New field 'la_natural_name' in struct language_defn
[deliverable/binutils-gdb.git] / gdb / symtab.c
1 /* Symbol table lookup for the GNU debugger, GDB.
2
3 Copyright (C) 1986-2013 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "gdbcore.h"
24 #include "frame.h"
25 #include "target.h"
26 #include "value.h"
27 #include "symfile.h"
28 #include "objfiles.h"
29 #include "gdbcmd.h"
30 #include "gdb_regex.h"
31 #include "expression.h"
32 #include "language.h"
33 #include "demangle.h"
34 #include "inferior.h"
35 #include "source.h"
36 #include "filenames.h" /* for FILENAME_CMP */
37 #include "objc-lang.h"
38 #include "d-lang.h"
39 #include "ada-lang.h"
40 #include "go-lang.h"
41 #include "p-lang.h"
42 #include "addrmap.h"
43 #include "cli/cli-utils.h"
44
45 #include "hashtab.h"
46
47 #include "gdb_obstack.h"
48 #include "block.h"
49 #include "dictionary.h"
50
51 #include <sys/types.h>
52 #include <fcntl.h>
53 #include "gdb_string.h"
54 #include "gdb_stat.h"
55 #include <ctype.h>
56 #include "cp-abi.h"
57 #include "cp-support.h"
58 #include "observer.h"
59 #include "gdb_assert.h"
60 #include "solist.h"
61 #include "macrotab.h"
62 #include "macroscope.h"
63
64 #include "psymtab.h"
65 #include "parser-defs.h"
66
67 /* Prototypes for local functions */
68
69 static void rbreak_command (char *, int);
70
71 static void types_info (char *, int);
72
73 static void functions_info (char *, int);
74
75 static void variables_info (char *, int);
76
77 static void sources_info (char *, int);
78
79 static int find_line_common (struct linetable *, int, int *, int);
80
81 static struct symbol *lookup_symbol_aux (const char *name,
82 const struct block *block,
83 const domain_enum domain,
84 enum language language,
85 struct field_of_this_result *is_a_field_of_this);
86
87 static
88 struct symbol *lookup_symbol_aux_local (const char *name,
89 const struct block *block,
90 const domain_enum domain,
91 enum language language);
92
93 static
94 struct symbol *lookup_symbol_aux_symtabs (int block_index,
95 const char *name,
96 const domain_enum domain);
97
98 static
99 struct symbol *lookup_symbol_aux_quick (struct objfile *objfile,
100 int block_index,
101 const char *name,
102 const domain_enum domain);
103
104 void _initialize_symtab (void);
105
106 /* */
107
108 /* When non-zero, print debugging messages related to symtab creation. */
109 int symtab_create_debug = 0;
110
111 /* Non-zero if a file may be known by two different basenames.
112 This is the uncommon case, and significantly slows down gdb.
113 Default set to "off" to not slow down the common case. */
114 int basenames_may_differ = 0;
115
116 /* Allow the user to configure the debugger behavior with respect
117 to multiple-choice menus when more than one symbol matches during
118 a symbol lookup. */
119
120 const char multiple_symbols_ask[] = "ask";
121 const char multiple_symbols_all[] = "all";
122 const char multiple_symbols_cancel[] = "cancel";
123 static const char *const multiple_symbols_modes[] =
124 {
125 multiple_symbols_ask,
126 multiple_symbols_all,
127 multiple_symbols_cancel,
128 NULL
129 };
130 static const char *multiple_symbols_mode = multiple_symbols_all;
131
132 /* Read-only accessor to AUTO_SELECT_MODE. */
133
134 const char *
135 multiple_symbols_select_mode (void)
136 {
137 return multiple_symbols_mode;
138 }
139
140 /* Block in which the most recently searched-for symbol was found.
141 Might be better to make this a parameter to lookup_symbol and
142 value_of_this. */
143
144 const struct block *block_found;
145
146 /* Return the name of a domain_enum. */
147
148 const char *
149 domain_name (domain_enum e)
150 {
151 switch (e)
152 {
153 case UNDEF_DOMAIN: return "UNDEF_DOMAIN";
154 case VAR_DOMAIN: return "VAR_DOMAIN";
155 case STRUCT_DOMAIN: return "STRUCT_DOMAIN";
156 case LABEL_DOMAIN: return "LABEL_DOMAIN";
157 case COMMON_BLOCK_DOMAIN: return "COMMON_BLOCK_DOMAIN";
158 default: gdb_assert_not_reached ("bad domain_enum");
159 }
160 }
161
162 /* Return the name of a search_domain . */
163
164 const char *
165 search_domain_name (enum search_domain e)
166 {
167 switch (e)
168 {
169 case VARIABLES_DOMAIN: return "VARIABLES_DOMAIN";
170 case FUNCTIONS_DOMAIN: return "FUNCTIONS_DOMAIN";
171 case TYPES_DOMAIN: return "TYPES_DOMAIN";
172 case ALL_DOMAIN: return "ALL_DOMAIN";
173 default: gdb_assert_not_reached ("bad search_domain");
174 }
175 }
176
177 /* See whether FILENAME matches SEARCH_NAME using the rule that we
178 advertise to the user. (The manual's description of linespecs
179 describes what we advertise). Returns true if they match, false
180 otherwise. */
181
182 int
183 compare_filenames_for_search (const char *filename, const char *search_name)
184 {
185 int len = strlen (filename);
186 size_t search_len = strlen (search_name);
187
188 if (len < search_len)
189 return 0;
190
191 /* The tail of FILENAME must match. */
192 if (FILENAME_CMP (filename + len - search_len, search_name) != 0)
193 return 0;
194
195 /* Either the names must completely match, or the character
196 preceding the trailing SEARCH_NAME segment of FILENAME must be a
197 directory separator.
198
199 The check !IS_ABSOLUTE_PATH ensures SEARCH_NAME "/dir/file.c"
200 cannot match FILENAME "/path//dir/file.c" - as user has requested
201 absolute path. The sama applies for "c:\file.c" possibly
202 incorrectly hypothetically matching "d:\dir\c:\file.c".
203
204 The HAS_DRIVE_SPEC purpose is to make FILENAME "c:file.c"
205 compatible with SEARCH_NAME "file.c". In such case a compiler had
206 to put the "c:file.c" name into debug info. Such compatibility
207 works only on GDB built for DOS host. */
208 return (len == search_len
209 || (!IS_ABSOLUTE_PATH (search_name)
210 && IS_DIR_SEPARATOR (filename[len - search_len - 1]))
211 || (HAS_DRIVE_SPEC (filename)
212 && STRIP_DRIVE_SPEC (filename) == &filename[len - search_len]));
213 }
214
215 /* Check for a symtab of a specific name by searching some symtabs.
216 This is a helper function for callbacks of iterate_over_symtabs.
217
218 If NAME is not absolute, then REAL_PATH is NULL
219 If NAME is absolute, then REAL_PATH is the gdb_realpath form of NAME.
220
221 The return value, NAME, REAL_PATH, CALLBACK, and DATA
222 are identical to the `map_symtabs_matching_filename' method of
223 quick_symbol_functions.
224
225 FIRST and AFTER_LAST indicate the range of symtabs to search.
226 AFTER_LAST is one past the last symtab to search; NULL means to
227 search until the end of the list. */
228
229 int
230 iterate_over_some_symtabs (const char *name,
231 const char *real_path,
232 int (*callback) (struct symtab *symtab,
233 void *data),
234 void *data,
235 struct symtab *first,
236 struct symtab *after_last)
237 {
238 struct symtab *s = NULL;
239 const char* base_name = lbasename (name);
240
241 for (s = first; s != NULL && s != after_last; s = s->next)
242 {
243 if (compare_filenames_for_search (s->filename, name))
244 {
245 if (callback (s, data))
246 return 1;
247 continue;
248 }
249
250 /* Before we invoke realpath, which can get expensive when many
251 files are involved, do a quick comparison of the basenames. */
252 if (! basenames_may_differ
253 && FILENAME_CMP (base_name, lbasename (s->filename)) != 0)
254 continue;
255
256 if (compare_filenames_for_search (symtab_to_fullname (s), name))
257 {
258 if (callback (s, data))
259 return 1;
260 continue;
261 }
262
263 /* If the user gave us an absolute path, try to find the file in
264 this symtab and use its absolute path. */
265 if (real_path != NULL)
266 {
267 const char *fullname = symtab_to_fullname (s);
268
269 gdb_assert (IS_ABSOLUTE_PATH (real_path));
270 gdb_assert (IS_ABSOLUTE_PATH (name));
271 if (FILENAME_CMP (real_path, fullname) == 0)
272 {
273 if (callback (s, data))
274 return 1;
275 continue;
276 }
277 }
278 }
279
280 return 0;
281 }
282
283 /* Check for a symtab of a specific name; first in symtabs, then in
284 psymtabs. *If* there is no '/' in the name, a match after a '/'
285 in the symtab filename will also work.
286
287 Calls CALLBACK with each symtab that is found and with the supplied
288 DATA. If CALLBACK returns true, the search stops. */
289
290 void
291 iterate_over_symtabs (const char *name,
292 int (*callback) (struct symtab *symtab,
293 void *data),
294 void *data)
295 {
296 struct objfile *objfile;
297 char *real_path = NULL;
298 struct cleanup *cleanups = make_cleanup (null_cleanup, NULL);
299
300 /* Here we are interested in canonicalizing an absolute path, not
301 absolutizing a relative path. */
302 if (IS_ABSOLUTE_PATH (name))
303 {
304 real_path = gdb_realpath (name);
305 make_cleanup (xfree, real_path);
306 gdb_assert (IS_ABSOLUTE_PATH (real_path));
307 }
308
309 ALL_OBJFILES (objfile)
310 {
311 if (iterate_over_some_symtabs (name, real_path, callback, data,
312 objfile->symtabs, NULL))
313 {
314 do_cleanups (cleanups);
315 return;
316 }
317 }
318
319 /* Same search rules as above apply here, but now we look thru the
320 psymtabs. */
321
322 ALL_OBJFILES (objfile)
323 {
324 if (objfile->sf
325 && objfile->sf->qf->map_symtabs_matching_filename (objfile,
326 name,
327 real_path,
328 callback,
329 data))
330 {
331 do_cleanups (cleanups);
332 return;
333 }
334 }
335
336 do_cleanups (cleanups);
337 }
338
339 /* The callback function used by lookup_symtab. */
340
341 static int
342 lookup_symtab_callback (struct symtab *symtab, void *data)
343 {
344 struct symtab **result_ptr = data;
345
346 *result_ptr = symtab;
347 return 1;
348 }
349
350 /* A wrapper for iterate_over_symtabs that returns the first matching
351 symtab, or NULL. */
352
353 struct symtab *
354 lookup_symtab (const char *name)
355 {
356 struct symtab *result = NULL;
357
358 iterate_over_symtabs (name, lookup_symtab_callback, &result);
359 return result;
360 }
361
362 \f
363 /* Mangle a GDB method stub type. This actually reassembles the pieces of the
364 full method name, which consist of the class name (from T), the unadorned
365 method name from METHOD_ID, and the signature for the specific overload,
366 specified by SIGNATURE_ID. Note that this function is g++ specific. */
367
368 char *
369 gdb_mangle_name (struct type *type, int method_id, int signature_id)
370 {
371 int mangled_name_len;
372 char *mangled_name;
373 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
374 struct fn_field *method = &f[signature_id];
375 const char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
376 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
377 const char *newname = type_name_no_tag (type);
378
379 /* Does the form of physname indicate that it is the full mangled name
380 of a constructor (not just the args)? */
381 int is_full_physname_constructor;
382
383 int is_constructor;
384 int is_destructor = is_destructor_name (physname);
385 /* Need a new type prefix. */
386 char *const_prefix = method->is_const ? "C" : "";
387 char *volatile_prefix = method->is_volatile ? "V" : "";
388 char buf[20];
389 int len = (newname == NULL ? 0 : strlen (newname));
390
391 /* Nothing to do if physname already contains a fully mangled v3 abi name
392 or an operator name. */
393 if ((physname[0] == '_' && physname[1] == 'Z')
394 || is_operator_name (field_name))
395 return xstrdup (physname);
396
397 is_full_physname_constructor = is_constructor_name (physname);
398
399 is_constructor = is_full_physname_constructor
400 || (newname && strcmp (field_name, newname) == 0);
401
402 if (!is_destructor)
403 is_destructor = (strncmp (physname, "__dt", 4) == 0);
404
405 if (is_destructor || is_full_physname_constructor)
406 {
407 mangled_name = (char *) xmalloc (strlen (physname) + 1);
408 strcpy (mangled_name, physname);
409 return mangled_name;
410 }
411
412 if (len == 0)
413 {
414 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
415 }
416 else if (physname[0] == 't' || physname[0] == 'Q')
417 {
418 /* The physname for template and qualified methods already includes
419 the class name. */
420 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
421 newname = NULL;
422 len = 0;
423 }
424 else
425 {
426 xsnprintf (buf, sizeof (buf), "__%s%s%d", const_prefix,
427 volatile_prefix, len);
428 }
429 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
430 + strlen (buf) + len + strlen (physname) + 1);
431
432 mangled_name = (char *) xmalloc (mangled_name_len);
433 if (is_constructor)
434 mangled_name[0] = '\0';
435 else
436 strcpy (mangled_name, field_name);
437
438 strcat (mangled_name, buf);
439 /* If the class doesn't have a name, i.e. newname NULL, then we just
440 mangle it using 0 for the length of the class. Thus it gets mangled
441 as something starting with `::' rather than `classname::'. */
442 if (newname != NULL)
443 strcat (mangled_name, newname);
444
445 strcat (mangled_name, physname);
446 return (mangled_name);
447 }
448
449 /* Initialize the cplus_specific structure. 'cplus_specific' should
450 only be allocated for use with cplus symbols. */
451
452 static void
453 symbol_init_cplus_specific (struct general_symbol_info *gsymbol,
454 struct obstack *obstack)
455 {
456 /* A language_specific structure should not have been previously
457 initialized. */
458 gdb_assert (gsymbol->language_specific.cplus_specific == NULL);
459 gdb_assert (obstack != NULL);
460
461 gsymbol->language_specific.cplus_specific =
462 OBSTACK_ZALLOC (obstack, struct cplus_specific);
463 }
464
465 /* Set the demangled name of GSYMBOL to NAME. NAME must be already
466 correctly allocated. For C++ symbols a cplus_specific struct is
467 allocated so OBJFILE must not be NULL. If this is a non C++ symbol
468 OBJFILE can be NULL. */
469
470 void
471 symbol_set_demangled_name (struct general_symbol_info *gsymbol,
472 const char *name,
473 struct obstack *obstack)
474 {
475 if (gsymbol->language == language_cplus)
476 {
477 if (gsymbol->language_specific.cplus_specific == NULL)
478 symbol_init_cplus_specific (gsymbol, obstack);
479
480 gsymbol->language_specific.cplus_specific->demangled_name = name;
481 }
482 else if (gsymbol->language == language_ada)
483 {
484 if (name == NULL)
485 {
486 gsymbol->ada_mangled = 0;
487 gsymbol->language_specific.obstack = obstack;
488 }
489 else
490 {
491 gsymbol->ada_mangled = 1;
492 gsymbol->language_specific.mangled_lang.demangled_name = name;
493 }
494 }
495 else
496 gsymbol->language_specific.mangled_lang.demangled_name = name;
497 }
498
499 /* Return the demangled name of GSYMBOL. */
500
501 const char *
502 symbol_get_demangled_name (const struct general_symbol_info *gsymbol)
503 {
504 if (gsymbol->language == language_cplus)
505 {
506 if (gsymbol->language_specific.cplus_specific != NULL)
507 return gsymbol->language_specific.cplus_specific->demangled_name;
508 else
509 return NULL;
510 }
511 else if (gsymbol->language == language_ada)
512 {
513 if (!gsymbol->ada_mangled)
514 return NULL;
515 /* Fall through. */
516 }
517
518 return gsymbol->language_specific.mangled_lang.demangled_name;
519 }
520
521 \f
522 /* Initialize the language dependent portion of a symbol
523 depending upon the language for the symbol. */
524
525 void
526 symbol_set_language (struct general_symbol_info *gsymbol,
527 enum language language,
528 struct obstack *obstack)
529 {
530 gsymbol->language = language;
531 if (gsymbol->language == language_d
532 || gsymbol->language == language_go
533 || gsymbol->language == language_java
534 || gsymbol->language == language_objc
535 || gsymbol->language == language_fortran)
536 {
537 symbol_set_demangled_name (gsymbol, NULL, obstack);
538 }
539 else if (gsymbol->language == language_ada)
540 {
541 gdb_assert (gsymbol->ada_mangled == 0);
542 gsymbol->language_specific.obstack = obstack;
543 }
544 else if (gsymbol->language == language_cplus)
545 gsymbol->language_specific.cplus_specific = NULL;
546 else
547 {
548 memset (&gsymbol->language_specific, 0,
549 sizeof (gsymbol->language_specific));
550 }
551 }
552
553 /* Functions to initialize a symbol's mangled name. */
554
555 /* Objects of this type are stored in the demangled name hash table. */
556 struct demangled_name_entry
557 {
558 const char *mangled;
559 char demangled[1];
560 };
561
562 /* Hash function for the demangled name hash. */
563
564 static hashval_t
565 hash_demangled_name_entry (const void *data)
566 {
567 const struct demangled_name_entry *e = data;
568
569 return htab_hash_string (e->mangled);
570 }
571
572 /* Equality function for the demangled name hash. */
573
574 static int
575 eq_demangled_name_entry (const void *a, const void *b)
576 {
577 const struct demangled_name_entry *da = a;
578 const struct demangled_name_entry *db = b;
579
580 return strcmp (da->mangled, db->mangled) == 0;
581 }
582
583 /* Create the hash table used for demangled names. Each hash entry is
584 a pair of strings; one for the mangled name and one for the demangled
585 name. The entry is hashed via just the mangled name. */
586
587 static void
588 create_demangled_names_hash (struct objfile *objfile)
589 {
590 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
591 The hash table code will round this up to the next prime number.
592 Choosing a much larger table size wastes memory, and saves only about
593 1% in symbol reading. */
594
595 objfile->per_bfd->demangled_names_hash = htab_create_alloc
596 (256, hash_demangled_name_entry, eq_demangled_name_entry,
597 NULL, xcalloc, xfree);
598 }
599
600 /* Try to determine the demangled name for a symbol, based on the
601 language of that symbol. If the language is set to language_auto,
602 it will attempt to find any demangling algorithm that works and
603 then set the language appropriately. The returned name is allocated
604 by the demangler and should be xfree'd. */
605
606 static char *
607 symbol_find_demangled_name (struct general_symbol_info *gsymbol,
608 const char *mangled)
609 {
610 char *demangled = NULL;
611
612 if (gsymbol->language == language_unknown)
613 gsymbol->language = language_auto;
614
615 if (gsymbol->language == language_objc
616 || gsymbol->language == language_auto)
617 {
618 demangled =
619 objc_demangle (mangled, 0);
620 if (demangled != NULL)
621 {
622 gsymbol->language = language_objc;
623 return demangled;
624 }
625 }
626 if (gsymbol->language == language_cplus
627 || gsymbol->language == language_auto)
628 {
629 demangled =
630 gdb_demangle (mangled, DMGL_PARAMS | DMGL_ANSI);
631 if (demangled != NULL)
632 {
633 gsymbol->language = language_cplus;
634 return demangled;
635 }
636 }
637 if (gsymbol->language == language_java)
638 {
639 demangled =
640 gdb_demangle (mangled,
641 DMGL_PARAMS | DMGL_ANSI | DMGL_JAVA);
642 if (demangled != NULL)
643 {
644 gsymbol->language = language_java;
645 return demangled;
646 }
647 }
648 if (gsymbol->language == language_d
649 || gsymbol->language == language_auto)
650 {
651 demangled = d_demangle(mangled, 0);
652 if (demangled != NULL)
653 {
654 gsymbol->language = language_d;
655 return demangled;
656 }
657 }
658 /* FIXME(dje): Continually adding languages here is clumsy.
659 Better to just call la_demangle if !auto, and if auto then call
660 a utility routine that tries successive languages in turn and reports
661 which one it finds. I realize the la_demangle options may be different
662 for different languages but there's already a FIXME for that. */
663 if (gsymbol->language == language_go
664 || gsymbol->language == language_auto)
665 {
666 demangled = go_demangle (mangled, 0);
667 if (demangled != NULL)
668 {
669 gsymbol->language = language_go;
670 return demangled;
671 }
672 }
673
674 /* We could support `gsymbol->language == language_fortran' here to provide
675 module namespaces also for inferiors with only minimal symbol table (ELF
676 symbols). Just the mangling standard is not standardized across compilers
677 and there is no DW_AT_producer available for inferiors with only the ELF
678 symbols to check the mangling kind. */
679 return NULL;
680 }
681
682 /* Set both the mangled and demangled (if any) names for GSYMBOL based
683 on LINKAGE_NAME and LEN. Ordinarily, NAME is copied onto the
684 objfile's obstack; but if COPY_NAME is 0 and if NAME is
685 NUL-terminated, then this function assumes that NAME is already
686 correctly saved (either permanently or with a lifetime tied to the
687 objfile), and it will not be copied.
688
689 The hash table corresponding to OBJFILE is used, and the memory
690 comes from the per-BFD storage_obstack. LINKAGE_NAME is copied,
691 so the pointer can be discarded after calling this function. */
692
693 /* We have to be careful when dealing with Java names: when we run
694 into a Java minimal symbol, we don't know it's a Java symbol, so it
695 gets demangled as a C++ name. This is unfortunate, but there's not
696 much we can do about it: but when demangling partial symbols and
697 regular symbols, we'd better not reuse the wrong demangled name.
698 (See PR gdb/1039.) We solve this by putting a distinctive prefix
699 on Java names when storing them in the hash table. */
700
701 /* FIXME: carlton/2003-03-13: This is an unfortunate situation. I
702 don't mind the Java prefix so much: different languages have
703 different demangling requirements, so it's only natural that we
704 need to keep language data around in our demangling cache. But
705 it's not good that the minimal symbol has the wrong demangled name.
