Replace int with enum block_enum where appropriate.
[deliverable/binutils-gdb.git] / gdb / symtab.c
1 /* Symbol table lookup for the GNU debugger, GDB.
2
3 Copyright (C) 1986-2019 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "gdbcore.h"
24 #include "frame.h"
25 #include "target.h"
26 #include "value.h"
27 #include "symfile.h"
28 #include "objfiles.h"
29 #include "gdbcmd.h"
30 #include "gdb_regex.h"
31 #include "expression.h"
32 #include "language.h"
33 #include "demangle.h"
34 #include "inferior.h"
35 #include "source.h"
36 #include "filenames.h" /* for FILENAME_CMP */
37 #include "objc-lang.h"
38 #include "d-lang.h"
39 #include "ada-lang.h"
40 #include "go-lang.h"
41 #include "p-lang.h"
42 #include "addrmap.h"
43 #include "cli/cli-utils.h"
44 #include "cli/cli-style.h"
45 #include "fnmatch.h"
46 #include "hashtab.h"
47 #include "typeprint.h"
48
49 #include "gdb_obstack.h"
50 #include "block.h"
51 #include "dictionary.h"
52
53 #include <sys/types.h>
54 #include <fcntl.h>
55 #include <sys/stat.h>
56 #include <ctype.h>
57 #include "cp-abi.h"
58 #include "cp-support.h"
59 #include "observable.h"
60 #include "solist.h"
61 #include "macrotab.h"
62 #include "macroscope.h"
63
64 #include "parser-defs.h"
65 #include "completer.h"
66 #include "progspace-and-thread.h"
67 #include "gdbsupport/gdb_optional.h"
68 #include "filename-seen-cache.h"
69 #include "arch-utils.h"
70 #include <algorithm>
71 #include "gdbsupport/pathstuff.h"
72
73 /* Forward declarations for local functions. */
74
75 static void rbreak_command (const char *, int);
76
77 static int find_line_common (struct linetable *, int, int *, int);
78
79 static struct block_symbol
80 lookup_symbol_aux (const char *name,
81 symbol_name_match_type match_type,
82 const struct block *block,
83 const domain_enum domain,
84 enum language language,
85 struct field_of_this_result *);
86
87 static
88 struct block_symbol lookup_local_symbol (const char *name,
89 symbol_name_match_type match_type,
90 const struct block *block,
91 const domain_enum domain,
92 enum language language);
93
94 static struct block_symbol
95 lookup_symbol_in_objfile (struct objfile *objfile,
96 enum block_enum block_index,
97 const char *name, const domain_enum domain);
98
99 /* Type of the data stored on the program space. */
100
101 struct main_info
102 {
103 main_info () = default;
104
105 ~main_info ()
106 {
107 xfree (name_of_main);
108 }
109
110 /* Name of "main". */
111
112 char *name_of_main = nullptr;
113
114 /* Language of "main". */
115
116 enum language language_of_main = language_unknown;
117 };
118
119 /* Program space key for finding name and language of "main". */
120
121 static const program_space_key<main_info> main_progspace_key;
122
123 /* The default symbol cache size.
124 There is no extra cpu cost for large N (except when flushing the cache,
125 which is rare). The value here is just a first attempt. A better default
126 value may be higher or lower. A prime number can make up for a bad hash
127 computation, so that's why the number is what it is. */
128 #define DEFAULT_SYMBOL_CACHE_SIZE 1021
129
130 /* The maximum symbol cache size.
131 There's no method to the decision of what value to use here, other than
132 there's no point in allowing a user typo to make gdb consume all memory. */
133 #define MAX_SYMBOL_CACHE_SIZE (1024*1024)
134
135 /* symbol_cache_lookup returns this if a previous lookup failed to find the
136 symbol in any objfile. */
137 #define SYMBOL_LOOKUP_FAILED \
138 ((struct block_symbol) {(struct symbol *) 1, NULL})
139 #define SYMBOL_LOOKUP_FAILED_P(SIB) (SIB.symbol == (struct symbol *) 1)
140
141 /* Recording lookups that don't find the symbol is just as important, if not
142 more so, than recording found symbols. */
143
144 enum symbol_cache_slot_state
145 {
146 SYMBOL_SLOT_UNUSED,
147 SYMBOL_SLOT_NOT_FOUND,
148 SYMBOL_SLOT_FOUND
149 };
150
151 struct symbol_cache_slot
152 {
153 enum symbol_cache_slot_state state;
154
155 /* The objfile that was current when the symbol was looked up.
156 This is only needed for global blocks, but for simplicity's sake
157 we allocate the space for both. If data shows the extra space used
158 for static blocks is a problem, we can split things up then.
159
160 Global blocks need cache lookup to include the objfile context because
161 we need to account for gdbarch_iterate_over_objfiles_in_search_order
162 which can traverse objfiles in, effectively, any order, depending on
163 the current objfile, thus affecting which symbol is found. Normally,
164 only the current objfile is searched first, and then the rest are
165 searched in recorded order; but putting cache lookup inside
166 gdbarch_iterate_over_objfiles_in_search_order would be awkward.
167 Instead we just make the current objfile part of the context of
168 cache lookup. This means we can record the same symbol multiple times,
169 each with a different "current objfile" that was in effect when the
170 lookup was saved in the cache, but cache space is pretty cheap. */
171 const struct objfile *objfile_context;
172
173 union
174 {
175 struct block_symbol found;
176 struct
177 {
178 char *name;
179 domain_enum domain;
180 } not_found;
181 } value;
182 };
183
184 /* Symbols don't specify global vs static block.
185 So keep them in separate caches. */
186
187 struct block_symbol_cache
188 {
189 unsigned int hits;
190 unsigned int misses;
191 unsigned int collisions;
192
193 /* SYMBOLS is a variable length array of this size.
194 One can imagine that in general one cache (global/static) should be a
195 fraction of the size of the other, but there's no data at the moment
196 on which to decide. */
197 unsigned int size;
198
199 struct symbol_cache_slot symbols[1];
200 };
201
202 /* The symbol cache.
203
204 Searching for symbols in the static and global blocks over multiple objfiles
205 again and again can be slow, as can searching very big objfiles. This is a
206 simple cache to improve symbol lookup performance, which is critical to
207 overall gdb performance.
208
209 Symbols are hashed on the name, its domain, and block.
210 They are also hashed on their objfile for objfile-specific lookups. */
211
212 struct symbol_cache
213 {
214 symbol_cache () = default;
215
216 ~symbol_cache ()
217 {
218 xfree (global_symbols);
219 xfree (static_symbols);
220 }
221
222 struct block_symbol_cache *global_symbols = nullptr;
223 struct block_symbol_cache *static_symbols = nullptr;
224 };
225
226 /* Program space key for finding its symbol cache. */
227
228 static const program_space_key<symbol_cache> symbol_cache_key;
229
230 /* When non-zero, print debugging messages related to symtab creation. */
231 unsigned int symtab_create_debug = 0;
232
233 /* When non-zero, print debugging messages related to symbol lookup. */
234 unsigned int symbol_lookup_debug = 0;
235
236 /* The size of the cache is staged here. */
237 static unsigned int new_symbol_cache_size = DEFAULT_SYMBOL_CACHE_SIZE;
238
239 /* The current value of the symbol cache size.
240 This is saved so that if the user enters a value too big we can restore
241 the original value from here. */
242 static unsigned int symbol_cache_size = DEFAULT_SYMBOL_CACHE_SIZE;
243
244 /* Non-zero if a file may be known by two different basenames.
245 This is the uncommon case, and significantly slows down gdb.
246 Default set to "off" to not slow down the common case. */
247 int basenames_may_differ = 0;
248
249 /* Allow the user to configure the debugger behavior with respect
250 to multiple-choice menus when more than one symbol matches during
251 a symbol lookup. */
252
253 const char multiple_symbols_ask[] = "ask";
254 const char multiple_symbols_all[] = "all";
255 const char multiple_symbols_cancel[] = "cancel";
256 static const char *const multiple_symbols_modes[] =
257 {
258 multiple_symbols_ask,
259 multiple_symbols_all,
260 multiple_symbols_cancel,
261 NULL
262 };
263 static const char *multiple_symbols_mode = multiple_symbols_all;
264
265 /* Read-only accessor to AUTO_SELECT_MODE. */
266
267 const char *
268 multiple_symbols_select_mode (void)
269 {
270 return multiple_symbols_mode;
271 }
272
273 /* Return the name of a domain_enum. */
274
275 const char *
276 domain_name (domain_enum e)
277 {
278 switch (e)
279 {
280 case UNDEF_DOMAIN: return "UNDEF_DOMAIN";
281 case VAR_DOMAIN: return "VAR_DOMAIN";
282 case STRUCT_DOMAIN: return "STRUCT_DOMAIN";
283 case MODULE_DOMAIN: return "MODULE_DOMAIN";
284 case LABEL_DOMAIN: return "LABEL_DOMAIN";
285 case COMMON_BLOCK_DOMAIN: return "COMMON_BLOCK_DOMAIN";
286 default: gdb_assert_not_reached ("bad domain_enum");
287 }
288 }
289
290 /* Return the name of a search_domain . */
291
292 const char *
293 search_domain_name (enum search_domain e)
294 {
295 switch (e)
296 {
297 case VARIABLES_DOMAIN: return "VARIABLES_DOMAIN";
298 case FUNCTIONS_DOMAIN: return "FUNCTIONS_DOMAIN";
299 case TYPES_DOMAIN: return "TYPES_DOMAIN";
300 case ALL_DOMAIN: return "ALL_DOMAIN";
301 default: gdb_assert_not_reached ("bad search_domain");
302 }
303 }
304
305 /* See symtab.h. */
306
307 struct symtab *
308 compunit_primary_filetab (const struct compunit_symtab *cust)
309 {
310 gdb_assert (COMPUNIT_FILETABS (cust) != NULL);
311
312 /* The primary file symtab is the first one in the list. */
313 return COMPUNIT_FILETABS (cust);
314 }
315
316 /* See symtab.h. */
317
318 enum language
319 compunit_language (const struct compunit_symtab *cust)
320 {
321 struct symtab *symtab = compunit_primary_filetab (cust);
322
323 /* The language of the compunit symtab is the language of its primary
324 source file. */
325 return SYMTAB_LANGUAGE (symtab);
326 }
327
328 /* See symtab.h. */
329
330 bool
331 minimal_symbol::data_p () const
332 {
333 return type == mst_data
334 || type == mst_bss
335 || type == mst_abs
336 || type == mst_file_data
337 || type == mst_file_bss;
338 }
339
340 /* See symtab.h. */
341
342 bool
343 minimal_symbol::text_p () const
344 {
345 return type == mst_text
346 || type == mst_text_gnu_ifunc
347 || type == mst_data_gnu_ifunc
348 || type == mst_slot_got_plt
349 || type == mst_solib_trampoline
350 || type == mst_file_text;
351 }
352
353 /* See whether FILENAME matches SEARCH_NAME using the rule that we
354 advertise to the user. (The manual's description of linespecs
355 describes what we advertise). Returns true if they match, false
356 otherwise. */
357
358 int
359 compare_filenames_for_search (const char *filename, const char *search_name)
360 {
361 int len = strlen (filename);
362 size_t search_len = strlen (search_name);
363
364 if (len < search_len)
365 return 0;
366
367 /* The tail of FILENAME must match. */
368 if (FILENAME_CMP (filename + len - search_len, search_name) != 0)
369 return 0;
370
371 /* Either the names must completely match, or the character
372 preceding the trailing SEARCH_NAME segment of FILENAME must be a
373 directory separator.
374
375 The check !IS_ABSOLUTE_PATH ensures SEARCH_NAME "/dir/file.c"
376 cannot match FILENAME "/path//dir/file.c" - as user has requested
377 absolute path. The sama applies for "c:\file.c" possibly
378 incorrectly hypothetically matching "d:\dir\c:\file.c".
379
380 The HAS_DRIVE_SPEC purpose is to make FILENAME "c:file.c"
381 compatible with SEARCH_NAME "file.c". In such case a compiler had
382 to put the "c:file.c" name into debug info. Such compatibility
383 works only on GDB built for DOS host. */
384 return (len == search_len
385 || (!IS_ABSOLUTE_PATH (search_name)
386 && IS_DIR_SEPARATOR (filename[len - search_len - 1]))
387 || (HAS_DRIVE_SPEC (filename)
388 && STRIP_DRIVE_SPEC (filename) == &filename[len - search_len]));
389 }
390
391 /* Same as compare_filenames_for_search, but for glob-style patterns.
392 Heads up on the order of the arguments. They match the order of
393 compare_filenames_for_search, but it's the opposite of the order of
394 arguments to gdb_filename_fnmatch. */
395
396 int
397 compare_glob_filenames_for_search (const char *filename,
398 const char *search_name)
399 {
400 /* We rely on the property of glob-style patterns with FNM_FILE_NAME that
401 all /s have to be explicitly specified. */
402 int file_path_elements = count_path_elements (filename);
403 int search_path_elements = count_path_elements (search_name);
404
405 if (search_path_elements > file_path_elements)
406 return 0;
407
408 if (IS_ABSOLUTE_PATH (search_name))
409 {
410 return (search_path_elements == file_path_elements
411 && gdb_filename_fnmatch (search_name, filename,
412 FNM_FILE_NAME | FNM_NOESCAPE) == 0);
413 }
414
415 {
416 const char *file_to_compare
417 = strip_leading_path_elements (filename,
418 file_path_elements - search_path_elements);
419
420 return gdb_filename_fnmatch (search_name, file_to_compare,
421 FNM_FILE_NAME | FNM_NOESCAPE) == 0;
422 }
423 }
424
425 /* Check for a symtab of a specific name by searching some symtabs.
426 This is a helper function for callbacks of iterate_over_symtabs.
427
428 If NAME is not absolute, then REAL_PATH is NULL
429 If NAME is absolute, then REAL_PATH is the gdb_realpath form of NAME.
430
431 The return value, NAME, REAL_PATH and CALLBACK are identical to the
432 `map_symtabs_matching_filename' method of quick_symbol_functions.
433
434 FIRST and AFTER_LAST indicate the range of compunit symtabs to search.
435 Each symtab within the specified compunit symtab is also searched.
436 AFTER_LAST is one past the last compunit symtab to search; NULL means to
437 search until the end of the list. */
438
439 bool
440 iterate_over_some_symtabs (const char *name,
441 const char *real_path,
442 struct compunit_symtab *first,
443 struct compunit_symtab *after_last,
444 gdb::function_view<bool (symtab *)> callback)
445 {
446 struct compunit_symtab *cust;
447 const char* base_name = lbasename (name);
448
449 for (cust = first; cust != NULL && cust != after_last; cust = cust->next)
450 {
451 for (symtab *s : compunit_filetabs (cust))
452 {
453 if (compare_filenames_for_search (s->filename, name))
454 {
455 if (callback (s))
456 return true;
457 continue;
458 }
459
460 /* Before we invoke realpath, which can get expensive when many
461 files are involved, do a quick comparison of the basenames. */
462 if (! basenames_may_differ
463 && FILENAME_CMP (base_name, lbasename (s->filename)) != 0)
464 continue;
465
466 if (compare_filenames_for_search (symtab_to_fullname (s), name))
467 {
468 if (callback (s))
469 return true;
470 continue;
471 }
472
473 /* If the user gave us an absolute path, try to find the file in
474 this symtab and use its absolute path. */
475 if (real_path != NULL)
476 {
477 const char *fullname = symtab_to_fullname (s);
478
479 gdb_assert (IS_ABSOLUTE_PATH (real_path));
480 gdb_assert (IS_ABSOLUTE_PATH (name));
481 if (FILENAME_CMP (real_path, fullname) == 0)
482 {
483 if (callback (s))
484 return true;
485 continue;
486 }
487 }
488 }
489 }
490
491 return false;
492 }
493
494 /* Check for a symtab of a specific name; first in symtabs, then in
495 psymtabs. *If* there is no '/' in the name, a match after a '/'
496 in the symtab filename will also work.
497
498 Calls CALLBACK with each symtab that is found. If CALLBACK returns
499 true, the search stops. */
500
501 void
502 iterate_over_symtabs (const char *name,
503 gdb::function_view<bool (symtab *)> callback)
504 {
505 gdb::unique_xmalloc_ptr<char> real_path;
506
507 /* Here we are interested in canonicalizing an absolute path, not
508 absolutizing a relative path. */
509 if (IS_ABSOLUTE_PATH (name))
510 {
511 real_path = gdb_realpath (name);
512 gdb_assert (IS_ABSOLUTE_PATH (real_path.get ()));
513 }
514
515 for (objfile *objfile : current_program_space->objfiles ())
516 {
517 if (iterate_over_some_symtabs (name, real_path.get (),
518 objfile->compunit_symtabs, NULL,
519 callback))
520 return;
521 }
522
523 /* Same search rules as above apply here, but now we look thru the
524 psymtabs. */
525
526 for (objfile *objfile : current_program_space->objfiles ())
527 {
528 if (objfile->sf
529 && objfile->sf->qf->map_symtabs_matching_filename (objfile,
530 name,
531 real_path.get (),
532 callback))
533 return;
534 }
535 }
536
537 /* A wrapper for iterate_over_symtabs that returns the first matching
538 symtab, or NULL. */
539
540 struct symtab *
541 lookup_symtab (const char *name)
542 {
543 struct symtab *result = NULL;
544
545 iterate_over_symtabs (name, [&] (symtab *symtab)
546 {
547 result = symtab;
548 return true;
549 });
550
551 return result;
552 }
553
554 \f
555 /* Mangle a GDB method stub type. This actually reassembles the pieces of the
556 full method name, which consist of the class name (from T), the unadorned
557 method name from METHOD_ID, and the signature for the specific overload,
558 specified by SIGNATURE_ID. Note that this function is g++ specific. */
559
560 char *
561 gdb_mangle_name (struct type *type, int method_id, int signature_id)
562 {
563 int mangled_name_len;
564 char *mangled_name;
565 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
566 struct fn_field *method = &f[signature_id];
567 const char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
568 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
569 const char *newname = TYPE_NAME (type);
570
571 /* Does the form of physname indicate that it is the full mangled name
572 of a constructor (not just the args)? */
573 int is_full_physname_constructor;
574
575 int is_constructor;
576 int is_destructor = is_destructor_name (physname);
577 /* Need a new type prefix. */
578 const char *const_prefix = method->is_const ? "C" : "";
579 const char *volatile_prefix = method->is_volatile ? "V" : "";
580 char buf[20];
581 int len = (newname == NULL ? 0 : strlen (newname));
582
583 /* Nothing to do if physname already contains a fully mangled v3 abi name
584 or an operator name. */
585 if ((physname[0] == '_' && physname[1] == 'Z')
586 || is_operator_name (field_name))
587 return xstrdup (physname);
588
589 is_full_physname_constructor = is_constructor_name (physname);
590
591 is_constructor = is_full_physname_constructor
592 || (newname && strcmp (field_name, newname) == 0);
593
594 if (!is_destructor)
595 is_destructor = (startswith (physname, "__dt"));
596
597 if (is_destructor || is_full_physname_constructor)
598 {
599 mangled_name = (char *) xmalloc (strlen (physname) + 1);
600 strcpy (mangled_name, physname);
601 return mangled_name;
602 }
603
604 if (len == 0)
605 {
606 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
607 }
608 else if (physname[0] == 't' || physname[0] == 'Q')
609 {
610 /* The physname for template and qualified methods already includes
611 the class name. */
612 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
613 newname = NULL;
614 len = 0;
615 }
616 else
617 {
618 xsnprintf (buf, sizeof (buf), "__%s%s%d", const_prefix,
619 volatile_prefix, len);
620 }
621 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
622 + strlen (buf) + len + strlen (physname) + 1);
623
624 mangled_name = (char *) xmalloc (mangled_name_len);
625 if (is_constructor)
626 mangled_name[0] = '\0';
627 else
628 strcpy (mangled_name, field_name);
629
630 strcat (mangled_name, buf);
631 /* If the class doesn't have a name, i.e. newname NULL, then we just
632 mangle it using 0 for the length of the class. Thus it gets mangled
633 as something starting with `::' rather than `classname::'. */
634 if (newname != NULL)
635 strcat (mangled_name, newname);
636
637 strcat (mangled_name, physname);
638 return (mangled_name);
639 }
640
641 /* Set the demangled name of GSYMBOL to NAME. NAME must be already
642 correctly allocated. */
643
644 void
645 symbol_set_demangled_name (struct general_symbol_info *gsymbol,
646 const char *name,
647 struct obstack *obstack)
648 {
649 if (gsymbol->language == language_ada)
650 {
651 if (name == NULL)
652 {
653 gsymbol->ada_mangled = 0;
654 gsymbol->language_specific.obstack = obstack;
655 }
656 else
657 {
658 gsymbol->ada_mangled = 1;
659 gsymbol->language_specific.demangled_name = name;
660 }
661 }
662 else
663 gsymbol->language_specific.demangled_name = name;
664 }
665
666 /* Return the demangled name of GSYMBOL. */
667
668 const char *
669 symbol_get_demangled_name (const struct general_symbol_info *gsymbol)
670 {
671 if (gsymbol->language == language_ada)
672 {
673 if (!gsymbol->ada_mangled)
674 return NULL;
675 /* Fall through. */
676 }
677
678 return gsymbol->language_specific.demangled_name;
679 }
680
681 \f
682 /* Initialize the language dependent portion of a symbol
683 depending upon the language for the symbol. */
684
685 void
686 symbol_set_language (struct general_symbol_info *gsymbol,
687 enum language language,
688 struct obstack *obstack)
689 {
690 gsymbol->language = language;
691 if (gsymbol->language == language_cplus
692 || gsymbol->language == language_d
693 || gsymbol->language == language_go
694 || gsymbol->language == language_objc
695 || gsymbol->language == language_fortran)
696 {
697 symbol_set_demangled_name (gsymbol, NULL, obstack);
698 }
699 else if (gsymbol->language == language_ada)
700 {
701 gdb_assert (gsymbol->ada_mangled == 0);
702 gsymbol->language_specific.obstack = obstack;
703 }
704 else
705 {
706 memset (&gsymbol->language_specific, 0,
707 sizeof (gsymbol->language_specific));
708 }
709 }
710
711 /* Functions to initialize a symbol's mangled name. */
712
713 /* Objects of this type are stored in the demangled name hash table. */
714 struct demangled_name_entry
715 {
716 const char *mangled;
717 ENUM_BITFIELD(language) language : LANGUAGE_BITS;
718 char demangled[1];
719 };
720
721 /* Hash function for the demangled name hash. */
722
723 static hashval_t
724 hash_demangled_name_entry (const void *data)
725 {
726 const struct demangled_name_entry *e
727 = (const struct demangled_name_entry *) data;
728
729 return htab_hash_string (e->mangled);
730 }
731
732 /* Equality function for the demangled name hash. */
733
734 static int
735 eq_demangled_name_entry (const void *a, const void *b)
736 {
737 const struct demangled_name_entry *da
738 = (const struct demangled_name_entry *) a;
739 const struct demangled_name_entry *db
740 = (const struct demangled_name_entry *) b;
741
742 return strcmp (da->mangled, db->mangled) == 0;
743 }
744
745 /* Create the hash table used for demangled names. Each hash entry is
746 a pair of strings; one for the mangled name and one for the demangled
747 name. The entry is hashed via just the mangled name. */
748
749 static void
750 create_demangled_names_hash (struct objfile_per_bfd_storage *per_bfd)
751 {
752 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
753 The hash table code will round this up to the next prime number.
754 Choosing a much larger table size wastes memory, and saves only about
755 1% in symbol reading. */
756
757 per_bfd->demangled_names_hash.reset (htab_create_alloc
758 (256, hash_demangled_name_entry, eq_demangled_name_entry,
759 NULL, xcalloc, xfree));
760 }
761
762 /* Try to determine the demangled name for a symbol, based on the
763 language of that symbol. If the language is set to language_auto,
764 it will attempt to find any demangling algorithm that works and
765 then set the language appropriately. The returned name is allocated
766 by the demangler and should be xfree'd. */
767
768 static char *
769 symbol_find_demangled_name (struct general_symbol_info *gsymbol,
770 const char *mangled)
771 {
772 char *demangled = NULL;
773 int i;
774
775 if (gsymbol->language == language_unknown)
776 gsymbol->language = language_auto;
777
778 if (gsymbol->language != language_auto)
779 {
780 const struct language_defn *lang = language_def (gsymbol->language);
781
782 language_sniff_from_mangled_name (lang, mangled, &demangled);
783 return demangled;
784 }
785
786 for (i = language_unknown; i < nr_languages; ++i)
787 {
788 enum language l = (enum language) i;
789 const struct language_defn *lang = language_def (l);
790
791 if (language_sniff_from_mangled_name (lang, mangled, &demangled))
792 {
793 gsymbol->language = l;
794 return demangled;
795 }
796 }
797
798 return NULL;
799 }
800
801 /* Set both the mangled and demangled (if any) names for GSYMBOL based
802 on LINKAGE_NAME and LEN. Ordinarily, NAME is copied onto the
803 objfile's obstack; but if COPY_NAME is 0 and if NAME is
804 NUL-terminated, then this function assumes that NAME is already
805 correctly saved (either permanently or with a lifetime tied to the
806 objfile), and it will not be copied.
807
808 The hash table corresponding to OBJFILE is used, and the memory
809 comes from the per-BFD storage_obstack. LINKAGE_NAME is copied,
810 so the pointer can be discarded after calling this function. */
811
812 void
813 symbol_set_names (struct general_symbol_info *gsymbol,
814 const char *linkage_name, int len, int copy_name,
815 struct objfile_per_bfd_storage *per_bfd)
816 {
817 struct demangled_name_entry **slot;
818 /* A 0-terminated copy of the linkage name. */
819 const char *linkage_name_copy;
820 struct demangled_name_entry entry;
821
822 if (gsymbol->language == language_ada)
823 {
824 /* In Ada, we do the symbol lookups using the mangled name, so
825 we can save some space by not storing the demangled name. */
826 if (!copy_name)
827 gsymbol->name = linkage_name;
828 else
829 {
830 char *name = (char *) obstack_alloc (&per_bfd->storage_obstack,
831 len + 1);
832
833 memcpy (name, linkage_name, len);
834 name[len] = '\0';
835 gsymbol->name = name;
836 }
837 symbol_set_demangled_name (gsymbol, NULL, &per_bfd->storage_obstack);
838
839 return;
840 }
841
842 if (per_bfd->demangled_names_hash == NULL)
843 create_demangled_names_hash (per_bfd);
844
845 if (linkage_name[len] != '\0')
846 {
847 char *alloc_name;
848
849 alloc_name = (char *) alloca (len + 1);
850 memcpy (alloc_name, linkage_name, len);
851 alloc_name[len] = '\0';
852
853 linkage_name_copy = alloc_name;
854 }
855 else
856 linkage_name_copy = linkage_name;
857
858 entry.mangled = linkage_name_copy;
859 slot = ((struct demangled_name_entry **)
860 htab_find_slot (per_bfd->demangled_names_hash.get (),
861 &entry, INSERT));
862
863 /* If this name is not in the hash table, add it. */
864 if (*slot == NULL
865 /* A C version of the symbol may have already snuck into the table.
