Use ui_file_as_string throughout more
[deliverable/binutils-gdb.git] / gdb / symtab.c
1 /* Symbol table lookup for the GNU debugger, GDB.
2
3 Copyright (C) 1986-2016 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "gdbcore.h"
24 #include "frame.h"
25 #include "target.h"
26 #include "value.h"
27 #include "symfile.h"
28 #include "objfiles.h"
29 #include "gdbcmd.h"
30 #include "gdb_regex.h"
31 #include "expression.h"
32 #include "language.h"
33 #include "demangle.h"
34 #include "inferior.h"
35 #include "source.h"
36 #include "filenames.h" /* for FILENAME_CMP */
37 #include "objc-lang.h"
38 #include "d-lang.h"
39 #include "ada-lang.h"
40 #include "go-lang.h"
41 #include "p-lang.h"
42 #include "addrmap.h"
43 #include "cli/cli-utils.h"
44 #include "fnmatch.h"
45 #include "hashtab.h"
46
47 #include "gdb_obstack.h"
48 #include "block.h"
49 #include "dictionary.h"
50
51 #include <sys/types.h>
52 #include <fcntl.h>
53 #include <sys/stat.h>
54 #include <ctype.h>
55 #include "cp-abi.h"
56 #include "cp-support.h"
57 #include "observer.h"
58 #include "solist.h"
59 #include "macrotab.h"
60 #include "macroscope.h"
61
62 #include "parser-defs.h"
63 #include "completer.h"
64
65 /* Forward declarations for local functions. */
66
67 static void rbreak_command (char *, int);
68
69 static int find_line_common (struct linetable *, int, int *, int);
70
71 static struct block_symbol
72 lookup_symbol_aux (const char *name,
73 const struct block *block,
74 const domain_enum domain,
75 enum language language,
76 struct field_of_this_result *);
77
78 static
79 struct block_symbol lookup_local_symbol (const char *name,
80 const struct block *block,
81 const domain_enum domain,
82 enum language language);
83
84 static struct block_symbol
85 lookup_symbol_in_objfile (struct objfile *objfile, int block_index,
86 const char *name, const domain_enum domain);
87
88 /* See symtab.h. */
89 const struct block_symbol null_block_symbol = { NULL, NULL };
90
91 extern initialize_file_ftype _initialize_symtab;
92
93 /* Program space key for finding name and language of "main". */
94
95 static const struct program_space_data *main_progspace_key;
96
97 /* Type of the data stored on the program space. */
98
99 struct main_info
100 {
101 /* Name of "main". */
102
103 char *name_of_main;
104
105 /* Language of "main". */
106
107 enum language language_of_main;
108 };
109
110 /* Program space key for finding its symbol cache. */
111
112 static const struct program_space_data *symbol_cache_key;
113
114 /* The default symbol cache size.
115 There is no extra cpu cost for large N (except when flushing the cache,
116 which is rare). The value here is just a first attempt. A better default
117 value may be higher or lower. A prime number can make up for a bad hash
118 computation, so that's why the number is what it is. */
119 #define DEFAULT_SYMBOL_CACHE_SIZE 1021
120
121 /* The maximum symbol cache size.
122 There's no method to the decision of what value to use here, other than
123 there's no point in allowing a user typo to make gdb consume all memory. */
124 #define MAX_SYMBOL_CACHE_SIZE (1024*1024)
125
126 /* symbol_cache_lookup returns this if a previous lookup failed to find the
127 symbol in any objfile. */
128 #define SYMBOL_LOOKUP_FAILED \
129 ((struct block_symbol) {(struct symbol *) 1, NULL})
130 #define SYMBOL_LOOKUP_FAILED_P(SIB) (SIB.symbol == (struct symbol *) 1)
131
132 /* Recording lookups that don't find the symbol is just as important, if not
133 more so, than recording found symbols. */
134
135 enum symbol_cache_slot_state
136 {
137 SYMBOL_SLOT_UNUSED,
138 SYMBOL_SLOT_NOT_FOUND,
139 SYMBOL_SLOT_FOUND
140 };
141
142 struct symbol_cache_slot
143 {
144 enum symbol_cache_slot_state state;
145
146 /* The objfile that was current when the symbol was looked up.
147 This is only needed for global blocks, but for simplicity's sake
148 we allocate the space for both. If data shows the extra space used
149 for static blocks is a problem, we can split things up then.
150
151 Global blocks need cache lookup to include the objfile context because
152 we need to account for gdbarch_iterate_over_objfiles_in_search_order
153 which can traverse objfiles in, effectively, any order, depending on
154 the current objfile, thus affecting which symbol is found. Normally,
155 only the current objfile is searched first, and then the rest are
156 searched in recorded order; but putting cache lookup inside
157 gdbarch_iterate_over_objfiles_in_search_order would be awkward.
158 Instead we just make the current objfile part of the context of
159 cache lookup. This means we can record the same symbol multiple times,
160 each with a different "current objfile" that was in effect when the
161 lookup was saved in the cache, but cache space is pretty cheap. */
162 const struct objfile *objfile_context;
163
164 union
165 {
166 struct block_symbol found;
167 struct
168 {
169 char *name;
170 domain_enum domain;
171 } not_found;
172 } value;
173 };
174
175 /* Symbols don't specify global vs static block.
176 So keep them in separate caches. */
177
178 struct block_symbol_cache
179 {
180 unsigned int hits;
181 unsigned int misses;
182 unsigned int collisions;
183
184 /* SYMBOLS is a variable length array of this size.
185 One can imagine that in general one cache (global/static) should be a
186 fraction of the size of the other, but there's no data at the moment
187 on which to decide. */
188 unsigned int size;
189
190 struct symbol_cache_slot symbols[1];
191 };
192
193 /* The symbol cache.
194
195 Searching for symbols in the static and global blocks over multiple objfiles
196 again and again can be slow, as can searching very big objfiles. This is a
197 simple cache to improve symbol lookup performance, which is critical to
198 overall gdb performance.