706 Unfortunately, I can't think of any easy solution to that
707 problem. */
708
709 #define JAVA_PREFIX "##JAVA$$"
710 #define JAVA_PREFIX_LEN 8
711
712 void
713 symbol_set_names (struct general_symbol_info *gsymbol,
714 const char *linkage_name, int len, int copy_name,
715 struct objfile *objfile)
716 {
717 struct demangled_name_entry **slot;
718 /* A 0-terminated copy of the linkage name. */
719 const char *linkage_name_copy;
720 /* A copy of the linkage name that might have a special Java prefix
721 added to it, for use when looking names up in the hash table. */
722 const char *lookup_name;
723 /* The length of lookup_name. */
724 int lookup_len;
725 struct demangled_name_entry entry;
726 struct objfile_per_bfd_storage *per_bfd = objfile->per_bfd;
727
728 if (gsymbol->language == language_ada)
729 {
730 /* In Ada, we do the symbol lookups using the mangled name, so
731 we can save some space by not storing the demangled name.
732
733 As a side note, we have also observed some overlap between
734 the C++ mangling and Ada mangling, similarly to what has
735 been observed with Java. Because we don't store the demangled
736 name with the symbol, we don't need to use the same trick
737 as Java. */
738 if (!copy_name)
739 gsymbol->name = linkage_name;
740 else
741 {
742 char *name = obstack_alloc (&per_bfd->storage_obstack, len + 1);
743
744 memcpy (name, linkage_name, len);
745 name[len] = '\0';
746 gsymbol->name = name;
747 }
748 symbol_set_demangled_name (gsymbol, NULL, &per_bfd->storage_obstack);
749
750 return;
751 }
752
753 if (per_bfd->demangled_names_hash == NULL)
754 create_demangled_names_hash (objfile);
755
756 /* The stabs reader generally provides names that are not
757 NUL-terminated; most of the other readers don't do this, so we
758 can just use the given copy, unless we're in the Java case. */
759 if (gsymbol->language == language_java)
760 {
761 char *alloc_name;
762
763 lookup_len = len + JAVA_PREFIX_LEN;
764 alloc_name = alloca (lookup_len + 1);
765 memcpy (alloc_name, JAVA_PREFIX, JAVA_PREFIX_LEN);
766 memcpy (alloc_name + JAVA_PREFIX_LEN, linkage_name, len);
767 alloc_name[lookup_len] = '\0';
768
769 lookup_name = alloc_name;
770 linkage_name_copy = alloc_name + JAVA_PREFIX_LEN;
771 }
772 else if (linkage_name[len] != '\0')
773 {
774 char *alloc_name;
775
776 lookup_len = len;
777 alloc_name = alloca (lookup_len + 1);
778 memcpy (alloc_name, linkage_name, len);
779 alloc_name[lookup_len] = '\0';
780
781 lookup_name = alloc_name;
782 linkage_name_copy = alloc_name;
783 }
784 else
785 {
786 lookup_len = len;
787 lookup_name = linkage_name;
788 linkage_name_copy = linkage_name;
789 }
790
791 entry.mangled = lookup_name;
792 slot = ((struct demangled_name_entry **)
793 htab_find_slot (per_bfd->demangled_names_hash,
794 &entry, INSERT));
795
796 /* If this name is not in the hash table, add it. */
797 if (*slot == NULL
798 /* A C version of the symbol may have already snuck into the table.
799 This happens to, e.g., main.init (__go_init_main). Cope. */
800 || (gsymbol->language == language_go
801 && (*slot)->demangled[0] == '\0'))
802 {
803 char *demangled_name = symbol_find_demangled_name (gsymbol,
804 linkage_name_copy);
805 int demangled_len = demangled_name ? strlen (demangled_name) : 0;
806
807 /* Suppose we have demangled_name==NULL, copy_name==0, and
808 lookup_name==linkage_name. In this case, we already have the
809 mangled name saved, and we don't have a demangled name. So,
810 you might think we could save a little space by not recording
811 this in the hash table at all.
812
813 It turns out that it is actually important to still save such
814 an entry in the hash table, because storing this name gives
815 us better bcache hit rates for partial symbols. */
816 if (!copy_name && lookup_name == linkage_name)
817 {
818 *slot = obstack_alloc (&per_bfd->storage_obstack,
819 offsetof (struct demangled_name_entry,
820 demangled)
821 + demangled_len + 1);
822 (*slot)->mangled = lookup_name;
823 }
824 else
825 {
826 char *mangled_ptr;
827
828 /* If we must copy the mangled name, put it directly after
829 the demangled name so we can have a single
830 allocation. */
831 *slot = obstack_alloc (&per_bfd->storage_obstack,
832 offsetof (struct demangled_name_entry,
833 demangled)
834 + lookup_len + demangled_len + 2);
835 mangled_ptr = &((*slot)->demangled[demangled_len + 1]);
836 strcpy (mangled_ptr, lookup_name);
837 (*slot)->mangled = mangled_ptr;
838 }
839
840 if (demangled_name != NULL)
841 {
842 strcpy ((*slot)->demangled, demangled_name);
843 xfree (demangled_name);
844 }
845 else
846 (*slot)->demangled[0] = '\0';
847 }
848
849 gsymbol->name = (*slot)->mangled + lookup_len - len;
850 if ((*slot)->demangled[0] != '\0')
851 symbol_set_demangled_name (gsymbol, (*slot)->demangled,
852 &per_bfd->storage_obstack);
853 else
854 symbol_set_demangled_name (gsymbol, NULL, &per_bfd->storage_obstack);
855 }
856
857 /* Return the source code name of a symbol. In languages where
858 demangling is necessary, this is the demangled name. */
859
860 const char *
861 symbol_natural_name (const struct general_symbol_info *gsymbol)
862 {
863 switch (gsymbol->language)
864 {
865 case language_cplus:
866 case language_d:
867 case language_go:
868 case language_java:
869 case language_objc:
870 case language_fortran:
871 if (symbol_get_demangled_name (gsymbol) != NULL)
872 return symbol_get_demangled_name (gsymbol);
873 break;
874 case language_ada:
875 return ada_decode_symbol (gsymbol);
876 default:
877 break;
878 }
879 return gsymbol->name;
880 }
881
882 /* Return the demangled name for a symbol based on the language for
883 that symbol. If no demangled name exists, return NULL. */
884
885 const char *
886 symbol_demangled_name (const struct general_symbol_info *gsymbol)
887 {
888 const char *dem_name = NULL;
889
890 switch (gsymbol->language)
891 {
892 case language_cplus:
893 case language_d:
894 case language_go:
895 case language_java:
896 case language_objc:
897 case language_fortran:
898 dem_name = symbol_get_demangled_name (gsymbol);
899 break;
900 case language_ada:
901 dem_name = ada_decode_symbol (gsymbol);
902 break;
903 default:
904 break;
905 }
906 return dem_name;
907 }
908
909 /* Return the search name of a symbol---generally the demangled or
910 linkage name of the symbol, depending on how it will be searched for.
911 If there is no distinct demangled name, then returns the same value
912 (same pointer) as SYMBOL_LINKAGE_NAME. */
913
914 const char *
915 symbol_search_name (const struct general_symbol_info *gsymbol)
916 {
917 if (gsymbol->language == language_ada)
918 return gsymbol->name;
919 else
920 return symbol_natural_name (gsymbol);
921 }
922
923 /* Initialize the structure fields to zero values. */
924
925 void
926 init_sal (struct symtab_and_line *sal)
927 {
928 sal->pspace = NULL;
929 sal->symtab = 0;
930 sal->section = 0;
931 sal->line = 0;
932 sal->pc = 0;
933 sal->end = 0;
934 sal->explicit_pc = 0;
935 sal->explicit_line = 0;
936 sal->probe = NULL;
937 }
938 \f
939
940 /* Return 1 if the two sections are the same, or if they could
941 plausibly be copies of each other, one in an original object
942 file and another in a separated debug file. */
943
944 int
945 matching_obj_sections (struct obj_section *obj_first,
946 struct obj_section *obj_second)
947 {
948 asection *first = obj_first? obj_first->the_bfd_section : NULL;
949 asection *second = obj_second? obj_second->the_bfd_section : NULL;
950 struct objfile *obj;
951
952 /* If they're the same section, then they match. */
953 if (first == second)
954 return 1;
955
956 /* If either is NULL, give up. */
957 if (first == NULL || second == NULL)
958 return 0;
959
960 /* This doesn't apply to absolute symbols. */
961 if (first->owner == NULL || second->owner == NULL)
962 return 0;
963
964 /* If they're in the same object file, they must be different sections. */
965 if (first->owner == second->owner)
966 return 0;
967
968 /* Check whether the two sections are potentially corresponding. They must
969 have the same size, address, and name. We can't compare section indexes,
970 which would be more reliable, because some sections may have been
971 stripped. */
972 if (bfd_get_section_size (first) != bfd_get_section_size (second))
973 return 0;
974
975 /* In-memory addresses may start at a different offset, relativize them. */
976 if (bfd_get_section_vma (first->owner, first)
977 - bfd_get_start_address (first->owner)
978 != bfd_get_section_vma (second->owner, second)
979 - bfd_get_start_address (second->owner))
980 return 0;
981
982 if (bfd_get_section_name (first->owner, first) == NULL
983 || bfd_get_section_name (second->owner, second) == NULL
984 || strcmp (bfd_get_section_name (first->owner, first),
985 bfd_get_section_name (second->owner, second)) != 0)
986 return 0;
987
988 /* Otherwise check that they are in corresponding objfiles. */
989
990 ALL_OBJFILES (obj)
991 if (obj->obfd == first->owner)
992 break;
993 gdb_assert (obj != NULL);
994
995 if (obj->separate_debug_objfile != NULL
996 && obj->separate_debug_objfile->obfd == second->owner)
997 return 1;
998 if (obj->separate_debug_objfile_backlink != NULL
999 && obj->separate_debug_objfile_backlink->obfd == second->owner)
1000 return 1;
1001
1002 return 0;
1003 }
1004
1005 struct symtab *
1006 find_pc_sect_symtab_via_partial (CORE_ADDR pc, struct obj_section *section)
1007 {
1008 struct objfile *objfile;
1009 struct minimal_symbol *msymbol;
1010
1011 /* If we know that this is not a text address, return failure. This is
1012 necessary because we loop based on texthigh and textlow, which do
1013 not include the data ranges. */
1014 msymbol = lookup_minimal_symbol_by_pc_section (pc, section).minsym;
1015 if (msymbol
1016 && (MSYMBOL_TYPE (msymbol) == mst_data
1017 || MSYMBOL_TYPE (msymbol) == mst_bss
1018 || MSYMBOL_TYPE (msymbol) == mst_abs
1019 || MSYMBOL_TYPE (msymbol) == mst_file_data
1020 || MSYMBOL_TYPE (msymbol) == mst_file_bss))
1021 return NULL;
1022
1023 ALL_OBJFILES (objfile)
1024 {
1025 struct symtab *result = NULL;
1026
1027 if (objfile->sf)
1028 result = objfile->sf->qf->find_pc_sect_symtab (objfile, msymbol,
1029 pc, section, 0);
1030 if (result)
1031 return result;
1032 }
1033
1034 return NULL;
1035 }
1036 \f
1037 /* Debug symbols usually don't have section information. We need to dig that
1038 out of the minimal symbols and stash that in the debug symbol. */
1039
1040 void
1041 fixup_section (struct general_symbol_info *ginfo,
1042 CORE_ADDR addr, struct objfile *objfile)
1043 {
1044 struct minimal_symbol *msym;
1045
1046 /* First, check whether a minimal symbol with the same name exists
1047 and points to the same address. The address check is required
1048 e.g. on PowerPC64, where the minimal symbol for a function will
1049 point to the function descriptor, while the debug symbol will
1050 point to the actual function code. */
1051 msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->name, objfile);
1052 if (msym)
1053 ginfo->section = SYMBOL_SECTION (msym);
1054 else
1055 {
1056 /* Static, function-local variables do appear in the linker
1057 (minimal) symbols, but are frequently given names that won't
1058 be found via lookup_minimal_symbol(). E.g., it has been
1059 observed in frv-uclinux (ELF) executables that a static,
1060 function-local variable named "foo" might appear in the
1061 linker symbols as "foo.6" or "foo.3". Thus, there is no
1062 point in attempting to extend the lookup-by-name mechanism to
1063 handle this case due to the fact that there can be multiple
1064 names.
1065
1066 So, instead, search the section table when lookup by name has
1067 failed. The ``addr'' and ``endaddr'' fields may have already
1068 been relocated. If so, the relocation offset (i.e. the
1069 ANOFFSET value) needs to be subtracted from these values when
1070 performing the comparison. We unconditionally subtract it,
1071 because, when no relocation has been performed, the ANOFFSET
1072 value will simply be zero.
1073
1074 The address of the symbol whose section we're fixing up HAS
1075 NOT BEEN adjusted (relocated) yet. It can't have been since
1076 the section isn't yet known and knowing the section is
1077 necessary in order to add the correct relocation value. In
1078 other words, we wouldn't even be in this function (attempting
1079 to compute the section) if it were already known.
1080
1081 Note that it is possible to search the minimal symbols
1082 (subtracting the relocation value if necessary) to find the
1083 matching minimal symbol, but this is overkill and much less
1084 efficient. It is not necessary to find the matching minimal
1085 symbol, only its section.
1086
1087 Note that this technique (of doing a section table search)
1088 can fail when unrelocated section addresses overlap. For
1089 this reason, we still attempt a lookup by name prior to doing
1090 a search of the section table. */
1091
1092 struct obj_section *s;
1093 int fallback = -1;
1094
1095 ALL_OBJFILE_OSECTIONS (objfile, s)
1096 {
1097 int idx = s - objfile->sections;
1098 CORE_ADDR offset = ANOFFSET (objfile->section_offsets, idx);
1099
1100 if (fallback == -1)
1101 fallback = idx;
1102
1103 if (obj_section_addr (s) - offset <= addr
1104 && addr < obj_section_endaddr (s) - offset)
1105 {
1106 ginfo->section = idx;
1107 return;
1108 }
1109 }
1110
1111 /* If we didn't find the section, assume it is in the first
1112 section. If there is no allocated section, then it hardly
1113 matters what we pick, so just pick zero. */
1114 if (fallback == -1)
1115 ginfo->section = 0;
1116 else
1117 ginfo->section = fallback;
1118 }
1119 }
1120
1121 struct symbol *
1122 fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
1123 {
1124 CORE_ADDR addr;
1125
1126 if (!sym)
1127 return NULL;
1128
1129 /* We either have an OBJFILE, or we can get at it from the sym's
1130 symtab. Anything else is a bug. */
1131 gdb_assert (objfile || SYMBOL_SYMTAB (sym));
1132
1133 if (objfile == NULL)
1134 objfile = SYMBOL_SYMTAB (sym)->objfile;
1135
1136 if (SYMBOL_OBJ_SECTION (objfile, sym))
1137 return sym;
1138
1139 /* We should have an objfile by now. */
1140 gdb_assert (objfile);
1141
1142 switch (SYMBOL_CLASS (sym))
1143 {
1144 case LOC_STATIC:
1145 case LOC_LABEL:
1146 addr = SYMBOL_VALUE_ADDRESS (sym);
1147 break;
1148 case LOC_BLOCK:
1149 addr = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
1150 break;
1151
1152 default:
1153 /* Nothing else will be listed in the minsyms -- no use looking
1154 it up. */
1155 return sym;
1156 }
1157
1158 fixup_section (&sym->ginfo, addr, objfile);
1159
1160 return sym;
1161 }
1162
1163 /* Compute the demangled form of NAME as used by the various symbol
1164 lookup functions. The result is stored in *RESULT_NAME. Returns a
1165 cleanup which can be used to clean up the result.
1166
1167 For Ada, this function just sets *RESULT_NAME to NAME, unmodified.
1168 Normally, Ada symbol lookups are performed using the encoded name
1169 rather than the demangled name, and so it might seem to make sense
1170 for this function to return an encoded version of NAME.
1171 Unfortunately, we cannot do this, because this function is used in
1172 circumstances where it is not appropriate to try to encode NAME.
1173 For instance, when displaying the frame info, we demangle the name
1174 of each parameter, and then perform a symbol lookup inside our
1175 function using that demangled name. In Ada, certain functions
1176 have internally-generated parameters whose name contain uppercase
1177 characters. Encoding those name would result in those uppercase
1178 characters to become lowercase, and thus cause the symbol lookup
1179 to fail. */
1180
1181 struct cleanup *
1182 demangle_for_lookup (const char *name, enum language lang,
1183 const char **result_name)
1184 {
1185 char *demangled_name = NULL;
1186 const char *modified_name = NULL;
1187 struct cleanup *cleanup = make_cleanup (null_cleanup, 0);
1188
1189 modified_name = name;
1190
1191 /* If we are using C++, D, Go, or Java, demangle the name before doing a
1192 lookup, so we can always binary search. */
1193 if (lang == language_cplus)
1194 {
1195 demangled_name = gdb_demangle (name, DMGL_ANSI | DMGL_PARAMS);
1196 if (demangled_name)
1197 {
1198 modified_name = demangled_name;
1199 make_cleanup (xfree, demangled_name);
1200 }
1201 else
1202 {
1203 /* If we were given a non-mangled name, canonicalize it
1204 according to the language (so far only for C++). */
1205 demangled_name = cp_canonicalize_string (name);
1206 if (demangled_name)
1207 {
1208 modified_name = demangled_name;
1209 make_cleanup (xfree, demangled_name);
1210 }
1211 }
1212 }
1213 else if (lang == language_java)
1214 {
1215 demangled_name = gdb_demangle (name,
1216 DMGL_ANSI | DMGL_PARAMS | DMGL_JAVA);
1217 if (demangled_name)
1218 {
1219 modified_name = demangled_name;
1220 make_cleanup (xfree, demangled_name);
1221 }
1222 }
1223 else if (lang == language_d)
1224 {
1225 demangled_name = d_demangle (name, 0);
1226 if (demangled_name)
1227 {
1228 modified_name = demangled_name;
1229 make_cleanup (xfree, demangled_name);
1230 }
1231 }
1232 else if (lang == language_go)
1233 {
1234 demangled_name = go_demangle (name, 0);
1235 if (demangled_name)
1236 {
1237 modified_name = demangled_name;
1238 make_cleanup (xfree, demangled_name);
1239 }
1240 }
1241
1242 *result_name = modified_name;
1243 return cleanup;
1244 }
1245
1246 /* Find the definition for a specified symbol name NAME
1247 in domain DOMAIN, visible from lexical block BLOCK.
1248 Returns the struct symbol pointer, or zero if no symbol is found.
1249 C++: if IS_A_FIELD_OF_THIS is nonzero on entry, check to see if
1250 NAME is a field of the current implied argument `this'. If so set
1251 *IS_A_FIELD_OF_THIS to 1, otherwise set it to zero.