866 This happens to, e.g., main.init (__go_init_main). Cope. */
867 || (gsymbol->language == language_go
868 && (*slot)->demangled[0] == '\0'))
869 {
870 char *demangled_name_ptr
871 = symbol_find_demangled_name (gsymbol, linkage_name_copy);
872 gdb::unique_xmalloc_ptr<char> demangled_name (demangled_name_ptr);
873 int demangled_len = demangled_name ? strlen (demangled_name.get ()) : 0;
874
875 /* Suppose we have demangled_name==NULL, copy_name==0, and
876 linkage_name_copy==linkage_name. In this case, we already have the
877 mangled name saved, and we don't have a demangled name. So,
878 you might think we could save a little space by not recording
879 this in the hash table at all.
880
881 It turns out that it is actually important to still save such
882 an entry in the hash table, because storing this name gives
883 us better bcache hit rates for partial symbols. */
884 if (!copy_name && linkage_name_copy == linkage_name)
885 {
886 *slot
887 = ((struct demangled_name_entry *)
888 obstack_alloc (&per_bfd->storage_obstack,
889 offsetof (struct demangled_name_entry, demangled)
890 + demangled_len + 1));
891 (*slot)->mangled = linkage_name;
892 }
893 else
894 {
895 char *mangled_ptr;
896
897 /* If we must copy the mangled name, put it directly after
898 the demangled name so we can have a single
899 allocation. */
900 *slot
901 = ((struct demangled_name_entry *)
902 obstack_alloc (&per_bfd->storage_obstack,
903 offsetof (struct demangled_name_entry, demangled)
904 + len + demangled_len + 2));
905 mangled_ptr = &((*slot)->demangled[demangled_len + 1]);
906 strcpy (mangled_ptr, linkage_name_copy);
907 (*slot)->mangled = mangled_ptr;
908 }
909 (*slot)->language = gsymbol->language;
910
911 if (demangled_name != NULL)
912 strcpy ((*slot)->demangled, demangled_name.get ());
913 else
914 (*slot)->demangled[0] = '\0';
915 }
916 else if (gsymbol->language == language_unknown
917 || gsymbol->language == language_auto)
918 gsymbol->language = (*slot)->language;
919
920 gsymbol->name = (*slot)->mangled;
921 if ((*slot)->demangled[0] != '\0')
922 symbol_set_demangled_name (gsymbol, (*slot)->demangled,
923 &per_bfd->storage_obstack);
924 else
925 symbol_set_demangled_name (gsymbol, NULL, &per_bfd->storage_obstack);
926 }
927
928 /* Return the source code name of a symbol. In languages where
929 demangling is necessary, this is the demangled name. */
930
931 const char *
932 symbol_natural_name (const struct general_symbol_info *gsymbol)
933 {
934 switch (gsymbol->language)
935 {
936 case language_cplus:
937 case language_d:
938 case language_go:
939 case language_objc:
940 case language_fortran:
941 if (symbol_get_demangled_name (gsymbol) != NULL)
942 return symbol_get_demangled_name (gsymbol);
943 break;
944 case language_ada:
945 return ada_decode_symbol (gsymbol);
946 default:
947 break;
948 }
949 return gsymbol->name;
950 }
951
952 /* Return the demangled name for a symbol based on the language for
953 that symbol. If no demangled name exists, return NULL. */
954
955 const char *
956 symbol_demangled_name (const struct general_symbol_info *gsymbol)
957 {
958 const char *dem_name = NULL;
959
960 switch (gsymbol->language)
961 {
962 case language_cplus:
963 case language_d:
964 case language_go:
965 case language_objc:
966 case language_fortran:
967 dem_name = symbol_get_demangled_name (gsymbol);
968 break;
969 case language_ada:
970 dem_name = ada_decode_symbol (gsymbol);
971 break;
972 default:
973 break;
974 }
975 return dem_name;
976 }
977
978 /* Return the search name of a symbol---generally the demangled or
979 linkage name of the symbol, depending on how it will be searched for.
980 If there is no distinct demangled name, then returns the same value
981 (same pointer) as SYMBOL_LINKAGE_NAME. */
982
983 const char *
984 symbol_search_name (const struct general_symbol_info *gsymbol)
985 {
986 if (gsymbol->language == language_ada)
987 return gsymbol->name;
988 else
989 return symbol_natural_name (gsymbol);
990 }
991
992 /* See symtab.h. */
993
994 bool
995 symbol_matches_search_name (const struct general_symbol_info *gsymbol,
996 const lookup_name_info &name)
997 {
998 symbol_name_matcher_ftype *name_match
999 = get_symbol_name_matcher (language_def (gsymbol->language), name);
1000 return name_match (symbol_search_name (gsymbol), name, NULL);
1001 }
1002
1003 \f
1004
1005 /* Return 1 if the two sections are the same, or if they could
1006 plausibly be copies of each other, one in an original object
1007 file and another in a separated debug file. */
1008
1009 int
1010 matching_obj_sections (struct obj_section *obj_first,
1011 struct obj_section *obj_second)
1012 {
1013 asection *first = obj_first? obj_first->the_bfd_section : NULL;
1014 asection *second = obj_second? obj_second->the_bfd_section : NULL;
1015
1016 /* If they're the same section, then they match. */
1017 if (first == second)
1018 return 1;
1019
1020 /* If either is NULL, give up. */
1021 if (first == NULL || second == NULL)
1022 return 0;
1023
1024 /* This doesn't apply to absolute symbols. */
1025 if (first->owner == NULL || second->owner == NULL)
1026 return 0;
1027
1028 /* If they're in the same object file, they must be different sections. */
1029 if (first->owner == second->owner)
1030 return 0;
1031
1032 /* Check whether the two sections are potentially corresponding. They must
1033 have the same size, address, and name. We can't compare section indexes,
1034 which would be more reliable, because some sections may have been
1035 stripped. */
1036 if (bfd_get_section_size (first) != bfd_get_section_size (second))
1037 return 0;
1038
1039 /* In-memory addresses may start at a different offset, relativize them. */
1040 if (bfd_get_section_vma (first->owner, first)
1041 - bfd_get_start_address (first->owner)
1042 != bfd_get_section_vma (second->owner, second)
1043 - bfd_get_start_address (second->owner))
1044 return 0;
1045
1046 if (bfd_get_section_name (first->owner, first) == NULL
1047 || bfd_get_section_name (second->owner, second) == NULL
1048 || strcmp (bfd_get_section_name (first->owner, first),
1049 bfd_get_section_name (second->owner, second)) != 0)
1050 return 0;
1051
1052 /* Otherwise check that they are in corresponding objfiles. */
1053
1054 struct objfile *obj = NULL;
1055 for (objfile *objfile : current_program_space->objfiles ())
1056 if (objfile->obfd == first->owner)
1057 {
1058 obj = objfile;
1059 break;
1060 }
1061 gdb_assert (obj != NULL);
1062
1063 if (obj->separate_debug_objfile != NULL
1064 && obj->separate_debug_objfile->obfd == second->owner)
1065 return 1;
1066 if (obj->separate_debug_objfile_backlink != NULL
1067 && obj->separate_debug_objfile_backlink->obfd == second->owner)
1068 return 1;
1069
1070 return 0;
1071 }
1072
1073 /* See symtab.h. */
1074
1075 void
1076 expand_symtab_containing_pc (CORE_ADDR pc, struct obj_section *section)
1077 {
1078 struct bound_minimal_symbol msymbol;
1079
1080 /* If we know that this is not a text address, return failure. This is
1081 necessary because we loop based on texthigh and textlow, which do
1082 not include the data ranges. */
1083 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
1084 if (msymbol.minsym && msymbol.minsym->data_p ())
1085 return;
1086
1087 for (objfile *objfile : current_program_space->objfiles ())
1088 {
1089 struct compunit_symtab *cust = NULL;
1090
1091 if (objfile->sf)
1092 cust = objfile->sf->qf->find_pc_sect_compunit_symtab (objfile, msymbol,
1093 pc, section, 0);
1094 if (cust)
1095 return;
1096 }
1097 }
1098 \f
1099 /* Hash function for the symbol cache. */
1100
1101 static unsigned int
1102 hash_symbol_entry (const struct objfile *objfile_context,
1103 const char *name, domain_enum domain)
1104 {
1105 unsigned int hash = (uintptr_t) objfile_context;
1106
1107 if (name != NULL)
1108 hash += htab_hash_string (name);
1109
1110 /* Because of symbol_matches_domain we need VAR_DOMAIN and STRUCT_DOMAIN
1111 to map to the same slot. */
1112 if (domain == STRUCT_DOMAIN)
1113 hash += VAR_DOMAIN * 7;
1114 else
1115 hash += domain * 7;
1116
1117 return hash;
1118 }
1119
1120 /* Equality function for the symbol cache. */
1121
1122 static int
1123 eq_symbol_entry (const struct symbol_cache_slot *slot,
1124 const struct objfile *objfile_context,
1125 const char *name, domain_enum domain)
1126 {
1127 const char *slot_name;
1128 domain_enum slot_domain;
1129
1130 if (slot->state == SYMBOL_SLOT_UNUSED)
1131 return 0;
1132
1133 if (slot->objfile_context != objfile_context)
1134 return 0;
1135
1136 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1137 {
1138 slot_name = slot->value.not_found.name;
1139 slot_domain = slot->value.not_found.domain;
1140 }
1141 else
1142 {
1143 slot_name = SYMBOL_SEARCH_NAME (slot->value.found.symbol);
1144 slot_domain = SYMBOL_DOMAIN (slot->value.found.symbol);
1145 }
1146
1147 /* NULL names match. */
1148 if (slot_name == NULL && name == NULL)
1149 {
1150 /* But there's no point in calling symbol_matches_domain in the
1151 SYMBOL_SLOT_FOUND case. */
1152 if (slot_domain != domain)
1153 return 0;
1154 }
1155 else if (slot_name != NULL && name != NULL)
1156 {
1157 /* It's important that we use the same comparison that was done
1158 the first time through. If the slot records a found symbol,
1159 then this means using the symbol name comparison function of
1160 the symbol's language with SYMBOL_SEARCH_NAME. See
1161 dictionary.c. It also means using symbol_matches_domain for
1162 found symbols. See block.c.
1163
1164 If the slot records a not-found symbol, then require a precise match.
1165 We could still be lax with whitespace like strcmp_iw though. */
1166
1167 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1168 {
1169 if (strcmp (slot_name, name) != 0)
1170 return 0;
1171 if (slot_domain != domain)
1172 return 0;
1173 }
1174 else
1175 {
1176 struct symbol *sym = slot->value.found.symbol;
1177 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
1178
1179 if (!SYMBOL_MATCHES_SEARCH_NAME (sym, lookup_name))
1180 return 0;
1181
1182 if (!symbol_matches_domain (SYMBOL_LANGUAGE (sym),
1183 slot_domain, domain))
1184 return 0;
1185 }
1186 }
1187 else
1188 {
1189 /* Only one name is NULL. */
1190 return 0;
1191 }
1192
1193 return 1;
1194 }
1195
1196 /* Given a cache of size SIZE, return the size of the struct (with variable
1197 length array) in bytes. */
1198
1199 static size_t
1200 symbol_cache_byte_size (unsigned int size)
1201 {
1202 return (sizeof (struct block_symbol_cache)
1203 + ((size - 1) * sizeof (struct symbol_cache_slot)));
1204 }
1205
1206 /* Resize CACHE. */
1207
1208 static void
1209 resize_symbol_cache (struct symbol_cache *cache, unsigned int new_size)
1210 {
1211 /* If there's no change in size, don't do anything.
1212 All caches have the same size, so we can just compare with the size
1213 of the global symbols cache. */
1214 if ((cache->global_symbols != NULL
1215 && cache->global_symbols->size == new_size)
1216 || (cache->global_symbols == NULL
1217 && new_size == 0))
1218 return;
1219
1220 xfree (cache->global_symbols);
1221 xfree (cache->static_symbols);
1222
1223 if (new_size == 0)
1224 {
1225 cache->global_symbols = NULL;
1226 cache->static_symbols = NULL;
1227 }
1228 else
1229 {
1230 size_t total_size = symbol_cache_byte_size (new_size);
1231
1232 cache->global_symbols
1233 = (struct block_symbol_cache *) xcalloc (1, total_size);
1234 cache->static_symbols
1235 = (struct block_symbol_cache *) xcalloc (1, total_size);
1236 cache->global_symbols->size = new_size;
1237 cache->static_symbols->size = new_size;
1238 }
1239 }
1240
1241 /* Return the symbol cache of PSPACE.
1242 Create one if it doesn't exist yet. */
1243
1244 static struct symbol_cache *
1245 get_symbol_cache (struct program_space *pspace)
1246 {
1247 struct symbol_cache *cache = symbol_cache_key.get (pspace);
1248
1249 if (cache == NULL)
1250 {
1251 cache = symbol_cache_key.emplace (pspace);
1252 resize_symbol_cache (cache, symbol_cache_size);
1253 }
1254
1255 return cache;
1256 }
1257
1258 /* Set the size of the symbol cache in all program spaces. */
1259
1260 static void
1261 set_symbol_cache_size (unsigned int new_size)
1262 {
1263 struct program_space *pspace;
1264
1265 ALL_PSPACES (pspace)
1266 {
1267 struct symbol_cache *cache = symbol_cache_key.get (pspace);
1268
1269 /* The pspace could have been created but not have a cache yet. */
1270 if (cache != NULL)
1271 resize_symbol_cache (cache, new_size);
1272 }
1273 }
1274
1275 /* Called when symbol-cache-size is set. */
1276
1277 static void
1278 set_symbol_cache_size_handler (const char *args, int from_tty,
1279 struct cmd_list_element *c)
1280 {
1281 if (new_symbol_cache_size > MAX_SYMBOL_CACHE_SIZE)
1282 {
1283 /* Restore the previous value.
1284 This is the value the "show" command prints. */
1285 new_symbol_cache_size = symbol_cache_size;
1286
1287 error (_("Symbol cache size is too large, max is %u."),
1288 MAX_SYMBOL_CACHE_SIZE);
1289 }
1290 symbol_cache_size = new_symbol_cache_size;
1291
1292 set_symbol_cache_size (symbol_cache_size);
1293 }
1294
1295 /* Lookup symbol NAME,DOMAIN in BLOCK in the symbol cache of PSPACE.
1296 OBJFILE_CONTEXT is the current objfile, which may be NULL.
1297 The result is the symbol if found, SYMBOL_LOOKUP_FAILED if a previous lookup
1298 failed (and thus this one will too), or NULL if the symbol is not present
1299 in the cache.
1300 If the symbol is not present in the cache, then *BSC_PTR and *SLOT_PTR are
1301 set to the cache and slot of the symbol to save the result of a full lookup
1302 attempt. */
1303
1304 static struct block_symbol
1305 symbol_cache_lookup (struct symbol_cache *cache,
1306 struct objfile *objfile_context, enum block_enum block,
1307 const char *name, domain_enum domain,
1308 struct block_symbol_cache **bsc_ptr,
1309 struct symbol_cache_slot **slot_ptr)
1310 {
1311 struct block_symbol_cache *bsc;
1312 unsigned int hash;
1313 struct symbol_cache_slot *slot;
1314
1315 if (block == GLOBAL_BLOCK)
1316 bsc = cache->global_symbols;
1317 else
1318 bsc = cache->static_symbols;
1319 if (bsc == NULL)
1320 {
1321 *bsc_ptr = NULL;
1322 *slot_ptr = NULL;
1323 return {};
1324 }
1325
1326 hash = hash_symbol_entry (objfile_context, name, domain);
1327 slot = bsc->symbols + hash % bsc->size;
1328
1329 if (eq_symbol_entry (slot, objfile_context, name, domain))
1330 {
1331 if (symbol_lookup_debug)
1332 fprintf_unfiltered (gdb_stdlog,
1333 "%s block symbol cache hit%s for %s, %s\n",
1334 block == GLOBAL_BLOCK ? "Global" : "Static",
1335 slot->state == SYMBOL_SLOT_NOT_FOUND
1336 ? " (not found)" : "",
1337 name, domain_name (domain));
1338 ++bsc->hits;
1339 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1340 return SYMBOL_LOOKUP_FAILED;
1341 return slot->value.found;
1342 }
1343
1344 /* Symbol is not present in the cache. */
1345
1346 *bsc_ptr = bsc;
1347 *slot_ptr = slot;
1348
1349 if (symbol_lookup_debug)
1350 {
1351 fprintf_unfiltered (gdb_stdlog,
1352 "%s block symbol cache miss for %s, %s\n",
1353 block == GLOBAL_BLOCK ? "Global" : "Static",
1354 name, domain_name (domain));
1355 }
1356 ++bsc->misses;
1357 return {};
1358 }
1359
1360 /* Clear out SLOT. */
1361
1362 static void
1363 symbol_cache_clear_slot (struct symbol_cache_slot *slot)
1364 {
1365 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1366 xfree (slot->value.not_found.name);
1367 slot->state = SYMBOL_SLOT_UNUSED;
1368 }
1369
1370 /* Mark SYMBOL as found in SLOT.
1371 OBJFILE_CONTEXT is the current objfile when the lookup was done, or NULL
1372 if it's not needed to distinguish lookups (STATIC_BLOCK). It is *not*
1373 necessarily the objfile the symbol was found in. */
1374
1375 static void
1376 symbol_cache_mark_found (struct block_symbol_cache *bsc,
1377 struct symbol_cache_slot *slot,
1378 struct objfile *objfile_context,
1379 struct symbol *symbol,
1380 const struct block *block)
1381 {
1382 if (bsc == NULL)
1383 return;
1384 if (slot->state != SYMBOL_SLOT_UNUSED)
1385 {
1386 ++bsc->collisions;
1387 symbol_cache_clear_slot (slot);
1388 }
1389 slot->state = SYMBOL_SLOT_FOUND;
1390 slot->objfile_context = objfile_context;
1391 slot->value.found.symbol = symbol;
1392 slot->value.found.block = block;
1393 }
1394
1395 /* Mark symbol NAME, DOMAIN as not found in SLOT.
1396 OBJFILE_CONTEXT is the current objfile when the lookup was done, or NULL
1397 if it's not needed to distinguish lookups (STATIC_BLOCK). */
1398
1399 static void
1400 symbol_cache_mark_not_found (struct block_symbol_cache *bsc,
1401 struct symbol_cache_slot *slot,
1402 struct objfile *objfile_context,
1403 const char *name, domain_enum domain)
1404 {
1405 if (bsc == NULL)
1406 return;
1407 if (slot->state != SYMBOL_SLOT_UNUSED)
1408 {
1409 ++bsc->collisions;
1410 symbol_cache_clear_slot (slot);
1411 }
1412 slot->state = SYMBOL_SLOT_NOT_FOUND;
1413 slot->objfile_context = objfile_context;
1414 slot->value.not_found.name = xstrdup (name);
1415 slot->value.not_found.domain = domain;
1416 }
1417
1418 /* Flush the symbol cache of PSPACE. */
1419
1420 static void
1421 symbol_cache_flush (struct program_space *pspace)
1422 {
1423 struct symbol_cache *cache = symbol_cache_key.get (pspace);
1424 int pass;
1425
1426 if (cache == NULL)
1427 return;
1428 if (cache->global_symbols == NULL)
1429 {
1430 gdb_assert (symbol_cache_size == 0);
1431 gdb_assert (cache->static_symbols == NULL);
1432 return;
1433 }
1434
1435 /* If the cache is untouched since the last flush, early exit.
1436 This is important for performance during the startup of a program linked
1437 with 100s (or 1000s) of shared libraries. */
1438 if (cache->global_symbols->misses == 0
1439 && cache->static_symbols->misses == 0)
1440 return;
1441
1442 gdb_assert (cache->global_symbols->size == symbol_cache_size);
1443 gdb_assert (cache->static_symbols->size == symbol_cache_size);
1444
1445 for (pass = 0; pass < 2; ++pass)
1446 {
1447 struct block_symbol_cache *bsc
1448 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1449 unsigned int i;
1450
1451 for (i = 0; i < bsc->size; ++i)
1452 symbol_cache_clear_slot (&bsc->symbols[i]);
1453 }
1454
1455 cache->global_symbols->hits = 0;
1456 cache->global_symbols->misses = 0;
1457 cache->global_symbols->collisions = 0;
1458 cache->static_symbols->hits = 0;
1459 cache->static_symbols->misses = 0;
1460 cache->static_symbols->collisions = 0;
1461 }
1462
1463 /* Dump CACHE. */
1464
1465 static void
1466 symbol_cache_dump (const struct symbol_cache *cache)
1467 {
1468 int pass;
1469
1470 if (cache->global_symbols == NULL)
1471 {
1472 printf_filtered (" <disabled>\n");
1473 return;
1474 }
1475
1476 for (pass = 0; pass < 2; ++pass)
1477 {
1478 const struct block_symbol_cache *bsc
1479 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1480 unsigned int i;
1481
1482 if (pass == 0)
1483 printf_filtered ("Global symbols:\n");
1484 else
1485 printf_filtered ("Static symbols:\n");
1486
1487 for (i = 0; i < bsc->size; ++i)
1488 {
1489 const struct symbol_cache_slot *slot = &bsc->symbols[i];
1490
1491 QUIT;
1492
1493 switch (slot->state)
1494 {
1495 case SYMBOL_SLOT_UNUSED:
1496 break;
1497 case SYMBOL_SLOT_NOT_FOUND:
1498 printf_filtered (" [%4u] = %s, %s %s (not found)\n", i,
1499 host_address_to_string (slot->objfile_context),
1500 slot->value.not_found.name,
1501 domain_name (slot->value.not_found.domain));
1502 break;
1503 case SYMBOL_SLOT_FOUND:
1504 {
1505 struct symbol *found = slot->value.found.symbol;
1506 const struct objfile *context = slot->objfile_context;
1507
1508 printf_filtered (" [%4u] = %s, %s %s\n", i,
1509 host_address_to_string (context),
1510 SYMBOL_PRINT_NAME (found),
1511 domain_name (SYMBOL_DOMAIN (found)));
1512 break;
1513 }
1514 }
1515 }
1516 }
1517 }
1518
1519 /* The "mt print symbol-cache" command. */
1520
1521 static void
1522 maintenance_print_symbol_cache (const char *args, int from_tty)
1523 {
1524 struct program_space *pspace;
1525
1526 ALL_PSPACES (pspace)
1527 {
1528 struct symbol_cache *cache;
1529
1530 printf_filtered (_("Symbol cache for pspace %d\n%s:\n"),
1531 pspace->num,
1532 pspace->symfile_object_file != NULL
1533 ? objfile_name (pspace->symfile_object_file)
1534 : "(no object file)");
1535
1536 /* If the cache hasn't been created yet, avoid creating one. */
1537 cache = symbol_cache_key.get (pspace);
1538 if (cache == NULL)
1539 printf_filtered (" <empty>\n");
1540 else
1541 symbol_cache_dump (cache);
1542 }
1543 }
1544
1545 /* The "mt flush-symbol-cache" command. */
1546
1547 static void
1548 maintenance_flush_symbol_cache (const char *args, int from_tty)
1549 {
1550 struct program_space *pspace;
1551
1552 ALL_PSPACES (pspace)
1553 {
1554 symbol_cache_flush (pspace);
1555 }
1556 }
1557
1558 /* Print usage statistics of CACHE. */
1559
1560 static void
1561 symbol_cache_stats (struct symbol_cache *cache)
1562 {
1563 int pass;
1564
1565 if (cache->global_symbols == NULL)
1566 {
1567 printf_filtered (" <disabled>\n");
1568 return;
1569 }
1570
1571 for (pass = 0; pass < 2; ++pass)
1572 {
1573 const struct block_symbol_cache *bsc
1574 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1575
1576 QUIT;
1577
1578 if (pass == 0)
1579 printf_filtered ("Global block cache stats:\n");
1580 else
1581 printf_filtered ("Static block cache stats:\n");
1582
1583 printf_filtered (" size: %u\n", bsc->size);
1584 printf_filtered (" hits: %u\n", bsc->hits);
1585 printf_filtered (" misses: %u\n", bsc->misses);
1586 printf_filtered (" collisions: %u\n", bsc->collisions);
1587 }
1588 }
1589
1590 /* The "mt print symbol-cache-statistics" command. */
1591
1592 static void
1593 maintenance_print_symbol_cache_statistics (const char *args, int from_tty)
1594 {
1595 struct program_space *pspace;
1596
1597 ALL_PSPACES (pspace)
1598 {
1599 struct symbol_cache *cache;
1600
1601 printf_filtered (_("Symbol cache statistics for pspace %d\n%s:\n"),
1602 pspace->num,
1603 pspace->symfile_object_file != NULL
1604 ? objfile_name (pspace->symfile_object_file)
1605 : "(no object file)");
1606
1607 /* If the cache hasn't been created yet, avoid creating one. */
1608 cache = symbol_cache_key.get (pspace);
1609 if (cache == NULL)
1610 printf_filtered (" empty, no stats available\n");
1611 else
1612 symbol_cache_stats (cache);
1613 }
1614 }
1615
1616 /* This module's 'new_objfile' observer. */
1617
1618 static void
1619 symtab_new_objfile_observer (struct objfile *objfile)
1620 {
1621 /* Ideally we'd use OBJFILE->pspace, but OBJFILE may be NULL. */
1622 symbol_cache_flush (current_program_space);
1623 }
1624
1625 /* This module's 'free_objfile' observer. */
1626
1627 static void
1628 symtab_free_objfile_observer (struct objfile *objfile)
1629 {
1630 symbol_cache_flush (objfile->pspace);
1631 }
1632 \f
1633 /* Debug symbols usually don't have section information. We need to dig that
1634 out of the minimal symbols and stash that in the debug symbol. */
1635
1636 void
1637 fixup_section (struct general_symbol_info *ginfo,
1638 CORE_ADDR addr, struct objfile *objfile)
1639 {
1640 struct minimal_symbol *msym;
1641
1642 /* First, check whether a minimal symbol with the same name exists
1643 and points to the same address. The address check is required
1644 e.g. on PowerPC64, where the minimal symbol for a function will
1645 point to the function descriptor, while the debug symbol will
1646 point to the actual function code. */
1647 msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->name, objfile);
1648 if (msym)
1649 ginfo->section = MSYMBOL_SECTION (msym);
1650 else
1651 {
1652 /* Static, function-local variables do appear in the linker
1653 (minimal) symbols, but are frequently given names that won't
1654 be found via lookup_minimal_symbol(). E.g., it has been
1655 observed in frv-uclinux (ELF) executables that a static,
1656 function-local variable named "foo" might appear in the
1657 linker symbols as "foo.6" or "foo.3". Thus, there is no
1658 point in attempting to extend the lookup-by-name mechanism to
1659 handle this case due to the fact that there can be multiple
1660 names.