199
200 Symbols are hashed on the name, its domain, and block.
201 They are also hashed on their objfile for objfile-specific lookups. */
202
203 struct symbol_cache
204 {
205 struct block_symbol_cache *global_symbols;
206 struct block_symbol_cache *static_symbols;
207 };
208
209 /* When non-zero, print debugging messages related to symtab creation. */
210 unsigned int symtab_create_debug = 0;
211
212 /* When non-zero, print debugging messages related to symbol lookup. */
213 unsigned int symbol_lookup_debug = 0;
214
215 /* The size of the cache is staged here. */
216 static unsigned int new_symbol_cache_size = DEFAULT_SYMBOL_CACHE_SIZE;
217
218 /* The current value of the symbol cache size.
219 This is saved so that if the user enters a value too big we can restore
220 the original value from here. */
221 static unsigned int symbol_cache_size = DEFAULT_SYMBOL_CACHE_SIZE;
222
223 /* Non-zero if a file may be known by two different basenames.
224 This is the uncommon case, and significantly slows down gdb.
225 Default set to "off" to not slow down the common case. */
226 int basenames_may_differ = 0;
227
228 /* Allow the user to configure the debugger behavior with respect
229 to multiple-choice menus when more than one symbol matches during
230 a symbol lookup. */
231
232 const char multiple_symbols_ask[] = "ask";
233 const char multiple_symbols_all[] = "all";
234 const char multiple_symbols_cancel[] = "cancel";
235 static const char *const multiple_symbols_modes[] =
236 {
237 multiple_symbols_ask,
238 multiple_symbols_all,
239 multiple_symbols_cancel,
240 NULL
241 };
242 static const char *multiple_symbols_mode = multiple_symbols_all;
243
244 /* Read-only accessor to AUTO_SELECT_MODE. */
245
246 const char *
247 multiple_symbols_select_mode (void)
248 {
249 return multiple_symbols_mode;
250 }
251
252 /* Return the name of a domain_enum. */
253
254 const char *
255 domain_name (domain_enum e)
256 {
257 switch (e)
258 {
259 case UNDEF_DOMAIN: return "UNDEF_DOMAIN";
260 case VAR_DOMAIN: return "VAR_DOMAIN";
261 case STRUCT_DOMAIN: return "STRUCT_DOMAIN";
262 case MODULE_DOMAIN: return "MODULE_DOMAIN";
263 case LABEL_DOMAIN: return "LABEL_DOMAIN";
264 case COMMON_BLOCK_DOMAIN: return "COMMON_BLOCK_DOMAIN";
265 default: gdb_assert_not_reached ("bad domain_enum");
266 }
267 }
268
269 /* Return the name of a search_domain . */
270
271 const char *
272 search_domain_name (enum search_domain e)
273 {
274 switch (e)
275 {
276 case VARIABLES_DOMAIN: return "VARIABLES_DOMAIN";
277 case FUNCTIONS_DOMAIN: return "FUNCTIONS_DOMAIN";
278 case TYPES_DOMAIN: return "TYPES_DOMAIN";
279 case ALL_DOMAIN: return "ALL_DOMAIN";
280 default: gdb_assert_not_reached ("bad search_domain");
281 }
282 }
283
284 /* See symtab.h. */
285
286 struct symtab *
287 compunit_primary_filetab (const struct compunit_symtab *cust)
288 {
289 gdb_assert (COMPUNIT_FILETABS (cust) != NULL);
290
291 /* The primary file symtab is the first one in the list. */
292 return COMPUNIT_FILETABS (cust);
293 }
294
295 /* See symtab.h. */
296
297 enum language
298 compunit_language (const struct compunit_symtab *cust)
299 {
300 struct symtab *symtab = compunit_primary_filetab (cust);
301
302 /* The language of the compunit symtab is the language of its primary
303 source file. */
304 return SYMTAB_LANGUAGE (symtab);
305 }
306
307 /* See whether FILENAME matches SEARCH_NAME using the rule that we
308 advertise to the user. (The manual's description of linespecs
309 describes what we advertise). Returns true if they match, false
310 otherwise. */
311
312 int
313 compare_filenames_for_search (const char *filename, const char *search_name)
314 {
315 int len = strlen (filename);
316 size_t search_len = strlen (search_name);
317
318 if (len < search_len)
319 return 0;
320
321 /* The tail of FILENAME must match. */
322 if (FILENAME_CMP (filename + len - search_len, search_name) != 0)
323 return 0;
324
325 /* Either the names must completely match, or the character
326 preceding the trailing SEARCH_NAME segment of FILENAME must be a
327 directory separator.
328
329 The check !IS_ABSOLUTE_PATH ensures SEARCH_NAME "/dir/file.c"
330 cannot match FILENAME "/path//dir/file.c" - as user has requested
331 absolute path. The sama applies for "c:\file.c" possibly
332 incorrectly hypothetically matching "d:\dir\c:\file.c".
333
334 The HAS_DRIVE_SPEC purpose is to make FILENAME "c:file.c"
335 compatible with SEARCH_NAME "file.c". In such case a compiler had
336 to put the "c:file.c" name into debug info. Such compatibility
337 works only on GDB built for DOS host. */
338 return (len == search_len
339 || (!IS_ABSOLUTE_PATH (search_name)
340 && IS_DIR_SEPARATOR (filename[len - search_len - 1]))
341 || (HAS_DRIVE_SPEC (filename)
342 && STRIP_DRIVE_SPEC (filename) == &filename[len - search_len]));
343 }
344
345 /* Same as compare_filenames_for_search, but for glob-style patterns.
346 Heads up on the order of the arguments. They match the order of
347 compare_filenames_for_search, but it's the opposite of the order of
348 arguments to gdb_filename_fnmatch. */
349
350 int
351 compare_glob_filenames_for_search (const char *filename,
352 const char *search_name)
353 {
354 /* We rely on the property of glob-style patterns with FNM_FILE_NAME that
355 all /s have to be explicitly specified. */
356 int file_path_elements = count_path_elements (filename);
357 int search_path_elements = count_path_elements (search_name);
358
359 if (search_path_elements > file_path_elements)
360 return 0;
361
362 if (IS_ABSOLUTE_PATH (search_name))
363 {
364 return (search_path_elements == file_path_elements
365 && gdb_filename_fnmatch (search_name, filename,
366 FNM_FILE_NAME | FNM_NOESCAPE) == 0);
367 }
368
369 {
370 const char *file_to_compare
371 = strip_leading_path_elements (filename,
372 file_path_elements - search_path_elements);
373
374 return gdb_filename_fnmatch (search_name, file_to_compare,
375 FNM_FILE_NAME | FNM_NOESCAPE) == 0;
376 }
377 }
378
379 /* Check for a symtab of a specific name by searching some symtabs.