1252 BLOCK_FOUND is set to the block in which NAME is found (in the case of
1253 a field of `this', value_of_this sets BLOCK_FOUND to the proper value.) */
1254
1255 /* This function (or rather its subordinates) have a bunch of loops and
1256 it would seem to be attractive to put in some QUIT's (though I'm not really
1257 sure whether it can run long enough to be really important). But there
1258 are a few calls for which it would appear to be bad news to quit
1259 out of here: e.g., find_proc_desc in alpha-mdebug-tdep.c. (Note
1260 that there is C++ code below which can error(), but that probably
1261 doesn't affect these calls since they are looking for a known
1262 variable and thus can probably assume it will never hit the C++
1263 code). */
1264
1265 struct symbol *
1266 lookup_symbol_in_language (const char *name, const struct block *block,
1267 const domain_enum domain, enum language lang,
1268 struct field_of_this_result *is_a_field_of_this)
1269 {
1270 const char *modified_name;
1271 struct symbol *returnval;
1272 struct cleanup *cleanup = demangle_for_lookup (name, lang, &modified_name);
1273
1274 returnval = lookup_symbol_aux (modified_name, block, domain, lang,
1275 is_a_field_of_this);
1276 do_cleanups (cleanup);
1277
1278 return returnval;
1279 }
1280
1281 /* Behave like lookup_symbol_in_language, but performed with the
1282 current language. */
1283
1284 struct symbol *
1285 lookup_symbol (const char *name, const struct block *block,
1286 domain_enum domain,
1287 struct field_of_this_result *is_a_field_of_this)
1288 {
1289 return lookup_symbol_in_language (name, block, domain,
1290 current_language->la_language,
1291 is_a_field_of_this);
1292 }
1293
1294 /* Look up the `this' symbol for LANG in BLOCK. Return the symbol if
1295 found, or NULL if not found. */
1296
1297 struct symbol *
1298 lookup_language_this (const struct language_defn *lang,
1299 const struct block *block)
1300 {
1301 if (lang->la_name_of_this == NULL || block == NULL)
1302 return NULL;
1303
1304 while (block)
1305 {
1306 struct symbol *sym;
1307
1308 sym = lookup_block_symbol (block, lang->la_name_of_this, VAR_DOMAIN);
1309 if (sym != NULL)
1310 {
1311 block_found = block;
1312 return sym;
1313 }
1314 if (BLOCK_FUNCTION (block))
1315 break;
1316 block = BLOCK_SUPERBLOCK (block);
1317 }
1318
1319 return NULL;
1320 }
1321
1322 /* Given TYPE, a structure/union,
1323 return 1 if the component named NAME from the ultimate target
1324 structure/union is defined, otherwise, return 0. */
1325
1326 static int
1327 check_field (struct type *type, const char *name,
1328 struct field_of_this_result *is_a_field_of_this)
1329 {
1330 int i;
1331
1332 /* The type may be a stub. */
1333 CHECK_TYPEDEF (type);
1334
1335 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1336 {
1337 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1338
1339 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1340 {
1341 is_a_field_of_this->type = type;
1342 is_a_field_of_this->field = &TYPE_FIELD (type, i);
1343 return 1;
1344 }
1345 }
1346
1347 /* C++: If it was not found as a data field, then try to return it
1348 as a pointer to a method. */
1349
1350 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
1351 {
1352 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
1353 {
1354 is_a_field_of_this->type = type;
1355 is_a_field_of_this->fn_field = &TYPE_FN_FIELDLIST (type, i);
1356 return 1;
1357 }
1358 }
1359
1360 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1361 if (check_field (TYPE_BASECLASS (type, i), name, is_a_field_of_this))
1362 return 1;
1363
1364 return 0;
1365 }
1366
1367 /* Behave like lookup_symbol except that NAME is the natural name
1368 (e.g., demangled name) of the symbol that we're looking for. */
1369
1370 static struct symbol *
1371 lookup_symbol_aux (const char *name, const struct block *block,
1372 const domain_enum domain, enum language language,
1373 struct field_of_this_result *is_a_field_of_this)
1374 {
1375 struct symbol *sym;
1376 const struct language_defn *langdef;
1377
1378 /* Make sure we do something sensible with is_a_field_of_this, since
1379 the callers that set this parameter to some non-null value will
1380 certainly use it later. If we don't set it, the contents of
1381 is_a_field_of_this are undefined. */
1382 if (is_a_field_of_this != NULL)
1383 memset (is_a_field_of_this, 0, sizeof (*is_a_field_of_this));
1384
1385 /* Search specified block and its superiors. Don't search
1386 STATIC_BLOCK or GLOBAL_BLOCK. */
1387
1388 sym = lookup_symbol_aux_local (name, block, domain, language);
1389 if (sym != NULL)
1390 return sym;
1391
1392 /* If requested to do so by the caller and if appropriate for LANGUAGE,
1393 check to see if NAME is a field of `this'. */
1394
1395 langdef = language_def (language);
1396
1397 /* Don't do this check if we are searching for a struct. It will
1398 not be found by check_field, but will be found by other
1399 means. */
1400 if (is_a_field_of_this != NULL && domain != STRUCT_DOMAIN)
1401 {
1402 struct symbol *sym = lookup_language_this (langdef, block);
1403
1404 if (sym)
1405 {
1406 struct type *t = sym->type;
1407
1408 /* I'm not really sure that type of this can ever
1409 be typedefed; just be safe. */
1410 CHECK_TYPEDEF (t);
1411 if (TYPE_CODE (t) == TYPE_CODE_PTR
1412 || TYPE_CODE (t) == TYPE_CODE_REF)
1413 t = TYPE_TARGET_TYPE (t);
1414
1415 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
1416 && TYPE_CODE (t) != TYPE_CODE_UNION)
1417 error (_("Internal error: `%s' is not an aggregate"),
1418 langdef->la_name_of_this);
1419
1420 if (check_field (t, name, is_a_field_of_this))
1421 return NULL;
1422 }
1423 }
1424
1425 /* Now do whatever is appropriate for LANGUAGE to look
1426 up static and global variables. */
1427
1428 sym = langdef->la_lookup_symbol_nonlocal (name, block, domain);
1429 if (sym != NULL)
1430 return sym;
1431
1432 /* Now search all static file-level symbols. Not strictly correct,
1433 but more useful than an error. */
1434
1435 return lookup_static_symbol_aux (name, domain);
1436 }
1437
1438 /* Search all static file-level symbols for NAME from DOMAIN. Do the symtabs
1439 first, then check the psymtabs. If a psymtab indicates the existence of the
1440 desired name as a file-level static, then do psymtab-to-symtab conversion on
1441 the fly and return the found symbol. */
1442
1443 struct symbol *
1444 lookup_static_symbol_aux (const char *name, const domain_enum domain)
1445 {
1446 struct objfile *objfile;
1447 struct symbol *sym;
1448
1449 sym = lookup_symbol_aux_symtabs (STATIC_BLOCK, name, domain);
1450 if (sym != NULL)
1451 return sym;
1452
1453 ALL_OBJFILES (objfile)
1454 {
1455 sym = lookup_symbol_aux_quick (objfile, STATIC_BLOCK, name, domain);
1456 if (sym != NULL)
1457 return sym;
1458 }
1459
1460 return NULL;
1461 }
1462
1463 /* Check to see if the symbol is defined in BLOCK or its superiors.
1464 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
1465
1466 static struct symbol *
1467 lookup_symbol_aux_local (const char *name, const struct block *block,
1468 const domain_enum domain,
1469 enum language language)
1470 {
1471 struct symbol *sym;
1472 const struct block *static_block = block_static_block (block);
1473 const char *scope = block_scope (block);
1474
1475 /* Check if either no block is specified or it's a global block. */
1476
1477 if (static_block == NULL)
1478 return NULL;
1479
1480 while (block != static_block)
1481 {
1482 sym = lookup_symbol_aux_block (name, block, domain);
1483 if (sym != NULL)
1484 return sym;
1485
1486 if (language == language_cplus || language == language_fortran)
1487 {
1488 sym = cp_lookup_symbol_imports_or_template (scope, name, block,
1489 domain);
1490 if (sym != NULL)
1491 return sym;
1492 }
1493
1494 if (BLOCK_FUNCTION (block) != NULL && block_inlined_p (block))
1495 break;
1496 block = BLOCK_SUPERBLOCK (block);
1497 }
1498
1499 /* We've reached the edge of the function without finding a result. */
1500
1501 return NULL;
1502 }
1503
1504 /* Look up OBJFILE to BLOCK. */
1505
1506 struct objfile *
1507 lookup_objfile_from_block (const struct block *block)
1508 {
1509 struct objfile *obj;
1510 struct symtab *s;
1511
1512 if (block == NULL)
1513 return NULL;
1514
1515 block = block_global_block (block);
1516 /* Go through SYMTABS. */
1517 ALL_SYMTABS (obj, s)
1518 if (block == BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK))
1519 {
1520 if (obj->separate_debug_objfile_backlink)
1521 obj = obj->separate_debug_objfile_backlink;
1522
1523 return obj;
1524 }
1525
1526 return NULL;
1527 }
1528
1529 /* Look up a symbol in a block; if found, fixup the symbol, and set
1530 block_found appropriately. */
1531
1532 struct symbol *
1533 lookup_symbol_aux_block (const char *name, const struct block *block,
1534 const domain_enum domain)
1535 {
1536 struct symbol *sym;
1537
1538 sym = lookup_block_symbol (block, name, domain);
1539 if (sym)
1540 {
1541 block_found = block;
1542 return fixup_symbol_section (sym, NULL);
1543 }
1544
1545 return NULL;
1546 }
1547
1548 /* Check all global symbols in OBJFILE in symtabs and
1549 psymtabs. */
1550
1551 struct symbol *
1552 lookup_global_symbol_from_objfile (const struct objfile *main_objfile,
1553 const char *name,
1554 const domain_enum domain)
1555 {
1556 const struct objfile *objfile;
1557 struct symbol *sym;
1558 struct blockvector *bv;
1559 const struct block *block;
1560 struct symtab *s;
1561
1562 for (objfile = main_objfile;
1563 objfile;
1564 objfile = objfile_separate_debug_iterate (main_objfile, objfile))
1565 {
1566 /* Go through symtabs. */
1567 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
1568 {
1569 bv = BLOCKVECTOR (s);
1570 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1571 sym = lookup_block_symbol (block, name, domain);
1572 if (sym)
1573 {
1574 block_found = block;
1575 return fixup_symbol_section (sym, (struct objfile *)objfile);
1576 }
1577 }
1578
1579 sym = lookup_symbol_aux_quick ((struct objfile *) objfile, GLOBAL_BLOCK,
1580 name, domain);
1581 if (sym)
1582 return sym;
1583 }
1584
1585 return NULL;
1586 }
1587
1588 /* Check to see if the symbol is defined in one of the OBJFILE's
1589 symtabs. BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
1590 depending on whether or not we want to search global symbols or
1591 static symbols. */
1592
1593 static struct symbol *
1594 lookup_symbol_aux_objfile (struct objfile *objfile, int block_index,
1595 const char *name, const domain_enum domain)
1596 {
1597 struct symbol *sym = NULL;
1598 struct blockvector *bv;
1599 const struct block *block;
1600 struct symtab *s;
1601
1602 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
1603 {
1604 bv = BLOCKVECTOR (s);
1605 block = BLOCKVECTOR_BLOCK (bv, block_index);
1606 sym = lookup_block_symbol (block, name, domain);
1607 if (sym)
1608 {
1609 block_found = block;
1610 return fixup_symbol_section (sym, objfile);
1611 }
1612 }
1613
1614 return NULL;
1615 }
1616
1617 /* Same as lookup_symbol_aux_objfile, except that it searches all
1618 objfiles. Return the first match found. */
1619
1620 static struct symbol *
1621 lookup_symbol_aux_symtabs (int block_index, const char *name,
1622 const domain_enum domain)
1623 {
1624 struct symbol *sym;
1625 struct objfile *objfile;
1626
1627 ALL_OBJFILES (objfile)
1628 {
1629 sym = lookup_symbol_aux_objfile (objfile, block_index, name, domain);
1630 if (sym)
1631 return sym;
1632 }
1633
1634 return NULL;
1635 }
1636
1637 /* Wrapper around lookup_symbol_aux_objfile for search_symbols.
1638 Look up LINKAGE_NAME in DOMAIN in the global and static blocks of OBJFILE
1639 and all related objfiles. */
1640
1641 static struct symbol *
1642 lookup_symbol_in_objfile_from_linkage_name (struct objfile *objfile,
1643 const char *linkage_name,
1644 domain_enum domain)
1645 {
1646 enum language lang = current_language->la_language;
1647 const char *modified_name;
1648 struct cleanup *cleanup = demangle_for_lookup (linkage_name, lang,
1649 &modified_name);
1650 struct objfile *main_objfile, *cur_objfile;
1651
1652 if (objfile->separate_debug_objfile_backlink)
1653 main_objfile = objfile->separate_debug_objfile_backlink;
1654 else
1655 main_objfile = objfile;
1656
1657 for (cur_objfile = main_objfile;
1658 cur_objfile;
1659 cur_objfile = objfile_separate_debug_iterate (main_objfile, cur_objfile))
1660 {
1661 struct symbol *sym;
1662
1663 sym = lookup_symbol_aux_objfile (cur_objfile, GLOBAL_BLOCK,
1664 modified_name, domain);
1665 if (sym == NULL)
1666 sym = lookup_symbol_aux_objfile (cur_objfile, STATIC_BLOCK,
1667 modified_name, domain);
1668 if (sym != NULL)
1669 {
1670 do_cleanups (cleanup);
1671 return sym;
1672 }
1673 }
1674
1675 do_cleanups (cleanup);
1676 return NULL;
1677 }
1678
1679 /* A helper function that throws an exception when a symbol was found
1680 in a psymtab but not in a symtab. */
1681
1682 static void ATTRIBUTE_NORETURN
1683 error_in_psymtab_expansion (int kind, const char *name, struct symtab *symtab)
1684 {
1685 error (_("\
1686 Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n\
1687 %s may be an inlined function, or may be a template function\n \
1688 (if a template, try specifying an instantiation: %s<type>)."),
1689 kind == GLOBAL_BLOCK ? "global" : "static",
1690 name, symtab_to_filename_for_display (symtab), name, name);
1691 }
1692
1693 /* A helper function for lookup_symbol_aux that interfaces with the
1694 "quick" symbol table functions. */
1695
1696 static struct symbol *
1697 lookup_symbol_aux_quick (struct objfile *objfile, int kind,
1698 const char *name, const domain_enum domain)
1699 {
1700 struct symtab *symtab;
1701 struct blockvector *bv;
1702 const struct block *block;
1703 struct symbol *sym;
1704
1705 if (!objfile->sf)
1706 return NULL;
1707 symtab = objfile->sf->qf->lookup_symbol (objfile, kind, name, domain);
1708 if (!symtab)
1709 return NULL;
1710
1711 bv = BLOCKVECTOR (symtab);
1712 block = BLOCKVECTOR_BLOCK (bv, kind);
1713 sym = lookup_block_symbol (block, name, domain);
1714 if (!sym)
1715 error_in_psymtab_expansion (kind, name, symtab);
1716 return fixup_symbol_section (sym, objfile);
1717 }
1718
1719 /* A default version of lookup_symbol_nonlocal for use by languages
1720 that can't think of anything better to do. This implements the C
1721 lookup rules. */
1722
1723 struct symbol *
1724 basic_lookup_symbol_nonlocal (const char *name,
1725 const struct block *block,
1726 const domain_enum domain)
1727 {
1728 struct symbol *sym;
1729
1730 /* NOTE: carlton/2003-05-19: The comments below were written when
1731 this (or what turned into this) was part of lookup_symbol_aux;
1732 I'm much less worried about these questions now, since these
1733 decisions have turned out well, but I leave these comments here
1734 for posterity. */
1735
1736 /* NOTE: carlton/2002-12-05: There is a question as to whether or
1737 not it would be appropriate to search the current global block
1738 here as well. (That's what this code used to do before the
1739 is_a_field_of_this check was moved up.) On the one hand, it's
1740 redundant with the lookup_symbol_aux_symtabs search that happens
1741 next. On the other hand, if decode_line_1 is passed an argument
1742 like filename:var, then the user presumably wants 'var' to be
1743 searched for in filename. On the third hand, there shouldn't be
1744 multiple global variables all of which are named 'var', and it's
1745 not like decode_line_1 has ever restricted its search to only
1746 global variables in a single filename. All in all, only
1747 searching the static block here seems best: it's correct and it's
1748 cleanest. */
1749
1750 /* NOTE: carlton/2002-12-05: There's also a possible performance
1751 issue here: if you usually search for global symbols in the
1752 current file, then it would be slightly better to search the
1753 current global block before searching all the symtabs. But there
1754 are other factors that have a much greater effect on performance
1755 than that one, so I don't think we should worry about that for
1756 now. */
1757
1758 sym = lookup_symbol_static (name, block, domain);
1759 if (sym != NULL)
1760 return sym;
1761
1762 return lookup_symbol_global (name, block, domain);
1763 }
1764
1765 /* Lookup a symbol in the static block associated to BLOCK, if there
1766 is one; do nothing if BLOCK is NULL or a global block. */
1767
1768 struct symbol *
1769 lookup_symbol_static (const char *name,
1770 const struct block *block,
1771 const domain_enum domain)
1772 {
1773 const struct block *static_block = block_static_block (block);
1774
1775 if (static_block != NULL)
1776 return lookup_symbol_aux_block (name, static_block, domain);
1777 else
1778 return NULL;
1779 }
1780
1781 /* Private data to be used with lookup_symbol_global_iterator_cb. */
1782
1783 struct global_sym_lookup_data
1784 {
1785 /* The name of the symbol we are searching for. */
1786 const char *name;
1787
1788 /* The domain to use for our search. */
1789 domain_enum domain;
1790
1791 /* The field where the callback should store the symbol if found.
1792 It should be initialized to NULL before the search is started. */
1793 struct symbol *result;
1794 };
1795
1796 /* A callback function for gdbarch_iterate_over_objfiles_in_search_order.
1797 It searches by name for a symbol in the GLOBAL_BLOCK of the given
1798 OBJFILE. The arguments for the search are passed via CB_DATA,
1799 which in reality is a pointer to struct global_sym_lookup_data. */
1800
1801 static int
1802 lookup_symbol_global_iterator_cb (struct objfile *objfile,
1803 void *cb_data)
1804 {
1805 struct global_sym_lookup_data *data =
1806 (struct global_sym_lookup_data *) cb_data;
1807
1808 gdb_assert (data->result == NULL);
1809
1810 data->result = lookup_symbol_aux_objfile (objfile, GLOBAL_BLOCK,
1811 data->name, data->domain);
1812 if (data->result == NULL)
1813 data->result = lookup_symbol_aux_quick (objfile, GLOBAL_BLOCK,
1814 data->name, data->domain);
1815
1816 /* If we found a match, tell the iterator to stop. Otherwise,
1817 keep going. */
1818 return (data->result != NULL);
1819 }
1820
1821 /* Lookup a symbol in all files' global blocks (searching psymtabs if
1822 necessary). */
1823
1824 struct symbol *
1825 lookup_symbol_global (const char *name,
1826 const struct block *block,
1827 const domain_enum domain)
1828 {
1829 struct symbol *sym = NULL;
1830 struct objfile *objfile = NULL;
1831 struct global_sym_lookup_data lookup_data;
1832
1833 /* Call library-specific lookup procedure. */
1834 objfile = lookup_objfile_from_block (block);
1835 if (objfile != NULL)
1836 sym = solib_global_lookup (objfile, name, domain);
1837 if (sym != NULL)
1838 return sym;
1839
1840 memset (&lookup_data, 0, sizeof (lookup_data));
1841 lookup_data.name = name;
1842 lookup_data.domain = domain;
1843 gdbarch_iterate_over_objfiles_in_search_order
1844 (objfile != NULL ? get_objfile_arch (objfile) : target_gdbarch (),
1845 lookup_symbol_global_iterator_cb, &lookup_data, objfile);
1846
1847 return lookup_data.result;
1848 }
1849
1850 int
1851 symbol_matches_domain (enum language symbol_language,
1852 domain_enum symbol_domain,
1853 domain_enum domain)
1854 {
1855 /* For C++ "struct foo { ... }" also defines a typedef for "foo".
1856 A Java class declaration also defines a typedef for the class.
1857 Similarly, any Ada type declaration implicitly defines a typedef. */
1858 if (symbol_language == language_cplus
1859 || symbol_language == language_d
1860 || symbol_language == language_java
1861 || symbol_language == language_ada)
1862 {
1863 if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN)
1864 && symbol_domain == STRUCT_DOMAIN)
1865 return 1;
1866 }
1867 /* For all other languages, strict match is required. */
1868 return (symbol_domain == domain);
1869 }
1870
1871 /* Look up a type named NAME in the struct_domain. The type returned
1872 must not be opaque -- i.e., must have at least one field
1873 defined. */
1874
1875 struct type *
1876 lookup_transparent_type (const char *name)
1877 {
1878 return current_language->la_lookup_transparent_type (name);
1879 }
1880
1881 /* A helper for basic_lookup_transparent_type that interfaces with the
1882 "quick" symbol table functions. */
1883
1884 static struct type *
1885 basic_lookup_transparent_type_quick (struct objfile *objfile, int kind,
1886 const char *name)
1887 {
1888 struct symtab *symtab;
1889 struct blockvector *bv;
1890 struct block *block;
1891 struct symbol *sym;
1892
1893 if (!objfile->sf)
1894 return NULL;
1895 symtab = objfile->sf->qf->lookup_symbol (objfile, kind, name, STRUCT_DOMAIN);
1896 if (!symtab)
1897 return NULL;
1898
1899 bv = BLOCKVECTOR (symtab);
1900 block = BLOCKVECTOR_BLOCK (bv, kind);
1901 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1902 if (!sym)
1903 error_in_psymtab_expansion (kind, name, symtab);
1904
1905 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1906 return SYMBOL_TYPE (sym);
1907
1908 return NULL;
1909 }
1910
1911 /* The standard implementation of lookup_transparent_type. This code
1912 was modeled on lookup_symbol -- the parts not relevant to looking
1913 up types were just left out. In particular it's assumed here that
1914 types are available in struct_domain and only at file-static or
1915 global blocks. */
1916
1917 struct type *
1918 basic_lookup_transparent_type (const char *name)
1919 {
1920 struct symbol *sym;
1921 struct symtab *s = NULL;
1922 struct blockvector *bv;
1923 struct objfile *objfile;
1924 struct block *block;
1925 struct type *t;
1926
1927 /* Now search all the global symbols. Do the symtab's first, then
1928 check the psymtab's. If a psymtab indicates the existence
1929 of the desired name as a global, then do psymtab-to-symtab
1930 conversion on the fly and return the found symbol. */
1931
1932 ALL_OBJFILES (objfile)
1933 {
1934 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
1935 {
1936 bv = BLOCKVECTOR (s);
1937 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1938 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1939 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1940 {
1941 return SYMBOL_TYPE (sym);
1942 }
1943 }
1944 }
1945
1946 ALL_OBJFILES (objfile)
1947 {
1948 t = basic_lookup_transparent_type_quick (objfile, GLOBAL_BLOCK, name);
1949 if (t)
1950 return t;
1951 }
1952
1953 /* Now search the static file-level symbols.
1954 Not strictly correct, but more useful than an error.
1955 Do the symtab's first, then
1956 check the psymtab's. If a psymtab indicates the existence
1957 of the desired name as a file-level static, then do psymtab-to-symtab
1958 conversion on the fly and return the found symbol. */
1959
1960 ALL_OBJFILES (objfile)
1961 {
1962 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
1963 {
1964 bv = BLOCKVECTOR (s);
1965 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
1966 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1967 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1968 {
1969 return SYMBOL_TYPE (sym);
1970 }
1971 }
1972 }
1973
1974 ALL_OBJFILES (objfile)
1975 {
1976 t = basic_lookup_transparent_type_quick (objfile, STATIC_BLOCK, name);
1977 if (t)
1978 return t;
1979 }
1980
1981 return (struct type *) 0;
1982 }
1983
1984 /* Search BLOCK for symbol NAME in DOMAIN.
1985
1986 Note that if NAME is the demangled form of a C++ symbol, we will fail
1987 to find a match during the binary search of the non-encoded names, but
1988 for now we don't worry about the slight inefficiency of looking for
1989 a match we'll never find, since it will go pretty quick. Once the
1990 binary search terminates, we drop through and do a straight linear
1991 search on the symbols. Each symbol which is marked as being a ObjC/C++
1992 symbol (language_cplus or language_objc set) has both the encoded and
1993 non-encoded names tested for a match. */
1994
1995 struct symbol *
1996 lookup_block_symbol (const struct block *block, const char *name,
1997 const domain_enum domain)
1998 {
1999 struct block_iterator iter;
2000 struct symbol *sym;
2001
2002 if (!BLOCK_FUNCTION (block))
2003 {
2004 for (sym = block_iter_name_first (block, name, &iter);
2005 sym != NULL;
2006 sym = block_iter_name_next (name, &iter))
2007 {
2008 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
2009 SYMBOL_DOMAIN (sym), domain))
2010 return sym;
2011 }
2012 return NULL;
2013 }
2014 else
2015 {
2016 /* Note that parameter symbols do not always show up last in the
2017 list; this loop makes sure to take anything else other than
2018 parameter symbols first; it only uses parameter symbols as a
2019 last resort. Note that this only takes up extra computation
2020 time on a match. */
2021
2022 struct symbol *sym_found = NULL;
2023
2024 for (sym = block_iter_name_first (block, name, &iter);
2025 sym != NULL;
2026 sym = block_iter_name_next (name, &iter))
2027 {
2028 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
2029 SYMBOL_DOMAIN (sym), domain))
2030 {
2031 sym_found = sym;
2032 if (!SYMBOL_IS_ARGUMENT (sym))
2033 {
2034 break;
2035 }
2036 }
2037 }
2038 return (sym_found); /* Will be NULL if not found. */
2039 }
2040 }
2041
2042 /* Iterate over the symbols named NAME, matching DOMAIN, in BLOCK.
