* psymtab.c (PSYMTAB_TO_SYMTAB): Remove.
[deliverable/binutils-gdb.git] / gdb / symtab.c
1 /* Symbol table lookup for the GNU debugger, GDB.
2
3 Copyright (C) 1986-2004, 2007-2012 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "gdbcore.h"
24 #include "frame.h"
25 #include "target.h"
26 #include "value.h"
27 #include "symfile.h"
28 #include "objfiles.h"
29 #include "gdbcmd.h"
30 #include "call-cmds.h"
31 #include "gdb_regex.h"
32 #include "expression.h"
33 #include "language.h"
34 #include "demangle.h"
35 #include "inferior.h"
36 #include "linespec.h"
37 #include "source.h"
38 #include "filenames.h" /* for FILENAME_CMP */
39 #include "objc-lang.h"
40 #include "d-lang.h"
41 #include "ada-lang.h"
42 #include "go-lang.h"
43 #include "p-lang.h"
44 #include "addrmap.h"
45
46 #include "hashtab.h"
47
48 #include "gdb_obstack.h"
49 #include "block.h"
50 #include "dictionary.h"
51
52 #include <sys/types.h>
53 #include <fcntl.h>
54 #include "gdb_string.h"
55 #include "gdb_stat.h"
56 #include <ctype.h>
57 #include "cp-abi.h"
58 #include "cp-support.h"
59 #include "observer.h"
60 #include "gdb_assert.h"
61 #include "solist.h"
62 #include "macrotab.h"
63 #include "macroscope.h"
64
65 #include "psymtab.h"
66
67 /* Prototypes for local functions */
68
69 static void rbreak_command (char *, int);
70
71 static void types_info (char *, int);
72
73 static void functions_info (char *, int);
74
75 static void variables_info (char *, int);
76
77 static void sources_info (char *, int);
78
79 static void output_source_filename (const char *, int *);
80
81 static int find_line_common (struct linetable *, int, int *, int);
82
83 static struct symbol *lookup_symbol_aux (const char *name,
84 const struct block *block,
85 const domain_enum domain,
86 enum language language,
87 int *is_a_field_of_this);
88
89 static
90 struct symbol *lookup_symbol_aux_local (const char *name,
91 const struct block *block,
92 const domain_enum domain,
93 enum language language);
94
95 static
96 struct symbol *lookup_symbol_aux_symtabs (int block_index,
97 const char *name,
98 const domain_enum domain,
99 struct objfile *exclude_objfile);
100
101 static
102 struct symbol *lookup_symbol_aux_quick (struct objfile *objfile,
103 int block_index,
104 const char *name,
105 const domain_enum domain);
106
107 static void print_msymbol_info (struct minimal_symbol *);
108
109 void _initialize_symtab (void);
110
111 /* */
112
113 /* Non-zero if a file may be known by two different basenames.
114 This is the uncommon case, and significantly slows down gdb.
115 Default set to "off" to not slow down the common case. */
116 int basenames_may_differ = 0;
117
118 /* Allow the user to configure the debugger behavior with respect
119 to multiple-choice menus when more than one symbol matches during
120 a symbol lookup. */
121
122 const char multiple_symbols_ask[] = "ask";
123 const char multiple_symbols_all[] = "all";
124 const char multiple_symbols_cancel[] = "cancel";
125 static const char *const multiple_symbols_modes[] =
126 {
127 multiple_symbols_ask,
128 multiple_symbols_all,
129 multiple_symbols_cancel,
130 NULL
131 };
132 static const char *multiple_symbols_mode = multiple_symbols_all;
133
134 /* Read-only accessor to AUTO_SELECT_MODE. */
135
136 const char *
137 multiple_symbols_select_mode (void)
138 {
139 return multiple_symbols_mode;
140 }
141
142 /* Block in which the most recently searched-for symbol was found.
143 Might be better to make this a parameter to lookup_symbol and
144 value_of_this. */
145
146 const struct block *block_found;
147
148 /* See whether FILENAME matches SEARCH_NAME using the rule that we
149 advertise to the user. (The manual's description of linespecs
150 describes what we advertise). SEARCH_LEN is the length of
151 SEARCH_NAME. We assume that SEARCH_NAME is a relative path.
152 Returns true if they match, false otherwise. */
153
154 int
155 compare_filenames_for_search (const char *filename, const char *search_name,
156 int search_len)
157 {
158 int len = strlen (filename);
159 int offset;
160
161 if (len < search_len)
162 return 0;
163
164 /* The tail of FILENAME must match. */
165 if (FILENAME_CMP (filename + len - search_len, search_name) != 0)
166 return 0;
167
168 /* Either the names must completely match, or the character
169 preceding the trailing SEARCH_NAME segment of FILENAME must be a
170 directory separator. */
171 return (len == search_len
172 || IS_DIR_SEPARATOR (filename[len - search_len - 1])
173 || (HAS_DRIVE_SPEC (filename)
174 && STRIP_DRIVE_SPEC (filename) == &filename[len - search_len]));
175 }
176
177 /* Check for a symtab of a specific name by searching some symtabs.
178 This is a helper function for callbacks of iterate_over_symtabs.
179
180 The return value, NAME, FULL_PATH, REAL_PATH, CALLBACK, and DATA
181 are identical to the `map_symtabs_matching_filename' method of
182 quick_symbol_functions.
183
184 FIRST and AFTER_LAST indicate the range of symtabs to search.
185 AFTER_LAST is one past the last symtab to search; NULL means to
186 search until the end of the list. */
187
188 int
189 iterate_over_some_symtabs (const char *name,
190 const char *full_path,
191 const char *real_path,
192 int (*callback) (struct symtab *symtab,
193 void *data),
194 void *data,
195 struct symtab *first,
196 struct symtab *after_last)
197 {
198 struct symtab *s = NULL;
199 struct cleanup *cleanup;
200 const char* base_name = lbasename (name);
201 int name_len = strlen (name);
202 int is_abs = IS_ABSOLUTE_PATH (name);
203
204 for (s = first; s != NULL && s != after_last; s = s->next)
205 {
206 /* Exact match is always ok. */
207 if (FILENAME_CMP (name, s->filename) == 0)
208 {
209 if (callback (s, data))
210 return 1;
211 }
212
213 if (!is_abs && compare_filenames_for_search (s->filename, name, name_len))
214 {
215 if (callback (s, data))
216 return 1;
217 }
218
219 /* Before we invoke realpath, which can get expensive when many
220 files are involved, do a quick comparison of the basenames. */
221 if (! basenames_may_differ
222 && FILENAME_CMP (base_name, lbasename (s->filename)) != 0)
223 continue;
224
225 /* If the user gave us an absolute path, try to find the file in
226 this symtab and use its absolute path. */
227
228 if (full_path != NULL)
229 {
230 const char *fp = symtab_to_fullname (s);
231
232 if (fp != NULL && FILENAME_CMP (full_path, fp) == 0)
233 {
234 if (callback (s, data))
235 return 1;
236 }
237
238 if (fp != NULL && !is_abs && compare_filenames_for_search (fp, name,
239 name_len))
240 {
241 if (callback (s, data))
242 return 1;
243 }
244 }
245
246 if (real_path != NULL)
247 {
248 char *fullname = symtab_to_fullname (s);
249
250 if (fullname != NULL)
251 {
252 char *rp = gdb_realpath (fullname);
253
254 make_cleanup (xfree, rp);
255 if (FILENAME_CMP (real_path, rp) == 0)
256 {
257 if (callback (s, data))
258 return 1;
259 }
260
261 if (!is_abs && compare_filenames_for_search (rp, name, name_len))
262 {
263 if (callback (s, data))
264 return 1;
265 }
266 }
267 }
268 }
269
270 return 0;
271 }
272
273 /* Check for a symtab of a specific name; first in symtabs, then in
274 psymtabs. *If* there is no '/' in the name, a match after a '/'
275 in the symtab filename will also work.
276
277 Calls CALLBACK with each symtab that is found and with the supplied
278 DATA. If CALLBACK returns true, the search stops. */
279
280 void
281 iterate_over_symtabs (const char *name,
282 int (*callback) (struct symtab *symtab,
283 void *data),
284 void *data)
285 {
286 struct symtab *s = NULL;
287 struct objfile *objfile;
288 char *real_path = NULL;
289 char *full_path = NULL;
290 struct cleanup *cleanups = make_cleanup (null_cleanup, NULL);
291
292 /* Here we are interested in canonicalizing an absolute path, not
293 absolutizing a relative path. */
294 if (IS_ABSOLUTE_PATH (name))
295 {
296 full_path = xfullpath (name);
297 make_cleanup (xfree, full_path);
298 real_path = gdb_realpath (name);
299 make_cleanup (xfree, real_path);
300 }
301
302 ALL_OBJFILES (objfile)
303 {
304 if (iterate_over_some_symtabs (name, full_path, real_path, callback, data,
305 objfile->symtabs, NULL))
306 {
307 do_cleanups (cleanups);
308 return;
309 }
310 }
311
312 /* Same search rules as above apply here, but now we look thru the
313 psymtabs. */
314
315 ALL_OBJFILES (objfile)
316 {
317 if (objfile->sf
318 && objfile->sf->qf->map_symtabs_matching_filename (objfile,
319 name,
320 full_path,
321 real_path,
322 callback,
323 data))
324 {
325 do_cleanups (cleanups);
326 return;
327 }
328 }
329
330 do_cleanups (cleanups);
331 }
332
333 /* The callback function used by lookup_symtab. */
334
335 static int
336 lookup_symtab_callback (struct symtab *symtab, void *data)
337 {
338 struct symtab **result_ptr = data;
339
340 *result_ptr = symtab;
341 return 1;
342 }
343
344 /* A wrapper for iterate_over_symtabs that returns the first matching
345 symtab, or NULL. */
346
347 struct symtab *
348 lookup_symtab (const char *name)
349 {
350 struct symtab *result = NULL;
351
352 iterate_over_symtabs (name, lookup_symtab_callback, &result);
353 return result;
354 }
355
356 \f
357 /* Mangle a GDB method stub type. This actually reassembles the pieces of the
358 full method name, which consist of the class name (from T), the unadorned
359 method name from METHOD_ID, and the signature for the specific overload,
360 specified by SIGNATURE_ID. Note that this function is g++ specific. */
361
362 char *
363 gdb_mangle_name (struct type *type, int method_id, int signature_id)
364 {
365 int mangled_name_len;
366 char *mangled_name;
367 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
368 struct fn_field *method = &f[signature_id];
369 const char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
370 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
371 const char *newname = type_name_no_tag (type);
372
373 /* Does the form of physname indicate that it is the full mangled name
374 of a constructor (not just the args)? */
375 int is_full_physname_constructor;
376
377 int is_constructor;
378 int is_destructor = is_destructor_name (physname);
379 /* Need a new type prefix. */
380 char *const_prefix = method->is_const ? "C" : "";
381 char *volatile_prefix = method->is_volatile ? "V" : "";
382 char buf[20];
383 int len = (newname == NULL ? 0 : strlen (newname));
384
385 /* Nothing to do if physname already contains a fully mangled v3 abi name
386 or an operator name. */
387 if ((physname[0] == '_' && physname[1] == 'Z')
388 || is_operator_name (field_name))
389 return xstrdup (physname);
390
391 is_full_physname_constructor = is_constructor_name (physname);
392
393 is_constructor = is_full_physname_constructor
394 || (newname && strcmp (field_name, newname) == 0);
395
396 if (!is_destructor)
397 is_destructor = (strncmp (physname, "__dt", 4) == 0);
398
399 if (is_destructor || is_full_physname_constructor)
400 {
401 mangled_name = (char *) xmalloc (strlen (physname) + 1);
402 strcpy (mangled_name, physname);
403 return mangled_name;
404 }
405
406 if (len == 0)
407 {
408 sprintf (buf, "__%s%s", const_prefix, volatile_prefix);
409 }
410 else if (physname[0] == 't' || physname[0] == 'Q')
411 {
412 /* The physname for template and qualified methods already includes
413 the class name. */
414 sprintf (buf, "__%s%s", const_prefix, volatile_prefix);
415 newname = NULL;
416 len = 0;
417 }
418 else
419 {
420 sprintf (buf, "__%s%s%d", const_prefix, volatile_prefix, len);
421 }
422 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
423 + strlen (buf) + len + strlen (physname) + 1);
424
425 mangled_name = (char *) xmalloc (mangled_name_len);
426 if (is_constructor)
427 mangled_name[0] = '\0';
428 else
429 strcpy (mangled_name, field_name);
430
431 strcat (mangled_name, buf);
432 /* If the class doesn't have a name, i.e. newname NULL, then we just
433 mangle it using 0 for the length of the class. Thus it gets mangled
434 as something starting with `::' rather than `classname::'. */
435 if (newname != NULL)
436 strcat (mangled_name, newname);
437
438 strcat (mangled_name, physname);
439 return (mangled_name);
440 }
441
442 /* Initialize the cplus_specific structure. 'cplus_specific' should
443 only be allocated for use with cplus symbols. */
444
445 static void
446 symbol_init_cplus_specific (struct general_symbol_info *gsymbol,
447 struct objfile *objfile)
448 {
449 /* A language_specific structure should not have been previously
450 initialized. */
451 gdb_assert (gsymbol->language_specific.cplus_specific == NULL);
452 gdb_assert (objfile != NULL);
453
454 gsymbol->language_specific.cplus_specific =
455 OBSTACK_ZALLOC (&objfile->objfile_obstack, struct cplus_specific);
456 }
457
458 /* Set the demangled name of GSYMBOL to NAME. NAME must be already
459 correctly allocated. For C++ symbols a cplus_specific struct is
460 allocated so OBJFILE must not be NULL. If this is a non C++ symbol
461 OBJFILE can be NULL. */
462
463 void
464 symbol_set_demangled_name (struct general_symbol_info *gsymbol,
465 char *name,
466 struct objfile *objfile)
467 {
468 if (gsymbol->language == language_cplus)
469 {
470 if (gsymbol->language_specific.cplus_specific == NULL)
471 symbol_init_cplus_specific (gsymbol, objfile);
472
473 gsymbol->language_specific.cplus_specific->demangled_name = name;
474 }
475 else
476 gsymbol->language_specific.mangled_lang.demangled_name = name;
477 }
478
479 /* Return the demangled name of GSYMBOL. */
480
481 const char *
482 symbol_get_demangled_name (const struct general_symbol_info *gsymbol)
483 {
484 if (gsymbol->language == language_cplus)
485 {
486 if (gsymbol->language_specific.cplus_specific != NULL)
487 return gsymbol->language_specific.cplus_specific->demangled_name;
488 else
489 return NULL;
490 }
491 else
492 return gsymbol->language_specific.mangled_lang.demangled_name;
493 }
494
495 \f
496 /* Initialize the language dependent portion of a symbol
497 depending upon the language for the symbol. */
498
499 void
500 symbol_set_language (struct general_symbol_info *gsymbol,
501 enum language language)
502 {
503 gsymbol->language = language;
504 if (gsymbol->language == language_d
505 || gsymbol->language == language_go
506 || gsymbol->language == language_java
507 || gsymbol->language == language_objc
508 || gsymbol->language == language_fortran)
509 {
510 symbol_set_demangled_name (gsymbol, NULL, NULL);
511 }
512 else if (gsymbol->language == language_cplus)
513 gsymbol->language_specific.cplus_specific = NULL;
514 else
515 {
516 memset (&gsymbol->language_specific, 0,
517 sizeof (gsymbol->language_specific));
518 }
519 }
520
521 /* Functions to initialize a symbol's mangled name. */
522
523 /* Objects of this type are stored in the demangled name hash table. */
524 struct demangled_name_entry
525 {
526 char *mangled;
527 char demangled[1];
528 };
529
530 /* Hash function for the demangled name hash. */
531
532 static hashval_t
533 hash_demangled_name_entry (const void *data)
534 {
535 const struct demangled_name_entry *e = data;
536
537 return htab_hash_string (e->mangled);
538 }
539
540 /* Equality function for the demangled name hash. */
541
542 static int
543 eq_demangled_name_entry (const void *a, const void *b)
544 {
545 const struct demangled_name_entry *da = a;
546 const struct demangled_name_entry *db = b;
547
548 return strcmp (da->mangled, db->mangled) == 0;
549 }
550
551 /* Create the hash table used for demangled names. Each hash entry is
552 a pair of strings; one for the mangled name and one for the demangled
553 name. The entry is hashed via just the mangled name. */
554
555 static void
556 create_demangled_names_hash (struct objfile *objfile)
557 {
558 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
559 The hash table code will round this up to the next prime number.
560 Choosing a much larger table size wastes memory, and saves only about
561 1% in symbol reading. */
562
563 objfile->demangled_names_hash = htab_create_alloc
564 (256, hash_demangled_name_entry, eq_demangled_name_entry,
565 NULL, xcalloc, xfree);
566 }
567
568 /* Try to determine the demangled name for a symbol, based on the
569 language of that symbol. If the language is set to language_auto,
570 it will attempt to find any demangling algorithm that works and
571 then set the language appropriately. The returned name is allocated
572 by the demangler and should be xfree'd. */
573
574 static char *
575 symbol_find_demangled_name (struct general_symbol_info *gsymbol,
576 const char *mangled)
577 {
578 char *demangled = NULL;
579
580 if (gsymbol->language == language_unknown)
581 gsymbol->language = language_auto;
582
583 if (gsymbol->language == language_objc
584 || gsymbol->language == language_auto)
585 {
586 demangled =
587 objc_demangle (mangled, 0);
588 if (demangled != NULL)
589 {
590 gsymbol->language = language_objc;
591 return demangled;
592 }
593 }
594 if (gsymbol->language == language_cplus
595 || gsymbol->language == language_auto)
596 {
597 demangled =
598 cplus_demangle (mangled, DMGL_PARAMS | DMGL_ANSI);
599 if (demangled != NULL)
600 {
601 gsymbol->language = language_cplus;
602 return demangled;
603 }
604 }
605 if (gsymbol->language == language_java)
606 {
607 demangled =
608 cplus_demangle (mangled,
609 DMGL_PARAMS | DMGL_ANSI | DMGL_JAVA);
610 if (demangled != NULL)
611 {
612 gsymbol->language = language_java;
613 return demangled;
614 }
615 }
616 if (gsymbol->language == language_d
617 || gsymbol->language == language_auto)
618 {
619 demangled = d_demangle(mangled, 0);
620 if (demangled != NULL)
621 {
622 gsymbol->language = language_d;
623 return demangled;
624 }
625 }
626 /* FIXME(dje): Continually adding languages here is clumsy.
627 Better to just call la_demangle if !auto, and if auto then call
628 a utility routine that tries successive languages in turn and reports
629 which one it finds. I realize the la_demangle options may be different
630 for different languages but there's already a FIXME for that. */
631 if (gsymbol->language == language_go
632 || gsymbol->language == language_auto)
633 {
634 demangled = go_demangle (mangled, 0);
635 if (demangled != NULL)
636 {
637 gsymbol->language = language_go;
638 return demangled;
639 }
640 }
641
642 /* We could support `gsymbol->language == language_fortran' here to provide
643 module namespaces also for inferiors with only minimal symbol table (ELF
644 symbols). Just the mangling standard is not standardized across compilers
645 and there is no DW_AT_producer available for inferiors with only the ELF
646 symbols to check the mangling kind. */
647 return NULL;
648 }
649
650 /* Set both the mangled and demangled (if any) names for GSYMBOL based
651 on LINKAGE_NAME and LEN. Ordinarily, NAME is copied onto the
652 objfile's obstack; but if COPY_NAME is 0 and if NAME is
653 NUL-terminated, then this function assumes that NAME is already
654 correctly saved (either permanently or with a lifetime tied to the
655 objfile), and it will not be copied.
656
657 The hash table corresponding to OBJFILE is used, and the memory
658 comes from that objfile's objfile_obstack. LINKAGE_NAME is copied,
659 so the pointer can be discarded after calling this function. */
660
661 /* We have to be careful when dealing with Java names: when we run
662 into a Java minimal symbol, we don't know it's a Java symbol, so it
663 gets demangled as a C++ name. This is unfortunate, but there's not
664 much we can do about it: but when demangling partial symbols and
665 regular symbols, we'd better not reuse the wrong demangled name.
666 (See PR gdb/1039.) We solve this by putting a distinctive prefix
667 on Java names when storing them in the hash table. */
668
669 /* FIXME: carlton/2003-03-13: This is an unfortunate situation. I
670 don't mind the Java prefix so much: different languages have
671 different demangling requirements, so it's only natural that we
672 need to keep language data around in our demangling cache. But
673 it's not good that the minimal symbol has the wrong demangled name.
