2013-08-21 Tristan Gingold <gingold@adacore.com>
[deliverable/binutils-gdb.git] / gdb / symtab.c
1 /* Symbol table lookup for the GNU debugger, GDB.
2
3 Copyright (C) 1986-2013 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "gdbcore.h"
24 #include "frame.h"
25 #include "target.h"
26 #include "value.h"
27 #include "symfile.h"
28 #include "objfiles.h"
29 #include "gdbcmd.h"
30 #include "gdb_regex.h"
31 #include "expression.h"
32 #include "language.h"
33 #include "demangle.h"
34 #include "inferior.h"
35 #include "source.h"
36 #include "filenames.h" /* for FILENAME_CMP */
37 #include "objc-lang.h"
38 #include "d-lang.h"
39 #include "ada-lang.h"
40 #include "go-lang.h"
41 #include "p-lang.h"
42 #include "addrmap.h"
43 #include "cli/cli-utils.h"
44
45 #include "hashtab.h"
46
47 #include "gdb_obstack.h"
48 #include "block.h"
49 #include "dictionary.h"
50
51 #include <sys/types.h>
52 #include <fcntl.h>
53 #include "gdb_string.h"
54 #include "gdb_stat.h"
55 #include <ctype.h>
56 #include "cp-abi.h"
57 #include "cp-support.h"
58 #include "observer.h"
59 #include "gdb_assert.h"
60 #include "solist.h"
61 #include "macrotab.h"
62 #include "macroscope.h"
63
64 #include "psymtab.h"
65 #include "parser-defs.h"
66
67 /* Prototypes for local functions */
68
69 static void rbreak_command (char *, int);
70
71 static void types_info (char *, int);
72
73 static void functions_info (char *, int);
74
75 static void variables_info (char *, int);
76
77 static void sources_info (char *, int);
78
79 static int find_line_common (struct linetable *, int, int *, int);
80
81 static struct symbol *lookup_symbol_aux (const char *name,
82 const struct block *block,
83 const domain_enum domain,
84 enum language language,
85 struct field_of_this_result *is_a_field_of_this);
86
87 static
88 struct symbol *lookup_symbol_aux_local (const char *name,
89 const struct block *block,
90 const domain_enum domain,
91 enum language language);
92
93 static
94 struct symbol *lookup_symbol_aux_symtabs (int block_index,
95 const char *name,
96 const domain_enum domain);
97
98 static
99 struct symbol *lookup_symbol_aux_quick (struct objfile *objfile,
100 int block_index,
101 const char *name,
102 const domain_enum domain);
103
104 void _initialize_symtab (void);
105
106 /* */
107
108 /* When non-zero, print debugging messages related to symtab creation. */
109 int symtab_create_debug = 0;
110
111 /* Non-zero if a file may be known by two different basenames.
112 This is the uncommon case, and significantly slows down gdb.
113 Default set to "off" to not slow down the common case. */
114 int basenames_may_differ = 0;
115
116 /* Allow the user to configure the debugger behavior with respect
117 to multiple-choice menus when more than one symbol matches during
118 a symbol lookup. */
119
120 const char multiple_symbols_ask[] = "ask";
121 const char multiple_symbols_all[] = "all";
122 const char multiple_symbols_cancel[] = "cancel";
123 static const char *const multiple_symbols_modes[] =
124 {
125 multiple_symbols_ask,
126 multiple_symbols_all,
127 multiple_symbols_cancel,
128 NULL
129 };
130 static const char *multiple_symbols_mode = multiple_symbols_all;
131
132 /* Read-only accessor to AUTO_SELECT_MODE. */
133
134 const char *
135 multiple_symbols_select_mode (void)
136 {
137 return multiple_symbols_mode;
138 }
139
140 /* Block in which the most recently searched-for symbol was found.
141 Might be better to make this a parameter to lookup_symbol and
142 value_of_this. */
143
144 const struct block *block_found;
145
146 /* See whether FILENAME matches SEARCH_NAME using the rule that we
147 advertise to the user. (The manual's description of linespecs
148 describes what we advertise). Returns true if they match, false
149 otherwise. */
150
151 int
152 compare_filenames_for_search (const char *filename, const char *search_name)
153 {
154 int len = strlen (filename);
155 size_t search_len = strlen (search_name);
156
157 if (len < search_len)
158 return 0;
159
160 /* The tail of FILENAME must match. */
161 if (FILENAME_CMP (filename + len - search_len, search_name) != 0)
162 return 0;
163
164 /* Either the names must completely match, or the character
165 preceding the trailing SEARCH_NAME segment of FILENAME must be a
166 directory separator.
167
168 The check !IS_ABSOLUTE_PATH ensures SEARCH_NAME "/dir/file.c"
169 cannot match FILENAME "/path//dir/file.c" - as user has requested
170 absolute path. The sama applies for "c:\file.c" possibly
171 incorrectly hypothetically matching "d:\dir\c:\file.c".
172
173 The HAS_DRIVE_SPEC purpose is to make FILENAME "c:file.c"
174 compatible with SEARCH_NAME "file.c". In such case a compiler had
175 to put the "c:file.c" name into debug info. Such compatibility
176 works only on GDB built for DOS host. */
177 return (len == search_len
178 || (!IS_ABSOLUTE_PATH (search_name)
179 && IS_DIR_SEPARATOR (filename[len - search_len - 1]))
180 || (HAS_DRIVE_SPEC (filename)
181 && STRIP_DRIVE_SPEC (filename) == &filename[len - search_len]));
182 }
183
184 /* Check for a symtab of a specific name by searching some symtabs.
185 This is a helper function for callbacks of iterate_over_symtabs.
186
187 If NAME is not absolute, then REAL_PATH is NULL
188 If NAME is absolute, then REAL_PATH is the gdb_realpath form of NAME.
189
190 The return value, NAME, REAL_PATH, CALLBACK, and DATA
191 are identical to the `map_symtabs_matching_filename' method of
192 quick_symbol_functions.
193
194 FIRST and AFTER_LAST indicate the range of symtabs to search.
195 AFTER_LAST is one past the last symtab to search; NULL means to
196 search until the end of the list. */
197
198 int
199 iterate_over_some_symtabs (const char *name,
200 const char *real_path,
201 int (*callback) (struct symtab *symtab,
202 void *data),
203 void *data,
204 struct symtab *first,
205 struct symtab *after_last)
206 {
207 struct symtab *s = NULL;
208 const char* base_name = lbasename (name);
209
210 for (s = first; s != NULL && s != after_last; s = s->next)
211 {
212 if (compare_filenames_for_search (s->filename, name))
213 {
214 if (callback (s, data))
215 return 1;
216 continue;
217 }
218
219 /* Before we invoke realpath, which can get expensive when many
220 files are involved, do a quick comparison of the basenames. */
221 if (! basenames_may_differ
222 && FILENAME_CMP (base_name, lbasename (s->filename)) != 0)
223 continue;
224
225 if (compare_filenames_for_search (symtab_to_fullname (s), name))
226 {
227 if (callback (s, data))
228 return 1;
229 continue;
230 }
231
232 /* If the user gave us an absolute path, try to find the file in
233 this symtab and use its absolute path. */
234 if (real_path != NULL)
235 {
236 const char *fullname = symtab_to_fullname (s);
237
238 gdb_assert (IS_ABSOLUTE_PATH (real_path));
239 gdb_assert (IS_ABSOLUTE_PATH (name));
240 if (FILENAME_CMP (real_path, fullname) == 0)
241 {
242 if (callback (s, data))
243 return 1;
244 continue;
245 }
246 }
247 }
248
249 return 0;
250 }
251
252 /* Check for a symtab of a specific name; first in symtabs, then in
253 psymtabs. *If* there is no '/' in the name, a match after a '/'
254 in the symtab filename will also work.
255
256 Calls CALLBACK with each symtab that is found and with the supplied
257 DATA. If CALLBACK returns true, the search stops. */
258
259 void
260 iterate_over_symtabs (const char *name,
261 int (*callback) (struct symtab *symtab,
262 void *data),
263 void *data)
264 {
265 struct objfile *objfile;
266 char *real_path = NULL;
267 struct cleanup *cleanups = make_cleanup (null_cleanup, NULL);
268
269 /* Here we are interested in canonicalizing an absolute path, not
270 absolutizing a relative path. */
271 if (IS_ABSOLUTE_PATH (name))
272 {
273 real_path = gdb_realpath (name);
274 make_cleanup (xfree, real_path);
275 gdb_assert (IS_ABSOLUTE_PATH (real_path));
276 }
277
278 ALL_OBJFILES (objfile)
279 {
280 if (iterate_over_some_symtabs (name, real_path, callback, data,
281 objfile->symtabs, NULL))
282 {
283 do_cleanups (cleanups);
284 return;
285 }
286 }
287
288 /* Same search rules as above apply here, but now we look thru the
289 psymtabs. */
290
291 ALL_OBJFILES (objfile)
292 {
293 if (objfile->sf
294 && objfile->sf->qf->map_symtabs_matching_filename (objfile,
295 name,
296 real_path,
297 callback,
298 data))
299 {
300 do_cleanups (cleanups);
301 return;
302 }
303 }
304
305 do_cleanups (cleanups);
306 }
307
308 /* The callback function used by lookup_symtab. */
309
310 static int
311 lookup_symtab_callback (struct symtab *symtab, void *data)
312 {
313 struct symtab **result_ptr = data;
314
315 *result_ptr = symtab;
316 return 1;
317 }
318
319 /* A wrapper for iterate_over_symtabs that returns the first matching
320 symtab, or NULL. */
321
322 struct symtab *
323 lookup_symtab (const char *name)
324 {
325 struct symtab *result = NULL;
326
327 iterate_over_symtabs (name, lookup_symtab_callback, &result);
328 return result;
329 }
330
331 \f
332 /* Mangle a GDB method stub type. This actually reassembles the pieces of the
333 full method name, which consist of the class name (from T), the unadorned
334 method name from METHOD_ID, and the signature for the specific overload,
335 specified by SIGNATURE_ID. Note that this function is g++ specific. */
336
337 char *
338 gdb_mangle_name (struct type *type, int method_id, int signature_id)
339 {
340 int mangled_name_len;
341 char *mangled_name;
342 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
343 struct fn_field *method = &f[signature_id];
344 const char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
345 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
346 const char *newname = type_name_no_tag (type);
347
348 /* Does the form of physname indicate that it is the full mangled name
349 of a constructor (not just the args)? */
350 int is_full_physname_constructor;
351
352 int is_constructor;
353 int is_destructor = is_destructor_name (physname);
354 /* Need a new type prefix. */
355 char *const_prefix = method->is_const ? "C" : "";
356 char *volatile_prefix = method->is_volatile ? "V" : "";
357 char buf[20];
358 int len = (newname == NULL ? 0 : strlen (newname));
359
360 /* Nothing to do if physname already contains a fully mangled v3 abi name
361 or an operator name. */
362 if ((physname[0] == '_' && physname[1] == 'Z')
363 || is_operator_name (field_name))
364 return xstrdup (physname);
365
366 is_full_physname_constructor = is_constructor_name (physname);
367
368 is_constructor = is_full_physname_constructor
369 || (newname && strcmp (field_name, newname) == 0);
370
371 if (!is_destructor)
372 is_destructor = (strncmp (physname, "__dt", 4) == 0);
373
374 if (is_destructor || is_full_physname_constructor)
375 {
376 mangled_name = (char *) xmalloc (strlen (physname) + 1);
377 strcpy (mangled_name, physname);
378 return mangled_name;
379 }
380
381 if (len == 0)
382 {
383 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
384 }
385 else if (physname[0] == 't' || physname[0] == 'Q')
386 {
387 /* The physname for template and qualified methods already includes
388 the class name. */
389 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
390 newname = NULL;
391 len = 0;
392 }
393 else
394 {
395 xsnprintf (buf, sizeof (buf), "__%s%s%d", const_prefix,
396 volatile_prefix, len);
397 }
398 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
399 + strlen (buf) + len + strlen (physname) + 1);
400
401 mangled_name = (char *) xmalloc (mangled_name_len);
402 if (is_constructor)
403 mangled_name[0] = '\0';
404 else
405 strcpy (mangled_name, field_name);
406
407 strcat (mangled_name, buf);
408 /* If the class doesn't have a name, i.e. newname NULL, then we just
409 mangle it using 0 for the length of the class. Thus it gets mangled
410 as something starting with `::' rather than `classname::'. */
411 if (newname != NULL)
412 strcat (mangled_name, newname);
413
414 strcat (mangled_name, physname);
415 return (mangled_name);
416 }
417
418 /* Initialize the cplus_specific structure. 'cplus_specific' should
419 only be allocated for use with cplus symbols. */
420
421 static void
422 symbol_init_cplus_specific (struct general_symbol_info *gsymbol,
423 struct obstack *obstack)
424 {
425 /* A language_specific structure should not have been previously
426 initialized. */
427 gdb_assert (gsymbol->language_specific.cplus_specific == NULL);
428 gdb_assert (obstack != NULL);
429
430 gsymbol->language_specific.cplus_specific =
431 OBSTACK_ZALLOC (obstack, struct cplus_specific);
432 }
433
434 /* Set the demangled name of GSYMBOL to NAME. NAME must be already
435 correctly allocated. For C++ symbols a cplus_specific struct is
436 allocated so OBJFILE must not be NULL. If this is a non C++ symbol
437 OBJFILE can be NULL. */
438
439 void
440 symbol_set_demangled_name (struct general_symbol_info *gsymbol,
441 const char *name,
442 struct obstack *obstack)
443 {
444 if (gsymbol->language == language_cplus)
445 {
446 if (gsymbol->language_specific.cplus_specific == NULL)
447 symbol_init_cplus_specific (gsymbol, obstack);
448
449 gsymbol->language_specific.cplus_specific->demangled_name = name;
450 }
451 else if (gsymbol->language == language_ada)
452 {
453 if (name == NULL)
454 {
455 gsymbol->ada_mangled = 0;
456 gsymbol->language_specific.obstack = obstack;
457 }
458 else
459 {
460 gsymbol->ada_mangled = 1;
461 gsymbol->language_specific.mangled_lang.demangled_name = name;
462 }
463 }
464 else
465 gsymbol->language_specific.mangled_lang.demangled_name = name;
466 }
467
468 /* Return the demangled name of GSYMBOL. */
469
470 const char *
471 symbol_get_demangled_name (const struct general_symbol_info *gsymbol)
472 {
473 if (gsymbol->language == language_cplus)
474 {
475 if (gsymbol->language_specific.cplus_specific != NULL)
476 return gsymbol->language_specific.cplus_specific->demangled_name;
477 else
478 return NULL;
479 }
480 else if (gsymbol->language == language_ada)
481 {
482 if (!gsymbol->ada_mangled)
483 return NULL;
484 /* Fall through. */
485 }
486
487 return gsymbol->language_specific.mangled_lang.demangled_name;
488 }
489
490 \f
491 /* Initialize the language dependent portion of a symbol
492 depending upon the language for the symbol. */
493
494 void
495 symbol_set_language (struct general_symbol_info *gsymbol,
496 enum language language,
497 struct obstack *obstack)
498 {
499 gsymbol->language = language;
500 if (gsymbol->language == language_d
501 || gsymbol->language == language_go
502 || gsymbol->language == language_java
503 || gsymbol->language == language_objc
504 || gsymbol->language == language_fortran)
505 {
506 symbol_set_demangled_name (gsymbol, NULL, obstack);
507 }
508 else if (gsymbol->language == language_ada)
509 {
510 gdb_assert (gsymbol->ada_mangled == 0);
511 gsymbol->language_specific.obstack = obstack;
512 }
513 else if (gsymbol->language == language_cplus)
514 gsymbol->language_specific.cplus_specific = NULL;
515 else
516 {
517 memset (&gsymbol->language_specific, 0,
518 sizeof (gsymbol->language_specific));
519 }
520 }
521
522 /* Functions to initialize a symbol's mangled name. */
523
524 /* Objects of this type are stored in the demangled name hash table. */
525 struct demangled_name_entry
526 {
527 const char *mangled;
528 char demangled[1];
529 };
530
531 /* Hash function for the demangled name hash. */
532
533 static hashval_t
534 hash_demangled_name_entry (const void *data)
535 {
536 const struct demangled_name_entry *e = data;
537
538 return htab_hash_string (e->mangled);
539 }
540
541 /* Equality function for the demangled name hash. */
542
543 static int
544 eq_demangled_name_entry (const void *a, const void *b)
545 {
546 const struct demangled_name_entry *da = a;
547 const struct demangled_name_entry *db = b;
548
549 return strcmp (da->mangled, db->mangled) == 0;
550 }
551
552 /* Create the hash table used for demangled names. Each hash entry is
553 a pair of strings; one for the mangled name and one for the demangled
554 name. The entry is hashed via just the mangled name. */
555
556 static void
557 create_demangled_names_hash (struct objfile *objfile)
558 {
559 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
560 The hash table code will round this up to the next prime number.
561 Choosing a much larger table size wastes memory, and saves only about
562 1% in symbol reading. */
563
564 objfile->demangled_names_hash = htab_create_alloc
565 (256, hash_demangled_name_entry, eq_demangled_name_entry,
566 NULL, xcalloc, xfree);
567 }
568
569 /* Try to determine the demangled name for a symbol, based on the
570 language of that symbol. If the language is set to language_auto,
571 it will attempt to find any demangling algorithm that works and
572 then set the language appropriately. The returned name is allocated
573 by the demangler and should be xfree'd. */
574
575 static char *
576 symbol_find_demangled_name (struct general_symbol_info *gsymbol,
577 const char *mangled)
578 {
579 char *demangled = NULL;
580
581 if (gsymbol->language == language_unknown)
582 gsymbol->language = language_auto;
583
584 if (gsymbol->language == language_objc
585 || gsymbol->language == language_auto)
586 {
587 demangled =
588 objc_demangle (mangled, 0);
589 if (demangled != NULL)
590 {
591 gsymbol->language = language_objc;
592 return demangled;
593 }
594 }
595 if (gsymbol->language == language_cplus
596 || gsymbol->language == language_auto)
597 {
598 demangled =
599 gdb_demangle (mangled, DMGL_PARAMS | DMGL_ANSI);
600 if (demangled != NULL)
601 {
602 gsymbol->language = language_cplus;
603 return demangled;
604 }
605 }
606 if (gsymbol->language == language_java)
607 {
608 demangled =
609 gdb_demangle (mangled,
610 DMGL_PARAMS | DMGL_ANSI | DMGL_JAVA);
611 if (demangled != NULL)
612 {
613 gsymbol->language = language_java;
614 return demangled;
615 }
616 }
617 if (gsymbol->language == language_d
618 || gsymbol->language == language_auto)
619 {
620 demangled = d_demangle(mangled, 0);
621 if (demangled != NULL)
622 {
623 gsymbol->language = language_d;
624 return demangled;
625 }
626 }
627 /* FIXME(dje): Continually adding languages here is clumsy.
628 Better to just call la_demangle if !auto, and if auto then call
629 a utility routine that tries successive languages in turn and reports
630 which one it finds. I realize the la_demangle options may be different
631 for different languages but there's already a FIXME for that. */
632 if (gsymbol->language == language_go
633 || gsymbol->language == language_auto)
634 {
635 demangled = go_demangle (mangled, 0);
636 if (demangled != NULL)
637 {
638 gsymbol->language = language_go;
639 return demangled;
640 }
641 }
642
643 /* We could support `gsymbol->language == language_fortran' here to provide
644 module namespaces also for inferiors with only minimal symbol table (ELF
645 symbols). Just the mangling standard is not standardized across compilers
646 and there is no DW_AT_producer available for inferiors with only the ELF
647 symbols to check the mangling kind. */
648 return NULL;
649 }
650
651 /* Set both the mangled and demangled (if any) names for GSYMBOL based
652 on LINKAGE_NAME and LEN. Ordinarily, NAME is copied onto the
653 objfile's obstack; but if COPY_NAME is 0 and if NAME is
654 NUL-terminated, then this function assumes that NAME is already
655 correctly saved (either permanently or with a lifetime tied to the
656 objfile), and it will not be copied.
657
658 The hash table corresponding to OBJFILE is used, and the memory
659 comes from that objfile's objfile_obstack. LINKAGE_NAME is copied,
660 so the pointer can be discarded after calling this function. */
661
662 /* We have to be careful when dealing with Java names: when we run
663 into a Java minimal symbol, we don't know it's a Java symbol, so it
664 gets demangled as a C++ name. This is unfortunate, but there's not
665 much we can do about it: but when demangling partial symbols and
666 regular symbols, we'd better not reuse the wrong demangled name.
667 (See PR gdb/1039.) We solve this by putting a distinctive prefix
668 on Java names when storing them in the hash table. */
669
670 /* FIXME: carlton/2003-03-13: This is an unfortunate situation. I
671 don't mind the Java prefix so much: different languages have
672 different demangling requirements, so it's only natural that we
673 need to keep language data around in our demangling cache. But
674 it's not good that the minimal symbol has the wrong demangled name.
675 Unfortunately, I can't think of any easy solution to that
676 problem. */
677
678 #define JAVA_PREFIX "##JAVA$$"
679 #define JAVA_PREFIX_LEN 8
680
681 void
682 symbol_set_names (struct general_symbol_info *gsymbol,
683 const char *linkage_name, int len, int copy_name,
684 struct objfile *objfile)
685 {
686 struct demangled_name_entry **slot;
687 /* A 0-terminated copy of the linkage name. */
688 const char *linkage_name_copy;
689 /* A copy of the linkage name that might have a special Java prefix
690 added to it, for use when looking names up in the hash table. */
691 const char *lookup_name;
692 /* The length of lookup_name. */
693 int lookup_len;
694 struct demangled_name_entry entry;
695
696 if (gsymbol->language == language_ada)
697 {
698 /* In Ada, we do the symbol lookups using the mangled name, so
699 we can save some space by not storing the demangled name.