2043
2044 For each symbol that matches, CALLBACK is called. The symbol and
2045 DATA are passed to the callback.
2046
2047 If CALLBACK returns zero, the iteration ends. Otherwise, the
2048 search continues. */
2049
2050 void
2051 iterate_over_symbols (const struct block *block, const char *name,
2052 const domain_enum domain,
2053 symbol_found_callback_ftype *callback,
2054 void *data)
2055 {
2056 struct block_iterator iter;
2057 struct symbol *sym;
2058
2059 for (sym = block_iter_name_first (block, name, &iter);
2060 sym != NULL;
2061 sym = block_iter_name_next (name, &iter))
2062 {
2063 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
2064 SYMBOL_DOMAIN (sym), domain))
2065 {
2066 if (!callback (sym, data))
2067 return;
2068 }
2069 }
2070 }
2071
2072 /* Find the symtab associated with PC and SECTION. Look through the
2073 psymtabs and read in another symtab if necessary. */
2074
2075 struct symtab *
2076 find_pc_sect_symtab (CORE_ADDR pc, struct obj_section *section)
2077 {
2078 struct block *b;
2079 struct blockvector *bv;
2080 struct symtab *s = NULL;
2081 struct symtab *best_s = NULL;
2082 struct objfile *objfile;
2083 CORE_ADDR distance = 0;
2084 struct minimal_symbol *msymbol;
2085
2086 /* If we know that this is not a text address, return failure. This is
2087 necessary because we loop based on the block's high and low code
2088 addresses, which do not include the data ranges, and because
2089 we call find_pc_sect_psymtab which has a similar restriction based
2090 on the partial_symtab's texthigh and textlow. */
2091 msymbol = lookup_minimal_symbol_by_pc_section (pc, section).minsym;
2092 if (msymbol
2093 && (MSYMBOL_TYPE (msymbol) == mst_data
2094 || MSYMBOL_TYPE (msymbol) == mst_bss
2095 || MSYMBOL_TYPE (msymbol) == mst_abs
2096 || MSYMBOL_TYPE (msymbol) == mst_file_data
2097 || MSYMBOL_TYPE (msymbol) == mst_file_bss))
2098 return NULL;
2099
2100 /* Search all symtabs for the one whose file contains our address, and which
2101 is the smallest of all the ones containing the address. This is designed
2102 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
2103 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
2104 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
2105
2106 This happens for native ecoff format, where code from included files
2107 gets its own symtab. The symtab for the included file should have
2108 been read in already via the dependency mechanism.
2109 It might be swifter to create several symtabs with the same name
2110 like xcoff does (I'm not sure).
2111
2112 It also happens for objfiles that have their functions reordered.
2113 For these, the symtab we are looking for is not necessarily read in. */
2114
2115 ALL_PRIMARY_SYMTABS (objfile, s)
2116 {
2117 bv = BLOCKVECTOR (s);
2118 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
2119
2120 if (BLOCK_START (b) <= pc
2121 && BLOCK_END (b) > pc
2122 && (distance == 0
2123 || BLOCK_END (b) - BLOCK_START (b) < distance))
2124 {
2125 /* For an objfile that has its functions reordered,
2126 find_pc_psymtab will find the proper partial symbol table
2127 and we simply return its corresponding symtab. */
2128 /* In order to better support objfiles that contain both
2129 stabs and coff debugging info, we continue on if a psymtab
2130 can't be found. */
2131 if ((objfile->flags & OBJF_REORDERED) && objfile->sf)
2132 {
2133 struct symtab *result;
2134
2135 result
2136 = objfile->sf->qf->find_pc_sect_symtab (objfile,
2137 msymbol,
2138 pc, section,
2139 0);
2140 if (result)
2141 return result;
2142 }
2143 if (section != 0)
2144 {
2145 struct block_iterator iter;
2146 struct symbol *sym = NULL;
2147
2148 ALL_BLOCK_SYMBOLS (b, iter, sym)
2149 {
2150 fixup_symbol_section (sym, objfile);
2151 if (matching_obj_sections (SYMBOL_OBJ_SECTION (objfile, sym),
2152 section))
2153 break;
2154 }
2155 if (sym == NULL)
2156 continue; /* No symbol in this symtab matches
2157 section. */
2158 }
2159 distance = BLOCK_END (b) - BLOCK_START (b);
2160 best_s = s;
2161 }
2162 }
2163
2164 if (best_s != NULL)
2165 return (best_s);
2166
2167 /* Not found in symtabs, search the "quick" symtabs (e.g. psymtabs). */
2168
2169 ALL_OBJFILES (objfile)
2170 {
2171 struct symtab *result;
2172
2173 if (!objfile->sf)
2174 continue;
2175 result = objfile->sf->qf->find_pc_sect_symtab (objfile,
2176 msymbol,
2177 pc, section,
2178 1);
2179 if (result)
2180 return result;
2181 }
2182
2183 return NULL;
2184 }
2185
2186 /* Find the symtab associated with PC. Look through the psymtabs and read
2187 in another symtab if necessary. Backward compatibility, no section. */
2188
2189 struct symtab *
2190 find_pc_symtab (CORE_ADDR pc)
2191 {
2192 return find_pc_sect_symtab (pc, find_pc_mapped_section (pc));
2193 }
2194 \f
2195
2196 /* Find the source file and line number for a given PC value and SECTION.
2197 Return a structure containing a symtab pointer, a line number,
2198 and a pc range for the entire source line.
2199 The value's .pc field is NOT the specified pc.
2200 NOTCURRENT nonzero means, if specified pc is on a line boundary,
2201 use the line that ends there. Otherwise, in that case, the line
2202 that begins there is used. */
2203
2204 /* The big complication here is that a line may start in one file, and end just
2205 before the start of another file. This usually occurs when you #include
2206 code in the middle of a subroutine. To properly find the end of a line's PC
2207 range, we must search all symtabs associated with this compilation unit, and
2208 find the one whose first PC is closer than that of the next line in this
2209 symtab. */
2210
2211 /* If it's worth the effort, we could be using a binary search. */
2212
2213 struct symtab_and_line
2214 find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent)
2215 {
2216 struct symtab *s;
2217 struct linetable *l;
2218 int len;
2219 int i;
2220 struct linetable_entry *item;
2221 struct symtab_and_line val;
2222 struct blockvector *bv;
2223 struct bound_minimal_symbol msymbol;
2224 struct minimal_symbol *mfunsym;
2225 struct objfile *objfile;
2226
2227 /* Info on best line seen so far, and where it starts, and its file. */
2228
2229 struct linetable_entry *best = NULL;
2230 CORE_ADDR best_end = 0;
2231 struct symtab *best_symtab = 0;
2232
2233 /* Store here the first line number
2234 of a file which contains the line at the smallest pc after PC.
2235 If we don't find a line whose range contains PC,
2236 we will use a line one less than this,
2237 with a range from the start of that file to the first line's pc. */
2238 struct linetable_entry *alt = NULL;
2239
2240 /* Info on best line seen in this file. */
2241
2242 struct linetable_entry *prev;
2243
2244 /* If this pc is not from the current frame,
2245 it is the address of the end of a call instruction.
2246 Quite likely that is the start of the following statement.
2247 But what we want is the statement containing the instruction.
2248 Fudge the pc to make sure we get that. */
2249
2250 init_sal (&val); /* initialize to zeroes */
2251
2252 val.pspace = current_program_space;
2253
2254 /* It's tempting to assume that, if we can't find debugging info for
2255 any function enclosing PC, that we shouldn't search for line
2256 number info, either. However, GAS can emit line number info for
2257 assembly files --- very helpful when debugging hand-written
2258 assembly code. In such a case, we'd have no debug info for the
2259 function, but we would have line info. */
2260
2261 if (notcurrent)
2262 pc -= 1;
2263
2264 /* elz: added this because this function returned the wrong
2265 information if the pc belongs to a stub (import/export)
2266 to call a shlib function. This stub would be anywhere between
2267 two functions in the target, and the line info was erroneously
2268 taken to be the one of the line before the pc. */
2269
2270 /* RT: Further explanation:
2271
2272 * We have stubs (trampolines) inserted between procedures.
2273 *
2274 * Example: "shr1" exists in a shared library, and a "shr1" stub also
2275 * exists in the main image.
2276 *
2277 * In the minimal symbol table, we have a bunch of symbols
2278 * sorted by start address. The stubs are marked as "trampoline",
2279 * the others appear as text. E.g.:
2280 *
2281 * Minimal symbol table for main image
2282 * main: code for main (text symbol)
2283 * shr1: stub (trampoline symbol)
2284 * foo: code for foo (text symbol)
2285 * ...
2286 * Minimal symbol table for "shr1" image:
2287 * ...
2288 * shr1: code for shr1 (text symbol)
2289 * ...
2290 *
2291 * So the code below is trying to detect if we are in the stub
2292 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
2293 * and if found, do the symbolization from the real-code address
2294 * rather than the stub address.
2295 *
2296 * Assumptions being made about the minimal symbol table:
2297 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
2298 * if we're really in the trampoline.s If we're beyond it (say
2299 * we're in "foo" in the above example), it'll have a closer
2300 * symbol (the "foo" text symbol for example) and will not
2301 * return the trampoline.
2302 * 2. lookup_minimal_symbol_text() will find a real text symbol
2303 * corresponding to the trampoline, and whose address will
2304 * be different than the trampoline address. I put in a sanity
2305 * check for the address being the same, to avoid an
2306 * infinite recursion.
2307 */
2308 msymbol = lookup_minimal_symbol_by_pc (pc);
2309 if (msymbol.minsym != NULL)
2310 if (MSYMBOL_TYPE (msymbol.minsym) == mst_solib_trampoline)
2311 {
2312 mfunsym
2313 = lookup_minimal_symbol_text (SYMBOL_LINKAGE_NAME (msymbol.minsym),
2314 NULL);
2315 if (mfunsym == NULL)
2316 /* I eliminated this warning since it is coming out
2317 * in the following situation:
2318 * gdb shmain // test program with shared libraries
2319 * (gdb) break shr1 // function in shared lib
2320 * Warning: In stub for ...
2321 * In the above situation, the shared lib is not loaded yet,
2322 * so of course we can't find the real func/line info,
2323 * but the "break" still works, and the warning is annoying.
2324 * So I commented out the warning. RT */
2325 /* warning ("In stub for %s; unable to find real function/line info",
2326 SYMBOL_LINKAGE_NAME (msymbol)); */
2327 ;
2328 /* fall through */
2329 else if (SYMBOL_VALUE_ADDRESS (mfunsym)
2330 == SYMBOL_VALUE_ADDRESS (msymbol.minsym))
2331 /* Avoid infinite recursion */
2332 /* See above comment about why warning is commented out. */
2333 /* warning ("In stub for %s; unable to find real function/line info",
2334 SYMBOL_LINKAGE_NAME (msymbol)); */
2335 ;
2336 /* fall through */
2337 else
2338 return find_pc_line (SYMBOL_VALUE_ADDRESS (mfunsym), 0);
2339 }
2340
2341
2342 s = find_pc_sect_symtab (pc, section);
2343 if (!s)
2344 {
2345 /* If no symbol information, return previous pc. */
2346 if (notcurrent)
2347 pc++;
2348 val.pc = pc;
2349 return val;
2350 }
2351
2352 bv = BLOCKVECTOR (s);
2353 objfile = s->objfile;
2354
2355 /* Look at all the symtabs that share this blockvector.
2356 They all have the same apriori range, that we found was right;
2357 but they have different line tables. */
2358
2359 ALL_OBJFILE_SYMTABS (objfile, s)
2360 {
2361 if (BLOCKVECTOR (s) != bv)
2362 continue;
2363
2364 /* Find the best line in this symtab. */
2365 l = LINETABLE (s);
2366 if (!l)
2367 continue;
2368 len = l->nitems;
2369 if (len <= 0)
2370 {
2371 /* I think len can be zero if the symtab lacks line numbers
2372 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
2373 I'm not sure which, and maybe it depends on the symbol
2374 reader). */
2375 continue;
2376 }
2377
2378 prev = NULL;
2379 item = l->item; /* Get first line info. */
2380
2381 /* Is this file's first line closer than the first lines of other files?
2382 If so, record this file, and its first line, as best alternate. */
2383 if (item->pc > pc && (!alt || item->pc < alt->pc))
2384 alt = item;
2385
2386 for (i = 0; i < len; i++, item++)
2387 {
2388 /* Leave prev pointing to the linetable entry for the last line
2389 that started at or before PC. */
2390 if (item->pc > pc)
2391 break;
2392
2393 prev = item;
2394 }
2395
2396 /* At this point, prev points at the line whose start addr is <= pc, and
2397 item points at the next line. If we ran off the end of the linetable
2398 (pc >= start of the last line), then prev == item. If pc < start of
2399 the first line, prev will not be set. */
2400
2401 /* Is this file's best line closer than the best in the other files?
2402 If so, record this file, and its best line, as best so far. Don't
2403 save prev if it represents the end of a function (i.e. line number
2404 0) instead of a real line. */
2405
2406 if (prev && prev->line && (!best || prev->pc > best->pc))
2407 {
2408 best = prev;
2409 best_symtab = s;
2410
2411 /* Discard BEST_END if it's before the PC of the current BEST. */
2412 if (best_end <= best->pc)
2413 best_end = 0;
2414 }
2415
2416 /* If another line (denoted by ITEM) is in the linetable and its
2417 PC is after BEST's PC, but before the current BEST_END, then
2418 use ITEM's PC as the new best_end. */
2419 if (best && i < len && item->pc > best->pc
2420 && (best_end == 0 || best_end > item->pc))
2421 best_end = item->pc;
2422 }
2423
2424 if (!best_symtab)
2425 {
2426 /* If we didn't find any line number info, just return zeros.
2427 We used to return alt->line - 1 here, but that could be
2428 anywhere; if we don't have line number info for this PC,
2429 don't make some up. */
2430 val.pc = pc;
2431 }
2432 else if (best->line == 0)
2433 {
2434 /* If our best fit is in a range of PC's for which no line
2435 number info is available (line number is zero) then we didn't
2436 find any valid line information. */
2437 val.pc = pc;
2438 }
2439 else
2440 {
2441 val.symtab = best_symtab;
2442 val.line = best->line;
2443 val.pc = best->pc;
2444 if (best_end && (!alt || best_end < alt->pc))
2445 val.end = best_end;
2446 else if (alt)
2447 val.end = alt->pc;
2448 else
2449 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
2450 }
2451 val.section = section;
2452 return val;
2453 }
2454
2455 /* Backward compatibility (no section). */
2456
2457 struct symtab_and_line
2458 find_pc_line (CORE_ADDR pc, int notcurrent)
2459 {
2460 struct obj_section *section;
2461
2462 section = find_pc_overlay (pc);
2463 if (pc_in_unmapped_range (pc, section))
2464 pc = overlay_mapped_address (pc, section);
2465 return find_pc_sect_line (pc, section, notcurrent);
2466 }
2467 \f
2468 /* Find line number LINE in any symtab whose name is the same as
2469 SYMTAB.
2470
2471 If found, return the symtab that contains the linetable in which it was
2472 found, set *INDEX to the index in the linetable of the best entry
2473 found, and set *EXACT_MATCH nonzero if the value returned is an
2474 exact match.
2475
2476 If not found, return NULL. */
2477
2478 struct symtab *
2479 find_line_symtab (struct symtab *symtab, int line,
2480 int *index, int *exact_match)
2481 {
2482 int exact = 0; /* Initialized here to avoid a compiler warning. */
2483
2484 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
2485 so far seen. */
2486
2487 int best_index;
2488 struct linetable *best_linetable;
2489 struct symtab *best_symtab;
2490
2491 /* First try looking it up in the given symtab. */
2492 best_linetable = LINETABLE (symtab);
2493 best_symtab = symtab;
2494 best_index = find_line_common (best_linetable, line, &exact, 0);
2495 if (best_index < 0 || !exact)
2496 {
2497 /* Didn't find an exact match. So we better keep looking for
2498 another symtab with the same name. In the case of xcoff,
2499 multiple csects for one source file (produced by IBM's FORTRAN
2500 compiler) produce multiple symtabs (this is unavoidable
2501 assuming csects can be at arbitrary places in memory and that
2502 the GLOBAL_BLOCK of a symtab has a begin and end address). */
2503
2504 /* BEST is the smallest linenumber > LINE so far seen,
2505 or 0 if none has been seen so far.
2506 BEST_INDEX and BEST_LINETABLE identify the item for it. */
2507 int best;
2508
2509 struct objfile *objfile;
2510 struct symtab *s;
2511
2512 if (best_index >= 0)
2513 best = best_linetable->item[best_index].line;
2514 else
2515 best = 0;
2516
2517 ALL_OBJFILES (objfile)
2518 {
2519 if (objfile->sf)
2520 objfile->sf->qf->expand_symtabs_with_fullname (objfile,
2521 symtab_to_fullname (symtab));
2522 }
2523
2524 ALL_SYMTABS (objfile, s)
2525 {
2526 struct linetable *l;
2527 int ind;
2528
2529 if (FILENAME_CMP (symtab->filename, s->filename) != 0)
2530 continue;
2531 if (FILENAME_CMP (symtab_to_fullname (symtab),
2532 symtab_to_fullname (s)) != 0)
2533 continue;
2534 l = LINETABLE (s);
2535 ind = find_line_common (l, line, &exact, 0);
2536 if (ind >= 0)
2537 {
2538 if (exact)
2539 {
2540 best_index = ind;
2541 best_linetable = l;
2542 best_symtab = s;
2543 goto done;
2544 }
2545 if (best == 0 || l->item[ind].line < best)
2546 {
2547 best = l->item[ind].line;
2548 best_index = ind;
2549 best_linetable = l;
2550 best_symtab = s;
2551 }
2552 }
2553 }
2554 }
2555 done:
2556 if (best_index < 0)
2557 return NULL;
2558
2559 if (index)
2560 *index = best_index;
2561 if (exact_match)
2562 *exact_match = exact;
2563
2564 return best_symtab;
2565 }
2566
2567 /* Given SYMTAB, returns all the PCs function in the symtab that
2568 exactly match LINE. Returns NULL if there are no exact matches,
2569 but updates BEST_ITEM in this case. */
2570
2571 VEC (CORE_ADDR) *
2572 find_pcs_for_symtab_line (struct symtab *symtab, int line,
2573 struct linetable_entry **best_item)
2574 {
2575 int start = 0;
2576 VEC (CORE_ADDR) *result = NULL;
2577
2578 /* First, collect all the PCs that are at this line. */
2579 while (1)
2580 {
2581 int was_exact;
2582 int idx;
2583
2584 idx = find_line_common (LINETABLE (symtab), line, &was_exact, start);
2585 if (idx < 0)
2586 break;
2587
2588 if (!was_exact)
2589 {
2590 struct linetable_entry *item = &LINETABLE (symtab)->item[idx];
2591
2592 if (*best_item == NULL || item->line < (*best_item)->line)
2593 *best_item = item;
2594
2595 break;
2596 }
2597
2598 VEC_safe_push (CORE_ADDR, result, LINETABLE (symtab)->item[idx].pc);
2599 start = idx + 1;
2600 }
2601
2602 return result;
2603 }
2604
2605 \f
2606 /* Set the PC value for a given source file and line number and return true.
2607 Returns zero for invalid line number (and sets the PC to 0).
2608 The source file is specified with a struct symtab. */
2609
2610 int
2611 find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
2612 {
2613 struct linetable *l;
2614 int ind;
2615
2616 *pc = 0;
2617 if (symtab == 0)
2618 return 0;
2619
2620 symtab = find_line_symtab (symtab, line, &ind, NULL);
2621 if (symtab != NULL)
2622 {
2623 l = LINETABLE (symtab);
2624 *pc = l->item[ind].pc;
2625 return 1;
2626 }
2627 else
2628 return 0;
2629 }
2630
2631 /* Find the range of pc values in a line.
2632 Store the starting pc of the line into *STARTPTR
2633 and the ending pc (start of next line) into *ENDPTR.
2634 Returns 1 to indicate success.
2635 Returns 0 if could not find the specified line. */
2636
2637 int
2638 find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
2639 CORE_ADDR *endptr)
2640 {
2641 CORE_ADDR startaddr;
2642 struct symtab_and_line found_sal;
2643
2644 startaddr = sal.pc;
2645 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
2646 return 0;
2647
2648 /* This whole function is based on address. For example, if line 10 has
2649 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
2650 "info line *0x123" should say the line goes from 0x100 to 0x200
2651 and "info line *0x355" should say the line goes from 0x300 to 0x400.
2652 This also insures that we never give a range like "starts at 0x134
2653 and ends at 0x12c". */
2654
2655 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
2656 if (found_sal.line != sal.line)
2657 {
2658 /* The specified line (sal) has zero bytes. */
2659 *startptr = found_sal.pc;
2660 *endptr = found_sal.pc;
2661 }
2662 else
2663 {
2664 *startptr = found_sal.pc;
2665 *endptr = found_sal.end;
2666 }
2667 return 1;
2668 }
2669
2670 /* Given a line table and a line number, return the index into the line
2671 table for the pc of the nearest line whose number is >= the specified one.
2672 Return -1 if none is found. The value is >= 0 if it is an index.
2673 START is the index at which to start searching the line table.
2674
2675 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
2676
2677 static int
2678 find_line_common (struct linetable *l, int lineno,
2679 int *exact_match, int start)
2680 {
2681 int i;
2682 int len;
2683
2684 /* BEST is the smallest linenumber > LINENO so far seen,
2685 or 0 if none has been seen so far.
