup_data.result;
2676 }
2677
2678 if (result.symbol != NULL)
2679 symbol_cache_mark_found (bsc, slot, objfile, result.symbol, result.block);
2680 else
2681 symbol_cache_mark_not_found (bsc, slot, objfile, name, domain);
2682
2683 return result;
2684 }
2685
2686 int
2687 symbol_matches_domain (enum language symbol_language,
2688 domain_enum symbol_domain,
2689 domain_enum domain)
2690 {
2691 /* For C++ "struct foo { ... }" also defines a typedef for "foo".
2692 Similarly, any Ada type declaration implicitly defines a typedef. */
2693 if (symbol_language == language_cplus
2694 || symbol_language == language_d
2695 || symbol_language == language_ada
2696 || symbol_language == language_rust)
2697 {
2698 if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN)
2699 && symbol_domain == STRUCT_DOMAIN)
2700 return 1;
2701 }
2702 /* For all other languages, strict match is required. */
2703 return (symbol_domain == domain);
2704 }
2705
2706 /* See symtab.h. */
2707
2708 struct type *
2709 lookup_transparent_type (const char *name)
2710 {
2711 return current_language->la_lookup_transparent_type (name);
2712 }
2713
2714 /* A helper for basic_lookup_transparent_type that interfaces with the
2715 "quick" symbol table functions. */
2716
2717 static struct type *
2718 basic_lookup_transparent_type_quick (struct objfile *objfile, int block_index,
2719 const char *name)
2720 {
2721 struct compunit_symtab *cust;
2722 const struct blockvector *bv;
2723 const struct block *block;
2724 struct symbol *sym;
2725
2726 if (!objfile->sf)
2727 return NULL;
2728 cust = objfile->sf->qf->lookup_symbol (objfile, block_index, name,
2729 STRUCT_DOMAIN);
2730 if (cust == NULL)
2731 return NULL;
2732
2733 bv = COMPUNIT_BLOCKVECTOR (cust);
2734 block = BLOCKVECTOR_BLOCK (bv, block_index);
2735 sym = block_find_symbol (block, name, STRUCT_DOMAIN,
2736 block_find_non_opaque_type, NULL);
2737 if (sym == NULL)
2738 error_in_psymtab_expansion (block_index, name, cust);
2739 gdb_assert (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)));
2740 return SYMBOL_TYPE (sym);
2741 }
2742
2743 /* Subroutine of basic_lookup_transparent_type to simplify it.
2744 Look up the non-opaque definition of NAME in BLOCK_INDEX of OBJFILE.
2745 BLOCK_INDEX is either GLOBAL_BLOCK or STATIC_BLOCK. */
2746
2747 static struct type *
2748 basic_lookup_transparent_type_1 (struct objfile *objfile, int block_index,
2749 const char *name)
2750 {
2751 const struct blockvector *bv;
2752 const struct block *block;
2753 const struct symbol *sym;
2754
2755 for (compunit_symtab *cust : objfile->compunits ())
2756 {
2757 bv = COMPUNIT_BLOCKVECTOR (cust);
2758 block = BLOCKVECTOR_BLOCK (bv, block_index);
2759 sym = block_find_symbol (block, name, STRUCT_DOMAIN,
2760 block_find_non_opaque_type, NULL);
2761 if (sym != NULL)
2762 {
2763 gdb_assert (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)));
2764 return SYMBOL_TYPE (sym);
2765 }
2766 }
2767
2768 return NULL;
2769 }
2770
2771 /* The standard implementation of lookup_transparent_type. This code
2772 was modeled on lookup_symbol -- the parts not relevant to looking
2773 up types were just left out. In particular it's assumed here that
2774 types are available in STRUCT_DOMAIN and only in file-static or
2775 global blocks. */
2776
2777 struct type *
2778 basic_lookup_transparent_type (const char *name)
2779 {
2780 struct type *t;
2781
2782 /* Now search all the global symbols. Do the symtab's first, then
2783 check the psymtab's. If a psymtab indicates the existence
2784 of the desired name as a global, then do psymtab-to-symtab
2785 conversion on the fly and return the found symbol. */
2786
2787 for (objfile *objfile : current_program_space->objfiles ())
2788 {
2789 t = basic_lookup_transparent_type_1 (objfile, GLOBAL_BLOCK, name);
2790 if (t)
2791 return t;
2792 }
2793
2794 for (objfile *objfile : current_program_space->objfiles ())
2795 {
2796 t = basic_lookup_transparent_type_quick (objfile, GLOBAL_BLOCK, name);
2797 if (t)
2798 return t;
2799 }
2800
2801 /* Now search the static file-level symbols.
2802 Not strictly correct, but more useful than an error.
2803 Do the symtab's first, then
2804 check the psymtab's. If a psymtab indicates the existence
2805 of the desired name as a file-level static, then do psymtab-to-symtab
2806 conversion on the fly and return the found symbol. */
2807
2808 for (objfile *objfile : current_program_space->objfiles ())
2809 {
2810 t = basic_lookup_transparent_type_1 (objfile, STATIC_BLOCK, name);
2811 if (t)
2812 return t;
2813 }
2814
2815 for (objfile *objfile : current_program_space->objfiles ())
2816 {
2817 t = basic_lookup_transparent_type_quick (objfile, STATIC_BLOCK, name);
2818 if (t)
2819 return t;
2820 }
2821
2822 return (struct type *) 0;
2823 }
2824
2825 /* Iterate over the symbols named NAME, matching DOMAIN, in BLOCK.
2826
2827 For each symbol that matches, CALLBACK is called. The symbol is
2828 passed to the callback.
2829
2830 If CALLBACK returns false, the iteration ends. Otherwise, the
2831 search continues. */
2832
2833 void
2834 iterate_over_symbols (const struct block *block,
2835 const lookup_name_info &name,
2836 const domain_enum domain,
2837 gdb::function_view<symbol_found_callback_ftype> callback)
2838 {
2839 struct block_iterator iter;
2840 struct symbol *sym;
2841
2842 ALL_BLOCK_SYMBOLS_WITH_NAME (block, name, iter, sym)
2843 {
2844 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
2845 SYMBOL_DOMAIN (sym), domain))
2846 {
2847 struct block_symbol block_sym = {sym, block};
2848
2849 if (!callback (&block_sym))
2850 return;
2851 }
2852 }
2853 }
2854
2855 /* Find the compunit symtab associated with PC and SECTION.
2856 This will read in debug info as necessary. */
2857
2858 struct compunit_symtab *
2859 find_pc_sect_compunit_symtab (CORE_ADDR pc, struct obj_section *section)
2860 {
2861 struct compunit_symtab *best_cust = NULL;
2862 CORE_ADDR distance = 0;
2863 struct bound_minimal_symbol msymbol;
2864
2865 /* If we know that this is not a text address, return failure. This is
2866 necessary because we loop based on the block's high and low code
2867 addresses, which do not include the data ranges, and because
2868 we call find_pc_sect_psymtab which has a similar restriction based
2869 on the partial_symtab's texthigh and textlow. */
2870 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
2871 if (msymbol.minsym && msymbol.minsym->data_p ())
2872 return NULL;
2873
2874 /* Search all symtabs for the one whose file contains our address, and which
2875 is the smallest of all the ones containing the address. This is designed
2876 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
2877 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
2878 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
2879
2880 This happens for native ecoff format, where code from included files
2881 gets its own symtab. The symtab for the included file should have
2882 been read in already via the dependency mechanism.
2883 It might be swifter to create several symtabs with the same name
2884 like xcoff does (I'm not sure).
2885
2886 It also happens for objfiles that have their functions reordered.
2887 For these, the symtab we are looking for is not necessarily read in. */
2888
2889 for (objfile *obj_file : current_program_space->objfiles ())
2890 {
2891 for (compunit_symtab *cust : obj_file->compunits ())
2892 {
2893 const struct block *b;
2894 const struct blockvector *bv;
2895
2896 bv = COMPUNIT_BLOCKVECTOR (cust);
2897 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
2898
2899 if (BLOCK_START (b) <= pc
2900 && BLOCK_END (b) > pc
2901 && (distance == 0
2902 || BLOCK_END (b) - BLOCK_START (b) < distance))
2903 {
2904 /* For an objfile that has its functions reordered,
2905 find_pc_psymtab will find the proper partial symbol table
2906 and we simply return its corresponding symtab. */
2907 /* In order to better support objfiles that contain both
2908 stabs and coff debugging info, we continue on if a psymtab
2909 can't be found. */
2910 if ((obj_file->flags & OBJF_REORDERED) && obj_file->sf)
2911 {
2912 struct compunit_symtab *result;
2913
2914 result
2915 = obj_file->sf->qf->find_pc_sect_compunit_symtab (obj_file,
2916 msymbol,
2917 pc,
2918 section,
2919 0);
2920 if (result != NULL)
2921 return result;
2922 }
2923 if (section != 0)
2924 {
2925 struct block_iterator iter;
2926 struct symbol *sym = NULL;
2927
2928 ALL_BLOCK_SYMBOLS (b, iter, sym)
2929 {
2930 fixup_symbol_section (sym, obj_file);
2931 if (matching_obj_sections (SYMBOL_OBJ_SECTION (obj_file,
2932 sym),
2933 section))
2934 break;
2935 }
2936 if (sym == NULL)
2937 continue; /* No symbol in this symtab matches
2938 section. */
2939 }
2940 distance = BLOCK_END (b) - BLOCK_START (b);
2941 best_cust = cust;
2942 }
2943 }
2944 }
2945
2946 if (best_cust != NULL)
2947 return best_cust;
2948
2949 /* Not found in symtabs, search the "quick" symtabs (e.g. psymtabs). */
2950
2951 for (objfile *objf : current_program_space->objfiles ())
2952 {
2953 struct compunit_symtab *result;
2954
2955 if (!objf->sf)
2956 continue;
2957 result = objf->sf->qf->find_pc_sect_compunit_symtab (objf,
2958 msymbol,
2959 pc, section,
2960 1);
2961 if (result != NULL)
2962 return result;
2963 }
2964
2965 return NULL;
2966 }
2967
2968 /* Find the compunit symtab associated with PC.
2969 This will read in debug info as necessary.
2970 Backward compatibility, no section. */
2971
2972 struct compunit_symtab *
2973 find_pc_compunit_symtab (CORE_ADDR pc)
2974 {
2975 return find_pc_sect_compunit_symtab (pc, find_pc_mapped_section (pc));
2976 }
2977
2978 /* See symtab.h. */
2979
2980 struct symbol *
2981 find_symbol_at_address (CORE_ADDR address)
2982 {
2983 for (objfile *objfile : current_program_space->objfiles ())
2984 {
2985 if (objfile->sf == NULL
2986 || objfile->sf->qf->find_compunit_symtab_by_address == NULL)
2987 continue;
2988
2989 struct compunit_symtab *symtab
2990 = objfile->sf->qf->find_compunit_symtab_by_address (objfile, address);
2991 if (symtab != NULL)
2992 {
2993 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (symtab);
2994
2995 for (int i = GLOBAL_BLOCK; i <= STATIC_BLOCK; ++i)
2996 {
2997 const struct block *b = BLOCKVECTOR_BLOCK (bv, i);
2998 struct block_iterator iter;
2999 struct symbol *sym;
3000
3001 ALL_BLOCK_SYMBOLS (b, iter, sym)
3002 {
3003 if (SYMBOL_CLASS (sym) == LOC_STATIC
3004 && SYMBOL_VALUE_ADDRESS (sym) == address)
3005 return sym;
3006 }
3007 }
3008 }
3009 }
3010
3011 return NULL;
3012 }
3013
3014 \f
3015
3016 /* Find the source file and line number for a given PC value and SECTION.
3017 Return a structure containing a symtab pointer, a line number,
3018 and a pc range for the entire source line.
3019 The value's .pc field is NOT the specified pc.
3020 NOTCURRENT nonzero means, if specified pc is on a line boundary,
3021 use the line that ends there. Otherwise, in that case, the line
3022 that begins there is used. */
3023
3024 /* The big complication here is that a line may start in one file, and end just
3025 before the start of another file. This usually occurs when you #include
3026 code in the middle of a subroutine. To properly find the end of a line's PC
3027 range, we must search all symtabs associated with this compilation unit, and
3028 find the one whose first PC is closer than that of the next line in this
3029 symtab. */
3030
3031 struct symtab_and_line
3032 find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent)
3033 {
3034 struct compunit_symtab *cust;
3035 struct linetable *l;
3036 int len;
3037 struct linetable_entry *item;
3038 const struct blockvector *bv;
3039 struct bound_minimal_symbol msymbol;
3040
3041 /* Info on best line seen so far, and where it starts, and its file. */
3042
3043 struct linetable_entry *best = NULL;
3044 CORE_ADDR best_end = 0;
3045 struct symtab *best_symtab = 0;
3046
3047 /* Store here the first line number
3048 of a file which contains the line at the smallest pc after PC.
3049 If we don't find a line whose range contains PC,
3050 we will use a line one less than this,
3051 with a range from the start of that file to the first line's pc. */
3052 struct linetable_entry *alt = NULL;
3053
3054 /* Info on best line seen in this file. */
3055
3056 struct linetable_entry *prev;
3057
3058 /* If this pc is not from the current frame,
3059 it is the address of the end of a call instruction.
3060 Quite likely that is the start of the following statement.
3061 But what we want is the statement containing the instruction.
3062 Fudge the pc to make sure we get that. */
3063
3064 /* It's tempting to assume that, if we can't find debugging info for
3065 any function enclosing PC, that we shouldn't search for line
3066 number info, either. However, GAS can emit line number info for
3067 assembly files --- very helpful when debugging hand-written
3068 assembly code. In such a case, we'd have no debug info for the
3069 function, but we would have line info. */
3070
3071 if (notcurrent)
3072 pc -= 1;
3073
3074 /* elz: added this because this function returned the wrong
3075 information if the pc belongs to a stub (import/export)
3076 to call a shlib function. This stub would be anywhere between
3077 two functions in the target, and the line info was erroneously
3078 taken to be the one of the line before the pc. */
3079
3080 /* RT: Further explanation:
3081
3082 * We have stubs (trampolines) inserted between procedures.
3083 *
3084 * Example: "shr1" exists in a shared library, and a "shr1" stub also
3085 * exists in the main image.
3086 *
3087 * In the minimal symbol table, we have a bunch of symbols
3088 * sorted by start address. The stubs are marked as "trampoline",
3089 * the others appear as text. E.g.:
3090 *
3091 * Minimal symbol table for main image
3092 * main: code for main (text symbol)
3093 * shr1: stub (trampoline symbol)
3094 * foo: code for foo (text symbol)
3095 * ...
3096 * Minimal symbol table for "shr1" image:
3097 * ...
3098 * shr1: code for shr1 (text symbol)
3099 * ...
