2007-07-03 Markus Deuling <deuling@de.ibm.com>
[deliverable/binutils-gdb.git] / gdb / symtab.c
1 /* Symbol table lookup for the GNU debugger, GDB.
2
3 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2007
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin Street, Fifth Floor,
22 Boston, MA 02110-1301, USA. */
23
24 #include "defs.h"
25 #include "symtab.h"
26 #include "gdbtypes.h"
27 #include "gdbcore.h"
28 #include "frame.h"
29 #include "target.h"
30 #include "value.h"
31 #include "symfile.h"
32 #include "objfiles.h"
33 #include "gdbcmd.h"
34 #include "call-cmds.h"
35 #include "gdb_regex.h"
36 #include "expression.h"
37 #include "language.h"
38 #include "demangle.h"
39 #include "inferior.h"
40 #include "linespec.h"
41 #include "source.h"
42 #include "filenames.h" /* for FILENAME_CMP */
43 #include "objc-lang.h"
44 #include "ada-lang.h"
45
46 #include "hashtab.h"
47
48 #include "gdb_obstack.h"
49 #include "block.h"
50 #include "dictionary.h"
51
52 #include <sys/types.h>
53 #include <fcntl.h>
54 #include "gdb_string.h"
55 #include "gdb_stat.h"
56 #include <ctype.h>
57 #include "cp-abi.h"
58 #include "observer.h"
59 #include "gdb_assert.h"
60 #include "solist.h"
61
62 /* Prototypes for local functions */
63
64 static void completion_list_add_name (char *, char *, int, char *, char *);
65
66 static void rbreak_command (char *, int);
67
68 static void types_info (char *, int);
69
70 static void functions_info (char *, int);
71
72 static void variables_info (char *, int);
73
74 static void sources_info (char *, int);
75
76 static void output_source_filename (const char *, int *);
77
78 static int find_line_common (struct linetable *, int, int *);
79
80 /* This one is used by linespec.c */
81
82 char *operator_chars (char *p, char **end);
83
84 static struct symbol *lookup_symbol_aux (const char *name,
85 const char *linkage_name,
86 const struct block *block,
87 const domain_enum domain,
88 enum language language,
89 int *is_a_field_of_this,
90 struct symtab **symtab);
91
92 static
93 struct symbol *lookup_symbol_aux_local (const char *name,
94 const char *linkage_name,
95 const struct block *block,
96 const domain_enum domain,
97 struct symtab **symtab);
98
99 static
100 struct symbol *lookup_symbol_aux_symtabs (int block_index,
101 const char *name,
102 const char *linkage_name,
103 const domain_enum domain,
104 struct symtab **symtab);
105
106 static
107 struct symbol *lookup_symbol_aux_psymtabs (int block_index,
108 const char *name,
109 const char *linkage_name,
110 const domain_enum domain,
111 struct symtab **symtab);
112
113 #if 0
114 static
115 struct symbol *lookup_symbol_aux_minsyms (const char *name,
116 const char *linkage_name,
117 const domain_enum domain,
118 int *is_a_field_of_this,
119 struct symtab **symtab);
120 #endif
121
122 static void fixup_section (struct general_symbol_info *, struct objfile *);
123
124 static int file_matches (char *, char **, int);
125
126 static void print_symbol_info (domain_enum,
127 struct symtab *, struct symbol *, int, char *);
128
129 static void print_msymbol_info (struct minimal_symbol *);
130
131 static void symtab_symbol_info (char *, domain_enum, int);
132
133 void _initialize_symtab (void);
134
135 /* */
136
137 /* The single non-language-specific builtin type */
138 struct type *builtin_type_error;
139
140 /* Block in which the most recently searched-for symbol was found.
141 Might be better to make this a parameter to lookup_symbol and
142 value_of_this. */
143
144 const struct block *block_found;
145
146 /* Check for a symtab of a specific name; first in symtabs, then in
147 psymtabs. *If* there is no '/' in the name, a match after a '/'
148 in the symtab filename will also work. */
149
150 struct symtab *
151 lookup_symtab (const char *name)
152 {
153 struct symtab *s;
154 struct partial_symtab *ps;
155 struct objfile *objfile;
156 char *real_path = NULL;
157 char *full_path = NULL;
158
159 /* Here we are interested in canonicalizing an absolute path, not
160 absolutizing a relative path. */
161 if (IS_ABSOLUTE_PATH (name))
162 {
163 full_path = xfullpath (name);
164 make_cleanup (xfree, full_path);
165 real_path = gdb_realpath (name);
166 make_cleanup (xfree, real_path);
167 }
168
169 got_symtab:
170
171 /* First, search for an exact match */
172
173 ALL_SYMTABS (objfile, s)
174 {
175 if (FILENAME_CMP (name, s->filename) == 0)
176 {
177 return s;
178 }
179
180 /* If the user gave us an absolute path, try to find the file in
181 this symtab and use its absolute path. */
182
183 if (full_path != NULL)
184 {
185 const char *fp = symtab_to_fullname (s);
186 if (fp != NULL && FILENAME_CMP (full_path, fp) == 0)
187 {
188 return s;
189 }
190 }
191
192 if (real_path != NULL)
193 {
194 char *fullname = symtab_to_fullname (s);
195 if (fullname != NULL)
196 {
197 char *rp = gdb_realpath (fullname);
198 make_cleanup (xfree, rp);
199 if (FILENAME_CMP (real_path, rp) == 0)
200 {
201 return s;
202 }
203 }
204 }
205 }
206
207 /* Now, search for a matching tail (only if name doesn't have any dirs) */
208
209 if (lbasename (name) == name)
210 ALL_SYMTABS (objfile, s)
211 {
212 if (FILENAME_CMP (lbasename (s->filename), name) == 0)
213 return s;
214 }
215
216 /* Same search rules as above apply here, but now we look thru the
217 psymtabs. */
218
219 ps = lookup_partial_symtab (name);
220 if (!ps)
221 return (NULL);
222
223 if (ps->readin)
224 error (_("Internal: readin %s pst for `%s' found when no symtab found."),
225 ps->filename, name);
226
227 s = PSYMTAB_TO_SYMTAB (ps);
228
229 if (s)
230 return s;
231
232 /* At this point, we have located the psymtab for this file, but
233 the conversion to a symtab has failed. This usually happens
234 when we are looking up an include file. In this case,
235 PSYMTAB_TO_SYMTAB doesn't return a symtab, even though one has
236 been created. So, we need to run through the symtabs again in
237 order to find the file.
238 XXX - This is a crock, and should be fixed inside of the the
239 symbol parsing routines. */
240 goto got_symtab;
241 }
242
243 /* Lookup the partial symbol table of a source file named NAME.
244 *If* there is no '/' in the name, a match after a '/'
245 in the psymtab filename will also work. */
246
247 struct partial_symtab *
248 lookup_partial_symtab (const char *name)
249 {
250 struct partial_symtab *pst;
251 struct objfile *objfile;
252 char *full_path = NULL;
253 char *real_path = NULL;
254
255 /* Here we are interested in canonicalizing an absolute path, not
256 absolutizing a relative path. */
257 if (IS_ABSOLUTE_PATH (name))
258 {
259 full_path = xfullpath (name);
260 make_cleanup (xfree, full_path);
261 real_path = gdb_realpath (name);
262 make_cleanup (xfree, real_path);
263 }
264
265 ALL_PSYMTABS (objfile, pst)
266 {
267 if (FILENAME_CMP (name, pst->filename) == 0)
268 {
269 return (pst);
270 }
271
272 /* If the user gave us an absolute path, try to find the file in
273 this symtab and use its absolute path. */
274 if (full_path != NULL)
275 {
276 psymtab_to_fullname (pst);
277 if (pst->fullname != NULL
278 && FILENAME_CMP (full_path, pst->fullname) == 0)
279 {
280 return pst;
281 }
282 }
283
284 if (real_path != NULL)
285 {
286 char *rp = NULL;
287 psymtab_to_fullname (pst);
288 if (pst->fullname != NULL)
289 {
290 rp = gdb_realpath (pst->fullname);
291 make_cleanup (xfree, rp);
292 }
293 if (rp != NULL && FILENAME_CMP (real_path, rp) == 0)
294 {
295 return pst;
296 }
297 }
298 }
299
300 /* Now, search for a matching tail (only if name doesn't have any dirs) */
301
302 if (lbasename (name) == name)
303 ALL_PSYMTABS (objfile, pst)
304 {
305 if (FILENAME_CMP (lbasename (pst->filename), name) == 0)
306 return (pst);
307 }
308
309 return (NULL);
310 }
311 \f
312 /* Mangle a GDB method stub type. This actually reassembles the pieces of the
313 full method name, which consist of the class name (from T), the unadorned
314 method name from METHOD_ID, and the signature for the specific overload,
315 specified by SIGNATURE_ID. Note that this function is g++ specific. */
316
317 char *
318 gdb_mangle_name (struct type *type, int method_id, int signature_id)
319 {
320 int mangled_name_len;
321 char *mangled_name;
322 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
323 struct fn_field *method = &f[signature_id];
324 char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
325 char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
326 char *newname = type_name_no_tag (type);
327
328 /* Does the form of physname indicate that it is the full mangled name
329 of a constructor (not just the args)? */
330 int is_full_physname_constructor;
331
332 int is_constructor;
333 int is_destructor = is_destructor_name (physname);
334 /* Need a new type prefix. */
335 char *const_prefix = method->is_const ? "C" : "";
336 char *volatile_prefix = method->is_volatile ? "V" : "";
337 char buf[20];
338 int len = (newname == NULL ? 0 : strlen (newname));
339
340 /* Nothing to do if physname already contains a fully mangled v3 abi name
341 or an operator name. */
342 if ((physname[0] == '_' && physname[1] == 'Z')
343 || is_operator_name (field_name))
344 return xstrdup (physname);
345
346 is_full_physname_constructor = is_constructor_name (physname);
347
348 is_constructor =
349 is_full_physname_constructor || (newname && strcmp (field_name, newname) == 0);
350
351 if (!is_destructor)
352 is_destructor = (strncmp (physname, "__dt", 4) == 0);
353
354 if (is_destructor || is_full_physname_constructor)
355 {
356 mangled_name = (char *) xmalloc (strlen (physname) + 1);
357 strcpy (mangled_name, physname);
358 return mangled_name;
359 }
360
361 if (len == 0)
362 {
363 sprintf (buf, "__%s%s", const_prefix, volatile_prefix);
364 }
365 else if (physname[0] == 't' || physname[0] == 'Q')
366 {
367 /* The physname for template and qualified methods already includes
368 the class name. */
369 sprintf (buf, "__%s%s", const_prefix, volatile_prefix);
370 newname = NULL;
371 len = 0;
372 }
373 else
374 {
375 sprintf (buf, "__%s%s%d", const_prefix, volatile_prefix, len);
376 }
377 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
378 + strlen (buf) + len + strlen (physname) + 1);
379
380 {
381 mangled_name = (char *) xmalloc (mangled_name_len);
382 if (is_constructor)
383 mangled_name[0] = '\0';
384 else
385 strcpy (mangled_name, field_name);
386 }
387 strcat (mangled_name, buf);
388 /* If the class doesn't have a name, i.e. newname NULL, then we just
389 mangle it using 0 for the length of the class. Thus it gets mangled
390 as something starting with `::' rather than `classname::'. */
391 if (newname != NULL)
392 strcat (mangled_name, newname);
393
394 strcat (mangled_name, physname);
395 return (mangled_name);
396 }
397
398 \f
399 /* Initialize the language dependent portion of a symbol
400 depending upon the language for the symbol. */
401 void
402 symbol_init_language_specific (struct general_symbol_info *gsymbol,
403 enum language language)
404 {
405 gsymbol->language = language;
406 if (gsymbol->language == language_cplus
407 || gsymbol->language == language_java
408 || gsymbol->language == language_objc)
409 {
410 gsymbol->language_specific.cplus_specific.demangled_name = NULL;
411 }
412 else
413 {
414 memset (&gsymbol->language_specific, 0,
415 sizeof (gsymbol->language_specific));
416 }
417 }
418
419 /* Functions to initialize a symbol's mangled name. */
420
421 /* Create the hash table used for demangled names. Each hash entry is
422 a pair of strings; one for the mangled name and one for the demangled
423 name. The entry is hashed via just the mangled name. */
424
425 static void
426 create_demangled_names_hash (struct objfile *objfile)
427 {
428 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
429 The hash table code will round this up to the next prime number.
430 Choosing a much larger table size wastes memory, and saves only about
431 1% in symbol reading. */
432
433 objfile->demangled_names_hash = htab_create_alloc
434 (256, htab_hash_string, (int (*) (const void *, const void *)) streq,
435 NULL, xcalloc, xfree);
436 }
437
438 /* Try to determine the demangled name for a symbol, based on the
439 language of that symbol. If the language is set to language_auto,
440 it will attempt to find any demangling algorithm that works and
441 then set the language appropriately. The returned name is allocated
442 by the demangler and should be xfree'd. */
443
444 static char *
445 symbol_find_demangled_name (struct general_symbol_info *gsymbol,
446 const char *mangled)
447 {
448 char *demangled = NULL;
449
450 if (gsymbol->language == language_unknown)
451 gsymbol->language = language_auto;
452
453 if (gsymbol->language == language_objc
454 || gsymbol->language == language_auto)
455 {
456 demangled =
457 objc_demangle (mangled, 0);
458 if (demangled != NULL)
459 {
460 gsymbol->language = language_objc;
461 return demangled;
462 }
463 }
464 if (gsymbol->language == language_cplus
465 || gsymbol->language == language_auto)
466 {
467 demangled =
468 cplus_demangle (mangled, DMGL_PARAMS | DMGL_ANSI);
469 if (demangled != NULL)
470 {
471 gsymbol->language = language_cplus;
472 return demangled;
473 }
474 }
475 if (gsymbol->language == language_java)
476 {
477 demangled =
478 cplus_demangle (mangled,
479 DMGL_PARAMS | DMGL_ANSI | DMGL_JAVA);
480 if (demangled != NULL)
481 {
482 gsymbol->language = language_java;
483 return demangled;
484 }
485 }
486 return NULL;
487 }
488
489 /* Set both the mangled and demangled (if any) names for GSYMBOL based
490 on LINKAGE_NAME and LEN. The hash table corresponding to OBJFILE
491 is used, and the memory comes from that objfile's objfile_obstack.
492 LINKAGE_NAME is copied, so the pointer can be discarded after
493 calling this function. */
494
495 /* We have to be careful when dealing with Java names: when we run
496 into a Java minimal symbol, we don't know it's a Java symbol, so it
497 gets demangled as a C++ name. This is unfortunate, but there's not
498 much we can do about it: but when demangling partial symbols and
499 regular symbols, we'd better not reuse the wrong demangled name.
500 (See PR gdb/1039.) We solve this by putting a distinctive prefix
501 on Java names when storing them in the hash table. */
502
503 /* FIXME: carlton/2003-03-13: This is an unfortunate situation. I
504 don't mind the Java prefix so much: different languages have
505 different demangling requirements, so it's only natural that we
506 need to keep language data around in our demangling cache. But
507 it's not good that the minimal symbol has the wrong demangled name.
508 Unfortunately, I can't think of any easy solution to that
509 problem. */
510
511 #define JAVA_PREFIX "##JAVA$$"
512 #define JAVA_PREFIX_LEN 8
513
514 void
515 symbol_set_names (struct general_symbol_info *gsymbol,
516 const char *linkage_name, int len, struct objfile *objfile)
517 {
518 char **slot;
519 /* A 0-terminated copy of the linkage name. */
520 const char *linkage_name_copy;
521 /* A copy of the linkage name that might have a special Java prefix
522 added to it, for use when looking names up in the hash table. */
523 const char *lookup_name;
524 /* The length of lookup_name. */
525 int lookup_len;
526
527 if (objfile->demangled_names_hash == NULL)
528 create_demangled_names_hash (objfile);
529
530 /* The stabs reader generally provides names that are not
531 NUL-terminated; most of the other readers don't do this, so we
532 can just use the given copy, unless we're in the Java case. */
533 if (gsymbol->language == language_java)
534 {
535 char *alloc_name;
536 lookup_len = len + JAVA_PREFIX_LEN;
537
538 alloc_name = alloca (lookup_len + 1);
539 memcpy (alloc_name, JAVA_PREFIX, JAVA_PREFIX_LEN);
540 memcpy (alloc_name + JAVA_PREFIX_LEN, linkage_name, len);
541 alloc_name[lookup_len] = '\0';
542
543 lookup_name = alloc_name;
544 linkage_name_copy = alloc_name + JAVA_PREFIX_LEN;
545 }
546 else if (linkage_name[len] != '\0')
547 {
548 char *alloc_name;
549 lookup_len = len;
550
551 alloc_name = alloca (lookup_len + 1);
552 memcpy (alloc_name, linkage_name, len);
553 alloc_name[lookup_len] = '\0';
554
555 lookup_name = alloc_name;
556 linkage_name_copy = alloc_name;
557 }
558 else
559 {
560 lookup_len = len;
561 lookup_name = linkage_name;
562 linkage_name_copy = linkage_name;
563 }
564
565 slot = (char **) htab_find_slot (objfile->demangled_names_hash,
566 lookup_name, INSERT);
567
568 /* If this name is not in the hash table, add it. */
569 if (*slot == NULL)
570 {
571 char *demangled_name = symbol_find_demangled_name (gsymbol,
572 linkage_name_copy);
573 int demangled_len = demangled_name ? strlen (demangled_name) : 0;
574
575 /* If there is a demangled name, place it right after the mangled name.