2686 BEST_INDEX identifies the item for it. */
2687
2688 int best_index = -1;
2689 int best = 0;
2690
2691 *exact_match = 0;
2692
2693 if (lineno <= 0)
2694 return -1;
2695 if (l == 0)
2696 return -1;
2697
2698 len = l->nitems;
2699 for (i = start; i < len; i++)
2700 {
2701 struct linetable_entry *item = &(l->item[i]);
2702
2703 if (item->line == lineno)
2704 {
2705 /* Return the first (lowest address) entry which matches. */
2706 *exact_match = 1;
2707 return i;
2708 }
2709
2710 if (item->line > lineno && (best == 0 || item->line < best))
2711 {
2712 best = item->line;
2713 best_index = i;
2714 }
2715 }
2716
2717 /* If we got here, we didn't get an exact match. */
2718 return best_index;
2719 }
2720
2721 int
2722 find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
2723 {
2724 struct symtab_and_line sal;
2725
2726 sal = find_pc_line (pc, 0);
2727 *startptr = sal.pc;
2728 *endptr = sal.end;
2729 return sal.symtab != 0;
2730 }
2731
2732 /* Given a function start address FUNC_ADDR and SYMTAB, find the first
2733 address for that function that has an entry in SYMTAB's line info
2734 table. If such an entry cannot be found, return FUNC_ADDR
2735 unaltered. */
2736
2737 static CORE_ADDR
2738 skip_prologue_using_lineinfo (CORE_ADDR func_addr, struct symtab *symtab)
2739 {
2740 CORE_ADDR func_start, func_end;
2741 struct linetable *l;
2742 int i;
2743
2744 /* Give up if this symbol has no lineinfo table. */
2745 l = LINETABLE (symtab);
2746 if (l == NULL)
2747 return func_addr;
2748
2749 /* Get the range for the function's PC values, or give up if we
2750 cannot, for some reason. */
2751 if (!find_pc_partial_function (func_addr, NULL, &func_start, &func_end))
2752 return func_addr;
2753
2754 /* Linetable entries are ordered by PC values, see the commentary in
2755 symtab.h where `struct linetable' is defined. Thus, the first
2756 entry whose PC is in the range [FUNC_START..FUNC_END[ is the
2757 address we are looking for. */
2758 for (i = 0; i < l->nitems; i++)
2759 {
2760 struct linetable_entry *item = &(l->item[i]);
2761
2762 /* Don't use line numbers of zero, they mark special entries in
2763 the table. See the commentary on symtab.h before the
2764 definition of struct linetable. */
2765 if (item->line > 0 && func_start <= item->pc && item->pc < func_end)
2766 return item->pc;
2767 }
2768
2769 return func_addr;
2770 }
2771
2772 /* Given a function symbol SYM, find the symtab and line for the start
2773 of the function.
2774 If the argument FUNFIRSTLINE is nonzero, we want the first line
2775 of real code inside the function. */
2776
2777 struct symtab_and_line
2778 find_function_start_sal (struct symbol *sym, int funfirstline)
2779 {
2780 struct symtab_and_line sal;
2781
2782 fixup_symbol_section (sym, NULL);
2783 sal = find_pc_sect_line (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)),
2784 SYMBOL_OBJ_SECTION (SYMBOL_OBJFILE (sym), sym), 0);
2785
2786 /* We always should have a line for the function start address.
2787 If we don't, something is odd. Create a plain SAL refering
2788 just the PC and hope that skip_prologue_sal (if requested)
2789 can find a line number for after the prologue. */
2790 if (sal.pc < BLOCK_START (SYMBOL_BLOCK_VALUE (sym)))
2791 {
2792 init_sal (&sal);
2793 sal.pspace = current_program_space;
2794 sal.pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
2795 sal.section = SYMBOL_OBJ_SECTION (SYMBOL_OBJFILE (sym), sym);
2796 }
2797
2798 if (funfirstline)
2799 skip_prologue_sal (&sal);
2800
2801 return sal;
2802 }
2803
2804 /* Adjust SAL to the first instruction past the function prologue.
2805 If the PC was explicitly specified, the SAL is not changed.
2806 If the line number was explicitly specified, at most the SAL's PC
2807 is updated. If SAL is already past the prologue, then do nothing. */
2808
2809 void
2810 skip_prologue_sal (struct symtab_and_line *sal)
2811 {
2812 struct symbol *sym;
2813 struct symtab_and_line start_sal;
2814 struct cleanup *old_chain;
2815 CORE_ADDR pc, saved_pc;
2816 struct obj_section *section;
2817 const char *name;
2818 struct objfile *objfile;
2819 struct gdbarch *gdbarch;
2820 struct block *b, *function_block;
2821 int force_skip, skip;
2822
2823 /* Do not change the SAL if PC was specified explicitly. */
2824 if (sal->explicit_pc)
2825 return;
2826
2827 old_chain = save_current_space_and_thread ();
2828 switch_to_program_space_and_thread (sal->pspace);
2829
2830 sym = find_pc_sect_function (sal->pc, sal->section);
2831 if (sym != NULL)
2832 {
2833 fixup_symbol_section (sym, NULL);
2834
2835 pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
2836 section = SYMBOL_OBJ_SECTION (SYMBOL_OBJFILE (sym), sym);
2837 name = SYMBOL_LINKAGE_NAME (sym);
2838 objfile = SYMBOL_SYMTAB (sym)->objfile;
2839 }
2840 else
2841 {
2842 struct bound_minimal_symbol msymbol
2843 = lookup_minimal_symbol_by_pc_section (sal->pc, sal->section);
2844
2845 if (msymbol.minsym == NULL)
2846 {
2847 do_cleanups (old_chain);
2848 return;
2849 }
2850
2851 objfile = msymbol.objfile;
2852 pc = SYMBOL_VALUE_ADDRESS (msymbol.minsym);
2853 section = SYMBOL_OBJ_SECTION (objfile, msymbol.minsym);
2854 name = SYMBOL_LINKAGE_NAME (msymbol.minsym);
2855 }
2856
2857 gdbarch = get_objfile_arch (objfile);
2858
2859 /* Process the prologue in two passes. In the first pass try to skip the
2860 prologue (SKIP is true) and verify there is a real need for it (indicated
2861 by FORCE_SKIP). If no such reason was found run a second pass where the
2862 prologue is not skipped (SKIP is false). */
2863
2864 skip = 1;
2865 force_skip = 1;
2866
2867 /* Be conservative - allow direct PC (without skipping prologue) only if we
2868 have proven the CU (Compilation Unit) supports it. sal->SYMTAB does not
2869 have to be set by the caller so we use SYM instead. */
2870 if (sym && SYMBOL_SYMTAB (sym)->locations_valid)
2871 force_skip = 0;
2872
2873 saved_pc = pc;
2874 do
2875 {
2876 pc = saved_pc;
2877
2878 /* If the function is in an unmapped overlay, use its unmapped LMA address,
2879 so that gdbarch_skip_prologue has something unique to work on. */
2880 if (section_is_overlay (section) && !section_is_mapped (section))
2881 pc = overlay_unmapped_address (pc, section);
2882
2883 /* Skip "first line" of function (which is actually its prologue). */
2884 pc += gdbarch_deprecated_function_start_offset (gdbarch);
2885 if (skip)
2886 pc = gdbarch_skip_prologue (gdbarch, pc);
2887
2888 /* For overlays, map pc back into its mapped VMA range. */
2889 pc = overlay_mapped_address (pc, section);
2890
2891 /* Calculate line number. */
2892 start_sal = find_pc_sect_line (pc, section, 0);
2893
2894 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
2895 line is still part of the same function. */
2896 if (skip && start_sal.pc != pc
2897 && (sym ? (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) <= start_sal.end
2898 && start_sal.end < BLOCK_END (SYMBOL_BLOCK_VALUE (sym)))
2899 : (lookup_minimal_symbol_by_pc_section (start_sal.end, section).minsym
2900 == lookup_minimal_symbol_by_pc_section (pc, section).minsym)))
2901 {
2902 /* First pc of next line */
2903 pc = start_sal.end;
2904 /* Recalculate the line number (might not be N+1). */
2905 start_sal = find_pc_sect_line (pc, section, 0);
2906 }
2907
2908 /* On targets with executable formats that don't have a concept of
2909 constructors (ELF with .init has, PE doesn't), gcc emits a call
2910 to `__main' in `main' between the prologue and before user
2911 code. */
2912 if (gdbarch_skip_main_prologue_p (gdbarch)
2913 && name && strcmp_iw (name, "main") == 0)
2914 {
2915 pc = gdbarch_skip_main_prologue (gdbarch, pc);
2916 /* Recalculate the line number (might not be N+1). */
2917 start_sal = find_pc_sect_line (pc, section, 0);
2918 force_skip = 1;
2919 }
2920 }
2921 while (!force_skip && skip--);
2922
2923 /* If we still don't have a valid source line, try to find the first
2924 PC in the lineinfo table that belongs to the same function. This
2925 happens with COFF debug info, which does not seem to have an
2926 entry in lineinfo table for the code after the prologue which has
2927 no direct relation to source. For example, this was found to be
2928 the case with the DJGPP target using "gcc -gcoff" when the
2929 compiler inserted code after the prologue to make sure the stack
2930 is aligned. */
2931 if (!force_skip && sym && start_sal.symtab == NULL)
2932 {
2933 pc = skip_prologue_using_lineinfo (pc, SYMBOL_SYMTAB (sym));
2934 /* Recalculate the line number. */
2935 start_sal = find_pc_sect_line (pc, section, 0);
2936 }
2937
2938 do_cleanups (old_chain);
2939
2940 /* If we're already past the prologue, leave SAL unchanged. Otherwise
2941 forward SAL to the end of the prologue. */
2942 if (sal->pc >= pc)
2943 return;
2944
2945 sal->pc = pc;
2946 sal->section = section;
2947
2948 /* Unless the explicit_line flag was set, update the SAL line
2949 and symtab to correspond to the modified PC location. */
2950 if (sal->explicit_line)
2951 return;
2952
2953 sal->symtab = start_sal.symtab;
2954 sal->line = start_sal.line;
2955 sal->end = start_sal.end;
2956
2957 /* Check if we are now inside an inlined function. If we can,
2958 use the call site of the function instead. */
2959 b = block_for_pc_sect (sal->pc, sal->section);
2960 function_block = NULL;
2961 while (b != NULL)
2962 {
2963 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
2964 function_block = b;
2965 else if (BLOCK_FUNCTION (b) != NULL)
2966 break;
2967 b = BLOCK_SUPERBLOCK (b);
2968 }
2969 if (function_block != NULL
2970 && SYMBOL_LINE (BLOCK_FUNCTION (function_block)) != 0)
2971 {
2972 sal->line = SYMBOL_LINE (BLOCK_FUNCTION (function_block));
2973 sal->symtab = SYMBOL_SYMTAB (BLOCK_FUNCTION (function_block));
2974 }
2975 }
2976
2977 /* If P is of the form "operator[ \t]+..." where `...' is
2978 some legitimate operator text, return a pointer to the
2979 beginning of the substring of the operator text.
2980 Otherwise, return "". */
2981
2982 static char *
2983 operator_chars (char *p, char **end)
2984 {
2985 *end = "";
2986 if (strncmp (p, "operator", 8))
2987 return *end;
2988 p += 8;
2989
2990 /* Don't get faked out by `operator' being part of a longer
2991 identifier. */
2992 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
2993 return *end;
2994
2995 /* Allow some whitespace between `operator' and the operator symbol. */
2996 while (*p == ' ' || *p == '\t')
2997 p++;
2998
2999 /* Recognize 'operator TYPENAME'. */
3000
3001 if (isalpha (*p) || *p == '_' || *p == '$')
3002 {
3003 char *q = p + 1;
3004
3005 while (isalnum (*q) || *q == '_' || *q == '$')
3006 q++;
3007 *end = q;
3008 return p;
3009 }
3010
3011 while (*p)
3012 switch (*p)
3013 {
3014 case '\\': /* regexp quoting */
3015 if (p[1] == '*')
3016 {
3017 if (p[2] == '=') /* 'operator\*=' */
3018 *end = p + 3;
3019 else /* 'operator\*' */
3020 *end = p + 2;
3021 return p;
3022 }
3023 else if (p[1] == '[')
3024 {
3025 if (p[2] == ']')
3026 error (_("mismatched quoting on brackets, "
3027 "try 'operator\\[\\]'"));
3028 else if (p[2] == '\\' && p[3] == ']')
3029 {
3030 *end = p + 4; /* 'operator\[\]' */
3031 return p;
3032 }
3033 else
3034 error (_("nothing is allowed between '[' and ']'"));
3035 }
3036 else
3037 {
3038 /* Gratuitous qoute: skip it and move on. */
3039 p++;
3040 continue;
3041 }
3042 break;
3043 case '!':
3044 case '=':
3045 case '*':
3046 case '/':
3047 case '%':
3048 case '^':
3049 if (p[1] == '=')
3050 *end = p + 2;
3051 else
3052 *end = p + 1;
3053 return p;
3054 case '<':
3055 case '>':
3056 case '+':
3057 case '-':
3058 case '&':
3059 case '|':
3060 if (p[0] == '-' && p[1] == '>')
3061 {
3062 /* Struct pointer member operator 'operator->'. */
3063 if (p[2] == '*')
3064 {
3065 *end = p + 3; /* 'operator->*' */
3066 return p;
3067 }
3068 else if (p[2] == '\\')
3069 {
3070 *end = p + 4; /* Hopefully 'operator->\*' */
3071 return p;
3072 }
3073 else
3074 {
3075 *end = p + 2; /* 'operator->' */
3076 return p;
3077 }
3078 }
3079 if (p[1] == '=' || p[1] == p[0])
3080 *end = p + 2;
3081 else
3082 *end = p + 1;
3083 return p;
3084 case '~':
3085 case ',':
3086 *end = p + 1;
3087 return p;
3088 case '(':
3089 if (p[1] != ')')
3090 error (_("`operator ()' must be specified "
3091 "without whitespace in `()'"));
3092 *end = p + 2;
3093 return p;
3094 case '?':
3095 if (p[1] != ':')
3096 error (_("`operator ?:' must be specified "
3097 "without whitespace in `?:'"));
3098 *end = p + 2;
3099 return p;
3100 case '[':
3101 if (p[1] != ']')
3102 error (_("`operator []' must be specified "
3103 "without whitespace in `[]'"));
3104 *end = p + 2;
3105 return p;
3106 default:
3107 error (_("`operator %s' not supported"), p);
3108 break;
3109 }
3110
3111 *end = "";
3112 return *end;
3113 }
3114 \f
3115
3116 /* Cache to watch for file names already seen by filename_seen. */
3117
3118 struct filename_seen_cache
3119 {
3120 /* Table of files seen so far. */
3121 htab_t tab;
3122 /* Initial size of the table. It automagically grows from here. */
3123 #define INITIAL_FILENAME_SEEN_CACHE_SIZE 100
3124 };
3125
3126 /* filename_seen_cache constructor. */
3127
3128 static struct filename_seen_cache *
3129 create_filename_seen_cache (void)
3130 {
3131 struct filename_seen_cache *cache;
3132
3133 cache = XNEW (struct filename_seen_cache);
3134 cache->tab = htab_create_alloc (INITIAL_FILENAME_SEEN_CACHE_SIZE,
3135 filename_hash, filename_eq,
3136 NULL, xcalloc, xfree);
3137
3138 return cache;
3139 }
3140
3141 /* Empty the cache, but do not delete it. */
3142
3143 static void
3144 clear_filename_seen_cache (struct filename_seen_cache *cache)
3145 {
3146 htab_empty (cache->tab);
3147 }
3148
3149 /* filename_seen_cache destructor.
3150 This takes a void * argument as it is generally used as a cleanup. */
3151
3152 static void
3153 delete_filename_seen_cache (void *ptr)
3154 {
3155 struct filename_seen_cache *cache = ptr;
3156
3157 htab_delete (cache->tab);
3158 xfree (cache);
3159 }
3160
3161 /* If FILE is not already in the table of files in CACHE, return zero;
3162 otherwise return non-zero. Optionally add FILE to the table if ADD
3163 is non-zero.
3164
3165 NOTE: We don't manage space for FILE, we assume FILE lives as long
3166 as the caller needs. */
3167
3168 static int
3169 filename_seen (struct filename_seen_cache *cache, const char *file, int add)
3170 {
3171 void **slot;
3172
3173 /* Is FILE in tab? */
3174 slot = htab_find_slot (cache->tab, file, add ? INSERT : NO_INSERT);
3175 if (*slot != NULL)
3176 return 1;
3177
3178 /* No; maybe add it to tab. */
3179 if (add)
3180 *slot = (char *) file;
3181
3182 return 0;
3183 }
3184
3185 /* Data structure to maintain printing state for output_source_filename. */
3186
3187 struct output_source_filename_data
3188 {
3189 /* Cache of what we've seen so far. */
3190 struct filename_seen_cache *filename_seen_cache;
3191
3192 /* Flag of whether we're printing the first one. */
3193 int first;
3194 };
3195
3196 /* Slave routine for sources_info. Force line breaks at ,'s.
3197 NAME is the name to print.
3198 DATA contains the state for printing and watching for duplicates. */
3199
3200 static void
3201 output_source_filename (const char *name,
3202 struct output_source_filename_data *data)
3203 {
3204 /* Since a single source file can result in several partial symbol
3205 tables, we need to avoid printing it more than once. Note: if
3206 some of the psymtabs are read in and some are not, it gets
3207 printed both under "Source files for which symbols have been
3208 read" and "Source files for which symbols will be read in on
3209 demand". I consider this a reasonable way to deal with the
3210 situation. I'm not sure whether this can also happen for
3211 symtabs; it doesn't hurt to check. */
3212
3213 /* Was NAME already seen? */
3214 if (filename_seen (data->filename_seen_cache, name, 1))
3215 {
3216 /* Yes; don't print it again. */
3217 return;
3218 }
3219
3220 /* No; print it and reset *FIRST. */
3221 if (! data->first)
3222 printf_filtered (", ");
3223 data->first = 0;
3224
3225 wrap_here ("");
3226 fputs_filtered (name, gdb_stdout);
3227 }
3228
3229 /* A callback for map_partial_symbol_filenames. */
3230
3231 static void
3232 output_partial_symbol_filename (const char *filename, const char *fullname,
3233 void *data)
3234 {
3235 output_source_filename (fullname ? fullname : filename, data);
3236 }
3237
3238 static void
3239 sources_info (char *ignore, int from_tty)
3240 {
3241 struct symtab *s;
3242 struct objfile *objfile;
3243 struct output_source_filename_data data;
3244 struct cleanup *cleanups;
3245
3246 if (!have_full_symbols () && !have_partial_symbols ())
3247 {
3248 error (_("No symbol table is loaded. Use the \"file\" command."));
3249 }
3250
3251 data.filename_seen_cache = create_filename_seen_cache ();
3252 cleanups = make_cleanup (delete_filename_seen_cache,
3253 data.filename_seen_cache);
3254
3255 printf_filtered ("Source files for which symbols have been read in:\n\n");
3256
3257 data.first = 1;
3258 ALL_SYMTABS (objfile, s)
3259 {
3260 const char *fullname = symtab_to_fullname (s);
3261
3262 output_source_filename (fullname, &data);
3263 }
3264 printf_filtered ("\n\n");
3265
3266 printf_filtered ("Source files for which symbols "
3267 "will be read in on demand:\n\n");
3268
3269 clear_filename_seen_cache (data.filename_seen_cache);
3270 data.first = 1;
3271 map_partial_symbol_filenames (output_partial_symbol_filename, &data,
3272 1 /*need_fullname*/);
3273 printf_filtered ("\n");
3274
3275 do_cleanups (cleanups);
3276 }
3277
3278 /* Compare FILE against all the NFILES entries of FILES. If BASENAMES is
3279 non-zero compare only lbasename of FILES. */
3280
3281 static int
3282 file_matches (const char *file, char *files[], int nfiles, int basenames)
3283 {
3284 int i;
3285
3286 if (file != NULL && nfiles != 0)
3287 {
3288 for (i = 0; i < nfiles; i++)
3289 {
3290 if (compare_filenames_for_search (file, (basenames
3291 ? lbasename (files[i])
3292 : files[i])))
3293 return 1;
3294 }
3295 }
3296 else if (nfiles == 0)
3297 return 1;
3298 return 0;
3299 }
3300
3301 /* Free any memory associated with a search. */
3302
3303 void
3304 free_search_symbols (struct symbol_search *symbols)
3305 {
3306 struct symbol_search *p;
3307 struct symbol_search *next;
3308
3309 for (p = symbols; p != NULL; p = next)
3310 {
3311 next = p->next;
3312 xfree (p);
3313 }
3314 }
3315
3316 static void
3317 do_free_search_symbols_cleanup (void *symbolsp)
3318 {
3319 struct symbol_search *symbols = *(struct symbol_search **) symbolsp;
3320
3321 free_search_symbols (symbols);
3322 }
3323
3324 struct cleanup *
3325 make_cleanup_free_search_symbols (struct symbol_search **symbolsp)
3326 {
3327 return make_cleanup (do_free_search_symbols_cleanup, symbolsp);
3328 }
3329
3330 /* Helper function for sort_search_symbols_remove_dups and qsort. Can only
3331 sort symbols, not minimal symbols. */
3332
3333 static int
3334 compare_search_syms (const void *sa, const void *sb)
3335 {
3336 struct symbol_search *sym_a = *(struct symbol_search **) sa;
3337 struct symbol_search *sym_b = *(struct symbol_search **) sb;
3338 int c;
3339
3340 c = FILENAME_CMP (sym_a->symtab->filename, sym_b->symtab->filename);
3341 if (c != 0)
3342 return c;
3343
3344 if (sym_a->block != sym_b->block)
3345 return sym_a->block - sym_b->block;
3346
3347 return strcmp (SYMBOL_PRINT_NAME (sym_a->symbol),
3348 SYMBOL_PRINT_NAME (sym_b->symbol));
3349 }
3350
3351 /* Sort the NFOUND symbols in list FOUND and remove duplicates.
