[arm] Fix regression by Do not skip prologue for asm (.S) files
[deliverable/binutils-gdb.git] / gdb / symtab.c
1 /* Symbol table lookup for the GNU debugger, GDB.
2
3 Copyright (C) 1986-2015 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "gdbcore.h"
24 #include "frame.h"
25 #include "target.h"
26 #include "value.h"
27 #include "symfile.h"
28 #include "objfiles.h"
29 #include "gdbcmd.h"
30 #include "gdb_regex.h"
31 #include "expression.h"
32 #include "language.h"
33 #include "demangle.h"
34 #include "inferior.h"
35 #include "source.h"
36 #include "filenames.h" /* for FILENAME_CMP */
37 #include "objc-lang.h"
38 #include "d-lang.h"
39 #include "ada-lang.h"
40 #include "go-lang.h"
41 #include "p-lang.h"
42 #include "addrmap.h"
43 #include "cli/cli-utils.h"
44
45 #include "hashtab.h"
46
47 #include "gdb_obstack.h"
48 #include "block.h"
49 #include "dictionary.h"
50
51 #include <sys/types.h>
52 #include <fcntl.h>
53 #include <sys/stat.h>
54 #include <ctype.h>
55 #include "cp-abi.h"
56 #include "cp-support.h"
57 #include "observer.h"
58 #include "solist.h"
59 #include "macrotab.h"
60 #include "macroscope.h"
61
62 #include "parser-defs.h"
63 #include "completer.h"
64
65 /* Forward declarations for local functions. */
66
67 static void rbreak_command (char *, int);
68
69 static int find_line_common (struct linetable *, int, int *, int);
70
71 static struct symbol *lookup_symbol_aux (const char *name,
72 const struct block *block,
73 const domain_enum domain,
74 enum language language,
75 struct field_of_this_result *);
76
77 static
78 struct symbol *lookup_local_symbol (const char *name,
79 const struct block *block,
80 const domain_enum domain,
81 enum language language);
82
83 static struct symbol *
84 lookup_symbol_in_objfile (struct objfile *objfile, int block_index,
85 const char *name, const domain_enum domain);
86
87 extern initialize_file_ftype _initialize_symtab;
88
89 /* Program space key for finding name and language of "main". */
90
91 static const struct program_space_data *main_progspace_key;
92
93 /* Type of the data stored on the program space. */
94
95 struct main_info
96 {
97 /* Name of "main". */
98
99 char *name_of_main;
100
101 /* Language of "main". */
102
103 enum language language_of_main;
104 };
105
106 /* Program space key for finding its symbol cache. */
107
108 static const struct program_space_data *symbol_cache_key;
109
110 /* The default symbol cache size.
111 There is no extra cpu cost for large N (except when flushing the cache,
112 which is rare). The value here is just a first attempt. A better default
113 value may be higher or lower. A prime number can make up for a bad hash
114 computation, so that's why the number is what it is. */
115 #define DEFAULT_SYMBOL_CACHE_SIZE 1021
116
117 /* The maximum symbol cache size.
118 There's no method to the decision of what value to use here, other than
119 there's no point in allowing a user typo to make gdb consume all memory. */
120 #define MAX_SYMBOL_CACHE_SIZE (1024*1024)
121
122 /* symbol_cache_lookup returns this if a previous lookup failed to find the
123 symbol in any objfile. */
124 #define SYMBOL_LOOKUP_FAILED ((struct symbol *) 1)
125
126 /* Recording lookups that don't find the symbol is just as important, if not
127 more so, than recording found symbols. */
128
129 enum symbol_cache_slot_state
130 {
131 SYMBOL_SLOT_UNUSED,
132 SYMBOL_SLOT_NOT_FOUND,
133 SYMBOL_SLOT_FOUND
134 };
135
136 struct symbol_cache_slot
137 {
138 enum symbol_cache_slot_state state;
139
140 /* The objfile that was current when the symbol was looked up.
141 This is only needed for global blocks, but for simplicity's sake
142 we allocate the space for both. If data shows the extra space used
143 for static blocks is a problem, we can split things up then.
144
145 Global blocks need cache lookup to include the objfile context because
146 we need to account for gdbarch_iterate_over_objfiles_in_search_order
147 which can traverse objfiles in, effectively, any order, depending on
148 the current objfile, thus affecting which symbol is found. Normally,
149 only the current objfile is searched first, and then the rest are
150 searched in recorded order; but putting cache lookup inside
151 gdbarch_iterate_over_objfiles_in_search_order would be awkward.
152 Instead we just make the current objfile part of the context of
153 cache lookup. This means we can record the same symbol multiple times,
154 each with a different "current objfile" that was in effect when the
155 lookup was saved in the cache, but cache space is pretty cheap. */
156 const struct objfile *objfile_context;
157
158 union
159 {
160 struct symbol *found;
161 struct
162 {
163 char *name;
164 domain_enum domain;
165 } not_found;
166 } value;
167 };
168
169 /* Symbols don't specify global vs static block.
170 So keep them in separate caches. */
171
172 struct block_symbol_cache
173 {
174 unsigned int hits;
175 unsigned int misses;
176 unsigned int collisions;
177
178 /* SYMBOLS is a variable length array of this size.
179 One can imagine that in general one cache (global/static) should be a
180 fraction of the size of the other, but there's no data at the moment
181 on which to decide. */
182 unsigned int size;
183
184 struct symbol_cache_slot symbols[1];
185 };
186
187 /* The symbol cache.
188
189 Searching for symbols in the static and global blocks over multiple objfiles
190 again and again can be slow, as can searching very big objfiles. This is a
191 simple cache to improve symbol lookup performance, which is critical to
192 overall gdb performance.
193
194 Symbols are hashed on the name, its domain, and block.
195 They are also hashed on their objfile for objfile-specific lookups. */
196
197 struct symbol_cache
198 {
199 struct block_symbol_cache *global_symbols;
200 struct block_symbol_cache *static_symbols;
201 };
202
203 /* When non-zero, print debugging messages related to symtab creation. */
204 unsigned int symtab_create_debug = 0;
205
206 /* When non-zero, print debugging messages related to symbol lookup. */
207 unsigned int symbol_lookup_debug = 0;
208
209 /* The size of the cache is staged here. */
210 static unsigned int new_symbol_cache_size = DEFAULT_SYMBOL_CACHE_SIZE;
211
212 /* The current value of the symbol cache size.
213 This is saved so that if the user enters a value too big we can restore
214 the original value from here. */
215 static unsigned int symbol_cache_size = DEFAULT_SYMBOL_CACHE_SIZE;
216
217 /* Non-zero if a file may be known by two different basenames.
218 This is the uncommon case, and significantly slows down gdb.
219 Default set to "off" to not slow down the common case. */
220 int basenames_may_differ = 0;
221
222 /* Allow the user to configure the debugger behavior with respect
223 to multiple-choice menus when more than one symbol matches during
224 a symbol lookup. */
225
226 const char multiple_symbols_ask[] = "ask";
227 const char multiple_symbols_all[] = "all";
228 const char multiple_symbols_cancel[] = "cancel";
229 static const char *const multiple_symbols_modes[] =
230 {
231 multiple_symbols_ask,
232 multiple_symbols_all,
233 multiple_symbols_cancel,
234 NULL
235 };
236 static const char *multiple_symbols_mode = multiple_symbols_all;
237
238 /* Read-only accessor to AUTO_SELECT_MODE. */
239
240 const char *
241 multiple_symbols_select_mode (void)
242 {
243 return multiple_symbols_mode;
244 }
245
246 /* Block in which the most recently searched-for symbol was found.
247 Might be better to make this a parameter to lookup_symbol and
248 value_of_this. */
249
250 const struct block *block_found;
251
252 /* Return the name of a domain_enum. */
253
254 const char *
255 domain_name (domain_enum e)
256 {
257 switch (e)
258 {
259 case UNDEF_DOMAIN: return "UNDEF_DOMAIN";
260 case VAR_DOMAIN: return "VAR_DOMAIN";
261 case STRUCT_DOMAIN: return "STRUCT_DOMAIN";
262 case MODULE_DOMAIN: return "MODULE_DOMAIN";
263 case LABEL_DOMAIN: return "LABEL_DOMAIN";
264 case COMMON_BLOCK_DOMAIN: return "COMMON_BLOCK_DOMAIN";
265 default: gdb_assert_not_reached ("bad domain_enum");
266 }
267 }
268
269 /* Return the name of a search_domain . */
270
271 const char *
272 search_domain_name (enum search_domain e)
273 {
274 switch (e)
275 {
276 case VARIABLES_DOMAIN: return "VARIABLES_DOMAIN";
277 case FUNCTIONS_DOMAIN: return "FUNCTIONS_DOMAIN";
278 case TYPES_DOMAIN: return "TYPES_DOMAIN";
279 case ALL_DOMAIN: return "ALL_DOMAIN";
280 default: gdb_assert_not_reached ("bad search_domain");
281 }
282 }
283
284 /* See symtab.h. */
285
286 struct symtab *
287 compunit_primary_filetab (const struct compunit_symtab *cust)
288 {
289 gdb_assert (COMPUNIT_FILETABS (cust) != NULL);
290
291 /* The primary file symtab is the first one in the list. */
292 return COMPUNIT_FILETABS (cust);
293 }
294
295 /* See symtab.h. */
296
297 enum language
298 compunit_language (const struct compunit_symtab *cust)
299 {
300 struct symtab *symtab = compunit_primary_filetab (cust);
301
302 /* The language of the compunit symtab is the language of its primary
303 source file. */
304 return SYMTAB_LANGUAGE (symtab);
305 }
306
307 /* See whether FILENAME matches SEARCH_NAME using the rule that we
308 advertise to the user. (The manual's description of linespecs
309 describes what we advertise). Returns true if they match, false
310 otherwise. */
311
312 int
313 compare_filenames_for_search (const char *filename, const char *search_name)
314 {
315 int len = strlen (filename);
316 size_t search_len = strlen (search_name);
317
318 if (len < search_len)
319 return 0;
320
321 /* The tail of FILENAME must match. */
322 if (FILENAME_CMP (filename + len - search_len, search_name) != 0)
323 return 0;
324
325 /* Either the names must completely match, or the character
326 preceding the trailing SEARCH_NAME segment of FILENAME must be a
327 directory separator.
328
329 The check !IS_ABSOLUTE_PATH ensures SEARCH_NAME "/dir/file.c"
330 cannot match FILENAME "/path//dir/file.c" - as user has requested
331 absolute path. The sama applies for "c:\file.c" possibly
332 incorrectly hypothetically matching "d:\dir\c:\file.c".
333
334 The HAS_DRIVE_SPEC purpose is to make FILENAME "c:file.c"
335 compatible with SEARCH_NAME "file.c". In such case a compiler had
336 to put the "c:file.c" name into debug info. Such compatibility
337 works only on GDB built for DOS host. */
338 return (len == search_len
339 || (!IS_ABSOLUTE_PATH (search_name)
340 && IS_DIR_SEPARATOR (filename[len - search_len - 1]))
341 || (HAS_DRIVE_SPEC (filename)
342 && STRIP_DRIVE_SPEC (filename) == &filename[len - search_len]));
343 }
344
345 /* Check for a symtab of a specific name by searching some symtabs.
346 This is a helper function for callbacks of iterate_over_symtabs.
347
348 If NAME is not absolute, then REAL_PATH is NULL
349 If NAME is absolute, then REAL_PATH is the gdb_realpath form of NAME.
350
351 The return value, NAME, REAL_PATH, CALLBACK, and DATA
352 are identical to the `map_symtabs_matching_filename' method of
353 quick_symbol_functions.
354
355 FIRST and AFTER_LAST indicate the range of compunit symtabs to search.
356 Each symtab within the specified compunit symtab is also searched.
357 AFTER_LAST is one past the last compunit symtab to search; NULL means to
358 search until the end of the list. */
359
360 int
361 iterate_over_some_symtabs (const char *name,
362 const char *real_path,
363 int (*callback) (struct symtab *symtab,
364 void *data),
365 void *data,
366 struct compunit_symtab *first,
367 struct compunit_symtab *after_last)
368 {
369 struct compunit_symtab *cust;
370 struct symtab *s;
371 const char* base_name = lbasename (name);
372
373 for (cust = first; cust != NULL && cust != after_last; cust = cust->next)
374 {
375 ALL_COMPUNIT_FILETABS (cust, s)
376 {
377 if (compare_filenames_for_search (s->filename, name))
378 {
379 if (callback (s, data))
380 return 1;
381 continue;
382 }
383
384 /* Before we invoke realpath, which can get expensive when many
385 files are involved, do a quick comparison of the basenames. */
386 if (! basenames_may_differ
387 && FILENAME_CMP (base_name, lbasename (s->filename)) != 0)
388 continue;
389
390 if (compare_filenames_for_search (symtab_to_fullname (s), name))
391 {
392 if (callback (s, data))
393 return 1;
394 continue;
395 }
396
397 /* If the user gave us an absolute path, try to find the file in
398 this symtab and use its absolute path. */
399 if (real_path != NULL)
400 {
401 const char *fullname = symtab_to_fullname (s);
402
403 gdb_assert (IS_ABSOLUTE_PATH (real_path));
404 gdb_assert (IS_ABSOLUTE_PATH (name));
405 if (FILENAME_CMP (real_path, fullname) == 0)
406 {
407 if (callback (s, data))
408 return 1;
409 continue;
410 }
411 }
412 }
413 }
414
415 return 0;
416 }
417
418 /* Check for a symtab of a specific name; first in symtabs, then in
419 psymtabs. *If* there is no '/' in the name, a match after a '/'
420 in the symtab filename will also work.
421
422 Calls CALLBACK with each symtab that is found and with the supplied
423 DATA. If CALLBACK returns true, the search stops. */
424
425 void
426 iterate_over_symtabs (const char *name,
427 int (*callback) (struct symtab *symtab,
428 void *data),
429 void *data)
430 {
431 struct objfile *objfile;
432 char *real_path = NULL;
433 struct cleanup *cleanups = make_cleanup (null_cleanup, NULL);
434
435 /* Here we are interested in canonicalizing an absolute path, not
436 absolutizing a relative path. */
437 if (IS_ABSOLUTE_PATH (name))
438 {
439 real_path = gdb_realpath (name);
440 make_cleanup (xfree, real_path);
441 gdb_assert (IS_ABSOLUTE_PATH (real_path));
442 }
443
444 ALL_OBJFILES (objfile)
445 {
446 if (iterate_over_some_symtabs (name, real_path, callback, data,
447 objfile->compunit_symtabs, NULL))
448 {
449 do_cleanups (cleanups);
450 return;
451 }
452 }
453
454 /* Same search rules as above apply here, but now we look thru the
455 psymtabs. */
456
457 ALL_OBJFILES (objfile)
458 {
459 if (objfile->sf
460 && objfile->sf->qf->map_symtabs_matching_filename (objfile,
461 name,
462 real_path,
463 callback,
464 data))
465 {
466 do_cleanups (cleanups);
467 return;
468 }
469 }
470
471 do_cleanups (cleanups);
472 }
473
474 /* The callback function used by lookup_symtab. */
475
476 static int
477 lookup_symtab_callback (struct symtab *symtab, void *data)
478 {
479 struct symtab **result_ptr = data;
480
481 *result_ptr = symtab;
482 return 1;
483 }
484
485 /* A wrapper for iterate_over_symtabs that returns the first matching
486 symtab, or NULL. */
487
488 struct symtab *
489 lookup_symtab (const char *name)
490 {
491 struct symtab *result = NULL;
492
493 iterate_over_symtabs (name, lookup_symtab_callback, &result);
494 return result;
495 }
496
497 \f
498 /* Mangle a GDB method stub type. This actually reassembles the pieces of the
499 full method name, which consist of the class name (from T), the unadorned
500 method name from METHOD_ID, and the signature for the specific overload,
501 specified by SIGNATURE_ID. Note that this function is g++ specific. */
502
503 char *
504 gdb_mangle_name (struct type *type, int method_id, int signature_id)
505 {
506 int mangled_name_len;
507 char *mangled_name;
508 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
509 struct fn_field *method = &f[signature_id];
510 const char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
511 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
512 const char *newname = type_name_no_tag (type);
513
514 /* Does the form of physname indicate that it is the full mangled name
515 of a constructor (not just the args)? */
516 int is_full_physname_constructor;
517
518 int is_constructor;
519 int is_destructor = is_destructor_name (physname);
520 /* Need a new type prefix. */
521 char *const_prefix = method->is_const ? "C" : "";
522 char *volatile_prefix = method->is_volatile ? "V" : "";
523 char buf[20];
524 int len = (newname == NULL ? 0 : strlen (newname));
525
526 /* Nothing to do if physname already contains a fully mangled v3 abi name
527 or an operator name. */
528 if ((physname[0] == '_' && physname[1] == 'Z')
529 || is_operator_name (field_name))
530 return xstrdup (physname);
531
532 is_full_physname_constructor = is_constructor_name (physname);
533
534 is_constructor = is_full_physname_constructor
535 || (newname && strcmp (field_name, newname) == 0);
536
537 if (!is_destructor)
538 is_destructor = (startswith (physname, "__dt"));
539
540 if (is_destructor || is_full_physname_constructor)
541 {
542 mangled_name = (char *) xmalloc (strlen (physname) + 1);
543 strcpy (mangled_name, physname);
544 return mangled_name;
545 }
546
547 if (len == 0)
548 {
549 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
550 }
551 else if (physname[0] == 't' || physname[0] == 'Q')
552 {
553 /* The physname for template and qualified methods already includes
554 the class name. */
555 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
556 newname = NULL;
557 len = 0;
558 }
559 else
560 {
561 xsnprintf (buf, sizeof (buf), "__%s%s%d", const_prefix,
562 volatile_prefix, len);
563 }
564 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
565 + strlen (buf) + len + strlen (physname) + 1);
566
567 mangled_name = (char *) xmalloc (mangled_name_len);
568 if (is_constructor)
569 mangled_name[0] = '\0';
570 else
571 strcpy (mangled_name, field_name);
572
573 strcat (mangled_name, buf);
574 /* If the class doesn't have a name, i.e. newname NULL, then we just
575 mangle it using 0 for the length of the class. Thus it gets mangled
576 as something starting with `::' rather than `classname::'. */
577 if (newname != NULL)
578 strcat (mangled_name, newname);
579
580 strcat (mangled_name, physname);
581 return (mangled_name);
582 }
583
584 /* Set the demangled name of GSYMBOL to NAME. NAME must be already
585 correctly allocated. */
586
587 void
588 symbol_set_demangled_name (struct general_symbol_info *gsymbol,
589 const char *name,
590 struct obstack *obstack)
591 {
592 if (gsymbol->language == language_ada)
593 {
594 if (name == NULL)
595 {
596 gsymbol->ada_mangled = 0;
597 gsymbol->language_specific.obstack = obstack;
598 }
599 else
600 {
601 gsymbol->ada_mangled = 1;
602 gsymbol->language_specific.mangled_lang.demangled_name = name;
603 }
604 }
605 else
606 gsymbol->language_specific.mangled_lang.demangled_name = name;
607 }
608
609 /* Return the demangled name of GSYMBOL. */
610
611 const char *
612 symbol_get_demangled_name (const struct general_symbol_info *gsymbol)
613 {
614 if (gsymbol->language == language_ada)
615 {
616 if (!gsymbol->ada_mangled)
617 return NULL;
618 /* Fall through. */
619 }
620
621 return gsymbol->language_specific.mangled_lang.demangled_name;
622 }
623
624 \f
625 /* Initialize the language dependent portion of a symbol
626 depending upon the language for the symbol. */
627
628 void
629 symbol_set_language (struct general_symbol_info *gsymbol,
630 enum language language,
631 struct obstack *obstack)
632 {
633 gsymbol->language = language;
634 if (gsymbol->language == language_cplus
635 || gsymbol->language == language_d
636 || gsymbol->language == language_go
637 || gsymbol->language == language_java
638 || gsymbol->language == language_objc
639 || gsymbol->language == language_fortran)
640 {
641 symbol_set_demangled_name (gsymbol, NULL, obstack);
642 }
643 else if (gsymbol->language == language_ada)
644 {
645 gdb_assert (gsymbol->ada_mangled == 0);
646 gsymbol->language_specific.obstack = obstack;
647 }
648 else
649 {
650 memset (&gsymbol->language_specific, 0,
651 sizeof (gsymbol->language_specific));
652 }
653 }
654
655 /* Functions to initialize a symbol's mangled name. */
656
657 /* Objects of this type are stored in the demangled name hash table. */
658 struct demangled_name_entry
659 {
660 const char *mangled;
661 char demangled[1];
662 };
663
664 /* Hash function for the demangled name hash. */
665
666 static hashval_t
667 hash_demangled_name_entry (const void *data)
668 {
669 const struct demangled_name_entry *e = data;
670
671 return htab_hash_string (e->mangled);
672 }
673
674 /* Equality function for the demangled name hash. */
675
676 static int
677 eq_demangled_name_entry (const void *a, const void *b)
678 {
679 const struct demangled_name_entry *da = a;
680 const struct demangled_name_entry *db = b;
681
682 return strcmp (da->mangled, db->mangled) == 0;
683 }
684
685 /* Create the hash table used for demangled names. Each hash entry is
686 a pair of strings; one for the mangled name and one for the demangled
687 name. The entry is hashed via just the mangled name. */
688
689 static void
690 create_demangled_names_hash (struct objfile *objfile)
691 {
692 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
693 The hash table code will round this up to the next prime number.
694 Choosing a much larger table size wastes memory, and saves only about
695 1% in symbol reading. */
696
697 objfile->per_bfd->demangled_names_hash = htab_create_alloc
698 (256, hash_demangled_name_entry, eq_demangled_name_entry,
699 NULL, xcalloc, xfree);
700 }
701
702 /* Try to determine the demangled name for a symbol, based on the
703 language of that symbol. If the language is set to language_auto,
704 it will attempt to find any demangling algorithm that works and
705 then set the language appropriately. The returned name is allocated
706 by the demangler and should be xfree'd. */
707
708 static char *
709 symbol_find_demangled_name (struct general_symbol_info *gsymbol,
710 const char *mangled)
711 {
712 char *demangled = NULL;
713
714 if (gsymbol->language == language_unknown)
715 gsymbol->language = language_auto;
716
717 if (gsymbol->language == language_objc
718 || gsymbol->language == language_auto)
719 {
720 demangled =
721 objc_demangle (mangled, 0);
722 if (demangled != NULL)
723 {
724 gsymbol->language = language_objc;
725 return demangled;
726 }
727 }
728 if (gsymbol->language == language_cplus
729 || gsymbol->language == language_auto)
730 {
731 demangled =
732 gdb_demangle (mangled, DMGL_PARAMS | DMGL_ANSI);
733 if (demangled != NULL)
734 {
735 gsymbol->language = language_cplus;
736 return demangled;
737 }
738 }
739 if (gsymbol->language == language_java)
740 {
741 demangled =
742 gdb_demangle (mangled,
743 DMGL_PARAMS | DMGL_ANSI | DMGL_JAVA);
744 if (demangled != NULL)
745 {
746 gsymbol->language = language_java;
747 return demangled;
748 }
749 }
750 if (gsymbol->language == language_d
751 || gsymbol->language == language_auto)
752 {
753 demangled = d_demangle(mangled, 0);
754 if (demangled != NULL)
755 {
756 gsymbol->language = language_d;
757 return demangled;
758 }
759 }
760 /* FIXME(dje): Continually adding languages here is clumsy.
761 Better to just call la_demangle if !auto, and if auto then call
762 a utility routine that tries successive languages in turn and reports
763 which one it finds. I realize the la_demangle options may be different
764 for different languages but there's already a FIXME for that. */
765 if (gsymbol->language == language_go
766 || gsymbol->language == language_auto)
767 {
768 demangled = go_demangle (mangled, 0);
769 if (demangled != NULL)
770 {
771 gsymbol->language = language_go;
772 return demangled;
773 }
774 }
775
776 /* We could support `gsymbol->language == language_fortran' here to provide
777 module namespaces also for inferiors with only minimal symbol table (ELF
778 symbols). Just the mangling standard is not standardized across compilers
779 and there is no DW_AT_producer available for inferiors with only the ELF
780 symbols to check the mangling kind. */
781
782 /* Check for Ada symbols last. See comment below explaining why. */
783
784 if (gsymbol->language == language_auto)
785 {
786 const char *demangled = ada_decode (mangled);
787
788 if (demangled != mangled && demangled != NULL && demangled[0] != '<')
789 {
790 /* Set the gsymbol language to Ada, but still return NULL.
791 Two reasons for that:
792
793 1. For Ada, we prefer computing the symbol's decoded name
794 on the fly rather than pre-compute it, in order to save
795 memory (Ada projects are typically very large).
796
797 2. There are some areas in the definition of the GNAT
798 encoding where, with a bit of bad luck, we might be able
799 to decode a non-Ada symbol, generating an incorrect
800 demangled name (Eg: names ending with "TB" for instance
801 are identified as task bodies and so stripped from
802 the decoded name returned).
803
804 Returning NULL, here, helps us get a little bit of
805 the best of both worlds. Because we're last, we should
806 not affect any of the other languages that were able to
807 demangle the symbol before us; we get to correctly tag
808 Ada symbols as such; and even if we incorrectly tagged
809 a non-Ada symbol, which should be rare, any routing
810 through the Ada language should be transparent (Ada
811 tries to behave much like C/C++ with non-Ada symbols). */
812 gsymbol->language = language_ada;
813 return NULL;
814 }
815 }
816
817 return NULL;
818 }
819
820 /* Set both the mangled and demangled (if any) names for GSYMBOL based
821 on LINKAGE_NAME and LEN. Ordinarily, NAME is copied onto the
822 objfile's obstack; but if COPY_NAME is 0 and if NAME is
823 NUL-terminated, then this function assumes that NAME is already
824 correctly saved (either permanently or with a lifetime tied to the
825 objfile), and it will not be copied.
826
827 The hash table corresponding to OBJFILE is used, and the memory
828 comes from the per-BFD storage_obstack. LINKAGE_NAME is copied,
829 so the pointer can be discarded after calling this function. */
830
831 /* We have to be careful when dealing with Java names: when we run
832 into a Java minimal symbol, we don't know it's a Java symbol, so it
833 gets demangled as a C++ name. This is unfortunate, but there's not
834 much we can do about it: but when demangling partial symbols and
835 regular symbols, we'd better not reuse the wrong demangled name.
836 (See PR gdb/1039.) We solve this by putting a distinctive prefix
837 on Java names when storing them in the hash table. */
838
839 /* FIXME: carlton/2003-03-13: This is an unfortunate situation. I
840 don't mind the Java prefix so much: different languages have
841 different demangling requirements, so it's only natural that we
842 need to keep language data around in our demangling cache. But
843 it's not good that the minimal symbol has the wrong demangled name.