3100 *
3101 * So the code below is trying to detect if we are in the stub
3102 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
3103 * and if found, do the symbolization from the real-code address
3104 * rather than the stub address.
3105 *
3106 * Assumptions being made about the minimal symbol table:
3107 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
3108 * if we're really in the trampoline.s If we're beyond it (say
3109 * we're in "foo" in the above example), it'll have a closer
3110 * symbol (the "foo" text symbol for example) and will not
3111 * return the trampoline.
3112 * 2. lookup_minimal_symbol_text() will find a real text symbol
3113 * corresponding to the trampoline, and whose address will
3114 * be different than the trampoline address. I put in a sanity
3115 * check for the address being the same, to avoid an
3116 * infinite recursion.
3117 */
3118 msymbol = lookup_minimal_symbol_by_pc (pc);
3119 if (msymbol.minsym != NULL)
3120 if (MSYMBOL_TYPE (msymbol.minsym) == mst_solib_trampoline)
3121 {
3122 struct bound_minimal_symbol mfunsym
3123 = lookup_minimal_symbol_text (MSYMBOL_LINKAGE_NAME (msymbol.minsym),
3124 NULL);
3125
3126 if (mfunsym.minsym == NULL)
3127 /* I eliminated this warning since it is coming out
3128 * in the following situation:
3129 * gdb shmain // test program with shared libraries
3130 * (gdb) break shr1 // function in shared lib
3131 * Warning: In stub for ...
3132 * In the above situation, the shared lib is not loaded yet,
3133 * so of course we can't find the real func/line info,
3134 * but the "break" still works, and the warning is annoying.
3135 * So I commented out the warning. RT */
3136 /* warning ("In stub for %s; unable to find real function/line info",
3137 SYMBOL_LINKAGE_NAME (msymbol)); */
3138 ;
3139 /* fall through */
3140 else if (BMSYMBOL_VALUE_ADDRESS (mfunsym)
3141 == BMSYMBOL_VALUE_ADDRESS (msymbol))
3142 /* Avoid infinite recursion */
3143 /* See above comment about why warning is commented out. */
3144 /* warning ("In stub for %s; unable to find real function/line info",
3145 SYMBOL_LINKAGE_NAME (msymbol)); */
3146 ;
3147 /* fall through */
3148 else
3149 return find_pc_line (BMSYMBOL_VALUE_ADDRESS (mfunsym), 0);
3150 }
3151
3152 symtab_and_line val;
3153 val.pspace = current_program_space;
3154
3155 cust = find_pc_sect_compunit_symtab (pc, section);
3156 if (cust == NULL)
3157 {
3158 /* If no symbol information, return previous pc. */
3159 if (notcurrent)
3160 pc++;
3161 val.pc = pc;
3162 return val;
3163 }
3164
3165 bv = COMPUNIT_BLOCKVECTOR (cust);
3166
3167 /* Look at all the symtabs that share this blockvector.
3168 They all have the same apriori range, that we found was right;
3169 but they have different line tables. */
3170
3171 for (symtab *iter_s : compunit_filetabs (cust))
3172 {
3173 /* Find the best line in this symtab. */
3174 l = SYMTAB_LINETABLE (iter_s);
3175 if (!l)
3176 continue;
3177 len = l->nitems;
3178 if (len <= 0)
3179 {
3180 /* I think len can be zero if the symtab lacks line numbers
3181 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
3182 I'm not sure which, and maybe it depends on the symbol
3183 reader). */
3184 continue;
3185 }
3186
3187 prev = NULL;
3188 item = l->item; /* Get first line info. */
3189
3190 /* Is this file's first line closer than the first lines of other files?
3191 If so, record this file, and its first line, as best alternate. */
3192 if (item->pc > pc && (!alt || item->pc < alt->pc))
3193 alt = item;
3194
3195 auto pc_compare = [](const CORE_ADDR & comp_pc,
3196 const struct linetable_entry & lhs)->bool
3197 {
3198 return comp_pc < lhs.pc;
3199 };
3200
3201 struct linetable_entry *first = item;
3202 struct linetable_entry *last = item + len;
3203 item = std::upper_bound (first, last, pc, pc_compare);
3204 if (item != first)
3205 prev = item - 1; /* Found a matching item. */
3206
3207 /* At this point, prev points at the line whose start addr is <= pc, and
3208 item points at the next line. If we ran off the end of the linetable
3209 (pc >= start of the last line), then prev == item. If pc < start of
3210 the first line, prev will not be set. */
3211
3212 /* Is this file's best line closer than the best in the other files?
3213 If so, record this file, and its best line, as best so far. Don't
3214 save prev if it represents the end of a function (i.e. line number
3215 0) instead of a real line. */
3216
3217 if (prev && prev->line && (!best || prev->pc > best->pc))
3218 {
3219 best = prev;
3220 best_symtab = iter_s;
3221
3222 /* Discard BEST_END if it's before the PC of the current BEST. */
3223 if (best_end <= best->pc)
3224 best_end = 0;
3225 }
3226
3227 /* If another line (denoted by ITEM) is in the linetable and its
3228 PC is after BEST's PC, but before the current BEST_END, then
3229 use ITEM's PC as the new best_end. */
3230 if (best && item < last && item->pc > best->pc
3231 && (best_end == 0 || best_end > item->pc))
3232 best_end = item->pc;
3233 }
3234
3235 if (!best_symtab)
3236 {
3237 /* If we didn't find any line number info, just return zeros.
3238 We used to return alt->line - 1 here, but that could be
3239 anywhere; if we don't have line number info for this PC,
3240 don't make some up. */
3241 val.pc = pc;
3242 }
3243 else if (best->line == 0)
3244 {
3245 /* If our best fit is in a range of PC's for which no line
3246 number info is available (line number is zero) then we didn't
3247 find any valid line information. */
3248 val.pc = pc;
3249 }
3250 else
3251 {
3252 val.symtab = best_symtab;
3253 val.line = best->line;
3254 val.pc = best->pc;
3255 if (best_end && (!alt || best_end < alt->pc))
3256 val.end = best_end;
3257 else if (alt)
3258 val.end = alt->pc;
3259 else
3260 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
3261 }
3262 val.section = section;
3263 return val;
3264 }
3265
3266 /* Backward compatibility (no section). */
3267
3268 struct symtab_and_line
3269 find_pc_line (CORE_ADDR pc, int notcurrent)
3270 {
3271 struct obj_section *section;
3272
3273 section = find_pc_overlay (pc);
3274 if (pc_in_unmapped_range (pc, section))
3275 pc = overlay_mapped_address (pc, section);
3276 return find_pc_sect_line (pc, section, notcurrent);
3277 }
3278
3279 /* See symtab.h. */
3280
3281 struct symtab *
3282 find_pc_line_symtab (CORE_ADDR pc)
3283 {
3284 struct symtab_and_line sal;
3285
3286 /* This always passes zero for NOTCURRENT to find_pc_line.
3287 There are currently no callers that ever pass non-zero. */
3288 sal = find_pc_line (pc, 0);
3289 return sal.symtab;
3290 }
3291 \f
3292 /* Find line number LINE in any symtab whose name is the same as
3293 SYMTAB.
3294
3295 If found, return the symtab that contains the linetable in which it was
3296 found, set *INDEX to the index in the linetable of the best entry
3297 found, and set *EXACT_MATCH nonzero if the value returned is an
3298 exact match.
3299
3300 If not found, return NULL. */
3301
3302 struct symtab *
3303 find_line_symtab (struct symtab *sym_tab, int line,
3304 int *index, int *exact_match)
3305 {
3306 int exact = 0; /* Initialized here to avoid a compiler warning. */
3307
3308 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
3309 so far seen. */
3310
3311 int best_index;
3312 struct linetable *best_linetable;
3313 struct symtab *best_symtab;
3314
3315 /* First try looking it up in the given symtab. */
3316 best_linetable = SYMTAB_LINETABLE (sym_tab);
3317 best_symtab = sym_tab;
3318 best_index = find_line_common (best_linetable, line, &exact, 0);
3319 if (best_index < 0 || !exact)
3320 {
3321 /* Didn't find an exact match. So we better keep looking for
3322 another symtab with the same name. In the case of xcoff,
3323 multiple csects for one source file (produced by IBM's FORTRAN
3324 compiler) produce multiple symtabs (this is unavoidable
3325 assuming csects can be at arbitrary places in memory and that
3326 the GLOBAL_BLOCK of a symtab has a begin and end address). */
3327
3328 /* BEST is the smallest linenumber > LINE so far seen,
3329 or 0 if none has been seen so far.
3330 BEST_INDEX and BEST_LINETABLE identify the item for it. */
3331 int best;
3332
3333 if (best_index >= 0)
3334 best = best_linetable->item[best_index].line;
3335 else
3336 best = 0;
3337
3338 for (objfile *objfile : current_program_space->objfiles ())
3339 {
3340 if (objfile->sf)
3341 objfile->sf->qf->expand_symtabs_with_fullname
3342 (objfile, symtab_to_fullname (sym_tab));
3343 }
3344
3345 for (objfile *objfile : current_program_space->objfiles ())
3346 {
3347 for (compunit_symtab *cu : objfile->compunits ())
3348 {
3349 for (symtab *s : compunit_filetabs (cu))
3350 {
3351 struct linetable *l;
3352 int ind;
3353
3354 if (FILENAME_CMP (sym_tab->filename, s->filename) != 0)
3355 continue;
3356 if (FILENAME_CMP (symtab_to_fullname (sym_tab),
3357 symtab_to_fullname (s)) != 0)
3358 continue;
3359 l = SYMTAB_LINETABLE (s);
3360 ind = find_line_common (l, line, &exact, 0);
3361 if (ind >= 0)
3362 {
3363 if (exact)
3364 {
3365 best_index = ind;
3366 best_linetable = l;
3367 best_symtab = s;
3368 goto done;
3369 }
3370 if (best == 0 || l->item[ind].line < best)
3371 {
3372 best = l->item[ind].line;
3373 best_index = ind;
3374 best_linetable = l;
3375 best_symtab = s;
3376 }
3377 }
3378 }
3379 }
3380 }
3381 }
3382 done:
3383 if (best_index < 0)
3384 return NULL;
3385
3386 if (index)
3387 *index = best_index;
3388 if (exact_match)
3389 *exact_match = exact;
3390
3391 return best_symtab;
3392 }
3393
3394 /* Given SYMTAB, returns all the PCs function in the symtab that
3395 exactly match LINE. Returns an empty vector if there are no exact
3396 matches, but updates BEST_ITEM in this case. */
3397
3398 std::vector<CORE_ADDR>
3399 find_pcs_for_symtab_line (struct symtab *symtab, int line,
3400 struct linetable_entry **best_item)
3401 {
3402 int start = 0;
3403 std::vector<CORE_ADDR> result;
3404
3405 /* First, collect all the PCs that are at this line. */
3406 while (1)
3407 {
3408 int was_exact;
3409 int idx;
3410
3411 idx = find_line_common (SYMTAB_LINETABLE (symtab), line, &was_exact,
3412 start);
3413 if (idx < 0)
3414 break;
3415
3416 if (!was_exact)
3417 {
3418 struct linetable_entry *item = &SYMTAB_LINETABLE (symtab)->item[idx];
3419
3420 if (*best_item == NULL || item->line < (*best_item)->line)
3421 *best_item = item;
3422
3423 break;
3424 }
3425
3426 result.push_back (SYMTAB_LINETABLE (symtab)->item[idx].pc);
3427 start = idx + 1;
3428 }
3429
3430 return result;
3431 }
3432
3433 \f
3434 /* Set the PC value for a given source file and line number and return true.
3435 Returns zero for invalid line number (and sets the PC to 0).
3436 The source file is specified with a struct symtab. */
3437
3438 int
3439 find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
3440 {
3441 struct linetable *l;
3442 int ind;
3443
3444 *pc = 0;
3445 if (symtab == 0)
3446 return 0;
3447
3448 symtab = find_line_symtab (symtab, line, &ind, NULL);
3449 if (symtab != NULL)
3450 {
3451 l = SYMTAB_LINETABLE (symtab);
3452 *pc = l->item[ind].pc;
3453 return 1;
3454 }
3455 else
3456 return 0;
3457 }
3458
3459 /* Find the range of pc values in a line.
3460 Store the starting pc of the line into *STARTPTR
3461 and the ending pc (start of next line) into *ENDPTR.
3462 Returns 1 to indicate success.
3463 Returns 0 if could not find the specified line. */
3464
3465 int
3466 find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
3467 CORE_ADDR *endptr)
3468 {
3469 CORE_ADDR startaddr;
3470 struct symtab_and_line found_sal;
3471
3472 startaddr = sal.pc;
3473 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
3474 return 0;
3475
3476 /* This whole function is based on address. For example, if line 10 has
3477 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
3478 "info line *0x123" should say the line goes from 0x100 to 0x200
3479 and "info line *0x355" should say the line goes from 0x300 to 0x400.
3480 This also insures that we never give a range like "starts at 0x134
3481 and ends at 0x12c". */
3482
3483 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
3484 if (found_sal.line != sal.line)
3485 {
3486 /* The specified line (sal) has zero bytes. */
3487 *startptr = found_sal.pc;
3488 *endptr = found_sal.pc;
3489 }
3490 else
3491 {
3492 *startptr = found_sal.pc;
3493 *endptr = found_sal.end;
3494 }
3495 return 1;
3496 }
3497
3498 /* Given a line table and a line number, return the index into the line
3499 table for the pc of the nearest line whose number is >= the specified one.
3500 Return -1 if none is found. The value is >= 0 if it is an index.
3501 START is the index at which to start searching the line table.
3502
3503 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
3504
3505 static int
3506 find_line_common (struct linetable *l, int lineno,
3507 int *exact_match, int start)
3508 {
3509 int i;
3510 int len;
3511
3512 /* BEST is the smallest linenumber > LINENO so far seen,
3513 or 0 if none has been seen so far.
