Remove symbol_matches_domain. This fixes
[deliverable/binutils-gdb.git] / gdb / symtab.c
1 /* Symbol table lookup for the GNU debugger, GDB.
2
3 Copyright (C) 1986-2014 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "gdbcore.h"
24 #include "frame.h"
25 #include "target.h"
26 #include "value.h"
27 #include "symfile.h"
28 #include "objfiles.h"
29 #include "gdbcmd.h"
30 #include "gdb_regex.h"
31 #include "expression.h"
32 #include "language.h"
33 #include "demangle.h"
34 #include "inferior.h"
35 #include "source.h"
36 #include "filenames.h" /* for FILENAME_CMP */
37 #include "objc-lang.h"
38 #include "d-lang.h"
39 #include "ada-lang.h"
40 #include "go-lang.h"
41 #include "p-lang.h"
42 #include "addrmap.h"
43 #include "cli/cli-utils.h"
44
45 #include "hashtab.h"
46
47 #include "gdb_obstack.h"
48 #include "block.h"
49 #include "dictionary.h"
50
51 #include <sys/types.h>
52 #include <fcntl.h>
53 #include <string.h>
54 #include <sys/stat.h>
55 #include <ctype.h>
56 #include "cp-abi.h"
57 #include "cp-support.h"
58 #include "observer.h"
59 #include "gdb_assert.h"
60 #include "solist.h"
61 #include "macrotab.h"
62 #include "macroscope.h"
63
64 #include "parser-defs.h"
65
66 /* Prototypes for local functions */
67
68 static void rbreak_command (char *, int);
69
70 static void types_info (char *, int);
71
72 static void functions_info (char *, int);
73
74 static void variables_info (char *, int);
75
76 static void sources_info (char *, int);
77
78 static int find_line_common (struct linetable *, int, int *, int);
79
80 static struct symbol *lookup_symbol_aux (const char *name,
81 const struct block *block,
82 const domain_enum domain,
83 enum language language,
84 struct field_of_this_result *is_a_field_of_this);
85
86 static
87 struct symbol *lookup_symbol_aux_local (const char *name,
88 const struct block *block,
89 const domain_enum domain,
90 enum language language);
91
92 static
93 struct symbol *lookup_symbol_aux_symtabs (int block_index,
94 const char *name,
95 const domain_enum domain);
96
97 static
98 struct symbol *lookup_symbol_aux_quick (struct objfile *objfile,
99 int block_index,
100 const char *name,
101 const domain_enum domain);
102
103 void _initialize_symtab (void);
104
105 /* */
106
107 /* Program space key for finding name and language of "main". */
108
109 static const struct program_space_data *main_progspace_key;
110
111 /* Type of the data stored on the program space. */
112
113 struct main_info
114 {
115 /* Name of "main". */
116
117 char *name_of_main;
118
119 /* Language of "main". */
120
121 enum language language_of_main;
122 };
123
124 /* When non-zero, print debugging messages related to symtab creation. */
125 unsigned int symtab_create_debug = 0;
126
127 /* Non-zero if a file may be known by two different basenames.
128 This is the uncommon case, and significantly slows down gdb.
129 Default set to "off" to not slow down the common case. */
130 int basenames_may_differ = 0;
131
132 /* Allow the user to configure the debugger behavior with respect
133 to multiple-choice menus when more than one symbol matches during
134 a symbol lookup. */
135
136 const char multiple_symbols_ask[] = "ask";
137 const char multiple_symbols_all[] = "all";
138 const char multiple_symbols_cancel[] = "cancel";
139 static const char *const multiple_symbols_modes[] =
140 {
141 multiple_symbols_ask,
142 multiple_symbols_all,
143 multiple_symbols_cancel,
144 NULL
145 };
146 static const char *multiple_symbols_mode = multiple_symbols_all;
147
148 /* Read-only accessor to AUTO_SELECT_MODE. */
149
150 const char *
151 multiple_symbols_select_mode (void)
152 {
153 return multiple_symbols_mode;
154 }
155
156 /* Block in which the most recently searched-for symbol was found.
157 Might be better to make this a parameter to lookup_symbol and
158 value_of_this. */
159
160 const struct block *block_found;
161
162 /* Return the name of a domain_enum. */
163
164 const char *
165 domain_name (domain_enum e)
166 {
167 switch (e)
168 {
169 case UNDEF_DOMAIN: return "UNDEF_DOMAIN";
170 case VAR_DOMAIN: return "VAR_DOMAIN";
171 case STRUCT_DOMAIN: return "STRUCT_DOMAIN";
172 case LABEL_DOMAIN: return "LABEL_DOMAIN";
173 case COMMON_BLOCK_DOMAIN: return "COMMON_BLOCK_DOMAIN";
174 default: gdb_assert_not_reached ("bad domain_enum");
175 }
176 }
177
178 /* Return the name of a search_domain . */
179
180 const char *
181 search_domain_name (enum search_domain e)
182 {
183 switch (e)
184 {
185 case VARIABLES_DOMAIN: return "VARIABLES_DOMAIN";
186 case FUNCTIONS_DOMAIN: return "FUNCTIONS_DOMAIN";
187 case TYPES_DOMAIN: return "TYPES_DOMAIN";
188 case ALL_DOMAIN: return "ALL_DOMAIN";
189 default: gdb_assert_not_reached ("bad search_domain");
190 }
191 }
192
193 /* Set the primary field in SYMTAB. */
194
195 void
196 set_symtab_primary (struct symtab *symtab, int primary)
197 {
198 symtab->primary = primary;
199
200 if (symtab_create_debug && primary)
201 {
202 fprintf_unfiltered (gdb_stdlog,
203 "Created primary symtab %s for %s.\n",
204 host_address_to_string (symtab),
205 symtab_to_filename_for_display (symtab));
206 }
207 }
208
209 /* See whether FILENAME matches SEARCH_NAME using the rule that we
210 advertise to the user. (The manual's description of linespecs
211 describes what we advertise). Returns true if they match, false
212 otherwise. */
213
214 int
215 compare_filenames_for_search (const char *filename, const char *search_name)
216 {
217 int len = strlen (filename);
218 size_t search_len = strlen (search_name);
219
220 if (len < search_len)
221 return 0;
222
223 /* The tail of FILENAME must match. */
224 if (FILENAME_CMP (filename + len - search_len, search_name) != 0)
225 return 0;
226
227 /* Either the names must completely match, or the character
228 preceding the trailing SEARCH_NAME segment of FILENAME must be a
229 directory separator.
230
231 The check !IS_ABSOLUTE_PATH ensures SEARCH_NAME "/dir/file.c"
232 cannot match FILENAME "/path//dir/file.c" - as user has requested
233 absolute path. The sama applies for "c:\file.c" possibly
234 incorrectly hypothetically matching "d:\dir\c:\file.c".
235
236 The HAS_DRIVE_SPEC purpose is to make FILENAME "c:file.c"
237 compatible with SEARCH_NAME "file.c". In such case a compiler had
238 to put the "c:file.c" name into debug info. Such compatibility
239 works only on GDB built for DOS host. */
240 return (len == search_len
241 || (!IS_ABSOLUTE_PATH (search_name)
242 && IS_DIR_SEPARATOR (filename[len - search_len - 1]))
243 || (HAS_DRIVE_SPEC (filename)
244 && STRIP_DRIVE_SPEC (filename) == &filename[len - search_len]));
245 }
246
247 /* Check for a symtab of a specific name by searching some symtabs.
248 This is a helper function for callbacks of iterate_over_symtabs.
249
250 If NAME is not absolute, then REAL_PATH is NULL
251 If NAME is absolute, then REAL_PATH is the gdb_realpath form of NAME.
252
253 The return value, NAME, REAL_PATH, CALLBACK, and DATA
254 are identical to the `map_symtabs_matching_filename' method of
255 quick_symbol_functions.
256
257 FIRST and AFTER_LAST indicate the range of symtabs to search.
258 AFTER_LAST is one past the last symtab to search; NULL means to
259 search until the end of the list. */
260
261 int
262 iterate_over_some_symtabs (const char *name,
263 const char *real_path,
264 int (*callback) (struct symtab *symtab,
265 void *data),
266 void *data,
267 struct symtab *first,
268 struct symtab *after_last)
269 {
270 struct symtab *s = NULL;
271 const char* base_name = lbasename (name);
272
273 for (s = first; s != NULL && s != after_last; s = s->next)
274 {
275 if (compare_filenames_for_search (s->filename, name))
276 {
277 if (callback (s, data))
278 return 1;
279 continue;
280 }
281
282 /* Before we invoke realpath, which can get expensive when many
283 files are involved, do a quick comparison of the basenames. */
284 if (! basenames_may_differ
285 && FILENAME_CMP (base_name, lbasename (s->filename)) != 0)
286 continue;
287
288 if (compare_filenames_for_search (symtab_to_fullname (s), name))
289 {
290 if (callback (s, data))
291 return 1;
292 continue;
293 }
294
295 /* If the user gave us an absolute path, try to find the file in
296 this symtab and use its absolute path. */
297 if (real_path != NULL)
298 {
299 const char *fullname = symtab_to_fullname (s);
300
301 gdb_assert (IS_ABSOLUTE_PATH (real_path));
302 gdb_assert (IS_ABSOLUTE_PATH (name));
303 if (FILENAME_CMP (real_path, fullname) == 0)
304 {
305 if (callback (s, data))
306 return 1;
307 continue;
308 }
309 }
310 }
311
312 return 0;
313 }
314
315 /* Check for a symtab of a specific name; first in symtabs, then in
316 psymtabs. *If* there is no '/' in the name, a match after a '/'
317 in the symtab filename will also work.
318
319 Calls CALLBACK with each symtab that is found and with the supplied
320 DATA. If CALLBACK returns true, the search stops. */
321
322 void
323 iterate_over_symtabs (const char *name,
324 int (*callback) (struct symtab *symtab,
325 void *data),
326 void *data)
327 {
328 struct objfile *objfile;
329 char *real_path = NULL;
330 struct cleanup *cleanups = make_cleanup (null_cleanup, NULL);
331
332 /* Here we are interested in canonicalizing an absolute path, not
333 absolutizing a relative path. */
334 if (IS_ABSOLUTE_PATH (name))
335 {
336 real_path = gdb_realpath (name);
337 make_cleanup (xfree, real_path);
338 gdb_assert (IS_ABSOLUTE_PATH (real_path));
339 }
340
341 ALL_OBJFILES (objfile)
342 {
343 if (iterate_over_some_symtabs (name, real_path, callback, data,
344 objfile->symtabs, NULL))
345 {
346 do_cleanups (cleanups);
347 return;
348 }
349 }
350
351 /* Same search rules as above apply here, but now we look thru the
352 psymtabs. */
353
354 ALL_OBJFILES (objfile)
355 {
356 if (objfile->sf
357 && objfile->sf->qf->map_symtabs_matching_filename (objfile,
358 name,
359 real_path,
360 callback,
361 data))
362 {
363 do_cleanups (cleanups);
364 return;
365 }
366 }
367
368 do_cleanups (cleanups);
369 }
370
371 /* The callback function used by lookup_symtab. */
372
373 static int
374 lookup_symtab_callback (struct symtab *symtab, void *data)
375 {
376 struct symtab **result_ptr = data;
377
378 *result_ptr = symtab;
379 return 1;
380 }
381
382 /* A wrapper for iterate_over_symtabs that returns the first matching
383 symtab, or NULL. */
384
385 struct symtab *
386 lookup_symtab (const char *name)
387 {
388 struct symtab *result = NULL;
389
390 iterate_over_symtabs (name, lookup_symtab_callback, &result);
391 return result;
392 }
393
394 \f
395 /* Mangle a GDB method stub type. This actually reassembles the pieces of the
396 full method name, which consist of the class name (from T), the unadorned
397 method name from METHOD_ID, and the signature for the specific overload,
398 specified by SIGNATURE_ID. Note that this function is g++ specific. */
399
400 char *
401 gdb_mangle_name (struct type *type, int method_id, int signature_id)
402 {
403 int mangled_name_len;
404 char *mangled_name;
405 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
406 struct fn_field *method = &f[signature_id];
407 const char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
408 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
409 const char *newname = type_name_no_tag (type);
410
411 /* Does the form of physname indicate that it is the full mangled name
412 of a constructor (not just the args)? */
413 int is_full_physname_constructor;
414
415 int is_constructor;
416 int is_destructor = is_destructor_name (physname);
417 /* Need a new type prefix. */
418 char *const_prefix = method->is_const ? "C" : "";
419 char *volatile_prefix = method->is_volatile ? "V" : "";
420 char buf[20];
421 int len = (newname == NULL ? 0 : strlen (newname));
422
423 /* Nothing to do if physname already contains a fully mangled v3 abi name
424 or an operator name. */
425 if ((physname[0] == '_' && physname[1] == 'Z')
426 || is_operator_name (field_name))
427 return xstrdup (physname);
428
429 is_full_physname_constructor = is_constructor_name (physname);
430
431 is_constructor = is_full_physname_constructor
432 || (newname && strcmp (field_name, newname) == 0);
433
434 if (!is_destructor)
435 is_destructor = (strncmp (physname, "__dt", 4) == 0);
436
437 if (is_destructor || is_full_physname_constructor)
438 {
439 mangled_name = (char *) xmalloc (strlen (physname) + 1);
440 strcpy (mangled_name, physname);
441 return mangled_name;
442 }
443
444 if (len == 0)
445 {
446 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
447 }
448 else if (physname[0] == 't' || physname[0] == 'Q')
449 {
450 /* The physname for template and qualified methods already includes
451 the class name. */
452 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
453 newname = NULL;
454 len = 0;
455 }
456 else
457 {
458 xsnprintf (buf, sizeof (buf), "__%s%s%d", const_prefix,
459 volatile_prefix, len);
460 }
461 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
462 + strlen (buf) + len + strlen (physname) + 1);
463
464 mangled_name = (char *) xmalloc (mangled_name_len);
465 if (is_constructor)
466 mangled_name[0] = '\0';
467 else
468 strcpy (mangled_name, field_name);
469
470 strcat (mangled_name, buf);
471 /* If the class doesn't have a name, i.e. newname NULL, then we just
472 mangle it using 0 for the length of the class. Thus it gets mangled
473 as something starting with `::' rather than `classname::'. */
474 if (newname != NULL)
475 strcat (mangled_name, newname);
476
477 strcat (mangled_name, physname);
478 return (mangled_name);
479 }
480
481 /* Initialize the cplus_specific structure. 'cplus_specific' should
482 only be allocated for use with cplus symbols. */
483
484 static void
485 symbol_init_cplus_specific (struct general_symbol_info *gsymbol,
486 struct obstack *obstack)
487 {
488 /* A language_specific structure should not have been previously
489 initialized. */
490 gdb_assert (gsymbol->language_specific.cplus_specific == NULL);
491 gdb_assert (obstack != NULL);
492
493 gsymbol->language_specific.cplus_specific =
494 OBSTACK_ZALLOC (obstack, struct cplus_specific);
495 }
496
497 /* Set the demangled name of GSYMBOL to NAME. NAME must be already
498 correctly allocated. For C++ symbols a cplus_specific struct is
499 allocated so OBJFILE must not be NULL. If this is a non C++ symbol
500 OBJFILE can be NULL. */
501
502 void
503 symbol_set_demangled_name (struct general_symbol_info *gsymbol,
504 const char *name,
505 struct obstack *obstack)
506 {
507 if (gsymbol->language == language_cplus)
508 {
509 if (gsymbol->language_specific.cplus_specific == NULL)
510 symbol_init_cplus_specific (gsymbol, obstack);
511
512 gsymbol->language_specific.cplus_specific->demangled_name = name;
513 }
514 else if (gsymbol->language == language_ada)
515 {
516 if (name == NULL)
517 {
518 gsymbol->ada_mangled = 0;
519 gsymbol->language_specific.obstack = obstack;
520 }
521 else
522 {
523 gsymbol->ada_mangled = 1;
524 gsymbol->language_specific.mangled_lang.demangled_name = name;
525 }
526 }
527 else
528 gsymbol->language_specific.mangled_lang.demangled_name = name;
529 }
530
531 /* Return the demangled name of GSYMBOL. */
532
533 const char *
534 symbol_get_demangled_name (const struct general_symbol_info *gsymbol)
535 {
536 if (gsymbol->language == language_cplus)
537 {
538 if (gsymbol->language_specific.cplus_specific != NULL)
539 return gsymbol->language_specific.cplus_specific->demangled_name;
540 else
541 return NULL;
542 }
543 else if (gsymbol->language == language_ada)
544 {
545 if (!gsymbol->ada_mangled)
546 return NULL;
547 /* Fall through. */
548 }
549
550 return gsymbol->language_specific.mangled_lang.demangled_name;
551 }
552
553 \f
554 /* Initialize the language dependent portion of a symbol
555 depending upon the language for the symbol. */
556
557 void
558 symbol_set_language (struct general_symbol_info *gsymbol,
559 enum language language,
560 struct obstack *obstack)
561 {
562 gsymbol->language = language;
563 if (gsymbol->language == language_d
564 || gsymbol->language == language_go
565 || gsymbol->language == language_java
566 || gsymbol->language == language_objc
567 || gsymbol->language == language_fortran)
568 {
569 symbol_set_demangled_name (gsymbol, NULL, obstack);
570 }
571 else if (gsymbol->language == language_ada)
572 {
573 gdb_assert (gsymbol->ada_mangled == 0);
574 gsymbol->language_specific.obstack = obstack;
575 }
576 else if (gsymbol->language == language_cplus)
577 gsymbol->language_specific.cplus_specific = NULL;
578 else
579 {
580 memset (&gsymbol->language_specific, 0,
581 sizeof (gsymbol->language_specific));
582 }
583 }
584
585 /* Functions to initialize a symbol's mangled name. */
586
587 /* Objects of this type are stored in the demangled name hash table. */
588 struct demangled_name_entry
589 {
590 const char *mangled;
591 char demangled[1];
592 };
593
594 /* Hash function for the demangled name hash. */
595
596 static hashval_t
597 hash_demangled_name_entry (const void *data)
598 {
599 const struct demangled_name_entry *e = data;
600
601 return htab_hash_string (e->mangled);
602 }
603
604 /* Equality function for the demangled name hash. */
605
606 static int
607 eq_demangled_name_entry (const void *a, const void *b)
608 {
609 const struct demangled_name_entry *da = a;
610 const struct demangled_name_entry *db = b;
611
612 return strcmp (da->mangled, db->mangled) == 0;
613 }
614
615 /* Create the hash table used for demangled names. Each hash entry is
616 a pair of strings; one for the mangled name and one for the demangled
617 name. The entry is hashed via just the mangled name. */
618
619 static void
620 create_demangled_names_hash (struct objfile *objfile)
621 {
622 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
623 The hash table code will round this up to the next prime number.
624 Choosing a much larger table size wastes memory, and saves only about
625 1% in symbol reading. */
626
627 objfile->per_bfd->demangled_names_hash = htab_create_alloc
628 (256, hash_demangled_name_entry, eq_demangled_name_entry,
629 NULL, xcalloc, xfree);
630 }
631
632 /* Try to determine the demangled name for a symbol, based on the
633 language of that symbol. If the language is set to language_auto,
634 it will attempt to find any demangling algorithm that works and
635 then set the language appropriately. The returned name is allocated
636 by the demangler and should be xfree'd. */
637
638 static char *
639 symbol_find_demangled_name (struct general_symbol_info *gsymbol,
640 const char *mangled)
641 {
642 char *demangled = NULL;
643
644 if (gsymbol->language == language_unknown)
645 gsymbol->language = language_auto;
646
647 if (gsymbol->language == language_objc
648 || gsymbol->language == language_auto)
649 {
650 demangled =
651 objc_demangle (mangled, 0);
652 if (demangled != NULL)
653 {
654 gsymbol->language = language_objc;
655 return demangled;
656 }
657 }
658 if (gsymbol->language == language_cplus
659 || gsymbol->language == language_auto)
660 {
661 demangled =
662 gdb_demangle (mangled, DMGL_PARAMS | DMGL_ANSI);
663 if (demangled != NULL)
664 {
665 gsymbol->language = language_cplus;
666 return demangled;
667 }
668 }
669 if (gsymbol->language == language_java)
670 {
671 demangled =
672 gdb_demangle (mangled,
673 DMGL_PARAMS | DMGL_ANSI | DMGL_JAVA);
674 if (demangled != NULL)
675 {
676 gsymbol->language = language_java;
677 return demangled;
678 }
679 }
680 if (gsymbol->language == language_d
681 || gsymbol->language == language_auto)
682 {
683 demangled = d_demangle(mangled, 0);
684 if (demangled != NULL)
685 {
686 gsymbol->language = language_d;
687 return demangled;
688 }
689 }
690 /* FIXME(dje): Continually adding languages here is clumsy.
691 Better to just call la_demangle if !auto, and if auto then call
692 a utility routine that tries successive languages in turn and reports
693 which one it finds. I realize the la_demangle options may be different
694 for different languages but there's already a FIXME for that. */
695 if (gsymbol->language == language_go
696 || gsymbol->language == language_auto)
697 {
698 demangled = go_demangle (mangled, 0);
699 if (demangled != NULL)
700 {
701 gsymbol->language = language_go;
702 return demangled;
703 }
704 }
705
706 /* We could support `gsymbol->language == language_fortran' here to provide
707 module namespaces also for inferiors with only minimal symbol table (ELF
708 symbols). Just the mangling standard is not standardized across compilers
709 and there is no DW_AT_producer available for inferiors with only the ELF
710 symbols to check the mangling kind. */
711
712 /* Check for Ada symbols last. See comment below explaining why. */
713
714 if (gsymbol->language == language_auto)
715 {
716 const char *demangled = ada_decode (mangled);
717
718 if (demangled != mangled && demangled != NULL && demangled[0] != '<')
719 {
720 /* Set the gsymbol language to Ada, but still return NULL.
721 Two reasons for that:
722
723 1. For Ada, we prefer computing the symbol's decoded name
724 on the fly rather than pre-compute it, in order to save
725 memory (Ada projects are typically very large).
726
727 2. There are some areas in the definition of the GNAT
728 encoding where, with a bit of bad luck, we might be able
729 to decode a non-Ada symbol, generating an incorrect
730 demangled name (Eg: names ending with "TB" for instance
731 are identified as task bodies and so stripped from
732 the decoded name returned).