844 Unfortunately, I can't think of any easy solution to that
845 problem. */
846
847 #define JAVA_PREFIX "##JAVA$$"
848 #define JAVA_PREFIX_LEN 8
849
850 void
851 symbol_set_names (struct general_symbol_info *gsymbol,
852 const char *linkage_name, int len, int copy_name,
853 struct objfile *objfile)
854 {
855 struct demangled_name_entry **slot;
856 /* A 0-terminated copy of the linkage name. */
857 const char *linkage_name_copy;
858 /* A copy of the linkage name that might have a special Java prefix
859 added to it, for use when looking names up in the hash table. */
860 const char *lookup_name;
861 /* The length of lookup_name. */
862 int lookup_len;
863 struct demangled_name_entry entry;
864 struct objfile_per_bfd_storage *per_bfd = objfile->per_bfd;
865
866 if (gsymbol->language == language_ada)
867 {
868 /* In Ada, we do the symbol lookups using the mangled name, so
869 we can save some space by not storing the demangled name.
870
871 As a side note, we have also observed some overlap between
872 the C++ mangling and Ada mangling, similarly to what has
873 been observed with Java. Because we don't store the demangled
874 name with the symbol, we don't need to use the same trick
875 as Java. */
876 if (!copy_name)
877 gsymbol->name = linkage_name;
878 else
879 {
880 char *name = obstack_alloc (&per_bfd->storage_obstack, len + 1);
881
882 memcpy (name, linkage_name, len);
883 name[len] = '\0';
884 gsymbol->name = name;
885 }
886 symbol_set_demangled_name (gsymbol, NULL, &per_bfd->storage_obstack);
887
888 return;
889 }
890
891 if (per_bfd->demangled_names_hash == NULL)
892 create_demangled_names_hash (objfile);
893
894 /* The stabs reader generally provides names that are not
895 NUL-terminated; most of the other readers don't do this, so we
896 can just use the given copy, unless we're in the Java case. */
897 if (gsymbol->language == language_java)
898 {
899 char *alloc_name;
900
901 lookup_len = len + JAVA_PREFIX_LEN;
902 alloc_name = alloca (lookup_len + 1);
903 memcpy (alloc_name, JAVA_PREFIX, JAVA_PREFIX_LEN);
904 memcpy (alloc_name + JAVA_PREFIX_LEN, linkage_name, len);
905 alloc_name[lookup_len] = '\0';
906
907 lookup_name = alloc_name;
908 linkage_name_copy = alloc_name + JAVA_PREFIX_LEN;
909 }
910 else if (linkage_name[len] != '\0')
911 {
912 char *alloc_name;
913
914 lookup_len = len;
915 alloc_name = alloca (lookup_len + 1);
916 memcpy (alloc_name, linkage_name, len);
917 alloc_name[lookup_len] = '\0';
918
919 lookup_name = alloc_name;
920 linkage_name_copy = alloc_name;
921 }
922 else
923 {
924 lookup_len = len;
925 lookup_name = linkage_name;
926 linkage_name_copy = linkage_name;
927 }
928
929 entry.mangled = lookup_name;
930 slot = ((struct demangled_name_entry **)
931 htab_find_slot (per_bfd->demangled_names_hash,
932 &entry, INSERT));
933
934 /* If this name is not in the hash table, add it. */
935 if (*slot == NULL
936 /* A C version of the symbol may have already snuck into the table.
937 This happens to, e.g., main.init (__go_init_main). Cope. */
938 || (gsymbol->language == language_go
939 && (*slot)->demangled[0] == '\0'))
940 {
941 char *demangled_name = symbol_find_demangled_name (gsymbol,
942 linkage_name_copy);
943 int demangled_len = demangled_name ? strlen (demangled_name) : 0;
944
945 /* Suppose we have demangled_name==NULL, copy_name==0, and
946 lookup_name==linkage_name. In this case, we already have the
947 mangled name saved, and we don't have a demangled name. So,
948 you might think we could save a little space by not recording
949 this in the hash table at all.
950
951 It turns out that it is actually important to still save such
952 an entry in the hash table, because storing this name gives
953 us better bcache hit rates for partial symbols. */
954 if (!copy_name && lookup_name == linkage_name)
955 {
956 *slot = obstack_alloc (&per_bfd->storage_obstack,
957 offsetof (struct demangled_name_entry,
958 demangled)
959 + demangled_len + 1);
960 (*slot)->mangled = lookup_name;
961 }
962 else
963 {
964 char *mangled_ptr;
965
966 /* If we must copy the mangled name, put it directly after
967 the demangled name so we can have a single
968 allocation. */
969 *slot = obstack_alloc (&per_bfd->storage_obstack,
970 offsetof (struct demangled_name_entry,
971 demangled)
972 + lookup_len + demangled_len + 2);
973 mangled_ptr = &((*slot)->demangled[demangled_len + 1]);
974 strcpy (mangled_ptr, lookup_name);
975 (*slot)->mangled = mangled_ptr;
976 }
977
978 if (demangled_name != NULL)
979 {
980 strcpy ((*slot)->demangled, demangled_name);
981 xfree (demangled_name);
982 }
983 else
984 (*slot)->demangled[0] = '\0';
985 }
986
987 gsymbol->name = (*slot)->mangled + lookup_len - len;
988 if ((*slot)->demangled[0] != '\0')
989 symbol_set_demangled_name (gsymbol, (*slot)->demangled,
990 &per_bfd->storage_obstack);
991 else
992 symbol_set_demangled_name (gsymbol, NULL, &per_bfd->storage_obstack);
993 }
994
995 /* Return the source code name of a symbol. In languages where
996 demangling is necessary, this is the demangled name. */
997
998 const char *
999 symbol_natural_name (const struct general_symbol_info *gsymbol)
1000 {
1001 switch (gsymbol->language)
1002 {
1003 case language_cplus:
1004 case language_d:
1005 case language_go:
1006 case language_java:
1007 case language_objc:
1008 case language_fortran:
1009 if (symbol_get_demangled_name (gsymbol) != NULL)
1010 return symbol_get_demangled_name (gsymbol);
1011 break;
1012 case language_ada:
1013 return ada_decode_symbol (gsymbol);
1014 default:
1015 break;
1016 }
1017 return gsymbol->name;
1018 }
1019
1020 /* Return the demangled name for a symbol based on the language for
1021 that symbol. If no demangled name exists, return NULL. */
1022
1023 const char *
1024 symbol_demangled_name (const struct general_symbol_info *gsymbol)
1025 {
1026 const char *dem_name = NULL;
1027
1028 switch (gsymbol->language)
1029 {
1030 case language_cplus:
1031 case language_d:
1032 case language_go:
1033 case language_java:
1034 case language_objc:
1035 case language_fortran:
1036 dem_name = symbol_get_demangled_name (gsymbol);
1037 break;
1038 case language_ada:
1039 dem_name = ada_decode_symbol (gsymbol);
1040 break;
1041 default:
1042 break;
1043 }
1044 return dem_name;
1045 }
1046
1047 /* Return the search name of a symbol---generally the demangled or
1048 linkage name of the symbol, depending on how it will be searched for.
1049 If there is no distinct demangled name, then returns the same value
1050 (same pointer) as SYMBOL_LINKAGE_NAME. */
1051
1052 const char *
1053 symbol_search_name (const struct general_symbol_info *gsymbol)
1054 {
1055 if (gsymbol->language == language_ada)
1056 return gsymbol->name;
1057 else
1058 return symbol_natural_name (gsymbol);
1059 }
1060
1061 /* Initialize the structure fields to zero values. */
1062
1063 void
1064 init_sal (struct symtab_and_line *sal)
1065 {
1066 memset (sal, 0, sizeof (*sal));
1067 }
1068 \f
1069
1070 /* Return 1 if the two sections are the same, or if they could
1071 plausibly be copies of each other, one in an original object
1072 file and another in a separated debug file. */
1073
1074 int
1075 matching_obj_sections (struct obj_section *obj_first,
1076 struct obj_section *obj_second)
1077 {
1078 asection *first = obj_first? obj_first->the_bfd_section : NULL;
1079 asection *second = obj_second? obj_second->the_bfd_section : NULL;
1080 struct objfile *obj;
1081
1082 /* If they're the same section, then they match. */
1083 if (first == second)
1084 return 1;
1085
1086 /* If either is NULL, give up. */
1087 if (first == NULL || second == NULL)
1088 return 0;
1089
1090 /* This doesn't apply to absolute symbols. */
1091 if (first->owner == NULL || second->owner == NULL)
1092 return 0;
1093
1094 /* If they're in the same object file, they must be different sections. */
1095 if (first->owner == second->owner)
1096 return 0;
1097
1098 /* Check whether the two sections are potentially corresponding. They must
1099 have the same size, address, and name. We can't compare section indexes,
1100 which would be more reliable, because some sections may have been
1101 stripped. */
1102 if (bfd_get_section_size (first) != bfd_get_section_size (second))
1103 return 0;
1104
1105 /* In-memory addresses may start at a different offset, relativize them. */
1106 if (bfd_get_section_vma (first->owner, first)
1107 - bfd_get_start_address (first->owner)
1108 != bfd_get_section_vma (second->owner, second)
1109 - bfd_get_start_address (second->owner))
1110 return 0;
1111
1112 if (bfd_get_section_name (first->owner, first) == NULL
1113 || bfd_get_section_name (second->owner, second) == NULL
1114 || strcmp (bfd_get_section_name (first->owner, first),
1115 bfd_get_section_name (second->owner, second)) != 0)
1116 return 0;
1117
1118 /* Otherwise check that they are in corresponding objfiles. */
1119
1120 ALL_OBJFILES (obj)
1121 if (obj->obfd == first->owner)
1122 break;
1123 gdb_assert (obj != NULL);
1124
1125 if (obj->separate_debug_objfile != NULL
1126 && obj->separate_debug_objfile->obfd == second->owner)
1127 return 1;
1128 if (obj->separate_debug_objfile_backlink != NULL
1129 && obj->separate_debug_objfile_backlink->obfd == second->owner)
1130 return 1;
1131
1132 return 0;
1133 }
1134
1135 /* See symtab.h. */
1136
1137 void
1138 expand_symtab_containing_pc (CORE_ADDR pc, struct obj_section *section)
1139 {
1140 struct objfile *objfile;
1141 struct bound_minimal_symbol msymbol;
1142
1143 /* If we know that this is not a text address, return failure. This is
1144 necessary because we loop based on texthigh and textlow, which do
1145 not include the data ranges. */
1146 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
1147 if (msymbol.minsym
1148 && (MSYMBOL_TYPE (msymbol.minsym) == mst_data
1149 || MSYMBOL_TYPE (msymbol.minsym) == mst_bss
1150 || MSYMBOL_TYPE (msymbol.minsym) == mst_abs
1151 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_data
1152 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_bss))
1153 return;
1154
1155 ALL_OBJFILES (objfile)
1156 {
1157 struct compunit_symtab *cust = NULL;
1158
1159 if (objfile->sf)
1160 cust = objfile->sf->qf->find_pc_sect_compunit_symtab (objfile, msymbol,
1161 pc, section, 0);
1162 if (cust)
1163 return;
1164 }
1165 }
1166 \f
1167 /* Hash function for the symbol cache. */
1168
1169 static unsigned int
1170 hash_symbol_entry (const struct objfile *objfile_context,
1171 const char *name, domain_enum domain)
1172 {
1173 unsigned int hash = (uintptr_t) objfile_context;
1174
1175 if (name != NULL)
1176 hash += htab_hash_string (name);
1177
1178 /* Because of symbol_matches_domain we need VAR_DOMAIN and STRUCT_DOMAIN
1179 to map to the same slot. */
1180 if (domain == STRUCT_DOMAIN)
1181 hash += VAR_DOMAIN * 7;
1182 else
1183 hash += domain * 7;
1184
1185 return hash;
1186 }
1187
1188 /* Equality function for the symbol cache. */
1189
1190 static int
1191 eq_symbol_entry (const struct symbol_cache_slot *slot,
1192 const struct objfile *objfile_context,
1193 const char *name, domain_enum domain)
1194 {
1195 const char *slot_name;
1196 domain_enum slot_domain;
1197
1198 if (slot->state == SYMBOL_SLOT_UNUSED)
1199 return 0;
1200
1201 if (slot->objfile_context != objfile_context)
1202 return 0;
1203
1204 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1205 {
1206 slot_name = slot->value.not_found.name;
1207 slot_domain = slot->value.not_found.domain;
1208 }
1209 else
1210 {
1211 slot_name = SYMBOL_SEARCH_NAME (slot->value.found);
1212 slot_domain = SYMBOL_DOMAIN (slot->value.found);
1213 }
1214
1215 /* NULL names match. */
1216 if (slot_name == NULL && name == NULL)
1217 {
1218 /* But there's no point in calling symbol_matches_domain in the
1219 SYMBOL_SLOT_FOUND case. */
1220 if (slot_domain != domain)
1221 return 0;
1222 }
1223 else if (slot_name != NULL && name != NULL)
1224 {
1225 /* It's important that we use the same comparison that was done the
1226 first time through. If the slot records a found symbol, then this
1227 means using strcmp_iw on SYMBOL_SEARCH_NAME. See dictionary.c.
1228 It also means using symbol_matches_domain for found symbols.
1229 See block.c.
1230
1231 If the slot records a not-found symbol, then require a precise match.
1232 We could still be lax with whitespace like strcmp_iw though. */
1233
1234 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1235 {
1236 if (strcmp (slot_name, name) != 0)
1237 return 0;
1238 if (slot_domain != domain)
1239 return 0;
1240 }
1241 else
1242 {
1243 struct symbol *sym = slot->value.found;
1244
1245 if (strcmp_iw (slot_name, name) != 0)
1246 return 0;
1247 if (!symbol_matches_domain (SYMBOL_LANGUAGE (sym),
1248 slot_domain, domain))
1249 return 0;
1250 }
1251 }
1252 else
1253 {
1254 /* Only one name is NULL. */
1255 return 0;
1256 }
1257
1258 return 1;
1259 }
1260
1261 /* Given a cache of size SIZE, return the size of the struct (with variable
1262 length array) in bytes. */
1263
1264 static size_t
1265 symbol_cache_byte_size (unsigned int size)
1266 {
1267 return (sizeof (struct block_symbol_cache)
1268 + ((size - 1) * sizeof (struct symbol_cache_slot)));
1269 }
1270
1271 /* Resize CACHE. */
1272
1273 static void
1274 resize_symbol_cache (struct symbol_cache *cache, unsigned int new_size)
1275 {
1276 /* If there's no change in size, don't do anything.
1277 All caches have the same size, so we can just compare with the size
1278 of the global symbols cache. */
1279 if ((cache->global_symbols != NULL
1280 && cache->global_symbols->size == new_size)
1281 || (cache->global_symbols == NULL
1282 && new_size == 0))
1283 return;
1284
1285 xfree (cache->global_symbols);
1286 xfree (cache->static_symbols);
1287
1288 if (new_size == 0)
1289 {
1290 cache->global_symbols = NULL;
1291 cache->static_symbols = NULL;
1292 }
1293 else
1294 {
1295 size_t total_size = symbol_cache_byte_size (new_size);
1296
1297 cache->global_symbols = xcalloc (1, total_size);
1298 cache->static_symbols = xcalloc (1, total_size);
1299 cache->global_symbols->size = new_size;
1300 cache->static_symbols->size = new_size;
1301 }
1302 }
1303
1304 /* Make a symbol cache of size SIZE. */
1305
1306 static struct symbol_cache *
1307 make_symbol_cache (unsigned int size)
1308 {
1309 struct symbol_cache *cache;
1310
1311 cache = XCNEW (struct symbol_cache);
1312 resize_symbol_cache (cache, symbol_cache_size);
1313 return cache;
1314 }
1315
1316 /* Free the space used by CACHE. */
1317
1318 static void
1319 free_symbol_cache (struct symbol_cache *cache)
1320 {
1321 xfree (cache->global_symbols);
1322 xfree (cache->static_symbols);
1323 xfree (cache);
1324 }
1325
1326 /* Return the symbol cache of PSPACE.
1327 Create one if it doesn't exist yet. */
1328
1329 static struct symbol_cache *
1330 get_symbol_cache (struct program_space *pspace)
1331 {
1332 struct symbol_cache *cache = program_space_data (pspace, symbol_cache_key);
1333
1334 if (cache == NULL)
1335 {
1336 cache = make_symbol_cache (symbol_cache_size);
1337 set_program_space_data (pspace, symbol_cache_key, cache);
1338 }
1339
1340 return cache;
1341 }
1342
1343 /* Delete the symbol cache of PSPACE.
1344 Called when PSPACE is destroyed. */
1345
1346 static void
1347 symbol_cache_cleanup (struct program_space *pspace, void *data)
1348 {
1349 struct symbol_cache *cache = data;
1350
1351 free_symbol_cache (cache);
1352 }
1353
1354 /* Set the size of the symbol cache in all program spaces. */
1355
1356 static void
1357 set_symbol_cache_size (unsigned int new_size)
1358 {
1359 struct program_space *pspace;
1360
1361 ALL_PSPACES (pspace)
1362 {
1363 struct symbol_cache *cache
1364 = program_space_data (pspace, symbol_cache_key);
1365
1366 /* The pspace could have been created but not have a cache yet. */
1367 if (cache != NULL)
1368 resize_symbol_cache (cache, new_size);
1369 }
1370 }
1371
1372 /* Called when symbol-cache-size is set. */
1373
1374 static void
1375 set_symbol_cache_size_handler (char *args, int from_tty,
1376 struct cmd_list_element *c)
1377 {
1378 if (new_symbol_cache_size > MAX_SYMBOL_CACHE_SIZE)
1379 {
1380 /* Restore the previous value.
1381 This is the value the "show" command prints. */
1382 new_symbol_cache_size = symbol_cache_size;
1383
1384 error (_("Symbol cache size is too large, max is %u."),
1385 MAX_SYMBOL_CACHE_SIZE);
1386 }
1387 symbol_cache_size = new_symbol_cache_size;
1388
1389 set_symbol_cache_size (symbol_cache_size);
1390 }
1391
1392 /* Lookup symbol NAME,DOMAIN in BLOCK in the symbol cache of PSPACE.
1393 OBJFILE_CONTEXT is the current objfile, which may be NULL.
1394 The result is the symbol if found, SYMBOL_LOOKUP_FAILED if a previous lookup
1395 failed (and thus this one will too), or NULL if the symbol is not present
1396 in the cache.
1397 If the symbol is not present in the cache, then *BSC_PTR and *SLOT_PTR are
1398 set to the cache and slot of the symbol to save the result of a full lookup
1399 attempt. */
1400
1401 static struct symbol *
1402 symbol_cache_lookup (struct symbol_cache *cache,
1403 struct objfile *objfile_context, int block,
1404 const char *name, domain_enum domain,
1405 struct block_symbol_cache **bsc_ptr,
1406 struct symbol_cache_slot **slot_ptr)
1407 {
1408 struct block_symbol_cache *bsc;
1409 unsigned int hash;
1410 struct symbol_cache_slot *slot;
1411
1412 if (block == GLOBAL_BLOCK)
1413 bsc = cache->global_symbols;
1414 else
1415 bsc = cache->static_symbols;
1416 if (bsc == NULL)
1417 {
1418 *bsc_ptr = NULL;
1419 *slot_ptr = NULL;
1420 return NULL;
1421 }
1422
1423 hash = hash_symbol_entry (objfile_context, name, domain);
1424 slot = bsc->symbols + hash % bsc->size;
1425
1426 if (eq_symbol_entry (slot, objfile_context, name, domain))
1427 {
1428 if (symbol_lookup_debug)
1429 fprintf_unfiltered (gdb_stdlog,
1430 "%s block symbol cache hit%s for %s, %s\n",
1431 block == GLOBAL_BLOCK ? "Global" : "Static",
1432 slot->state == SYMBOL_SLOT_NOT_FOUND
1433 ? " (not found)" : "",
1434 name, domain_name (domain));
1435 ++bsc->hits;
1436 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1437 return SYMBOL_LOOKUP_FAILED;
1438 return slot->value.found;
1439 }
1440
1441 /* Symbol is not present in the cache. */
1442
1443 *bsc_ptr = bsc;
1444 *slot_ptr = slot;
1445
1446 if (symbol_lookup_debug)
1447 {
1448 fprintf_unfiltered (gdb_stdlog,
1449 "%s block symbol cache miss for %s, %s\n",
1450 block == GLOBAL_BLOCK ? "Global" : "Static",
1451 name, domain_name (domain));
1452 }
1453 ++bsc->misses;
1454 return NULL;
1455 }
1456
1457 /* Clear out SLOT. */
1458
1459 static void
1460 symbol_cache_clear_slot (struct symbol_cache_slot *slot)
1461 {
1462 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1463 xfree (slot->value.not_found.name);
1464 slot->state = SYMBOL_SLOT_UNUSED;
1465 }
1466
1467 /* Mark SYMBOL as found in SLOT.
1468 OBJFILE_CONTEXT is the current objfile when the lookup was done, or NULL
1469 if it's not needed to distinguish lookups (STATIC_BLOCK). It is *not*
1470 necessarily the objfile the symbol was found in. */
1471
1472 static void
1473 symbol_cache_mark_found (struct block_symbol_cache *bsc,
1474 struct symbol_cache_slot *slot,
1475 struct objfile *objfile_context,
1476 struct symbol *symbol)
1477 {
1478 if (bsc == NULL)
1479 return;
1480 if (slot->state != SYMBOL_SLOT_UNUSED)
1481 {
1482 ++bsc->collisions;
1483 symbol_cache_clear_slot (slot);
1484 }
1485 slot->state = SYMBOL_SLOT_FOUND;
1486 slot->objfile_context = objfile_context;
1487 slot->value.found = symbol;
1488 }
1489
1490 /* Mark symbol NAME, DOMAIN as not found in SLOT.
1491 OBJFILE_CONTEXT is the current objfile when the lookup was done, or NULL
1492 if it's not needed to distinguish lookups (STATIC_BLOCK). */
1493
1494 static void
1495 symbol_cache_mark_not_found (struct block_symbol_cache *bsc,
1496 struct symbol_cache_slot *slot,
1497 struct objfile *objfile_context,
1498 const char *name, domain_enum domain)
1499 {
1500 if (bsc == NULL)
1501 return;
1502 if (slot->state != SYMBOL_SLOT_UNUSED)
1503 {
1504 ++bsc->collisions;
1505 symbol_cache_clear_slot (slot);
1506 }
1507 slot->state = SYMBOL_SLOT_NOT_FOUND;
1508 slot->objfile_context = objfile_context;
1509 slot->value.not_found.name = xstrdup (name);
1510 slot->value.not_found.domain = domain;
1511 }
1512
1513 /* Flush the symbol cache of PSPACE. */
1514
1515 static void
1516 symbol_cache_flush (struct program_space *pspace)
1517 {
1518 struct symbol_cache *cache = program_space_data (pspace, symbol_cache_key);
1519 int pass;
1520 size_t total_size;
1521
1522 if (cache == NULL)
1523 return;
1524 if (cache->global_symbols == NULL)
1525 {
1526 gdb_assert (symbol_cache_size == 0);
1527 gdb_assert (cache->static_symbols == NULL);
1528 return;
1529 }
1530
1531 /* If the cache is untouched since the last flush, early exit.