674 Unfortunately, I can't think of any easy solution to that
675 problem. */
676
677 #define JAVA_PREFIX "##JAVA$$"
678 #define JAVA_PREFIX_LEN 8
679
680 void
681 symbol_set_names (struct general_symbol_info *gsymbol,
682 const char *linkage_name, int len, int copy_name,
683 struct objfile *objfile)
684 {
685 struct demangled_name_entry **slot;
686 /* A 0-terminated copy of the linkage name. */
687 const char *linkage_name_copy;
688 /* A copy of the linkage name that might have a special Java prefix
689 added to it, for use when looking names up in the hash table. */
690 const char *lookup_name;
691 /* The length of lookup_name. */
692 int lookup_len;
693 struct demangled_name_entry entry;
694
695 if (gsymbol->language == language_ada)
696 {
697 /* In Ada, we do the symbol lookups using the mangled name, so
698 we can save some space by not storing the demangled name.
699
700 As a side note, we have also observed some overlap between
701 the C++ mangling and Ada mangling, similarly to what has
702 been observed with Java. Because we don't store the demangled
703 name with the symbol, we don't need to use the same trick
704 as Java. */
705 if (!copy_name)
706 gsymbol->name = linkage_name;
707 else
708 {
709 char *name = obstack_alloc (&objfile->objfile_obstack, len + 1);
710
711 memcpy (name, linkage_name, len);
712 name[len] = '\0';
713 gsymbol->name = name;
714 }
715 symbol_set_demangled_name (gsymbol, NULL, NULL);
716
717 return;
718 }
719
720 if (objfile->demangled_names_hash == NULL)
721 create_demangled_names_hash (objfile);
722
723 /* The stabs reader generally provides names that are not
724 NUL-terminated; most of the other readers don't do this, so we
725 can just use the given copy, unless we're in the Java case. */
726 if (gsymbol->language == language_java)
727 {
728 char *alloc_name;
729
730 lookup_len = len + JAVA_PREFIX_LEN;
731 alloc_name = alloca (lookup_len + 1);
732 memcpy (alloc_name, JAVA_PREFIX, JAVA_PREFIX_LEN);
733 memcpy (alloc_name + JAVA_PREFIX_LEN, linkage_name, len);
734 alloc_name[lookup_len] = '\0';
735
736 lookup_name = alloc_name;
737 linkage_name_copy = alloc_name + JAVA_PREFIX_LEN;
738 }
739 else if (linkage_name[len] != '\0')
740 {
741 char *alloc_name;
742
743 lookup_len = len;
744 alloc_name = alloca (lookup_len + 1);
745 memcpy (alloc_name, linkage_name, len);
746 alloc_name[lookup_len] = '\0';
747
748 lookup_name = alloc_name;
749 linkage_name_copy = alloc_name;
750 }
751 else
752 {
753 lookup_len = len;
754 lookup_name = linkage_name;
755 linkage_name_copy = linkage_name;
756 }
757
758 entry.mangled = (char *) lookup_name;
759 slot = ((struct demangled_name_entry **)
760 htab_find_slot (objfile->demangled_names_hash,
761 &entry, INSERT));
762
763 /* If this name is not in the hash table, add it. */
764 if (*slot == NULL
765 /* A C version of the symbol may have already snuck into the table.
766 This happens to, e.g., main.init (__go_init_main). Cope. */
767 || (gsymbol->language == language_go
768 && (*slot)->demangled[0] == '\0'))
769 {
770 char *demangled_name = symbol_find_demangled_name (gsymbol,
771 linkage_name_copy);
772 int demangled_len = demangled_name ? strlen (demangled_name) : 0;
773
774 /* Suppose we have demangled_name==NULL, copy_name==0, and
775 lookup_name==linkage_name. In this case, we already have the
776 mangled name saved, and we don't have a demangled name. So,
777 you might think we could save a little space by not recording
778 this in the hash table at all.
779
780 It turns out that it is actually important to still save such
781 an entry in the hash table, because storing this name gives
782 us better bcache hit rates for partial symbols. */
783 if (!copy_name && lookup_name == linkage_name)
784 {
785 *slot = obstack_alloc (&objfile->objfile_obstack,
786 offsetof (struct demangled_name_entry,
787 demangled)
788 + demangled_len + 1);
789 (*slot)->mangled = (char *) lookup_name;
790 }
791 else
792 {
793 /* If we must copy the mangled name, put it directly after
794 the demangled name so we can have a single
795 allocation. */
796 *slot = obstack_alloc (&objfile->objfile_obstack,
797 offsetof (struct demangled_name_entry,
798 demangled)
799 + lookup_len + demangled_len + 2);
800 (*slot)->mangled = &((*slot)->demangled[demangled_len + 1]);
801 strcpy ((*slot)->mangled, lookup_name);
802 }
803
804 if (demangled_name != NULL)
805 {
806 strcpy ((*slot)->demangled, demangled_name);
807 xfree (demangled_name);
808 }
809 else
810 (*slot)->demangled[0] = '\0';
811 }
812
813 gsymbol->name = (*slot)->mangled + lookup_len - len;
814 if ((*slot)->demangled[0] != '\0')
815 symbol_set_demangled_name (gsymbol, (*slot)->demangled, objfile);
816 else
817 symbol_set_demangled_name (gsymbol, NULL, objfile);
818 }
819
820 /* Return the source code name of a symbol. In languages where
821 demangling is necessary, this is the demangled name. */
822
823 const char *
824 symbol_natural_name (const struct general_symbol_info *gsymbol)
825 {
826 switch (gsymbol->language)
827 {
828 case language_cplus:
829 case language_d:
830 case language_go:
831 case language_java:
832 case language_objc:
833 case language_fortran:
834 if (symbol_get_demangled_name (gsymbol) != NULL)
835 return symbol_get_demangled_name (gsymbol);
836 break;
837 case language_ada:
838 if (symbol_get_demangled_name (gsymbol) != NULL)
839 return symbol_get_demangled_name (gsymbol);
840 else
841 return ada_decode_symbol (gsymbol);
842 break;
843 default:
844 break;
845 }
846 return gsymbol->name;
847 }
848
849 /* Return the demangled name for a symbol based on the language for
850 that symbol. If no demangled name exists, return NULL. */
851
852 const char *
853 symbol_demangled_name (const struct general_symbol_info *gsymbol)
854 {
855 switch (gsymbol->language)
856 {
857 case language_cplus:
858 case language_d:
859 case language_go:
860 case language_java:
861 case language_objc:
862 case language_fortran:
863 if (symbol_get_demangled_name (gsymbol) != NULL)
864 return symbol_get_demangled_name (gsymbol);
865 break;
866 case language_ada:
867 if (symbol_get_demangled_name (gsymbol) != NULL)
868 return symbol_get_demangled_name (gsymbol);
869 else
870 return ada_decode_symbol (gsymbol);
871 break;
872 default:
873 break;
874 }
875 return NULL;
876 }
877
878 /* Return the search name of a symbol---generally the demangled or
879 linkage name of the symbol, depending on how it will be searched for.
880 If there is no distinct demangled name, then returns the same value
881 (same pointer) as SYMBOL_LINKAGE_NAME. */
882
883 const char *
884 symbol_search_name (const struct general_symbol_info *gsymbol)
885 {
886 if (gsymbol->language == language_ada)
887 return gsymbol->name;
888 else
889 return symbol_natural_name (gsymbol);
890 }
891
892 /* Initialize the structure fields to zero values. */
893
894 void
895 init_sal (struct symtab_and_line *sal)
896 {
897 sal->pspace = NULL;
898 sal->symtab = 0;
899 sal->section = 0;
900 sal->line = 0;
901 sal->pc = 0;
902 sal->end = 0;
903 sal->explicit_pc = 0;
904 sal->explicit_line = 0;
905 sal->probe = NULL;
906 }
907 \f
908
909 /* Return 1 if the two sections are the same, or if they could
910 plausibly be copies of each other, one in an original object
911 file and another in a separated debug file. */
912
913 int
914 matching_obj_sections (struct obj_section *obj_first,
915 struct obj_section *obj_second)
916 {
917 asection *first = obj_first? obj_first->the_bfd_section : NULL;
918 asection *second = obj_second? obj_second->the_bfd_section : NULL;
919 struct objfile *obj;
920
921 /* If they're the same section, then they match. */
922 if (first == second)
923 return 1;
924
925 /* If either is NULL, give up. */
926 if (first == NULL || second == NULL)
927 return 0;
928
929 /* This doesn't apply to absolute symbols. */
930 if (first->owner == NULL || second->owner == NULL)
931 return 0;
932
933 /* If they're in the same object file, they must be different sections. */
934 if (first->owner == second->owner)
935 return 0;
936
937 /* Check whether the two sections are potentially corresponding. They must
938 have the same size, address, and name. We can't compare section indexes,
939 which would be more reliable, because some sections may have been
940 stripped. */
941 if (bfd_get_section_size (first) != bfd_get_section_size (second))
942 return 0;
943
944 /* In-memory addresses may start at a different offset, relativize them. */
945 if (bfd_get_section_vma (first->owner, first)
946 - bfd_get_start_address (first->owner)
947 != bfd_get_section_vma (second->owner, second)
948 - bfd_get_start_address (second->owner))
949 return 0;
950
951 if (bfd_get_section_name (first->owner, first) == NULL
952 || bfd_get_section_name (second->owner, second) == NULL
953 || strcmp (bfd_get_section_name (first->owner, first),
954 bfd_get_section_name (second->owner, second)) != 0)
955 return 0;
956
957 /* Otherwise check that they are in corresponding objfiles. */
958
959 ALL_OBJFILES (obj)
960 if (obj->obfd == first->owner)
961 break;
962 gdb_assert (obj != NULL);
963
964 if (obj->separate_debug_objfile != NULL
965 && obj->separate_debug_objfile->obfd == second->owner)
966 return 1;
967 if (obj->separate_debug_objfile_backlink != NULL
968 && obj->separate_debug_objfile_backlink->obfd == second->owner)
969 return 1;
970
971 return 0;
972 }
973
974 struct symtab *
975 find_pc_sect_symtab_via_partial (CORE_ADDR pc, struct obj_section *section)
976 {
977 struct objfile *objfile;
978 struct minimal_symbol *msymbol;
979
980 /* If we know that this is not a text address, return failure. This is
981 necessary because we loop based on texthigh and textlow, which do
982 not include the data ranges. */
983 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
984 if (msymbol
985 && (MSYMBOL_TYPE (msymbol) == mst_data
986 || MSYMBOL_TYPE (msymbol) == mst_bss
987 || MSYMBOL_TYPE (msymbol) == mst_abs
988 || MSYMBOL_TYPE (msymbol) == mst_file_data
989 || MSYMBOL_TYPE (msymbol) == mst_file_bss))
990 return NULL;
991
992 ALL_OBJFILES (objfile)
993 {
994 struct symtab *result = NULL;
995
996 if (objfile->sf)
997 result = objfile->sf->qf->find_pc_sect_symtab (objfile, msymbol,
998 pc, section, 0);
999 if (result)
1000 return result;
1001 }
1002
1003 return NULL;
1004 }
1005 \f
1006 /* Debug symbols usually don't have section information. We need to dig that
1007 out of the minimal symbols and stash that in the debug symbol. */
1008
1009 void
1010 fixup_section (struct general_symbol_info *ginfo,
1011 CORE_ADDR addr, struct objfile *objfile)
1012 {
1013 struct minimal_symbol *msym;
1014
1015 /* First, check whether a minimal symbol with the same name exists
1016 and points to the same address. The address check is required
1017 e.g. on PowerPC64, where the minimal symbol for a function will
1018 point to the function descriptor, while the debug symbol will
1019 point to the actual function code. */
1020 msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->name, objfile);
1021 if (msym)
1022 {
1023 ginfo->obj_section = SYMBOL_OBJ_SECTION (msym);
1024 ginfo->section = SYMBOL_SECTION (msym);
1025 }
1026 else
1027 {
1028 /* Static, function-local variables do appear in the linker
1029 (minimal) symbols, but are frequently given names that won't
1030 be found via lookup_minimal_symbol(). E.g., it has been
1031 observed in frv-uclinux (ELF) executables that a static,
1032 function-local variable named "foo" might appear in the
1033 linker symbols as "foo.6" or "foo.3". Thus, there is no
1034 point in attempting to extend the lookup-by-name mechanism to
1035 handle this case due to the fact that there can be multiple
1036 names.
1037
1038 So, instead, search the section table when lookup by name has
1039 failed. The ``addr'' and ``endaddr'' fields may have already
1040 been relocated. If so, the relocation offset (i.e. the
1041 ANOFFSET value) needs to be subtracted from these values when
1042 performing the comparison. We unconditionally subtract it,
1043 because, when no relocation has been performed, the ANOFFSET
1044 value will simply be zero.
1045
1046 The address of the symbol whose section we're fixing up HAS
1047 NOT BEEN adjusted (relocated) yet. It can't have been since
1048 the section isn't yet known and knowing the section is
1049 necessary in order to add the correct relocation value. In
1050 other words, we wouldn't even be in this function (attempting
1051 to compute the section) if it were already known.
1052
1053 Note that it is possible to search the minimal symbols
1054 (subtracting the relocation value if necessary) to find the
1055 matching minimal symbol, but this is overkill and much less
1056 efficient. It is not necessary to find the matching minimal
1057 symbol, only its section.
1058
1059 Note that this technique (of doing a section table search)
1060 can fail when unrelocated section addresses overlap. For
1061 this reason, we still attempt a lookup by name prior to doing
1062 a search of the section table. */
1063
1064 struct obj_section *s;
1065
1066 ALL_OBJFILE_OSECTIONS (objfile, s)
1067 {
1068 int idx = s->the_bfd_section->index;
1069 CORE_ADDR offset = ANOFFSET (objfile->section_offsets, idx);
1070
1071 if (obj_section_addr (s) - offset <= addr
1072 && addr < obj_section_endaddr (s) - offset)
1073 {
1074 ginfo->obj_section = s;
1075 ginfo->section = idx;
1076 return;
1077 }
1078 }
1079 }
1080 }
1081
1082 struct symbol *
1083 fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
1084 {
1085 CORE_ADDR addr;
1086
1087 if (!sym)
1088 return NULL;
1089
1090 if (SYMBOL_OBJ_SECTION (sym))
1091 return sym;
1092
1093 /* We either have an OBJFILE, or we can get at it from the sym's
1094 symtab. Anything else is a bug. */
1095 gdb_assert (objfile || SYMBOL_SYMTAB (sym));
1096
1097 if (objfile == NULL)
1098 objfile = SYMBOL_SYMTAB (sym)->objfile;
1099
1100 /* We should have an objfile by now. */
1101 gdb_assert (objfile);
1102
1103 switch (SYMBOL_CLASS (sym))
1104 {
1105 case LOC_STATIC:
1106 case LOC_LABEL:
1107 addr = SYMBOL_VALUE_ADDRESS (sym);
1108 break;
1109 case LOC_BLOCK:
1110 addr = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
1111 break;
1112
1113 default:
1114 /* Nothing else will be listed in the minsyms -- no use looking
1115 it up. */
1116 return sym;
1117 }
1118
1119 fixup_section (&sym->ginfo, addr, objfile);
1120
1121 return sym;
1122 }
1123
1124 /* Compute the demangled form of NAME as used by the various symbol
1125 lookup functions. The result is stored in *RESULT_NAME. Returns a
1126 cleanup which can be used to clean up the result.
1127
1128 For Ada, this function just sets *RESULT_NAME to NAME, unmodified.
1129 Normally, Ada symbol lookups are performed using the encoded name
1130 rather than the demangled name, and so it might seem to make sense
1131 for this function to return an encoded version of NAME.
1132 Unfortunately, we cannot do this, because this function is used in
1133 circumstances where it is not appropriate to try to encode NAME.
1134 For instance, when displaying the frame info, we demangle the name
1135 of each parameter, and then perform a symbol lookup inside our
1136 function using that demangled name. In Ada, certain functions
1137 have internally-generated parameters whose name contain uppercase
1138 characters. Encoding those name would result in those uppercase
1139 characters to become lowercase, and thus cause the symbol lookup
1140 to fail. */
1141
1142 struct cleanup *
1143 demangle_for_lookup (const char *name, enum language lang,
1144 const char **result_name)
1145 {
1146 char *demangled_name = NULL;
1147 const char *modified_name = NULL;
1148 struct cleanup *cleanup = make_cleanup (null_cleanup, 0);
1149
1150 modified_name = name;
1151
1152 /* If we are using C++, D, Go, or Java, demangle the name before doing a
1153 lookup, so we can always binary search. */
1154 if (lang == language_cplus)
1155 {
1156 demangled_name = cplus_demangle (name, DMGL_ANSI | DMGL_PARAMS);
1157 if (demangled_name)
1158 {
1159 modified_name = demangled_name;
1160 make_cleanup (xfree, demangled_name);
1161 }
1162 else
1163 {
1164 /* If we were given a non-mangled name, canonicalize it
1165 according to the language (so far only for C++). */
1166 demangled_name = cp_canonicalize_string (name);
1167 if (demangled_name)
1168 {
1169 modified_name = demangled_name;
1170 make_cleanup (xfree, demangled_name);
1171 }
1172 }
1173 }
1174 else if (lang == language_java)
1175 {
1176 demangled_name = cplus_demangle (name,
1177 DMGL_ANSI | DMGL_PARAMS | DMGL_JAVA);
1178 if (demangled_name)
1179 {
1180 modified_name = demangled_name;
1181 make_cleanup (xfree, demangled_name);
1182 }
1183 }
1184 else if (lang == language_d)
1185 {
1186 demangled_name = d_demangle (name, 0);
1187 if (demangled_name)
1188 {
1189 modified_name = demangled_name;
1190 make_cleanup (xfree, demangled_name);
1191 }
1192 }
1193 else if (lang == language_go)
1194 {
1195 demangled_name = go_demangle (name, 0);
1196 if (demangled_name)
1197 {
1198 modified_name = demangled_name;
1199 make_cleanup (xfree, demangled_name);
1200 }
1201 }
1202
1203 *result_name = modified_name;
1204 return cleanup;
1205 }
1206
1207 /* Find the definition for a specified symbol name NAME
1208 in domain DOMAIN, visible from lexical block BLOCK.
1209 Returns the struct symbol pointer, or zero if no symbol is found.
1210 C++: if IS_A_FIELD_OF_THIS is nonzero on entry, check to see if
1211 NAME is a field of the current implied argument `this'. If so set
1212 *IS_A_FIELD_OF_THIS to 1, otherwise set it to zero.
1213 BLOCK_FOUND is set to the block in which NAME is found (in the case of
1214 a field of `this', value_of_this sets BLOCK_FOUND to the proper value.) */
1215
1216 /* This function (or rather its subordinates) have a bunch of loops and
1217 it would seem to be attractive to put in some QUIT's (though I'm not really
1218 sure whether it can run long enough to be really important). But there
1219 are a few calls for which it would appear to be bad news to quit
1220 out of here: e.g., find_proc_desc in alpha-mdebug-tdep.c. (Note
1221 that there is C++ code below which can error(), but that probably
1222 doesn't affect these calls since they are looking for a known
1223 variable and thus can probably assume it will never hit the C++
1224 code). */
1225
1226 struct symbol *
1227 lookup_symbol_in_language (const char *name, const struct block *block,
1228 const domain_enum domain, enum language lang,
1229 int *is_a_field_of_this)
1230 {
1231 const char *modified_name;
1232 struct symbol *returnval;
1233 struct cleanup *cleanup = demangle_for_lookup (name, lang, &modified_name);
1234
1235 returnval = lookup_symbol_aux (modified_name, block, domain, lang,
1236 is_a_field_of_this);
1237 do_cleanups (cleanup);
1238
1239 return returnval;
1240 }
1241
1242 /* Behave like lookup_symbol_in_language, but performed with the
1243 current language. */
1244
1245 struct symbol *
1246 lookup_symbol (const char *name, const struct block *block,
1247 domain_enum domain, int *is_a_field_of_this)
1248 {
1249 return lookup_symbol_in_language (name, block, domain,
1250 current_language->la_language,
1251 is_a_field_of_this);
1252 }
1253
1254 /* Look up the `this' symbol for LANG in BLOCK. Return the symbol if
1255 found, or NULL if not found. */
1256
1257 struct symbol *
1258 lookup_language_this (const struct language_defn *lang,
1259 const struct block *block)
1260 {
1261 if (lang->la_name_of_this == NULL || block == NULL)
1262 return NULL;
1263
1264 while (block)
1265 {
1266 struct symbol *sym;
1267
1268 sym = lookup_block_symbol (block, lang->la_name_of_this, VAR_DOMAIN);
1269 if (sym != NULL)
1270 {
1271 block_found = block;
1272 return sym;
1273 }
1274 if (BLOCK_FUNCTION (block))
1275 break;
1276 block = BLOCK_SUPERBLOCK (block);
1277 }
1278
1279 return NULL;
1280 }
1281
1282 /* Behave like lookup_symbol except that NAME is the natural name
1283 (e.g., demangled name) of the symbol that we're looking for. */
1284
1285 static struct symbol *
1286 lookup_symbol_aux (const char *name, const struct block *block,
1287 const domain_enum domain, enum language language,
1288 int *is_a_field_of_this)
1289 {
1290 struct symbol *sym;
1291 const struct language_defn *langdef;
1292
1293 /* Make sure we do something sensible with is_a_field_of_this, since
1294 the callers that set this parameter to some non-null value will
1295 certainly use it later and expect it to be either 0 or 1.