733
734 Returning NULL, here, helps us get a little bit of
735 the best of both worlds. Because we're last, we should
736 not affect any of the other languages that were able to
737 demangle the symbol before us; we get to correctly tag
738 Ada symbols as such; and even if we incorrectly tagged
739 a non-Ada symbol, which should be rare, any routing
740 through the Ada language should be transparent (Ada
741 tries to behave much like C/C++ with non-Ada symbols). */
742 gsymbol->language = language_ada;
743 return NULL;
744 }
745 }
746
747 return NULL;
748 }
749
750 /* Set both the mangled and demangled (if any) names for GSYMBOL based
751 on LINKAGE_NAME and LEN. Ordinarily, NAME is copied onto the
752 objfile's obstack; but if COPY_NAME is 0 and if NAME is
753 NUL-terminated, then this function assumes that NAME is already
754 correctly saved (either permanently or with a lifetime tied to the
755 objfile), and it will not be copied.
756
757 The hash table corresponding to OBJFILE is used, and the memory
758 comes from the per-BFD storage_obstack. LINKAGE_NAME is copied,
759 so the pointer can be discarded after calling this function. */
760
761 /* We have to be careful when dealing with Java names: when we run
762 into a Java minimal symbol, we don't know it's a Java symbol, so it
763 gets demangled as a C++ name. This is unfortunate, but there's not
764 much we can do about it: but when demangling partial symbols and
765 regular symbols, we'd better not reuse the wrong demangled name.
766 (See PR gdb/1039.) We solve this by putting a distinctive prefix
767 on Java names when storing them in the hash table. */
768
769 /* FIXME: carlton/2003-03-13: This is an unfortunate situation. I
770 don't mind the Java prefix so much: different languages have
771 different demangling requirements, so it's only natural that we
772 need to keep language data around in our demangling cache. But
773 it's not good that the minimal symbol has the wrong demangled name.
774 Unfortunately, I can't think of any easy solution to that
775 problem. */
776
777 #define JAVA_PREFIX "##JAVA$$"
778 #define JAVA_PREFIX_LEN 8
779
780 void
781 symbol_set_names (struct general_symbol_info *gsymbol,
782 const char *linkage_name, int len, int copy_name,
783 struct objfile *objfile)
784 {
785 struct demangled_name_entry **slot;
786 /* A 0-terminated copy of the linkage name. */
787 const char *linkage_name_copy;
788 /* A copy of the linkage name that might have a special Java prefix
789 added to it, for use when looking names up in the hash table. */
790 const char *lookup_name;
791 /* The length of lookup_name. */
792 int lookup_len;
793 struct demangled_name_entry entry;
794 struct objfile_per_bfd_storage *per_bfd = objfile->per_bfd;
795
796 if (gsymbol->language == language_ada)
797 {
798 /* In Ada, we do the symbol lookups using the mangled name, so
799 we can save some space by not storing the demangled name.
800
801 As a side note, we have also observed some overlap between
802 the C++ mangling and Ada mangling, similarly to what has
803 been observed with Java. Because we don't store the demangled
804 name with the symbol, we don't need to use the same trick
805 as Java. */
806 if (!copy_name)
807 gsymbol->name = linkage_name;
808 else
809 {
810 char *name = obstack_alloc (&per_bfd->storage_obstack, len + 1);
811
812 memcpy (name, linkage_name, len);
813 name[len] = '\0';
814 gsymbol->name = name;
815 }
816 symbol_set_demangled_name (gsymbol, NULL, &per_bfd->storage_obstack);
817
818 return;
819 }
820
821 if (per_bfd->demangled_names_hash == NULL)
822 create_demangled_names_hash (objfile);
823
824 /* The stabs reader generally provides names that are not
825 NUL-terminated; most of the other readers don't do this, so we
826 can just use the given copy, unless we're in the Java case. */
827 if (gsymbol->language == language_java)
828 {
829 char *alloc_name;
830
831 lookup_len = len + JAVA_PREFIX_LEN;
832 alloc_name = alloca (lookup_len + 1);
833 memcpy (alloc_name, JAVA_PREFIX, JAVA_PREFIX_LEN);
834 memcpy (alloc_name + JAVA_PREFIX_LEN, linkage_name, len);
835 alloc_name[lookup_len] = '\0';
836
837 lookup_name = alloc_name;
838 linkage_name_copy = alloc_name + JAVA_PREFIX_LEN;
839 }
840 else if (linkage_name[len] != '\0')
841 {
842 char *alloc_name;
843
844 lookup_len = len;
845 alloc_name = alloca (lookup_len + 1);
846 memcpy (alloc_name, linkage_name, len);
847 alloc_name[lookup_len] = '\0';
848
849 lookup_name = alloc_name;
850 linkage_name_copy = alloc_name;
851 }
852 else
853 {
854 lookup_len = len;
855 lookup_name = linkage_name;
856 linkage_name_copy = linkage_name;
857 }
858
859 entry.mangled = lookup_name;
860 slot = ((struct demangled_name_entry **)
861 htab_find_slot (per_bfd->demangled_names_hash,
862 &entry, INSERT));
863
864 /* If this name is not in the hash table, add it. */
865 if (*slot == NULL
866 /* A C version of the symbol may have already snuck into the table.
867 This happens to, e.g., main.init (__go_init_main). Cope. */
868 || (gsymbol->language == language_go
869 && (*slot)->demangled[0] == '\0'))
870 {
871 char *demangled_name = symbol_find_demangled_name (gsymbol,
872 linkage_name_copy);
873 int demangled_len = demangled_name ? strlen (demangled_name) : 0;
874
875 /* Suppose we have demangled_name==NULL, copy_name==0, and
876 lookup_name==linkage_name. In this case, we already have the
877 mangled name saved, and we don't have a demangled name. So,
878 you might think we could save a little space by not recording
879 this in the hash table at all.
880
881 It turns out that it is actually important to still save such
882 an entry in the hash table, because storing this name gives
883 us better bcache hit rates for partial symbols. */
884 if (!copy_name && lookup_name == linkage_name)
885 {
886 *slot = obstack_alloc (&per_bfd->storage_obstack,
887 offsetof (struct demangled_name_entry,
888 demangled)
889 + demangled_len + 1);
890 (*slot)->mangled = lookup_name;
891 }
892 else
893 {
894 char *mangled_ptr;
895
896 /* If we must copy the mangled name, put it directly after
897 the demangled name so we can have a single
898 allocation. */
899 *slot = obstack_alloc (&per_bfd->storage_obstack,
900 offsetof (struct demangled_name_entry,
901 demangled)
902 + lookup_len + demangled_len + 2);
903 mangled_ptr = &((*slot)->demangled[demangled_len + 1]);
904 strcpy (mangled_ptr, lookup_name);
905 (*slot)->mangled = mangled_ptr;
906 }
907
908 if (demangled_name != NULL)
909 {
910 strcpy ((*slot)->demangled, demangled_name);
911 xfree (demangled_name);
912 }
913 else
914 (*slot)->demangled[0] = '\0';
915 }
916
917 gsymbol->name = (*slot)->mangled + lookup_len - len;
918 if ((*slot)->demangled[0] != '\0')
919 symbol_set_demangled_name (gsymbol, (*slot)->demangled,
920 &per_bfd->storage_obstack);
921 else
922 symbol_set_demangled_name (gsymbol, NULL, &per_bfd->storage_obstack);
923 }
924
925 /* Return the source code name of a symbol. In languages where
926 demangling is necessary, this is the demangled name. */
927
928 const char *
929 symbol_natural_name (const struct general_symbol_info *gsymbol)
930 {
931 switch (gsymbol->language)
932 {
933 case language_cplus:
934 case language_d:
935 case language_go:
936 case language_java:
937 case language_objc:
938 case language_fortran:
939 if (symbol_get_demangled_name (gsymbol) != NULL)
940 return symbol_get_demangled_name (gsymbol);
941 break;
942 case language_ada:
943 return ada_decode_symbol (gsymbol);
944 default:
945 break;
946 }
947 return gsymbol->name;
948 }
949
950 /* Return the demangled name for a symbol based on the language for
951 that symbol. If no demangled name exists, return NULL. */
952
953 const char *
954 symbol_demangled_name (const struct general_symbol_info *gsymbol)
955 {
956 const char *dem_name = NULL;
957
958 switch (gsymbol->language)
959 {
960 case language_cplus:
961 case language_d:
962 case language_go:
963 case language_java:
964 case language_objc:
965 case language_fortran:
966 dem_name = symbol_get_demangled_name (gsymbol);
967 break;
968 case language_ada:
969 dem_name = ada_decode_symbol (gsymbol);
970 break;
971 default:
972 break;
973 }
974 return dem_name;
975 }
976
977 /* Return the search name of a symbol---generally the demangled or
978 linkage name of the symbol, depending on how it will be searched for.
979 If there is no distinct demangled name, then returns the same value
980 (same pointer) as SYMBOL_LINKAGE_NAME. */
981
982 const char *
983 symbol_search_name (const struct general_symbol_info *gsymbol)
984 {
985 if (gsymbol->language == language_ada)
986 return gsymbol->name;
987 else
988 return symbol_natural_name (gsymbol);
989 }
990
991 /* Initialize the structure fields to zero values. */
992
993 void
994 init_sal (struct symtab_and_line *sal)
995 {
996 memset (sal, 0, sizeof (*sal));
997 }
998 \f
999
1000 /* Return 1 if the two sections are the same, or if they could
1001 plausibly be copies of each other, one in an original object
1002 file and another in a separated debug file. */
1003
1004 int
1005 matching_obj_sections (struct obj_section *obj_first,
1006 struct obj_section *obj_second)
1007 {
1008 asection *first = obj_first? obj_first->the_bfd_section : NULL;
1009 asection *second = obj_second? obj_second->the_bfd_section : NULL;
1010 struct objfile *obj;
1011
1012 /* If they're the same section, then they match. */
1013 if (first == second)
1014 return 1;
1015
1016 /* If either is NULL, give up. */
1017 if (first == NULL || second == NULL)
1018 return 0;
1019
1020 /* This doesn't apply to absolute symbols. */
1021 if (first->owner == NULL || second->owner == NULL)
1022 return 0;
1023
1024 /* If they're in the same object file, they must be different sections. */
1025 if (first->owner == second->owner)
1026 return 0;
1027
1028 /* Check whether the two sections are potentially corresponding. They must
1029 have the same size, address, and name. We can't compare section indexes,
1030 which would be more reliable, because some sections may have been
1031 stripped. */
1032 if (bfd_get_section_size (first) != bfd_get_section_size (second))
1033 return 0;
1034
1035 /* In-memory addresses may start at a different offset, relativize them. */
1036 if (bfd_get_section_vma (first->owner, first)
1037 - bfd_get_start_address (first->owner)
1038 != bfd_get_section_vma (second->owner, second)
1039 - bfd_get_start_address (second->owner))
1040 return 0;
1041
1042 if (bfd_get_section_name (first->owner, first) == NULL
1043 || bfd_get_section_name (second->owner, second) == NULL
1044 || strcmp (bfd_get_section_name (first->owner, first),
1045 bfd_get_section_name (second->owner, second)) != 0)
1046 return 0;
1047
1048 /* Otherwise check that they are in corresponding objfiles. */
1049
1050 ALL_OBJFILES (obj)
1051 if (obj->obfd == first->owner)
1052 break;
1053 gdb_assert (obj != NULL);
1054
1055 if (obj->separate_debug_objfile != NULL
1056 && obj->separate_debug_objfile->obfd == second->owner)
1057 return 1;
1058 if (obj->separate_debug_objfile_backlink != NULL
1059 && obj->separate_debug_objfile_backlink->obfd == second->owner)
1060 return 1;
1061
1062 return 0;
1063 }
1064
1065 struct symtab *
1066 find_pc_sect_symtab_via_partial (CORE_ADDR pc, struct obj_section *section)
1067 {
1068 struct objfile *objfile;
1069 struct bound_minimal_symbol msymbol;
1070
1071 /* If we know that this is not a text address, return failure. This is
1072 necessary because we loop based on texthigh and textlow, which do
1073 not include the data ranges. */
1074 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
1075 if (msymbol.minsym
1076 && (MSYMBOL_TYPE (msymbol.minsym) == mst_data
1077 || MSYMBOL_TYPE (msymbol.minsym) == mst_bss
1078 || MSYMBOL_TYPE (msymbol.minsym) == mst_abs
1079 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_data
1080 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_bss))
1081 return NULL;
1082
1083 ALL_OBJFILES (objfile)
1084 {
1085 struct symtab *result = NULL;
1086
1087 if (objfile->sf)
1088 result = objfile->sf->qf->find_pc_sect_symtab (objfile, msymbol,
1089 pc, section, 0);
1090 if (result)
1091 return result;
1092 }
1093
1094 return NULL;
1095 }
1096 \f
1097 /* Debug symbols usually don't have section information. We need to dig that
1098 out of the minimal symbols and stash that in the debug symbol. */
1099
1100 void
1101 fixup_section (struct general_symbol_info *ginfo,
1102 CORE_ADDR addr, struct objfile *objfile)
1103 {
1104 struct minimal_symbol *msym;
1105
1106 /* First, check whether a minimal symbol with the same name exists
1107 and points to the same address. The address check is required
1108 e.g. on PowerPC64, where the minimal symbol for a function will
1109 point to the function descriptor, while the debug symbol will
1110 point to the actual function code. */
1111 msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->name, objfile);
1112 if (msym)
1113 ginfo->section = MSYMBOL_SECTION (msym);
1114 else
1115 {
1116 /* Static, function-local variables do appear in the linker
1117 (minimal) symbols, but are frequently given names that won't
1118 be found via lookup_minimal_symbol(). E.g., it has been
1119 observed in frv-uclinux (ELF) executables that a static,
1120 function-local variable named "foo" might appear in the
1121 linker symbols as "foo.6" or "foo.3". Thus, there is no
1122 point in attempting to extend the lookup-by-name mechanism to
1123 handle this case due to the fact that there can be multiple
1124 names.
1125
1126 So, instead, search the section table when lookup by name has
1127 failed. The ``addr'' and ``endaddr'' fields may have already
1128 been relocated. If so, the relocation offset (i.e. the
1129 ANOFFSET value) needs to be subtracted from these values when
1130 performing the comparison. We unconditionally subtract it,
1131 because, when no relocation has been performed, the ANOFFSET
1132 value will simply be zero.
1133
1134 The address of the symbol whose section we're fixing up HAS
1135 NOT BEEN adjusted (relocated) yet. It can't have been since
1136 the section isn't yet known and knowing the section is
1137 necessary in order to add the correct relocation value. In
1138 other words, we wouldn't even be in this function (attempting
1139 to compute the section) if it were already known.
1140
1141 Note that it is possible to search the minimal symbols
1142 (subtracting the relocation value if necessary) to find the
1143 matching minimal symbol, but this is overkill and much less
1144 efficient. It is not necessary to find the matching minimal
1145 symbol, only its section.
1146
1147 Note that this technique (of doing a section table search)
1148 can fail when unrelocated section addresses overlap. For
1149 this reason, we still attempt a lookup by name prior to doing
1150 a search of the section table. */
1151
1152 struct obj_section *s;
1153 int fallback = -1;
1154
1155 ALL_OBJFILE_OSECTIONS (objfile, s)
1156 {
1157 int idx = s - objfile->sections;
1158 CORE_ADDR offset = ANOFFSET (objfile->section_offsets, idx);
1159
1160 if (fallback == -1)
1161 fallback = idx;
1162
1163 if (obj_section_addr (s) - offset <= addr
1164 && addr < obj_section_endaddr (s) - offset)
1165 {
1166 ginfo->section = idx;
1167 return;
1168 }
1169 }
1170
1171 /* If we didn't find the section, assume it is in the first
1172 section. If there is no allocated section, then it hardly
1173 matters what we pick, so just pick zero. */
1174 if (fallback == -1)
1175 ginfo->section = 0;
1176 else
1177 ginfo->section = fallback;
1178 }
1179 }
1180
1181 struct symbol *
1182 fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
1183 {
1184 CORE_ADDR addr;
1185
1186 if (!sym)
1187 return NULL;
1188
1189 /* We either have an OBJFILE, or we can get at it from the sym's
1190 symtab. Anything else is a bug. */
1191 gdb_assert (objfile || SYMBOL_SYMTAB (sym));
1192
1193 if (objfile == NULL)
1194 objfile = SYMBOL_SYMTAB (sym)->objfile;
1195
1196 if (SYMBOL_OBJ_SECTION (objfile, sym))
1197 return sym;
1198
1199 /* We should have an objfile by now. */
1200 gdb_assert (objfile);
1201
1202 switch (SYMBOL_CLASS (sym))
1203 {
1204 case LOC_STATIC:
1205 case LOC_LABEL:
1206 addr = SYMBOL_VALUE_ADDRESS (sym);
1207 break;
1208 case LOC_BLOCK:
1209 addr = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
1210 break;
1211
1212 default:
1213 /* Nothing else will be listed in the minsyms -- no use looking
1214 it up. */
1215 return sym;
1216 }
1217
1218 fixup_section (&sym->ginfo, addr, objfile);
1219
1220 return sym;
1221 }
1222
1223 /* Compute the demangled form of NAME as used by the various symbol
1224 lookup functions. The result is stored in *RESULT_NAME. Returns a
1225 cleanup which can be used to clean up the result.
1226
1227 For Ada, this function just sets *RESULT_NAME to NAME, unmodified.
1228 Normally, Ada symbol lookups are performed using the encoded name
1229 rather than the demangled name, and so it might seem to make sense
1230 for this function to return an encoded version of NAME.
1231 Unfortunately, we cannot do this, because this function is used in
1232 circumstances where it is not appropriate to try to encode NAME.
1233 For instance, when displaying the frame info, we demangle the name
1234 of each parameter, and then perform a symbol lookup inside our
1235 function using that demangled name. In Ada, certain functions
1236 have internally-generated parameters whose name contain uppercase
1237 characters. Encoding those name would result in those uppercase
1238 characters to become lowercase, and thus cause the symbol lookup
1239 to fail. */
1240
1241 struct cleanup *
1242 demangle_for_lookup (const char *name, enum language lang,
1243 const char **result_name)
1244 {
1245 char *demangled_name = NULL;
1246 const char *modified_name = NULL;
1247 struct cleanup *cleanup = make_cleanup (null_cleanup, 0);
1248
1249 modified_name = name;
1250
1251 /* If we are using C++, D, Go, or Java, demangle the name before doing a
1252 lookup, so we can always binary search. */
1253 if (lang == language_cplus)
1254 {
1255 demangled_name = gdb_demangle (name, DMGL_ANSI | DMGL_PARAMS);
1256 if (demangled_name)
1257 {
1258 modified_name = demangled_name;
1259 make_cleanup (xfree, demangled_name);
1260 }
1261 else
1262 {
1263 /* If we were given a non-mangled name, canonicalize it
1264 according to the language (so far only for C++). */
1265 demangled_name = cp_canonicalize_string (name);
1266 if (demangled_name)
1267 {
1268 modified_name = demangled_name;
1269 make_cleanup (xfree, demangled_name);
1270 }
1271 }
1272 }
1273 else if (lang == language_java)
1274 {
1275 demangled_name = gdb_demangle (name,
1276 DMGL_ANSI | DMGL_PARAMS | DMGL_JAVA);
1277 if (demangled_name)
1278 {
1279 modified_name = demangled_name;
1280 make_cleanup (xfree, demangled_name);
1281 }
1282 }
1283 else if (lang == language_d)
1284 {
1285 demangled_name = d_demangle (name, 0);
1286 if (demangled_name)
1287 {
1288 modified_name = demangled_name;
1289 make_cleanup (xfree, demangled_name);
1290 }
1291 }
1292 else if (lang == language_go)
1293 {
1294 demangled_name = go_demangle (name, 0);
1295 if (demangled_name)
1296 {
1297 modified_name = demangled_name;
1298 make_cleanup (xfree, demangled_name);
1299 }
1300 }
1301
1302 *result_name = modified_name;
1303 return cleanup;
1304 }
1305
1306 /* Find the definition for a specified symbol name NAME
1307 in domain DOMAIN, visible from lexical block BLOCK.
1308 Returns the struct symbol pointer, or zero if no symbol is found.
1309 C++: if IS_A_FIELD_OF_THIS is nonzero on entry, check to see if
1310 NAME is a field of the current implied argument `this'. If so set
1311 *IS_A_FIELD_OF_THIS to 1, otherwise set it to zero.
1312 BLOCK_FOUND is set to the block in which NAME is found (in the case of
1313 a field of `this', value_of_this sets BLOCK_FOUND to the proper value.)