1532 This is important for performance during the startup of a program linked
1533 with 100s (or 1000s) of shared libraries. */
1534 if (cache->global_symbols->misses == 0
1535 && cache->static_symbols->misses == 0)
1536 return;
1537
1538 gdb_assert (cache->global_symbols->size == symbol_cache_size);
1539 gdb_assert (cache->static_symbols->size == symbol_cache_size);
1540
1541 for (pass = 0; pass < 2; ++pass)
1542 {
1543 struct block_symbol_cache *bsc
1544 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1545 unsigned int i;
1546
1547 for (i = 0; i < bsc->size; ++i)
1548 symbol_cache_clear_slot (&bsc->symbols[i]);
1549 }
1550
1551 cache->global_symbols->hits = 0;
1552 cache->global_symbols->misses = 0;
1553 cache->global_symbols->collisions = 0;
1554 cache->static_symbols->hits = 0;
1555 cache->static_symbols->misses = 0;
1556 cache->static_symbols->collisions = 0;
1557 }
1558
1559 /* Dump CACHE. */
1560
1561 static void
1562 symbol_cache_dump (const struct symbol_cache *cache)
1563 {
1564 int pass;
1565
1566 if (cache->global_symbols == NULL)
1567 {
1568 printf_filtered (" <disabled>\n");
1569 return;
1570 }
1571
1572 for (pass = 0; pass < 2; ++pass)
1573 {
1574 const struct block_symbol_cache *bsc
1575 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1576 unsigned int i;
1577
1578 if (pass == 0)
1579 printf_filtered ("Global symbols:\n");
1580 else
1581 printf_filtered ("Static symbols:\n");
1582
1583 for (i = 0; i < bsc->size; ++i)
1584 {
1585 const struct symbol_cache_slot *slot = &bsc->symbols[i];
1586
1587 QUIT;
1588
1589 switch (slot->state)
1590 {
1591 case SYMBOL_SLOT_UNUSED:
1592 break;
1593 case SYMBOL_SLOT_NOT_FOUND:
1594 printf_filtered (" [%4u] = %s, %s %s (not found)\n", i,
1595 host_address_to_string (slot->objfile_context),
1596 slot->value.not_found.name,
1597 domain_name (slot->value.not_found.domain));
1598 break;
1599 case SYMBOL_SLOT_FOUND:
1600 printf_filtered (" [%4u] = %s, %s %s\n", i,
1601 host_address_to_string (slot->objfile_context),
1602 SYMBOL_PRINT_NAME (slot->value.found),
1603 domain_name (SYMBOL_DOMAIN (slot->value.found)));
1604 break;
1605 }
1606 }
1607 }
1608 }
1609
1610 /* The "mt print symbol-cache" command. */
1611
1612 static void
1613 maintenance_print_symbol_cache (char *args, int from_tty)
1614 {
1615 struct program_space *pspace;
1616
1617 ALL_PSPACES (pspace)
1618 {
1619 struct symbol_cache *cache;
1620
1621 printf_filtered (_("Symbol cache for pspace %d\n%s:\n"),
1622 pspace->num,
1623 pspace->symfile_object_file != NULL
1624 ? objfile_name (pspace->symfile_object_file)
1625 : "(no object file)");
1626
1627 /* If the cache hasn't been created yet, avoid creating one. */
1628 cache = program_space_data (pspace, symbol_cache_key);
1629 if (cache == NULL)
1630 printf_filtered (" <empty>\n");
1631 else
1632 symbol_cache_dump (cache);
1633 }
1634 }
1635
1636 /* The "mt flush-symbol-cache" command. */
1637
1638 static void
1639 maintenance_flush_symbol_cache (char *args, int from_tty)
1640 {
1641 struct program_space *pspace;
1642
1643 ALL_PSPACES (pspace)
1644 {
1645 symbol_cache_flush (pspace);
1646 }
1647 }
1648
1649 /* Print usage statistics of CACHE. */
1650
1651 static void
1652 symbol_cache_stats (struct symbol_cache *cache)
1653 {
1654 int pass;
1655
1656 if (cache->global_symbols == NULL)
1657 {
1658 printf_filtered (" <disabled>\n");
1659 return;
1660 }
1661
1662 for (pass = 0; pass < 2; ++pass)
1663 {
1664 const struct block_symbol_cache *bsc
1665 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1666
1667 QUIT;
1668
1669 if (pass == 0)
1670 printf_filtered ("Global block cache stats:\n");
1671 else
1672 printf_filtered ("Static block cache stats:\n");
1673
1674 printf_filtered (" size: %u\n", bsc->size);
1675 printf_filtered (" hits: %u\n", bsc->hits);
1676 printf_filtered (" misses: %u\n", bsc->misses);
1677 printf_filtered (" collisions: %u\n", bsc->collisions);
1678 }
1679 }
1680
1681 /* The "mt print symbol-cache-statistics" command. */
1682
1683 static void
1684 maintenance_print_symbol_cache_statistics (char *args, int from_tty)
1685 {
1686 struct program_space *pspace;
1687
1688 ALL_PSPACES (pspace)
1689 {
1690 struct symbol_cache *cache;
1691
1692 printf_filtered (_("Symbol cache statistics for pspace %d\n%s:\n"),
1693 pspace->num,
1694 pspace->symfile_object_file != NULL
1695 ? objfile_name (pspace->symfile_object_file)
1696 : "(no object file)");
1697
1698 /* If the cache hasn't been created yet, avoid creating one. */
1699 cache = program_space_data (pspace, symbol_cache_key);
1700 if (cache == NULL)
1701 printf_filtered (" empty, no stats available\n");
1702 else
1703 symbol_cache_stats (cache);
1704 }
1705 }
1706
1707 /* This module's 'new_objfile' observer. */
1708
1709 static void
1710 symtab_new_objfile_observer (struct objfile *objfile)
1711 {
1712 /* Ideally we'd use OBJFILE->pspace, but OBJFILE may be NULL. */
1713 symbol_cache_flush (current_program_space);
1714 }
1715
1716 /* This module's 'free_objfile' observer. */
1717
1718 static void
1719 symtab_free_objfile_observer (struct objfile *objfile)
1720 {
1721 symbol_cache_flush (objfile->pspace);
1722 }
1723 \f
1724 /* Debug symbols usually don't have section information. We need to dig that
1725 out of the minimal symbols and stash that in the debug symbol. */
1726
1727 void
1728 fixup_section (struct general_symbol_info *ginfo,
1729 CORE_ADDR addr, struct objfile *objfile)
1730 {
1731 struct minimal_symbol *msym;
1732
1733 /* First, check whether a minimal symbol with the same name exists
1734 and points to the same address. The address check is required
1735 e.g. on PowerPC64, where the minimal symbol for a function will
1736 point to the function descriptor, while the debug symbol will
1737 point to the actual function code. */
1738 msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->name, objfile);
1739 if (msym)
1740 ginfo->section = MSYMBOL_SECTION (msym);
1741 else
1742 {
1743 /* Static, function-local variables do appear in the linker
1744 (minimal) symbols, but are frequently given names that won't
1745 be found via lookup_minimal_symbol(). E.g., it has been
1746 observed in frv-uclinux (ELF) executables that a static,
1747 function-local variable named "foo" might appear in the
1748 linker symbols as "foo.6" or "foo.3". Thus, there is no
1749 point in attempting to extend the lookup-by-name mechanism to
1750 handle this case due to the fact that there can be multiple
1751 names.
1752
1753 So, instead, search the section table when lookup by name has
1754 failed. The ``addr'' and ``endaddr'' fields may have already
1755 been relocated. If so, the relocation offset (i.e. the
1756 ANOFFSET value) needs to be subtracted from these values when
1757 performing the comparison. We unconditionally subtract it,
1758 because, when no relocation has been performed, the ANOFFSET
1759 value will simply be zero.
1760
1761 The address of the symbol whose section we're fixing up HAS
1762 NOT BEEN adjusted (relocated) yet. It can't have been since
1763 the section isn't yet known and knowing the section is
1764 necessary in order to add the correct relocation value. In
1765 other words, we wouldn't even be in this function (attempting
1766 to compute the section) if it were already known.
1767
1768 Note that it is possible to search the minimal symbols
1769 (subtracting the relocation value if necessary) to find the
1770 matching minimal symbol, but this is overkill and much less
1771 efficient. It is not necessary to find the matching minimal
1772 symbol, only its section.
1773
1774 Note that this technique (of doing a section table search)
1775 can fail when unrelocated section addresses overlap. For
1776 this reason, we still attempt a lookup by name prior to doing
1777 a search of the section table. */
1778
1779 struct obj_section *s;
1780 int fallback = -1;
1781
1782 ALL_OBJFILE_OSECTIONS (objfile, s)
1783 {
1784 int idx = s - objfile->sections;
1785 CORE_ADDR offset = ANOFFSET (objfile->section_offsets, idx);
1786
1787 if (fallback == -1)
1788 fallback = idx;
1789
1790 if (obj_section_addr (s) - offset <= addr
1791 && addr < obj_section_endaddr (s) - offset)
1792 {
1793 ginfo->section = idx;
1794 return;
1795 }
1796 }
1797
1798 /* If we didn't find the section, assume it is in the first
1799 section. If there is no allocated section, then it hardly
1800 matters what we pick, so just pick zero. */
1801 if (fallback == -1)
1802 ginfo->section = 0;
1803 else
1804 ginfo->section = fallback;
1805 }
1806 }
1807
1808 struct symbol *
1809 fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
1810 {
1811 CORE_ADDR addr;
1812
1813 if (!sym)
1814 return NULL;
1815
1816 if (!SYMBOL_OBJFILE_OWNED (sym))
1817 return sym;
1818
1819 /* We either have an OBJFILE, or we can get at it from the sym's
1820 symtab. Anything else is a bug. */
1821 gdb_assert (objfile || symbol_symtab (sym));
1822
1823 if (objfile == NULL)
1824 objfile = symbol_objfile (sym);
1825
1826 if (SYMBOL_OBJ_SECTION (objfile, sym))
1827 return sym;
1828
1829 /* We should have an objfile by now. */
1830 gdb_assert (objfile);
1831
1832 switch (SYMBOL_CLASS (sym))
1833 {
1834 case LOC_STATIC:
1835 case LOC_LABEL:
1836 addr = SYMBOL_VALUE_ADDRESS (sym);
1837 break;
1838 case LOC_BLOCK:
1839 addr = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
1840 break;
1841
1842 default:
1843 /* Nothing else will be listed in the minsyms -- no use looking
1844 it up. */
1845 return sym;
1846 }
1847
1848 fixup_section (&sym->ginfo, addr, objfile);
1849
1850 return sym;
1851 }
1852
1853 /* Compute the demangled form of NAME as used by the various symbol
1854 lookup functions. The result is stored in *RESULT_NAME. Returns a
1855 cleanup which can be used to clean up the result.
1856
1857 For Ada, this function just sets *RESULT_NAME to NAME, unmodified.
1858 Normally, Ada symbol lookups are performed using the encoded name
1859 rather than the demangled name, and so it might seem to make sense
1860 for this function to return an encoded version of NAME.
1861 Unfortunately, we cannot do this, because this function is used in
1862 circumstances where it is not appropriate to try to encode NAME.
1863 For instance, when displaying the frame info, we demangle the name
1864 of each parameter, and then perform a symbol lookup inside our
1865 function using that demangled name. In Ada, certain functions
1866 have internally-generated parameters whose name contain uppercase
1867 characters. Encoding those name would result in those uppercase
1868 characters to become lowercase, and thus cause the symbol lookup
1869 to fail. */
1870
1871 struct cleanup *
1872 demangle_for_lookup (const char *name, enum language lang,
1873 const char **result_name)
1874 {
1875 char *demangled_name = NULL;
1876 const char *modified_name = NULL;
1877 struct cleanup *cleanup = make_cleanup (null_cleanup, 0);
1878
1879 modified_name = name;
1880
1881 /* If we are using C++, D, Go, or Java, demangle the name before doing a
1882 lookup, so we can always binary search. */
1883 if (lang == language_cplus)
1884 {
1885 demangled_name = gdb_demangle (name, DMGL_ANSI | DMGL_PARAMS);
1886 if (demangled_name)
1887 {
1888 modified_name = demangled_name;
1889 make_cleanup (xfree, demangled_name);
1890 }
1891 else
1892 {
1893 /* If we were given a non-mangled name, canonicalize it
1894 according to the language (so far only for C++). */
1895 demangled_name = cp_canonicalize_string (name);
1896 if (demangled_name)
1897 {
1898 modified_name = demangled_name;
1899 make_cleanup (xfree, demangled_name);
1900 }
1901 }
1902 }
1903 else if (lang == language_java)
1904 {
1905 demangled_name = gdb_demangle (name,
1906 DMGL_ANSI | DMGL_PARAMS | DMGL_JAVA);
1907 if (demangled_name)
1908 {
1909 modified_name = demangled_name;
1910 make_cleanup (xfree, demangled_name);
1911 }
1912 }
1913 else if (lang == language_d)
1914 {
1915 demangled_name = d_demangle (name, 0);
1916 if (demangled_name)
1917 {
1918 modified_name = demangled_name;
1919 make_cleanup (xfree, demangled_name);
1920 }
1921 }
1922 else if (lang == language_go)
1923 {
1924 demangled_name = go_demangle (name, 0);
1925 if (demangled_name)
1926 {
1927 modified_name = demangled_name;
1928 make_cleanup (xfree, demangled_name);
1929 }
1930 }
1931
1932 *result_name = modified_name;
1933 return cleanup;
1934 }
1935
1936 /* See symtab.h.
1937
1938 This function (or rather its subordinates) have a bunch of loops and
1939 it would seem to be attractive to put in some QUIT's (though I'm not really
1940 sure whether it can run long enough to be really important). But there
1941 are a few calls for which it would appear to be bad news to quit
1942 out of here: e.g., find_proc_desc in alpha-mdebug-tdep.c. (Note
1943 that there is C++ code below which can error(), but that probably
1944 doesn't affect these calls since they are looking for a known
1945 variable and thus can probably assume it will never hit the C++
1946 code). */
1947
1948 struct symbol *
1949 lookup_symbol_in_language (const char *name, const struct block *block,
1950 const domain_enum domain, enum language lang,
1951 struct field_of_this_result *is_a_field_of_this)
1952 {
1953 const char *modified_name;
1954 struct symbol *returnval;
1955 struct cleanup *cleanup = demangle_for_lookup (name, lang, &modified_name);
1956
1957 returnval = lookup_symbol_aux (modified_name, block, domain, lang,
1958 is_a_field_of_this);
1959 do_cleanups (cleanup);
1960
1961 return returnval;
1962 }
1963
1964 /* See symtab.h. */
1965
1966 struct symbol *
1967 lookup_symbol (const char *name, const struct block *block,
1968 domain_enum domain,
1969 struct field_of_this_result *is_a_field_of_this)
1970 {
1971 return lookup_symbol_in_language (name, block, domain,
1972 current_language->la_language,
1973 is_a_field_of_this);
1974 }
1975
1976 /* See symtab.h. */
1977
1978 struct symbol *
1979 lookup_language_this (const struct language_defn *lang,
1980 const struct block *block)
1981 {
1982 if (lang->la_name_of_this == NULL || block == NULL)
1983 return NULL;
1984
1985 if (symbol_lookup_debug > 1)
1986 {
1987 struct objfile *objfile = lookup_objfile_from_block (block);
1988
1989 fprintf_unfiltered (gdb_stdlog,
1990 "lookup_language_this (%s, %s (objfile %s))",
1991 lang->la_name, host_address_to_string (block),
1992 objfile_debug_name (objfile));
1993 }
1994
1995 while (block)
1996 {
1997 struct symbol *sym;
1998
1999 sym = block_lookup_symbol (block, lang->la_name_of_this, VAR_DOMAIN);
2000 if (sym != NULL)
2001 {
2002 if (symbol_lookup_debug > 1)
2003 {
2004 fprintf_unfiltered (gdb_stdlog, " = %s (%s, block %s)\n",
2005 SYMBOL_PRINT_NAME (sym),
2006 host_address_to_string (sym),
2007 host_address_to_string (block));
2008 }
2009 block_found = block;
2010 return sym;
2011 }
2012 if (BLOCK_FUNCTION (block))
2013 break;
2014 block = BLOCK_SUPERBLOCK (block);
2015 }
2016
2017 if (symbol_lookup_debug > 1)
2018 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
2019 return NULL;
2020 }
2021
2022 /* Given TYPE, a structure/union,
2023 return 1 if the component named NAME from the ultimate target
2024 structure/union is defined, otherwise, return 0. */
2025
2026 static int
2027 check_field (struct type *type, const char *name,
2028 struct field_of_this_result *is_a_field_of_this)
2029 {
2030 int i;
2031
2032 /* The type may be a stub. */
2033 CHECK_TYPEDEF (type);
2034
2035 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
2036 {
2037 const char *t_field_name = TYPE_FIELD_NAME (type, i);
2038
2039 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2040 {
2041 is_a_field_of_this->type = type;
2042 is_a_field_of_this->field = &TYPE_FIELD (type, i);
2043 return 1;
2044 }
2045 }
2046
2047 /* C++: If it was not found as a data field, then try to return it
2048 as a pointer to a method. */
2049
2050 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
2051 {
2052 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
2053 {
2054 is_a_field_of_this->type = type;
2055 is_a_field_of_this->fn_field = &TYPE_FN_FIELDLIST (type, i);
2056 return 1;
2057 }
2058 }
2059
2060 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2061 if (check_field (TYPE_BASECLASS (type, i), name, is_a_field_of_this))
2062 return 1;
2063
2064 return 0;
2065 }
2066
2067 /* Behave like lookup_symbol except that NAME is the natural name
2068 (e.g., demangled name) of the symbol that we're looking for. */
2069
2070 static struct symbol *
2071 lookup_symbol_aux (const char *name, const struct block *block,
2072 const domain_enum domain, enum language language,
2073 struct field_of_this_result *is_a_field_of_this)
2074 {
2075 struct symbol *sym;
2076 const struct language_defn *langdef;
2077
2078 if (symbol_lookup_debug)
2079 {
2080 struct objfile *objfile = lookup_objfile_from_block (block);
2081
2082 fprintf_unfiltered (gdb_stdlog,
2083 "lookup_symbol_aux (%s, %s (objfile %s), %s, %s)\n",
2084 name, host_address_to_string (block),
2085 objfile != NULL
2086 ? objfile_debug_name (objfile) : "NULL",
2087 domain_name (domain), language_str (language));
2088 }
2089
2090 /* Initialize block_found so that the language la_lookup_symbol_nonlocal
2091 routines don't have to set it (to NULL) if a primitive type is found.
2092 We do this early so that block_found is also NULL if no symbol is
2093 found (though this is not part of the API, and callers cannot assume
2094 this). */
2095 block_found = NULL;
2096
2097 /* Make sure we do something sensible with is_a_field_of_this, since
2098 the callers that set this parameter to some non-null value will
2099 certainly use it later. If we don't set it, the contents of
2100 is_a_field_of_this are undefined. */
2101 if (is_a_field_of_this != NULL)
2102 memset (is_a_field_of_this, 0, sizeof (*is_a_field_of_this));
2103
2104 /* Search specified block and its superiors. Don't search
2105 STATIC_BLOCK or GLOBAL_BLOCK. */
2106
2107 sym = lookup_local_symbol (name, block, domain, language);
2108 if (sym != NULL)
2109 {
2110 if (symbol_lookup_debug)
2111 {
2112 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2113 host_address_to_string (sym));
2114 }
2115 return sym;
2116 }
2117
2118 /* If requested to do so by the caller and if appropriate for LANGUAGE,
2119 check to see if NAME is a field of `this'. */
2120
2121 langdef = language_def (language);
2122
2123 /* Don't do this check if we are searching for a struct. It will
2124 not be found by check_field, but will be found by other
2125 means. */
2126 if (is_a_field_of_this != NULL && domain != STRUCT_DOMAIN)
2127 {
2128 struct symbol *sym = lookup_language_this (langdef, block);
2129
2130 if (sym)
2131 {
2132 struct type *t = sym->type;
2133
2134 /* I'm not really sure that type of this can ever
2135 be typedefed; just be safe. */
2136 CHECK_TYPEDEF (t);
2137 if (TYPE_CODE (t) == TYPE_CODE_PTR
2138 || TYPE_CODE (t) == TYPE_CODE_REF)
2139 t = TYPE_TARGET_TYPE (t);
2140
2141 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2142 && TYPE_CODE (t) != TYPE_CODE_UNION)
2143 error (_("Internal error: `%s' is not an aggregate"),
2144 langdef->la_name_of_this);
2145
2146 if (check_field (t, name, is_a_field_of_this))
2147 {
2148 if (symbol_lookup_debug)
2149 {
2150 fprintf_unfiltered (gdb_stdlog,
2151 "lookup_symbol_aux (...) = NULL\n");
2152 }
2153 return NULL;
2154 }
2155 }
2156 }
2157
2158 /* Now do whatever is appropriate for LANGUAGE to look
2159 up static and global variables. */
2160
2161 sym = langdef->la_lookup_symbol_nonlocal (langdef, name, block, domain);
2162 if (sym != NULL)
2163 {
2164 if (symbol_lookup_debug)
2165 {
2166 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2167 host_address_to_string (sym));
2168 }
2169 return sym;
2170 }
2171
2172 /* Now search all static file-level symbols. Not strictly correct,
2173 but more useful than an error. */
2174
2175 sym = lookup_static_symbol (name, domain);
2176 if (symbol_lookup_debug)
2177 {
2178 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2179 sym != NULL ? host_address_to_string (sym) : "NULL");
2180 }
2181 return sym;
2182 }
2183
2184 /* Check to see if the symbol is defined in BLOCK or its superiors.
2185 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
2186
2187 static struct symbol *
2188 lookup_local_symbol (const char *name, const struct block *block,
2189 const domain_enum domain,
2190 enum language language)
2191 {
2192 struct symbol *sym;
2193 const struct block *static_block = block_static_block (block);
2194 const char *scope = block_scope (block);
2195
2196 /* Check if either no block is specified or it's a global block. */
2197
2198 if (static_block == NULL)
2199 return NULL;
2200
2201 while (block != static_block)
2202 {
2203 sym = lookup_symbol_in_block (name, block, domain);
2204 if (sym != NULL)
2205 return sym;
2206
2207 if (language == language_cplus || language == language_fortran)
2208 {
2209 sym = cp_lookup_symbol_imports_or_template (scope, name, block,
2210 domain);
2211 if (sym != NULL)
2212 return sym;
2213 }
2214
2215 if (BLOCK_FUNCTION (block) != NULL && block_inlined_p (block))
2216 break;
2217 block = BLOCK_SUPERBLOCK (block);
2218 }
2219
2220 /* We've reached the end of the function without finding a result. */
2221
2222 return NULL;
2223 }
2224
2225 /* See symtab.h. */
2226
2227 struct objfile *
2228 lookup_objfile_from_block (const struct block *block)
2229 {
2230 struct objfile *obj;
2231 struct compunit_symtab *cust;
2232
2233 if (block == NULL)
2234 return NULL;
2235
2236 block = block_global_block (block);
2237 /* Look through all blockvectors. */
2238 ALL_COMPUNITS (obj, cust)
2239 if (block == BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust),
2240 GLOBAL_BLOCK))
2241 {
2242 if (obj->separate_debug_objfile_backlink)
2243 obj = obj->separate_debug_objfile_backlink;
2244
2245 return obj;
2246 }
2247
2248 return NULL;
2249 }
2250
2251 /* See symtab.h. */
2252
2253 struct symbol *
2254 lookup_symbol_in_block (const char *name, const struct block *block,
2255 const domain_enum domain)
2256 {
2257 struct symbol *sym;
2258
2259 if (symbol_lookup_debug > 1)
2260 {
2261 struct objfile *objfile = lookup_objfile_from_block (block);
2262
2263 fprintf_unfiltered (gdb_stdlog,
2264 "lookup_symbol_in_block (%s, %s (objfile %s), %s)",
2265 name, host_address_to_string (block),
2266 objfile_debug_name (objfile),
2267 domain_name (domain));
2268 }
2269
2270 sym = block_lookup_symbol (block, name, domain);
2271 if (sym)
2272 {
2273 if (symbol_lookup_debug > 1)
2274 {
2275 fprintf_unfiltered (gdb_stdlog, " = %s\n",
2276 host_address_to_string (sym));
2277 }
2278 block_found = block;
2279 return fixup_symbol_section (sym, NULL);
2280 }
2281
2282 if (symbol_lookup_debug > 1)
2283 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
2284 return NULL;
2285 }
2286
2287 /* See symtab.h. */
2288
2289 struct symbol *
2290 lookup_global_symbol_from_objfile (struct objfile *main_objfile,
2291 const char *name,
2292 const domain_enum domain)
2293 {
2294 struct objfile *objfile;
2295
2296 for (objfile = main_objfile;
2297 objfile;
2298 objfile = objfile_separate_debug_iterate (main_objfile, objfile))
2299 {
2300 struct symbol *sym = lookup_symbol_in_objfile (objfile, GLOBAL_BLOCK,
2301 name, domain);
2302
2303 if (sym != NULL)
2304 return sym;
2305 }
2306
2307 return NULL;
2308 }
2309
2310 /* Check to see if the symbol is defined in one of the OBJFILE's
2311 symtabs. BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
2312 depending on whether or not we want to search global symbols or
2313 static symbols. */
2314
2315 static struct symbol *
2316 lookup_symbol_in_objfile_symtabs (struct objfile *objfile, int block_index,
2317 const char *name, const domain_enum domain)
2318 {
2319 struct compunit_symtab *cust;
2320
2321 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2322
2323 if (symbol_lookup_debug > 1)
2324 {
2325 fprintf_unfiltered (gdb_stdlog,
2326 "lookup_symbol_in_objfile_symtabs (%s, %s, %s, %s)",
2327 objfile_debug_name (objfile),
2328 block_index == GLOBAL_BLOCK
2329 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2330 name, domain_name (domain));
2331 }
2332
2333 ALL_OBJFILE_COMPUNITS (objfile, cust)
2334 {
2335 const struct blockvector *bv;
2336 const struct block *block;
2337 struct symbol *sym;
2338
2339 bv = COMPUNIT_BLOCKVECTOR (cust);
2340 block = BLOCKVECTOR_BLOCK (bv, block_index);
2341 sym = block_lookup_symbol_primary (block, name, domain);
2342 if (sym)
2343 {
2344 if (symbol_lookup_debug > 1)
2345 {
2346 fprintf_unfiltered (gdb_stdlog, " = %s (block %s)\n",
2347 host_address_to_string (sym),
2348 host_address_to_string (block));
2349 }
2350 block_found = block;
2351 return fixup_symbol_section (sym, objfile);
2352 }
2353 }
2354
2355 if (symbol_lookup_debug > 1)
2356 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
2357 return NULL;
2358 }
2359
2360 /* Wrapper around lookup_symbol_in_objfile_symtabs for search_symbols.
2361 Look up LINKAGE_NAME in DOMAIN in the global and static blocks of OBJFILE
2362 and all associated separate debug objfiles.