576 Otherwise, just place a second zero byte after the end of the mangled
577 name. */
578 *slot = obstack_alloc (&objfile->objfile_obstack,
579 lookup_len + demangled_len + 2);
580 memcpy (*slot, lookup_name, lookup_len + 1);
581 if (demangled_name != NULL)
582 {
583 memcpy (*slot + lookup_len + 1, demangled_name, demangled_len + 1);
584 xfree (demangled_name);
585 }
586 else
587 (*slot)[lookup_len + 1] = '\0';
588 }
589
590 gsymbol->name = *slot + lookup_len - len;
591 if ((*slot)[lookup_len + 1] != '\0')
592 gsymbol->language_specific.cplus_specific.demangled_name
593 = &(*slot)[lookup_len + 1];
594 else
595 gsymbol->language_specific.cplus_specific.demangled_name = NULL;
596 }
597
598 /* Initialize the demangled name of GSYMBOL if possible. Any required space
599 to store the name is obtained from the specified obstack. The function
600 symbol_set_names, above, should be used instead where possible for more
601 efficient memory usage. */
602
603 void
604 symbol_init_demangled_name (struct general_symbol_info *gsymbol,
605 struct obstack *obstack)
606 {
607 char *mangled = gsymbol->name;
608 char *demangled = NULL;
609
610 demangled = symbol_find_demangled_name (gsymbol, mangled);
611 if (gsymbol->language == language_cplus
612 || gsymbol->language == language_java
613 || gsymbol->language == language_objc)
614 {
615 if (demangled)
616 {
617 gsymbol->language_specific.cplus_specific.demangled_name
618 = obsavestring (demangled, strlen (demangled), obstack);
619 xfree (demangled);
620 }
621 else
622 gsymbol->language_specific.cplus_specific.demangled_name = NULL;
623 }
624 else
625 {
626 /* Unknown language; just clean up quietly. */
627 if (demangled)
628 xfree (demangled);
629 }
630 }
631
632 /* Return the source code name of a symbol. In languages where
633 demangling is necessary, this is the demangled name. */
634
635 char *
636 symbol_natural_name (const struct general_symbol_info *gsymbol)
637 {
638 switch (gsymbol->language)
639 {
640 case language_cplus:
641 case language_java:
642 case language_objc:
643 if (gsymbol->language_specific.cplus_specific.demangled_name != NULL)
644 return gsymbol->language_specific.cplus_specific.demangled_name;
645 break;
646 case language_ada:
647 if (gsymbol->language_specific.cplus_specific.demangled_name != NULL)
648 return gsymbol->language_specific.cplus_specific.demangled_name;
649 else
650 return ada_decode_symbol (gsymbol);
651 break;
652 default:
653 break;
654 }
655 return gsymbol->name;
656 }
657
658 /* Return the demangled name for a symbol based on the language for
659 that symbol. If no demangled name exists, return NULL. */
660 char *
661 symbol_demangled_name (struct general_symbol_info *gsymbol)
662 {
663 switch (gsymbol->language)
664 {
665 case language_cplus:
666 case language_java:
667 case language_objc:
668 if (gsymbol->language_specific.cplus_specific.demangled_name != NULL)
669 return gsymbol->language_specific.cplus_specific.demangled_name;
670 break;
671 case language_ada:
672 if (gsymbol->language_specific.cplus_specific.demangled_name != NULL)
673 return gsymbol->language_specific.cplus_specific.demangled_name;
674 else
675 return ada_decode_symbol (gsymbol);
676 break;
677 default:
678 break;
679 }
680 return NULL;
681 }
682
683 /* Return the search name of a symbol---generally the demangled or
684 linkage name of the symbol, depending on how it will be searched for.
685 If there is no distinct demangled name, then returns the same value
686 (same pointer) as SYMBOL_LINKAGE_NAME. */
687 char *
688 symbol_search_name (const struct general_symbol_info *gsymbol)
689 {
690 if (gsymbol->language == language_ada)
691 return gsymbol->name;
692 else
693 return symbol_natural_name (gsymbol);
694 }
695
696 /* Initialize the structure fields to zero values. */
697 void
698 init_sal (struct symtab_and_line *sal)
699 {
700 sal->symtab = 0;
701 sal->section = 0;
702 sal->line = 0;
703 sal->pc = 0;
704 sal->end = 0;
705 }
706 \f
707
708 /* Return 1 if the two sections are the same, or if they could
709 plausibly be copies of each other, one in an original object
710 file and another in a separated debug file. */
711
712 int
713 matching_bfd_sections (asection *first, asection *second)
714 {
715 struct objfile *obj;
716
717 /* If they're the same section, then they match. */
718 if (first == second)
719 return 1;
720
721 /* If either is NULL, give up. */
722 if (first == NULL || second == NULL)
723 return 0;
724
725 /* This doesn't apply to absolute symbols. */
726 if (first->owner == NULL || second->owner == NULL)
727 return 0;
728
729 /* If they're in the same object file, they must be different sections. */
730 if (first->owner == second->owner)
731 return 0;
732
733 /* Check whether the two sections are potentially corresponding. They must
734 have the same size, address, and name. We can't compare section indexes,
735 which would be more reliable, because some sections may have been
736 stripped. */
737 if (bfd_get_section_size (first) != bfd_get_section_size (second))
738 return 0;
739
740 /* In-memory addresses may start at a different offset, relativize them. */
741 if (bfd_get_section_vma (first->owner, first)
742 - bfd_get_start_address (first->owner)
743 != bfd_get_section_vma (second->owner, second)
744 - bfd_get_start_address (second->owner))
745 return 0;
746
747 if (bfd_get_section_name (first->owner, first) == NULL
748 || bfd_get_section_name (second->owner, second) == NULL
749 || strcmp (bfd_get_section_name (first->owner, first),
750 bfd_get_section_name (second->owner, second)) != 0)
751 return 0;
752
753 /* Otherwise check that they are in corresponding objfiles. */
754
755 ALL_OBJFILES (obj)
756 if (obj->obfd == first->owner)
757 break;
758 gdb_assert (obj != NULL);
759
760 if (obj->separate_debug_objfile != NULL
761 && obj->separate_debug_objfile->obfd == second->owner)
762 return 1;
763 if (obj->separate_debug_objfile_backlink != NULL
764 && obj->separate_debug_objfile_backlink->obfd == second->owner)
765 return 1;
766
767 return 0;
768 }
769
770 /* Find which partial symtab contains PC and SECTION. Return 0 if
771 none. We return the psymtab that contains a symbol whose address
772 exactly matches PC, or, if we cannot find an exact match, the
773 psymtab that contains a symbol whose address is closest to PC. */
774 struct partial_symtab *
775 find_pc_sect_psymtab (CORE_ADDR pc, asection *section)
776 {
777 struct partial_symtab *pst;
778 struct objfile *objfile;
779 struct minimal_symbol *msymbol;
780
781 /* If we know that this is not a text address, return failure. This is
782 necessary because we loop based on texthigh and textlow, which do
783 not include the data ranges. */
784 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
785 if (msymbol
786 && (msymbol->type == mst_data
787 || msymbol->type == mst_bss
788 || msymbol->type == mst_abs
789 || msymbol->type == mst_file_data
790 || msymbol->type == mst_file_bss))
791 return NULL;
792
793 ALL_PSYMTABS (objfile, pst)
794 {
795 if (pc >= pst->textlow && pc < pst->texthigh)
796 {
797 struct partial_symtab *tpst;
798 struct partial_symtab *best_pst = pst;
799 CORE_ADDR best_addr = pst->textlow;
800
801 /* An objfile that has its functions reordered might have
802 many partial symbol tables containing the PC, but
803 we want the partial symbol table that contains the
804 function containing the PC. */
805 if (!(objfile->flags & OBJF_REORDERED) &&
806 section == 0) /* can't validate section this way */
807 return (pst);
808
809 if (msymbol == NULL)
810 return (pst);
811
812 /* The code range of partial symtabs sometimes overlap, so, in
813 the loop below, we need to check all partial symtabs and
814 find the one that fits better for the given PC address. We
815 select the partial symtab that contains a symbol whose
816 address is closest to the PC address. By closest we mean
817 that find_pc_sect_symbol returns the symbol with address
818 that is closest and still less than the given PC. */
819 for (tpst = pst; tpst != NULL; tpst = tpst->next)
820 {
821 if (pc >= tpst->textlow && pc < tpst->texthigh)
822 {
823 struct partial_symbol *p;
824 CORE_ADDR this_addr;
825
826 /* NOTE: This assumes that every psymbol has a
827 corresponding msymbol, which is not necessarily
828 true; the debug info might be much richer than the
829 object's symbol table. */
830 p = find_pc_sect_psymbol (tpst, pc, section);
831 if (p != NULL
832 && SYMBOL_VALUE_ADDRESS (p)
833 == SYMBOL_VALUE_ADDRESS (msymbol))
834 return (tpst);
835
836 /* Also accept the textlow value of a psymtab as a
837 "symbol", to provide some support for partial
838 symbol tables with line information but no debug
839 symbols (e.g. those produced by an assembler). */
840 if (p != NULL)
841 this_addr = SYMBOL_VALUE_ADDRESS (p);
842 else
843 this_addr = tpst->textlow;
844
845 /* Check whether it is closer than our current
846 BEST_ADDR. Since this symbol address is
847 necessarily lower or equal to PC, the symbol closer
848 to PC is the symbol which address is the highest.
849 This way we return the psymtab which contains such
850 best match symbol. This can help in cases where the
851 symbol information/debuginfo is not complete, like
852 for instance on IRIX6 with gcc, where no debug info
853 is emitted for statics. (See also the nodebug.exp
854 testcase.) */
855 if (this_addr > best_addr)
856 {
857 best_addr = this_addr;
858 best_pst = tpst;
859 }
860 }
861 }
862 return (best_pst);
863 }
864 }
865 return (NULL);
866 }
867
868 /* Find which partial symtab contains PC. Return 0 if none.
869 Backward compatibility, no section */
870
871 struct partial_symtab *
872 find_pc_psymtab (CORE_ADDR pc)
873 {
874 return find_pc_sect_psymtab (pc, find_pc_mapped_section (pc));
875 }
876
877 /* Find which partial symbol within a psymtab matches PC and SECTION.
878 Return 0 if none. Check all psymtabs if PSYMTAB is 0. */
879
880 struct partial_symbol *
881 find_pc_sect_psymbol (struct partial_symtab *psymtab, CORE_ADDR pc,
882 asection *section)
883 {
884 struct partial_symbol *best = NULL, *p, **pp;
885 CORE_ADDR best_pc;
886
887 if (!psymtab)
888 psymtab = find_pc_sect_psymtab (pc, section);
889 if (!psymtab)
890 return 0;
891
892 /* Cope with programs that start at address 0 */
893 best_pc = (psymtab->textlow != 0) ? psymtab->textlow - 1 : 0;
894
895 /* Search the global symbols as well as the static symbols, so that
896 find_pc_partial_function doesn't use a minimal symbol and thus
897 cache a bad endaddr. */
898 for (pp = psymtab->objfile->global_psymbols.list + psymtab->globals_offset;
899 (pp - (psymtab->objfile->global_psymbols.list + psymtab->globals_offset)
900 < psymtab->n_global_syms);
901 pp++)
902 {
903 p = *pp;
904 if (SYMBOL_DOMAIN (p) == VAR_DOMAIN
905 && SYMBOL_CLASS (p) == LOC_BLOCK
906 && pc >= SYMBOL_VALUE_ADDRESS (p)
907 && (SYMBOL_VALUE_ADDRESS (p) > best_pc
908 || (psymtab->textlow == 0
909 && best_pc == 0 && SYMBOL_VALUE_ADDRESS (p) == 0)))
910 {
911 if (section) /* match on a specific section */
912 {
913 fixup_psymbol_section (p, psymtab->objfile);
914 if (!matching_bfd_sections (SYMBOL_BFD_SECTION (p), section))
915 continue;
916 }
917 best_pc = SYMBOL_VALUE_ADDRESS (p);
918 best = p;
919 }
920 }
921
922 for (pp = psymtab->objfile->static_psymbols.list + psymtab->statics_offset;
923 (pp - (psymtab->objfile->static_psymbols.list + psymtab->statics_offset)
924 < psymtab->n_static_syms);
925 pp++)
926 {
927 p = *pp;
928 if (SYMBOL_DOMAIN (p) == VAR_DOMAIN
929 && SYMBOL_CLASS (p) == LOC_BLOCK
930 && pc >= SYMBOL_VALUE_ADDRESS (p)
931 && (SYMBOL_VALUE_ADDRESS (p) > best_pc
932 || (psymtab->textlow == 0
933 && best_pc == 0 && SYMBOL_VALUE_ADDRESS (p) == 0)))
934 {
935 if (section) /* match on a specific section */
936 {
937 fixup_psymbol_section (p, psymtab->objfile);
938 if (!matching_bfd_sections (SYMBOL_BFD_SECTION (p), section))
939 continue;
940 }
941 best_pc = SYMBOL_VALUE_ADDRESS (p);
942 best = p;
943 }
944 }
945
946 return best;
947 }
948
949 /* Find which partial symbol within a psymtab matches PC. Return 0 if none.
950 Check all psymtabs if PSYMTAB is 0. Backwards compatibility, no section. */
951
952 struct partial_symbol *
953 find_pc_psymbol (struct partial_symtab *psymtab, CORE_ADDR pc)
954 {
955 return find_pc_sect_psymbol (psymtab, pc, find_pc_mapped_section (pc));
956 }
957 \f
958 /* Debug symbols usually don't have section information. We need to dig that
959 out of the minimal symbols and stash that in the debug symbol. */
960
961 static void
962 fixup_section (struct general_symbol_info *ginfo, struct objfile *objfile)
963 {
964 struct minimal_symbol *msym;
965 msym = lookup_minimal_symbol (ginfo->name, NULL, objfile);
966
967 if (msym)
968 {
969 ginfo->bfd_section = SYMBOL_BFD_SECTION (msym);
970 ginfo->section = SYMBOL_SECTION (msym);
971 }
972 else if (objfile)
973 {
974 /* Static, function-local variables do appear in the linker
975 (minimal) symbols, but are frequently given names that won't
976 be found via lookup_minimal_symbol(). E.g., it has been
977 observed in frv-uclinux (ELF) executables that a static,
978 function-local variable named "foo" might appear in the
979 linker symbols as "foo.6" or "foo.3". Thus, there is no
980 point in attempting to extend the lookup-by-name mechanism to
981 handle this case due to the fact that there can be multiple
982 names.
983
984 So, instead, search the section table when lookup by name has
985 failed. The ``addr'' and ``endaddr'' fields may have already
986 been relocated. If so, the relocation offset (i.e. the
987 ANOFFSET value) needs to be subtracted from these values when
988 performing the comparison. We unconditionally subtract it,
989 because, when no relocation has been performed, the ANOFFSET
990 value will simply be zero.
991
992 The address of the symbol whose section we're fixing up HAS
993 NOT BEEN adjusted (relocated) yet. It can't have been since
994 the section isn't yet known and knowing the section is
995 necessary in order to add the correct relocation value. In
996 other words, we wouldn't even be in this function (attempting
997 to compute the section) if it were already known.
998
999 Note that it is possible to search the minimal symbols
1000 (subtracting the relocation value if necessary) to find the
1001 matching minimal symbol, but this is overkill and much less
1002 efficient. It is not necessary to find the matching minimal
1003 symbol, only its section.
1004
1005 Note that this technique (of doing a section table search)
1006 can fail when unrelocated section addresses overlap. For
1007 this reason, we still attempt a lookup by name prior to doing
1008 a search of the section table. */
1009
1010 CORE_ADDR addr;
1011 struct obj_section *s;
1012
1013 addr = ginfo->value.address;
1014
1015 ALL_OBJFILE_OSECTIONS (objfile, s)
1016 {
1017 int idx = s->the_bfd_section->index;
1018 CORE_ADDR offset = ANOFFSET (objfile->section_offsets, idx);
1019
1020 if (s->addr - offset <= addr && addr < s->endaddr - offset)
1021 {
1022 ginfo->bfd_section = s->the_bfd_section;
1023 ginfo->section = idx;
1024 return;
1025 }
1026 }
1027 }
1028 }
1029
1030 struct symbol *
1031 fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
1032 {
1033 if (!sym)
1034 return NULL;
1035
1036 if (SYMBOL_BFD_SECTION (sym))
1037 return sym;
1038
1039 fixup_section (&sym->ginfo, objfile);
1040
1041 return sym;
1042 }
1043
1044 struct partial_symbol *
1045 fixup_psymbol_section (struct partial_symbol *psym, struct objfile *objfile)
1046 {
1047 if (!psym)
1048 return NULL;
1049
1050 if (SYMBOL_BFD_SECTION (psym))
1051 return psym;
1052
1053 fixup_section (&psym->ginfo, objfile);
1054
1055 return psym;
1056 }
1057
1058 /* Find the definition for a specified symbol name NAME
1059 in domain DOMAIN, visible from lexical block BLOCK.
1060 Returns the struct symbol pointer, or zero if no symbol is found.
1061 If SYMTAB is non-NULL, store the symbol table in which the
1062 symbol was found there, or NULL if not found.
1063 C++: if IS_A_FIELD_OF_THIS is nonzero on entry, check to see if
1064 NAME is a field of the current implied argument `this'. If so set
1065 *IS_A_FIELD_OF_THIS to 1, otherwise set it to zero.