3352 The duplicates are freed, and the new list is returned in
3353 *NEW_HEAD, *NEW_TAIL. */
3354
3355 static void
3356 sort_search_symbols_remove_dups (struct symbol_search *found, int nfound,
3357 struct symbol_search **new_head,
3358 struct symbol_search **new_tail)
3359 {
3360 struct symbol_search **symbols, *symp, *old_next;
3361 int i, j, nunique;
3362
3363 gdb_assert (found != NULL && nfound > 0);
3364
3365 /* Build an array out of the list so we can easily sort them. */
3366 symbols = (struct symbol_search **) xmalloc (sizeof (struct symbol_search *)
3367 * nfound);
3368 symp = found;
3369 for (i = 0; i < nfound; i++)
3370 {
3371 gdb_assert (symp != NULL);
3372 gdb_assert (symp->block >= 0 && symp->block <= 1);
3373 symbols[i] = symp;
3374 symp = symp->next;
3375 }
3376 gdb_assert (symp == NULL);
3377
3378 qsort (symbols, nfound, sizeof (struct symbol_search *),
3379 compare_search_syms);
3380
3381 /* Collapse out the dups. */
3382 for (i = 1, j = 1; i < nfound; ++i)
3383 {
3384 if (compare_search_syms (&symbols[j - 1], &symbols[i]) != 0)
3385 symbols[j++] = symbols[i];
3386 else
3387 xfree (symbols[i]);
3388 }
3389 nunique = j;
3390 symbols[j - 1]->next = NULL;
3391
3392 /* Rebuild the linked list. */
3393 for (i = 0; i < nunique - 1; i++)
3394 symbols[i]->next = symbols[i + 1];
3395 symbols[nunique - 1]->next = NULL;
3396
3397 *new_head = symbols[0];
3398 *new_tail = symbols[nunique - 1];
3399 xfree (symbols);
3400 }
3401
3402 /* An object of this type is passed as the user_data to the
3403 expand_symtabs_matching method. */
3404 struct search_symbols_data
3405 {
3406 int nfiles;
3407 char **files;
3408
3409 /* It is true if PREG contains valid data, false otherwise. */
3410 unsigned preg_p : 1;
3411 regex_t preg;
3412 };
3413
3414 /* A callback for expand_symtabs_matching. */
3415
3416 static int
3417 search_symbols_file_matches (const char *filename, void *user_data,
3418 int basenames)
3419 {
3420 struct search_symbols_data *data = user_data;
3421
3422 return file_matches (filename, data->files, data->nfiles, basenames);
3423 }
3424
3425 /* A callback for expand_symtabs_matching. */
3426
3427 static int
3428 search_symbols_name_matches (const char *symname, void *user_data)
3429 {
3430 struct search_symbols_data *data = user_data;
3431
3432 return !data->preg_p || regexec (&data->preg, symname, 0, NULL, 0) == 0;
3433 }
3434
3435 /* Search the symbol table for matches to the regular expression REGEXP,
3436 returning the results in *MATCHES.
3437
3438 Only symbols of KIND are searched:
3439 VARIABLES_DOMAIN - search all symbols, excluding functions, type names,
3440 and constants (enums)
3441 FUNCTIONS_DOMAIN - search all functions
3442 TYPES_DOMAIN - search all type names
3443 ALL_DOMAIN - an internal error for this function
3444
3445 free_search_symbols should be called when *MATCHES is no longer needed.
3446
3447 Within each file the results are sorted locally; each symtab's global and
3448 static blocks are separately alphabetized.
3449 Duplicate entries are removed. */
3450
3451 void
3452 search_symbols (char *regexp, enum search_domain kind,
3453 int nfiles, char *files[],
3454 struct symbol_search **matches)
3455 {
3456 struct symtab *s;
3457 struct blockvector *bv;
3458 struct block *b;
3459 int i = 0;
3460 struct block_iterator iter;
3461 struct symbol *sym;
3462 struct objfile *objfile;
3463 struct minimal_symbol *msymbol;
3464 int found_misc = 0;
3465 static const enum minimal_symbol_type types[]
3466 = {mst_data, mst_text, mst_abs};
3467 static const enum minimal_symbol_type types2[]
3468 = {mst_bss, mst_file_text, mst_abs};
3469 static const enum minimal_symbol_type types3[]
3470 = {mst_file_data, mst_solib_trampoline, mst_abs};
3471 static const enum minimal_symbol_type types4[]
3472 = {mst_file_bss, mst_text_gnu_ifunc, mst_abs};
3473 enum minimal_symbol_type ourtype;
3474 enum minimal_symbol_type ourtype2;
3475 enum minimal_symbol_type ourtype3;
3476 enum minimal_symbol_type ourtype4;
3477 struct symbol_search *found;
3478 struct symbol_search *tail;
3479 struct search_symbols_data datum;
3480 int nfound;
3481
3482 /* OLD_CHAIN .. RETVAL_CHAIN is always freed, RETVAL_CHAIN .. current
3483 CLEANUP_CHAIN is freed only in the case of an error. */
3484 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
3485 struct cleanup *retval_chain;
3486
3487 gdb_assert (kind <= TYPES_DOMAIN);
3488
3489 ourtype = types[kind];
3490 ourtype2 = types2[kind];
3491 ourtype3 = types3[kind];
3492 ourtype4 = types4[kind];
3493
3494 *matches = NULL;
3495 datum.preg_p = 0;
3496
3497 if (regexp != NULL)
3498 {
3499 /* Make sure spacing is right for C++ operators.
3500 This is just a courtesy to make the matching less sensitive
3501 to how many spaces the user leaves between 'operator'
3502 and <TYPENAME> or <OPERATOR>. */
3503 char *opend;
3504 char *opname = operator_chars (regexp, &opend);
3505 int errcode;
3506
3507 if (*opname)
3508 {
3509 int fix = -1; /* -1 means ok; otherwise number of
3510 spaces needed. */
3511
3512 if (isalpha (*opname) || *opname == '_' || *opname == '$')
3513 {
3514 /* There should 1 space between 'operator' and 'TYPENAME'. */
3515 if (opname[-1] != ' ' || opname[-2] == ' ')
3516 fix = 1;
3517 }
3518 else
3519 {
3520 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
3521 if (opname[-1] == ' ')
3522 fix = 0;
3523 }
3524 /* If wrong number of spaces, fix it. */
3525 if (fix >= 0)
3526 {
3527 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
3528
3529 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
3530 regexp = tmp;
3531 }
3532 }
3533
3534 errcode = regcomp (&datum.preg, regexp,
3535 REG_NOSUB | (case_sensitivity == case_sensitive_off
3536 ? REG_ICASE : 0));
3537 if (errcode != 0)
3538 {
3539 char *err = get_regcomp_error (errcode, &datum.preg);
3540
3541 make_cleanup (xfree, err);
3542 error (_("Invalid regexp (%s): %s"), err, regexp);
3543 }
3544 datum.preg_p = 1;
3545 make_regfree_cleanup (&datum.preg);
3546 }
3547
3548 /* Search through the partial symtabs *first* for all symbols
3549 matching the regexp. That way we don't have to reproduce all of
3550 the machinery below. */
3551
3552 datum.nfiles = nfiles;
3553 datum.files = files;
3554 ALL_OBJFILES (objfile)
3555 {
3556 if (objfile->sf)
3557 objfile->sf->qf->expand_symtabs_matching (objfile,
3558 (nfiles == 0
3559 ? NULL
3560 : search_symbols_file_matches),
3561 search_symbols_name_matches,
3562 kind,
3563 &datum);
3564 }
3565
3566 /* Here, we search through the minimal symbol tables for functions
3567 and variables that match, and force their symbols to be read.
3568 This is in particular necessary for demangled variable names,
3569 which are no longer put into the partial symbol tables.
3570 The symbol will then be found during the scan of symtabs below.
3571
3572 For functions, find_pc_symtab should succeed if we have debug info
3573 for the function, for variables we have to call
3574 lookup_symbol_in_objfile_from_linkage_name to determine if the variable
3575 has debug info.
3576 If the lookup fails, set found_misc so that we will rescan to print
3577 any matching symbols without debug info.
3578 We only search the objfile the msymbol came from, we no longer search
3579 all objfiles. In large programs (1000s of shared libs) searching all
3580 objfiles is not worth the pain. */
3581
3582 if (nfiles == 0 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
3583 {
3584 ALL_MSYMBOLS (objfile, msymbol)
3585 {
3586 QUIT;
3587
3588 if (msymbol->created_by_gdb)
3589 continue;
3590
3591 if (MSYMBOL_TYPE (msymbol) == ourtype
3592 || MSYMBOL_TYPE (msymbol) == ourtype2
3593 || MSYMBOL_TYPE (msymbol) == ourtype3
3594 || MSYMBOL_TYPE (msymbol) == ourtype4)
3595 {
3596 if (!datum.preg_p
3597 || regexec (&datum.preg, SYMBOL_NATURAL_NAME (msymbol), 0,
3598 NULL, 0) == 0)
3599 {
3600 /* Note: An important side-effect of these lookup functions
3601 is to expand the symbol table if msymbol is found, for the
3602 benefit of the next loop on ALL_PRIMARY_SYMTABS. */
3603 if (kind == FUNCTIONS_DOMAIN
3604 ? find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol)) == NULL
3605 : (lookup_symbol_in_objfile_from_linkage_name
3606 (objfile, SYMBOL_LINKAGE_NAME (msymbol), VAR_DOMAIN)
3607 == NULL))
3608 found_misc = 1;
3609 }
3610 }
3611 }
3612 }
3613
3614 found = NULL;
3615 tail = NULL;
3616 nfound = 0;
3617 retval_chain = make_cleanup_free_search_symbols (&found);
3618
3619 ALL_PRIMARY_SYMTABS (objfile, s)
3620 {
3621 bv = BLOCKVECTOR (s);
3622 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
3623 {
3624 b = BLOCKVECTOR_BLOCK (bv, i);
3625 ALL_BLOCK_SYMBOLS (b, iter, sym)
3626 {
3627 struct symtab *real_symtab = SYMBOL_SYMTAB (sym);
3628
3629 QUIT;
3630
3631 /* Check first sole REAL_SYMTAB->FILENAME. It does not need to be
3632 a substring of symtab_to_fullname as it may contain "./" etc. */
3633 if ((file_matches (real_symtab->filename, files, nfiles, 0)
3634 || ((basenames_may_differ
3635 || file_matches (lbasename (real_symtab->filename),
3636 files, nfiles, 1))
3637 && file_matches (symtab_to_fullname (real_symtab),
3638 files, nfiles, 0)))
3639 && ((!datum.preg_p
3640 || regexec (&datum.preg, SYMBOL_NATURAL_NAME (sym), 0,
3641 NULL, 0) == 0)
3642 && ((kind == VARIABLES_DOMAIN
3643 && SYMBOL_CLASS (sym) != LOC_TYPEDEF
3644 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
3645 && SYMBOL_CLASS (sym) != LOC_BLOCK
3646 /* LOC_CONST can be used for more than just enums,
3647 e.g., c++ static const members.
3648 We only want to skip enums here. */
3649 && !(SYMBOL_CLASS (sym) == LOC_CONST
3650 && TYPE_CODE (SYMBOL_TYPE (sym))
3651 == TYPE_CODE_ENUM))
3652 || (kind == FUNCTIONS_DOMAIN
3653 && SYMBOL_CLASS (sym) == LOC_BLOCK)
3654 || (kind == TYPES_DOMAIN
3655 && SYMBOL_CLASS (sym) == LOC_TYPEDEF))))
3656 {
3657 /* match */
3658 struct symbol_search *psr = (struct symbol_search *)
3659 xmalloc (sizeof (struct symbol_search));
3660 psr->block = i;
3661 psr->symtab = real_symtab;
3662 psr->symbol = sym;
3663 memset (&psr->msymbol, 0, sizeof (psr->msymbol));
3664 psr->next = NULL;
3665 if (tail == NULL)
3666 found = psr;
3667 else
3668 tail->next = psr;
3669 tail = psr;
3670 nfound ++;
3671 }
3672 }
3673 }
3674 }
3675
3676 if (found != NULL)
3677 {
3678 sort_search_symbols_remove_dups (found, nfound, &found, &tail);
3679 /* Note: nfound is no longer useful beyond this point. */
3680 }
3681
3682 /* If there are no eyes, avoid all contact. I mean, if there are
3683 no debug symbols, then print directly from the msymbol_vector. */
3684
3685 if (found_misc || (nfiles == 0 && kind != FUNCTIONS_DOMAIN))
3686 {
3687 ALL_MSYMBOLS (objfile, msymbol)
3688 {
3689 QUIT;
3690
3691 if (msymbol->created_by_gdb)
3692 continue;
3693
3694 if (MSYMBOL_TYPE (msymbol) == ourtype
3695 || MSYMBOL_TYPE (msymbol) == ourtype2
3696 || MSYMBOL_TYPE (msymbol) == ourtype3
3697 || MSYMBOL_TYPE (msymbol) == ourtype4)
3698 {
3699 if (!datum.preg_p
3700 || regexec (&datum.preg, SYMBOL_NATURAL_NAME (msymbol), 0,
3701 NULL, 0) == 0)
3702 {
3703 /* For functions we can do a quick check of whether the
3704 symbol might be found via find_pc_symtab. */
3705 if (kind != FUNCTIONS_DOMAIN
3706 || find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol)) == NULL)
3707 {
3708 if (lookup_symbol_in_objfile_from_linkage_name
3709 (objfile, SYMBOL_LINKAGE_NAME (msymbol), VAR_DOMAIN)
3710 == NULL)
3711 {
3712 /* match */
3713 struct symbol_search *psr = (struct symbol_search *)
3714 xmalloc (sizeof (struct symbol_search));
3715 psr->block = i;
3716 psr->msymbol.minsym = msymbol;
3717 psr->msymbol.objfile = objfile;
3718 psr->symtab = NULL;
3719 psr->symbol = NULL;
3720 psr->next = NULL;
3721 if (tail == NULL)
3722 found = psr;
3723 else
3724 tail->next = psr;
3725 tail = psr;
3726 }
3727 }
3728 }
3729 }
3730 }
3731 }
3732
3733 discard_cleanups (retval_chain);
3734 do_cleanups (old_chain);
3735 *matches = found;
3736 }
3737
3738 /* Helper function for symtab_symbol_info, this function uses
3739 the data returned from search_symbols() to print information
3740 regarding the match to gdb_stdout. */
3741
3742 static void
3743 print_symbol_info (enum search_domain kind,
3744 struct symtab *s, struct symbol *sym,
3745 int block, const char *last)
3746 {
3747 const char *s_filename = symtab_to_filename_for_display (s);
3748
3749 if (last == NULL || filename_cmp (last, s_filename) != 0)
3750 {
3751 fputs_filtered ("\nFile ", gdb_stdout);
3752 fputs_filtered (s_filename, gdb_stdout);
3753 fputs_filtered (":\n", gdb_stdout);
3754 }
3755
3756 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
3757 printf_filtered ("static ");
3758
3759 /* Typedef that is not a C++ class. */
3760 if (kind == TYPES_DOMAIN
3761 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
3762 typedef_print (SYMBOL_TYPE (sym), sym, gdb_stdout);
3763 /* variable, func, or typedef-that-is-c++-class. */
3764 else if (kind < TYPES_DOMAIN
3765 || (kind == TYPES_DOMAIN
3766 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
3767 {
3768 type_print (SYMBOL_TYPE (sym),
3769 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
3770 ? "" : SYMBOL_PRINT_NAME (sym)),
3771 gdb_stdout, 0);
3772
3773 printf_filtered (";\n");
3774 }
3775 }
3776
3777 /* This help function for symtab_symbol_info() prints information
3778 for non-debugging symbols to gdb_stdout. */
3779
3780 static void
3781 print_msymbol_info (struct bound_minimal_symbol msymbol)
3782 {
3783 struct gdbarch *gdbarch = get_objfile_arch (msymbol.objfile);
3784 char *tmp;
3785
3786 if (gdbarch_addr_bit (gdbarch) <= 32)
3787 tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol.minsym)
3788 & (CORE_ADDR) 0xffffffff,
3789 8);
3790 else
3791 tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol.minsym),
3792 16);
3793 printf_filtered ("%s %s\n",
3794 tmp, SYMBOL_PRINT_NAME (msymbol.minsym));
3795 }
3796
3797 /* This is the guts of the commands "info functions", "info types", and
3798 "info variables". It calls search_symbols to find all matches and then
3799 print_[m]symbol_info to print out some useful information about the
3800 matches. */
3801
3802 static void
3803 symtab_symbol_info (char *regexp, enum search_domain kind, int from_tty)
3804 {
3805 static const char * const classnames[] =
3806 {"variable", "function", "type"};
3807 struct symbol_search *symbols;
3808 struct symbol_search *p;
3809 struct cleanup *old_chain;
3810 const char *last_filename = NULL;
3811 int first = 1;
3812
3813 gdb_assert (kind <= TYPES_DOMAIN);
3814
3815 /* Must make sure that if we're interrupted, symbols gets freed. */
3816 search_symbols (regexp, kind, 0, (char **) NULL, &symbols);
3817 old_chain = make_cleanup_free_search_symbols (&symbols);
3818
3819 if (regexp != NULL)
3820 printf_filtered (_("All %ss matching regular expression \"%s\":\n"),
3821 classnames[kind], regexp);
3822 else
3823 printf_filtered (_("All defined %ss:\n"), classnames[kind]);
3824
3825 for (p = symbols; p != NULL; p = p->next)
3826 {
3827 QUIT;
3828
3829 if (p->msymbol.minsym != NULL)
3830 {
3831 if (first)
3832 {
3833 printf_filtered (_("\nNon-debugging symbols:\n"));
3834 first = 0;
3835 }
3836 print_msymbol_info (p->msymbol);
3837 }
3838 else
3839 {
3840 print_symbol_info (kind,
3841 p->symtab,
3842 p->symbol,
3843 p->block,
3844 last_filename);
3845 last_filename = symtab_to_filename_for_display (p->symtab);
3846 }
3847 }
3848
3849 do_cleanups (old_chain);
3850 }
3851
3852 static void
3853 variables_info (char *regexp, int from_tty)
3854 {
3855 symtab_symbol_info (regexp, VARIABLES_DOMAIN, from_tty);
3856 }
3857
3858 static void
3859 functions_info (char *regexp, int from_tty)
3860 {
3861 symtab_symbol_info (regexp, FUNCTIONS_DOMAIN, from_tty);
3862 }
3863
3864
3865 static void
3866 types_info (char *regexp, int from_tty)
3867 {
3868 symtab_symbol_info (regexp, TYPES_DOMAIN, from_tty);
3869 }
3870
3871 /* Breakpoint all functions matching regular expression. */
3872
3873 void
3874 rbreak_command_wrapper (char *regexp, int from_tty)
3875 {
3876 rbreak_command (regexp, from_tty);
3877 }
3878
3879 /* A cleanup function that calls end_rbreak_breakpoints. */
3880
3881 static void
3882 do_end_rbreak_breakpoints (void *ignore)
3883 {
3884 end_rbreak_breakpoints ();
3885 }
3886
3887 static void
3888 rbreak_command (char *regexp, int from_tty)
3889 {
3890 struct symbol_search *ss;
3891 struct symbol_search *p;
3892 struct cleanup *old_chain;
3893 char *string = NULL;
3894 int len = 0;
3895 char **files = NULL, *file_name;
3896 int nfiles = 0;
3897
3898 if (regexp)
3899 {
3900 char *colon = strchr (regexp, ':');
3901
3902 if (colon && *(colon + 1) != ':')
3903 {
3904 int colon_index;
3905
3906 colon_index = colon - regexp;
3907 file_name = alloca (colon_index + 1);
3908 memcpy (file_name, regexp, colon_index);
3909 file_name[colon_index--] = 0;
3910 while (isspace (file_name[colon_index]))
3911 file_name[colon_index--] = 0;
3912 files = &file_name;
3913 nfiles = 1;
3914 regexp = skip_spaces (colon + 1);
3915 }
3916 }
3917
3918 search_symbols (regexp, FUNCTIONS_DOMAIN, nfiles, files, &ss);
3919 old_chain = make_cleanup_free_search_symbols (&ss);
3920 make_cleanup (free_current_contents, &string);
3921
3922 start_rbreak_breakpoints ();
3923 make_cleanup (do_end_rbreak_breakpoints, NULL);
3924 for (p = ss; p != NULL; p = p->next)
3925 {
3926 if (p->msymbol.minsym == NULL)
3927 {
3928 const char *fullname = symtab_to_fullname (p->symtab);
3929
3930 int newlen = (strlen (fullname)
3931 + strlen (SYMBOL_LINKAGE_NAME (p->symbol))
3932 + 4);
3933
3934 if (newlen > len)
3935 {
3936 string = xrealloc (string, newlen);
3937 len = newlen;
3938 }
3939 strcpy (string, fullname);
3940 strcat (string, ":'");
3941 strcat (string, SYMBOL_LINKAGE_NAME (p->symbol));
3942 strcat (string, "'");
3943 break_command (string, from_tty);
3944 print_symbol_info (FUNCTIONS_DOMAIN,
3945 p->symtab,
3946 p->symbol,
3947 p->block,
3948 symtab_to_filename_for_display (p->symtab));
3949 }
3950 else
3951 {
3952 int newlen = (strlen (SYMBOL_LINKAGE_NAME (p->msymbol.minsym)) + 3);
3953
3954 if (newlen > len)
3955 {
3956 string = xrealloc (string, newlen);
3957 len = newlen;
3958 }
3959 strcpy (string, "'");
3960 strcat (string, SYMBOL_LINKAGE_NAME (p->msymbol.minsym));
3961 strcat (string, "'");
3962
3963 break_command (string, from_tty);
3964 printf_filtered ("<function, no debug info> %s;\n",
3965 SYMBOL_PRINT_NAME (p->msymbol.minsym));
3966 }
3967 }
3968
3969 do_cleanups (old_chain);
3970 }
3971 \f
3972
3973 /* Evaluate if NAME matches SYM_TEXT and SYM_TEXT_LEN.