380 This is a helper function for callbacks of iterate_over_symtabs.
381
382 If NAME is not absolute, then REAL_PATH is NULL
383 If NAME is absolute, then REAL_PATH is the gdb_realpath form of NAME.
384
385 The return value, NAME, REAL_PATH, CALLBACK, and DATA
386 are identical to the `map_symtabs_matching_filename' method of
387 quick_symbol_functions.
388
389 FIRST and AFTER_LAST indicate the range of compunit symtabs to search.
390 Each symtab within the specified compunit symtab is also searched.
391 AFTER_LAST is one past the last compunit symtab to search; NULL means to
392 search until the end of the list. */
393
394 int
395 iterate_over_some_symtabs (const char *name,
396 const char *real_path,
397 int (*callback) (struct symtab *symtab,
398 void *data),
399 void *data,
400 struct compunit_symtab *first,
401 struct compunit_symtab *after_last)
402 {
403 struct compunit_symtab *cust;
404 struct symtab *s;
405 const char* base_name = lbasename (name);
406
407 for (cust = first; cust != NULL && cust != after_last; cust = cust->next)
408 {
409 ALL_COMPUNIT_FILETABS (cust, s)
410 {
411 if (compare_filenames_for_search (s->filename, name))
412 {
413 if (callback (s, data))
414 return 1;
415 continue;
416 }
417
418 /* Before we invoke realpath, which can get expensive when many
419 files are involved, do a quick comparison of the basenames. */
420 if (! basenames_may_differ
421 && FILENAME_CMP (base_name, lbasename (s->filename)) != 0)
422 continue;
423
424 if (compare_filenames_for_search (symtab_to_fullname (s), name))
425 {
426 if (callback (s, data))
427 return 1;
428 continue;
429 }
430
431 /* If the user gave us an absolute path, try to find the file in
432 this symtab and use its absolute path. */
433 if (real_path != NULL)
434 {
435 const char *fullname = symtab_to_fullname (s);
436
437 gdb_assert (IS_ABSOLUTE_PATH (real_path));
438 gdb_assert (IS_ABSOLUTE_PATH (name));
439 if (FILENAME_CMP (real_path, fullname) == 0)
440 {
441 if (callback (s, data))
442 return 1;
443 continue;
444 }
445 }
446 }
447 }
448
449 return 0;
450 }
451
452 /* Check for a symtab of a specific name; first in symtabs, then in
453 psymtabs. *If* there is no '/' in the name, a match after a '/'
454 in the symtab filename will also work.
455
456 Calls CALLBACK with each symtab that is found and with the supplied
457 DATA. If CALLBACK returns true, the search stops. */
458
459 void
460 iterate_over_symtabs (const char *name,
461 int (*callback) (struct symtab *symtab,
462 void *data),
463 void *data)
464 {
465 struct objfile *objfile;
466 char *real_path = NULL;
467 struct cleanup *cleanups = make_cleanup (null_cleanup, NULL);
468
469 /* Here we are interested in canonicalizing an absolute path, not
470 absolutizing a relative path. */
471 if (IS_ABSOLUTE_PATH (name))
472 {
473 real_path = gdb_realpath (name);
474 make_cleanup (xfree, real_path);
475 gdb_assert (IS_ABSOLUTE_PATH (real_path));
476 }
477
478 ALL_OBJFILES (objfile)
479 {
480 if (iterate_over_some_symtabs (name, real_path, callback, data,
481 objfile->compunit_symtabs, NULL))
482 {
483 do_cleanups (cleanups);
484 return;
485 }
486 }
487
488 /* Same search rules as above apply here, but now we look thru the
489 psymtabs. */
490
491 ALL_OBJFILES (objfile)
492 {
493 if (objfile->sf
494 && objfile->sf->qf->map_symtabs_matching_filename (objfile,
495 name,
496 real_path,
497 callback,
498 data))
499 {
500 do_cleanups (cleanups);
501 return;
502 }
503 }
504
505 do_cleanups (cleanups);
506 }
507
508 /* The callback function used by lookup_symtab. */
509
510 static int
511 lookup_symtab_callback (struct symtab *symtab, void *data)
512 {
513 struct symtab **result_ptr = (struct symtab **) data;
514
515 *result_ptr = symtab;
516 return 1;
517 }
518
519 /* A wrapper for iterate_over_symtabs that returns the first matching
520 symtab, or NULL. */
521
522 struct symtab *
523 lookup_symtab (const char *name)
524 {
525 struct symtab *result = NULL;
526
527 iterate_over_symtabs (name, lookup_symtab_callback, &result);
528 return result;
529 }
530
531 \f
532 /* Mangle a GDB method stub type. This actually reassembles the pieces of the
533 full method name, which consist of the class name (from T), the unadorned
534 method name from METHOD_ID, and the signature for the specific overload,
535 specified by SIGNATURE_ID. Note that this function is g++ specific. */
536
537 char *
538 gdb_mangle_name (struct type *type, int method_id, int signature_id)
539 {
540 int mangled_name_len;
541 char *mangled_name;
542 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
543 struct fn_field *method = &f[signature_id];
544 const char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
545 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
546 const char *newname = type_name_no_tag (type);
547
548 /* Does the form of physname indicate that it is the full mangled name
549 of a constructor (not just the args)? */
550 int is_full_physname_constructor;
551
552 int is_constructor;
553 int is_destructor = is_destructor_name (physname);
554 /* Need a new type prefix. */
555 const char *const_prefix = method->is_const ? "C" : "";
556 const char *volatile_prefix = method->is_volatile ? "V" : "";
557 char buf[20];
558 int len = (newname == NULL ? 0 : strlen (newname));
559
560 /* Nothing to do if physname already contains a fully mangled v3 abi name
561 or an operator name. */
562 if ((physname[0] == '_' && physname[1] == 'Z')
563 || is_operator_name (field_name))
564 return xstrdup (physname);
565
566 is_full_physname_constructor = is_constructor_name (physname);
567
568 is_constructor = is_full_physname_constructor
569 || (newname && strcmp (field_name, newname) == 0);
570
571 if (!is_destructor)
572 is_destructor = (startswith (physname, "__dt"));
573
574 if (is_destructor || is_full_physname_constructor)
575 {
576 mangled_name = (char *) xmalloc (strlen (physname) + 1);
577 strcpy (mangled_name, physname);
578 return mangled_name;
579 }
580
581 if (len == 0)