1296 If we don't set it, the contents of is_a_field_of_this are
1297 undefined. */
1298 if (is_a_field_of_this != NULL)
1299 *is_a_field_of_this = 0;
1300
1301 /* Search specified block and its superiors. Don't search
1302 STATIC_BLOCK or GLOBAL_BLOCK. */
1303
1304 sym = lookup_symbol_aux_local (name, block, domain, language);
1305 if (sym != NULL)
1306 return sym;
1307
1308 /* If requested to do so by the caller and if appropriate for LANGUAGE,
1309 check to see if NAME is a field of `this'. */
1310
1311 langdef = language_def (language);
1312
1313 if (is_a_field_of_this != NULL)
1314 {
1315 struct symbol *sym = lookup_language_this (langdef, block);
1316
1317 if (sym)
1318 {
1319 struct type *t = sym->type;
1320
1321 /* I'm not really sure that type of this can ever
1322 be typedefed; just be safe. */
1323 CHECK_TYPEDEF (t);
1324 if (TYPE_CODE (t) == TYPE_CODE_PTR
1325 || TYPE_CODE (t) == TYPE_CODE_REF)
1326 t = TYPE_TARGET_TYPE (t);
1327
1328 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
1329 && TYPE_CODE (t) != TYPE_CODE_UNION)
1330 error (_("Internal error: `%s' is not an aggregate"),
1331 langdef->la_name_of_this);
1332
1333 if (check_field (t, name))
1334 {
1335 *is_a_field_of_this = 1;
1336 return NULL;
1337 }
1338 }
1339 }
1340
1341 /* Now do whatever is appropriate for LANGUAGE to look
1342 up static and global variables. */
1343
1344 sym = langdef->la_lookup_symbol_nonlocal (name, block, domain);
1345 if (sym != NULL)
1346 return sym;
1347
1348 /* Now search all static file-level symbols. Not strictly correct,
1349 but more useful than an error. */
1350
1351 return lookup_static_symbol_aux (name, domain);
1352 }
1353
1354 /* Search all static file-level symbols for NAME from DOMAIN. Do the symtabs
1355 first, then check the psymtabs. If a psymtab indicates the existence of the
1356 desired name as a file-level static, then do psymtab-to-symtab conversion on
1357 the fly and return the found symbol. */
1358
1359 struct symbol *
1360 lookup_static_symbol_aux (const char *name, const domain_enum domain)
1361 {
1362 struct objfile *objfile;
1363 struct symbol *sym;
1364
1365 sym = lookup_symbol_aux_symtabs (STATIC_BLOCK, name, domain, NULL);
1366 if (sym != NULL)
1367 return sym;
1368
1369 ALL_OBJFILES (objfile)
1370 {
1371 sym = lookup_symbol_aux_quick (objfile, STATIC_BLOCK, name, domain);
1372 if (sym != NULL)
1373 return sym;
1374 }
1375
1376 return NULL;
1377 }
1378
1379 /* Check to see if the symbol is defined in BLOCK or its superiors.
1380 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
1381
1382 static struct symbol *
1383 lookup_symbol_aux_local (const char *name, const struct block *block,
1384 const domain_enum domain,
1385 enum language language)
1386 {
1387 struct symbol *sym;
1388 const struct block *static_block = block_static_block (block);
1389 const char *scope = block_scope (block);
1390
1391 /* Check if either no block is specified or it's a global block. */
1392
1393 if (static_block == NULL)
1394 return NULL;
1395
1396 while (block != static_block)
1397 {
1398 sym = lookup_symbol_aux_block (name, block, domain);
1399 if (sym != NULL)
1400 return sym;
1401
1402 if (language == language_cplus || language == language_fortran)
1403 {
1404 sym = cp_lookup_symbol_imports_or_template (scope, name, block,
1405 domain);
1406 if (sym != NULL)
1407 return sym;
1408 }
1409
1410 if (BLOCK_FUNCTION (block) != NULL && block_inlined_p (block))
1411 break;
1412 block = BLOCK_SUPERBLOCK (block);
1413 }
1414
1415 /* We've reached the edge of the function without finding a result. */
1416
1417 return NULL;
1418 }
1419
1420 /* Look up OBJFILE to BLOCK. */
1421
1422 struct objfile *
1423 lookup_objfile_from_block (const struct block *block)
1424 {
1425 struct objfile *obj;
1426 struct symtab *s;
1427
1428 if (block == NULL)
1429 return NULL;
1430
1431 block = block_global_block (block);
1432 /* Go through SYMTABS. */
1433 ALL_SYMTABS (obj, s)
1434 if (block == BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK))
1435 {
1436 if (obj->separate_debug_objfile_backlink)
1437 obj = obj->separate_debug_objfile_backlink;
1438
1439 return obj;
1440 }
1441
1442 return NULL;
1443 }
1444
1445 /* Look up a symbol in a block; if found, fixup the symbol, and set
1446 block_found appropriately. */
1447
1448 struct symbol *
1449 lookup_symbol_aux_block (const char *name, const struct block *block,
1450 const domain_enum domain)
1451 {
1452 struct symbol *sym;
1453
1454 sym = lookup_block_symbol (block, name, domain);
1455 if (sym)
1456 {
1457 block_found = block;
1458 return fixup_symbol_section (sym, NULL);
1459 }
1460
1461 return NULL;
1462 }
1463
1464 /* Check all global symbols in OBJFILE in symtabs and
1465 psymtabs. */
1466
1467 struct symbol *
1468 lookup_global_symbol_from_objfile (const struct objfile *main_objfile,
1469 const char *name,
1470 const domain_enum domain)
1471 {
1472 const struct objfile *objfile;
1473 struct symbol *sym;
1474 struct blockvector *bv;
1475 const struct block *block;
1476 struct symtab *s;
1477
1478 for (objfile = main_objfile;
1479 objfile;
1480 objfile = objfile_separate_debug_iterate (main_objfile, objfile))
1481 {
1482 /* Go through symtabs. */
1483 ALL_OBJFILE_SYMTABS (objfile, s)
1484 {
1485 bv = BLOCKVECTOR (s);
1486 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1487 sym = lookup_block_symbol (block, name, domain);
1488 if (sym)
1489 {
1490 block_found = block;
1491 return fixup_symbol_section (sym, (struct objfile *)objfile);
1492 }
1493 }
1494
1495 sym = lookup_symbol_aux_quick ((struct objfile *) objfile, GLOBAL_BLOCK,
1496 name, domain);
1497 if (sym)
1498 return sym;
1499 }
1500
1501 return NULL;
1502 }
1503
1504 /* Check to see if the symbol is defined in one of the OBJFILE's
1505 symtabs. BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
1506 depending on whether or not we want to search global symbols or
1507 static symbols. */
1508
1509 static struct symbol *
1510 lookup_symbol_aux_objfile (struct objfile *objfile, int block_index,
1511 const char *name, const domain_enum domain)
1512 {
1513 struct symbol *sym = NULL;
1514 struct blockvector *bv;
1515 const struct block *block;
1516 struct symtab *s;
1517
1518 if (objfile->sf)
1519 objfile->sf->qf->pre_expand_symtabs_matching (objfile, block_index,
1520 name, domain);
1521
1522 ALL_OBJFILE_SYMTABS (objfile, s)
1523 if (s->primary)
1524 {
1525 bv = BLOCKVECTOR (s);
1526 block = BLOCKVECTOR_BLOCK (bv, block_index);
1527 sym = lookup_block_symbol (block, name, domain);
1528 if (sym)
1529 {
1530 block_found = block;
1531 return fixup_symbol_section (sym, objfile);
1532 }
1533 }
1534
1535 return NULL;
1536 }
1537
1538 /* Same as lookup_symbol_aux_objfile, except that it searches all
1539 objfiles except for EXCLUDE_OBJFILE. Return the first match found.
1540
1541 If EXCLUDE_OBJFILE is NULL, then all objfiles are searched. */
1542
1543 static struct symbol *
1544 lookup_symbol_aux_symtabs (int block_index, const char *name,
1545 const domain_enum domain,
1546 struct objfile *exclude_objfile)
1547 {
1548 struct symbol *sym;
1549 struct objfile *objfile;
1550
1551 ALL_OBJFILES (objfile)
1552 {
1553 if (objfile != exclude_objfile)
1554 {
1555 sym = lookup_symbol_aux_objfile (objfile, block_index, name, domain);
1556 if (sym)
1557 return sym;
1558 }
1559 }
1560
1561 return NULL;
1562 }
1563
1564 /* A helper function for lookup_symbol_aux that interfaces with the
1565 "quick" symbol table functions. */
1566
1567 static struct symbol *
1568 lookup_symbol_aux_quick (struct objfile *objfile, int kind,
1569 const char *name, const domain_enum domain)
1570 {
1571 struct symtab *symtab;
1572 struct blockvector *bv;
1573 const struct block *block;
1574 struct symbol *sym;
1575
1576 if (!objfile->sf)
1577 return NULL;
1578 symtab = objfile->sf->qf->lookup_symbol (objfile, kind, name, domain);
1579 if (!symtab)
1580 return NULL;
1581
1582 bv = BLOCKVECTOR (symtab);
1583 block = BLOCKVECTOR_BLOCK (bv, kind);
1584 sym = lookup_block_symbol (block, name, domain);
1585 if (!sym)
1586 {
1587 /* This shouldn't be necessary, but as a last resort try
1588 looking in the statics even though the psymtab claimed
1589 the symbol was global, or vice-versa. It's possible
1590 that the psymtab gets it wrong in some cases. */
1591
1592 /* FIXME: carlton/2002-09-30: Should we really do that?
1593 If that happens, isn't it likely to be a GDB error, in
1594 which case we should fix the GDB error rather than
1595 silently dealing with it here? So I'd vote for
1596 removing the check for the symbol in the other
1597 block. */
1598 block = BLOCKVECTOR_BLOCK (bv,
1599 kind == GLOBAL_BLOCK ?
1600 STATIC_BLOCK : GLOBAL_BLOCK);
1601 sym = lookup_block_symbol (block, name, domain);
1602 if (!sym)
1603 error (_("\
1604 Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n\
1605 %s may be an inlined function, or may be a template function\n\
1606 (if a template, try specifying an instantiation: %s<type>)."),
1607 kind == GLOBAL_BLOCK ? "global" : "static",
1608 name, symtab->filename, name, name);
1609 }
1610 return fixup_symbol_section (sym, objfile);
1611 }
1612
1613 /* A default version of lookup_symbol_nonlocal for use by languages
1614 that can't think of anything better to do. This implements the C
1615 lookup rules. */
1616
1617 struct symbol *
1618 basic_lookup_symbol_nonlocal (const char *name,
1619 const struct block *block,
1620 const domain_enum domain)
1621 {
1622 struct symbol *sym;
1623
1624 /* NOTE: carlton/2003-05-19: The comments below were written when
1625 this (or what turned into this) was part of lookup_symbol_aux;
1626 I'm much less worried about these questions now, since these
1627 decisions have turned out well, but I leave these comments here
1628 for posterity. */
1629
1630 /* NOTE: carlton/2002-12-05: There is a question as to whether or
1631 not it would be appropriate to search the current global block
1632 here as well. (That's what this code used to do before the
1633 is_a_field_of_this check was moved up.) On the one hand, it's
1634 redundant with the lookup_symbol_aux_symtabs search that happens
1635 next. On the other hand, if decode_line_1 is passed an argument
1636 like filename:var, then the user presumably wants 'var' to be
1637 searched for in filename. On the third hand, there shouldn't be
1638 multiple global variables all of which are named 'var', and it's
1639 not like decode_line_1 has ever restricted its search to only
1640 global variables in a single filename. All in all, only
1641 searching the static block here seems best: it's correct and it's
1642 cleanest. */
1643
1644 /* NOTE: carlton/2002-12-05: There's also a possible performance
1645 issue here: if you usually search for global symbols in the
1646 current file, then it would be slightly better to search the
1647 current global block before searching all the symtabs. But there
1648 are other factors that have a much greater effect on performance
1649 than that one, so I don't think we should worry about that for
1650 now. */
1651
1652 sym = lookup_symbol_static (name, block, domain);
1653 if (sym != NULL)
1654 return sym;
1655
1656 return lookup_symbol_global (name, block, domain);
1657 }
1658
1659 /* Lookup a symbol in the static block associated to BLOCK, if there
1660 is one; do nothing if BLOCK is NULL or a global block. */
1661
1662 struct symbol *
1663 lookup_symbol_static (const char *name,
1664 const struct block *block,
1665 const domain_enum domain)
1666 {
1667 const struct block *static_block = block_static_block (block);
1668
1669 if (static_block != NULL)
1670 return lookup_symbol_aux_block (name, static_block, domain);
1671 else
1672 return NULL;
1673 }
1674
1675 /* Lookup a symbol in all files' global blocks (searching psymtabs if
1676 necessary). */
1677
1678 struct symbol *
1679 lookup_symbol_global (const char *name,
1680 const struct block *block,
1681 const domain_enum domain)
1682 {
1683 struct symbol *sym = NULL;
1684 struct objfile *block_objfile = NULL;
1685 struct objfile *objfile = NULL;
1686
1687 /* Call library-specific lookup procedure. */
1688 block_objfile = lookup_objfile_from_block (block);
1689 if (block_objfile != NULL)
1690 sym = solib_global_lookup (block_objfile, name, domain);
1691 if (sym != NULL)
1692 return sym;
1693
1694 /* If BLOCK_OBJFILE is not NULL, then search this objfile first.
1695 In case the global symbol is defined in multiple objfiles,
1696 we have a better chance of finding the most relevant symbol. */
1697
1698 if (block_objfile != NULL)
1699 {
1700 sym = lookup_symbol_aux_objfile (block_objfile, GLOBAL_BLOCK,
1701 name, domain);
1702 if (sym == NULL)
1703 sym = lookup_symbol_aux_quick (block_objfile, GLOBAL_BLOCK,
1704 name, domain);
1705 if (sym != NULL)
1706 return sym;
1707 }
1708
1709 /* Symbol not found in the BLOCK_OBJFILE, so try all the other
1710 objfiles, starting with symtabs first, and then partial symtabs. */
1711
1712 sym = lookup_symbol_aux_symtabs (GLOBAL_BLOCK, name, domain, block_objfile);
1713 if (sym != NULL)
1714 return sym;
1715
1716 ALL_OBJFILES (objfile)
1717 {
1718 if (objfile != block_objfile)
1719 {
1720 sym = lookup_symbol_aux_quick (objfile, GLOBAL_BLOCK, name, domain);
1721 if (sym)
1722 return sym;
1723 }
1724 }
1725
1726 return NULL;
1727 }
1728
1729 int
1730 symbol_matches_domain (enum language symbol_language,
1731 domain_enum symbol_domain,
1732 domain_enum domain)
1733 {
1734 /* For C++ "struct foo { ... }" also defines a typedef for "foo".
1735 A Java class declaration also defines a typedef for the class.
1736 Similarly, any Ada type declaration implicitly defines a typedef. */
1737 if (symbol_language == language_cplus
1738 || symbol_language == language_d
1739 || symbol_language == language_java
1740 || symbol_language == language_ada)
1741 {
1742 if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN)
1743 && symbol_domain == STRUCT_DOMAIN)
1744 return 1;
1745 }
1746 /* For all other languages, strict match is required. */
1747 return (symbol_domain == domain);
1748 }
1749
1750 /* Look up a type named NAME in the struct_domain. The type returned
1751 must not be opaque -- i.e., must have at least one field
1752 defined. */
1753
1754 struct type *
1755 lookup_transparent_type (const char *name)
1756 {
1757 return current_language->la_lookup_transparent_type (name);
1758 }
1759
1760 /* A helper for basic_lookup_transparent_type that interfaces with the
1761 "quick" symbol table functions. */
1762
1763 static struct type *
1764 basic_lookup_transparent_type_quick (struct objfile *objfile, int kind,
1765 const char *name)
1766 {
1767 struct symtab *symtab;
1768 struct blockvector *bv;
1769 struct block *block;
1770 struct symbol *sym;
1771
1772 if (!objfile->sf)
1773 return NULL;
1774 symtab = objfile->sf->qf->lookup_symbol (objfile, kind, name, STRUCT_DOMAIN);
1775 if (!symtab)
1776 return NULL;
1777
1778 bv = BLOCKVECTOR (symtab);
1779 block = BLOCKVECTOR_BLOCK (bv, kind);
1780 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1781 if (!sym)
1782 {
1783 int other_kind = kind == GLOBAL_BLOCK ? STATIC_BLOCK : GLOBAL_BLOCK;
1784
1785 /* This shouldn't be necessary, but as a last resort
1786 * try looking in the 'other kind' even though the psymtab
1787 * claimed the symbol was one thing. It's possible that
1788 * the psymtab gets it wrong in some cases.
1789 */
1790 block = BLOCKVECTOR_BLOCK (bv, other_kind);
1791 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1792 if (!sym)
1793 /* FIXME; error is wrong in one case. */
1794 error (_("\
1795 Internal: global symbol `%s' found in %s psymtab but not in symtab.\n\
1796 %s may be an inlined function, or may be a template function\n\
1797 (if a template, try specifying an instantiation: %s<type>)."),
1798 name, symtab->filename, name, name);
1799 }
1800 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1801 return SYMBOL_TYPE (sym);
1802
1803 return NULL;
1804 }
1805
1806 /* The standard implementation of lookup_transparent_type. This code
1807 was modeled on lookup_symbol -- the parts not relevant to looking
1808 up types were just left out. In particular it's assumed here that
1809 types are available in struct_domain and only at file-static or
1810 global blocks. */
1811
1812 struct type *
1813 basic_lookup_transparent_type (const char *name)
1814 {
1815 struct symbol *sym;
1816 struct symtab *s = NULL;
1817 struct blockvector *bv;
1818 struct objfile *objfile;
1819 struct block *block;
1820 struct type *t;
1821
1822 /* Now search all the global symbols. Do the symtab's first, then
1823 check the psymtab's. If a psymtab indicates the existence
1824 of the desired name as a global, then do psymtab-to-symtab
1825 conversion on the fly and return the found symbol. */
1826
1827 ALL_OBJFILES (objfile)
1828 {
1829 if (objfile->sf)
1830 objfile->sf->qf->pre_expand_symtabs_matching (objfile,
1831 GLOBAL_BLOCK,
1832 name, STRUCT_DOMAIN);
1833
1834 ALL_OBJFILE_SYMTABS (objfile, s)
1835 if (s->primary)
1836 {
1837 bv = BLOCKVECTOR (s);
1838 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1839 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1840 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1841 {
1842 return SYMBOL_TYPE (sym);
1843 }
1844 }
1845 }
1846
1847 ALL_OBJFILES (objfile)
1848 {
1849 t = basic_lookup_transparent_type_quick (objfile, GLOBAL_BLOCK, name);
1850 if (t)
1851 return t;
1852 }
1853
1854 /* Now search the static file-level symbols.
1855 Not strictly correct, but more useful than an error.
1856 Do the symtab's first, then
1857 check the psymtab's. If a psymtab indicates the existence
1858 of the desired name as a file-level static, then do psymtab-to-symtab
1859 conversion on the fly and return the found symbol. */
1860
1861 ALL_OBJFILES (objfile)
1862 {
1863 if (objfile->sf)
1864 objfile->sf->qf->pre_expand_symtabs_matching (objfile, STATIC_BLOCK,
1865 name, STRUCT_DOMAIN);
1866
1867 ALL_OBJFILE_SYMTABS (objfile, s)
1868 {
1869 bv = BLOCKVECTOR (s);
1870 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
1871 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1872 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1873 {
1874 return SYMBOL_TYPE (sym);
1875 }
1876 }
1877 }
1878
1879 ALL_OBJFILES (objfile)
1880 {
1881 t = basic_lookup_transparent_type_quick (objfile, STATIC_BLOCK, name);
1882 if (t)
1883 return t;
1884 }
1885
1886 return (struct type *) 0;
1887 }
1888
1889 /* Find the name of the file containing main(). */
1890 /* FIXME: What about languages without main() or specially linked
1891 executables that have no main() ? */
1892
1893 const char *
1894 find_main_filename (void)
1895 {
1896 struct objfile *objfile;
1897 char *name = main_name ();
1898
1899 ALL_OBJFILES (objfile)
1900 {
1901 const char *result;
1902
1903 if (!objfile->sf)
1904 continue;
1905 result = objfile->sf->qf->find_symbol_file (objfile, name);
1906 if (result)
1907 return result;
1908 }
1909 return (NULL);
1910 }
1911
1912 /* Search BLOCK for symbol NAME in DOMAIN.