2363
2364 Normally we only look in OBJFILE, and not any separate debug objfiles
2365 because the outer loop will cause them to be searched too. This case is
2366 different. Here we're called from search_symbols where it will only
2367 call us for the the objfile that contains a matching minsym. */
2368
2369 static struct symbol *
2370 lookup_symbol_in_objfile_from_linkage_name (struct objfile *objfile,
2371 const char *linkage_name,
2372 domain_enum domain)
2373 {
2374 enum language lang = current_language->la_language;
2375 const char *modified_name;
2376 struct cleanup *cleanup = demangle_for_lookup (linkage_name, lang,
2377 &modified_name);
2378 struct objfile *main_objfile, *cur_objfile;
2379
2380 if (objfile->separate_debug_objfile_backlink)
2381 main_objfile = objfile->separate_debug_objfile_backlink;
2382 else
2383 main_objfile = objfile;
2384
2385 for (cur_objfile = main_objfile;
2386 cur_objfile;
2387 cur_objfile = objfile_separate_debug_iterate (main_objfile, cur_objfile))
2388 {
2389 struct symbol *sym;
2390
2391 sym = lookup_symbol_in_objfile_symtabs (cur_objfile, GLOBAL_BLOCK,
2392 modified_name, domain);
2393 if (sym == NULL)
2394 sym = lookup_symbol_in_objfile_symtabs (cur_objfile, STATIC_BLOCK,
2395 modified_name, domain);
2396 if (sym != NULL)
2397 {
2398 do_cleanups (cleanup);
2399 return sym;
2400 }
2401 }
2402
2403 do_cleanups (cleanup);
2404 return NULL;
2405 }
2406
2407 /* A helper function that throws an exception when a symbol was found
2408 in a psymtab but not in a symtab. */
2409
2410 static void ATTRIBUTE_NORETURN
2411 error_in_psymtab_expansion (int block_index, const char *name,
2412 struct compunit_symtab *cust)
2413 {
2414 error (_("\
2415 Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n\
2416 %s may be an inlined function, or may be a template function\n \
2417 (if a template, try specifying an instantiation: %s<type>)."),
2418 block_index == GLOBAL_BLOCK ? "global" : "static",
2419 name,
2420 symtab_to_filename_for_display (compunit_primary_filetab (cust)),
2421 name, name);
2422 }
2423
2424 /* A helper function for various lookup routines that interfaces with
2425 the "quick" symbol table functions. */
2426
2427 static struct symbol *
2428 lookup_symbol_via_quick_fns (struct objfile *objfile, int block_index,
2429 const char *name, const domain_enum domain)
2430 {
2431 struct compunit_symtab *cust;
2432 const struct blockvector *bv;
2433 const struct block *block;
2434 struct symbol *sym;
2435
2436 if (!objfile->sf)
2437 return NULL;
2438
2439 if (symbol_lookup_debug > 1)
2440 {
2441 fprintf_unfiltered (gdb_stdlog,
2442 "lookup_symbol_via_quick_fns (%s, %s, %s, %s)\n",
2443 objfile_debug_name (objfile),
2444 block_index == GLOBAL_BLOCK
2445 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2446 name, domain_name (domain));
2447 }
2448
2449 cust = objfile->sf->qf->lookup_symbol (objfile, block_index, name, domain);
2450 if (cust == NULL)
2451 {
2452 if (symbol_lookup_debug > 1)
2453 {
2454 fprintf_unfiltered (gdb_stdlog,
2455 "lookup_symbol_via_quick_fns (...) = NULL\n");
2456 }
2457 return NULL;
2458 }
2459
2460 bv = COMPUNIT_BLOCKVECTOR (cust);
2461 block = BLOCKVECTOR_BLOCK (bv, block_index);
2462 sym = block_lookup_symbol (block, name, domain);
2463 if (!sym)
2464 error_in_psymtab_expansion (block_index, name, cust);
2465
2466 if (symbol_lookup_debug > 1)
2467 {
2468 fprintf_unfiltered (gdb_stdlog,
2469 "lookup_symbol_via_quick_fns (...) = %s (block %s)\n",
2470 host_address_to_string (sym),
2471 host_address_to_string (block));
2472 }
2473
2474 block_found = block;
2475 return fixup_symbol_section (sym, objfile);
2476 }
2477
2478 /* See symtab.h. */
2479
2480 struct symbol *
2481 basic_lookup_symbol_nonlocal (const struct language_defn *langdef,
2482 const char *name,
2483 const struct block *block,
2484 const domain_enum domain)
2485 {
2486 struct symbol *sym;
2487
2488 /* NOTE: carlton/2003-05-19: The comments below were written when
2489 this (or what turned into this) was part of lookup_symbol_aux;
2490 I'm much less worried about these questions now, since these
2491 decisions have turned out well, but I leave these comments here
2492 for posterity. */
2493
2494 /* NOTE: carlton/2002-12-05: There is a question as to whether or
2495 not it would be appropriate to search the current global block
2496 here as well. (That's what this code used to do before the
2497 is_a_field_of_this check was moved up.) On the one hand, it's
2498 redundant with the lookup in all objfiles search that happens
2499 next. On the other hand, if decode_line_1 is passed an argument
2500 like filename:var, then the user presumably wants 'var' to be
2501 searched for in filename. On the third hand, there shouldn't be
2502 multiple global variables all of which are named 'var', and it's
2503 not like decode_line_1 has ever restricted its search to only
2504 global variables in a single filename. All in all, only
2505 searching the static block here seems best: it's correct and it's
2506 cleanest. */
2507
2508 /* NOTE: carlton/2002-12-05: There's also a possible performance
2509 issue here: if you usually search for global symbols in the
2510 current file, then it would be slightly better to search the
2511 current global block before searching all the symtabs. But there
2512 are other factors that have a much greater effect on performance
2513 than that one, so I don't think we should worry about that for
2514 now. */
2515
2516 /* NOTE: dje/2014-10-26: The lookup in all objfiles search could skip
2517 the current objfile. Searching the current objfile first is useful
2518 for both matching user expectations as well as performance. */
2519
2520 sym = lookup_symbol_in_static_block (name, block, domain);
2521 if (sym != NULL)
2522 return sym;
2523
2524 /* If we didn't find a definition for a builtin type in the static block,
2525 search for it now. This is actually the right thing to do and can be
2526 a massive performance win. E.g., when debugging a program with lots of
2527 shared libraries we could search all of them only to find out the
2528 builtin type isn't defined in any of them. This is common for types
2529 like "void". */
2530 if (domain == VAR_DOMAIN)
2531 {
2532 struct gdbarch *gdbarch;
2533
2534 if (block == NULL)
2535 gdbarch = target_gdbarch ();
2536 else
2537 gdbarch = block_gdbarch (block);
2538 sym = language_lookup_primitive_type_as_symbol (langdef, gdbarch, name);
2539 if (sym != NULL)
2540 return sym;
2541 }
2542
2543 return lookup_global_symbol (name, block, domain);
2544 }
2545
2546 /* See symtab.h. */
2547
2548 struct symbol *
2549 lookup_symbol_in_static_block (const char *name,
2550 const struct block *block,
2551 const domain_enum domain)
2552 {
2553 const struct block *static_block = block_static_block (block);
2554 struct symbol *sym;
2555
2556 if (static_block == NULL)
2557 return NULL;
2558
2559 if (symbol_lookup_debug)
2560 {
2561 struct objfile *objfile = lookup_objfile_from_block (static_block);
2562
2563 fprintf_unfiltered (gdb_stdlog,
2564 "lookup_symbol_in_static_block (%s, %s (objfile %s),"
2565 " %s)\n",
2566 name,
2567 host_address_to_string (block),
2568 objfile_debug_name (objfile),
2569 domain_name (domain));
2570 }
2571
2572 sym = lookup_symbol_in_block (name, static_block, domain);
2573 if (symbol_lookup_debug)
2574 {
2575 fprintf_unfiltered (gdb_stdlog,
2576 "lookup_symbol_in_static_block (...) = %s\n",
2577 sym != NULL ? host_address_to_string (sym) : "NULL");
2578 }
2579 return sym;
2580 }
2581
2582 /* Perform the standard symbol lookup of NAME in OBJFILE:
2583 1) First search expanded symtabs, and if not found
2584 2) Search the "quick" symtabs (partial or .gdb_index).
2585 BLOCK_INDEX is one of GLOBAL_BLOCK or STATIC_BLOCK. */
2586
2587 static struct symbol *
2588 lookup_symbol_in_objfile (struct objfile *objfile, int block_index,
2589 const char *name, const domain_enum domain)
2590 {
2591 struct symbol *result;
2592
2593 if (symbol_lookup_debug)
2594 {
2595 fprintf_unfiltered (gdb_stdlog,
2596 "lookup_symbol_in_objfile (%s, %s, %s, %s)\n",
2597 objfile_debug_name (objfile),
2598 block_index == GLOBAL_BLOCK
2599 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2600 name, domain_name (domain));
2601 }
2602
2603 result = lookup_symbol_in_objfile_symtabs (objfile, block_index,
2604 name, domain);
2605 if (result != NULL)
2606 {
2607 if (symbol_lookup_debug)
2608 {
2609 fprintf_unfiltered (gdb_stdlog,
2610 "lookup_symbol_in_objfile (...) = %s"
2611 " (in symtabs)\n",
2612 host_address_to_string (result));
2613 }
2614 return result;
2615 }
2616
2617 result = lookup_symbol_via_quick_fns (objfile, block_index,
2618 name, domain);
2619 if (symbol_lookup_debug)
2620 {
2621 fprintf_unfiltered (gdb_stdlog,
2622 "lookup_symbol_in_objfile (...) = %s%s\n",
2623 result != NULL
2624 ? host_address_to_string (result)
2625 : "NULL",
2626 result != NULL ? " (via quick fns)" : "");
2627 }
2628 return result;
2629 }
2630
2631 /* See symtab.h. */
2632
2633 struct symbol *
2634 lookup_static_symbol (const char *name, const domain_enum domain)
2635 {
2636 struct symbol_cache *cache = get_symbol_cache (current_program_space);
2637 struct objfile *objfile;
2638 struct symbol *result;
2639 struct block_symbol_cache *bsc;
2640 struct symbol_cache_slot *slot;
2641
2642 /* Lookup in STATIC_BLOCK is not current-objfile-dependent, so just pass
2643 NULL for OBJFILE_CONTEXT. */
2644 result = symbol_cache_lookup (cache, NULL, STATIC_BLOCK, name, domain,
2645 &bsc, &slot);
2646 if (result != NULL)
2647 {
2648 if (result == SYMBOL_LOOKUP_FAILED)
2649 return NULL;
2650 return result;
2651 }
2652
2653 ALL_OBJFILES (objfile)
2654 {
2655 result = lookup_symbol_in_objfile (objfile, STATIC_BLOCK, name, domain);
2656 if (result != NULL)
2657 {
2658 /* Still pass NULL for OBJFILE_CONTEXT here. */
2659 symbol_cache_mark_found (bsc, slot, NULL, result);
2660 return result;
2661 }
2662 }
2663
2664 /* Still pass NULL for OBJFILE_CONTEXT here. */
2665 symbol_cache_mark_not_found (bsc, slot, NULL, name, domain);
2666 return NULL;
2667 }
2668
2669 /* Private data to be used with lookup_symbol_global_iterator_cb. */
2670
2671 struct global_sym_lookup_data
2672 {
2673 /* The name of the symbol we are searching for. */
2674 const char *name;
2675
2676 /* The domain to use for our search. */
2677 domain_enum domain;
2678
2679 /* The field where the callback should store the symbol if found.
2680 It should be initialized to NULL before the search is started. */
2681 struct symbol *result;
2682 };
2683
2684 /* A callback function for gdbarch_iterate_over_objfiles_in_search_order.
2685 It searches by name for a symbol in the GLOBAL_BLOCK of the given
2686 OBJFILE. The arguments for the search are passed via CB_DATA,
2687 which in reality is a pointer to struct global_sym_lookup_data. */
2688
2689 static int
2690 lookup_symbol_global_iterator_cb (struct objfile *objfile,
2691 void *cb_data)
2692 {
2693 struct global_sym_lookup_data *data =
2694 (struct global_sym_lookup_data *) cb_data;
2695
2696 gdb_assert (data->result == NULL);
2697
2698 data->result = lookup_symbol_in_objfile (objfile, GLOBAL_BLOCK,
2699 data->name, data->domain);
2700
2701 /* If we found a match, tell the iterator to stop. Otherwise,
2702 keep going. */
2703 return (data->result != NULL);
2704 }
2705
2706 /* See symtab.h. */
2707
2708 struct symbol *
2709 lookup_global_symbol (const char *name,
2710 const struct block *block,
2711 const domain_enum domain)
2712 {
2713 struct symbol_cache *cache = get_symbol_cache (current_program_space);
2714 struct symbol *sym;
2715 struct objfile *objfile;
2716 struct global_sym_lookup_data lookup_data;
2717 struct block_symbol_cache *bsc;
2718 struct symbol_cache_slot *slot;
2719
2720 objfile = lookup_objfile_from_block (block);
2721
2722 /* First see if we can find the symbol in the cache.
2723 This works because we use the current objfile to qualify the lookup. */
2724 sym = symbol_cache_lookup (cache, objfile, GLOBAL_BLOCK, name, domain,
2725 &bsc, &slot);
2726 if (sym != NULL)
2727 {
2728 if (sym == SYMBOL_LOOKUP_FAILED)
2729 return NULL;
2730 return sym;
2731 }
2732
2733 /* Call library-specific lookup procedure. */
2734 if (objfile != NULL)
2735 sym = solib_global_lookup (objfile, name, domain);
2736
2737 /* If that didn't work go a global search (of global blocks, heh). */
2738 if (sym == NULL)
2739 {
2740 memset (&lookup_data, 0, sizeof (lookup_data));
2741 lookup_data.name = name;
2742 lookup_data.domain = domain;
2743 gdbarch_iterate_over_objfiles_in_search_order
2744 (objfile != NULL ? get_objfile_arch (objfile) : target_gdbarch (),
2745 lookup_symbol_global_iterator_cb, &lookup_data, objfile);
2746 sym = lookup_data.result;
2747 }
2748
2749 if (sym != NULL)
2750 symbol_cache_mark_found (bsc, slot, objfile, sym);
2751 else
2752 symbol_cache_mark_not_found (bsc, slot, objfile, name, domain);
2753
2754 return sym;
2755 }
2756
2757 int
2758 symbol_matches_domain (enum language symbol_language,
2759 domain_enum symbol_domain,
2760 domain_enum domain)
2761 {
2762 /* For C++ "struct foo { ... }" also defines a typedef for "foo".
2763 A Java class declaration also defines a typedef for the class.
2764 Similarly, any Ada type declaration implicitly defines a typedef. */
2765 if (symbol_language == language_cplus
2766 || symbol_language == language_d
2767 || symbol_language == language_java
2768 || symbol_language == language_ada)
2769 {
2770 if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN)
2771 && symbol_domain == STRUCT_DOMAIN)
2772 return 1;
2773 }
2774 /* For all other languages, strict match is required. */
2775 return (symbol_domain == domain);
2776 }
2777
2778 /* See symtab.h. */
2779
2780 struct type *
2781 lookup_transparent_type (const char *name)
2782 {
2783 return current_language->la_lookup_transparent_type (name);
2784 }
2785
2786 /* A helper for basic_lookup_transparent_type that interfaces with the
2787 "quick" symbol table functions. */
2788
2789 static struct type *
2790 basic_lookup_transparent_type_quick (struct objfile *objfile, int block_index,
2791 const char *name)
2792 {
2793 struct compunit_symtab *cust;
2794 const struct blockvector *bv;
2795 struct block *block;
2796 struct symbol *sym;
2797
2798 if (!objfile->sf)
2799 return NULL;
2800 cust = objfile->sf->qf->lookup_symbol (objfile, block_index, name,
2801 STRUCT_DOMAIN);
2802 if (cust == NULL)
2803 return NULL;
2804
2805 bv = COMPUNIT_BLOCKVECTOR (cust);
2806 block = BLOCKVECTOR_BLOCK (bv, block_index);
2807 sym = block_find_symbol (block, name, STRUCT_DOMAIN,
2808 block_find_non_opaque_type, NULL);
2809 if (sym == NULL)
2810 error_in_psymtab_expansion (block_index, name, cust);
2811 gdb_assert (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)));
2812 return SYMBOL_TYPE (sym);
2813 }
2814
2815 /* Subroutine of basic_lookup_transparent_type to simplify it.
2816 Look up the non-opaque definition of NAME in BLOCK_INDEX of OBJFILE.
2817 BLOCK_INDEX is either GLOBAL_BLOCK or STATIC_BLOCK. */
2818
2819 static struct type *
2820 basic_lookup_transparent_type_1 (struct objfile *objfile, int block_index,
2821 const char *name)
2822 {
2823 const struct compunit_symtab *cust;
2824 const struct blockvector *bv;
2825 const struct block *block;
2826 const struct symbol *sym;
2827
2828 ALL_OBJFILE_COMPUNITS (objfile, cust)
2829 {
2830 bv = COMPUNIT_BLOCKVECTOR (cust);
2831 block = BLOCKVECTOR_BLOCK (bv, block_index);
2832 sym = block_find_symbol (block, name, STRUCT_DOMAIN,
2833 block_find_non_opaque_type, NULL);
2834 if (sym != NULL)
2835 {
2836 gdb_assert (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)));
2837 return SYMBOL_TYPE (sym);
2838 }
2839 }
2840
2841 return NULL;
2842 }
2843
2844 /* The standard implementation of lookup_transparent_type. This code
2845 was modeled on lookup_symbol -- the parts not relevant to looking
2846 up types were just left out. In particular it's assumed here that
2847 types are available in STRUCT_DOMAIN and only in file-static or
2848 global blocks. */
2849
2850 struct type *
2851 basic_lookup_transparent_type (const char *name)
2852 {
2853 struct symbol *sym;
2854 struct compunit_symtab *cust;
2855 const struct blockvector *bv;
2856 struct objfile *objfile;
2857 struct block *block;
2858 struct type *t;
2859
2860 /* Now search all the global symbols. Do the symtab's first, then
2861 check the psymtab's. If a psymtab indicates the existence
2862 of the desired name as a global, then do psymtab-to-symtab
2863 conversion on the fly and return the found symbol. */
2864
2865 ALL_OBJFILES (objfile)
2866 {
2867 t = basic_lookup_transparent_type_1 (objfile, GLOBAL_BLOCK, name);
2868 if (t)
2869 return t;
2870 }
2871
2872 ALL_OBJFILES (objfile)
2873 {
2874 t = basic_lookup_transparent_type_quick (objfile, GLOBAL_BLOCK, name);
2875 if (t)
2876 return t;
2877 }
2878
2879 /* Now search the static file-level symbols.
2880 Not strictly correct, but more useful than an error.
2881 Do the symtab's first, then
2882 check the psymtab's. If a psymtab indicates the existence
2883 of the desired name as a file-level static, then do psymtab-to-symtab
2884 conversion on the fly and return the found symbol. */
2885
2886 ALL_OBJFILES (objfile)
2887 {
2888 t = basic_lookup_transparent_type_1 (objfile, STATIC_BLOCK, name);
2889 if (t)
2890 return t;
2891 }
2892
2893 ALL_OBJFILES (objfile)
2894 {
2895 t = basic_lookup_transparent_type_quick (objfile, STATIC_BLOCK, name);
2896 if (t)
2897 return t;
2898 }
2899
2900 return (struct type *) 0;
2901 }
2902
2903 /* Iterate over the symbols named NAME, matching DOMAIN, in BLOCK.
2904
2905 For each symbol that matches, CALLBACK is called. The symbol and
2906 DATA are passed to the callback.
2907
2908 If CALLBACK returns zero, the iteration ends. Otherwise, the
2909 search continues. */
2910
2911 void
2912 iterate_over_symbols (const struct block *block, const char *name,
2913 const domain_enum domain,
2914 symbol_found_callback_ftype *callback,
2915 void *data)
2916 {
2917 struct block_iterator iter;
2918 struct symbol *sym;
2919
2920 ALL_BLOCK_SYMBOLS_WITH_NAME (block, name, iter, sym)
2921 {
2922 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
2923 SYMBOL_DOMAIN (sym), domain))
2924 {
2925 if (!callback (sym, data))
2926 return;
2927 }
2928 }
2929 }
2930
2931 /* Find the compunit symtab associated with PC and SECTION.
2932 This will read in debug info as necessary. */
2933
2934 struct compunit_symtab *
2935 find_pc_sect_compunit_symtab (CORE_ADDR pc, struct obj_section *section)
2936 {
2937 struct compunit_symtab *cust;
2938 struct compunit_symtab *best_cust = NULL;
2939 struct objfile *objfile;
2940 CORE_ADDR distance = 0;
2941 struct bound_minimal_symbol msymbol;
2942
2943 /* If we know that this is not a text address, return failure. This is
2944 necessary because we loop based on the block's high and low code
2945 addresses, which do not include the data ranges, and because
2946 we call find_pc_sect_psymtab which has a similar restriction based
2947 on the partial_symtab's texthigh and textlow. */
2948 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
2949 if (msymbol.minsym
2950 && (MSYMBOL_TYPE (msymbol.minsym) == mst_data
2951 || MSYMBOL_TYPE (msymbol.minsym) == mst_bss
2952 || MSYMBOL_TYPE (msymbol.minsym) == mst_abs
2953 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_data
2954 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_bss))
2955 return NULL;
2956
2957 /* Search all symtabs for the one whose file contains our address, and which
2958 is the smallest of all the ones containing the address. This is designed
2959 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
2960 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
2961 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
2962
2963 This happens for native ecoff format, where code from included files
2964 gets its own symtab. The symtab for the included file should have
2965 been read in already via the dependency mechanism.
2966 It might be swifter to create several symtabs with the same name
2967 like xcoff does (I'm not sure).
2968
2969 It also happens for objfiles that have their functions reordered.
2970 For these, the symtab we are looking for is not necessarily read in. */
2971
2972 ALL_COMPUNITS (objfile, cust)
2973 {
2974 struct block *b;
2975 const struct blockvector *bv;
2976
2977 bv = COMPUNIT_BLOCKVECTOR (cust);
2978 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
2979
2980 if (BLOCK_START (b) <= pc
2981 && BLOCK_END (b) > pc
2982 && (distance == 0
2983 || BLOCK_END (b) - BLOCK_START (b) < distance))
2984 {
2985 /* For an objfile that has its functions reordered,
2986 find_pc_psymtab will find the proper partial symbol table
2987 and we simply return its corresponding symtab. */
2988 /* In order to better support objfiles that contain both
2989 stabs and coff debugging info, we continue on if a psymtab
2990 can't be found. */
2991 if ((objfile->flags & OBJF_REORDERED) && objfile->sf)
2992 {
2993 struct compunit_symtab *result;
2994
2995 result
2996 = objfile->sf->qf->find_pc_sect_compunit_symtab (objfile,
2997 msymbol,
2998 pc, section,
2999 0);
3000 if (result != NULL)
3001 return result;
3002 }
3003 if (section != 0)
3004 {
3005 struct block_iterator iter;
3006 struct symbol *sym = NULL;
3007
3008 ALL_BLOCK_SYMBOLS (b, iter, sym)
3009 {
3010 fixup_symbol_section (sym, objfile);
3011 if (matching_obj_sections (SYMBOL_OBJ_SECTION (objfile, sym),
3012 section))
3013 break;
3014 }
3015 if (sym == NULL)
3016 continue; /* No symbol in this symtab matches
3017 section. */
3018 }
3019 distance = BLOCK_END (b) - BLOCK_START (b);
3020 best_cust = cust;
3021 }
3022 }
3023
3024 if (best_cust != NULL)
3025 return best_cust;
3026
3027 /* Not found in symtabs, search the "quick" symtabs (e.g. psymtabs). */
3028
3029 ALL_OBJFILES (objfile)
3030 {
3031 struct compunit_symtab *result;
3032
3033 if (!objfile->sf)
3034 continue;
3035 result = objfile->sf->qf->find_pc_sect_compunit_symtab (objfile,
3036 msymbol,
3037 pc, section,
3038 1);
3039 if (result != NULL)
3040 return result;
3041 }
3042
3043 return NULL;
3044 }
3045
3046 /* Find the compunit symtab associated with PC.
3047 This will read in debug info as necessary.
3048 Backward compatibility, no section. */
3049
3050 struct compunit_symtab *
3051 find_pc_compunit_symtab (CORE_ADDR pc)
3052 {
3053 return find_pc_sect_compunit_symtab (pc, find_pc_mapped_section (pc));
3054 }
3055 \f
3056
3057 /* Find the source file and line number for a given PC value and SECTION.
3058 Return a structure containing a symtab pointer, a line number,
3059 and a pc range for the entire source line.
3060 The value's .pc field is NOT the specified pc.
3061 NOTCURRENT nonzero means, if specified pc is on a line boundary,
3062 use the line that ends there. Otherwise, in that case, the line
3063 that begins there is used. */
3064
3065 /* The big complication here is that a line may start in one file, and end just
3066 before the start of another file. This usually occurs when you #include
3067 code in the middle of a subroutine. To properly find the end of a line's PC
3068 range, we must search all symtabs associated with this compilation unit, and
3069 find the one whose first PC is closer than that of the next line in this
3070 symtab. */
3071
3072 /* If it's worth the effort, we could be using a binary search. */
3073
3074 struct symtab_and_line
3075 find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent)
3076 {
3077 struct compunit_symtab *cust;
3078 struct symtab *iter_s;
3079 struct linetable *l;
3080 int len;
3081 int i;
3082 struct linetable_entry *item;
3083 struct symtab_and_line val;
3084 const struct blockvector *bv;
3085 struct bound_minimal_symbol msymbol;
3086
3087 /* Info on best line seen so far, and where it starts, and its file. */
3088
3089 struct linetable_entry *best = NULL;
3090 CORE_ADDR best_end = 0;
3091 struct symtab *best_symtab = 0;
3092
3093 /* Store here the first line number
3094 of a file which contains the line at the smallest pc after PC.
3095 If we don't find a line whose range contains PC,
3096 we will use a line one less than this,
3097 with a range from the start of that file to the first line's pc. */
3098 struct linetable_entry *alt = NULL;
3099
3100 /* Info on best line seen in this file. */
3101
3102 struct linetable_entry *prev;
3103
3104 /* If this pc is not from the current frame,
3105 it is the address of the end of a call instruction.
3106 Quite likely that is the start of the following statement.
3107 But what we want is the statement containing the instruction.
3108 Fudge the pc to make sure we get that. */
3109
3110 init_sal (&val); /* initialize to zeroes */
3111
3112 val.pspace = current_program_space;
3113
3114 /* It's tempting to assume that, if we can't find debugging info for
3115 any function enclosing PC, that we shouldn't search for line
3116 number info, either. However, GAS can emit line number info for
3117 assembly files --- very helpful when debugging hand-written
3118 assembly code. In such a case, we'd have no debug info for the
3119 function, but we would have line info. */
3120
3121 if (notcurrent)
3122 pc -= 1;
3123
3124 /* elz: added this because this function returned the wrong
3125 information if the pc belongs to a stub (import/export)
3126 to call a shlib function. This stub would be anywhere between
3127 two functions in the target, and the line info was erroneously
3128 taken to be the one of the line before the pc. */
3129
3130 /* RT: Further explanation:
3131
3132 * We have stubs (trampolines) inserted between procedures.
3133 *
3134 * Example: "shr1" exists in a shared library, and a "shr1" stub also
3135 * exists in the main image.
3136 *
3137 * In the minimal symbol table, we have a bunch of symbols
3138 * sorted by start address. The stubs are marked as "trampoline",
3139 * the others appear as text. E.g.:
3140 *
3141 * Minimal symbol table for main image
3142 * main: code for main (text symbol)
3143 * shr1: stub (trampoline symbol)
3144 * foo: code for foo (text symbol)
3145 * ...
3146 * Minimal symbol table for "shr1" image:
3147 * ...
3148 * shr1: code for shr1 (text symbol)
3149 * ...
3150 *
3151 * So the code below is trying to detect if we are in the stub
3152 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
3153 * and if found, do the symbolization from the real-code address
3154 * rather than the stub address.
3155 *
3156 * Assumptions being made about the minimal symbol table:
3157 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
3158 * if we're really in the trampoline.s If we're beyond it (say
3159 * we're in "foo" in the above example), it'll have a closer
3160 * symbol (the "foo" text symbol for example) and will not
3161 * return the trampoline.
3162 * 2. lookup_minimal_symbol_text() will find a real text symbol
3163 * corresponding to the trampoline, and whose address will
3164 * be different than the trampoline address. I put in a sanity
3165 * check for the address being the same, to avoid an
3166 * infinite recursion.
3167 */
3168 msymbol = lookup_minimal_symbol_by_pc (pc);
3169 if (msymbol.minsym != NULL)
3170 if (MSYMBOL_TYPE (msymbol.minsym) == mst_solib_trampoline)
3171 {
3172 struct bound_minimal_symbol mfunsym
3173 = lookup_minimal_symbol_text (MSYMBOL_LINKAGE_NAME (msymbol.minsym),
3174 NULL);
3175
3176 if (mfunsym.minsym == NULL)
3177 /* I eliminated this warning since it is coming out
3178 * in the following situation:
3179 * gdb shmain // test program with shared libraries
3180 * (gdb) break shr1 // function in shared lib
3181 * Warning: In stub for ...
3182 * In the above situation, the shared lib is not loaded yet,
3183 * so of course we can't find the real func/line info,
3184 * but the "break" still works, and the warning is annoying.