1314
1315 If DOMAIN is VAR_DOMAIN and the language permits using tag names for
1316 elaborated types, such as classes in C++, this function will search
1317 STRUCT_DOMAIN if no matching is found. */
1318
1319 /* This function (or rather its subordinates) have a bunch of loops and
1320 it would seem to be attractive to put in some QUIT's (though I'm not really
1321 sure whether it can run long enough to be really important). But there
1322 are a few calls for which it would appear to be bad news to quit
1323 out of here: e.g., find_proc_desc in alpha-mdebug-tdep.c. (Note
1324 that there is C++ code below which can error(), but that probably
1325 doesn't affect these calls since they are looking for a known
1326 variable and thus can probably assume it will never hit the C++
1327 code). */
1328
1329 struct symbol *
1330 lookup_symbol_in_language (const char *name, const struct block *block,
1331 const domain_enum domain, enum language lang,
1332 struct field_of_this_result *is_a_field_of_this)
1333 {
1334 const char *modified_name;
1335 struct symbol *returnval;
1336 struct cleanup *cleanup = demangle_for_lookup (name, lang, &modified_name);
1337
1338 returnval = lookup_symbol_aux (modified_name, block, domain, lang,
1339 is_a_field_of_this);
1340 if (returnval == NULL)
1341 {
1342 if (is_a_field_of_this != NULL
1343 && is_a_field_of_this->type != NULL)
1344 return NULL;
1345
1346 /* Some languages define typedefs of a type equal to its tag name,
1347 e.g., in C++, "struct foo { ... }" also defines a typedef for
1348 "foo". */
1349 if (domain == VAR_DOMAIN
1350 && (lang == language_cplus || lang == language_java
1351 || lang == language_ada || lang == language_d))
1352 {
1353 returnval = lookup_symbol_aux (modified_name, block, STRUCT_DOMAIN,
1354 lang, is_a_field_of_this);
1355 }
1356 }
1357 do_cleanups (cleanup);
1358
1359 return returnval;
1360 }
1361
1362 /* Behave like lookup_symbol_in_language, but performed with the
1363 current language. */
1364
1365 struct symbol *
1366 lookup_symbol (const char *name, const struct block *block,
1367 domain_enum domain,
1368 struct field_of_this_result *is_a_field_of_this)
1369 {
1370 return lookup_symbol_in_language (name, block, domain,
1371 current_language->la_language,
1372 is_a_field_of_this);
1373 }
1374
1375 /* Look up the `this' symbol for LANG in BLOCK. Return the symbol if
1376 found, or NULL if not found. */
1377
1378 struct symbol *
1379 lookup_language_this (const struct language_defn *lang,
1380 const struct block *block)
1381 {
1382 if (lang->la_name_of_this == NULL || block == NULL)
1383 return NULL;
1384
1385 while (block)
1386 {
1387 struct symbol *sym;
1388
1389 sym = lookup_block_symbol (block, lang->la_name_of_this, VAR_DOMAIN);
1390 if (sym != NULL)
1391 {
1392 block_found = block;
1393 return sym;
1394 }
1395 if (BLOCK_FUNCTION (block))
1396 break;
1397 block = BLOCK_SUPERBLOCK (block);
1398 }
1399
1400 return NULL;
1401 }
1402
1403 /* Given TYPE, a structure/union,
1404 return 1 if the component named NAME from the ultimate target
1405 structure/union is defined, otherwise, return 0. */
1406
1407 static int
1408 check_field (struct type *type, const char *name,
1409 struct field_of_this_result *is_a_field_of_this)
1410 {
1411 int i;
1412
1413 /* The type may be a stub. */
1414 CHECK_TYPEDEF (type);
1415
1416 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1417 {
1418 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1419
1420 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1421 {
1422 is_a_field_of_this->type = type;
1423 is_a_field_of_this->field = &TYPE_FIELD (type, i);
1424 return 1;
1425 }
1426 }
1427
1428 /* C++: If it was not found as a data field, then try to return it
1429 as a pointer to a method. */
1430
1431 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
1432 {
1433 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
1434 {
1435 is_a_field_of_this->type = type;
1436 is_a_field_of_this->fn_field = &TYPE_FN_FIELDLIST (type, i);
1437 return 1;
1438 }
1439 }
1440
1441 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1442 if (check_field (TYPE_BASECLASS (type, i), name, is_a_field_of_this))
1443 return 1;
1444
1445 return 0;
1446 }
1447
1448 /* Behave like lookup_symbol except that NAME is the natural name
1449 (e.g., demangled name) of the symbol that we're looking for. */
1450
1451 static struct symbol *
1452 lookup_symbol_aux (const char *name, const struct block *block,
1453 const domain_enum domain, enum language language,
1454 struct field_of_this_result *is_a_field_of_this)
1455 {
1456 struct symbol *sym;
1457 const struct language_defn *langdef;
1458
1459 /* Make sure we do something sensible with is_a_field_of_this, since
1460 the callers that set this parameter to some non-null value will
1461 certainly use it later. If we don't set it, the contents of
1462 is_a_field_of_this are undefined. */
1463 if (is_a_field_of_this != NULL)
1464 memset (is_a_field_of_this, 0, sizeof (*is_a_field_of_this));
1465
1466 /* Search specified block and its superiors. Don't search
1467 STATIC_BLOCK or GLOBAL_BLOCK. */
1468
1469 sym = lookup_symbol_aux_local (name, block, domain, language);
1470 if (sym != NULL)
1471 return sym;
1472
1473 /* If requested to do so by the caller and if appropriate for LANGUAGE,
1474 check to see if NAME is a field of `this'. */
1475
1476 langdef = language_def (language);
1477
1478 /* Don't do this check if we are searching for a struct. It will
1479 not be found by check_field, but will be found by other
1480 means. */
1481 if (is_a_field_of_this != NULL && domain != STRUCT_DOMAIN)
1482 {
1483 struct symbol *sym = lookup_language_this (langdef, block);
1484
1485 if (sym)
1486 {
1487 struct type *t = sym->type;
1488
1489 /* I'm not really sure that type of this can ever
1490 be typedefed; just be safe. */
1491 CHECK_TYPEDEF (t);
1492 if (TYPE_CODE (t) == TYPE_CODE_PTR
1493 || TYPE_CODE (t) == TYPE_CODE_REF)
1494 t = TYPE_TARGET_TYPE (t);
1495
1496 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
1497 && TYPE_CODE (t) != TYPE_CODE_UNION)
1498 error (_("Internal error: `%s' is not an aggregate"),
1499 langdef->la_name_of_this);
1500
1501 if (check_field (t, name, is_a_field_of_this))
1502 return NULL;
1503 }
1504 }
1505
1506 /* Now do whatever is appropriate for LANGUAGE to look
1507 up static and global variables. */
1508
1509 sym = langdef->la_lookup_symbol_nonlocal (name, block, domain);
1510 if (sym != NULL)
1511 return sym;
1512
1513 /* Now search all static file-level symbols. Not strictly correct,
1514 but more useful than an error. */
1515
1516 return lookup_static_symbol_aux (name, domain);
1517 }
1518
1519 /* Search all static file-level symbols for NAME from DOMAIN. Do the symtabs
1520 first, then check the psymtabs. If a psymtab indicates the existence of the
1521 desired name as a file-level static, then do psymtab-to-symtab conversion on
1522 the fly and return the found symbol. */
1523
1524 struct symbol *
1525 lookup_static_symbol_aux (const char *name, const domain_enum domain)
1526 {
1527 struct objfile *objfile;
1528 struct symbol *sym;
1529
1530 sym = lookup_symbol_aux_symtabs (STATIC_BLOCK, name, domain);
1531 if (sym != NULL)
1532 return sym;
1533
1534 ALL_OBJFILES (objfile)
1535 {
1536 sym = lookup_symbol_aux_quick (objfile, STATIC_BLOCK, name, domain);
1537 if (sym != NULL)
1538 return sym;
1539 }
1540
1541 return NULL;
1542 }
1543
1544 /* Check to see if the symbol is defined in BLOCK or its superiors.
1545 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
1546
1547 static struct symbol *
1548 lookup_symbol_aux_local (const char *name, const struct block *block,
1549 const domain_enum domain,
1550 enum language language)
1551 {
1552 struct symbol *sym;
1553 const struct block *static_block = block_static_block (block);
1554 const char *scope = block_scope (block);
1555
1556 /* Check if either no block is specified or it's a global block. */
1557
1558 if (static_block == NULL)
1559 return NULL;
1560
1561 while (block != static_block)
1562 {
1563 sym = lookup_symbol_aux_block (name, block, domain);
1564 if (sym != NULL)
1565 return sym;
1566
1567 if (language == language_cplus || language == language_fortran)
1568 {
1569 sym = cp_lookup_symbol_imports_or_template (scope, name, block,
1570 domain);
1571 if (sym != NULL)
1572 return sym;
1573 }
1574
1575 if (BLOCK_FUNCTION (block) != NULL && block_inlined_p (block))
1576 break;
1577 block = BLOCK_SUPERBLOCK (block);
1578 }
1579
1580 /* We've reached the edge of the function without finding a result. */
1581
1582 return NULL;
1583 }
1584
1585 /* Look up OBJFILE to BLOCK. */
1586
1587 struct objfile *
1588 lookup_objfile_from_block (const struct block *block)
1589 {
1590 struct objfile *obj;
1591 struct symtab *s;
1592
1593 if (block == NULL)
1594 return NULL;
1595
1596 block = block_global_block (block);
1597 /* Go through SYMTABS. */
1598 ALL_SYMTABS (obj, s)
1599 if (block == BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK))
1600 {
1601 if (obj->separate_debug_objfile_backlink)
1602 obj = obj->separate_debug_objfile_backlink;
1603
1604 return obj;
1605 }
1606
1607 return NULL;
1608 }
1609
1610 /* Look up a symbol in a block; if found, fixup the symbol, and set
1611 block_found appropriately. */
1612
1613 struct symbol *
1614 lookup_symbol_aux_block (const char *name, const struct block *block,
1615 const domain_enum domain)
1616 {
1617 struct symbol *sym;
1618
1619 sym = lookup_block_symbol (block, name, domain);
1620 if (sym)
1621 {
1622 block_found = block;
1623 return fixup_symbol_section (sym, NULL);
1624 }
1625
1626 return NULL;
1627 }
1628
1629 /* Check all global symbols in OBJFILE in symtabs and
1630 psymtabs. */
1631
1632 struct symbol *
1633 lookup_global_symbol_from_objfile (const struct objfile *main_objfile,
1634 const char *name,
1635 const domain_enum domain)
1636 {
1637 const struct objfile *objfile;
1638 struct symbol *sym;
1639 struct blockvector *bv;
1640 const struct block *block;
1641 struct symtab *s;
1642
1643 for (objfile = main_objfile;
1644 objfile;
1645 objfile = objfile_separate_debug_iterate (main_objfile, objfile))
1646 {
1647 /* Go through symtabs. */
1648 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
1649 {
1650 bv = BLOCKVECTOR (s);
1651 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1652 sym = lookup_block_symbol (block, name, domain);
1653 if (sym)
1654 {
1655 block_found = block;
1656 return fixup_symbol_section (sym, (struct objfile *)objfile);
1657 }
1658 }
1659
1660 sym = lookup_symbol_aux_quick ((struct objfile *) objfile, GLOBAL_BLOCK,
1661 name, domain);
1662 if (sym)
1663 return sym;
1664 }
1665
1666 return NULL;
1667 }
1668
1669 /* Check to see if the symbol is defined in one of the OBJFILE's
1670 symtabs. BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
1671 depending on whether or not we want to search global symbols or
1672 static symbols. */
1673
1674 static struct symbol *
1675 lookup_symbol_aux_objfile (struct objfile *objfile, int block_index,
1676 const char *name, const domain_enum domain)
1677 {
1678 struct symbol *sym = NULL;
1679 struct blockvector *bv;
1680 const struct block *block;
1681 struct symtab *s;
1682
1683 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
1684 {
1685 bv = BLOCKVECTOR (s);
1686 block = BLOCKVECTOR_BLOCK (bv, block_index);
1687 sym = lookup_block_symbol (block, name, domain);
1688 if (sym)
1689 {
1690 block_found = block;
1691 return fixup_symbol_section (sym, objfile);
1692 }
1693 }
1694
1695 return NULL;
1696 }
1697
1698 /* Same as lookup_symbol_aux_objfile, except that it searches all
1699 objfiles. Return the first match found. */
1700
1701 static struct symbol *
1702 lookup_symbol_aux_symtabs (int block_index, const char *name,
1703 const domain_enum domain)
1704 {
1705 struct symbol *sym;
1706 struct objfile *objfile;
1707
1708 ALL_OBJFILES (objfile)
1709 {
1710 sym = lookup_symbol_aux_objfile (objfile, block_index, name, domain);
1711 if (sym)
1712 return sym;
1713 }
1714
1715 return NULL;
1716 }
1717
1718 /* Wrapper around lookup_symbol_aux_objfile for search_symbols.
1719 Look up LINKAGE_NAME in DOMAIN in the global and static blocks of OBJFILE
1720 and all related objfiles. */
1721
1722 static struct symbol *
1723 lookup_symbol_in_objfile_from_linkage_name (struct objfile *objfile,
1724 const char *linkage_name,
1725 domain_enum domain)
1726 {
1727 enum language lang = current_language->la_language;
1728 const char *modified_name;
1729 struct cleanup *cleanup = demangle_for_lookup (linkage_name, lang,
1730 &modified_name);
1731 struct objfile *main_objfile, *cur_objfile;
1732
1733 if (objfile->separate_debug_objfile_backlink)
1734 main_objfile = objfile->separate_debug_objfile_backlink;
1735 else
1736 main_objfile = objfile;
1737
1738 for (cur_objfile = main_objfile;
1739 cur_objfile;
1740 cur_objfile = objfile_separate_debug_iterate (main_objfile, cur_objfile))
1741 {
1742 struct symbol *sym;
1743
1744 sym = lookup_symbol_aux_objfile (cur_objfile, GLOBAL_BLOCK,
1745 modified_name, domain);
1746 if (sym == NULL)
1747 sym = lookup_symbol_aux_objfile (cur_objfile, STATIC_BLOCK,
1748 modified_name, domain);
1749 if (sym != NULL)
1750 {
1751 do_cleanups (cleanup);
1752 return sym;
1753 }
1754 }
1755
1756 do_cleanups (cleanup);
1757 return NULL;
1758 }
1759
1760 /* A helper function that throws an exception when a symbol was found
1761 in a psymtab but not in a symtab. */
1762
1763 static void ATTRIBUTE_NORETURN
1764 error_in_psymtab_expansion (int kind, const char *name, struct symtab *symtab)
1765 {
1766 error (_("\
1767 Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n\
1768 %s may be an inlined function, or may be a template function\n \
1769 (if a template, try specifying an instantiation: %s<type>)."),
1770 kind == GLOBAL_BLOCK ? "global" : "static",
1771 name, symtab_to_filename_for_display (symtab), name, name);
1772 }
1773
1774 /* A helper function for lookup_symbol_aux that interfaces with the
1775 "quick" symbol table functions. */
1776
1777 static struct symbol *
1778 lookup_symbol_aux_quick (struct objfile *objfile, int kind,
1779 const char *name, const domain_enum domain)
1780 {
1781 struct symtab *symtab;
1782 struct blockvector *bv;
1783 const struct block *block;
1784 struct symbol *sym;
1785
1786 if (!objfile->sf)
1787 return NULL;
1788 symtab = objfile->sf->qf->lookup_symbol (objfile, kind, name, domain);
1789 if (!symtab)
1790 return NULL;
1791
1792 bv = BLOCKVECTOR (symtab);
1793 block = BLOCKVECTOR_BLOCK (bv, kind);
1794 sym = lookup_block_symbol (block, name, domain);
1795 if (!sym)
1796 error_in_psymtab_expansion (kind, name, symtab);
1797 return fixup_symbol_section (sym, objfile);
1798 }
1799
1800 /* A default version of lookup_symbol_nonlocal for use by languages
1801 that can't think of anything better to do. This implements the C
1802 lookup rules. */
1803
1804 struct symbol *
1805 basic_lookup_symbol_nonlocal (const char *name,
1806 const struct block *block,
1807 const domain_enum domain)
1808 {
1809 struct symbol *sym;
1810
1811 /* NOTE: carlton/2003-05-19: The comments below were written when
1812 this (or what turned into this) was part of lookup_symbol_aux;
1813 I'm much less worried about these questions now, since these
1814 decisions have turned out well, but I leave these comments here
1815 for posterity. */
1816
1817 /* NOTE: carlton/2002-12-05: There is a question as to whether or
1818 not it would be appropriate to search the current global block
1819 here as well. (That's what this code used to do before the
1820 is_a_field_of_this check was moved up.) On the one hand, it's
1821 redundant with the lookup_symbol_aux_symtabs search that happens
1822 next. On the other hand, if decode_line_1 is passed an argument
1823 like filename:var, then the user presumably wants 'var' to be
1824 searched for in filename. On the third hand, there shouldn't be
1825 multiple global variables all of which are named 'var', and it's
1826 not like decode_line_1 has ever restricted its search to only
1827 global variables in a single filename. All in all, only
1828 searching the static block here seems best: it's correct and it's
1829 cleanest. */
1830
1831 /* NOTE: carlton/2002-12-05: There's also a possible performance
1832 issue here: if you usually search for global symbols in the
1833 current file, then it would be slightly better to search the
1834 current global block before searching all the symtabs. But there
1835 are other factors that have a much greater effect on performance
1836 than that one, so I don't think we should worry about that for
1837 now. */
1838
1839 sym = lookup_symbol_static (name, block, domain);
1840 if (sym != NULL)
1841 return sym;
1842
1843 return lookup_symbol_global (name, block, domain);
1844 }
1845
1846 /* Lookup a symbol in the static block associated to BLOCK, if there
1847 is one; do nothing if BLOCK is NULL or a global block. */
1848
1849 struct symbol *
1850 lookup_symbol_static (const char *name,
1851 const struct block *block,
1852 const domain_enum domain)
1853 {
1854 const struct block *static_block = block_static_block (block);
1855
1856 if (static_block != NULL)
1857 return lookup_symbol_aux_block (name, static_block, domain);
1858 else
1859 return NULL;
1860 }
1861
1862 /* Private data to be used with lookup_symbol_global_iterator_cb. */
1863
1864 struct global_sym_lookup_data
1865 {
1866 /* The name of the symbol we are searching for. */
1867 const char *name;
1868
1869 /* The domain to use for our search. */
1870 domain_enum domain;
1871
1872 /* The field where the callback should store the symbol if found.
1873 It should be initialized to NULL before the search is started. */
1874 struct symbol *result;
1875 };
1876
1877 /* A callback function for gdbarch_iterate_over_objfiles_in_search_order.
1878 It searches by name for a symbol in the GLOBAL_BLOCK of the given
1879 OBJFILE. The arguments for the search are passed via CB_DATA,
1880 which in reality is a pointer to struct global_sym_lookup_data. */
1881
1882 static int
1883 lookup_symbol_global_iterator_cb (struct objfile *objfile,
1884 void *cb_data)
1885 {
1886 struct global_sym_lookup_data *data =
1887 (struct global_sym_lookup_data *) cb_data;
1888
1889 gdb_assert (data->result == NULL);
1890
1891 data->result = lookup_symbol_aux_objfile (objfile, GLOBAL_BLOCK,
1892 data->name, data->domain);
1893 if (data->result == NULL)
1894 data->result = lookup_symbol_aux_quick (objfile, GLOBAL_BLOCK,
1895 data->name, data->domain);
1896
1897 /* If we found a match, tell the iterator to stop. Otherwise,
1898 keep going. */
1899 return (data->result != NULL);
1900 }
1901
1902 /* Lookup a symbol in all files' global blocks (searching psymtabs if
1903 necessary). */
1904
1905 struct symbol *
1906 lookup_symbol_global (const char *name,
1907 const struct block *block,
1908 const domain_enum domain)
1909 {
1910 struct symbol *sym = NULL;
1911 struct objfile *objfile = NULL;
1912 struct global_sym_lookup_data lookup_data;
1913
1914 /* Call library-specific lookup procedure. */
1915 objfile = lookup_objfile_from_block (block);
1916 if (objfile != NULL)
1917 sym = solib_global_lookup (objfile, name, domain);
1918 if (sym != NULL)
1919 return sym;
1920
1921 memset (&lookup_data, 0, sizeof (lookup_data));
1922 lookup_data.name = name;
1923 lookup_data.domain = domain;
1924 gdbarch_iterate_over_objfiles_in_search_order
1925 (objfile != NULL ? get_objfile_arch (objfile) : target_gdbarch (),
1926 lookup_symbol_global_iterator_cb, &lookup_data, objfile);
1927
1928 return lookup_data.result;
1929 }
1930
1931 /* Look up a type named NAME in the struct_domain. The type returned
1932 must not be opaque -- i.e., must have at least one field
1933 defined. */
1934
1935 struct type *
1936 lookup_transparent_type (const char *name)
1937 {
1938 return current_language->la_lookup_transparent_type (name);
1939 }
1940
1941 /* A helper for basic_lookup_transparent_type that interfaces with the
1942 "quick" symbol table functions. */
1943
1944 static struct type *
1945 basic_lookup_transparent_type_quick (struct objfile *objfile, int kind,
1946 const char *name)
1947 {
1948 struct symtab *symtab;
1949 struct blockvector *bv;
1950 struct block *block;
1951 struct symbol *sym;
1952
1953 if (!objfile->sf)
1954 return NULL;
1955 symtab = objfile->sf->qf->lookup_symbol (objfile, kind, name, STRUCT_DOMAIN);
1956 if (!symtab)
1957 return NULL;
1958
1959 bv = BLOCKVECTOR (symtab);
1960 block = BLOCKVECTOR_BLOCK (bv, kind);
1961 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1962 if (!sym)
1963 error_in_psymtab_expansion (kind, name, symtab);
1964
1965 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1966 return SYMBOL_TYPE (sym);
1967
1968 return NULL;
1969 }
1970
1971 /* The standard implementation of lookup_transparent_type. This code
1972 was modeled on lookup_symbol -- the parts not relevant to looking
1973 up types were just left out. In particular it's assumed here that
1974 types are available in struct_domain and only at file-static or
1975 global blocks. */
1976
1977 struct type *
1978 basic_lookup_transparent_type (const char *name)
1979 {
1980 struct symbol *sym;
1981 struct symtab *s = NULL;
1982 struct blockvector *bv;
1983 struct objfile *objfile;
1984 struct block *block;
1985 struct type *t;
1986
1987 /* Now search all the global symbols. Do the symtab's first, then
1988 check the psymtab's. If a psymtab indicates the existence
1989 of the desired name as a global, then do psymtab-to-symtab
1990 conversion on the fly and return the found symbol. */
1991
1992 ALL_OBJFILES (objfile)
1993 {
1994 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
1995 {
1996 bv = BLOCKVECTOR (s);
1997 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1998 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1999 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
2000 {
2001 return SYMBOL_TYPE (sym);
2002 }
2003 }
2004 }
2005
2006 ALL_OBJFILES (objfile)
2007 {
2008 t = basic_lookup_transparent_type_quick (objfile, GLOBAL_BLOCK, name);
2009 if (t)
2010 return t;
2011 }
2012
2013 /* Now search the static file-level symbols.
2014 Not strictly correct, but more useful than an error.
2015 Do the symtab's first, then
2016 check the psymtab's. If a psymtab indicates the existence
2017 of the desired name as a file-level static, then do psymtab-to-symtab
2018 conversion on the fly and return the found symbol. */
2019
2020 ALL_OBJFILES (objfile)
2021 {
2022 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
2023 {
2024 bv = BLOCKVECTOR (s);
2025 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
2026 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
2027 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
2028 {
2029 return SYMBOL_TYPE (sym);
2030 }
2031 }
2032 }
2033
2034 ALL_OBJFILES (objfile)
2035 {
2036 t = basic_lookup_transparent_type_quick (objfile, STATIC_BLOCK, name);
2037 if (t)
2038 return t;
2039 }
2040
2041 return (struct type *) 0;
2042 }
2043
2044 /* Search BLOCK for symbol NAME in DOMAIN.
2045
2046 Note that if NAME is the demangled form of a C++ symbol, we will fail
2047 to find a match during the binary search of the non-encoded names, but
2048 for now we don't worry about the slight inefficiency of looking for
2049 a match we'll never find, since it will go pretty quick. Once the
2050 binary search terminates, we drop through and do a straight linear
2051 search on the symbols. Each symbol which is marked as being a ObjC/C++
2052 symbol (language_cplus or language_objc set) has both the encoded and
2053 non-encoded names tested for a match.