1661
1662 So, instead, search the section table when lookup by name has
1663 failed. The ``addr'' and ``endaddr'' fields may have already
1664 been relocated. If so, the relocation offset (i.e. the
1665 ANOFFSET value) needs to be subtracted from these values when
1666 performing the comparison. We unconditionally subtract it,
1667 because, when no relocation has been performed, the ANOFFSET
1668 value will simply be zero.
1669
1670 The address of the symbol whose section we're fixing up HAS
1671 NOT BEEN adjusted (relocated) yet. It can't have been since
1672 the section isn't yet known and knowing the section is
1673 necessary in order to add the correct relocation value. In
1674 other words, we wouldn't even be in this function (attempting
1675 to compute the section) if it were already known.
1676
1677 Note that it is possible to search the minimal symbols
1678 (subtracting the relocation value if necessary) to find the
1679 matching minimal symbol, but this is overkill and much less
1680 efficient. It is not necessary to find the matching minimal
1681 symbol, only its section.
1682
1683 Note that this technique (of doing a section table search)
1684 can fail when unrelocated section addresses overlap. For
1685 this reason, we still attempt a lookup by name prior to doing
1686 a search of the section table. */
1687
1688 struct obj_section *s;
1689 int fallback = -1;
1690
1691 ALL_OBJFILE_OSECTIONS (objfile, s)
1692 {
1693 int idx = s - objfile->sections;
1694 CORE_ADDR offset = ANOFFSET (objfile->section_offsets, idx);
1695
1696 if (fallback == -1)
1697 fallback = idx;
1698
1699 if (obj_section_addr (s) - offset <= addr
1700 && addr < obj_section_endaddr (s) - offset)
1701 {
1702 ginfo->section = idx;
1703 return;
1704 }
1705 }
1706
1707 /* If we didn't find the section, assume it is in the first
1708 section. If there is no allocated section, then it hardly
1709 matters what we pick, so just pick zero. */
1710 if (fallback == -1)
1711 ginfo->section = 0;
1712 else
1713 ginfo->section = fallback;
1714 }
1715 }
1716
1717 struct symbol *
1718 fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
1719 {
1720 CORE_ADDR addr;
1721
1722 if (!sym)
1723 return NULL;
1724
1725 if (!SYMBOL_OBJFILE_OWNED (sym))
1726 return sym;
1727
1728 /* We either have an OBJFILE, or we can get at it from the sym's
1729 symtab. Anything else is a bug. */
1730 gdb_assert (objfile || symbol_symtab (sym));
1731
1732 if (objfile == NULL)
1733 objfile = symbol_objfile (sym);
1734
1735 if (SYMBOL_OBJ_SECTION (objfile, sym))
1736 return sym;
1737
1738 /* We should have an objfile by now. */
1739 gdb_assert (objfile);
1740
1741 switch (SYMBOL_CLASS (sym))
1742 {
1743 case LOC_STATIC:
1744 case LOC_LABEL:
1745 addr = SYMBOL_VALUE_ADDRESS (sym);
1746 break;
1747 case LOC_BLOCK:
1748 addr = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym));
1749 break;
1750
1751 default:
1752 /* Nothing else will be listed in the minsyms -- no use looking
1753 it up. */
1754 return sym;
1755 }
1756
1757 fixup_section (&sym->ginfo, addr, objfile);
1758
1759 return sym;
1760 }
1761
1762 /* See symtab.h. */
1763
1764 demangle_for_lookup_info::demangle_for_lookup_info
1765 (const lookup_name_info &lookup_name, language lang)
1766 {
1767 demangle_result_storage storage;
1768
1769 if (lookup_name.ignore_parameters () && lang == language_cplus)
1770 {
1771 gdb::unique_xmalloc_ptr<char> without_params
1772 = cp_remove_params_if_any (lookup_name.name ().c_str (),
1773 lookup_name.completion_mode ());
1774
1775 if (without_params != NULL)
1776 {
1777 if (lookup_name.match_type () != symbol_name_match_type::SEARCH_NAME)
1778 m_demangled_name = demangle_for_lookup (without_params.get (),
1779 lang, storage);
1780 return;
1781 }
1782 }
1783
1784 if (lookup_name.match_type () == symbol_name_match_type::SEARCH_NAME)
1785 m_demangled_name = lookup_name.name ();
1786 else
1787 m_demangled_name = demangle_for_lookup (lookup_name.name ().c_str (),
1788 lang, storage);
1789 }
1790
1791 /* See symtab.h. */
1792
1793 const lookup_name_info &
1794 lookup_name_info::match_any ()
1795 {
1796 /* Lookup any symbol that "" would complete. I.e., this matches all
1797 symbol names. */
1798 static const lookup_name_info lookup_name ({}, symbol_name_match_type::FULL,
1799 true);
1800
1801 return lookup_name;
1802 }
1803
1804 /* Compute the demangled form of NAME as used by the various symbol
1805 lookup functions. The result can either be the input NAME
1806 directly, or a pointer to a buffer owned by the STORAGE object.
1807
1808 For Ada, this function just returns NAME, unmodified.
1809 Normally, Ada symbol lookups are performed using the encoded name
1810 rather than the demangled name, and so it might seem to make sense
1811 for this function to return an encoded version of NAME.
1812 Unfortunately, we cannot do this, because this function is used in
1813 circumstances where it is not appropriate to try to encode NAME.
1814 For instance, when displaying the frame info, we demangle the name
1815 of each parameter, and then perform a symbol lookup inside our
1816 function using that demangled name. In Ada, certain functions
1817 have internally-generated parameters whose name contain uppercase
1818 characters. Encoding those name would result in those uppercase
1819 characters to become lowercase, and thus cause the symbol lookup
1820 to fail. */
1821
1822 const char *
1823 demangle_for_lookup (const char *name, enum language lang,
1824 demangle_result_storage &storage)
1825 {
1826 /* If we are using C++, D, or Go, demangle the name before doing a
1827 lookup, so we can always binary search. */
1828 if (lang == language_cplus)
1829 {
1830 char *demangled_name = gdb_demangle (name, DMGL_ANSI | DMGL_PARAMS);
1831 if (demangled_name != NULL)
1832 return storage.set_malloc_ptr (demangled_name);
1833
1834 /* If we were given a non-mangled name, canonicalize it
1835 according to the language (so far only for C++). */
1836 std::string canon = cp_canonicalize_string (name);
1837 if (!canon.empty ())
1838 return storage.swap_string (canon);
1839 }
1840 else if (lang == language_d)
1841 {
1842 char *demangled_name = d_demangle (name, 0);
1843 if (demangled_name != NULL)
1844 return storage.set_malloc_ptr (demangled_name);
1845 }
1846 else if (lang == language_go)
1847 {
1848 char *demangled_name = go_demangle (name, 0);
1849 if (demangled_name != NULL)
1850 return storage.set_malloc_ptr (demangled_name);
1851 }
1852
1853 return name;
1854 }
1855
1856 /* See symtab.h. */
1857
1858 unsigned int
1859 search_name_hash (enum language language, const char *search_name)
1860 {
1861 return language_def (language)->la_search_name_hash (search_name);
1862 }
1863
1864 /* See symtab.h.
1865
1866 This function (or rather its subordinates) have a bunch of loops and
1867 it would seem to be attractive to put in some QUIT's (though I'm not really
1868 sure whether it can run long enough to be really important). But there
1869 are a few calls for which it would appear to be bad news to quit
1870 out of here: e.g., find_proc_desc in alpha-mdebug-tdep.c. (Note
1871 that there is C++ code below which can error(), but that probably
1872 doesn't affect these calls since they are looking for a known
1873 variable and thus can probably assume it will never hit the C++
1874 code). */
1875
1876 struct block_symbol
1877 lookup_symbol_in_language (const char *name, const struct block *block,
1878 const domain_enum domain, enum language lang,
1879 struct field_of_this_result *is_a_field_of_this)
1880 {
1881 demangle_result_storage storage;
1882 const char *modified_name = demangle_for_lookup (name, lang, storage);
1883
1884 return lookup_symbol_aux (modified_name,
1885 symbol_name_match_type::FULL,
1886 block, domain, lang,
1887 is_a_field_of_this);
1888 }
1889
1890 /* See symtab.h. */
1891
1892 struct block_symbol
1893 lookup_symbol (const char *name, const struct block *block,
1894 domain_enum domain,
1895 struct field_of_this_result *is_a_field_of_this)
1896 {
1897 return lookup_symbol_in_language (name, block, domain,
1898 current_language->la_language,
1899 is_a_field_of_this);
1900 }
1901
1902 /* See symtab.h. */
1903
1904 struct block_symbol
1905 lookup_symbol_search_name (const char *search_name, const struct block *block,
1906 domain_enum domain)
1907 {
1908 return lookup_symbol_aux (search_name, symbol_name_match_type::SEARCH_NAME,
1909 block, domain, language_asm, NULL);
1910 }
1911
1912 /* See symtab.h. */
1913
1914 struct block_symbol
1915 lookup_language_this (const struct language_defn *lang,
1916 const struct block *block)
1917 {
1918 if (lang->la_name_of_this == NULL || block == NULL)
1919 return {};
1920
1921 if (symbol_lookup_debug > 1)
1922 {
1923 struct objfile *objfile = lookup_objfile_from_block (block);
1924
1925 fprintf_unfiltered (gdb_stdlog,
1926 "lookup_language_this (%s, %s (objfile %s))",
1927 lang->la_name, host_address_to_string (block),
1928 objfile_debug_name (objfile));
1929 }
1930
1931 while (block)
1932 {
1933 struct symbol *sym;
1934
1935 sym = block_lookup_symbol (block, lang->la_name_of_this,
1936 symbol_name_match_type::SEARCH_NAME,
1937 VAR_DOMAIN);
1938 if (sym != NULL)
1939 {
1940 if (symbol_lookup_debug > 1)
1941 {
1942 fprintf_unfiltered (gdb_stdlog, " = %s (%s, block %s)\n",
1943 SYMBOL_PRINT_NAME (sym),
1944 host_address_to_string (sym),
1945 host_address_to_string (block));
1946 }
1947 return (struct block_symbol) {sym, block};
1948 }
1949 if (BLOCK_FUNCTION (block))
1950 break;
1951 block = BLOCK_SUPERBLOCK (block);
1952 }
1953
1954 if (symbol_lookup_debug > 1)
1955 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
1956 return {};
1957 }
1958
1959 /* Given TYPE, a structure/union,
1960 return 1 if the component named NAME from the ultimate target
1961 structure/union is defined, otherwise, return 0. */
1962
1963 static int
1964 check_field (struct type *type, const char *name,
1965 struct field_of_this_result *is_a_field_of_this)
1966 {
1967 int i;
1968
1969 /* The type may be a stub. */
1970 type = check_typedef (type);
1971
1972 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1973 {
1974 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1975
1976 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1977 {
1978 is_a_field_of_this->type = type;
1979 is_a_field_of_this->field = &TYPE_FIELD (type, i);
1980 return 1;
1981 }
1982 }
1983
1984 /* C++: If it was not found as a data field, then try to return it
1985 as a pointer to a method. */
1986
1987 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
1988 {
1989 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
1990 {
1991 is_a_field_of_this->type = type;
1992 is_a_field_of_this->fn_field = &TYPE_FN_FIELDLIST (type, i);
1993 return 1;
1994 }
1995 }
1996
1997 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1998 if (check_field (TYPE_BASECLASS (type, i), name, is_a_field_of_this))
1999 return 1;
2000
2001 return 0;
2002 }
2003
2004 /* Behave like lookup_symbol except that NAME is the natural name
2005 (e.g., demangled name) of the symbol that we're looking for. */
2006
2007 static struct block_symbol
2008 lookup_symbol_aux (const char *name, symbol_name_match_type match_type,
2009 const struct block *block,
2010 const domain_enum domain, enum language language,
2011 struct field_of_this_result *is_a_field_of_this)
2012 {
2013 struct block_symbol result;
2014 const struct language_defn *langdef;
2015
2016 if (symbol_lookup_debug)
2017 {
2018 struct objfile *objfile = lookup_objfile_from_block (block);
2019
2020 fprintf_unfiltered (gdb_stdlog,
2021 "lookup_symbol_aux (%s, %s (objfile %s), %s, %s)\n",
2022 name, host_address_to_string (block),
2023 objfile != NULL
2024 ? objfile_debug_name (objfile) : "NULL",
2025 domain_name (domain), language_str (language));
2026 }
2027
2028 /* Make sure we do something sensible with is_a_field_of_this, since
2029 the callers that set this parameter to some non-null value will
2030 certainly use it later. If we don't set it, the contents of
2031 is_a_field_of_this are undefined. */
2032 if (is_a_field_of_this != NULL)
2033 memset (is_a_field_of_this, 0, sizeof (*is_a_field_of_this));
2034
2035 /* Search specified block and its superiors. Don't search
2036 STATIC_BLOCK or GLOBAL_BLOCK. */
2037
2038 result = lookup_local_symbol (name, match_type, block, domain, language);
2039 if (result.symbol != NULL)
2040 {
2041 if (symbol_lookup_debug)
2042 {
2043 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2044 host_address_to_string (result.symbol));
2045 }
2046 return result;
2047 }
2048
2049 /* If requested to do so by the caller and if appropriate for LANGUAGE,
2050 check to see if NAME is a field of `this'. */
2051
2052 langdef = language_def (language);
2053
2054 /* Don't do this check if we are searching for a struct. It will
2055 not be found by check_field, but will be found by other
2056 means. */
2057 if (is_a_field_of_this != NULL && domain != STRUCT_DOMAIN)
2058 {
2059 result = lookup_language_this (langdef, block);
2060
2061 if (result.symbol)
2062 {
2063 struct type *t = result.symbol->type;
2064
2065 /* I'm not really sure that type of this can ever
2066 be typedefed; just be safe. */
2067 t = check_typedef (t);
2068 if (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_IS_REFERENCE (t))
2069 t = TYPE_TARGET_TYPE (t);
2070
2071 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2072 && TYPE_CODE (t) != TYPE_CODE_UNION)
2073 error (_("Internal error: `%s' is not an aggregate"),
2074 langdef->la_name_of_this);
2075
2076 if (check_field (t, name, is_a_field_of_this))
2077 {
2078 if (symbol_lookup_debug)
2079 {
2080 fprintf_unfiltered (gdb_stdlog,
2081 "lookup_symbol_aux (...) = NULL\n");
2082 }
2083 return {};
2084 }
2085 }
2086 }
2087
2088 /* Now do whatever is appropriate for LANGUAGE to look
2089 up static and global variables. */
2090
2091 result = langdef->la_lookup_symbol_nonlocal (langdef, name, block, domain);
2092 if (result.symbol != NULL)
2093 {
2094 if (symbol_lookup_debug)
2095 {
2096 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2097 host_address_to_string (result.symbol));
2098 }
2099 return result;
2100 }
2101
2102 /* Now search all static file-level symbols. Not strictly correct,
2103 but more useful than an error. */
2104
2105 result = lookup_static_symbol (name, domain);
2106 if (symbol_lookup_debug)
2107 {
2108 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2109 result.symbol != NULL
2110 ? host_address_to_string (result.symbol)
2111 : "NULL");
2112 }
2113 return result;
2114 }
2115
2116 /* Check to see if the symbol is defined in BLOCK or its superiors.
2117 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
2118
2119 static struct block_symbol
2120 lookup_local_symbol (const char *name,
2121 symbol_name_match_type match_type,
2122 const struct block *block,
2123 const domain_enum domain,
2124 enum language language)
2125 {
2126 struct symbol *sym;
2127 const struct block *static_block = block_static_block (block);
2128 const char *scope = block_scope (block);
2129
2130 /* Check if either no block is specified or it's a global block. */
2131
2132 if (static_block == NULL)
2133 return {};
2134
2135 while (block != static_block)
2136 {
2137 sym = lookup_symbol_in_block (name, match_type, block, domain);
2138 if (sym != NULL)
2139 return (struct block_symbol) {sym, block};
2140
2141 if (language == language_cplus || language == language_fortran)
2142 {
2143 struct block_symbol blocksym
2144 = cp_lookup_symbol_imports_or_template (scope, name, block,
2145 domain);
2146
2147 if (blocksym.symbol != NULL)
2148 return blocksym;
2149 }
2150
2151 if (BLOCK_FUNCTION (block) != NULL && block_inlined_p (block))
2152 break;
2153 block = BLOCK_SUPERBLOCK (block);
2154 }
2155
2156 /* We've reached the end of the function without finding a result. */
2157
2158 return {};
2159 }
2160
2161 /* See symtab.h. */
2162
2163 struct objfile *
2164 lookup_objfile_from_block (const struct block *block)
2165 {
2166 if (block == NULL)
2167 return NULL;
2168
2169 block = block_global_block (block);
2170 /* Look through all blockvectors. */
2171 for (objfile *obj : current_program_space->objfiles ())
2172 {
2173 for (compunit_symtab *cust : obj->compunits ())
2174 if (block == BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust),
2175 GLOBAL_BLOCK))
2176 {
2177 if (obj->separate_debug_objfile_backlink)
2178 obj = obj->separate_debug_objfile_backlink;
2179
2180 return obj;
2181 }
2182 }
2183
2184 return NULL;
2185 }
2186
2187 /* See symtab.h. */
2188
2189 struct symbol *
2190 lookup_symbol_in_block (const char *name, symbol_name_match_type match_type,
2191 const struct block *block,
2192 const domain_enum domain)
2193 {
2194 struct symbol *sym;
2195
2196 if (symbol_lookup_debug > 1)
2197 {
2198 struct objfile *objfile = lookup_objfile_from_block (block);
2199
2200 fprintf_unfiltered (gdb_stdlog,
2201 "lookup_symbol_in_block (%s, %s (objfile %s), %s)",
2202 name, host_address_to_string (block),
2203 objfile_debug_name (objfile),
2204 domain_name (domain));
2205 }
2206
2207 sym = block_lookup_symbol (block, name, match_type, domain);
2208 if (sym)
2209 {
2210 if (symbol_lookup_debug > 1)
2211 {
2212 fprintf_unfiltered (gdb_stdlog, " = %s\n",
2213 host_address_to_string (sym));
2214 }
2215 return fixup_symbol_section (sym, NULL);
2216 }
2217
2218 if (symbol_lookup_debug > 1)
2219 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
2220 return NULL;
2221 }
2222
2223 /* See symtab.h. */
2224
2225 struct block_symbol
2226 lookup_global_symbol_from_objfile (struct objfile *main_objfile,
2227 enum block_enum block_index,
2228 const char *name,
2229 const domain_enum domain)
2230 {
2231 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2232
2233 for (objfile *objfile : main_objfile->separate_debug_objfiles ())
2234 {
2235 struct block_symbol result
2236 = lookup_symbol_in_objfile (objfile, block_index, name, domain);
2237
2238 if (result.symbol != nullptr)
2239 return result;
2240 }
2241
2242 return {};
2243 }
2244
2245 /* Check to see if the symbol is defined in one of the OBJFILE's
2246 symtabs. BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
2247 depending on whether or not we want to search global symbols or
2248 static symbols. */
2249
2250 static struct block_symbol
2251 lookup_symbol_in_objfile_symtabs (struct objfile *objfile,
2252 enum block_enum block_index, const char *name,
2253 const domain_enum domain)
2254 {
2255 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2256
2257 if (symbol_lookup_debug > 1)
2258 {
2259 fprintf_unfiltered (gdb_stdlog,
2260 "lookup_symbol_in_objfile_symtabs (%s, %s, %s, %s)",
2261 objfile_debug_name (objfile),
2262 block_index == GLOBAL_BLOCK
2263 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2264 name, domain_name (domain));
2265 }
2266
2267 for (compunit_symtab *cust : objfile->compunits ())
2268 {
2269 const struct blockvector *bv;
2270 const struct block *block;
2271 struct block_symbol result;
2272
2273 bv = COMPUNIT_BLOCKVECTOR (cust);
2274 block = BLOCKVECTOR_BLOCK (bv, block_index);
2275 result.symbol = block_lookup_symbol_primary (block, name, domain);
2276 result.block = block;
2277 if (result.symbol != NULL)
2278 {
2279 if (symbol_lookup_debug > 1)
2280 {
2281 fprintf_unfiltered (gdb_stdlog, " = %s (block %s)\n",
2282 host_address_to_string (result.symbol),
2283 host_address_to_string (block));
2284 }
2285 result.symbol = fixup_symbol_section (result.symbol, objfile);
2286 return result;
2287
2288 }
2289 }
2290
2291 if (symbol_lookup_debug > 1)
2292 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
2293 return {};
2294 }
2295
2296 /* Wrapper around lookup_symbol_in_objfile_symtabs for search_symbols.
2297 Look up LINKAGE_NAME in DOMAIN in the global and static blocks of OBJFILE
2298 and all associated separate debug objfiles.
2299
2300 Normally we only look in OBJFILE, and not any separate debug objfiles
2301 because the outer loop will cause them to be searched too. This case is
2302 different. Here we're called from search_symbols where it will only
2303 call us for the objfile that contains a matching minsym. */
2304
2305 static struct block_symbol
2306 lookup_symbol_in_objfile_from_linkage_name (struct objfile *objfile,
2307 const char *linkage_name,
2308 domain_enum domain)
2309 {
2310 enum language lang = current_language->la_language;
2311 struct objfile *main_objfile;
2312
2313 demangle_result_storage storage;
2314 const char *modified_name = demangle_for_lookup (linkage_name, lang, storage);
2315
2316 if (objfile->separate_debug_objfile_backlink)
2317 main_objfile = objfile->separate_debug_objfile_backlink;
2318 else
2319 main_objfile = objfile;
2320
2321 for (::objfile *cur_objfile : main_objfile->separate_debug_objfiles ())
2322 {
2323 struct block_symbol result;
2324
2325 result = lookup_symbol_in_objfile_symtabs (cur_objfile, GLOBAL_BLOCK,
2326 modified_name, domain);
2327 if (result.symbol == NULL)
2328 result = lookup_symbol_in_objfile_symtabs (cur_objfile, STATIC_BLOCK,
2329 modified_name, domain);
2330 if (result.symbol != NULL)
2331 return result;
2332 }
2333
2334 return {};
2335 }
2336
2337 /* A helper function that throws an exception when a symbol was found
2338 in a psymtab but not in a symtab. */
2339
2340 static void ATTRIBUTE_NORETURN
2341 error_in_psymtab_expansion (enum block_enum block_index, const char *name,
2342 struct compunit_symtab *cust)
2343 {
2344 error (_("\
2345 Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n\
2346 %s may be an inlined function, or may be a template function\n \
2347 (if a template, try specifying an instantiation: %s<type>)."),
2348 block_index == GLOBAL_BLOCK ? "global" : "static",
2349 name,
2350 symtab_to_filename_for_display (compunit_primary_filetab (cust)),
2351 name, name);
2352 }
2353
2354 /* A helper function for various lookup routines that interfaces with
2355 the "quick" symbol table functions. */
2356
2357 static struct block_symbol
2358 lookup_symbol_via_quick_fns (struct objfile *objfile,
2359 enum block_enum block_index, const char *name,
2360 const domain_enum domain)
2361 {
2362 struct compunit_symtab *cust;
2363 const struct blockvector *bv;
2364 const struct block *block;
2365 struct block_symbol result;
2366
2367 if (!objfile->sf)
2368 return {};
2369
2370 if (symbol_lookup_debug > 1)
2371 {
2372 fprintf_unfiltered (gdb_stdlog,
2373 "lookup_symbol_via_quick_fns (%s, %s, %s, %s)\n",
2374 objfile_debug_name (objfile),
2375 block_index == GLOBAL_BLOCK
2376 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2377 name, domain_name (domain));
2378 }
2379
2380 cust = objfile->sf->qf->lookup_symbol (objfile, block_index, name, domain);
2381 if (cust == NULL)
2382 {
2383 if (symbol_lookup_debug > 1)
2384 {
2385 fprintf_unfiltered (gdb_stdlog,
2386 "lookup_symbol_via_quick_fns (...) = NULL\n");
2387 }
2388 return {};
2389 }
2390
2391 bv = COMPUNIT_BLOCKVECTOR (cust);
2392 block = BLOCKVECTOR_BLOCK (bv, block_index);
2393 result.symbol = block_lookup_symbol (block, name,
2394 symbol_name_match_type::FULL, domain);
2395 if (result.symbol == NULL)
2396 error_in_psymtab_expansion (block_index, name, cust);
2397
2398 if (symbol_lookup_debug > 1)
2399 {
2400 fprintf_unfiltered (gdb_stdlog,
2401 "lookup_symbol_via_quick_fns (...) = %s (block %s)\n",
2402 host_address_to_string (result.symbol),
2403 host_address_to_string (block));
2404 }
2405
2406 result.symbol = fixup_symbol_section (result.symbol, objfile);
2407 result.block = block;
2408 return result;
2409 }
2410
2411 /* See symtab.h. */
2412
2413 struct block_symbol
2414 basic_lookup_symbol_nonlocal (const struct language_defn *langdef,
2415 const char *name,
2416 const struct block *block,
2417 const domain_enum domain)
2418 {
2419 struct block_symbol result;
2420
2421 /* NOTE: carlton/2003-05-19: The comments below were written when
2422 this (or what turned into this) was part of lookup_symbol_aux;
2423 I'm much less worried about these questions now, since these
2424 decisions have turned out well, but I leave these comments here
2425 for posterity. */
2426
2427 /* NOTE: carlton/2002-12-05: There is a question as to whether or
2428 not it would be appropriate to search the current global block
2429 here as well. (That's what this code used to do before the
2430 is_a_field_of_this check was moved up.) On the one hand, it's
2431 redundant with the lookup in all objfiles search that happens
2432 next. On the other hand, if decode_line_1 is passed an argument
2433 like filename:var, then the user presumably wants 'var' to be
2434 searched for in filename. On the third hand, there shouldn't be
2435 multiple global variables all of which are named 'var', and it's
2436 not like decode_line_1 has ever restricted its search to only
2437 global variables in a single filename. All in all, only
2438 searching the static block here seems best: it's correct and it's
2439 cleanest. */
2440
2441 /* NOTE: carlton/2002-12-05: There's also a possible performance
2442 issue here: if you usually search for global symbols in the
2443 current file, then it would be slightly better to search the
2444 current global block before searching all the symtabs. But there
2445 are other factors that have a much greater effect on performance
2446 than that one, so I don't think we should worry about that for
2447 now. */
2448
2449 /* NOTE: dje/2014-10-26: The lookup in all objfiles search could skip
2450 the current objfile. Searching the current objfile first is useful
2451 for both matching user expectations as well as performance. */
2452
2453 result = lookup_symbol_in_static_block (name, block, domain);
2454 if (result.symbol != NULL)
2455 return result;
2456
2457 /* If we didn't find a definition for a builtin type in the static block,
2458 search for it now. This is actually the right thing to do and can be
2459 a massive performance win. E.g., when debugging a program with lots of
2460 shared libraries we could search all of them only to find out the
2461 builtin type isn't defined in any of them. This is common for types
2462 like "void". */
2463 if (domain == VAR_DOMAIN)
2464 {
2465 struct gdbarch *gdbarch;
2466
2467 if (block == NULL)
2468 gdbarch = target_gdbarch ();
2469 else
2470 gdbarch = block_gdbarch (block);
2471 result.symbol = language_lookup_primitive_type_as_symbol (langdef,
2472 gdbarch, name);
2473 result.block = NULL;
2474 if (result.symbol != NULL)
2475 return result;
2476 }
2477
2478 return lookup_global_symbol (name, block, domain);
2479 }
2480
2481 /* See symtab.h. */
2482
2483 struct block_symbol
2484 lookup_symbol_in_static_block (const char *name,
2485 const struct block *block,
2486 const domain_enum domain)
2487 {
2488 const struct block *static_block = block_static_block (block);
2489 struct symbol *sym;
2490
2491 if (static_block == NULL)
2492 return {};
2493
2494 if (symbol_lookup_debug)
2495 {
2496 struct objfile *objfile = lookup_objfile_from_block (static_block);
2497
2498 fprintf_unfiltered (gdb_stdlog,
2499 "lookup_symbol_in_static_block (%s, %s (objfile %s),"
2500 " %s)\n",
2501 name,
2502 host_address_to_string (block),
2503 objfile_debug_name (objfile),
2504 domain_name (domain));
2505 }
2506
2507 sym = lookup_symbol_in_block (name,
2508 symbol_name_match_type::FULL,
2509 static_block, domain);
2510 if (symbol_lookup_debug)
2511 {
2512 fprintf_unfiltered (gdb_stdlog,
2513 "lookup_symbol_in_static_block (...) = %s\n",
2514 sym != NULL ? host_address_to_string (sym) : "NULL");
2515 }
2516 return (struct block_symbol) {sym, static_block};
2517 }
2518
2519 /* Perform the standard symbol lookup of NAME in OBJFILE:
2520 1) First search expanded symtabs, and if not found
2521 2) Search the "quick" symtabs (partial or .gdb_index).