3974
3975 Either sym_text[sym_text_len] != '(' and then we search for any
3976 symbol starting with SYM_TEXT text.
3977
3978 Otherwise sym_text[sym_text_len] == '(' and then we require symbol name to
3979 be terminated at that point. Partial symbol tables do not have parameters
3980 information. */
3981
3982 static int
3983 compare_symbol_name (const char *name, const char *sym_text, int sym_text_len)
3984 {
3985 int (*ncmp) (const char *, const char *, size_t);
3986
3987 ncmp = (case_sensitivity == case_sensitive_on ? strncmp : strncasecmp);
3988
3989 if (ncmp (name, sym_text, sym_text_len) != 0)
3990 return 0;
3991
3992 if (sym_text[sym_text_len] == '(')
3993 {
3994 /* User searches for `name(someth...'. Require NAME to be terminated.
3995 Normally psymtabs and gdbindex have no parameter types so '\0' will be
3996 present but accept even parameters presence. In this case this
3997 function is in fact strcmp_iw but whitespace skipping is not supported
3998 for tab completion. */
3999
4000 if (name[sym_text_len] != '\0' && name[sym_text_len] != '(')
4001 return 0;
4002 }
4003
4004 return 1;
4005 }
4006
4007 /* Free any memory associated with a completion list. */
4008
4009 static void
4010 free_completion_list (VEC (char_ptr) **list_ptr)
4011 {
4012 int i;
4013 char *p;
4014
4015 for (i = 0; VEC_iterate (char_ptr, *list_ptr, i, p); ++i)
4016 xfree (p);
4017 VEC_free (char_ptr, *list_ptr);
4018 }
4019
4020 /* Callback for make_cleanup. */
4021
4022 static void
4023 do_free_completion_list (void *list)
4024 {
4025 free_completion_list (list);
4026 }
4027
4028 /* Helper routine for make_symbol_completion_list. */
4029
4030 static VEC (char_ptr) *return_val;
4031
4032 #define COMPLETION_LIST_ADD_SYMBOL(symbol, sym_text, len, text, word) \
4033 completion_list_add_name \
4034 (SYMBOL_NATURAL_NAME (symbol), (sym_text), (len), (text), (word))
4035
4036 /* Test to see if the symbol specified by SYMNAME (which is already
4037 demangled for C++ symbols) matches SYM_TEXT in the first SYM_TEXT_LEN
4038 characters. If so, add it to the current completion list. */
4039
4040 static void
4041 completion_list_add_name (const char *symname,
4042 const char *sym_text, int sym_text_len,
4043 const char *text, const char *word)
4044 {
4045 /* Clip symbols that cannot match. */
4046 if (!compare_symbol_name (symname, sym_text, sym_text_len))
4047 return;
4048
4049 /* We have a match for a completion, so add SYMNAME to the current list
4050 of matches. Note that the name is moved to freshly malloc'd space. */
4051
4052 {
4053 char *new;
4054
4055 if (word == sym_text)
4056 {
4057 new = xmalloc (strlen (symname) + 5);
4058 strcpy (new, symname);
4059 }
4060 else if (word > sym_text)
4061 {
4062 /* Return some portion of symname. */
4063 new = xmalloc (strlen (symname) + 5);
4064 strcpy (new, symname + (word - sym_text));
4065 }
4066 else
4067 {
4068 /* Return some of SYM_TEXT plus symname. */
4069 new = xmalloc (strlen (symname) + (sym_text - word) + 5);
4070 strncpy (new, word, sym_text - word);
4071 new[sym_text - word] = '\0';
4072 strcat (new, symname);
4073 }
4074
4075 VEC_safe_push (char_ptr, return_val, new);
4076 }
4077 }
4078
4079 /* ObjC: In case we are completing on a selector, look as the msymbol
4080 again and feed all the selectors into the mill. */
4081
4082 static void
4083 completion_list_objc_symbol (struct minimal_symbol *msymbol,
4084 const char *sym_text, int sym_text_len,
4085 const char *text, const char *word)
4086 {
4087 static char *tmp = NULL;
4088 static unsigned int tmplen = 0;
4089
4090 const char *method, *category, *selector;
4091 char *tmp2 = NULL;
4092
4093 method = SYMBOL_NATURAL_NAME (msymbol);
4094
4095 /* Is it a method? */
4096 if ((method[0] != '-') && (method[0] != '+'))
4097 return;
4098
4099 if (sym_text[0] == '[')
4100 /* Complete on shortened method method. */
4101 completion_list_add_name (method + 1, sym_text, sym_text_len, text, word);
4102
4103 while ((strlen (method) + 1) >= tmplen)
4104 {
4105 if (tmplen == 0)
4106 tmplen = 1024;
4107 else
4108 tmplen *= 2;
4109 tmp = xrealloc (tmp, tmplen);
4110 }
4111 selector = strchr (method, ' ');
4112 if (selector != NULL)
4113 selector++;
4114
4115 category = strchr (method, '(');
4116
4117 if ((category != NULL) && (selector != NULL))
4118 {
4119 memcpy (tmp, method, (category - method));
4120 tmp[category - method] = ' ';
4121 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
4122 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
4123 if (sym_text[0] == '[')
4124 completion_list_add_name (tmp + 1, sym_text, sym_text_len, text, word);
4125 }
4126
4127 if (selector != NULL)
4128 {
4129 /* Complete on selector only. */
4130 strcpy (tmp, selector);
4131 tmp2 = strchr (tmp, ']');
4132 if (tmp2 != NULL)
4133 *tmp2 = '\0';
4134
4135 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
4136 }
4137 }
4138
4139 /* Break the non-quoted text based on the characters which are in
4140 symbols. FIXME: This should probably be language-specific. */
4141
4142 static const char *
4143 language_search_unquoted_string (const char *text, const char *p)
4144 {
4145 for (; p > text; --p)
4146 {
4147 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
4148 continue;
4149 else
4150 {
4151 if ((current_language->la_language == language_objc))
4152 {
4153 if (p[-1] == ':') /* Might be part of a method name. */
4154 continue;
4155 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
4156 p -= 2; /* Beginning of a method name. */
4157 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
4158 { /* Might be part of a method name. */
4159 const char *t = p;
4160
4161 /* Seeing a ' ' or a '(' is not conclusive evidence
4162 that we are in the middle of a method name. However,
4163 finding "-[" or "+[" should be pretty un-ambiguous.
4164 Unfortunately we have to find it now to decide. */
4165
4166 while (t > text)
4167 if (isalnum (t[-1]) || t[-1] == '_' ||
4168 t[-1] == ' ' || t[-1] == ':' ||
4169 t[-1] == '(' || t[-1] == ')')
4170 --t;
4171 else
4172 break;
4173
4174 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
4175 p = t - 2; /* Method name detected. */
4176 /* Else we leave with p unchanged. */
4177 }
4178 }
4179 break;
4180 }
4181 }
4182 return p;
4183 }
4184
4185 static void
4186 completion_list_add_fields (struct symbol *sym, const char *sym_text,
4187 int sym_text_len, const char *text,
4188 const char *word)
4189 {
4190 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4191 {
4192 struct type *t = SYMBOL_TYPE (sym);
4193 enum type_code c = TYPE_CODE (t);
4194 int j;
4195
4196 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
4197 for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++)
4198 if (TYPE_FIELD_NAME (t, j))
4199 completion_list_add_name (TYPE_FIELD_NAME (t, j),
4200 sym_text, sym_text_len, text, word);
4201 }
4202 }
4203
4204 /* Type of the user_data argument passed to add_macro_name or
4205 expand_partial_symbol_name. The contents are simply whatever is
4206 needed by completion_list_add_name. */
4207 struct add_name_data
4208 {
4209 const char *sym_text;
4210 int sym_text_len;
4211 const char *text;
4212 const char *word;
4213 };
4214
4215 /* A callback used with macro_for_each and macro_for_each_in_scope.
4216 This adds a macro's name to the current completion list. */
4217
4218 static void
4219 add_macro_name (const char *name, const struct macro_definition *ignore,
4220 struct macro_source_file *ignore2, int ignore3,
4221 void *user_data)
4222 {
4223 struct add_name_data *datum = (struct add_name_data *) user_data;
4224
4225 completion_list_add_name ((char *) name,
4226 datum->sym_text, datum->sym_text_len,
4227 datum->text, datum->word);
4228 }
4229
4230 /* A callback for expand_partial_symbol_names. */
4231
4232 static int
4233 expand_partial_symbol_name (const char *name, void *user_data)
4234 {
4235 struct add_name_data *datum = (struct add_name_data *) user_data;
4236
4237 return compare_symbol_name (name, datum->sym_text, datum->sym_text_len);
4238 }
4239
4240 VEC (char_ptr) *
4241 default_make_symbol_completion_list_break_on (const char *text,
4242 const char *word,
4243 const char *break_on,
4244 enum type_code code)
4245 {
4246 /* Problem: All of the symbols have to be copied because readline
4247 frees them. I'm not going to worry about this; hopefully there
4248 won't be that many. */
4249
4250 struct symbol *sym;
4251 struct symtab *s;
4252 struct minimal_symbol *msymbol;
4253 struct objfile *objfile;
4254 struct block *b;
4255 const struct block *surrounding_static_block, *surrounding_global_block;
4256 struct block_iterator iter;
4257 /* The symbol we are completing on. Points in same buffer as text. */
4258 const char *sym_text;
4259 /* Length of sym_text. */
4260 int sym_text_len;
4261 struct add_name_data datum;
4262 struct cleanup *back_to;
4263
4264 /* Now look for the symbol we are supposed to complete on. */
4265 {
4266 const char *p;
4267 char quote_found;
4268 const char *quote_pos = NULL;
4269
4270 /* First see if this is a quoted string. */
4271 quote_found = '\0';
4272 for (p = text; *p != '\0'; ++p)
4273 {
4274 if (quote_found != '\0')
4275 {
4276 if (*p == quote_found)
4277 /* Found close quote. */
4278 quote_found = '\0';
4279 else if (*p == '\\' && p[1] == quote_found)
4280 /* A backslash followed by the quote character
4281 doesn't end the string. */
4282 ++p;
4283 }
4284 else if (*p == '\'' || *p == '"')
4285 {
4286 quote_found = *p;
4287 quote_pos = p;
4288 }
4289 }
4290 if (quote_found == '\'')
4291 /* A string within single quotes can be a symbol, so complete on it. */
4292 sym_text = quote_pos + 1;
4293 else if (quote_found == '"')
4294 /* A double-quoted string is never a symbol, nor does it make sense
4295 to complete it any other way. */
4296 {
4297 return NULL;
4298 }
4299 else
4300 {
4301 /* It is not a quoted string. Break it based on the characters
4302 which are in symbols. */
4303 while (p > text)
4304 {
4305 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0'
4306 || p[-1] == ':' || strchr (break_on, p[-1]) != NULL)
4307 --p;
4308 else
4309 break;
4310 }
4311 sym_text = p;
4312 }
4313 }
4314
4315 sym_text_len = strlen (sym_text);
4316
4317 /* Prepare SYM_TEXT_LEN for compare_symbol_name. */
4318
4319 if (current_language->la_language == language_cplus
4320 || current_language->la_language == language_java
4321 || current_language->la_language == language_fortran)
4322 {
4323 /* These languages may have parameters entered by user but they are never
4324 present in the partial symbol tables. */
4325
4326 const char *cs = memchr (sym_text, '(', sym_text_len);
4327
4328 if (cs)
4329 sym_text_len = cs - sym_text;
4330 }
4331 gdb_assert (sym_text[sym_text_len] == '\0' || sym_text[sym_text_len] == '(');
4332
4333 return_val = NULL;
4334 back_to = make_cleanup (do_free_completion_list, &return_val);
4335
4336 datum.sym_text = sym_text;
4337 datum.sym_text_len = sym_text_len;
4338 datum.text = text;
4339 datum.word = word;
4340
4341 /* Look through the partial symtabs for all symbols which begin
4342 by matching SYM_TEXT. Expand all CUs that you find to the list.
4343 The real names will get added by COMPLETION_LIST_ADD_SYMBOL below. */
4344 expand_partial_symbol_names (expand_partial_symbol_name, &datum);
4345
4346 /* At this point scan through the misc symbol vectors and add each
4347 symbol you find to the list. Eventually we want to ignore
4348 anything that isn't a text symbol (everything else will be
4349 handled by the psymtab code above). */
4350
4351 if (code == TYPE_CODE_UNDEF)
4352 {
4353 ALL_MSYMBOLS (objfile, msymbol)
4354 {
4355 QUIT;
4356 COMPLETION_LIST_ADD_SYMBOL (msymbol, sym_text, sym_text_len, text,
4357 word);
4358
4359 completion_list_objc_symbol (msymbol, sym_text, sym_text_len, text,
4360 word);
4361 }
4362 }
4363
4364 /* Search upwards from currently selected frame (so that we can
4365 complete on local vars). Also catch fields of types defined in
4366 this places which match our text string. Only complete on types
4367 visible from current context. */
4368
4369 b = get_selected_block (0);
4370 surrounding_static_block = block_static_block (b);
4371 surrounding_global_block = block_global_block (b);
4372 if (surrounding_static_block != NULL)
4373 while (b != surrounding_static_block)
4374 {
4375 QUIT;
4376
4377 ALL_BLOCK_SYMBOLS (b, iter, sym)
4378 {
4379 if (code == TYPE_CODE_UNDEF)
4380 {
4381 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text,
4382 word);
4383 completion_list_add_fields (sym, sym_text, sym_text_len, text,
4384 word);
4385 }
4386 else if (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4387 && TYPE_CODE (SYMBOL_TYPE (sym)) == code)
4388 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text,
4389 word);
4390 }
4391
4392 /* Stop when we encounter an enclosing function. Do not stop for
4393 non-inlined functions - the locals of the enclosing function
4394 are in scope for a nested function. */
4395 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
4396 break;
4397 b = BLOCK_SUPERBLOCK (b);
4398 }
4399
4400 /* Add fields from the file's types; symbols will be added below. */
4401
4402 if (code == TYPE_CODE_UNDEF)
4403 {
4404 if (surrounding_static_block != NULL)
4405 ALL_BLOCK_SYMBOLS (surrounding_static_block, iter, sym)
4406 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
4407
4408 if (surrounding_global_block != NULL)
4409 ALL_BLOCK_SYMBOLS (surrounding_global_block, iter, sym)
4410 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
4411 }
4412
4413 /* Go through the symtabs and check the externs and statics for
4414 symbols which match. */
4415
4416 ALL_PRIMARY_SYMTABS (objfile, s)
4417 {
4418 QUIT;
4419 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
4420 ALL_BLOCK_SYMBOLS (b, iter, sym)
4421 {
4422 if (code == TYPE_CODE_UNDEF
4423 || (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4424 && TYPE_CODE (SYMBOL_TYPE (sym)) == code))
4425 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4426 }
4427 }
4428
4429 ALL_PRIMARY_SYMTABS (objfile, s)
4430 {
4431 QUIT;
4432 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
4433 ALL_BLOCK_SYMBOLS (b, iter, sym)
4434 {
4435 if (code == TYPE_CODE_UNDEF
4436 || (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4437 && TYPE_CODE (SYMBOL_TYPE (sym)) == code))
4438 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4439 }
4440 }
4441
4442 /* Skip macros if we are completing a struct tag -- arguable but
4443 usually what is expected. */
4444 if (current_language->la_macro_expansion == macro_expansion_c
4445 && code == TYPE_CODE_UNDEF)
4446 {
4447 struct macro_scope *scope;
4448
4449 /* Add any macros visible in the default scope. Note that this
4450 may yield the occasional wrong result, because an expression
4451 might be evaluated in a scope other than the default. For
4452 example, if the user types "break file:line if <TAB>", the
4453 resulting expression will be evaluated at "file:line" -- but
4454 at there does not seem to be a way to detect this at
4455 completion time. */
4456 scope = default_macro_scope ();
4457 if (scope)
4458 {
4459 macro_for_each_in_scope (scope->file, scope->line,
4460 add_macro_name, &datum);
4461 xfree (scope);
4462 }
4463
4464 /* User-defined macros are always visible. */
4465 macro_for_each (macro_user_macros, add_macro_name, &datum);
4466 }
4467
4468 discard_cleanups (back_to);
4469 return (return_val);
4470 }
4471
4472 VEC (char_ptr) *
4473 default_make_symbol_completion_list (const char *text, const char *word,
4474 enum type_code code)
4475 {
4476 return default_make_symbol_completion_list_break_on (text, word, "", code);
4477 }
4478
4479 /* Return a vector of all symbols (regardless of class) which begin by
4480 matching TEXT. If the answer is no symbols, then the return value
4481 is NULL. */
4482
4483 VEC (char_ptr) *
4484 make_symbol_completion_list (const char *text, const char *word)
4485 {
4486 return current_language->la_make_symbol_completion_list (text, word,
4487 TYPE_CODE_UNDEF);
4488 }
4489
4490 /* Like make_symbol_completion_list, but only return STRUCT_DOMAIN
4491 symbols whose type code is CODE. */
4492
4493 VEC (char_ptr) *
4494 make_symbol_completion_type (const char *text, const char *word,
4495 enum type_code code)
4496 {
4497 gdb_assert (code == TYPE_CODE_UNION
4498 || code == TYPE_CODE_STRUCT
4499 || code == TYPE_CODE_CLASS
4500 || code == TYPE_CODE_ENUM);
4501 return current_language->la_make_symbol_completion_list (text, word, code);
4502 }
4503
4504 /* Like make_symbol_completion_list, but suitable for use as a
4505 completion function. */
4506
4507 VEC (char_ptr) *
4508 make_symbol_completion_list_fn (struct cmd_list_element *ignore,
4509 const char *text, const char *word)
4510 {
4511 return make_symbol_completion_list (text, word);
4512 }
4513
4514 /* Like make_symbol_completion_list, but returns a list of symbols
4515 defined in a source file FILE. */
4516
4517 VEC (char_ptr) *
4518 make_file_symbol_completion_list (const char *text, const char *word,
4519 const char *srcfile)
4520 {
4521 struct symbol *sym;
4522 struct symtab *s;
4523 struct block *b;
4524 struct block_iterator iter;
4525 /* The symbol we are completing on. Points in same buffer as text. */
4526 const char *sym_text;
4527 /* Length of sym_text. */
4528 int sym_text_len;
4529
4530 /* Now look for the symbol we are supposed to complete on.
4531 FIXME: This should be language-specific. */
4532 {
4533 const char *p;
4534 char quote_found;
4535 const char *quote_pos = NULL;
4536
4537 /* First see if this is a quoted string. */
4538 quote_found = '\0';
4539 for (p = text; *p != '\0'; ++p)
4540 {
4541 if (quote_found != '\0')
4542 {
4543 if (*p == quote_found)
4544 /* Found close quote. */
4545 quote_found = '\0';
4546 else if (*p == '\\' && p[1] == quote_found)
4547 /* A backslash followed by the quote character
4548 doesn't end the string. */
4549 ++p;
4550 }
4551 else if (*p == '\'' || *p == '"')
4552 {
4553 quote_found = *p;
4554 quote_pos = p;
4555 }
4556 }
4557 if (quote_found == '\'')
4558 /* A string within single quotes can be a symbol, so complete on it. */
4559 sym_text = quote_pos + 1;
4560 else if (quote_found == '"')
4561 /* A double-quoted string is never a symbol, nor does it make sense
4562 to complete it any other way. */
4563 {
4564 return NULL;
4565 }
4566 else
4567 {
4568 /* Not a quoted string. */
4569 sym_text = language_search_unquoted_string (text, p);
4570 }
4571 }
4572
4573 sym_text_len = strlen (sym_text);
4574
4575 return_val = NULL;
4576
4577 /* Find the symtab for SRCFILE (this loads it if it was not yet read
4578 in). */
4579 s = lookup_symtab (srcfile);
4580 if (s == NULL)
4581 {
4582 /* Maybe they typed the file with leading directories, while the
4583 symbol tables record only its basename. */
4584 const char *tail = lbasename (srcfile);
4585
4586 if (tail > srcfile)
4587 s = lookup_symtab (tail);
4588 }
4589
4590 /* If we have no symtab for that file, return an empty list. */
4591 if (s == NULL)
4592 return (return_val);
4593
4594 /* Go through this symtab and check the externs and statics for
4595 symbols which match. */
4596
4597 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
4598 ALL_BLOCK_SYMBOLS (b, iter, sym)
4599 {
4600 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4601 }
4602
4603 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
4604 ALL_BLOCK_SYMBOLS (b, iter, sym)
4605 {
4606 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4607 }
4608
4609 return (return_val);
4610 }
4611
4612 /* A helper function for make_source_files_completion_list. It adds
4613 another file name to a list of possible completions, growing the
4614 list as necessary. */
4615
4616 static void
4617 add_filename_to_list (const char *fname, const char *text, const char *word,
4618 VEC (char_ptr) **list)
4619 {
4620 char *new;
4621 size_t fnlen = strlen (fname);
4622
4623 if (word == text)
4624 {
4625 /* Return exactly fname. */
4626 new = xmalloc (fnlen + 5);
4627 strcpy (new, fname);
4628 }
4629 else if (word > text)
4630 {
4631 /* Return some portion of fname. */
4632 new = xmalloc (fnlen + 5);
4633 strcpy (new, fname + (word - text));
4634 }
4635 else
4636 {
4637 /* Return some of TEXT plus fname. */
4638 new = xmalloc (fnlen + (text - word) + 5);
4639 strncpy (new, word, text - word);
4640 new[text - word] = '\0';
4641 strcat (new, fname);
4642 }
4643 VEC_safe_push (char_ptr, *list, new);
4644 }
4645
4646 static int
4647 not_interesting_fname (const char *fname)
4648 {
4649 static const char *illegal_aliens[] = {
4650 "_globals_", /* inserted by coff_symtab_read */
4651 NULL
4652 };
4653 int i;
4654
4655 for (i = 0; illegal_aliens[i]; i++)
4656 {
4657 if (filename_cmp (fname, illegal_aliens[i]) == 0)
4658 return 1;
4659 }
4660 return 0;
4661 }
4662
4663 /* An object of this type is passed as the user_data argument to
4664 map_partial_symbol_filenames. */
4665 struct add_partial_filename_data
4666 {
4667 struct filename_seen_cache *filename_seen_cache;
4668 const char *text;
4669 const char *word;
4670 int text_len;
4671 VEC (char_ptr) **list;
4672 };
4673
4674 /* A callback for map_partial_symbol_filenames. */
4675
4676 static void
4677 maybe_add_partial_symtab_filename (const char *filename, const char *fullname,
4678 void *user_data)
4679 {
4680 struct add_partial_filename_data *data = user_data;
4681
4682 if (not_interesting_fname (filename))
4683 return;
4684 if (!filename_seen (data->filename_seen_cache, filename, 1)
4685 && filename_ncmp (filename, data->text, data->text_len) == 0)
4686 {
4687 /* This file matches for a completion; add it to the
4688 current list of matches. */
4689 add_filename_to_list (filename, data->text, data->word, data->list);
4690 }
4691 else
4692 {
4693 const char *base_name = lbasename (filename);
4694
4695 if (base_name != filename
4696 && !filename_seen (data->filename_seen_cache, base_name, 1)
4697 && filename_ncmp (base_name, data->text, data->text_len) == 0)
4698 add_filename_to_list (base_name, data->text, data->word, data->list);
4699 }
4700 }
4701
4702 /* Return a vector of all source files whose names begin with matching
4703 TEXT. The file names are looked up in the symbol tables of this
4704 program. If the answer is no matchess, then the return value is
4705 NULL. */
4706
4707 VEC (char_ptr) *
4708 make_source_files_completion_list (const char *text, const char *word)
4709 {
4710 struct symtab *s;
4711 struct objfile *objfile;
4712 size_t text_len = strlen (text);
4713 VEC (char_ptr) *list = NULL;
4714 const char *base_name;
4715 struct add_partial_filename_data datum;
4716 struct filename_seen_cache *filename_seen_cache;
4717 struct cleanup *back_to, *cache_cleanup;
4718
4719 if (!have_full_symbols () && !have_partial_symbols ())
4720 return list;
4721
4722 back_to = make_cleanup (do_free_completion_list, &list);
4723
4724 filename_seen_cache = create_filename_seen_cache ();
4725 cache_cleanup = make_cleanup (delete_filename_seen_cache,
4726 filename_seen_cache);
4727
4728 ALL_SYMTABS (objfile, s)
4729 {
4730 if (not_interesting_fname (s->filename))
4731 continue;
4732 if (!filename_seen (filename_seen_cache, s->filename, 1)
4733 && filename_ncmp (s->filename, text, text_len) == 0)
4734 {
4735 /* This file matches for a completion; add it to the current
4736 list of matches. */
4737 add_filename_to_list (s->filename, text, word, &list);
4738 }
4739 else
4740 {
4741 /* NOTE: We allow the user to type a base name when the
4742 debug info records leading directories, but not the other
4743 way around. This is what subroutines of breakpoint
4744 command do when they parse file names. */
4745 base_name = lbasename (s->filename);
4746 if (base_name != s->filename
4747 && !filename_seen (filename_seen_cache, base_name, 1)
4748 && filename_ncmp (base_name, text, text_len) == 0)
4749 add_filename_to_list (base_name, text, word, &list);
4750 }
4751 }
4752
4753 datum.filename_seen_cache = filename_seen_cache;
4754 datum.text = text;
4755 datum.word = word;
4756 datum.text_len = text_len;
4757 datum.list = &list;
4758 map_partial_symbol_filenames (maybe_add_partial_symtab_filename, &datum,
4759 0 /*need_fullname*/);
4760
4761 do_cleanups (cache_cleanup);
4762 discard_cleanups (back_to);
4763
4764 return list;
4765 }
4766
4767 /* Determine if PC is in the prologue of a function. The prologue is the area
4768 between the first instruction of a function, and the first executable line.