3185 * So I commented out the warning. RT */
3186 /* warning ("In stub for %s; unable to find real function/line info",
3187 SYMBOL_LINKAGE_NAME (msymbol)); */
3188 ;
3189 /* fall through */
3190 else if (BMSYMBOL_VALUE_ADDRESS (mfunsym)
3191 == BMSYMBOL_VALUE_ADDRESS (msymbol))
3192 /* Avoid infinite recursion */
3193 /* See above comment about why warning is commented out. */
3194 /* warning ("In stub for %s; unable to find real function/line info",
3195 SYMBOL_LINKAGE_NAME (msymbol)); */
3196 ;
3197 /* fall through */
3198 else
3199 return find_pc_line (BMSYMBOL_VALUE_ADDRESS (mfunsym), 0);
3200 }
3201
3202
3203 cust = find_pc_sect_compunit_symtab (pc, section);
3204 if (cust == NULL)
3205 {
3206 /* If no symbol information, return previous pc. */
3207 if (notcurrent)
3208 pc++;
3209 val.pc = pc;
3210 return val;
3211 }
3212
3213 bv = COMPUNIT_BLOCKVECTOR (cust);
3214
3215 /* Look at all the symtabs that share this blockvector.
3216 They all have the same apriori range, that we found was right;
3217 but they have different line tables. */
3218
3219 ALL_COMPUNIT_FILETABS (cust, iter_s)
3220 {
3221 /* Find the best line in this symtab. */
3222 l = SYMTAB_LINETABLE (iter_s);
3223 if (!l)
3224 continue;
3225 len = l->nitems;
3226 if (len <= 0)
3227 {
3228 /* I think len can be zero if the symtab lacks line numbers
3229 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
3230 I'm not sure which, and maybe it depends on the symbol
3231 reader). */
3232 continue;
3233 }
3234
3235 prev = NULL;
3236 item = l->item; /* Get first line info. */
3237
3238 /* Is this file's first line closer than the first lines of other files?
3239 If so, record this file, and its first line, as best alternate. */
3240 if (item->pc > pc && (!alt || item->pc < alt->pc))
3241 alt = item;
3242
3243 for (i = 0; i < len; i++, item++)
3244 {
3245 /* Leave prev pointing to the linetable entry for the last line
3246 that started at or before PC. */
3247 if (item->pc > pc)
3248 break;
3249
3250 prev = item;
3251 }
3252
3253 /* At this point, prev points at the line whose start addr is <= pc, and
3254 item points at the next line. If we ran off the end of the linetable
3255 (pc >= start of the last line), then prev == item. If pc < start of
3256 the first line, prev will not be set. */
3257
3258 /* Is this file's best line closer than the best in the other files?
3259 If so, record this file, and its best line, as best so far. Don't
3260 save prev if it represents the end of a function (i.e. line number
3261 0) instead of a real line. */
3262
3263 if (prev && prev->line && (!best || prev->pc > best->pc))
3264 {
3265 best = prev;
3266 best_symtab = iter_s;
3267
3268 /* Discard BEST_END if it's before the PC of the current BEST. */
3269 if (best_end <= best->pc)
3270 best_end = 0;
3271 }
3272
3273 /* If another line (denoted by ITEM) is in the linetable and its
3274 PC is after BEST's PC, but before the current BEST_END, then
3275 use ITEM's PC as the new best_end. */
3276 if (best && i < len && item->pc > best->pc
3277 && (best_end == 0 || best_end > item->pc))
3278 best_end = item->pc;
3279 }
3280
3281 if (!best_symtab)
3282 {
3283 /* If we didn't find any line number info, just return zeros.
3284 We used to return alt->line - 1 here, but that could be
3285 anywhere; if we don't have line number info for this PC,
3286 don't make some up. */
3287 val.pc = pc;
3288 }
3289 else if (best->line == 0)
3290 {
3291 /* If our best fit is in a range of PC's for which no line
3292 number info is available (line number is zero) then we didn't
3293 find any valid line information. */
3294 val.pc = pc;
3295 }
3296 else
3297 {
3298 val.symtab = best_symtab;
3299 val.line = best->line;
3300 val.pc = best->pc;
3301 if (best_end && (!alt || best_end < alt->pc))
3302 val.end = best_end;
3303 else if (alt)
3304 val.end = alt->pc;
3305 else
3306 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
3307 }
3308 val.section = section;
3309 return val;
3310 }
3311
3312 /* Backward compatibility (no section). */
3313
3314 struct symtab_and_line
3315 find_pc_line (CORE_ADDR pc, int notcurrent)
3316 {
3317 struct obj_section *section;
3318
3319 section = find_pc_overlay (pc);
3320 if (pc_in_unmapped_range (pc, section))
3321 pc = overlay_mapped_address (pc, section);
3322 return find_pc_sect_line (pc, section, notcurrent);
3323 }
3324
3325 /* See symtab.h. */
3326
3327 struct symtab *
3328 find_pc_line_symtab (CORE_ADDR pc)
3329 {
3330 struct symtab_and_line sal;
3331
3332 /* This always passes zero for NOTCURRENT to find_pc_line.
3333 There are currently no callers that ever pass non-zero. */
3334 sal = find_pc_line (pc, 0);
3335 return sal.symtab;
3336 }
3337 \f
3338 /* Find line number LINE in any symtab whose name is the same as
3339 SYMTAB.
3340
3341 If found, return the symtab that contains the linetable in which it was
3342 found, set *INDEX to the index in the linetable of the best entry
3343 found, and set *EXACT_MATCH nonzero if the value returned is an
3344 exact match.
3345
3346 If not found, return NULL. */
3347
3348 struct symtab *
3349 find_line_symtab (struct symtab *symtab, int line,
3350 int *index, int *exact_match)
3351 {
3352 int exact = 0; /* Initialized here to avoid a compiler warning. */
3353
3354 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
3355 so far seen. */
3356
3357 int best_index;
3358 struct linetable *best_linetable;
3359 struct symtab *best_symtab;
3360
3361 /* First try looking it up in the given symtab. */
3362 best_linetable = SYMTAB_LINETABLE (symtab);
3363 best_symtab = symtab;
3364 best_index = find_line_common (best_linetable, line, &exact, 0);
3365 if (best_index < 0 || !exact)
3366 {
3367 /* Didn't find an exact match. So we better keep looking for
3368 another symtab with the same name. In the case of xcoff,
3369 multiple csects for one source file (produced by IBM's FORTRAN
3370 compiler) produce multiple symtabs (this is unavoidable
3371 assuming csects can be at arbitrary places in memory and that
3372 the GLOBAL_BLOCK of a symtab has a begin and end address). */
3373
3374 /* BEST is the smallest linenumber > LINE so far seen,
3375 or 0 if none has been seen so far.
3376 BEST_INDEX and BEST_LINETABLE identify the item for it. */
3377 int best;
3378
3379 struct objfile *objfile;
3380 struct compunit_symtab *cu;
3381 struct symtab *s;
3382
3383 if (best_index >= 0)
3384 best = best_linetable->item[best_index].line;
3385 else
3386 best = 0;
3387
3388 ALL_OBJFILES (objfile)
3389 {
3390 if (objfile->sf)
3391 objfile->sf->qf->expand_symtabs_with_fullname (objfile,
3392 symtab_to_fullname (symtab));
3393 }
3394
3395 ALL_FILETABS (objfile, cu, s)
3396 {
3397 struct linetable *l;
3398 int ind;
3399
3400 if (FILENAME_CMP (symtab->filename, s->filename) != 0)
3401 continue;
3402 if (FILENAME_CMP (symtab_to_fullname (symtab),
3403 symtab_to_fullname (s)) != 0)
3404 continue;
3405 l = SYMTAB_LINETABLE (s);
3406 ind = find_line_common (l, line, &exact, 0);
3407 if (ind >= 0)
3408 {
3409 if (exact)
3410 {
3411 best_index = ind;
3412 best_linetable = l;
3413 best_symtab = s;
3414 goto done;
3415 }
3416 if (best == 0 || l->item[ind].line < best)
3417 {
3418 best = l->item[ind].line;
3419 best_index = ind;
3420 best_linetable = l;
3421 best_symtab = s;
3422 }
3423 }
3424 }
3425 }
3426 done:
3427 if (best_index < 0)
3428 return NULL;
3429
3430 if (index)
3431 *index = best_index;
3432 if (exact_match)
3433 *exact_match = exact;
3434
3435 return best_symtab;
3436 }
3437
3438 /* Given SYMTAB, returns all the PCs function in the symtab that
3439 exactly match LINE. Returns NULL if there are no exact matches,
3440 but updates BEST_ITEM in this case. */
3441
3442 VEC (CORE_ADDR) *
3443 find_pcs_for_symtab_line (struct symtab *symtab, int line,
3444 struct linetable_entry **best_item)
3445 {
3446 int start = 0;
3447 VEC (CORE_ADDR) *result = NULL;
3448
3449 /* First, collect all the PCs that are at this line. */
3450 while (1)
3451 {
3452 int was_exact;
3453 int idx;
3454
3455 idx = find_line_common (SYMTAB_LINETABLE (symtab), line, &was_exact,
3456 start);
3457 if (idx < 0)
3458 break;
3459
3460 if (!was_exact)
3461 {
3462 struct linetable_entry *item = &SYMTAB_LINETABLE (symtab)->item[idx];
3463
3464 if (*best_item == NULL || item->line < (*best_item)->line)
3465 *best_item = item;
3466
3467 break;
3468 }
3469
3470 VEC_safe_push (CORE_ADDR, result,
3471 SYMTAB_LINETABLE (symtab)->item[idx].pc);
3472 start = idx + 1;
3473 }
3474
3475 return result;
3476 }
3477
3478 \f
3479 /* Set the PC value for a given source file and line number and return true.
3480 Returns zero for invalid line number (and sets the PC to 0).
3481 The source file is specified with a struct symtab. */
3482
3483 int
3484 find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
3485 {
3486 struct linetable *l;
3487 int ind;
3488
3489 *pc = 0;
3490 if (symtab == 0)
3491 return 0;
3492
3493 symtab = find_line_symtab (symtab, line, &ind, NULL);
3494 if (symtab != NULL)
3495 {
3496 l = SYMTAB_LINETABLE (symtab);
3497 *pc = l->item[ind].pc;
3498 return 1;
3499 }
3500 else
3501 return 0;
3502 }
3503
3504 /* Find the range of pc values in a line.
3505 Store the starting pc of the line into *STARTPTR
3506 and the ending pc (start of next line) into *ENDPTR.
3507 Returns 1 to indicate success.
3508 Returns 0 if could not find the specified line. */
3509
3510 int
3511 find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
3512 CORE_ADDR *endptr)
3513 {
3514 CORE_ADDR startaddr;
3515 struct symtab_and_line found_sal;
3516
3517 startaddr = sal.pc;
3518 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
3519 return 0;
3520
3521 /* This whole function is based on address. For example, if line 10 has
3522 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
3523 "info line *0x123" should say the line goes from 0x100 to 0x200
3524 and "info line *0x355" should say the line goes from 0x300 to 0x400.
3525 This also insures that we never give a range like "starts at 0x134
3526 and ends at 0x12c". */
3527
3528 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
3529 if (found_sal.line != sal.line)
3530 {
3531 /* The specified line (sal) has zero bytes. */
3532 *startptr = found_sal.pc;
3533 *endptr = found_sal.pc;
3534 }
3535 else
3536 {
3537 *startptr = found_sal.pc;
3538 *endptr = found_sal.end;
3539 }
3540 return 1;
3541 }
3542
3543 /* Given a line table and a line number, return the index into the line
3544 table for the pc of the nearest line whose number is >= the specified one.
3545 Return -1 if none is found. The value is >= 0 if it is an index.
3546 START is the index at which to start searching the line table.
3547
3548 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
3549
3550 static int
3551 find_line_common (struct linetable *l, int lineno,
3552 int *exact_match, int start)
3553 {
3554 int i;
3555 int len;
3556
3557 /* BEST is the smallest linenumber > LINENO so far seen,
3558 or 0 if none has been seen so far.
3559 BEST_INDEX identifies the item for it. */
3560
3561 int best_index = -1;
3562 int best = 0;
3563
3564 *exact_match = 0;
3565
3566 if (lineno <= 0)
3567 return -1;
3568 if (l == 0)
3569 return -1;
3570
3571 len = l->nitems;
3572 for (i = start; i < len; i++)
3573 {
3574 struct linetable_entry *item = &(l->item[i]);
3575
3576 if (item->line == lineno)
3577 {
3578 /* Return the first (lowest address) entry which matches. */
3579 *exact_match = 1;
3580 return i;
3581 }
3582
3583 if (item->line > lineno && (best == 0 || item->line < best))
3584 {
3585 best = item->line;
3586 best_index = i;
3587 }
3588 }
3589
3590 /* If we got here, we didn't get an exact match. */
3591 return best_index;
3592 }
3593
3594 int
3595 find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
3596 {
3597 struct symtab_and_line sal;
3598
3599 sal = find_pc_line (pc, 0);
3600 *startptr = sal.pc;
3601 *endptr = sal.end;
3602 return sal.symtab != 0;
3603 }
3604
3605 /* Given a function symbol SYM, find the symtab and line for the start
3606 of the function.
3607 If the argument FUNFIRSTLINE is nonzero, we want the first line
3608 of real code inside the function.
3609 This function should return SALs matching those from minsym_found,
3610 otherwise false multiple-locations breakpoints could be placed. */
3611
3612 struct symtab_and_line
3613 find_function_start_sal (struct symbol *sym, int funfirstline)
3614 {
3615 struct symtab_and_line sal;
3616 struct obj_section *section;
3617
3618 fixup_symbol_section (sym, NULL);
3619 section = SYMBOL_OBJ_SECTION (symbol_objfile (sym), sym);
3620 sal = find_pc_sect_line (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)), section, 0);
3621
3622 if (funfirstline && sal.symtab != NULL
3623 && (COMPUNIT_LOCATIONS_VALID (SYMTAB_COMPUNIT (sal.symtab))
3624 || SYMTAB_LANGUAGE (sal.symtab) == language_asm))
3625 {
3626 sal.pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
3627 return sal;
3628 }
3629
3630 /* We always should have a line for the function start address.
3631 If we don't, something is odd. Create a plain SAL refering
3632 just the PC and hope that skip_prologue_sal (if requested)
3633 can find a line number for after the prologue. */
3634 if (sal.pc < BLOCK_START (SYMBOL_BLOCK_VALUE (sym)))
3635 {
3636 init_sal (&sal);
3637 sal.pspace = current_program_space;
3638 sal.pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
3639 sal.section = section;
3640 }
3641
3642 if (funfirstline)
3643 skip_prologue_sal (&sal);
3644
3645 return sal;
3646 }
3647
3648 /* Given a function start address FUNC_ADDR and SYMTAB, find the first
3649 address for that function that has an entry in SYMTAB's line info
3650 table. If such an entry cannot be found, return FUNC_ADDR
3651 unaltered. */
3652
3653 static CORE_ADDR
3654 skip_prologue_using_lineinfo (CORE_ADDR func_addr, struct symtab *symtab)
3655 {
3656 CORE_ADDR func_start, func_end;
3657 struct linetable *l;
3658 int i;
3659
3660 /* Give up if this symbol has no lineinfo table. */
3661 l = SYMTAB_LINETABLE (symtab);
3662 if (l == NULL)
3663 return func_addr;
3664
3665 /* Get the range for the function's PC values, or give up if we
3666 cannot, for some reason. */
3667 if (!find_pc_partial_function (func_addr, NULL, &func_start, &func_end))
3668 return func_addr;
3669
3670 /* Linetable entries are ordered by PC values, see the commentary in
3671 symtab.h where `struct linetable' is defined. Thus, the first
3672 entry whose PC is in the range [FUNC_START..FUNC_END[ is the
3673 address we are looking for. */
3674 for (i = 0; i < l->nitems; i++)
3675 {
3676 struct linetable_entry *item = &(l->item[i]);
3677
3678 /* Don't use line numbers of zero, they mark special entries in
3679 the table. See the commentary on symtab.h before the
3680 definition of struct linetable. */
3681 if (item->line > 0 && func_start <= item->pc && item->pc < func_end)
3682 return item->pc;
3683 }
3684
3685 return func_addr;
3686 }
3687
3688 /* Adjust SAL to the first instruction past the function prologue.
3689 If the PC was explicitly specified, the SAL is not changed.
3690 If the line number was explicitly specified, at most the SAL's PC
3691 is updated. If SAL is already past the prologue, then do nothing. */
3692
3693 void
3694 skip_prologue_sal (struct symtab_and_line *sal)
3695 {
3696 struct symbol *sym;
3697 struct symtab_and_line start_sal;
3698 struct cleanup *old_chain;
3699 CORE_ADDR pc, saved_pc;
3700 struct obj_section *section;
3701 const char *name;
3702 struct objfile *objfile;
3703 struct gdbarch *gdbarch;
3704 const struct block *b, *function_block;
3705 int force_skip, skip;
3706
3707 /* Do not change the SAL if PC was specified explicitly. */
3708 if (sal->explicit_pc)
3709 return;
3710
3711 old_chain = save_current_space_and_thread ();
3712 switch_to_program_space_and_thread (sal->pspace);
3713
3714 sym = find_pc_sect_function (sal->pc, sal->section);
3715 if (sym != NULL)
3716 {
3717 fixup_symbol_section (sym, NULL);
3718
3719 objfile = symbol_objfile (sym);
3720 pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
3721 section = SYMBOL_OBJ_SECTION (objfile, sym);
3722 name = SYMBOL_LINKAGE_NAME (sym);
3723 }
3724 else
3725 {
3726 struct bound_minimal_symbol msymbol
3727 = lookup_minimal_symbol_by_pc_section (sal->pc, sal->section);
3728
3729 if (msymbol.minsym == NULL)
3730 {
3731 do_cleanups (old_chain);
3732 return;
3733 }
3734
3735 objfile = msymbol.objfile;
3736 pc = BMSYMBOL_VALUE_ADDRESS (msymbol);
3737 section = MSYMBOL_OBJ_SECTION (objfile, msymbol.minsym);
3738 name = MSYMBOL_LINKAGE_NAME (msymbol.minsym);
3739 }
3740
3741 gdbarch = get_objfile_arch (objfile);
3742
3743 /* Process the prologue in two passes. In the first pass try to skip the
3744 prologue (SKIP is true) and verify there is a real need for it (indicated
3745 by FORCE_SKIP). If no such reason was found run a second pass where the
3746 prologue is not skipped (SKIP is false). */
3747
3748 skip = 1;
3749 force_skip = 1;
3750
3751 /* Be conservative - allow direct PC (without skipping prologue) only if we
3752 have proven the CU (Compilation Unit) supports it. sal->SYMTAB does not
3753 have to be set by the caller so we use SYM instead. */
3754 if (sym != NULL
3755 && COMPUNIT_LOCATIONS_VALID (SYMTAB_COMPUNIT (symbol_symtab (sym))))
3756 force_skip = 0;
3757
3758 saved_pc = pc;
3759 do
3760 {
3761 pc = saved_pc;
3762
3763 /* If the function is in an unmapped overlay, use its unmapped LMA address,
3764 so that gdbarch_skip_prologue has something unique to work on. */
3765 if (section_is_overlay (section) && !section_is_mapped (section))
3766 pc = overlay_unmapped_address (pc, section);
3767
3768 /* Skip "first line" of function (which is actually its prologue). */
3769 pc += gdbarch_deprecated_function_start_offset (gdbarch);
3770 if (gdbarch_skip_entrypoint_p (gdbarch))
3771 pc = gdbarch_skip_entrypoint (gdbarch, pc);
3772 if (skip)
3773 pc = gdbarch_skip_prologue (gdbarch, pc);
3774
3775 /* For overlays, map pc back into its mapped VMA range. */
3776 pc = overlay_mapped_address (pc, section);
3777
3778 /* Calculate line number. */
3779 start_sal = find_pc_sect_line (pc, section, 0);
3780
3781 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
3782 line is still part of the same function. */
3783 if (skip && start_sal.pc != pc
3784 && (sym ? (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) <= start_sal.end
3785 && start_sal.end < BLOCK_END (SYMBOL_BLOCK_VALUE (sym)))
3786 : (lookup_minimal_symbol_by_pc_section (start_sal.end, section).minsym
3787 == lookup_minimal_symbol_by_pc_section (pc, section).minsym)))
3788 {
3789 /* First pc of next line */
3790 pc = start_sal.end;
3791 /* Recalculate the line number (might not be N+1). */
3792 start_sal = find_pc_sect_line (pc, section, 0);
3793 }
3794
3795 /* On targets with executable formats that don't have a concept of
3796 constructors (ELF with .init has, PE doesn't), gcc emits a call
3797 to `__main' in `main' between the prologue and before user
3798 code. */
3799 if (gdbarch_skip_main_prologue_p (gdbarch)
3800 && name && strcmp_iw (name, "main") == 0)
3801 {
3802 pc = gdbarch_skip_main_prologue (gdbarch, pc);
3803 /* Recalculate the line number (might not be N+1). */
3804 start_sal = find_pc_sect_line (pc, section, 0);
3805 force_skip = 1;
3806 }
3807 }
3808 while (!force_skip && skip--);
3809
3810 /* If we still don't have a valid source line, try to find the first
3811 PC in the lineinfo table that belongs to the same function. This
3812 happens with COFF debug info, which does not seem to have an
3813 entry in lineinfo table for the code after the prologue which has
3814 no direct relation to source. For example, this was found to be
3815 the case with the DJGPP target using "gcc -gcoff" when the
3816 compiler inserted code after the prologue to make sure the stack
3817 is aligned. */
3818 if (!force_skip && sym && start_sal.symtab == NULL)
3819 {
3820 pc = skip_prologue_using_lineinfo (pc, symbol_symtab (sym));
3821 /* Recalculate the line number. */
3822 start_sal = find_pc_sect_line (pc, section, 0);
3823 }
3824
3825 do_cleanups (old_chain);
3826
3827 /* If we're already past the prologue, leave SAL unchanged. Otherwise
3828 forward SAL to the end of the prologue. */
3829 if (sal->pc >= pc)
3830 return;
3831
3832 sal->pc = pc;
3833 sal->section = section;
3834
3835 /* Unless the explicit_line flag was set, update the SAL line
3836 and symtab to correspond to the modified PC location. */
3837 if (sal->explicit_line)
3838 return;
3839
3840 sal->symtab = start_sal.symtab;
3841 sal->line = start_sal.line;
3842 sal->end = start_sal.end;
3843
3844 /* Check if we are now inside an inlined function. If we can,
3845 use the call site of the function instead. */
3846 b = block_for_pc_sect (sal->pc, sal->section);
3847 function_block = NULL;
3848 while (b != NULL)
3849 {
3850 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
3851 function_block = b;
3852 else if (BLOCK_FUNCTION (b) != NULL)
3853 break;
3854 b = BLOCK_SUPERBLOCK (b);
3855 }
3856 if (function_block != NULL
3857 && SYMBOL_LINE (BLOCK_FUNCTION (function_block)) != 0)
3858 {
3859 sal->line = SYMBOL_LINE (BLOCK_FUNCTION (function_block));
3860 sal->symtab = symbol_symtab (BLOCK_FUNCTION (function_block));
3861 }
3862 }
3863
3864 /* Given PC at the function's start address, attempt to find the
3865 prologue end using SAL information. Return zero if the skip fails.
3866
3867 A non-optimized prologue traditionally has one SAL for the function
3868 and a second for the function body. A single line function has
3869 them both pointing at the same line.
3870
3871 An optimized prologue is similar but the prologue may contain
3872 instructions (SALs) from the instruction body. Need to skip those
3873 while not getting into the function body.
3874
3875 The functions end point and an increasing SAL line are used as
3876 indicators of the prologue's endpoint.
3877
3878 This code is based on the function refine_prologue_limit
3879 (found in ia64). */
3880
3881 CORE_ADDR
3882 skip_prologue_using_sal (struct gdbarch *gdbarch, CORE_ADDR func_addr)
3883 {
3884 struct symtab_and_line prologue_sal;
3885 CORE_ADDR start_pc;
3886 CORE_ADDR end_pc;
3887 const struct block *bl;
3888
3889 /* Get an initial range for the function. */
3890 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
3891 start_pc += gdbarch_deprecated_function_start_offset (gdbarch);
3892
3893 prologue_sal = find_pc_line (start_pc, 0);
3894 if (prologue_sal.line != 0)
3895 {
3896 /* For languages other than assembly, treat two consecutive line
3897 entries at the same address as a zero-instruction prologue.
3898 The GNU assembler emits separate line notes for each instruction
3899 in a multi-instruction macro, but compilers generally will not
3900 do this. */
3901 if (prologue_sal.symtab->language != language_asm)
3902 {
3903 struct linetable *linetable = SYMTAB_LINETABLE (prologue_sal.symtab);
3904 int idx = 0;
3905
3906 /* Skip any earlier lines, and any end-of-sequence marker
3907 from a previous function. */
3908 while (linetable->item[idx].pc != prologue_sal.pc
3909 || linetable->item[idx].line == 0)
3910 idx++;
3911
3912 if (idx+1 < linetable->nitems
3913 && linetable->item[idx+1].line != 0
3914 && linetable->item[idx+1].pc == start_pc)
3915 return start_pc;
3916 }
3917
3918 /* If there is only one sal that covers the entire function,
3919 then it is probably a single line function, like
3920 "foo(){}". */
3921 if (prologue_sal.end >= end_pc)
3922 return 0;
3923
3924 while (prologue_sal.end < end_pc)
3925 {
3926 struct symtab_and_line sal;
3927
3928 sal = find_pc_line (prologue_sal.end, 0);
3929 if (sal.line == 0)
3930 break;
3931 /* Assume that a consecutive SAL for the same (or larger)
3932 line mark the prologue -> body transition. */
3933 if (sal.line >= prologue_sal.line)
3934 break;
3935 /* Likewise if we are in a different symtab altogether
3936 (e.g. within a file included via #include).  */
3937 if (sal.symtab != prologue_sal.symtab)
3938 break;
3939
3940 /* The line number is smaller. Check that it's from the
3941 same function, not something inlined. If it's inlined,
3942 then there is no point comparing the line numbers. */
3943 bl = block_for_pc (prologue_sal.end);
3944 while (bl)
3945 {
3946 if (block_inlined_p (bl))
3947 break;
3948 if (BLOCK_FUNCTION (bl))
3949 {
3950 bl = NULL;
3951 break;
3952 }
3953 bl = BLOCK_SUPERBLOCK (bl);
3954 }
3955 if (bl != NULL)
3956 break;
3957
3958 /* The case in which compiler's optimizer/scheduler has
3959 moved instructions into the prologue. We look ahead in
3960 the function looking for address ranges whose
3961 corresponding line number is less the first one that we
3962 found for the function. This is more conservative then
3963 refine_prologue_limit which scans a large number of SALs
3964 looking for any in the prologue. */
3965 prologue_sal = sal;
3966 }
3967 }
3968
3969 if (prologue_sal.end < end_pc)
3970 /* Return the end of this line, or zero if we could not find a
3971 line. */
3972 return prologue_sal.end;
3973 else
3974 /* Don't return END_PC, which is past the end of the function. */
3975 return prologue_sal.pc;
3976 }
3977 \f
3978 /* If P is of the form "operator[ \t]+..." where `...' is
3979 some legitimate operator text, return a pointer to the
3980 beginning of the substring of the operator text.