700
701 As a side note, we have also observed some overlap between
702 the C++ mangling and Ada mangling, similarly to what has
703 been observed with Java. Because we don't store the demangled
704 name with the symbol, we don't need to use the same trick
705 as Java. */
706 if (!copy_name)
707 gsymbol->name = linkage_name;
708 else
709 {
710 char *name = obstack_alloc (&objfile->objfile_obstack, len + 1);
711
712 memcpy (name, linkage_name, len);
713 name[len] = '\0';
714 gsymbol->name = name;
715 }
716 symbol_set_demangled_name (gsymbol, NULL, &objfile->objfile_obstack);
717
718 return;
719 }
720
721 if (objfile->demangled_names_hash == NULL)
722 create_demangled_names_hash (objfile);
723
724 /* The stabs reader generally provides names that are not
725 NUL-terminated; most of the other readers don't do this, so we
726 can just use the given copy, unless we're in the Java case. */
727 if (gsymbol->language == language_java)
728 {
729 char *alloc_name;
730
731 lookup_len = len + JAVA_PREFIX_LEN;
732 alloc_name = alloca (lookup_len + 1);
733 memcpy (alloc_name, JAVA_PREFIX, JAVA_PREFIX_LEN);
734 memcpy (alloc_name + JAVA_PREFIX_LEN, linkage_name, len);
735 alloc_name[lookup_len] = '\0';
736
737 lookup_name = alloc_name;
738 linkage_name_copy = alloc_name + JAVA_PREFIX_LEN;
739 }
740 else if (linkage_name[len] != '\0')
741 {
742 char *alloc_name;
743
744 lookup_len = len;
745 alloc_name = alloca (lookup_len + 1);
746 memcpy (alloc_name, linkage_name, len);
747 alloc_name[lookup_len] = '\0';
748
749 lookup_name = alloc_name;
750 linkage_name_copy = alloc_name;
751 }
752 else
753 {
754 lookup_len = len;
755 lookup_name = linkage_name;
756 linkage_name_copy = linkage_name;
757 }
758
759 entry.mangled = lookup_name;
760 slot = ((struct demangled_name_entry **)
761 htab_find_slot (objfile->demangled_names_hash,
762 &entry, INSERT));
763
764 /* If this name is not in the hash table, add it. */
765 if (*slot == NULL
766 /* A C version of the symbol may have already snuck into the table.
767 This happens to, e.g., main.init (__go_init_main). Cope. */
768 || (gsymbol->language == language_go
769 && (*slot)->demangled[0] == '\0'))
770 {
771 char *demangled_name = symbol_find_demangled_name (gsymbol,
772 linkage_name_copy);
773 int demangled_len = demangled_name ? strlen (demangled_name) : 0;
774
775 /* Suppose we have demangled_name==NULL, copy_name==0, and
776 lookup_name==linkage_name. In this case, we already have the
777 mangled name saved, and we don't have a demangled name. So,
778 you might think we could save a little space by not recording
779 this in the hash table at all.
780
781 It turns out that it is actually important to still save such
782 an entry in the hash table, because storing this name gives
783 us better bcache hit rates for partial symbols. */
784 if (!copy_name && lookup_name == linkage_name)
785 {
786 *slot = obstack_alloc (&objfile->objfile_obstack,
787 offsetof (struct demangled_name_entry,
788 demangled)
789 + demangled_len + 1);
790 (*slot)->mangled = lookup_name;
791 }
792 else
793 {
794 char *mangled_ptr;
795
796 /* If we must copy the mangled name, put it directly after
797 the demangled name so we can have a single
798 allocation. */
799 *slot = obstack_alloc (&objfile->objfile_obstack,
800 offsetof (struct demangled_name_entry,
801 demangled)
802 + lookup_len + demangled_len + 2);
803 mangled_ptr = &((*slot)->demangled[demangled_len + 1]);
804 strcpy (mangled_ptr, lookup_name);
805 (*slot)->mangled = mangled_ptr;
806 }
807
808 if (demangled_name != NULL)
809 {
810 strcpy ((*slot)->demangled, demangled_name);
811 xfree (demangled_name);
812 }
813 else
814 (*slot)->demangled[0] = '\0';
815 }
816
817 gsymbol->name = (*slot)->mangled + lookup_len - len;
818 if ((*slot)->demangled[0] != '\0')
819 symbol_set_demangled_name (gsymbol, (*slot)->demangled,
820 &objfile->objfile_obstack);
821 else
822 symbol_set_demangled_name (gsymbol, NULL, &objfile->objfile_obstack);
823 }
824
825 /* Return the source code name of a symbol. In languages where
826 demangling is necessary, this is the demangled name. */
827
828 const char *
829 symbol_natural_name (const struct general_symbol_info *gsymbol)
830 {
831 switch (gsymbol->language)
832 {
833 case language_cplus:
834 case language_d:
835 case language_go:
836 case language_java:
837 case language_objc:
838 case language_fortran:
839 if (symbol_get_demangled_name (gsymbol) != NULL)
840 return symbol_get_demangled_name (gsymbol);
841 break;
842 case language_ada:
843 return ada_decode_symbol (gsymbol);
844 default:
845 break;
846 }
847 return gsymbol->name;
848 }
849
850 /* Return the demangled name for a symbol based on the language for
851 that symbol. If no demangled name exists, return NULL. */
852
853 const char *
854 symbol_demangled_name (const struct general_symbol_info *gsymbol)
855 {
856 const char *dem_name = NULL;
857
858 switch (gsymbol->language)
859 {
860 case language_cplus:
861 case language_d:
862 case language_go:
863 case language_java:
864 case language_objc:
865 case language_fortran:
866 dem_name = symbol_get_demangled_name (gsymbol);
867 break;
868 case language_ada:
869 dem_name = ada_decode_symbol (gsymbol);
870 break;
871 default:
872 break;
873 }
874 return dem_name;
875 }
876
877 /* Return the search name of a symbol---generally the demangled or
878 linkage name of the symbol, depending on how it will be searched for.
879 If there is no distinct demangled name, then returns the same value
880 (same pointer) as SYMBOL_LINKAGE_NAME. */
881
882 const char *
883 symbol_search_name (const struct general_symbol_info *gsymbol)
884 {
885 if (gsymbol->language == language_ada)
886 return gsymbol->name;
887 else
888 return symbol_natural_name (gsymbol);
889 }
890
891 /* Initialize the structure fields to zero values. */
892
893 void
894 init_sal (struct symtab_and_line *sal)
895 {
896 sal->pspace = NULL;
897 sal->symtab = 0;
898 sal->section = 0;
899 sal->line = 0;
900 sal->pc = 0;
901 sal->end = 0;
902 sal->explicit_pc = 0;
903 sal->explicit_line = 0;
904 sal->probe = NULL;
905 }
906 \f
907
908 /* Return 1 if the two sections are the same, or if they could
909 plausibly be copies of each other, one in an original object
910 file and another in a separated debug file. */
911
912 int
913 matching_obj_sections (struct obj_section *obj_first,
914 struct obj_section *obj_second)
915 {
916 asection *first = obj_first? obj_first->the_bfd_section : NULL;
917 asection *second = obj_second? obj_second->the_bfd_section : NULL;
918 struct objfile *obj;
919
920 /* If they're the same section, then they match. */
921 if (first == second)
922 return 1;
923
924 /* If either is NULL, give up. */
925 if (first == NULL || second == NULL)
926 return 0;
927
928 /* This doesn't apply to absolute symbols. */
929 if (first->owner == NULL || second->owner == NULL)
930 return 0;
931
932 /* If they're in the same object file, they must be different sections. */
933 if (first->owner == second->owner)
934 return 0;
935
936 /* Check whether the two sections are potentially corresponding. They must
937 have the same size, address, and name. We can't compare section indexes,
938 which would be more reliable, because some sections may have been
939 stripped. */
940 if (bfd_get_section_size (first) != bfd_get_section_size (second))
941 return 0;
942
943 /* In-memory addresses may start at a different offset, relativize them. */
944 if (bfd_get_section_vma (first->owner, first)
945 - bfd_get_start_address (first->owner)
946 != bfd_get_section_vma (second->owner, second)
947 - bfd_get_start_address (second->owner))
948 return 0;
949
950 if (bfd_get_section_name (first->owner, first) == NULL
951 || bfd_get_section_name (second->owner, second) == NULL
952 || strcmp (bfd_get_section_name (first->owner, first),
953 bfd_get_section_name (second->owner, second)) != 0)
954 return 0;
955
956 /* Otherwise check that they are in corresponding objfiles. */
957
958 ALL_OBJFILES (obj)
959 if (obj->obfd == first->owner)
960 break;
961 gdb_assert (obj != NULL);
962
963 if (obj->separate_debug_objfile != NULL
964 && obj->separate_debug_objfile->obfd == second->owner)
965 return 1;
966 if (obj->separate_debug_objfile_backlink != NULL
967 && obj->separate_debug_objfile_backlink->obfd == second->owner)
968 return 1;
969
970 return 0;
971 }
972
973 struct symtab *
974 find_pc_sect_symtab_via_partial (CORE_ADDR pc, struct obj_section *section)
975 {
976 struct objfile *objfile;
977 struct minimal_symbol *msymbol;
978
979 /* If we know that this is not a text address, return failure. This is
980 necessary because we loop based on texthigh and textlow, which do
981 not include the data ranges. */
982 msymbol = lookup_minimal_symbol_by_pc_section (pc, section).minsym;
983 if (msymbol
984 && (MSYMBOL_TYPE (msymbol) == mst_data
985 || MSYMBOL_TYPE (msymbol) == mst_bss
986 || MSYMBOL_TYPE (msymbol) == mst_abs
987 || MSYMBOL_TYPE (msymbol) == mst_file_data
988 || MSYMBOL_TYPE (msymbol) == mst_file_bss))
989 return NULL;
990
991 ALL_OBJFILES (objfile)
992 {
993 struct symtab *result = NULL;
994
995 if (objfile->sf)
996 result = objfile->sf->qf->find_pc_sect_symtab (objfile, msymbol,
997 pc, section, 0);
998 if (result)
999 return result;
1000 }
1001
1002 return NULL;
1003 }
1004 \f
1005 /* Debug symbols usually don't have section information. We need to dig that
1006 out of the minimal symbols and stash that in the debug symbol. */
1007
1008 void
1009 fixup_section (struct general_symbol_info *ginfo,
1010 CORE_ADDR addr, struct objfile *objfile)
1011 {
1012 struct minimal_symbol *msym;
1013
1014 /* First, check whether a minimal symbol with the same name exists
1015 and points to the same address. The address check is required
1016 e.g. on PowerPC64, where the minimal symbol for a function will
1017 point to the function descriptor, while the debug symbol will
1018 point to the actual function code. */
1019 msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->name, objfile);
1020 if (msym)
1021 ginfo->section = SYMBOL_SECTION (msym);
1022 else
1023 {
1024 /* Static, function-local variables do appear in the linker
1025 (minimal) symbols, but are frequently given names that won't
1026 be found via lookup_minimal_symbol(). E.g., it has been
1027 observed in frv-uclinux (ELF) executables that a static,
1028 function-local variable named "foo" might appear in the
1029 linker symbols as "foo.6" or "foo.3". Thus, there is no
1030 point in attempting to extend the lookup-by-name mechanism to
1031 handle this case due to the fact that there can be multiple
1032 names.
1033
1034 So, instead, search the section table when lookup by name has
1035 failed. The ``addr'' and ``endaddr'' fields may have already
1036 been relocated. If so, the relocation offset (i.e. the
1037 ANOFFSET value) needs to be subtracted from these values when
1038 performing the comparison. We unconditionally subtract it,
1039 because, when no relocation has been performed, the ANOFFSET
1040 value will simply be zero.
1041
1042 The address of the symbol whose section we're fixing up HAS
1043 NOT BEEN adjusted (relocated) yet. It can't have been since
1044 the section isn't yet known and knowing the section is
1045 necessary in order to add the correct relocation value. In
1046 other words, we wouldn't even be in this function (attempting
1047 to compute the section) if it were already known.
1048
1049 Note that it is possible to search the minimal symbols
1050 (subtracting the relocation value if necessary) to find the
1051 matching minimal symbol, but this is overkill and much less
1052 efficient. It is not necessary to find the matching minimal
1053 symbol, only its section.
1054
1055 Note that this technique (of doing a section table search)
1056 can fail when unrelocated section addresses overlap. For
1057 this reason, we still attempt a lookup by name prior to doing
1058 a search of the section table. */
1059
1060 struct obj_section *s;
1061 int fallback = -1;
1062
1063 ALL_OBJFILE_OSECTIONS (objfile, s)
1064 {
1065 int idx = s - objfile->sections;
1066 CORE_ADDR offset = ANOFFSET (objfile->section_offsets, idx);
1067
1068 if (fallback == -1)
1069 fallback = idx;
1070
1071 if (obj_section_addr (s) - offset <= addr
1072 && addr < obj_section_endaddr (s) - offset)
1073 {
1074 ginfo->section = idx;
1075 return;
1076 }
1077 }
1078
1079 /* If we didn't find the section, assume it is in the first
1080 section. If there is no allocated section, then it hardly
1081 matters what we pick, so just pick zero. */
1082 if (fallback == -1)
1083 ginfo->section = 0;
1084 else
1085 ginfo->section = fallback;
1086 }
1087 }
1088
1089 struct symbol *
1090 fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
1091 {
1092 CORE_ADDR addr;
1093
1094 if (!sym)
1095 return NULL;
1096
1097 /* We either have an OBJFILE, or we can get at it from the sym's
1098 symtab. Anything else is a bug. */
1099 gdb_assert (objfile || SYMBOL_SYMTAB (sym));
1100
1101 if (objfile == NULL)
1102 objfile = SYMBOL_SYMTAB (sym)->objfile;
1103
1104 if (SYMBOL_OBJ_SECTION (objfile, sym))
1105 return sym;
1106
1107 /* We should have an objfile by now. */
1108 gdb_assert (objfile);
1109
1110 switch (SYMBOL_CLASS (sym))
1111 {
1112 case LOC_STATIC:
1113 case LOC_LABEL:
1114 addr = SYMBOL_VALUE_ADDRESS (sym);
1115 break;
1116 case LOC_BLOCK:
1117 addr = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
1118 break;
1119
1120 default:
1121 /* Nothing else will be listed in the minsyms -- no use looking
1122 it up. */
1123 return sym;
1124 }
1125
1126 fixup_section (&sym->ginfo, addr, objfile);
1127
1128 return sym;
1129 }
1130
1131 /* Compute the demangled form of NAME as used by the various symbol
1132 lookup functions. The result is stored in *RESULT_NAME. Returns a
1133 cleanup which can be used to clean up the result.
1134
1135 For Ada, this function just sets *RESULT_NAME to NAME, unmodified.
1136 Normally, Ada symbol lookups are performed using the encoded name
1137 rather than the demangled name, and so it might seem to make sense
1138 for this function to return an encoded version of NAME.
1139 Unfortunately, we cannot do this, because this function is used in
1140 circumstances where it is not appropriate to try to encode NAME.
1141 For instance, when displaying the frame info, we demangle the name
1142 of each parameter, and then perform a symbol lookup inside our
1143 function using that demangled name. In Ada, certain functions
1144 have internally-generated parameters whose name contain uppercase
1145 characters. Encoding those name would result in those uppercase
1146 characters to become lowercase, and thus cause the symbol lookup
1147 to fail. */
1148
1149 struct cleanup *
1150 demangle_for_lookup (const char *name, enum language lang,
1151 const char **result_name)
1152 {
1153 char *demangled_name = NULL;
1154 const char *modified_name = NULL;
1155 struct cleanup *cleanup = make_cleanup (null_cleanup, 0);
1156
1157 modified_name = name;
1158
1159 /* If we are using C++, D, Go, or Java, demangle the name before doing a
1160 lookup, so we can always binary search. */
1161 if (lang == language_cplus)
1162 {
1163 demangled_name = gdb_demangle (name, DMGL_ANSI | DMGL_PARAMS);
1164 if (demangled_name)
1165 {
1166 modified_name = demangled_name;
1167 make_cleanup (xfree, demangled_name);
1168 }
1169 else
1170 {
1171 /* If we were given a non-mangled name, canonicalize it
1172 according to the language (so far only for C++). */
1173 demangled_name = cp_canonicalize_string (name);
1174 if (demangled_name)
1175 {
1176 modified_name = demangled_name;
1177 make_cleanup (xfree, demangled_name);
1178 }
1179 }
1180 }
1181 else if (lang == language_java)
1182 {
1183 demangled_name = gdb_demangle (name,
1184 DMGL_ANSI | DMGL_PARAMS | DMGL_JAVA);
1185 if (demangled_name)
1186 {
1187 modified_name = demangled_name;
1188 make_cleanup (xfree, demangled_name);
1189 }
1190 }
1191 else if (lang == language_d)
1192 {
1193 demangled_name = d_demangle (name, 0);
1194 if (demangled_name)
1195 {
1196 modified_name = demangled_name;
1197 make_cleanup (xfree, demangled_name);
1198 }
1199 }
1200 else if (lang == language_go)
1201 {
1202 demangled_name = go_demangle (name, 0);
1203 if (demangled_name)
1204 {
1205 modified_name = demangled_name;
1206 make_cleanup (xfree, demangled_name);
1207 }
1208 }
1209
1210 *result_name = modified_name;
1211 return cleanup;
1212 }
1213
1214 /* Find the definition for a specified symbol name NAME
1215 in domain DOMAIN, visible from lexical block BLOCK.
1216 Returns the struct symbol pointer, or zero if no symbol is found.
1217 C++: if IS_A_FIELD_OF_THIS is nonzero on entry, check to see if
1218 NAME is a field of the current implied argument `this'. If so set
1219 *IS_A_FIELD_OF_THIS to 1, otherwise set it to zero.
1220 BLOCK_FOUND is set to the block in which NAME is found (in the case of
1221 a field of `this', value_of_this sets BLOCK_FOUND to the proper value.) */
1222
1223 /* This function (or rather its subordinates) have a bunch of loops and
1224 it would seem to be attractive to put in some QUIT's (though I'm not really
1225 sure whether it can run long enough to be really important). But there
1226 are a few calls for which it would appear to be bad news to quit
1227 out of here: e.g., find_proc_desc in alpha-mdebug-tdep.c. (Note
1228 that there is C++ code below which can error(), but that probably
1229 doesn't affect these calls since they are looking for a known
1230 variable and thus can probably assume it will never hit the C++
1231 code). */
1232
1233 struct symbol *
1234 lookup_symbol_in_language (const char *name, const struct block *block,
1235 const domain_enum domain, enum language lang,
1236 struct field_of_this_result *is_a_field_of_this)
1237 {
1238 const char *modified_name;
1239 struct symbol *returnval;
1240 struct cleanup *cleanup = demangle_for_lookup (name, lang, &modified_name);
1241
1242 returnval = lookup_symbol_aux (modified_name, block, domain, lang,
1243 is_a_field_of_this);
1244 do_cleanups (cleanup);
1245
1246 return returnval;
1247 }
1248
1249 /* Behave like lookup_symbol_in_language, but performed with the
1250 current language. */
1251
1252 struct symbol *
1253 lookup_symbol (const char *name, const struct block *block,
1254 domain_enum domain,
1255 struct field_of_this_result *is_a_field_of_this)
1256 {
1257 return lookup_symbol_in_language (name, block, domain,
1258 current_language->la_language,
1259 is_a_field_of_this);
1260 }
1261
1262 /* Look up the `this' symbol for LANG in BLOCK. Return the symbol if
1263 found, or NULL if not found. */
1264
1265 struct symbol *
1266 lookup_language_this (const struct language_defn *lang,
1267 const struct block *block)
1268 {
1269 if (lang->la_name_of_this == NULL || block == NULL)
1270 return NULL;
1271
1272 while (block)
1273 {
1274 struct symbol *sym;
1275
1276 sym = lookup_block_symbol (block, lang->la_name_of_this, VAR_DOMAIN);
1277 if (sym != NULL)
1278 {
1279 block_found = block;
1280 return sym;
1281 }
1282 if (BLOCK_FUNCTION (block))
1283 break;
1284 block = BLOCK_SUPERBLOCK (block);
1285 }
1286
1287 return NULL;
1288 }
1289
1290 /* Given TYPE, a structure/union,
1291 return 1 if the component named NAME from the ultimate target
1292 structure/union is defined, otherwise, return 0. */
1293
1294 static int
1295 check_field (struct type *type, const char *name,
1296 struct field_of_this_result *is_a_field_of_this)
1297 {
1298 int i;
1299
1300 /* The type may be a stub. */
1301 CHECK_TYPEDEF (type);
1302
1303 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1304 {
1305 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1306
1307 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1308 {
1309 is_a_field_of_this->type = type;
1310 is_a_field_of_this->field = &TYPE_FIELD (type, i);
1311 return 1;
1312 }
1313 }
1314
1315 /* C++: If it was not found as a data field, then try to return it
1316 as a pointer to a method. */
1317
1318 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
1319 {
1320 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
1321 {
1322 is_a_field_of_this->type = type;
1323 is_a_field_of_this->fn_field = &TYPE_FN_FIELDLIST (type, i);
1324 return 1;
1325 }
1326 }
1327
1328 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1329 if (check_field (TYPE_BASECLASS (type, i), name, is_a_field_of_this))
1330 return 1;
1331
1332 return 0;
1333 }
1334
1335 /* Behave like lookup_symbol except that NAME is the natural name
1336 (e.g., demangled name) of the symbol that we're looking for. */
1337
1338 static struct symbol *
1339 lookup_symbol_aux (const char *name, const struct block *block,
1340 const domain_enum domain, enum language language,
1341 struct field_of_this_result *is_a_field_of_this)
1342 {
1343 struct symbol *sym;
1344 const struct language_defn *langdef;
1345
1346 /* Make sure we do something sensible with is_a_field_of_this, since
1347 the callers that set this parameter to some non-null value will
1348 certainly use it later. If we don't set it, the contents of
1349 is_a_field_of_this are undefined. */
1350 if (is_a_field_of_this != NULL)
1351 memset (is_a_field_of_this, 0, sizeof (*is_a_field_of_this));
1352
1353 /* Search specified block and its superiors. Don't search
1354 STATIC_BLOCK or GLOBAL_BLOCK. */
1355
1356 sym = lookup_symbol_aux_local (name, block, domain, language);
1357 if (sym != NULL)
1358 return sym;
1359
1360 /* If requested to do so by the caller and if appropriate for LANGUAGE,
1361 check to see if NAME is a field of `this'. */
1362
1363 langdef = language_def (language);
1364
1365 /* Don't do this check if we are searching for a struct. It will
1366 not be found by check_field, but will be found by other
1367 means. */
1368 if (is_a_field_of_this != NULL && domain != STRUCT_DOMAIN)
1369 {
1370 struct symbol *sym = lookup_language_this (langdef, block);
1371
1372 if (sym)
1373 {
1374 struct type *t = sym->type;
1375
1376 /* I'm not really sure that type of this can ever
1377 be typedefed; just be safe. */
1378 CHECK_TYPEDEF (t);
1379 if (TYPE_CODE (t) == TYPE_CODE_PTR
1380 || TYPE_CODE (t) == TYPE_CODE_REF)
1381 t = TYPE_TARGET_TYPE (t);
1382
1383 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
1384 && TYPE_CODE (t) != TYPE_CODE_UNION)
1385 error (_("Internal error: `%s' is not an aggregate"),
1386 langdef->la_name_of_this);
1387
1388 if (check_field (t, name, is_a_field_of_this))
1389 return NULL;
1390 }
1391 }
1392
1393 /* Now do whatever is appropriate for LANGUAGE to look
1394 up static and global variables. */
1395
1396 sym = langdef->la_lookup_symbol_nonlocal (name, block, domain);
1397 if (sym != NULL)
1398 return sym;
1399
1400 /* Now search all static file-level symbols. Not strictly correct,
1401 but more useful than an error. */
1402
1403 return lookup_static_symbol_aux (name, domain);
1404 }
1405
1406 /* Search all static file-level symbols for NAME from DOMAIN. Do the symtabs
1407 first, then check the psymtabs. If a psymtab indicates the existence of the
1408 desired name as a file-level static, then do psymtab-to-symtab conversion on
1409 the fly and return the found symbol. */
1410
1411 struct symbol *
1412 lookup_static_symbol_aux (const char *name, const domain_enum domain)
1413 {
1414 struct objfile *objfile;
1415 struct symbol *sym;
1416
1417 sym = lookup_symbol_aux_symtabs (STATIC_BLOCK, name, domain);
1418 if (sym != NULL)
1419 return sym;
1420
1421 ALL_OBJFILES (objfile)
1422 {
1423 sym = lookup_symbol_aux_quick (objfile, STATIC_BLOCK, name, domain);
1424 if (sym != NULL)
1425 return sym;
1426 }
1427
1428 return NULL;
1429 }
1430
1431 /* Check to see if the symbol is defined in BLOCK or its superiors.