1913
1914 Note that if NAME is the demangled form of a C++ symbol, we will fail
1915 to find a match during the binary search of the non-encoded names, but
1916 for now we don't worry about the slight inefficiency of looking for
1917 a match we'll never find, since it will go pretty quick. Once the
1918 binary search terminates, we drop through and do a straight linear
1919 search on the symbols. Each symbol which is marked as being a ObjC/C++
1920 symbol (language_cplus or language_objc set) has both the encoded and
1921 non-encoded names tested for a match. */
1922
1923 struct symbol *
1924 lookup_block_symbol (const struct block *block, const char *name,
1925 const domain_enum domain)
1926 {
1927 struct dict_iterator iter;
1928 struct symbol *sym;
1929
1930 if (!BLOCK_FUNCTION (block))
1931 {
1932 for (sym = dict_iter_name_first (BLOCK_DICT (block), name, &iter);
1933 sym != NULL;
1934 sym = dict_iter_name_next (name, &iter))
1935 {
1936 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
1937 SYMBOL_DOMAIN (sym), domain))
1938 return sym;
1939 }
1940 return NULL;
1941 }
1942 else
1943 {
1944 /* Note that parameter symbols do not always show up last in the
1945 list; this loop makes sure to take anything else other than
1946 parameter symbols first; it only uses parameter symbols as a
1947 last resort. Note that this only takes up extra computation
1948 time on a match. */
1949
1950 struct symbol *sym_found = NULL;
1951
1952 for (sym = dict_iter_name_first (BLOCK_DICT (block), name, &iter);
1953 sym != NULL;
1954 sym = dict_iter_name_next (name, &iter))
1955 {
1956 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
1957 SYMBOL_DOMAIN (sym), domain))
1958 {
1959 sym_found = sym;
1960 if (!SYMBOL_IS_ARGUMENT (sym))
1961 {
1962 break;
1963 }
1964 }
1965 }
1966 return (sym_found); /* Will be NULL if not found. */
1967 }
1968 }
1969
1970 /* Iterate over the symbols named NAME, matching DOMAIN, starting with
1971 BLOCK.
1972
1973 For each symbol that matches, CALLBACK is called. The symbol and
1974 DATA are passed to the callback.
1975
1976 If CALLBACK returns zero, the iteration ends. Otherwise, the
1977 search continues. This function iterates upward through blocks.
1978 When the outermost block has been finished, the function
1979 returns. */
1980
1981 void
1982 iterate_over_symbols (const struct block *block, const char *name,
1983 const domain_enum domain,
1984 symbol_found_callback_ftype *callback,
1985 void *data)
1986 {
1987 while (block)
1988 {
1989 struct dict_iterator iter;
1990 struct symbol *sym;
1991
1992 for (sym = dict_iter_name_first (BLOCK_DICT (block), name, &iter);
1993 sym != NULL;
1994 sym = dict_iter_name_next (name, &iter))
1995 {
1996 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
1997 SYMBOL_DOMAIN (sym), domain))
1998 {
1999 if (!callback (sym, data))
2000 return;
2001 }
2002 }
2003
2004 block = BLOCK_SUPERBLOCK (block);
2005 }
2006 }
2007
2008 /* Find the symtab associated with PC and SECTION. Look through the
2009 psymtabs and read in another symtab if necessary. */
2010
2011 struct symtab *
2012 find_pc_sect_symtab (CORE_ADDR pc, struct obj_section *section)
2013 {
2014 struct block *b;
2015 struct blockvector *bv;
2016 struct symtab *s = NULL;
2017 struct symtab *best_s = NULL;
2018 struct objfile *objfile;
2019 struct program_space *pspace;
2020 CORE_ADDR distance = 0;
2021 struct minimal_symbol *msymbol;
2022
2023 pspace = current_program_space;
2024
2025 /* If we know that this is not a text address, return failure. This is
2026 necessary because we loop based on the block's high and low code
2027 addresses, which do not include the data ranges, and because
2028 we call find_pc_sect_psymtab which has a similar restriction based
2029 on the partial_symtab's texthigh and textlow. */
2030 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
2031 if (msymbol
2032 && (MSYMBOL_TYPE (msymbol) == mst_data
2033 || MSYMBOL_TYPE (msymbol) == mst_bss
2034 || MSYMBOL_TYPE (msymbol) == mst_abs
2035 || MSYMBOL_TYPE (msymbol) == mst_file_data
2036 || MSYMBOL_TYPE (msymbol) == mst_file_bss))
2037 return NULL;
2038
2039 /* Search all symtabs for the one whose file contains our address, and which
2040 is the smallest of all the ones containing the address. This is designed
2041 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
2042 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
2043 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
2044
2045 This happens for native ecoff format, where code from included files
2046 gets its own symtab. The symtab for the included file should have
2047 been read in already via the dependency mechanism.
2048 It might be swifter to create several symtabs with the same name
2049 like xcoff does (I'm not sure).
2050
2051 It also happens for objfiles that have their functions reordered.
2052 For these, the symtab we are looking for is not necessarily read in. */
2053
2054 ALL_PRIMARY_SYMTABS (objfile, s)
2055 {
2056 bv = BLOCKVECTOR (s);
2057 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
2058
2059 if (BLOCK_START (b) <= pc
2060 && BLOCK_END (b) > pc
2061 && (distance == 0
2062 || BLOCK_END (b) - BLOCK_START (b) < distance))
2063 {
2064 /* For an objfile that has its functions reordered,
2065 find_pc_psymtab will find the proper partial symbol table
2066 and we simply return its corresponding symtab. */
2067 /* In order to better support objfiles that contain both
2068 stabs and coff debugging info, we continue on if a psymtab
2069 can't be found. */
2070 if ((objfile->flags & OBJF_REORDERED) && objfile->sf)
2071 {
2072 struct symtab *result;
2073
2074 result
2075 = objfile->sf->qf->find_pc_sect_symtab (objfile,
2076 msymbol,
2077 pc, section,
2078 0);
2079 if (result)
2080 return result;
2081 }
2082 if (section != 0)
2083 {
2084 struct dict_iterator iter;
2085 struct symbol *sym = NULL;
2086
2087 ALL_BLOCK_SYMBOLS (b, iter, sym)
2088 {
2089 fixup_symbol_section (sym, objfile);
2090 if (matching_obj_sections (SYMBOL_OBJ_SECTION (sym), section))
2091 break;
2092 }
2093 if (sym == NULL)
2094 continue; /* No symbol in this symtab matches
2095 section. */
2096 }
2097 distance = BLOCK_END (b) - BLOCK_START (b);
2098 best_s = s;
2099 }
2100 }
2101
2102 if (best_s != NULL)
2103 return (best_s);
2104
2105 ALL_OBJFILES (objfile)
2106 {
2107 struct symtab *result;
2108
2109 if (!objfile->sf)
2110 continue;
2111 result = objfile->sf->qf->find_pc_sect_symtab (objfile,
2112 msymbol,
2113 pc, section,
2114 1);
2115 if (result)
2116 return result;
2117 }
2118
2119 return NULL;
2120 }
2121
2122 /* Find the symtab associated with PC. Look through the psymtabs and read
2123 in another symtab if necessary. Backward compatibility, no section. */
2124
2125 struct symtab *
2126 find_pc_symtab (CORE_ADDR pc)
2127 {
2128 return find_pc_sect_symtab (pc, find_pc_mapped_section (pc));
2129 }
2130 \f
2131
2132 /* Find the source file and line number for a given PC value and SECTION.
2133 Return a structure containing a symtab pointer, a line number,
2134 and a pc range for the entire source line.
2135 The value's .pc field is NOT the specified pc.
2136 NOTCURRENT nonzero means, if specified pc is on a line boundary,
2137 use the line that ends there. Otherwise, in that case, the line
2138 that begins there is used. */
2139
2140 /* The big complication here is that a line may start in one file, and end just
2141 before the start of another file. This usually occurs when you #include
2142 code in the middle of a subroutine. To properly find the end of a line's PC
2143 range, we must search all symtabs associated with this compilation unit, and
2144 find the one whose first PC is closer than that of the next line in this
2145 symtab. */
2146
2147 /* If it's worth the effort, we could be using a binary search. */
2148
2149 struct symtab_and_line
2150 find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent)
2151 {
2152 struct symtab *s;
2153 struct linetable *l;
2154 int len;
2155 int i;
2156 struct linetable_entry *item;
2157 struct symtab_and_line val;
2158 struct blockvector *bv;
2159 struct minimal_symbol *msymbol;
2160 struct minimal_symbol *mfunsym;
2161 struct objfile *objfile;
2162
2163 /* Info on best line seen so far, and where it starts, and its file. */
2164
2165 struct linetable_entry *best = NULL;
2166 CORE_ADDR best_end = 0;
2167 struct symtab *best_symtab = 0;
2168
2169 /* Store here the first line number
2170 of a file which contains the line at the smallest pc after PC.
2171 If we don't find a line whose range contains PC,
2172 we will use a line one less than this,
2173 with a range from the start of that file to the first line's pc. */
2174 struct linetable_entry *alt = NULL;
2175 struct symtab *alt_symtab = 0;
2176
2177 /* Info on best line seen in this file. */
2178
2179 struct linetable_entry *prev;
2180
2181 /* If this pc is not from the current frame,
2182 it is the address of the end of a call instruction.
2183 Quite likely that is the start of the following statement.
2184 But what we want is the statement containing the instruction.
2185 Fudge the pc to make sure we get that. */
2186
2187 init_sal (&val); /* initialize to zeroes */
2188
2189 val.pspace = current_program_space;
2190
2191 /* It's tempting to assume that, if we can't find debugging info for
2192 any function enclosing PC, that we shouldn't search for line
2193 number info, either. However, GAS can emit line number info for
2194 assembly files --- very helpful when debugging hand-written
2195 assembly code. In such a case, we'd have no debug info for the
2196 function, but we would have line info. */
2197
2198 if (notcurrent)
2199 pc -= 1;
2200
2201 /* elz: added this because this function returned the wrong
2202 information if the pc belongs to a stub (import/export)
2203 to call a shlib function. This stub would be anywhere between
2204 two functions in the target, and the line info was erroneously
2205 taken to be the one of the line before the pc. */
2206
2207 /* RT: Further explanation:
2208
2209 * We have stubs (trampolines) inserted between procedures.
2210 *
2211 * Example: "shr1" exists in a shared library, and a "shr1" stub also
2212 * exists in the main image.
2213 *
2214 * In the minimal symbol table, we have a bunch of symbols
2215 * sorted by start address. The stubs are marked as "trampoline",
2216 * the others appear as text. E.g.:
2217 *
2218 * Minimal symbol table for main image
2219 * main: code for main (text symbol)
2220 * shr1: stub (trampoline symbol)
2221 * foo: code for foo (text symbol)
2222 * ...
2223 * Minimal symbol table for "shr1" image:
2224 * ...
2225 * shr1: code for shr1 (text symbol)
2226 * ...
2227 *
2228 * So the code below is trying to detect if we are in the stub
2229 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
2230 * and if found, do the symbolization from the real-code address
2231 * rather than the stub address.
2232 *
2233 * Assumptions being made about the minimal symbol table:
2234 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
2235 * if we're really in the trampoline.s If we're beyond it (say
2236 * we're in "foo" in the above example), it'll have a closer
2237 * symbol (the "foo" text symbol for example) and will not
2238 * return the trampoline.
2239 * 2. lookup_minimal_symbol_text() will find a real text symbol
2240 * corresponding to the trampoline, and whose address will
2241 * be different than the trampoline address. I put in a sanity
2242 * check for the address being the same, to avoid an
2243 * infinite recursion.
2244 */
2245 msymbol = lookup_minimal_symbol_by_pc (pc);
2246 if (msymbol != NULL)
2247 if (MSYMBOL_TYPE (msymbol) == mst_solib_trampoline)
2248 {
2249 mfunsym = lookup_minimal_symbol_text (SYMBOL_LINKAGE_NAME (msymbol),
2250 NULL);
2251 if (mfunsym == NULL)
2252 /* I eliminated this warning since it is coming out
2253 * in the following situation:
2254 * gdb shmain // test program with shared libraries
2255 * (gdb) break shr1 // function in shared lib
2256 * Warning: In stub for ...
2257 * In the above situation, the shared lib is not loaded yet,
2258 * so of course we can't find the real func/line info,
2259 * but the "break" still works, and the warning is annoying.
2260 * So I commented out the warning. RT */
2261 /* warning ("In stub for %s; unable to find real function/line info",
2262 SYMBOL_LINKAGE_NAME (msymbol)); */
2263 ;
2264 /* fall through */
2265 else if (SYMBOL_VALUE_ADDRESS (mfunsym)
2266 == SYMBOL_VALUE_ADDRESS (msymbol))
2267 /* Avoid infinite recursion */
2268 /* See above comment about why warning is commented out. */
2269 /* warning ("In stub for %s; unable to find real function/line info",
2270 SYMBOL_LINKAGE_NAME (msymbol)); */
2271 ;
2272 /* fall through */
2273 else
2274 return find_pc_line (SYMBOL_VALUE_ADDRESS (mfunsym), 0);
2275 }
2276
2277
2278 s = find_pc_sect_symtab (pc, section);
2279 if (!s)
2280 {
2281 /* If no symbol information, return previous pc. */
2282 if (notcurrent)
2283 pc++;
2284 val.pc = pc;
2285 return val;
2286 }
2287
2288 bv = BLOCKVECTOR (s);
2289 objfile = s->objfile;
2290
2291 /* Look at all the symtabs that share this blockvector.
2292 They all have the same apriori range, that we found was right;
2293 but they have different line tables. */
2294
2295 ALL_OBJFILE_SYMTABS (objfile, s)
2296 {
2297 if (BLOCKVECTOR (s) != bv)
2298 continue;
2299
2300 /* Find the best line in this symtab. */
2301 l = LINETABLE (s);
2302 if (!l)
2303 continue;
2304 len = l->nitems;
2305 if (len <= 0)
2306 {
2307 /* I think len can be zero if the symtab lacks line numbers
2308 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
2309 I'm not sure which, and maybe it depends on the symbol
2310 reader). */
2311 continue;
2312 }
2313
2314 prev = NULL;
2315 item = l->item; /* Get first line info. */
2316
2317 /* Is this file's first line closer than the first lines of other files?
2318 If so, record this file, and its first line, as best alternate. */
2319 if (item->pc > pc && (!alt || item->pc < alt->pc))
2320 {
2321 alt = item;
2322 alt_symtab = s;
2323 }
2324
2325 for (i = 0; i < len; i++, item++)
2326 {
2327 /* Leave prev pointing to the linetable entry for the last line
2328 that started at or before PC. */
2329 if (item->pc > pc)
2330 break;
2331
2332 prev = item;
2333 }
2334
2335 /* At this point, prev points at the line whose start addr is <= pc, and
2336 item points at the next line. If we ran off the end of the linetable
2337 (pc >= start of the last line), then prev == item. If pc < start of
2338 the first line, prev will not be set. */
2339
2340 /* Is this file's best line closer than the best in the other files?
2341 If so, record this file, and its best line, as best so far. Don't
2342 save prev if it represents the end of a function (i.e. line number
2343 0) instead of a real line. */
2344
2345 if (prev && prev->line && (!best || prev->pc > best->pc))
2346 {
2347 best = prev;
2348 best_symtab = s;
2349
2350 /* Discard BEST_END if it's before the PC of the current BEST. */
2351 if (best_end <= best->pc)
2352 best_end = 0;
2353 }
2354
2355 /* If another line (denoted by ITEM) is in the linetable and its
2356 PC is after BEST's PC, but before the current BEST_END, then
2357 use ITEM's PC as the new best_end. */
2358 if (best && i < len && item->pc > best->pc
2359 && (best_end == 0 || best_end > item->pc))
2360 best_end = item->pc;
2361 }
2362
2363 if (!best_symtab)
2364 {
2365 /* If we didn't find any line number info, just return zeros.
2366 We used to return alt->line - 1 here, but that could be
2367 anywhere; if we don't have line number info for this PC,
2368 don't make some up. */
2369 val.pc = pc;
2370 }
2371 else if (best->line == 0)
2372 {
2373 /* If our best fit is in a range of PC's for which no line
2374 number info is available (line number is zero) then we didn't
2375 find any valid line information. */
2376 val.pc = pc;
2377 }
2378 else
2379 {
2380 val.symtab = best_symtab;
2381 val.line = best->line;
2382 val.pc = best->pc;
2383 if (best_end && (!alt || best_end < alt->pc))
2384 val.end = best_end;
2385 else if (alt)
2386 val.end = alt->pc;
2387 else
2388 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
2389 }
2390 val.section = section;
2391 return val;
2392 }
2393
2394 /* Backward compatibility (no section). */
2395
2396 struct symtab_and_line
2397 find_pc_line (CORE_ADDR pc, int notcurrent)
2398 {
2399 struct obj_section *section;
2400
2401 section = find_pc_overlay (pc);
2402 if (pc_in_unmapped_range (pc, section))
2403 pc = overlay_mapped_address (pc, section);
2404 return find_pc_sect_line (pc, section, notcurrent);
2405 }
2406 \f
2407 /* Find line number LINE in any symtab whose name is the same as
2408 SYMTAB.
2409
2410 If found, return the symtab that contains the linetable in which it was
2411 found, set *INDEX to the index in the linetable of the best entry
2412 found, and set *EXACT_MATCH nonzero if the value returned is an
2413 exact match.
2414
2415 If not found, return NULL. */
2416
2417 struct symtab *
2418 find_line_symtab (struct symtab *symtab, int line,
2419 int *index, int *exact_match)
2420 {
2421 int exact = 0; /* Initialized here to avoid a compiler warning. */
2422
2423 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
2424 so far seen. */
2425
2426 int best_index;
2427 struct linetable *best_linetable;
2428 struct symtab *best_symtab;
2429
2430 /* First try looking it up in the given symtab. */
2431 best_linetable = LINETABLE (symtab);
2432 best_symtab = symtab;
2433 best_index = find_line_common (best_linetable, line, &exact, 0);
2434 if (best_index < 0 || !exact)
2435 {
2436 /* Didn't find an exact match. So we better keep looking for
2437 another symtab with the same name. In the case of xcoff,
2438 multiple csects for one source file (produced by IBM's FORTRAN
2439 compiler) produce multiple symtabs (this is unavoidable
2440 assuming csects can be at arbitrary places in memory and that
2441 the GLOBAL_BLOCK of a symtab has a begin and end address). */
2442
2443 /* BEST is the smallest linenumber > LINE so far seen,
2444 or 0 if none has been seen so far.
2445 BEST_INDEX and BEST_LINETABLE identify the item for it. */
2446 int best;
2447
2448 struct objfile *objfile;
2449 struct symtab *s;
2450
2451 if (best_index >= 0)
2452 best = best_linetable->item[best_index].line;
2453 else
2454 best = 0;
2455
2456 ALL_OBJFILES (objfile)
2457 {
2458 if (objfile->sf)
2459 objfile->sf->qf->expand_symtabs_with_filename (objfile,
2460 symtab->filename);
2461 }
2462
2463 /* Get symbol full file name if possible. */
2464 symtab_to_fullname (symtab);
2465
2466 ALL_SYMTABS (objfile, s)
2467 {
2468 struct linetable *l;
2469 int ind;
2470
2471 if (FILENAME_CMP (symtab->filename, s->filename) != 0)
2472 continue;
2473 if (symtab->fullname != NULL
2474 && symtab_to_fullname (s) != NULL
2475 && FILENAME_CMP (symtab->fullname, s->fullname) != 0)
2476 continue;
2477 l = LINETABLE (s);
2478 ind = find_line_common (l, line, &exact, 0);
2479 if (ind >= 0)
2480 {
2481 if (exact)
2482 {
2483 best_index = ind;
2484 best_linetable = l;
2485 best_symtab = s;
2486 goto done;
2487 }
2488 if (best == 0 || l->item[ind].line < best)
2489 {
2490 best = l->item[ind].line;
2491 best_index = ind;
2492 best_linetable = l;
2493 best_symtab = s;
2494 }
2495 }
2496 }
2497 }
2498 done:
2499 if (best_index < 0)
2500 return NULL;
2501
2502 if (index)
2503 *index = best_index;
2504 if (exact_match)
2505 *exact_match = exact;
2506
2507 return best_symtab;
2508 }
2509
2510 /* Given SYMTAB, returns all the PCs function in the symtab that
2511 exactly match LINE. Returns NULL if there are no exact matches,
2512 but updates BEST_ITEM in this case. */
2513
2514 VEC (CORE_ADDR) *
2515 find_pcs_for_symtab_line (struct symtab *symtab, int line,
2516 struct linetable_entry **best_item)
2517 {
2518 int start = 0, ix;
2519 struct symbol *previous_function = NULL;
2520 VEC (CORE_ADDR) *result = NULL;
2521
2522 /* First, collect all the PCs that are at this line. */
2523 while (1)
2524 {
2525 int was_exact;
2526 int idx;
2527
2528 idx = find_line_common (LINETABLE (symtab), line, &was_exact, start);
2529 if (idx < 0)
2530 break;
2531
2532 if (!was_exact)
2533 {
2534 struct linetable_entry *item = &LINETABLE (symtab)->item[idx];
2535
2536 if (*best_item == NULL || item->line < (*best_item)->line)
2537 *best_item = item;
2538
2539 break;
2540 }
2541
2542 VEC_safe_push (CORE_ADDR, result, LINETABLE (symtab)->item[idx].pc);
2543 start = idx + 1;
2544 }
2545
2546 return result;
2547 }
2548
2549 \f
2550 /* Set the PC value for a given source file and line number and return true.