3514 BEST_INDEX identifies the item for it. */
3515
3516 int best_index = -1;
3517 int best = 0;
3518
3519 *exact_match = 0;
3520
3521 if (lineno <= 0)
3522 return -1;
3523 if (l == 0)
3524 return -1;
3525
3526 len = l->nitems;
3527 for (i = start; i < len; i++)
3528 {
3529 struct linetable_entry *item = &(l->item[i]);
3530
3531 if (item->line == lineno)
3532 {
3533 /* Return the first (lowest address) entry which matches. */
3534 *exact_match = 1;
3535 return i;
3536 }
3537
3538 if (item->line > lineno && (best == 0 || item->line < best))
3539 {
3540 best = item->line;
3541 best_index = i;
3542 }
3543 }
3544
3545 /* If we got here, we didn't get an exact match. */
3546 return best_index;
3547 }
3548
3549 int
3550 find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
3551 {
3552 struct symtab_and_line sal;
3553
3554 sal = find_pc_line (pc, 0);
3555 *startptr = sal.pc;
3556 *endptr = sal.end;
3557 return sal.symtab != 0;
3558 }
3559
3560 /* Helper for find_function_start_sal. Does most of the work, except
3561 setting the sal's symbol. */
3562
3563 static symtab_and_line
3564 find_function_start_sal_1 (CORE_ADDR func_addr, obj_section *section,
3565 bool funfirstline)
3566 {
3567 symtab_and_line sal = find_pc_sect_line (func_addr, section, 0);
3568
3569 if (funfirstline && sal.symtab != NULL
3570 && (COMPUNIT_LOCATIONS_VALID (SYMTAB_COMPUNIT (sal.symtab))
3571 || SYMTAB_LANGUAGE (sal.symtab) == language_asm))
3572 {
3573 struct gdbarch *gdbarch = get_objfile_arch (SYMTAB_OBJFILE (sal.symtab));
3574
3575 sal.pc = func_addr;
3576 if (gdbarch_skip_entrypoint_p (gdbarch))
3577 sal.pc = gdbarch_skip_entrypoint (gdbarch, sal.pc);
3578 return sal;
3579 }
3580
3581 /* We always should have a line for the function start address.
3582 If we don't, something is odd. Create a plain SAL referring
3583 just the PC and hope that skip_prologue_sal (if requested)
3584 can find a line number for after the prologue. */
3585 if (sal.pc < func_addr)
3586 {
3587 sal = {};
3588 sal.pspace = current_program_space;
3589 sal.pc = func_addr;
3590 sal.section = section;
3591 }
3592
3593 if (funfirstline)
3594 skip_prologue_sal (&sal);
3595
3596 return sal;
3597 }
3598
3599 /* See symtab.h. */
3600
3601 symtab_and_line
3602 find_function_start_sal (CORE_ADDR func_addr, obj_section *section,
3603 bool funfirstline)
3604 {
3605 symtab_and_line sal
3606 = find_function_start_sal_1 (func_addr, section, funfirstline);
3607
3608 /* find_function_start_sal_1 does a linetable search, so it finds
3609 the symtab and linenumber, but not a symbol. Fill in the
3610 function symbol too. */
3611 sal.symbol = find_pc_sect_containing_function (sal.pc, sal.section);
3612
3613 return sal;
3614 }
3615
3616 /* See symtab.h. */
3617
3618 symtab_and_line
3619 find_function_start_sal (symbol *sym, bool funfirstline)
3620 {
3621 fixup_symbol_section (sym, NULL);
3622 symtab_and_line sal
3623 = find_function_start_sal_1 (BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)),
3624 SYMBOL_OBJ_SECTION (symbol_objfile (sym), sym),
3625 funfirstline);
3626 sal.symbol = sym;
3627 return sal;
3628 }
3629
3630
3631 /* Given a function start address FUNC_ADDR and SYMTAB, find the first
3632 address for that function that has an entry in SYMTAB's line info
3633 table. If such an entry cannot be found, return FUNC_ADDR
3634 unaltered. */
3635
3636 static CORE_ADDR
3637 skip_prologue_using_lineinfo (CORE_ADDR func_addr, struct symtab *symtab)
3638 {
3639 CORE_ADDR func_start, func_end;
3640 struct linetable *l;
3641 int i;
3642
3643 /* Give up if this symbol has no lineinfo table. */
3644 l = SYMTAB_LINETABLE (symtab);
3645 if (l == NULL)
3646 return func_addr;
3647
3648 /* Get the range for the function's PC values, or give up if we
3649 cannot, for some reason. */
3650 if (!find_pc_partial_function (func_addr, NULL, &func_start, &func_end))
3651 return func_addr;
3652
3653 /* Linetable entries are ordered by PC values, see the commentary in
3654 symtab.h where `struct linetable' is defined. Thus, the first
3655 entry whose PC is in the range [FUNC_START..FUNC_END[ is the
3656 address we are looking for. */
3657 for (i = 0; i < l->nitems; i++)
3658 {
3659 struct linetable_entry *item = &(l->item[i]);
3660
3661 /* Don't use line numbers of zero, they mark special entries in
3662 the table. See the commentary on symtab.h before the
3663 definition of struct linetable. */
3664 if (item->line > 0 && func_start <= item->pc && item->pc < func_end)
3665 return item->pc;
3666 }
3667
3668 return func_addr;
3669 }
3670
3671 /* Adjust SAL to the first instruction past the function prologue.
3672 If the PC was explicitly specified, the SAL is not changed.
3673 If the line number was explicitly specified, at most the SAL's PC
3674 is updated. If SAL is already past the prologue, then do nothing. */
3675
3676 void
3677 skip_prologue_sal (struct symtab_and_line *sal)
3678 {
3679 struct symbol *sym;
3680 struct symtab_and_line start_sal;
3681 CORE_ADDR pc, saved_pc;
3682 struct obj_section *section;
3683 const char *name;
3684 struct objfile *objfile;
3685 struct gdbarch *gdbarch;
3686 const struct block *b, *function_block;
3687 int force_skip, skip;
3688
3689 /* Do not change the SAL if PC was specified explicitly. */
3690 if (sal->explicit_pc)
3691 return;
3692
3693 scoped_restore_current_pspace_and_thread restore_pspace_thread;
3694
3695 switch_to_program_space_and_thread (sal->pspace);
3696
3697 sym = find_pc_sect_function (sal->pc, sal->section);
3698 if (sym != NULL)
3699 {
3700 fixup_symbol_section (sym, NULL);
3701
3702 objfile = symbol_objfile (sym);
3703 pc = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym));
3704 section = SYMBOL_OBJ_SECTION (objfile, sym);
3705 name = SYMBOL_LINKAGE_NAME (sym);
3706 }
3707 else
3708 {
3709 struct bound_minimal_symbol msymbol
3710 = lookup_minimal_symbol_by_pc_section (sal->pc, sal->section);
3711
3712 if (msymbol.minsym == NULL)
3713 return;
3714
3715 objfile = msymbol.objfile;
3716 pc = BMSYMBOL_VALUE_ADDRESS (msymbol);
3717 section = MSYMBOL_OBJ_SECTION (objfile, msymbol.minsym);
3718 name = MSYMBOL_LINKAGE_NAME (msymbol.minsym);
3719 }
3720
3721 gdbarch = get_objfile_arch (objfile);
3722
3723 /* Process the prologue in two passes. In the first pass try to skip the
3724 prologue (SKIP is true) and verify there is a real need for it (indicated
3725 by FORCE_SKIP). If no such reason was found run a second pass where the
3726 prologue is not skipped (SKIP is false). */
3727
3728 skip = 1;
3729 force_skip = 1;
3730
3731 /* Be conservative - allow direct PC (without skipping prologue) only if we
3732 have proven the CU (Compilation Unit) supports it. sal->SYMTAB does not
3733 have to be set by the caller so we use SYM instead. */
3734 if (sym != NULL
3735 && COMPUNIT_LOCATIONS_VALID (SYMTAB_COMPUNIT (symbol_symtab (sym))))
3736 force_skip = 0;
3737
3738 saved_pc = pc;
3739 do
3740 {
3741 pc = saved_pc;
3742
3743 /* If the function is in an unmapped overlay, use its unmapped LMA address,
3744 so that gdbarch_skip_prologue has something unique to work on. */
3745 if (section_is_overlay (section) && !section_is_mapped (section))
3746 pc = overlay_unmapped_address (pc, section);
3747
3748 /* Skip "first line" of function (which is actually its prologue). */
3749 pc += gdbarch_deprecated_function_start_offset (gdbarch);
3750 if (gdbarch_skip_entrypoint_p (gdbarch))
3751 pc = gdbarch_skip_entrypoint (gdbarch, pc);
3752 if (skip)
3753 pc = gdbarch_skip_prologue_noexcept (gdbarch, pc);
3754
3755 /* For overlays, map pc back into its mapped VMA range. */
3756 pc = overlay_mapped_address (pc, section);
3757
3758 /* Calculate line number. */
3759 start_sal = find_pc_sect_line (pc, section, 0);
3760
3761 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
3762 line is still part of the same function. */
3763 if (skip && start_sal.pc != pc
3764 && (sym ? (BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)) <= start_sal.end
3765 && start_sal.end < BLOCK_END (SYMBOL_BLOCK_VALUE (sym)))
3766 : (lookup_minimal_symbol_by_pc_section (start_sal.end, section).minsym
3767 == lookup_minimal_symbol_by_pc_section (pc, section).minsym)))
3768 {
3769 /* First pc of next line */
3770 pc = start_sal.end;
3771 /* Recalculate the line number (might not be N+1). */
3772 start_sal = find_pc_sect_line (pc, section, 0);
3773 }
3774
3775 /* On targets with executable formats that don't have a concept of
3776 constructors (ELF with .init has, PE doesn't), gcc emits a call
3777 to `__main' in `main' between the prologue and before user
3778 code. */
3779 if (gdbarch_skip_main_prologue_p (gdbarch)
3780 && name && strcmp_iw (name, "main") == 0)
3781 {
3782 pc = gdbarch_skip_main_prologue (gdbarch, pc);
3783 /* Recalculate the line number (might not be N+1). */
3784 start_sal = find_pc_sect_line (pc, section, 0);
3785 force_skip = 1;
3786 }
3787 }
3788 while (!force_skip && skip--);
3789
3790 /* If we still don't have a valid source line, try to find the first
3791 PC in the lineinfo table that belongs to the same function. This
3792 happens with COFF debug info, which does not seem to have an
3793 entry in lineinfo table for the code after the prologue which has
3794 no direct relation to source. For example, this was found to be
3795 the case with the DJGPP target using "gcc -gcoff" when the
3796 compiler inserted code after the prologue to make sure the stack
3797 is aligned. */
3798 if (!force_skip && sym && start_sal.symtab == NULL)
3799 {
3800 pc = skip_prologue_using_lineinfo (pc, symbol_symtab (sym));
3801 /* Recalculate the line number. */
3802 start_sal = find_pc_sect_line (pc, section, 0);
3803 }
3804
3805 /* If we're already past the prologue, leave SAL unchanged. Otherwise
3806 forward SAL to the end of the prologue. */
3807 if (sal->pc >= pc)
3808 return;
3809
3810 sal->pc = pc;
3811 sal->section = section;
3812
3813 /* Unless the explicit_line flag was set, update the SAL line
3814 and symtab to correspond to the modified PC location. */
3815 if (sal->explicit_line)
3816 return;
3817
3818 sal->symtab = start_sal.symtab;
3819 sal->line = start_sal.line;
3820 sal->end = start_sal.end;
3821
3822 /* Check if we are now inside an inlined function. If we can,
3823 use the call site of the function instead. */
3824 b = block_for_pc_sect (sal->pc, sal->section);
3825 function_block = NULL;
3826 while (b != NULL)
3827 {
3828 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
3829 function_block = b;
3830 else if (BLOCK_FUNCTION (b) != NULL)
3831 break;
3832 b = BLOCK_SUPERBLOCK (b);
3833 }
3834 if (function_block != NULL
3835 && SYMBOL_LINE (BLOCK_FUNCTION (function_block)) != 0)
3836 {
3837 sal->line = SYMBOL_LINE (BLOCK_FUNCTION (function_block));
3838 sal->symtab = symbol_symtab (BLOCK_FUNCTION (function_block));
3839 }
3840 }
3841
3842 /* Given PC at the function's start address, attempt to find the
3843 prologue end using SAL information. Return zero if the skip fails.
3844
3845 A non-optimized prologue traditionally has one SAL for the function
3846 and a second for the function body. A single line function has
3847 them both pointing at the same line.
3848
3849 An optimized prologue is similar but the prologue may contain
3850 instructions (SALs) from the instruction body. Need to skip those
3851 while not getting into the function body.
3852
3853 The functions end point and an increasing SAL line are used as
3854 indicators of the prologue's endpoint.
3855
3856 This code is based on the function refine_prologue_limit
3857 (found in ia64). */
3858
3859 CORE_ADDR
3860 skip_prologue_using_sal (struct gdbarch *gdbarch, CORE_ADDR func_addr)
3861 {
3862 struct symtab_and_line prologue_sal;
3863 CORE_ADDR start_pc;
3864 CORE_ADDR end_pc;
3865 const struct block *bl;
3866
3867 /* Get an initial range for the function. */
3868 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
3869 start_pc += gdbarch_deprecated_function_start_offset (gdbarch);
3870
3871 prologue_sal = find_pc_line (start_pc, 0);
3872 if (prologue_sal.line != 0)
3873 {
3874 /* For languages other than assembly, treat two consecutive line
3875 entries at the same address as a zero-instruction prologue.
3876 The GNU assembler emits separate line notes for each instruction
3877 in a multi-instruction macro, but compilers generally will not
3878 do this. */
3879 if (prologue_sal.symtab->language != language_asm)
3880 {
3881 struct linetable *linetable = SYMTAB_LINETABLE (prologue_sal.symtab);
3882 int idx = 0;
3883
3884 /* Skip any earlier lines, and any end-of-sequence marker
3885 from a previous function. */
3886 while (linetable->item[idx].pc != prologue_sal.pc
3887 || linetable->item[idx].line == 0)
3888 idx++;
3889
3890 if (idx+1 < linetable->nitems
3891 && linetable->item[idx+1].line != 0
3892 && linetable->item[idx+1].pc == start_pc)
3893 return start_pc;
3894 }
3895
3896 /* If there is only one sal that covers the entire function,
3897 then it is probably a single line function, like
3898 "foo(){}". */
3899 if (prologue_sal.end >= end_pc)
3900 return 0;
3901
3902 while (prologue_sal.end < end_pc)
3903 {
3904 struct symtab_and_line sal;
3905
3906 sal = find_pc_line (prologue_sal.end, 0);
3907 if (sal.line == 0)
3908 break;
3909 /* Assume that a consecutive SAL for the same (or larger)
3910 line mark the prologue -> body transition. */
3911 if (sal.line >= prologue_sal.line)
3912 break;
3913 /* Likewise if we are in a different symtab altogether
3914 (e.g. within a file included via #include).  */
3915 if (sal.symtab != prologue_sal.symtab)
3916 break;
3917
3918 /* The line number is smaller. Check that it's from the
3919 same function, not something inlined. If it's inlined,
3920 then there is no point comparing the line numbers. */
3921 bl = block_for_pc (prologue_sal.end);
3922 while (bl)
3923 {
3924 if (block_inlined_p (bl))
3925 break;
3926 if (BLOCK_FUNCTION (bl))
3927 {
3928 bl = NULL;
3929 break;
3930 }
3931 bl = BLOCK_SUPERBLOCK (bl);
3932 }
3933 if (bl != NULL)
3934 break;
3935
3936 /* The case in which compiler's optimizer/scheduler has
3937 moved instructions into the prologue. We look ahead in
3938 the function looking for address ranges whose
3939 corresponding line number is less the first one that we
3940 found for the function. This is more conservative then
3941 refine_prologue_limit which scans a large number of SALs
3942 looking for any in the prologue. */
3943 prologue_sal = sal;
3944 }
3945 }
3946
3947 if (prologue_sal.end < end_pc)
3948 /* Return the end of this line, or zero if we could not find a
3949 line. */
3950 return prologue_sal.end;
3951 else
3952 /* Don't return END_PC, which is past the end of the function. */
3953 return prologue_sal.pc;
3954 }
3955
3956 /* See symtab.h. */
3957
3958 symbol *
3959 find_function_alias_target (bound_minimal_symbol msymbol)
3960 {
3961 CORE_ADDR func_addr;
3962 if (!msymbol_is_function (msymbol.objfile, msymbol.minsym, &func_addr))
3963 return NULL;
3964
3965 symbol *sym = find_pc_function (func_addr);
3966 if (sym != NULL
3967 && SYMBOL_CLASS (sym) == LOC_BLOCK
3968 && BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)) == func_addr)
3969 return sym;
3970
3971 return NULL;
3972 }
3973
3974 \f
3975 /* If P is of the form "operator[ \t]+..." where `...' is
3976 some legitimate operator text, return a pointer to the
3977 beginning of the substring of the operator text.