1066 BLOCK_FOUND is set to the block in which NAME is found (in the case of
1067 a field of `this', value_of_this sets BLOCK_FOUND to the proper value.) */
1068
1069 /* This function has a bunch of loops in it and it would seem to be
1070 attractive to put in some QUIT's (though I'm not really sure
1071 whether it can run long enough to be really important). But there
1072 are a few calls for which it would appear to be bad news to quit
1073 out of here: find_proc_desc in alpha-tdep.c and mips-tdep.c. (Note
1074 that there is C++ code below which can error(), but that probably
1075 doesn't affect these calls since they are looking for a known
1076 variable and thus can probably assume it will never hit the C++
1077 code). */
1078
1079 struct symbol *
1080 lookup_symbol_in_language (const char *name, const struct block *block,
1081 const domain_enum domain, enum language lang,
1082 int *is_a_field_of_this,
1083 struct symtab **symtab)
1084 {
1085 char *demangled_name = NULL;
1086 const char *modified_name = NULL;
1087 const char *mangled_name = NULL;
1088 int needtofreename = 0;
1089 struct symbol *returnval;
1090
1091 modified_name = name;
1092
1093 /* If we are using C++ or Java, demangle the name before doing a lookup, so
1094 we can always binary search. */
1095 if (lang == language_cplus)
1096 {
1097 demangled_name = cplus_demangle (name, DMGL_ANSI | DMGL_PARAMS);
1098 if (demangled_name)
1099 {
1100 mangled_name = name;
1101 modified_name = demangled_name;
1102 needtofreename = 1;
1103 }
1104 }
1105 else if (lang == language_java)
1106 {
1107 demangled_name = cplus_demangle (name,
1108 DMGL_ANSI | DMGL_PARAMS | DMGL_JAVA);
1109 if (demangled_name)
1110 {
1111 mangled_name = name;
1112 modified_name = demangled_name;
1113 needtofreename = 1;
1114 }
1115 }
1116
1117 if (case_sensitivity == case_sensitive_off)
1118 {
1119 char *copy;
1120 int len, i;
1121
1122 len = strlen (name);
1123 copy = (char *) alloca (len + 1);
1124 for (i= 0; i < len; i++)
1125 copy[i] = tolower (name[i]);
1126 copy[len] = 0;
1127 modified_name = copy;
1128 }
1129
1130 returnval = lookup_symbol_aux (modified_name, mangled_name, block,
1131 domain, lang,
1132 is_a_field_of_this, symtab);
1133 if (needtofreename)
1134 xfree (demangled_name);
1135
1136 /* Override the returned symtab with the symbol's specific one. */
1137 if (returnval != NULL && symtab != NULL)
1138 *symtab = SYMBOL_SYMTAB (returnval);
1139
1140 return returnval;
1141 }
1142
1143 /* Behave like lookup_symbol_in_language, but performed with the
1144 current language. */
1145
1146 struct symbol *
1147 lookup_symbol (const char *name, const struct block *block,
1148 domain_enum domain, int *is_a_field_of_this,
1149 struct symtab **symtab)
1150 {
1151 return lookup_symbol_in_language (name, block, domain,
1152 current_language->la_language,
1153 is_a_field_of_this, symtab);
1154 }
1155
1156 /* Behave like lookup_symbol except that NAME is the natural name
1157 of the symbol that we're looking for and, if LINKAGE_NAME is
1158 non-NULL, ensure that the symbol's linkage name matches as
1159 well. */
1160
1161 static struct symbol *
1162 lookup_symbol_aux (const char *name, const char *linkage_name,
1163 const struct block *block, const domain_enum domain,
1164 enum language language,
1165 int *is_a_field_of_this, struct symtab **symtab)
1166 {
1167 struct symbol *sym;
1168 const struct language_defn *langdef;
1169
1170 /* Make sure we do something sensible with is_a_field_of_this, since
1171 the callers that set this parameter to some non-null value will
1172 certainly use it later and expect it to be either 0 or 1.
1173 If we don't set it, the contents of is_a_field_of_this are
1174 undefined. */
1175 if (is_a_field_of_this != NULL)
1176 *is_a_field_of_this = 0;
1177
1178 /* Search specified block and its superiors. Don't search
1179 STATIC_BLOCK or GLOBAL_BLOCK. */
1180
1181 sym = lookup_symbol_aux_local (name, linkage_name, block, domain,
1182 symtab);
1183 if (sym != NULL)
1184 return sym;
1185
1186 /* If requested to do so by the caller and if appropriate for LANGUAGE,
1187 check to see if NAME is a field of `this'. */
1188
1189 langdef = language_def (language);
1190
1191 if (langdef->la_value_of_this != NULL
1192 && is_a_field_of_this != NULL)
1193 {
1194 struct value *v = langdef->la_value_of_this (0);
1195
1196 if (v && check_field (v, name))
1197 {
1198 *is_a_field_of_this = 1;
1199 if (symtab != NULL)
1200 *symtab = NULL;
1201 return NULL;
1202 }
1203 }
1204
1205 /* Now do whatever is appropriate for LANGUAGE to look
1206 up static and global variables. */
1207
1208 sym = langdef->la_lookup_symbol_nonlocal (name, linkage_name,
1209 block, domain, symtab);
1210 if (sym != NULL)
1211 return sym;
1212
1213 /* Now search all static file-level symbols. Not strictly correct,
1214 but more useful than an error. Do the symtabs first, then check
1215 the psymtabs. If a psymtab indicates the existence of the
1216 desired name as a file-level static, then do psymtab-to-symtab
1217 conversion on the fly and return the found symbol. */
1218
1219 sym = lookup_symbol_aux_symtabs (STATIC_BLOCK, name, linkage_name,
1220 domain, symtab);
1221 if (sym != NULL)
1222 return sym;
1223
1224 sym = lookup_symbol_aux_psymtabs (STATIC_BLOCK, name, linkage_name,
1225 domain, symtab);
1226 if (sym != NULL)
1227 return sym;
1228
1229 if (symtab != NULL)
1230 *symtab = NULL;
1231 return NULL;
1232 }
1233
1234 /* Check to see if the symbol is defined in BLOCK or its superiors.
1235 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
1236
1237 static struct symbol *
1238 lookup_symbol_aux_local (const char *name, const char *linkage_name,
1239 const struct block *block,
1240 const domain_enum domain,
1241 struct symtab **symtab)
1242 {
1243 struct symbol *sym;
1244 const struct block *static_block = block_static_block (block);
1245
1246 /* Check if either no block is specified or it's a global block. */
1247
1248 if (static_block == NULL)
1249 return NULL;
1250
1251 while (block != static_block)
1252 {
1253 sym = lookup_symbol_aux_block (name, linkage_name, block, domain,
1254 symtab);
1255 if (sym != NULL)
1256 return sym;
1257 block = BLOCK_SUPERBLOCK (block);
1258 }
1259
1260 /* We've reached the static block without finding a result. */
1261
1262 return NULL;
1263 }
1264
1265 /* Look up OBJFILE to BLOCK. */
1266
1267 static struct objfile *
1268 lookup_objfile_from_block (const struct block *block)
1269 {
1270 struct objfile *obj;
1271 struct symtab *s;
1272
1273 if (block == NULL)
1274 return NULL;
1275
1276 block = block_global_block (block);
1277 /* Go through SYMTABS. */
1278 ALL_SYMTABS (obj, s)
1279 if (block == BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK))
1280 return obj;
1281
1282 return NULL;
1283 }
1284
1285 /* Look up a symbol in a block; if found, locate its symtab, fixup the
1286 symbol, and set block_found appropriately. */
1287
1288 struct symbol *
1289 lookup_symbol_aux_block (const char *name, const char *linkage_name,
1290 const struct block *block,
1291 const domain_enum domain,
1292 struct symtab **symtab)
1293 {
1294 struct symbol *sym;
1295 struct objfile *objfile = NULL;
1296 struct blockvector *bv;
1297 struct block *b;
1298 struct symtab *s = NULL;
1299
1300 sym = lookup_block_symbol (block, name, linkage_name, domain);
1301 if (sym)
1302 {
1303 block_found = block;
1304 if (symtab != NULL)
1305 {
1306 /* Search the list of symtabs for one which contains the
1307 address of the start of this block. */
1308 ALL_PRIMARY_SYMTABS (objfile, s)
1309 {
1310 bv = BLOCKVECTOR (s);
1311 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1312 if (BLOCK_START (b) <= BLOCK_START (block)
1313 && BLOCK_END (b) > BLOCK_START (block))
1314 goto found;
1315 }
1316 found:
1317 *symtab = s;
1318 }
1319
1320 return fixup_symbol_section (sym, objfile);
1321 }
1322
1323 return NULL;
1324 }
1325
1326 /* Check all global symbols in OBJFILE in symtabs and
1327 psymtabs. */
1328
1329 struct symbol *
1330 lookup_global_symbol_from_objfile (const struct objfile *objfile,
1331 const char *name,
1332 const char *linkage_name,
1333 const domain_enum domain,
1334 struct symtab **symtab)
1335 {
1336 struct symbol *sym;
1337 struct blockvector *bv;
1338 const struct block *block;
1339 struct symtab *s;
1340 struct partial_symtab *ps;
1341
1342 /* Go through symtabs. */
1343 ALL_OBJFILE_SYMTABS (objfile, s)
1344 {
1345 bv = BLOCKVECTOR (s);
1346 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1347 sym = lookup_block_symbol (block, name, linkage_name, domain);
1348 if (sym)
1349 {
1350 block_found = block;
1351 if (symtab != NULL)
1352 *symtab = s;
1353 return fixup_symbol_section (sym, (struct objfile *)objfile);
1354 }
1355 }
1356
1357 /* Now go through psymtabs. */
1358 ALL_OBJFILE_PSYMTABS (objfile, ps)
1359 {
1360 if (!ps->readin
1361 && lookup_partial_symbol (ps, name, linkage_name,
1362 1, domain))
1363 {
1364 s = PSYMTAB_TO_SYMTAB (ps);
1365 bv = BLOCKVECTOR (s);
1366 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1367 sym = lookup_block_symbol (block, name, linkage_name, domain);
1368 if (symtab != NULL)
1369 *symtab = s;
1370 return fixup_symbol_section (sym, (struct objfile *)objfile);
1371 }
1372 }
1373
1374 return NULL;
1375 }
1376
1377 /* Check to see if the symbol is defined in one of the symtabs.
1378 BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
1379 depending on whether or not we want to search global symbols or
1380 static symbols. */
1381
1382 static struct symbol *
1383 lookup_symbol_aux_symtabs (int block_index,
1384 const char *name, const char *linkage_name,
1385 const domain_enum domain,
1386 struct symtab **symtab)
1387 {
1388 struct symbol *sym;
1389 struct objfile *objfile;
1390 struct blockvector *bv;
1391 const struct block *block;
1392 struct symtab *s;
1393
1394 ALL_PRIMARY_SYMTABS (objfile, s)
1395 {
1396 bv = BLOCKVECTOR (s);
1397 block = BLOCKVECTOR_BLOCK (bv, block_index);
1398 sym = lookup_block_symbol (block, name, linkage_name, domain);
1399 if (sym)
1400 {
1401 block_found = block;
1402 if (symtab != NULL)
1403 *symtab = s;
1404 return fixup_symbol_section (sym, objfile);
1405 }
1406 }
1407
1408 return NULL;
1409 }
1410
1411 /* Check to see if the symbol is defined in one of the partial
1412 symtabs. BLOCK_INDEX should be either GLOBAL_BLOCK or
1413 STATIC_BLOCK, depending on whether or not we want to search global
1414 symbols or static symbols. */
1415
1416 static struct symbol *
1417 lookup_symbol_aux_psymtabs (int block_index, const char *name,
1418 const char *linkage_name,
1419 const domain_enum domain,
1420 struct symtab **symtab)
1421 {
1422 struct symbol *sym;
1423 struct objfile *objfile;
1424 struct blockvector *bv;
1425 const struct block *block;
1426 struct partial_symtab *ps;
1427 struct symtab *s;
1428 const int psymtab_index = (block_index == GLOBAL_BLOCK ? 1 : 0);
1429
1430 ALL_PSYMTABS (objfile, ps)
1431 {
1432 if (!ps->readin
1433 && lookup_partial_symbol (ps, name, linkage_name,
1434 psymtab_index, domain))
1435 {
1436 s = PSYMTAB_TO_SYMTAB (ps);
1437 bv = BLOCKVECTOR (s);
1438 block = BLOCKVECTOR_BLOCK (bv, block_index);
1439 sym = lookup_block_symbol (block, name, linkage_name, domain);
1440 if (!sym)
1441 {
1442 /* This shouldn't be necessary, but as a last resort try
1443 looking in the statics even though the psymtab claimed
1444 the symbol was global, or vice-versa. It's possible
1445 that the psymtab gets it wrong in some cases. */
1446
1447 /* FIXME: carlton/2002-09-30: Should we really do that?
1448 If that happens, isn't it likely to be a GDB error, in
1449 which case we should fix the GDB error rather than
1450 silently dealing with it here? So I'd vote for
1451 removing the check for the symbol in the other
1452 block. */
1453 block = BLOCKVECTOR_BLOCK (bv,
1454 block_index == GLOBAL_BLOCK ?
1455 STATIC_BLOCK : GLOBAL_BLOCK);
1456 sym = lookup_block_symbol (block, name, linkage_name, domain);
1457 if (!sym)
1458 error (_("Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n%s may be an inlined function, or may be a template function\n(if a template, try specifying an instantiation: %s<type>)."),
1459 block_index == GLOBAL_BLOCK ? "global" : "static",
1460 name, ps->filename, name, name);
1461 }
1462 if (symtab != NULL)
1463 *symtab = s;
1464 return fixup_symbol_section (sym, objfile);
1465 }
1466 }
1467
1468 return NULL;
1469 }
1470
1471 #if 0
1472 /* Check for the possibility of the symbol being a function or a
1473 mangled variable that is stored in one of the minimal symbol
1474 tables. Eventually, all global symbols might be resolved in this
1475 way. */
1476
1477 /* NOTE: carlton/2002-12-05: At one point, this function was part of
1478 lookup_symbol_aux, and what are now 'return' statements within
1479 lookup_symbol_aux_minsyms returned from lookup_symbol_aux, even if
1480 sym was NULL. As far as I can tell, this was basically accidental;
1481 it didn't happen every time that msymbol was non-NULL, but only if
1482 some additional conditions held as well, and it caused problems
1483 with HP-generated symbol tables. */
1484
1485 /* NOTE: carlton/2003-05-14: This function was once used as part of
1486 lookup_symbol. It is currently unnecessary for correctness
1487 reasons, however, and using it doesn't seem to be any faster than
1488 using lookup_symbol_aux_psymtabs, so I'm commenting it out. */
1489
1490 static struct symbol *
1491 lookup_symbol_aux_minsyms (const char *name,
1492 const char *linkage_name,
1493 const domain_enum domain,
1494 int *is_a_field_of_this,
1495 struct symtab **symtab)
1496 {
1497 struct symbol *sym;
1498 struct blockvector *bv;
1499 const struct block *block;
1500 struct minimal_symbol *msymbol;
1501 struct symtab *s;
1502
1503 if (domain == VAR_DOMAIN)
1504 {
1505 msymbol = lookup_minimal_symbol (name, NULL, NULL);
1506
1507 if (msymbol != NULL)
1508 {
1509 /* OK, we found a minimal symbol in spite of not finding any
1510 symbol. There are various possible explanations for
1511 this. One possibility is the symbol exists in code not
1512 compiled -g. Another possibility is that the 'psymtab'
1513 isn't doing its job. A third possibility, related to #2,
1514 is that we were confused by name-mangling. For instance,
1515 maybe the psymtab isn't doing its job because it only
1516 know about demangled names, but we were given a mangled
1517 name... */
1518
1519 /* We first use the address in the msymbol to try to locate
1520 the appropriate symtab. Note that find_pc_sect_symtab()
1521 has a side-effect of doing psymtab-to-symtab expansion,
1522 for the found symtab. */
1523 s = find_pc_sect_symtab (SYMBOL_VALUE_ADDRESS (msymbol),
1524 SYMBOL_BFD_SECTION (msymbol));
1525 if (s != NULL)
1526 {
1527 /* This is a function which has a symtab for its address. */
1528 bv = BLOCKVECTOR (s);
1529 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1530
1531 /* This call used to pass `SYMBOL_LINKAGE_NAME (msymbol)' as the
1532 `name' argument to lookup_block_symbol. But the name
1533 of a minimal symbol is always mangled, so that seems
1534 to be clearly the wrong thing to pass as the
1535 unmangled name. */
1536 sym =
1537 lookup_block_symbol (block, name, linkage_name, domain);
1538 /* We kept static functions in minimal symbol table as well as
1539 in static scope. We want to find them in the symbol table. */
1540 if (!sym)
1541 {
1542 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
1543 sym = lookup_block_symbol (block, name,
1544 linkage_name, domain);
1545 }
1546
1547 /* NOTE: carlton/2002-12-04: The following comment was
1548 taken from a time when two versions of this function
1549 were part of the body of lookup_symbol_aux: this
1550 comment was taken from the version of the function
1551 that was #ifdef HPUXHPPA, and the comment was right
1552 before the 'return NULL' part of lookup_symbol_aux.
1553 (Hence the "Fall through and return 0" comment.)
1554 Elena did some digging into the situation for
1555 Fortran, and she reports:
1556
1557 "I asked around (thanks to Jeff Knaggs), and I think
1558 the story for Fortran goes like this:
1559
1560 "Apparently, in older Fortrans, '_' was not part of
1561 the user namespace. g77 attached a final '_' to
1562 procedure names as the exported symbols for linkage
1563 (foo_) , but the symbols went in the debug info just
1564 like 'foo'. The rationale behind this is not
1565 completely clear, and maybe it was done to other
1566 symbols as well, not just procedures." */
1567
1568 /* If we get here with sym == 0, the symbol was
1569 found in the minimal symbol table
1570 but not in the symtab.
1571 Fall through and return 0 to use the msymbol
1572 definition of "foo_".
1573 (Note that outer code generally follows up a call
1574 to this routine with a call to lookup_minimal_symbol(),
1575 so a 0 return means we'll just flow into that other routine).
1576
1577 This happens for Fortran "foo_" symbols,
1578 which are "foo" in the symtab.
1579
1580 This can also happen if "asm" is used to make a
1581 regular symbol but not a debugging symbol, e.g.