2522 BLOCK_INDEX is one of GLOBAL_BLOCK or STATIC_BLOCK. */
2523
2524 static struct block_symbol
2525 lookup_symbol_in_objfile (struct objfile *objfile, enum block_enum block_index,
2526 const char *name, const domain_enum domain)
2527 {
2528 struct block_symbol result;
2529
2530 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2531
2532 if (symbol_lookup_debug)
2533 {
2534 fprintf_unfiltered (gdb_stdlog,
2535 "lookup_symbol_in_objfile (%s, %s, %s, %s)\n",
2536 objfile_debug_name (objfile),
2537 block_index == GLOBAL_BLOCK
2538 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2539 name, domain_name (domain));
2540 }
2541
2542 result = lookup_symbol_in_objfile_symtabs (objfile, block_index,
2543 name, domain);
2544 if (result.symbol != NULL)
2545 {
2546 if (symbol_lookup_debug)
2547 {
2548 fprintf_unfiltered (gdb_stdlog,
2549 "lookup_symbol_in_objfile (...) = %s"
2550 " (in symtabs)\n",
2551 host_address_to_string (result.symbol));
2552 }
2553 return result;
2554 }
2555
2556 result = lookup_symbol_via_quick_fns (objfile, block_index,
2557 name, domain);
2558 if (symbol_lookup_debug)
2559 {
2560 fprintf_unfiltered (gdb_stdlog,
2561 "lookup_symbol_in_objfile (...) = %s%s\n",
2562 result.symbol != NULL
2563 ? host_address_to_string (result.symbol)
2564 : "NULL",
2565 result.symbol != NULL ? " (via quick fns)" : "");
2566 }
2567 return result;
2568 }
2569
2570 /* See symtab.h. */
2571
2572 struct block_symbol
2573 lookup_static_symbol (const char *name, const domain_enum domain)
2574 {
2575 struct symbol_cache *cache = get_symbol_cache (current_program_space);
2576 struct block_symbol result;
2577 struct block_symbol_cache *bsc;
2578 struct symbol_cache_slot *slot;
2579
2580 /* Lookup in STATIC_BLOCK is not current-objfile-dependent, so just pass
2581 NULL for OBJFILE_CONTEXT. */
2582 result = symbol_cache_lookup (cache, NULL, STATIC_BLOCK, name, domain,
2583 &bsc, &slot);
2584 if (result.symbol != NULL)
2585 {
2586 if (SYMBOL_LOOKUP_FAILED_P (result))
2587 return {};
2588 return result;
2589 }
2590
2591 for (objfile *objfile : current_program_space->objfiles ())
2592 {
2593 result = lookup_symbol_in_objfile (objfile, STATIC_BLOCK, name, domain);
2594 if (result.symbol != NULL)
2595 {
2596 /* Still pass NULL for OBJFILE_CONTEXT here. */
2597 symbol_cache_mark_found (bsc, slot, NULL, result.symbol,
2598 result.block);
2599 return result;
2600 }
2601 }
2602
2603 /* Still pass NULL for OBJFILE_CONTEXT here. */
2604 symbol_cache_mark_not_found (bsc, slot, NULL, name, domain);
2605 return {};
2606 }
2607
2608 /* Private data to be used with lookup_symbol_global_iterator_cb. */
2609
2610 struct global_sym_lookup_data
2611 {
2612 /* The name of the symbol we are searching for. */
2613 const char *name;
2614
2615 /* The domain to use for our search. */
2616 domain_enum domain;
2617
2618 /* The field where the callback should store the symbol if found.
2619 It should be initialized to {NULL, NULL} before the search is started. */
2620 struct block_symbol result;
2621 };
2622
2623 /* A callback function for gdbarch_iterate_over_objfiles_in_search_order.
2624 It searches by name for a symbol in the GLOBAL_BLOCK of the given
2625 OBJFILE. The arguments for the search are passed via CB_DATA,
2626 which in reality is a pointer to struct global_sym_lookup_data. */
2627
2628 static int
2629 lookup_symbol_global_iterator_cb (struct objfile *objfile,
2630 void *cb_data)
2631 {
2632 struct global_sym_lookup_data *data =
2633 (struct global_sym_lookup_data *) cb_data;
2634
2635 gdb_assert (data->result.symbol == NULL
2636 && data->result.block == NULL);
2637
2638 data->result = lookup_symbol_in_objfile (objfile, GLOBAL_BLOCK,
2639 data->name, data->domain);
2640
2641 /* If we found a match, tell the iterator to stop. Otherwise,
2642 keep going. */
2643 return (data->result.symbol != NULL);
2644 }
2645
2646 /* See symtab.h. */
2647
2648 struct block_symbol
2649 lookup_global_symbol (const char *name,
2650 const struct block *block,
2651 const domain_enum domain)
2652 {
2653 struct symbol_cache *cache = get_symbol_cache (current_program_space);
2654 struct block_symbol result;
2655 struct objfile *objfile;
2656 struct global_sym_lookup_data lookup_data;
2657 struct block_symbol_cache *bsc;
2658 struct symbol_cache_slot *slot;
2659
2660 objfile = lookup_objfile_from_block (block);
2661
2662 /* First see if we can find the symbol in the cache.
2663 This works because we use the current objfile to qualify the lookup. */
2664 result = symbol_cache_lookup (cache, objfile, GLOBAL_BLOCK, name, domain,
2665 &bsc, &slot);
2666 if (result.symbol != NULL)
2667 {
2668 if (SYMBOL_LOOKUP_FAILED_P (result))
2669 return {};
2670 return result;
2671 }
2672
2673 /* Call library-specific lookup procedure. */
2674 if (objfile != NULL)
2675 result = solib_global_lookup (objfile, name, domain);
2676
2677 /* If that didn't work go a global search (of global blocks, heh). */
2678 if (result.symbol == NULL)
2679 {
2680 memset (&lookup_data, 0, sizeof (lookup_data));
2681 lookup_data.name = name;
2682 lookup_data.domain = domain;
2683 gdbarch_iterate_over_objfiles_in_search_order
2684 (objfile != NULL ? get_objfile_arch (objfile) : target_gdbarch (),
2685 lookup_symbol_global_iterator_cb, &lookup_data, objfile);
2686 result = lookup_data.result;
2687 }
2688
2689 if (result.symbol != NULL)
2690 symbol_cache_mark_found (bsc, slot, objfile, result.symbol, result.block);
2691 else
2692 symbol_cache_mark_not_found (bsc, slot, objfile, name, domain);
2693
2694 return result;
2695 }
2696
2697 int
2698 symbol_matches_domain (enum language symbol_language,
2699 domain_enum symbol_domain,
2700 domain_enum domain)
2701 {
2702 /* For C++ "struct foo { ... }" also defines a typedef for "foo".
2703 Similarly, any Ada type declaration implicitly defines a typedef. */
2704 if (symbol_language == language_cplus
2705 || symbol_language == language_d
2706 || symbol_language == language_ada
2707 || symbol_language == language_rust)
2708 {
2709 if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN)
2710 && symbol_domain == STRUCT_DOMAIN)
2711 return 1;
2712 }
2713 /* For all other languages, strict match is required. */
2714 return (symbol_domain == domain);
2715 }
2716
2717 /* See symtab.h. */
2718
2719 struct type *
2720 lookup_transparent_type (const char *name)
2721 {
2722 return current_language->la_lookup_transparent_type (name);
2723 }
2724
2725 /* A helper for basic_lookup_transparent_type that interfaces with the
2726 "quick" symbol table functions. */
2727
2728 static struct type *
2729 basic_lookup_transparent_type_quick (struct objfile *objfile,
2730 enum block_enum block_index,
2731 const char *name)
2732 {
2733 struct compunit_symtab *cust;
2734 const struct blockvector *bv;
2735 const struct block *block;
2736 struct symbol *sym;
2737
2738 if (!objfile->sf)
2739 return NULL;
2740 cust = objfile->sf->qf->lookup_symbol (objfile, block_index, name,
2741 STRUCT_DOMAIN);
2742 if (cust == NULL)
2743 return NULL;
2744
2745 bv = COMPUNIT_BLOCKVECTOR (cust);
2746 block = BLOCKVECTOR_BLOCK (bv, block_index);
2747 sym = block_find_symbol (block, name, STRUCT_DOMAIN,
2748 block_find_non_opaque_type, NULL);
2749 if (sym == NULL)
2750 error_in_psymtab_expansion (block_index, name, cust);
2751 gdb_assert (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)));
2752 return SYMBOL_TYPE (sym);
2753 }
2754
2755 /* Subroutine of basic_lookup_transparent_type to simplify it.
2756 Look up the non-opaque definition of NAME in BLOCK_INDEX of OBJFILE.
2757 BLOCK_INDEX is either GLOBAL_BLOCK or STATIC_BLOCK. */
2758
2759 static struct type *
2760 basic_lookup_transparent_type_1 (struct objfile *objfile,
2761 enum block_enum block_index,
2762 const char *name)
2763 {
2764 const struct blockvector *bv;
2765 const struct block *block;
2766 const struct symbol *sym;
2767
2768 for (compunit_symtab *cust : objfile->compunits ())
2769 {
2770 bv = COMPUNIT_BLOCKVECTOR (cust);
2771 block = BLOCKVECTOR_BLOCK (bv, block_index);
2772 sym = block_find_symbol (block, name, STRUCT_DOMAIN,
2773 block_find_non_opaque_type, NULL);
2774 if (sym != NULL)
2775 {
2776 gdb_assert (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)));
2777 return SYMBOL_TYPE (sym);
2778 }
2779 }
2780
2781 return NULL;
2782 }
2783
2784 /* The standard implementation of lookup_transparent_type. This code
2785 was modeled on lookup_symbol -- the parts not relevant to looking
2786 up types were just left out. In particular it's assumed here that
2787 types are available in STRUCT_DOMAIN and only in file-static or
2788 global blocks. */
2789
2790 struct type *
2791 basic_lookup_transparent_type (const char *name)
2792 {
2793 struct type *t;
2794
2795 /* Now search all the global symbols. Do the symtab's first, then
2796 check the psymtab's. If a psymtab indicates the existence
2797 of the desired name as a global, then do psymtab-to-symtab
2798 conversion on the fly and return the found symbol. */
2799
2800 for (objfile *objfile : current_program_space->objfiles ())
2801 {
2802 t = basic_lookup_transparent_type_1 (objfile, GLOBAL_BLOCK, name);
2803 if (t)
2804 return t;
2805 }
2806
2807 for (objfile *objfile : current_program_space->objfiles ())
2808 {
2809 t = basic_lookup_transparent_type_quick (objfile, GLOBAL_BLOCK, name);
2810 if (t)
2811 return t;
2812 }
2813
2814 /* Now search the static file-level symbols.
2815 Not strictly correct, but more useful than an error.
2816 Do the symtab's first, then
2817 check the psymtab's. If a psymtab indicates the existence
2818 of the desired name as a file-level static, then do psymtab-to-symtab
2819 conversion on the fly and return the found symbol. */
2820
2821 for (objfile *objfile : current_program_space->objfiles ())
2822 {
2823 t = basic_lookup_transparent_type_1 (objfile, STATIC_BLOCK, name);
2824 if (t)
2825 return t;
2826 }
2827
2828 for (objfile *objfile : current_program_space->objfiles ())
2829 {
2830 t = basic_lookup_transparent_type_quick (objfile, STATIC_BLOCK, name);
2831 if (t)
2832 return t;
2833 }
2834
2835 return (struct type *) 0;
2836 }
2837
2838 /* Iterate over the symbols named NAME, matching DOMAIN, in BLOCK.
2839
2840 For each symbol that matches, CALLBACK is called. The symbol is
2841 passed to the callback.
2842
2843 If CALLBACK returns false, the iteration ends. Otherwise, the
2844 search continues. */
2845
2846 void
2847 iterate_over_symbols (const struct block *block,
2848 const lookup_name_info &name,
2849 const domain_enum domain,
2850 gdb::function_view<symbol_found_callback_ftype> callback)
2851 {
2852 struct block_iterator iter;
2853 struct symbol *sym;
2854
2855 ALL_BLOCK_SYMBOLS_WITH_NAME (block, name, iter, sym)
2856 {
2857 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
2858 SYMBOL_DOMAIN (sym), domain))
2859 {
2860 struct block_symbol block_sym = {sym, block};
2861
2862 if (!callback (&block_sym))
2863 return;
2864 }
2865 }
2866 }
2867
2868 /* Find the compunit symtab associated with PC and SECTION.
2869 This will read in debug info as necessary. */
2870
2871 struct compunit_symtab *
2872 find_pc_sect_compunit_symtab (CORE_ADDR pc, struct obj_section *section)
2873 {
2874 struct compunit_symtab *best_cust = NULL;
2875 CORE_ADDR distance = 0;
2876 struct bound_minimal_symbol msymbol;
2877
2878 /* If we know that this is not a text address, return failure. This is
2879 necessary because we loop based on the block's high and low code
2880 addresses, which do not include the data ranges, and because
2881 we call find_pc_sect_psymtab which has a similar restriction based
2882 on the partial_symtab's texthigh and textlow. */
2883 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
2884 if (msymbol.minsym && msymbol.minsym->data_p ())
2885 return NULL;
2886
2887 /* Search all symtabs for the one whose file contains our address, and which
2888 is the smallest of all the ones containing the address. This is designed
2889 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
2890 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
2891 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
2892
2893 This happens for native ecoff format, where code from included files
2894 gets its own symtab. The symtab for the included file should have
2895 been read in already via the dependency mechanism.
2896 It might be swifter to create several symtabs with the same name
2897 like xcoff does (I'm not sure).
2898
2899 It also happens for objfiles that have their functions reordered.
2900 For these, the symtab we are looking for is not necessarily read in. */
2901
2902 for (objfile *obj_file : current_program_space->objfiles ())
2903 {
2904 for (compunit_symtab *cust : obj_file->compunits ())
2905 {
2906 const struct block *b;
2907 const struct blockvector *bv;
2908
2909 bv = COMPUNIT_BLOCKVECTOR (cust);
2910 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
2911
2912 if (BLOCK_START (b) <= pc
2913 && BLOCK_END (b) > pc
2914 && (distance == 0
2915 || BLOCK_END (b) - BLOCK_START (b) < distance))
2916 {
2917 /* For an objfile that has its functions reordered,
2918 find_pc_psymtab will find the proper partial symbol table
2919 and we simply return its corresponding symtab. */
2920 /* In order to better support objfiles that contain both
2921 stabs and coff debugging info, we continue on if a psymtab
2922 can't be found. */
2923 if ((obj_file->flags & OBJF_REORDERED) && obj_file->sf)
2924 {
2925 struct compunit_symtab *result;
2926
2927 result
2928 = obj_file->sf->qf->find_pc_sect_compunit_symtab (obj_file,
2929 msymbol,
2930 pc,
2931 section,
2932 0);
2933 if (result != NULL)
2934 return result;
2935 }
2936 if (section != 0)
2937 {
2938 struct block_iterator iter;
2939 struct symbol *sym = NULL;
2940
2941 ALL_BLOCK_SYMBOLS (b, iter, sym)
2942 {
2943 fixup_symbol_section (sym, obj_file);
2944 if (matching_obj_sections (SYMBOL_OBJ_SECTION (obj_file,
2945 sym),
2946 section))
2947 break;
2948 }
2949 if (sym == NULL)
2950 continue; /* No symbol in this symtab matches
2951 section. */
2952 }
2953 distance = BLOCK_END (b) - BLOCK_START (b);
2954 best_cust = cust;
2955 }
2956 }
2957 }
2958
2959 if (best_cust != NULL)
2960 return best_cust;
2961
2962 /* Not found in symtabs, search the "quick" symtabs (e.g. psymtabs). */
2963
2964 for (objfile *objf : current_program_space->objfiles ())
2965 {
2966 struct compunit_symtab *result;
2967
2968 if (!objf->sf)
2969 continue;
2970 result = objf->sf->qf->find_pc_sect_compunit_symtab (objf,
2971 msymbol,
2972 pc, section,
2973 1);
2974 if (result != NULL)
2975 return result;
2976 }
2977
2978 return NULL;
2979 }
2980
2981 /* Find the compunit symtab associated with PC.
2982 This will read in debug info as necessary.
2983 Backward compatibility, no section. */
2984
2985 struct compunit_symtab *
2986 find_pc_compunit_symtab (CORE_ADDR pc)
2987 {
2988 return find_pc_sect_compunit_symtab (pc, find_pc_mapped_section (pc));
2989 }
2990
2991 /* See symtab.h. */
2992
2993 struct symbol *
2994 find_symbol_at_address (CORE_ADDR address)
2995 {
2996 for (objfile *objfile : current_program_space->objfiles ())
2997 {
2998 if (objfile->sf == NULL
2999 || objfile->sf->qf->find_compunit_symtab_by_address == NULL)
3000 continue;
3001
3002 struct compunit_symtab *symtab
3003 = objfile->sf->qf->find_compunit_symtab_by_address (objfile, address);
3004 if (symtab != NULL)
3005 {
3006 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (symtab);
3007
3008 for (int i = GLOBAL_BLOCK; i <= STATIC_BLOCK; ++i)
3009 {
3010 const struct block *b = BLOCKVECTOR_BLOCK (bv, i);
3011 struct block_iterator iter;
3012 struct symbol *sym;
3013
3014 ALL_BLOCK_SYMBOLS (b, iter, sym)
3015 {
3016 if (SYMBOL_CLASS (sym) == LOC_STATIC
3017 && SYMBOL_VALUE_ADDRESS (sym) == address)
3018 return sym;
3019 }
3020 }
3021 }
3022 }
3023
3024 return NULL;
3025 }
3026
3027 \f
3028
3029 /* Find the source file and line number for a given PC value and SECTION.
3030 Return a structure containing a symtab pointer, a line number,
3031 and a pc range for the entire source line.
3032 The value's .pc field is NOT the specified pc.
3033 NOTCURRENT nonzero means, if specified pc is on a line boundary,
3034 use the line that ends there. Otherwise, in that case, the line
3035 that begins there is used. */
3036
3037 /* The big complication here is that a line may start in one file, and end just
3038 before the start of another file. This usually occurs when you #include
3039 code in the middle of a subroutine. To properly find the end of a line's PC
3040 range, we must search all symtabs associated with this compilation unit, and
3041 find the one whose first PC is closer than that of the next line in this
3042 symtab. */
3043
3044 struct symtab_and_line
3045 find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent)
3046 {
3047 struct compunit_symtab *cust;
3048 struct linetable *l;
3049 int len;
3050 struct linetable_entry *item;
3051 const struct blockvector *bv;
3052 struct bound_minimal_symbol msymbol;
3053
3054 /* Info on best line seen so far, and where it starts, and its file. */
3055
3056 struct linetable_entry *best = NULL;
3057 CORE_ADDR best_end = 0;
3058 struct symtab *best_symtab = 0;
3059
3060 /* Store here the first line number
3061 of a file which contains the line at the smallest pc after PC.
3062 If we don't find a line whose range contains PC,
3063 we will use a line one less than this,
3064 with a range from the start of that file to the first line's pc. */
3065 struct linetable_entry *alt = NULL;
3066
3067 /* Info on best line seen in this file. */
3068
3069 struct linetable_entry *prev;
3070
3071 /* If this pc is not from the current frame,
3072 it is the address of the end of a call instruction.
3073 Quite likely that is the start of the following statement.
3074 But what we want is the statement containing the instruction.
3075 Fudge the pc to make sure we get that. */
3076
3077 /* It's tempting to assume that, if we can't find debugging info for
3078 any function enclosing PC, that we shouldn't search for line
3079 number info, either. However, GAS can emit line number info for
3080 assembly files --- very helpful when debugging hand-written
3081 assembly code. In such a case, we'd have no debug info for the
3082 function, but we would have line info. */
3083
3084 if (notcurrent)
3085 pc -= 1;
3086
3087 /* elz: added this because this function returned the wrong
3088 information if the pc belongs to a stub (import/export)
3089 to call a shlib function. This stub would be anywhere between
3090 two functions in the target, and the line info was erroneously
3091 taken to be the one of the line before the pc. */
3092
3093 /* RT: Further explanation:
3094
3095 * We have stubs (trampolines) inserted between procedures.
3096 *
3097 * Example: "shr1" exists in a shared library, and a "shr1" stub also
3098 * exists in the main image.
3099 *
3100 * In the minimal symbol table, we have a bunch of symbols
3101 * sorted by start address. The stubs are marked as "trampoline",
3102 * the others appear as text. E.g.:
3103 *
3104 * Minimal symbol table for main image
3105 * main: code for main (text symbol)
3106 * shr1: stub (trampoline symbol)
3107 * foo: code for foo (text symbol)
3108 * ...
3109 * Minimal symbol table for "shr1" image:
3110 * ...
3111 * shr1: code for shr1 (text symbol)
3112 * ...
3113 *
3114 * So the code below is trying to detect if we are in the stub
3115 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
3116 * and if found, do the symbolization from the real-code address
3117 * rather than the stub address.
3118 *
3119 * Assumptions being made about the minimal symbol table:
3120 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
3121 * if we're really in the trampoline.s If we're beyond it (say
3122 * we're in "foo" in the above example), it'll have a closer
3123 * symbol (the "foo" text symbol for example) and will not
3124 * return the trampoline.
3125 * 2. lookup_minimal_symbol_text() will find a real text symbol
3126 * corresponding to the trampoline, and whose address will
3127 * be different than the trampoline address. I put in a sanity
3128 * check for the address being the same, to avoid an
3129 * infinite recursion.
3130 */
3131 msymbol = lookup_minimal_symbol_by_pc (pc);
3132 if (msymbol.minsym != NULL)
3133 if (MSYMBOL_TYPE (msymbol.minsym) == mst_solib_trampoline)
3134 {
3135 struct bound_minimal_symbol mfunsym
3136 = lookup_minimal_symbol_text (MSYMBOL_LINKAGE_NAME (msymbol.minsym),
3137 NULL);
3138
3139 if (mfunsym.minsym == NULL)
3140 /* I eliminated this warning since it is coming out
3141 * in the following situation:
3142 * gdb shmain // test program with shared libraries
3143 * (gdb) break shr1 // function in shared lib
3144 * Warning: In stub for ...
3145 * In the above situation, the shared lib is not loaded yet,
3146 * so of course we can't find the real func/line info,
3147 * but the "break" still works, and the warning is annoying.
3148 * So I commented out the warning. RT */
3149 /* warning ("In stub for %s; unable to find real function/line info",
3150 SYMBOL_LINKAGE_NAME (msymbol)); */
3151 ;
3152 /* fall through */
3153 else if (BMSYMBOL_VALUE_ADDRESS (mfunsym)
3154 == BMSYMBOL_VALUE_ADDRESS (msymbol))
3155 /* Avoid infinite recursion */
3156 /* See above comment about why warning is commented out. */
3157 /* warning ("In stub for %s; unable to find real function/line info",
3158 SYMBOL_LINKAGE_NAME (msymbol)); */
3159 ;
3160 /* fall through */
3161 else
3162 return find_pc_line (BMSYMBOL_VALUE_ADDRESS (mfunsym), 0);
3163 }
3164
3165 symtab_and_line val;
3166 val.pspace = current_program_space;
3167
3168 cust = find_pc_sect_compunit_symtab (pc, section);
3169 if (cust == NULL)
3170 {
3171 /* If no symbol information, return previous pc. */
3172 if (notcurrent)
3173 pc++;
3174 val.pc = pc;
3175 return val;
3176 }
3177
3178 bv = COMPUNIT_BLOCKVECTOR (cust);
3179
3180 /* Look at all the symtabs that share this blockvector.