3978 Otherwise, return "". */
3979
3980 static const char *
3981 operator_chars (const char *p, const char **end)
3982 {
3983 *end = "";
3984 if (!startswith (p, CP_OPERATOR_STR))
3985 return *end;
3986 p += CP_OPERATOR_LEN;
3987
3988 /* Don't get faked out by `operator' being part of a longer
3989 identifier. */
3990 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
3991 return *end;
3992
3993 /* Allow some whitespace between `operator' and the operator symbol. */
3994 while (*p == ' ' || *p == '\t')
3995 p++;
3996
3997 /* Recognize 'operator TYPENAME'. */
3998
3999 if (isalpha (*p) || *p == '_' || *p == '$')
4000 {
4001 const char *q = p + 1;
4002
4003 while (isalnum (*q) || *q == '_' || *q == '$')
4004 q++;
4005 *end = q;
4006 return p;
4007 }
4008
4009 while (*p)
4010 switch (*p)
4011 {
4012 case '\\': /* regexp quoting */
4013 if (p[1] == '*')
4014 {
4015 if (p[2] == '=') /* 'operator\*=' */
4016 *end = p + 3;
4017 else /* 'operator\*' */
4018 *end = p + 2;
4019 return p;
4020 }
4021 else if (p[1] == '[')
4022 {
4023 if (p[2] == ']')
4024 error (_("mismatched quoting on brackets, "
4025 "try 'operator\\[\\]'"));
4026 else if (p[2] == '\\' && p[3] == ']')
4027 {
4028 *end = p + 4; /* 'operator\[\]' */
4029 return p;
4030 }
4031 else
4032 error (_("nothing is allowed between '[' and ']'"));
4033 }
4034 else
4035 {
4036 /* Gratuitous qoute: skip it and move on. */
4037 p++;
4038 continue;
4039 }
4040 break;
4041 case '!':
4042 case '=':
4043 case '*':
4044 case '/':
4045 case '%':
4046 case '^':
4047 if (p[1] == '=')
4048 *end = p + 2;
4049 else
4050 *end = p + 1;
4051 return p;
4052 case '<':
4053 case '>':
4054 case '+':
4055 case '-':
4056 case '&':
4057 case '|':
4058 if (p[0] == '-' && p[1] == '>')
4059 {
4060 /* Struct pointer member operator 'operator->'. */
4061 if (p[2] == '*')
4062 {
4063 *end = p + 3; /* 'operator->*' */
4064 return p;
4065 }
4066 else if (p[2] == '\\')
4067 {
4068 *end = p + 4; /* Hopefully 'operator->\*' */
4069 return p;
4070 }
4071 else
4072 {
4073 *end = p + 2; /* 'operator->' */
4074 return p;
4075 }
4076 }
4077 if (p[1] == '=' || p[1] == p[0])
4078 *end = p + 2;
4079 else
4080 *end = p + 1;
4081 return p;
4082 case '~':
4083 case ',':
4084 *end = p + 1;
4085 return p;
4086 case '(':
4087 if (p[1] != ')')
4088 error (_("`operator ()' must be specified "
4089 "without whitespace in `()'"));
4090 *end = p + 2;
4091 return p;
4092 case '?':
4093 if (p[1] != ':')
4094 error (_("`operator ?:' must be specified "
4095 "without whitespace in `?:'"));
4096 *end = p + 2;
4097 return p;
4098 case '[':
4099 if (p[1] != ']')
4100 error (_("`operator []' must be specified "
4101 "without whitespace in `[]'"));
4102 *end = p + 2;
4103 return p;
4104 default:
4105 error (_("`operator %s' not supported"), p);
4106 break;
4107 }
4108
4109 *end = "";
4110 return *end;
4111 }
4112 \f
4113
4114 /* Data structure to maintain printing state for output_source_filename. */
4115
4116 struct output_source_filename_data
4117 {
4118 /* Cache of what we've seen so far. */
4119 struct filename_seen_cache *filename_seen_cache;
4120
4121 /* Flag of whether we're printing the first one. */
4122 int first;
4123 };
4124
4125 /* Slave routine for sources_info. Force line breaks at ,'s.
4126 NAME is the name to print.
4127 DATA contains the state for printing and watching for duplicates. */
4128
4129 static void
4130 output_source_filename (const char *name,
4131 struct output_source_filename_data *data)
4132 {
4133 /* Since a single source file can result in several partial symbol
4134 tables, we need to avoid printing it more than once. Note: if
4135 some of the psymtabs are read in and some are not, it gets
4136 printed both under "Source files for which symbols have been
4137 read" and "Source files for which symbols will be read in on
4138 demand". I consider this a reasonable way to deal with the
4139 situation. I'm not sure whether this can also happen for
4140 symtabs; it doesn't hurt to check. */
4141
4142 /* Was NAME already seen? */
4143 if (data->filename_seen_cache->seen (name))
4144 {
4145 /* Yes; don't print it again. */
4146 return;
4147 }
4148
4149 /* No; print it and reset *FIRST. */
4150 if (! data->first)
4151 printf_filtered (", ");
4152 data->first = 0;
4153
4154 wrap_here ("");
4155 fputs_styled (name, file_name_style.style (), gdb_stdout);
4156 }
4157
4158 /* A callback for map_partial_symbol_filenames. */
4159
4160 static void
4161 output_partial_symbol_filename (const char *filename, const char *fullname,
4162 void *data)
4163 {
4164 output_source_filename (fullname ? fullname : filename,
4165 (struct output_source_filename_data *) data);
4166 }
4167
4168 static void
4169 info_sources_command (const char *ignore, int from_tty)
4170 {
4171 struct output_source_filename_data data;
4172
4173 if (!have_full_symbols () && !have_partial_symbols ())
4174 {
4175 error (_("No symbol table is loaded. Use the \"file\" command."));
4176 }
4177
4178 filename_seen_cache filenames_seen;
4179
4180 data.filename_seen_cache = &filenames_seen;
4181
4182 printf_filtered ("Source files for which symbols have been read in:\n\n");
4183
4184 data.first = 1;
4185 for (objfile *objfile : current_program_space->objfiles ())
4186 {
4187 for (compunit_symtab *cu : objfile->compunits ())
4188 {
4189 for (symtab *s : compunit_filetabs (cu))
4190 {
4191 const char *fullname = symtab_to_fullname (s);
4192
4193 output_source_filename (fullname, &data);
4194 }
4195 }
4196 }
4197 printf_filtered ("\n\n");
4198
4199 printf_filtered ("Source files for which symbols "
4200 "will be read in on demand:\n\n");
4201
4202 filenames_seen.clear ();
4203 data.first = 1;
4204 map_symbol_filenames (output_partial_symbol_filename, &data,
4205 1 /*need_fullname*/);
4206 printf_filtered ("\n");
4207 }
4208
4209 /* Compare FILE against all the NFILES entries of FILES. If BASENAMES is
4210 non-zero compare only lbasename of FILES. */
4211
4212 static int
4213 file_matches (const char *file, const char *files[], int nfiles, int basenames)
4214 {
4215 int i;
4216
4217 if (file != NULL && nfiles != 0)
4218 {
4219 for (i = 0; i < nfiles; i++)
4220 {
4221 if (compare_filenames_for_search (file, (basenames
4222 ? lbasename (files[i])
4223 : files[i])))
4224 return 1;
4225 }
4226 }
4227 else if (nfiles == 0)
4228 return 1;
4229 return 0;
4230 }
4231
4232 /* Helper function for sort_search_symbols_remove_dups and qsort. Can only
4233 sort symbols, not minimal symbols. */
4234
4235 int
4236 symbol_search::compare_search_syms (const symbol_search &sym_a,
4237 const symbol_search &sym_b)
4238 {
4239 int c;
4240
4241 c = FILENAME_CMP (symbol_symtab (sym_a.symbol)->filename,
4242 symbol_symtab (sym_b.symbol)->filename);
4243 if (c != 0)
4244 return c;
4245
4246 if (sym_a.block != sym_b.block)
4247 return sym_a.block - sym_b.block;
4248
4249 return strcmp (SYMBOL_PRINT_NAME (sym_a.symbol),
4250 SYMBOL_PRINT_NAME (sym_b.symbol));
4251 }
4252
4253 /* Returns true if the type_name of symbol_type of SYM matches TREG.
4254 If SYM has no symbol_type or symbol_name, returns false. */
4255
4256 bool
4257 treg_matches_sym_type_name (const compiled_regex &treg,
4258 const struct symbol *sym)
4259 {
4260 struct type *sym_type;
4261 std::string printed_sym_type_name;
4262
4263 if (symbol_lookup_debug > 1)
4264 {
4265 fprintf_unfiltered (gdb_stdlog,
4266 "treg_matches_sym_type_name\n sym %s\n",
4267 SYMBOL_NATURAL_NAME (sym));
4268 }
4269
4270 sym_type = SYMBOL_TYPE (sym);
4271 if (sym_type == NULL)
4272 return false;
4273
4274 {
4275 scoped_switch_to_sym_language_if_auto l (sym);
4276
4277 printed_sym_type_name = type_to_string (sym_type);
4278 }
4279
4280
4281 if (symbol_lookup_debug > 1)
4282 {
4283 fprintf_unfiltered (gdb_stdlog,
4284 " sym_type_name %s\n",
4285 printed_sym_type_name.c_str ());
4286 }
4287
4288
4289 if (printed_sym_type_name.empty ())
4290 return false;
4291
4292 return treg.exec (printed_sym_type_name.c_str (), 0, NULL, 0) == 0;
4293 }
4294
4295
4296 /* Sort the symbols in RESULT and remove duplicates. */
4297
4298 static void
4299 sort_search_symbols_remove_dups (std::vector<symbol_search> *result)
4300 {
4301 std::sort (result->begin (), result->end ());
4302 result->erase (std::unique (result->begin (), result->end ()),
4303 result->end ());
4304 }
4305
4306 /* Search the symbol table for matches to the regular expression REGEXP,
4307 returning the results.
4308
4309 Only symbols of KIND are searched:
4310 VARIABLES_DOMAIN - search all symbols, excluding functions, type names,
4311 and constants (enums).
4312 if T_REGEXP is not NULL, only returns var that have
4313 a type matching regular expression T_REGEXP.
4314 FUNCTIONS_DOMAIN - search all functions
4315 TYPES_DOMAIN - search all type names
4316 ALL_DOMAIN - an internal error for this function
4317
4318 Within each file the results are sorted locally; each symtab's global and
4319 static blocks are separately alphabetized.
4320 Duplicate entries are removed. */
4321
4322 std::vector<symbol_search>
4323 search_symbols (const char *regexp, enum search_domain kind,
4324 const char *t_regexp,
4325 int nfiles, const char *files[])
4326 {
4327 const struct blockvector *bv;
4328 const struct block *b;
4329 int i = 0;
4330 struct block_iterator iter;
4331 struct symbol *sym;
4332 int found_misc = 0;
4333 static const enum minimal_symbol_type types[]
4334 = {mst_data, mst_text, mst_abs};
4335 static const enum minimal_symbol_type types2[]
4336 = {mst_bss, mst_file_text, mst_abs};
4337 static const enum minimal_symbol_type types3[]
4338 = {mst_file_data, mst_solib_trampoline, mst_abs};
4339 static const enum minimal_symbol_type types4[]
4340 = {mst_file_bss, mst_text_gnu_ifunc, mst_abs};
4341 enum minimal_symbol_type ourtype;
4342 enum minimal_symbol_type ourtype2;
4343 enum minimal_symbol_type ourtype3;
4344 enum minimal_symbol_type ourtype4;
4345 std::vector<symbol_search> result;
4346 gdb::optional<compiled_regex> preg;
4347 gdb::optional<compiled_regex> treg;
4348
4349 gdb_assert (kind <= TYPES_DOMAIN);
4350
4351 ourtype = types[kind];
4352 ourtype2 = types2[kind];
4353 ourtype3 = types3[kind];
4354 ourtype4 = types4[kind];
4355
4356 if (regexp != NULL)
4357 {
4358 /* Make sure spacing is right for C++ operators.
4359 This is just a courtesy to make the matching less sensitive
4360 to how many spaces the user leaves between 'operator'
4361 and <TYPENAME> or <OPERATOR>. */
4362 const char *opend;
4363 const char *opname = operator_chars (regexp, &opend);
4364
4365 if (*opname)
4366 {
4367 int fix = -1; /* -1 means ok; otherwise number of
4368 spaces needed. */
4369
4370 if (isalpha (*opname) || *opname == '_' || *opname == '$')
4371 {
4372 /* There should 1 space between 'operator' and 'TYPENAME'. */
4373 if (opname[-1] != ' ' || opname[-2] == ' ')
4374 fix = 1;
4375 }
4376 else
4377 {
4378 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
4379 if (opname[-1] == ' ')
4380 fix = 0;
4381 }
4382 /* If wrong number of spaces, fix it. */
4383 if (fix >= 0)
4384 {
4385 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
4386
4387 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
4388 regexp = tmp;
4389 }
4390 }
4391
4392 int cflags = REG_NOSUB | (case_sensitivity == case_sensitive_off
4393 ? REG_ICASE : 0);
4394 preg.emplace (regexp, cflags, _("Invalid regexp"));
4395 }
4396
4397 if (t_regexp != NULL)
4398 {
4399 int cflags = REG_NOSUB | (case_sensitivity == case_sensitive_off
4400 ? REG_ICASE : 0);
4401 treg.emplace (t_regexp, cflags, _("Invalid regexp"));
4402 }
4403
4404 /* Search through the partial symtabs *first* for all symbols
4405 matching the regexp. That way we don't have to reproduce all of
4406 the machinery below. */
4407 expand_symtabs_matching ([&] (const char *filename, bool basenames)
4408 {
4409 return file_matches (filename, files, nfiles,
4410 basenames);
4411 },
4412 lookup_name_info::match_any (),
4413 [&] (const char *symname)
4414 {
4415 return (!preg.has_value ()
4416 || preg->exec (symname,
4417 0, NULL, 0) == 0);
4418 },
4419 NULL,
4420 kind);
4421
4422 /* Here, we search through the minimal symbol tables for functions
4423 and variables that match, and force their symbols to be read.