582 {
583 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
584 }
585 else if (physname[0] == 't' || physname[0] == 'Q')
586 {
587 /* The physname for template and qualified methods already includes
588 the class name. */
589 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
590 newname = NULL;
591 len = 0;
592 }
593 else
594 {
595 xsnprintf (buf, sizeof (buf), "__%s%s%d", const_prefix,
596 volatile_prefix, len);
597 }
598 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
599 + strlen (buf) + len + strlen (physname) + 1);
600
601 mangled_name = (char *) xmalloc (mangled_name_len);
602 if (is_constructor)
603 mangled_name[0] = '\0';
604 else
605 strcpy (mangled_name, field_name);
606
607 strcat (mangled_name, buf);
608 /* If the class doesn't have a name, i.e. newname NULL, then we just
609 mangle it using 0 for the length of the class. Thus it gets mangled
610 as something starting with `::' rather than `classname::'. */
611 if (newname != NULL)
612 strcat (mangled_name, newname);
613
614 strcat (mangled_name, physname);
615 return (mangled_name);
616 }
617
618 /* Set the demangled name of GSYMBOL to NAME. NAME must be already
619 correctly allocated. */
620
621 void
622 symbol_set_demangled_name (struct general_symbol_info *gsymbol,
623 const char *name,
624 struct obstack *obstack)
625 {
626 if (gsymbol->language == language_ada)
627 {
628 if (name == NULL)
629 {
630 gsymbol->ada_mangled = 0;
631 gsymbol->language_specific.obstack = obstack;
632 }
633 else
634 {
635 gsymbol->ada_mangled = 1;
636 gsymbol->language_specific.demangled_name = name;
637 }
638 }
639 else
640 gsymbol->language_specific.demangled_name = name;
641 }
642
643 /* Return the demangled name of GSYMBOL. */
644
645 const char *
646 symbol_get_demangled_name (const struct general_symbol_info *gsymbol)
647 {
648 if (gsymbol->language == language_ada)
649 {
650 if (!gsymbol->ada_mangled)
651 return NULL;
652 /* Fall through. */
653 }
654
655 return gsymbol->language_specific.demangled_name;
656 }
657
658 \f
659 /* Initialize the language dependent portion of a symbol
660 depending upon the language for the symbol. */
661
662 void
663 symbol_set_language (struct general_symbol_info *gsymbol,
664 enum language language,
665 struct obstack *obstack)
666 {
667 gsymbol->language = language;
668 if (gsymbol->language == language_cplus
669 || gsymbol->language == language_d
670 || gsymbol->language == language_go
671 || gsymbol->language == language_objc
672 || gsymbol->language == language_fortran)
673 {
674 symbol_set_demangled_name (gsymbol, NULL, obstack);
675 }
676 else if (gsymbol->language == language_ada)
677 {
678 gdb_assert (gsymbol->ada_mangled == 0);
679 gsymbol->language_specific.obstack = obstack;
680 }
681 else
682 {
683 memset (&gsymbol->language_specific, 0,
684 sizeof (gsymbol->language_specific));
685 }
686 }
687
688 /* Functions to initialize a symbol's mangled name. */
689
690 /* Objects of this type are stored in the demangled name hash table. */
691 struct demangled_name_entry
692 {
693 const char *mangled;
694 char demangled[1];
695 };
696
697 /* Hash function for the demangled name hash. */
698
699 static hashval_t
700 hash_demangled_name_entry (const void *data)
701 {
702 const struct demangled_name_entry *e
703 = (const struct demangled_name_entry *) data;
704
705 return htab_hash_string (e->mangled);
706 }
707
708 /* Equality function for the demangled name hash. */
709
710 static int
711 eq_demangled_name_entry (const void *a, const void *b)
712 {
713 const struct demangled_name_entry *da
714 = (const struct demangled_name_entry *) a;
715 const struct demangled_name_entry *db
716 = (const struct demangled_name_entry *) b;
717
718 return strcmp (da->mangled, db->mangled) == 0;
719 }
720
721 /* Create the hash table used for demangled names. Each hash entry is
722 a pair of strings; one for the mangled name and one for the demangled
723 name. The entry is hashed via just the mangled name. */
724
725 static void
726 create_demangled_names_hash (struct objfile *objfile)
727 {
728 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
729 The hash table code will round this up to the next prime number.
730 Choosing a much larger table size wastes memory, and saves only about
731 1% in symbol reading. */
732
733 objfile->per_bfd->demangled_names_hash = htab_create_alloc
734 (256, hash_demangled_name_entry, eq_demangled_name_entry,
735 NULL, xcalloc, xfree);
736 }
737
738 /* Try to determine the demangled name for a symbol, based on the
739 language of that symbol. If the language is set to language_auto,
740 it will attempt to find any demangling algorithm that works and
741 then set the language appropriately. The returned name is allocated
742 by the demangler and should be xfree'd. */
743
744 static char *
745 symbol_find_demangled_name (struct general_symbol_info *gsymbol,
746 const char *mangled)
747 {
748 char *demangled = NULL;
749 int i;
750 int recognized;
751
752 if (gsymbol->language == language_unknown)
753 gsymbol->language = language_auto;
754
755 if (gsymbol->language != language_auto)
756 {
757 const struct language_defn *lang = language_def (gsymbol->language);
758
759 language_sniff_from_mangled_name (lang, mangled, &demangled);
760 return demangled;
761 }
762
763 for (i = language_unknown; i < nr_languages; ++i)
764 {
765 enum language l = (enum language) i;
766 const struct language_defn *lang = language_def (l);
767
768 if (language_sniff_from_mangled_name (lang, mangled, &demangled))
769 {
770 gsymbol->language = l;
771 return demangled;
772 }
773 }
774
775 return NULL;
776 }
777
778 /* Set both the mangled and demangled (if any) names for GSYMBOL based
779 on LINKAGE_NAME and LEN. Ordinarily, NAME is copied onto the
780 objfile's obstack; but if COPY_NAME is 0 and if NAME is
781 NUL-terminated, then this function assumes that NAME is already
782 correctly saved (either permanently or with a lifetime tied to the
783 objfile), and it will not be copied.