2054
2055 This function specifically disallows domain mismatches. If a language
2056 defines a typedef for an elaborated type, such as classes in C++,
2057 then this function will need to be called twice, once to search
2058 VAR_DOMAIN and once to search STRUCT_DOMAIN. */
2059
2060 struct symbol *
2061 lookup_block_symbol (const struct block *block, const char *name,
2062 const domain_enum domain)
2063 {
2064 struct block_iterator iter;
2065 struct symbol *sym;
2066
2067 if (!BLOCK_FUNCTION (block))
2068 {
2069 for (sym = block_iter_name_first (block, name, &iter);
2070 sym != NULL;
2071 sym = block_iter_name_next (name, &iter))
2072 {
2073 if (SYMBOL_DOMAIN (sym) == domain)
2074 return sym;
2075 }
2076 return NULL;
2077 }
2078 else
2079 {
2080 /* Note that parameter symbols do not always show up last in the
2081 list; this loop makes sure to take anything else other than
2082 parameter symbols first; it only uses parameter symbols as a
2083 last resort. Note that this only takes up extra computation
2084 time on a match. */
2085
2086 struct symbol *sym_found = NULL;
2087
2088 for (sym = block_iter_name_first (block, name, &iter);
2089 sym != NULL;
2090 sym = block_iter_name_next (name, &iter))
2091 {
2092 if (SYMBOL_DOMAIN (sym) == domain)
2093 {
2094 sym_found = sym;
2095 if (!SYMBOL_IS_ARGUMENT (sym))
2096 {
2097 break;
2098 }
2099 }
2100 }
2101 return (sym_found); /* Will be NULL if not found. */
2102 }
2103 }
2104
2105 /* Iterate over the symbols named NAME, matching DOMAIN, in BLOCK.
2106
2107 For each symbol that matches, CALLBACK is called. The symbol and
2108 DATA are passed to the callback.
2109
2110 If CALLBACK returns zero, the iteration ends. Otherwise, the
2111 search continues. */
2112
2113 void
2114 iterate_over_symbols (const struct block *block, const char *name,
2115 const domain_enum domain,
2116 symbol_found_callback_ftype *callback,
2117 void *data)
2118 {
2119 struct block_iterator iter;
2120 struct symbol *sym;
2121
2122 for (sym = block_iter_name_first (block, name, &iter);
2123 sym != NULL;
2124 sym = block_iter_name_next (name, &iter))
2125 {
2126 if (SYMBOL_DOMAIN (sym) == domain)
2127 {
2128 if (!callback (sym, data))
2129 return;
2130 }
2131 }
2132 }
2133
2134 /* Find the symtab associated with PC and SECTION. Look through the
2135 psymtabs and read in another symtab if necessary. */
2136
2137 struct symtab *
2138 find_pc_sect_symtab (CORE_ADDR pc, struct obj_section *section)
2139 {
2140 struct block *b;
2141 struct blockvector *bv;
2142 struct symtab *s = NULL;
2143 struct symtab *best_s = NULL;
2144 struct objfile *objfile;
2145 CORE_ADDR distance = 0;
2146 struct bound_minimal_symbol msymbol;
2147
2148 /* If we know that this is not a text address, return failure. This is
2149 necessary because we loop based on the block's high and low code
2150 addresses, which do not include the data ranges, and because
2151 we call find_pc_sect_psymtab which has a similar restriction based
2152 on the partial_symtab's texthigh and textlow. */
2153 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
2154 if (msymbol.minsym
2155 && (MSYMBOL_TYPE (msymbol.minsym) == mst_data
2156 || MSYMBOL_TYPE (msymbol.minsym) == mst_bss
2157 || MSYMBOL_TYPE (msymbol.minsym) == mst_abs
2158 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_data
2159 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_bss))
2160 return NULL;
2161
2162 /* Search all symtabs for the one whose file contains our address, and which
2163 is the smallest of all the ones containing the address. This is designed
2164 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
2165 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
2166 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
2167
2168 This happens for native ecoff format, where code from included files
2169 gets its own symtab. The symtab for the included file should have
2170 been read in already via the dependency mechanism.
2171 It might be swifter to create several symtabs with the same name
2172 like xcoff does (I'm not sure).
2173
2174 It also happens for objfiles that have their functions reordered.
2175 For these, the symtab we are looking for is not necessarily read in. */
2176
2177 ALL_PRIMARY_SYMTABS (objfile, s)
2178 {
2179 bv = BLOCKVECTOR (s);
2180 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
2181
2182 if (BLOCK_START (b) <= pc
2183 && BLOCK_END (b) > pc
2184 && (distance == 0
2185 || BLOCK_END (b) - BLOCK_START (b) < distance))
2186 {
2187 /* For an objfile that has its functions reordered,
2188 find_pc_psymtab will find the proper partial symbol table
2189 and we simply return its corresponding symtab. */
2190 /* In order to better support objfiles that contain both
2191 stabs and coff debugging info, we continue on if a psymtab
2192 can't be found. */
2193 if ((objfile->flags & OBJF_REORDERED) && objfile->sf)
2194 {
2195 struct symtab *result;
2196
2197 result
2198 = objfile->sf->qf->find_pc_sect_symtab (objfile,
2199 msymbol,
2200 pc, section,
2201 0);
2202 if (result)
2203 return result;
2204 }
2205 if (section != 0)
2206 {
2207 struct block_iterator iter;
2208 struct symbol *sym = NULL;
2209
2210 ALL_BLOCK_SYMBOLS (b, iter, sym)
2211 {
2212 fixup_symbol_section (sym, objfile);
2213 if (matching_obj_sections (SYMBOL_OBJ_SECTION (objfile, sym),
2214 section))
2215 break;
2216 }
2217 if (sym == NULL)
2218 continue; /* No symbol in this symtab matches
2219 section. */
2220 }
2221 distance = BLOCK_END (b) - BLOCK_START (b);
2222 best_s = s;
2223 }
2224 }
2225
2226 if (best_s != NULL)
2227 return (best_s);
2228
2229 /* Not found in symtabs, search the "quick" symtabs (e.g. psymtabs). */
2230
2231 ALL_OBJFILES (objfile)
2232 {
2233 struct symtab *result;
2234
2235 if (!objfile->sf)
2236 continue;
2237 result = objfile->sf->qf->find_pc_sect_symtab (objfile,
2238 msymbol,
2239 pc, section,
2240 1);
2241 if (result)
2242 return result;
2243 }
2244
2245 return NULL;
2246 }
2247
2248 /* Find the symtab associated with PC. Look through the psymtabs and read
2249 in another symtab if necessary. Backward compatibility, no section. */
2250
2251 struct symtab *
2252 find_pc_symtab (CORE_ADDR pc)
2253 {
2254 return find_pc_sect_symtab (pc, find_pc_mapped_section (pc));
2255 }
2256 \f
2257
2258 /* Find the source file and line number for a given PC value and SECTION.
2259 Return a structure containing a symtab pointer, a line number,
2260 and a pc range for the entire source line.
2261 The value's .pc field is NOT the specified pc.
2262 NOTCURRENT nonzero means, if specified pc is on a line boundary,
2263 use the line that ends there. Otherwise, in that case, the line
2264 that begins there is used. */
2265
2266 /* The big complication here is that a line may start in one file, and end just
2267 before the start of another file. This usually occurs when you #include
2268 code in the middle of a subroutine. To properly find the end of a line's PC
2269 range, we must search all symtabs associated with this compilation unit, and
2270 find the one whose first PC is closer than that of the next line in this
2271 symtab. */
2272
2273 /* If it's worth the effort, we could be using a binary search. */
2274
2275 struct symtab_and_line
2276 find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent)
2277 {
2278 struct symtab *s;
2279 struct linetable *l;
2280 int len;
2281 int i;
2282 struct linetable_entry *item;
2283 struct symtab_and_line val;
2284 struct blockvector *bv;
2285 struct bound_minimal_symbol msymbol;
2286 struct objfile *objfile;
2287
2288 /* Info on best line seen so far, and where it starts, and its file. */
2289
2290 struct linetable_entry *best = NULL;
2291 CORE_ADDR best_end = 0;
2292 struct symtab *best_symtab = 0;
2293
2294 /* Store here the first line number
2295 of a file which contains the line at the smallest pc after PC.
2296 If we don't find a line whose range contains PC,
2297 we will use a line one less than this,
2298 with a range from the start of that file to the first line's pc. */
2299 struct linetable_entry *alt = NULL;
2300
2301 /* Info on best line seen in this file. */
2302
2303 struct linetable_entry *prev;
2304
2305 /* If this pc is not from the current frame,
2306 it is the address of the end of a call instruction.
2307 Quite likely that is the start of the following statement.
2308 But what we want is the statement containing the instruction.
2309 Fudge the pc to make sure we get that. */
2310
2311 init_sal (&val); /* initialize to zeroes */
2312
2313 val.pspace = current_program_space;
2314
2315 /* It's tempting to assume that, if we can't find debugging info for
2316 any function enclosing PC, that we shouldn't search for line
2317 number info, either. However, GAS can emit line number info for
2318 assembly files --- very helpful when debugging hand-written
2319 assembly code. In such a case, we'd have no debug info for the
2320 function, but we would have line info. */
2321
2322 if (notcurrent)
2323 pc -= 1;
2324
2325 /* elz: added this because this function returned the wrong
2326 information if the pc belongs to a stub (import/export)
2327 to call a shlib function. This stub would be anywhere between
2328 two functions in the target, and the line info was erroneously
2329 taken to be the one of the line before the pc. */
2330
2331 /* RT: Further explanation:
2332
2333 * We have stubs (trampolines) inserted between procedures.
2334 *
2335 * Example: "shr1" exists in a shared library, and a "shr1" stub also
2336 * exists in the main image.
2337 *
2338 * In the minimal symbol table, we have a bunch of symbols
2339 * sorted by start address. The stubs are marked as "trampoline",
2340 * the others appear as text. E.g.:
2341 *
2342 * Minimal symbol table for main image
2343 * main: code for main (text symbol)
2344 * shr1: stub (trampoline symbol)
2345 * foo: code for foo (text symbol)
2346 * ...
2347 * Minimal symbol table for "shr1" image:
2348 * ...
2349 * shr1: code for shr1 (text symbol)
2350 * ...
2351 *
2352 * So the code below is trying to detect if we are in the stub
2353 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
2354 * and if found, do the symbolization from the real-code address
2355 * rather than the stub address.
2356 *
2357 * Assumptions being made about the minimal symbol table:
2358 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
2359 * if we're really in the trampoline.s If we're beyond it (say
2360 * we're in "foo" in the above example), it'll have a closer
2361 * symbol (the "foo" text symbol for example) and will not
2362 * return the trampoline.
2363 * 2. lookup_minimal_symbol_text() will find a real text symbol
2364 * corresponding to the trampoline, and whose address will
2365 * be different than the trampoline address. I put in a sanity
2366 * check for the address being the same, to avoid an
2367 * infinite recursion.
2368 */
2369 msymbol = lookup_minimal_symbol_by_pc (pc);
2370 if (msymbol.minsym != NULL)
2371 if (MSYMBOL_TYPE (msymbol.minsym) == mst_solib_trampoline)
2372 {
2373 struct bound_minimal_symbol mfunsym
2374 = lookup_minimal_symbol_text (MSYMBOL_LINKAGE_NAME (msymbol.minsym),
2375 NULL);
2376
2377 if (mfunsym.minsym == NULL)
2378 /* I eliminated this warning since it is coming out
2379 * in the following situation:
2380 * gdb shmain // test program with shared libraries
2381 * (gdb) break shr1 // function in shared lib
2382 * Warning: In stub for ...
2383 * In the above situation, the shared lib is not loaded yet,
2384 * so of course we can't find the real func/line info,
2385 * but the "break" still works, and the warning is annoying.
2386 * So I commented out the warning. RT */
2387 /* warning ("In stub for %s; unable to find real function/line info",
2388 SYMBOL_LINKAGE_NAME (msymbol)); */
2389 ;
2390 /* fall through */
2391 else if (BMSYMBOL_VALUE_ADDRESS (mfunsym)
2392 == BMSYMBOL_VALUE_ADDRESS (msymbol))
2393 /* Avoid infinite recursion */
2394 /* See above comment about why warning is commented out. */
2395 /* warning ("In stub for %s; unable to find real function/line info",
2396 SYMBOL_LINKAGE_NAME (msymbol)); */
2397 ;
2398 /* fall through */
2399 else
2400 return find_pc_line (BMSYMBOL_VALUE_ADDRESS (mfunsym), 0);
2401 }
2402
2403
2404 s = find_pc_sect_symtab (pc, section);
2405 if (!s)
2406 {
2407 /* If no symbol information, return previous pc. */
2408 if (notcurrent)
2409 pc++;
2410 val.pc = pc;
2411 return val;
2412 }
2413
2414 bv = BLOCKVECTOR (s);
2415 objfile = s->objfile;
2416
2417 /* Look at all the symtabs that share this blockvector.
2418 They all have the same apriori range, that we found was right;
2419 but they have different line tables. */
2420
2421 ALL_OBJFILE_SYMTABS (objfile, s)
2422 {
2423 if (BLOCKVECTOR (s) != bv)
2424 continue;
2425
2426 /* Find the best line in this symtab. */
2427 l = LINETABLE (s);
2428 if (!l)
2429 continue;
2430 len = l->nitems;
2431 if (len <= 0)
2432 {
2433 /* I think len can be zero if the symtab lacks line numbers
2434 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
2435 I'm not sure which, and maybe it depends on the symbol
2436 reader). */
2437 continue;
2438 }
2439
2440 prev = NULL;
2441 item = l->item; /* Get first line info. */
2442
2443 /* Is this file's first line closer than the first lines of other files?
2444 If so, record this file, and its first line, as best alternate. */
2445 if (item->pc > pc && (!alt || item->pc < alt->pc))
2446 alt = item;
2447
2448 for (i = 0; i < len; i++, item++)
2449 {
2450 /* Leave prev pointing to the linetable entry for the last line
2451 that started at or before PC. */
2452 if (item->pc > pc)
2453 break;
2454
2455 prev = item;
2456 }
2457
2458 /* At this point, prev points at the line whose start addr is <= pc, and
2459 item points at the next line. If we ran off the end of the linetable
2460 (pc >= start of the last line), then prev == item. If pc < start of
2461 the first line, prev will not be set. */
2462
2463 /* Is this file's best line closer than the best in the other files?
2464 If so, record this file, and its best line, as best so far. Don't
2465 save prev if it represents the end of a function (i.e. line number
2466 0) instead of a real line. */
2467
2468 if (prev && prev->line && (!best || prev->pc > best->pc))
2469 {
2470 best = prev;
2471 best_symtab = s;
2472
2473 /* Discard BEST_END if it's before the PC of the current BEST. */
2474 if (best_end <= best->pc)
2475 best_end = 0;
2476 }
2477
2478 /* If another line (denoted by ITEM) is in the linetable and its
2479 PC is after BEST's PC, but before the current BEST_END, then
2480 use ITEM's PC as the new best_end. */
2481 if (best && i < len && item->pc > best->pc
2482 && (best_end == 0 || best_end > item->pc))
2483 best_end = item->pc;
2484 }
2485
2486 if (!best_symtab)
2487 {
2488 /* If we didn't find any line number info, just return zeros.
2489 We used to return alt->line - 1 here, but that could be
2490 anywhere; if we don't have line number info for this PC,
2491 don't make some up. */
2492 val.pc = pc;
2493 }
2494 else if (best->line == 0)
2495 {
2496 /* If our best fit is in a range of PC's for which no line
2497 number info is available (line number is zero) then we didn't
2498 find any valid line information. */
2499 val.pc = pc;
2500 }
2501 else
2502 {
2503 val.symtab = best_symtab;
2504 val.line = best->line;
2505 val.pc = best->pc;
2506 if (best_end && (!alt || best_end < alt->pc))
2507 val.end = best_end;
2508 else if (alt)
2509 val.end = alt->pc;
2510 else
2511 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
2512 }
2513 val.section = section;
2514 return val;
2515 }
2516
2517 /* Backward compatibility (no section). */
2518
2519 struct symtab_and_line
2520 find_pc_line (CORE_ADDR pc, int notcurrent)
2521 {
2522 struct obj_section *section;
2523
2524 section = find_pc_overlay (pc);
2525 if (pc_in_unmapped_range (pc, section))
2526 pc = overlay_mapped_address (pc, section);
2527 return find_pc_sect_line (pc, section, notcurrent);
2528 }
2529 \f
2530 /* Find line number LINE in any symtab whose name is the same as
2531 SYMTAB.
2532
2533 If found, return the symtab that contains the linetable in which it was
2534 found, set *INDEX to the index in the linetable of the best entry
2535 found, and set *EXACT_MATCH nonzero if the value returned is an
2536 exact match.
2537
2538 If not found, return NULL. */
2539
2540 struct symtab *
2541 find_line_symtab (struct symtab *symtab, int line,
2542 int *index, int *exact_match)
2543 {
2544 int exact = 0; /* Initialized here to avoid a compiler warning. */
2545
2546 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
2547 so far seen. */
2548
2549 int best_index;
2550 struct linetable *best_linetable;
2551 struct symtab *best_symtab;
2552
2553 /* First try looking it up in the given symtab. */
2554 best_linetable = LINETABLE (symtab);
2555 best_symtab = symtab;
2556 best_index = find_line_common (best_linetable, line, &exact, 0);
2557 if (best_index < 0 || !exact)
2558 {
2559 /* Didn't find an exact match. So we better keep looking for
2560 another symtab with the same name. In the case of xcoff,
2561 multiple csects for one source file (produced by IBM's FORTRAN
2562 compiler) produce multiple symtabs (this is unavoidable
2563 assuming csects can be at arbitrary places in memory and that
2564 the GLOBAL_BLOCK of a symtab has a begin and end address). */
2565
2566 /* BEST is the smallest linenumber > LINE so far seen,
2567 or 0 if none has been seen so far.
2568 BEST_INDEX and BEST_LINETABLE identify the item for it. */
2569 int best;
2570
2571 struct objfile *objfile;
2572 struct symtab *s;
2573
2574 if (best_index >= 0)
2575 best = best_linetable->item[best_index].line;
2576 else
2577 best = 0;
2578
2579 ALL_OBJFILES (objfile)
2580 {
2581 if (objfile->sf)
2582 objfile->sf->qf->expand_symtabs_with_fullname (objfile,
2583 symtab_to_fullname (symtab));
2584 }
2585
2586 ALL_SYMTABS (objfile, s)
2587 {
2588 struct linetable *l;
2589 int ind;
2590
2591 if (FILENAME_CMP (symtab->filename, s->filename) != 0)
2592 continue;
2593 if (FILENAME_CMP (symtab_to_fullname (symtab),
2594 symtab_to_fullname (s)) != 0)
2595 continue;
2596 l = LINETABLE (s);
2597 ind = find_line_common (l, line, &exact, 0);
2598 if (ind >= 0)
2599 {
2600 if (exact)
2601 {
2602 best_index = ind;
2603 best_linetable = l;
2604 best_symtab = s;
2605 goto done;
2606 }
2607 if (best == 0 || l->item[ind].line < best)
2608 {
2609 best = l->item[ind].line;
2610 best_index = ind;
2611 best_linetable = l;
2612 best_symtab = s;
2613 }
2614 }
2615 }
2616 }
2617 done:
2618 if (best_index < 0)
2619 return NULL;
2620
2621 if (index)
2622 *index = best_index;
2623 if (exact_match)
2624 *exact_match = exact;
2625
2626 return best_symtab;
2627 }
2628
2629 /* Given SYMTAB, returns all the PCs function in the symtab that
2630 exactly match LINE. Returns NULL if there are no exact matches,
2631 but updates BEST_ITEM in this case. */
2632
2633 VEC (CORE_ADDR) *
2634 find_pcs_for_symtab_line (struct symtab *symtab, int line,
2635 struct linetable_entry **best_item)
2636 {
2637 int start = 0;
2638 VEC (CORE_ADDR) *result = NULL;
2639
2640 /* First, collect all the PCs that are at this line. */
2641 while (1)
2642 {
2643 int was_exact;
2644 int idx;
2645
2646 idx = find_line_common (LINETABLE (symtab), line, &was_exact, start);
2647 if (idx < 0)
2648 break;
2649
2650 if (!was_exact)
2651 {
2652 struct linetable_entry *item = &LINETABLE (symtab)->item[idx];
2653
2654 if (*best_item == NULL || item->line < (*best_item)->line)
2655 *best_item = item;
2656
2657 break;
2658 }
2659
2660 VEC_safe_push (CORE_ADDR, result, LINETABLE (symtab)->item[idx].pc);
2661 start = idx + 1;
2662 }
2663
2664 return result;
2665 }
2666
2667 \f
2668 /* Set the PC value for a given source file and line number and return true.
2669 Returns zero for invalid line number (and sets the PC to 0).
2670 The source file is specified with a struct symtab. */
2671
2672 int
2673 find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
2674 {
2675 struct linetable *l;
2676 int ind;
2677
2678 *pc = 0;
2679 if (symtab == 0)
2680 return 0;
2681
2682 symtab = find_line_symtab (symtab, line, &ind, NULL);
2683 if (symtab != NULL)
2684 {
2685 l = LINETABLE (symtab);
2686 *pc = l->item[ind].pc;
2687 return 1;
2688 }
2689 else
2690 return 0;
2691 }
2692
2693 /* Find the range of pc values in a line.
2694 Store the starting pc of the line into *STARTPTR
2695 and the ending pc (start of next line) into *ENDPTR.
2696 Returns 1 to indicate success.
2697 Returns 0 if could not find the specified line. */
2698
2699 int
2700 find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
2701 CORE_ADDR *endptr)
2702 {
2703 CORE_ADDR startaddr;
2704 struct symtab_and_line found_sal;
2705
2706 startaddr = sal.pc;
2707 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
2708 return 0;
2709
2710 /* This whole function is based on address. For example, if line 10 has
2711 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
2712 "info line *0x123" should say the line goes from 0x100 to 0x200
2713 and "info line *0x355" should say the line goes from 0x300 to 0x400.
2714 This also insures that we never give a range like "starts at 0x134
2715 and ends at 0x12c". */
2716
2717 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
2718 if (found_sal.line != sal.line)
2719 {
2720 /* The specified line (sal) has zero bytes. */
2721 *startptr = found_sal.pc;
2722 *endptr = found_sal.pc;
2723 }
2724 else
2725 {
2726 *startptr = found_sal.pc;
2727 *endptr = found_sal.end;
2728 }
2729 return 1;
2730 }
2731
2732 /* Given a line table and a line number, return the index into the line
2733 table for the pc of the nearest line whose number is >= the specified one.
2734 Return -1 if none is found. The value is >= 0 if it is an index.
2735 START is the index at which to start searching the line table.
2736
2737 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
2738
2739 static int
2740 find_line_common (struct linetable *l, int lineno,
2741 int *exact_match, int start)
2742 {
2743 int i;
2744 int len;
2745
2746 /* BEST is the smallest linenumber > LINENO so far seen,
2747 or 0 if none has been seen so far.