4424 This is in particular necessary for demangled variable names,
4425 which are no longer put into the partial symbol tables.
4426 The symbol will then be found during the scan of symtabs below.
4427
4428 For functions, find_pc_symtab should succeed if we have debug info
4429 for the function, for variables we have to call
4430 lookup_symbol_in_objfile_from_linkage_name to determine if the variable
4431 has debug info.
4432 If the lookup fails, set found_misc so that we will rescan to print
4433 any matching symbols without debug info.
4434 We only search the objfile the msymbol came from, we no longer search
4435 all objfiles. In large programs (1000s of shared libs) searching all
4436 objfiles is not worth the pain. */
4437
4438 if (nfiles == 0 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
4439 {
4440 for (objfile *objfile : current_program_space->objfiles ())
4441 {
4442 for (minimal_symbol *msymbol : objfile->msymbols ())
4443 {
4444 QUIT;
4445
4446 if (msymbol->created_by_gdb)
4447 continue;
4448
4449 if (MSYMBOL_TYPE (msymbol) == ourtype
4450 || MSYMBOL_TYPE (msymbol) == ourtype2
4451 || MSYMBOL_TYPE (msymbol) == ourtype3
4452 || MSYMBOL_TYPE (msymbol) == ourtype4)
4453 {
4454 if (!preg.has_value ()
4455 || preg->exec (MSYMBOL_NATURAL_NAME (msymbol), 0,
4456 NULL, 0) == 0)
4457 {
4458 /* Note: An important side-effect of these
4459 lookup functions is to expand the symbol
4460 table if msymbol is found, for the benefit of
4461 the next loop on compunits. */
4462 if (kind == FUNCTIONS_DOMAIN
4463 ? (find_pc_compunit_symtab
4464 (MSYMBOL_VALUE_ADDRESS (objfile, msymbol))
4465 == NULL)
4466 : (lookup_symbol_in_objfile_from_linkage_name
4467 (objfile, MSYMBOL_LINKAGE_NAME (msymbol),
4468 VAR_DOMAIN)
4469 .symbol == NULL))
4470 found_misc = 1;
4471 }
4472 }
4473 }
4474 }
4475 }
4476
4477 for (objfile *objfile : current_program_space->objfiles ())
4478 {
4479 for (compunit_symtab *cust : objfile->compunits ())
4480 {
4481 bv = COMPUNIT_BLOCKVECTOR (cust);
4482 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
4483 {
4484 b = BLOCKVECTOR_BLOCK (bv, i);
4485 ALL_BLOCK_SYMBOLS (b, iter, sym)
4486 {
4487 struct symtab *real_symtab = symbol_symtab (sym);
4488
4489 QUIT;
4490
4491 /* Check first sole REAL_SYMTAB->FILENAME. It does
4492 not need to be a substring of symtab_to_fullname as
4493 it may contain "./" etc. */
4494 if ((file_matches (real_symtab->filename, files, nfiles, 0)
4495 || ((basenames_may_differ
4496 || file_matches (lbasename (real_symtab->filename),
4497 files, nfiles, 1))
4498 && file_matches (symtab_to_fullname (real_symtab),
4499 files, nfiles, 0)))
4500 && ((!preg.has_value ()
4501 || preg->exec (SYMBOL_NATURAL_NAME (sym), 0,
4502 NULL, 0) == 0)
4503 && ((kind == VARIABLES_DOMAIN
4504 && SYMBOL_CLASS (sym) != LOC_TYPEDEF
4505 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
4506 && SYMBOL_CLASS (sym) != LOC_BLOCK
4507 /* LOC_CONST can be used for more than
4508 just enums, e.g., c++ static const
4509 members. We only want to skip enums
4510 here. */
4511 && !(SYMBOL_CLASS (sym) == LOC_CONST
4512 && (TYPE_CODE (SYMBOL_TYPE (sym))
4513 == TYPE_CODE_ENUM))
4514 && (!treg.has_value ()
4515 || treg_matches_sym_type_name (*treg, sym)))
4516 || (kind == FUNCTIONS_DOMAIN
4517 && SYMBOL_CLASS (sym) == LOC_BLOCK
4518 && (!treg.has_value ()
4519 || treg_matches_sym_type_name (*treg,
4520 sym)))
4521 || (kind == TYPES_DOMAIN
4522 && SYMBOL_CLASS (sym) == LOC_TYPEDEF))))
4523 {
4524 /* match */
4525 result.emplace_back (i, sym);
4526 }
4527 }
4528 }
4529 }
4530 }
4531
4532 if (!result.empty ())
4533 sort_search_symbols_remove_dups (&result);
4534
4535 /* If there are no eyes, avoid all contact. I mean, if there are
4536 no debug symbols, then add matching minsyms. But if the user wants
4537 to see symbols matching a type regexp, then never give a minimal symbol,
4538 as we assume that a minimal symbol does not have a type. */
4539
4540 if ((found_misc || (nfiles == 0 && kind != FUNCTIONS_DOMAIN))
4541 && !treg.has_value ())
4542 {
4543 for (objfile *objfile : current_program_space->objfiles ())
4544 {
4545 for (minimal_symbol *msymbol : objfile->msymbols ())
4546 {
4547 QUIT;
4548
4549 if (msymbol->created_by_gdb)
4550 continue;
4551
4552 if (MSYMBOL_TYPE (msymbol) == ourtype
4553 || MSYMBOL_TYPE (msymbol) == ourtype2
4554 || MSYMBOL_TYPE (msymbol) == ourtype3
4555 || MSYMBOL_TYPE (msymbol) == ourtype4)
4556 {
4557 if (!preg.has_value ()
4558 || preg->exec (MSYMBOL_NATURAL_NAME (msymbol), 0,
4559 NULL, 0) == 0)
4560 {
4561 /* For functions we can do a quick check of whether the
4562 symbol might be found via find_pc_symtab. */
4563 if (kind != FUNCTIONS_DOMAIN
4564 || (find_pc_compunit_symtab
4565 (MSYMBOL_VALUE_ADDRESS (objfile, msymbol))
4566 == NULL))
4567 {
4568 if (lookup_symbol_in_objfile_from_linkage_name
4569 (objfile, MSYMBOL_LINKAGE_NAME (msymbol),
4570 VAR_DOMAIN)
4571 .symbol == NULL)
4572 {
4573 /* match */
4574 result.emplace_back (i, msymbol, objfile);
4575 }
4576 }
4577 }
4578 }
4579 }
4580 }
4581 }
4582
4583 return result;
4584 }
4585
4586 /* Helper function for symtab_symbol_info, this function uses
4587 the data returned from search_symbols() to print information
4588 regarding the match to gdb_stdout. If LAST is not NULL,
4589 print file and line number information for the symbol as
4590 well. Skip printing the filename if it matches LAST. */
4591
4592 static void
4593 print_symbol_info (enum search_domain kind,
4594 struct symbol *sym,
4595 int block, const char *last)
4596 {
4597 scoped_switch_to_sym_language_if_auto l (sym);
4598 struct symtab *s = symbol_symtab (sym);
4599
4600 if (last != NULL)
4601 {
4602 const char *s_filename = symtab_to_filename_for_display (s);
4603
4604 if (filename_cmp (last, s_filename) != 0)
4605 {
4606 fputs_filtered ("\nFile ", gdb_stdout);
4607 fputs_styled (s_filename, file_name_style.style (), gdb_stdout);
4608 fputs_filtered (":\n", gdb_stdout);
4609 }
4610
4611 if (SYMBOL_LINE (sym) != 0)
4612 printf_filtered ("%d:\t", SYMBOL_LINE (sym));
4613 else
4614 puts_filtered ("\t");
4615 }
4616
4617 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
4618 printf_filtered ("static ");
4619
4620 /* Typedef that is not a C++ class. */
4621 if (kind == TYPES_DOMAIN
4622 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
4623 typedef_print (SYMBOL_TYPE (sym), sym, gdb_stdout);
4624 /* variable, func, or typedef-that-is-c++-class. */
4625 else if (kind < TYPES_DOMAIN
4626 || (kind == TYPES_DOMAIN
4627 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
4628 {
4629 type_print (SYMBOL_TYPE (sym),
4630 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
4631 ? "" : SYMBOL_PRINT_NAME (sym)),
4632 gdb_stdout, 0);
4633
4634 printf_filtered (";\n");
4635 }
4636 }
4637
4638 /* This help function for symtab_symbol_info() prints information
4639 for non-debugging symbols to gdb_stdout. */
4640
4641 static void
4642 print_msymbol_info (struct bound_minimal_symbol msymbol)
4643 {
4644 struct gdbarch *gdbarch = get_objfile_arch (msymbol.objfile);
4645 char *tmp;
4646
4647 if (gdbarch_addr_bit (gdbarch) <= 32)
4648 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol)
4649 & (CORE_ADDR) 0xffffffff,
4650 8);
4651 else
4652 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol),
4653 16);
4654 fputs_styled (tmp, address_style.style (), gdb_stdout);
4655 fputs_filtered (" ", gdb_stdout);
4656 if (msymbol.minsym->text_p ())
4657 fputs_styled (MSYMBOL_PRINT_NAME (msymbol.minsym),
4658 function_name_style.style (),
4659 gdb_stdout);
4660 else
4661 fputs_filtered (MSYMBOL_PRINT_NAME (msymbol.minsym), gdb_stdout);
4662 fputs_filtered ("\n", gdb_stdout);
4663 }
4664
4665 /* This is the guts of the commands "info functions", "info types", and
4666 "info variables". It calls search_symbols to find all matches and then
4667 print_[m]symbol_info to print out some useful information about the
4668 matches. */
4669
4670 static void
4671 symtab_symbol_info (bool quiet,
4672 const char *regexp, enum search_domain kind,
4673 const char *t_regexp, int from_tty)
4674 {
4675 static const char * const classnames[] =
4676 {"variable", "function", "type"};
4677 const char *last_filename = "";
4678 int first = 1;
4679
4680 gdb_assert (kind <= TYPES_DOMAIN);
4681
4682 /* Must make sure that if we're interrupted, symbols gets freed. */
4683 std::vector<symbol_search> symbols = search_symbols (regexp, kind,
4684 t_regexp, 0, NULL);
4685
4686 if (!quiet)
4687 {
4688 if (regexp != NULL)
4689 {
4690 if (t_regexp != NULL)
4691 printf_filtered
4692 (_("All %ss matching regular expression \"%s\""
4693 " with type matching regular expression \"%s\":\n"),
4694 classnames[kind], regexp, t_regexp);
4695 else
4696 printf_filtered (_("All %ss matching regular expression \"%s\":\n"),
4697 classnames[kind], regexp);
4698 }
4699 else
4700 {
4701 if (t_regexp != NULL)
4702 printf_filtered
4703 (_("All defined %ss"
4704 " with type matching regular expression \"%s\" :\n"),
4705 classnames[kind], t_regexp);
4706 else
4707 printf_filtered (_("All defined %ss:\n"), classnames[kind]);
4708 }
4709 }
4710
4711 for (const symbol_search &p : symbols)
4712 {
4713 QUIT;
4714
4715 if (p.msymbol.minsym != NULL)
4716 {
4717 if (first)
4718 {
4719 if (!quiet)
4720 printf_filtered (_("\nNon-debugging symbols:\n"));
4721 first = 0;
4722 }
4723 print_msymbol_info (p.msymbol);
4724 }
4725 else
4726 {
4727 print_symbol_info (kind,
4728 p.symbol,
4729 p.block,
4730 last_filename);
4731 last_filename
4732 = symtab_to_filename_for_display (symbol_symtab (p.symbol));
4733 }
4734 }
4735 }
4736
4737 static void
4738 info_variables_command (const char *args, int from_tty)
4739 {
4740 std::string regexp;
4741 std::string t_regexp;
4742 bool quiet = false;
4743
4744 while (args != NULL
4745 && extract_info_print_args (&args, &quiet, &regexp, &t_regexp))
4746 ;
4747
4748 if (args != NULL)
4749 report_unrecognized_option_error ("info variables", args);
4750
4751 symtab_symbol_info (quiet,
4752 regexp.empty () ? NULL : regexp.c_str (),
4753 VARIABLES_DOMAIN,
4754 t_regexp.empty () ? NULL : t_regexp.c_str (),
4755 from_tty);
4756 }
4757
4758
4759 static void
4760 info_functions_command (const char *args, int from_tty)
4761 {
4762 std::string regexp;
4763 std::string t_regexp;
4764 bool quiet = false;
4765
4766 while (args != NULL
4767 && extract_info_print_args (&args, &quiet, &regexp, &t_regexp))
4768 ;
4769
4770 if (args != NULL)
4771 report_unrecognized_option_error ("info functions", args);
4772
4773 symtab_symbol_info (quiet,
4774 regexp.empty () ? NULL : regexp.c_str (),
4775 FUNCTIONS_DOMAIN,
4776 t_regexp.empty () ? NULL : t_regexp.c_str (),
4777 from_tty);
4778 }
4779
4780
4781 static void
4782 info_types_command (const char *regexp, int from_tty)
4783 {
4784 symtab_symbol_info (false, regexp, TYPES_DOMAIN, NULL, from_tty);
4785 }
4786
4787 /* Breakpoint all functions matching regular expression. */
4788
4789 void
4790 rbreak_command_wrapper (char *regexp, int from_tty)
4791 {
4792 rbreak_command (regexp, from_tty);
4793 }
4794
4795 static void
4796 rbreak_command (const char *regexp, int from_tty)
4797 {
4798 std::string string;
4799 const char **files = NULL;
4800 const char *file_name;
4801 int nfiles = 0;
4802
4803 if (regexp)
4804 {
4805 const char *colon = strchr (regexp, ':');
4806
4807 if (colon && *(colon + 1) != ':')
4808 {
4809 int colon_index;
4810 char *local_name;
4811
4812 colon_index = colon - regexp;
4813 local_name = (char *) alloca (colon_index + 1);
4814 memcpy (local_name, regexp, colon_index);
4815 local_name[colon_index--] = 0;
4816 while (isspace (local_name[colon_index]))
4817 local_name[colon_index--] = 0;
4818 file_name = local_name;
4819 files = &file_name;
4820 nfiles = 1;
4821 regexp = skip_spaces (colon + 1);
4822 }
4823 }
4824
4825 std::vector<symbol_search> symbols = search_symbols (regexp,
4826 FUNCTIONS_DOMAIN,
4827 NULL,
4828 nfiles, files);
4829
4830 scoped_rbreak_breakpoints finalize;
4831 for (const symbol_search &p : symbols)
4832 {
4833 if (p.msymbol.minsym == NULL)
4834 {
4835 struct symtab *symtab = symbol_symtab (p.symbol);
4836 const char *fullname = symtab_to_fullname (symtab);
4837
4838 string = string_printf ("%s:'%s'", fullname,
4839 SYMBOL_LINKAGE_NAME (p.symbol));
4840 break_command (&string[0], from_tty);
4841 print_symbol_info (FUNCTIONS_DOMAIN, p.symbol, p.block, NULL);
4842 }
4843 else
4844 {
4845 string = string_printf ("'%s'",
4846 MSYMBOL_LINKAGE_NAME (p.msymbol.minsym));
4847
4848 break_command (&string[0], from_tty);
4849 printf_filtered ("<function, no debug info> %s;\n",
4850 MSYMBOL_PRINT_NAME (p.msymbol.minsym));
4851 }
4852 }
4853 }
4854 \f
4855
4856 /* Evaluate if SYMNAME matches LOOKUP_NAME. */
4857
4858 static int
4859 compare_symbol_name (const char *symbol_name, language symbol_language,
4860 const lookup_name_info &lookup_name,
4861 completion_match_result &match_res)
4862 {
4863 const language_defn *lang = language_def (symbol_language);
4864
4865 symbol_name_matcher_ftype *name_match
4866 = get_symbol_name_matcher (lang, lookup_name);
4867
4868 return name_match (symbol_name, lookup_name, &match_res);
4869 }
4870
4871 /* See symtab.h. */
4872
4873 void
4874 completion_list_add_name (completion_tracker &tracker,
4875 language symbol_language,
4876 const char *symname,
4877 const lookup_name_info &lookup_name,