1432 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
1433
1434 static struct symbol *
1435 lookup_symbol_aux_local (const char *name, const struct block *block,
1436 const domain_enum domain,
1437 enum language language)
1438 {
1439 struct symbol *sym;
1440 const struct block *static_block = block_static_block (block);
1441 const char *scope = block_scope (block);
1442
1443 /* Check if either no block is specified or it's a global block. */
1444
1445 if (static_block == NULL)
1446 return NULL;
1447
1448 while (block != static_block)
1449 {
1450 sym = lookup_symbol_aux_block (name, block, domain);
1451 if (sym != NULL)
1452 return sym;
1453
1454 if (language == language_cplus || language == language_fortran)
1455 {
1456 sym = cp_lookup_symbol_imports_or_template (scope, name, block,
1457 domain);
1458 if (sym != NULL)
1459 return sym;
1460 }
1461
1462 if (BLOCK_FUNCTION (block) != NULL && block_inlined_p (block))
1463 break;
1464 block = BLOCK_SUPERBLOCK (block);
1465 }
1466
1467 /* We've reached the edge of the function without finding a result. */
1468
1469 return NULL;
1470 }
1471
1472 /* Look up OBJFILE to BLOCK. */
1473
1474 struct objfile *
1475 lookup_objfile_from_block (const struct block *block)
1476 {
1477 struct objfile *obj;
1478 struct symtab *s;
1479
1480 if (block == NULL)
1481 return NULL;
1482
1483 block = block_global_block (block);
1484 /* Go through SYMTABS. */
1485 ALL_SYMTABS (obj, s)
1486 if (block == BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK))
1487 {
1488 if (obj->separate_debug_objfile_backlink)
1489 obj = obj->separate_debug_objfile_backlink;
1490
1491 return obj;
1492 }
1493
1494 return NULL;
1495 }
1496
1497 /* Look up a symbol in a block; if found, fixup the symbol, and set
1498 block_found appropriately. */
1499
1500 struct symbol *
1501 lookup_symbol_aux_block (const char *name, const struct block *block,
1502 const domain_enum domain)
1503 {
1504 struct symbol *sym;
1505
1506 sym = lookup_block_symbol (block, name, domain);
1507 if (sym)
1508 {
1509 block_found = block;
1510 return fixup_symbol_section (sym, NULL);
1511 }
1512
1513 return NULL;
1514 }
1515
1516 /* Check all global symbols in OBJFILE in symtabs and
1517 psymtabs. */
1518
1519 struct symbol *
1520 lookup_global_symbol_from_objfile (const struct objfile *main_objfile,
1521 const char *name,
1522 const domain_enum domain)
1523 {
1524 const struct objfile *objfile;
1525 struct symbol *sym;
1526 struct blockvector *bv;
1527 const struct block *block;
1528 struct symtab *s;
1529
1530 for (objfile = main_objfile;
1531 objfile;
1532 objfile = objfile_separate_debug_iterate (main_objfile, objfile))
1533 {
1534 /* Go through symtabs. */
1535 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
1536 {
1537 bv = BLOCKVECTOR (s);
1538 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1539 sym = lookup_block_symbol (block, name, domain);
1540 if (sym)
1541 {
1542 block_found = block;
1543 return fixup_symbol_section (sym, (struct objfile *)objfile);
1544 }
1545 }
1546
1547 sym = lookup_symbol_aux_quick ((struct objfile *) objfile, GLOBAL_BLOCK,
1548 name, domain);
1549 if (sym)
1550 return sym;
1551 }
1552
1553 return NULL;
1554 }
1555
1556 /* Check to see if the symbol is defined in one of the OBJFILE's
1557 symtabs. BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
1558 depending on whether or not we want to search global symbols or
1559 static symbols. */
1560
1561 static struct symbol *
1562 lookup_symbol_aux_objfile (struct objfile *objfile, int block_index,
1563 const char *name, const domain_enum domain)
1564 {
1565 struct symbol *sym = NULL;
1566 struct blockvector *bv;
1567 const struct block *block;
1568 struct symtab *s;
1569
1570 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
1571 {
1572 bv = BLOCKVECTOR (s);
1573 block = BLOCKVECTOR_BLOCK (bv, block_index);
1574 sym = lookup_block_symbol (block, name, domain);
1575 if (sym)
1576 {
1577 block_found = block;
1578 return fixup_symbol_section (sym, objfile);
1579 }
1580 }
1581
1582 return NULL;
1583 }
1584
1585 /* Same as lookup_symbol_aux_objfile, except that it searches all
1586 objfiles. Return the first match found. */
1587
1588 static struct symbol *
1589 lookup_symbol_aux_symtabs (int block_index, const char *name,
1590 const domain_enum domain)
1591 {
1592 struct symbol *sym;
1593 struct objfile *objfile;
1594
1595 ALL_OBJFILES (objfile)
1596 {
1597 sym = lookup_symbol_aux_objfile (objfile, block_index, name, domain);
1598 if (sym)
1599 return sym;
1600 }
1601
1602 return NULL;
1603 }
1604
1605 /* Wrapper around lookup_symbol_aux_objfile for search_symbols.
1606 Look up LINKAGE_NAME in DOMAIN in the global and static blocks of OBJFILE
1607 and all related objfiles. */
1608
1609 static struct symbol *
1610 lookup_symbol_in_objfile_from_linkage_name (struct objfile *objfile,
1611 const char *linkage_name,
1612 domain_enum domain)
1613 {
1614 enum language lang = current_language->la_language;
1615 const char *modified_name;
1616 struct cleanup *cleanup = demangle_for_lookup (linkage_name, lang,
1617 &modified_name);
1618 struct objfile *main_objfile, *cur_objfile;
1619
1620 if (objfile->separate_debug_objfile_backlink)
1621 main_objfile = objfile->separate_debug_objfile_backlink;
1622 else
1623 main_objfile = objfile;
1624
1625 for (cur_objfile = main_objfile;
1626 cur_objfile;
1627 cur_objfile = objfile_separate_debug_iterate (main_objfile, cur_objfile))
1628 {
1629 struct symbol *sym;
1630
1631 sym = lookup_symbol_aux_objfile (cur_objfile, GLOBAL_BLOCK,
1632 modified_name, domain);
1633 if (sym == NULL)
1634 sym = lookup_symbol_aux_objfile (cur_objfile, STATIC_BLOCK,
1635 modified_name, domain);
1636 if (sym != NULL)
1637 {
1638 do_cleanups (cleanup);
1639 return sym;
1640 }
1641 }
1642
1643 do_cleanups (cleanup);
1644 return NULL;
1645 }
1646
1647 /* A helper function that throws an exception when a symbol was found
1648 in a psymtab but not in a symtab. */
1649
1650 static void ATTRIBUTE_NORETURN
1651 error_in_psymtab_expansion (int kind, const char *name, struct symtab *symtab)
1652 {
1653 error (_("\
1654 Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n\
1655 %s may be an inlined function, or may be a template function\n \
1656 (if a template, try specifying an instantiation: %s<type>)."),
1657 kind == GLOBAL_BLOCK ? "global" : "static",
1658 name, symtab_to_filename_for_display (symtab), name, name);
1659 }
1660
1661 /* A helper function for lookup_symbol_aux that interfaces with the
1662 "quick" symbol table functions. */
1663
1664 static struct symbol *
1665 lookup_symbol_aux_quick (struct objfile *objfile, int kind,
1666 const char *name, const domain_enum domain)
1667 {
1668 struct symtab *symtab;
1669 struct blockvector *bv;
1670 const struct block *block;
1671 struct symbol *sym;
1672
1673 if (!objfile->sf)
1674 return NULL;
1675 symtab = objfile->sf->qf->lookup_symbol (objfile, kind, name, domain);
1676 if (!symtab)
1677 return NULL;
1678
1679 bv = BLOCKVECTOR (symtab);
1680 block = BLOCKVECTOR_BLOCK (bv, kind);
1681 sym = lookup_block_symbol (block, name, domain);
1682 if (!sym)
1683 error_in_psymtab_expansion (kind, name, symtab);
1684 return fixup_symbol_section (sym, objfile);
1685 }
1686
1687 /* A default version of lookup_symbol_nonlocal for use by languages
1688 that can't think of anything better to do. This implements the C
1689 lookup rules. */
1690
1691 struct symbol *
1692 basic_lookup_symbol_nonlocal (const char *name,
1693 const struct block *block,
1694 const domain_enum domain)
1695 {
1696 struct symbol *sym;
1697
1698 /* NOTE: carlton/2003-05-19: The comments below were written when
1699 this (or what turned into this) was part of lookup_symbol_aux;
1700 I'm much less worried about these questions now, since these
1701 decisions have turned out well, but I leave these comments here
1702 for posterity. */
1703
1704 /* NOTE: carlton/2002-12-05: There is a question as to whether or
1705 not it would be appropriate to search the current global block
1706 here as well. (That's what this code used to do before the
1707 is_a_field_of_this check was moved up.) On the one hand, it's
1708 redundant with the lookup_symbol_aux_symtabs search that happens
1709 next. On the other hand, if decode_line_1 is passed an argument
1710 like filename:var, then the user presumably wants 'var' to be
1711 searched for in filename. On the third hand, there shouldn't be
1712 multiple global variables all of which are named 'var', and it's
1713 not like decode_line_1 has ever restricted its search to only
1714 global variables in a single filename. All in all, only
1715 searching the static block here seems best: it's correct and it's
1716 cleanest. */
1717
1718 /* NOTE: carlton/2002-12-05: There's also a possible performance
1719 issue here: if you usually search for global symbols in the
1720 current file, then it would be slightly better to search the
1721 current global block before searching all the symtabs. But there
1722 are other factors that have a much greater effect on performance
1723 than that one, so I don't think we should worry about that for
1724 now. */
1725
1726 sym = lookup_symbol_static (name, block, domain);
1727 if (sym != NULL)
1728 return sym;
1729
1730 return lookup_symbol_global (name, block, domain);
1731 }
1732
1733 /* Lookup a symbol in the static block associated to BLOCK, if there
1734 is one; do nothing if BLOCK is NULL or a global block. */
1735
1736 struct symbol *
1737 lookup_symbol_static (const char *name,
1738 const struct block *block,
1739 const domain_enum domain)
1740 {
1741 const struct block *static_block = block_static_block (block);
1742
1743 if (static_block != NULL)
1744 return lookup_symbol_aux_block (name, static_block, domain);
1745 else
1746 return NULL;
1747 }
1748
1749 /* Private data to be used with lookup_symbol_global_iterator_cb. */
1750
1751 struct global_sym_lookup_data
1752 {
1753 /* The name of the symbol we are searching for. */
1754 const char *name;
1755
1756 /* The domain to use for our search. */
1757 domain_enum domain;
1758
1759 /* The field where the callback should store the symbol if found.
1760 It should be initialized to NULL before the search is started. */
1761 struct symbol *result;
1762 };
1763
1764 /* A callback function for gdbarch_iterate_over_objfiles_in_search_order.
1765 It searches by name for a symbol in the GLOBAL_BLOCK of the given
1766 OBJFILE. The arguments for the search are passed via CB_DATA,
1767 which in reality is a pointer to struct global_sym_lookup_data. */
1768
1769 static int
1770 lookup_symbol_global_iterator_cb (struct objfile *objfile,
1771 void *cb_data)
1772 {
1773 struct global_sym_lookup_data *data =
1774 (struct global_sym_lookup_data *) cb_data;
1775
1776 gdb_assert (data->result == NULL);
1777
1778 data->result = lookup_symbol_aux_objfile (objfile, GLOBAL_BLOCK,
1779 data->name, data->domain);
1780 if (data->result == NULL)
1781 data->result = lookup_symbol_aux_quick (objfile, GLOBAL_BLOCK,
1782 data->name, data->domain);
1783
1784 /* If we found a match, tell the iterator to stop. Otherwise,
1785 keep going. */
1786 return (data->result != NULL);
1787 }
1788
1789 /* Lookup a symbol in all files' global blocks (searching psymtabs if
1790 necessary). */
1791
1792 struct symbol *
1793 lookup_symbol_global (const char *name,
1794 const struct block *block,
1795 const domain_enum domain)
1796 {
1797 struct symbol *sym = NULL;
1798 struct objfile *objfile = NULL;
1799 struct global_sym_lookup_data lookup_data;
1800
1801 /* Call library-specific lookup procedure. */
1802 objfile = lookup_objfile_from_block (block);
1803 if (objfile != NULL)
1804 sym = solib_global_lookup (objfile, name, domain);
1805 if (sym != NULL)
1806 return sym;
1807
1808 memset (&lookup_data, 0, sizeof (lookup_data));
1809 lookup_data.name = name;
1810 lookup_data.domain = domain;
1811 gdbarch_iterate_over_objfiles_in_search_order
1812 (objfile != NULL ? get_objfile_arch (objfile) : target_gdbarch (),
1813 lookup_symbol_global_iterator_cb, &lookup_data, objfile);
1814
1815 return lookup_data.result;
1816 }
1817
1818 int
1819 symbol_matches_domain (enum language symbol_language,
1820 domain_enum symbol_domain,
1821 domain_enum domain)
1822 {
1823 /* For C++ "struct foo { ... }" also defines a typedef for "foo".
1824 A Java class declaration also defines a typedef for the class.
1825 Similarly, any Ada type declaration implicitly defines a typedef. */
1826 if (symbol_language == language_cplus
1827 || symbol_language == language_d
1828 || symbol_language == language_java
1829 || symbol_language == language_ada)
1830 {
1831 if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN)
1832 && symbol_domain == STRUCT_DOMAIN)
1833 return 1;
1834 }
1835 /* For all other languages, strict match is required. */
1836 return (symbol_domain == domain);
1837 }
1838
1839 /* Look up a type named NAME in the struct_domain. The type returned
1840 must not be opaque -- i.e., must have at least one field
1841 defined. */
1842
1843 struct type *
1844 lookup_transparent_type (const char *name)
1845 {
1846 return current_language->la_lookup_transparent_type (name);
1847 }
1848
1849 /* A helper for basic_lookup_transparent_type that interfaces with the
1850 "quick" symbol table functions. */
1851
1852 static struct type *
1853 basic_lookup_transparent_type_quick (struct objfile *objfile, int kind,
1854 const char *name)
1855 {
1856 struct symtab *symtab;
1857 struct blockvector *bv;
1858 struct block *block;
1859 struct symbol *sym;
1860
1861 if (!objfile->sf)
1862 return NULL;
1863 symtab = objfile->sf->qf->lookup_symbol (objfile, kind, name, STRUCT_DOMAIN);
1864 if (!symtab)
1865 return NULL;
1866
1867 bv = BLOCKVECTOR (symtab);
1868 block = BLOCKVECTOR_BLOCK (bv, kind);
1869 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1870 if (!sym)
1871 error_in_psymtab_expansion (kind, name, symtab);
1872
1873 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1874 return SYMBOL_TYPE (sym);
1875
1876 return NULL;
1877 }
1878
1879 /* The standard implementation of lookup_transparent_type. This code
1880 was modeled on lookup_symbol -- the parts not relevant to looking
1881 up types were just left out. In particular it's assumed here that
1882 types are available in struct_domain and only at file-static or
1883 global blocks. */
1884
1885 struct type *
1886 basic_lookup_transparent_type (const char *name)
1887 {
1888 struct symbol *sym;
1889 struct symtab *s = NULL;
1890 struct blockvector *bv;
1891 struct objfile *objfile;
1892 struct block *block;
1893 struct type *t;
1894
1895 /* Now search all the global symbols. Do the symtab's first, then
1896 check the psymtab's. If a psymtab indicates the existence
1897 of the desired name as a global, then do psymtab-to-symtab
1898 conversion on the fly and return the found symbol. */
1899
1900 ALL_OBJFILES (objfile)
1901 {
1902 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
1903 {
1904 bv = BLOCKVECTOR (s);
1905 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1906 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1907 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1908 {
1909 return SYMBOL_TYPE (sym);
1910 }
1911 }
1912 }
1913
1914 ALL_OBJFILES (objfile)
1915 {
1916 t = basic_lookup_transparent_type_quick (objfile, GLOBAL_BLOCK, name);
1917 if (t)
1918 return t;
1919 }
1920
1921 /* Now search the static file-level symbols.
1922 Not strictly correct, but more useful than an error.
1923 Do the symtab's first, then
1924 check the psymtab's. If a psymtab indicates the existence
1925 of the desired name as a file-level static, then do psymtab-to-symtab
1926 conversion on the fly and return the found symbol. */
1927
1928 ALL_OBJFILES (objfile)
1929 {
1930 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
1931 {
1932 bv = BLOCKVECTOR (s);
1933 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
1934 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1935 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1936 {
1937 return SYMBOL_TYPE (sym);
1938 }
1939 }
1940 }
1941
1942 ALL_OBJFILES (objfile)
1943 {
1944 t = basic_lookup_transparent_type_quick (objfile, STATIC_BLOCK, name);
1945 if (t)
1946 return t;
1947 }
1948
1949 return (struct type *) 0;
1950 }
1951
1952 /* Search BLOCK for symbol NAME in DOMAIN.
1953
1954 Note that if NAME is the demangled form of a C++ symbol, we will fail
1955 to find a match during the binary search of the non-encoded names, but
1956 for now we don't worry about the slight inefficiency of looking for
1957 a match we'll never find, since it will go pretty quick. Once the
1958 binary search terminates, we drop through and do a straight linear
1959 search on the symbols. Each symbol which is marked as being a ObjC/C++
1960 symbol (language_cplus or language_objc set) has both the encoded and
1961 non-encoded names tested for a match. */
1962
1963 struct symbol *
1964 lookup_block_symbol (const struct block *block, const char *name,
1965 const domain_enum domain)
1966 {
1967 struct block_iterator iter;
1968 struct symbol *sym;
1969
1970 if (!BLOCK_FUNCTION (block))
1971 {
1972 for (sym = block_iter_name_first (block, name, &iter);
1973 sym != NULL;
1974 sym = block_iter_name_next (name, &iter))
1975 {
1976 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
1977 SYMBOL_DOMAIN (sym), domain))
1978 return sym;
1979 }
1980 return NULL;
1981 }
1982 else
1983 {
1984 /* Note that parameter symbols do not always show up last in the
1985 list; this loop makes sure to take anything else other than
1986 parameter symbols first; it only uses parameter symbols as a
1987 last resort. Note that this only takes up extra computation
1988 time on a match. */
1989
1990 struct symbol *sym_found = NULL;
1991
1992 for (sym = block_iter_name_first (block, name, &iter);
1993 sym != NULL;
1994 sym = block_iter_name_next (name, &iter))
1995 {
1996 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
1997 SYMBOL_DOMAIN (sym), domain))
1998 {
1999 sym_found = sym;
2000 if (!SYMBOL_IS_ARGUMENT (sym))
2001 {
2002 break;
2003 }
2004 }
2005 }
2006 return (sym_found); /* Will be NULL if not found. */
2007 }
2008 }
2009
2010 /* Iterate over the symbols named NAME, matching DOMAIN, in BLOCK.