784
785 The hash table corresponding to OBJFILE is used, and the memory
786 comes from the per-BFD storage_obstack. LINKAGE_NAME is copied,
787 so the pointer can be discarded after calling this function. */
788
789 void
790 symbol_set_names (struct general_symbol_info *gsymbol,
791 const char *linkage_name, int len, int copy_name,
792 struct objfile *objfile)
793 {
794 struct demangled_name_entry **slot;
795 /* A 0-terminated copy of the linkage name. */
796 const char *linkage_name_copy;
797 struct demangled_name_entry entry;
798 struct objfile_per_bfd_storage *per_bfd = objfile->per_bfd;
799
800 if (gsymbol->language == language_ada)
801 {
802 /* In Ada, we do the symbol lookups using the mangled name, so
803 we can save some space by not storing the demangled name. */
804 if (!copy_name)
805 gsymbol->name = linkage_name;
806 else
807 {
808 char *name = (char *) obstack_alloc (&per_bfd->storage_obstack,
809 len + 1);
810
811 memcpy (name, linkage_name, len);
812 name[len] = '\0';
813 gsymbol->name = name;
814 }
815 symbol_set_demangled_name (gsymbol, NULL, &per_bfd->storage_obstack);
816
817 return;
818 }
819
820 if (per_bfd->demangled_names_hash == NULL)
821 create_demangled_names_hash (objfile);
822
823 if (linkage_name[len] != '\0')
824 {
825 char *alloc_name;
826
827 alloc_name = (char *) alloca (len + 1);
828 memcpy (alloc_name, linkage_name, len);
829 alloc_name[len] = '\0';
830
831 linkage_name_copy = alloc_name;
832 }
833 else
834 linkage_name_copy = linkage_name;
835
836 entry.mangled = linkage_name_copy;
837 slot = ((struct demangled_name_entry **)
838 htab_find_slot (per_bfd->demangled_names_hash,
839 &entry, INSERT));
840
841 /* If this name is not in the hash table, add it. */
842 if (*slot == NULL
843 /* A C version of the symbol may have already snuck into the table.
844 This happens to, e.g., main.init (__go_init_main). Cope. */
845 || (gsymbol->language == language_go
846 && (*slot)->demangled[0] == '\0'))
847 {
848 char *demangled_name = symbol_find_demangled_name (gsymbol,
849 linkage_name_copy);
850 int demangled_len = demangled_name ? strlen (demangled_name) : 0;
851
852 /* Suppose we have demangled_name==NULL, copy_name==0, and
853 linkage_name_copy==linkage_name. In this case, we already have the
854 mangled name saved, and we don't have a demangled name. So,
855 you might think we could save a little space by not recording
856 this in the hash table at all.
857
858 It turns out that it is actually important to still save such
859 an entry in the hash table, because storing this name gives
860 us better bcache hit rates for partial symbols. */
861 if (!copy_name && linkage_name_copy == linkage_name)
862 {
863 *slot
864 = ((struct demangled_name_entry *)
865 obstack_alloc (&per_bfd->storage_obstack,
866 offsetof (struct demangled_name_entry, demangled)
867 + demangled_len + 1));
868 (*slot)->mangled = linkage_name;
869 }
870 else
871 {
872 char *mangled_ptr;
873
874 /* If we must copy the mangled name, put it directly after
875 the demangled name so we can have a single
876 allocation. */
877 *slot
878 = ((struct demangled_name_entry *)
879 obstack_alloc (&per_bfd->storage_obstack,
880 offsetof (struct demangled_name_entry, demangled)
881 + len + demangled_len + 2));
882 mangled_ptr = &((*slot)->demangled[demangled_len + 1]);
883 strcpy (mangled_ptr, linkage_name_copy);
884 (*slot)->mangled = mangled_ptr;
885 }
886
887 if (demangled_name != NULL)
888 {
889 strcpy ((*slot)->demangled, demangled_name);
890 xfree (demangled_name);
891 }
892 else
893 (*slot)->demangled[0] = '\0';
894 }
895
896 gsymbol->name = (*slot)->mangled;
897 if ((*slot)->demangled[0] != '\0')
898 symbol_set_demangled_name (gsymbol, (*slot)->demangled,
899 &per_bfd->storage_obstack);
900 else
901 symbol_set_demangled_name (gsymbol, NULL, &per_bfd->storage_obstack);
902 }
903
904 /* Return the source code name of a symbol. In languages where
905 demangling is necessary, this is the demangled name. */
906
907 const char *
908 symbol_natural_name (const struct general_symbol_info *gsymbol)
909 {
910 switch (gsymbol->language)
911 {
912 case language_cplus:
913 case language_d:
914 case language_go:
915 case language_objc:
916 case language_fortran:
917 if (symbol_get_demangled_name (gsymbol) != NULL)
918 return symbol_get_demangled_name (gsymbol);
919 break;
920 case language_ada:
921 return ada_decode_symbol (gsymbol);
922 default:
923 break;
924 }
925 return gsymbol->name;
926 }
927
928 /* Return the demangled name for a symbol based on the language for
929 that symbol. If no demangled name exists, return NULL. */
930
931 const char *
932 symbol_demangled_name (const struct general_symbol_info *gsymbol)
933 {
934 const char *dem_name = NULL;
935
936 switch (gsymbol->language)
937 {
938 case language_cplus:
939 case language_d:
940 case language_go:
941 case language_objc:
942 case language_fortran:
943 dem_name = symbol_get_demangled_name (gsymbol);
944 break;
945 case language_ada:
946 dem_name = ada_decode_symbol (gsymbol);
947 break;
948 default:
949 break;
950 }
951 return dem_name;
952 }
953
954 /* Return the search name of a symbol---generally the demangled or
955 linkage name of the symbol, depending on how it will be searched for.