2551 Returns zero for invalid line number (and sets the PC to 0).
2552 The source file is specified with a struct symtab. */
2553
2554 int
2555 find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
2556 {
2557 struct linetable *l;
2558 int ind;
2559
2560 *pc = 0;
2561 if (symtab == 0)
2562 return 0;
2563
2564 symtab = find_line_symtab (symtab, line, &ind, NULL);
2565 if (symtab != NULL)
2566 {
2567 l = LINETABLE (symtab);
2568 *pc = l->item[ind].pc;
2569 return 1;
2570 }
2571 else
2572 return 0;
2573 }
2574
2575 /* Find the range of pc values in a line.
2576 Store the starting pc of the line into *STARTPTR
2577 and the ending pc (start of next line) into *ENDPTR.
2578 Returns 1 to indicate success.
2579 Returns 0 if could not find the specified line. */
2580
2581 int
2582 find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
2583 CORE_ADDR *endptr)
2584 {
2585 CORE_ADDR startaddr;
2586 struct symtab_and_line found_sal;
2587
2588 startaddr = sal.pc;
2589 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
2590 return 0;
2591
2592 /* This whole function is based on address. For example, if line 10 has
2593 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
2594 "info line *0x123" should say the line goes from 0x100 to 0x200
2595 and "info line *0x355" should say the line goes from 0x300 to 0x400.
2596 This also insures that we never give a range like "starts at 0x134
2597 and ends at 0x12c". */
2598
2599 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
2600 if (found_sal.line != sal.line)
2601 {
2602 /* The specified line (sal) has zero bytes. */
2603 *startptr = found_sal.pc;
2604 *endptr = found_sal.pc;
2605 }
2606 else
2607 {
2608 *startptr = found_sal.pc;
2609 *endptr = found_sal.end;
2610 }
2611 return 1;
2612 }
2613
2614 /* Given a line table and a line number, return the index into the line
2615 table for the pc of the nearest line whose number is >= the specified one.
2616 Return -1 if none is found. The value is >= 0 if it is an index.
2617 START is the index at which to start searching the line table.
2618
2619 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
2620
2621 static int
2622 find_line_common (struct linetable *l, int lineno,
2623 int *exact_match, int start)
2624 {
2625 int i;
2626 int len;
2627
2628 /* BEST is the smallest linenumber > LINENO so far seen,
2629 or 0 if none has been seen so far.
2630 BEST_INDEX identifies the item for it. */
2631
2632 int best_index = -1;
2633 int best = 0;
2634
2635 *exact_match = 0;
2636
2637 if (lineno <= 0)
2638 return -1;
2639 if (l == 0)
2640 return -1;
2641
2642 len = l->nitems;
2643 for (i = start; i < len; i++)
2644 {
2645 struct linetable_entry *item = &(l->item[i]);
2646
2647 if (item->line == lineno)
2648 {
2649 /* Return the first (lowest address) entry which matches. */
2650 *exact_match = 1;
2651 return i;
2652 }
2653
2654 if (item->line > lineno && (best == 0 || item->line < best))
2655 {
2656 best = item->line;
2657 best_index = i;
2658 }
2659 }
2660
2661 /* If we got here, we didn't get an exact match. */
2662 return best_index;
2663 }
2664
2665 int
2666 find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
2667 {
2668 struct symtab_and_line sal;
2669
2670 sal = find_pc_line (pc, 0);
2671 *startptr = sal.pc;
2672 *endptr = sal.end;
2673 return sal.symtab != 0;
2674 }
2675
2676 /* Given a function start address FUNC_ADDR and SYMTAB, find the first
2677 address for that function that has an entry in SYMTAB's line info
2678 table. If such an entry cannot be found, return FUNC_ADDR
2679 unaltered. */
2680
2681 static CORE_ADDR
2682 skip_prologue_using_lineinfo (CORE_ADDR func_addr, struct symtab *symtab)
2683 {
2684 CORE_ADDR func_start, func_end;
2685 struct linetable *l;
2686 int i;
2687
2688 /* Give up if this symbol has no lineinfo table. */
2689 l = LINETABLE (symtab);
2690 if (l == NULL)
2691 return func_addr;
2692
2693 /* Get the range for the function's PC values, or give up if we
2694 cannot, for some reason. */
2695 if (!find_pc_partial_function (func_addr, NULL, &func_start, &func_end))
2696 return func_addr;
2697
2698 /* Linetable entries are ordered by PC values, see the commentary in
2699 symtab.h where `struct linetable' is defined. Thus, the first
2700 entry whose PC is in the range [FUNC_START..FUNC_END[ is the
2701 address we are looking for. */
2702 for (i = 0; i < l->nitems; i++)
2703 {
2704 struct linetable_entry *item = &(l->item[i]);
2705
2706 /* Don't use line numbers of zero, they mark special entries in
2707 the table. See the commentary on symtab.h before the
2708 definition of struct linetable. */
2709 if (item->line > 0 && func_start <= item->pc && item->pc < func_end)
2710 return item->pc;
2711 }
2712
2713 return func_addr;
2714 }
2715
2716 /* Given a function symbol SYM, find the symtab and line for the start
2717 of the function.
2718 If the argument FUNFIRSTLINE is nonzero, we want the first line
2719 of real code inside the function. */
2720
2721 struct symtab_and_line
2722 find_function_start_sal (struct symbol *sym, int funfirstline)
2723 {
2724 struct symtab_and_line sal;
2725
2726 fixup_symbol_section (sym, NULL);
2727 sal = find_pc_sect_line (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)),
2728 SYMBOL_OBJ_SECTION (sym), 0);
2729
2730 /* We always should have a line for the function start address.
2731 If we don't, something is odd. Create a plain SAL refering
2732 just the PC and hope that skip_prologue_sal (if requested)
2733 can find a line number for after the prologue. */
2734 if (sal.pc < BLOCK_START (SYMBOL_BLOCK_VALUE (sym)))
2735 {
2736 init_sal (&sal);
2737 sal.pspace = current_program_space;
2738 sal.pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
2739 sal.section = SYMBOL_OBJ_SECTION (sym);
2740 }
2741
2742 if (funfirstline)
2743 skip_prologue_sal (&sal);
2744
2745 return sal;
2746 }
2747
2748 /* Adjust SAL to the first instruction past the function prologue.
2749 If the PC was explicitly specified, the SAL is not changed.
2750 If the line number was explicitly specified, at most the SAL's PC
2751 is updated. If SAL is already past the prologue, then do nothing. */
2752
2753 void
2754 skip_prologue_sal (struct symtab_and_line *sal)
2755 {
2756 struct symbol *sym;
2757 struct symtab_and_line start_sal;
2758 struct cleanup *old_chain;
2759 CORE_ADDR pc, saved_pc;
2760 struct obj_section *section;
2761 const char *name;
2762 struct objfile *objfile;
2763 struct gdbarch *gdbarch;
2764 struct block *b, *function_block;
2765 int force_skip, skip;
2766
2767 /* Do not change the SAL is PC was specified explicitly. */
2768 if (sal->explicit_pc)
2769 return;
2770
2771 old_chain = save_current_space_and_thread ();
2772 switch_to_program_space_and_thread (sal->pspace);
2773
2774 sym = find_pc_sect_function (sal->pc, sal->section);
2775 if (sym != NULL)
2776 {
2777 fixup_symbol_section (sym, NULL);
2778
2779 pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
2780 section = SYMBOL_OBJ_SECTION (sym);
2781 name = SYMBOL_LINKAGE_NAME (sym);
2782 objfile = SYMBOL_SYMTAB (sym)->objfile;
2783 }
2784 else
2785 {
2786 struct minimal_symbol *msymbol
2787 = lookup_minimal_symbol_by_pc_section (sal->pc, sal->section);
2788
2789 if (msymbol == NULL)
2790 {
2791 do_cleanups (old_chain);
2792 return;
2793 }
2794
2795 pc = SYMBOL_VALUE_ADDRESS (msymbol);
2796 section = SYMBOL_OBJ_SECTION (msymbol);
2797 name = SYMBOL_LINKAGE_NAME (msymbol);
2798 objfile = msymbol_objfile (msymbol);
2799 }
2800
2801 gdbarch = get_objfile_arch (objfile);
2802
2803 /* Process the prologue in two passes. In the first pass try to skip the
2804 prologue (SKIP is true) and verify there is a real need for it (indicated
2805 by FORCE_SKIP). If no such reason was found run a second pass where the
2806 prologue is not skipped (SKIP is false). */
2807
2808 skip = 1;
2809 force_skip = 1;
2810
2811 /* Be conservative - allow direct PC (without skipping prologue) only if we
2812 have proven the CU (Compilation Unit) supports it. sal->SYMTAB does not
2813 have to be set by the caller so we use SYM instead. */
2814 if (sym && SYMBOL_SYMTAB (sym)->locations_valid)
2815 force_skip = 0;
2816
2817 saved_pc = pc;
2818 do
2819 {
2820 pc = saved_pc;
2821
2822 /* If the function is in an unmapped overlay, use its unmapped LMA address,
2823 so that gdbarch_skip_prologue has something unique to work on. */
2824 if (section_is_overlay (section) && !section_is_mapped (section))
2825 pc = overlay_unmapped_address (pc, section);
2826
2827 /* Skip "first line" of function (which is actually its prologue). */
2828 pc += gdbarch_deprecated_function_start_offset (gdbarch);
2829 if (skip)
2830 pc = gdbarch_skip_prologue (gdbarch, pc);
2831
2832 /* For overlays, map pc back into its mapped VMA range. */
2833 pc = overlay_mapped_address (pc, section);
2834
2835 /* Calculate line number. */
2836 start_sal = find_pc_sect_line (pc, section, 0);
2837
2838 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
2839 line is still part of the same function. */
2840 if (skip && start_sal.pc != pc
2841 && (sym ? (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) <= start_sal.end
2842 && start_sal.end < BLOCK_END (SYMBOL_BLOCK_VALUE (sym)))
2843 : (lookup_minimal_symbol_by_pc_section (start_sal.end, section)
2844 == lookup_minimal_symbol_by_pc_section (pc, section))))
2845 {
2846 /* First pc of next line */
2847 pc = start_sal.end;
2848 /* Recalculate the line number (might not be N+1). */
2849 start_sal = find_pc_sect_line (pc, section, 0);
2850 }
2851
2852 /* On targets with executable formats that don't have a concept of
2853 constructors (ELF with .init has, PE doesn't), gcc emits a call
2854 to `__main' in `main' between the prologue and before user
2855 code. */
2856 if (gdbarch_skip_main_prologue_p (gdbarch)
2857 && name && strcmp_iw (name, "main") == 0)
2858 {
2859 pc = gdbarch_skip_main_prologue (gdbarch, pc);
2860 /* Recalculate the line number (might not be N+1). */
2861 start_sal = find_pc_sect_line (pc, section, 0);
2862 force_skip = 1;
2863 }
2864 }
2865 while (!force_skip && skip--);
2866
2867 /* If we still don't have a valid source line, try to find the first
2868 PC in the lineinfo table that belongs to the same function. This
2869 happens with COFF debug info, which does not seem to have an
2870 entry in lineinfo table for the code after the prologue which has
2871 no direct relation to source. For example, this was found to be
2872 the case with the DJGPP target using "gcc -gcoff" when the
2873 compiler inserted code after the prologue to make sure the stack
2874 is aligned. */
2875 if (!force_skip && sym && start_sal.symtab == NULL)
2876 {
2877 pc = skip_prologue_using_lineinfo (pc, SYMBOL_SYMTAB (sym));
2878 /* Recalculate the line number. */
2879 start_sal = find_pc_sect_line (pc, section, 0);
2880 }
2881
2882 do_cleanups (old_chain);
2883
2884 /* If we're already past the prologue, leave SAL unchanged. Otherwise
2885 forward SAL to the end of the prologue. */
2886 if (sal->pc >= pc)
2887 return;
2888
2889 sal->pc = pc;
2890 sal->section = section;
2891
2892 /* Unless the explicit_line flag was set, update the SAL line
2893 and symtab to correspond to the modified PC location. */
2894 if (sal->explicit_line)
2895 return;
2896
2897 sal->symtab = start_sal.symtab;
2898 sal->line = start_sal.line;
2899 sal->end = start_sal.end;
2900
2901 /* Check if we are now inside an inlined function. If we can,
2902 use the call site of the function instead. */
2903 b = block_for_pc_sect (sal->pc, sal->section);
2904 function_block = NULL;
2905 while (b != NULL)
2906 {
2907 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
2908 function_block = b;
2909 else if (BLOCK_FUNCTION (b) != NULL)
2910 break;
2911 b = BLOCK_SUPERBLOCK (b);
2912 }
2913 if (function_block != NULL
2914 && SYMBOL_LINE (BLOCK_FUNCTION (function_block)) != 0)
2915 {
2916 sal->line = SYMBOL_LINE (BLOCK_FUNCTION (function_block));
2917 sal->symtab = SYMBOL_SYMTAB (BLOCK_FUNCTION (function_block));
2918 }
2919 }
2920
2921 /* If P is of the form "operator[ \t]+..." where `...' is
2922 some legitimate operator text, return a pointer to the
2923 beginning of the substring of the operator text.
2924 Otherwise, return "". */
2925
2926 static char *
2927 operator_chars (char *p, char **end)
2928 {
2929 *end = "";
2930 if (strncmp (p, "operator", 8))
2931 return *end;
2932 p += 8;
2933
2934 /* Don't get faked out by `operator' being part of a longer
2935 identifier. */
2936 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
2937 return *end;
2938
2939 /* Allow some whitespace between `operator' and the operator symbol. */
2940 while (*p == ' ' || *p == '\t')
2941 p++;
2942
2943 /* Recognize 'operator TYPENAME'. */
2944
2945 if (isalpha (*p) || *p == '_' || *p == '$')
2946 {
2947 char *q = p + 1;
2948
2949 while (isalnum (*q) || *q == '_' || *q == '$')
2950 q++;
2951 *end = q;
2952 return p;
2953 }
2954
2955 while (*p)
2956 switch (*p)
2957 {
2958 case '\\': /* regexp quoting */
2959 if (p[1] == '*')
2960 {
2961 if (p[2] == '=') /* 'operator\*=' */
2962 *end = p + 3;
2963 else /* 'operator\*' */
2964 *end = p + 2;
2965 return p;
2966 }
2967 else if (p[1] == '[')
2968 {
2969 if (p[2] == ']')
2970 error (_("mismatched quoting on brackets, "
2971 "try 'operator\\[\\]'"));
2972 else if (p[2] == '\\' && p[3] == ']')
2973 {
2974 *end = p + 4; /* 'operator\[\]' */
2975 return p;
2976 }
2977 else
2978 error (_("nothing is allowed between '[' and ']'"));
2979 }
2980 else
2981 {
2982 /* Gratuitous qoute: skip it and move on. */
2983 p++;
2984 continue;
2985 }
2986 break;
2987 case '!':
2988 case '=':
2989 case '*':
2990 case '/':
2991 case '%':
2992 case '^':
2993 if (p[1] == '=')
2994 *end = p + 2;
2995 else
2996 *end = p + 1;
2997 return p;
2998 case '<':
2999 case '>':
3000 case '+':
3001 case '-':
3002 case '&':
3003 case '|':
3004 if (p[0] == '-' && p[1] == '>')
3005 {
3006 /* Struct pointer member operator 'operator->'. */
3007 if (p[2] == '*')
3008 {
3009 *end = p + 3; /* 'operator->*' */
3010 return p;
3011 }
3012 else if (p[2] == '\\')
3013 {
3014 *end = p + 4; /* Hopefully 'operator->\*' */
3015 return p;
3016 }
3017 else
3018 {
3019 *end = p + 2; /* 'operator->' */
3020 return p;
3021 }
3022 }
3023 if (p[1] == '=' || p[1] == p[0])
3024 *end = p + 2;
3025 else
3026 *end = p + 1;
3027 return p;
3028 case '~':
3029 case ',':
3030 *end = p + 1;
3031 return p;
3032 case '(':
3033 if (p[1] != ')')
3034 error (_("`operator ()' must be specified "
3035 "without whitespace in `()'"));
3036 *end = p + 2;
3037 return p;
3038 case '?':
3039 if (p[1] != ':')
3040 error (_("`operator ?:' must be specified "
3041 "without whitespace in `?:'"));
3042 *end = p + 2;
3043 return p;
3044 case '[':
3045 if (p[1] != ']')
3046 error (_("`operator []' must be specified "
3047 "without whitespace in `[]'"));
3048 *end = p + 2;
3049 return p;
3050 default:
3051 error (_("`operator %s' not supported"), p);
3052 break;
3053 }
3054
3055 *end = "";
3056 return *end;
3057 }
3058 \f
3059
3060 /* If FILE is not already in the table of files, return zero;
3061 otherwise return non-zero. Optionally add FILE to the table if ADD
3062 is non-zero. If *FIRST is non-zero, forget the old table
3063 contents. */
3064
3065 static int
3066 filename_seen (const char *file, int add, int *first)
3067 {
3068 /* Table of files seen so far. */
3069 static const char **tab = NULL;
3070 /* Allocated size of tab in elements.
3071 Start with one 256-byte block (when using GNU malloc.c).
3072 24 is the malloc overhead when range checking is in effect. */
3073 static int tab_alloc_size = (256 - 24) / sizeof (char *);
3074 /* Current size of tab in elements. */
3075 static int tab_cur_size;
3076 const char **p;
3077
3078 if (*first)
3079 {
3080 if (tab == NULL)
3081 tab = (const char **) xmalloc (tab_alloc_size * sizeof (*tab));
3082 tab_cur_size = 0;
3083 }
3084
3085 /* Is FILE in tab? */
3086 for (p = tab; p < tab + tab_cur_size; p++)
3087 if (filename_cmp (*p, file) == 0)
3088 return 1;
3089
3090 /* No; maybe add it to tab. */
3091 if (add)
3092 {
3093 if (tab_cur_size == tab_alloc_size)
3094 {
3095 tab_alloc_size *= 2;
3096 tab = (const char **) xrealloc ((char *) tab,
3097 tab_alloc_size * sizeof (*tab));
3098 }
3099 tab[tab_cur_size++] = file;
3100 }
3101
3102 return 0;
3103 }
3104
3105 /* Slave routine for sources_info. Force line breaks at ,'s.