2011
2012 For each symbol that matches, CALLBACK is called. The symbol and
2013 DATA are passed to the callback.
2014
2015 If CALLBACK returns zero, the iteration ends. Otherwise, the
2016 search continues. */
2017
2018 void
2019 iterate_over_symbols (const struct block *block, const char *name,
2020 const domain_enum domain,
2021 symbol_found_callback_ftype *callback,
2022 void *data)
2023 {
2024 struct block_iterator iter;
2025 struct symbol *sym;
2026
2027 for (sym = block_iter_name_first (block, name, &iter);
2028 sym != NULL;
2029 sym = block_iter_name_next (name, &iter))
2030 {
2031 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
2032 SYMBOL_DOMAIN (sym), domain))
2033 {
2034 if (!callback (sym, data))
2035 return;
2036 }
2037 }
2038 }
2039
2040 /* Find the symtab associated with PC and SECTION. Look through the
2041 psymtabs and read in another symtab if necessary. */
2042
2043 struct symtab *
2044 find_pc_sect_symtab (CORE_ADDR pc, struct obj_section *section)
2045 {
2046 struct block *b;
2047 struct blockvector *bv;
2048 struct symtab *s = NULL;
2049 struct symtab *best_s = NULL;
2050 struct objfile *objfile;
2051 CORE_ADDR distance = 0;
2052 struct minimal_symbol *msymbol;
2053
2054 /* If we know that this is not a text address, return failure. This is
2055 necessary because we loop based on the block's high and low code
2056 addresses, which do not include the data ranges, and because
2057 we call find_pc_sect_psymtab which has a similar restriction based
2058 on the partial_symtab's texthigh and textlow. */
2059 msymbol = lookup_minimal_symbol_by_pc_section (pc, section).minsym;
2060 if (msymbol
2061 && (MSYMBOL_TYPE (msymbol) == mst_data
2062 || MSYMBOL_TYPE (msymbol) == mst_bss
2063 || MSYMBOL_TYPE (msymbol) == mst_abs
2064 || MSYMBOL_TYPE (msymbol) == mst_file_data
2065 || MSYMBOL_TYPE (msymbol) == mst_file_bss))
2066 return NULL;
2067
2068 /* Search all symtabs for the one whose file contains our address, and which
2069 is the smallest of all the ones containing the address. This is designed
2070 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
2071 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
2072 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
2073
2074 This happens for native ecoff format, where code from included files
2075 gets its own symtab. The symtab for the included file should have
2076 been read in already via the dependency mechanism.
2077 It might be swifter to create several symtabs with the same name
2078 like xcoff does (I'm not sure).
2079
2080 It also happens for objfiles that have their functions reordered.
2081 For these, the symtab we are looking for is not necessarily read in. */
2082
2083 ALL_PRIMARY_SYMTABS (objfile, s)
2084 {
2085 bv = BLOCKVECTOR (s);
2086 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
2087
2088 if (BLOCK_START (b) <= pc
2089 && BLOCK_END (b) > pc
2090 && (distance == 0
2091 || BLOCK_END (b) - BLOCK_START (b) < distance))
2092 {
2093 /* For an objfile that has its functions reordered,
2094 find_pc_psymtab will find the proper partial symbol table
2095 and we simply return its corresponding symtab. */
2096 /* In order to better support objfiles that contain both
2097 stabs and coff debugging info, we continue on if a psymtab
2098 can't be found. */
2099 if ((objfile->flags & OBJF_REORDERED) && objfile->sf)
2100 {
2101 struct symtab *result;
2102
2103 result
2104 = objfile->sf->qf->find_pc_sect_symtab (objfile,
2105 msymbol,
2106 pc, section,
2107 0);
2108 if (result)
2109 return result;
2110 }
2111 if (section != 0)
2112 {
2113 struct block_iterator iter;
2114 struct symbol *sym = NULL;
2115
2116 ALL_BLOCK_SYMBOLS (b, iter, sym)
2117 {
2118 fixup_symbol_section (sym, objfile);
2119 if (matching_obj_sections (SYMBOL_OBJ_SECTION (objfile, sym),
2120 section))
2121 break;
2122 }
2123 if (sym == NULL)
2124 continue; /* No symbol in this symtab matches
2125 section. */
2126 }
2127 distance = BLOCK_END (b) - BLOCK_START (b);
2128 best_s = s;
2129 }
2130 }
2131
2132 if (best_s != NULL)
2133 return (best_s);
2134
2135 /* Not found in symtabs, search the "quick" symtabs (e.g. psymtabs). */
2136
2137 ALL_OBJFILES (objfile)
2138 {
2139 struct symtab *result;
2140
2141 if (!objfile->sf)
2142 continue;
2143 result = objfile->sf->qf->find_pc_sect_symtab (objfile,
2144 msymbol,
2145 pc, section,
2146 1);
2147 if (result)
2148 return result;
2149 }
2150
2151 return NULL;
2152 }
2153
2154 /* Find the symtab associated with PC. Look through the psymtabs and read
2155 in another symtab if necessary. Backward compatibility, no section. */
2156
2157 struct symtab *
2158 find_pc_symtab (CORE_ADDR pc)
2159 {
2160 return find_pc_sect_symtab (pc, find_pc_mapped_section (pc));
2161 }
2162 \f
2163
2164 /* Find the source file and line number for a given PC value and SECTION.
2165 Return a structure containing a symtab pointer, a line number,
2166 and a pc range for the entire source line.
2167 The value's .pc field is NOT the specified pc.
2168 NOTCURRENT nonzero means, if specified pc is on a line boundary,
2169 use the line that ends there. Otherwise, in that case, the line
2170 that begins there is used. */
2171
2172 /* The big complication here is that a line may start in one file, and end just
2173 before the start of another file. This usually occurs when you #include
2174 code in the middle of a subroutine. To properly find the end of a line's PC
2175 range, we must search all symtabs associated with this compilation unit, and
2176 find the one whose first PC is closer than that of the next line in this
2177 symtab. */
2178
2179 /* If it's worth the effort, we could be using a binary search. */
2180
2181 struct symtab_and_line
2182 find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent)
2183 {
2184 struct symtab *s;
2185 struct linetable *l;
2186 int len;
2187 int i;
2188 struct linetable_entry *item;
2189 struct symtab_and_line val;
2190 struct blockvector *bv;
2191 struct bound_minimal_symbol msymbol;
2192 struct minimal_symbol *mfunsym;
2193 struct objfile *objfile;
2194
2195 /* Info on best line seen so far, and where it starts, and its file. */
2196
2197 struct linetable_entry *best = NULL;
2198 CORE_ADDR best_end = 0;
2199 struct symtab *best_symtab = 0;
2200
2201 /* Store here the first line number
2202 of a file which contains the line at the smallest pc after PC.
2203 If we don't find a line whose range contains PC,
2204 we will use a line one less than this,
2205 with a range from the start of that file to the first line's pc. */
2206 struct linetable_entry *alt = NULL;
2207
2208 /* Info on best line seen in this file. */
2209
2210 struct linetable_entry *prev;
2211
2212 /* If this pc is not from the current frame,
2213 it is the address of the end of a call instruction.
2214 Quite likely that is the start of the following statement.
2215 But what we want is the statement containing the instruction.
2216 Fudge the pc to make sure we get that. */
2217
2218 init_sal (&val); /* initialize to zeroes */
2219
2220 val.pspace = current_program_space;
2221
2222 /* It's tempting to assume that, if we can't find debugging info for
2223 any function enclosing PC, that we shouldn't search for line
2224 number info, either. However, GAS can emit line number info for
2225 assembly files --- very helpful when debugging hand-written
2226 assembly code. In such a case, we'd have no debug info for the
2227 function, but we would have line info. */
2228
2229 if (notcurrent)
2230 pc -= 1;
2231
2232 /* elz: added this because this function returned the wrong
2233 information if the pc belongs to a stub (import/export)
2234 to call a shlib function. This stub would be anywhere between
2235 two functions in the target, and the line info was erroneously
2236 taken to be the one of the line before the pc. */
2237
2238 /* RT: Further explanation:
2239
2240 * We have stubs (trampolines) inserted between procedures.
2241 *
2242 * Example: "shr1" exists in a shared library, and a "shr1" stub also
2243 * exists in the main image.
2244 *
2245 * In the minimal symbol table, we have a bunch of symbols
2246 * sorted by start address. The stubs are marked as "trampoline",
2247 * the others appear as text. E.g.:
2248 *
2249 * Minimal symbol table for main image
2250 * main: code for main (text symbol)
2251 * shr1: stub (trampoline symbol)
2252 * foo: code for foo (text symbol)
2253 * ...
2254 * Minimal symbol table for "shr1" image:
2255 * ...
2256 * shr1: code for shr1 (text symbol)
2257 * ...
2258 *
2259 * So the code below is trying to detect if we are in the stub
2260 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
2261 * and if found, do the symbolization from the real-code address
2262 * rather than the stub address.
2263 *
2264 * Assumptions being made about the minimal symbol table:
2265 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
2266 * if we're really in the trampoline.s If we're beyond it (say
2267 * we're in "foo" in the above example), it'll have a closer
2268 * symbol (the "foo" text symbol for example) and will not
2269 * return the trampoline.
2270 * 2. lookup_minimal_symbol_text() will find a real text symbol
2271 * corresponding to the trampoline, and whose address will
2272 * be different than the trampoline address. I put in a sanity
2273 * check for the address being the same, to avoid an
2274 * infinite recursion.
2275 */
2276 msymbol = lookup_minimal_symbol_by_pc (pc);
2277 if (msymbol.minsym != NULL)
2278 if (MSYMBOL_TYPE (msymbol.minsym) == mst_solib_trampoline)
2279 {
2280 mfunsym
2281 = lookup_minimal_symbol_text (SYMBOL_LINKAGE_NAME (msymbol.minsym),
2282 NULL);
2283 if (mfunsym == NULL)
2284 /* I eliminated this warning since it is coming out
2285 * in the following situation:
2286 * gdb shmain // test program with shared libraries
2287 * (gdb) break shr1 // function in shared lib
2288 * Warning: In stub for ...
2289 * In the above situation, the shared lib is not loaded yet,
2290 * so of course we can't find the real func/line info,
2291 * but the "break" still works, and the warning is annoying.
2292 * So I commented out the warning. RT */
2293 /* warning ("In stub for %s; unable to find real function/line info",
2294 SYMBOL_LINKAGE_NAME (msymbol)); */
2295 ;
2296 /* fall through */
2297 else if (SYMBOL_VALUE_ADDRESS (mfunsym)
2298 == SYMBOL_VALUE_ADDRESS (msymbol.minsym))
2299 /* Avoid infinite recursion */
2300 /* See above comment about why warning is commented out. */
2301 /* warning ("In stub for %s; unable to find real function/line info",
2302 SYMBOL_LINKAGE_NAME (msymbol)); */
2303 ;
2304 /* fall through */
2305 else
2306 return find_pc_line (SYMBOL_VALUE_ADDRESS (mfunsym), 0);
2307 }
2308
2309
2310 s = find_pc_sect_symtab (pc, section);
2311 if (!s)
2312 {
2313 /* If no symbol information, return previous pc. */
2314 if (notcurrent)
2315 pc++;
2316 val.pc = pc;
2317 return val;
2318 }
2319
2320 bv = BLOCKVECTOR (s);
2321 objfile = s->objfile;
2322
2323 /* Look at all the symtabs that share this blockvector.
2324 They all have the same apriori range, that we found was right;
2325 but they have different line tables. */
2326
2327 ALL_OBJFILE_SYMTABS (objfile, s)
2328 {
2329 if (BLOCKVECTOR (s) != bv)
2330 continue;
2331
2332 /* Find the best line in this symtab. */
2333 l = LINETABLE (s);
2334 if (!l)
2335 continue;
2336 len = l->nitems;
2337 if (len <= 0)
2338 {
2339 /* I think len can be zero if the symtab lacks line numbers
2340 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
2341 I'm not sure which, and maybe it depends on the symbol
2342 reader). */
2343 continue;
2344 }
2345
2346 prev = NULL;
2347 item = l->item; /* Get first line info. */
2348
2349 /* Is this file's first line closer than the first lines of other files?
2350 If so, record this file, and its first line, as best alternate. */
2351 if (item->pc > pc && (!alt || item->pc < alt->pc))
2352 alt = item;
2353
2354 for (i = 0; i < len; i++, item++)
2355 {
2356 /* Leave prev pointing to the linetable entry for the last line
2357 that started at or before PC. */
2358 if (item->pc > pc)
2359 break;
2360
2361 prev = item;
2362 }
2363
2364 /* At this point, prev points at the line whose start addr is <= pc, and
2365 item points at the next line. If we ran off the end of the linetable
2366 (pc >= start of the last line), then prev == item. If pc < start of
2367 the first line, prev will not be set. */
2368
2369 /* Is this file's best line closer than the best in the other files?
2370 If so, record this file, and its best line, as best so far. Don't
2371 save prev if it represents the end of a function (i.e. line number
2372 0) instead of a real line. */
2373
2374 if (prev && prev->line && (!best || prev->pc > best->pc))
2375 {
2376 best = prev;
2377 best_symtab = s;
2378
2379 /* Discard BEST_END if it's before the PC of the current BEST. */
2380 if (best_end <= best->pc)
2381 best_end = 0;
2382 }
2383
2384 /* If another line (denoted by ITEM) is in the linetable and its
2385 PC is after BEST's PC, but before the current BEST_END, then
2386 use ITEM's PC as the new best_end. */
2387 if (best && i < len && item->pc > best->pc
2388 && (best_end == 0 || best_end > item->pc))
2389 best_end = item->pc;
2390 }
2391
2392 if (!best_symtab)
2393 {
2394 /* If we didn't find any line number info, just return zeros.
2395 We used to return alt->line - 1 here, but that could be
2396 anywhere; if we don't have line number info for this PC,
2397 don't make some up. */
2398 val.pc = pc;
2399 }
2400 else if (best->line == 0)
2401 {
2402 /* If our best fit is in a range of PC's for which no line
2403 number info is available (line number is zero) then we didn't
2404 find any valid line information. */
2405 val.pc = pc;
2406 }
2407 else
2408 {
2409 val.symtab = best_symtab;
2410 val.line = best->line;
2411 val.pc = best->pc;
2412 if (best_end && (!alt || best_end < alt->pc))
2413 val.end = best_end;
2414 else if (alt)
2415 val.end = alt->pc;
2416 else
2417 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
2418 }
2419 val.section = section;
2420 return val;
2421 }
2422
2423 /* Backward compatibility (no section). */
2424
2425 struct symtab_and_line
2426 find_pc_line (CORE_ADDR pc, int notcurrent)
2427 {
2428 struct obj_section *section;
2429
2430 section = find_pc_overlay (pc);
2431 if (pc_in_unmapped_range (pc, section))
2432 pc = overlay_mapped_address (pc, section);
2433 return find_pc_sect_line (pc, section, notcurrent);
2434 }
2435 \f
2436 /* Find line number LINE in any symtab whose name is the same as
2437 SYMTAB.
2438
2439 If found, return the symtab that contains the linetable in which it was
2440 found, set *INDEX to the index in the linetable of the best entry
2441 found, and set *EXACT_MATCH nonzero if the value returned is an
2442 exact match.
2443
2444 If not found, return NULL. */
2445
2446 struct symtab *
2447 find_line_symtab (struct symtab *symtab, int line,
2448 int *index, int *exact_match)
2449 {
2450 int exact = 0; /* Initialized here to avoid a compiler warning. */
2451
2452 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
2453 so far seen. */
2454
2455 int best_index;
2456 struct linetable *best_linetable;
2457 struct symtab *best_symtab;
2458
2459 /* First try looking it up in the given symtab. */
2460 best_linetable = LINETABLE (symtab);
2461 best_symtab = symtab;
2462 best_index = find_line_common (best_linetable, line, &exact, 0);
2463 if (best_index < 0 || !exact)
2464 {
2465 /* Didn't find an exact match. So we better keep looking for
2466 another symtab with the same name. In the case of xcoff,
2467 multiple csects for one source file (produced by IBM's FORTRAN
2468 compiler) produce multiple symtabs (this is unavoidable
2469 assuming csects can be at arbitrary places in memory and that
2470 the GLOBAL_BLOCK of a symtab has a begin and end address). */
2471
2472 /* BEST is the smallest linenumber > LINE so far seen,
2473 or 0 if none has been seen so far.
2474 BEST_INDEX and BEST_LINETABLE identify the item for it. */
2475 int best;
2476
2477 struct objfile *objfile;
2478 struct symtab *s;
2479
2480 if (best_index >= 0)
2481 best = best_linetable->item[best_index].line;
2482 else
2483 best = 0;
2484
2485 ALL_OBJFILES (objfile)
2486 {
2487 if (objfile->sf)
2488 objfile->sf->qf->expand_symtabs_with_fullname (objfile,
2489 symtab_to_fullname (symtab));
2490 }
2491
2492 ALL_SYMTABS (objfile, s)
2493 {
2494 struct linetable *l;
2495 int ind;
2496
2497 if (FILENAME_CMP (symtab->filename, s->filename) != 0)
2498 continue;
2499 if (FILENAME_CMP (symtab_to_fullname (symtab),
2500 symtab_to_fullname (s)) != 0)
2501 continue;
2502 l = LINETABLE (s);
2503 ind = find_line_common (l, line, &exact, 0);
2504 if (ind >= 0)
2505 {
2506 if (exact)
2507 {
2508 best_index = ind;
2509 best_linetable = l;
2510 best_symtab = s;
2511 goto done;
2512 }
2513 if (best == 0 || l->item[ind].line < best)
2514 {
2515 best = l->item[ind].line;
2516 best_index = ind;
2517 best_linetable = l;
2518 best_symtab = s;
2519 }
2520 }
2521 }
2522 }
2523 done:
2524 if (best_index < 0)
2525 return NULL;
2526
2527 if (index)
2528 *index = best_index;
2529 if (exact_match)
2530 *exact_match = exact;
2531
2532 return best_symtab;
2533 }
2534
2535 /* Given SYMTAB, returns all the PCs function in the symtab that
2536 exactly match LINE. Returns NULL if there are no exact matches,
2537 but updates BEST_ITEM in this case. */
2538
2539 VEC (CORE_ADDR) *
2540 find_pcs_for_symtab_line (struct symtab *symtab, int line,
2541 struct linetable_entry **best_item)
2542 {
2543 int start = 0;
2544 VEC (CORE_ADDR) *result = NULL;
2545
2546 /* First, collect all the PCs that are at this line. */
2547 while (1)
2548 {
2549 int was_exact;
2550 int idx;
2551
2552 idx = find_line_common (LINETABLE (symtab), line, &was_exact, start);
2553 if (idx < 0)
2554 break;
2555
2556 if (!was_exact)
2557 {
2558 struct linetable_entry *item = &LINETABLE (symtab)->item[idx];
2559
2560 if (*best_item == NULL || item->line < (*best_item)->line)
2561 *best_item = item;
2562
2563 break;
2564 }
2565
2566 VEC_safe_push (CORE_ADDR, result, LINETABLE (symtab)->item[idx].pc);
2567 start = idx + 1;
2568 }
2569
2570 return result;
2571 }
2572
2573 \f
2574 /* Set the PC value for a given source file and line number and return true.
2575 Returns zero for invalid line number (and sets the PC to 0).
2576 The source file is specified with a struct symtab. */
2577
2578 int
2579 find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
2580 {
2581 struct linetable *l;
2582 int ind;
2583
2584 *pc = 0;
2585 if (symtab == 0)
2586 return 0;
2587
2588 symtab = find_line_symtab (symtab, line, &ind, NULL);
2589 if (symtab != NULL)
2590 {
2591 l = LINETABLE (symtab);
2592 *pc = l->item[ind].pc;
2593 return 1;
2594 }
2595 else
2596 return 0;
2597 }
2598
2599 /* Find the range of pc values in a line.
2600 Store the starting pc of the line into *STARTPTR
2601 and the ending pc (start of next line) into *ENDPTR.
2602 Returns 1 to indicate success.
2603 Returns 0 if could not find the specified line. */
2604
2605 int
2606 find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
2607 CORE_ADDR *endptr)
2608 {
2609 CORE_ADDR startaddr;
2610 struct symtab_and_line found_sal;
2611
2612 startaddr = sal.pc;
2613 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
2614 return 0;
2615
2616 /* This whole function is based on address. For example, if line 10 has
2617 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
2618 "info line *0x123" should say the line goes from 0x100 to 0x200
2619 and "info line *0x355" should say the line goes from 0x300 to 0x400.
2620 This also insures that we never give a range like "starts at 0x134
2621 and ends at 0x12c". */
2622
2623 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
2624 if (found_sal.line != sal.line)
2625 {
2626 /* The specified line (sal) has zero bytes. */
2627 *startptr = found_sal.pc;
2628 *endptr = found_sal.pc;
2629 }
2630 else
2631 {
2632 *startptr = found_sal.pc;
2633 *endptr = found_sal.end;
2634 }
2635 return 1;
2636 }
2637
2638 /* Given a line table and a line number, return the index into the line
2639 table for the pc of the nearest line whose number is >= the specified one.
2640 Return -1 if none is found. The value is >= 0 if it is an index.
2641 START is the index at which to start searching the line table.
2642
2643 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
2644
2645 static int
2646 find_line_common (struct linetable *l, int lineno,
2647 int *exact_match, int start)
2648 {
2649 int i;
2650 int len;
2651
2652 /* BEST is the smallest linenumber > LINENO so far seen,
2653 or 0 if none has been seen so far.