956 If there is no distinct demangled name, then returns the same value
957 (same pointer) as SYMBOL_LINKAGE_NAME. */
958
959 const char *
960 symbol_search_name (const struct general_symbol_info *gsymbol)
961 {
962 if (gsymbol->language == language_ada)
963 return gsymbol->name;
964 else
965 return symbol_natural_name (gsymbol);
966 }
967
968 /* Initialize the structure fields to zero values. */
969
970 void
971 init_sal (struct symtab_and_line *sal)
972 {
973 memset (sal, 0, sizeof (*sal));
974 }
975 \f
976
977 /* Return 1 if the two sections are the same, or if they could
978 plausibly be copies of each other, one in an original object
979 file and another in a separated debug file. */
980
981 int
982 matching_obj_sections (struct obj_section *obj_first,
983 struct obj_section *obj_second)
984 {
985 asection *first = obj_first? obj_first->the_bfd_section : NULL;
986 asection *second = obj_second? obj_second->the_bfd_section : NULL;
987 struct objfile *obj;
988
989 /* If they're the same section, then they match. */
990 if (first == second)
991 return 1;
992
993 /* If either is NULL, give up. */
994 if (first == NULL || second == NULL)
995 return 0;
996
997 /* This doesn't apply to absolute symbols. */
998 if (first->owner == NULL || second->owner == NULL)
999 return 0;
1000
1001 /* If they're in the same object file, they must be different sections. */
1002 if (first->owner == second->owner)
1003 return 0;
1004
1005 /* Check whether the two sections are potentially corresponding. They must
1006 have the same size, address, and name. We can't compare section indexes,
1007 which would be more reliable, because some sections may have been
1008 stripped. */
1009 if (bfd_get_section_size (first) != bfd_get_section_size (second))
1010 return 0;
1011
1012 /* In-memory addresses may start at a different offset, relativize them. */
1013 if (bfd_get_section_vma (first->owner, first)
1014 - bfd_get_start_address (first->owner)
1015 != bfd_get_section_vma (second->owner, second)
1016 - bfd_get_start_address (second->owner))
1017 return 0;
1018
1019 if (bfd_get_section_name (first->owner, first) == NULL
1020 || bfd_get_section_name (second->owner, second) == NULL
1021 || strcmp (bfd_get_section_name (first->owner, first),
1022 bfd_get_section_name (second->owner, second)) != 0)
1023 return 0;
1024
1025 /* Otherwise check that they are in corresponding objfiles. */
1026
1027 ALL_OBJFILES (obj)
1028 if (obj->obfd == first->owner)
1029 break;
1030 gdb_assert (obj != NULL);
1031
1032 if (obj->separate_debug_objfile != NULL
1033 && obj->separate_debug_objfile->obfd == second->owner)
1034 return 1;
1035 if (obj->separate_debug_objfile_backlink != NULL
1036 && obj->separate_debug_objfile_backlink->obfd == second->owner)
1037 return 1;
1038
1039 return 0;
1040 }
1041
1042 /* See symtab.h. */
1043
1044 void
1045 expand_symtab_containing_pc (CORE_ADDR pc, struct obj_section *section)
1046 {
1047 struct objfile *objfile;
1048 struct bound_minimal_symbol msymbol;
1049
1050 /* If we know that this is not a text address, return failure. This is
1051 necessary because we loop based on texthigh and textlow, which do
1052 not include the data ranges. */
1053 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
1054 if (msymbol.minsym
1055 && (MSYMBOL_TYPE (msymbol.minsym) == mst_data
1056 || MSYMBOL_TYPE (msymbol.minsym) == mst_bss
1057 || MSYMBOL_TYPE (msymbol.minsym) == mst_abs
1058 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_data
1059 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_bss))
1060 return;
1061
1062 ALL_OBJFILES (objfile)
1063 {
1064 struct compunit_symtab *cust = NULL;
1065
1066 if (objfile->sf)
1067 cust = objfile->sf->qf->find_pc_sect_compunit_symtab (objfile, msymbol,
1068 pc, section, 0);
1069 if (cust)
1070 return;
1071 }
1072 }
1073 \f
1074 /* Hash function for the symbol cache. */
1075
1076 static unsigned int
1077 hash_symbol_entry (const struct objfile *objfile_context,
1078 const char *name, domain_enum domain)
1079 {
1080 unsigned int hash = (uintptr_t) objfile_context;
1081
1082 if (name != NULL)
1083 hash += htab_hash_string (name);
1084
1085 /* Because of symbol_matches_domain we need VAR_DOMAIN and STRUCT_DOMAIN
1086 to map to the same slot. */
1087 if (domain == STRUCT_DOMAIN)
1088 hash += VAR_DOMAIN * 7;
1089 else
1090 hash += domain * 7;
1091
1092 return hash;
1093 }
1094
1095 /* Equality function for the symbol cache. */
1096
1097 static int
1098 eq_symbol_entry (const struct symbol_cache_slot *slot,
1099 const struct objfile *objfile_context,
1100 const char *name, domain_enum domain)
1101 {
1102 const char *slot_name;
1103 domain_enum slot_domain;
1104
1105 if (slot->state == SYMBOL_SLOT_UNUSED)
1106 return 0;
1107
1108 if (slot->objfile_context != objfile_context)
1109 return 0;
1110
1111 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1112 {
1113 slot_name = slot->value.not_found.name;
1114 slot_domain = slot->value.not_found.domain;
1115 }
1116 else
1117 {
1118 slot_name = SYMBOL_SEARCH_NAME (slot->value.found.symbol);
1119 slot_domain = SYMBOL_DOMAIN (slot->value.found.symbol);
1120 }
1121
1122 /* NULL names match. */
1123 if (slot_name == NULL && name == NULL)
1124 {
1125 /* But there's no point in calling symbol_matches_domain in the
1126 SYMBOL_SLOT_FOUND case. */
1127 if (slot_domain != domain)
1128 return 0;
1129 }
1130 else if (slot_name != NULL && name != NULL)
1131 {
1132 /* It's important that we use the same comparison that was done the
1133 first time through. If the slot records a found symbol, then this
1134 means using strcmp_iw on SYMBOL_SEARCH_NAME. See dictionary.c.