3106 NAME is the name to print and *FIRST is nonzero if this is the first
3107 name printed. Set *FIRST to zero. */
3108
3109 static void
3110 output_source_filename (const char *name, int *first)
3111 {
3112 /* Since a single source file can result in several partial symbol
3113 tables, we need to avoid printing it more than once. Note: if
3114 some of the psymtabs are read in and some are not, it gets
3115 printed both under "Source files for which symbols have been
3116 read" and "Source files for which symbols will be read in on
3117 demand". I consider this a reasonable way to deal with the
3118 situation. I'm not sure whether this can also happen for
3119 symtabs; it doesn't hurt to check. */
3120
3121 /* Was NAME already seen? */
3122 if (filename_seen (name, 1, first))
3123 {
3124 /* Yes; don't print it again. */
3125 return;
3126 }
3127 /* No; print it and reset *FIRST. */
3128 if (*first)
3129 {
3130 *first = 0;
3131 }
3132 else
3133 {
3134 printf_filtered (", ");
3135 }
3136
3137 wrap_here ("");
3138 fputs_filtered (name, gdb_stdout);
3139 }
3140
3141 /* A callback for map_partial_symbol_filenames. */
3142
3143 static void
3144 output_partial_symbol_filename (const char *filename, const char *fullname,
3145 void *data)
3146 {
3147 output_source_filename (fullname ? fullname : filename, data);
3148 }
3149
3150 static void
3151 sources_info (char *ignore, int from_tty)
3152 {
3153 struct symtab *s;
3154 struct objfile *objfile;
3155 int first;
3156
3157 if (!have_full_symbols () && !have_partial_symbols ())
3158 {
3159 error (_("No symbol table is loaded. Use the \"file\" command."));
3160 }
3161
3162 printf_filtered ("Source files for which symbols have been read in:\n\n");
3163
3164 first = 1;
3165 ALL_SYMTABS (objfile, s)
3166 {
3167 const char *fullname = symtab_to_fullname (s);
3168
3169 output_source_filename (fullname ? fullname : s->filename, &first);
3170 }
3171 printf_filtered ("\n\n");
3172
3173 printf_filtered ("Source files for which symbols "
3174 "will be read in on demand:\n\n");
3175
3176 first = 1;
3177 map_partial_symbol_filenames (output_partial_symbol_filename, &first,
3178 1 /*need_fullname*/);
3179 printf_filtered ("\n");
3180 }
3181
3182 static int
3183 file_matches (const char *file, char *files[], int nfiles)
3184 {
3185 int i;
3186
3187 if (file != NULL && nfiles != 0)
3188 {
3189 for (i = 0; i < nfiles; i++)
3190 {
3191 if (filename_cmp (files[i], lbasename (file)) == 0)
3192 return 1;
3193 }
3194 }
3195 else if (nfiles == 0)
3196 return 1;
3197 return 0;
3198 }
3199
3200 /* Free any memory associated with a search. */
3201
3202 void
3203 free_search_symbols (struct symbol_search *symbols)
3204 {
3205 struct symbol_search *p;
3206 struct symbol_search *next;
3207
3208 for (p = symbols; p != NULL; p = next)
3209 {
3210 next = p->next;
3211 xfree (p);
3212 }
3213 }
3214
3215 static void
3216 do_free_search_symbols_cleanup (void *symbols)
3217 {
3218 free_search_symbols (symbols);
3219 }
3220
3221 struct cleanup *
3222 make_cleanup_free_search_symbols (struct symbol_search *symbols)
3223 {
3224 return make_cleanup (do_free_search_symbols_cleanup, symbols);
3225 }
3226
3227 /* Helper function for sort_search_symbols and qsort. Can only
3228 sort symbols, not minimal symbols. */
3229
3230 static int
3231 compare_search_syms (const void *sa, const void *sb)
3232 {
3233 struct symbol_search **sym_a = (struct symbol_search **) sa;
3234 struct symbol_search **sym_b = (struct symbol_search **) sb;
3235
3236 return strcmp (SYMBOL_PRINT_NAME ((*sym_a)->symbol),
3237 SYMBOL_PRINT_NAME ((*sym_b)->symbol));
3238 }
3239
3240 /* Sort the ``nfound'' symbols in the list after prevtail. Leave
3241 prevtail where it is, but update its next pointer to point to
3242 the first of the sorted symbols. */
3243
3244 static struct symbol_search *
3245 sort_search_symbols (struct symbol_search *prevtail, int nfound)
3246 {
3247 struct symbol_search **symbols, *symp, *old_next;
3248 int i;
3249
3250 symbols = (struct symbol_search **) xmalloc (sizeof (struct symbol_search *)
3251 * nfound);
3252 symp = prevtail->next;
3253 for (i = 0; i < nfound; i++)
3254 {
3255 symbols[i] = symp;
3256 symp = symp->next;
3257 }
3258 /* Generally NULL. */
3259 old_next = symp;
3260
3261 qsort (symbols, nfound, sizeof (struct symbol_search *),
3262 compare_search_syms);
3263
3264 symp = prevtail;
3265 for (i = 0; i < nfound; i++)
3266 {
3267 symp->next = symbols[i];
3268 symp = symp->next;
3269 }
3270 symp->next = old_next;
3271
3272 xfree (symbols);
3273 return symp;
3274 }
3275
3276 /* An object of this type is passed as the user_data to the
3277 expand_symtabs_matching method. */
3278 struct search_symbols_data
3279 {
3280 int nfiles;
3281 char **files;
3282
3283 /* It is true if PREG contains valid data, false otherwise. */
3284 unsigned preg_p : 1;
3285 regex_t preg;
3286 };
3287
3288 /* A callback for expand_symtabs_matching. */
3289
3290 static int
3291 search_symbols_file_matches (const char *filename, void *user_data)
3292 {
3293 struct search_symbols_data *data = user_data;
3294
3295 return file_matches (filename, data->files, data->nfiles);
3296 }
3297
3298 /* A callback for expand_symtabs_matching. */
3299
3300 static int
3301 search_symbols_name_matches (const char *symname, void *user_data)
3302 {
3303 struct search_symbols_data *data = user_data;
3304
3305 return !data->preg_p || regexec (&data->preg, symname, 0, NULL, 0) == 0;
3306 }
3307
3308 /* Search the symbol table for matches to the regular expression REGEXP,
3309 returning the results in *MATCHES.
3310
3311 Only symbols of KIND are searched:
3312 VARIABLES_DOMAIN - search all symbols, excluding functions, type names,
3313 and constants (enums)
3314 FUNCTIONS_DOMAIN - search all functions
3315 TYPES_DOMAIN - search all type names
3316 ALL_DOMAIN - an internal error for this function
3317
3318 free_search_symbols should be called when *MATCHES is no longer needed.
3319
3320 The results are sorted locally; each symtab's global and static blocks are
3321 separately alphabetized. */
3322
3323 void
3324 search_symbols (char *regexp, enum search_domain kind,
3325 int nfiles, char *files[],
3326 struct symbol_search **matches)
3327 {
3328 struct symtab *s;
3329 struct blockvector *bv;
3330 struct block *b;
3331 int i = 0;
3332 struct dict_iterator iter;
3333 struct symbol *sym;
3334 struct objfile *objfile;
3335 struct minimal_symbol *msymbol;
3336 char *val;
3337 int found_misc = 0;
3338 static const enum minimal_symbol_type types[]
3339 = {mst_data, mst_text, mst_abs};
3340 static const enum minimal_symbol_type types2[]
3341 = {mst_bss, mst_file_text, mst_abs};
3342 static const enum minimal_symbol_type types3[]
3343 = {mst_file_data, mst_solib_trampoline, mst_abs};
3344 static const enum minimal_symbol_type types4[]
3345 = {mst_file_bss, mst_text_gnu_ifunc, mst_abs};
3346 enum minimal_symbol_type ourtype;
3347 enum minimal_symbol_type ourtype2;
3348 enum minimal_symbol_type ourtype3;
3349 enum minimal_symbol_type ourtype4;
3350 struct symbol_search *sr;
3351 struct symbol_search *psr;
3352 struct symbol_search *tail;
3353 struct search_symbols_data datum;
3354
3355 /* OLD_CHAIN .. RETVAL_CHAIN is always freed, RETVAL_CHAIN .. current
3356 CLEANUP_CHAIN is freed only in the case of an error. */
3357 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
3358 struct cleanup *retval_chain;
3359
3360 gdb_assert (kind <= TYPES_DOMAIN);
3361
3362 ourtype = types[kind];
3363 ourtype2 = types2[kind];
3364 ourtype3 = types3[kind];
3365 ourtype4 = types4[kind];
3366
3367 sr = *matches = NULL;
3368 tail = NULL;
3369 datum.preg_p = 0;
3370
3371 if (regexp != NULL)
3372 {
3373 /* Make sure spacing is right for C++ operators.
3374 This is just a courtesy to make the matching less sensitive
3375 to how many spaces the user leaves between 'operator'
3376 and <TYPENAME> or <OPERATOR>. */
3377 char *opend;
3378 char *opname = operator_chars (regexp, &opend);
3379 int errcode;
3380
3381 if (*opname)
3382 {
3383 int fix = -1; /* -1 means ok; otherwise number of
3384 spaces needed. */
3385
3386 if (isalpha (*opname) || *opname == '_' || *opname == '$')
3387 {
3388 /* There should 1 space between 'operator' and 'TYPENAME'. */
3389 if (opname[-1] != ' ' || opname[-2] == ' ')
3390 fix = 1;
3391 }
3392 else
3393 {
3394 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
3395 if (opname[-1] == ' ')
3396 fix = 0;
3397 }
3398 /* If wrong number of spaces, fix it. */
3399 if (fix >= 0)
3400 {
3401 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
3402
3403 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
3404 regexp = tmp;
3405 }
3406 }
3407
3408 errcode = regcomp (&datum.preg, regexp,
3409 REG_NOSUB | (case_sensitivity == case_sensitive_off
3410 ? REG_ICASE : 0));
3411 if (errcode != 0)
3412 {
3413 char *err = get_regcomp_error (errcode, &datum.preg);
3414
3415 make_cleanup (xfree, err);
3416 error (_("Invalid regexp (%s): %s"), err, regexp);
3417 }
3418 datum.preg_p = 1;
3419 make_regfree_cleanup (&datum.preg);
3420 }
3421
3422 /* Search through the partial symtabs *first* for all symbols
3423 matching the regexp. That way we don't have to reproduce all of
3424 the machinery below. */
3425
3426 datum.nfiles = nfiles;
3427 datum.files = files;
3428 ALL_OBJFILES (objfile)
3429 {
3430 if (objfile->sf)
3431 objfile->sf->qf->expand_symtabs_matching (objfile,
3432 search_symbols_file_matches,
3433 search_symbols_name_matches,
3434 kind,
3435 &datum);
3436 }
3437
3438 retval_chain = old_chain;
3439
3440 /* Here, we search through the minimal symbol tables for functions
3441 and variables that match, and force their symbols to be read.
3442 This is in particular necessary for demangled variable names,
3443 which are no longer put into the partial symbol tables.
3444 The symbol will then be found during the scan of symtabs below.
3445
3446 For functions, find_pc_symtab should succeed if we have debug info
3447 for the function, for variables we have to call lookup_symbol
3448 to determine if the variable has debug info.
3449 If the lookup fails, set found_misc so that we will rescan to print
3450 any matching symbols without debug info. */
3451
3452 if (nfiles == 0 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
3453 {
3454 ALL_MSYMBOLS (objfile, msymbol)
3455 {
3456 QUIT;
3457
3458 if (MSYMBOL_TYPE (msymbol) == ourtype ||
3459 MSYMBOL_TYPE (msymbol) == ourtype2 ||
3460 MSYMBOL_TYPE (msymbol) == ourtype3 ||
3461 MSYMBOL_TYPE (msymbol) == ourtype4)
3462 {
3463 if (!datum.preg_p
3464 || regexec (&datum.preg, SYMBOL_NATURAL_NAME (msymbol), 0,
3465 NULL, 0) == 0)
3466 {
3467 if (0 == find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol)))
3468 {
3469 /* FIXME: carlton/2003-02-04: Given that the
3470 semantics of lookup_symbol keeps on changing
3471 slightly, it would be a nice idea if we had a
3472 function lookup_symbol_minsym that found the
3473 symbol associated to a given minimal symbol (if
3474 any). */
3475 if (kind == FUNCTIONS_DOMAIN
3476 || lookup_symbol (SYMBOL_LINKAGE_NAME (msymbol),
3477 (struct block *) NULL,
3478 VAR_DOMAIN, 0)
3479 == NULL)
3480 found_misc = 1;
3481 }
3482 }
3483 }
3484 }
3485 }
3486
3487 ALL_PRIMARY_SYMTABS (objfile, s)
3488 {
3489 bv = BLOCKVECTOR (s);
3490 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
3491 {
3492 struct symbol_search *prevtail = tail;
3493 int nfound = 0;
3494
3495 b = BLOCKVECTOR_BLOCK (bv, i);
3496 ALL_BLOCK_SYMBOLS (b, iter, sym)
3497 {
3498 struct symtab *real_symtab = SYMBOL_SYMTAB (sym);
3499
3500 QUIT;
3501
3502 if (file_matches (real_symtab->filename, files, nfiles)
3503 && ((!datum.preg_p
3504 || regexec (&datum.preg, SYMBOL_NATURAL_NAME (sym), 0,
3505 NULL, 0) == 0)
3506 && ((kind == VARIABLES_DOMAIN
3507 && SYMBOL_CLASS (sym) != LOC_TYPEDEF
3508 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
3509 && SYMBOL_CLASS (sym) != LOC_BLOCK
3510 /* LOC_CONST can be used for more than just enums,
3511 e.g., c++ static const members.
3512 We only want to skip enums here. */
3513 && !(SYMBOL_CLASS (sym) == LOC_CONST
3514 && TYPE_CODE (SYMBOL_TYPE (sym))
3515 == TYPE_CODE_ENUM))
3516 || (kind == FUNCTIONS_DOMAIN
3517 && SYMBOL_CLASS (sym) == LOC_BLOCK)
3518 || (kind == TYPES_DOMAIN
3519 && SYMBOL_CLASS (sym) == LOC_TYPEDEF))))
3520 {
3521 /* match */
3522 psr = (struct symbol_search *)
3523 xmalloc (sizeof (struct symbol_search));
3524 psr->block = i;
3525 psr->symtab = real_symtab;
3526 psr->symbol = sym;
3527 psr->msymbol = NULL;
3528 psr->next = NULL;
3529 if (tail == NULL)
3530 sr = psr;
3531 else
3532 tail->next = psr;
3533 tail = psr;
3534 nfound ++;
3535 }
3536 }
3537 if (nfound > 0)
3538 {
3539 if (prevtail == NULL)
3540 {
3541 struct symbol_search dummy;
3542
3543 dummy.next = sr;
3544 tail = sort_search_symbols (&dummy, nfound);
3545 sr = dummy.next;
3546
3547 make_cleanup_free_search_symbols (sr);
3548 }
3549 else
3550 tail = sort_search_symbols (prevtail, nfound);
3551 }
3552 }
3553 }
3554
3555 /* If there are no eyes, avoid all contact. I mean, if there are
3556 no debug symbols, then print directly from the msymbol_vector. */
3557
3558 if (found_misc || kind != FUNCTIONS_DOMAIN)
3559 {
3560 ALL_MSYMBOLS (objfile, msymbol)
3561 {
3562 QUIT;
3563
3564 if (MSYMBOL_TYPE (msymbol) == ourtype ||
3565 MSYMBOL_TYPE (msymbol) == ourtype2 ||
3566 MSYMBOL_TYPE (msymbol) == ourtype3 ||
3567 MSYMBOL_TYPE (msymbol) == ourtype4)
3568 {
3569 if (!datum.preg_p
3570 || regexec (&datum.preg, SYMBOL_NATURAL_NAME (msymbol), 0,
3571 NULL, 0) == 0)
3572 {
3573 /* Functions: Look up by address. */
3574 if (kind != FUNCTIONS_DOMAIN ||
3575 (0 == find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol))))
3576 {
3577 /* Variables/Absolutes: Look up by name. */
3578 if (lookup_symbol (SYMBOL_LINKAGE_NAME (msymbol),
3579 (struct block *) NULL, VAR_DOMAIN, 0)
3580 == NULL)
3581 {
3582 /* match */
3583 psr = (struct symbol_search *)
3584 xmalloc (sizeof (struct symbol_search));
3585 psr->block = i;
3586 psr->msymbol = msymbol;
3587 psr->symtab = NULL;
3588 psr->symbol = NULL;
3589 psr->next = NULL;
3590 if (tail == NULL)
3591 {
3592 sr = psr;
3593 make_cleanup_free_search_symbols (sr);
3594 }
3595 else
3596 tail->next = psr;
3597 tail = psr;
3598 }
3599 }
3600 }
3601 }
3602 }
3603 }
3604
3605 discard_cleanups (retval_chain);
3606 do_cleanups (old_chain);
3607 *matches = sr;
3608 }
3609
3610 /* Helper function for symtab_symbol_info, this function uses
3611 the data returned from search_symbols() to print information
3612 regarding the match to gdb_stdout. */
3613
3614 static void
3615 print_symbol_info (enum search_domain kind,
3616 struct symtab *s, struct symbol *sym,
3617 int block, char *last)
3618 {
3619 if (last == NULL || filename_cmp (last, s->filename) != 0)
3620 {
3621 fputs_filtered ("\nFile ", gdb_stdout);
3622 fputs_filtered (s->filename, gdb_stdout);
3623 fputs_filtered (":\n", gdb_stdout);
3624 }
3625
3626 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
3627 printf_filtered ("static ");
3628
3629 /* Typedef that is not a C++ class. */
3630 if (kind == TYPES_DOMAIN
3631 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
3632 typedef_print (SYMBOL_TYPE (sym), sym, gdb_stdout);
3633 /* variable, func, or typedef-that-is-c++-class. */
3634 else if (kind < TYPES_DOMAIN ||
3635 (kind == TYPES_DOMAIN &&
3636 SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
3637 {
3638 type_print (SYMBOL_TYPE (sym),
3639 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
3640 ? "" : SYMBOL_PRINT_NAME (sym)),
3641 gdb_stdout, 0);
3642
3643 printf_filtered (";\n");
3644 }
3645 }
3646
3647 /* This help function for symtab_symbol_info() prints information
3648 for non-debugging symbols to gdb_stdout. */
3649
3650 static void
3651 print_msymbol_info (struct minimal_symbol *msymbol)
3652 {
3653 struct gdbarch *gdbarch = get_objfile_arch (msymbol_objfile (msymbol));
3654 char *tmp;
3655
3656 if (gdbarch_addr_bit (gdbarch) <= 32)
3657 tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol)
3658 & (CORE_ADDR) 0xffffffff,
3659 8);
3660 else
3661 tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol),
3662 16);
3663 printf_filtered ("%s %s\n",
3664 tmp, SYMBOL_PRINT_NAME (msymbol));
3665 }
3666
3667 /* This is the guts of the commands "info functions", "info types", and
3668 "info variables". It calls search_symbols to find all matches and then
3669 print_[m]symbol_info to print out some useful information about the
3670 matches. */
3671
3672 static void
3673 symtab_symbol_info (char *regexp, enum search_domain kind, int from_tty)
3674 {
3675 static const char * const classnames[] =
3676 {"variable", "function", "type"};
3677 struct symbol_search *symbols;
3678 struct symbol_search *p;
3679 struct cleanup *old_chain;
3680 char *last_filename = NULL;
3681 int first = 1;
3682
3683 gdb_assert (kind <= TYPES_DOMAIN);
3684
3685 /* Must make sure that if we're interrupted, symbols gets freed. */
3686 search_symbols (regexp, kind, 0, (char **) NULL, &symbols);
3687 old_chain = make_cleanup_free_search_symbols (symbols);
3688
3689 printf_filtered (regexp
3690 ? "All %ss matching regular expression \"%s\":\n"
3691 : "All defined %ss:\n",
3692 classnames[kind], regexp);
3693
3694 for (p = symbols; p != NULL; p = p->next)
3695 {
3696 QUIT;
3697
3698 if (p->msymbol != NULL)
3699 {
3700 if (first)
3701 {
3702 printf_filtered ("\nNon-debugging symbols:\n");
3703 first = 0;
3704 }
3705 print_msymbol_info (p->msymbol);
3706 }
3707 else
3708 {
3709 print_symbol_info (kind,
3710 p->symtab,
3711 p->symbol,
3712 p->block,
3713 last_filename);
3714 last_filename = p->symtab->filename;
3715 }
3716 }
3717
3718 do_cleanups (old_chain);
3719 }
3720
3721 static void
3722 variables_info (char *regexp, int from_tty)
3723 {
3724 symtab_symbol_info (regexp, VARIABLES_DOMAIN, from_tty);
3725 }
3726
3727 static void
3728 functions_info (char *regexp, int from_tty)
3729 {
3730 symtab_symbol_info (regexp, FUNCTIONS_DOMAIN, from_tty);
3731 }
3732
3733
3734 static void
3735 types_info (char *regexp, int from_tty)
3736 {
3737 symtab_symbol_info (regexp, TYPES_DOMAIN, from_tty);
3738 }
3739
3740 /* Breakpoint all functions matching regular expression. */
3741
3742 void
3743 rbreak_command_wrapper (char *regexp, int from_tty)
3744 {
3745 rbreak_command (regexp, from_tty);
3746 }
3747
3748 /* A cleanup function that calls end_rbreak_breakpoints. */
3749
3750 static void
3751 do_end_rbreak_breakpoints (void *ignore)
3752 {
3753 end_rbreak_breakpoints ();
3754 }
3755
3756 static void
3757 rbreak_command (char *regexp, int from_tty)
3758 {
3759 struct symbol_search *ss;
3760 struct symbol_search *p;
3761 struct cleanup *old_chain;
3762 char *string = NULL;
3763 int len = 0;
3764 char **files = NULL, *file_name;
3765 int nfiles = 0;
3766
3767 if (regexp)
3768 {
3769 char *colon = strchr (regexp, ':');
3770
3771 if (colon && *(colon + 1) != ':')
3772 {
3773 int colon_index;
3774
3775 colon_index = colon - regexp;
3776 file_name = alloca (colon_index + 1);
3777 memcpy (file_name, regexp, colon_index);
3778 file_name[colon_index--] = 0;
3779 while (isspace (file_name[colon_index]))
3780 file_name[colon_index--] = 0;
3781 files = &file_name;
3782 nfiles = 1;
3783 regexp = colon + 1;
3784 while (isspace (*regexp)) regexp++;
3785 }
3786 }
3787
3788 search_symbols (regexp, FUNCTIONS_DOMAIN, nfiles, files, &ss);
3789 old_chain = make_cleanup_free_search_symbols (ss);
3790 make_cleanup (free_current_contents, &string);
3791
3792 start_rbreak_breakpoints ();
3793 make_cleanup (do_end_rbreak_breakpoints, NULL);
3794 for (p = ss; p != NULL; p = p->next)
3795 {
3796 if (p->msymbol == NULL)
3797 {
3798 int newlen = (strlen (p->symtab->filename)
3799 + strlen (SYMBOL_LINKAGE_NAME (p->symbol))
3800 + 4);
3801
3802 if (newlen > len)
3803 {
3804 string = xrealloc (string, newlen);
3805 len = newlen;
3806 }
3807 strcpy (string, p->symtab->filename);
3808 strcat (string, ":'");
3809 strcat (string, SYMBOL_LINKAGE_NAME (p->symbol));
3810 strcat (string, "'");
3811 break_command (string, from_tty);
3812 print_symbol_info (FUNCTIONS_DOMAIN,
3813 p->symtab,
3814 p->symbol,
3815 p->block,
3816 p->symtab->filename);
3817 }
3818 else
3819 {
3820 int newlen = (strlen (SYMBOL_LINKAGE_NAME (p->msymbol)) + 3);
3821
3822 if (newlen > len)
3823 {
3824 string = xrealloc (string, newlen);
3825 len = newlen;
3826 }
3827 strcpy (string, "'");
3828 strcat (string, SYMBOL_LINKAGE_NAME (p->msymbol));
3829 strcat (string, "'");
3830
3831 break_command (string, from_tty);
3832 printf_filtered ("<function, no debug info> %s;\n",
3833 SYMBOL_PRINT_NAME (p->msymbol));
3834 }
3835 }
3836
3837 do_cleanups (old_chain);
3838 }
3839 \f
3840
3841 /* Evaluate if NAME matches SYM_TEXT and SYM_TEXT_LEN.