1582 asm(".globl _main");
1583 asm("_main:");
1584 */
1585
1586 if (symtab != NULL && sym != NULL)
1587 *symtab = s;
1588 return fixup_symbol_section (sym, s->objfile);
1589 }
1590 }
1591 }
1592
1593 return NULL;
1594 }
1595 #endif /* 0 */
1596
1597 /* A default version of lookup_symbol_nonlocal for use by languages
1598 that can't think of anything better to do. This implements the C
1599 lookup rules. */
1600
1601 struct symbol *
1602 basic_lookup_symbol_nonlocal (const char *name,
1603 const char *linkage_name,
1604 const struct block *block,
1605 const domain_enum domain,
1606 struct symtab **symtab)
1607 {
1608 struct symbol *sym;
1609
1610 /* NOTE: carlton/2003-05-19: The comments below were written when
1611 this (or what turned into this) was part of lookup_symbol_aux;
1612 I'm much less worried about these questions now, since these
1613 decisions have turned out well, but I leave these comments here
1614 for posterity. */
1615
1616 /* NOTE: carlton/2002-12-05: There is a question as to whether or
1617 not it would be appropriate to search the current global block
1618 here as well. (That's what this code used to do before the
1619 is_a_field_of_this check was moved up.) On the one hand, it's
1620 redundant with the lookup_symbol_aux_symtabs search that happens
1621 next. On the other hand, if decode_line_1 is passed an argument
1622 like filename:var, then the user presumably wants 'var' to be
1623 searched for in filename. On the third hand, there shouldn't be
1624 multiple global variables all of which are named 'var', and it's
1625 not like decode_line_1 has ever restricted its search to only
1626 global variables in a single filename. All in all, only
1627 searching the static block here seems best: it's correct and it's
1628 cleanest. */
1629
1630 /* NOTE: carlton/2002-12-05: There's also a possible performance
1631 issue here: if you usually search for global symbols in the
1632 current file, then it would be slightly better to search the
1633 current global block before searching all the symtabs. But there
1634 are other factors that have a much greater effect on performance
1635 than that one, so I don't think we should worry about that for
1636 now. */
1637
1638 sym = lookup_symbol_static (name, linkage_name, block, domain, symtab);
1639 if (sym != NULL)
1640 return sym;
1641
1642 return lookup_symbol_global (name, linkage_name, block, domain, symtab);
1643 }
1644
1645 /* Lookup a symbol in the static block associated to BLOCK, if there
1646 is one; do nothing if BLOCK is NULL or a global block. */
1647
1648 struct symbol *
1649 lookup_symbol_static (const char *name,
1650 const char *linkage_name,
1651 const struct block *block,
1652 const domain_enum domain,
1653 struct symtab **symtab)
1654 {
1655 const struct block *static_block = block_static_block (block);
1656
1657 if (static_block != NULL)
1658 return lookup_symbol_aux_block (name, linkage_name, static_block,
1659 domain, symtab);
1660 else
1661 return NULL;
1662 }
1663
1664 /* Lookup a symbol in all files' global blocks (searching psymtabs if
1665 necessary). */
1666
1667 struct symbol *
1668 lookup_symbol_global (const char *name,
1669 const char *linkage_name,
1670 const struct block *block,
1671 const domain_enum domain,
1672 struct symtab **symtab)
1673 {
1674 struct symbol *sym = NULL;
1675 struct objfile *objfile = NULL;
1676
1677 /* Call library-specific lookup procedure. */
1678 objfile = lookup_objfile_from_block (block);
1679 if (objfile != NULL)
1680 sym = solib_global_lookup (objfile, name, linkage_name, domain, symtab);
1681 if (sym != NULL)
1682 return sym;
1683
1684 sym = lookup_symbol_aux_symtabs (GLOBAL_BLOCK, name, linkage_name,
1685 domain, symtab);
1686 if (sym != NULL)
1687 return sym;
1688
1689 return lookup_symbol_aux_psymtabs (GLOBAL_BLOCK, name, linkage_name,
1690 domain, symtab);
1691 }
1692
1693 /* Look, in partial_symtab PST, for symbol whose natural name is NAME.
1694 If LINKAGE_NAME is non-NULL, check in addition that the symbol's
1695 linkage name matches it. Check the global symbols if GLOBAL, the
1696 static symbols if not */
1697
1698 struct partial_symbol *
1699 lookup_partial_symbol (struct partial_symtab *pst, const char *name,
1700 const char *linkage_name, int global,
1701 domain_enum domain)
1702 {
1703 struct partial_symbol *temp;
1704 struct partial_symbol **start, **psym;
1705 struct partial_symbol **top, **real_top, **bottom, **center;
1706 int length = (global ? pst->n_global_syms : pst->n_static_syms);
1707 int do_linear_search = 1;
1708
1709 if (length == 0)
1710 {
1711 return (NULL);
1712 }
1713 start = (global ?
1714 pst->objfile->global_psymbols.list + pst->globals_offset :
1715 pst->objfile->static_psymbols.list + pst->statics_offset);
1716
1717 if (global) /* This means we can use a binary search. */
1718 {
1719 do_linear_search = 0;
1720
1721 /* Binary search. This search is guaranteed to end with center
1722 pointing at the earliest partial symbol whose name might be
1723 correct. At that point *all* partial symbols with an
1724 appropriate name will be checked against the correct
1725 domain. */
1726
1727 bottom = start;
1728 top = start + length - 1;
1729 real_top = top;
1730 while (top > bottom)
1731 {
1732 center = bottom + (top - bottom) / 2;
1733 if (!(center < top))
1734 internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
1735 if (!do_linear_search
1736 && (SYMBOL_LANGUAGE (*center) == language_java))
1737 {
1738 do_linear_search = 1;
1739 }
1740 if (strcmp_iw_ordered (SYMBOL_SEARCH_NAME (*center), name) >= 0)
1741 {
1742 top = center;
1743 }
1744 else
1745 {
1746 bottom = center + 1;
1747 }
1748 }
1749 if (!(top == bottom))
1750 internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
1751
1752 while (top <= real_top
1753 && (linkage_name != NULL
1754 ? strcmp (SYMBOL_LINKAGE_NAME (*top), linkage_name) == 0
1755 : SYMBOL_MATCHES_SEARCH_NAME (*top,name)))
1756 {
1757 if (SYMBOL_DOMAIN (*top) == domain)
1758 {
1759 return (*top);
1760 }
1761 top++;
1762 }
1763 }
1764
1765 /* Can't use a binary search or else we found during the binary search that
1766 we should also do a linear search. */
1767
1768 if (do_linear_search)
1769 {
1770 for (psym = start; psym < start + length; psym++)
1771 {
1772 if (domain == SYMBOL_DOMAIN (*psym))
1773 {
1774 if (linkage_name != NULL
1775 ? strcmp (SYMBOL_LINKAGE_NAME (*psym), linkage_name) == 0
1776 : SYMBOL_MATCHES_SEARCH_NAME (*psym, name))
1777 {
1778 return (*psym);
1779 }
1780 }
1781 }
1782 }
1783
1784 return (NULL);
1785 }
1786
1787 /* Look up a type named NAME in the struct_domain. The type returned
1788 must not be opaque -- i.e., must have at least one field
1789 defined. */
1790
1791 struct type *
1792 lookup_transparent_type (const char *name)
1793 {
1794 return current_language->la_lookup_transparent_type (name);
1795 }
1796
1797 /* The standard implementation of lookup_transparent_type. This code
1798 was modeled on lookup_symbol -- the parts not relevant to looking
1799 up types were just left out. In particular it's assumed here that
1800 types are available in struct_domain and only at file-static or
1801 global blocks. */
1802
1803 struct type *
1804 basic_lookup_transparent_type (const char *name)
1805 {
1806 struct symbol *sym;
1807 struct symtab *s = NULL;
1808 struct partial_symtab *ps;
1809 struct blockvector *bv;
1810 struct objfile *objfile;
1811 struct block *block;
1812
1813 /* Now search all the global symbols. Do the symtab's first, then
1814 check the psymtab's. If a psymtab indicates the existence
1815 of the desired name as a global, then do psymtab-to-symtab
1816 conversion on the fly and return the found symbol. */
1817
1818 ALL_PRIMARY_SYMTABS (objfile, s)
1819 {
1820 bv = BLOCKVECTOR (s);
1821 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1822 sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN);
1823 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1824 {
1825 return SYMBOL_TYPE (sym);
1826 }
1827 }
1828
1829 ALL_PSYMTABS (objfile, ps)
1830 {
1831 if (!ps->readin && lookup_partial_symbol (ps, name, NULL,
1832 1, STRUCT_DOMAIN))
1833 {
1834 s = PSYMTAB_TO_SYMTAB (ps);
1835 bv = BLOCKVECTOR (s);
1836 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1837 sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN);
1838 if (!sym)
1839 {
1840 /* This shouldn't be necessary, but as a last resort
1841 * try looking in the statics even though the psymtab
1842 * claimed the symbol was global. It's possible that
1843 * the psymtab gets it wrong in some cases.
1844 */
1845 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
1846 sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN);
1847 if (!sym)
1848 error (_("Internal: global symbol `%s' found in %s psymtab but not in symtab.\n\
1849 %s may be an inlined function, or may be a template function\n\
1850 (if a template, try specifying an instantiation: %s<type>)."),
1851 name, ps->filename, name, name);
1852 }
1853 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1854 return SYMBOL_TYPE (sym);
1855 }
1856 }
1857
1858 /* Now search the static file-level symbols.
1859 Not strictly correct, but more useful than an error.
1860 Do the symtab's first, then
1861 check the psymtab's. If a psymtab indicates the existence
1862 of the desired name as a file-level static, then do psymtab-to-symtab
1863 conversion on the fly and return the found symbol.
1864 */
1865
1866 ALL_PRIMARY_SYMTABS (objfile, s)
1867 {
1868 bv = BLOCKVECTOR (s);
1869 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
1870 sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN);
1871 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1872 {
1873 return SYMBOL_TYPE (sym);
1874 }
1875 }
1876
1877 ALL_PSYMTABS (objfile, ps)
1878 {
1879 if (!ps->readin && lookup_partial_symbol (ps, name, NULL, 0, STRUCT_DOMAIN))
1880 {
1881 s = PSYMTAB_TO_SYMTAB (ps);
1882 bv = BLOCKVECTOR (s);
1883 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
1884 sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN);
1885 if (!sym)
1886 {
1887 /* This shouldn't be necessary, but as a last resort
1888 * try looking in the globals even though the psymtab
1889 * claimed the symbol was static. It's possible that
1890 * the psymtab gets it wrong in some cases.
1891 */
1892 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1893 sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN);
1894 if (!sym)
1895 error (_("Internal: static symbol `%s' found in %s psymtab but not in symtab.\n\
1896 %s may be an inlined function, or may be a template function\n\
1897 (if a template, try specifying an instantiation: %s<type>)."),
1898 name, ps->filename, name, name);
1899 }
1900 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1901 return SYMBOL_TYPE (sym);
1902 }
1903 }
1904 return (struct type *) 0;
1905 }
1906
1907
1908 /* Find the psymtab containing main(). */
1909 /* FIXME: What about languages without main() or specially linked
1910 executables that have no main() ? */
1911
1912 struct partial_symtab *
1913 find_main_psymtab (void)
1914 {
1915 struct partial_symtab *pst;
1916 struct objfile *objfile;
1917
1918 ALL_PSYMTABS (objfile, pst)
1919 {
1920 if (lookup_partial_symbol (pst, main_name (), NULL, 1, VAR_DOMAIN))
1921 {
1922 return (pst);
1923 }
1924 }
1925 return (NULL);
1926 }
1927
1928 /* Search BLOCK for symbol NAME in DOMAIN.
1929
1930 Note that if NAME is the demangled form of a C++ symbol, we will fail
1931 to find a match during the binary search of the non-encoded names, but
1932 for now we don't worry about the slight inefficiency of looking for
1933 a match we'll never find, since it will go pretty quick. Once the
1934 binary search terminates, we drop through and do a straight linear
1935 search on the symbols. Each symbol which is marked as being a ObjC/C++
1936 symbol (language_cplus or language_objc set) has both the encoded and
1937 non-encoded names tested for a match.
1938
1939 If LINKAGE_NAME is non-NULL, verify that any symbol we find has this
1940 particular mangled name.
1941 */
1942
1943 struct symbol *
1944 lookup_block_symbol (const struct block *block, const char *name,
1945 const char *linkage_name,
1946 const domain_enum domain)
1947 {
1948 struct dict_iterator iter;
1949 struct symbol *sym;
1950
1951 if (!BLOCK_FUNCTION (block))
1952 {
1953 for (sym = dict_iter_name_first (BLOCK_DICT (block), name, &iter);
1954 sym != NULL;
1955 sym = dict_iter_name_next (name, &iter))
1956 {
1957 if (SYMBOL_DOMAIN (sym) == domain
1958 && (linkage_name != NULL
1959 ? strcmp (SYMBOL_LINKAGE_NAME (sym), linkage_name) == 0 : 1))
1960 return sym;
1961 }
1962 return NULL;
1963 }
1964 else
1965 {
1966 /* Note that parameter symbols do not always show up last in the
1967 list; this loop makes sure to take anything else other than
1968 parameter symbols first; it only uses parameter symbols as a
1969 last resort. Note that this only takes up extra computation
1970 time on a match. */
1971
1972 struct symbol *sym_found = NULL;
1973
1974 for (sym = dict_iter_name_first (BLOCK_DICT (block), name, &iter);
1975 sym != NULL;
1976 sym = dict_iter_name_next (name, &iter))
1977 {
1978 if (SYMBOL_DOMAIN (sym) == domain
1979 && (linkage_name != NULL
1980 ? strcmp (SYMBOL_LINKAGE_NAME (sym), linkage_name) == 0 : 1))
1981 {
1982 sym_found = sym;
1983 if (SYMBOL_CLASS (sym) != LOC_ARG &&
1984 SYMBOL_CLASS (sym) != LOC_LOCAL_ARG &&
1985 SYMBOL_CLASS (sym) != LOC_REF_ARG &&
1986 SYMBOL_CLASS (sym) != LOC_REGPARM &&
1987 SYMBOL_CLASS (sym) != LOC_REGPARM_ADDR &&
1988 SYMBOL_CLASS (sym) != LOC_BASEREG_ARG &&
1989 SYMBOL_CLASS (sym) != LOC_COMPUTED_ARG)
1990 {
1991 break;
1992 }
1993 }
1994 }
1995 return (sym_found); /* Will be NULL if not found. */
1996 }
1997 }
1998
1999 /* Find the symtab associated with PC and SECTION. Look through the
2000 psymtabs and read in another symtab if necessary. */
2001
2002 struct symtab *
2003 find_pc_sect_symtab (CORE_ADDR pc, asection *section)
2004 {
2005 struct block *b;
2006 struct blockvector *bv;
2007 struct symtab *s = NULL;
2008 struct symtab *best_s = NULL;
2009 struct partial_symtab *ps;
2010 struct objfile *objfile;
2011 CORE_ADDR distance = 0;
2012 struct minimal_symbol *msymbol;
2013
2014 /* If we know that this is not a text address, return failure. This is
2015 necessary because we loop based on the block's high and low code
2016 addresses, which do not include the data ranges, and because
2017 we call find_pc_sect_psymtab which has a similar restriction based
2018 on the partial_symtab's texthigh and textlow. */
2019 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
2020 if (msymbol
2021 && (msymbol->type == mst_data
2022 || msymbol->type == mst_bss
2023 || msymbol->type == mst_abs
2024 || msymbol->type == mst_file_data
2025 || msymbol->type == mst_file_bss))
2026 return NULL;
2027
2028 /* Search all symtabs for the one whose file contains our address, and which
2029 is the smallest of all the ones containing the address. This is designed
2030 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
2031 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
2032 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
2033
2034 This happens for native ecoff format, where code from included files
2035 gets its own symtab. The symtab for the included file should have
2036 been read in already via the dependency mechanism.
2037 It might be swifter to create several symtabs with the same name
2038 like xcoff does (I'm not sure).
2039
2040 It also happens for objfiles that have their functions reordered.
2041 For these, the symtab we are looking for is not necessarily read in. */
2042
2043 ALL_PRIMARY_SYMTABS (objfile, s)
2044 {
2045 bv = BLOCKVECTOR (s);
2046 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
2047
2048 if (BLOCK_START (b) <= pc
2049 && BLOCK_END (b) > pc
2050 && (distance == 0
2051 || BLOCK_END (b) - BLOCK_START (b) < distance))
2052 {
2053 /* For an objfile that has its functions reordered,
2054 find_pc_psymtab will find the proper partial symbol table
2055 and we simply return its corresponding symtab. */
2056 /* In order to better support objfiles that contain both
2057 stabs and coff debugging info, we continue on if a psymtab
2058 can't be found. */
2059 if ((objfile->flags & OBJF_REORDERED) && objfile->psymtabs)
2060 {
2061 ps = find_pc_sect_psymtab (pc, section);
2062 if (ps)
2063 return PSYMTAB_TO_SYMTAB (ps);
2064 }
2065 if (section != 0)
2066 {
2067 struct dict_iterator iter;
2068 struct symbol *sym = NULL;
2069
2070 ALL_BLOCK_SYMBOLS (b, iter, sym)
2071 {
2072 fixup_symbol_section (sym, objfile);
2073 if (matching_bfd_sections (SYMBOL_BFD_SECTION (sym), section))
2074 break;
2075 }
2076 if (sym == NULL)
2077 continue; /* no symbol in this symtab matches section */
2078 }
2079 distance = BLOCK_END (b) - BLOCK_START (b);
2080 best_s = s;
2081 }
2082 }
2083
2084 if (best_s != NULL)
2085 return (best_s);
2086
2087 s = NULL;
2088 ps = find_pc_sect_psymtab (pc, section);
2089 if (ps)
2090 {
2091 if (ps->readin)
2092 /* Might want to error() here (in case symtab is corrupt and
2093 will cause a core dump), but maybe we can successfully
2094 continue, so let's not. */
2095 warning (_("\
2096 (Internal error: pc 0x%s in read in psymtab, but not in symtab.)\n"),
2097 paddr_nz (pc));
2098 s = PSYMTAB_TO_SYMTAB (ps);
2099 }
2100 return (s);
2101 }
2102
2103 /* Find the symtab associated with PC. Look through the psymtabs and
2104 read in another symtab if necessary. Backward compatibility, no section */
2105
2106 struct symtab *
2107 find_pc_symtab (CORE_ADDR pc)
2108 {
2109 return find_pc_sect_symtab (pc, find_pc_mapped_section (pc));
2110 }
2111 \f
2112
2113 /* Find the source file and line number for a given PC value and SECTION.
2114 Return a structure containing a symtab pointer, a line number,
2115 and a pc range for the entire source line.
2116 The value's .pc field is NOT the specified pc.
2117 NOTCURRENT nonzero means, if specified pc is on a line boundary,
2118 use the line that ends there. Otherwise, in that case, the line
2119 that begins there is used. */
2120
2121 /* The big complication here is that a line may start in one file, and end just
2122 before the start of another file. This usually occurs when you #include
2123 code in the middle of a subroutine. To properly find the end of a line's PC
2124 range, we must search all symtabs associated with this compilation unit, and
2125 find the one whose first PC is closer than that of the next line in this
2126 symtab. */
2127
2128 /* If it's worth the effort, we could be using a binary search. */
2129
2130 struct symtab_and_line
2131 find_pc_sect_line (CORE_ADDR pc, struct bfd_section *section, int notcurrent)
2132 {
2133 struct symtab *s;
2134 struct linetable *l;
2135 int len;
2136 int i;
2137 struct linetable_entry *item;
2138 struct symtab_and_line val;
2139 struct blockvector *bv;
2140 struct minimal_symbol *msymbol;
2141 struct minimal_symbol *mfunsym;
2142
2143 /* Info on best line seen so far, and where it starts, and its file. */
2144
2145 struct linetable_entry *best = NULL;
2146 CORE_ADDR best_end = 0;
2147 struct symtab *best_symtab = 0;
2148
2149 /* Store here the first line number
2150 of a file which contains the line at the smallest pc after PC.