3181 They all have the same apriori range, that we found was right;
3182 but they have different line tables. */
3183
3184 for (symtab *iter_s : compunit_filetabs (cust))
3185 {
3186 /* Find the best line in this symtab. */
3187 l = SYMTAB_LINETABLE (iter_s);
3188 if (!l)
3189 continue;
3190 len = l->nitems;
3191 if (len <= 0)
3192 {
3193 /* I think len can be zero if the symtab lacks line numbers
3194 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
3195 I'm not sure which, and maybe it depends on the symbol
3196 reader). */
3197 continue;
3198 }
3199
3200 prev = NULL;
3201 item = l->item; /* Get first line info. */
3202
3203 /* Is this file's first line closer than the first lines of other files?
3204 If so, record this file, and its first line, as best alternate. */
3205 if (item->pc > pc && (!alt || item->pc < alt->pc))
3206 alt = item;
3207
3208 auto pc_compare = [](const CORE_ADDR & comp_pc,
3209 const struct linetable_entry & lhs)->bool
3210 {
3211 return comp_pc < lhs.pc;
3212 };
3213
3214 struct linetable_entry *first = item;
3215 struct linetable_entry *last = item + len;
3216 item = std::upper_bound (first, last, pc, pc_compare);
3217 if (item != first)
3218 prev = item - 1; /* Found a matching item. */
3219
3220 /* At this point, prev points at the line whose start addr is <= pc, and
3221 item points at the next line. If we ran off the end of the linetable
3222 (pc >= start of the last line), then prev == item. If pc < start of
3223 the first line, prev will not be set. */
3224
3225 /* Is this file's best line closer than the best in the other files?
3226 If so, record this file, and its best line, as best so far. Don't
3227 save prev if it represents the end of a function (i.e. line number
3228 0) instead of a real line. */
3229
3230 if (prev && prev->line && (!best || prev->pc > best->pc))
3231 {
3232 best = prev;
3233 best_symtab = iter_s;
3234
3235 /* Discard BEST_END if it's before the PC of the current BEST. */
3236 if (best_end <= best->pc)
3237 best_end = 0;
3238 }
3239
3240 /* If another line (denoted by ITEM) is in the linetable and its
3241 PC is after BEST's PC, but before the current BEST_END, then
3242 use ITEM's PC as the new best_end. */
3243 if (best && item < last && item->pc > best->pc
3244 && (best_end == 0 || best_end > item->pc))
3245 best_end = item->pc;
3246 }
3247
3248 if (!best_symtab)
3249 {
3250 /* If we didn't find any line number info, just return zeros.
3251 We used to return alt->line - 1 here, but that could be
3252 anywhere; if we don't have line number info for this PC,
3253 don't make some up. */
3254 val.pc = pc;
3255 }
3256 else if (best->line == 0)
3257 {
3258 /* If our best fit is in a range of PC's for which no line
3259 number info is available (line number is zero) then we didn't
3260 find any valid line information. */
3261 val.pc = pc;
3262 }
3263 else
3264 {
3265 val.symtab = best_symtab;
3266 val.line = best->line;
3267 val.pc = best->pc;
3268 if (best_end && (!alt || best_end < alt->pc))
3269 val.end = best_end;
3270 else if (alt)
3271 val.end = alt->pc;
3272 else
3273 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
3274 }
3275 val.section = section;
3276 return val;
3277 }
3278
3279 /* Backward compatibility (no section). */
3280
3281 struct symtab_and_line
3282 find_pc_line (CORE_ADDR pc, int notcurrent)
3283 {
3284 struct obj_section *section;
3285
3286 section = find_pc_overlay (pc);
3287 if (pc_in_unmapped_range (pc, section))
3288 pc = overlay_mapped_address (pc, section);
3289 return find_pc_sect_line (pc, section, notcurrent);
3290 }
3291
3292 /* See symtab.h. */
3293
3294 struct symtab *
3295 find_pc_line_symtab (CORE_ADDR pc)
3296 {
3297 struct symtab_and_line sal;
3298
3299 /* This always passes zero for NOTCURRENT to find_pc_line.
3300 There are currently no callers that ever pass non-zero. */
3301 sal = find_pc_line (pc, 0);
3302 return sal.symtab;
3303 }
3304 \f
3305 /* Find line number LINE in any symtab whose name is the same as
3306 SYMTAB.
3307
3308 If found, return the symtab that contains the linetable in which it was
3309 found, set *INDEX to the index in the linetable of the best entry
3310 found, and set *EXACT_MATCH nonzero if the value returned is an
3311 exact match.
3312
3313 If not found, return NULL. */
3314
3315 struct symtab *
3316 find_line_symtab (struct symtab *sym_tab, int line,
3317 int *index, int *exact_match)
3318 {
3319 int exact = 0; /* Initialized here to avoid a compiler warning. */
3320
3321 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
3322 so far seen. */
3323
3324 int best_index;
3325 struct linetable *best_linetable;
3326 struct symtab *best_symtab;
3327
3328 /* First try looking it up in the given symtab. */
3329 best_linetable = SYMTAB_LINETABLE (sym_tab);
3330 best_symtab = sym_tab;
3331 best_index = find_line_common (best_linetable, line, &exact, 0);
3332 if (best_index < 0 || !exact)
3333 {
3334 /* Didn't find an exact match. So we better keep looking for
3335 another symtab with the same name. In the case of xcoff,
3336 multiple csects for one source file (produced by IBM's FORTRAN
3337 compiler) produce multiple symtabs (this is unavoidable
3338 assuming csects can be at arbitrary places in memory and that
3339 the GLOBAL_BLOCK of a symtab has a begin and end address). */
3340
3341 /* BEST is the smallest linenumber > LINE so far seen,
3342 or 0 if none has been seen so far.
3343 BEST_INDEX and BEST_LINETABLE identify the item for it. */
3344 int best;
3345
3346 if (best_index >= 0)
3347 best = best_linetable->item[best_index].line;
3348 else
3349 best = 0;
3350
3351 for (objfile *objfile : current_program_space->objfiles ())
3352 {
3353 if (objfile->sf)
3354 objfile->sf->qf->expand_symtabs_with_fullname
3355 (objfile, symtab_to_fullname (sym_tab));
3356 }
3357
3358 for (objfile *objfile : current_program_space->objfiles ())
3359 {
3360 for (compunit_symtab *cu : objfile->compunits ())
3361 {
3362 for (symtab *s : compunit_filetabs (cu))
3363 {
3364 struct linetable *l;
3365 int ind;
3366
3367 if (FILENAME_CMP (sym_tab->filename, s->filename) != 0)
3368 continue;
3369 if (FILENAME_CMP (symtab_to_fullname (sym_tab),
3370 symtab_to_fullname (s)) != 0)
3371 continue;
3372 l = SYMTAB_LINETABLE (s);
3373 ind = find_line_common (l, line, &exact, 0);
3374 if (ind >= 0)
3375 {
3376 if (exact)
3377 {
3378 best_index = ind;
3379 best_linetable = l;
3380 best_symtab = s;
3381 goto done;
3382 }
3383 if (best == 0 || l->item[ind].line < best)
3384 {
3385 best = l->item[ind].line;
3386 best_index = ind;
3387 best_linetable = l;
3388 best_symtab = s;
3389 }
3390 }
3391 }
3392 }
3393 }
3394 }
3395 done:
3396 if (best_index < 0)
3397 return NULL;
3398
3399 if (index)
3400 *index = best_index;
3401 if (exact_match)
3402 *exact_match = exact;
3403
3404 return best_symtab;
3405 }
3406
3407 /* Given SYMTAB, returns all the PCs function in the symtab that
3408 exactly match LINE. Returns an empty vector if there are no exact
3409 matches, but updates BEST_ITEM in this case. */
3410
3411 std::vector<CORE_ADDR>
3412 find_pcs_for_symtab_line (struct symtab *symtab, int line,
3413 struct linetable_entry **best_item)
3414 {
3415 int start = 0;
3416 std::vector<CORE_ADDR> result;
3417
3418 /* First, collect all the PCs that are at this line. */
3419 while (1)
3420 {
3421 int was_exact;
3422 int idx;
3423
3424 idx = find_line_common (SYMTAB_LINETABLE (symtab), line, &was_exact,
3425 start);
3426 if (idx < 0)
3427 break;
3428
3429 if (!was_exact)
3430 {
3431 struct linetable_entry *item = &SYMTAB_LINETABLE (symtab)->item[idx];
3432
3433 if (*best_item == NULL || item->line < (*best_item)->line)
3434 *best_item = item;
3435
3436 break;
3437 }
3438
3439 result.push_back (SYMTAB_LINETABLE (symtab)->item[idx].pc);
3440 start = idx + 1;
3441 }
3442
3443 return result;
3444 }
3445
3446 \f
3447 /* Set the PC value for a given source file and line number and return true.
3448 Returns zero for invalid line number (and sets the PC to 0).
3449 The source file is specified with a struct symtab. */
3450
3451 int
3452 find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
3453 {
3454 struct linetable *l;
3455 int ind;
3456
3457 *pc = 0;
3458 if (symtab == 0)
3459 return 0;
3460
3461 symtab = find_line_symtab (symtab, line, &ind, NULL);
3462 if (symtab != NULL)
3463 {
3464 l = SYMTAB_LINETABLE (symtab);
3465 *pc = l->item[ind].pc;
3466 return 1;
3467 }
3468 else
3469 return 0;
3470 }
3471
3472 /* Find the range of pc values in a line.
3473 Store the starting pc of the line into *STARTPTR
3474 and the ending pc (start of next line) into *ENDPTR.
3475 Returns 1 to indicate success.
3476 Returns 0 if could not find the specified line. */
3477
3478 int
3479 find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
3480 CORE_ADDR *endptr)
3481 {
3482 CORE_ADDR startaddr;
3483 struct symtab_and_line found_sal;
3484
3485 startaddr = sal.pc;
3486 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
3487 return 0;
3488
3489 /* This whole function is based on address. For example, if line 10 has
3490 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
3491 "info line *0x123" should say the line goes from 0x100 to 0x200
3492 and "info line *0x355" should say the line goes from 0x300 to 0x400.
3493 This also insures that we never give a range like "starts at 0x134
3494 and ends at 0x12c". */
3495
3496 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
3497 if (found_sal.line != sal.line)
3498 {
3499 /* The specified line (sal) has zero bytes. */
3500 *startptr = found_sal.pc;
3501 *endptr = found_sal.pc;
3502 }
3503 else
3504 {
3505 *startptr = found_sal.pc;
3506 *endptr = found_sal.end;
3507 }
3508 return 1;
3509 }
3510
3511 /* Given a line table and a line number, return the index into the line
3512 table for the pc of the nearest line whose number is >= the specified one.
3513 Return -1 if none is found. The value is >= 0 if it is an index.
3514 START is the index at which to start searching the line table.
3515
3516 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
3517
3518 static int
3519 find_line_common (struct linetable *l, int lineno,
3520 int *exact_match, int start)
3521 {
3522 int i;
3523 int len;
3524
3525 /* BEST is the smallest linenumber > LINENO so far seen,
3526 or 0 if none has been seen so far.
3527 BEST_INDEX identifies the item for it. */
3528
3529 int best_index = -1;
3530 int best = 0;
3531
3532 *exact_match = 0;
3533
3534 if (lineno <= 0)
3535 return -1;
3536 if (l == 0)
3537 return -1;
3538
3539 len = l->nitems;
3540 for (i = start; i < len; i++)
3541 {
3542 struct linetable_entry *item = &(l->item[i]);
3543
3544 if (item->line == lineno)
3545 {
3546 /* Return the first (lowest address) entry which matches. */
3547 *exact_match = 1;
3548 return i;
3549 }
3550
3551 if (item->line > lineno && (best == 0 || item->line < best))
3552 {
3553 best = item->line;
3554 best_index = i;
3555 }
3556 }
3557
3558 /* If we got here, we didn't get an exact match. */
3559 return best_index;
3560 }
3561
3562 int
3563 find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
3564 {
3565 struct symtab_and_line sal;
3566
3567 sal = find_pc_line (pc, 0);
3568 *startptr = sal.pc;
3569 *endptr = sal.end;
3570 return sal.symtab != 0;
3571 }
3572
3573 /* Helper for find_function_start_sal. Does most of the work, except
3574 setting the sal's symbol. */
3575
3576 static symtab_and_line
3577 find_function_start_sal_1 (CORE_ADDR func_addr, obj_section *section,
3578 bool funfirstline)
3579 {
3580 symtab_and_line sal = find_pc_sect_line (func_addr, section, 0);
3581
3582 if (funfirstline && sal.symtab != NULL
3583 && (COMPUNIT_LOCATIONS_VALID (SYMTAB_COMPUNIT (sal.symtab))
3584 || SYMTAB_LANGUAGE (sal.symtab) == language_asm))
3585 {
3586 struct gdbarch *gdbarch = get_objfile_arch (SYMTAB_OBJFILE (sal.symtab));
3587
3588 sal.pc = func_addr;
3589 if (gdbarch_skip_entrypoint_p (gdbarch))
3590 sal.pc = gdbarch_skip_entrypoint (gdbarch, sal.pc);
3591 return sal;
3592 }
3593
3594 /* We always should have a line for the function start address.
3595 If we don't, something is odd. Create a plain SAL referring
3596 just the PC and hope that skip_prologue_sal (if requested)
3597 can find a line number for after the prologue. */
3598 if (sal.pc < func_addr)
3599 {
3600 sal = {};
3601 sal.pspace = current_program_space;
3602 sal.pc = func_addr;
3603 sal.section = section;
3604 }
3605
3606 if (funfirstline)
3607 skip_prologue_sal (&sal);
3608
3609 return sal;
3610 }
3611
3612 /* See symtab.h. */
3613
3614 symtab_and_line
3615 find_function_start_sal (CORE_ADDR func_addr, obj_section *section,
3616 bool funfirstline)
3617 {
3618 symtab_and_line sal
3619 = find_function_start_sal_1 (func_addr, section, funfirstline);
3620
3621 /* find_function_start_sal_1 does a linetable search, so it finds
3622 the symtab and linenumber, but not a symbol. Fill in the
3623 function symbol too. */
3624 sal.symbol = find_pc_sect_containing_function (sal.pc, sal.section);
3625
3626 return sal;
3627 }
3628
3629 /* See symtab.h. */
3630
3631 symtab_and_line
3632 find_function_start_sal (symbol *sym, bool funfirstline)
3633 {
3634 fixup_symbol_section (sym, NULL);
3635 symtab_and_line sal
3636 = find_function_start_sal_1 (BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)),
3637 SYMBOL_OBJ_SECTION (symbol_objfile (sym), sym),
3638 funfirstline);
3639 sal.symbol = sym;
3640 return sal;
3641 }
3642
3643
3644 /* Given a function start address FUNC_ADDR and SYMTAB, find the first
3645 address for that function that has an entry in SYMTAB's line info
3646 table. If such an entry cannot be found, return FUNC_ADDR
3647 unaltered. */
3648
3649 static CORE_ADDR
3650 skip_prologue_using_lineinfo (CORE_ADDR func_addr, struct symtab *symtab)
3651 {
3652 CORE_ADDR func_start, func_end;
3653 struct linetable *l;
3654 int i;
3655
3656 /* Give up if this symbol has no lineinfo table. */
3657 l = SYMTAB_LINETABLE (symtab);
3658 if (l == NULL)
3659 return func_addr;
3660
3661 /* Get the range for the function's PC values, or give up if we
3662 cannot, for some reason. */
3663 if (!find_pc_partial_function (func_addr, NULL, &func_start, &func_end))
3664 return func_addr;
3665
3666 /* Linetable entries are ordered by PC values, see the commentary in
3667 symtab.h where `struct linetable' is defined. Thus, the first
3668 entry whose PC is in the range [FUNC_START..FUNC_END[ is the
3669 address we are looking for. */
3670 for (i = 0; i < l->nitems; i++)
3671 {
3672 struct linetable_entry *item = &(l->item[i]);
3673
3674 /* Don't use line numbers of zero, they mark special entries in
3675 the table. See the commentary on symtab.h before the
3676 definition of struct linetable. */
3677 if (item->line > 0 && func_start <= item->pc && item->pc < func_end)
3678 return item->pc;
3679 }
3680
3681 return func_addr;
3682 }
3683
3684 /* Adjust SAL to the first instruction past the function prologue.
3685 If the PC was explicitly specified, the SAL is not changed.
3686 If the line number was explicitly specified then the SAL can still be
3687 updated, unless the language for SAL is assembler, in which case the SAL
3688 will be left unchanged.
3689 If SAL is already past the prologue, then do nothing. */
3690
3691 void
3692 skip_prologue_sal (struct symtab_and_line *sal)
3693 {
3694 struct symbol *sym;
3695 struct symtab_and_line start_sal;
3696 CORE_ADDR pc, saved_pc;
3697 struct obj_section *section;
3698 const char *name;
3699 struct objfile *objfile;
3700 struct gdbarch *gdbarch;
3701 const struct block *b, *function_block;
3702 int force_skip, skip;
3703
3704 /* Do not change the SAL if PC was specified explicitly. */
3705 if (sal->explicit_pc)
3706 return;
3707
3708 /* In assembly code, if the user asks for a specific line then we should
3709 not adjust the SAL. The user already has instruction level
3710 visibility in this case, so selecting a line other than one requested
3711 is likely to be the wrong choice. */
3712 if (sal->symtab != nullptr
3713 && sal->explicit_line
3714 && SYMTAB_LANGUAGE (sal->symtab) == language_asm)
3715 return;
3716
3717 scoped_restore_current_pspace_and_thread restore_pspace_thread;
3718
3719 switch_to_program_space_and_thread (sal->pspace);
3720
3721 sym = find_pc_sect_function (sal->pc, sal->section);
3722 if (sym != NULL)
3723 {
3724 fixup_symbol_section (sym, NULL);
3725
3726 objfile = symbol_objfile (sym);
3727 pc = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym));
3728 section = SYMBOL_OBJ_SECTION (objfile, sym);
3729 name = SYMBOL_LINKAGE_NAME (sym);
3730 }
3731 else
3732 {
3733 struct bound_minimal_symbol msymbol
3734 = lookup_minimal_symbol_by_pc_section (sal->pc, sal->section);
3735
3736 if (msymbol.minsym == NULL)
3737 return;
3738
3739 objfile = msymbol.objfile;
3740 pc = BMSYMBOL_VALUE_ADDRESS (msymbol);
3741 section = MSYMBOL_OBJ_SECTION (objfile, msymbol.minsym);
3742 name = MSYMBOL_LINKAGE_NAME (msymbol.minsym);
3743 }
3744
3745 gdbarch = get_objfile_arch (objfile);
3746
3747 /* Process the prologue in two passes. In the first pass try to skip the
3748 prologue (SKIP is true) and verify there is a real need for it (indicated
3749 by FORCE_SKIP). If no such reason was found run a second pass where the
3750 prologue is not skipped (SKIP is false). */
3751
3752 skip = 1;
3753 force_skip = 1;
3754
3755 /* Be conservative - allow direct PC (without skipping prologue) only if we
3756 have proven the CU (Compilation Unit) supports it. sal->SYMTAB does not
3757 have to be set by the caller so we use SYM instead. */
3758 if (sym != NULL
3759 && COMPUNIT_LOCATIONS_VALID (SYMTAB_COMPUNIT (symbol_symtab (sym))))
3760 force_skip = 0;
3761
3762 saved_pc = pc;
3763 do
3764 {
3765 pc = saved_pc;
3766
3767 /* If the function is in an unmapped overlay, use its unmapped LMA address,
3768 so that gdbarch_skip_prologue has something unique to work on. */
3769 if (section_is_overlay (section) && !section_is_mapped (section))
3770 pc = overlay_unmapped_address (pc, section);
3771
3772 /* Skip "first line" of function (which is actually its prologue). */
3773 pc += gdbarch_deprecated_function_start_offset (gdbarch);
3774 if (gdbarch_skip_entrypoint_p (gdbarch))
3775 pc = gdbarch_skip_entrypoint (gdbarch, pc);
3776 if (skip)
3777 pc = gdbarch_skip_prologue_noexcept (gdbarch, pc);
3778
3779 /* For overlays, map pc back into its mapped VMA range. */
3780 pc = overlay_mapped_address (pc, section);
3781
3782 /* Calculate line number. */
3783 start_sal = find_pc_sect_line (pc, section, 0);
3784
3785 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
3786 line is still part of the same function. */
3787 if (skip && start_sal.pc != pc
3788 && (sym ? (BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)) <= start_sal.end
3789 && start_sal.end < BLOCK_END (SYMBOL_BLOCK_VALUE (sym)))
3790 : (lookup_minimal_symbol_by_pc_section (start_sal.end, section).minsym
3791 == lookup_minimal_symbol_by_pc_section (pc, section).minsym)))
3792 {
3793 /* First pc of next line */
3794 pc = start_sal.end;
3795 /* Recalculate the line number (might not be N+1). */
3796 start_sal = find_pc_sect_line (pc, section, 0);
3797 }
3798
3799 /* On targets with executable formats that don't have a concept of
3800 constructors (ELF with .init has, PE doesn't), gcc emits a call
3801 to `__main' in `main' between the prologue and before user
3802 code. */
3803 if (gdbarch_skip_main_prologue_p (gdbarch)
3804 && name && strcmp_iw (name, "main") == 0)
3805 {
3806 pc = gdbarch_skip_main_prologue (gdbarch, pc);
3807 /* Recalculate the line number (might not be N+1). */
3808 start_sal = find_pc_sect_line (pc, section, 0);
3809 force_skip = 1;
3810 }
3811 }
3812 while (!force_skip && skip--);
3813
3814 /* If we still don't have a valid source line, try to find the first
3815 PC in the lineinfo table that belongs to the same function. This
3816 happens with COFF debug info, which does not seem to have an
3817 entry in lineinfo table for the code after the prologue which has
3818 no direct relation to source. For example, this was found to be
3819 the case with the DJGPP target using "gcc -gcoff" when the
3820 compiler inserted code after the prologue to make sure the stack
3821 is aligned. */
3822 if (!force_skip && sym && start_sal.symtab == NULL)
3823 {
3824 pc = skip_prologue_using_lineinfo (pc, symbol_symtab (sym));
3825 /* Recalculate the line number. */
3826 start_sal = find_pc_sect_line (pc, section, 0);
3827 }
3828
3829 /* If we're already past the prologue, leave SAL unchanged. Otherwise
3830 forward SAL to the end of the prologue. */
3831 if (sal->pc >= pc)
3832 return;
3833
3834 sal->pc = pc;
3835 sal->section = section;
3836 sal->symtab = start_sal.symtab;
3837 sal->line = start_sal.line;
3838 sal->end = start_sal.end;
3839
3840 /* Check if we are now inside an inlined function. If we can,
3841 use the call site of the function instead. */
3842 b = block_for_pc_sect (sal->pc, sal->section);
3843 function_block = NULL;
3844 while (b != NULL)
3845 {
3846 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
3847 function_block = b;
3848 else if (BLOCK_FUNCTION (b) != NULL)
3849 break;
3850 b = BLOCK_SUPERBLOCK (b);
3851 }
3852 if (function_block != NULL
3853 && SYMBOL_LINE (BLOCK_FUNCTION (function_block)) != 0)
3854 {
3855 sal->line = SYMBOL_LINE (BLOCK_FUNCTION (function_block));
3856 sal->symtab = symbol_symtab (BLOCK_FUNCTION (function_block));
3857 }
3858 }
3859
3860 /* Given PC at the function's start address, attempt to find the
3861 prologue end using SAL information. Return zero if the skip fails.
3862
3863 A non-optimized prologue traditionally has one SAL for the function
3864 and a second for the function body. A single line function has
3865 them both pointing at the same line.
3866
3867 An optimized prologue is similar but the prologue may contain
3868 instructions (SALs) from the instruction body. Need to skip those
3869 while not getting into the function body.
3870
3871 The functions end point and an increasing SAL line are used as
3872 indicators of the prologue's endpoint.
3873
3874 This code is based on the function refine_prologue_limit
3875 (found in ia64). */
3876
3877 CORE_ADDR
3878 skip_prologue_using_sal (struct gdbarch *gdbarch, CORE_ADDR func_addr)
3879 {
3880 struct symtab_and_line prologue_sal;
3881 CORE_ADDR start_pc;
3882 CORE_ADDR end_pc;
3883 const struct block *bl;
3884
3885 /* Get an initial range for the function. */
3886 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
3887 start_pc += gdbarch_deprecated_function_start_offset (gdbarch);
3888
3889 prologue_sal = find_pc_line (start_pc, 0);
3890 if (prologue_sal.line != 0)
3891 {
3892 /* For languages other than assembly, treat two consecutive line
3893 entries at the same address as a zero-instruction prologue.
3894 The GNU assembler emits separate line notes for each instruction
3895 in a multi-instruction macro, but compilers generally will not
3896 do this. */
3897 if (prologue_sal.symtab->language != language_asm)
3898 {
3899 struct linetable *linetable = SYMTAB_LINETABLE (prologue_sal.symtab);
3900 int idx = 0;
3901
3902 /* Skip any earlier lines, and any end-of-sequence marker
3903 from a previous function. */
3904 while (linetable->item[idx].pc != prologue_sal.pc
3905 || linetable->item[idx].line == 0)
3906 idx++;
3907
3908 if (idx+1 < linetable->nitems
3909 && linetable->item[idx+1].line != 0
3910 && linetable->item[idx+1].pc == start_pc)
3911 return start_pc;
3912 }
3913
3914 /* If there is only one sal that covers the entire function,
3915 then it is probably a single line function, like
3916 "foo(){}". */
3917 if (prologue_sal.end >= end_pc)
3918 return 0;
3919
3920 while (prologue_sal.end < end_pc)
3921 {
3922 struct symtab_and_line sal;
3923
3924 sal = find_pc_line (prologue_sal.end, 0);
3925 if (sal.line == 0)
3926 break;
3927 /* Assume that a consecutive SAL for the same (or larger)
3928 line mark the prologue -> body transition. */
3929 if (sal.line >= prologue_sal.line)
3930 break;
3931 /* Likewise if we are in a different symtab altogether
3932 (e.g. within a file included via #include).  */
3933 if (sal.symtab != prologue_sal.symtab)
3934 break;
3935
3936 /* The line number is smaller. Check that it's from the
3937 same function, not something inlined. If it's inlined,
3938 then there is no point comparing the line numbers. */
3939 bl = block_for_pc (prologue_sal.end);
3940 while (bl)
3941 {
3942 if (block_inlined_p (bl))
3943 break;
3944 if (BLOCK_FUNCTION (bl))
3945 {
3946 bl = NULL;
3947 break;
3948 }
3949 bl = BLOCK_SUPERBLOCK (bl);
3950 }
3951 if (bl != NULL)
3952 break;
3953
3954 /* The case in which compiler's optimizer/scheduler has
3955 moved instructions into the prologue. We look ahead in
3956 the function looking for address ranges whose
3957 corresponding line number is less the first one that we
3958 found for the function. This is more conservative then
3959 refine_prologue_limit which scans a large number of SALs
3960 looking for any in the prologue. */
3961 prologue_sal = sal;
3962 }
3963 }
3964
3965 if (prologue_sal.end < end_pc)
3966 /* Return the end of this line, or zero if we could not find a
3967 line. */
3968 return prologue_sal.end;
3969 else
3970 /* Don't return END_PC, which is past the end of the function. */
3971 return prologue_sal.pc;
3972 }
3973
3974 /* See symtab.h. */
3975
3976 symbol *
3977 find_function_alias_target (bound_minimal_symbol msymbol)
3978 {
3979 CORE_ADDR func_addr;
3980 if (!msymbol_is_function (msymbol.objfile, msymbol.minsym, &func_addr))
3981 return NULL;
3982
3983 symbol *sym = find_pc_function (func_addr);
3984 if (sym != NULL
3985 && SYMBOL_CLASS (sym) == LOC_BLOCK
3986 && BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)) == func_addr)
3987 return sym;
3988
3989 return NULL;
3990 }
3991
3992 \f
3993 /* If P is of the form "operator[ \t]+..." where `...' is
3994 some legitimate operator text, return a pointer to the
3995 beginning of the substring of the operator text.