3842
3843 Either sym_text[sym_text_len] != '(' and then we search for any
3844 symbol starting with SYM_TEXT text.
3845
3846 Otherwise sym_text[sym_text_len] == '(' and then we require symbol name to
3847 be terminated at that point. Partial symbol tables do not have parameters
3848 information. */
3849
3850 static int
3851 compare_symbol_name (const char *name, const char *sym_text, int sym_text_len)
3852 {
3853 int (*ncmp) (const char *, const char *, size_t);
3854
3855 ncmp = (case_sensitivity == case_sensitive_on ? strncmp : strncasecmp);
3856
3857 if (ncmp (name, sym_text, sym_text_len) != 0)
3858 return 0;
3859
3860 if (sym_text[sym_text_len] == '(')
3861 {
3862 /* User searches for `name(someth...'. Require NAME to be terminated.
3863 Normally psymtabs and gdbindex have no parameter types so '\0' will be
3864 present but accept even parameters presence. In this case this
3865 function is in fact strcmp_iw but whitespace skipping is not supported
3866 for tab completion. */
3867
3868 if (name[sym_text_len] != '\0' && name[sym_text_len] != '(')
3869 return 0;
3870 }
3871
3872 return 1;
3873 }
3874
3875 /* Free any memory associated with a completion list. */
3876
3877 static void
3878 free_completion_list (char ***list_ptr)
3879 {
3880 int i = 0;
3881 char **list = *list_ptr;
3882
3883 while (list[i] != NULL)
3884 {
3885 xfree (list[i]);
3886 i++;
3887 }
3888 xfree (list);
3889 }
3890
3891 /* Callback for make_cleanup. */
3892
3893 static void
3894 do_free_completion_list (void *list)
3895 {
3896 free_completion_list (list);
3897 }
3898
3899 /* Helper routine for make_symbol_completion_list. */
3900
3901 static int return_val_size;
3902 static int return_val_index;
3903 static char **return_val;
3904
3905 #define COMPLETION_LIST_ADD_SYMBOL(symbol, sym_text, len, text, word) \
3906 completion_list_add_name \
3907 (SYMBOL_NATURAL_NAME (symbol), (sym_text), (len), (text), (word))
3908
3909 /* Test to see if the symbol specified by SYMNAME (which is already
3910 demangled for C++ symbols) matches SYM_TEXT in the first SYM_TEXT_LEN
3911 characters. If so, add it to the current completion list. */
3912
3913 static void
3914 completion_list_add_name (const char *symname,
3915 const char *sym_text, int sym_text_len,
3916 const char *text, const char *word)
3917 {
3918 int newsize;
3919
3920 /* Clip symbols that cannot match. */
3921 if (!compare_symbol_name (symname, sym_text, sym_text_len))
3922 return;
3923
3924 /* We have a match for a completion, so add SYMNAME to the current list
3925 of matches. Note that the name is moved to freshly malloc'd space. */
3926
3927 {
3928 char *new;
3929
3930 if (word == sym_text)
3931 {
3932 new = xmalloc (strlen (symname) + 5);
3933 strcpy (new, symname);
3934 }
3935 else if (word > sym_text)
3936 {
3937 /* Return some portion of symname. */
3938 new = xmalloc (strlen (symname) + 5);
3939 strcpy (new, symname + (word - sym_text));
3940 }
3941 else
3942 {
3943 /* Return some of SYM_TEXT plus symname. */
3944 new = xmalloc (strlen (symname) + (sym_text - word) + 5);
3945 strncpy (new, word, sym_text - word);
3946 new[sym_text - word] = '\0';
3947 strcat (new, symname);
3948 }
3949
3950 if (return_val_index + 3 > return_val_size)
3951 {
3952 newsize = (return_val_size *= 2) * sizeof (char *);
3953 return_val = (char **) xrealloc ((char *) return_val, newsize);
3954 }
3955 return_val[return_val_index++] = new;
3956 return_val[return_val_index] = NULL;
3957 }
3958 }
3959
3960 /* ObjC: In case we are completing on a selector, look as the msymbol
3961 again and feed all the selectors into the mill. */
3962
3963 static void
3964 completion_list_objc_symbol (struct minimal_symbol *msymbol,
3965 const char *sym_text, int sym_text_len,
3966 const char *text, const char *word)
3967 {
3968 static char *tmp = NULL;
3969 static unsigned int tmplen = 0;
3970
3971 const char *method, *category, *selector;
3972 char *tmp2 = NULL;
3973
3974 method = SYMBOL_NATURAL_NAME (msymbol);
3975
3976 /* Is it a method? */
3977 if ((method[0] != '-') && (method[0] != '+'))
3978 return;
3979
3980 if (sym_text[0] == '[')
3981 /* Complete on shortened method method. */
3982 completion_list_add_name (method + 1, sym_text, sym_text_len, text, word);
3983
3984 while ((strlen (method) + 1) >= tmplen)
3985 {
3986 if (tmplen == 0)
3987 tmplen = 1024;
3988 else
3989 tmplen *= 2;
3990 tmp = xrealloc (tmp, tmplen);
3991 }
3992 selector = strchr (method, ' ');
3993 if (selector != NULL)
3994 selector++;
3995
3996 category = strchr (method, '(');
3997
3998 if ((category != NULL) && (selector != NULL))
3999 {
4000 memcpy (tmp, method, (category - method));
4001 tmp[category - method] = ' ';
4002 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
4003 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
4004 if (sym_text[0] == '[')
4005 completion_list_add_name (tmp + 1, sym_text, sym_text_len, text, word);
4006 }
4007
4008 if (selector != NULL)
4009 {
4010 /* Complete on selector only. */
4011 strcpy (tmp, selector);
4012 tmp2 = strchr (tmp, ']');
4013 if (tmp2 != NULL)
4014 *tmp2 = '\0';
4015
4016 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
4017 }
4018 }
4019
4020 /* Break the non-quoted text based on the characters which are in
4021 symbols. FIXME: This should probably be language-specific. */
4022
4023 static char *
4024 language_search_unquoted_string (char *text, char *p)
4025 {
4026 for (; p > text; --p)
4027 {
4028 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
4029 continue;
4030 else
4031 {
4032 if ((current_language->la_language == language_objc))
4033 {
4034 if (p[-1] == ':') /* Might be part of a method name. */
4035 continue;
4036 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
4037 p -= 2; /* Beginning of a method name. */
4038 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
4039 { /* Might be part of a method name. */
4040 char *t = p;
4041
4042 /* Seeing a ' ' or a '(' is not conclusive evidence
4043 that we are in the middle of a method name. However,
4044 finding "-[" or "+[" should be pretty un-ambiguous.
4045 Unfortunately we have to find it now to decide. */
4046
4047 while (t > text)
4048 if (isalnum (t[-1]) || t[-1] == '_' ||
4049 t[-1] == ' ' || t[-1] == ':' ||
4050 t[-1] == '(' || t[-1] == ')')
4051 --t;
4052 else
4053 break;
4054
4055 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
4056 p = t - 2; /* Method name detected. */
4057 /* Else we leave with p unchanged. */
4058 }
4059 }
4060 break;
4061 }
4062 }
4063 return p;
4064 }
4065
4066 static void
4067 completion_list_add_fields (struct symbol *sym, char *sym_text,
4068 int sym_text_len, char *text, char *word)
4069 {
4070 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4071 {
4072 struct type *t = SYMBOL_TYPE (sym);
4073 enum type_code c = TYPE_CODE (t);
4074 int j;
4075
4076 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
4077 for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++)
4078 if (TYPE_FIELD_NAME (t, j))
4079 completion_list_add_name (TYPE_FIELD_NAME (t, j),
4080 sym_text, sym_text_len, text, word);
4081 }
4082 }
4083
4084 /* Type of the user_data argument passed to add_macro_name or
4085 expand_partial_symbol_name. The contents are simply whatever is
4086 needed by completion_list_add_name. */
4087 struct add_name_data
4088 {
4089 char *sym_text;
4090 int sym_text_len;
4091 char *text;
4092 char *word;
4093 };
4094
4095 /* A callback used with macro_for_each and macro_for_each_in_scope.
4096 This adds a macro's name to the current completion list. */
4097
4098 static void
4099 add_macro_name (const char *name, const struct macro_definition *ignore,
4100 struct macro_source_file *ignore2, int ignore3,
4101 void *user_data)
4102 {
4103 struct add_name_data *datum = (struct add_name_data *) user_data;
4104
4105 completion_list_add_name ((char *) name,
4106 datum->sym_text, datum->sym_text_len,
4107 datum->text, datum->word);
4108 }
4109
4110 /* A callback for expand_partial_symbol_names. */
4111
4112 static int
4113 expand_partial_symbol_name (const char *name, void *user_data)
4114 {
4115 struct add_name_data *datum = (struct add_name_data *) user_data;
4116
4117 return compare_symbol_name (name, datum->sym_text, datum->sym_text_len);
4118 }
4119
4120 char **
4121 default_make_symbol_completion_list_break_on (char *text, char *word,
4122 const char *break_on)
4123 {
4124 /* Problem: All of the symbols have to be copied because readline
4125 frees them. I'm not going to worry about this; hopefully there
4126 won't be that many. */
4127
4128 struct symbol *sym;
4129 struct symtab *s;
4130 struct minimal_symbol *msymbol;
4131 struct objfile *objfile;
4132 struct block *b;
4133 const struct block *surrounding_static_block, *surrounding_global_block;
4134 struct dict_iterator iter;
4135 /* The symbol we are completing on. Points in same buffer as text. */
4136 char *sym_text;
4137 /* Length of sym_text. */
4138 int sym_text_len;
4139 struct add_name_data datum;
4140 struct cleanup *back_to;
4141
4142 /* Now look for the symbol we are supposed to complete on. */
4143 {
4144 char *p;
4145 char quote_found;
4146 char *quote_pos = NULL;
4147
4148 /* First see if this is a quoted string. */
4149 quote_found = '\0';
4150 for (p = text; *p != '\0'; ++p)
4151 {
4152 if (quote_found != '\0')
4153 {
4154 if (*p == quote_found)
4155 /* Found close quote. */
4156 quote_found = '\0';
4157 else if (*p == '\\' && p[1] == quote_found)
4158 /* A backslash followed by the quote character
4159 doesn't end the string. */
4160 ++p;
4161 }
4162 else if (*p == '\'' || *p == '"')
4163 {
4164 quote_found = *p;
4165 quote_pos = p;
4166 }
4167 }
4168 if (quote_found == '\'')
4169 /* A string within single quotes can be a symbol, so complete on it. */
4170 sym_text = quote_pos + 1;
4171 else if (quote_found == '"')
4172 /* A double-quoted string is never a symbol, nor does it make sense
4173 to complete it any other way. */
4174 {
4175 return_val = (char **) xmalloc (sizeof (char *));
4176 return_val[0] = NULL;
4177 return return_val;
4178 }
4179 else
4180 {
4181 /* It is not a quoted string. Break it based on the characters
4182 which are in symbols. */
4183 while (p > text)
4184 {
4185 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0'
4186 || p[-1] == ':' || strchr (break_on, p[-1]) != NULL)
4187 --p;
4188 else
4189 break;
4190 }
4191 sym_text = p;
4192 }
4193 }
4194
4195 sym_text_len = strlen (sym_text);
4196
4197 /* Prepare SYM_TEXT_LEN for compare_symbol_name. */
4198
4199 if (current_language->la_language == language_cplus
4200 || current_language->la_language == language_java
4201 || current_language->la_language == language_fortran)
4202 {
4203 /* These languages may have parameters entered by user but they are never
4204 present in the partial symbol tables. */
4205
4206 const char *cs = memchr (sym_text, '(', sym_text_len);
4207
4208 if (cs)
4209 sym_text_len = cs - sym_text;
4210 }
4211 gdb_assert (sym_text[sym_text_len] == '\0' || sym_text[sym_text_len] == '(');
4212
4213 return_val_size = 100;
4214 return_val_index = 0;
4215 return_val = (char **) xmalloc ((return_val_size + 1) * sizeof (char *));
4216 return_val[0] = NULL;
4217 back_to = make_cleanup (do_free_completion_list, &return_val);
4218
4219 datum.sym_text = sym_text;
4220 datum.sym_text_len = sym_text_len;
4221 datum.text = text;
4222 datum.word = word;
4223
4224 /* Look through the partial symtabs for all symbols which begin
4225 by matching SYM_TEXT. Expand all CUs that you find to the list.
4226 The real names will get added by COMPLETION_LIST_ADD_SYMBOL below. */
4227 expand_partial_symbol_names (expand_partial_symbol_name, &datum);
4228
4229 /* At this point scan through the misc symbol vectors and add each
4230 symbol you find to the list. Eventually we want to ignore
4231 anything that isn't a text symbol (everything else will be
4232 handled by the psymtab code above). */
4233
4234 ALL_MSYMBOLS (objfile, msymbol)
4235 {
4236 QUIT;
4237 COMPLETION_LIST_ADD_SYMBOL (msymbol, sym_text, sym_text_len, text, word);
4238
4239 completion_list_objc_symbol (msymbol, sym_text, sym_text_len, text, word);
4240 }
4241
4242 /* Search upwards from currently selected frame (so that we can
4243 complete on local vars). Also catch fields of types defined in
4244 this places which match our text string. Only complete on types
4245 visible from current context. */
4246
4247 b = get_selected_block (0);
4248 surrounding_static_block = block_static_block (b);
4249 surrounding_global_block = block_global_block (b);
4250 if (surrounding_static_block != NULL)
4251 while (b != surrounding_static_block)
4252 {
4253 QUIT;
4254
4255 ALL_BLOCK_SYMBOLS (b, iter, sym)
4256 {
4257 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text,
4258 word);
4259 completion_list_add_fields (sym, sym_text, sym_text_len, text,
4260 word);
4261 }
4262
4263 /* Stop when we encounter an enclosing function. Do not stop for
4264 non-inlined functions - the locals of the enclosing function
4265 are in scope for a nested function. */
4266 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
4267 break;
4268 b = BLOCK_SUPERBLOCK (b);
4269 }
4270
4271 /* Add fields from the file's types; symbols will be added below. */
4272
4273 if (surrounding_static_block != NULL)
4274 ALL_BLOCK_SYMBOLS (surrounding_static_block, iter, sym)
4275 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
4276
4277 if (surrounding_global_block != NULL)
4278 ALL_BLOCK_SYMBOLS (surrounding_global_block, iter, sym)
4279 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
4280
4281 /* Go through the symtabs and check the externs and statics for
4282 symbols which match. */
4283
4284 ALL_PRIMARY_SYMTABS (objfile, s)
4285 {
4286 QUIT;
4287 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
4288 ALL_BLOCK_SYMBOLS (b, iter, sym)
4289 {
4290 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4291 }
4292 }
4293
4294 ALL_PRIMARY_SYMTABS (objfile, s)
4295 {
4296 QUIT;
4297 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
4298 ALL_BLOCK_SYMBOLS (b, iter, sym)
4299 {
4300 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4301 }
4302 }
4303
4304 if (current_language->la_macro_expansion == macro_expansion_c)
4305 {
4306 struct macro_scope *scope;
4307
4308 /* Add any macros visible in the default scope. Note that this
4309 may yield the occasional wrong result, because an expression
4310 might be evaluated in a scope other than the default. For
4311 example, if the user types "break file:line if <TAB>", the
4312 resulting expression will be evaluated at "file:line" -- but
4313 at there does not seem to be a way to detect this at
4314 completion time. */
4315 scope = default_macro_scope ();
4316 if (scope)
4317 {
4318 macro_for_each_in_scope (scope->file, scope->line,
4319 add_macro_name, &datum);
4320 xfree (scope);
4321 }
4322
4323 /* User-defined macros are always visible. */
4324 macro_for_each (macro_user_macros, add_macro_name, &datum);
4325 }
4326
4327 discard_cleanups (back_to);
4328 return (return_val);
4329 }
4330
4331 char **
4332 default_make_symbol_completion_list (char *text, char *word)
4333 {
4334 return default_make_symbol_completion_list_break_on (text, word, "");
4335 }
4336
4337 /* Return a NULL terminated array of all symbols (regardless of class)
4338 which begin by matching TEXT. If the answer is no symbols, then
4339 the return value is an array which contains only a NULL pointer. */
4340
4341 char **
4342 make_symbol_completion_list (char *text, char *word)
4343 {
4344 return current_language->la_make_symbol_completion_list (text, word);
4345 }
4346
4347 /* Like make_symbol_completion_list, but suitable for use as a
4348 completion function. */
4349
4350 char **
4351 make_symbol_completion_list_fn (struct cmd_list_element *ignore,
4352 char *text, char *word)
4353 {
4354 return make_symbol_completion_list (text, word);
4355 }
4356
4357 /* Like make_symbol_completion_list, but returns a list of symbols
4358 defined in a source file FILE. */
4359
4360 char **
4361 make_file_symbol_completion_list (char *text, char *word, char *srcfile)
4362 {
4363 struct symbol *sym;
4364 struct symtab *s;
4365 struct block *b;
4366 struct dict_iterator iter;
4367 /* The symbol we are completing on. Points in same buffer as text. */
4368 char *sym_text;
4369 /* Length of sym_text. */
4370 int sym_text_len;
4371
4372 /* Now look for the symbol we are supposed to complete on.