2151 If we don't find a line whose range contains PC,
2152 we will use a line one less than this,
2153 with a range from the start of that file to the first line's pc. */
2154 struct linetable_entry *alt = NULL;
2155 struct symtab *alt_symtab = 0;
2156
2157 /* Info on best line seen in this file. */
2158
2159 struct linetable_entry *prev;
2160
2161 /* If this pc is not from the current frame,
2162 it is the address of the end of a call instruction.
2163 Quite likely that is the start of the following statement.
2164 But what we want is the statement containing the instruction.
2165 Fudge the pc to make sure we get that. */
2166
2167 init_sal (&val); /* initialize to zeroes */
2168
2169 /* It's tempting to assume that, if we can't find debugging info for
2170 any function enclosing PC, that we shouldn't search for line
2171 number info, either. However, GAS can emit line number info for
2172 assembly files --- very helpful when debugging hand-written
2173 assembly code. In such a case, we'd have no debug info for the
2174 function, but we would have line info. */
2175
2176 if (notcurrent)
2177 pc -= 1;
2178
2179 /* elz: added this because this function returned the wrong
2180 information if the pc belongs to a stub (import/export)
2181 to call a shlib function. This stub would be anywhere between
2182 two functions in the target, and the line info was erroneously
2183 taken to be the one of the line before the pc.
2184 */
2185 /* RT: Further explanation:
2186
2187 * We have stubs (trampolines) inserted between procedures.
2188 *
2189 * Example: "shr1" exists in a shared library, and a "shr1" stub also
2190 * exists in the main image.
2191 *
2192 * In the minimal symbol table, we have a bunch of symbols
2193 * sorted by start address. The stubs are marked as "trampoline",
2194 * the others appear as text. E.g.:
2195 *
2196 * Minimal symbol table for main image
2197 * main: code for main (text symbol)
2198 * shr1: stub (trampoline symbol)
2199 * foo: code for foo (text symbol)
2200 * ...
2201 * Minimal symbol table for "shr1" image:
2202 * ...
2203 * shr1: code for shr1 (text symbol)
2204 * ...
2205 *
2206 * So the code below is trying to detect if we are in the stub
2207 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
2208 * and if found, do the symbolization from the real-code address
2209 * rather than the stub address.
2210 *
2211 * Assumptions being made about the minimal symbol table:
2212 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
2213 * if we're really in the trampoline. If we're beyond it (say
2214 * we're in "foo" in the above example), it'll have a closer
2215 * symbol (the "foo" text symbol for example) and will not
2216 * return the trampoline.
2217 * 2. lookup_minimal_symbol_text() will find a real text symbol
2218 * corresponding to the trampoline, and whose address will
2219 * be different than the trampoline address. I put in a sanity
2220 * check for the address being the same, to avoid an
2221 * infinite recursion.
2222 */
2223 msymbol = lookup_minimal_symbol_by_pc (pc);
2224 if (msymbol != NULL)
2225 if (MSYMBOL_TYPE (msymbol) == mst_solib_trampoline)
2226 {
2227 mfunsym = lookup_minimal_symbol_text (SYMBOL_LINKAGE_NAME (msymbol),
2228 NULL);
2229 if (mfunsym == NULL)
2230 /* I eliminated this warning since it is coming out
2231 * in the following situation:
2232 * gdb shmain // test program with shared libraries
2233 * (gdb) break shr1 // function in shared lib
2234 * Warning: In stub for ...
2235 * In the above situation, the shared lib is not loaded yet,
2236 * so of course we can't find the real func/line info,
2237 * but the "break" still works, and the warning is annoying.
2238 * So I commented out the warning. RT */
2239 /* warning ("In stub for %s; unable to find real function/line info", SYMBOL_LINKAGE_NAME (msymbol)) */ ;
2240 /* fall through */
2241 else if (SYMBOL_VALUE (mfunsym) == SYMBOL_VALUE (msymbol))
2242 /* Avoid infinite recursion */
2243 /* See above comment about why warning is commented out */
2244 /* warning ("In stub for %s; unable to find real function/line info", SYMBOL_LINKAGE_NAME (msymbol)) */ ;
2245 /* fall through */
2246 else
2247 return find_pc_line (SYMBOL_VALUE (mfunsym), 0);
2248 }
2249
2250
2251 s = find_pc_sect_symtab (pc, section);
2252 if (!s)
2253 {
2254 /* if no symbol information, return previous pc */
2255 if (notcurrent)
2256 pc++;
2257 val.pc = pc;
2258 return val;
2259 }
2260
2261 bv = BLOCKVECTOR (s);
2262
2263 /* Look at all the symtabs that share this blockvector.
2264 They all have the same apriori range, that we found was right;
2265 but they have different line tables. */
2266
2267 for (; s && BLOCKVECTOR (s) == bv; s = s->next)
2268 {
2269 /* Find the best line in this symtab. */
2270 l = LINETABLE (s);
2271 if (!l)
2272 continue;
2273 len = l->nitems;
2274 if (len <= 0)
2275 {
2276 /* I think len can be zero if the symtab lacks line numbers
2277 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
2278 I'm not sure which, and maybe it depends on the symbol
2279 reader). */
2280 continue;
2281 }
2282
2283 prev = NULL;
2284 item = l->item; /* Get first line info */
2285
2286 /* Is this file's first line closer than the first lines of other files?
2287 If so, record this file, and its first line, as best alternate. */
2288 if (item->pc > pc && (!alt || item->pc < alt->pc))
2289 {
2290 alt = item;
2291 alt_symtab = s;
2292 }
2293
2294 for (i = 0; i < len; i++, item++)
2295 {
2296 /* Leave prev pointing to the linetable entry for the last line
2297 that started at or before PC. */
2298 if (item->pc > pc)
2299 break;
2300
2301 prev = item;
2302 }
2303
2304 /* At this point, prev points at the line whose start addr is <= pc, and
2305 item points at the next line. If we ran off the end of the linetable
2306 (pc >= start of the last line), then prev == item. If pc < start of
2307 the first line, prev will not be set. */
2308
2309 /* Is this file's best line closer than the best in the other files?
2310 If so, record this file, and its best line, as best so far. Don't
2311 save prev if it represents the end of a function (i.e. line number
2312 0) instead of a real line. */
2313
2314 if (prev && prev->line && (!best || prev->pc > best->pc))
2315 {
2316 best = prev;
2317 best_symtab = s;
2318
2319 /* Discard BEST_END if it's before the PC of the current BEST. */
2320 if (best_end <= best->pc)
2321 best_end = 0;
2322 }
2323
2324 /* If another line (denoted by ITEM) is in the linetable and its
2325 PC is after BEST's PC, but before the current BEST_END, then
2326 use ITEM's PC as the new best_end. */
2327 if (best && i < len && item->pc > best->pc
2328 && (best_end == 0 || best_end > item->pc))
2329 best_end = item->pc;
2330 }
2331
2332 if (!best_symtab)
2333 {
2334 /* If we didn't find any line number info, just return zeros.
2335 We used to return alt->line - 1 here, but that could be
2336 anywhere; if we don't have line number info for this PC,
2337 don't make some up. */
2338 val.pc = pc;
2339 }
2340 else if (best->line == 0)
2341 {
2342 /* If our best fit is in a range of PC's for which no line
2343 number info is available (line number is zero) then we didn't
2344 find any valid line information. */
2345 val.pc = pc;
2346 }
2347 else
2348 {
2349 val.symtab = best_symtab;
2350 val.line = best->line;
2351 val.pc = best->pc;
2352 if (best_end && (!alt || best_end < alt->pc))
2353 val.end = best_end;
2354 else if (alt)
2355 val.end = alt->pc;
2356 else
2357 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
2358 }
2359 val.section = section;
2360 return val;
2361 }
2362
2363 /* Backward compatibility (no section) */
2364
2365 struct symtab_and_line
2366 find_pc_line (CORE_ADDR pc, int notcurrent)
2367 {
2368 asection *section;
2369
2370 section = find_pc_overlay (pc);
2371 if (pc_in_unmapped_range (pc, section))
2372 pc = overlay_mapped_address (pc, section);
2373 return find_pc_sect_line (pc, section, notcurrent);
2374 }
2375 \f
2376 /* Find line number LINE in any symtab whose name is the same as
2377 SYMTAB.
2378
2379 If found, return the symtab that contains the linetable in which it was
2380 found, set *INDEX to the index in the linetable of the best entry
2381 found, and set *EXACT_MATCH nonzero if the value returned is an
2382 exact match.
2383
2384 If not found, return NULL. */
2385
2386 struct symtab *
2387 find_line_symtab (struct symtab *symtab, int line, int *index, int *exact_match)
2388 {
2389 int exact;
2390
2391 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
2392 so far seen. */
2393
2394 int best_index;
2395 struct linetable *best_linetable;
2396 struct symtab *best_symtab;
2397
2398 /* First try looking it up in the given symtab. */
2399 best_linetable = LINETABLE (symtab);
2400 best_symtab = symtab;
2401 best_index = find_line_common (best_linetable, line, &exact);
2402 if (best_index < 0 || !exact)
2403 {
2404 /* Didn't find an exact match. So we better keep looking for
2405 another symtab with the same name. In the case of xcoff,
2406 multiple csects for one source file (produced by IBM's FORTRAN
2407 compiler) produce multiple symtabs (this is unavoidable
2408 assuming csects can be at arbitrary places in memory and that
2409 the GLOBAL_BLOCK of a symtab has a begin and end address). */
2410
2411 /* BEST is the smallest linenumber > LINE so far seen,
2412 or 0 if none has been seen so far.
2413 BEST_INDEX and BEST_LINETABLE identify the item for it. */
2414 int best;
2415
2416 struct objfile *objfile;
2417 struct symtab *s;
2418
2419 if (best_index >= 0)
2420 best = best_linetable->item[best_index].line;
2421 else
2422 best = 0;
2423
2424 ALL_SYMTABS (objfile, s)
2425 {
2426 struct linetable *l;
2427 int ind;
2428
2429 if (strcmp (symtab->filename, s->filename) != 0)
2430 continue;
2431 l = LINETABLE (s);
2432 ind = find_line_common (l, line, &exact);
2433 if (ind >= 0)
2434 {
2435 if (exact)
2436 {
2437 best_index = ind;
2438 best_linetable = l;
2439 best_symtab = s;
2440 goto done;
2441 }
2442 if (best == 0 || l->item[ind].line < best)
2443 {
2444 best = l->item[ind].line;
2445 best_index = ind;
2446 best_linetable = l;
2447 best_symtab = s;
2448 }
2449 }
2450 }
2451 }
2452 done:
2453 if (best_index < 0)
2454 return NULL;
2455
2456 if (index)
2457 *index = best_index;
2458 if (exact_match)
2459 *exact_match = exact;
2460
2461 return best_symtab;
2462 }
2463 \f
2464 /* Set the PC value for a given source file and line number and return true.
2465 Returns zero for invalid line number (and sets the PC to 0).
2466 The source file is specified with a struct symtab. */
2467
2468 int
2469 find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
2470 {
2471 struct linetable *l;
2472 int ind;
2473
2474 *pc = 0;
2475 if (symtab == 0)
2476 return 0;
2477
2478 symtab = find_line_symtab (symtab, line, &ind, NULL);
2479 if (symtab != NULL)
2480 {
2481 l = LINETABLE (symtab);
2482 *pc = l->item[ind].pc;
2483 return 1;
2484 }
2485 else
2486 return 0;
2487 }
2488
2489 /* Find the range of pc values in a line.
2490 Store the starting pc of the line into *STARTPTR
2491 and the ending pc (start of next line) into *ENDPTR.
2492 Returns 1 to indicate success.
2493 Returns 0 if could not find the specified line. */
2494
2495 int
2496 find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
2497 CORE_ADDR *endptr)
2498 {
2499 CORE_ADDR startaddr;
2500 struct symtab_and_line found_sal;
2501
2502 startaddr = sal.pc;
2503 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
2504 return 0;
2505
2506 /* This whole function is based on address. For example, if line 10 has
2507 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
2508 "info line *0x123" should say the line goes from 0x100 to 0x200
2509 and "info line *0x355" should say the line goes from 0x300 to 0x400.
2510 This also insures that we never give a range like "starts at 0x134
2511 and ends at 0x12c". */
2512
2513 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
2514 if (found_sal.line != sal.line)
2515 {
2516 /* The specified line (sal) has zero bytes. */
2517 *startptr = found_sal.pc;
2518 *endptr = found_sal.pc;
2519 }
2520 else
2521 {
2522 *startptr = found_sal.pc;
2523 *endptr = found_sal.end;
2524 }
2525 return 1;
2526 }
2527
2528 /* Given a line table and a line number, return the index into the line
2529 table for the pc of the nearest line whose number is >= the specified one.
2530 Return -1 if none is found. The value is >= 0 if it is an index.
2531
2532 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
2533
2534 static int
2535 find_line_common (struct linetable *l, int lineno,
2536 int *exact_match)
2537 {
2538 int i;
2539 int len;
2540
2541 /* BEST is the smallest linenumber > LINENO so far seen,
2542 or 0 if none has been seen so far.
2543 BEST_INDEX identifies the item for it. */
2544
2545 int best_index = -1;
2546 int best = 0;
2547
2548 if (lineno <= 0)
2549 return -1;
2550 if (l == 0)
2551 return -1;
2552
2553 len = l->nitems;
2554 for (i = 0; i < len; i++)
2555 {
2556 struct linetable_entry *item = &(l->item[i]);
2557
2558 if (item->line == lineno)
2559 {
2560 /* Return the first (lowest address) entry which matches. */
2561 *exact_match = 1;
2562 return i;
2563 }
2564
2565 if (item->line > lineno && (best == 0 || item->line < best))
2566 {
2567 best = item->line;
2568 best_index = i;
2569 }
2570 }
2571
2572 /* If we got here, we didn't get an exact match. */
2573
2574 *exact_match = 0;
2575 return best_index;
2576 }
2577
2578 int
2579 find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
2580 {
2581 struct symtab_and_line sal;
2582 sal = find_pc_line (pc, 0);
2583 *startptr = sal.pc;
2584 *endptr = sal.end;
2585 return sal.symtab != 0;
2586 }
2587
2588 /* Given a function symbol SYM, find the symtab and line for the start
2589 of the function.
2590 If the argument FUNFIRSTLINE is nonzero, we want the first line
2591 of real code inside the function. */
2592
2593 struct symtab_and_line
2594 find_function_start_sal (struct symbol *sym, int funfirstline)
2595 {
2596 CORE_ADDR pc;
2597 struct symtab_and_line sal;
2598
2599 pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
2600 fixup_symbol_section (sym, NULL);
2601 if (funfirstline)
2602 { /* skip "first line" of function (which is actually its prologue) */
2603 asection *section = SYMBOL_BFD_SECTION (sym);
2604 /* If function is in an unmapped overlay, use its unmapped LMA
2605 address, so that gdbarch_skip_prologue has something unique to work
2606 on */
2607 if (section_is_overlay (section) &&
2608 !section_is_mapped (section))
2609 pc = overlay_unmapped_address (pc, section);
2610
2611 pc += gdbarch_deprecated_function_start_offset (current_gdbarch);
2612 pc = gdbarch_skip_prologue (current_gdbarch, pc);
2613
2614 /* For overlays, map pc back into its mapped VMA range */
2615 pc = overlay_mapped_address (pc, section);
2616 }
2617 sal = find_pc_sect_line (pc, SYMBOL_BFD_SECTION (sym), 0);
2618
2619 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
2620 line is still part of the same function. */
2621 if (sal.pc != pc
2622 && BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) <= sal.end
2623 && sal.end < BLOCK_END (SYMBOL_BLOCK_VALUE (sym)))
2624 {
2625 /* First pc of next line */
2626 pc = sal.end;
2627 /* Recalculate the line number (might not be N+1). */
2628 sal = find_pc_sect_line (pc, SYMBOL_BFD_SECTION (sym), 0);
2629 }
2630 sal.pc = pc;
2631
2632 return sal;
2633 }
2634
2635 /* If P is of the form "operator[ \t]+..." where `...' is
2636 some legitimate operator text, return a pointer to the
2637 beginning of the substring of the operator text.
2638 Otherwise, return "". */
2639 char *
2640 operator_chars (char *p, char **end)
2641 {
2642 *end = "";
2643 if (strncmp (p, "operator", 8))
2644 return *end;
2645 p += 8;
2646
2647 /* Don't get faked out by `operator' being part of a longer
2648 identifier. */
2649 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
2650 return *end;
2651
2652 /* Allow some whitespace between `operator' and the operator symbol. */
2653 while (*p == ' ' || *p == '\t')
2654 p++;
2655
2656 /* Recognize 'operator TYPENAME'. */
2657
2658 if (isalpha (*p) || *p == '_' || *p == '$')
2659 {
2660 char *q = p + 1;
2661 while (isalnum (*q) || *q == '_' || *q == '$')
2662 q++;
2663 *end = q;
2664 return p;
2665 }
2666
2667 while (*p)
2668 switch (*p)
2669 {
2670 case '\\': /* regexp quoting */
2671 if (p[1] == '*')
2672 {
2673 if (p[2] == '=') /* 'operator\*=' */
2674 *end = p + 3;
2675 else /* 'operator\*' */
2676 *end = p + 2;
2677 return p;
2678 }
2679 else if (p[1] == '[')
2680 {
2681 if (p[2] == ']')
2682 error (_("mismatched quoting on brackets, try 'operator\\[\\]'"));
2683 else if (p[2] == '\\' && p[3] == ']')
2684 {
2685 *end = p + 4; /* 'operator\[\]' */
2686 return p;
2687 }
2688 else
2689 error (_("nothing is allowed between '[' and ']'"));
2690 }
2691 else
2692 {
2693 /* Gratuitous qoute: skip it and move on. */
2694 p++;
2695 continue;
2696 }
2697 break;
2698 case '!':
2699 case '=':
2700 case '*':
2701 case '/':
2702 case '%':
2703 case '^':
2704 if (p[1] == '=')
2705 *end = p + 2;
2706 else
2707 *end = p + 1;
2708 return p;
2709 case '<':
2710 case '>':
2711 case '+':
2712 case '-':
2713 case '&':
2714 case '|':
2715 if (p[0] == '-' && p[1] == '>')
2716 {
2717 /* Struct pointer member operator 'operator->'. */
2718 if (p[2] == '*')
2719 {
2720 *end = p + 3; /* 'operator->*' */
2721 return p;
2722 }
2723 else if (p[2] == '\\')
2724 {
2725 *end = p + 4; /* Hopefully 'operator->\*' */
2726 return p;
2727 }
2728 else
2729 {
2730 *end = p + 2; /* 'operator->' */
2731 return p;
2732 }
2733 }
2734 if (p[1] == '=' || p[1] == p[0])
2735 *end = p + 2;
2736 else
2737 *end = p + 1;
2738 return p;
2739 case '~':
2740 case ',':
2741 *end = p + 1;
2742 return p;
2743 case '(':
2744 if (p[1] != ')')
2745 error (_("`operator ()' must be specified without whitespace in `()'"));
2746 *end = p + 2;
2747 return p;
2748 case '?':
2749 if (p[1] != ':')
2750 error (_("`operator ?:' must be specified without whitespace in `?:'"));
2751 *end = p + 2;
2752 return p;
2753 case '[':
2754 if (p[1] != ']')
2755 error (_("`operator []' must be specified without whitespace in `[]'"));
2756 *end = p + 2;
2757 return p;
2758 default:
2759 error (_("`operator %s' not supported"), p);
2760 break;
2761 }
2762
2763 *end = "";
2764 return *end;
2765 }
2766 \f
2767
2768 /* If FILE is not already in the table of files, return zero;
2769 otherwise return non-zero. Optionally add FILE to the table if ADD
2770 is non-zero. If *FIRST is non-zero, forget the old table
2771 contents. */
2772 static int
2773 filename_seen (const char *file, int add, int *first)
2774 {
2775 /* Table of files seen so far. */
2776 static const char **tab = NULL;
2777 /* Allocated size of tab in elements.