4878 const char *text, const char *word)
4879 {
4880 completion_match_result &match_res
4881 = tracker.reset_completion_match_result ();
4882
4883 /* Clip symbols that cannot match. */
4884 if (!compare_symbol_name (symname, symbol_language, lookup_name, match_res))
4885 return;
4886
4887 /* Refresh SYMNAME from the match string. It's potentially
4888 different depending on language. (E.g., on Ada, the match may be
4889 the encoded symbol name wrapped in "<>"). */
4890 symname = match_res.match.match ();
4891 gdb_assert (symname != NULL);
4892
4893 /* We have a match for a completion, so add SYMNAME to the current list
4894 of matches. Note that the name is moved to freshly malloc'd space. */
4895
4896 {
4897 gdb::unique_xmalloc_ptr<char> completion
4898 = make_completion_match_str (symname, text, word);
4899
4900 /* Here we pass the match-for-lcd object to add_completion. Some
4901 languages match the user text against substrings of symbol
4902 names in some cases. E.g., in C++, "b push_ba" completes to
4903 "std::vector::push_back", "std::string::push_back", etc., and
4904 in this case we want the completion lowest common denominator
4905 to be "push_back" instead of "std::". */
4906 tracker.add_completion (std::move (completion),
4907 &match_res.match_for_lcd, text, word);
4908 }
4909 }
4910
4911 /* completion_list_add_name wrapper for struct symbol. */
4912
4913 static void
4914 completion_list_add_symbol (completion_tracker &tracker,
4915 symbol *sym,
4916 const lookup_name_info &lookup_name,
4917 const char *text, const char *word)
4918 {
4919 completion_list_add_name (tracker, SYMBOL_LANGUAGE (sym),
4920 SYMBOL_NATURAL_NAME (sym),
4921 lookup_name, text, word);
4922 }
4923
4924 /* completion_list_add_name wrapper for struct minimal_symbol. */
4925
4926 static void
4927 completion_list_add_msymbol (completion_tracker &tracker,
4928 minimal_symbol *sym,
4929 const lookup_name_info &lookup_name,
4930 const char *text, const char *word)
4931 {
4932 completion_list_add_name (tracker, MSYMBOL_LANGUAGE (sym),
4933 MSYMBOL_NATURAL_NAME (sym),
4934 lookup_name, text, word);
4935 }
4936
4937
4938 /* ObjC: In case we are completing on a selector, look as the msymbol
4939 again and feed all the selectors into the mill. */
4940
4941 static void
4942 completion_list_objc_symbol (completion_tracker &tracker,
4943 struct minimal_symbol *msymbol,
4944 const lookup_name_info &lookup_name,
4945 const char *text, const char *word)
4946 {
4947 static char *tmp = NULL;
4948 static unsigned int tmplen = 0;
4949
4950 const char *method, *category, *selector;
4951 char *tmp2 = NULL;
4952
4953 method = MSYMBOL_NATURAL_NAME (msymbol);
4954
4955 /* Is it a method? */
4956 if ((method[0] != '-') && (method[0] != '+'))
4957 return;
4958
4959 if (text[0] == '[')
4960 /* Complete on shortened method method. */
4961 completion_list_add_name (tracker, language_objc,
4962 method + 1,
4963 lookup_name,
4964 text, word);
4965
4966 while ((strlen (method) + 1) >= tmplen)
4967 {
4968 if (tmplen == 0)
4969 tmplen = 1024;
4970 else
4971 tmplen *= 2;
4972 tmp = (char *) xrealloc (tmp, tmplen);
4973 }
4974 selector = strchr (method, ' ');
4975 if (selector != NULL)
4976 selector++;
4977
4978 category = strchr (method, '(');
4979
4980 if ((category != NULL) && (selector != NULL))
4981 {
4982 memcpy (tmp, method, (category - method));
4983 tmp[category - method] = ' ';
4984 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
4985 completion_list_add_name (tracker, language_objc, tmp,
4986 lookup_name, text, word);
4987 if (text[0] == '[')
4988 completion_list_add_name (tracker, language_objc, tmp + 1,
4989 lookup_name, text, word);
4990 }
4991
4992 if (selector != NULL)
4993 {
4994 /* Complete on selector only. */
4995 strcpy (tmp, selector);
4996 tmp2 = strchr (tmp, ']');
4997 if (tmp2 != NULL)
4998 *tmp2 = '\0';
4999
5000 completion_list_add_name (tracker, language_objc, tmp,
5001 lookup_name, text, word);
5002 }
5003 }
5004
5005 /* Break the non-quoted text based on the characters which are in
5006 symbols. FIXME: This should probably be language-specific. */
5007
5008 static const char *
5009 language_search_unquoted_string (const char *text, const char *p)
5010 {
5011 for (; p > text; --p)
5012 {
5013 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
5014 continue;
5015 else
5016 {
5017 if ((current_language->la_language == language_objc))
5018 {
5019 if (p[-1] == ':') /* Might be part of a method name. */
5020 continue;
5021 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
5022 p -= 2; /* Beginning of a method name. */
5023 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
5024 { /* Might be part of a method name. */
5025 const char *t = p;
5026
5027 /* Seeing a ' ' or a '(' is not conclusive evidence
5028 that we are in the middle of a method name. However,
5029 finding "-[" or "+[" should be pretty un-ambiguous.
5030 Unfortunately we have to find it now to decide. */
5031
5032 while (t > text)
5033 if (isalnum (t[-1]) || t[-1] == '_' ||
5034 t[-1] == ' ' || t[-1] == ':' ||
5035 t[-1] == '(' || t[-1] == ')')
5036 --t;
5037 else
5038 break;
5039
5040 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
5041 p = t - 2; /* Method name detected. */
5042 /* Else we leave with p unchanged. */
5043 }
5044 }
5045 break;
5046 }
5047 }
5048 return p;
5049 }
5050
5051 static void
5052 completion_list_add_fields (completion_tracker &tracker,
5053 struct symbol *sym,
5054 const lookup_name_info &lookup_name,
5055 const char *text, const char *word)
5056 {
5057 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5058 {
5059 struct type *t = SYMBOL_TYPE (sym);
5060 enum type_code c = TYPE_CODE (t);
5061 int j;
5062
5063 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
5064 for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++)
5065 if (TYPE_FIELD_NAME (t, j))
5066 completion_list_add_name (tracker, SYMBOL_LANGUAGE (sym),
5067 TYPE_FIELD_NAME (t, j),
5068 lookup_name, text, word);
5069 }
5070 }
5071
5072 /* See symtab.h. */
5073
5074 bool
5075 symbol_is_function_or_method (symbol *sym)
5076 {
5077 switch (TYPE_CODE (SYMBOL_TYPE (sym)))
5078 {
5079 case TYPE_CODE_FUNC:
5080 case TYPE_CODE_METHOD:
5081 return true;
5082 default:
5083 return false;
5084 }
5085 }
5086
5087 /* See symtab.h. */
5088
5089 bool
5090 symbol_is_function_or_method (minimal_symbol *msymbol)
5091 {
5092 switch (MSYMBOL_TYPE (msymbol))
5093 {
5094 case mst_text:
5095 case mst_text_gnu_ifunc:
5096 case mst_solib_trampoline:
5097 case mst_file_text:
5098 return true;
5099 default:
5100 return false;
5101 }
5102 }
5103
5104 /* See symtab.h. */
5105
5106 bound_minimal_symbol
5107 find_gnu_ifunc (const symbol *sym)
5108 {
5109 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
5110 return {};
5111
5112 lookup_name_info lookup_name (SYMBOL_SEARCH_NAME (sym),
5113 symbol_name_match_type::SEARCH_NAME);
5114 struct objfile *objfile = symbol_objfile (sym);
5115
5116 CORE_ADDR address = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym));
5117 minimal_symbol *ifunc = NULL;
5118
5119 iterate_over_minimal_symbols (objfile, lookup_name,
5120 [&] (minimal_symbol *minsym)
5121 {
5122 if (MSYMBOL_TYPE (minsym) == mst_text_gnu_ifunc
5123 || MSYMBOL_TYPE (minsym) == mst_data_gnu_ifunc)
5124 {
5125 CORE_ADDR msym_addr = MSYMBOL_VALUE_ADDRESS (objfile, minsym);
5126 if (MSYMBOL_TYPE (minsym) == mst_data_gnu_ifunc)
5127 {
5128 struct gdbarch *gdbarch = get_objfile_arch (objfile);
5129 msym_addr
5130 = gdbarch_convert_from_func_ptr_addr (gdbarch,
5131 msym_addr,
5132 current_top_target ());
5133 }
5134 if (msym_addr == address)
5135 {
5136 ifunc = minsym;
5137 return true;
5138 }
5139 }
5140 return false;
5141 });
5142
5143 if (ifunc != NULL)
5144 return {ifunc, objfile};
5145 return {};
5146 }
5147
5148 /* Add matching symbols from SYMTAB to the current completion list. */
5149
5150 static void
5151 add_symtab_completions (struct compunit_symtab *cust,
5152 completion_tracker &tracker,
5153 complete_symbol_mode mode,
5154 const lookup_name_info &lookup_name,
5155 const char *text, const char *word,
5156 enum type_code code)
5157 {
5158 struct symbol *sym;
5159 const struct block *b;
5160 struct block_iterator iter;
5161 int i;
5162
5163 if (cust == NULL)
5164 return;
5165
5166 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
5167 {
5168 QUIT;
5169 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust), i);
5170 ALL_BLOCK_SYMBOLS (b, iter, sym)
5171 {
5172 if (completion_skip_symbol (mode, sym))
5173 continue;
5174
5175 if (code == TYPE_CODE_UNDEF
5176 || (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
5177 && TYPE_CODE (SYMBOL_TYPE (sym)) == code))
5178 completion_list_add_symbol (tracker, sym,
5179 lookup_name,
5180 text, word);
5181 }
5182 }
5183 }
5184
5185 void
5186 default_collect_symbol_completion_matches_break_on
5187 (completion_tracker &tracker, complete_symbol_mode mode,
5188 symbol_name_match_type name_match_type,
5189 const char *text, const char *word,
5190 const char *break_on, enum type_code code)
5191 {
5192 /* Problem: All of the symbols have to be copied because readline
5193 frees them. I'm not going to worry about this; hopefully there
5194 won't be that many. */
5195
5196 struct symbol *sym;
5197 const struct block *b;
5198 const struct block *surrounding_static_block, *surrounding_global_block;
5199 struct block_iterator iter;
5200 /* The symbol we are completing on. Points in same buffer as text. */
5201 const char *sym_text;
5202
5203 /* Now look for the symbol we are supposed to complete on. */
5204 if (mode == complete_symbol_mode::LINESPEC)
5205 sym_text = text;
5206 else
5207 {
5208 const char *p;
5209 char quote_found;
5210 const char *quote_pos = NULL;
5211
5212 /* First see if this is a quoted string. */
5213 quote_found = '\0';
5214 for (p = text; *p != '\0'; ++p)
5215 {
5216 if (quote_found != '\0')
5217 {
5218 if (*p == quote_found)
5219 /* Found close quote. */
5220 quote_found = '\0';
5221 else if (*p == '\\' && p[1] == quote_found)
5222 /* A backslash followed by the quote character
5223 doesn't end the string. */
5224 ++p;
5225 }
5226 else if (*p == '\'' || *p == '"')
5227 {
5228 quote_found = *p;
5229 quote_pos = p;
5230 }
5231 }
5232 if (quote_found == '\'')
5233 /* A string within single quotes can be a symbol, so complete on it. */
5234 sym_text = quote_pos + 1;
5235 else if (quote_found == '"')
5236 /* A double-quoted string is never a symbol, nor does it make sense
5237 to complete it any other way. */
5238 {
5239 return;
5240 }
5241 else
5242 {
5243 /* It is not a quoted string. Break it based on the characters
5244 which are in symbols. */
5245 while (p > text)
5246 {
5247 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0'
5248 || p[-1] == ':' || strchr (break_on, p[-1]) != NULL)
5249 --p;
5250 else
5251 break;
5252 }
5253 sym_text = p;
5254 }
5255 }
5256
5257 lookup_name_info lookup_name (sym_text, name_match_type, true);
5258
5259 /* At this point scan through the misc symbol vectors and add each
5260 symbol you find to the list. Eventually we want to ignore
5261 anything that isn't a text symbol (everything else will be
5262 handled by the psymtab code below). */
5263
5264 if (code == TYPE_CODE_UNDEF)
5265 {
5266 for (objfile *objfile : current_program_space->objfiles ())
5267 {
5268 for (minimal_symbol *msymbol : objfile->msymbols ())
5269 {
5270 QUIT;
5271
5272 if (completion_skip_symbol (mode, msymbol))
5273 continue;
5274
5275 completion_list_add_msymbol (tracker, msymbol, lookup_name,
5276 sym_text, word);
5277
5278 completion_list_objc_symbol (tracker, msymbol, lookup_name,
5279 sym_text, word);
5280 }
5281 }
5282 }
5283
5284 /* Add completions for all currently loaded symbol tables. */
5285 for (objfile *objfile : current_program_space->objfiles ())
5286 {
5287 for (compunit_symtab *cust : objfile->compunits ())
5288 add_symtab_completions (cust, tracker, mode, lookup_name,
5289 sym_text, word, code);
5290 }
5291
5292 /* Look through the partial symtabs for all symbols which begin by
5293 matching SYM_TEXT. Expand all CUs that you find to the list. */
5294 expand_symtabs_matching (NULL,
5295 lookup_name,
5296 NULL,
5297 [&] (compunit_symtab *symtab) /* expansion notify */
5298 {
5299 add_symtab_completions (symtab,
5300 tracker, mode, lookup_name,
5301 sym_text, word, code);
5302 },
5303 ALL_DOMAIN);
5304
5305 /* Search upwards from currently selected frame (so that we can
5306 complete on local vars). Also catch fields of types defined in
5307 this places which match our text string. Only complete on types
5308 visible from current context. */
5309
5310 b = get_selected_block (0);
5311 surrounding_static_block = block_static_block (b);
5312 surrounding_global_block = block_global_block (b);
5313 if (surrounding_static_block != NULL)
5314 while (b != surrounding_static_block)
5315 {
5316 QUIT;
5317
5318 ALL_BLOCK_SYMBOLS (b, iter, sym)
5319 {
5320 if (code == TYPE_CODE_UNDEF)
5321 {
5322 completion_list_add_symbol (tracker, sym, lookup_name,
5323 sym_text, word);
5324 completion_list_add_fields (tracker, sym, lookup_name,
5325 sym_text, word);
5326 }
5327 else if (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
5328 && TYPE_CODE (SYMBOL_TYPE (sym)) == code)
5329 completion_list_add_symbol (tracker, sym, lookup_name,
5330 sym_text, word);
5331 }
5332