3996 Otherwise, return "". */
3997
3998 static const char *
3999 operator_chars (const char *p, const char **end)
4000 {
4001 *end = "";
4002 if (!startswith (p, CP_OPERATOR_STR))
4003 return *end;
4004 p += CP_OPERATOR_LEN;
4005
4006 /* Don't get faked out by `operator' being part of a longer
4007 identifier. */
4008 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
4009 return *end;
4010
4011 /* Allow some whitespace between `operator' and the operator symbol. */
4012 while (*p == ' ' || *p == '\t')
4013 p++;
4014
4015 /* Recognize 'operator TYPENAME'. */
4016
4017 if (isalpha (*p) || *p == '_' || *p == '$')
4018 {
4019 const char *q = p + 1;
4020
4021 while (isalnum (*q) || *q == '_' || *q == '$')
4022 q++;
4023 *end = q;
4024 return p;
4025 }
4026
4027 while (*p)
4028 switch (*p)
4029 {
4030 case '\\': /* regexp quoting */
4031 if (p[1] == '*')
4032 {
4033 if (p[2] == '=') /* 'operator\*=' */
4034 *end = p + 3;
4035 else /* 'operator\*' */
4036 *end = p + 2;
4037 return p;
4038 }
4039 else if (p[1] == '[')
4040 {
4041 if (p[2] == ']')
4042 error (_("mismatched quoting on brackets, "
4043 "try 'operator\\[\\]'"));
4044 else if (p[2] == '\\' && p[3] == ']')
4045 {
4046 *end = p + 4; /* 'operator\[\]' */
4047 return p;
4048 }
4049 else
4050 error (_("nothing is allowed between '[' and ']'"));
4051 }
4052 else
4053 {
4054 /* Gratuitous qoute: skip it and move on. */
4055 p++;
4056 continue;
4057 }
4058 break;
4059 case '!':
4060 case '=':
4061 case '*':
4062 case '/':
4063 case '%':
4064 case '^':
4065 if (p[1] == '=')
4066 *end = p + 2;
4067 else
4068 *end = p + 1;
4069 return p;
4070 case '<':
4071 case '>':
4072 case '+':
4073 case '-':
4074 case '&':
4075 case '|':
4076 if (p[0] == '-' && p[1] == '>')
4077 {
4078 /* Struct pointer member operator 'operator->'. */
4079 if (p[2] == '*')
4080 {
4081 *end = p + 3; /* 'operator->*' */
4082 return p;
4083 }
4084 else if (p[2] == '\\')
4085 {
4086 *end = p + 4; /* Hopefully 'operator->\*' */
4087 return p;
4088 }
4089 else
4090 {
4091 *end = p + 2; /* 'operator->' */
4092 return p;
4093 }
4094 }
4095 if (p[1] == '=' || p[1] == p[0])
4096 *end = p + 2;
4097 else
4098 *end = p + 1;
4099 return p;
4100 case '~':
4101 case ',':
4102 *end = p + 1;
4103 return p;
4104 case '(':
4105 if (p[1] != ')')
4106 error (_("`operator ()' must be specified "
4107 "without whitespace in `()'"));
4108 *end = p + 2;
4109 return p;
4110 case '?':
4111 if (p[1] != ':')
4112 error (_("`operator ?:' must be specified "
4113 "without whitespace in `?:'"));
4114 *end = p + 2;
4115 return p;
4116 case '[':
4117 if (p[1] != ']')
4118 error (_("`operator []' must be specified "
4119 "without whitespace in `[]'"));
4120 *end = p + 2;
4121 return p;
4122 default:
4123 error (_("`operator %s' not supported"), p);
4124 break;
4125 }
4126
4127 *end = "";
4128 return *end;
4129 }
4130 \f
4131
4132 /* What part to match in a file name. */
4133
4134 struct filename_partial_match_opts
4135 {
4136 /* Only match the directory name part. */
4137 int dirname = false;
4138
4139 /* Only match the basename part. */
4140 int basename = false;
4141 };
4142
4143 /* Data structure to maintain printing state for output_source_filename. */
4144
4145 struct output_source_filename_data
4146 {
4147 /* Output only filenames matching REGEXP. */
4148 std::string regexp;
4149 gdb::optional<compiled_regex> c_regexp;
4150 /* Possibly only match a part of the filename. */
4151 filename_partial_match_opts partial_match;
4152
4153
4154 /* Cache of what we've seen so far. */
4155 struct filename_seen_cache *filename_seen_cache;
4156
4157 /* Flag of whether we're printing the first one. */
4158 int first;
4159 };
4160
4161 /* Slave routine for sources_info. Force line breaks at ,'s.
4162 NAME is the name to print.
4163 DATA contains the state for printing and watching for duplicates. */
4164
4165 static void
4166 output_source_filename (const char *name,
4167 struct output_source_filename_data *data)
4168 {
4169 /* Since a single source file can result in several partial symbol
4170 tables, we need to avoid printing it more than once. Note: if
4171 some of the psymtabs are read in and some are not, it gets
4172 printed both under "Source files for which symbols have been
4173 read" and "Source files for which symbols will be read in on
4174 demand". I consider this a reasonable way to deal with the
4175 situation. I'm not sure whether this can also happen for
4176 symtabs; it doesn't hurt to check. */
4177
4178 /* Was NAME already seen? */
4179 if (data->filename_seen_cache->seen (name))
4180 {
4181 /* Yes; don't print it again. */
4182 return;
4183 }
4184
4185 /* Does it match data->regexp? */
4186 if (data->c_regexp.has_value ())
4187 {
4188 const char *to_match;
4189 std::string dirname;
4190
4191 if (data->partial_match.dirname)
4192 {
4193 dirname = ldirname (name);
4194 to_match = dirname.c_str ();
4195 }
4196 else if (data->partial_match.basename)
4197 to_match = lbasename (name);
4198 else
4199 to_match = name;
4200
4201 if (data->c_regexp->exec (to_match, 0, NULL, 0) != 0)
4202 return;
4203 }
4204
4205 /* Print it and reset *FIRST. */
4206 if (! data->first)
4207 printf_filtered (", ");
4208 data->first = 0;
4209
4210 wrap_here ("");
4211 fputs_styled (name, file_name_style.style (), gdb_stdout);
4212 }
4213
4214 /* A callback for map_partial_symbol_filenames. */
4215
4216 static void
4217 output_partial_symbol_filename (const char *filename, const char *fullname,
4218 void *data)
4219 {
4220 output_source_filename (fullname ? fullname : filename,
4221 (struct output_source_filename_data *) data);
4222 }
4223
4224 using isrc_flag_option_def
4225 = gdb::option::flag_option_def<filename_partial_match_opts>;
4226
4227 static const gdb::option::option_def info_sources_option_defs[] = {
4228
4229 isrc_flag_option_def {
4230 "dirname",
4231 [] (filename_partial_match_opts *opts) { return &opts->dirname; },
4232 N_("Show only the files having a dirname matching REGEXP."),
4233 },
4234
4235 isrc_flag_option_def {
4236 "basename",
4237 [] (filename_partial_match_opts *opts) { return &opts->basename; },
4238 N_("Show only the files having a basename matching REGEXP."),
4239 },
4240
4241 };
4242
4243 /* Create an option_def_group for the "info sources" options, with
4244 ISRC_OPTS as context. */
4245
4246 static inline gdb::option::option_def_group
4247 make_info_sources_options_def_group (filename_partial_match_opts *isrc_opts)
4248 {
4249 return {{info_sources_option_defs}, isrc_opts};
4250 }
4251
4252 /* Prints the header message for the source files that will be printed
4253 with the matching info present in DATA. SYMBOL_MSG is a message
4254 that tells what will or has been done with the symbols of the
4255 matching source files. */
4256
4257 static void
4258 print_info_sources_header (const char *symbol_msg,
4259 const struct output_source_filename_data *data)
4260 {
4261 puts_filtered (symbol_msg);
4262 if (!data->regexp.empty ())
4263 {
4264 if (data->partial_match.dirname)
4265 printf_filtered (_("(dirname matching regular expression \"%s\")"),
4266 data->regexp.c_str ());
4267 else if (data->partial_match.basename)
4268 printf_filtered (_("(basename matching regular expression \"%s\")"),
4269 data->regexp.c_str ());
4270 else
4271 printf_filtered (_("(filename matching regular expression \"%s\")"),
4272 data->regexp.c_str ());
4273 }
4274 puts_filtered ("\n");
4275 }
4276
4277 /* Completer for "info sources". */
4278
4279 static void
4280 info_sources_command_completer (cmd_list_element *ignore,
4281 completion_tracker &tracker,
4282 const char *text, const char *word)
4283 {
4284 const auto group = make_info_sources_options_def_group (nullptr);
4285 if (gdb::option::complete_options
4286 (tracker, &text, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, group))
4287 return;
4288 }
4289
4290 static void
4291 info_sources_command (const char *args, int from_tty)
4292 {
4293 struct output_source_filename_data data;
4294
4295 if (!have_full_symbols () && !have_partial_symbols ())
4296 {
4297 error (_("No symbol table is loaded. Use the \"file\" command."));
4298 }
4299
4300 filename_seen_cache filenames_seen;
4301
4302 auto group = make_info_sources_options_def_group (&data.partial_match);
4303
4304 gdb::option::process_options
4305 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_ERROR, group);
4306
4307 if (args != NULL && *args != '\000')
4308 data.regexp = args;
4309
4310 data.filename_seen_cache = &filenames_seen;
4311 data.first = 1;
4312
4313 if (data.partial_match.dirname && data.partial_match.basename)
4314 error (_("You cannot give both -basename and -dirname to 'info sources'."));
4315 if ((data.partial_match.dirname || data.partial_match.basename)
4316 && data.regexp.empty ())
4317 error (_("Missing REGEXP for 'info sources'."));
4318
4319 if (data.regexp.empty ())
4320 data.c_regexp.reset ();
4321 else
4322 {
4323 int cflags = REG_NOSUB;
4324 #ifdef HAVE_CASE_INSENSITIVE_FILE_SYSTEM
4325 cflags |= REG_ICASE;
4326 #endif
4327 data.c_regexp.emplace (data.regexp.c_str (), cflags,
4328 _("Invalid regexp"));
4329 }
4330
4331 print_info_sources_header
4332 (_("Source files for which symbols have been read in:\n"), &data);
4333
4334 for (objfile *objfile : current_program_space->objfiles ())
4335 {
4336 for (compunit_symtab *cu : objfile->compunits ())
4337 {
4338 for (symtab *s : compunit_filetabs (cu))
4339 {
4340 const char *fullname = symtab_to_fullname (s);
4341
4342 output_source_filename (fullname, &data);
4343 }
4344 }
4345 }
4346 printf_filtered ("\n\n");
4347
4348 print_info_sources_header
4349 (_("Source files for which symbols will be read in on demand:\n"), &data);
4350
4351 filenames_seen.clear ();
4352 data.first = 1;
4353 map_symbol_filenames (output_partial_symbol_filename, &data,
4354 1 /*need_fullname*/);
4355 printf_filtered ("\n");
4356 }
4357
4358 /* Compare FILE against all the NFILES entries of FILES. If BASENAMES is
4359 non-zero compare only lbasename of FILES. */
4360
4361 static int
4362 file_matches (const char *file, const char *files[], int nfiles, int basenames)
4363 {
4364 int i;
4365
4366 if (file != NULL && nfiles != 0)
4367 {
4368 for (i = 0; i < nfiles; i++)
4369 {
4370 if (compare_filenames_for_search (file, (basenames
4371 ? lbasename (files[i])
4372 : files[i])))
4373 return 1;
4374 }
4375 }
4376 else if (nfiles == 0)
4377 return 1;
4378 return 0;
4379 }
4380
4381 /* Helper function for sort_search_symbols_remove_dups and qsort. Can only
4382 sort symbols, not minimal symbols. */
4383
4384 int
4385 symbol_search::compare_search_syms (const symbol_search &sym_a,
4386 const symbol_search &sym_b)
4387 {
4388 int c;
4389
4390 c = FILENAME_CMP (symbol_symtab (sym_a.symbol)->filename,
4391 symbol_symtab (sym_b.symbol)->filename);
4392 if (c != 0)
4393 return c;
4394
4395 if (sym_a.block != sym_b.block)
4396 return sym_a.block - sym_b.block;
4397
4398 return strcmp (SYMBOL_PRINT_NAME (sym_a.symbol),
4399 SYMBOL_PRINT_NAME (sym_b.symbol));
4400 }
4401
4402 /* Returns true if the type_name of symbol_type of SYM matches TREG.
4403 If SYM has no symbol_type or symbol_name, returns false. */
4404
4405 bool
4406 treg_matches_sym_type_name (const compiled_regex &treg,
4407 const struct symbol *sym)
4408 {
4409 struct type *sym_type;
4410 std::string printed_sym_type_name;
4411
4412 if (symbol_lookup_debug > 1)
4413 {
4414 fprintf_unfiltered (gdb_stdlog,
4415 "treg_matches_sym_type_name\n sym %s\n",
4416 SYMBOL_NATURAL_NAME (sym));
4417 }
4418
4419 sym_type = SYMBOL_TYPE (sym);
4420 if (sym_type == NULL)
4421 return false;
4422
4423 {
4424 scoped_switch_to_sym_language_if_auto l (sym);
4425
4426 printed_sym_type_name = type_to_string (sym_type);
4427 }
4428
4429
4430 if (symbol_lookup_debug > 1)
4431 {
4432 fprintf_unfiltered (gdb_stdlog,
4433 " sym_type_name %s\n",
4434 printed_sym_type_name.c_str ());
4435 }
4436
4437
4438 if (printed_sym_type_name.empty ())
4439 return false;
4440
4441 return treg.exec (printed_sym_type_name.c_str (), 0, NULL, 0) == 0;
4442 }
4443
4444
4445 /* Sort the symbols in RESULT and remove duplicates. */
4446
4447 static void
4448 sort_search_symbols_remove_dups (std::vector<symbol_search> *result)
4449 {
4450 std::sort (result->begin (), result->end ());
4451 result->erase (std::unique (result->begin (), result->end ()),
4452 result->end ());
4453 }
4454
4455 /* Search the symbol table for matches to the regular expression REGEXP,
4456 returning the results.
4457
4458 Only symbols of KIND are searched:
4459 VARIABLES_DOMAIN - search all symbols, excluding functions, type names,
4460 and constants (enums).
4461 if T_REGEXP is not NULL, only returns var that have
4462 a type matching regular expression T_REGEXP.
4463 FUNCTIONS_DOMAIN - search all functions
4464 TYPES_DOMAIN - search all type names
4465 ALL_DOMAIN - an internal error for this function
4466
4467 Within each file the results are sorted locally; each symtab's global and
4468 static blocks are separately alphabetized.
4469 Duplicate entries are removed. */
4470
4471 std::vector<symbol_search>
4472 search_symbols (const char *regexp, enum search_domain kind,
4473 const char *t_regexp,
4474 int nfiles, const char *files[])
4475 {
4476 const struct blockvector *bv;
4477 const struct block *b;
4478 int i = 0;
4479 struct block_iterator iter;
4480 struct symbol *sym;
4481 int found_misc = 0;
4482 static const enum minimal_symbol_type types[]
4483 = {mst_data, mst_text, mst_unknown};
4484 static const enum minimal_symbol_type types2[]
4485 = {mst_bss, mst_file_text, mst_unknown};
4486 static const enum minimal_symbol_type types3[]
4487 = {mst_file_data, mst_solib_trampoline, mst_unknown};
4488 static const enum minimal_symbol_type types4[]
4489 = {mst_file_bss, mst_text_gnu_ifunc, mst_unknown};
4490 enum minimal_symbol_type ourtype;
4491 enum minimal_symbol_type ourtype2;
4492 enum minimal_symbol_type ourtype3;
4493 enum minimal_symbol_type ourtype4;
4494 std::vector<symbol_search> result;
4495 gdb::optional<compiled_regex> preg;
4496 gdb::optional<compiled_regex> treg;
4497
4498 gdb_assert (kind <= TYPES_DOMAIN);
4499
4500 ourtype = types[kind];
4501 ourtype2 = types2[kind];
4502 ourtype3 = types3[kind];
4503 ourtype4 = types4[kind];
4504
4505 if (regexp != NULL)
4506 {
4507 /* Make sure spacing is right for C++ operators.
4508 This is just a courtesy to make the matching less sensitive
4509 to how many spaces the user leaves between 'operator'
4510 and <TYPENAME> or <OPERATOR>. */
4511 const char *opend;
4512 const char *opname = operator_chars (regexp, &opend);
4513
4514 if (*opname)
4515 {
4516 int fix = -1; /* -1 means ok; otherwise number of
4517 spaces needed. */
4518
4519 if (isalpha (*opname) || *opname == '_' || *opname == '$')
4520 {
4521 /* There should 1 space between 'operator' and 'TYPENAME'. */
4522 if (opname[-1] != ' ' || opname[-2] == ' ')
4523 fix = 1;
4524 }
4525 else
4526 {
4527 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
4528 if (opname[-1] == ' ')
4529 fix = 0;
4530 }
4531 /* If wrong number of spaces, fix it. */
4532 if (fix >= 0)
4533 {
4534 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
4535
4536 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
4537 regexp = tmp;
4538 }
4539 }
4540
4541 int cflags = REG_NOSUB | (case_sensitivity == case_sensitive_off
4542 ? REG_ICASE : 0);
4543 preg.emplace (regexp, cflags, _("Invalid regexp"));
4544 }
4545
4546 if (t_regexp != NULL)
4547 {
4548 int cflags = REG_NOSUB | (case_sensitivity == case_sensitive_off
4549 ? REG_ICASE : 0);
4550 treg.emplace (t_regexp, cflags, _("Invalid regexp"));
4551 }
4552
4553 /* Search through the partial symtabs *first* for all symbols
4554 matching the regexp. That way we don't have to reproduce all of
4555 the machinery below. */
4556 expand_symtabs_matching ([&] (const char *filename, bool basenames)
4557 {
4558 return file_matches (filename, files, nfiles,
4559 basenames);
4560 },
4561 lookup_name_info::match_any (),
4562 [&] (const char *symname)
4563 {
4564 return (!preg.has_value ()
4565 || preg->exec (symname,
4566 0, NULL, 0) == 0);
4567 },
4568 NULL,
4569 kind);
4570
4571 /* Here, we search through the minimal symbol tables for functions
4572 and variables that match, and force their symbols to be read.
4573 This is in particular necessary for demangled variable names,
4574 which are no longer put into the partial symbol tables.
4575 The symbol will then be found during the scan of symtabs below.
4576
4577 For functions, find_pc_symtab should succeed if we have debug info
4578 for the function, for variables we have to call
4579 lookup_symbol_in_objfile_from_linkage_name to determine if the variable
4580 has debug info.
4581 If the lookup fails, set found_misc so that we will rescan to print
4582 any matching symbols without debug info.
4583 We only search the objfile the msymbol came from, we no longer search
4584 all objfiles. In large programs (1000s of shared libs) searching all
4585 objfiles is not worth the pain. */
4586
4587 if (nfiles == 0 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
4588 {
4589 for (objfile *objfile : current_program_space->objfiles ())
4590 {
4591 for (minimal_symbol *msymbol : objfile->msymbols ())
4592 {
4593 QUIT;
4594
4595 if (msymbol->created_by_gdb)
4596 continue;
4597
4598 if (MSYMBOL_TYPE (msymbol) == ourtype
4599 || MSYMBOL_TYPE (msymbol) == ourtype2
4600 || MSYMBOL_TYPE (msymbol) == ourtype3
4601 || MSYMBOL_TYPE (msymbol) == ourtype4)
4602 {
4603 if (!preg.has_value ()
4604 || preg->exec (MSYMBOL_NATURAL_NAME (msymbol), 0,
4605 NULL, 0) == 0)
4606 {
4607 /* Note: An important side-effect of these
4608 lookup functions is to expand the symbol
4609 table if msymbol is found, for the benefit of
4610 the next loop on compunits. */
4611 if (kind == FUNCTIONS_DOMAIN
4612 ? (find_pc_compunit_symtab
4613 (MSYMBOL_VALUE_ADDRESS (objfile, msymbol))
4614 == NULL)
4615 : (lookup_symbol_in_objfile_from_linkage_name
4616 (objfile, MSYMBOL_LINKAGE_NAME (msymbol),
4617 VAR_DOMAIN)
4618 .symbol == NULL))
4619 found_misc = 1;
4620 }
4621 }
4622 }
4623 }
4624 }
4625
4626 for (objfile *objfile : current_program_space->objfiles ())
4627 {
4628 for (compunit_symtab *cust : objfile->compunits ())
4629 {
4630 bv = COMPUNIT_BLOCKVECTOR (cust);
4631 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
4632 {
4633 b = BLOCKVECTOR_BLOCK (bv, i);
4634 ALL_BLOCK_SYMBOLS (b, iter, sym)
4635 {
4636 struct symtab *real_symtab = symbol_symtab (sym);
4637
4638 QUIT;
4639
4640 /* Check first sole REAL_SYMTAB->FILENAME. It does
4641 not need to be a substring of symtab_to_fullname as
4642 it may contain "./" etc. */
4643 if ((file_matches (real_symtab->filename, files, nfiles, 0)
4644 || ((basenames_may_differ
4645 || file_matches (lbasename (real_symtab->filename),
4646 files, nfiles, 1))
4647 && file_matches (symtab_to_fullname (real_symtab),
4648 files, nfiles, 0)))
4649 && ((!preg.has_value ()
4650 || preg->exec (SYMBOL_NATURAL_NAME (sym), 0,
4651 NULL, 0) == 0)
4652 && ((kind == VARIABLES_DOMAIN
4653 && SYMBOL_CLASS (sym) != LOC_TYPEDEF
4654 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
4655 && SYMBOL_CLASS (sym) != LOC_BLOCK
4656 /* LOC_CONST can be used for more than
4657 just enums, e.g., c++ static const
4658 members. We only want to skip enums
4659 here. */
4660 && !(SYMBOL_CLASS (sym) == LOC_CONST
4661 && (TYPE_CODE (SYMBOL_TYPE (sym))
4662 == TYPE_CODE_ENUM))
4663 && (!treg.has_value ()
4664 || treg_matches_sym_type_name (*treg, sym)))
4665 || (kind == FUNCTIONS_DOMAIN
4666 && SYMBOL_CLASS (sym) == LOC_BLOCK
4667 && (!treg.has_value ()
4668 || treg_matches_sym_type_name (*treg,
4669 sym)))
4670 || (kind == TYPES_DOMAIN
4671 && SYMBOL_CLASS (sym) == LOC_TYPEDEF))))
4672 {
4673 /* match */
4674 result.emplace_back (i, sym);
4675 }
4676 }
4677 }
4678 }
4679 }
4680
4681 if (!result.empty ())
4682 sort_search_symbols_remove_dups (&result);
4683
4684 /* If there are no eyes, avoid all contact. I mean, if there are
4685 no debug symbols, then add matching minsyms. But if the user wants
4686 to see symbols matching a type regexp, then never give a minimal symbol,
4687 as we assume that a minimal symbol does not have a type. */
4688
4689 if ((found_misc || (nfiles == 0 && kind != FUNCTIONS_DOMAIN))
4690 && !treg.has_value ())
4691 {
4692 for (objfile *objfile : current_program_space->objfiles ())
4693 {
4694 for (minimal_symbol *msymbol : objfile->msymbols ())
4695 {
4696 QUIT;
4697
4698 if (msymbol->created_by_gdb)
4699 continue;
4700
4701 if (MSYMBOL_TYPE (msymbol) == ourtype
4702 || MSYMBOL_TYPE (msymbol) == ourtype2
4703 || MSYMBOL_TYPE (msymbol) == ourtype3
4704 || MSYMBOL_TYPE (msymbol) == ourtype4)
4705 {
4706 if (!preg.has_value ()
4707 || preg->exec (MSYMBOL_NATURAL_NAME (msymbol), 0,
4708 NULL, 0) == 0)
4709 {
4710 /* For functions we can do a quick check of whether the
4711 symbol might be found via find_pc_symtab. */
4712 if (kind != FUNCTIONS_DOMAIN
4713 || (find_pc_compunit_symtab
4714 (MSYMBOL_VALUE_ADDRESS (objfile, msymbol))
4715 == NULL))
4716 {
4717 if (lookup_symbol_in_objfile_from_linkage_name
4718 (objfile, MSYMBOL_LINKAGE_NAME (msymbol),
4719 VAR_DOMAIN)
4720 .symbol == NULL)
4721 {
4722 /* match */
4723 result.emplace_back (i, msymbol, objfile);
4724 }
4725 }
4726 }
4727 }
4728 }
4729 }
4730 }
4731
4732 return result;
4733 }
4734
4735 /* Helper function for symtab_symbol_info, this function uses
4736 the data returned from search_symbols() to print information
4737 regarding the match to gdb_stdout. If LAST is not NULL,
4738 print file and line number information for the symbol as
4739 well. Skip printing the filename if it matches LAST. */
4740
4741 static void
4742 print_symbol_info (enum search_domain kind,
4743 struct symbol *sym,
4744 int block, const char *last)
4745 {
4746 scoped_switch_to_sym_language_if_auto l (sym);
4747 struct symtab *s = symbol_symtab (sym);
4748
4749 if (last != NULL)
4750 {
4751 const char *s_filename = symtab_to_filename_for_display (s);
4752
4753 if (filename_cmp (last, s_filename) != 0)
4754 {
4755 fputs_filtered ("\nFile ", gdb_stdout);
4756 fputs_styled (s_filename, file_name_style.style (), gdb_stdout);
4757 fputs_filtered (":\n", gdb_stdout);
4758 }
4759
4760 if (SYMBOL_LINE (sym) != 0)
4761 printf_filtered ("%d:\t", SYMBOL_LINE (sym));
4762 else
4763 puts_filtered ("\t");
4764 }
4765
4766 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
4767 printf_filtered ("static ");
4768
4769 /* Typedef that is not a C++ class. */
4770 if (kind == TYPES_DOMAIN
4771 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
4772 {
4773 /* FIXME: For C (and C++) we end up with a difference in output here
4774 between how a typedef is printed, and non-typedefs are printed.