3981 Otherwise, return "". */
3982
3983 static const char *
3984 operator_chars (const char *p, const char **end)
3985 {
3986 *end = "";
3987 if (!startswith (p, "operator"))
3988 return *end;
3989 p += 8;
3990
3991 /* Don't get faked out by `operator' being part of a longer
3992 identifier. */
3993 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
3994 return *end;
3995
3996 /* Allow some whitespace between `operator' and the operator symbol. */
3997 while (*p == ' ' || *p == '\t')
3998 p++;
3999
4000 /* Recognize 'operator TYPENAME'. */
4001
4002 if (isalpha (*p) || *p == '_' || *p == '$')
4003 {
4004 const char *q = p + 1;
4005
4006 while (isalnum (*q) || *q == '_' || *q == '$')
4007 q++;
4008 *end = q;
4009 return p;
4010 }
4011
4012 while (*p)
4013 switch (*p)
4014 {
4015 case '\\': /* regexp quoting */
4016 if (p[1] == '*')
4017 {
4018 if (p[2] == '=') /* 'operator\*=' */
4019 *end = p + 3;
4020 else /* 'operator\*' */
4021 *end = p + 2;
4022 return p;
4023 }
4024 else if (p[1] == '[')
4025 {
4026 if (p[2] == ']')
4027 error (_("mismatched quoting on brackets, "
4028 "try 'operator\\[\\]'"));
4029 else if (p[2] == '\\' && p[3] == ']')
4030 {
4031 *end = p + 4; /* 'operator\[\]' */
4032 return p;
4033 }
4034 else
4035 error (_("nothing is allowed between '[' and ']'"));
4036 }
4037 else
4038 {
4039 /* Gratuitous qoute: skip it and move on. */
4040 p++;
4041 continue;
4042 }
4043 break;
4044 case '!':
4045 case '=':
4046 case '*':
4047 case '/':
4048 case '%':
4049 case '^':
4050 if (p[1] == '=')
4051 *end = p + 2;
4052 else
4053 *end = p + 1;
4054 return p;
4055 case '<':
4056 case '>':
4057 case '+':
4058 case '-':
4059 case '&':
4060 case '|':
4061 if (p[0] == '-' && p[1] == '>')
4062 {
4063 /* Struct pointer member operator 'operator->'. */
4064 if (p[2] == '*')
4065 {
4066 *end = p + 3; /* 'operator->*' */
4067 return p;
4068 }
4069 else if (p[2] == '\\')
4070 {
4071 *end = p + 4; /* Hopefully 'operator->\*' */
4072 return p;
4073 }
4074 else
4075 {
4076 *end = p + 2; /* 'operator->' */
4077 return p;
4078 }
4079 }
4080 if (p[1] == '=' || p[1] == p[0])
4081 *end = p + 2;
4082 else
4083 *end = p + 1;
4084 return p;
4085 case '~':
4086 case ',':
4087 *end = p + 1;
4088 return p;
4089 case '(':
4090 if (p[1] != ')')
4091 error (_("`operator ()' must be specified "
4092 "without whitespace in `()'"));
4093 *end = p + 2;
4094 return p;
4095 case '?':
4096 if (p[1] != ':')
4097 error (_("`operator ?:' must be specified "
4098 "without whitespace in `?:'"));
4099 *end = p + 2;
4100 return p;
4101 case '[':
4102 if (p[1] != ']')
4103 error (_("`operator []' must be specified "
4104 "without whitespace in `[]'"));
4105 *end = p + 2;
4106 return p;
4107 default:
4108 error (_("`operator %s' not supported"), p);
4109 break;
4110 }
4111
4112 *end = "";
4113 return *end;
4114 }
4115 \f
4116
4117 /* Cache to watch for file names already seen by filename_seen. */
4118
4119 struct filename_seen_cache
4120 {
4121 /* Table of files seen so far. */
4122 htab_t tab;
4123 /* Initial size of the table. It automagically grows from here. */
4124 #define INITIAL_FILENAME_SEEN_CACHE_SIZE 100
4125 };
4126
4127 /* filename_seen_cache constructor. */
4128
4129 static struct filename_seen_cache *
4130 create_filename_seen_cache (void)
4131 {
4132 struct filename_seen_cache *cache;
4133
4134 cache = XNEW (struct filename_seen_cache);
4135 cache->tab = htab_create_alloc (INITIAL_FILENAME_SEEN_CACHE_SIZE,
4136 filename_hash, filename_eq,
4137 NULL, xcalloc, xfree);
4138
4139 return cache;
4140 }
4141
4142 /* Empty the cache, but do not delete it. */
4143
4144 static void
4145 clear_filename_seen_cache (struct filename_seen_cache *cache)
4146 {
4147 htab_empty (cache->tab);
4148 }
4149
4150 /* filename_seen_cache destructor.
4151 This takes a void * argument as it is generally used as a cleanup. */
4152
4153 static void
4154 delete_filename_seen_cache (void *ptr)
4155 {
4156 struct filename_seen_cache *cache = ptr;
4157
4158 htab_delete (cache->tab);
4159 xfree (cache);
4160 }
4161
4162 /* If FILE is not already in the table of files in CACHE, return zero;
4163 otherwise return non-zero. Optionally add FILE to the table if ADD
4164 is non-zero.
4165
4166 NOTE: We don't manage space for FILE, we assume FILE lives as long
4167 as the caller needs. */
4168
4169 static int
4170 filename_seen (struct filename_seen_cache *cache, const char *file, int add)
4171 {
4172 void **slot;
4173
4174 /* Is FILE in tab? */
4175 slot = htab_find_slot (cache->tab, file, add ? INSERT : NO_INSERT);
4176 if (*slot != NULL)
4177 return 1;
4178
4179 /* No; maybe add it to tab. */
4180 if (add)
4181 *slot = (char *) file;
4182
4183 return 0;
4184 }
4185
4186 /* Data structure to maintain printing state for output_source_filename. */
4187
4188 struct output_source_filename_data
4189 {
4190 /* Cache of what we've seen so far. */
4191 struct filename_seen_cache *filename_seen_cache;
4192
4193 /* Flag of whether we're printing the first one. */
4194 int first;
4195 };
4196
4197 /* Slave routine for sources_info. Force line breaks at ,'s.
4198 NAME is the name to print.
4199 DATA contains the state for printing and watching for duplicates. */
4200
4201 static void
4202 output_source_filename (const char *name,
4203 struct output_source_filename_data *data)
4204 {
4205 /* Since a single source file can result in several partial symbol
4206 tables, we need to avoid printing it more than once. Note: if
4207 some of the psymtabs are read in and some are not, it gets
4208 printed both under "Source files for which symbols have been
4209 read" and "Source files for which symbols will be read in on
4210 demand". I consider this a reasonable way to deal with the
4211 situation. I'm not sure whether this can also happen for
4212 symtabs; it doesn't hurt to check. */
4213
4214 /* Was NAME already seen? */
4215 if (filename_seen (data->filename_seen_cache, name, 1))
4216 {
4217 /* Yes; don't print it again. */
4218 return;
4219 }
4220
4221 /* No; print it and reset *FIRST. */
4222 if (! data->first)
4223 printf_filtered (", ");
4224 data->first = 0;
4225
4226 wrap_here ("");
4227 fputs_filtered (name, gdb_stdout);
4228 }
4229
4230 /* A callback for map_partial_symbol_filenames. */
4231
4232 static void
4233 output_partial_symbol_filename (const char *filename, const char *fullname,
4234 void *data)
4235 {
4236 output_source_filename (fullname ? fullname : filename, data);
4237 }
4238
4239 static void
4240 sources_info (char *ignore, int from_tty)
4241 {
4242 struct compunit_symtab *cu;
4243 struct symtab *s;
4244 struct objfile *objfile;
4245 struct output_source_filename_data data;
4246 struct cleanup *cleanups;
4247
4248 if (!have_full_symbols () && !have_partial_symbols ())
4249 {
4250 error (_("No symbol table is loaded. Use the \"file\" command."));
4251 }
4252
4253 data.filename_seen_cache = create_filename_seen_cache ();
4254 cleanups = make_cleanup (delete_filename_seen_cache,
4255 data.filename_seen_cache);
4256
4257 printf_filtered ("Source files for which symbols have been read in:\n\n");
4258
4259 data.first = 1;
4260 ALL_FILETABS (objfile, cu, s)
4261 {
4262 const char *fullname = symtab_to_fullname (s);
4263
4264 output_source_filename (fullname, &data);
4265 }
4266 printf_filtered ("\n\n");
4267
4268 printf_filtered ("Source files for which symbols "
4269 "will be read in on demand:\n\n");
4270
4271 clear_filename_seen_cache (data.filename_seen_cache);
4272 data.first = 1;
4273 map_symbol_filenames (output_partial_symbol_filename, &data,
4274 1 /*need_fullname*/);
4275 printf_filtered ("\n");
4276
4277 do_cleanups (cleanups);
4278 }
4279
4280 /* Compare FILE against all the NFILES entries of FILES. If BASENAMES is
4281 non-zero compare only lbasename of FILES. */
4282
4283 static int
4284 file_matches (const char *file, const char *files[], int nfiles, int basenames)
4285 {
4286 int i;
4287
4288 if (file != NULL && nfiles != 0)
4289 {
4290 for (i = 0; i < nfiles; i++)
4291 {
4292 if (compare_filenames_for_search (file, (basenames
4293 ? lbasename (files[i])
4294 : files[i])))
4295 return 1;
4296 }
4297 }
4298 else if (nfiles == 0)
4299 return 1;
4300 return 0;
4301 }
4302
4303 /* Free any memory associated with a search. */
4304
4305 void
4306 free_search_symbols (struct symbol_search *symbols)
4307 {
4308 struct symbol_search *p;
4309 struct symbol_search *next;
4310
4311 for (p = symbols; p != NULL; p = next)
4312 {
4313 next = p->next;
4314 xfree (p);
4315 }
4316 }
4317
4318 static void
4319 do_free_search_symbols_cleanup (void *symbolsp)
4320 {
4321 struct symbol_search *symbols = *(struct symbol_search **) symbolsp;
4322
4323 free_search_symbols (symbols);
4324 }
4325
4326 struct cleanup *
4327 make_cleanup_free_search_symbols (struct symbol_search **symbolsp)
4328 {
4329 return make_cleanup (do_free_search_symbols_cleanup, symbolsp);
4330 }
4331
4332 /* Helper function for sort_search_symbols_remove_dups and qsort. Can only
4333 sort symbols, not minimal symbols. */
4334
4335 static int
4336 compare_search_syms (const void *sa, const void *sb)
4337 {
4338 struct symbol_search *sym_a = *(struct symbol_search **) sa;
4339 struct symbol_search *sym_b = *(struct symbol_search **) sb;
4340 int c;
4341
4342 c = FILENAME_CMP (symbol_symtab (sym_a->symbol)->filename,
4343 symbol_symtab (sym_b->symbol)->filename);
4344 if (c != 0)
4345 return c;
4346
4347 if (sym_a->block != sym_b->block)
4348 return sym_a->block - sym_b->block;
4349
4350 return strcmp (SYMBOL_PRINT_NAME (sym_a->symbol),
4351 SYMBOL_PRINT_NAME (sym_b->symbol));
4352 }
4353
4354 /* Sort the NFOUND symbols in list FOUND and remove duplicates.
4355 The duplicates are freed, and the new list is returned in
4356 *NEW_HEAD, *NEW_TAIL. */
4357
4358 static void
4359 sort_search_symbols_remove_dups (struct symbol_search *found, int nfound,
4360 struct symbol_search **new_head,
4361 struct symbol_search **new_tail)
4362 {
4363 struct symbol_search **symbols, *symp, *old_next;
4364 int i, j, nunique;
4365
4366 gdb_assert (found != NULL && nfound > 0);
4367
4368 /* Build an array out of the list so we can easily sort them. */
4369 symbols = (struct symbol_search **) xmalloc (sizeof (struct symbol_search *)
4370 * nfound);
4371 symp = found;
4372 for (i = 0; i < nfound; i++)
4373 {
4374 gdb_assert (symp != NULL);
4375 gdb_assert (symp->block >= 0 && symp->block <= 1);
4376 symbols[i] = symp;
4377 symp = symp->next;
4378 }
4379 gdb_assert (symp == NULL);
4380
4381 qsort (symbols, nfound, sizeof (struct symbol_search *),
4382 compare_search_syms);
4383
4384 /* Collapse out the dups. */
4385 for (i = 1, j = 1; i < nfound; ++i)
4386 {
4387 if (compare_search_syms (&symbols[j - 1], &symbols[i]) != 0)
4388 symbols[j++] = symbols[i];
4389 else
4390 xfree (symbols[i]);
4391 }
4392 nunique = j;
4393 symbols[j - 1]->next = NULL;
4394
4395 /* Rebuild the linked list. */
4396 for (i = 0; i < nunique - 1; i++)
4397 symbols[i]->next = symbols[i + 1];
4398 symbols[nunique - 1]->next = NULL;
4399
4400 *new_head = symbols[0];
4401 *new_tail = symbols[nunique - 1];
4402 xfree (symbols);
4403 }
4404
4405 /* An object of this type is passed as the user_data to the
4406 expand_symtabs_matching method. */
4407 struct search_symbols_data
4408 {
4409 int nfiles;
4410 const char **files;
4411
4412 /* It is true if PREG contains valid data, false otherwise. */
4413 unsigned preg_p : 1;
4414 regex_t preg;
4415 };
4416
4417 /* A callback for expand_symtabs_matching. */
4418
4419 static int
4420 search_symbols_file_matches (const char *filename, void *user_data,
4421 int basenames)
4422 {
4423 struct search_symbols_data *data = user_data;
4424
4425 return file_matches (filename, data->files, data->nfiles, basenames);
4426 }
4427
4428 /* A callback for expand_symtabs_matching. */
4429
4430 static int
4431 search_symbols_name_matches (const char *symname, void *user_data)
4432 {
4433 struct search_symbols_data *data = user_data;
4434
4435 return !data->preg_p || regexec (&data->preg, symname, 0, NULL, 0) == 0;
4436 }
4437
4438 /* Search the symbol table for matches to the regular expression REGEXP,
4439 returning the results in *MATCHES.
4440
4441 Only symbols of KIND are searched:
4442 VARIABLES_DOMAIN - search all symbols, excluding functions, type names,
4443 and constants (enums)
4444 FUNCTIONS_DOMAIN - search all functions
4445 TYPES_DOMAIN - search all type names
4446 ALL_DOMAIN - an internal error for this function
4447
4448 free_search_symbols should be called when *MATCHES is no longer needed.
4449
4450 Within each file the results are sorted locally; each symtab's global and
4451 static blocks are separately alphabetized.
4452 Duplicate entries are removed. */
4453
4454 void
4455 search_symbols (const char *regexp, enum search_domain kind,
4456 int nfiles, const char *files[],
4457 struct symbol_search **matches)
4458 {
4459 struct compunit_symtab *cust;
4460 const struct blockvector *bv;
4461 struct block *b;
4462 int i = 0;
4463 struct block_iterator iter;
4464 struct symbol *sym;
4465 struct objfile *objfile;
4466 struct minimal_symbol *msymbol;
4467 int found_misc = 0;
4468 static const enum minimal_symbol_type types[]
4469 = {mst_data, mst_text, mst_abs};
4470 static const enum minimal_symbol_type types2[]
4471 = {mst_bss, mst_file_text, mst_abs};
4472 static const enum minimal_symbol_type types3[]
4473 = {mst_file_data, mst_solib_trampoline, mst_abs};
4474 static const enum minimal_symbol_type types4[]
4475 = {mst_file_bss, mst_text_gnu_ifunc, mst_abs};
4476 enum minimal_symbol_type ourtype;
4477 enum minimal_symbol_type ourtype2;
4478 enum minimal_symbol_type ourtype3;
4479 enum minimal_symbol_type ourtype4;
4480 struct symbol_search *found;
4481 struct symbol_search *tail;
4482 struct search_symbols_data datum;
4483 int nfound;
4484
4485 /* OLD_CHAIN .. RETVAL_CHAIN is always freed, RETVAL_CHAIN .. current
4486 CLEANUP_CHAIN is freed only in the case of an error. */
4487 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
4488 struct cleanup *retval_chain;
4489
4490 gdb_assert (kind <= TYPES_DOMAIN);
4491
4492 ourtype = types[kind];
4493 ourtype2 = types2[kind];
4494 ourtype3 = types3[kind];
4495 ourtype4 = types4[kind];
4496
4497 *matches = NULL;
4498 datum.preg_p = 0;
4499
4500 if (regexp != NULL)
4501 {
4502 /* Make sure spacing is right for C++ operators.
4503 This is just a courtesy to make the matching less sensitive
4504 to how many spaces the user leaves between 'operator'
4505 and <TYPENAME> or <OPERATOR>. */
4506 const char *opend;
4507 const char *opname = operator_chars (regexp, &opend);
4508 int errcode;
4509
4510 if (*opname)
4511 {
4512 int fix = -1; /* -1 means ok; otherwise number of
4513 spaces needed. */
4514
4515 if (isalpha (*opname) || *opname == '_' || *opname == '$')
4516 {
4517 /* There should 1 space between 'operator' and 'TYPENAME'. */
4518 if (opname[-1] != ' ' || opname[-2] == ' ')
4519 fix = 1;
4520 }
4521 else
4522 {
4523 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
4524 if (opname[-1] == ' ')
4525 fix = 0;
4526 }
4527 /* If wrong number of spaces, fix it. */
4528 if (fix >= 0)
4529 {
4530 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
4531
4532 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
4533 regexp = tmp;
4534 }
4535 }
4536
4537 errcode = regcomp (&datum.preg, regexp,
4538 REG_NOSUB | (case_sensitivity == case_sensitive_off
4539 ? REG_ICASE : 0));
4540 if (errcode != 0)
4541 {
4542 char *err = get_regcomp_error (errcode, &datum.preg);
4543
4544 make_cleanup (xfree, err);
4545 error (_("Invalid regexp (%s): %s"), err, regexp);
4546 }
4547 datum.preg_p = 1;
4548 make_regfree_cleanup (&datum.preg);
4549 }
4550
4551 /* Search through the partial symtabs *first* for all symbols
4552 matching the regexp. That way we don't have to reproduce all of
4553 the machinery below. */
4554
4555 datum.nfiles = nfiles;
4556 datum.files = files;
4557 expand_symtabs_matching ((nfiles == 0
4558 ? NULL
4559 : search_symbols_file_matches),
4560 search_symbols_name_matches,
4561 NULL, kind, &datum);
4562
4563 /* Here, we search through the minimal symbol tables for functions
4564 and variables that match, and force their symbols to be read.
4565 This is in particular necessary for demangled variable names,
4566 which are no longer put into the partial symbol tables.
4567 The symbol will then be found during the scan of symtabs below.
4568
4569 For functions, find_pc_symtab should succeed if we have debug info
4570 for the function, for variables we have to call
4571 lookup_symbol_in_objfile_from_linkage_name to determine if the variable
4572 has debug info.
4573 If the lookup fails, set found_misc so that we will rescan to print
4574 any matching symbols without debug info.
4575 We only search the objfile the msymbol came from, we no longer search
4576 all objfiles. In large programs (1000s of shared libs) searching all
4577 objfiles is not worth the pain. */
4578
4579 if (nfiles == 0 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
4580 {
4581 ALL_MSYMBOLS (objfile, msymbol)
4582 {
4583 QUIT;
4584
4585 if (msymbol->created_by_gdb)
4586 continue;
4587
4588 if (MSYMBOL_TYPE (msymbol) == ourtype
4589 || MSYMBOL_TYPE (msymbol) == ourtype2
4590 || MSYMBOL_TYPE (msymbol) == ourtype3
4591 || MSYMBOL_TYPE (msymbol) == ourtype4)
4592 {
4593 if (!datum.preg_p
4594 || regexec (&datum.preg, MSYMBOL_NATURAL_NAME (msymbol), 0,
4595 NULL, 0) == 0)
4596 {
4597 /* Note: An important side-effect of these lookup functions
4598 is to expand the symbol table if msymbol is found, for the
4599 benefit of the next loop on ALL_COMPUNITS. */
4600 if (kind == FUNCTIONS_DOMAIN
4601 ? (find_pc_compunit_symtab
4602 (MSYMBOL_VALUE_ADDRESS (objfile, msymbol)) == NULL)
4603 : (lookup_symbol_in_objfile_from_linkage_name
4604 (objfile, MSYMBOL_LINKAGE_NAME (msymbol), VAR_DOMAIN)
4605 == NULL))
4606 found_misc = 1;
4607 }
4608 }
4609 }
4610 }
4611
4612 found = NULL;
4613 tail = NULL;
4614 nfound = 0;
4615 retval_chain = make_cleanup_free_search_symbols (&found);
4616
4617 ALL_COMPUNITS (objfile, cust)
4618 {
4619 bv = COMPUNIT_BLOCKVECTOR (cust);
4620 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
4621 {
4622 b = BLOCKVECTOR_BLOCK (bv, i);
4623 ALL_BLOCK_SYMBOLS (b, iter, sym)
4624 {
4625 struct symtab *real_symtab = symbol_symtab (sym);
4626
4627 QUIT;
4628
4629 /* Check first sole REAL_SYMTAB->FILENAME. It does not need to be
4630 a substring of symtab_to_fullname as it may contain "./" etc. */
4631 if ((file_matches (real_symtab->filename, files, nfiles, 0)
4632 || ((basenames_may_differ
4633 || file_matches (lbasename (real_symtab->filename),
4634 files, nfiles, 1))
4635 && file_matches (symtab_to_fullname (real_symtab),
4636 files, nfiles, 0)))
4637 && ((!datum.preg_p
4638 || regexec (&datum.preg, SYMBOL_NATURAL_NAME (sym), 0,
4639 NULL, 0) == 0)
4640 && ((kind == VARIABLES_DOMAIN
4641 && SYMBOL_CLASS (sym) != LOC_TYPEDEF
4642 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
4643 && SYMBOL_CLASS (sym) != LOC_BLOCK
4644 /* LOC_CONST can be used for more than just enums,
4645 e.g., c++ static const members.