2654 BEST_INDEX identifies the item for it. */
2655
2656 int best_index = -1;
2657 int best = 0;
2658
2659 *exact_match = 0;
2660
2661 if (lineno <= 0)
2662 return -1;
2663 if (l == 0)
2664 return -1;
2665
2666 len = l->nitems;
2667 for (i = start; i < len; i++)
2668 {
2669 struct linetable_entry *item = &(l->item[i]);
2670
2671 if (item->line == lineno)
2672 {
2673 /* Return the first (lowest address) entry which matches. */
2674 *exact_match = 1;
2675 return i;
2676 }
2677
2678 if (item->line > lineno && (best == 0 || item->line < best))
2679 {
2680 best = item->line;
2681 best_index = i;
2682 }
2683 }
2684
2685 /* If we got here, we didn't get an exact match. */
2686 return best_index;
2687 }
2688
2689 int
2690 find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
2691 {
2692 struct symtab_and_line sal;
2693
2694 sal = find_pc_line (pc, 0);
2695 *startptr = sal.pc;
2696 *endptr = sal.end;
2697 return sal.symtab != 0;
2698 }
2699
2700 /* Given a function start address FUNC_ADDR and SYMTAB, find the first
2701 address for that function that has an entry in SYMTAB's line info
2702 table. If such an entry cannot be found, return FUNC_ADDR
2703 unaltered. */
2704
2705 static CORE_ADDR
2706 skip_prologue_using_lineinfo (CORE_ADDR func_addr, struct symtab *symtab)
2707 {
2708 CORE_ADDR func_start, func_end;
2709 struct linetable *l;
2710 int i;
2711
2712 /* Give up if this symbol has no lineinfo table. */
2713 l = LINETABLE (symtab);
2714 if (l == NULL)
2715 return func_addr;
2716
2717 /* Get the range for the function's PC values, or give up if we
2718 cannot, for some reason. */
2719 if (!find_pc_partial_function (func_addr, NULL, &func_start, &func_end))
2720 return func_addr;
2721
2722 /* Linetable entries are ordered by PC values, see the commentary in
2723 symtab.h where `struct linetable' is defined. Thus, the first
2724 entry whose PC is in the range [FUNC_START..FUNC_END[ is the
2725 address we are looking for. */
2726 for (i = 0; i < l->nitems; i++)
2727 {
2728 struct linetable_entry *item = &(l->item[i]);
2729
2730 /* Don't use line numbers of zero, they mark special entries in
2731 the table. See the commentary on symtab.h before the
2732 definition of struct linetable. */
2733 if (item->line > 0 && func_start <= item->pc && item->pc < func_end)
2734 return item->pc;
2735 }
2736
2737 return func_addr;
2738 }
2739
2740 /* Given a function symbol SYM, find the symtab and line for the start
2741 of the function.
2742 If the argument FUNFIRSTLINE is nonzero, we want the first line
2743 of real code inside the function. */
2744
2745 struct symtab_and_line
2746 find_function_start_sal (struct symbol *sym, int funfirstline)
2747 {
2748 struct symtab_and_line sal;
2749
2750 fixup_symbol_section (sym, NULL);
2751 sal = find_pc_sect_line (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)),
2752 SYMBOL_OBJ_SECTION (SYMBOL_OBJFILE (sym), sym), 0);
2753
2754 /* We always should have a line for the function start address.
2755 If we don't, something is odd. Create a plain SAL refering
2756 just the PC and hope that skip_prologue_sal (if requested)
2757 can find a line number for after the prologue. */
2758 if (sal.pc < BLOCK_START (SYMBOL_BLOCK_VALUE (sym)))
2759 {
2760 init_sal (&sal);
2761 sal.pspace = current_program_space;
2762 sal.pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
2763 sal.section = SYMBOL_OBJ_SECTION (SYMBOL_OBJFILE (sym), sym);
2764 }
2765
2766 if (funfirstline)
2767 skip_prologue_sal (&sal);
2768
2769 return sal;
2770 }
2771
2772 /* Adjust SAL to the first instruction past the function prologue.
2773 If the PC was explicitly specified, the SAL is not changed.
2774 If the line number was explicitly specified, at most the SAL's PC
2775 is updated. If SAL is already past the prologue, then do nothing. */
2776
2777 void
2778 skip_prologue_sal (struct symtab_and_line *sal)
2779 {
2780 struct symbol *sym;
2781 struct symtab_and_line start_sal;
2782 struct cleanup *old_chain;
2783 CORE_ADDR pc, saved_pc;
2784 struct obj_section *section;
2785 const char *name;
2786 struct objfile *objfile;
2787 struct gdbarch *gdbarch;
2788 struct block *b, *function_block;
2789 int force_skip, skip;
2790
2791 /* Do not change the SAL if PC was specified explicitly. */
2792 if (sal->explicit_pc)
2793 return;
2794
2795 old_chain = save_current_space_and_thread ();
2796 switch_to_program_space_and_thread (sal->pspace);
2797
2798 sym = find_pc_sect_function (sal->pc, sal->section);
2799 if (sym != NULL)
2800 {
2801 fixup_symbol_section (sym, NULL);
2802
2803 pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
2804 section = SYMBOL_OBJ_SECTION (SYMBOL_OBJFILE (sym), sym);
2805 name = SYMBOL_LINKAGE_NAME (sym);
2806 objfile = SYMBOL_SYMTAB (sym)->objfile;
2807 }
2808 else
2809 {
2810 struct bound_minimal_symbol msymbol
2811 = lookup_minimal_symbol_by_pc_section (sal->pc, sal->section);
2812
2813 if (msymbol.minsym == NULL)
2814 {
2815 do_cleanups (old_chain);
2816 return;
2817 }
2818
2819 objfile = msymbol.objfile;
2820 pc = SYMBOL_VALUE_ADDRESS (msymbol.minsym);
2821 section = SYMBOL_OBJ_SECTION (objfile, msymbol.minsym);
2822 name = SYMBOL_LINKAGE_NAME (msymbol.minsym);
2823 }
2824
2825 gdbarch = get_objfile_arch (objfile);
2826
2827 /* Process the prologue in two passes. In the first pass try to skip the
2828 prologue (SKIP is true) and verify there is a real need for it (indicated
2829 by FORCE_SKIP). If no such reason was found run a second pass where the
2830 prologue is not skipped (SKIP is false). */
2831
2832 skip = 1;
2833 force_skip = 1;
2834
2835 /* Be conservative - allow direct PC (without skipping prologue) only if we
2836 have proven the CU (Compilation Unit) supports it. sal->SYMTAB does not
2837 have to be set by the caller so we use SYM instead. */
2838 if (sym && SYMBOL_SYMTAB (sym)->locations_valid)
2839 force_skip = 0;
2840
2841 saved_pc = pc;
2842 do
2843 {
2844 pc = saved_pc;
2845
2846 /* If the function is in an unmapped overlay, use its unmapped LMA address,
2847 so that gdbarch_skip_prologue has something unique to work on. */
2848 if (section_is_overlay (section) && !section_is_mapped (section))
2849 pc = overlay_unmapped_address (pc, section);
2850
2851 /* Skip "first line" of function (which is actually its prologue). */
2852 pc += gdbarch_deprecated_function_start_offset (gdbarch);
2853 if (skip)
2854 pc = gdbarch_skip_prologue (gdbarch, pc);
2855
2856 /* For overlays, map pc back into its mapped VMA range. */
2857 pc = overlay_mapped_address (pc, section);
2858
2859 /* Calculate line number. */
2860 start_sal = find_pc_sect_line (pc, section, 0);
2861
2862 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
2863 line is still part of the same function. */
2864 if (skip && start_sal.pc != pc
2865 && (sym ? (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) <= start_sal.end
2866 && start_sal.end < BLOCK_END (SYMBOL_BLOCK_VALUE (sym)))
2867 : (lookup_minimal_symbol_by_pc_section (start_sal.end, section).minsym
2868 == lookup_minimal_symbol_by_pc_section (pc, section).minsym)))
2869 {
2870 /* First pc of next line */
2871 pc = start_sal.end;
2872 /* Recalculate the line number (might not be N+1). */
2873 start_sal = find_pc_sect_line (pc, section, 0);
2874 }
2875
2876 /* On targets with executable formats that don't have a concept of
2877 constructors (ELF with .init has, PE doesn't), gcc emits a call
2878 to `__main' in `main' between the prologue and before user
2879 code. */
2880 if (gdbarch_skip_main_prologue_p (gdbarch)
2881 && name && strcmp_iw (name, "main") == 0)
2882 {
2883 pc = gdbarch_skip_main_prologue (gdbarch, pc);
2884 /* Recalculate the line number (might not be N+1). */
2885 start_sal = find_pc_sect_line (pc, section, 0);
2886 force_skip = 1;
2887 }
2888 }
2889 while (!force_skip && skip--);
2890
2891 /* If we still don't have a valid source line, try to find the first
2892 PC in the lineinfo table that belongs to the same function. This
2893 happens with COFF debug info, which does not seem to have an
2894 entry in lineinfo table for the code after the prologue which has
2895 no direct relation to source. For example, this was found to be
2896 the case with the DJGPP target using "gcc -gcoff" when the
2897 compiler inserted code after the prologue to make sure the stack
2898 is aligned. */
2899 if (!force_skip && sym && start_sal.symtab == NULL)
2900 {
2901 pc = skip_prologue_using_lineinfo (pc, SYMBOL_SYMTAB (sym));
2902 /* Recalculate the line number. */
2903 start_sal = find_pc_sect_line (pc, section, 0);
2904 }
2905
2906 do_cleanups (old_chain);
2907
2908 /* If we're already past the prologue, leave SAL unchanged. Otherwise
2909 forward SAL to the end of the prologue. */
2910 if (sal->pc >= pc)
2911 return;
2912
2913 sal->pc = pc;
2914 sal->section = section;
2915
2916 /* Unless the explicit_line flag was set, update the SAL line
2917 and symtab to correspond to the modified PC location. */
2918 if (sal->explicit_line)
2919 return;
2920
2921 sal->symtab = start_sal.symtab;
2922 sal->line = start_sal.line;
2923 sal->end = start_sal.end;
2924
2925 /* Check if we are now inside an inlined function. If we can,
2926 use the call site of the function instead. */
2927 b = block_for_pc_sect (sal->pc, sal->section);
2928 function_block = NULL;
2929 while (b != NULL)
2930 {
2931 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
2932 function_block = b;
2933 else if (BLOCK_FUNCTION (b) != NULL)
2934 break;
2935 b = BLOCK_SUPERBLOCK (b);
2936 }
2937 if (function_block != NULL
2938 && SYMBOL_LINE (BLOCK_FUNCTION (function_block)) != 0)
2939 {
2940 sal->line = SYMBOL_LINE (BLOCK_FUNCTION (function_block));
2941 sal->symtab = SYMBOL_SYMTAB (BLOCK_FUNCTION (function_block));
2942 }
2943 }
2944
2945 /* If P is of the form "operator[ \t]+..." where `...' is
2946 some legitimate operator text, return a pointer to the
2947 beginning of the substring of the operator text.
2948 Otherwise, return "". */
2949
2950 static char *
2951 operator_chars (char *p, char **end)
2952 {
2953 *end = "";
2954 if (strncmp (p, "operator", 8))
2955 return *end;
2956 p += 8;
2957
2958 /* Don't get faked out by `operator' being part of a longer
2959 identifier. */
2960 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
2961 return *end;
2962
2963 /* Allow some whitespace between `operator' and the operator symbol. */
2964 while (*p == ' ' || *p == '\t')
2965 p++;
2966
2967 /* Recognize 'operator TYPENAME'. */
2968
2969 if (isalpha (*p) || *p == '_' || *p == '$')
2970 {
2971 char *q = p + 1;
2972
2973 while (isalnum (*q) || *q == '_' || *q == '$')
2974 q++;
2975 *end = q;
2976 return p;
2977 }
2978
2979 while (*p)
2980 switch (*p)
2981 {
2982 case '\\': /* regexp quoting */
2983 if (p[1] == '*')
2984 {
2985 if (p[2] == '=') /* 'operator\*=' */
2986 *end = p + 3;
2987 else /* 'operator\*' */
2988 *end = p + 2;
2989 return p;
2990 }
2991 else if (p[1] == '[')
2992 {
2993 if (p[2] == ']')
2994 error (_("mismatched quoting on brackets, "
2995 "try 'operator\\[\\]'"));
2996 else if (p[2] == '\\' && p[3] == ']')
2997 {
2998 *end = p + 4; /* 'operator\[\]' */
2999 return p;
3000 }
3001 else
3002 error (_("nothing is allowed between '[' and ']'"));
3003 }
3004 else
3005 {
3006 /* Gratuitous qoute: skip it and move on. */
3007 p++;
3008 continue;
3009 }
3010 break;
3011 case '!':
3012 case '=':
3013 case '*':
3014 case '/':
3015 case '%':
3016 case '^':
3017 if (p[1] == '=')
3018 *end = p + 2;
3019 else
3020 *end = p + 1;
3021 return p;
3022 case '<':
3023 case '>':
3024 case '+':
3025 case '-':
3026 case '&':
3027 case '|':
3028 if (p[0] == '-' && p[1] == '>')
3029 {
3030 /* Struct pointer member operator 'operator->'. */
3031 if (p[2] == '*')
3032 {
3033 *end = p + 3; /* 'operator->*' */
3034 return p;
3035 }
3036 else if (p[2] == '\\')
3037 {
3038 *end = p + 4; /* Hopefully 'operator->\*' */
3039 return p;
3040 }
3041 else
3042 {
3043 *end = p + 2; /* 'operator->' */
3044 return p;
3045 }
3046 }
3047 if (p[1] == '=' || p[1] == p[0])
3048 *end = p + 2;
3049 else
3050 *end = p + 1;
3051 return p;
3052 case '~':
3053 case ',':
3054 *end = p + 1;
3055 return p;
3056 case '(':
3057 if (p[1] != ')')
3058 error (_("`operator ()' must be specified "
3059 "without whitespace in `()'"));
3060 *end = p + 2;
3061 return p;
3062 case '?':
3063 if (p[1] != ':')
3064 error (_("`operator ?:' must be specified "
3065 "without whitespace in `?:'"));
3066 *end = p + 2;
3067 return p;
3068 case '[':
3069 if (p[1] != ']')
3070 error (_("`operator []' must be specified "
3071 "without whitespace in `[]'"));
3072 *end = p + 2;
3073 return p;
3074 default:
3075 error (_("`operator %s' not supported"), p);
3076 break;
3077 }
3078
3079 *end = "";
3080 return *end;
3081 }
3082 \f
3083
3084 /* Cache to watch for file names already seen by filename_seen. */
3085
3086 struct filename_seen_cache
3087 {
3088 /* Table of files seen so far. */
3089 htab_t tab;
3090 /* Initial size of the table. It automagically grows from here. */
3091 #define INITIAL_FILENAME_SEEN_CACHE_SIZE 100
3092 };
3093
3094 /* filename_seen_cache constructor. */
3095
3096 static struct filename_seen_cache *
3097 create_filename_seen_cache (void)
3098 {
3099 struct filename_seen_cache *cache;
3100
3101 cache = XNEW (struct filename_seen_cache);
3102 cache->tab = htab_create_alloc (INITIAL_FILENAME_SEEN_CACHE_SIZE,
3103 filename_hash, filename_eq,
3104 NULL, xcalloc, xfree);
3105
3106 return cache;
3107 }
3108
3109 /* Empty the cache, but do not delete it. */
3110
3111 static void
3112 clear_filename_seen_cache (struct filename_seen_cache *cache)
3113 {
3114 htab_empty (cache->tab);
3115 }
3116
3117 /* filename_seen_cache destructor.
3118 This takes a void * argument as it is generally used as a cleanup. */
3119
3120 static void
3121 delete_filename_seen_cache (void *ptr)
3122 {
3123 struct filename_seen_cache *cache = ptr;
3124
3125 htab_delete (cache->tab);
3126 xfree (cache);
3127 }
3128
3129 /* If FILE is not already in the table of files in CACHE, return zero;
3130 otherwise return non-zero. Optionally add FILE to the table if ADD
3131 is non-zero.
3132
3133 NOTE: We don't manage space for FILE, we assume FILE lives as long
3134 as the caller needs. */
3135
3136 static int
3137 filename_seen (struct filename_seen_cache *cache, const char *file, int add)
3138 {
3139 void **slot;
3140
3141 /* Is FILE in tab? */
3142 slot = htab_find_slot (cache->tab, file, add ? INSERT : NO_INSERT);
3143 if (*slot != NULL)
3144 return 1;
3145
3146 /* No; maybe add it to tab. */
3147 if (add)
3148 *slot = (char *) file;
3149
3150 return 0;
3151 }
3152
3153 /* Data structure to maintain printing state for output_source_filename. */
3154
3155 struct output_source_filename_data
3156 {
3157 /* Cache of what we've seen so far. */
3158 struct filename_seen_cache *filename_seen_cache;
3159
3160 /* Flag of whether we're printing the first one. */
3161 int first;
3162 };
3163
3164 /* Slave routine for sources_info. Force line breaks at ,'s.
3165 NAME is the name to print.
3166 DATA contains the state for printing and watching for duplicates. */
3167
3168 static void
3169 output_source_filename (const char *name,
3170 struct output_source_filename_data *data)
3171 {
3172 /* Since a single source file can result in several partial symbol
3173 tables, we need to avoid printing it more than once. Note: if
3174 some of the psymtabs are read in and some are not, it gets
3175 printed both under "Source files for which symbols have been
3176 read" and "Source files for which symbols will be read in on
3177 demand". I consider this a reasonable way to deal with the
3178 situation. I'm not sure whether this can also happen for
3179 symtabs; it doesn't hurt to check. */
3180
3181 /* Was NAME already seen? */
3182 if (filename_seen (data->filename_seen_cache, name, 1))
3183 {
3184 /* Yes; don't print it again. */
3185 return;
3186 }
3187
3188 /* No; print it and reset *FIRST. */
3189 if (! data->first)
3190 printf_filtered (", ");
3191 data->first = 0;
3192
3193 wrap_here ("");
3194 fputs_filtered (name, gdb_stdout);
3195 }
3196
3197 /* A callback for map_partial_symbol_filenames. */
3198
3199 static void
3200 output_partial_symbol_filename (const char *filename, const char *fullname,
3201 void *data)
3202 {
3203 output_source_filename (fullname ? fullname : filename, data);
3204 }
3205
3206 static void
3207 sources_info (char *ignore, int from_tty)
3208 {
3209 struct symtab *s;
3210 struct objfile *objfile;
3211 struct output_source_filename_data data;
3212 struct cleanup *cleanups;
3213
3214 if (!have_full_symbols () && !have_partial_symbols ())
3215 {
3216 error (_("No symbol table is loaded. Use the \"file\" command."));
3217 }
3218
3219 data.filename_seen_cache = create_filename_seen_cache ();
3220 cleanups = make_cleanup (delete_filename_seen_cache,
3221 data.filename_seen_cache);
3222
3223 printf_filtered ("Source files for which symbols have been read in:\n\n");
3224
3225 data.first = 1;
3226 ALL_SYMTABS (objfile, s)
3227 {
3228 const char *fullname = symtab_to_fullname (s);
3229
3230 output_source_filename (fullname, &data);
3231 }
3232 printf_filtered ("\n\n");
3233
3234 printf_filtered ("Source files for which symbols "
3235 "will be read in on demand:\n\n");
3236
3237 clear_filename_seen_cache (data.filename_seen_cache);
3238 data.first = 1;
3239 map_partial_symbol_filenames (output_partial_symbol_filename, &data,
3240 1 /*need_fullname*/);
3241 printf_filtered ("\n");
3242
3243 do_cleanups (cleanups);
3244 }
3245
3246 /* Compare FILE against all the NFILES entries of FILES. If BASENAMES is
3247 non-zero compare only lbasename of FILES. */
3248
3249 static int
3250 file_matches (const char *file, char *files[], int nfiles, int basenames)
3251 {
3252 int i;
3253
3254 if (file != NULL && nfiles != 0)
3255 {
3256 for (i = 0; i < nfiles; i++)
3257 {
3258 if (compare_filenames_for_search (file, (basenames
3259 ? lbasename (files[i])
3260 : files[i])))
3261 return 1;
3262 }
3263 }
3264 else if (nfiles == 0)
3265 return 1;
3266 return 0;
3267 }
3268
3269 /* Free any memory associated with a search. */
3270
3271 void
3272 free_search_symbols (struct symbol_search *symbols)
3273 {
3274 struct symbol_search *p;
3275 struct symbol_search *next;
3276
3277 for (p = symbols; p != NULL; p = next)
3278 {
3279 next = p->next;
3280 xfree (p);
3281 }
3282 }
3283
3284 static void
3285 do_free_search_symbols_cleanup (void *symbolsp)
3286 {
3287 struct symbol_search *symbols = *(struct symbol_search **) symbolsp;
3288
3289 free_search_symbols (symbols);
3290 }
3291
3292 struct cleanup *
3293 make_cleanup_free_search_symbols (struct symbol_search **symbolsp)
3294 {
3295 return make_cleanup (do_free_search_symbols_cleanup, symbolsp);
3296 }
3297
3298 /* Helper function for sort_search_symbols_remove_dups and qsort. Can only
3299 sort symbols, not minimal symbols. */
3300
3301 static int
3302 compare_search_syms (const void *sa, const void *sb)
3303 {
3304 struct symbol_search *sym_a = *(struct symbol_search **) sa;
3305 struct symbol_search *sym_b = *(struct symbol_search **) sb;
3306 int c;
3307
3308 c = strcmp (sym_a->symtab->filename, sym_b->symtab->filename);
3309 if (c != 0)
3310 return c;
3311
3312 if (sym_a->block != sym_b->block)
3313 return sym_a->block - sym_b->block;
3314
3315 return strcmp (SYMBOL_PRINT_NAME (sym_a->symbol),
3316 SYMBOL_PRINT_NAME (sym_b->symbol));
3317 }
3318
3319 /* Helper function for sort_search_symbols_remove_dups.
3320 Return TRUE if symbols A, B are equal. */
3321
3322 static int
3323 search_symbols_equal (const struct symbol_search *a,
3324 const struct symbol_search *b)
3325 {
3326 return (strcmp (a->symtab->filename, b->symtab->filename) == 0
3327 && a->block == b->block
3328 && strcmp (SYMBOL_PRINT_NAME (a->symbol),
3329 SYMBOL_PRINT_NAME (b->symbol)) == 0);
3330 }
3331
3332 /* Sort the NFOUND symbols in list FOUND and remove duplicates.