2778 Start with one 256-byte block (when using GNU malloc.c).
2779 24 is the malloc overhead when range checking is in effect. */
2780 static int tab_alloc_size = (256 - 24) / sizeof (char *);
2781 /* Current size of tab in elements. */
2782 static int tab_cur_size;
2783 const char **p;
2784
2785 if (*first)
2786 {
2787 if (tab == NULL)
2788 tab = (const char **) xmalloc (tab_alloc_size * sizeof (*tab));
2789 tab_cur_size = 0;
2790 }
2791
2792 /* Is FILE in tab? */
2793 for (p = tab; p < tab + tab_cur_size; p++)
2794 if (strcmp (*p, file) == 0)
2795 return 1;
2796
2797 /* No; maybe add it to tab. */
2798 if (add)
2799 {
2800 if (tab_cur_size == tab_alloc_size)
2801 {
2802 tab_alloc_size *= 2;
2803 tab = (const char **) xrealloc ((char *) tab,
2804 tab_alloc_size * sizeof (*tab));
2805 }
2806 tab[tab_cur_size++] = file;
2807 }
2808
2809 return 0;
2810 }
2811
2812 /* Slave routine for sources_info. Force line breaks at ,'s.
2813 NAME is the name to print and *FIRST is nonzero if this is the first
2814 name printed. Set *FIRST to zero. */
2815 static void
2816 output_source_filename (const char *name, int *first)
2817 {
2818 /* Since a single source file can result in several partial symbol
2819 tables, we need to avoid printing it more than once. Note: if
2820 some of the psymtabs are read in and some are not, it gets
2821 printed both under "Source files for which symbols have been
2822 read" and "Source files for which symbols will be read in on
2823 demand". I consider this a reasonable way to deal with the
2824 situation. I'm not sure whether this can also happen for
2825 symtabs; it doesn't hurt to check. */
2826
2827 /* Was NAME already seen? */
2828 if (filename_seen (name, 1, first))
2829 {
2830 /* Yes; don't print it again. */
2831 return;
2832 }
2833 /* No; print it and reset *FIRST. */
2834 if (*first)
2835 {
2836 *first = 0;
2837 }
2838 else
2839 {
2840 printf_filtered (", ");
2841 }
2842
2843 wrap_here ("");
2844 fputs_filtered (name, gdb_stdout);
2845 }
2846
2847 static void
2848 sources_info (char *ignore, int from_tty)
2849 {
2850 struct symtab *s;
2851 struct partial_symtab *ps;
2852 struct objfile *objfile;
2853 int first;
2854
2855 if (!have_full_symbols () && !have_partial_symbols ())
2856 {
2857 error (_("No symbol table is loaded. Use the \"file\" command."));
2858 }
2859
2860 printf_filtered ("Source files for which symbols have been read in:\n\n");
2861
2862 first = 1;
2863 ALL_SYMTABS (objfile, s)
2864 {
2865 const char *fullname = symtab_to_fullname (s);
2866 output_source_filename (fullname ? fullname : s->filename, &first);
2867 }
2868 printf_filtered ("\n\n");
2869
2870 printf_filtered ("Source files for which symbols will be read in on demand:\n\n");
2871
2872 first = 1;
2873 ALL_PSYMTABS (objfile, ps)
2874 {
2875 if (!ps->readin)
2876 {
2877 const char *fullname = psymtab_to_fullname (ps);
2878 output_source_filename (fullname ? fullname : ps->filename, &first);
2879 }
2880 }
2881 printf_filtered ("\n");
2882 }
2883
2884 static int
2885 file_matches (char *file, char *files[], int nfiles)
2886 {
2887 int i;
2888
2889 if (file != NULL && nfiles != 0)
2890 {
2891 for (i = 0; i < nfiles; i++)
2892 {
2893 if (strcmp (files[i], lbasename (file)) == 0)
2894 return 1;
2895 }
2896 }
2897 else if (nfiles == 0)
2898 return 1;
2899 return 0;
2900 }
2901
2902 /* Free any memory associated with a search. */
2903 void
2904 free_search_symbols (struct symbol_search *symbols)
2905 {
2906 struct symbol_search *p;
2907 struct symbol_search *next;
2908
2909 for (p = symbols; p != NULL; p = next)
2910 {
2911 next = p->next;
2912 xfree (p);
2913 }
2914 }
2915
2916 static void
2917 do_free_search_symbols_cleanup (void *symbols)
2918 {
2919 free_search_symbols (symbols);
2920 }
2921
2922 struct cleanup *
2923 make_cleanup_free_search_symbols (struct symbol_search *symbols)
2924 {
2925 return make_cleanup (do_free_search_symbols_cleanup, symbols);
2926 }
2927
2928 /* Helper function for sort_search_symbols and qsort. Can only
2929 sort symbols, not minimal symbols. */
2930 static int
2931 compare_search_syms (const void *sa, const void *sb)
2932 {
2933 struct symbol_search **sym_a = (struct symbol_search **) sa;
2934 struct symbol_search **sym_b = (struct symbol_search **) sb;
2935
2936 return strcmp (SYMBOL_PRINT_NAME ((*sym_a)->symbol),
2937 SYMBOL_PRINT_NAME ((*sym_b)->symbol));
2938 }
2939
2940 /* Sort the ``nfound'' symbols in the list after prevtail. Leave
2941 prevtail where it is, but update its next pointer to point to
2942 the first of the sorted symbols. */
2943 static struct symbol_search *
2944 sort_search_symbols (struct symbol_search *prevtail, int nfound)
2945 {
2946 struct symbol_search **symbols, *symp, *old_next;
2947 int i;
2948
2949 symbols = (struct symbol_search **) xmalloc (sizeof (struct symbol_search *)
2950 * nfound);
2951 symp = prevtail->next;
2952 for (i = 0; i < nfound; i++)
2953 {
2954 symbols[i] = symp;
2955 symp = symp->next;
2956 }
2957 /* Generally NULL. */
2958 old_next = symp;
2959
2960 qsort (symbols, nfound, sizeof (struct symbol_search *),
2961 compare_search_syms);
2962
2963 symp = prevtail;
2964 for (i = 0; i < nfound; i++)
2965 {
2966 symp->next = symbols[i];
2967 symp = symp->next;
2968 }
2969 symp->next = old_next;
2970
2971 xfree (symbols);
2972 return symp;
2973 }
2974
2975 /* Search the symbol table for matches to the regular expression REGEXP,
2976 returning the results in *MATCHES.
2977
2978 Only symbols of KIND are searched:
2979 FUNCTIONS_DOMAIN - search all functions
2980 TYPES_DOMAIN - search all type names
2981 METHODS_DOMAIN - search all methods NOT IMPLEMENTED
2982 VARIABLES_DOMAIN - search all symbols, excluding functions, type names,
2983 and constants (enums)
2984
2985 free_search_symbols should be called when *MATCHES is no longer needed.
2986
2987 The results are sorted locally; each symtab's global and static blocks are
2988 separately alphabetized.
2989 */
2990 void
2991 search_symbols (char *regexp, domain_enum kind, int nfiles, char *files[],
2992 struct symbol_search **matches)
2993 {
2994 struct symtab *s;
2995 struct partial_symtab *ps;
2996 struct blockvector *bv;
2997 struct block *b;
2998 int i = 0;
2999 struct dict_iterator iter;
3000 struct symbol *sym;
3001 struct partial_symbol **psym;
3002 struct objfile *objfile;
3003 struct minimal_symbol *msymbol;
3004 char *val;
3005 int found_misc = 0;
3006 static enum minimal_symbol_type types[]
3007 =
3008 {mst_data, mst_text, mst_abs, mst_unknown};
3009 static enum minimal_symbol_type types2[]
3010 =
3011 {mst_bss, mst_file_text, mst_abs, mst_unknown};
3012 static enum minimal_symbol_type types3[]
3013 =
3014 {mst_file_data, mst_solib_trampoline, mst_abs, mst_unknown};
3015 static enum minimal_symbol_type types4[]
3016 =
3017 {mst_file_bss, mst_text, mst_abs, mst_unknown};
3018 enum minimal_symbol_type ourtype;
3019 enum minimal_symbol_type ourtype2;
3020 enum minimal_symbol_type ourtype3;
3021 enum minimal_symbol_type ourtype4;
3022 struct symbol_search *sr;
3023 struct symbol_search *psr;
3024 struct symbol_search *tail;
3025 struct cleanup *old_chain = NULL;
3026
3027 if (kind < VARIABLES_DOMAIN)
3028 error (_("must search on specific domain"));
3029
3030 ourtype = types[(int) (kind - VARIABLES_DOMAIN)];
3031 ourtype2 = types2[(int) (kind - VARIABLES_DOMAIN)];
3032 ourtype3 = types3[(int) (kind - VARIABLES_DOMAIN)];
3033 ourtype4 = types4[(int) (kind - VARIABLES_DOMAIN)];
3034
3035 sr = *matches = NULL;
3036 tail = NULL;
3037
3038 if (regexp != NULL)
3039 {
3040 /* Make sure spacing is right for C++ operators.
3041 This is just a courtesy to make the matching less sensitive
3042 to how many spaces the user leaves between 'operator'
3043 and <TYPENAME> or <OPERATOR>. */
3044 char *opend;
3045 char *opname = operator_chars (regexp, &opend);
3046 if (*opname)
3047 {
3048 int fix = -1; /* -1 means ok; otherwise number of spaces needed. */
3049 if (isalpha (*opname) || *opname == '_' || *opname == '$')
3050 {
3051 /* There should 1 space between 'operator' and 'TYPENAME'. */
3052 if (opname[-1] != ' ' || opname[-2] == ' ')
3053 fix = 1;
3054 }
3055 else
3056 {
3057 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
3058 if (opname[-1] == ' ')
3059 fix = 0;
3060 }
3061 /* If wrong number of spaces, fix it. */
3062 if (fix >= 0)
3063 {
3064 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
3065 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
3066 regexp = tmp;
3067 }
3068 }
3069
3070 if (0 != (val = re_comp (regexp)))
3071 error (_("Invalid regexp (%s): %s"), val, regexp);
3072 }
3073
3074 /* Search through the partial symtabs *first* for all symbols
3075 matching the regexp. That way we don't have to reproduce all of
3076 the machinery below. */
3077
3078 ALL_PSYMTABS (objfile, ps)
3079 {
3080 struct partial_symbol **bound, **gbound, **sbound;
3081 int keep_going = 1;
3082
3083 if (ps->readin)
3084 continue;
3085
3086 gbound = objfile->global_psymbols.list + ps->globals_offset + ps->n_global_syms;
3087 sbound = objfile->static_psymbols.list + ps->statics_offset + ps->n_static_syms;
3088 bound = gbound;
3089
3090 /* Go through all of the symbols stored in a partial
3091 symtab in one loop. */
3092 psym = objfile->global_psymbols.list + ps->globals_offset;
3093 while (keep_going)
3094 {
3095 if (psym >= bound)
3096 {
3097 if (bound == gbound && ps->n_static_syms != 0)
3098 {
3099 psym = objfile->static_psymbols.list + ps->statics_offset;
3100 bound = sbound;
3101 }
3102 else
3103 keep_going = 0;
3104 continue;
3105 }
3106 else
3107 {
3108 QUIT;
3109
3110 /* If it would match (logic taken from loop below)
3111 load the file and go on to the next one. We check the
3112 filename here, but that's a bit bogus: we don't know
3113 what file it really comes from until we have full
3114 symtabs. The symbol might be in a header file included by
3115 this psymtab. This only affects Insight. */
3116 if (file_matches (ps->filename, files, nfiles)
3117 && ((regexp == NULL
3118 || re_exec (SYMBOL_NATURAL_NAME (*psym)) != 0)
3119 && ((kind == VARIABLES_DOMAIN && SYMBOL_CLASS (*psym) != LOC_TYPEDEF
3120 && SYMBOL_CLASS (*psym) != LOC_BLOCK)
3121 || (kind == FUNCTIONS_DOMAIN && SYMBOL_CLASS (*psym) == LOC_BLOCK)
3122 || (kind == TYPES_DOMAIN && SYMBOL_CLASS (*psym) == LOC_TYPEDEF)
3123 || (kind == METHODS_DOMAIN && SYMBOL_CLASS (*psym) == LOC_BLOCK))))
3124 {
3125 PSYMTAB_TO_SYMTAB (ps);
3126 keep_going = 0;
3127 }
3128 }
3129 psym++;
3130 }
3131 }
3132
3133 /* Here, we search through the minimal symbol tables for functions
3134 and variables that match, and force their symbols to be read.
3135 This is in particular necessary for demangled variable names,
3136 which are no longer put into the partial symbol tables.
3137 The symbol will then be found during the scan of symtabs below.
3138
3139 For functions, find_pc_symtab should succeed if we have debug info
3140 for the function, for variables we have to call lookup_symbol
3141 to determine if the variable has debug info.
3142 If the lookup fails, set found_misc so that we will rescan to print
3143 any matching symbols without debug info.
3144 */
3145
3146 if (nfiles == 0 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
3147 {
3148 ALL_MSYMBOLS (objfile, msymbol)
3149 {
3150 if (MSYMBOL_TYPE (msymbol) == ourtype ||
3151 MSYMBOL_TYPE (msymbol) == ourtype2 ||
3152 MSYMBOL_TYPE (msymbol) == ourtype3 ||
3153 MSYMBOL_TYPE (msymbol) == ourtype4)
3154 {
3155 if (regexp == NULL
3156 || re_exec (SYMBOL_NATURAL_NAME (msymbol)) != 0)
3157 {
3158 if (0 == find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol)))
3159 {
3160 /* FIXME: carlton/2003-02-04: Given that the
3161 semantics of lookup_symbol keeps on changing
3162 slightly, it would be a nice idea if we had a
3163 function lookup_symbol_minsym that found the
3164 symbol associated to a given minimal symbol (if
3165 any). */
3166 if (kind == FUNCTIONS_DOMAIN
3167 || lookup_symbol (SYMBOL_LINKAGE_NAME (msymbol),
3168 (struct block *) NULL,
3169 VAR_DOMAIN,
3170 0, (struct symtab **) NULL)
3171 == NULL)
3172 found_misc = 1;
3173 }
3174 }
3175 }
3176 }
3177 }
3178
3179 ALL_PRIMARY_SYMTABS (objfile, s)
3180 {
3181 bv = BLOCKVECTOR (s);
3182 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
3183 {
3184 struct symbol_search *prevtail = tail;
3185 int nfound = 0;
3186 b = BLOCKVECTOR_BLOCK (bv, i);
3187 ALL_BLOCK_SYMBOLS (b, iter, sym)
3188 {
3189 struct symtab *real_symtab = SYMBOL_SYMTAB (sym);
3190 QUIT;
3191
3192 if (file_matches (real_symtab->filename, files, nfiles)
3193 && ((regexp == NULL
3194 || re_exec (SYMBOL_NATURAL_NAME (sym)) != 0)
3195 && ((kind == VARIABLES_DOMAIN && SYMBOL_CLASS (sym) != LOC_TYPEDEF
3196 && SYMBOL_CLASS (sym) != LOC_BLOCK
3197 && SYMBOL_CLASS (sym) != LOC_CONST)
3198 || (kind == FUNCTIONS_DOMAIN && SYMBOL_CLASS (sym) == LOC_BLOCK)
3199 || (kind == TYPES_DOMAIN && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
3200 || (kind == METHODS_DOMAIN && SYMBOL_CLASS (sym) == LOC_BLOCK))))
3201 {
3202 /* match */
3203 psr = (struct symbol_search *) xmalloc (sizeof (struct symbol_search));
3204 psr->block = i;
3205 psr->symtab = real_symtab;
3206 psr->symbol = sym;
3207 psr->msymbol = NULL;
3208 psr->next = NULL;
3209 if (tail == NULL)
3210 sr = psr;
3211 else
3212 tail->next = psr;
3213 tail = psr;
3214 nfound ++;
3215 }
3216 }
3217 if (nfound > 0)
3218 {
3219 if (prevtail == NULL)
3220 {
3221 struct symbol_search dummy;
3222
3223 dummy.next = sr;
3224 tail = sort_search_symbols (&dummy, nfound);
3225 sr = dummy.next;
3226
3227 old_chain = make_cleanup_free_search_symbols (sr);
3228 }
3229 else
3230 tail = sort_search_symbols (prevtail, nfound);
3231 }
3232 }
3233 }
3234
3235 /* If there are no eyes, avoid all contact. I mean, if there are
3236 no debug symbols, then print directly from the msymbol_vector. */
3237
3238 if (found_misc || kind != FUNCTIONS_DOMAIN)
3239 {
3240 ALL_MSYMBOLS (objfile, msymbol)
3241 {
3242 if (MSYMBOL_TYPE (msymbol) == ourtype ||
3243 MSYMBOL_TYPE (msymbol) == ourtype2 ||
3244 MSYMBOL_TYPE (msymbol) == ourtype3 ||
3245 MSYMBOL_TYPE (msymbol) == ourtype4)
3246 {
3247 if (regexp == NULL
3248 || re_exec (SYMBOL_NATURAL_NAME (msymbol)) != 0)
3249 {
3250 /* Functions: Look up by address. */
3251 if (kind != FUNCTIONS_DOMAIN ||
3252 (0 == find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol))))
3253 {
3254 /* Variables/Absolutes: Look up by name */
3255 if (lookup_symbol (SYMBOL_LINKAGE_NAME (msymbol),
3256 (struct block *) NULL, VAR_DOMAIN,
3257 0, (struct symtab **) NULL) == NULL)
3258 {
3259 /* match */
3260 psr = (struct symbol_search *) xmalloc (sizeof (struct symbol_search));
3261 psr->block = i;
3262 psr->msymbol = msymbol;
3263 psr->symtab = NULL;
3264 psr->symbol = NULL;
3265 psr->next = NULL;
3266 if (tail == NULL)
3267 {
3268 sr = psr;
3269 old_chain = make_cleanup_free_search_symbols (sr);
3270 }
3271 else
3272 tail->next = psr;
3273 tail = psr;
3274 }
3275 }
3276 }
3277 }
3278 }
3279 }
3280
3281 *matches = sr;
3282 if (sr != NULL)
3283 discard_cleanups (old_chain);
3284 }
3285
3286 /* Helper function for symtab_symbol_info, this function uses
3287 the data returned from search_symbols() to print information
3288 regarding the match to gdb_stdout.