2748 BEST_INDEX identifies the item for it. */
2749
2750 int best_index = -1;
2751 int best = 0;
2752
2753 *exact_match = 0;
2754
2755 if (lineno <= 0)
2756 return -1;
2757 if (l == 0)
2758 return -1;
2759
2760 len = l->nitems;
2761 for (i = start; i < len; i++)
2762 {
2763 struct linetable_entry *item = &(l->item[i]);
2764
2765 if (item->line == lineno)
2766 {
2767 /* Return the first (lowest address) entry which matches. */
2768 *exact_match = 1;
2769 return i;
2770 }
2771
2772 if (item->line > lineno && (best == 0 || item->line < best))
2773 {
2774 best = item->line;
2775 best_index = i;
2776 }
2777 }
2778
2779 /* If we got here, we didn't get an exact match. */
2780 return best_index;
2781 }
2782
2783 int
2784 find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
2785 {
2786 struct symtab_and_line sal;
2787
2788 sal = find_pc_line (pc, 0);
2789 *startptr = sal.pc;
2790 *endptr = sal.end;
2791 return sal.symtab != 0;
2792 }
2793
2794 /* Given a function start address FUNC_ADDR and SYMTAB, find the first
2795 address for that function that has an entry in SYMTAB's line info
2796 table. If such an entry cannot be found, return FUNC_ADDR
2797 unaltered. */
2798
2799 static CORE_ADDR
2800 skip_prologue_using_lineinfo (CORE_ADDR func_addr, struct symtab *symtab)
2801 {
2802 CORE_ADDR func_start, func_end;
2803 struct linetable *l;
2804 int i;
2805
2806 /* Give up if this symbol has no lineinfo table. */
2807 l = LINETABLE (symtab);
2808 if (l == NULL)
2809 return func_addr;
2810
2811 /* Get the range for the function's PC values, or give up if we
2812 cannot, for some reason. */
2813 if (!find_pc_partial_function (func_addr, NULL, &func_start, &func_end))
2814 return func_addr;
2815
2816 /* Linetable entries are ordered by PC values, see the commentary in
2817 symtab.h where `struct linetable' is defined. Thus, the first
2818 entry whose PC is in the range [FUNC_START..FUNC_END[ is the
2819 address we are looking for. */
2820 for (i = 0; i < l->nitems; i++)
2821 {
2822 struct linetable_entry *item = &(l->item[i]);
2823
2824 /* Don't use line numbers of zero, they mark special entries in
2825 the table. See the commentary on symtab.h before the
2826 definition of struct linetable. */
2827 if (item->line > 0 && func_start <= item->pc && item->pc < func_end)
2828 return item->pc;
2829 }
2830
2831 return func_addr;
2832 }
2833
2834 /* Given a function symbol SYM, find the symtab and line for the start
2835 of the function.
2836 If the argument FUNFIRSTLINE is nonzero, we want the first line
2837 of real code inside the function. */
2838
2839 struct symtab_and_line
2840 find_function_start_sal (struct symbol *sym, int funfirstline)
2841 {
2842 struct symtab_and_line sal;
2843
2844 fixup_symbol_section (sym, NULL);
2845 sal = find_pc_sect_line (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)),
2846 SYMBOL_OBJ_SECTION (SYMBOL_OBJFILE (sym), sym), 0);
2847
2848 /* We always should have a line for the function start address.
2849 If we don't, something is odd. Create a plain SAL refering
2850 just the PC and hope that skip_prologue_sal (if requested)
2851 can find a line number for after the prologue. */
2852 if (sal.pc < BLOCK_START (SYMBOL_BLOCK_VALUE (sym)))
2853 {
2854 init_sal (&sal);
2855 sal.pspace = current_program_space;
2856 sal.pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
2857 sal.section = SYMBOL_OBJ_SECTION (SYMBOL_OBJFILE (sym), sym);
2858 }
2859
2860 if (funfirstline)
2861 skip_prologue_sal (&sal);
2862
2863 return sal;
2864 }
2865
2866 /* Adjust SAL to the first instruction past the function prologue.
2867 If the PC was explicitly specified, the SAL is not changed.
2868 If the line number was explicitly specified, at most the SAL's PC
2869 is updated. If SAL is already past the prologue, then do nothing. */
2870
2871 void
2872 skip_prologue_sal (struct symtab_and_line *sal)
2873 {
2874 struct symbol *sym;
2875 struct symtab_and_line start_sal;
2876 struct cleanup *old_chain;
2877 CORE_ADDR pc, saved_pc;
2878 struct obj_section *section;
2879 const char *name;
2880 struct objfile *objfile;
2881 struct gdbarch *gdbarch;
2882 struct block *b, *function_block;
2883 int force_skip, skip;
2884
2885 /* Do not change the SAL if PC was specified explicitly. */
2886 if (sal->explicit_pc)
2887 return;
2888
2889 old_chain = save_current_space_and_thread ();
2890 switch_to_program_space_and_thread (sal->pspace);
2891
2892 sym = find_pc_sect_function (sal->pc, sal->section);
2893 if (sym != NULL)
2894 {
2895 fixup_symbol_section (sym, NULL);
2896
2897 pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
2898 section = SYMBOL_OBJ_SECTION (SYMBOL_OBJFILE (sym), sym);
2899 name = SYMBOL_LINKAGE_NAME (sym);
2900 objfile = SYMBOL_SYMTAB (sym)->objfile;
2901 }
2902 else
2903 {
2904 struct bound_minimal_symbol msymbol
2905 = lookup_minimal_symbol_by_pc_section (sal->pc, sal->section);
2906
2907 if (msymbol.minsym == NULL)
2908 {
2909 do_cleanups (old_chain);
2910 return;
2911 }
2912
2913 objfile = msymbol.objfile;
2914 pc = BMSYMBOL_VALUE_ADDRESS (msymbol);
2915 section = MSYMBOL_OBJ_SECTION (objfile, msymbol.minsym);
2916 name = MSYMBOL_LINKAGE_NAME (msymbol.minsym);
2917 }
2918
2919 gdbarch = get_objfile_arch (objfile);
2920
2921 /* Process the prologue in two passes. In the first pass try to skip the
2922 prologue (SKIP is true) and verify there is a real need for it (indicated
2923 by FORCE_SKIP). If no such reason was found run a second pass where the
2924 prologue is not skipped (SKIP is false). */
2925
2926 skip = 1;
2927 force_skip = 1;
2928
2929 /* Be conservative - allow direct PC (without skipping prologue) only if we
2930 have proven the CU (Compilation Unit) supports it. sal->SYMTAB does not
2931 have to be set by the caller so we use SYM instead. */
2932 if (sym && SYMBOL_SYMTAB (sym)->locations_valid)
2933 force_skip = 0;
2934
2935 saved_pc = pc;
2936 do
2937 {
2938 pc = saved_pc;
2939
2940 /* If the function is in an unmapped overlay, use its unmapped LMA address,
2941 so that gdbarch_skip_prologue has something unique to work on. */
2942 if (section_is_overlay (section) && !section_is_mapped (section))
2943 pc = overlay_unmapped_address (pc, section);
2944
2945 /* Skip "first line" of function (which is actually its prologue). */
2946 pc += gdbarch_deprecated_function_start_offset (gdbarch);
2947 if (gdbarch_skip_entrypoint_p (gdbarch))
2948 pc = gdbarch_skip_entrypoint (gdbarch, pc);
2949 if (skip)
2950 pc = gdbarch_skip_prologue (gdbarch, pc);
2951
2952 /* For overlays, map pc back into its mapped VMA range. */
2953 pc = overlay_mapped_address (pc, section);
2954
2955 /* Calculate line number. */
2956 start_sal = find_pc_sect_line (pc, section, 0);
2957
2958 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
2959 line is still part of the same function. */
2960 if (skip && start_sal.pc != pc
2961 && (sym ? (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) <= start_sal.end
2962 && start_sal.end < BLOCK_END (SYMBOL_BLOCK_VALUE (sym)))
2963 : (lookup_minimal_symbol_by_pc_section (start_sal.end, section).minsym
2964 == lookup_minimal_symbol_by_pc_section (pc, section).minsym)))
2965 {
2966 /* First pc of next line */
2967 pc = start_sal.end;
2968 /* Recalculate the line number (might not be N+1). */
2969 start_sal = find_pc_sect_line (pc, section, 0);
2970 }
2971
2972 /* On targets with executable formats that don't have a concept of
2973 constructors (ELF with .init has, PE doesn't), gcc emits a call
2974 to `__main' in `main' between the prologue and before user
2975 code. */
2976 if (gdbarch_skip_main_prologue_p (gdbarch)
2977 && name && strcmp_iw (name, "main") == 0)
2978 {
2979 pc = gdbarch_skip_main_prologue (gdbarch, pc);
2980 /* Recalculate the line number (might not be N+1). */
2981 start_sal = find_pc_sect_line (pc, section, 0);
2982 force_skip = 1;
2983 }
2984 }
2985 while (!force_skip && skip--);
2986
2987 /* If we still don't have a valid source line, try to find the first
2988 PC in the lineinfo table that belongs to the same function. This
2989 happens with COFF debug info, which does not seem to have an
2990 entry in lineinfo table for the code after the prologue which has
2991 no direct relation to source. For example, this was found to be
2992 the case with the DJGPP target using "gcc -gcoff" when the
2993 compiler inserted code after the prologue to make sure the stack
2994 is aligned. */
2995 if (!force_skip && sym && start_sal.symtab == NULL)
2996 {
2997 pc = skip_prologue_using_lineinfo (pc, SYMBOL_SYMTAB (sym));
2998 /* Recalculate the line number. */
2999 start_sal = find_pc_sect_line (pc, section, 0);
3000 }
3001
3002 do_cleanups (old_chain);
3003
3004 /* If we're already past the prologue, leave SAL unchanged. Otherwise
3005 forward SAL to the end of the prologue. */
3006 if (sal->pc >= pc)
3007 return;
3008
3009 sal->pc = pc;
3010 sal->section = section;
3011
3012 /* Unless the explicit_line flag was set, update the SAL line
3013 and symtab to correspond to the modified PC location. */
3014 if (sal->explicit_line)
3015 return;
3016
3017 sal->symtab = start_sal.symtab;
3018 sal->line = start_sal.line;
3019 sal->end = start_sal.end;
3020
3021 /* Check if we are now inside an inlined function. If we can,
3022 use the call site of the function instead. */
3023 b = block_for_pc_sect (sal->pc, sal->section);
3024 function_block = NULL;
3025 while (b != NULL)
3026 {
3027 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
3028 function_block = b;
3029 else if (BLOCK_FUNCTION (b) != NULL)
3030 break;
3031 b = BLOCK_SUPERBLOCK (b);
3032 }
3033 if (function_block != NULL
3034 && SYMBOL_LINE (BLOCK_FUNCTION (function_block)) != 0)
3035 {
3036 sal->line = SYMBOL_LINE (BLOCK_FUNCTION (function_block));
3037 sal->symtab = SYMBOL_SYMTAB (BLOCK_FUNCTION (function_block));
3038 }
3039 }
3040
3041 /* If P is of the form "operator[ \t]+..." where `...' is
3042 some legitimate operator text, return a pointer to the
3043 beginning of the substring of the operator text.
3044 Otherwise, return "". */
3045
3046 static char *
3047 operator_chars (char *p, char **end)
3048 {
3049 *end = "";
3050 if (strncmp (p, "operator", 8))
3051 return *end;
3052 p += 8;
3053
3054 /* Don't get faked out by `operator' being part of a longer
3055 identifier. */
3056 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
3057 return *end;
3058
3059 /* Allow some whitespace between `operator' and the operator symbol. */
3060 while (*p == ' ' || *p == '\t')
3061 p++;
3062
3063 /* Recognize 'operator TYPENAME'. */
3064
3065 if (isalpha (*p) || *p == '_' || *p == '$')
3066 {
3067 char *q = p + 1;
3068
3069 while (isalnum (*q) || *q == '_' || *q == '$')
3070 q++;
3071 *end = q;
3072 return p;
3073 }
3074
3075 while (*p)
3076 switch (*p)
3077 {
3078 case '\\': /* regexp quoting */
3079 if (p[1] == '*')
3080 {
3081 if (p[2] == '=') /* 'operator\*=' */
3082 *end = p + 3;
3083 else /* 'operator\*' */
3084 *end = p + 2;
3085 return p;
3086 }
3087 else if (p[1] == '[')
3088 {
3089 if (p[2] == ']')
3090 error (_("mismatched quoting on brackets, "
3091 "try 'operator\\[\\]'"));
3092 else if (p[2] == '\\' && p[3] == ']')
3093 {
3094 *end = p + 4; /* 'operator\[\]' */
3095 return p;
3096 }
3097 else
3098 error (_("nothing is allowed between '[' and ']'"));
3099 }
3100 else
3101 {
3102 /* Gratuitous qoute: skip it and move on. */
3103 p++;
3104 continue;
3105 }
3106 break;
3107 case '!':
3108 case '=':
3109 case '*':
3110 case '/':
3111 case '%':
3112 case '^':
3113 if (p[1] == '=')
3114 *end = p + 2;
3115 else
3116 *end = p + 1;
3117 return p;
3118 case '<':
3119 case '>':
3120 case '+':
3121 case '-':
3122 case '&':
3123 case '|':
3124 if (p[0] == '-' && p[1] == '>')
3125 {
3126 /* Struct pointer member operator 'operator->'. */
3127 if (p[2] == '*')
3128 {
3129 *end = p + 3; /* 'operator->*' */
3130 return p;
3131 }
3132 else if (p[2] == '\\')
3133 {
3134 *end = p + 4; /* Hopefully 'operator->\*' */
3135 return p;
3136 }
3137 else
3138 {
3139 *end = p + 2; /* 'operator->' */
3140 return p;
3141 }
3142 }
3143 if (p[1] == '=' || p[1] == p[0])
3144 *end = p + 2;
3145 else
3146 *end = p + 1;
3147 return p;
3148 case '~':
3149 case ',':
3150 *end = p + 1;
3151 return p;
3152 case '(':
3153 if (p[1] != ')')
3154 error (_("`operator ()' must be specified "
3155 "without whitespace in `()'"));
3156 *end = p + 2;
3157 return p;
3158 case '?':
3159 if (p[1] != ':')
3160 error (_("`operator ?:' must be specified "
3161 "without whitespace in `?:'"));
3162 *end = p + 2;
3163 return p;
3164 case '[':
3165 if (p[1] != ']')
3166 error (_("`operator []' must be specified "
3167 "without whitespace in `[]'"));
3168 *end = p + 2;
3169 return p;
3170 default:
3171 error (_("`operator %s' not supported"), p);
3172 break;
3173 }
3174
3175 *end = "";
3176 return *end;
3177 }
3178 \f
3179
3180 /* Cache to watch for file names already seen by filename_seen. */
3181
3182 struct filename_seen_cache
3183 {
3184 /* Table of files seen so far. */
3185 htab_t tab;
3186 /* Initial size of the table. It automagically grows from here. */
3187 #define INITIAL_FILENAME_SEEN_CACHE_SIZE 100
3188 };
3189
3190 /* filename_seen_cache constructor. */
3191
3192 static struct filename_seen_cache *
3193 create_filename_seen_cache (void)
3194 {
3195 struct filename_seen_cache *cache;
3196
3197 cache = XNEW (struct filename_seen_cache);
3198 cache->tab = htab_create_alloc (INITIAL_FILENAME_SEEN_CACHE_SIZE,
3199 filename_hash, filename_eq,
3200 NULL, xcalloc, xfree);
3201
3202 return cache;
3203 }
3204
3205 /* Empty the cache, but do not delete it. */
3206
3207 static void
3208 clear_filename_seen_cache (struct filename_seen_cache *cache)
3209 {
3210 htab_empty (cache->tab);
3211 }
3212
3213 /* filename_seen_cache destructor.
3214 This takes a void * argument as it is generally used as a cleanup. */
3215
3216 static void
3217 delete_filename_seen_cache (void *ptr)
3218 {
3219 struct filename_seen_cache *cache = ptr;
3220
3221 htab_delete (cache->tab);
3222 xfree (cache);
3223 }
3224
3225 /* If FILE is not already in the table of files in CACHE, return zero;
3226 otherwise return non-zero. Optionally add FILE to the table if ADD
3227 is non-zero.
3228
3229 NOTE: We don't manage space for FILE, we assume FILE lives as long
3230 as the caller needs. */
3231
3232 static int
3233 filename_seen (struct filename_seen_cache *cache, const char *file, int add)
3234 {
3235 void **slot;
3236
3237 /* Is FILE in tab? */
3238 slot = htab_find_slot (cache->tab, file, add ? INSERT : NO_INSERT);
3239 if (*slot != NULL)
3240 return 1;
3241
3242 /* No; maybe add it to tab. */
3243 if (add)
3244 *slot = (char *) file;
3245
3246 return 0;
3247 }
3248
3249 /* Data structure to maintain printing state for output_source_filename. */
3250
3251 struct output_source_filename_data
3252 {
3253 /* Cache of what we've seen so far. */
3254 struct filename_seen_cache *filename_seen_cache;
3255
3256 /* Flag of whether we're printing the first one. */
3257 int first;
3258 };
3259
3260 /* Slave routine for sources_info. Force line breaks at ,'s.
3261 NAME is the name to print.
3262 DATA contains the state for printing and watching for duplicates. */
3263
3264 static void
3265 output_source_filename (const char *name,
3266 struct output_source_filename_data *data)
3267 {
3268 /* Since a single source file can result in several partial symbol
3269 tables, we need to avoid printing it more than once. Note: if
3270 some of the psymtabs are read in and some are not, it gets
3271 printed both under "Source files for which symbols have been
3272 read" and "Source files for which symbols will be read in on
3273 demand". I consider this a reasonable way to deal with the
3274 situation. I'm not sure whether this can also happen for
3275 symtabs; it doesn't hurt to check. */
3276
3277 /* Was NAME already seen? */
3278 if (filename_seen (data->filename_seen_cache, name, 1))
3279 {
3280 /* Yes; don't print it again. */
3281 return;
3282 }
3283
3284 /* No; print it and reset *FIRST. */
3285 if (! data->first)
3286 printf_filtered (", ");
3287 data->first = 0;
3288
3289 wrap_here ("");
3290 fputs_filtered (name, gdb_stdout);
3291 }
3292
3293 /* A callback for map_partial_symbol_filenames. */
3294
3295 static void
3296 output_partial_symbol_filename (const char *filename, const char *fullname,
3297 void *data)
3298 {
3299 output_source_filename (fullname ? fullname : filename, data);
3300 }
3301
3302 static void
3303 sources_info (char *ignore, int from_tty)
3304 {
3305 struct symtab *s;
3306 struct objfile *objfile;
3307 struct output_source_filename_data data;
3308 struct cleanup *cleanups;
3309
3310 if (!have_full_symbols () && !have_partial_symbols ())
3311 {
3312 error (_("No symbol table is loaded. Use the \"file\" command."));
3313 }
3314
3315 data.filename_seen_cache = create_filename_seen_cache ();
3316 cleanups = make_cleanup (delete_filename_seen_cache,
3317 data.filename_seen_cache);
3318
3319 printf_filtered ("Source files for which symbols have been read in:\n\n");
3320
3321 data.first = 1;
3322 ALL_SYMTABS (objfile, s)
3323 {
3324 const char *fullname = symtab_to_fullname (s);
3325
3326 output_source_filename (fullname, &data);
3327 }
3328 printf_filtered ("\n\n");
3329
3330 printf_filtered ("Source files for which symbols "
3331 "will be read in on demand:\n\n");
3332
3333 clear_filename_seen_cache (data.filename_seen_cache);
3334 data.first = 1;
3335 map_symbol_filenames (output_partial_symbol_filename, &data,
3336 1 /*need_fullname*/);
3337 printf_filtered ("\n");
3338
3339 do_cleanups (cleanups);
3340 }
3341
3342 /* Compare FILE against all the NFILES entries of FILES. If BASENAMES is
3343 non-zero compare only lbasename of FILES. */
3344
3345 static int
3346 file_matches (const char *file, char *files[], int nfiles, int basenames)
3347 {
3348 int i;
3349
3350 if (file != NULL && nfiles != 0)
3351 {
3352 for (i = 0; i < nfiles; i++)
3353 {
3354 if (compare_filenames_for_search (file, (basenames
3355 ? lbasename (files[i])
3356 : files[i])))
3357 return 1;
3358 }
3359 }
3360 else if (nfiles == 0)
3361 return 1;
3362 return 0;
3363 }
3364
3365 /* Free any memory associated with a search. */
3366
3367 void
3368 free_search_symbols (struct symbol_search *symbols)
3369 {
3370 struct symbol_search *p;
3371 struct symbol_search *next;
3372
3373 for (p = symbols; p != NULL; p = next)
3374 {
3375 next = p->next;
3376 xfree (p);
3377 }
3378 }
3379
3380 static void
3381 do_free_search_symbols_cleanup (void *symbolsp)
3382 {
3383 struct symbol_search *symbols = *(struct symbol_search **) symbolsp;
3384
3385 free_search_symbols (symbols);
3386 }
3387
3388 struct cleanup *
3389 make_cleanup_free_search_symbols (struct symbol_search **symbolsp)
3390 {
3391 return make_cleanup (do_free_search_symbols_cleanup, symbolsp);
3392 }
3393
3394 /* Helper function for sort_search_symbols_remove_dups and qsort. Can only
3395 sort symbols, not minimal symbols. */
3396
3397 static int
3398 compare_search_syms (const void *sa, const void *sb)
3399 {
3400 struct symbol_search *sym_a = *(struct symbol_search **) sa;
3401 struct symbol_search *sym_b = *(struct symbol_search **) sb;
3402 int c;
3403
3404 c = FILENAME_CMP (sym_a->symtab->filename, sym_b->symtab->filename);
3405 if (c != 0)
3406 return c;
3407
3408 if (sym_a->block != sym_b->block)
3409 return sym_a->block - sym_b->block;
3410
3411 return strcmp (SYMBOL_PRINT_NAME (sym_a->symbol),
3412 SYMBOL_PRINT_NAME (sym_b->symbol));
3413 }
3414
3415 /* Sort the NFOUND symbols in list FOUND and remove duplicates.