3333 The duplicates are freed, and the new list is returned in
3334 *NEW_HEAD, *NEW_TAIL. */
3335
3336 static void
3337 sort_search_symbols_remove_dups (struct symbol_search *found, int nfound,
3338 struct symbol_search **new_head,
3339 struct symbol_search **new_tail)
3340 {
3341 struct symbol_search **symbols, *symp, *old_next;
3342 int i, j, nunique;
3343
3344 gdb_assert (found != NULL && nfound > 0);
3345
3346 /* Build an array out of the list so we can easily sort them. */
3347 symbols = (struct symbol_search **) xmalloc (sizeof (struct symbol_search *)
3348 * nfound);
3349 symp = found;
3350 for (i = 0; i < nfound; i++)
3351 {
3352 gdb_assert (symp != NULL);
3353 gdb_assert (symp->block >= 0 && symp->block <= 1);
3354 symbols[i] = symp;
3355 symp = symp->next;
3356 }
3357 gdb_assert (symp == NULL);
3358
3359 qsort (symbols, nfound, sizeof (struct symbol_search *),
3360 compare_search_syms);
3361
3362 /* Collapse out the dups. */
3363 for (i = 1, j = 1; i < nfound; ++i)
3364 {
3365 if (! search_symbols_equal (symbols[j - 1], symbols[i]))
3366 symbols[j++] = symbols[i];
3367 else
3368 xfree (symbols[i]);
3369 }
3370 nunique = j;
3371 symbols[j - 1]->next = NULL;
3372
3373 /* Rebuild the linked list. */
3374 for (i = 0; i < nunique - 1; i++)
3375 symbols[i]->next = symbols[i + 1];
3376 symbols[nunique - 1]->next = NULL;
3377
3378 *new_head = symbols[0];
3379 *new_tail = symbols[nunique - 1];
3380 xfree (symbols);
3381 }
3382
3383 /* An object of this type is passed as the user_data to the
3384 expand_symtabs_matching method. */
3385 struct search_symbols_data
3386 {
3387 int nfiles;
3388 char **files;
3389
3390 /* It is true if PREG contains valid data, false otherwise. */
3391 unsigned preg_p : 1;
3392 regex_t preg;
3393 };
3394
3395 /* A callback for expand_symtabs_matching. */
3396
3397 static int
3398 search_symbols_file_matches (const char *filename, void *user_data,
3399 int basenames)
3400 {
3401 struct search_symbols_data *data = user_data;
3402
3403 return file_matches (filename, data->files, data->nfiles, basenames);
3404 }
3405
3406 /* A callback for expand_symtabs_matching. */
3407
3408 static int
3409 search_symbols_name_matches (const char *symname, void *user_data)
3410 {
3411 struct search_symbols_data *data = user_data;
3412
3413 return !data->preg_p || regexec (&data->preg, symname, 0, NULL, 0) == 0;
3414 }
3415
3416 /* Search the symbol table for matches to the regular expression REGEXP,
3417 returning the results in *MATCHES.
3418
3419 Only symbols of KIND are searched:
3420 VARIABLES_DOMAIN - search all symbols, excluding functions, type names,
3421 and constants (enums)
3422 FUNCTIONS_DOMAIN - search all functions
3423 TYPES_DOMAIN - search all type names
3424 ALL_DOMAIN - an internal error for this function
3425
3426 free_search_symbols should be called when *MATCHES is no longer needed.
3427
3428 Within each file the results are sorted locally; each symtab's global and
3429 static blocks are separately alphabetized.
3430 Duplicate entries are removed. */
3431
3432 void
3433 search_symbols (char *regexp, enum search_domain kind,
3434 int nfiles, char *files[],
3435 struct symbol_search **matches)
3436 {
3437 struct symtab *s;
3438 struct blockvector *bv;
3439 struct block *b;
3440 int i = 0;
3441 struct block_iterator iter;
3442 struct symbol *sym;
3443 struct objfile *objfile;
3444 struct minimal_symbol *msymbol;
3445 int found_misc = 0;
3446 static const enum minimal_symbol_type types[]
3447 = {mst_data, mst_text, mst_abs};
3448 static const enum minimal_symbol_type types2[]
3449 = {mst_bss, mst_file_text, mst_abs};
3450 static const enum minimal_symbol_type types3[]
3451 = {mst_file_data, mst_solib_trampoline, mst_abs};
3452 static const enum minimal_symbol_type types4[]
3453 = {mst_file_bss, mst_text_gnu_ifunc, mst_abs};
3454 enum minimal_symbol_type ourtype;
3455 enum minimal_symbol_type ourtype2;
3456 enum minimal_symbol_type ourtype3;
3457 enum minimal_symbol_type ourtype4;
3458 struct symbol_search *found;
3459 struct symbol_search *tail;
3460 struct search_symbols_data datum;
3461 int nfound;
3462
3463 /* OLD_CHAIN .. RETVAL_CHAIN is always freed, RETVAL_CHAIN .. current
3464 CLEANUP_CHAIN is freed only in the case of an error. */
3465 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
3466 struct cleanup *retval_chain;
3467
3468 gdb_assert (kind <= TYPES_DOMAIN);
3469
3470 ourtype = types[kind];
3471 ourtype2 = types2[kind];
3472 ourtype3 = types3[kind];
3473 ourtype4 = types4[kind];
3474
3475 *matches = NULL;
3476 datum.preg_p = 0;
3477
3478 if (regexp != NULL)
3479 {
3480 /* Make sure spacing is right for C++ operators.
3481 This is just a courtesy to make the matching less sensitive
3482 to how many spaces the user leaves between 'operator'
3483 and <TYPENAME> or <OPERATOR>. */
3484 char *opend;
3485 char *opname = operator_chars (regexp, &opend);
3486 int errcode;
3487
3488 if (*opname)
3489 {
3490 int fix = -1; /* -1 means ok; otherwise number of
3491 spaces needed. */
3492
3493 if (isalpha (*opname) || *opname == '_' || *opname == '$')
3494 {
3495 /* There should 1 space between 'operator' and 'TYPENAME'. */
3496 if (opname[-1] != ' ' || opname[-2] == ' ')
3497 fix = 1;
3498 }
3499 else
3500 {
3501 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
3502 if (opname[-1] == ' ')
3503 fix = 0;
3504 }
3505 /* If wrong number of spaces, fix it. */
3506 if (fix >= 0)
3507 {
3508 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
3509
3510 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
3511 regexp = tmp;
3512 }
3513 }
3514
3515 errcode = regcomp (&datum.preg, regexp,
3516 REG_NOSUB | (case_sensitivity == case_sensitive_off
3517 ? REG_ICASE : 0));
3518 if (errcode != 0)
3519 {
3520 char *err = get_regcomp_error (errcode, &datum.preg);
3521
3522 make_cleanup (xfree, err);
3523 error (_("Invalid regexp (%s): %s"), err, regexp);
3524 }
3525 datum.preg_p = 1;
3526 make_regfree_cleanup (&datum.preg);
3527 }
3528
3529 /* Search through the partial symtabs *first* for all symbols
3530 matching the regexp. That way we don't have to reproduce all of
3531 the machinery below. */
3532
3533 datum.nfiles = nfiles;
3534 datum.files = files;
3535 ALL_OBJFILES (objfile)
3536 {
3537 if (objfile->sf)
3538 objfile->sf->qf->expand_symtabs_matching (objfile,
3539 (nfiles == 0
3540 ? NULL
3541 : search_symbols_file_matches),
3542 search_symbols_name_matches,
3543 kind,
3544 &datum);
3545 }
3546
3547 /* Here, we search through the minimal symbol tables for functions
3548 and variables that match, and force their symbols to be read.
3549 This is in particular necessary for demangled variable names,
3550 which are no longer put into the partial symbol tables.
3551 The symbol will then be found during the scan of symtabs below.
3552
3553 For functions, find_pc_symtab should succeed if we have debug info
3554 for the function, for variables we have to call
3555 lookup_symbol_in_objfile_from_linkage_name to determine if the variable
3556 has debug info.
3557 If the lookup fails, set found_misc so that we will rescan to print
3558 any matching symbols without debug info.
3559 We only search the objfile the msymbol came from, we no longer search
3560 all objfiles. In large programs (1000s of shared libs) searching all
3561 objfiles is not worth the pain. */
3562
3563 if (nfiles == 0 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
3564 {
3565 ALL_MSYMBOLS (objfile, msymbol)
3566 {
3567 QUIT;
3568
3569 if (msymbol->created_by_gdb)
3570 continue;
3571
3572 if (MSYMBOL_TYPE (msymbol) == ourtype
3573 || MSYMBOL_TYPE (msymbol) == ourtype2
3574 || MSYMBOL_TYPE (msymbol) == ourtype3
3575 || MSYMBOL_TYPE (msymbol) == ourtype4)
3576 {
3577 if (!datum.preg_p
3578 || regexec (&datum.preg, SYMBOL_NATURAL_NAME (msymbol), 0,
3579 NULL, 0) == 0)
3580 {
3581 /* Note: An important side-effect of these lookup functions
3582 is to expand the symbol table if msymbol is found, for the
3583 benefit of the next loop on ALL_PRIMARY_SYMTABS. */
3584 if (kind == FUNCTIONS_DOMAIN
3585 ? find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol)) == NULL
3586 : (lookup_symbol_in_objfile_from_linkage_name
3587 (objfile, SYMBOL_LINKAGE_NAME (msymbol), VAR_DOMAIN)
3588 == NULL))
3589 found_misc = 1;
3590 }
3591 }
3592 }
3593 }
3594
3595 found = NULL;
3596 tail = NULL;
3597 nfound = 0;
3598 retval_chain = make_cleanup_free_search_symbols (&found);
3599
3600 ALL_PRIMARY_SYMTABS (objfile, s)
3601 {
3602 bv = BLOCKVECTOR (s);
3603 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
3604 {
3605 b = BLOCKVECTOR_BLOCK (bv, i);
3606 ALL_BLOCK_SYMBOLS (b, iter, sym)
3607 {
3608 struct symtab *real_symtab = SYMBOL_SYMTAB (sym);
3609
3610 QUIT;
3611
3612 /* Check first sole REAL_SYMTAB->FILENAME. It does not need to be
3613 a substring of symtab_to_fullname as it may contain "./" etc. */
3614 if ((file_matches (real_symtab->filename, files, nfiles, 0)
3615 || ((basenames_may_differ
3616 || file_matches (lbasename (real_symtab->filename),
3617 files, nfiles, 1))
3618 && file_matches (symtab_to_fullname (real_symtab),
3619 files, nfiles, 0)))
3620 && ((!datum.preg_p
3621 || regexec (&datum.preg, SYMBOL_NATURAL_NAME (sym), 0,
3622 NULL, 0) == 0)
3623 && ((kind == VARIABLES_DOMAIN
3624 && SYMBOL_CLASS (sym) != LOC_TYPEDEF
3625 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
3626 && SYMBOL_CLASS (sym) != LOC_BLOCK
3627 /* LOC_CONST can be used for more than just enums,
3628 e.g., c++ static const members.
3629 We only want to skip enums here. */
3630 && !(SYMBOL_CLASS (sym) == LOC_CONST
3631 && TYPE_CODE (SYMBOL_TYPE (sym))
3632 == TYPE_CODE_ENUM))
3633 || (kind == FUNCTIONS_DOMAIN
3634 && SYMBOL_CLASS (sym) == LOC_BLOCK)
3635 || (kind == TYPES_DOMAIN
3636 && SYMBOL_CLASS (sym) == LOC_TYPEDEF))))
3637 {
3638 /* match */
3639 struct symbol_search *psr = (struct symbol_search *)
3640 xmalloc (sizeof (struct symbol_search));
3641 psr->block = i;
3642 psr->symtab = real_symtab;
3643 psr->symbol = sym;
3644 memset (&psr->msymbol, 0, sizeof (psr->msymbol));
3645 psr->next = NULL;
3646 if (tail == NULL)
3647 found = psr;
3648 else
3649 tail->next = psr;
3650 tail = psr;
3651 nfound ++;
3652 }
3653 }
3654 }
3655 }
3656
3657 if (found != NULL)
3658 {
3659 sort_search_symbols_remove_dups (found, nfound, &found, &tail);
3660 /* Note: nfound is no longer useful beyond this point. */
3661 }
3662
3663 /* If there are no eyes, avoid all contact. I mean, if there are
3664 no debug symbols, then print directly from the msymbol_vector. */
3665
3666 if (found_misc || (nfiles == 0 && kind != FUNCTIONS_DOMAIN))
3667 {
3668 ALL_MSYMBOLS (objfile, msymbol)
3669 {
3670 QUIT;
3671
3672 if (msymbol->created_by_gdb)
3673 continue;
3674
3675 if (MSYMBOL_TYPE (msymbol) == ourtype
3676 || MSYMBOL_TYPE (msymbol) == ourtype2
3677 || MSYMBOL_TYPE (msymbol) == ourtype3
3678 || MSYMBOL_TYPE (msymbol) == ourtype4)
3679 {
3680 if (!datum.preg_p
3681 || regexec (&datum.preg, SYMBOL_NATURAL_NAME (msymbol), 0,
3682 NULL, 0) == 0)
3683 {
3684 /* For functions we can do a quick check of whether the
3685 symbol might be found via find_pc_symtab. */
3686 if (kind != FUNCTIONS_DOMAIN
3687 || find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol)) == NULL)
3688 {
3689 if (lookup_symbol_in_objfile_from_linkage_name
3690 (objfile, SYMBOL_LINKAGE_NAME (msymbol), VAR_DOMAIN)
3691 == NULL)
3692 {
3693 /* match */
3694 struct symbol_search *psr = (struct symbol_search *)
3695 xmalloc (sizeof (struct symbol_search));
3696 psr->block = i;
3697 psr->msymbol.minsym = msymbol;
3698 psr->msymbol.objfile = objfile;
3699 psr->symtab = NULL;
3700 psr->symbol = NULL;
3701 psr->next = NULL;
3702 if (tail == NULL)
3703 found = psr;
3704 else
3705 tail->next = psr;
3706 tail = psr;
3707 }
3708 }
3709 }
3710 }
3711 }
3712 }
3713
3714 discard_cleanups (retval_chain);
3715 do_cleanups (old_chain);
3716 *matches = found;
3717 }
3718
3719 /* Helper function for symtab_symbol_info, this function uses
3720 the data returned from search_symbols() to print information
3721 regarding the match to gdb_stdout. */
3722
3723 static void
3724 print_symbol_info (enum search_domain kind,
3725 struct symtab *s, struct symbol *sym,
3726 int block, const char *last)
3727 {
3728 const char *s_filename = symtab_to_filename_for_display (s);
3729
3730 if (last == NULL || filename_cmp (last, s_filename) != 0)
3731 {
3732 fputs_filtered ("\nFile ", gdb_stdout);
3733 fputs_filtered (s_filename, gdb_stdout);
3734 fputs_filtered (":\n", gdb_stdout);
3735 }
3736
3737 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
3738 printf_filtered ("static ");
3739
3740 /* Typedef that is not a C++ class. */
3741 if (kind == TYPES_DOMAIN
3742 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
3743 typedef_print (SYMBOL_TYPE (sym), sym, gdb_stdout);
3744 /* variable, func, or typedef-that-is-c++-class. */
3745 else if (kind < TYPES_DOMAIN
3746 || (kind == TYPES_DOMAIN
3747 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
3748 {
3749 type_print (SYMBOL_TYPE (sym),
3750 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
3751 ? "" : SYMBOL_PRINT_NAME (sym)),
3752 gdb_stdout, 0);
3753
3754 printf_filtered (";\n");
3755 }
3756 }
3757
3758 /* This help function for symtab_symbol_info() prints information
3759 for non-debugging symbols to gdb_stdout. */
3760
3761 static void
3762 print_msymbol_info (struct bound_minimal_symbol msymbol)
3763 {
3764 struct gdbarch *gdbarch = get_objfile_arch (msymbol.objfile);
3765 char *tmp;
3766
3767 if (gdbarch_addr_bit (gdbarch) <= 32)
3768 tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol.minsym)
3769 & (CORE_ADDR) 0xffffffff,
3770 8);
3771 else
3772 tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol.minsym),
3773 16);
3774 printf_filtered ("%s %s\n",
3775 tmp, SYMBOL_PRINT_NAME (msymbol.minsym));
3776 }
3777
3778 /* This is the guts of the commands "info functions", "info types", and
3779 "info variables". It calls search_symbols to find all matches and then
3780 print_[m]symbol_info to print out some useful information about the
3781 matches. */
3782
3783 static void
3784 symtab_symbol_info (char *regexp, enum search_domain kind, int from_tty)
3785 {
3786 static const char * const classnames[] =
3787 {"variable", "function", "type"};
3788 struct symbol_search *symbols;
3789 struct symbol_search *p;
3790 struct cleanup *old_chain;
3791 const char *last_filename = NULL;
3792 int first = 1;
3793
3794 gdb_assert (kind <= TYPES_DOMAIN);
3795
3796 /* Must make sure that if we're interrupted, symbols gets freed. */
3797 search_symbols (regexp, kind, 0, (char **) NULL, &symbols);
3798 old_chain = make_cleanup_free_search_symbols (&symbols);
3799
3800 if (regexp != NULL)
3801 printf_filtered (_("All %ss matching regular expression \"%s\":\n"),
3802 classnames[kind], regexp);
3803 else
3804 printf_filtered (_("All defined %ss:\n"), classnames[kind]);
3805
3806 for (p = symbols; p != NULL; p = p->next)
3807 {
3808 QUIT;
3809
3810 if (p->msymbol.minsym != NULL)
3811 {
3812 if (first)
3813 {
3814 printf_filtered (_("\nNon-debugging symbols:\n"));
3815 first = 0;
3816 }
3817 print_msymbol_info (p->msymbol);
3818 }
3819 else
3820 {
3821 print_symbol_info (kind,
3822 p->symtab,
3823 p->symbol,
3824 p->block,
3825 last_filename);
3826 last_filename = symtab_to_filename_for_display (p->symtab);
3827 }
3828 }
3829
3830 do_cleanups (old_chain);
3831 }
3832
3833 static void
3834 variables_info (char *regexp, int from_tty)
3835 {
3836 symtab_symbol_info (regexp, VARIABLES_DOMAIN, from_tty);
3837 }
3838
3839 static void
3840 functions_info (char *regexp, int from_tty)
3841 {
3842 symtab_symbol_info (regexp, FUNCTIONS_DOMAIN, from_tty);
3843 }
3844
3845
3846 static void
3847 types_info (char *regexp, int from_tty)
3848 {
3849 symtab_symbol_info (regexp, TYPES_DOMAIN, from_tty);
3850 }
3851
3852 /* Breakpoint all functions matching regular expression. */
3853
3854 void
3855 rbreak_command_wrapper (char *regexp, int from_tty)
3856 {
3857 rbreak_command (regexp, from_tty);
3858 }
3859
3860 /* A cleanup function that calls end_rbreak_breakpoints. */
3861
3862 static void
3863 do_end_rbreak_breakpoints (void *ignore)
3864 {
3865 end_rbreak_breakpoints ();
3866 }
3867
3868 static void
3869 rbreak_command (char *regexp, int from_tty)
3870 {
3871 struct symbol_search *ss;
3872 struct symbol_search *p;
3873 struct cleanup *old_chain;
3874 char *string = NULL;
3875 int len = 0;
3876 char **files = NULL, *file_name;
3877 int nfiles = 0;
3878
3879 if (regexp)
3880 {
3881 char *colon = strchr (regexp, ':');
3882
3883 if (colon && *(colon + 1) != ':')
3884 {
3885 int colon_index;
3886
3887 colon_index = colon - regexp;
3888 file_name = alloca (colon_index + 1);
3889 memcpy (file_name, regexp, colon_index);
3890 file_name[colon_index--] = 0;
3891 while (isspace (file_name[colon_index]))
3892 file_name[colon_index--] = 0;
3893 files = &file_name;
3894 nfiles = 1;
3895 regexp = skip_spaces (colon + 1);
3896 }
3897 }
3898
3899 search_symbols (regexp, FUNCTIONS_DOMAIN, nfiles, files, &ss);
3900 old_chain = make_cleanup_free_search_symbols (&ss);
3901 make_cleanup (free_current_contents, &string);
3902
3903 start_rbreak_breakpoints ();
3904 make_cleanup (do_end_rbreak_breakpoints, NULL);
3905 for (p = ss; p != NULL; p = p->next)
3906 {
3907 if (p->msymbol.minsym == NULL)
3908 {
3909 const char *fullname = symtab_to_fullname (p->symtab);
3910
3911 int newlen = (strlen (fullname)
3912 + strlen (SYMBOL_LINKAGE_NAME (p->symbol))
3913 + 4);
3914
3915 if (newlen > len)
3916 {
3917 string = xrealloc (string, newlen);
3918 len = newlen;
3919 }
3920 strcpy (string, fullname);
3921 strcat (string, ":'");
3922 strcat (string, SYMBOL_LINKAGE_NAME (p->symbol));
3923 strcat (string, "'");
3924 break_command (string, from_tty);
3925 print_symbol_info (FUNCTIONS_DOMAIN,
3926 p->symtab,
3927 p->symbol,
3928 p->block,
3929 symtab_to_filename_for_display (p->symtab));
3930 }
3931 else
3932 {
3933 int newlen = (strlen (SYMBOL_LINKAGE_NAME (p->msymbol.minsym)) + 3);
3934
3935 if (newlen > len)
3936 {
3937 string = xrealloc (string, newlen);
3938 len = newlen;
3939 }
3940 strcpy (string, "'");
3941 strcat (string, SYMBOL_LINKAGE_NAME (p->msymbol.minsym));
3942 strcat (string, "'");
3943
3944 break_command (string, from_tty);
3945 printf_filtered ("<function, no debug info> %s;\n",
3946 SYMBOL_PRINT_NAME (p->msymbol.minsym));
3947 }
3948 }
3949
3950 do_cleanups (old_chain);
3951 }
3952 \f
3953
3954 /* Evaluate if NAME matches SYM_TEXT and SYM_TEXT_LEN.
3955
3956 Either sym_text[sym_text_len] != '(' and then we search for any
3957 symbol starting with SYM_TEXT text.