5333 /* Stop when we encounter an enclosing function. Do not stop for
5334 non-inlined functions - the locals of the enclosing function
5335 are in scope for a nested function. */
5336 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
5337 break;
5338 b = BLOCK_SUPERBLOCK (b);
5339 }
5340
5341 /* Add fields from the file's types; symbols will be added below. */
5342
5343 if (code == TYPE_CODE_UNDEF)
5344 {
5345 if (surrounding_static_block != NULL)
5346 ALL_BLOCK_SYMBOLS (surrounding_static_block, iter, sym)
5347 completion_list_add_fields (tracker, sym, lookup_name,
5348 sym_text, word);
5349
5350 if (surrounding_global_block != NULL)
5351 ALL_BLOCK_SYMBOLS (surrounding_global_block, iter, sym)
5352 completion_list_add_fields (tracker, sym, lookup_name,
5353 sym_text, word);
5354 }
5355
5356 /* Skip macros if we are completing a struct tag -- arguable but
5357 usually what is expected. */
5358 if (current_language->la_macro_expansion == macro_expansion_c
5359 && code == TYPE_CODE_UNDEF)
5360 {
5361 gdb::unique_xmalloc_ptr<struct macro_scope> scope;
5362
5363 /* This adds a macro's name to the current completion list. */
5364 auto add_macro_name = [&] (const char *macro_name,
5365 const macro_definition *,
5366 macro_source_file *,
5367 int)
5368 {
5369 completion_list_add_name (tracker, language_c, macro_name,
5370 lookup_name, sym_text, word);
5371 };
5372
5373 /* Add any macros visible in the default scope. Note that this
5374 may yield the occasional wrong result, because an expression
5375 might be evaluated in a scope other than the default. For
5376 example, if the user types "break file:line if <TAB>", the
5377 resulting expression will be evaluated at "file:line" -- but
5378 at there does not seem to be a way to detect this at
5379 completion time. */
5380 scope = default_macro_scope ();
5381 if (scope)
5382 macro_for_each_in_scope (scope->file, scope->line,
5383 add_macro_name);
5384
5385 /* User-defined macros are always visible. */
5386 macro_for_each (macro_user_macros, add_macro_name);
5387 }
5388 }
5389
5390 void
5391 default_collect_symbol_completion_matches (completion_tracker &tracker,
5392 complete_symbol_mode mode,
5393 symbol_name_match_type name_match_type,
5394 const char *text, const char *word,
5395 enum type_code code)
5396 {
5397 return default_collect_symbol_completion_matches_break_on (tracker, mode,
5398 name_match_type,
5399 text, word, "",
5400 code);
5401 }
5402
5403 /* Collect all symbols (regardless of class) which begin by matching
5404 TEXT. */
5405
5406 void
5407 collect_symbol_completion_matches (completion_tracker &tracker,
5408 complete_symbol_mode mode,
5409 symbol_name_match_type name_match_type,
5410 const char *text, const char *word)
5411 {
5412 current_language->la_collect_symbol_completion_matches (tracker, mode,
5413 name_match_type,
5414 text, word,
5415 TYPE_CODE_UNDEF);
5416 }
5417
5418 /* Like collect_symbol_completion_matches, but only collect
5419 STRUCT_DOMAIN symbols whose type code is CODE. */
5420
5421 void
5422 collect_symbol_completion_matches_type (completion_tracker &tracker,
5423 const char *text, const char *word,
5424 enum type_code code)
5425 {
5426 complete_symbol_mode mode = complete_symbol_mode::EXPRESSION;
5427 symbol_name_match_type name_match_type = symbol_name_match_type::EXPRESSION;
5428
5429 gdb_assert (code == TYPE_CODE_UNION
5430 || code == TYPE_CODE_STRUCT
5431 || code == TYPE_CODE_ENUM);
5432 current_language->la_collect_symbol_completion_matches (tracker, mode,
5433 name_match_type,
5434 text, word, code);
5435 }
5436
5437 /* Like collect_symbol_completion_matches, but collects a list of
5438 symbols defined in all source files named SRCFILE. */
5439
5440 void
5441 collect_file_symbol_completion_matches (completion_tracker &tracker,
5442 complete_symbol_mode mode,
5443 symbol_name_match_type name_match_type,
5444 const char *text, const char *word,
5445 const char *srcfile)
5446 {
5447 /* The symbol we are completing on. Points in same buffer as text. */
5448 const char *sym_text;
5449
5450 /* Now look for the symbol we are supposed to complete on.
5451 FIXME: This should be language-specific. */
5452 if (mode == complete_symbol_mode::LINESPEC)
5453 sym_text = text;
5454 else
5455 {
5456 const char *p;
5457 char quote_found;
5458 const char *quote_pos = NULL;
5459
5460 /* First see if this is a quoted string. */
5461 quote_found = '\0';
5462 for (p = text; *p != '\0'; ++p)
5463 {
5464 if (quote_found != '\0')
5465 {
5466 if (*p == quote_found)
5467 /* Found close quote. */
5468 quote_found = '\0';
5469 else if (*p == '\\' && p[1] == quote_found)
5470 /* A backslash followed by the quote character
5471 doesn't end the string. */
5472 ++p;
5473 }
5474 else if (*p == '\'' || *p == '"')
5475 {
5476 quote_found = *p;
5477 quote_pos = p;
5478 }
5479 }
5480 if (quote_found == '\'')
5481 /* A string within single quotes can be a symbol, so complete on it. */
5482 sym_text = quote_pos + 1;
5483 else if (quote_found == '"')
5484 /* A double-quoted string is never a symbol, nor does it make sense
5485 to complete it any other way. */
5486 {
5487 return;
5488 }
5489 else
5490 {
5491 /* Not a quoted string. */
5492 sym_text = language_search_unquoted_string (text, p);
5493 }
5494 }
5495
5496 lookup_name_info lookup_name (sym_text, name_match_type, true);
5497
5498 /* Go through symtabs for SRCFILE and check the externs and statics
5499 for symbols which match. */
5500 iterate_over_symtabs (srcfile, [&] (symtab *s)
5501 {
5502 add_symtab_completions (SYMTAB_COMPUNIT (s),
5503 tracker, mode, lookup_name,
5504 sym_text, word, TYPE_CODE_UNDEF);
5505 return false;
5506 });
5507 }
5508
5509 /* A helper function for make_source_files_completion_list. It adds
5510 another file name to a list of possible completions, growing the
5511 list as necessary. */
5512
5513 static void
5514 add_filename_to_list (const char *fname, const char *text, const char *word,
5515 completion_list *list)
5516 {
5517 list->emplace_back (make_completion_match_str (fname, text, word));
5518 }
5519
5520 static int
5521 not_interesting_fname (const char *fname)
5522 {
5523 static const char *illegal_aliens[] = {
5524 "_globals_", /* inserted by coff_symtab_read */
5525 NULL
5526 };
5527 int i;
5528
5529 for (i = 0; illegal_aliens[i]; i++)
5530 {
5531 if (filename_cmp (fname, illegal_aliens[i]) == 0)
5532 return 1;
5533 }
5534 return 0;
5535 }
5536
5537 /* An object of this type is passed as the user_data argument to
5538 map_partial_symbol_filenames. */
5539 struct add_partial_filename_data
5540 {
5541 struct filename_seen_cache *filename_seen_cache;
5542 const char *text;
5543 const char *word;
5544 int text_len;
5545 completion_list *list;
5546 };
5547
5548 /* A callback for map_partial_symbol_filenames. */
5549
5550 static void
5551 maybe_add_partial_symtab_filename (const char *filename, const char *fullname,
5552 void *user_data)
5553 {
5554 struct add_partial_filename_data *data
5555 = (struct add_partial_filename_data *) user_data;
5556
5557 if (not_interesting_fname (filename))
5558 return;
5559 if (!data->filename_seen_cache->seen (filename)
5560 && filename_ncmp (filename, data->text, data->text_len) == 0)
5561 {
5562 /* This file matches for a completion; add it to the
5563 current list of matches. */
5564 add_filename_to_list (filename, data->text, data->word, data->list);
5565 }
5566 else
5567 {
5568 const char *base_name = lbasename (filename);
5569
5570 if (base_name != filename
5571 && !data->filename_seen_cache->seen (base_name)
5572 && filename_ncmp (base_name, data->text, data->text_len) == 0)
5573 add_filename_to_list (base_name, data->text, data->word, data->list);
5574 }
5575 }
5576
5577 /* Return a list of all source files whose names begin with matching
5578 TEXT. The file names are looked up in the symbol tables of this
5579 program. */
5580
5581 completion_list
5582 make_source_files_completion_list (const char *text, const char *word)
5583 {
5584 size_t text_len = strlen (text);
5585 completion_list list;
5586 const char *base_name;
5587 struct add_partial_filename_data datum;
5588
5589 if (!have_full_symbols () && !have_partial_symbols ())
5590 return list;
5591
5592 filename_seen_cache filenames_seen;
5593
5594 for (objfile *objfile : current_program_space->objfiles ())
5595 {
5596 for (compunit_symtab *cu : objfile->compunits ())
5597 {
5598 for (symtab *s : compunit_filetabs (cu))
5599 {
5600 if (not_interesting_fname (s->filename))
5601 continue;
5602 if (!filenames_seen.seen (s->filename)
5603 && filename_ncmp (s->filename, text, text_len) == 0)
5604 {
5605 /* This file matches for a completion; add it to the current
5606 list of matches. */
5607 add_filename_to_list (s->filename, text, word, &list);
5608 }
5609 else
5610 {
5611 /* NOTE: We allow the user to type a base name when the
5612 debug info records leading directories, but not the other
5613 way around. This is what subroutines of breakpoint
5614 command do when they parse file names. */
5615 base_name = lbasename (s->filename);
5616 if (base_name != s->filename
5617 && !filenames_seen.seen (base_name)
5618 && filename_ncmp (base_name, text, text_len) == 0)
5619 add_filename_to_list (base_name, text, word, &list);
5620 }
5621 }
5622 }
5623 }
5624
5625 datum.filename_seen_cache = &filenames_seen;
5626 datum.text = text;
5627 datum.word = word;
5628 datum.text_len = text_len;
5629 datum.list = &list;
5630 map_symbol_filenames (maybe_add_partial_symtab_filename, &datum,
5631 0 /*need_fullname*/);
5632
5633 return list;
5634 }
5635 \f
5636 /* Track MAIN */
5637
5638 /* Return the "main_info" object for the current program space. If
5639 the object has not yet been created, create it and fill in some
5640 default values. */
5641
5642 static struct main_info *
5643 get_main_info (void)
5644 {
5645 struct main_info *info = main_progspace_key.get (current_program_space);
5646
5647 if (info == NULL)
5648 {
5649 /* It may seem strange to store the main name in the progspace
5650 and also in whatever objfile happens to see a main name in
5651 its debug info. The reason for this is mainly historical:
5652 gdb returned "main" as the name even if no function named
5653 "main" was defined the program; and this approach lets us
5654 keep compatibility. */
5655 info = main_progspace_key.emplace (current_program_space);
5656 }
5657
5658 return info;
5659 }
5660
5661 static void
5662 set_main_name (const char *name, enum language lang)
5663 {
5664 struct main_info *info = get_main_info ();
5665
5666 if (info->name_of_main != NULL)
5667 {
5668 xfree (info->name_of_main);
5669 info->name_of_main = NULL;
5670 info->language_of_main = language_unknown;
5671 }
5672 if (name != NULL)
5673 {
5674 info->name_of_main = xstrdup (name);
5675 info->language_of_main = lang;
5676 }
5677 }
5678
5679 /* Deduce the name of the main procedure, and set NAME_OF_MAIN
5680 accordingly. */
5681
5682 static void
5683 find_main_name (void)
5684 {
5685 const char *new_main_name;
5686
5687 /* First check the objfiles to see whether a debuginfo reader has
5688 picked up the appropriate main name. Historically the main name
5689 was found in a more or less random way; this approach instead
5690 relies on the order of objfile creation -- which still isn't
5691 guaranteed to get the correct answer, but is just probably more
5692 accurate. */
5693 for (objfile *objfile : current_program_space->objfiles ())
5694 {
5695 if (objfile->per_bfd->name_of_main != NULL)
5696 {
5697 set_main_name (objfile->per_bfd->name_of_main,
5698 objfile->per_bfd->language_of_main);
5699 return;
5700 }
5701 }
5702
5703 /* Try to see if the main procedure is in Ada. */
5704 /* FIXME: brobecker/2005-03-07: Another way of doing this would
5705 be to add a new method in the language vector, and call this
5706 method for each language until one of them returns a non-empty
5707 name. This would allow us to remove this hard-coded call to
5708 an Ada function. It is not clear that this is a better approach
5709 at this point, because all methods need to be written in a way
5710 such that false positives never be returned. For instance, it is
5711 important that a method does not return a wrong name for the main
5712 procedure if the main procedure is actually written in a different
5713 language. It is easy to guaranty this with Ada, since we use a
5714 special symbol generated only when the main in Ada to find the name
5715 of the main procedure. It is difficult however to see how this can
5716 be guarantied for languages such as C, for instance. This suggests
5717 that order of call for these methods becomes important, which means
5718 a more complicated approach. */
5719 new_main_name = ada_main_name ();
5720 if (new_main_name != NULL)
5721 {
5722 set_main_name (new_main_name, language_ada);
5723 return;
5724 }
5725
5726 new_main_name = d_main_name ();
5727 if (new_main_name != NULL)
5728 {
5729 set_main_name (new_main_name, language_d);
5730 return;
5731 }
5732
5733 new_main_name = go_main_name ();
5734 if (new_main_name != NULL)
5735 {
5736 set_main_name (new_main_name, language_go);
5737 return;
5738 }
5739
5740 new_main_name = pascal_main_name ();
5741 if (new_main_name != NULL)
5742 {
5743 set_main_name (new_main_name, language_pascal);
5744 return;
5745 }
5746
5747 /* The languages above didn't identify the name of the main procedure.