4646 We only want to skip enums here. */
4647 && !(SYMBOL_CLASS (sym) == LOC_CONST
4648 && (TYPE_CODE (SYMBOL_TYPE (sym))
4649 == TYPE_CODE_ENUM)))
4650 || (kind == FUNCTIONS_DOMAIN
4651 && SYMBOL_CLASS (sym) == LOC_BLOCK)
4652 || (kind == TYPES_DOMAIN
4653 && SYMBOL_CLASS (sym) == LOC_TYPEDEF))))
4654 {
4655 /* match */
4656 struct symbol_search *psr = (struct symbol_search *)
4657 xmalloc (sizeof (struct symbol_search));
4658 psr->block = i;
4659 psr->symbol = sym;
4660 memset (&psr->msymbol, 0, sizeof (psr->msymbol));
4661 psr->next = NULL;
4662 if (tail == NULL)
4663 found = psr;
4664 else
4665 tail->next = psr;
4666 tail = psr;
4667 nfound ++;
4668 }
4669 }
4670 }
4671 }
4672
4673 if (found != NULL)
4674 {
4675 sort_search_symbols_remove_dups (found, nfound, &found, &tail);
4676 /* Note: nfound is no longer useful beyond this point. */
4677 }
4678
4679 /* If there are no eyes, avoid all contact. I mean, if there are
4680 no debug symbols, then add matching minsyms. */
4681
4682 if (found_misc || (nfiles == 0 && kind != FUNCTIONS_DOMAIN))
4683 {
4684 ALL_MSYMBOLS (objfile, msymbol)
4685 {
4686 QUIT;
4687
4688 if (msymbol->created_by_gdb)
4689 continue;
4690
4691 if (MSYMBOL_TYPE (msymbol) == ourtype
4692 || MSYMBOL_TYPE (msymbol) == ourtype2
4693 || MSYMBOL_TYPE (msymbol) == ourtype3
4694 || MSYMBOL_TYPE (msymbol) == ourtype4)
4695 {
4696 if (!datum.preg_p
4697 || regexec (&datum.preg, MSYMBOL_NATURAL_NAME (msymbol), 0,
4698 NULL, 0) == 0)
4699 {
4700 /* For functions we can do a quick check of whether the
4701 symbol might be found via find_pc_symtab. */
4702 if (kind != FUNCTIONS_DOMAIN
4703 || (find_pc_compunit_symtab
4704 (MSYMBOL_VALUE_ADDRESS (objfile, msymbol)) == NULL))
4705 {
4706 if (lookup_symbol_in_objfile_from_linkage_name
4707 (objfile, MSYMBOL_LINKAGE_NAME (msymbol), VAR_DOMAIN)
4708 == NULL)
4709 {
4710 /* match */
4711 struct symbol_search *psr = (struct symbol_search *)
4712 xmalloc (sizeof (struct symbol_search));
4713 psr->block = i;
4714 psr->msymbol.minsym = msymbol;
4715 psr->msymbol.objfile = objfile;
4716 psr->symbol = NULL;
4717 psr->next = NULL;
4718 if (tail == NULL)
4719 found = psr;
4720 else
4721 tail->next = psr;
4722 tail = psr;
4723 }
4724 }
4725 }
4726 }
4727 }
4728 }
4729
4730 discard_cleanups (retval_chain);
4731 do_cleanups (old_chain);
4732 *matches = found;
4733 }
4734
4735 /* Helper function for symtab_symbol_info, this function uses
4736 the data returned from search_symbols() to print information
4737 regarding the match to gdb_stdout. */
4738
4739 static void
4740 print_symbol_info (enum search_domain kind,
4741 struct symbol *sym,
4742 int block, const char *last)
4743 {
4744 struct symtab *s = symbol_symtab (sym);
4745 const char *s_filename = symtab_to_filename_for_display (s);
4746
4747 if (last == NULL || filename_cmp (last, s_filename) != 0)
4748 {
4749 fputs_filtered ("\nFile ", gdb_stdout);
4750 fputs_filtered (s_filename, gdb_stdout);
4751 fputs_filtered (":\n", gdb_stdout);
4752 }
4753
4754 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
4755 printf_filtered ("static ");
4756
4757 /* Typedef that is not a C++ class. */
4758 if (kind == TYPES_DOMAIN
4759 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
4760 typedef_print (SYMBOL_TYPE (sym), sym, gdb_stdout);
4761 /* variable, func, or typedef-that-is-c++-class. */
4762 else if (kind < TYPES_DOMAIN
4763 || (kind == TYPES_DOMAIN
4764 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
4765 {
4766 type_print (SYMBOL_TYPE (sym),
4767 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
4768 ? "" : SYMBOL_PRINT_NAME (sym)),
4769 gdb_stdout, 0);
4770
4771 printf_filtered (";\n");
4772 }
4773 }
4774
4775 /* This help function for symtab_symbol_info() prints information
4776 for non-debugging symbols to gdb_stdout. */
4777
4778 static void
4779 print_msymbol_info (struct bound_minimal_symbol msymbol)
4780 {
4781 struct gdbarch *gdbarch = get_objfile_arch (msymbol.objfile);
4782 char *tmp;
4783
4784 if (gdbarch_addr_bit (gdbarch) <= 32)
4785 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol)
4786 & (CORE_ADDR) 0xffffffff,
4787 8);
4788 else
4789 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol),
4790 16);
4791 printf_filtered ("%s %s\n",
4792 tmp, MSYMBOL_PRINT_NAME (msymbol.minsym));
4793 }
4794
4795 /* This is the guts of the commands "info functions", "info types", and
4796 "info variables". It calls search_symbols to find all matches and then
4797 print_[m]symbol_info to print out some useful information about the
4798 matches. */
4799
4800 static void
4801 symtab_symbol_info (char *regexp, enum search_domain kind, int from_tty)
4802 {
4803 static const char * const classnames[] =
4804 {"variable", "function", "type"};
4805 struct symbol_search *symbols;
4806 struct symbol_search *p;
4807 struct cleanup *old_chain;
4808 const char *last_filename = NULL;
4809 int first = 1;
4810
4811 gdb_assert (kind <= TYPES_DOMAIN);
4812
4813 /* Must make sure that if we're interrupted, symbols gets freed. */
4814 search_symbols (regexp, kind, 0, NULL, &symbols);
4815 old_chain = make_cleanup_free_search_symbols (&symbols);
4816
4817 if (regexp != NULL)
4818 printf_filtered (_("All %ss matching regular expression \"%s\":\n"),
4819 classnames[kind], regexp);
4820 else
4821 printf_filtered (_("All defined %ss:\n"), classnames[kind]);
4822
4823 for (p = symbols; p != NULL; p = p->next)
4824 {
4825 QUIT;
4826
4827 if (p->msymbol.minsym != NULL)
4828 {
4829 if (first)
4830 {
4831 printf_filtered (_("\nNon-debugging symbols:\n"));
4832 first = 0;
4833 }
4834 print_msymbol_info (p->msymbol);
4835 }
4836 else
4837 {
4838 print_symbol_info (kind,
4839 p->symbol,
4840 p->block,
4841 last_filename);
4842 last_filename
4843 = symtab_to_filename_for_display (symbol_symtab (p->symbol));
4844 }
4845 }
4846
4847 do_cleanups (old_chain);
4848 }
4849
4850 static void
4851 variables_info (char *regexp, int from_tty)
4852 {
4853 symtab_symbol_info (regexp, VARIABLES_DOMAIN, from_tty);
4854 }
4855
4856 static void
4857 functions_info (char *regexp, int from_tty)
4858 {
4859 symtab_symbol_info (regexp, FUNCTIONS_DOMAIN, from_tty);
4860 }
4861
4862
4863 static void
4864 types_info (char *regexp, int from_tty)
4865 {
4866 symtab_symbol_info (regexp, TYPES_DOMAIN, from_tty);
4867 }
4868
4869 /* Breakpoint all functions matching regular expression. */
4870
4871 void
4872 rbreak_command_wrapper (char *regexp, int from_tty)
4873 {
4874 rbreak_command (regexp, from_tty);
4875 }
4876
4877 /* A cleanup function that calls end_rbreak_breakpoints. */
4878
4879 static void
4880 do_end_rbreak_breakpoints (void *ignore)
4881 {
4882 end_rbreak_breakpoints ();
4883 }
4884
4885 static void
4886 rbreak_command (char *regexp, int from_tty)
4887 {
4888 struct symbol_search *ss;
4889 struct symbol_search *p;
4890 struct cleanup *old_chain;
4891 char *string = NULL;
4892 int len = 0;
4893 const char **files = NULL;
4894 const char *file_name;
4895 int nfiles = 0;
4896
4897 if (regexp)
4898 {
4899 char *colon = strchr (regexp, ':');
4900
4901 if (colon && *(colon + 1) != ':')
4902 {
4903 int colon_index;
4904 char *local_name;
4905
4906 colon_index = colon - regexp;
4907 local_name = alloca (colon_index + 1);
4908 memcpy (local_name, regexp, colon_index);
4909 local_name[colon_index--] = 0;
4910 while (isspace (local_name[colon_index]))
4911 local_name[colon_index--] = 0;
4912 file_name = local_name;
4913 files = &file_name;
4914 nfiles = 1;
4915 regexp = skip_spaces (colon + 1);
4916 }
4917 }
4918
4919 search_symbols (regexp, FUNCTIONS_DOMAIN, nfiles, files, &ss);
4920 old_chain = make_cleanup_free_search_symbols (&ss);
4921 make_cleanup (free_current_contents, &string);
4922
4923 start_rbreak_breakpoints ();
4924 make_cleanup (do_end_rbreak_breakpoints, NULL);
4925 for (p = ss; p != NULL; p = p->next)
4926 {
4927 if (p->msymbol.minsym == NULL)
4928 {
4929 struct symtab *symtab = symbol_symtab (p->symbol);
4930 const char *fullname = symtab_to_fullname (symtab);
4931
4932 int newlen = (strlen (fullname)
4933 + strlen (SYMBOL_LINKAGE_NAME (p->symbol))
4934 + 4);
4935
4936 if (newlen > len)
4937 {
4938 string = xrealloc (string, newlen);
4939 len = newlen;
4940 }
4941 strcpy (string, fullname);
4942 strcat (string, ":'");
4943 strcat (string, SYMBOL_LINKAGE_NAME (p->symbol));
4944 strcat (string, "'");
4945 break_command (string, from_tty);
4946 print_symbol_info (FUNCTIONS_DOMAIN,
4947 p->symbol,
4948 p->block,
4949 symtab_to_filename_for_display (symtab));
4950 }
4951 else
4952 {
4953 int newlen = (strlen (MSYMBOL_LINKAGE_NAME (p->msymbol.minsym)) + 3);
4954
4955 if (newlen > len)
4956 {
4957 string = xrealloc (string, newlen);
4958 len = newlen;
4959 }
4960 strcpy (string, "'");
4961 strcat (string, MSYMBOL_LINKAGE_NAME (p->msymbol.minsym));
4962 strcat (string, "'");
4963
4964 break_command (string, from_tty);
4965 printf_filtered ("<function, no debug info> %s;\n",
4966 MSYMBOL_PRINT_NAME (p->msymbol.minsym));
4967 }
4968 }
4969
4970 do_cleanups (old_chain);
4971 }
4972 \f
4973
4974 /* Evaluate if NAME matches SYM_TEXT and SYM_TEXT_LEN.
4975
4976 Either sym_text[sym_text_len] != '(' and then we search for any
4977 symbol starting with SYM_TEXT text.
4978
4979 Otherwise sym_text[sym_text_len] == '(' and then we require symbol name to
4980 be terminated at that point. Partial symbol tables do not have parameters
4981 information. */
4982
4983 static int
4984 compare_symbol_name (const char *name, const char *sym_text, int sym_text_len)
4985 {
4986 int (*ncmp) (const char *, const char *, size_t);
4987
4988 ncmp = (case_sensitivity == case_sensitive_on ? strncmp : strncasecmp);
4989
4990 if (ncmp (name, sym_text, sym_text_len) != 0)
4991 return 0;
4992
4993 if (sym_text[sym_text_len] == '(')
4994 {
4995 /* User searches for `name(someth...'. Require NAME to be terminated.
4996 Normally psymtabs and gdbindex have no parameter types so '\0' will be
4997 present but accept even parameters presence. In this case this
4998 function is in fact strcmp_iw but whitespace skipping is not supported
4999 for tab completion. */
5000
5001 if (name[sym_text_len] != '\0' && name[sym_text_len] != '(')
5002 return 0;
5003 }
5004
5005 return 1;
5006 }
5007
5008 /* Free any memory associated with a completion list. */
5009
5010 static void
5011 free_completion_list (VEC (char_ptr) **list_ptr)
5012 {
5013 int i;
5014 char *p;
5015
5016 for (i = 0; VEC_iterate (char_ptr, *list_ptr, i, p); ++i)
5017 xfree (p);
5018 VEC_free (char_ptr, *list_ptr);
5019 }
5020
5021 /* Callback for make_cleanup. */
5022
5023 static void
5024 do_free_completion_list (void *list)
5025 {
5026 free_completion_list (list);
5027 }
5028
5029 /* Helper routine for make_symbol_completion_list. */
5030
5031 static VEC (char_ptr) *return_val;
5032
5033 #define COMPLETION_LIST_ADD_SYMBOL(symbol, sym_text, len, text, word) \
5034 completion_list_add_name \
5035 (SYMBOL_NATURAL_NAME (symbol), (sym_text), (len), (text), (word))
5036
5037 #define MCOMPLETION_LIST_ADD_SYMBOL(symbol, sym_text, len, text, word) \
5038 completion_list_add_name \
5039 (MSYMBOL_NATURAL_NAME (symbol), (sym_text), (len), (text), (word))
5040
5041 /* Tracker for how many unique completions have been generated. Used
5042 to terminate completion list generation early if the list has grown
5043 to a size so large as to be useless. This helps avoid GDB seeming
5044 to lock up in the event the user requests to complete on something
5045 vague that necessitates the time consuming expansion of many symbol
5046 tables. */
5047
5048 static completion_tracker_t completion_tracker;
5049
5050 /* Test to see if the symbol specified by SYMNAME (which is already
5051 demangled for C++ symbols) matches SYM_TEXT in the first SYM_TEXT_LEN
5052 characters. If so, add it to the current completion list. */
5053
5054 static void
5055 completion_list_add_name (const char *symname,
5056 const char *sym_text, int sym_text_len,
5057 const char *text, const char *word)
5058 {
5059 /* Clip symbols that cannot match. */
5060 if (!compare_symbol_name (symname, sym_text, sym_text_len))
5061 return;
5062
5063 /* We have a match for a completion, so add SYMNAME to the current list
5064 of matches. Note that the name is moved to freshly malloc'd space. */
5065
5066 {
5067 char *newobj;
5068 enum maybe_add_completion_enum add_status;
5069
5070 if (word == sym_text)
5071 {
5072 newobj = xmalloc (strlen (symname) + 5);
5073 strcpy (newobj, symname);
5074 }
5075 else if (word > sym_text)
5076 {
5077 /* Return some portion of symname. */
5078 newobj = xmalloc (strlen (symname) + 5);
5079 strcpy (newobj, symname + (word - sym_text));
5080 }
5081 else
5082 {
5083 /* Return some of SYM_TEXT plus symname. */
5084 newobj = xmalloc (strlen (symname) + (sym_text - word) + 5);
5085 strncpy (newobj, word, sym_text - word);
5086 newobj[sym_text - word] = '\0';
5087 strcat (newobj, symname);
5088 }
5089
5090 add_status = maybe_add_completion (completion_tracker, newobj);
5091
5092 switch (add_status)
5093 {
5094 case MAYBE_ADD_COMPLETION_OK:
5095 VEC_safe_push (char_ptr, return_val, newobj);
5096 break;
5097 case MAYBE_ADD_COMPLETION_OK_MAX_REACHED:
5098 VEC_safe_push (char_ptr, return_val, newobj);
5099 throw_max_completions_reached_error ();
5100 case MAYBE_ADD_COMPLETION_MAX_REACHED:
5101 xfree (newobj);
5102 throw_max_completions_reached_error ();
5103 case MAYBE_ADD_COMPLETION_DUPLICATE:
5104 xfree (newobj);
5105 break;
5106 }
5107 }
5108 }
5109
5110 /* ObjC: In case we are completing on a selector, look as the msymbol
5111 again and feed all the selectors into the mill. */
5112
5113 static void
5114 completion_list_objc_symbol (struct minimal_symbol *msymbol,
5115 const char *sym_text, int sym_text_len,
5116 const char *text, const char *word)
5117 {
5118 static char *tmp = NULL;
5119 static unsigned int tmplen = 0;
5120
5121 const char *method, *category, *selector;
5122 char *tmp2 = NULL;
5123
5124 method = MSYMBOL_NATURAL_NAME (msymbol);
5125
5126 /* Is it a method? */
5127 if ((method[0] != '-') && (method[0] != '+'))
5128 return;
5129
5130 if (sym_text[0] == '[')
5131 /* Complete on shortened method method. */
5132 completion_list_add_name (method + 1, sym_text, sym_text_len, text, word);
5133
5134 while ((strlen (method) + 1) >= tmplen)
5135 {
5136 if (tmplen == 0)
5137 tmplen = 1024;
5138 else
5139 tmplen *= 2;
5140 tmp = xrealloc (tmp, tmplen);
5141 }
5142 selector = strchr (method, ' ');
5143 if (selector != NULL)
5144 selector++;
5145
5146 category = strchr (method, '(');
5147
5148 if ((category != NULL) && (selector != NULL))
5149 {
5150 memcpy (tmp, method, (category - method));
5151 tmp[category - method] = ' ';
5152 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
5153 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
5154 if (sym_text[0] == '[')
5155 completion_list_add_name (tmp + 1, sym_text, sym_text_len, text, word);
5156 }
5157
5158 if (selector != NULL)
5159 {
5160 /* Complete on selector only. */
5161 strcpy (tmp, selector);
5162 tmp2 = strchr (tmp, ']');
5163 if (tmp2 != NULL)
5164 *tmp2 = '\0';
5165
5166 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
5167 }
5168 }
5169
5170 /* Break the non-quoted text based on the characters which are in
5171 symbols. FIXME: This should probably be language-specific. */
5172
5173 static const char *
5174 language_search_unquoted_string (const char *text, const char *p)
5175 {
5176 for (; p > text; --p)
5177 {
5178 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
5179 continue;
5180 else
5181 {
5182 if ((current_language->la_language == language_objc))
5183 {
5184 if (p[-1] == ':') /* Might be part of a method name. */
5185 continue;
5186 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
5187 p -= 2; /* Beginning of a method name. */
5188 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
5189 { /* Might be part of a method name. */
5190 const char *t = p;
5191
5192 /* Seeing a ' ' or a '(' is not conclusive evidence
5193 that we are in the middle of a method name. However,
5194 finding "-[" or "+[" should be pretty un-ambiguous.
5195 Unfortunately we have to find it now to decide. */
5196
5197 while (t > text)
5198 if (isalnum (t[-1]) || t[-1] == '_' ||
5199 t[-1] == ' ' || t[-1] == ':' ||
5200 t[-1] == '(' || t[-1] == ')')
5201 --t;
5202 else
5203 break;
5204
5205 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
5206 p = t - 2; /* Method name detected. */
5207 /* Else we leave with p unchanged. */
5208 }
5209 }
5210 break;
5211 }
5212 }
5213 return p;
5214 }
5215
5216 static void
5217 completion_list_add_fields (struct symbol *sym, const char *sym_text,
5218 int sym_text_len, const char *text,
5219 const char *word)
5220 {
5221 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5222 {
5223 struct type *t = SYMBOL_TYPE (sym);
5224 enum type_code c = TYPE_CODE (t);
5225 int j;
5226
5227 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
5228 for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++)
5229 if (TYPE_FIELD_NAME (t, j))
5230 completion_list_add_name (TYPE_FIELD_NAME (t, j),
5231 sym_text, sym_text_len, text, word);
5232 }
5233 }
5234
5235 /* Type of the user_data argument passed to add_macro_name,
5236 symbol_completion_matcher and symtab_expansion_callback. */
5237
5238 struct add_name_data
5239 {
5240 /* Arguments required by completion_list_add_name. */
5241 const char *sym_text;
5242 int sym_text_len;
5243 const char *text;
5244 const char *word;
5245
5246 /* Extra argument required for add_symtab_completions. */
5247 enum type_code code;
5248 };
5249
5250 /* A callback used with macro_for_each and macro_for_each_in_scope.
5251 This adds a macro's name to the current completion list. */
5252
5253 static void
5254 add_macro_name (const char *name, const struct macro_definition *ignore,
5255 struct macro_source_file *ignore2, int ignore3,
5256 void *user_data)
5257 {
5258 struct add_name_data *datum = (struct add_name_data *) user_data;
5259
5260 completion_list_add_name (name,
5261 datum->sym_text, datum->sym_text_len,
5262 datum->text, datum->word);
5263 }
5264
5265 /* A callback for expand_symtabs_matching. */
5266
5267 static int
5268 symbol_completion_matcher (const char *name, void *user_data)
5269 {
5270 struct add_name_data *datum = (struct add_name_data *) user_data;
5271
5272 return compare_symbol_name (name, datum->sym_text, datum->sym_text_len);
5273 }
5274
5275 /* Add matching symbols from SYMTAB to the current completion list. */
5276
5277 static void
5278 add_symtab_completions (struct compunit_symtab *cust,
5279 const char *sym_text, int sym_text_len,
5280 const char *text, const char *word,
5281 enum type_code code)
5282 {
5283 struct symbol *sym;
5284 const struct block *b;
5285 struct block_iterator iter;
5286 int i;
5287
5288 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
5289 {
5290 QUIT;
5291 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust), i);
5292 ALL_BLOCK_SYMBOLS (b, iter, sym)
5293 {
5294 if (code == TYPE_CODE_UNDEF
5295 || (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
5296 && TYPE_CODE (SYMBOL_TYPE (sym)) == code))
5297 COMPLETION_LIST_ADD_SYMBOL (sym,
5298 sym_text, sym_text_len,
5299 text, word);
5300 }
5301 }
5302 }
5303
5304 /* Callback to add completions to the current list when symbol tables
5305 are expanded during completion list generation. */
5306
5307 static void
5308 symtab_expansion_callback (struct compunit_symtab *symtab,
5309 void *user_data)
5310 {
5311 struct add_name_data *datum = (struct add_name_data *) user_data;
5312
5313 add_symtab_completions (symtab,
5314 datum->sym_text, datum->sym_text_len,
5315 datum->text, datum->word,
5316 datum->code);
5317 }
5318
5319 static void
5320 default_make_symbol_completion_list_break_on_1 (const char *text,
5321 const char *word,
5322 const char *break_on,
5323 enum type_code code)
5324 {
5325 /* Problem: All of the symbols have to be copied because readline
5326 frees them. I'm not going to worry about this; hopefully there
5327 won't be that many. */
5328
5329 struct symbol *sym;
5330 struct compunit_symtab *cust;
5331 struct minimal_symbol *msymbol;
5332 struct objfile *objfile;
5333 const struct block *b;
5334 const struct block *surrounding_static_block, *surrounding_global_block;
5335 struct block_iterator iter;
5336 /* The symbol we are completing on. Points in same buffer as text. */
5337 const char *sym_text;
5338 /* Length of sym_text. */
5339 int sym_text_len;
5340 struct add_name_data datum;
5341 struct cleanup *cleanups;
5342
5343 /* Now look for the symbol we are supposed to complete on. */
5344 {
5345 const char *p;
5346 char quote_found;
5347 const char *quote_pos = NULL;
5348
5349 /* First see if this is a quoted string. */
5350 quote_found = '\0';
5351 for (p = text; *p != '\0'; ++p)
5352 {
5353 if (quote_found != '\0')
5354 {
5355 if (*p == quote_found)
5356 /* Found close quote. */
5357 quote_found = '\0';
5358 else if (*p == '\\' && p[1] == quote_found)
5359 /* A backslash followed by the quote character
5360 doesn't end the string. */
5361 ++p;
5362 }
5363 else if (*p == '\'' || *p == '"')
5364 {
5365 quote_found = *p;
5366 quote_pos = p;
5367 }
5368 }
5369 if (quote_found == '\'')
5370 /* A string within single quotes can be a symbol, so complete on it. */
5371 sym_text = quote_pos + 1;
5372 else if (quote_found == '"')
5373 /* A double-quoted string is never a symbol, nor does it make sense
5374 to complete it any other way. */
5375 {
5376 return;
5377 }
5378 else
5379 {
5380 /* It is not a quoted string. Break it based on the characters
5381 which are in symbols. */
5382 while (p > text)
5383 {
5384 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0'
5385 || p[-1] == ':' || strchr (break_on, p[-1]) != NULL)
5386 --p;
5387 else
5388 break;
5389 }
5390 sym_text = p;
5391 }
5392 }
5393
5394 sym_text_len = strlen (sym_text);
5395
5396 /* Prepare SYM_TEXT_LEN for compare_symbol_name. */
5397
5398 if (current_language->la_language == language_cplus
5399 || current_language->la_language == language_java
5400 || current_language->la_language == language_fortran)
5401 {
5402 /* These languages may have parameters entered by user but they are never
5403 present in the partial symbol tables. */
5404
5405 const char *cs = memchr (sym_text, '(', sym_text_len);
5406
5407 if (cs)
5408 sym_text_len = cs - sym_text;
5409 }
5410 gdb_assert (sym_text[sym_text_len] == '\0' || sym_text[sym_text_len] == '(');
5411
5412 completion_tracker = new_completion_tracker ();
5413 cleanups = make_cleanup_free_completion_tracker (&completion_tracker);
5414
5415 datum.sym_text = sym_text;
5416 datum.sym_text_len = sym_text_len;
5417 datum.text = text;
5418 datum.word = word;
5419 datum.code = code;
5420
5421 /* At this point scan through the misc symbol vectors and add each
5422 symbol you find to the list. Eventually we want to ignore
5423 anything that isn't a text symbol (everything else will be
5424 handled by the psymtab code below). */
5425
5426 if (code == TYPE_CODE_UNDEF)
5427 {
5428 ALL_MSYMBOLS (objfile, msymbol)
5429 {
5430 QUIT;
5431 MCOMPLETION_LIST_ADD_SYMBOL (msymbol, sym_text, sym_text_len, text,
5432 word);
5433
5434 completion_list_objc_symbol (msymbol, sym_text, sym_text_len, text,
5435 word);
5436 }
5437 }
5438
5439 /* Add completions for all currently loaded symbol tables. */
5440 ALL_COMPUNITS (objfile, cust)
5441 add_symtab_completions (cust, sym_text, sym_text_len, text, word,
5442 code);
5443
5444 /* Look through the partial symtabs for all symbols which begin
5445 by matching SYM_TEXT. Expand all CUs that you find to the list.
5446 symtab_expansion_callback is called for each expanded symtab,
5447 causing those symtab's completions to be added to the list too. */
5448 expand_symtabs_matching (NULL, symbol_completion_matcher,
5449 symtab_expansion_callback, ALL_DOMAIN,
5450 &datum);
5451
5452 /* Search upwards from currently selected frame (so that we can
5453 complete on local vars). Also catch fields of types defined in
5454 this places which match our text string. Only complete on types
5455 visible from current context. */
5456
5457 b = get_selected_block (0);
5458 surrounding_static_block = block_static_block (b);
5459 surrounding_global_block = block_global_block (b);
5460 if (surrounding_static_block != NULL)
5461 while (b != surrounding_static_block)
5462 {
5463 QUIT;
5464
5465 ALL_BLOCK_SYMBOLS (b, iter, sym)
5466 {
5467 if (code == TYPE_CODE_UNDEF)
5468 {
5469 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text,
5470 word);
5471 completion_list_add_fields (sym, sym_text, sym_text_len, text,
5472 word);
5473 }
5474 else if (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
5475 && TYPE_CODE (SYMBOL_TYPE (sym)) == code)
5476 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text,
5477 word);
5478 }
5479
5480 /* Stop when we encounter an enclosing function. Do not stop for
5481 non-inlined functions - the locals of the enclosing function
5482 are in scope for a nested function. */
5483 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
5484 break;
5485 b = BLOCK_SUPERBLOCK (b);
5486 }
5487
5488 /* Add fields from the file's types; symbols will be added below. */
5489
5490 if (code == TYPE_CODE_UNDEF)
5491 {
5492 if (surrounding_static_block != NULL)
5493 ALL_BLOCK_SYMBOLS (surrounding_static_block, iter, sym)
5494 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
5495
5496 if (surrounding_global_block != NULL)
5497 ALL_BLOCK_SYMBOLS (surrounding_global_block, iter, sym)
5498 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
5499 }
5500
5501 /* Skip macros if we are completing a struct tag -- arguable but
5502 usually what is expected. */
5503 if (current_language->la_macro_expansion == macro_expansion_c
5504 && code == TYPE_CODE_UNDEF)
5505 {
5506 struct macro_scope *scope;
5507
5508 /* Add any macros visible in the default scope. Note that this
5509 may yield the occasional wrong result, because an expression
5510 might be evaluated in a scope other than the default. For
5511 example, if the user types "break file:line if <TAB>", the
5512 resulting expression will be evaluated at "file:line" -- but
5513 at there does not seem to be a way to detect this at
5514 completion time. */
5515 scope = default_macro_scope ();
5516 if (scope)
5517 {
5518 macro_for_each_in_scope (scope->file, scope->line,
5519 add_macro_name, &datum);
5520 xfree (scope);
5521 }
5522
5523 /* User-defined macros are always visible. */
5524 macro_for_each (macro_user_macros, add_macro_name, &datum);
5525 }
5526
5527 do_cleanups (cleanups);
5528 }
5529
5530 VEC (char_ptr) *
5531 default_make_symbol_completion_list_break_on (const char *text,
5532 const char *word,
5533 const char *break_on,
5534 enum type_code code)
5535 {
5536 struct cleanup *back_to;
5537
5538 return_val = NULL;
5539 back_to = make_cleanup (do_free_completion_list, &return_val);
5540
5541 TRY
5542 {
5543 default_make_symbol_completion_list_break_on_1 (text, word,
5544 break_on, code);
5545 }
5546 CATCH (except, RETURN_MASK_ERROR)
5547 {
5548 if (except.error != MAX_COMPLETIONS_REACHED_ERROR)
5549 throw_exception (except);
5550 }
5551 END_CATCH
5552
5553 discard_cleanups (back_to);
5554 return return_val;
5555 }
5556
5557 VEC (char_ptr) *
5558 default_make_symbol_completion_list (const char *text, const char *word,
5559 enum type_code code)
5560 {
5561 return default_make_symbol_completion_list_break_on (text, word, "", code);
5562 }
5563
5564 /* Return a vector of all symbols (regardless of class) which begin by
5565 matching TEXT. If the answer is no symbols, then the return value
5566 is NULL. */
5567
5568 VEC (char_ptr) *
5569 make_symbol_completion_list (const char *text, const char *word)
5570 {
5571 return current_language->la_make_symbol_completion_list (text, word,
5572 TYPE_CODE_UNDEF);
5573 }
5574
5575 /* Like make_symbol_completion_list, but only return STRUCT_DOMAIN
5576 symbols whose type code is CODE. */
5577
5578 VEC (char_ptr) *
5579 make_symbol_completion_type (const char *text, const char *word,
5580 enum type_code code)
5581 {
5582 gdb_assert (code == TYPE_CODE_UNION
5583 || code == TYPE_CODE_STRUCT
5584 || code == TYPE_CODE_ENUM);
5585 return current_language->la_make_symbol_completion_list (text, word, code);
5586 }
5587
5588 /* Like make_symbol_completion_list, but suitable for use as a
5589 completion function. */
5590
5591 VEC (char_ptr) *
5592 make_symbol_completion_list_fn (struct cmd_list_element *ignore,
5593 const char *text, const char *word)
5594 {
5595 return make_symbol_completion_list (text, word);
5596 }
5597
5598 /* Like make_symbol_completion_list, but returns a list of symbols
5599 defined in a source file FILE. */
5600
5601 VEC (char_ptr) *
5602 make_file_symbol_completion_list (const char *text, const char *word,
5603 const char *srcfile)
5604 {
5605 struct symbol *sym;
5606 struct symtab *s;
5607 struct block *b;
5608 struct block_iterator iter;
5609 /* The symbol we are completing on. Points in same buffer as text. */
5610 const char *sym_text;
5611 /* Length of sym_text. */
5612 int sym_text_len;
5613
5614 /* Now look for the symbol we are supposed to complete on.