3958
3959 Otherwise sym_text[sym_text_len] == '(' and then we require symbol name to
3960 be terminated at that point. Partial symbol tables do not have parameters
3961 information. */
3962
3963 static int
3964 compare_symbol_name (const char *name, const char *sym_text, int sym_text_len)
3965 {
3966 int (*ncmp) (const char *, const char *, size_t);
3967
3968 ncmp = (case_sensitivity == case_sensitive_on ? strncmp : strncasecmp);
3969
3970 if (ncmp (name, sym_text, sym_text_len) != 0)
3971 return 0;
3972
3973 if (sym_text[sym_text_len] == '(')
3974 {
3975 /* User searches for `name(someth...'. Require NAME to be terminated.
3976 Normally psymtabs and gdbindex have no parameter types so '\0' will be
3977 present but accept even parameters presence. In this case this
3978 function is in fact strcmp_iw but whitespace skipping is not supported
3979 for tab completion. */
3980
3981 if (name[sym_text_len] != '\0' && name[sym_text_len] != '(')
3982 return 0;
3983 }
3984
3985 return 1;
3986 }
3987
3988 /* Free any memory associated with a completion list. */
3989
3990 static void
3991 free_completion_list (VEC (char_ptr) **list_ptr)
3992 {
3993 int i;
3994 char *p;
3995
3996 for (i = 0; VEC_iterate (char_ptr, *list_ptr, i, p); ++i)
3997 xfree (p);
3998 VEC_free (char_ptr, *list_ptr);
3999 }
4000
4001 /* Callback for make_cleanup. */
4002
4003 static void
4004 do_free_completion_list (void *list)
4005 {
4006 free_completion_list (list);
4007 }
4008
4009 /* Helper routine for make_symbol_completion_list. */
4010
4011 static VEC (char_ptr) *return_val;
4012
4013 #define COMPLETION_LIST_ADD_SYMBOL(symbol, sym_text, len, text, word) \
4014 completion_list_add_name \
4015 (SYMBOL_NATURAL_NAME (symbol), (sym_text), (len), (text), (word))
4016
4017 /* Test to see if the symbol specified by SYMNAME (which is already
4018 demangled for C++ symbols) matches SYM_TEXT in the first SYM_TEXT_LEN
4019 characters. If so, add it to the current completion list. */
4020
4021 static void
4022 completion_list_add_name (const char *symname,
4023 const char *sym_text, int sym_text_len,
4024 const char *text, const char *word)
4025 {
4026 /* Clip symbols that cannot match. */
4027 if (!compare_symbol_name (symname, sym_text, sym_text_len))
4028 return;
4029
4030 /* We have a match for a completion, so add SYMNAME to the current list
4031 of matches. Note that the name is moved to freshly malloc'd space. */
4032
4033 {
4034 char *new;
4035
4036 if (word == sym_text)
4037 {
4038 new = xmalloc (strlen (symname) + 5);
4039 strcpy (new, symname);
4040 }
4041 else if (word > sym_text)
4042 {
4043 /* Return some portion of symname. */
4044 new = xmalloc (strlen (symname) + 5);
4045 strcpy (new, symname + (word - sym_text));
4046 }
4047 else
4048 {
4049 /* Return some of SYM_TEXT plus symname. */
4050 new = xmalloc (strlen (symname) + (sym_text - word) + 5);
4051 strncpy (new, word, sym_text - word);
4052 new[sym_text - word] = '\0';
4053 strcat (new, symname);
4054 }
4055
4056 VEC_safe_push (char_ptr, return_val, new);
4057 }
4058 }
4059
4060 /* ObjC: In case we are completing on a selector, look as the msymbol
4061 again and feed all the selectors into the mill. */
4062
4063 static void
4064 completion_list_objc_symbol (struct minimal_symbol *msymbol,
4065 const char *sym_text, int sym_text_len,
4066 const char *text, const char *word)
4067 {
4068 static char *tmp = NULL;
4069 static unsigned int tmplen = 0;
4070
4071 const char *method, *category, *selector;
4072 char *tmp2 = NULL;
4073
4074 method = SYMBOL_NATURAL_NAME (msymbol);
4075
4076 /* Is it a method? */
4077 if ((method[0] != '-') && (method[0] != '+'))
4078 return;
4079
4080 if (sym_text[0] == '[')
4081 /* Complete on shortened method method. */
4082 completion_list_add_name (method + 1, sym_text, sym_text_len, text, word);
4083
4084 while ((strlen (method) + 1) >= tmplen)
4085 {
4086 if (tmplen == 0)
4087 tmplen = 1024;
4088 else
4089 tmplen *= 2;
4090 tmp = xrealloc (tmp, tmplen);
4091 }
4092 selector = strchr (method, ' ');
4093 if (selector != NULL)
4094 selector++;
4095
4096 category = strchr (method, '(');
4097
4098 if ((category != NULL) && (selector != NULL))
4099 {
4100 memcpy (tmp, method, (category - method));
4101 tmp[category - method] = ' ';
4102 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
4103 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
4104 if (sym_text[0] == '[')
4105 completion_list_add_name (tmp + 1, sym_text, sym_text_len, text, word);
4106 }
4107
4108 if (selector != NULL)
4109 {
4110 /* Complete on selector only. */
4111 strcpy (tmp, selector);
4112 tmp2 = strchr (tmp, ']');
4113 if (tmp2 != NULL)
4114 *tmp2 = '\0';
4115
4116 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
4117 }
4118 }
4119
4120 /* Break the non-quoted text based on the characters which are in
4121 symbols. FIXME: This should probably be language-specific. */
4122
4123 static const char *
4124 language_search_unquoted_string (const char *text, const char *p)
4125 {
4126 for (; p > text; --p)
4127 {
4128 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
4129 continue;
4130 else
4131 {
4132 if ((current_language->la_language == language_objc))
4133 {
4134 if (p[-1] == ':') /* Might be part of a method name. */
4135 continue;
4136 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
4137 p -= 2; /* Beginning of a method name. */
4138 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
4139 { /* Might be part of a method name. */
4140 const char *t = p;
4141
4142 /* Seeing a ' ' or a '(' is not conclusive evidence
4143 that we are in the middle of a method name. However,
4144 finding "-[" or "+[" should be pretty un-ambiguous.
4145 Unfortunately we have to find it now to decide. */
4146
4147 while (t > text)
4148 if (isalnum (t[-1]) || t[-1] == '_' ||
4149 t[-1] == ' ' || t[-1] == ':' ||
4150 t[-1] == '(' || t[-1] == ')')
4151 --t;
4152 else
4153 break;
4154
4155 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
4156 p = t - 2; /* Method name detected. */
4157 /* Else we leave with p unchanged. */
4158 }
4159 }
4160 break;
4161 }
4162 }
4163 return p;
4164 }
4165
4166 static void
4167 completion_list_add_fields (struct symbol *sym, const char *sym_text,
4168 int sym_text_len, const char *text,
4169 const char *word)
4170 {
4171 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4172 {
4173 struct type *t = SYMBOL_TYPE (sym);
4174 enum type_code c = TYPE_CODE (t);
4175 int j;
4176
4177 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
4178 for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++)
4179 if (TYPE_FIELD_NAME (t, j))
4180 completion_list_add_name (TYPE_FIELD_NAME (t, j),
4181 sym_text, sym_text_len, text, word);
4182 }
4183 }
4184
4185 /* Type of the user_data argument passed to add_macro_name or
4186 expand_partial_symbol_name. The contents are simply whatever is
4187 needed by completion_list_add_name. */
4188 struct add_name_data
4189 {
4190 const char *sym_text;
4191 int sym_text_len;
4192 const char *text;
4193 const char *word;
4194 };
4195
4196 /* A callback used with macro_for_each and macro_for_each_in_scope.
4197 This adds a macro's name to the current completion list. */
4198
4199 static void
4200 add_macro_name (const char *name, const struct macro_definition *ignore,
4201 struct macro_source_file *ignore2, int ignore3,
4202 void *user_data)
4203 {
4204 struct add_name_data *datum = (struct add_name_data *) user_data;
4205
4206 completion_list_add_name ((char *) name,
4207 datum->sym_text, datum->sym_text_len,
4208 datum->text, datum->word);
4209 }
4210
4211 /* A callback for expand_partial_symbol_names. */
4212
4213 static int
4214 expand_partial_symbol_name (const char *name, void *user_data)
4215 {
4216 struct add_name_data *datum = (struct add_name_data *) user_data;
4217
4218 return compare_symbol_name (name, datum->sym_text, datum->sym_text_len);
4219 }
4220
4221 VEC (char_ptr) *
4222 default_make_symbol_completion_list_break_on (const char *text,
4223 const char *word,
4224 const char *break_on,
4225 enum type_code code)
4226 {
4227 /* Problem: All of the symbols have to be copied because readline
4228 frees them. I'm not going to worry about this; hopefully there
4229 won't be that many. */
4230
4231 struct symbol *sym;
4232 struct symtab *s;
4233 struct minimal_symbol *msymbol;
4234 struct objfile *objfile;
4235 struct block *b;
4236 const struct block *surrounding_static_block, *surrounding_global_block;
4237 struct block_iterator iter;
4238 /* The symbol we are completing on. Points in same buffer as text. */
4239 const char *sym_text;
4240 /* Length of sym_text. */
4241 int sym_text_len;
4242 struct add_name_data datum;
4243 struct cleanup *back_to;
4244
4245 /* Now look for the symbol we are supposed to complete on. */
4246 {
4247 const char *p;
4248 char quote_found;
4249 const char *quote_pos = NULL;
4250
4251 /* First see if this is a quoted string. */
4252 quote_found = '\0';
4253 for (p = text; *p != '\0'; ++p)
4254 {
4255 if (quote_found != '\0')
4256 {
4257 if (*p == quote_found)
4258 /* Found close quote. */
4259 quote_found = '\0';
4260 else if (*p == '\\' && p[1] == quote_found)
4261 /* A backslash followed by the quote character
4262 doesn't end the string. */
4263 ++p;
4264 }
4265 else if (*p == '\'' || *p == '"')
4266 {
4267 quote_found = *p;
4268 quote_pos = p;
4269 }
4270 }
4271 if (quote_found == '\'')
4272 /* A string within single quotes can be a symbol, so complete on it. */
4273 sym_text = quote_pos + 1;
4274 else if (quote_found == '"')
4275 /* A double-quoted string is never a symbol, nor does it make sense
4276 to complete it any other way. */
4277 {
4278 return NULL;
4279 }
4280 else
4281 {
4282 /* It is not a quoted string. Break it based on the characters
4283 which are in symbols. */
4284 while (p > text)
4285 {
4286 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0'
4287 || p[-1] == ':' || strchr (break_on, p[-1]) != NULL)
4288 --p;
4289 else
4290 break;
4291 }
4292 sym_text = p;
4293 }
4294 }
4295
4296 sym_text_len = strlen (sym_text);
4297
4298 /* Prepare SYM_TEXT_LEN for compare_symbol_name. */
4299
4300 if (current_language->la_language == language_cplus
4301 || current_language->la_language == language_java
4302 || current_language->la_language == language_fortran)
4303 {
4304 /* These languages may have parameters entered by user but they are never
4305 present in the partial symbol tables. */
4306
4307 const char *cs = memchr (sym_text, '(', sym_text_len);
4308
4309 if (cs)
4310 sym_text_len = cs - sym_text;
4311 }
4312 gdb_assert (sym_text[sym_text_len] == '\0' || sym_text[sym_text_len] == '(');
4313
4314 return_val = NULL;
4315 back_to = make_cleanup (do_free_completion_list, &return_val);
4316
4317 datum.sym_text = sym_text;
4318 datum.sym_text_len = sym_text_len;
4319 datum.text = text;
4320 datum.word = word;
4321
4322 /* Look through the partial symtabs for all symbols which begin
4323 by matching SYM_TEXT. Expand all CUs that you find to the list.
4324 The real names will get added by COMPLETION_LIST_ADD_SYMBOL below. */
4325 expand_partial_symbol_names (expand_partial_symbol_name, &datum);
4326
4327 /* At this point scan through the misc symbol vectors and add each
4328 symbol you find to the list. Eventually we want to ignore
4329 anything that isn't a text symbol (everything else will be
4330 handled by the psymtab code above). */
4331
4332 if (code == TYPE_CODE_UNDEF)
4333 {
4334 ALL_MSYMBOLS (objfile, msymbol)
4335 {
4336 QUIT;
4337 COMPLETION_LIST_ADD_SYMBOL (msymbol, sym_text, sym_text_len, text,
4338 word);
4339
4340 completion_list_objc_symbol (msymbol, sym_text, sym_text_len, text,
4341 word);
4342 }
4343 }
4344
4345 /* Search upwards from currently selected frame (so that we can
4346 complete on local vars). Also catch fields of types defined in
4347 this places which match our text string. Only complete on types
4348 visible from current context. */
4349
4350 b = get_selected_block (0);
4351 surrounding_static_block = block_static_block (b);
4352 surrounding_global_block = block_global_block (b);
4353 if (surrounding_static_block != NULL)
4354 while (b != surrounding_static_block)
4355 {
4356 QUIT;
4357
4358 ALL_BLOCK_SYMBOLS (b, iter, sym)
4359 {
4360 if (code == TYPE_CODE_UNDEF)
4361 {
4362 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text,
4363 word);
4364 completion_list_add_fields (sym, sym_text, sym_text_len, text,
4365 word);
4366 }
4367 else if (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4368 && TYPE_CODE (SYMBOL_TYPE (sym)) == code)
4369 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text,
4370 word);
4371 }
4372
4373 /* Stop when we encounter an enclosing function. Do not stop for
4374 non-inlined functions - the locals of the enclosing function
4375 are in scope for a nested function. */
4376 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
4377 break;
4378 b = BLOCK_SUPERBLOCK (b);
4379 }
4380
4381 /* Add fields from the file's types; symbols will be added below. */
4382
4383 if (code == TYPE_CODE_UNDEF)
4384 {
4385 if (surrounding_static_block != NULL)
4386 ALL_BLOCK_SYMBOLS (surrounding_static_block, iter, sym)
4387 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
4388
4389 if (surrounding_global_block != NULL)
4390 ALL_BLOCK_SYMBOLS (surrounding_global_block, iter, sym)
4391 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
4392 }
4393
4394 /* Go through the symtabs and check the externs and statics for
4395 symbols which match. */
4396
4397 ALL_PRIMARY_SYMTABS (objfile, s)
4398 {
4399 QUIT;
4400 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
4401 ALL_BLOCK_SYMBOLS (b, iter, sym)
4402 {
4403 if (code == TYPE_CODE_UNDEF
4404 || (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4405 && TYPE_CODE (SYMBOL_TYPE (sym)) == code))
4406 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4407 }
4408 }
4409
4410 ALL_PRIMARY_SYMTABS (objfile, s)
4411 {
4412 QUIT;
4413 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
4414 ALL_BLOCK_SYMBOLS (b, iter, sym)
4415 {
4416 if (code == TYPE_CODE_UNDEF
4417 || (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4418 && TYPE_CODE (SYMBOL_TYPE (sym)) == code))
4419 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4420 }
4421 }
4422
4423 /* Skip macros if we are completing a struct tag -- arguable but
4424 usually what is expected. */
4425 if (current_language->la_macro_expansion == macro_expansion_c
4426 && code == TYPE_CODE_UNDEF)
4427 {
4428 struct macro_scope *scope;
4429
4430 /* Add any macros visible in the default scope. Note that this
4431 may yield the occasional wrong result, because an expression
4432 might be evaluated in a scope other than the default. For
4433 example, if the user types "break file:line if <TAB>", the
4434 resulting expression will be evaluated at "file:line" -- but
4435 at there does not seem to be a way to detect this at
4436 completion time. */
4437 scope = default_macro_scope ();
4438 if (scope)
4439 {
4440 macro_for_each_in_scope (scope->file, scope->line,
4441 add_macro_name, &datum);
4442 xfree (scope);
4443 }
4444
4445 /* User-defined macros are always visible. */
4446 macro_for_each (macro_user_macros, add_macro_name, &datum);
4447 }
4448
4449 discard_cleanups (back_to);
4450 return (return_val);
4451 }
4452
4453 VEC (char_ptr) *
4454 default_make_symbol_completion_list (const char *text, const char *word,
4455 enum type_code code)
4456 {
4457 return default_make_symbol_completion_list_break_on (text, word, "", code);
4458 }
4459
4460 /* Return a vector of all symbols (regardless of class) which begin by
4461 matching TEXT. If the answer is no symbols, then the return value
4462 is NULL. */
4463
4464 VEC (char_ptr) *
4465 make_symbol_completion_list (const char *text, const char *word)
4466 {
4467 return current_language->la_make_symbol_completion_list (text, word,
4468 TYPE_CODE_UNDEF);
4469 }
4470
4471 /* Like make_symbol_completion_list, but only return STRUCT_DOMAIN
4472 symbols whose type code is CODE. */
4473
4474 VEC (char_ptr) *
4475 make_symbol_completion_type (const char *text, const char *word,
4476 enum type_code code)
4477 {
4478 gdb_assert (code == TYPE_CODE_UNION
4479 || code == TYPE_CODE_STRUCT
4480 || code == TYPE_CODE_CLASS
4481 || code == TYPE_CODE_ENUM);
4482 return current_language->la_make_symbol_completion_list (text, word, code);
4483 }
4484
4485 /* Like make_symbol_completion_list, but suitable for use as a
4486 completion function. */
4487
4488 VEC (char_ptr) *
4489 make_symbol_completion_list_fn (struct cmd_list_element *ignore,
4490 const char *text, const char *word)
4491 {
4492 return make_symbol_completion_list (text, word);
4493 }
4494
4495 /* Like make_symbol_completion_list, but returns a list of symbols
4496 defined in a source file FILE. */
4497
4498 VEC (char_ptr) *
4499 make_file_symbol_completion_list (const char *text, const char *word,
4500 const char *srcfile)
4501 {
4502 struct symbol *sym;
4503 struct symtab *s;
4504 struct block *b;
4505 struct block_iterator iter;
4506 /* The symbol we are completing on. Points in same buffer as text. */
4507 const char *sym_text;
4508 /* Length of sym_text. */
4509 int sym_text_len;
4510
4511 /* Now look for the symbol we are supposed to complete on.
4512 FIXME: This should be language-specific. */
4513 {
4514 const char *p;
4515 char quote_found;
4516 const char *quote_pos = NULL;
4517
4518 /* First see if this is a quoted string. */
4519 quote_found = '\0';
4520 for (p = text; *p != '\0'; ++p)
4521 {
4522 if (quote_found != '\0')
4523 {
4524 if (*p == quote_found)
4525 /* Found close quote. */
4526 quote_found = '\0';
4527 else if (*p == '\\' && p[1] == quote_found)
4528 /* A backslash followed by the quote character
4529 doesn't end the string. */
4530 ++p;
4531 }
4532 else if (*p == '\'' || *p == '"')
4533 {
4534 quote_found = *p;
4535 quote_pos = p;
4536 }
4537 }
4538 if (quote_found == '\'')
4539 /* A string within single quotes can be a symbol, so complete on it. */
4540 sym_text = quote_pos + 1;
4541 else if (quote_found == '"')
4542 /* A double-quoted string is never a symbol, nor does it make sense
4543 to complete it any other way. */
4544 {
4545 return NULL;
4546 }
4547 else
4548 {
4549 /* Not a quoted string. */
4550 sym_text = language_search_unquoted_string (text, p);
4551 }
4552 }
4553
4554 sym_text_len = strlen (sym_text);
4555
4556 return_val = NULL;
4557
4558 /* Find the symtab for SRCFILE (this loads it if it was not yet read
4559 in). */
4560 s = lookup_symtab (srcfile);
4561 if (s == NULL)
4562 {
4563 /* Maybe they typed the file with leading directories, while the
4564 symbol tables record only its basename. */
4565 const char *tail = lbasename (srcfile);
4566
4567 if (tail > srcfile)
4568 s = lookup_symtab (tail);
4569 }
4570
4571 /* If we have no symtab for that file, return an empty list. */
4572 if (s == NULL)
4573 return (return_val);
4574
4575 /* Go through this symtab and check the externs and statics for
4576 symbols which match. */
4577
4578 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
4579 ALL_BLOCK_SYMBOLS (b, iter, sym)
4580 {
4581 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4582 }
4583
4584 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
4585 ALL_BLOCK_SYMBOLS (b, iter, sym)
4586 {
4587 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4588 }
4589
4590 return (return_val);
4591 }
4592
4593 /* A helper function for make_source_files_completion_list. It adds
4594 another file name to a list of possible completions, growing the
4595 list as necessary. */
4596
4597 static void
4598 add_filename_to_list (const char *fname, const char *text, const char *word,
4599 VEC (char_ptr) **list)
4600 {
4601 char *new;
4602 size_t fnlen = strlen (fname);
4603
4604 if (word == text)
4605 {
4606 /* Return exactly fname. */
4607 new = xmalloc (fnlen + 5);
4608 strcpy (new, fname);
4609 }
4610 else if (word > text)
4611 {
4612 /* Return some portion of fname. */
4613 new = xmalloc (fnlen + 5);
4614 strcpy (new, fname + (word - text));
4615 }
4616 else
4617 {
4618 /* Return some of TEXT plus fname. */
4619 new = xmalloc (fnlen + (text - word) + 5);
4620 strncpy (new, word, text - word);
4621 new[text - word] = '\0';
4622 strcat (new, fname);
4623 }
4624 VEC_safe_push (char_ptr, *list, new);
4625 }
4626
4627 static int
4628 not_interesting_fname (const char *fname)
4629 {
4630 static const char *illegal_aliens[] = {
4631 "_globals_", /* inserted by coff_symtab_read */
4632 NULL
4633 };
4634 int i;
4635
4636 for (i = 0; illegal_aliens[i]; i++)
4637 {
4638 if (filename_cmp (fname, illegal_aliens[i]) == 0)
4639 return 1;
4640 }
4641 return 0;
4642 }
4643
4644 /* An object of this type is passed as the user_data argument to
4645 map_partial_symbol_filenames. */
4646 struct add_partial_filename_data
4647 {
4648 struct filename_seen_cache *filename_seen_cache;
4649 const char *text;
4650 const char *word;
4651 int text_len;
4652 VEC (char_ptr) **list;
4653 };
4654
4655 /* A callback for map_partial_symbol_filenames. */
4656
4657 static void
4658 maybe_add_partial_symtab_filename (const char *filename, const char *fullname,
4659 void *user_data)
4660 {
4661 struct add_partial_filename_data *data = user_data;
4662
4663 if (not_interesting_fname (filename))
4664 return;
4665 if (!filename_seen (data->filename_seen_cache, filename, 1)
4666 && filename_ncmp (filename, data->text, data->text_len) == 0)
4667 {
4668 /* This file matches for a completion; add it to the
4669 current list of matches. */
4670 add_filename_to_list (filename, data->text, data->word, data->list);
4671 }
4672 else
4673 {
4674 const char *base_name = lbasename (filename);
4675
4676 if (base_name != filename
4677 && !filename_seen (data->filename_seen_cache, base_name, 1)
4678 && filename_ncmp (base_name, data->text, data->text_len) == 0)
4679 add_filename_to_list (base_name, data->text, data->word, data->list);
4680 }
4681 }
4682
4683 /* Return a vector of all source files whose names begin with matching
4684 TEXT. The file names are looked up in the symbol tables of this
4685 program. If the answer is no matchess, then the return value is
4686 NULL. */
4687
4688 VEC (char_ptr) *
4689 make_source_files_completion_list (const char *text, const char *word)
4690 {
4691 struct symtab *s;
4692 struct objfile *objfile;
4693 size_t text_len = strlen (text);
4694 VEC (char_ptr) *list = NULL;
4695 const char *base_name;
4696 struct add_partial_filename_data datum;
4697 struct filename_seen_cache *filename_seen_cache;
4698 struct cleanup *back_to, *cache_cleanup;
4699
4700 if (!have_full_symbols () && !have_partial_symbols ())
4701 return list;
4702
4703 back_to = make_cleanup (do_free_completion_list, &list);
4704
4705 filename_seen_cache = create_filename_seen_cache ();
4706 cache_cleanup = make_cleanup (delete_filename_seen_cache,
4707 filename_seen_cache);
4708
4709 ALL_SYMTABS (objfile, s)
4710 {
4711 if (not_interesting_fname (s->filename))
4712 continue;
4713 if (!filename_seen (filename_seen_cache, s->filename, 1)
4714 && filename_ncmp (s->filename, text, text_len) == 0)
4715 {
4716 /* This file matches for a completion; add it to the current
4717 list of matches. */
4718 add_filename_to_list (s->filename, text, word, &list);
4719 }
4720 else
4721 {
4722 /* NOTE: We allow the user to type a base name when the
4723 debug info records leading directories, but not the other
4724 way around. This is what subroutines of breakpoint
4725 command do when they parse file names. */
4726 base_name = lbasename (s->filename);
4727 if (base_name != s->filename
4728 && !filename_seen (filename_seen_cache, base_name, 1)
4729 && filename_ncmp (base_name, text, text_len) == 0)
4730 add_filename_to_list (base_name, text, word, &list);
4731 }
4732 }
4733
4734 datum.filename_seen_cache = filename_seen_cache;
4735 datum.text = text;
4736 datum.word = word;
4737 datum.text_len = text_len;
4738 datum.list = &list;
4739 map_partial_symbol_filenames (maybe_add_partial_symtab_filename, &datum,
4740 0 /*need_fullname*/);
4741
4742 do_cleanups (cache_cleanup);
4743 discard_cleanups (back_to);
4744
4745 return list;
4746 }
4747
4748 /* Determine if PC is in the prologue of a function. The prologue is the area
4749 between the first instruction of a function, and the first executable line.