3416 The duplicates are freed, and the new list is returned in
3417 *NEW_HEAD, *NEW_TAIL. */
3418
3419 static void
3420 sort_search_symbols_remove_dups (struct symbol_search *found, int nfound,
3421 struct symbol_search **new_head,
3422 struct symbol_search **new_tail)
3423 {
3424 struct symbol_search **symbols, *symp, *old_next;
3425 int i, j, nunique;
3426
3427 gdb_assert (found != NULL && nfound > 0);
3428
3429 /* Build an array out of the list so we can easily sort them. */
3430 symbols = (struct symbol_search **) xmalloc (sizeof (struct symbol_search *)
3431 * nfound);
3432 symp = found;
3433 for (i = 0; i < nfound; i++)
3434 {
3435 gdb_assert (symp != NULL);
3436 gdb_assert (symp->block >= 0 && symp->block <= 1);
3437 symbols[i] = symp;
3438 symp = symp->next;
3439 }
3440 gdb_assert (symp == NULL);
3441
3442 qsort (symbols, nfound, sizeof (struct symbol_search *),
3443 compare_search_syms);
3444
3445 /* Collapse out the dups. */
3446 for (i = 1, j = 1; i < nfound; ++i)
3447 {
3448 if (compare_search_syms (&symbols[j - 1], &symbols[i]) != 0)
3449 symbols[j++] = symbols[i];
3450 else
3451 xfree (symbols[i]);
3452 }
3453 nunique = j;
3454 symbols[j - 1]->next = NULL;
3455
3456 /* Rebuild the linked list. */
3457 for (i = 0; i < nunique - 1; i++)
3458 symbols[i]->next = symbols[i + 1];
3459 symbols[nunique - 1]->next = NULL;
3460
3461 *new_head = symbols[0];
3462 *new_tail = symbols[nunique - 1];
3463 xfree (symbols);
3464 }
3465
3466 /* An object of this type is passed as the user_data to the
3467 expand_symtabs_matching method. */
3468 struct search_symbols_data
3469 {
3470 int nfiles;
3471 char **files;
3472
3473 /* It is true if PREG contains valid data, false otherwise. */
3474 unsigned preg_p : 1;
3475 regex_t preg;
3476 };
3477
3478 /* A callback for expand_symtabs_matching. */
3479
3480 static int
3481 search_symbols_file_matches (const char *filename, void *user_data,
3482 int basenames)
3483 {
3484 struct search_symbols_data *data = user_data;
3485
3486 return file_matches (filename, data->files, data->nfiles, basenames);
3487 }
3488
3489 /* A callback for expand_symtabs_matching. */
3490
3491 static int
3492 search_symbols_name_matches (const char *symname, void *user_data)
3493 {
3494 struct search_symbols_data *data = user_data;
3495
3496 return !data->preg_p || regexec (&data->preg, symname, 0, NULL, 0) == 0;
3497 }
3498
3499 /* Search the symbol table for matches to the regular expression REGEXP,
3500 returning the results in *MATCHES.
3501
3502 Only symbols of KIND are searched:
3503 VARIABLES_DOMAIN - search all symbols, excluding functions, type names,
3504 and constants (enums)
3505 FUNCTIONS_DOMAIN - search all functions
3506 TYPES_DOMAIN - search all type names
3507 ALL_DOMAIN - an internal error for this function
3508
3509 free_search_symbols should be called when *MATCHES is no longer needed.
3510
3511 Within each file the results are sorted locally; each symtab's global and
3512 static blocks are separately alphabetized.
3513 Duplicate entries are removed. */
3514
3515 void
3516 search_symbols (char *regexp, enum search_domain kind,
3517 int nfiles, char *files[],
3518 struct symbol_search **matches)
3519 {
3520 struct symtab *s;
3521 struct blockvector *bv;
3522 struct block *b;
3523 int i = 0;
3524 struct block_iterator iter;
3525 struct symbol *sym;
3526 struct objfile *objfile;
3527 struct minimal_symbol *msymbol;
3528 int found_misc = 0;
3529 static const enum minimal_symbol_type types[]
3530 = {mst_data, mst_text, mst_abs};
3531 static const enum minimal_symbol_type types2[]
3532 = {mst_bss, mst_file_text, mst_abs};
3533 static const enum minimal_symbol_type types3[]
3534 = {mst_file_data, mst_solib_trampoline, mst_abs};
3535 static const enum minimal_symbol_type types4[]
3536 = {mst_file_bss, mst_text_gnu_ifunc, mst_abs};
3537 enum minimal_symbol_type ourtype;
3538 enum minimal_symbol_type ourtype2;
3539 enum minimal_symbol_type ourtype3;
3540 enum minimal_symbol_type ourtype4;
3541 struct symbol_search *found;
3542 struct symbol_search *tail;
3543 struct search_symbols_data datum;
3544 int nfound;
3545
3546 /* OLD_CHAIN .. RETVAL_CHAIN is always freed, RETVAL_CHAIN .. current
3547 CLEANUP_CHAIN is freed only in the case of an error. */
3548 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
3549 struct cleanup *retval_chain;
3550
3551 gdb_assert (kind <= TYPES_DOMAIN);
3552
3553 ourtype = types[kind];
3554 ourtype2 = types2[kind];
3555 ourtype3 = types3[kind];
3556 ourtype4 = types4[kind];
3557
3558 *matches = NULL;
3559 datum.preg_p = 0;
3560
3561 if (regexp != NULL)
3562 {
3563 /* Make sure spacing is right for C++ operators.
3564 This is just a courtesy to make the matching less sensitive
3565 to how many spaces the user leaves between 'operator'
3566 and <TYPENAME> or <OPERATOR>. */
3567 char *opend;
3568 char *opname = operator_chars (regexp, &opend);
3569 int errcode;
3570
3571 if (*opname)
3572 {
3573 int fix = -1; /* -1 means ok; otherwise number of
3574 spaces needed. */
3575
3576 if (isalpha (*opname) || *opname == '_' || *opname == '$')
3577 {
3578 /* There should 1 space between 'operator' and 'TYPENAME'. */
3579 if (opname[-1] != ' ' || opname[-2] == ' ')
3580 fix = 1;
3581 }
3582 else
3583 {
3584 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
3585 if (opname[-1] == ' ')
3586 fix = 0;
3587 }
3588 /* If wrong number of spaces, fix it. */
3589 if (fix >= 0)
3590 {
3591 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
3592
3593 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
3594 regexp = tmp;
3595 }
3596 }
3597
3598 errcode = regcomp (&datum.preg, regexp,
3599 REG_NOSUB | (case_sensitivity == case_sensitive_off
3600 ? REG_ICASE : 0));
3601 if (errcode != 0)
3602 {
3603 char *err = get_regcomp_error (errcode, &datum.preg);
3604
3605 make_cleanup (xfree, err);
3606 error (_("Invalid regexp (%s): %s"), err, regexp);
3607 }
3608 datum.preg_p = 1;
3609 make_regfree_cleanup (&datum.preg);
3610 }
3611
3612 /* Search through the partial symtabs *first* for all symbols
3613 matching the regexp. That way we don't have to reproduce all of
3614 the machinery below. */
3615
3616 datum.nfiles = nfiles;
3617 datum.files = files;
3618 expand_symtabs_matching ((nfiles == 0
3619 ? NULL
3620 : search_symbols_file_matches),
3621 search_symbols_name_matches,
3622 kind, &datum);
3623
3624 /* Here, we search through the minimal symbol tables for functions
3625 and variables that match, and force their symbols to be read.
3626 This is in particular necessary for demangled variable names,
3627 which are no longer put into the partial symbol tables.
3628 The symbol will then be found during the scan of symtabs below.
3629
3630 For functions, find_pc_symtab should succeed if we have debug info
3631 for the function, for variables we have to call
3632 lookup_symbol_in_objfile_from_linkage_name to determine if the variable
3633 has debug info.
3634 If the lookup fails, set found_misc so that we will rescan to print
3635 any matching symbols without debug info.
3636 We only search the objfile the msymbol came from, we no longer search
3637 all objfiles. In large programs (1000s of shared libs) searching all
3638 objfiles is not worth the pain. */
3639
3640 if (nfiles == 0 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
3641 {
3642 ALL_MSYMBOLS (objfile, msymbol)
3643 {
3644 QUIT;
3645
3646 if (msymbol->created_by_gdb)
3647 continue;
3648
3649 if (MSYMBOL_TYPE (msymbol) == ourtype
3650 || MSYMBOL_TYPE (msymbol) == ourtype2
3651 || MSYMBOL_TYPE (msymbol) == ourtype3
3652 || MSYMBOL_TYPE (msymbol) == ourtype4)
3653 {
3654 if (!datum.preg_p
3655 || regexec (&datum.preg, MSYMBOL_NATURAL_NAME (msymbol), 0,
3656 NULL, 0) == 0)
3657 {
3658 /* Note: An important side-effect of these lookup functions
3659 is to expand the symbol table if msymbol is found, for the
3660 benefit of the next loop on ALL_PRIMARY_SYMTABS. */
3661 if (kind == FUNCTIONS_DOMAIN
3662 ? find_pc_symtab (MSYMBOL_VALUE_ADDRESS (objfile,
3663 msymbol)) == NULL
3664 : (lookup_symbol_in_objfile_from_linkage_name
3665 (objfile, MSYMBOL_LINKAGE_NAME (msymbol), VAR_DOMAIN)
3666 == NULL))
3667 found_misc = 1;
3668 }
3669 }
3670 }
3671 }
3672
3673 found = NULL;
3674 tail = NULL;
3675 nfound = 0;
3676 retval_chain = make_cleanup_free_search_symbols (&found);
3677
3678 ALL_PRIMARY_SYMTABS (objfile, s)
3679 {
3680 bv = BLOCKVECTOR (s);
3681 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
3682 {
3683 b = BLOCKVECTOR_BLOCK (bv, i);
3684 ALL_BLOCK_SYMBOLS (b, iter, sym)
3685 {
3686 struct symtab *real_symtab = SYMBOL_SYMTAB (sym);
3687
3688 QUIT;
3689
3690 /* Check first sole REAL_SYMTAB->FILENAME. It does not need to be
3691 a substring of symtab_to_fullname as it may contain "./" etc. */
3692 if ((file_matches (real_symtab->filename, files, nfiles, 0)
3693 || ((basenames_may_differ
3694 || file_matches (lbasename (real_symtab->filename),
3695 files, nfiles, 1))
3696 && file_matches (symtab_to_fullname (real_symtab),
3697 files, nfiles, 0)))
3698 && ((!datum.preg_p
3699 || regexec (&datum.preg, SYMBOL_NATURAL_NAME (sym), 0,
3700 NULL, 0) == 0)
3701 && ((kind == VARIABLES_DOMAIN
3702 && SYMBOL_CLASS (sym) != LOC_TYPEDEF
3703 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
3704 && SYMBOL_CLASS (sym) != LOC_BLOCK
3705 /* LOC_CONST can be used for more than just enums,
3706 e.g., c++ static const members.
3707 We only want to skip enums here. */
3708 && !(SYMBOL_CLASS (sym) == LOC_CONST
3709 && TYPE_CODE (SYMBOL_TYPE (sym))
3710 == TYPE_CODE_ENUM))
3711 || (kind == FUNCTIONS_DOMAIN
3712 && SYMBOL_CLASS (sym) == LOC_BLOCK)
3713 || (kind == TYPES_DOMAIN
3714 && SYMBOL_CLASS (sym) == LOC_TYPEDEF))))
3715 {
3716 /* match */
3717 struct symbol_search *psr = (struct symbol_search *)
3718 xmalloc (sizeof (struct symbol_search));
3719 psr->block = i;
3720 psr->symtab = real_symtab;
3721 psr->symbol = sym;
3722 memset (&psr->msymbol, 0, sizeof (psr->msymbol));
3723 psr->next = NULL;
3724 if (tail == NULL)
3725 found = psr;
3726 else
3727 tail->next = psr;
3728 tail = psr;
3729 nfound ++;
3730 }
3731 }
3732 }
3733 }
3734
3735 if (found != NULL)
3736 {
3737 sort_search_symbols_remove_dups (found, nfound, &found, &tail);
3738 /* Note: nfound is no longer useful beyond this point. */
3739 }
3740
3741 /* If there are no eyes, avoid all contact. I mean, if there are
3742 no debug symbols, then print directly from the msymbol_vector. */
3743
3744 if (found_misc || (nfiles == 0 && kind != FUNCTIONS_DOMAIN))
3745 {
3746 ALL_MSYMBOLS (objfile, msymbol)
3747 {
3748 QUIT;
3749
3750 if (msymbol->created_by_gdb)
3751 continue;
3752
3753 if (MSYMBOL_TYPE (msymbol) == ourtype
3754 || MSYMBOL_TYPE (msymbol) == ourtype2
3755 || MSYMBOL_TYPE (msymbol) == ourtype3
3756 || MSYMBOL_TYPE (msymbol) == ourtype4)
3757 {
3758 if (!datum.preg_p
3759 || regexec (&datum.preg, MSYMBOL_NATURAL_NAME (msymbol), 0,
3760 NULL, 0) == 0)
3761 {
3762 /* For functions we can do a quick check of whether the
3763 symbol might be found via find_pc_symtab. */
3764 if (kind != FUNCTIONS_DOMAIN
3765 || find_pc_symtab (MSYMBOL_VALUE_ADDRESS (objfile,
3766 msymbol)) == NULL)
3767 {
3768 if (lookup_symbol_in_objfile_from_linkage_name
3769 (objfile, MSYMBOL_LINKAGE_NAME (msymbol), VAR_DOMAIN)
3770 == NULL)
3771 {
3772 /* match */
3773 struct symbol_search *psr = (struct symbol_search *)
3774 xmalloc (sizeof (struct symbol_search));
3775 psr->block = i;
3776 psr->msymbol.minsym = msymbol;
3777 psr->msymbol.objfile = objfile;
3778 psr->symtab = NULL;
3779 psr->symbol = NULL;
3780 psr->next = NULL;
3781 if (tail == NULL)
3782 found = psr;
3783 else
3784 tail->next = psr;
3785 tail = psr;
3786 }
3787 }
3788 }
3789 }
3790 }
3791 }
3792
3793 discard_cleanups (retval_chain);
3794 do_cleanups (old_chain);
3795 *matches = found;
3796 }
3797
3798 /* Helper function for symtab_symbol_info, this function uses
3799 the data returned from search_symbols() to print information
3800 regarding the match to gdb_stdout. */
3801
3802 static void
3803 print_symbol_info (enum search_domain kind,
3804 struct symtab *s, struct symbol *sym,
3805 int block, const char *last)
3806 {
3807 const char *s_filename = symtab_to_filename_for_display (s);
3808
3809 if (last == NULL || filename_cmp (last, s_filename) != 0)
3810 {
3811 fputs_filtered ("\nFile ", gdb_stdout);
3812 fputs_filtered (s_filename, gdb_stdout);
3813 fputs_filtered (":\n", gdb_stdout);
3814 }
3815
3816 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
3817 printf_filtered ("static ");
3818
3819 /* Typedef that is not a C++ class. */
3820 if (kind == TYPES_DOMAIN
3821 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
3822 typedef_print (SYMBOL_TYPE (sym), sym, gdb_stdout);
3823 /* variable, func, or typedef-that-is-c++-class. */
3824 else if (kind < TYPES_DOMAIN
3825 || (kind == TYPES_DOMAIN
3826 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
3827 {
3828 type_print (SYMBOL_TYPE (sym),
3829 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
3830 ? "" : SYMBOL_PRINT_NAME (sym)),
3831 gdb_stdout, 0);
3832
3833 printf_filtered (";\n");
3834 }
3835 }
3836
3837 /* This help function for symtab_symbol_info() prints information
3838 for non-debugging symbols to gdb_stdout. */
3839
3840 static void
3841 print_msymbol_info (struct bound_minimal_symbol msymbol)
3842 {
3843 struct gdbarch *gdbarch = get_objfile_arch (msymbol.objfile);
3844 char *tmp;
3845
3846 if (gdbarch_addr_bit (gdbarch) <= 32)
3847 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol)
3848 & (CORE_ADDR) 0xffffffff,
3849 8);
3850 else
3851 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol),
3852 16);
3853 printf_filtered ("%s %s\n",
3854 tmp, MSYMBOL_PRINT_NAME (msymbol.minsym));
3855 }
3856
3857 /* This is the guts of the commands "info functions", "info types", and
3858 "info variables". It calls search_symbols to find all matches and then
3859 print_[m]symbol_info to print out some useful information about the
3860 matches. */
3861
3862 static void
3863 symtab_symbol_info (char *regexp, enum search_domain kind, int from_tty)
3864 {
3865 static const char * const classnames[] =
3866 {"variable", "function", "type"};
3867 struct symbol_search *symbols;
3868 struct symbol_search *p;
3869 struct cleanup *old_chain;
3870 const char *last_filename = NULL;
3871 int first = 1;
3872
3873 gdb_assert (kind <= TYPES_DOMAIN);
3874
3875 /* Must make sure that if we're interrupted, symbols gets freed. */
3876 search_symbols (regexp, kind, 0, (char **) NULL, &symbols);
3877 old_chain = make_cleanup_free_search_symbols (&symbols);
3878
3879 if (regexp != NULL)
3880 printf_filtered (_("All %ss matching regular expression \"%s\":\n"),
3881 classnames[kind], regexp);
3882 else
3883 printf_filtered (_("All defined %ss:\n"), classnames[kind]);
3884
3885 for (p = symbols; p != NULL; p = p->next)
3886 {
3887 QUIT;
3888
3889 if (p->msymbol.minsym != NULL)
3890 {
3891 if (first)
3892 {
3893 printf_filtered (_("\nNon-debugging symbols:\n"));
3894 first = 0;
3895 }
3896 print_msymbol_info (p->msymbol);
3897 }
3898 else
3899 {
3900 print_symbol_info (kind,
3901 p->symtab,
3902 p->symbol,
3903 p->block,
3904 last_filename);
3905 last_filename = symtab_to_filename_for_display (p->symtab);
3906 }
3907 }
3908
3909 do_cleanups (old_chain);
3910 }
3911
3912 static void
3913 variables_info (char *regexp, int from_tty)
3914 {
3915 symtab_symbol_info (regexp, VARIABLES_DOMAIN, from_tty);
3916 }
3917
3918 static void
3919 functions_info (char *regexp, int from_tty)
3920 {
3921 symtab_symbol_info (regexp, FUNCTIONS_DOMAIN, from_tty);
3922 }
3923
3924
3925 static void
3926 types_info (char *regexp, int from_tty)
3927 {
3928 symtab_symbol_info (regexp, TYPES_DOMAIN, from_tty);
3929 }
3930
3931 /* Breakpoint all functions matching regular expression. */
3932
3933 void
3934 rbreak_command_wrapper (char *regexp, int from_tty)
3935 {
3936 rbreak_command (regexp, from_tty);
3937 }
3938
3939 /* A cleanup function that calls end_rbreak_breakpoints. */
3940
3941 static void
3942 do_end_rbreak_breakpoints (void *ignore)
3943 {
3944 end_rbreak_breakpoints ();
3945 }
3946
3947 static void
3948 rbreak_command (char *regexp, int from_tty)
3949 {
3950 struct symbol_search *ss;
3951 struct symbol_search *p;
3952 struct cleanup *old_chain;
3953 char *string = NULL;
3954 int len = 0;
3955 char **files = NULL, *file_name;
3956 int nfiles = 0;
3957
3958 if (regexp)
3959 {
3960 char *colon = strchr (regexp, ':');
3961
3962 if (colon && *(colon + 1) != ':')
3963 {
3964 int colon_index;
3965
3966 colon_index = colon - regexp;
3967 file_name = alloca (colon_index + 1);
3968 memcpy (file_name, regexp, colon_index);
3969 file_name[colon_index--] = 0;
3970 while (isspace (file_name[colon_index]))
3971 file_name[colon_index--] = 0;
3972 files = &file_name;
3973 nfiles = 1;
3974 regexp = skip_spaces (colon + 1);
3975 }
3976 }
3977
3978 search_symbols (regexp, FUNCTIONS_DOMAIN, nfiles, files, &ss);
3979 old_chain = make_cleanup_free_search_symbols (&ss);
3980 make_cleanup (free_current_contents, &string);
3981
3982 start_rbreak_breakpoints ();
3983 make_cleanup (do_end_rbreak_breakpoints, NULL);
3984 for (p = ss; p != NULL; p = p->next)
3985 {
3986 if (p->msymbol.minsym == NULL)
3987 {
3988 const char *fullname = symtab_to_fullname (p->symtab);
3989
3990 int newlen = (strlen (fullname)
3991 + strlen (SYMBOL_LINKAGE_NAME (p->symbol))
3992 + 4);
3993
3994 if (newlen > len)
3995 {
3996 string = xrealloc (string, newlen);
3997 len = newlen;
3998 }
3999 strcpy (string, fullname);
4000 strcat (string, ":'");
4001 strcat (string, SYMBOL_LINKAGE_NAME (p->symbol));
4002 strcat (string, "'");
4003 break_command (string, from_tty);
4004 print_symbol_info (FUNCTIONS_DOMAIN,
4005 p->symtab,
4006 p->symbol,
4007 p->block,
4008 symtab_to_filename_for_display (p->symtab));
4009 }
4010 else
4011 {
4012 int newlen = (strlen (MSYMBOL_LINKAGE_NAME (p->msymbol.minsym)) + 3);
4013
4014 if (newlen > len)
4015 {
4016 string = xrealloc (string, newlen);
4017 len = newlen;
4018 }
4019 strcpy (string, "'");
4020 strcat (string, MSYMBOL_LINKAGE_NAME (p->msymbol.minsym));
4021 strcat (string, "'");
4022
4023 break_command (string, from_tty);
4024 printf_filtered ("<function, no debug info> %s;\n",
4025 MSYMBOL_PRINT_NAME (p->msymbol.minsym));
4026 }
4027 }
4028
4029 do_cleanups (old_chain);
4030 }
4031 \f
4032
4033 /* Evaluate if NAME matches SYM_TEXT and SYM_TEXT_LEN.
4034
4035 Either sym_text[sym_text_len] != '(' and then we search for any
4036 symbol starting with SYM_TEXT text.
4037
4038 Otherwise sym_text[sym_text_len] == '(' and then we require symbol name to
4039 be terminated at that point. Partial symbol tables do not have parameters
4040 information. */
4041
4042 static int
4043 compare_symbol_name (const char *name, const char *sym_text, int sym_text_len)
4044 {
4045 int (*ncmp) (const char *, const char *, size_t);
4046
4047 ncmp = (case_sensitivity == case_sensitive_on ? strncmp : strncasecmp);
4048
4049 if (ncmp (name, sym_text, sym_text_len) != 0)
4050 return 0;
4051
4052 if (sym_text[sym_text_len] == '(')
4053 {
4054 /* User searches for `name(someth...'. Require NAME to be terminated.