5615 FIXME: This should be language-specific. */
5616 {
5617 const char *p;
5618 char quote_found;
5619 const char *quote_pos = NULL;
5620
5621 /* First see if this is a quoted string. */
5622 quote_found = '\0';
5623 for (p = text; *p != '\0'; ++p)
5624 {
5625 if (quote_found != '\0')
5626 {
5627 if (*p == quote_found)
5628 /* Found close quote. */
5629 quote_found = '\0';
5630 else if (*p == '\\' && p[1] == quote_found)
5631 /* A backslash followed by the quote character
5632 doesn't end the string. */
5633 ++p;
5634 }
5635 else if (*p == '\'' || *p == '"')
5636 {
5637 quote_found = *p;
5638 quote_pos = p;
5639 }
5640 }
5641 if (quote_found == '\'')
5642 /* A string within single quotes can be a symbol, so complete on it. */
5643 sym_text = quote_pos + 1;
5644 else if (quote_found == '"')
5645 /* A double-quoted string is never a symbol, nor does it make sense
5646 to complete it any other way. */
5647 {
5648 return NULL;
5649 }
5650 else
5651 {
5652 /* Not a quoted string. */
5653 sym_text = language_search_unquoted_string (text, p);
5654 }
5655 }
5656
5657 sym_text_len = strlen (sym_text);
5658
5659 return_val = NULL;
5660
5661 /* Find the symtab for SRCFILE (this loads it if it was not yet read
5662 in). */
5663 s = lookup_symtab (srcfile);
5664 if (s == NULL)
5665 {
5666 /* Maybe they typed the file with leading directories, while the
5667 symbol tables record only its basename. */
5668 const char *tail = lbasename (srcfile);
5669
5670 if (tail > srcfile)
5671 s = lookup_symtab (tail);
5672 }
5673
5674 /* If we have no symtab for that file, return an empty list. */
5675 if (s == NULL)
5676 return (return_val);
5677
5678 /* Go through this symtab and check the externs and statics for
5679 symbols which match. */
5680
5681 b = BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (s), GLOBAL_BLOCK);
5682 ALL_BLOCK_SYMBOLS (b, iter, sym)
5683 {
5684 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
5685 }
5686
5687 b = BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (s), STATIC_BLOCK);
5688 ALL_BLOCK_SYMBOLS (b, iter, sym)
5689 {
5690 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
5691 }
5692
5693 return (return_val);
5694 }
5695
5696 /* A helper function for make_source_files_completion_list. It adds
5697 another file name to a list of possible completions, growing the
5698 list as necessary. */
5699
5700 static void
5701 add_filename_to_list (const char *fname, const char *text, const char *word,
5702 VEC (char_ptr) **list)
5703 {
5704 char *newobj;
5705 size_t fnlen = strlen (fname);
5706
5707 if (word == text)
5708 {
5709 /* Return exactly fname. */
5710 newobj = xmalloc (fnlen + 5);
5711 strcpy (newobj, fname);
5712 }
5713 else if (word > text)
5714 {
5715 /* Return some portion of fname. */
5716 newobj = xmalloc (fnlen + 5);
5717 strcpy (newobj, fname + (word - text));
5718 }
5719 else
5720 {
5721 /* Return some of TEXT plus fname. */
5722 newobj = xmalloc (fnlen + (text - word) + 5);
5723 strncpy (newobj, word, text - word);
5724 newobj[text - word] = '\0';
5725 strcat (newobj, fname);
5726 }
5727 VEC_safe_push (char_ptr, *list, newobj);
5728 }
5729
5730 static int
5731 not_interesting_fname (const char *fname)
5732 {
5733 static const char *illegal_aliens[] = {
5734 "_globals_", /* inserted by coff_symtab_read */
5735 NULL
5736 };
5737 int i;
5738
5739 for (i = 0; illegal_aliens[i]; i++)
5740 {
5741 if (filename_cmp (fname, illegal_aliens[i]) == 0)
5742 return 1;
5743 }
5744 return 0;
5745 }
5746
5747 /* An object of this type is passed as the user_data argument to
5748 map_partial_symbol_filenames. */
5749 struct add_partial_filename_data
5750 {
5751 struct filename_seen_cache *filename_seen_cache;
5752 const char *text;
5753 const char *word;
5754 int text_len;
5755 VEC (char_ptr) **list;
5756 };
5757
5758 /* A callback for map_partial_symbol_filenames. */
5759
5760 static void
5761 maybe_add_partial_symtab_filename (const char *filename, const char *fullname,
5762 void *user_data)
5763 {
5764 struct add_partial_filename_data *data = user_data;
5765
5766 if (not_interesting_fname (filename))
5767 return;
5768 if (!filename_seen (data->filename_seen_cache, filename, 1)
5769 && filename_ncmp (filename, data->text, data->text_len) == 0)
5770 {
5771 /* This file matches for a completion; add it to the
5772 current list of matches. */
5773 add_filename_to_list (filename, data->text, data->word, data->list);
5774 }
5775 else
5776 {
5777 const char *base_name = lbasename (filename);
5778
5779 if (base_name != filename
5780 && !filename_seen (data->filename_seen_cache, base_name, 1)
5781 && filename_ncmp (base_name, data->text, data->text_len) == 0)
5782 add_filename_to_list (base_name, data->text, data->word, data->list);
5783 }
5784 }
5785
5786 /* Return a vector of all source files whose names begin with matching
5787 TEXT. The file names are looked up in the symbol tables of this
5788 program. If the answer is no matchess, then the return value is
5789 NULL. */
5790
5791 VEC (char_ptr) *
5792 make_source_files_completion_list (const char *text, const char *word)
5793 {
5794 struct compunit_symtab *cu;
5795 struct symtab *s;
5796 struct objfile *objfile;
5797 size_t text_len = strlen (text);
5798 VEC (char_ptr) *list = NULL;
5799 const char *base_name;
5800 struct add_partial_filename_data datum;
5801 struct filename_seen_cache *filename_seen_cache;
5802 struct cleanup *back_to, *cache_cleanup;
5803
5804 if (!have_full_symbols () && !have_partial_symbols ())
5805 return list;
5806
5807 back_to = make_cleanup (do_free_completion_list, &list);
5808
5809 filename_seen_cache = create_filename_seen_cache ();
5810 cache_cleanup = make_cleanup (delete_filename_seen_cache,
5811 filename_seen_cache);
5812
5813 ALL_FILETABS (objfile, cu, s)
5814 {
5815 if (not_interesting_fname (s->filename))
5816 continue;
5817 if (!filename_seen (filename_seen_cache, s->filename, 1)
5818 && filename_ncmp (s->filename, text, text_len) == 0)
5819 {
5820 /* This file matches for a completion; add it to the current
5821 list of matches. */
5822 add_filename_to_list (s->filename, text, word, &list);
5823 }
5824 else
5825 {
5826 /* NOTE: We allow the user to type a base name when the
5827 debug info records leading directories, but not the other
5828 way around. This is what subroutines of breakpoint
5829 command do when they parse file names. */
5830 base_name = lbasename (s->filename);
5831 if (base_name != s->filename
5832 && !filename_seen (filename_seen_cache, base_name, 1)
5833 && filename_ncmp (base_name, text, text_len) == 0)
5834 add_filename_to_list (base_name, text, word, &list);
5835 }
5836 }
5837
5838 datum.filename_seen_cache = filename_seen_cache;
5839 datum.text = text;
5840 datum.word = word;
5841 datum.text_len = text_len;
5842 datum.list = &list;
5843 map_symbol_filenames (maybe_add_partial_symtab_filename, &datum,
5844 0 /*need_fullname*/);
5845
5846 do_cleanups (cache_cleanup);
5847 discard_cleanups (back_to);
5848
5849 return list;
5850 }
5851 \f
5852 /* Track MAIN */
5853
5854 /* Return the "main_info" object for the current program space. If
5855 the object has not yet been created, create it and fill in some
5856 default values. */
5857
5858 static struct main_info *
5859 get_main_info (void)
5860 {
5861 struct main_info *info = program_space_data (current_program_space,
5862 main_progspace_key);
5863
5864 if (info == NULL)
5865 {
5866 /* It may seem strange to store the main name in the progspace
5867 and also in whatever objfile happens to see a main name in
5868 its debug info. The reason for this is mainly historical:
5869 gdb returned "main" as the name even if no function named
5870 "main" was defined the program; and this approach lets us
5871 keep compatibility. */
5872 info = XCNEW (struct main_info);
5873 info->language_of_main = language_unknown;
5874 set_program_space_data (current_program_space, main_progspace_key,
5875 info);
5876 }
5877
5878 return info;
5879 }
5880
5881 /* A cleanup to destroy a struct main_info when a progspace is
5882 destroyed. */
5883
5884 static void
5885 main_info_cleanup (struct program_space *pspace, void *data)
5886 {
5887 struct main_info *info = data;
5888
5889 if (info != NULL)
5890 xfree (info->name_of_main);
5891 xfree (info);
5892 }
5893
5894 static void
5895 set_main_name (const char *name, enum language lang)
5896 {
5897 struct main_info *info = get_main_info ();
5898
5899 if (info->name_of_main != NULL)
5900 {
5901 xfree (info->name_of_main);
5902 info->name_of_main = NULL;
5903 info->language_of_main = language_unknown;
5904 }
5905 if (name != NULL)
5906 {
5907 info->name_of_main = xstrdup (name);
5908 info->language_of_main = lang;
5909 }
5910 }
5911
5912 /* Deduce the name of the main procedure, and set NAME_OF_MAIN
5913 accordingly. */
5914
5915 static void
5916 find_main_name (void)
5917 {
5918 const char *new_main_name;
5919 struct objfile *objfile;
5920
5921 /* First check the objfiles to see whether a debuginfo reader has
5922 picked up the appropriate main name. Historically the main name
5923 was found in a more or less random way; this approach instead
5924 relies on the order of objfile creation -- which still isn't
5925 guaranteed to get the correct answer, but is just probably more
5926 accurate. */
5927 ALL_OBJFILES (objfile)
5928 {
5929 if (objfile->per_bfd->name_of_main != NULL)
5930 {
5931 set_main_name (objfile->per_bfd->name_of_main,
5932 objfile->per_bfd->language_of_main);
5933 return;
5934 }
5935 }
5936
5937 /* Try to see if the main procedure is in Ada. */
5938 /* FIXME: brobecker/2005-03-07: Another way of doing this would
5939 be to add a new method in the language vector, and call this
5940 method for each language until one of them returns a non-empty
5941 name. This would allow us to remove this hard-coded call to
5942 an Ada function. It is not clear that this is a better approach
5943 at this point, because all methods need to be written in a way
5944 such that false positives never be returned. For instance, it is
5945 important that a method does not return a wrong name for the main
5946 procedure if the main procedure is actually written in a different
5947 language. It is easy to guaranty this with Ada, since we use a
5948 special symbol generated only when the main in Ada to find the name
5949 of the main procedure. It is difficult however to see how this can
5950 be guarantied for languages such as C, for instance. This suggests
5951 that order of call for these methods becomes important, which means
5952 a more complicated approach. */
5953 new_main_name = ada_main_name ();
5954 if (new_main_name != NULL)
5955 {
5956 set_main_name (new_main_name, language_ada);
5957 return;
5958 }
5959
5960 new_main_name = d_main_name ();
5961 if (new_main_name != NULL)
5962 {
5963 set_main_name (new_main_name, language_d);
5964 return;
5965 }
5966
5967 new_main_name = go_main_name ();
5968 if (new_main_name != NULL)
5969 {
5970 set_main_name (new_main_name, language_go);
5971 return;
5972 }
5973
5974 new_main_name = pascal_main_name ();
5975 if (new_main_name != NULL)
5976 {
5977 set_main_name (new_main_name, language_pascal);
5978 return;
5979 }
5980
5981 /* The languages above didn't identify the name of the main procedure.
5982 Fallback to "main". */
5983 set_main_name ("main", language_unknown);
5984 }
5985
5986 char *
5987 main_name (void)
5988 {
5989 struct main_info *info = get_main_info ();
5990
5991 if (info->name_of_main == NULL)
5992 find_main_name ();
5993
5994 return info->name_of_main;
5995 }
5996
5997 /* Return the language of the main function. If it is not known,
5998 return language_unknown. */
5999
6000 enum language
6001 main_language (void)
6002 {
6003 struct main_info *info = get_main_info ();
6004
6005 if (info->name_of_main == NULL)
6006 find_main_name ();
6007
6008 return info->language_of_main;
6009 }
6010
6011 /* Handle ``executable_changed'' events for the symtab module. */
6012
6013 static void
6014 symtab_observer_executable_changed (void)
6015 {
6016 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
6017 set_main_name (NULL, language_unknown);
6018 }
6019
6020 /* Return 1 if the supplied producer string matches the ARM RealView
6021 compiler (armcc). */
6022
6023 int
6024 producer_is_realview (const char *producer)
6025 {
6026 static const char *const arm_idents[] = {
6027 "ARM C Compiler, ADS",
6028 "Thumb C Compiler, ADS",
6029 "ARM C++ Compiler, ADS",
6030 "Thumb C++ Compiler, ADS",
6031 "ARM/Thumb C/C++ Compiler, RVCT",
6032 "ARM C/C++ Compiler, RVCT"
6033 };
6034 int i;
6035
6036 if (producer == NULL)
6037 return 0;
6038
6039 for (i = 0; i < ARRAY_SIZE (arm_idents); i++)
6040 if (startswith (producer, arm_idents[i]))
6041 return 1;
6042
6043 return 0;
6044 }
6045
6046 \f
6047
6048 /* The next index to hand out in response to a registration request. */
6049
6050 static int next_aclass_value = LOC_FINAL_VALUE;
6051
6052 /* The maximum number of "aclass" registrations we support. This is
6053 constant for convenience. */
6054 #define MAX_SYMBOL_IMPLS (LOC_FINAL_VALUE + 10)
6055
6056 /* The objects representing the various "aclass" values. The elements
6057 from 0 up to LOC_FINAL_VALUE-1 represent themselves, and subsequent
6058 elements are those registered at gdb initialization time. */
6059
6060 static struct symbol_impl symbol_impl[MAX_SYMBOL_IMPLS];
6061
6062 /* The globally visible pointer. This is separate from 'symbol_impl'
6063 so that it can be const. */
6064
6065 const struct symbol_impl *symbol_impls = &symbol_impl[0];
6066
6067 /* Make sure we saved enough room in struct symbol. */
6068
6069 gdb_static_assert (MAX_SYMBOL_IMPLS <= (1 << SYMBOL_ACLASS_BITS));
6070
6071 /* Register a computed symbol type. ACLASS must be LOC_COMPUTED. OPS
6072 is the ops vector associated with this index. This returns the new
6073 index, which should be used as the aclass_index field for symbols
6074 of this type. */
6075
6076 int
6077 register_symbol_computed_impl (enum address_class aclass,
6078 const struct symbol_computed_ops *ops)
6079 {
6080 int result = next_aclass_value++;
6081
6082 gdb_assert (aclass == LOC_COMPUTED);
6083 gdb_assert (result < MAX_SYMBOL_IMPLS);
6084 symbol_impl[result].aclass = aclass;
6085 symbol_impl[result].ops_computed = ops;
6086
6087 /* Sanity check OPS. */
6088 gdb_assert (ops != NULL);
6089 gdb_assert (ops->tracepoint_var_ref != NULL);
6090 gdb_assert (ops->describe_location != NULL);
6091 gdb_assert (ops->read_needs_frame != NULL);
6092 gdb_assert (ops->read_variable != NULL);
6093
6094 return result;
6095 }
6096
6097 /* Register a function with frame base type. ACLASS must be LOC_BLOCK.
6098 OPS is the ops vector associated with this index. This returns the
6099 new index, which should be used as the aclass_index field for symbols
6100 of this type. */
6101
6102 int
6103 register_symbol_block_impl (enum address_class aclass,
6104 const struct symbol_block_ops *ops)
6105 {
6106 int result = next_aclass_value++;
6107
6108 gdb_assert (aclass == LOC_BLOCK);
6109 gdb_assert (result < MAX_SYMBOL_IMPLS);
6110 symbol_impl[result].aclass = aclass;
6111 symbol_impl[result].ops_block = ops;
6112
6113 /* Sanity check OPS. */
6114 gdb_assert (ops != NULL);
6115 gdb_assert (ops->find_frame_base_location != NULL);
6116
6117 return result;
6118 }
6119
6120 /* Register a register symbol type. ACLASS must be LOC_REGISTER or
6121 LOC_REGPARM_ADDR. OPS is the register ops vector associated with
6122 this index. This returns the new index, which should be used as
6123 the aclass_index field for symbols of this type. */
6124
6125 int
6126 register_symbol_register_impl (enum address_class aclass,
6127 const struct symbol_register_ops *ops)
6128 {
6129 int result = next_aclass_value++;
6130
6131 gdb_assert (aclass == LOC_REGISTER || aclass == LOC_REGPARM_ADDR);
6132 gdb_assert (result < MAX_SYMBOL_IMPLS);
6133 symbol_impl[result].aclass = aclass;
6134 symbol_impl[result].ops_register = ops;
6135
6136 return result;
6137 }
6138
6139 /* Initialize elements of 'symbol_impl' for the constants in enum
6140 address_class. */
6141
6142 static void
6143 initialize_ordinary_address_classes (void)
6144 {
6145 int i;
6146
6147 for (i = 0; i < LOC_FINAL_VALUE; ++i)
6148 symbol_impl[i].aclass = i;
6149 }
6150
6151 \f
6152
6153 /* Helper function to initialize the fields of an objfile-owned symbol.
6154 It assumed that *SYM is already all zeroes. */
6155
6156 static void
6157 initialize_objfile_symbol_1 (struct symbol *sym)
6158 {
6159 SYMBOL_OBJFILE_OWNED (sym) = 1;
6160 SYMBOL_SECTION (sym) = -1;
6161 }
6162
6163 /* Initialize the symbol SYM, and mark it as being owned by an objfile. */
6164
6165 void
6166 initialize_objfile_symbol (struct symbol *sym)
6167 {
6168 memset (sym, 0, sizeof (*sym));
6169 initialize_objfile_symbol_1 (sym);
6170 }
6171
6172 /* Allocate and initialize a new 'struct symbol' on OBJFILE's
6173 obstack. */
6174
6175 struct symbol *
6176 allocate_symbol (struct objfile *objfile)
6177 {
6178 struct symbol *result;
6179
6180 result = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symbol);
6181 initialize_objfile_symbol_1 (result);
6182
6183 return result;
6184 }
6185
6186 /* Allocate and initialize a new 'struct template_symbol' on OBJFILE's
6187 obstack. */
6188
6189 struct template_symbol *
6190 allocate_template_symbol (struct objfile *objfile)
6191 {
6192 struct template_symbol *result;
6193
6194 result = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct template_symbol);
6195 initialize_objfile_symbol_1 (&result->base);
6196
6197 return result;
6198 }
6199
6200 /* See symtab.h. */
6201
6202 struct objfile *
6203 symbol_objfile (const struct symbol *symbol)
6204 {
6205 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
6206 return SYMTAB_OBJFILE (symbol->owner.symtab);
6207 }
6208
6209 /* See symtab.h. */
6210
6211 struct gdbarch *
6212 symbol_arch (const struct symbol *symbol)
6213 {
6214 if (!SYMBOL_OBJFILE_OWNED (symbol))
6215 return symbol->owner.arch;
6216 return get_objfile_arch (SYMTAB_OBJFILE (symbol->owner.symtab));
6217 }
6218
6219 /* See symtab.h. */
6220
6221 struct symtab *
6222 symbol_symtab (const struct symbol *symbol)
6223 {
6224 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
6225 return symbol->owner.symtab;
6226 }
6227
6228 /* See symtab.h. */
6229
6230 void
6231 symbol_set_symtab (struct symbol *symbol, struct symtab *symtab)
6232 {
6233 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
6234 symbol->owner.symtab = symtab;
6235 }
6236
6237 \f
6238
6239 void
6240 _initialize_symtab (void)
6241 {
6242 initialize_ordinary_address_classes ();
6243
6244 main_progspace_key
6245 = register_program_space_data_with_cleanup (NULL, main_info_cleanup);
6246
6247 symbol_cache_key
6248 = register_program_space_data_with_cleanup (NULL, symbol_cache_cleanup);
6249
6250 add_info ("variables", variables_info, _("\
6251 All global and static variable names, or those matching REGEXP."));
6252 if (dbx_commands)
6253 add_com ("whereis", class_info, variables_info, _("\
6254 All global and static variable names, or those matching REGEXP."));
6255
6256 add_info ("functions", functions_info,
6257 _("All function names, or those matching REGEXP."));
6258
6259 /* FIXME: This command has at least the following problems:
6260 1. It prints builtin types (in a very strange and confusing fashion).
6261 2. It doesn't print right, e.g. with
6262 typedef struct foo *FOO
6263 type_print prints "FOO" when we want to make it (in this situation)
6264 print "struct foo *".
6265 I also think "ptype" or "whatis" is more likely to be useful (but if
6266 there is much disagreement "info types" can be fixed). */
6267 add_info ("types", types_info,
6268 _("All type names, or those matching REGEXP."));
6269
6270 add_info ("sources", sources_info,
6271 _("Source files in the program."));
6272
6273 add_com ("rbreak", class_breakpoint, rbreak_command,
6274 _("Set a breakpoint for all functions matching REGEXP."));
6275
6276 add_setshow_enum_cmd ("multiple-symbols", no_class,
6277 multiple_symbols_modes, &multiple_symbols_mode,
6278 _("\
6279 Set the debugger behavior when more than one symbol are possible matches\n\
6280 in an expression."), _("\
6281 Show how the debugger handles ambiguities in expressions."), _("\
6282 Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
6283 NULL, NULL, &setlist, &showlist);
6284
6285 add_setshow_boolean_cmd ("basenames-may-differ", class_obscure,
6286 &basenames_may_differ, _("\
6287 Set whether a source file may have multiple base names."), _("\
6288 Show whether a source file may have multiple base names."), _("\
6289 (A \"base name\" is the name of a file with the directory part removed.\n\
6290 Example: The base name of \"/home/user/hello.c\" is \"hello.c\".)\n\
6291 If set, GDB will canonicalize file names (e.g., expand symlinks)\n\
6292 before comparing them. Canonicalization is an expensive operation,\n\
6293 but it allows the same file be known by more than one base name.\n\
6294 If not set (the default), all source files are assumed to have just\n\
6295 one base name, and gdb will do file name comparisons more efficiently."),
6296 NULL, NULL,
6297 &setlist, &showlist);
6298
6299 add_setshow_zuinteger_cmd ("symtab-create", no_class, &symtab_create_debug,
6300 _("Set debugging of symbol table creation."),
6301 _("Show debugging of symbol table creation."), _("\
6302 When enabled (non-zero), debugging messages are printed when building\n\
6303 symbol tables. A value of 1 (one) normally provides enough information.\n\
6304 A value greater than 1 provides more verbose information."),
6305 NULL,
6306 NULL,
6307 &setdebuglist, &showdebuglist);
6308
6309 add_setshow_zuinteger_cmd ("symbol-lookup", no_class, &symbol_lookup_debug,
6310 _("\
6311 Set debugging of symbol lookup."), _("\
6312 Show debugging of symbol lookup."), _("\
6313 When enabled (non-zero), symbol lookups are logged."),
6314 NULL, NULL,
6315 &setdebuglist, &showdebuglist);
6316
6317 add_setshow_zuinteger_cmd ("symbol-cache-size", no_class,
6318 &new_symbol_cache_size,
6319 _("Set the size of the symbol cache."),
6320 _("Show the size of the symbol cache."), _("\
6321 The size of the symbol cache.\n\
6322 If zero then the symbol cache is disabled."),
6323 set_symbol_cache_size_handler, NULL,
6324 &maintenance_set_cmdlist,
6325 &maintenance_show_cmdlist);
6326
6327 add_cmd ("symbol-cache", class_maintenance, maintenance_print_symbol_cache,
6328 _("Dump the symbol cache for each program space."),
6329 &maintenanceprintlist);
6330
6331 add_cmd ("symbol-cache-statistics", class_maintenance,
6332 maintenance_print_symbol_cache_statistics,
6333 _("Print symbol cache statistics for each program space."),
6334 &maintenanceprintlist);
6335
6336 add_cmd ("flush-symbol-cache", class_maintenance,
6337 maintenance_flush_symbol_cache,
6338 _("Flush the symbol cache for each program space."),
6339 &maintenancelist);
6340
6341 observer_attach_executable_changed (symtab_observer_executable_changed);
6342 observer_attach_new_objfile (symtab_new_objfile_observer);
6343 observer_attach_free_objfile (symtab_free_objfile_observer);
6344 }
This page took 0.157543 seconds and 4 git commands to generate.