4750 Returns 1 if PC *might* be in prologue, 0 if definately *not* in prologue.
4751
4752 If non-zero, func_start is where we think the prologue starts, possibly
4753 by previous examination of symbol table information. */
4754
4755 int
4756 in_prologue (struct gdbarch *gdbarch, CORE_ADDR pc, CORE_ADDR func_start)
4757 {
4758 struct symtab_and_line sal;
4759 CORE_ADDR func_addr, func_end;
4760
4761 /* We have several sources of information we can consult to figure
4762 this out.
4763 - Compilers usually emit line number info that marks the prologue
4764 as its own "source line". So the ending address of that "line"
4765 is the end of the prologue. If available, this is the most
4766 reliable method.
4767 - The minimal symbols and partial symbols, which can usually tell
4768 us the starting and ending addresses of a function.
4769 - If we know the function's start address, we can call the
4770 architecture-defined gdbarch_skip_prologue function to analyze the
4771 instruction stream and guess where the prologue ends.
4772 - Our `func_start' argument; if non-zero, this is the caller's
4773 best guess as to the function's entry point. At the time of
4774 this writing, handle_inferior_event doesn't get this right, so
4775 it should be our last resort. */
4776
4777 /* Consult the partial symbol table, to find which function
4778 the PC is in. */
4779 if (! find_pc_partial_function (pc, NULL, &func_addr, &func_end))
4780 {
4781 CORE_ADDR prologue_end;
4782
4783 /* We don't even have minsym information, so fall back to using
4784 func_start, if given. */
4785 if (! func_start)
4786 return 1; /* We *might* be in a prologue. */
4787
4788 prologue_end = gdbarch_skip_prologue (gdbarch, func_start);
4789
4790 return func_start <= pc && pc < prologue_end;
4791 }
4792
4793 /* If we have line number information for the function, that's
4794 usually pretty reliable. */
4795 sal = find_pc_line (func_addr, 0);
4796
4797 /* Now sal describes the source line at the function's entry point,
4798 which (by convention) is the prologue. The end of that "line",
4799 sal.end, is the end of the prologue.
4800
4801 Note that, for functions whose source code is all on a single
4802 line, the line number information doesn't always end up this way.
4803 So we must verify that our purported end-of-prologue address is
4804 *within* the function, not at its start or end. */
4805 if (sal.line == 0
4806 || sal.end <= func_addr
4807 || func_end <= sal.end)
4808 {
4809 /* We don't have any good line number info, so use the minsym
4810 information, together with the architecture-specific prologue
4811 scanning code. */
4812 CORE_ADDR prologue_end = gdbarch_skip_prologue (gdbarch, func_addr);
4813
4814 return func_addr <= pc && pc < prologue_end;
4815 }
4816
4817 /* We have line number info, and it looks good. */
4818 return func_addr <= pc && pc < sal.end;
4819 }
4820
4821 /* Given PC at the function's start address, attempt to find the
4822 prologue end using SAL information. Return zero if the skip fails.
4823
4824 A non-optimized prologue traditionally has one SAL for the function
4825 and a second for the function body. A single line function has
4826 them both pointing at the same line.
4827
4828 An optimized prologue is similar but the prologue may contain
4829 instructions (SALs) from the instruction body. Need to skip those
4830 while not getting into the function body.
4831
4832 The functions end point and an increasing SAL line are used as
4833 indicators of the prologue's endpoint.
4834
4835 This code is based on the function refine_prologue_limit
4836 (found in ia64). */
4837
4838 CORE_ADDR
4839 skip_prologue_using_sal (struct gdbarch *gdbarch, CORE_ADDR func_addr)
4840 {
4841 struct symtab_and_line prologue_sal;
4842 CORE_ADDR start_pc;
4843 CORE_ADDR end_pc;
4844 struct block *bl;
4845
4846 /* Get an initial range for the function. */
4847 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
4848 start_pc += gdbarch_deprecated_function_start_offset (gdbarch);
4849
4850 prologue_sal = find_pc_line (start_pc, 0);
4851 if (prologue_sal.line != 0)
4852 {
4853 /* For languages other than assembly, treat two consecutive line
4854 entries at the same address as a zero-instruction prologue.
4855 The GNU assembler emits separate line notes for each instruction
4856 in a multi-instruction macro, but compilers generally will not
4857 do this. */
4858 if (prologue_sal.symtab->language != language_asm)
4859 {
4860 struct linetable *linetable = LINETABLE (prologue_sal.symtab);
4861 int idx = 0;
4862
4863 /* Skip any earlier lines, and any end-of-sequence marker
4864 from a previous function. */
4865 while (linetable->item[idx].pc != prologue_sal.pc
4866 || linetable->item[idx].line == 0)
4867 idx++;
4868
4869 if (idx+1 < linetable->nitems
4870 && linetable->item[idx+1].line != 0
4871 && linetable->item[idx+1].pc == start_pc)
4872 return start_pc;
4873 }
4874
4875 /* If there is only one sal that covers the entire function,
4876 then it is probably a single line function, like
4877 "foo(){}". */
4878 if (prologue_sal.end >= end_pc)
4879 return 0;
4880
4881 while (prologue_sal.end < end_pc)
4882 {
4883 struct symtab_and_line sal;
4884
4885 sal = find_pc_line (prologue_sal.end, 0);
4886 if (sal.line == 0)
4887 break;
4888 /* Assume that a consecutive SAL for the same (or larger)
4889 line mark the prologue -> body transition. */
4890 if (sal.line >= prologue_sal.line)
4891 break;
4892 /* Likewise if we are in a different symtab altogether
4893 (e.g. within a file included via #include).  */
4894 if (sal.symtab != prologue_sal.symtab)
4895 break;
4896
4897 /* The line number is smaller. Check that it's from the
4898 same function, not something inlined. If it's inlined,
4899 then there is no point comparing the line numbers. */
4900 bl = block_for_pc (prologue_sal.end);
4901 while (bl)
4902 {
4903 if (block_inlined_p (bl))
4904 break;
4905 if (BLOCK_FUNCTION (bl))
4906 {
4907 bl = NULL;
4908 break;
4909 }
4910 bl = BLOCK_SUPERBLOCK (bl);
4911 }
4912 if (bl != NULL)
4913 break;
4914
4915 /* The case in which compiler's optimizer/scheduler has
4916 moved instructions into the prologue. We look ahead in
4917 the function looking for address ranges whose
4918 corresponding line number is less the first one that we
4919 found for the function. This is more conservative then
4920 refine_prologue_limit which scans a large number of SALs
4921 looking for any in the prologue. */
4922 prologue_sal = sal;
4923 }
4924 }
4925
4926 if (prologue_sal.end < end_pc)
4927 /* Return the end of this line, or zero if we could not find a
4928 line. */
4929 return prologue_sal.end;
4930 else
4931 /* Don't return END_PC, which is past the end of the function. */
4932 return prologue_sal.pc;
4933 }
4934 \f
4935 /* Track MAIN */
4936 static char *name_of_main;
4937 enum language language_of_main = language_unknown;
4938
4939 void
4940 set_main_name (const char *name)
4941 {
4942 if (name_of_main != NULL)
4943 {
4944 xfree (name_of_main);
4945 name_of_main = NULL;
4946 language_of_main = language_unknown;
4947 }
4948 if (name != NULL)
4949 {
4950 name_of_main = xstrdup (name);
4951 language_of_main = language_unknown;
4952 }
4953 }
4954
4955 /* Deduce the name of the main procedure, and set NAME_OF_MAIN
4956 accordingly. */
4957
4958 static void
4959 find_main_name (void)
4960 {
4961 const char *new_main_name;
4962
4963 /* Try to see if the main procedure is in Ada. */
4964 /* FIXME: brobecker/2005-03-07: Another way of doing this would
4965 be to add a new method in the language vector, and call this
4966 method for each language until one of them returns a non-empty
4967 name. This would allow us to remove this hard-coded call to
4968 an Ada function. It is not clear that this is a better approach
4969 at this point, because all methods need to be written in a way
4970 such that false positives never be returned. For instance, it is
4971 important that a method does not return a wrong name for the main
4972 procedure if the main procedure is actually written in a different
4973 language. It is easy to guaranty this with Ada, since we use a
4974 special symbol generated only when the main in Ada to find the name
4975 of the main procedure. It is difficult however to see how this can
4976 be guarantied for languages such as C, for instance. This suggests
4977 that order of call for these methods becomes important, which means
4978 a more complicated approach. */
4979 new_main_name = ada_main_name ();
4980 if (new_main_name != NULL)
4981 {
4982 set_main_name (new_main_name);
4983 return;
4984 }
4985
4986 new_main_name = go_main_name ();
4987 if (new_main_name != NULL)
4988 {
4989 set_main_name (new_main_name);
4990 return;
4991 }
4992
4993 new_main_name = pascal_main_name ();
4994 if (new_main_name != NULL)
4995 {
4996 set_main_name (new_main_name);
4997 return;
4998 }
4999
5000 /* The languages above didn't identify the name of the main procedure.
5001 Fallback to "main". */
5002 set_main_name ("main");
5003 }
5004
5005 char *
5006 main_name (void)
5007 {
5008 if (name_of_main == NULL)
5009 find_main_name ();
5010
5011 return name_of_main;
5012 }
5013
5014 /* Handle ``executable_changed'' events for the symtab module. */
5015
5016 static void
5017 symtab_observer_executable_changed (void)
5018 {
5019 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
5020 set_main_name (NULL);
5021 }
5022
5023 /* Return 1 if the supplied producer string matches the ARM RealView
5024 compiler (armcc). */
5025
5026 int
5027 producer_is_realview (const char *producer)
5028 {
5029 static const char *const arm_idents[] = {
5030 "ARM C Compiler, ADS",
5031 "Thumb C Compiler, ADS",
5032 "ARM C++ Compiler, ADS",
5033 "Thumb C++ Compiler, ADS",
5034 "ARM/Thumb C/C++ Compiler, RVCT",
5035 "ARM C/C++ Compiler, RVCT"
5036 };
5037 int i;
5038
5039 if (producer == NULL)
5040 return 0;
5041
5042 for (i = 0; i < ARRAY_SIZE (arm_idents); i++)
5043 if (strncmp (producer, arm_idents[i], strlen (arm_idents[i])) == 0)
5044 return 1;
5045
5046 return 0;
5047 }
5048
5049 \f
5050
5051 /* The next index to hand out in response to a registration request. */
5052
5053 static int next_aclass_value = LOC_FINAL_VALUE;
5054
5055 /* The maximum number of "aclass" registrations we support. This is
5056 constant for convenience. */
5057 #define MAX_SYMBOL_IMPLS (LOC_FINAL_VALUE + 10)
5058
5059 /* The objects representing the various "aclass" values. The elements
5060 from 0 up to LOC_FINAL_VALUE-1 represent themselves, and subsequent
5061 elements are those registered at gdb initialization time. */
5062
5063 static struct symbol_impl symbol_impl[MAX_SYMBOL_IMPLS];
5064
5065 /* The globally visible pointer. This is separate from 'symbol_impl'
5066 so that it can be const. */
5067
5068 const struct symbol_impl *symbol_impls = &symbol_impl[0];
5069
5070 /* Make sure we saved enough room in struct symbol. */
5071
5072 gdb_static_assert (MAX_SYMBOL_IMPLS <= (1 << SYMBOL_ACLASS_BITS));
5073
5074 /* Register a computed symbol type. ACLASS must be LOC_COMPUTED. OPS
5075 is the ops vector associated with this index. This returns the new
5076 index, which should be used as the aclass_index field for symbols
5077 of this type. */
5078
5079 int
5080 register_symbol_computed_impl (enum address_class aclass,
5081 const struct symbol_computed_ops *ops)
5082 {
5083 int result = next_aclass_value++;
5084
5085 gdb_assert (aclass == LOC_COMPUTED);
5086 gdb_assert (result < MAX_SYMBOL_IMPLS);
5087 symbol_impl[result].aclass = aclass;
5088 symbol_impl[result].ops_computed = ops;
5089
5090 /* Sanity check OPS. */
5091 gdb_assert (ops != NULL);
5092 gdb_assert (ops->tracepoint_var_ref != NULL);
5093 gdb_assert (ops->describe_location != NULL);
5094 gdb_assert (ops->read_needs_frame != NULL);
5095 gdb_assert (ops->read_variable != NULL);
5096
5097 return result;
5098 }
5099
5100 /* Register a function with frame base type. ACLASS must be LOC_BLOCK.
5101 OPS is the ops vector associated with this index. This returns the
5102 new index, which should be used as the aclass_index field for symbols
5103 of this type. */
5104
5105 int
5106 register_symbol_block_impl (enum address_class aclass,
5107 const struct symbol_block_ops *ops)
5108 {
5109 int result = next_aclass_value++;
5110
5111 gdb_assert (aclass == LOC_BLOCK);
5112 gdb_assert (result < MAX_SYMBOL_IMPLS);
5113 symbol_impl[result].aclass = aclass;
5114 symbol_impl[result].ops_block = ops;
5115
5116 /* Sanity check OPS. */
5117 gdb_assert (ops != NULL);
5118 gdb_assert (ops->find_frame_base_location != NULL);
5119
5120 return result;
5121 }
5122
5123 /* Register a register symbol type. ACLASS must be LOC_REGISTER or
5124 LOC_REGPARM_ADDR. OPS is the register ops vector associated with
5125 this index. This returns the new index, which should be used as
5126 the aclass_index field for symbols of this type. */
5127
5128 int
5129 register_symbol_register_impl (enum address_class aclass,
5130 const struct symbol_register_ops *ops)
5131 {
5132 int result = next_aclass_value++;
5133
5134 gdb_assert (aclass == LOC_REGISTER || aclass == LOC_REGPARM_ADDR);
5135 gdb_assert (result < MAX_SYMBOL_IMPLS);
5136 symbol_impl[result].aclass = aclass;
5137 symbol_impl[result].ops_register = ops;
5138
5139 return result;
5140 }
5141
5142 /* Initialize elements of 'symbol_impl' for the constants in enum
5143 address_class. */
5144
5145 static void
5146 initialize_ordinary_address_classes (void)
5147 {
5148 int i;
5149
5150 for (i = 0; i < LOC_FINAL_VALUE; ++i)
5151 symbol_impl[i].aclass = i;
5152 }
5153
5154 \f
5155
5156 /* Initialize the symbol SYM. */
5157
5158 void
5159 initialize_symbol (struct symbol *sym)
5160 {
5161 memset (sym, 0, sizeof (*sym));
5162 SYMBOL_SECTION (sym) = -1;
5163 }
5164
5165 /* Allocate and initialize a new 'struct symbol' on OBJFILE's
5166 obstack. */
5167
5168 struct symbol *
5169 allocate_symbol (struct objfile *objfile)
5170 {
5171 struct symbol *result;
5172
5173 result = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symbol);
5174 SYMBOL_SECTION (result) = -1;
5175
5176 return result;
5177 }
5178
5179 /* Allocate and initialize a new 'struct template_symbol' on OBJFILE's
5180 obstack. */
5181
5182 struct template_symbol *
5183 allocate_template_symbol (struct objfile *objfile)
5184 {
5185 struct template_symbol *result;
5186
5187 result = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct template_symbol);
5188 SYMBOL_SECTION (&result->base) = -1;
5189
5190 return result;
5191 }
5192
5193 \f
5194
5195 void
5196 _initialize_symtab (void)
5197 {
5198 initialize_ordinary_address_classes ();
5199
5200 add_info ("variables", variables_info, _("\
5201 All global and static variable names, or those matching REGEXP."));
5202 if (dbx_commands)
5203 add_com ("whereis", class_info, variables_info, _("\
5204 All global and static variable names, or those matching REGEXP."));
5205
5206 add_info ("functions", functions_info,
5207 _("All function names, or those matching REGEXP."));
5208
5209 /* FIXME: This command has at least the following problems:
5210 1. It prints builtin types (in a very strange and confusing fashion).
5211 2. It doesn't print right, e.g. with
5212 typedef struct foo *FOO
5213 type_print prints "FOO" when we want to make it (in this situation)
5214 print "struct foo *".
5215 I also think "ptype" or "whatis" is more likely to be useful (but if
5216 there is much disagreement "info types" can be fixed). */
5217 add_info ("types", types_info,
5218 _("All type names, or those matching REGEXP."));
5219
5220 add_info ("sources", sources_info,
5221 _("Source files in the program."));
5222
5223 add_com ("rbreak", class_breakpoint, rbreak_command,
5224 _("Set a breakpoint for all functions matching REGEXP."));
5225
5226 if (xdb_commands)
5227 {
5228 add_com ("lf", class_info, sources_info,
5229 _("Source files in the program"));
5230 add_com ("lg", class_info, variables_info, _("\
5231 All global and static variable names, or those matching REGEXP."));
5232 }
5233
5234 add_setshow_enum_cmd ("multiple-symbols", no_class,
5235 multiple_symbols_modes, &multiple_symbols_mode,
5236 _("\
5237 Set the debugger behavior when more than one symbol are possible matches\n\
5238 in an expression."), _("\
5239 Show how the debugger handles ambiguities in expressions."), _("\
5240 Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
5241 NULL, NULL, &setlist, &showlist);
5242
5243 add_setshow_boolean_cmd ("basenames-may-differ", class_obscure,
5244 &basenames_may_differ, _("\
5245 Set whether a source file may have multiple base names."), _("\
5246 Show whether a source file may have multiple base names."), _("\
5247 (A \"base name\" is the name of a file with the directory part removed.\n\
5248 Example: The base name of \"/home/user/hello.c\" is \"hello.c\".)\n\
5249 If set, GDB will canonicalize file names (e.g., expand symlinks)\n\
5250 before comparing them. Canonicalization is an expensive operation,\n\
5251 but it allows the same file be known by more than one base name.\n\
5252 If not set (the default), all source files are assumed to have just\n\
5253 one base name, and gdb will do file name comparisons more efficiently."),
5254 NULL, NULL,
5255 &setlist, &showlist);
5256
5257 add_setshow_boolean_cmd ("symtab-create", no_class, &symtab_create_debug,
5258 _("Set debugging of symbol table creation."),
5259 _("Show debugging of symbol table creation."), _("\
5260 When enabled, debugging messages are printed when building symbol tables."),
5261 NULL,
5262 NULL,
5263 &setdebuglist, &showdebuglist);
5264
5265 observer_attach_executable_changed (symtab_observer_executable_changed);
5266 }
This page took 0.139418 seconds and 4 git commands to generate.