4775 The TYPEDEF_PRINT code places a ";" at the end in an attempt to
4776 appear C-like, while TYPE_PRINT doesn't.
4777
4778 For the struct printing case below, things are worse, we force
4779 printing of the ";" in this function, which is going to be wrong
4780 for languages that don't require a ";" between statements. */
4781 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_TYPEDEF)
4782 typedef_print (SYMBOL_TYPE (sym), sym, gdb_stdout);
4783 else
4784 {
4785 type_print (SYMBOL_TYPE (sym), "", gdb_stdout, -1);
4786 printf_filtered ("\n");
4787 }
4788 }
4789 /* variable, func, or typedef-that-is-c++-class. */
4790 else if (kind < TYPES_DOMAIN
4791 || (kind == TYPES_DOMAIN
4792 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
4793 {
4794 type_print (SYMBOL_TYPE (sym),
4795 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
4796 ? "" : SYMBOL_PRINT_NAME (sym)),
4797 gdb_stdout, 0);
4798
4799 printf_filtered (";\n");
4800 }
4801 }
4802
4803 /* This help function for symtab_symbol_info() prints information
4804 for non-debugging symbols to gdb_stdout. */
4805
4806 static void
4807 print_msymbol_info (struct bound_minimal_symbol msymbol)
4808 {
4809 struct gdbarch *gdbarch = get_objfile_arch (msymbol.objfile);
4810 char *tmp;
4811
4812 if (gdbarch_addr_bit (gdbarch) <= 32)
4813 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol)
4814 & (CORE_ADDR) 0xffffffff,
4815 8);
4816 else
4817 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol),
4818 16);
4819 fputs_styled (tmp, address_style.style (), gdb_stdout);
4820 fputs_filtered (" ", gdb_stdout);
4821 if (msymbol.minsym->text_p ())
4822 fputs_styled (MSYMBOL_PRINT_NAME (msymbol.minsym),
4823 function_name_style.style (),
4824 gdb_stdout);
4825 else
4826 fputs_filtered (MSYMBOL_PRINT_NAME (msymbol.minsym), gdb_stdout);
4827 fputs_filtered ("\n", gdb_stdout);
4828 }
4829
4830 /* This is the guts of the commands "info functions", "info types", and
4831 "info variables". It calls search_symbols to find all matches and then
4832 print_[m]symbol_info to print out some useful information about the
4833 matches. */
4834
4835 static void
4836 symtab_symbol_info (bool quiet,
4837 const char *regexp, enum search_domain kind,
4838 const char *t_regexp, int from_tty)
4839 {
4840 static const char * const classnames[] =
4841 {"variable", "function", "type"};
4842 const char *last_filename = "";
4843 int first = 1;
4844
4845 gdb_assert (kind <= TYPES_DOMAIN);
4846
4847 if (regexp != nullptr && *regexp == '\0')
4848 regexp = nullptr;
4849
4850 /* Must make sure that if we're interrupted, symbols gets freed. */
4851 std::vector<symbol_search> symbols = search_symbols (regexp, kind,
4852 t_regexp, 0, NULL);
4853
4854 if (!quiet)
4855 {
4856 if (regexp != NULL)
4857 {
4858 if (t_regexp != NULL)
4859 printf_filtered
4860 (_("All %ss matching regular expression \"%s\""
4861 " with type matching regular expression \"%s\":\n"),
4862 classnames[kind], regexp, t_regexp);
4863 else
4864 printf_filtered (_("All %ss matching regular expression \"%s\":\n"),
4865 classnames[kind], regexp);
4866 }
4867 else
4868 {
4869 if (t_regexp != NULL)
4870 printf_filtered
4871 (_("All defined %ss"
4872 " with type matching regular expression \"%s\" :\n"),
4873 classnames[kind], t_regexp);
4874 else
4875 printf_filtered (_("All defined %ss:\n"), classnames[kind]);
4876 }
4877 }
4878
4879 for (const symbol_search &p : symbols)
4880 {
4881 QUIT;
4882
4883 if (p.msymbol.minsym != NULL)
4884 {
4885 if (first)
4886 {
4887 if (!quiet)
4888 printf_filtered (_("\nNon-debugging symbols:\n"));
4889 first = 0;
4890 }
4891 print_msymbol_info (p.msymbol);
4892 }
4893 else
4894 {
4895 print_symbol_info (kind,
4896 p.symbol,
4897 p.block,
4898 last_filename);
4899 last_filename
4900 = symtab_to_filename_for_display (symbol_symtab (p.symbol));
4901 }
4902 }
4903 }
4904
4905 /* Implement the 'info variables' command. */
4906
4907 static void
4908 info_variables_command (const char *args, int from_tty)
4909 {
4910 info_print_options opts;
4911 extract_info_print_options (&opts, &args);
4912
4913 symtab_symbol_info (opts.quiet, args, VARIABLES_DOMAIN,
4914 opts.type_regexp, from_tty);
4915 }
4916
4917 /* Implement the 'info functions' command. */
4918
4919 static void
4920 info_functions_command (const char *args, int from_tty)
4921 {
4922 info_print_options opts;
4923 extract_info_print_options (&opts, &args);
4924
4925 symtab_symbol_info (opts.quiet, args, FUNCTIONS_DOMAIN,
4926 opts.type_regexp, from_tty);
4927 }
4928
4929 /* Holds the -q option for the 'info types' command. */
4930
4931 struct info_types_options
4932 {
4933 int quiet = false;
4934 };
4935
4936 /* The options used by the 'info types' command. */
4937
4938 static const gdb::option::option_def info_types_options_defs[] = {
4939 gdb::option::boolean_option_def<info_types_options> {
4940 "q",
4941 [] (info_types_options *opt) { return &opt->quiet; },
4942 nullptr, /* show_cmd_cb */
4943 nullptr /* set_doc */
4944 }
4945 };
4946
4947 /* Returns the option group used by 'info types'. */
4948
4949 static gdb::option::option_def_group
4950 make_info_types_options_def_group (info_types_options *opts)
4951 {
4952 return {{info_types_options_defs}, opts};
4953 }
4954
4955 /* Implement the 'info types' command. */
4956
4957 static void
4958 info_types_command (const char *args, int from_tty)
4959 {
4960 info_types_options opts;
4961
4962 auto grp = make_info_types_options_def_group (&opts);
4963 gdb::option::process_options
4964 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
4965 if (args != nullptr && *args == '\0')
4966 args = nullptr;
4967 symtab_symbol_info (opts.quiet, args, TYPES_DOMAIN, NULL, from_tty);
4968 }
4969
4970 /* Command completer for 'info types' command. */
4971
4972 static void
4973 info_types_command_completer (struct cmd_list_element *ignore,
4974 completion_tracker &tracker,
4975 const char *text, const char * /* word */)
4976 {
4977 const auto group
4978 = make_info_types_options_def_group (nullptr);
4979 if (gdb::option::complete_options
4980 (tracker, &text, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, group))
4981 return;
4982
4983 const char *word = advance_to_expression_complete_word_point (tracker, text);
4984 symbol_completer (ignore, tracker, text, word);
4985 }
4986
4987 /* Breakpoint all functions matching regular expression. */
4988
4989 void
4990 rbreak_command_wrapper (char *regexp, int from_tty)
4991 {
4992 rbreak_command (regexp, from_tty);
4993 }
4994
4995 static void
4996 rbreak_command (const char *regexp, int from_tty)
4997 {
4998 std::string string;
4999 const char **files = NULL;
5000 const char *file_name;
5001 int nfiles = 0;
5002
5003 if (regexp)
5004 {
5005 const char *colon = strchr (regexp, ':');
5006
5007 if (colon && *(colon + 1) != ':')
5008 {
5009 int colon_index;
5010 char *local_name;
5011
5012 colon_index = colon - regexp;
5013 local_name = (char *) alloca (colon_index + 1);
5014 memcpy (local_name, regexp, colon_index);
5015 local_name[colon_index--] = 0;
5016 while (isspace (local_name[colon_index]))
5017 local_name[colon_index--] = 0;
5018 file_name = local_name;
5019 files = &file_name;
5020 nfiles = 1;
5021 regexp = skip_spaces (colon + 1);
5022 }
5023 }
5024
5025 std::vector<symbol_search> symbols = search_symbols (regexp,
5026 FUNCTIONS_DOMAIN,
5027 NULL,
5028 nfiles, files);
5029
5030 scoped_rbreak_breakpoints finalize;
5031 for (const symbol_search &p : symbols)
5032 {
5033 if (p.msymbol.minsym == NULL)
5034 {
5035 struct symtab *symtab = symbol_symtab (p.symbol);
5036 const char *fullname = symtab_to_fullname (symtab);
5037
5038 string = string_printf ("%s:'%s'", fullname,
5039 SYMBOL_LINKAGE_NAME (p.symbol));
5040 break_command (&string[0], from_tty);
5041 print_symbol_info (FUNCTIONS_DOMAIN, p.symbol, p.block, NULL);
5042 }
5043 else
5044 {
5045 string = string_printf ("'%s'",
5046 MSYMBOL_LINKAGE_NAME (p.msymbol.minsym));
5047
5048 break_command (&string[0], from_tty);
5049 printf_filtered ("<function, no debug info> %s;\n",
5050 MSYMBOL_PRINT_NAME (p.msymbol.minsym));
5051 }
5052 }
5053 }
5054 \f
5055
5056 /* Evaluate if SYMNAME matches LOOKUP_NAME. */
5057
5058 static int
5059 compare_symbol_name (const char *symbol_name, language symbol_language,
5060 const lookup_name_info &lookup_name,
5061 completion_match_result &match_res)
5062 {
5063 const language_defn *lang = language_def (symbol_language);
5064
5065 symbol_name_matcher_ftype *name_match
5066 = get_symbol_name_matcher (lang, lookup_name);
5067
5068 return name_match (symbol_name, lookup_name, &match_res);
5069 }
5070
5071 /* See symtab.h. */
5072
5073 void
5074 completion_list_add_name (completion_tracker &tracker,
5075 language symbol_language,
5076 const char *symname,
5077 const lookup_name_info &lookup_name,
5078 const char *text, const char *word)
5079 {
5080 completion_match_result &match_res
5081 = tracker.reset_completion_match_result ();
5082
5083 /* Clip symbols that cannot match. */
5084 if (!compare_symbol_name (symname, symbol_language, lookup_name, match_res))
5085 return;
5086
5087 /* Refresh SYMNAME from the match string. It's potentially
5088 different depending on language. (E.g., on Ada, the match may be
5089 the encoded symbol name wrapped in "<>"). */
5090 symname = match_res.match.match ();
5091 gdb_assert (symname != NULL);
5092
5093 /* We have a match for a completion, so add SYMNAME to the current list
5094 of matches. Note that the name is moved to freshly malloc'd space. */
5095
5096 {
5097 gdb::unique_xmalloc_ptr<char> completion
5098 = make_completion_match_str (symname, text, word);
5099
5100 /* Here we pass the match-for-lcd object to add_completion. Some
5101 languages match the user text against substrings of symbol
5102 names in some cases. E.g., in C++, "b push_ba" completes to
5103 "std::vector::push_back", "std::string::push_back", etc., and
5104 in this case we want the completion lowest common denominator
5105 to be "push_back" instead of "std::". */
5106 tracker.add_completion (std::move (completion),
5107 &match_res.match_for_lcd, text, word);
5108 }
5109 }
5110
5111 /* completion_list_add_name wrapper for struct symbol. */
5112
5113 static void
5114 completion_list_add_symbol (completion_tracker &tracker,
5115 symbol *sym,
5116 const lookup_name_info &lookup_name,
5117 const char *text, const char *word)
5118 {
5119 completion_list_add_name (tracker, SYMBOL_LANGUAGE (sym),
5120 SYMBOL_NATURAL_NAME (sym),
5121 lookup_name, text, word);
5122 }
5123
5124 /* completion_list_add_name wrapper for struct minimal_symbol. */
5125
5126 static void
5127 completion_list_add_msymbol (completion_tracker &tracker,
5128 minimal_symbol *sym,
5129 const lookup_name_info &lookup_name,
5130 const char *text, const char *word)
5131 {
5132 completion_list_add_name (tracker, MSYMBOL_LANGUAGE (sym),
5133 MSYMBOL_NATURAL_NAME (sym),
5134 lookup_name, text, word);
5135 }
5136
5137
5138 /* ObjC: In case we are completing on a selector, look as the msymbol
5139 again and feed all the selectors into the mill. */
5140
5141 static void
5142 completion_list_objc_symbol (completion_tracker &tracker,
5143 struct minimal_symbol *msymbol,
5144 const lookup_name_info &lookup_name,
5145 const char *text, const char *word)
5146 {
5147 static char *tmp = NULL;
5148 static unsigned int tmplen = 0;
5149
5150 const char *method, *category, *selector;
5151 char *tmp2 = NULL;
5152
5153 method = MSYMBOL_NATURAL_NAME (msymbol);
5154
5155 /* Is it a method? */
5156 if ((method[0] != '-') && (method[0] != '+'))
5157 return;
5158
5159 if (text[0] == '[')
5160 /* Complete on shortened method method. */
5161 completion_list_add_name (tracker, language_objc,
5162 method + 1,
5163 lookup_name,
5164 text, word);
5165
5166 while ((strlen (method) + 1) >= tmplen)
5167 {
5168 if (tmplen == 0)
5169 tmplen = 1024;
5170 else
5171 tmplen *= 2;
5172 tmp = (char *) xrealloc (tmp, tmplen);
5173 }
5174 selector = strchr (method, ' ');
5175 if (selector != NULL)
5176 selector++;
5177
5178 category = strchr (method, '(');
5179
5180 if ((category != NULL) && (selector != NULL))
5181 {
5182 memcpy (tmp, method, (category - method));
5183 tmp[category - method] = ' ';
5184 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
5185 completion_list_add_name (tracker, language_objc, tmp,
5186 lookup_name, text, word);
5187 if (text[0] == '[')
5188 completion_list_add_name (tracker, language_objc, tmp + 1,
5189 lookup_name, text, word);
5190 }
5191
5192 if (selector != NULL)
5193 {
5194 /* Complete on selector only. */
5195 strcpy (tmp, selector);
5196 tmp2 = strchr (tmp, ']');
5197 if (tmp2 != NULL)
5198 *tmp2 = '\0';
5199
5200 completion_list_add_name (tracker, language_objc, tmp,
5201 lookup_name, text, word);
5202 }
5203 }
5204
5205 /* Break the non-quoted text based on the characters which are in
5206 symbols. FIXME: This should probably be language-specific. */
5207
5208 static const char *
5209 language_search_unquoted_string (const char *text, const char *p)
5210 {
5211 for (; p > text; --p)
5212 {
5213 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
5214 continue;
5215 else
5216 {
5217 if ((current_language->la_language == language_objc))
5218 {
5219 if (p[-1] == ':') /* Might be part of a method name. */
5220 continue;
5221 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
5222 p -= 2; /* Beginning of a method name. */
5223 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
5224 { /* Might be part of a method name. */
5225 const char *t = p;
5226
5227 /* Seeing a ' ' or a '(' is not conclusive evidence
5228 that we are in the middle of a method name. However,
5229 finding "-[" or "+[" should be pretty un-ambiguous.
5230 Unfortunately we have to find it now to decide. */
5231
5232 while (t > text)
5233 if (isalnum (t[-1]) || t[-1] == '_' ||
5234 t[-1] == ' ' || t[-1] == ':' ||
5235 t[-1] == '(' || t[-1] == ')')
5236 --t;
5237 else
5238 break;
5239
5240 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
5241 p = t - 2; /* Method name detected. */
5242 /* Else we leave with p unchanged. */
5243 }
5244 }
5245 break;
5246 }
5247 }
5248 return p;
5249 }
5250
5251 static void
5252 completion_list_add_fields (completion_tracker &tracker,
5253 struct symbol *sym,
5254 const lookup_name_info &lookup_name,
5255 const char *text, const char *word)
5256 {
5257 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5258 {
5259 struct type *t = SYMBOL_TYPE (sym);
5260 enum type_code c = TYPE_CODE (t);
5261 int j;
5262
5263 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
5264 for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++)
5265 if (TYPE_FIELD_NAME (t, j))
5266 completion_list_add_name (tracker, SYMBOL_LANGUAGE (sym),
5267 TYPE_FIELD_NAME (t, j),
5268 lookup_name, text, word);
5269 }
5270 }
5271
5272 /* See symtab.h. */
5273
5274 bool
5275 symbol_is_function_or_method (symbol *sym)
5276 {
5277 switch (TYPE_CODE (SYMBOL_TYPE (sym)))
5278 {
5279 case TYPE_CODE_FUNC:
5280 case TYPE_CODE_METHOD:
5281 return true;
5282 default:
5283 return false;
5284 }
5285 }
5286
5287 /* See symtab.h. */
5288
5289 bool
5290 symbol_is_function_or_method (minimal_symbol *msymbol)
5291 {
5292 switch (MSYMBOL_TYPE (msymbol))
5293 {
5294 case mst_text:
5295 case mst_text_gnu_ifunc:
5296 case mst_solib_trampoline:
5297 case mst_file_text:
5298 return true;
5299 default:
5300 return false;
5301 }
5302 }
5303
5304 /* See symtab.h. */
5305
5306 bound_minimal_symbol
5307 find_gnu_ifunc (const symbol *sym)
5308 {
5309 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
5310 return {};
5311
5312 lookup_name_info lookup_name (SYMBOL_SEARCH_NAME (sym),
5313 symbol_name_match_type::SEARCH_NAME);
5314 struct objfile *objfile = symbol_objfile (sym);
5315
5316 CORE_ADDR address = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym));
5317 minimal_symbol *ifunc = NULL;
5318
5319 iterate_over_minimal_symbols (objfile, lookup_name,
5320 [&] (minimal_symbol *minsym)
5321 {
5322 if (MSYMBOL_TYPE (minsym) == mst_text_gnu_ifunc
5323 || MSYMBOL_TYPE (minsym) == mst_data_gnu_ifunc)
5324 {
5325 CORE_ADDR msym_addr = MSYMBOL_VALUE_ADDRESS (objfile, minsym);
5326 if (MSYMBOL_TYPE (minsym) == mst_data_gnu_ifunc)
5327 {
5328 struct gdbarch *gdbarch = get_objfile_arch (objfile);
5329 msym_addr
5330 = gdbarch_convert_from_func_ptr_addr (gdbarch,
5331 msym_addr,
5332 current_top_target ());
5333 }
5334 if (msym_addr == address)
5335 {
5336 ifunc = minsym;
5337 return true;
5338 }
5339 }
5340 return false;
5341 });
5342
5343 if (ifunc != NULL)
5344 return {ifunc, objfile};
5345 return {};
5346 }
5347
5348 /* Add matching symbols from SYMTAB to the current completion list. */
5349
5350 static void
5351 add_symtab_completions (struct compunit_symtab *cust,
5352 completion_tracker &tracker,
5353 complete_symbol_mode mode,
5354 const lookup_name_info &lookup_name,
5355 const char *text, const char *word,
5356 enum type_code code)
5357 {
5358 struct symbol *sym;
5359 const struct block *b;
5360 struct block_iterator iter;
5361 int i;
5362
5363 if (cust == NULL)
5364 return;
5365
5366 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
5367 {
5368 QUIT;
5369 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust), i);
5370 ALL_BLOCK_SYMBOLS (b, iter, sym)
5371 {
5372 if (completion_skip_symbol (mode, sym))
5373 continue;
5374
5375 if (code == TYPE_CODE_UNDEF
5376 || (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
5377 && TYPE_CODE (SYMBOL_TYPE (sym)) == code))
5378 completion_list_add_symbol (tracker, sym,
5379 lookup_name,
5380 text, word);
5381 }
5382 }
5383 }
5384
5385 void
5386 default_collect_symbol_completion_matches_break_on
5387 (completion_tracker &tracker, complete_symbol_mode mode,
5388 symbol_name_match_type name_match_type,
5389 const char *text, const char *word,
5390 const char *break_on, enum type_code code)
5391 {
5392 /* Problem: All of the symbols have to be copied because readline
5393 frees them. I'm not going to worry about this; hopefully there
5394 won't be that many. */
5395
5396 struct symbol *sym;
5397 const struct block *b;
5398 const struct block *surrounding_static_block, *surrounding_global_block;
5399 struct block_iterator iter;
5400 /* The symbol we are completing on. Points in same buffer as text. */
5401 const char *sym_text;
5402
5403 /* Now look for the symbol we are supposed to complete on. */
5404 if (mode == complete_symbol_mode::LINESPEC)
5405 sym_text = text;
5406 else
5407 {
5408 const char *p;
5409 char quote_found;
5410 const char *quote_pos = NULL;
5411
5412 /* First see if this is a quoted string. */
5413 quote_found = '\0';
5414 for (p = text; *p != '\0'; ++p)
5415 {
5416 if (quote_found != '\0')
5417 {
5418 if (*p == quote_found)
5419 /* Found close quote. */
5420 quote_found = '\0';
5421 else if (*p == '\\' && p[1] == quote_found)
5422 /* A backslash followed by the quote character
5423 doesn't end the string. */
5424 ++p;
5425 }
5426 else if (*p == '\'' || *p == '"')
5427 {
5428 quote_found = *p;
5429 quote_pos = p;
5430 }
5431 }
5432 if (quote_found == '\'')
5433 /* A string within single quotes can be a symbol, so complete on it. */
5434 sym_text = quote_pos + 1;
5435 else if (quote_found == '"')
5436 /* A double-quoted string is never a symbol, nor does it make sense
5437 to complete it any other way. */
5438 {
5439 return;
5440 }
5441 else
5442 {
5443 /* It is not a quoted string. Break it based on the characters
5444 which are in symbols. */
5445 while (p > text)
5446 {
5447 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0'
5448 || p[-1] == ':' || strchr (break_on, p[-1]) != NULL)
5449 --p;
5450 else
5451 break;
5452 }
5453 sym_text = p;
5454 }
5455 }
5456
5457 lookup_name_info lookup_name (sym_text, name_match_type, true);
5458
5459 /* At this point scan through the misc symbol vectors and add each
5460 symbol you find to the list. Eventually we want to ignore
5461 anything that isn't a text symbol (everything else will be
5462 handled by the psymtab code below). */
5463
5464 if (code == TYPE_CODE_UNDEF)
5465 {
5466 for (objfile *objfile : current_program_space->objfiles ())
5467 {
5468 for (minimal_symbol *msymbol : objfile->msymbols ())
5469 {
5470 QUIT;
5471
5472 if (completion_skip_symbol (mode, msymbol))
5473 continue;
5474
5475 completion_list_add_msymbol (tracker, msymbol, lookup_name,
5476 sym_text, word);
5477
5478 completion_list_objc_symbol (tracker, msymbol, lookup_name,
5479 sym_text, word);
5480 }
5481 }
5482 }
5483
5484 /* Add completions for all currently loaded symbol tables. */
5485 for (objfile *objfile : current_program_space->objfiles ())
5486 {
5487 for (compunit_symtab *cust : objfile->compunits ())
5488 add_symtab_completions (cust, tracker, mode, lookup_name,
5489 sym_text, word, code);
5490 }
5491
5492 /* Look through the partial symtabs for all symbols which begin by
5493 matching SYM_TEXT. Expand all CUs that you find to the list. */
5494 expand_symtabs_matching (NULL,
5495 lookup_name,
5496 NULL,
5497 [&] (compunit_symtab *symtab) /* expansion notify */
5498 {
5499 add_symtab_completions (symtab,
5500 tracker, mode, lookup_name,
5501 sym_text, word, code);
5502 },
5503 ALL_DOMAIN);
5504
5505 /* Search upwards from currently selected frame (so that we can
5506 complete on local vars). Also catch fields of types defined in
5507 this places which match our text string. Only complete on types
5508 visible from current context. */
5509
5510 b = get_selected_block (0);
5511 surrounding_static_block = block_static_block (b);
5512 surrounding_global_block = block_global_block (b);
5513 if (surrounding_static_block != NULL)
5514 while (b != surrounding_static_block)
5515 {
5516 QUIT;
5517
5518 ALL_BLOCK_SYMBOLS (b, iter, sym)
5519 {
5520 if (code == TYPE_CODE_UNDEF)
5521 {
5522 completion_list_add_symbol (tracker, sym, lookup_name,
5523 sym_text, word);
5524 completion_list_add_fields (tracker, sym, lookup_name,
5525 sym_text, word);
5526 }
5527 else if (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
5528 && TYPE_CODE (SYMBOL_TYPE (sym)) == code)
5529 completion_list_add_symbol (tracker, sym, lookup_name,
5530 sym_text, word);
5531 }
5532
5533 /* Stop when we encounter an enclosing function. Do not stop for
5534 non-inlined functions - the locals of the enclosing function
5535 are in scope for a nested function. */
5536 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
5537 break;
5538 b = BLOCK_SUPERBLOCK (b);
5539 }
5540
5541 /* Add fields from the file's types; symbols will be added below. */
5542
5543 if (code == TYPE_CODE_UNDEF)
5544 {
5545 if (surrounding_static_block != NULL)
5546 ALL_BLOCK_SYMBOLS (surrounding_static_block, iter, sym)
5547 completion_list_add_fields (tracker, sym, lookup_name,
5548 sym_text, word);
5549
5550 if (surrounding_global_block != NULL)
5551 ALL_BLOCK_SYMBOLS (surrounding_global_block, iter, sym)
5552 completion_list_add_fields (tracker, sym, lookup_name,
5553 sym_text, word);
5554 }
5555
5556 /* Skip macros if we are completing a struct tag -- arguable but
5557 usually what is expected. */
5558 if (current_language->la_macro_expansion == macro_expansion_c
5559 && code == TYPE_CODE_UNDEF)
5560 {
5561 gdb::unique_xmalloc_ptr<struct macro_scope> scope;
5562
5563 /* This adds a macro's name to the current completion list. */
5564 auto add_macro_name = [&] (const char *macro_name,
5565 const macro_definition *,
5566 macro_source_file *,
5567 int)
5568 {
5569 completion_list_add_name (tracker, language_c, macro_name,
5570 lookup_name, sym_text, word);
5571 };
5572
5573 /* Add any macros visible in the default scope. Note that this
5574 may yield the occasional wrong result, because an expression
5575 might be evaluated in a scope other than the default. For
5576 example, if the user types "break file:line if <TAB>", the
5577 resulting expression will be evaluated at "file:line" -- but
5578 at there does not seem to be a way to detect this at
5579 completion time. */
5580 scope = default_macro_scope ();
5581 if (scope)
5582 macro_for_each_in_scope (scope->file, scope->line,
5583 add_macro_name);
5584
5585 /* User-defined macros are always visible. */
5586 macro_for_each (macro_user_macros, add_macro_name);
5587 }
5588 }
5589
5590 void
5591 default_collect_symbol_completion_matches (completion_tracker &tracker,
5592 complete_symbol_mode mode,
5593 symbol_name_match_type name_match_type,
5594 const char *text, const char *word,
5595 enum type_code code)
5596 {
5597 return default_collect_symbol_completion_matches_break_on (tracker, mode,
5598 name_match_type,
5599 text, word, "",
5600 code);
5601 }
5602
5603 /* Collect all symbols (regardless of class) which begin by matching
5604 TEXT. */
5605
5606 void
5607 collect_symbol_completion_matches (completion_tracker &tracker,
5608 complete_symbol_mode mode,
5609 symbol_name_match_type name_match_type,
5610 const char *text, const char *word)
5611 {
5612 current_language->la_collect_symbol_completion_matches (tracker, mode,
5613 name_match_type,
5614 text, word,
5615 TYPE_CODE_UNDEF);
5616 }
5617
5618 /* Like collect_symbol_completion_matches, but only collect
5619 STRUCT_DOMAIN symbols whose type code is CODE. */
5620
5621 void
5622 collect_symbol_completion_matches_type (completion_tracker &tracker,
5623 const char *text, const char *word,
5624 enum type_code code)
5625 {
5626 complete_symbol_mode mode = complete_symbol_mode::EXPRESSION;
5627 symbol_name_match_type name_match_type = symbol_name_match_type::EXPRESSION;
5628
5629 gdb_assert (code == TYPE_CODE_UNION
5630 || code == TYPE_CODE_STRUCT
5631 || code == TYPE_CODE_ENUM);
5632 current_language->la_collect_symbol_completion_matches (tracker, mode,
5633 name_match_type,
5634 text, word, code);
5635 }
5636
5637 /* Like collect_symbol_completion_matches, but collects a list of
5638 symbols defined in all source files named SRCFILE. */
5639
5640 void
5641 collect_file_symbol_completion_matches (completion_tracker &tracker,
5642 complete_symbol_mode mode,
5643 symbol_name_match_type name_match_type,
5644 const char *text, const char *word,
5645 const char *srcfile)
5646 {
5647 /* The symbol we are completing on. Points in same buffer as text. */
5648 const char *sym_text;
5649
5650 /* Now look for the symbol we are supposed to complete on.