1135 It also means using symbol_matches_domain for found symbols.
1136 See block.c.
1137
1138 If the slot records a not-found symbol, then require a precise match.
1139 We could still be lax with whitespace like strcmp_iw though. */
1140
1141 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1142 {
1143 if (strcmp (slot_name, name) != 0)
1144 return 0;
1145 if (slot_domain != domain)
1146 return 0;
1147 }
1148 else
1149 {
1150 struct symbol *sym = slot->value.found.symbol;
1151
1152 if (strcmp_iw (slot_name, name) != 0)
1153 return 0;
1154 if (!symbol_matches_domain (SYMBOL_LANGUAGE (sym),
1155 slot_domain, domain))
1156 return 0;
1157 }
1158 }
1159 else
1160 {
1161 /* Only one name is NULL. */
1162 return 0;
1163 }
1164
1165 return 1;
1166 }
1167
1168 /* Given a cache of size SIZE, return the size of the struct (with variable
1169 length array) in bytes. */
1170
1171 static size_t
1172 symbol_cache_byte_size (unsigned int size)
1173 {
1174 return (sizeof (struct block_symbol_cache)
1175 + ((size - 1) * sizeof (struct symbol_cache_slot)));
1176 }
1177
1178 /* Resize CACHE. */
1179
1180 static void
1181 resize_symbol_cache (struct symbol_cache *cache, unsigned int new_size)
1182 {
1183 /* If there's no change in size, don't do anything.
1184 All caches have the same size, so we can just compare with the size
1185 of the global symbols cache. */
1186 if ((cache->global_symbols != NULL
1187 && cache->global_symbols->size == new_size)
1188 || (cache->global_symbols == NULL
1189 && new_size == 0))
1190 return;
1191
1192 xfree (cache->global_symbols);
1193 xfree (cache->static_symbols);
1194
1195 if (new_size == 0)
1196 {
1197 cache->global_symbols = NULL;
1198 cache->static_symbols = NULL;
1199 }
1200 else
1201 {
1202 size_t total_size = symbol_cache_byte_size (new_size);
1203
1204 cache->global_symbols
1205 = (struct block_symbol_cache *) xcalloc (1, total_size);
1206 cache->static_symbols
1207 = (struct block_symbol_cache *) xcalloc (1, total_size);
1208 cache->global_symbols->size = new_size;
1209 cache->static_symbols->size = new_size;
1210 }
1211 }
1212
1213 /* Make a symbol cache of size SIZE. */
1214
1215 static struct symbol_cache *
1216 make_symbol_cache (unsigned int size)
1217 {
1218 struct symbol_cache *cache;
1219
1220 cache = XCNEW (struct symbol_cache);
1221 resize_symbol_cache (cache, symbol_cache_size);
1222 return cache;
1223 }
1224
1225 /* Free the space used by CACHE. */
1226
1227 static void
1228 free_symbol_cache (struct symbol_cache *cache)
1229 {
1230 xfree (cache->global_symbols);
1231 xfree (cache->static_symbols);
1232 xfree (cache);
1233 }
1234
1235 /* Return the symbol cache of PSPACE.
1236 Create one if it doesn't exist yet. */
1237
1238 static struct symbol_cache *
1239 get_symbol_cache (struct program_space *pspace)
1240 {
1241 struct symbol_cache *cache
1242 = (struct symbol_cache *) program_space_data (pspace, symbol_cache_key);
1243
1244 if (cache == NULL)
1245 {
1246 cache = make_symbol_cache (symbol_cache_size);
1247 set_program_space_data (pspace, symbol_cache_key, cache);
1248 }
1249
1250 return cache;
1251 }
1252
1253 /* Delete the symbol cache of PSPACE.
1254 Called when PSPACE is destroyed. */
1255
1256 static void
1257 symbol_cache_cleanup (struct program_space *pspace, void *data)
1258 {
1259 struct symbol_cache *cache = (struct symbol_cache *) data;
1260
1261 free_symbol_cache (cache);
1262 }
1263
1264 /* Set the size of the symbol cache in all program spaces. */
1265
1266 static void
1267 set_symbol_cache_size (unsigned int new_size)
1268 {
1269 struct program_space *pspace;
1270
1271 ALL_PSPACES (pspace)
1272 {
1273 struct symbol_cache *cache
1274 = (struct symbol_cache *) program_space_data (pspace, symbol_cache_key);
1275
1276 /* The pspace could have been created but not have a cache yet. */
1277 if (cache != NULL)
1278 resize_symbol_cache (cache, new_size);
1279 }
1280 }
1281
1282 /* Called when symbol-cache-size is set. */
1283
1284 static void
1285 set_symbol_cache_size_handler (char *args, int from_tty,
1286 struct cmd_list_element *c)
1287 {
1288 if (new_symbol_cache_size > MAX_SYMBOL_CACHE_SIZE)
1289 {
1290 /* Restore the previous value.
1291 This is the value the "show" command prints. */
1292 new_symbol_cache_size = symbol_cache_size;
1293
1294 error (_("Symbol cache size is too large, max is %u."),
1295 MAX_SYMBOL_CACHE_SIZE);
1296 }
1297 symbol_cache_size = new_symbol_cache_size;
1298
1299 set_symbol_cache_size (symbol_cache_size);
1300 }
1301
1302 /* Lookup symbol NAME,DOMAIN in BLOCK in the symbol cache of PSPACE.
1303 OBJFILE_CONTEXT is the current objfile, which may be NULL.
1304 The result is the symbol if found, SYMBOL_LOOKUP_FAILED if a previous lookup
1305 failed (and thus this one will too), or NULL if the symbol is not present
1306 in the cache.