4769 Returns 1 if PC *might* be in prologue, 0 if definately *not* in prologue.
4770
4771 If non-zero, func_start is where we think the prologue starts, possibly
4772 by previous examination of symbol table information. */
4773
4774 int
4775 in_prologue (struct gdbarch *gdbarch, CORE_ADDR pc, CORE_ADDR func_start)
4776 {
4777 struct symtab_and_line sal;
4778 CORE_ADDR func_addr, func_end;
4779
4780 /* We have several sources of information we can consult to figure
4781 this out.
4782 - Compilers usually emit line number info that marks the prologue
4783 as its own "source line". So the ending address of that "line"
4784 is the end of the prologue. If available, this is the most
4785 reliable method.
4786 - The minimal symbols and partial symbols, which can usually tell
4787 us the starting and ending addresses of a function.
4788 - If we know the function's start address, we can call the
4789 architecture-defined gdbarch_skip_prologue function to analyze the
4790 instruction stream and guess where the prologue ends.
4791 - Our `func_start' argument; if non-zero, this is the caller's
4792 best guess as to the function's entry point. At the time of
4793 this writing, handle_inferior_event doesn't get this right, so
4794 it should be our last resort. */
4795
4796 /* Consult the partial symbol table, to find which function
4797 the PC is in. */
4798 if (! find_pc_partial_function (pc, NULL, &func_addr, &func_end))
4799 {
4800 CORE_ADDR prologue_end;
4801
4802 /* We don't even have minsym information, so fall back to using
4803 func_start, if given. */
4804 if (! func_start)
4805 return 1; /* We *might* be in a prologue. */
4806
4807 prologue_end = gdbarch_skip_prologue (gdbarch, func_start);
4808
4809 return func_start <= pc && pc < prologue_end;
4810 }
4811
4812 /* If we have line number information for the function, that's
4813 usually pretty reliable. */
4814 sal = find_pc_line (func_addr, 0);
4815
4816 /* Now sal describes the source line at the function's entry point,
4817 which (by convention) is the prologue. The end of that "line",
4818 sal.end, is the end of the prologue.
4819
4820 Note that, for functions whose source code is all on a single
4821 line, the line number information doesn't always end up this way.
4822 So we must verify that our purported end-of-prologue address is
4823 *within* the function, not at its start or end. */
4824 if (sal.line == 0
4825 || sal.end <= func_addr
4826 || func_end <= sal.end)
4827 {
4828 /* We don't have any good line number info, so use the minsym
4829 information, together with the architecture-specific prologue
4830 scanning code. */
4831 CORE_ADDR prologue_end = gdbarch_skip_prologue (gdbarch, func_addr);
4832
4833 return func_addr <= pc && pc < prologue_end;
4834 }
4835
4836 /* We have line number info, and it looks good. */
4837 return func_addr <= pc && pc < sal.end;
4838 }
4839
4840 /* Given PC at the function's start address, attempt to find the
4841 prologue end using SAL information. Return zero if the skip fails.
4842
4843 A non-optimized prologue traditionally has one SAL for the function
4844 and a second for the function body. A single line function has
4845 them both pointing at the same line.
4846
4847 An optimized prologue is similar but the prologue may contain
4848 instructions (SALs) from the instruction body. Need to skip those
4849 while not getting into the function body.
4850
4851 The functions end point and an increasing SAL line are used as
4852 indicators of the prologue's endpoint.
4853
4854 This code is based on the function refine_prologue_limit
4855 (found in ia64). */
4856
4857 CORE_ADDR
4858 skip_prologue_using_sal (struct gdbarch *gdbarch, CORE_ADDR func_addr)
4859 {
4860 struct symtab_and_line prologue_sal;
4861 CORE_ADDR start_pc;
4862 CORE_ADDR end_pc;
4863 struct block *bl;
4864
4865 /* Get an initial range for the function. */
4866 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
4867 start_pc += gdbarch_deprecated_function_start_offset (gdbarch);
4868
4869 prologue_sal = find_pc_line (start_pc, 0);
4870 if (prologue_sal.line != 0)
4871 {
4872 /* For languages other than assembly, treat two consecutive line
4873 entries at the same address as a zero-instruction prologue.
4874 The GNU assembler emits separate line notes for each instruction
4875 in a multi-instruction macro, but compilers generally will not
4876 do this. */
4877 if (prologue_sal.symtab->language != language_asm)
4878 {
4879 struct linetable *linetable = LINETABLE (prologue_sal.symtab);
4880 int idx = 0;
4881
4882 /* Skip any earlier lines, and any end-of-sequence marker
4883 from a previous function. */
4884 while (linetable->item[idx].pc != prologue_sal.pc
4885 || linetable->item[idx].line == 0)
4886 idx++;
4887
4888 if (idx+1 < linetable->nitems
4889 && linetable->item[idx+1].line != 0
4890 && linetable->item[idx+1].pc == start_pc)
4891 return start_pc;
4892 }
4893
4894 /* If there is only one sal that covers the entire function,
4895 then it is probably a single line function, like
4896 "foo(){}". */
4897 if (prologue_sal.end >= end_pc)
4898 return 0;
4899
4900 while (prologue_sal.end < end_pc)
4901 {
4902 struct symtab_and_line sal;
4903
4904 sal = find_pc_line (prologue_sal.end, 0);
4905 if (sal.line == 0)
4906 break;
4907 /* Assume that a consecutive SAL for the same (or larger)
4908 line mark the prologue -> body transition. */
4909 if (sal.line >= prologue_sal.line)
4910 break;
4911 /* Likewise if we are in a different symtab altogether
4912 (e.g. within a file included via #include).  */
4913 if (sal.symtab != prologue_sal.symtab)
4914 break;
4915
4916 /* The line number is smaller. Check that it's from the
4917 same function, not something inlined. If it's inlined,
4918 then there is no point comparing the line numbers. */
4919 bl = block_for_pc (prologue_sal.end);
4920 while (bl)
4921 {
4922 if (block_inlined_p (bl))
4923 break;
4924 if (BLOCK_FUNCTION (bl))
4925 {
4926 bl = NULL;
4927 break;
4928 }
4929 bl = BLOCK_SUPERBLOCK (bl);
4930 }
4931 if (bl != NULL)
4932 break;
4933
4934 /* The case in which compiler's optimizer/scheduler has
4935 moved instructions into the prologue. We look ahead in
4936 the function looking for address ranges whose
4937 corresponding line number is less the first one that we
4938 found for the function. This is more conservative then
4939 refine_prologue_limit which scans a large number of SALs
4940 looking for any in the prologue. */
4941 prologue_sal = sal;
4942 }
4943 }
4944
4945 if (prologue_sal.end < end_pc)
4946 /* Return the end of this line, or zero if we could not find a
4947 line. */
4948 return prologue_sal.end;
4949 else
4950 /* Don't return END_PC, which is past the end of the function. */
4951 return prologue_sal.pc;
4952 }
4953 \f
4954 /* Track MAIN */
4955 static char *name_of_main;
4956 enum language language_of_main = language_unknown;
4957
4958 void
4959 set_main_name (const char *name)
4960 {
4961 if (name_of_main != NULL)
4962 {
4963 xfree (name_of_main);
4964 name_of_main = NULL;
4965 language_of_main = language_unknown;
4966 }
4967 if (name != NULL)
4968 {
4969 name_of_main = xstrdup (name);
4970 language_of_main = language_unknown;
4971 }
4972 }
4973
4974 /* Deduce the name of the main procedure, and set NAME_OF_MAIN
4975 accordingly. */
4976
4977 static void
4978 find_main_name (void)
4979 {
4980 const char *new_main_name;
4981
4982 /* Try to see if the main procedure is in Ada. */
4983 /* FIXME: brobecker/2005-03-07: Another way of doing this would
4984 be to add a new method in the language vector, and call this
4985 method for each language until one of them returns a non-empty
4986 name. This would allow us to remove this hard-coded call to
4987 an Ada function. It is not clear that this is a better approach
4988 at this point, because all methods need to be written in a way
4989 such that false positives never be returned. For instance, it is
4990 important that a method does not return a wrong name for the main
4991 procedure if the main procedure is actually written in a different
4992 language. It is easy to guaranty this with Ada, since we use a
4993 special symbol generated only when the main in Ada to find the name
4994 of the main procedure. It is difficult however to see how this can
4995 be guarantied for languages such as C, for instance. This suggests
4996 that order of call for these methods becomes important, which means
4997 a more complicated approach. */
4998 new_main_name = ada_main_name ();
4999 if (new_main_name != NULL)
5000 {
5001 set_main_name (new_main_name);
5002 return;
5003 }
5004
5005 new_main_name = go_main_name ();
5006 if (new_main_name != NULL)
5007 {
5008 set_main_name (new_main_name);
5009 return;
5010 }
5011
5012 new_main_name = pascal_main_name ();
5013 if (new_main_name != NULL)
5014 {
5015 set_main_name (new_main_name);
5016 return;
5017 }
5018
5019 /* The languages above didn't identify the name of the main procedure.
5020 Fallback to "main". */
5021 set_main_name ("main");
5022 }
5023
5024 char *
5025 main_name (void)
5026 {
5027 if (name_of_main == NULL)
5028 find_main_name ();
5029
5030 return name_of_main;
5031 }
5032
5033 /* Handle ``executable_changed'' events for the symtab module. */
5034
5035 static void
5036 symtab_observer_executable_changed (void)
5037 {
5038 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
5039 set_main_name (NULL);
5040 }
5041
5042 /* Return 1 if the supplied producer string matches the ARM RealView
5043 compiler (armcc). */
5044
5045 int
5046 producer_is_realview (const char *producer)
5047 {
5048 static const char *const arm_idents[] = {
5049 "ARM C Compiler, ADS",
5050 "Thumb C Compiler, ADS",
5051 "ARM C++ Compiler, ADS",
5052 "Thumb C++ Compiler, ADS",
5053 "ARM/Thumb C/C++ Compiler, RVCT",
5054 "ARM C/C++ Compiler, RVCT"
5055 };
5056 int i;
5057
5058 if (producer == NULL)
5059 return 0;
5060
5061 for (i = 0; i < ARRAY_SIZE (arm_idents); i++)
5062 if (strncmp (producer, arm_idents[i], strlen (arm_idents[i])) == 0)
5063 return 1;
5064
5065 return 0;
5066 }
5067
5068 \f
5069
5070 /* The next index to hand out in response to a registration request. */
5071
5072 static int next_aclass_value = LOC_FINAL_VALUE;
5073
5074 /* The maximum number of "aclass" registrations we support. This is
5075 constant for convenience. */
5076 #define MAX_SYMBOL_IMPLS (LOC_FINAL_VALUE + 10)
5077
5078 /* The objects representing the various "aclass" values. The elements
5079 from 0 up to LOC_FINAL_VALUE-1 represent themselves, and subsequent
5080 elements are those registered at gdb initialization time. */
5081
5082 static struct symbol_impl symbol_impl[MAX_SYMBOL_IMPLS];
5083
5084 /* The globally visible pointer. This is separate from 'symbol_impl'
5085 so that it can be const. */
5086
5087 const struct symbol_impl *symbol_impls = &symbol_impl[0];
5088
5089 /* Make sure we saved enough room in struct symbol. */
5090
5091 gdb_static_assert (MAX_SYMBOL_IMPLS <= (1 << SYMBOL_ACLASS_BITS));
5092
5093 /* Register a computed symbol type. ACLASS must be LOC_COMPUTED. OPS
5094 is the ops vector associated with this index. This returns the new
5095 index, which should be used as the aclass_index field for symbols
5096 of this type. */
5097
5098 int
5099 register_symbol_computed_impl (enum address_class aclass,
5100 const struct symbol_computed_ops *ops)
5101 {
5102 int result = next_aclass_value++;
5103
5104 gdb_assert (aclass == LOC_COMPUTED);
5105 gdb_assert (result < MAX_SYMBOL_IMPLS);
5106 symbol_impl[result].aclass = aclass;
5107 symbol_impl[result].ops_computed = ops;
5108
5109 /* Sanity check OPS. */
5110 gdb_assert (ops != NULL);
5111 gdb_assert (ops->tracepoint_var_ref != NULL);
5112 gdb_assert (ops->describe_location != NULL);
5113 gdb_assert (ops->read_needs_frame != NULL);
5114 gdb_assert (ops->read_variable != NULL);
5115
5116 return result;
5117 }
5118
5119 /* Register a function with frame base type. ACLASS must be LOC_BLOCK.
5120 OPS is the ops vector associated with this index. This returns the
5121 new index, which should be used as the aclass_index field for symbols
5122 of this type. */
5123
5124 int
5125 register_symbol_block_impl (enum address_class aclass,
5126 const struct symbol_block_ops *ops)
5127 {
5128 int result = next_aclass_value++;
5129
5130 gdb_assert (aclass == LOC_BLOCK);
5131 gdb_assert (result < MAX_SYMBOL_IMPLS);
5132 symbol_impl[result].aclass = aclass;
5133 symbol_impl[result].ops_block = ops;
5134
5135 /* Sanity check OPS. */
5136 gdb_assert (ops != NULL);
5137 gdb_assert (ops->find_frame_base_location != NULL);
5138
5139 return result;
5140 }
5141
5142 /* Register a register symbol type. ACLASS must be LOC_REGISTER or
5143 LOC_REGPARM_ADDR. OPS is the register ops vector associated with
5144 this index. This returns the new index, which should be used as
5145 the aclass_index field for symbols of this type. */
5146
5147 int
5148 register_symbol_register_impl (enum address_class aclass,
5149 const struct symbol_register_ops *ops)
5150 {
5151 int result = next_aclass_value++;
5152
5153 gdb_assert (aclass == LOC_REGISTER || aclass == LOC_REGPARM_ADDR);
5154 gdb_assert (result < MAX_SYMBOL_IMPLS);
5155 symbol_impl[result].aclass = aclass;
5156 symbol_impl[result].ops_register = ops;
5157
5158 return result;
5159 }
5160
5161 /* Initialize elements of 'symbol_impl' for the constants in enum
5162 address_class. */
5163
5164 static void
5165 initialize_ordinary_address_classes (void)
5166 {
5167 int i;
5168
5169 for (i = 0; i < LOC_FINAL_VALUE; ++i)
5170 symbol_impl[i].aclass = i;
5171 }
5172
5173 \f
5174
5175 /* Initialize the symbol SYM. */
5176
5177 void
5178 initialize_symbol (struct symbol *sym)
5179 {
5180 memset (sym, 0, sizeof (*sym));
5181 SYMBOL_SECTION (sym) = -1;
5182 }
5183
5184 /* Allocate and initialize a new 'struct symbol' on OBJFILE's
5185 obstack. */
5186
5187 struct symbol *
5188 allocate_symbol (struct objfile *objfile)
5189 {
5190 struct symbol *result;
5191
5192 result = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symbol);
5193 SYMBOL_SECTION (result) = -1;
5194
5195 return result;
5196 }
5197
5198 /* Allocate and initialize a new 'struct template_symbol' on OBJFILE's
5199 obstack. */
5200
5201 struct template_symbol *
5202 allocate_template_symbol (struct objfile *objfile)
5203 {
5204 struct template_symbol *result;
5205
5206 result = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct template_symbol);
5207 SYMBOL_SECTION (&result->base) = -1;
5208
5209 return result;
5210 }
5211
5212 \f
5213
5214 void
5215 _initialize_symtab (void)
5216 {
5217 initialize_ordinary_address_classes ();
5218
5219 add_info ("variables", variables_info, _("\
5220 All global and static variable names, or those matching REGEXP."));
5221 if (dbx_commands)
5222 add_com ("whereis", class_info, variables_info, _("\
5223 All global and static variable names, or those matching REGEXP."));
5224
5225 add_info ("functions", functions_info,
5226 _("All function names, or those matching REGEXP."));
5227
5228 /* FIXME: This command has at least the following problems:
5229 1. It prints builtin types (in a very strange and confusing fashion).
5230 2. It doesn't print right, e.g. with
5231 typedef struct foo *FOO
5232 type_print prints "FOO" when we want to make it (in this situation)
5233 print "struct foo *".
5234 I also think "ptype" or "whatis" is more likely to be useful (but if
5235 there is much disagreement "info types" can be fixed). */
5236 add_info ("types", types_info,
5237 _("All type names, or those matching REGEXP."));
5238
5239 add_info ("sources", sources_info,
5240 _("Source files in the program."));
5241
5242 add_com ("rbreak", class_breakpoint, rbreak_command,
5243 _("Set a breakpoint for all functions matching REGEXP."));
5244
5245 if (xdb_commands)
5246 {
5247 add_com ("lf", class_info, sources_info,
5248 _("Source files in the program"));
5249 add_com ("lg", class_info, variables_info, _("\
5250 All global and static variable names, or those matching REGEXP."));
5251 }
5252
5253 add_setshow_enum_cmd ("multiple-symbols", no_class,
5254 multiple_symbols_modes, &multiple_symbols_mode,
5255 _("\
5256 Set the debugger behavior when more than one symbol are possible matches\n\
5257 in an expression."), _("\
5258 Show how the debugger handles ambiguities in expressions."), _("\
5259 Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
5260 NULL, NULL, &setlist, &showlist);
5261
5262 add_setshow_boolean_cmd ("basenames-may-differ", class_obscure,
5263 &basenames_may_differ, _("\
5264 Set whether a source file may have multiple base names."), _("\
5265 Show whether a source file may have multiple base names."), _("\
5266 (A \"base name\" is the name of a file with the directory part removed.\n\
5267 Example: The base name of \"/home/user/hello.c\" is \"hello.c\".)\n\
5268 If set, GDB will canonicalize file names (e.g., expand symlinks)\n\
5269 before comparing them. Canonicalization is an expensive operation,\n\
5270 but it allows the same file be known by more than one base name.\n\
5271 If not set (the default), all source files are assumed to have just\n\
5272 one base name, and gdb will do file name comparisons more efficiently."),
5273 NULL, NULL,
5274 &setlist, &showlist);
5275
5276 add_setshow_boolean_cmd ("symtab-create", no_class, &symtab_create_debug,
5277 _("Set debugging of symbol table creation."),
5278 _("Show debugging of symbol table creation."), _("\
5279 When enabled, debugging messages are printed when building symbol tables."),
5280 NULL,
5281 NULL,
5282 &setdebuglist, &showdebuglist);
5283
5284 observer_attach_executable_changed (symtab_observer_executable_changed);
5285 }
This page took 0.187346 seconds and 4 git commands to generate.