5651 FIXME: This should be language-specific. */
5652 if (mode == complete_symbol_mode::LINESPEC)
5653 sym_text = text;
5654 else
5655 {
5656 const char *p;
5657 char quote_found;
5658 const char *quote_pos = NULL;
5659
5660 /* First see if this is a quoted string. */
5661 quote_found = '\0';
5662 for (p = text; *p != '\0'; ++p)
5663 {
5664 if (quote_found != '\0')
5665 {
5666 if (*p == quote_found)
5667 /* Found close quote. */
5668 quote_found = '\0';
5669 else if (*p == '\\' && p[1] == quote_found)
5670 /* A backslash followed by the quote character
5671 doesn't end the string. */
5672 ++p;
5673 }
5674 else if (*p == '\'' || *p == '"')
5675 {
5676 quote_found = *p;
5677 quote_pos = p;
5678 }
5679 }
5680 if (quote_found == '\'')
5681 /* A string within single quotes can be a symbol, so complete on it. */
5682 sym_text = quote_pos + 1;
5683 else if (quote_found == '"')
5684 /* A double-quoted string is never a symbol, nor does it make sense
5685 to complete it any other way. */
5686 {
5687 return;
5688 }
5689 else
5690 {
5691 /* Not a quoted string. */
5692 sym_text = language_search_unquoted_string (text, p);
5693 }
5694 }
5695
5696 lookup_name_info lookup_name (sym_text, name_match_type, true);
5697
5698 /* Go through symtabs for SRCFILE and check the externs and statics
5699 for symbols which match. */
5700 iterate_over_symtabs (srcfile, [&] (symtab *s)
5701 {
5702 add_symtab_completions (SYMTAB_COMPUNIT (s),
5703 tracker, mode, lookup_name,
5704 sym_text, word, TYPE_CODE_UNDEF);
5705 return false;
5706 });
5707 }
5708
5709 /* A helper function for make_source_files_completion_list. It adds
5710 another file name to a list of possible completions, growing the
5711 list as necessary. */
5712
5713 static void
5714 add_filename_to_list (const char *fname, const char *text, const char *word,
5715 completion_list *list)
5716 {
5717 list->emplace_back (make_completion_match_str (fname, text, word));
5718 }
5719
5720 static int
5721 not_interesting_fname (const char *fname)
5722 {
5723 static const char *illegal_aliens[] = {
5724 "_globals_", /* inserted by coff_symtab_read */
5725 NULL
5726 };
5727 int i;
5728
5729 for (i = 0; illegal_aliens[i]; i++)
5730 {
5731 if (filename_cmp (fname, illegal_aliens[i]) == 0)
5732 return 1;
5733 }
5734 return 0;
5735 }
5736
5737 /* An object of this type is passed as the user_data argument to
5738 map_partial_symbol_filenames. */
5739 struct add_partial_filename_data
5740 {
5741 struct filename_seen_cache *filename_seen_cache;
5742 const char *text;
5743 const char *word;
5744 int text_len;
5745 completion_list *list;
5746 };
5747
5748 /* A callback for map_partial_symbol_filenames. */
5749
5750 static void
5751 maybe_add_partial_symtab_filename (const char *filename, const char *fullname,
5752 void *user_data)
5753 {
5754 struct add_partial_filename_data *data
5755 = (struct add_partial_filename_data *) user_data;
5756
5757 if (not_interesting_fname (filename))
5758 return;
5759 if (!data->filename_seen_cache->seen (filename)
5760 && filename_ncmp (filename, data->text, data->text_len) == 0)
5761 {
5762 /* This file matches for a completion; add it to the
5763 current list of matches. */
5764 add_filename_to_list (filename, data->text, data->word, data->list);
5765 }
5766 else
5767 {
5768 const char *base_name = lbasename (filename);
5769
5770 if (base_name != filename
5771 && !data->filename_seen_cache->seen (base_name)
5772 && filename_ncmp (base_name, data->text, data->text_len) == 0)
5773 add_filename_to_list (base_name, data->text, data->word, data->list);
5774 }
5775 }
5776
5777 /* Return a list of all source files whose names begin with matching
5778 TEXT. The file names are looked up in the symbol tables of this
5779 program. */
5780
5781 completion_list
5782 make_source_files_completion_list (const char *text, const char *word)
5783 {
5784 size_t text_len = strlen (text);
5785 completion_list list;
5786 const char *base_name;
5787 struct add_partial_filename_data datum;
5788
5789 if (!have_full_symbols () && !have_partial_symbols ())
5790 return list;
5791
5792 filename_seen_cache filenames_seen;
5793
5794 for (objfile *objfile : current_program_space->objfiles ())
5795 {
5796 for (compunit_symtab *cu : objfile->compunits ())
5797 {
5798 for (symtab *s : compunit_filetabs (cu))
5799 {
5800 if (not_interesting_fname (s->filename))
5801 continue;
5802 if (!filenames_seen.seen (s->filename)
5803 && filename_ncmp (s->filename, text, text_len) == 0)
5804 {
5805 /* This file matches for a completion; add it to the current
5806 list of matches. */
5807 add_filename_to_list (s->filename, text, word, &list);
5808 }
5809 else
5810 {
5811 /* NOTE: We allow the user to type a base name when the
5812 debug info records leading directories, but not the other
5813 way around. This is what subroutines of breakpoint
5814 command do when they parse file names. */
5815 base_name = lbasename (s->filename);
5816 if (base_name != s->filename
5817 && !filenames_seen.seen (base_name)
5818 && filename_ncmp (base_name, text, text_len) == 0)
5819 add_filename_to_list (base_name, text, word, &list);
5820 }
5821 }
5822 }
5823 }
5824
5825 datum.filename_seen_cache = &filenames_seen;
5826 datum.text = text;
5827 datum.word = word;
5828 datum.text_len = text_len;
5829 datum.list = &list;
5830 map_symbol_filenames (maybe_add_partial_symtab_filename, &datum,
5831 0 /*need_fullname*/);
5832
5833 return list;
5834 }
5835 \f
5836 /* Track MAIN */
5837
5838 /* Return the "main_info" object for the current program space. If
5839 the object has not yet been created, create it and fill in some
5840 default values. */
5841
5842 static struct main_info *
5843 get_main_info (void)
5844 {
5845 struct main_info *info = main_progspace_key.get (current_program_space);
5846
5847 if (info == NULL)
5848 {
5849 /* It may seem strange to store the main name in the progspace
5850 and also in whatever objfile happens to see a main name in
5851 its debug info. The reason for this is mainly historical:
5852 gdb returned "main" as the name even if no function named
5853 "main" was defined the program; and this approach lets us
5854 keep compatibility. */
5855 info = main_progspace_key.emplace (current_program_space);
5856 }
5857
5858 return info;
5859 }
5860
5861 static void
5862 set_main_name (const char *name, enum language lang)
5863 {
5864 struct main_info *info = get_main_info ();
5865
5866 if (info->name_of_main != NULL)
5867 {
5868 xfree (info->name_of_main);
5869 info->name_of_main = NULL;
5870 info->language_of_main = language_unknown;
5871 }
5872 if (name != NULL)
5873 {
5874 info->name_of_main = xstrdup (name);
5875 info->language_of_main = lang;
5876 }
5877 }
5878
5879 /* Deduce the name of the main procedure, and set NAME_OF_MAIN
5880 accordingly. */
5881
5882 static void
5883 find_main_name (void)
5884 {
5885 const char *new_main_name;
5886
5887 /* First check the objfiles to see whether a debuginfo reader has
5888 picked up the appropriate main name. Historically the main name
5889 was found in a more or less random way; this approach instead
5890 relies on the order of objfile creation -- which still isn't
5891 guaranteed to get the correct answer, but is just probably more
5892 accurate. */
5893 for (objfile *objfile : current_program_space->objfiles ())
5894 {
5895 if (objfile->per_bfd->name_of_main != NULL)
5896 {
5897 set_main_name (objfile->per_bfd->name_of_main,
5898 objfile->per_bfd->language_of_main);
5899 return;
5900 }
5901 }
5902
5903 /* Try to see if the main procedure is in Ada. */
5904 /* FIXME: brobecker/2005-03-07: Another way of doing this would
5905 be to add a new method in the language vector, and call this
5906 method for each language until one of them returns a non-empty
5907 name. This would allow us to remove this hard-coded call to
5908 an Ada function. It is not clear that this is a better approach
5909 at this point, because all methods need to be written in a way
5910 such that false positives never be returned. For instance, it is
5911 important that a method does not return a wrong name for the main
5912 procedure if the main procedure is actually written in a different
5913 language. It is easy to guaranty this with Ada, since we use a
5914 special symbol generated only when the main in Ada to find the name
5915 of the main procedure. It is difficult however to see how this can
5916 be guarantied for languages such as C, for instance. This suggests
5917 that order of call for these methods becomes important, which means
5918 a more complicated approach. */
5919 new_main_name = ada_main_name ();
5920 if (new_main_name != NULL)
5921 {
5922 set_main_name (new_main_name, language_ada);
5923 return;
5924 }
5925
5926 new_main_name = d_main_name ();
5927 if (new_main_name != NULL)
5928 {
5929 set_main_name (new_main_name, language_d);
5930 return;
5931 }
5932
5933 new_main_name = go_main_name ();
5934 if (new_main_name != NULL)
5935 {
5936 set_main_name (new_main_name, language_go);
5937 return;
5938 }
5939
5940 new_main_name = pascal_main_name ();
5941 if (new_main_name != NULL)
5942 {
5943 set_main_name (new_main_name, language_pascal);
5944 return;
5945 }
5946
5947 /* The languages above didn't identify the name of the main procedure.
5948 Fallback to "main". */
5949 set_main_name ("main", language_unknown);
5950 }
5951
5952 /* See symtab.h. */
5953
5954 const char *
5955 main_name ()
5956 {
5957 struct main_info *info = get_main_info ();
5958
5959 if (info->name_of_main == NULL)
5960 find_main_name ();
5961
5962 return info->name_of_main;
5963 }
5964
5965 /* Return the language of the main function. If it is not known,
5966 return language_unknown. */
5967
5968 enum language
5969 main_language (void)
5970 {
5971 struct main_info *info = get_main_info ();
5972
5973 if (info->name_of_main == NULL)
5974 find_main_name ();
5975
5976 return info->language_of_main;
5977 }
5978
5979 /* Handle ``executable_changed'' events for the symtab module. */
5980
5981 static void
5982 symtab_observer_executable_changed (void)
5983 {
5984 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
5985 set_main_name (NULL, language_unknown);
5986 }
5987
5988 /* Return 1 if the supplied producer string matches the ARM RealView
5989 compiler (armcc). */
5990
5991 int
5992 producer_is_realview (const char *producer)
5993 {
5994 static const char *const arm_idents[] = {
5995 "ARM C Compiler, ADS",
5996 "Thumb C Compiler, ADS",
5997 "ARM C++ Compiler, ADS",
5998 "Thumb C++ Compiler, ADS",
5999 "ARM/Thumb C/C++ Compiler, RVCT",
6000 "ARM C/C++ Compiler, RVCT"
6001 };
6002 int i;
6003
6004 if (producer == NULL)
6005 return 0;
6006
6007 for (i = 0; i < ARRAY_SIZE (arm_idents); i++)
6008 if (startswith (producer, arm_idents[i]))
6009 return 1;
6010
6011 return 0;
6012 }
6013
6014 \f
6015
6016 /* The next index to hand out in response to a registration request. */
6017
6018 static int next_aclass_value = LOC_FINAL_VALUE;
6019
6020 /* The maximum number of "aclass" registrations we support. This is
6021 constant for convenience. */
6022 #define MAX_SYMBOL_IMPLS (LOC_FINAL_VALUE + 10)
6023
6024 /* The objects representing the various "aclass" values. The elements
6025 from 0 up to LOC_FINAL_VALUE-1 represent themselves, and subsequent
6026 elements are those registered at gdb initialization time. */
6027
6028 static struct symbol_impl symbol_impl[MAX_SYMBOL_IMPLS];
6029
6030 /* The globally visible pointer. This is separate from 'symbol_impl'
6031 so that it can be const. */
6032
6033 const struct symbol_impl *symbol_impls = &symbol_impl[0];
6034
6035 /* Make sure we saved enough room in struct symbol. */
6036
6037 gdb_static_assert (MAX_SYMBOL_IMPLS <= (1 << SYMBOL_ACLASS_BITS));
6038
6039 /* Register a computed symbol type. ACLASS must be LOC_COMPUTED. OPS
6040 is the ops vector associated with this index. This returns the new
6041 index, which should be used as the aclass_index field for symbols
6042 of this type. */
6043
6044 int
6045 register_symbol_computed_impl (enum address_class aclass,
6046 const struct symbol_computed_ops *ops)
6047 {
6048 int result = next_aclass_value++;
6049
6050 gdb_assert (aclass == LOC_COMPUTED);
6051 gdb_assert (result < MAX_SYMBOL_IMPLS);
6052 symbol_impl[result].aclass = aclass;
6053 symbol_impl[result].ops_computed = ops;
6054
6055 /* Sanity check OPS. */
6056 gdb_assert (ops != NULL);
6057 gdb_assert (ops->tracepoint_var_ref != NULL);
6058 gdb_assert (ops->describe_location != NULL);
6059 gdb_assert (ops->get_symbol_read_needs != NULL);
6060 gdb_assert (ops->read_variable != NULL);
6061
6062 return result;
6063 }
6064
6065 /* Register a function with frame base type. ACLASS must be LOC_BLOCK.
6066 OPS is the ops vector associated with this index. This returns the
6067 new index, which should be used as the aclass_index field for symbols
6068 of this type. */
6069
6070 int
6071 register_symbol_block_impl (enum address_class aclass,
6072 const struct symbol_block_ops *ops)
6073 {
6074 int result = next_aclass_value++;
6075
6076 gdb_assert (aclass == LOC_BLOCK);
6077 gdb_assert (result < MAX_SYMBOL_IMPLS);
6078 symbol_impl[result].aclass = aclass;
6079 symbol_impl[result].ops_block = ops;
6080
6081 /* Sanity check OPS. */
6082 gdb_assert (ops != NULL);
6083 gdb_assert (ops->find_frame_base_location != NULL);
6084
6085 return result;
6086 }
6087
6088 /* Register a register symbol type. ACLASS must be LOC_REGISTER or
6089 LOC_REGPARM_ADDR. OPS is the register ops vector associated with
6090 this index. This returns the new index, which should be used as
6091 the aclass_index field for symbols of this type. */
6092
6093 int
6094 register_symbol_register_impl (enum address_class aclass,
6095 const struct symbol_register_ops *ops)
6096 {
6097 int result = next_aclass_value++;
6098
6099 gdb_assert (aclass == LOC_REGISTER || aclass == LOC_REGPARM_ADDR);
6100 gdb_assert (result < MAX_SYMBOL_IMPLS);
6101 symbol_impl[result].aclass = aclass;
6102 symbol_impl[result].ops_register = ops;
6103
6104 return result;
6105 }
6106
6107 /* Initialize elements of 'symbol_impl' for the constants in enum
6108 address_class. */
6109
6110 static void
6111 initialize_ordinary_address_classes (void)
6112 {
6113 int i;
6114
6115 for (i = 0; i < LOC_FINAL_VALUE; ++i)
6116 symbol_impl[i].aclass = (enum address_class) i;
6117 }
6118
6119 \f
6120
6121 /* Helper function to initialize the fields of an objfile-owned symbol.
6122 It assumed that *SYM is already all zeroes. */
6123
6124 static void
6125 initialize_objfile_symbol_1 (struct symbol *sym)
6126 {
6127 SYMBOL_OBJFILE_OWNED (sym) = 1;
6128 SYMBOL_SECTION (sym) = -1;
6129 }
6130
6131 /* Initialize the symbol SYM, and mark it as being owned by an objfile. */
6132
6133 void
6134 initialize_objfile_symbol (struct symbol *sym)
6135 {
6136 memset (sym, 0, sizeof (*sym));
6137 initialize_objfile_symbol_1 (sym);
6138 }
6139
6140 /* Allocate and initialize a new 'struct symbol' on OBJFILE's
6141 obstack. */
6142
6143 struct symbol *
6144 allocate_symbol (struct objfile *objfile)
6145 {
6146 struct symbol *result;
6147
6148 result = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symbol);
6149 initialize_objfile_symbol_1 (result);
6150
6151 return result;
6152 }
6153
6154 /* Allocate and initialize a new 'struct template_symbol' on OBJFILE's
6155 obstack. */
6156
6157 struct template_symbol *
6158 allocate_template_symbol (struct objfile *objfile)
6159 {
6160 struct template_symbol *result;
6161
6162 result = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct template_symbol);
6163 initialize_objfile_symbol_1 (result);
6164
6165 return result;
6166 }
6167
6168 /* See symtab.h. */
6169
6170 struct objfile *
6171 symbol_objfile (const struct symbol *symbol)
6172 {
6173 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
6174 return SYMTAB_OBJFILE (symbol->owner.symtab);
6175 }
6176
6177 /* See symtab.h. */
6178
6179 struct gdbarch *
6180 symbol_arch (const struct symbol *symbol)
6181 {
6182 if (!SYMBOL_OBJFILE_OWNED (symbol))
6183 return symbol->owner.arch;
6184 return get_objfile_arch (SYMTAB_OBJFILE (symbol->owner.symtab));
6185 }
6186
6187 /* See symtab.h. */
6188
6189 struct symtab *
6190 symbol_symtab (const struct symbol *symbol)
6191 {
6192 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
6193 return symbol->owner.symtab;
6194 }
6195
6196 /* See symtab.h. */
6197
6198 void
6199 symbol_set_symtab (struct symbol *symbol, struct symtab *symtab)
6200 {
6201 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
6202 symbol->owner.symtab = symtab;
6203 }
6204
6205 \f
6206
6207 void
6208 _initialize_symtab (void)
6209 {
6210 cmd_list_element *c;
6211
6212 initialize_ordinary_address_classes ();
6213
6214 c = add_info ("variables", info_variables_command,
6215 info_print_args_help (_("\
6216 All global and static variable names or those matching REGEXPs.\n\
6217 Usage: info variables [-q] [-t TYPEREGEXP] [NAMEREGEXP]\n\
6218 Prints the global and static variables.\n"),
6219 _("global and static variables")));
6220 set_cmd_completer_handle_brkchars (c, info_print_command_completer);
6221 if (dbx_commands)
6222 {
6223 c = add_com ("whereis", class_info, info_variables_command,
6224 info_print_args_help (_("\
6225 All global and static variable names, or those matching REGEXPs.\n\
6226 Usage: whereis [-q] [-t TYPEREGEXP] [NAMEREGEXP]\n\
6227 Prints the global and static variables.\n"),
6228 _("global and static variables")));
6229 set_cmd_completer_handle_brkchars (c, info_print_command_completer);
6230 }
6231
6232 c = add_info ("functions", info_functions_command,
6233 info_print_args_help (_("\
6234 All function names or those matching REGEXPs.\n\
6235 Usage: info functions [-q] [-t TYPEREGEXP] [NAMEREGEXP]\n\
6236 Prints the functions.\n"),
6237 _("functions")));
6238 set_cmd_completer_handle_brkchars (c, info_print_command_completer);
6239
6240 c = add_info ("types", info_types_command, _("\
6241 All type names, or those matching REGEXP.\n\
6242 Usage: info types [-q] [REGEXP]\n\
6243 Print information about all types matching REGEXP, or all types if no\n\
6244 REGEXP is given. The optional flag -q disables printing of headers."));
6245 set_cmd_completer_handle_brkchars (c, info_types_command_completer);
6246
6247 const auto info_sources_opts = make_info_sources_options_def_group (nullptr);
6248
6249 static std::string info_sources_help
6250 = gdb::option::build_help (_("\
6251 All source files in the program or those matching REGEXP.\n\
6252 Usage: info sources [OPTION]... [REGEXP]\n\
6253 By default, REGEXP is used to match anywhere in the filename.\n\
6254 \n\
6255 Options:\n\
6256 %OPTIONS%"),
6257 info_sources_opts);
6258
6259 c = add_info ("sources", info_sources_command, info_sources_help.c_str ());
6260 set_cmd_completer_handle_brkchars (c, info_sources_command_completer);
6261
6262 add_com ("rbreak", class_breakpoint, rbreak_command,
6263 _("Set a breakpoint for all functions matching REGEXP."));
6264
6265 add_setshow_enum_cmd ("multiple-symbols", no_class,
6266 multiple_symbols_modes, &multiple_symbols_mode,
6267 _("\
6268 Set the debugger behavior when more than one symbol are possible matches\n\
6269 in an expression."), _("\
6270 Show how the debugger handles ambiguities in expressions."), _("\
6271 Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
6272 NULL, NULL, &setlist, &showlist);
6273
6274 add_setshow_boolean_cmd ("basenames-may-differ", class_obscure,
6275 &basenames_may_differ, _("\
6276 Set whether a source file may have multiple base names."), _("\
6277 Show whether a source file may have multiple base names."), _("\
6278 (A \"base name\" is the name of a file with the directory part removed.\n\
6279 Example: The base name of \"/home/user/hello.c\" is \"hello.c\".)\n\
6280 If set, GDB will canonicalize file names (e.g., expand symlinks)\n\
6281 before comparing them. Canonicalization is an expensive operation,\n\
6282 but it allows the same file be known by more than one base name.\n\
6283 If not set (the default), all source files are assumed to have just\n\
6284 one base name, and gdb will do file name comparisons more efficiently."),
6285 NULL, NULL,
6286 &setlist, &showlist);
6287
6288 add_setshow_zuinteger_cmd ("symtab-create", no_class, &symtab_create_debug,
6289 _("Set debugging of symbol table creation."),
6290 _("Show debugging of symbol table creation."), _("\
6291 When enabled (non-zero), debugging messages are printed when building\n\
6292 symbol tables. A value of 1 (one) normally provides enough information.\n\
6293 A value greater than 1 provides more verbose information."),
6294 NULL,
6295 NULL,
6296 &setdebuglist, &showdebuglist);
6297
6298 add_setshow_zuinteger_cmd ("symbol-lookup", no_class, &symbol_lookup_debug,
6299 _("\
6300 Set debugging of symbol lookup."), _("\
6301 Show debugging of symbol lookup."), _("\
6302 When enabled (non-zero), symbol lookups are logged."),
6303 NULL, NULL,
6304 &setdebuglist, &showdebuglist);
6305
6306 add_setshow_zuinteger_cmd ("symbol-cache-size", no_class,
6307 &new_symbol_cache_size,
6308 _("Set the size of the symbol cache."),
6309 _("Show the size of the symbol cache."), _("\
6310 The size of the symbol cache.\n\
6311 If zero then the symbol cache is disabled."),
6312 set_symbol_cache_size_handler, NULL,
6313 &maintenance_set_cmdlist,
6314 &maintenance_show_cmdlist);
6315
6316 add_cmd ("symbol-cache", class_maintenance, maintenance_print_symbol_cache,
6317 _("Dump the symbol cache for each program space."),
6318 &maintenanceprintlist);
6319
6320 add_cmd ("symbol-cache-statistics", class_maintenance,
6321 maintenance_print_symbol_cache_statistics,
6322 _("Print symbol cache statistics for each program space."),
6323 &maintenanceprintlist);
6324
6325 add_cmd ("flush-symbol-cache", class_maintenance,
6326 maintenance_flush_symbol_cache,
6327 _("Flush the symbol cache for each program space."),
6328 &maintenancelist);
6329
6330 gdb::observers::executable_changed.attach (symtab_observer_executable_changed);
6331 gdb::observers::new_objfile.attach (symtab_new_objfile_observer);
6332 gdb::observers::free_objfile.attach (symtab_free_objfile_observer);
6333 }
This page took 0.210266 seconds and 4 git commands to generate.