3289 */
3290 static void
3291 print_symbol_info (domain_enum kind, struct symtab *s, struct symbol *sym,
3292 int block, char *last)
3293 {
3294 if (last == NULL || strcmp (last, s->filename) != 0)
3295 {
3296 fputs_filtered ("\nFile ", gdb_stdout);
3297 fputs_filtered (s->filename, gdb_stdout);
3298 fputs_filtered (":\n", gdb_stdout);
3299 }
3300
3301 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
3302 printf_filtered ("static ");
3303
3304 /* Typedef that is not a C++ class */
3305 if (kind == TYPES_DOMAIN
3306 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
3307 typedef_print (SYMBOL_TYPE (sym), sym, gdb_stdout);
3308 /* variable, func, or typedef-that-is-c++-class */
3309 else if (kind < TYPES_DOMAIN ||
3310 (kind == TYPES_DOMAIN &&
3311 SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
3312 {
3313 type_print (SYMBOL_TYPE (sym),
3314 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
3315 ? "" : SYMBOL_PRINT_NAME (sym)),
3316 gdb_stdout, 0);
3317
3318 printf_filtered (";\n");
3319 }
3320 }
3321
3322 /* This help function for symtab_symbol_info() prints information
3323 for non-debugging symbols to gdb_stdout.
3324 */
3325 static void
3326 print_msymbol_info (struct minimal_symbol *msymbol)
3327 {
3328 char *tmp;
3329
3330 if (gdbarch_addr_bit (current_gdbarch) <= 32)
3331 tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol)
3332 & (CORE_ADDR) 0xffffffff,
3333 8);
3334 else
3335 tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol),
3336 16);
3337 printf_filtered ("%s %s\n",
3338 tmp, SYMBOL_PRINT_NAME (msymbol));
3339 }
3340
3341 /* This is the guts of the commands "info functions", "info types", and
3342 "info variables". It calls search_symbols to find all matches and then
3343 print_[m]symbol_info to print out some useful information about the
3344 matches.
3345 */
3346 static void
3347 symtab_symbol_info (char *regexp, domain_enum kind, int from_tty)
3348 {
3349 static char *classnames[]
3350 =
3351 {"variable", "function", "type", "method"};
3352 struct symbol_search *symbols;
3353 struct symbol_search *p;
3354 struct cleanup *old_chain;
3355 char *last_filename = NULL;
3356 int first = 1;
3357
3358 /* must make sure that if we're interrupted, symbols gets freed */
3359 search_symbols (regexp, kind, 0, (char **) NULL, &symbols);
3360 old_chain = make_cleanup_free_search_symbols (symbols);
3361
3362 printf_filtered (regexp
3363 ? "All %ss matching regular expression \"%s\":\n"
3364 : "All defined %ss:\n",
3365 classnames[(int) (kind - VARIABLES_DOMAIN)], regexp);
3366
3367 for (p = symbols; p != NULL; p = p->next)
3368 {
3369 QUIT;
3370
3371 if (p->msymbol != NULL)
3372 {
3373 if (first)
3374 {
3375 printf_filtered ("\nNon-debugging symbols:\n");
3376 first = 0;
3377 }
3378 print_msymbol_info (p->msymbol);
3379 }
3380 else
3381 {
3382 print_symbol_info (kind,
3383 p->symtab,
3384 p->symbol,
3385 p->block,
3386 last_filename);
3387 last_filename = p->symtab->filename;
3388 }
3389 }
3390
3391 do_cleanups (old_chain);
3392 }
3393
3394 static void
3395 variables_info (char *regexp, int from_tty)
3396 {
3397 symtab_symbol_info (regexp, VARIABLES_DOMAIN, from_tty);
3398 }
3399
3400 static void
3401 functions_info (char *regexp, int from_tty)
3402 {
3403 symtab_symbol_info (regexp, FUNCTIONS_DOMAIN, from_tty);
3404 }
3405
3406
3407 static void
3408 types_info (char *regexp, int from_tty)
3409 {
3410 symtab_symbol_info (regexp, TYPES_DOMAIN, from_tty);
3411 }
3412
3413 /* Breakpoint all functions matching regular expression. */
3414
3415 void
3416 rbreak_command_wrapper (char *regexp, int from_tty)
3417 {
3418 rbreak_command (regexp, from_tty);
3419 }
3420
3421 static void
3422 rbreak_command (char *regexp, int from_tty)
3423 {
3424 struct symbol_search *ss;
3425 struct symbol_search *p;
3426 struct cleanup *old_chain;
3427
3428 search_symbols (regexp, FUNCTIONS_DOMAIN, 0, (char **) NULL, &ss);
3429 old_chain = make_cleanup_free_search_symbols (ss);
3430
3431 for (p = ss; p != NULL; p = p->next)
3432 {
3433 if (p->msymbol == NULL)
3434 {
3435 char *string = alloca (strlen (p->symtab->filename)
3436 + strlen (SYMBOL_LINKAGE_NAME (p->symbol))
3437 + 4);
3438 strcpy (string, p->symtab->filename);
3439 strcat (string, ":'");
3440 strcat (string, SYMBOL_LINKAGE_NAME (p->symbol));
3441 strcat (string, "'");
3442 break_command (string, from_tty);
3443 print_symbol_info (FUNCTIONS_DOMAIN,
3444 p->symtab,
3445 p->symbol,
3446 p->block,
3447 p->symtab->filename);
3448 }
3449 else
3450 {
3451 break_command (SYMBOL_LINKAGE_NAME (p->msymbol), from_tty);
3452 printf_filtered ("<function, no debug info> %s;\n",
3453 SYMBOL_PRINT_NAME (p->msymbol));
3454 }
3455 }
3456
3457 do_cleanups (old_chain);
3458 }
3459 \f
3460
3461 /* Helper routine for make_symbol_completion_list. */
3462
3463 static int return_val_size;
3464 static int return_val_index;
3465 static char **return_val;
3466
3467 #define COMPLETION_LIST_ADD_SYMBOL(symbol, sym_text, len, text, word) \
3468 completion_list_add_name \
3469 (SYMBOL_NATURAL_NAME (symbol), (sym_text), (len), (text), (word))
3470
3471 /* Test to see if the symbol specified by SYMNAME (which is already
3472 demangled for C++ symbols) matches SYM_TEXT in the first SYM_TEXT_LEN
3473 characters. If so, add it to the current completion list. */
3474
3475 static void
3476 completion_list_add_name (char *symname, char *sym_text, int sym_text_len,
3477 char *text, char *word)
3478 {
3479 int newsize;
3480 int i;
3481
3482 /* clip symbols that cannot match */
3483
3484 if (strncmp (symname, sym_text, sym_text_len) != 0)
3485 {
3486 return;
3487 }
3488
3489 /* We have a match for a completion, so add SYMNAME to the current list
3490 of matches. Note that the name is moved to freshly malloc'd space. */
3491
3492 {
3493 char *new;
3494 if (word == sym_text)
3495 {
3496 new = xmalloc (strlen (symname) + 5);
3497 strcpy (new, symname);
3498 }
3499 else if (word > sym_text)
3500 {
3501 /* Return some portion of symname. */
3502 new = xmalloc (strlen (symname) + 5);
3503 strcpy (new, symname + (word - sym_text));
3504 }
3505 else
3506 {
3507 /* Return some of SYM_TEXT plus symname. */
3508 new = xmalloc (strlen (symname) + (sym_text - word) + 5);
3509 strncpy (new, word, sym_text - word);
3510 new[sym_text - word] = '\0';
3511 strcat (new, symname);
3512 }
3513
3514 if (return_val_index + 3 > return_val_size)
3515 {
3516 newsize = (return_val_size *= 2) * sizeof (char *);
3517 return_val = (char **) xrealloc ((char *) return_val, newsize);
3518 }
3519 return_val[return_val_index++] = new;
3520 return_val[return_val_index] = NULL;
3521 }
3522 }
3523
3524 /* ObjC: In case we are completing on a selector, look as the msymbol
3525 again and feed all the selectors into the mill. */
3526
3527 static void
3528 completion_list_objc_symbol (struct minimal_symbol *msymbol, char *sym_text,
3529 int sym_text_len, char *text, char *word)
3530 {
3531 static char *tmp = NULL;
3532 static unsigned int tmplen = 0;
3533
3534 char *method, *category, *selector;
3535 char *tmp2 = NULL;
3536
3537 method = SYMBOL_NATURAL_NAME (msymbol);
3538
3539 /* Is it a method? */
3540 if ((method[0] != '-') && (method[0] != '+'))
3541 return;
3542
3543 if (sym_text[0] == '[')
3544 /* Complete on shortened method method. */
3545 completion_list_add_name (method + 1, sym_text, sym_text_len, text, word);
3546
3547 while ((strlen (method) + 1) >= tmplen)
3548 {
3549 if (tmplen == 0)
3550 tmplen = 1024;
3551 else
3552 tmplen *= 2;
3553 tmp = xrealloc (tmp, tmplen);
3554 }
3555 selector = strchr (method, ' ');
3556 if (selector != NULL)
3557 selector++;
3558
3559 category = strchr (method, '(');
3560
3561 if ((category != NULL) && (selector != NULL))
3562 {
3563 memcpy (tmp, method, (category - method));
3564 tmp[category - method] = ' ';
3565 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
3566 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
3567 if (sym_text[0] == '[')
3568 completion_list_add_name (tmp + 1, sym_text, sym_text_len, text, word);
3569 }
3570
3571 if (selector != NULL)
3572 {
3573 /* Complete on selector only. */
3574 strcpy (tmp, selector);
3575 tmp2 = strchr (tmp, ']');
3576 if (tmp2 != NULL)
3577 *tmp2 = '\0';
3578
3579 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
3580 }
3581 }
3582
3583 /* Break the non-quoted text based on the characters which are in
3584 symbols. FIXME: This should probably be language-specific. */
3585
3586 static char *
3587 language_search_unquoted_string (char *text, char *p)
3588 {
3589 for (; p > text; --p)
3590 {
3591 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
3592 continue;
3593 else
3594 {
3595 if ((current_language->la_language == language_objc))
3596 {
3597 if (p[-1] == ':') /* might be part of a method name */
3598 continue;
3599 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
3600 p -= 2; /* beginning of a method name */
3601 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
3602 { /* might be part of a method name */
3603 char *t = p;
3604
3605 /* Seeing a ' ' or a '(' is not conclusive evidence
3606 that we are in the middle of a method name. However,
3607 finding "-[" or "+[" should be pretty un-ambiguous.
3608 Unfortunately we have to find it now to decide. */
3609
3610 while (t > text)
3611 if (isalnum (t[-1]) || t[-1] == '_' ||
3612 t[-1] == ' ' || t[-1] == ':' ||
3613 t[-1] == '(' || t[-1] == ')')
3614 --t;
3615 else
3616 break;
3617
3618 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
3619 p = t - 2; /* method name detected */
3620 /* else we leave with p unchanged */
3621 }
3622 }
3623 break;
3624 }
3625 }
3626 return p;
3627 }
3628
3629
3630 /* Return a NULL terminated array of all symbols (regardless of class)
3631 which begin by matching TEXT. If the answer is no symbols, then
3632 the return value is an array which contains only a NULL pointer.
3633
3634 Problem: All of the symbols have to be copied because readline frees them.
3635 I'm not going to worry about this; hopefully there won't be that many. */
3636
3637 char **
3638 make_symbol_completion_list (char *text, char *word)
3639 {
3640 struct symbol *sym;
3641 struct symtab *s;
3642 struct partial_symtab *ps;
3643 struct minimal_symbol *msymbol;
3644 struct objfile *objfile;
3645 struct block *b, *surrounding_static_block = 0;
3646 struct dict_iterator iter;
3647 int j;
3648 struct partial_symbol **psym;
3649 /* The symbol we are completing on. Points in same buffer as text. */
3650 char *sym_text;
3651 /* Length of sym_text. */
3652 int sym_text_len;
3653
3654 /* Now look for the symbol we are supposed to complete on.
3655 FIXME: This should be language-specific. */
3656 {
3657 char *p;
3658 char quote_found;
3659 char *quote_pos = NULL;
3660
3661 /* First see if this is a quoted string. */
3662 quote_found = '\0';
3663 for (p = text; *p != '\0'; ++p)
3664 {
3665 if (quote_found != '\0')
3666 {
3667 if (*p == quote_found)
3668 /* Found close quote. */
3669 quote_found = '\0';
3670 else if (*p == '\\' && p[1] == quote_found)
3671 /* A backslash followed by the quote character
3672 doesn't end the string. */
3673 ++p;
3674 }
3675 else if (*p == '\'' || *p == '"')
3676 {
3677 quote_found = *p;
3678 quote_pos = p;
3679 }
3680 }
3681 if (quote_found == '\'')
3682 /* A string within single quotes can be a symbol, so complete on it. */
3683 sym_text = quote_pos + 1;
3684 else if (quote_found == '"')
3685 /* A double-quoted string is never a symbol, nor does it make sense
3686 to complete it any other way. */
3687 {
3688 return_val = (char **) xmalloc (sizeof (char *));
3689 return_val[0] = NULL;
3690 return return_val;
3691 }
3692 else
3693 {
3694 /* It is not a quoted string. Break it based on the characters
3695 which are in symbols. */
3696 while (p > text)
3697 {
3698 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
3699 --p;
3700 else
3701 break;
3702 }
3703 sym_text = p;
3704 }
3705 }
3706
3707 sym_text_len = strlen (sym_text);
3708
3709 return_val_size = 100;
3710 return_val_index = 0;
3711 return_val = (char **) xmalloc ((return_val_size + 1) * sizeof (char *));
3712 return_val[0] = NULL;
3713
3714 /* Look through the partial symtabs for all symbols which begin
3715 by matching SYM_TEXT. Add each one that you find to the list. */
3716
3717 ALL_PSYMTABS (objfile, ps)
3718 {
3719 /* If the psymtab's been read in we'll get it when we search
3720 through the blockvector. */
3721 if (ps->readin)
3722 continue;
3723
3724 for (psym = objfile->global_psymbols.list + ps->globals_offset;
3725 psym < (objfile->global_psymbols.list + ps->globals_offset
3726 + ps->n_global_syms);
3727 psym++)
3728 {
3729 /* If interrupted, then quit. */
3730 QUIT;
3731 COMPLETION_LIST_ADD_SYMBOL (*psym, sym_text, sym_text_len, text, word);
3732 }
3733
3734 for (psym = objfile->static_psymbols.list + ps->statics_offset;
3735 psym < (objfile->static_psymbols.list + ps->statics_offset
3736 + ps->n_static_syms);
3737 psym++)
3738 {
3739 QUIT;
3740 COMPLETION_LIST_ADD_SYMBOL (*psym, sym_text, sym_text_len, text, word);
3741 }
3742 }
3743
3744 /* At this point scan through the misc symbol vectors and add each
3745 symbol you find to the list. Eventually we want to ignore
3746 anything that isn't a text symbol (everything else will be
3747 handled by the psymtab code above). */
3748
3749 ALL_MSYMBOLS (objfile, msymbol)
3750 {
3751 QUIT;
3752 COMPLETION_LIST_ADD_SYMBOL (msymbol, sym_text, sym_text_len, text, word);
3753
3754 completion_list_objc_symbol (msymbol, sym_text, sym_text_len, text, word);
3755 }
3756
3757 /* Search upwards from currently selected frame (so that we can
3758 complete on local vars. */
3759
3760 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
3761 {
3762 if (!BLOCK_SUPERBLOCK (b))
3763 {
3764 surrounding_static_block = b; /* For elmin of dups */
3765 }
3766
3767 /* Also catch fields of types defined in this places which match our
3768 text string. Only complete on types visible from current context. */
3769
3770 ALL_BLOCK_SYMBOLS (b, iter, sym)
3771 {
3772 QUIT;
3773 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
3774 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
3775 {
3776 struct type *t = SYMBOL_TYPE (sym);
3777 enum type_code c = TYPE_CODE (t);
3778
3779 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
3780 {
3781 for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++)
3782 {
3783 if (TYPE_FIELD_NAME (t, j))
3784 {
3785 completion_list_add_name (TYPE_FIELD_NAME (t, j),
3786 sym_text, sym_text_len, text, word);
3787 }
3788 }
3789 }
3790 }
3791 }
3792 }
3793
3794 /* Go through the symtabs and check the externs and statics for
3795 symbols which match. */
3796
3797 ALL_PRIMARY_SYMTABS (objfile, s)
3798 {
3799 QUIT;
3800 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
3801 ALL_BLOCK_SYMBOLS (b, iter, sym)
3802 {
3803 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
3804 }
3805 }
3806
3807 ALL_PRIMARY_SYMTABS (objfile, s)
3808 {
3809 QUIT;
3810 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
3811 /* Don't do this block twice. */
3812 if (b == surrounding_static_block)
3813 continue;
3814 ALL_BLOCK_SYMBOLS (b, iter, sym)
3815 {
3816 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
3817 }
3818 }
3819
3820 return (return_val);
3821 }
3822
3823 /* Like make_symbol_completion_list, but returns a list of symbols
3824 defined in a source file FILE. */
3825
3826 char **
3827 make_file_symbol_completion_list (char *text, char *word, char *srcfile)
3828 {
3829 struct symbol *sym;
3830 struct symtab *s;
3831 struct block *b;
3832 struct dict_iterator iter;
3833 /* The symbol we are completing on. Points in same buffer as text. */
3834 char *sym_text;
3835 /* Length of sym_text. */
3836 int sym_text_len;
3837
3838 /* Now look for the symbol we are supposed to complete on.