5748 Fallback to "main". */
5749 set_main_name ("main", language_unknown);
5750 }
5751
5752 char *
5753 main_name (void)
5754 {
5755 struct main_info *info = get_main_info ();
5756
5757 if (info->name_of_main == NULL)
5758 find_main_name ();
5759
5760 return info->name_of_main;
5761 }
5762
5763 /* Return the language of the main function. If it is not known,
5764 return language_unknown. */
5765
5766 enum language
5767 main_language (void)
5768 {
5769 struct main_info *info = get_main_info ();
5770
5771 if (info->name_of_main == NULL)
5772 find_main_name ();
5773
5774 return info->language_of_main;
5775 }
5776
5777 /* Handle ``executable_changed'' events for the symtab module. */
5778
5779 static void
5780 symtab_observer_executable_changed (void)
5781 {
5782 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
5783 set_main_name (NULL, language_unknown);
5784 }
5785
5786 /* Return 1 if the supplied producer string matches the ARM RealView
5787 compiler (armcc). */
5788
5789 int
5790 producer_is_realview (const char *producer)
5791 {
5792 static const char *const arm_idents[] = {
5793 "ARM C Compiler, ADS",
5794 "Thumb C Compiler, ADS",
5795 "ARM C++ Compiler, ADS",
5796 "Thumb C++ Compiler, ADS",
5797 "ARM/Thumb C/C++ Compiler, RVCT",
5798 "ARM C/C++ Compiler, RVCT"
5799 };
5800 int i;
5801
5802 if (producer == NULL)
5803 return 0;
5804
5805 for (i = 0; i < ARRAY_SIZE (arm_idents); i++)
5806 if (startswith (producer, arm_idents[i]))
5807 return 1;
5808
5809 return 0;
5810 }
5811
5812 \f
5813
5814 /* The next index to hand out in response to a registration request. */
5815
5816 static int next_aclass_value = LOC_FINAL_VALUE;
5817
5818 /* The maximum number of "aclass" registrations we support. This is
5819 constant for convenience. */
5820 #define MAX_SYMBOL_IMPLS (LOC_FINAL_VALUE + 10)
5821
5822 /* The objects representing the various "aclass" values. The elements
5823 from 0 up to LOC_FINAL_VALUE-1 represent themselves, and subsequent
5824 elements are those registered at gdb initialization time. */
5825
5826 static struct symbol_impl symbol_impl[MAX_SYMBOL_IMPLS];
5827
5828 /* The globally visible pointer. This is separate from 'symbol_impl'
5829 so that it can be const. */
5830
5831 const struct symbol_impl *symbol_impls = &symbol_impl[0];
5832
5833 /* Make sure we saved enough room in struct symbol. */
5834
5835 gdb_static_assert (MAX_SYMBOL_IMPLS <= (1 << SYMBOL_ACLASS_BITS));
5836
5837 /* Register a computed symbol type. ACLASS must be LOC_COMPUTED. OPS
5838 is the ops vector associated with this index. This returns the new
5839 index, which should be used as the aclass_index field for symbols
5840 of this type. */
5841
5842 int
5843 register_symbol_computed_impl (enum address_class aclass,
5844 const struct symbol_computed_ops *ops)
5845 {
5846 int result = next_aclass_value++;
5847
5848 gdb_assert (aclass == LOC_COMPUTED);
5849 gdb_assert (result < MAX_SYMBOL_IMPLS);
5850 symbol_impl[result].aclass = aclass;
5851 symbol_impl[result].ops_computed = ops;
5852
5853 /* Sanity check OPS. */
5854 gdb_assert (ops != NULL);
5855 gdb_assert (ops->tracepoint_var_ref != NULL);
5856 gdb_assert (ops->describe_location != NULL);
5857 gdb_assert (ops->get_symbol_read_needs != NULL);
5858 gdb_assert (ops->read_variable != NULL);
5859
5860 return result;
5861 }
5862
5863 /* Register a function with frame base type. ACLASS must be LOC_BLOCK.
5864 OPS is the ops vector associated with this index. This returns the
5865 new index, which should be used as the aclass_index field for symbols
5866 of this type. */
5867
5868 int
5869 register_symbol_block_impl (enum address_class aclass,
5870 const struct symbol_block_ops *ops)
5871 {
5872 int result = next_aclass_value++;
5873
5874 gdb_assert (aclass == LOC_BLOCK);
5875 gdb_assert (result < MAX_SYMBOL_IMPLS);
5876 symbol_impl[result].aclass = aclass;
5877 symbol_impl[result].ops_block = ops;
5878
5879 /* Sanity check OPS. */
5880 gdb_assert (ops != NULL);
5881 gdb_assert (ops->find_frame_base_location != NULL);
5882
5883 return result;
5884 }
5885
5886 /* Register a register symbol type. ACLASS must be LOC_REGISTER or
5887 LOC_REGPARM_ADDR. OPS is the register ops vector associated with
5888 this index. This returns the new index, which should be used as
5889 the aclass_index field for symbols of this type. */
5890
5891 int
5892 register_symbol_register_impl (enum address_class aclass,
5893 const struct symbol_register_ops *ops)
5894 {
5895 int result = next_aclass_value++;
5896
5897 gdb_assert (aclass == LOC_REGISTER || aclass == LOC_REGPARM_ADDR);
5898 gdb_assert (result < MAX_SYMBOL_IMPLS);
5899 symbol_impl[result].aclass = aclass;
5900 symbol_impl[result].ops_register = ops;
5901
5902 return result;
5903 }
5904
5905 /* Initialize elements of 'symbol_impl' for the constants in enum
5906 address_class. */
5907
5908 static void
5909 initialize_ordinary_address_classes (void)
5910 {
5911 int i;
5912
5913 for (i = 0; i < LOC_FINAL_VALUE; ++i)
5914 symbol_impl[i].aclass = (enum address_class) i;
5915 }
5916
5917 \f
5918
5919 /* Helper function to initialize the fields of an objfile-owned symbol.
5920 It assumed that *SYM is already all zeroes. */
5921
5922 static void
5923 initialize_objfile_symbol_1 (struct symbol *sym)
5924 {
5925 SYMBOL_OBJFILE_OWNED (sym) = 1;
5926 SYMBOL_SECTION (sym) = -1;
5927 }
5928
5929 /* Initialize the symbol SYM, and mark it as being owned by an objfile. */
5930
5931 void
5932 initialize_objfile_symbol (struct symbol *sym)
5933 {
5934 memset (sym, 0, sizeof (*sym));
5935 initialize_objfile_symbol_1 (sym);
5936 }
5937
5938 /* Allocate and initialize a new 'struct symbol' on OBJFILE's
5939 obstack. */
5940
5941 struct symbol *
5942 allocate_symbol (struct objfile *objfile)
5943 {
5944 struct symbol *result;
5945
5946 result = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symbol);
5947 initialize_objfile_symbol_1 (result);
5948
5949 return result;
5950 }
5951
5952 /* Allocate and initialize a new 'struct template_symbol' on OBJFILE's
5953 obstack. */
5954
5955 struct template_symbol *
5956 allocate_template_symbol (struct objfile *objfile)
5957 {
5958 struct template_symbol *result;
5959
5960 result = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct template_symbol);
5961 initialize_objfile_symbol_1 (result);
5962
5963 return result;
5964 }
5965
5966 /* See symtab.h. */
5967
5968 struct objfile *
5969 symbol_objfile (const struct symbol *symbol)
5970 {
5971 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
5972 return SYMTAB_OBJFILE (symbol->owner.symtab);
5973 }
5974
5975 /* See symtab.h. */
5976
5977 struct gdbarch *
5978 symbol_arch (const struct symbol *symbol)
5979 {
5980 if (!SYMBOL_OBJFILE_OWNED (symbol))
5981 return symbol->owner.arch;
5982 return get_objfile_arch (SYMTAB_OBJFILE (symbol->owner.symtab));
5983 }
5984
5985 /* See symtab.h. */
5986
5987 struct symtab *
5988 symbol_symtab (const struct symbol *symbol)
5989 {
5990 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
5991 return symbol->owner.symtab;
5992 }
5993
5994 /* See symtab.h. */
5995
5996 void
5997 symbol_set_symtab (struct symbol *symbol, struct symtab *symtab)
5998 {
5999 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
6000 symbol->owner.symtab = symtab;
6001 }
6002
6003 \f
6004
6005 void
6006 _initialize_symtab (void)
6007 {
6008 initialize_ordinary_address_classes ();
6009
6010 add_info ("variables", info_variables_command,
6011 info_print_args_help (_("\
6012 All global and static variable names or those matching REGEXPs.\n\
6013 Usage: info variables [-q] [-t TYPEREGEXP] [NAMEREGEXP]\n\
6014 Prints the global and static variables.\n"),
6015 _("global and static variables")));
6016 if (dbx_commands)
6017 add_com ("whereis", class_info, info_variables_command,
6018 info_print_args_help (_("\
6019 All global and static variable names, or those matching REGEXPs.\n\
6020 Usage: whereis [-q] [-t TYPEREGEXP] [NAMEREGEXP]\n\
6021 Prints the global and static variables.\n"),
6022 _("global and static variables")));
6023
6024 add_info ("functions", info_functions_command,
6025 info_print_args_help (_("\
6026 All function names or those matching REGEXPs.\n\
6027 Usage: info functions [-q] [-t TYPEREGEXP] [NAMEREGEXP]\n\
6028 Prints the functions.\n"),
6029 _("functions")));
6030
6031 /* FIXME: This command has at least the following problems:
6032 1. It prints builtin types (in a very strange and confusing fashion).
6033 2. It doesn't print right, e.g. with
6034 typedef struct foo *FOO
6035 type_print prints "FOO" when we want to make it (in this situation)
6036 print "struct foo *".
6037 I also think "ptype" or "whatis" is more likely to be useful (but if
6038 there is much disagreement "info types" can be fixed). */
6039 add_info ("types", info_types_command,
6040 _("All type names, or those matching REGEXP."));
6041
6042 add_info ("sources", info_sources_command,
6043 _("Source files in the program."));
6044
6045 add_com ("rbreak", class_breakpoint, rbreak_command,
6046 _("Set a breakpoint for all functions matching REGEXP."));
6047
6048 add_setshow_enum_cmd ("multiple-symbols", no_class,
6049 multiple_symbols_modes, &multiple_symbols_mode,
6050 _("\
6051 Set the debugger behavior when more than one symbol are possible matches\n\
6052 in an expression."), _("\
6053 Show how the debugger handles ambiguities in expressions."), _("\
6054 Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
6055 NULL, NULL, &setlist, &showlist);
6056
6057 add_setshow_boolean_cmd ("basenames-may-differ", class_obscure,
6058 &basenames_may_differ, _("\
6059 Set whether a source file may have multiple base names."), _("\
6060 Show whether a source file may have multiple base names."), _("\
6061 (A \"base name\" is the name of a file with the directory part removed.\n\
6062 Example: The base name of \"/home/user/hello.c\" is \"hello.c\".)\n\
6063 If set, GDB will canonicalize file names (e.g., expand symlinks)\n\
6064 before comparing them. Canonicalization is an expensive operation,\n\
6065 but it allows the same file be known by more than one base name.\n\
6066 If not set (the default), all source files are assumed to have just\n\
6067 one base name, and gdb will do file name comparisons more efficiently."),
6068 NULL, NULL,
6069 &setlist, &showlist);
6070
6071 add_setshow_zuinteger_cmd ("symtab-create", no_class, &symtab_create_debug,
6072 _("Set debugging of symbol table creation."),
6073 _("Show debugging of symbol table creation."), _("\
6074 When enabled (non-zero), debugging messages are printed when building\n\
6075 symbol tables. A value of 1 (one) normally provides enough information.\n\
6076 A value greater than 1 provides more verbose information."),
6077 NULL,
6078 NULL,
6079 &setdebuglist, &showdebuglist);
6080
6081 add_setshow_zuinteger_cmd ("symbol-lookup", no_class, &symbol_lookup_debug,
6082 _("\
6083 Set debugging of symbol lookup."), _("\
6084 Show debugging of symbol lookup."), _("\
6085 When enabled (non-zero), symbol lookups are logged."),
6086 NULL, NULL,
6087 &setdebuglist, &showdebuglist);
6088
6089 add_setshow_zuinteger_cmd ("symbol-cache-size", no_class,
6090 &new_symbol_cache_size,
6091 _("Set the size of the symbol cache."),
6092 _("Show the size of the symbol cache."), _("\
6093 The size of the symbol cache.\n\
6094 If zero then the symbol cache is disabled."),
6095 set_symbol_cache_size_handler, NULL,
6096 &maintenance_set_cmdlist,
6097 &maintenance_show_cmdlist);
6098
6099 add_cmd ("symbol-cache", class_maintenance, maintenance_print_symbol_cache,
6100 _("Dump the symbol cache for each program space."),
6101 &maintenanceprintlist);
6102
6103 add_cmd ("symbol-cache-statistics", class_maintenance,
6104 maintenance_print_symbol_cache_statistics,
6105 _("Print symbol cache statistics for each program space."),
6106 &maintenanceprintlist);
6107
6108 add_cmd ("flush-symbol-cache", class_maintenance,
6109 maintenance_flush_symbol_cache,
6110 _("Flush the symbol cache for each program space."),
6111 &maintenancelist);
6112
6113 gdb::observers::executable_changed.attach (symtab_observer_executable_changed);
6114 gdb::observers::new_objfile.attach (symtab_new_objfile_observer);
6115 gdb::observers::free_objfile.attach (symtab_free_objfile_observer);
6116 }
This page took 0.179196 seconds and 4 git commands to generate.