4055 Normally psymtabs and gdbindex have no parameter types so '\0' will be
4056 present but accept even parameters presence. In this case this
4057 function is in fact strcmp_iw but whitespace skipping is not supported
4058 for tab completion. */
4059
4060 if (name[sym_text_len] != '\0' && name[sym_text_len] != '(')
4061 return 0;
4062 }
4063
4064 return 1;
4065 }
4066
4067 /* Free any memory associated with a completion list. */
4068
4069 static void
4070 free_completion_list (VEC (char_ptr) **list_ptr)
4071 {
4072 int i;
4073 char *p;
4074
4075 for (i = 0; VEC_iterate (char_ptr, *list_ptr, i, p); ++i)
4076 xfree (p);
4077 VEC_free (char_ptr, *list_ptr);
4078 }
4079
4080 /* Callback for make_cleanup. */
4081
4082 static void
4083 do_free_completion_list (void *list)
4084 {
4085 free_completion_list (list);
4086 }
4087
4088 /* Helper routine for make_symbol_completion_list. */
4089
4090 static VEC (char_ptr) *return_val;
4091
4092 #define COMPLETION_LIST_ADD_SYMBOL(symbol, sym_text, len, text, word) \
4093 completion_list_add_name \
4094 (SYMBOL_NATURAL_NAME (symbol), (sym_text), (len), (text), (word))
4095
4096 #define MCOMPLETION_LIST_ADD_SYMBOL(symbol, sym_text, len, text, word) \
4097 completion_list_add_name \
4098 (MSYMBOL_NATURAL_NAME (symbol), (sym_text), (len), (text), (word))
4099
4100 /* Test to see if the symbol specified by SYMNAME (which is already
4101 demangled for C++ symbols) matches SYM_TEXT in the first SYM_TEXT_LEN
4102 characters. If so, add it to the current completion list. */
4103
4104 static void
4105 completion_list_add_name (const char *symname,
4106 const char *sym_text, int sym_text_len,
4107 const char *text, const char *word)
4108 {
4109 /* Clip symbols that cannot match. */
4110 if (!compare_symbol_name (symname, sym_text, sym_text_len))
4111 return;
4112
4113 /* We have a match for a completion, so add SYMNAME to the current list
4114 of matches. Note that the name is moved to freshly malloc'd space. */
4115
4116 {
4117 char *new;
4118
4119 if (word == sym_text)
4120 {
4121 new = xmalloc (strlen (symname) + 5);
4122 strcpy (new, symname);
4123 }
4124 else if (word > sym_text)
4125 {
4126 /* Return some portion of symname. */
4127 new = xmalloc (strlen (symname) + 5);
4128 strcpy (new, symname + (word - sym_text));
4129 }
4130 else
4131 {
4132 /* Return some of SYM_TEXT plus symname. */
4133 new = xmalloc (strlen (symname) + (sym_text - word) + 5);
4134 strncpy (new, word, sym_text - word);
4135 new[sym_text - word] = '\0';
4136 strcat (new, symname);
4137 }
4138
4139 VEC_safe_push (char_ptr, return_val, new);
4140 }
4141 }
4142
4143 /* ObjC: In case we are completing on a selector, look as the msymbol
4144 again and feed all the selectors into the mill. */
4145
4146 static void
4147 completion_list_objc_symbol (struct minimal_symbol *msymbol,
4148 const char *sym_text, int sym_text_len,
4149 const char *text, const char *word)
4150 {
4151 static char *tmp = NULL;
4152 static unsigned int tmplen = 0;
4153
4154 const char *method, *category, *selector;
4155 char *tmp2 = NULL;
4156
4157 method = MSYMBOL_NATURAL_NAME (msymbol);
4158
4159 /* Is it a method? */
4160 if ((method[0] != '-') && (method[0] != '+'))
4161 return;
4162
4163 if (sym_text[0] == '[')
4164 /* Complete on shortened method method. */
4165 completion_list_add_name (method + 1, sym_text, sym_text_len, text, word);
4166
4167 while ((strlen (method) + 1) >= tmplen)
4168 {
4169 if (tmplen == 0)
4170 tmplen = 1024;
4171 else
4172 tmplen *= 2;
4173 tmp = xrealloc (tmp, tmplen);
4174 }
4175 selector = strchr (method, ' ');
4176 if (selector != NULL)
4177 selector++;
4178
4179 category = strchr (method, '(');
4180
4181 if ((category != NULL) && (selector != NULL))
4182 {
4183 memcpy (tmp, method, (category - method));
4184 tmp[category - method] = ' ';
4185 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
4186 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
4187 if (sym_text[0] == '[')
4188 completion_list_add_name (tmp + 1, sym_text, sym_text_len, text, word);
4189 }
4190
4191 if (selector != NULL)
4192 {
4193 /* Complete on selector only. */
4194 strcpy (tmp, selector);
4195 tmp2 = strchr (tmp, ']');
4196 if (tmp2 != NULL)
4197 *tmp2 = '\0';
4198
4199 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
4200 }
4201 }
4202
4203 /* Break the non-quoted text based on the characters which are in
4204 symbols. FIXME: This should probably be language-specific. */
4205
4206 static const char *
4207 language_search_unquoted_string (const char *text, const char *p)
4208 {
4209 for (; p > text; --p)
4210 {
4211 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
4212 continue;
4213 else
4214 {
4215 if ((current_language->la_language == language_objc))
4216 {
4217 if (p[-1] == ':') /* Might be part of a method name. */
4218 continue;
4219 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
4220 p -= 2; /* Beginning of a method name. */
4221 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
4222 { /* Might be part of a method name. */
4223 const char *t = p;
4224
4225 /* Seeing a ' ' or a '(' is not conclusive evidence
4226 that we are in the middle of a method name. However,
4227 finding "-[" or "+[" should be pretty un-ambiguous.
4228 Unfortunately we have to find it now to decide. */
4229
4230 while (t > text)
4231 if (isalnum (t[-1]) || t[-1] == '_' ||
4232 t[-1] == ' ' || t[-1] == ':' ||
4233 t[-1] == '(' || t[-1] == ')')
4234 --t;
4235 else
4236 break;
4237
4238 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
4239 p = t - 2; /* Method name detected. */
4240 /* Else we leave with p unchanged. */
4241 }
4242 }
4243 break;
4244 }
4245 }
4246 return p;
4247 }
4248
4249 static void
4250 completion_list_add_fields (struct symbol *sym, const char *sym_text,
4251 int sym_text_len, const char *text,
4252 const char *word)
4253 {
4254 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4255 {
4256 struct type *t = SYMBOL_TYPE (sym);
4257 enum type_code c = TYPE_CODE (t);
4258 int j;
4259
4260 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
4261 for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++)
4262 if (TYPE_FIELD_NAME (t, j))
4263 completion_list_add_name (TYPE_FIELD_NAME (t, j),
4264 sym_text, sym_text_len, text, word);
4265 }
4266 }
4267
4268 /* Type of the user_data argument passed to add_macro_name or
4269 symbol_completion_matcher. The contents are simply whatever is
4270 needed by completion_list_add_name. */
4271 struct add_name_data
4272 {
4273 const char *sym_text;
4274 int sym_text_len;
4275 const char *text;
4276 const char *word;
4277 };
4278
4279 /* A callback used with macro_for_each and macro_for_each_in_scope.
4280 This adds a macro's name to the current completion list. */
4281
4282 static void
4283 add_macro_name (const char *name, const struct macro_definition *ignore,
4284 struct macro_source_file *ignore2, int ignore3,
4285 void *user_data)
4286 {
4287 struct add_name_data *datum = (struct add_name_data *) user_data;
4288
4289 completion_list_add_name ((char *) name,
4290 datum->sym_text, datum->sym_text_len,
4291 datum->text, datum->word);
4292 }
4293
4294 /* A callback for expand_symtabs_matching. */
4295
4296 static int
4297 symbol_completion_matcher (const char *name, void *user_data)
4298 {
4299 struct add_name_data *datum = (struct add_name_data *) user_data;
4300
4301 return compare_symbol_name (name, datum->sym_text, datum->sym_text_len);
4302 }
4303
4304 VEC (char_ptr) *
4305 default_make_symbol_completion_list_break_on (const char *text,
4306 const char *word,
4307 const char *break_on,
4308 enum type_code code)
4309 {
4310 /* Problem: All of the symbols have to be copied because readline
4311 frees them. I'm not going to worry about this; hopefully there
4312 won't be that many. */
4313
4314 struct symbol *sym;
4315 struct symtab *s;
4316 struct minimal_symbol *msymbol;
4317 struct objfile *objfile;
4318 struct block *b;
4319 const struct block *surrounding_static_block, *surrounding_global_block;
4320 struct block_iterator iter;
4321 /* The symbol we are completing on. Points in same buffer as text. */
4322 const char *sym_text;
4323 /* Length of sym_text. */
4324 int sym_text_len;
4325 struct add_name_data datum;
4326 struct cleanup *back_to;
4327
4328 /* Now look for the symbol we are supposed to complete on. */
4329 {
4330 const char *p;
4331 char quote_found;
4332 const char *quote_pos = NULL;
4333
4334 /* First see if this is a quoted string. */
4335 quote_found = '\0';
4336 for (p = text; *p != '\0'; ++p)
4337 {
4338 if (quote_found != '\0')
4339 {
4340 if (*p == quote_found)
4341 /* Found close quote. */
4342 quote_found = '\0';
4343 else if (*p == '\\' && p[1] == quote_found)
4344 /* A backslash followed by the quote character
4345 doesn't end the string. */
4346 ++p;
4347 }
4348 else if (*p == '\'' || *p == '"')
4349 {
4350 quote_found = *p;
4351 quote_pos = p;
4352 }
4353 }
4354 if (quote_found == '\'')
4355 /* A string within single quotes can be a symbol, so complete on it. */
4356 sym_text = quote_pos + 1;
4357 else if (quote_found == '"')
4358 /* A double-quoted string is never a symbol, nor does it make sense
4359 to complete it any other way. */
4360 {
4361 return NULL;
4362 }
4363 else
4364 {
4365 /* It is not a quoted string. Break it based on the characters
4366 which are in symbols. */
4367 while (p > text)
4368 {
4369 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0'
4370 || p[-1] == ':' || strchr (break_on, p[-1]) != NULL)
4371 --p;
4372 else
4373 break;
4374 }
4375 sym_text = p;
4376 }
4377 }
4378
4379 sym_text_len = strlen (sym_text);
4380
4381 /* Prepare SYM_TEXT_LEN for compare_symbol_name. */
4382
4383 if (current_language->la_language == language_cplus
4384 || current_language->la_language == language_java
4385 || current_language->la_language == language_fortran)
4386 {
4387 /* These languages may have parameters entered by user but they are never
4388 present in the partial symbol tables. */
4389
4390 const char *cs = memchr (sym_text, '(', sym_text_len);
4391
4392 if (cs)
4393 sym_text_len = cs - sym_text;
4394 }
4395 gdb_assert (sym_text[sym_text_len] == '\0' || sym_text[sym_text_len] == '(');
4396
4397 return_val = NULL;
4398 back_to = make_cleanup (do_free_completion_list, &return_val);
4399
4400 datum.sym_text = sym_text;
4401 datum.sym_text_len = sym_text_len;
4402 datum.text = text;
4403 datum.word = word;
4404
4405 /* Look through the partial symtabs for all symbols which begin
4406 by matching SYM_TEXT. Expand all CUs that you find to the list.
4407 The real names will get added by COMPLETION_LIST_ADD_SYMBOL below. */
4408 expand_symtabs_matching (NULL, symbol_completion_matcher, ALL_DOMAIN,
4409 &datum);
4410
4411 /* At this point scan through the misc symbol vectors and add each
4412 symbol you find to the list. Eventually we want to ignore
4413 anything that isn't a text symbol (everything else will be
4414 handled by the psymtab code above). */
4415
4416 if (code == TYPE_CODE_UNDEF)
4417 {
4418 ALL_MSYMBOLS (objfile, msymbol)
4419 {
4420 QUIT;
4421 MCOMPLETION_LIST_ADD_SYMBOL (msymbol, sym_text, sym_text_len, text,
4422 word);
4423
4424 completion_list_objc_symbol (msymbol, sym_text, sym_text_len, text,
4425 word);
4426 }
4427 }
4428
4429 /* Search upwards from currently selected frame (so that we can
4430 complete on local vars). Also catch fields of types defined in
4431 this places which match our text string. Only complete on types
4432 visible from current context. */
4433
4434 b = get_selected_block (0);
4435 surrounding_static_block = block_static_block (b);
4436 surrounding_global_block = block_global_block (b);
4437 if (surrounding_static_block != NULL)
4438 while (b != surrounding_static_block)
4439 {
4440 QUIT;
4441
4442 ALL_BLOCK_SYMBOLS (b, iter, sym)
4443 {
4444 if (code == TYPE_CODE_UNDEF)
4445 {
4446 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text,
4447 word);
4448 completion_list_add_fields (sym, sym_text, sym_text_len, text,
4449 word);
4450 }
4451 else if (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4452 && TYPE_CODE (SYMBOL_TYPE (sym)) == code)
4453 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text,
4454 word);
4455 }
4456
4457 /* Stop when we encounter an enclosing function. Do not stop for
4458 non-inlined functions - the locals of the enclosing function
4459 are in scope for a nested function. */
4460 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
4461 break;
4462 b = BLOCK_SUPERBLOCK (b);
4463 }
4464
4465 /* Add fields from the file's types; symbols will be added below. */
4466
4467 if (code == TYPE_CODE_UNDEF)
4468 {
4469 if (surrounding_static_block != NULL)
4470 ALL_BLOCK_SYMBOLS (surrounding_static_block, iter, sym)
4471 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
4472
4473 if (surrounding_global_block != NULL)
4474 ALL_BLOCK_SYMBOLS (surrounding_global_block, iter, sym)
4475 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
4476 }
4477
4478 /* Go through the symtabs and check the externs and statics for
4479 symbols which match. */
4480
4481 ALL_PRIMARY_SYMTABS (objfile, s)
4482 {
4483 QUIT;
4484 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
4485 ALL_BLOCK_SYMBOLS (b, iter, sym)
4486 {
4487 if (code == TYPE_CODE_UNDEF
4488 || (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4489 && TYPE_CODE (SYMBOL_TYPE (sym)) == code))
4490 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4491 }
4492 }
4493
4494 ALL_PRIMARY_SYMTABS (objfile, s)
4495 {
4496 QUIT;
4497 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
4498 ALL_BLOCK_SYMBOLS (b, iter, sym)
4499 {
4500 if (code == TYPE_CODE_UNDEF
4501 || (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4502 && TYPE_CODE (SYMBOL_TYPE (sym)) == code))
4503 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4504 }
4505 }
4506
4507 /* Skip macros if we are completing a struct tag -- arguable but
4508 usually what is expected. */
4509 if (current_language->la_macro_expansion == macro_expansion_c
4510 && code == TYPE_CODE_UNDEF)
4511 {
4512 struct macro_scope *scope;
4513
4514 /* Add any macros visible in the default scope. Note that this
4515 may yield the occasional wrong result, because an expression
4516 might be evaluated in a scope other than the default. For
4517 example, if the user types "break file:line if <TAB>", the
4518 resulting expression will be evaluated at "file:line" -- but
4519 at there does not seem to be a way to detect this at
4520 completion time. */
4521 scope = default_macro_scope ();
4522 if (scope)
4523 {
4524 macro_for_each_in_scope (scope->file, scope->line,
4525 add_macro_name, &datum);
4526 xfree (scope);
4527 }
4528
4529 /* User-defined macros are always visible. */
4530 macro_for_each (macro_user_macros, add_macro_name, &datum);
4531 }
4532
4533 discard_cleanups (back_to);
4534 return (return_val);
4535 }
4536
4537 VEC (char_ptr) *
4538 default_make_symbol_completion_list (const char *text, const char *word,
4539 enum type_code code)
4540 {
4541 return default_make_symbol_completion_list_break_on (text, word, "", code);
4542 }
4543
4544 /* Return a vector of all symbols (regardless of class) which begin by
4545 matching TEXT. If the answer is no symbols, then the return value
4546 is NULL. */
4547
4548 VEC (char_ptr) *
4549 make_symbol_completion_list (const char *text, const char *word)
4550 {
4551 return current_language->la_make_symbol_completion_list (text, word,
4552 TYPE_CODE_UNDEF);
4553 }
4554
4555 /* Like make_symbol_completion_list, but only return STRUCT_DOMAIN
4556 symbols whose type code is CODE. */
4557
4558 VEC (char_ptr) *
4559 make_symbol_completion_type (const char *text, const char *word,
4560 enum type_code code)
4561 {
4562 gdb_assert (code == TYPE_CODE_UNION
4563 || code == TYPE_CODE_STRUCT
4564 || code == TYPE_CODE_CLASS
4565 || code == TYPE_CODE_ENUM);
4566 return current_language->la_make_symbol_completion_list (text, word, code);
4567 }
4568
4569 /* Like make_symbol_completion_list, but suitable for use as a
4570 completion function. */
4571
4572 VEC (char_ptr) *
4573 make_symbol_completion_list_fn (struct cmd_list_element *ignore,
4574 const char *text, const char *word)
4575 {
4576 return make_symbol_completion_list (text, word);
4577 }
4578
4579 /* Like make_symbol_completion_list, but returns a list of symbols
4580 defined in a source file FILE. */
4581
4582 VEC (char_ptr) *
4583 make_file_symbol_completion_list (const char *text, const char *word,
4584 const char *srcfile)
4585 {
4586 struct symbol *sym;
4587 struct symtab *s;
4588 struct block *b;
4589 struct block_iterator iter;
4590 /* The symbol we are completing on. Points in same buffer as text. */
4591 const char *sym_text;
4592 /* Length of sym_text. */
4593 int sym_text_len;
4594
4595 /* Now look for the symbol we are supposed to complete on.
4596 FIXME: This should be language-specific. */
4597 {
4598 const char *p;
4599 char quote_found;
4600 const char *quote_pos = NULL;
4601
4602 /* First see if this is a quoted string. */
4603 quote_found = '\0';
4604 for (p = text; *p != '\0'; ++p)
4605 {
4606 if (quote_found != '\0')
4607 {
4608 if (*p == quote_found)
4609 /* Found close quote. */
4610 quote_found = '\0';
4611 else if (*p == '\\' && p[1] == quote_found)
4612 /* A backslash followed by the quote character
4613 doesn't end the string. */
4614 ++p;
4615 }
4616 else if (*p == '\'' || *p == '"')
4617 {
4618 quote_found = *p;
4619 quote_pos = p;
4620 }
4621 }
4622 if (quote_found == '\'')
4623 /* A string within single quotes can be a symbol, so complete on it. */
4624 sym_text = quote_pos + 1;
4625 else if (quote_found == '"')
4626 /* A double-quoted string is never a symbol, nor does it make sense
4627 to complete it any other way. */
4628 {
4629 return NULL;
4630 }
4631 else
4632 {
4633 /* Not a quoted string. */
4634 sym_text = language_search_unquoted_string (text, p);
4635 }
4636 }
4637
4638 sym_text_len = strlen (sym_text);
4639
4640 return_val = NULL;
4641
4642 /* Find the symtab for SRCFILE (this loads it if it was not yet read
4643 in). */
4644 s = lookup_symtab (srcfile);
4645 if (s == NULL)
4646 {
4647 /* Maybe they typed the file with leading directories, while the
4648 symbol tables record only its basename. */
4649 const char *tail = lbasename (srcfile);
4650
4651 if (tail > srcfile)
4652 s = lookup_symtab (tail);
4653 }
4654
4655 /* If we have no symtab for that file, return an empty list. */
4656 if (s == NULL)
4657 return (return_val);
4658
4659 /* Go through this symtab and check the externs and statics for
4660 symbols which match. */
4661
4662 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
4663 ALL_BLOCK_SYMBOLS (b, iter, sym)
4664 {
4665 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4666 }
4667
4668 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
4669 ALL_BLOCK_SYMBOLS (b, iter, sym)
4670 {
4671 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4672 }
4673
4674 return (return_val);
4675 }
4676
4677 /* A helper function for make_source_files_completion_list. It adds
4678 another file name to a list of possible completions, growing the
4679 list as necessary. */
4680
4681 static void
4682 add_filename_to_list (const char *fname, const char *text, const char *word,
4683 VEC (char_ptr) **list)
4684 {
4685 char *new;
4686 size_t fnlen = strlen (fname);
4687
4688 if (word == text)
4689 {
4690 /* Return exactly fname. */
4691 new = xmalloc (fnlen + 5);
4692 strcpy (new, fname);
4693 }
4694 else if (word > text)
4695 {
4696 /* Return some portion of fname. */
4697 new = xmalloc (fnlen + 5);
4698 strcpy (new, fname + (word - text));
4699 }
4700 else
4701 {
4702 /* Return some of TEXT plus fname. */
4703 new = xmalloc (fnlen + (text - word) + 5);
4704 strncpy (new, word, text - word);
4705 new[text - word] = '\0';
4706 strcat (new, fname);
4707 }
4708 VEC_safe_push (char_ptr, *list, new);
4709 }
4710
4711 static int
4712 not_interesting_fname (const char *fname)
4713 {
4714 static const char *illegal_aliens[] = {
4715 "_globals_", /* inserted by coff_symtab_read */
4716 NULL
4717 };
4718 int i;
4719
4720 for (i = 0; illegal_aliens[i]; i++)
4721 {
4722 if (filename_cmp (fname, illegal_aliens[i]) == 0)
4723 return 1;
4724 }
4725 return 0;
4726 }
4727
4728 /* An object of this type is passed as the user_data argument to
4729 map_partial_symbol_filenames. */
4730 struct add_partial_filename_data
4731 {
4732 struct filename_seen_cache *filename_seen_cache;
4733 const char *text;
4734 const char *word;
4735 int text_len;
4736 VEC (char_ptr) **list;
4737 };
4738
4739 /* A callback for map_partial_symbol_filenames. */
4740
4741 static void
4742 maybe_add_partial_symtab_filename (const char *filename, const char *fullname,
4743 void *user_data)
4744 {
4745 struct add_partial_filename_data *data = user_data;
4746
4747 if (not_interesting_fname (filename))
4748 return;
4749 if (!filename_seen (data->filename_seen_cache, filename, 1)
4750 && filename_ncmp (filename, data->text, data->text_len) == 0)
4751 {
4752 /* This file matches for a completion; add it to the
4753 current list of matches. */
4754 add_filename_to_list (filename, data->text, data->word, data->list);
4755 }
4756 else
4757 {
4758 const char *base_name = lbasename (filename);
4759
4760 if (base_name != filename
4761 && !filename_seen (data->filename_seen_cache, base_name, 1)
4762 && filename_ncmp (base_name, data->text, data->text_len) == 0)
4763 add_filename_to_list (base_name, data->text, data->word, data->list);
4764 }
4765 }
4766
4767 /* Return a vector of all source files whose names begin with matching
4768 TEXT. The file names are looked up in the symbol tables of this
4769 program. If the answer is no matchess, then the return value is
4770 NULL. */
4771
4772 VEC (char_ptr) *
4773 make_source_files_completion_list (const char *text, const char *word)
4774 {
4775 struct symtab *s;
4776 struct objfile *objfile;
4777 size_t text_len = strlen (text);
4778 VEC (char_ptr) *list = NULL;
4779 const char *base_name;
4780 struct add_partial_filename_data datum;
4781 struct filename_seen_cache *filename_seen_cache;
4782 struct cleanup *back_to, *cache_cleanup;
4783
4784 if (!have_full_symbols () && !have_partial_symbols ())
4785 return list;
4786
4787 back_to = make_cleanup (do_free_completion_list, &list);
4788
4789 filename_seen_cache = create_filename_seen_cache ();
4790 cache_cleanup = make_cleanup (delete_filename_seen_cache,
4791 filename_seen_cache);
4792
4793 ALL_SYMTABS (objfile, s)
4794 {
4795 if (not_interesting_fname (s->filename))
4796 continue;
4797 if (!filename_seen (filename_seen_cache, s->filename, 1)
4798 && filename_ncmp (s->filename, text, text_len) == 0)
4799 {
4800 /* This file matches for a completion; add it to the current
4801 list of matches. */
4802 add_filename_to_list (s->filename, text, word, &list);
4803 }
4804 else
4805 {
4806 /* NOTE: We allow the user to type a base name when the
4807 debug info records leading directories, but not the other
4808 way around. This is what subroutines of breakpoint
4809 command do when they parse file names. */
4810 base_name = lbasename (s->filename);
4811 if (base_name != s->filename
4812 && !filename_seen (filename_seen_cache, base_name, 1)
4813 && filename_ncmp (base_name, text, text_len) == 0)
4814 add_filename_to_list (base_name, text, word, &list);
4815 }
4816 }
4817
4818 datum.filename_seen_cache = filename_seen_cache;
4819 datum.text = text;
4820 datum.word = word;
4821 datum.text_len = text_len;
4822 datum.list = &list;
4823 map_symbol_filenames (maybe_add_partial_symtab_filename, &datum,
4824 0 /*need_fullname*/);
4825
4826 do_cleanups (cache_cleanup);
4827 discard_cleanups (back_to);
4828
4829 return list;
4830 }
4831
4832 /* Determine if PC is in the prologue of a function. The prologue is the area
4833 between the first instruction of a function, and the first executable line.