4373 FIXME: This should be language-specific. */
4374 {
4375 char *p;
4376 char quote_found;
4377 char *quote_pos = NULL;
4378
4379 /* First see if this is a quoted string. */
4380 quote_found = '\0';
4381 for (p = text; *p != '\0'; ++p)
4382 {
4383 if (quote_found != '\0')
4384 {
4385 if (*p == quote_found)
4386 /* Found close quote. */
4387 quote_found = '\0';
4388 else if (*p == '\\' && p[1] == quote_found)
4389 /* A backslash followed by the quote character
4390 doesn't end the string. */
4391 ++p;
4392 }
4393 else if (*p == '\'' || *p == '"')
4394 {
4395 quote_found = *p;
4396 quote_pos = p;
4397 }
4398 }
4399 if (quote_found == '\'')
4400 /* A string within single quotes can be a symbol, so complete on it. */
4401 sym_text = quote_pos + 1;
4402 else if (quote_found == '"')
4403 /* A double-quoted string is never a symbol, nor does it make sense
4404 to complete it any other way. */
4405 {
4406 return_val = (char **) xmalloc (sizeof (char *));
4407 return_val[0] = NULL;
4408 return return_val;
4409 }
4410 else
4411 {
4412 /* Not a quoted string. */
4413 sym_text = language_search_unquoted_string (text, p);
4414 }
4415 }
4416
4417 sym_text_len = strlen (sym_text);
4418
4419 return_val_size = 10;
4420 return_val_index = 0;
4421 return_val = (char **) xmalloc ((return_val_size + 1) * sizeof (char *));
4422 return_val[0] = NULL;
4423
4424 /* Find the symtab for SRCFILE (this loads it if it was not yet read
4425 in). */
4426 s = lookup_symtab (srcfile);
4427 if (s == NULL)
4428 {
4429 /* Maybe they typed the file with leading directories, while the
4430 symbol tables record only its basename. */
4431 const char *tail = lbasename (srcfile);
4432
4433 if (tail > srcfile)
4434 s = lookup_symtab (tail);
4435 }
4436
4437 /* If we have no symtab for that file, return an empty list. */
4438 if (s == NULL)
4439 return (return_val);
4440
4441 /* Go through this symtab and check the externs and statics for
4442 symbols which match. */
4443
4444 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
4445 ALL_BLOCK_SYMBOLS (b, iter, sym)
4446 {
4447 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4448 }
4449
4450 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
4451 ALL_BLOCK_SYMBOLS (b, iter, sym)
4452 {
4453 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4454 }
4455
4456 return (return_val);
4457 }
4458
4459 /* A helper function for make_source_files_completion_list. It adds
4460 another file name to a list of possible completions, growing the
4461 list as necessary. */
4462
4463 static void
4464 add_filename_to_list (const char *fname, char *text, char *word,
4465 char ***list, int *list_used, int *list_alloced)
4466 {
4467 char *new;
4468 size_t fnlen = strlen (fname);
4469
4470 if (*list_used + 1 >= *list_alloced)
4471 {
4472 *list_alloced *= 2;
4473 *list = (char **) xrealloc ((char *) *list,
4474 *list_alloced * sizeof (char *));
4475 }
4476
4477 if (word == text)
4478 {
4479 /* Return exactly fname. */
4480 new = xmalloc (fnlen + 5);
4481 strcpy (new, fname);
4482 }
4483 else if (word > text)
4484 {
4485 /* Return some portion of fname. */
4486 new = xmalloc (fnlen + 5);
4487 strcpy (new, fname + (word - text));
4488 }
4489 else
4490 {
4491 /* Return some of TEXT plus fname. */
4492 new = xmalloc (fnlen + (text - word) + 5);
4493 strncpy (new, word, text - word);
4494 new[text - word] = '\0';
4495 strcat (new, fname);
4496 }
4497 (*list)[*list_used] = new;
4498 (*list)[++*list_used] = NULL;
4499 }
4500
4501 static int
4502 not_interesting_fname (const char *fname)
4503 {
4504 static const char *illegal_aliens[] = {
4505 "_globals_", /* inserted by coff_symtab_read */
4506 NULL
4507 };
4508 int i;
4509
4510 for (i = 0; illegal_aliens[i]; i++)
4511 {
4512 if (filename_cmp (fname, illegal_aliens[i]) == 0)
4513 return 1;
4514 }
4515 return 0;
4516 }
4517
4518 /* An object of this type is passed as the user_data argument to
4519 map_partial_symbol_filenames. */
4520 struct add_partial_filename_data
4521 {
4522 int *first;
4523 char *text;
4524 char *word;
4525 int text_len;
4526 char ***list;
4527 int *list_used;
4528 int *list_alloced;
4529 };
4530
4531 /* A callback for map_partial_symbol_filenames. */
4532
4533 static void
4534 maybe_add_partial_symtab_filename (const char *filename, const char *fullname,
4535 void *user_data)
4536 {
4537 struct add_partial_filename_data *data = user_data;
4538
4539 if (not_interesting_fname (filename))
4540 return;
4541 if (!filename_seen (filename, 1, data->first)
4542 && filename_ncmp (filename, data->text, data->text_len) == 0)
4543 {
4544 /* This file matches for a completion; add it to the
4545 current list of matches. */
4546 add_filename_to_list (filename, data->text, data->word,
4547 data->list, data->list_used, data->list_alloced);
4548 }
4549 else
4550 {
4551 const char *base_name = lbasename (filename);
4552
4553 if (base_name != filename
4554 && !filename_seen (base_name, 1, data->first)
4555 && filename_ncmp (base_name, data->text, data->text_len) == 0)
4556 add_filename_to_list (base_name, data->text, data->word,
4557 data->list, data->list_used, data->list_alloced);
4558 }
4559 }
4560
4561 /* Return a NULL terminated array of all source files whose names
4562 begin with matching TEXT. The file names are looked up in the
4563 symbol tables of this program. If the answer is no matchess, then
4564 the return value is an array which contains only a NULL pointer. */
4565
4566 char **
4567 make_source_files_completion_list (char *text, char *word)
4568 {
4569 struct symtab *s;
4570 struct objfile *objfile;
4571 int first = 1;
4572 int list_alloced = 1;
4573 int list_used = 0;
4574 size_t text_len = strlen (text);
4575 char **list = (char **) xmalloc (list_alloced * sizeof (char *));
4576 const char *base_name;
4577 struct add_partial_filename_data datum;
4578 struct cleanup *back_to;
4579
4580 list[0] = NULL;
4581
4582 if (!have_full_symbols () && !have_partial_symbols ())
4583 return list;
4584
4585 back_to = make_cleanup (do_free_completion_list, &list);
4586
4587 ALL_SYMTABS (objfile, s)
4588 {
4589 if (not_interesting_fname (s->filename))
4590 continue;
4591 if (!filename_seen (s->filename, 1, &first)
4592 && filename_ncmp (s->filename, text, text_len) == 0)
4593 {
4594 /* This file matches for a completion; add it to the current
4595 list of matches. */
4596 add_filename_to_list (s->filename, text, word,
4597 &list, &list_used, &list_alloced);
4598 }
4599 else
4600 {
4601 /* NOTE: We allow the user to type a base name when the
4602 debug info records leading directories, but not the other
4603 way around. This is what subroutines of breakpoint
4604 command do when they parse file names. */
4605 base_name = lbasename (s->filename);
4606 if (base_name != s->filename
4607 && !filename_seen (base_name, 1, &first)
4608 && filename_ncmp (base_name, text, text_len) == 0)
4609 add_filename_to_list (base_name, text, word,
4610 &list, &list_used, &list_alloced);
4611 }
4612 }
4613
4614 datum.first = &first;
4615 datum.text = text;
4616 datum.word = word;
4617 datum.text_len = text_len;
4618 datum.list = &list;
4619 datum.list_used = &list_used;
4620 datum.list_alloced = &list_alloced;
4621 map_partial_symbol_filenames (maybe_add_partial_symtab_filename, &datum,
4622 0 /*need_fullname*/);
4623 discard_cleanups (back_to);
4624
4625 return list;
4626 }
4627
4628 /* Determine if PC is in the prologue of a function. The prologue is the area
4629 between the first instruction of a function, and the first executable line.
4630 Returns 1 if PC *might* be in prologue, 0 if definately *not* in prologue.
4631
4632 If non-zero, func_start is where we think the prologue starts, possibly
4633 by previous examination of symbol table information. */
4634
4635 int
4636 in_prologue (struct gdbarch *gdbarch, CORE_ADDR pc, CORE_ADDR func_start)
4637 {
4638 struct symtab_and_line sal;
4639 CORE_ADDR func_addr, func_end;
4640
4641 /* We have several sources of information we can consult to figure
4642 this out.
4643 - Compilers usually emit line number info that marks the prologue
4644 as its own "source line". So the ending address of that "line"
4645 is the end of the prologue. If available, this is the most
4646 reliable method.
4647 - The minimal symbols and partial symbols, which can usually tell
4648 us the starting and ending addresses of a function.
4649 - If we know the function's start address, we can call the
4650 architecture-defined gdbarch_skip_prologue function to analyze the
4651 instruction stream and guess where the prologue ends.
4652 - Our `func_start' argument; if non-zero, this is the caller's
4653 best guess as to the function's entry point. At the time of
4654 this writing, handle_inferior_event doesn't get this right, so
4655 it should be our last resort. */
4656
4657 /* Consult the partial symbol table, to find which function
4658 the PC is in. */
4659 if (! find_pc_partial_function (pc, NULL, &func_addr, &func_end))
4660 {
4661 CORE_ADDR prologue_end;
4662
4663 /* We don't even have minsym information, so fall back to using
4664 func_start, if given. */
4665 if (! func_start)
4666 return 1; /* We *might* be in a prologue. */
4667
4668 prologue_end = gdbarch_skip_prologue (gdbarch, func_start);
4669
4670 return func_start <= pc && pc < prologue_end;
4671 }
4672
4673 /* If we have line number information for the function, that's
4674 usually pretty reliable. */
4675 sal = find_pc_line (func_addr, 0);
4676
4677 /* Now sal describes the source line at the function's entry point,
4678 which (by convention) is the prologue. The end of that "line",
4679 sal.end, is the end of the prologue.
4680
4681 Note that, for functions whose source code is all on a single
4682 line, the line number information doesn't always end up this way.
4683 So we must verify that our purported end-of-prologue address is
4684 *within* the function, not at its start or end. */
4685 if (sal.line == 0
4686 || sal.end <= func_addr
4687 || func_end <= sal.end)
4688 {
4689 /* We don't have any good line number info, so use the minsym
4690 information, together with the architecture-specific prologue
4691 scanning code. */
4692 CORE_ADDR prologue_end = gdbarch_skip_prologue (gdbarch, func_addr);
4693
4694 return func_addr <= pc && pc < prologue_end;
4695 }
4696
4697 /* We have line number info, and it looks good. */
4698 return func_addr <= pc && pc < sal.end;
4699 }
4700
4701 /* Given PC at the function's start address, attempt to find the
4702 prologue end using SAL information. Return zero if the skip fails.
4703
4704 A non-optimized prologue traditionally has one SAL for the function
4705 and a second for the function body. A single line function has
4706 them both pointing at the same line.
4707
4708 An optimized prologue is similar but the prologue may contain
4709 instructions (SALs) from the instruction body. Need to skip those
4710 while not getting into the function body.
4711
4712 The functions end point and an increasing SAL line are used as
4713 indicators of the prologue's endpoint.
4714
4715 This code is based on the function refine_prologue_limit
4716 (found in ia64). */
4717
4718 CORE_ADDR
4719 skip_prologue_using_sal (struct gdbarch *gdbarch, CORE_ADDR func_addr)
4720 {
4721 struct symtab_and_line prologue_sal;
4722 CORE_ADDR start_pc;
4723 CORE_ADDR end_pc;
4724 struct block *bl;
4725
4726 /* Get an initial range for the function. */
4727 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
4728 start_pc += gdbarch_deprecated_function_start_offset (gdbarch);
4729
4730 prologue_sal = find_pc_line (start_pc, 0);
4731 if (prologue_sal.line != 0)
4732 {
4733 /* For languages other than assembly, treat two consecutive line
4734 entries at the same address as a zero-instruction prologue.
4735 The GNU assembler emits separate line notes for each instruction
4736 in a multi-instruction macro, but compilers generally will not
4737 do this. */
4738 if (prologue_sal.symtab->language != language_asm)
4739 {
4740 struct linetable *linetable = LINETABLE (prologue_sal.symtab);
4741 int idx = 0;
4742
4743 /* Skip any earlier lines, and any end-of-sequence marker
4744 from a previous function. */
4745 while (linetable->item[idx].pc != prologue_sal.pc
4746 || linetable->item[idx].line == 0)
4747 idx++;
4748
4749 if (idx+1 < linetable->nitems
4750 && linetable->item[idx+1].line != 0
4751 && linetable->item[idx+1].pc == start_pc)
4752 return start_pc;
4753 }
4754
4755 /* If there is only one sal that covers the entire function,
4756 then it is probably a single line function, like
4757 "foo(){}". */
4758 if (prologue_sal.end >= end_pc)
4759 return 0;
4760
4761 while (prologue_sal.end < end_pc)
4762 {
4763 struct symtab_and_line sal;
4764
4765 sal = find_pc_line (prologue_sal.end, 0);
4766 if (sal.line == 0)
4767 break;
4768 /* Assume that a consecutive SAL for the same (or larger)
4769 line mark the prologue -> body transition. */
4770 if (sal.line >= prologue_sal.line)
4771 break;
4772
4773 /* The line number is smaller. Check that it's from the
4774 same function, not something inlined. If it's inlined,
4775 then there is no point comparing the line numbers. */
4776 bl = block_for_pc (prologue_sal.end);
4777 while (bl)
4778 {
4779 if (block_inlined_p (bl))
4780 break;
4781 if (BLOCK_FUNCTION (bl))
4782 {
4783 bl = NULL;
4784 break;
4785 }
4786 bl = BLOCK_SUPERBLOCK (bl);
4787 }
4788 if (bl != NULL)
4789 break;
4790
4791 /* The case in which compiler's optimizer/scheduler has
4792 moved instructions into the prologue. We look ahead in
4793 the function looking for address ranges whose
4794 corresponding line number is less the first one that we
4795 found for the function. This is more conservative then
4796 refine_prologue_limit which scans a large number of SALs
4797 looking for any in the prologue. */
4798 prologue_sal = sal;
4799 }
4800 }
4801
4802 if (prologue_sal.end < end_pc)
4803 /* Return the end of this line, or zero if we could not find a
4804 line. */
4805 return prologue_sal.end;
4806 else
4807 /* Don't return END_PC, which is past the end of the function. */
4808 return prologue_sal.pc;
4809 }
4810 \f
4811 struct symtabs_and_lines
4812 decode_line_spec (char *string, int flags)
4813 {
4814 struct symtabs_and_lines sals;
4815 struct symtab_and_line cursal;
4816
4817 if (string == 0)
4818 error (_("Empty line specification."));
4819
4820 /* We use whatever is set as the current source line. We do not try
4821 and get a default or it will recursively call us! */
4822 cursal = get_current_source_symtab_and_line ();
4823
4824 sals = decode_line_1 (&string, flags,
4825 cursal.symtab, cursal.line);
4826
4827 if (*string)
4828 error (_("Junk at end of line specification: %s"), string);
4829 return sals;
4830 }
4831
4832 /* Track MAIN */
4833 static char *name_of_main;
4834 enum language language_of_main = language_unknown;
4835
4836 void
4837 set_main_name (const char *name)
4838 {
4839 if (name_of_main != NULL)
4840 {
4841 xfree (name_of_main);
4842 name_of_main = NULL;
4843 language_of_main = language_unknown;
4844 }
4845 if (name != NULL)
4846 {
4847 name_of_main = xstrdup (name);
4848 language_of_main = language_unknown;
4849 }
4850 }
4851
4852 /* Deduce the name of the main procedure, and set NAME_OF_MAIN
4853 accordingly. */
4854
4855 static void
4856 find_main_name (void)
4857 {
4858 const char *new_main_name;
4859
4860 /* Try to see if the main procedure is in Ada. */
4861 /* FIXME: brobecker/2005-03-07: Another way of doing this would
4862 be to add a new method in the language vector, and call this
4863 method for each language until one of them returns a non-empty
4864 name. This would allow us to remove this hard-coded call to
4865 an Ada function. It is not clear that this is a better approach
4866 at this point, because all methods need to be written in a way
4867 such that false positives never be returned. For instance, it is
4868 important that a method does not return a wrong name for the main
4869 procedure if the main procedure is actually written in a different
4870 language. It is easy to guaranty this with Ada, since we use a
4871 special symbol generated only when the main in Ada to find the name
4872 of the main procedure. It is difficult however to see how this can
4873 be guarantied for languages such as C, for instance. This suggests
4874 that order of call for these methods becomes important, which means
4875 a more complicated approach. */
4876 new_main_name = ada_main_name ();
4877 if (new_main_name != NULL)
4878 {
4879 set_main_name (new_main_name);
4880 return;
4881 }
4882
4883 new_main_name = go_main_name ();
4884 if (new_main_name != NULL)
4885 {
4886 set_main_name (new_main_name);
4887 return;
4888 }
4889
4890 new_main_name = pascal_main_name ();
4891 if (new_main_name != NULL)
4892 {
4893 set_main_name (new_main_name);
4894 return;
4895 }
4896
4897 /* The languages above didn't identify the name of the main procedure.
4898 Fallback to "main". */
4899 set_main_name ("main");
4900 }
4901
4902 char *
4903 main_name (void)
4904 {
4905 if (name_of_main == NULL)
4906 find_main_name ();
4907
4908 return name_of_main;
4909 }
4910
4911 /* Handle ``executable_changed'' events for the symtab module. */
4912
4913 static void
4914 symtab_observer_executable_changed (void)
4915 {
4916 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
4917 set_main_name (NULL);
4918 }
4919
4920 /* Return 1 if the supplied producer string matches the ARM RealView
4921 compiler (armcc). */
4922
4923 int
4924 producer_is_realview (const char *producer)
4925 {
4926 static const char *const arm_idents[] = {
4927 "ARM C Compiler, ADS",
4928 "Thumb C Compiler, ADS",
4929 "ARM C++ Compiler, ADS",
4930 "Thumb C++ Compiler, ADS",
4931 "ARM/Thumb C/C++ Compiler, RVCT",
4932 "ARM C/C++ Compiler, RVCT"
4933 };
4934 int i;
4935
4936 if (producer == NULL)
4937 return 0;
4938
4939 for (i = 0; i < ARRAY_SIZE (arm_idents); i++)
4940 if (strncmp (producer, arm_idents[i], strlen (arm_idents[i])) == 0)
4941 return 1;
4942
4943 return 0;
4944 }
4945
4946 void
4947 _initialize_symtab (void)
4948 {
4949 add_info ("variables", variables_info, _("\
4950 All global and static variable names, or those matching REGEXP."));
4951 if (dbx_commands)
4952 add_com ("whereis", class_info, variables_info, _("\
4953 All global and static variable names, or those matching REGEXP."));
4954
4955 add_info ("functions", functions_info,
4956 _("All function names, or those matching REGEXP."));
4957
4958 /* FIXME: This command has at least the following problems:
4959 1. It prints builtin types (in a very strange and confusing fashion).
4960 2. It doesn't print right, e.g. with
4961 typedef struct foo *FOO
4962 type_print prints "FOO" when we want to make it (in this situation)
4963 print "struct foo *".
4964 I also think "ptype" or "whatis" is more likely to be useful (but if
4965 there is much disagreement "info types" can be fixed). */
4966 add_info ("types", types_info,
4967 _("All type names, or those matching REGEXP."));
4968
4969 add_info ("sources", sources_info,
4970 _("Source files in the program."));
4971
4972 add_com ("rbreak", class_breakpoint, rbreak_command,
4973 _("Set a breakpoint for all functions matching REGEXP."));
4974
4975 if (xdb_commands)
4976 {
4977 add_com ("lf", class_info, sources_info,
4978 _("Source files in the program"));
4979 add_com ("lg", class_info, variables_info, _("\
4980 All global and static variable names, or those matching REGEXP."));
4981 }
4982
4983 add_setshow_enum_cmd ("multiple-symbols", no_class,
4984 multiple_symbols_modes, &multiple_symbols_mode,
4985 _("\
4986 Set the debugger behavior when more than one symbol are possible matches\n\
4987 in an expression."), _("\
4988 Show how the debugger handles ambiguities in expressions."), _("\
4989 Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
4990 NULL, NULL, &setlist, &showlist);
4991
4992 add_setshow_boolean_cmd ("basenames-may-differ", class_obscure,
4993 &basenames_may_differ, _("\
4994 Set whether a source file may have multiple base names."), _("\
4995 Show whether a source file may have multiple base names."), _("\
4996 (A \"base name\" is the name of a file with the directory part removed.\n\
4997 Example: The base name of \"/home/user/hello.c\" is \"hello.c\".)\n\
4998 If set, GDB will canonicalize file names (e.g., expand symlinks)\n\
4999 before comparing them. Canonicalization is an expensive operation,\n\
5000 but it allows the same file be known by more than one base name.\n\
5001 If not set (the default), all source files are assumed to have just\n\
5002 one base name, and gdb will do file name comparisons more efficiently."),
5003 NULL, NULL,
5004 &setlist, &showlist);
5005
5006 observer_attach_executable_changed (symtab_observer_executable_changed);
5007 }
This page took 0.219175 seconds and 4 git commands to generate.