3839 FIXME: This should be language-specific. */
3840 {
3841 char *p;
3842 char quote_found;
3843 char *quote_pos = NULL;
3844
3845 /* First see if this is a quoted string. */
3846 quote_found = '\0';
3847 for (p = text; *p != '\0'; ++p)
3848 {
3849 if (quote_found != '\0')
3850 {
3851 if (*p == quote_found)
3852 /* Found close quote. */
3853 quote_found = '\0';
3854 else if (*p == '\\' && p[1] == quote_found)
3855 /* A backslash followed by the quote character
3856 doesn't end the string. */
3857 ++p;
3858 }
3859 else if (*p == '\'' || *p == '"')
3860 {
3861 quote_found = *p;
3862 quote_pos = p;
3863 }
3864 }
3865 if (quote_found == '\'')
3866 /* A string within single quotes can be a symbol, so complete on it. */
3867 sym_text = quote_pos + 1;
3868 else if (quote_found == '"')
3869 /* A double-quoted string is never a symbol, nor does it make sense
3870 to complete it any other way. */
3871 {
3872 return_val = (char **) xmalloc (sizeof (char *));
3873 return_val[0] = NULL;
3874 return return_val;
3875 }
3876 else
3877 {
3878 /* Not a quoted string. */
3879 sym_text = language_search_unquoted_string (text, p);
3880 }
3881 }
3882
3883 sym_text_len = strlen (sym_text);
3884
3885 return_val_size = 10;
3886 return_val_index = 0;
3887 return_val = (char **) xmalloc ((return_val_size + 1) * sizeof (char *));
3888 return_val[0] = NULL;
3889
3890 /* Find the symtab for SRCFILE (this loads it if it was not yet read
3891 in). */
3892 s = lookup_symtab (srcfile);
3893 if (s == NULL)
3894 {
3895 /* Maybe they typed the file with leading directories, while the
3896 symbol tables record only its basename. */
3897 const char *tail = lbasename (srcfile);
3898
3899 if (tail > srcfile)
3900 s = lookup_symtab (tail);
3901 }
3902
3903 /* If we have no symtab for that file, return an empty list. */
3904 if (s == NULL)
3905 return (return_val);
3906
3907 /* Go through this symtab and check the externs and statics for
3908 symbols which match. */
3909
3910 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
3911 ALL_BLOCK_SYMBOLS (b, iter, sym)
3912 {
3913 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
3914 }
3915
3916 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
3917 ALL_BLOCK_SYMBOLS (b, iter, sym)
3918 {
3919 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
3920 }
3921
3922 return (return_val);
3923 }
3924
3925 /* A helper function for make_source_files_completion_list. It adds
3926 another file name to a list of possible completions, growing the
3927 list as necessary. */
3928
3929 static void
3930 add_filename_to_list (const char *fname, char *text, char *word,
3931 char ***list, int *list_used, int *list_alloced)
3932 {
3933 char *new;
3934 size_t fnlen = strlen (fname);
3935
3936 if (*list_used + 1 >= *list_alloced)
3937 {
3938 *list_alloced *= 2;
3939 *list = (char **) xrealloc ((char *) *list,
3940 *list_alloced * sizeof (char *));
3941 }
3942
3943 if (word == text)
3944 {
3945 /* Return exactly fname. */
3946 new = xmalloc (fnlen + 5);
3947 strcpy (new, fname);
3948 }
3949 else if (word > text)
3950 {
3951 /* Return some portion of fname. */
3952 new = xmalloc (fnlen + 5);
3953 strcpy (new, fname + (word - text));
3954 }
3955 else
3956 {
3957 /* Return some of TEXT plus fname. */
3958 new = xmalloc (fnlen + (text - word) + 5);
3959 strncpy (new, word, text - word);
3960 new[text - word] = '\0';
3961 strcat (new, fname);
3962 }
3963 (*list)[*list_used] = new;
3964 (*list)[++*list_used] = NULL;
3965 }
3966
3967 static int
3968 not_interesting_fname (const char *fname)
3969 {
3970 static const char *illegal_aliens[] = {
3971 "_globals_", /* inserted by coff_symtab_read */
3972 NULL
3973 };
3974 int i;
3975
3976 for (i = 0; illegal_aliens[i]; i++)
3977 {
3978 if (strcmp (fname, illegal_aliens[i]) == 0)
3979 return 1;
3980 }
3981 return 0;
3982 }
3983
3984 /* Return a NULL terminated array of all source files whose names
3985 begin with matching TEXT. The file names are looked up in the
3986 symbol tables of this program. If the answer is no matchess, then
3987 the return value is an array which contains only a NULL pointer. */
3988
3989 char **
3990 make_source_files_completion_list (char *text, char *word)
3991 {
3992 struct symtab *s;
3993 struct partial_symtab *ps;
3994 struct objfile *objfile;
3995 int first = 1;
3996 int list_alloced = 1;
3997 int list_used = 0;
3998 size_t text_len = strlen (text);
3999 char **list = (char **) xmalloc (list_alloced * sizeof (char *));
4000 const char *base_name;
4001
4002 list[0] = NULL;
4003
4004 if (!have_full_symbols () && !have_partial_symbols ())
4005 return list;
4006
4007 ALL_SYMTABS (objfile, s)
4008 {
4009 if (not_interesting_fname (s->filename))
4010 continue;
4011 if (!filename_seen (s->filename, 1, &first)
4012 #if HAVE_DOS_BASED_FILE_SYSTEM
4013 && strncasecmp (s->filename, text, text_len) == 0
4014 #else
4015 && strncmp (s->filename, text, text_len) == 0
4016 #endif
4017 )
4018 {
4019 /* This file matches for a completion; add it to the current
4020 list of matches. */
4021 add_filename_to_list (s->filename, text, word,
4022 &list, &list_used, &list_alloced);
4023 }
4024 else
4025 {
4026 /* NOTE: We allow the user to type a base name when the
4027 debug info records leading directories, but not the other
4028 way around. This is what subroutines of breakpoint
4029 command do when they parse file names. */
4030 base_name = lbasename (s->filename);
4031 if (base_name != s->filename
4032 && !filename_seen (base_name, 1, &first)
4033 #if HAVE_DOS_BASED_FILE_SYSTEM
4034 && strncasecmp (base_name, text, text_len) == 0
4035 #else
4036 && strncmp (base_name, text, text_len) == 0
4037 #endif
4038 )
4039 add_filename_to_list (base_name, text, word,
4040 &list, &list_used, &list_alloced);
4041 }
4042 }
4043
4044 ALL_PSYMTABS (objfile, ps)
4045 {
4046 if (not_interesting_fname (ps->filename))
4047 continue;
4048 if (!ps->readin)
4049 {
4050 if (!filename_seen (ps->filename, 1, &first)
4051 #if HAVE_DOS_BASED_FILE_SYSTEM
4052 && strncasecmp (ps->filename, text, text_len) == 0
4053 #else
4054 && strncmp (ps->filename, text, text_len) == 0
4055 #endif
4056 )
4057 {
4058 /* This file matches for a completion; add it to the
4059 current list of matches. */
4060 add_filename_to_list (ps->filename, text, word,
4061 &list, &list_used, &list_alloced);
4062
4063 }
4064 else
4065 {
4066 base_name = lbasename (ps->filename);
4067 if (base_name != ps->filename
4068 && !filename_seen (base_name, 1, &first)
4069 #if HAVE_DOS_BASED_FILE_SYSTEM
4070 && strncasecmp (base_name, text, text_len) == 0
4071 #else
4072 && strncmp (base_name, text, text_len) == 0
4073 #endif
4074 )
4075 add_filename_to_list (base_name, text, word,
4076 &list, &list_used, &list_alloced);
4077 }
4078 }
4079 }
4080
4081 return list;
4082 }
4083
4084 /* Determine if PC is in the prologue of a function. The prologue is the area
4085 between the first instruction of a function, and the first executable line.
4086 Returns 1 if PC *might* be in prologue, 0 if definately *not* in prologue.
4087
4088 If non-zero, func_start is where we think the prologue starts, possibly
4089 by previous examination of symbol table information.
4090 */
4091
4092 int
4093 in_prologue (CORE_ADDR pc, CORE_ADDR func_start)
4094 {
4095 struct symtab_and_line sal;
4096 CORE_ADDR func_addr, func_end;
4097
4098 /* We have several sources of information we can consult to figure
4099 this out.
4100 - Compilers usually emit line number info that marks the prologue
4101 as its own "source line". So the ending address of that "line"
4102 is the end of the prologue. If available, this is the most
4103 reliable method.
4104 - The minimal symbols and partial symbols, which can usually tell
4105 us the starting and ending addresses of a function.
4106 - If we know the function's start address, we can call the
4107 architecture-defined gdbarch_skip_prologue function to analyze the
4108 instruction stream and guess where the prologue ends.
4109 - Our `func_start' argument; if non-zero, this is the caller's
4110 best guess as to the function's entry point. At the time of
4111 this writing, handle_inferior_event doesn't get this right, so
4112 it should be our last resort. */
4113
4114 /* Consult the partial symbol table, to find which function
4115 the PC is in. */
4116 if (! find_pc_partial_function (pc, NULL, &func_addr, &func_end))
4117 {
4118 CORE_ADDR prologue_end;
4119
4120 /* We don't even have minsym information, so fall back to using
4121 func_start, if given. */
4122 if (! func_start)
4123 return 1; /* We *might* be in a prologue. */
4124
4125 prologue_end = gdbarch_skip_prologue (current_gdbarch, func_start);
4126
4127 return func_start <= pc && pc < prologue_end;
4128 }
4129
4130 /* If we have line number information for the function, that's
4131 usually pretty reliable. */
4132 sal = find_pc_line (func_addr, 0);
4133
4134 /* Now sal describes the source line at the function's entry point,
4135 which (by convention) is the prologue. The end of that "line",
4136 sal.end, is the end of the prologue.
4137
4138 Note that, for functions whose source code is all on a single
4139 line, the line number information doesn't always end up this way.
4140 So we must verify that our purported end-of-prologue address is
4141 *within* the function, not at its start or end. */
4142 if (sal.line == 0
4143 || sal.end <= func_addr
4144 || func_end <= sal.end)
4145 {
4146 /* We don't have any good line number info, so use the minsym
4147 information, together with the architecture-specific prologue
4148 scanning code. */
4149 CORE_ADDR prologue_end = gdbarch_skip_prologue
4150 (current_gdbarch, func_addr);
4151
4152 return func_addr <= pc && pc < prologue_end;
4153 }
4154
4155 /* We have line number info, and it looks good. */
4156 return func_addr <= pc && pc < sal.end;
4157 }
4158
4159 /* Given PC at the function's start address, attempt to find the
4160 prologue end using SAL information. Return zero if the skip fails.
4161
4162 A non-optimized prologue traditionally has one SAL for the function
4163 and a second for the function body. A single line function has
4164 them both pointing at the same line.
4165
4166 An optimized prologue is similar but the prologue may contain
4167 instructions (SALs) from the instruction body. Need to skip those
4168 while not getting into the function body.
4169
4170 The functions end point and an increasing SAL line are used as
4171 indicators of the prologue's endpoint.
4172
4173 This code is based on the function refine_prologue_limit (versions
4174 found in both ia64 and ppc). */
4175
4176 CORE_ADDR
4177 skip_prologue_using_sal (CORE_ADDR func_addr)
4178 {
4179 struct symtab_and_line prologue_sal;
4180 CORE_ADDR start_pc;
4181 CORE_ADDR end_pc;
4182
4183 /* Get an initial range for the function. */
4184 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
4185 start_pc += gdbarch_deprecated_function_start_offset (current_gdbarch);
4186
4187 prologue_sal = find_pc_line (start_pc, 0);
4188 if (prologue_sal.line != 0)
4189 {
4190 /* If there is only one sal that covers the entire function,
4191 then it is probably a single line function, like
4192 "foo(){}". */
4193 if (prologue_sal.end >= end_pc)
4194 return 0;
4195 while (prologue_sal.end < end_pc)
4196 {
4197 struct symtab_and_line sal;
4198
4199 sal = find_pc_line (prologue_sal.end, 0);
4200 if (sal.line == 0)
4201 break;
4202 /* Assume that a consecutive SAL for the same (or larger)
4203 line mark the prologue -> body transition. */
4204 if (sal.line >= prologue_sal.line)
4205 break;
4206 /* The case in which compiler's optimizer/scheduler has
4207 moved instructions into the prologue. We look ahead in
4208 the function looking for address ranges whose
4209 corresponding line number is less the first one that we
4210 found for the function. This is more conservative then
4211 refine_prologue_limit which scans a large number of SALs
4212 looking for any in the prologue */
4213 prologue_sal = sal;
4214 }
4215 }
4216 return prologue_sal.end;
4217 }
4218 \f
4219 struct symtabs_and_lines
4220 decode_line_spec (char *string, int funfirstline)
4221 {
4222 struct symtabs_and_lines sals;
4223 struct symtab_and_line cursal;
4224
4225 if (string == 0)
4226 error (_("Empty line specification."));
4227
4228 /* We use whatever is set as the current source line. We do not try
4229 and get a default or it will recursively call us! */
4230 cursal = get_current_source_symtab_and_line ();
4231
4232 sals = decode_line_1 (&string, funfirstline,
4233 cursal.symtab, cursal.line,
4234 (char ***) NULL, NULL);
4235
4236 if (*string)
4237 error (_("Junk at end of line specification: %s"), string);
4238 return sals;
4239 }
4240
4241 /* Track MAIN */
4242 static char *name_of_main;
4243
4244 void
4245 set_main_name (const char *name)
4246 {
4247 if (name_of_main != NULL)
4248 {
4249 xfree (name_of_main);
4250 name_of_main = NULL;
4251 }
4252 if (name != NULL)
4253 {
4254 name_of_main = xstrdup (name);
4255 }
4256 }
4257
4258 /* Deduce the name of the main procedure, and set NAME_OF_MAIN
4259 accordingly. */
4260
4261 static void
4262 find_main_name (void)
4263 {
4264 char *new_main_name;
4265
4266 /* Try to see if the main procedure is in Ada. */
4267 /* FIXME: brobecker/2005-03-07: Another way of doing this would
4268 be to add a new method in the language vector, and call this
4269 method for each language until one of them returns a non-empty
4270 name. This would allow us to remove this hard-coded call to
4271 an Ada function. It is not clear that this is a better approach
4272 at this point, because all methods need to be written in a way
4273 such that false positives never be returned. For instance, it is
4274 important that a method does not return a wrong name for the main
4275 procedure if the main procedure is actually written in a different
4276 language. It is easy to guaranty this with Ada, since we use a
4277 special symbol generated only when the main in Ada to find the name
4278 of the main procedure. It is difficult however to see how this can
4279 be guarantied for languages such as C, for instance. This suggests
4280 that order of call for these methods becomes important, which means
4281 a more complicated approach. */
4282 new_main_name = ada_main_name ();
4283 if (new_main_name != NULL)
4284 {
4285 set_main_name (new_main_name);
4286 return;
4287 }
4288
4289 /* The languages above didn't identify the name of the main procedure.
4290 Fallback to "main". */
4291 set_main_name ("main");
4292 }
4293
4294 char *
4295 main_name (void)
4296 {
4297 if (name_of_main == NULL)
4298 find_main_name ();
4299
4300 return name_of_main;
4301 }
4302
4303 /* Handle ``executable_changed'' events for the symtab module. */
4304
4305 static void
4306 symtab_observer_executable_changed (void *unused)
4307 {
4308 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
4309 set_main_name (NULL);
4310 }
4311
4312 void
4313 _initialize_symtab (void)
4314 {
4315 add_info ("variables", variables_info, _("\
4316 All global and static variable names, or those matching REGEXP."));
4317 if (dbx_commands)
4318 add_com ("whereis", class_info, variables_info, _("\
4319 All global and static variable names, or those matching REGEXP."));
4320
4321 add_info ("functions", functions_info,
4322 _("All function names, or those matching REGEXP."));
4323
4324
4325 /* FIXME: This command has at least the following problems:
4326 1. It prints builtin types (in a very strange and confusing fashion).
4327 2. It doesn't print right, e.g. with
4328 typedef struct foo *FOO
4329 type_print prints "FOO" when we want to make it (in this situation)
4330 print "struct foo *".
4331 I also think "ptype" or "whatis" is more likely to be useful (but if
4332 there is much disagreement "info types" can be fixed). */
4333 add_info ("types", types_info,
4334 _("All type names, or those matching REGEXP."));
4335
4336 add_info ("sources", sources_info,
4337 _("Source files in the program."));
4338
4339 add_com ("rbreak", class_breakpoint, rbreak_command,
4340 _("Set a breakpoint for all functions matching REGEXP."));
4341
4342 if (xdb_commands)
4343 {
4344 add_com ("lf", class_info, sources_info,
4345 _("Source files in the program"));
4346 add_com ("lg", class_info, variables_info, _("\
4347 All global and static variable names, or those matching REGEXP."));
4348 }
4349
4350 /* Initialize the one built-in type that isn't language dependent... */
4351 builtin_type_error = init_type (TYPE_CODE_ERROR, 0, 0,
4352 "<unknown type>", (struct objfile *) NULL);
4353
4354 observer_attach_executable_changed (symtab_observer_executable_changed);
4355 }
This page took 0.152463 seconds and 4 git commands to generate.