4834 Returns 1 if PC *might* be in prologue, 0 if definately *not* in prologue.
4835
4836 If non-zero, func_start is where we think the prologue starts, possibly
4837 by previous examination of symbol table information. */
4838
4839 int
4840 in_prologue (struct gdbarch *gdbarch, CORE_ADDR pc, CORE_ADDR func_start)
4841 {
4842 struct symtab_and_line sal;
4843 CORE_ADDR func_addr, func_end;
4844
4845 /* We have several sources of information we can consult to figure
4846 this out.
4847 - Compilers usually emit line number info that marks the prologue
4848 as its own "source line". So the ending address of that "line"
4849 is the end of the prologue. If available, this is the most
4850 reliable method.
4851 - The minimal symbols and partial symbols, which can usually tell
4852 us the starting and ending addresses of a function.
4853 - If we know the function's start address, we can call the
4854 architecture-defined gdbarch_skip_prologue function to analyze the
4855 instruction stream and guess where the prologue ends.
4856 - Our `func_start' argument; if non-zero, this is the caller's
4857 best guess as to the function's entry point. At the time of
4858 this writing, handle_inferior_event doesn't get this right, so
4859 it should be our last resort. */
4860
4861 /* Consult the partial symbol table, to find which function
4862 the PC is in. */
4863 if (! find_pc_partial_function (pc, NULL, &func_addr, &func_end))
4864 {
4865 CORE_ADDR prologue_end;
4866
4867 /* We don't even have minsym information, so fall back to using
4868 func_start, if given. */
4869 if (! func_start)
4870 return 1; /* We *might* be in a prologue. */
4871
4872 prologue_end = gdbarch_skip_prologue (gdbarch, func_start);
4873
4874 return func_start <= pc && pc < prologue_end;
4875 }
4876
4877 /* If we have line number information for the function, that's
4878 usually pretty reliable. */
4879 sal = find_pc_line (func_addr, 0);
4880
4881 /* Now sal describes the source line at the function's entry point,
4882 which (by convention) is the prologue. The end of that "line",
4883 sal.end, is the end of the prologue.
4884
4885 Note that, for functions whose source code is all on a single
4886 line, the line number information doesn't always end up this way.
4887 So we must verify that our purported end-of-prologue address is
4888 *within* the function, not at its start or end. */
4889 if (sal.line == 0
4890 || sal.end <= func_addr
4891 || func_end <= sal.end)
4892 {
4893 /* We don't have any good line number info, so use the minsym
4894 information, together with the architecture-specific prologue
4895 scanning code. */
4896 CORE_ADDR prologue_end = gdbarch_skip_prologue (gdbarch, func_addr);
4897
4898 return func_addr <= pc && pc < prologue_end;
4899 }
4900
4901 /* We have line number info, and it looks good. */
4902 return func_addr <= pc && pc < sal.end;
4903 }
4904
4905 /* Given PC at the function's start address, attempt to find the
4906 prologue end using SAL information. Return zero if the skip fails.
4907
4908 A non-optimized prologue traditionally has one SAL for the function
4909 and a second for the function body. A single line function has
4910 them both pointing at the same line.
4911
4912 An optimized prologue is similar but the prologue may contain
4913 instructions (SALs) from the instruction body. Need to skip those
4914 while not getting into the function body.
4915
4916 The functions end point and an increasing SAL line are used as
4917 indicators of the prologue's endpoint.
4918
4919 This code is based on the function refine_prologue_limit
4920 (found in ia64). */
4921
4922 CORE_ADDR
4923 skip_prologue_using_sal (struct gdbarch *gdbarch, CORE_ADDR func_addr)
4924 {
4925 struct symtab_and_line prologue_sal;
4926 CORE_ADDR start_pc;
4927 CORE_ADDR end_pc;
4928 struct block *bl;
4929
4930 /* Get an initial range for the function. */
4931 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
4932 start_pc += gdbarch_deprecated_function_start_offset (gdbarch);
4933
4934 prologue_sal = find_pc_line (start_pc, 0);
4935 if (prologue_sal.line != 0)
4936 {
4937 /* For languages other than assembly, treat two consecutive line
4938 entries at the same address as a zero-instruction prologue.
4939 The GNU assembler emits separate line notes for each instruction
4940 in a multi-instruction macro, but compilers generally will not
4941 do this. */
4942 if (prologue_sal.symtab->language != language_asm)
4943 {
4944 struct linetable *linetable = LINETABLE (prologue_sal.symtab);
4945 int idx = 0;
4946
4947 /* Skip any earlier lines, and any end-of-sequence marker
4948 from a previous function. */
4949 while (linetable->item[idx].pc != prologue_sal.pc
4950 || linetable->item[idx].line == 0)
4951 idx++;
4952
4953 if (idx+1 < linetable->nitems
4954 && linetable->item[idx+1].line != 0
4955 && linetable->item[idx+1].pc == start_pc)
4956 return start_pc;
4957 }
4958
4959 /* If there is only one sal that covers the entire function,
4960 then it is probably a single line function, like
4961 "foo(){}". */
4962 if (prologue_sal.end >= end_pc)
4963 return 0;
4964
4965 while (prologue_sal.end < end_pc)
4966 {
4967 struct symtab_and_line sal;
4968
4969 sal = find_pc_line (prologue_sal.end, 0);
4970 if (sal.line == 0)
4971 break;
4972 /* Assume that a consecutive SAL for the same (or larger)
4973 line mark the prologue -> body transition. */
4974 if (sal.line >= prologue_sal.line)
4975 break;
4976 /* Likewise if we are in a different symtab altogether
4977 (e.g. within a file included via #include).  */
4978 if (sal.symtab != prologue_sal.symtab)
4979 break;
4980
4981 /* The line number is smaller. Check that it's from the
4982 same function, not something inlined. If it's inlined,
4983 then there is no point comparing the line numbers. */
4984 bl = block_for_pc (prologue_sal.end);
4985 while (bl)
4986 {
4987 if (block_inlined_p (bl))
4988 break;
4989 if (BLOCK_FUNCTION (bl))
4990 {
4991 bl = NULL;
4992 break;
4993 }
4994 bl = BLOCK_SUPERBLOCK (bl);
4995 }
4996 if (bl != NULL)
4997 break;
4998
4999 /* The case in which compiler's optimizer/scheduler has
5000 moved instructions into the prologue. We look ahead in
5001 the function looking for address ranges whose
5002 corresponding line number is less the first one that we
5003 found for the function. This is more conservative then
5004 refine_prologue_limit which scans a large number of SALs
5005 looking for any in the prologue. */
5006 prologue_sal = sal;
5007 }
5008 }
5009
5010 if (prologue_sal.end < end_pc)
5011 /* Return the end of this line, or zero if we could not find a
5012 line. */
5013 return prologue_sal.end;
5014 else
5015 /* Don't return END_PC, which is past the end of the function. */
5016 return prologue_sal.pc;
5017 }
5018 \f
5019 /* Track MAIN */
5020
5021 /* Return the "main_info" object for the current program space. If
5022 the object has not yet been created, create it and fill in some
5023 default values. */
5024
5025 static struct main_info *
5026 get_main_info (void)
5027 {
5028 struct main_info *info = program_space_data (current_program_space,
5029 main_progspace_key);
5030
5031 if (info == NULL)
5032 {
5033 /* It may seem strange to store the main name in the progspace
5034 and also in whatever objfile happens to see a main name in
5035 its debug info. The reason for this is mainly historical:
5036 gdb returned "main" as the name even if no function named
5037 "main" was defined the program; and this approach lets us
5038 keep compatibility. */
5039 info = XCNEW (struct main_info);
5040 info->language_of_main = language_unknown;
5041 set_program_space_data (current_program_space, main_progspace_key,
5042 info);
5043 }
5044
5045 return info;
5046 }
5047
5048 /* A cleanup to destroy a struct main_info when a progspace is
5049 destroyed. */
5050
5051 static void
5052 main_info_cleanup (struct program_space *pspace, void *data)
5053 {
5054 struct main_info *info = data;
5055
5056 if (info != NULL)
5057 xfree (info->name_of_main);
5058 xfree (info);
5059 }
5060
5061 static void
5062 set_main_name (const char *name, enum language lang)
5063 {
5064 struct main_info *info = get_main_info ();
5065
5066 if (info->name_of_main != NULL)
5067 {
5068 xfree (info->name_of_main);
5069 info->name_of_main = NULL;
5070 info->language_of_main = language_unknown;
5071 }
5072 if (name != NULL)
5073 {
5074 info->name_of_main = xstrdup (name);
5075 info->language_of_main = lang;
5076 }
5077 }
5078
5079 /* Deduce the name of the main procedure, and set NAME_OF_MAIN
5080 accordingly. */
5081
5082 static void
5083 find_main_name (void)
5084 {
5085 const char *new_main_name;
5086 struct objfile *objfile;
5087
5088 /* First check the objfiles to see whether a debuginfo reader has
5089 picked up the appropriate main name. Historically the main name
5090 was found in a more or less random way; this approach instead
5091 relies on the order of objfile creation -- which still isn't
5092 guaranteed to get the correct answer, but is just probably more
5093 accurate. */
5094 ALL_OBJFILES (objfile)
5095 {
5096 if (objfile->per_bfd->name_of_main != NULL)
5097 {
5098 set_main_name (objfile->per_bfd->name_of_main,
5099 objfile->per_bfd->language_of_main);
5100 return;
5101 }
5102 }
5103
5104 /* Try to see if the main procedure is in Ada. */
5105 /* FIXME: brobecker/2005-03-07: Another way of doing this would
5106 be to add a new method in the language vector, and call this
5107 method for each language until one of them returns a non-empty
5108 name. This would allow us to remove this hard-coded call to
5109 an Ada function. It is not clear that this is a better approach
5110 at this point, because all methods need to be written in a way
5111 such that false positives never be returned. For instance, it is
5112 important that a method does not return a wrong name for the main
5113 procedure if the main procedure is actually written in a different
5114 language. It is easy to guaranty this with Ada, since we use a
5115 special symbol generated only when the main in Ada to find the name
5116 of the main procedure. It is difficult however to see how this can
5117 be guarantied for languages such as C, for instance. This suggests
5118 that order of call for these methods becomes important, which means
5119 a more complicated approach. */
5120 new_main_name = ada_main_name ();
5121 if (new_main_name != NULL)
5122 {
5123 set_main_name (new_main_name, language_ada);
5124 return;
5125 }
5126
5127 new_main_name = d_main_name ();
5128 if (new_main_name != NULL)
5129 {
5130 set_main_name (new_main_name, language_d);
5131 return;
5132 }
5133
5134 new_main_name = go_main_name ();
5135 if (new_main_name != NULL)
5136 {
5137 set_main_name (new_main_name, language_go);
5138 return;
5139 }
5140
5141 new_main_name = pascal_main_name ();
5142 if (new_main_name != NULL)
5143 {
5144 set_main_name (new_main_name, language_pascal);
5145 return;
5146 }
5147
5148 /* The languages above didn't identify the name of the main procedure.
5149 Fallback to "main". */
5150 set_main_name ("main", language_unknown);
5151 }
5152
5153 char *
5154 main_name (void)
5155 {
5156 struct main_info *info = get_main_info ();
5157
5158 if (info->name_of_main == NULL)
5159 find_main_name ();
5160
5161 return info->name_of_main;
5162 }
5163
5164 /* Return the language of the main function. If it is not known,
5165 return language_unknown. */
5166
5167 enum language
5168 main_language (void)
5169 {
5170 struct main_info *info = get_main_info ();
5171
5172 if (info->name_of_main == NULL)
5173 find_main_name ();
5174
5175 return info->language_of_main;
5176 }
5177
5178 /* Handle ``executable_changed'' events for the symtab module. */
5179
5180 static void
5181 symtab_observer_executable_changed (void)
5182 {
5183 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
5184 set_main_name (NULL, language_unknown);
5185 }
5186
5187 /* Return 1 if the supplied producer string matches the ARM RealView
5188 compiler (armcc). */
5189
5190 int
5191 producer_is_realview (const char *producer)
5192 {
5193 static const char *const arm_idents[] = {
5194 "ARM C Compiler, ADS",
5195 "Thumb C Compiler, ADS",
5196 "ARM C++ Compiler, ADS",
5197 "Thumb C++ Compiler, ADS",
5198 "ARM/Thumb C/C++ Compiler, RVCT",
5199 "ARM C/C++ Compiler, RVCT"
5200 };
5201 int i;
5202
5203 if (producer == NULL)
5204 return 0;
5205
5206 for (i = 0; i < ARRAY_SIZE (arm_idents); i++)
5207 if (strncmp (producer, arm_idents[i], strlen (arm_idents[i])) == 0)
5208 return 1;
5209
5210 return 0;
5211 }
5212
5213 \f
5214
5215 /* The next index to hand out in response to a registration request. */
5216
5217 static int next_aclass_value = LOC_FINAL_VALUE;
5218
5219 /* The maximum number of "aclass" registrations we support. This is
5220 constant for convenience. */
5221 #define MAX_SYMBOL_IMPLS (LOC_FINAL_VALUE + 10)
5222
5223 /* The objects representing the various "aclass" values. The elements
5224 from 0 up to LOC_FINAL_VALUE-1 represent themselves, and subsequent
5225 elements are those registered at gdb initialization time. */
5226
5227 static struct symbol_impl symbol_impl[MAX_SYMBOL_IMPLS];
5228
5229 /* The globally visible pointer. This is separate from 'symbol_impl'
5230 so that it can be const. */
5231
5232 const struct symbol_impl *symbol_impls = &symbol_impl[0];
5233
5234 /* Make sure we saved enough room in struct symbol. */
5235
5236 gdb_static_assert (MAX_SYMBOL_IMPLS <= (1 << SYMBOL_ACLASS_BITS));
5237
5238 /* Register a computed symbol type. ACLASS must be LOC_COMPUTED. OPS
5239 is the ops vector associated with this index. This returns the new
5240 index, which should be used as the aclass_index field for symbols
5241 of this type. */
5242
5243 int
5244 register_symbol_computed_impl (enum address_class aclass,
5245 const struct symbol_computed_ops *ops)
5246 {
5247 int result = next_aclass_value++;
5248
5249 gdb_assert (aclass == LOC_COMPUTED);
5250 gdb_assert (result < MAX_SYMBOL_IMPLS);
5251 symbol_impl[result].aclass = aclass;
5252 symbol_impl[result].ops_computed = ops;
5253
5254 /* Sanity check OPS. */
5255 gdb_assert (ops != NULL);
5256 gdb_assert (ops->tracepoint_var_ref != NULL);
5257 gdb_assert (ops->describe_location != NULL);
5258 gdb_assert (ops->read_needs_frame != NULL);
5259 gdb_assert (ops->read_variable != NULL);
5260
5261 return result;
5262 }
5263
5264 /* Register a function with frame base type. ACLASS must be LOC_BLOCK.
5265 OPS is the ops vector associated with this index. This returns the
5266 new index, which should be used as the aclass_index field for symbols
5267 of this type. */
5268
5269 int
5270 register_symbol_block_impl (enum address_class aclass,
5271 const struct symbol_block_ops *ops)
5272 {
5273 int result = next_aclass_value++;
5274
5275 gdb_assert (aclass == LOC_BLOCK);
5276 gdb_assert (result < MAX_SYMBOL_IMPLS);
5277 symbol_impl[result].aclass = aclass;
5278 symbol_impl[result].ops_block = ops;
5279
5280 /* Sanity check OPS. */
5281 gdb_assert (ops != NULL);
5282 gdb_assert (ops->find_frame_base_location != NULL);
5283
5284 return result;
5285 }
5286
5287 /* Register a register symbol type. ACLASS must be LOC_REGISTER or
5288 LOC_REGPARM_ADDR. OPS is the register ops vector associated with
5289 this index. This returns the new index, which should be used as
5290 the aclass_index field for symbols of this type. */
5291
5292 int
5293 register_symbol_register_impl (enum address_class aclass,
5294 const struct symbol_register_ops *ops)
5295 {
5296 int result = next_aclass_value++;
5297
5298 gdb_assert (aclass == LOC_REGISTER || aclass == LOC_REGPARM_ADDR);
5299 gdb_assert (result < MAX_SYMBOL_IMPLS);
5300 symbol_impl[result].aclass = aclass;
5301 symbol_impl[result].ops_register = ops;
5302
5303 return result;
5304 }
5305
5306 /* Initialize elements of 'symbol_impl' for the constants in enum
5307 address_class. */
5308
5309 static void
5310 initialize_ordinary_address_classes (void)
5311 {
5312 int i;
5313
5314 for (i = 0; i < LOC_FINAL_VALUE; ++i)
5315 symbol_impl[i].aclass = i;
5316 }
5317
5318 \f
5319
5320 /* Initialize the symbol SYM. */
5321
5322 void
5323 initialize_symbol (struct symbol *sym)
5324 {
5325 memset (sym, 0, sizeof (*sym));
5326 SYMBOL_SECTION (sym) = -1;
5327 }
5328
5329 /* Allocate and initialize a new 'struct symbol' on OBJFILE's
5330 obstack. */
5331
5332 struct symbol *
5333 allocate_symbol (struct objfile *objfile)
5334 {
5335 struct symbol *result;
5336
5337 result = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symbol);
5338 SYMBOL_SECTION (result) = -1;
5339
5340 return result;
5341 }
5342
5343 /* Allocate and initialize a new 'struct template_symbol' on OBJFILE's
5344 obstack. */
5345
5346 struct template_symbol *
5347 allocate_template_symbol (struct objfile *objfile)
5348 {
5349 struct template_symbol *result;
5350
5351 result = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct template_symbol);
5352 SYMBOL_SECTION (&result->base) = -1;
5353
5354 return result;
5355 }
5356
5357 \f
5358
5359 void
5360 _initialize_symtab (void)
5361 {
5362 initialize_ordinary_address_classes ();
5363
5364 main_progspace_key
5365 = register_program_space_data_with_cleanup (NULL, main_info_cleanup);
5366
5367 add_info ("variables", variables_info, _("\
5368 All global and static variable names, or those matching REGEXP."));
5369 if (dbx_commands)
5370 add_com ("whereis", class_info, variables_info, _("\
5371 All global and static variable names, or those matching REGEXP."));
5372
5373 add_info ("functions", functions_info,
5374 _("All function names, or those matching REGEXP."));
5375
5376 /* FIXME: This command has at least the following problems:
5377 1. It prints builtin types (in a very strange and confusing fashion).
5378 2. It doesn't print right, e.g. with
5379 typedef struct foo *FOO
5380 type_print prints "FOO" when we want to make it (in this situation)
5381 print "struct foo *".
5382 I also think "ptype" or "whatis" is more likely to be useful (but if
5383 there is much disagreement "info types" can be fixed). */
5384 add_info ("types", types_info,
5385 _("All type names, or those matching REGEXP."));
5386
5387 add_info ("sources", sources_info,
5388 _("Source files in the program."));
5389
5390 add_com ("rbreak", class_breakpoint, rbreak_command,
5391 _("Set a breakpoint for all functions matching REGEXP."));
5392
5393 if (xdb_commands)
5394 {
5395 add_com ("lf", class_info, sources_info,
5396 _("Source files in the program"));
5397 add_com ("lg", class_info, variables_info, _("\
5398 All global and static variable names, or those matching REGEXP."));
5399 }
5400
5401 add_setshow_enum_cmd ("multiple-symbols", no_class,
5402 multiple_symbols_modes, &multiple_symbols_mode,
5403 _("\
5404 Set the debugger behavior when more than one symbol are possible matches\n\
5405 in an expression."), _("\
5406 Show how the debugger handles ambiguities in expressions."), _("\
5407 Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
5408 NULL, NULL, &setlist, &showlist);
5409
5410 add_setshow_boolean_cmd ("basenames-may-differ", class_obscure,
5411 &basenames_may_differ, _("\
5412 Set whether a source file may have multiple base names."), _("\
5413 Show whether a source file may have multiple base names."), _("\
5414 (A \"base name\" is the name of a file with the directory part removed.\n\
5415 Example: The base name of \"/home/user/hello.c\" is \"hello.c\".)\n\
5416 If set, GDB will canonicalize file names (e.g., expand symlinks)\n\
5417 before comparing them. Canonicalization is an expensive operation,\n\
5418 but it allows the same file be known by more than one base name.\n\
5419 If not set (the default), all source files are assumed to have just\n\
5420 one base name, and gdb will do file name comparisons more efficiently."),
5421 NULL, NULL,
5422 &setlist, &showlist);
5423
5424 add_setshow_zuinteger_cmd ("symtab-create", no_class, &symtab_create_debug,
5425 _("Set debugging of symbol table creation."),
5426 _("Show debugging of symbol table creation."), _("\
5427 When enabled (non-zero), debugging messages are printed when building\n\
5428 symbol tables. A value of 1 (one) normally provides enough information.\n\
5429 A value greater than 1 provides more verbose information."),
5430 NULL,
5431 NULL,
5432 &setdebuglist, &showdebuglist);
5433
5434 observer_attach_executable_changed (symtab_observer_executable_changed);
5435 }
This page took 0.168308 seconds and 4 git commands to generate.