1307 If the symbol is not present in the cache, then *BSC_PTR and *SLOT_PTR are
1308 set to the cache and slot of the symbol to save the result of a full lookup
1309 attempt. */
1310
1311 static struct block_symbol
1312 symbol_cache_lookup (struct symbol_cache *cache,
1313 struct objfile *objfile_context, int block,
1314 const char *name, domain_enum domain,
1315 struct block_symbol_cache **bsc_ptr,
1316 struct symbol_cache_slot **slot_ptr)
1317 {
1318 struct block_symbol_cache *bsc;
1319 unsigned int hash;
1320 struct symbol_cache_slot *slot;
1321
1322 if (block == GLOBAL_BLOCK)
1323 bsc = cache->global_symbols;
1324 else
1325 bsc = cache->static_symbols;
1326 if (bsc == NULL)
1327 {
1328 *bsc_ptr = NULL;
1329 *slot_ptr = NULL;
1330 return (struct block_symbol) {NULL, NULL};
1331 }
1332
1333 hash = hash_symbol_entry (objfile_context, name, domain);
1334 slot = bsc->symbols + hash % bsc->size;
1335
1336 if (eq_symbol_entry (slot, objfile_context, name, domain))
1337 {
1338 if (symbol_lookup_debug)
1339 fprintf_unfiltered (gdb_stdlog,
1340 "%s block symbol cache hit%s for %s, %s\n",
1341 block == GLOBAL_BLOCK ? "Global" : "Static",
1342 slot->state == SYMBOL_SLOT_NOT_FOUND
1343 ? " (not found)" : "",
1344 name, domain_name (domain));
1345 ++bsc->hits;
1346 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1347 return SYMBOL_LOOKUP_FAILED;
1348 return slot->value.found;
1349 }
1350
1351 /* Symbol is not present in the cache. */
1352
1353 *bsc_ptr = bsc;
1354 *slot_ptr = slot;
1355
1356 if (symbol_lookup_debug)
1357 {
1358 fprintf_unfiltered (gdb_stdlog,
1359 "%s block symbol cache miss for %s, %s\n",
1360 block == GLOBAL_BLOCK ? "Global" : "Static",
1361 name, domain_name (domain));
1362 }
1363 ++bsc->misses;
1364 return (struct block_symbol) {NULL, NULL};
1365 }
1366
1367 /* Clear out SLOT. */
1368
1369 static void
1370 symbol_cache_clear_slot (struct symbol_cache_slot *slot)
1371 {
1372 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1373 xfree (slot->value.not_found.name);
1374 slot->state = SYMBOL_SLOT_UNUSED;
1375 }
1376
1377 /* Mark SYMBOL as found in SLOT.
1378 OBJFILE_CONTEXT is the current objfile when the lookup was done, or NULL
1379 if it's not needed to distinguish lookups (STATIC_BLOCK). It is *not*
1380 necessarily the objfile the symbol was found in. */
1381
1382 static void
1383 symbol_cache_mark_found (struct block_symbol_cache *bsc,
1384 struct symbol_cache_slot *slot,
1385 struct objfile *objfile_context,
1386 struct symbol *symbol,
1387 const struct block *block)
1388 {
1389 if (bsc == NULL)
1390 return;
1391 if (slot->state != SYMBOL_SLOT_UNUSED)
1392 {
1393 ++bsc->collisions;
1394 symbol_cache_clear_slot (slot);
1395 }
1396 slot->state = SYMBOL_SLOT_FOUND;
1397 slot->objfile_context = objfile_context;
1398 slot->value.found.symbol = symbol;
1399 slot->value.found.block = block;
1400 }
1401
1402 /* Mark symbol NAME, DOMAIN as not found in SLOT.
1403 OBJFILE_CONTEXT is the current objfile when the lookup was done, or NULL
1404 if it's not needed to distinguish lookups (STATIC_BLOCK). */
1405
1406 static void
1407 symbol_cache_mark_not_found (struct block_symbol_cache *bsc,
1408 struct symbol_cache_slot *slot,
1409 struct objfile *objfile_context,
1410 const char *name, domain_enum domain)
1411 {
1412 if (bsc == NULL)
1413 return;
1414 if (slot->state != SYMBOL_SLOT_UNUSED)
1415 {
1416 ++bsc->collisions;
1417 symbol_cache_clear_slot (slot);
1418 }
1419 slot->state = SYMBOL_SLOT_NOT_FOUND;
1420 slot->objfile_context = objfile_context;
1421 slot->value.not_found.name = xstrdup (name);
1422 slot->value.not_found.domain = domain;
1423 }
1424
1425 /* Flush the symbol cache of PSPACE. */
1426
1427 static void
1428 symbol_cache_flush (struct program_space *pspace)
1429 {
1430 struct symbol_cache *cache
1431 = (struct symbol_cache *) program_space_data (pspace, symbol_cache_key);
1432 int pass;
1433
1434 if (cache == NULL)
1435 return;
1436 if (cache->global_symbols == NULL)
1437 {
1438 gdb_assert (symbol_cache_size == 0);
1439 gdb_assert (cache->static_symbols == NULL);
1440 return;
1441 }
1442
1443 /* If the cache is untouched since the last flush, early exit.
1444 This is important for performance during the startup of a program linked
1445 with 100s (or 1000s) of shared libraries. */
1446 if (cache->global_symbols->misses == 0
1447 && cache->static_symbols->misses == 0)
1448 return;
1449
1450 gdb_assert (cache->global_symbols->size == symbol_cache_size);
1451 gdb_assert (cache->static_symbols->size == symbol_cache_size);
1452
1453 for (pass = 0; pass < 2; ++pass)
1454 {
1455 struct block_symbol_cache *bsc
1456 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1457 unsigned int i;
1458
1459 for (i = 0; i < bsc->size; ++i)
1460 symbol_cache_clear_slot (&bsc->symbols[i]);
1461 }
1462
1463 cache->global_symbols->hits = 0;
1464 cache->global_symbols->misses = 0;
1465 cache->global_symbols->collisions = 0;
1466 cache->static_symbols->hits = 0;
1467 cache->static_symbols->misses = 0;
1468 cache->static_symbols->collisions = 0;
1469 }
1470
1471 /* Dump CACHE. */
1472
1473 static void
1474 symbol_cache_dump (const struct symbol_cache *cache)
1475 {
1476 int pass;
1477
1478 if (cache->global_symbols == NULL)
1479 {
1480 printf_filtered (" <disabled>\n");
1481 return;
1482 }
1483
1484 for (pass = 0; pass < 2; ++pass)
1485 {
1486 const struct block_symbol_cache *bsc
1487 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1488 unsigned int i;
1489
1490 if (pass == 0)
1491 printf_filtered ("Global symbols:\n");
1492 else
1493 printf_filtered ("Static symbols:\n");
1494
1495 for (i = 0; i < bsc->size; ++i)
1496 {
1497 const struct symbol_cache_slot *slot = &bsc->symbols[i];
1498
1499 QUIT;
1500
1501 switch (slot->state)
1502 {
1503 case SYMBOL_SLOT_UNUSED:
1504 break;
1505 case SYMBOL_SLOT_NOT_FOUND:
1506 printf_filtered (" [%4u] = %s, %s %s (not found)\n", i,
1507 host_address_to_string (slot->objfile_context),
1508 slot->value.not_found.name,
1509 domain_name (slot->value.not_found.domain));
1510 break;
1511 case SYMBOL_SLOT_FOUND:
1512 {
1513 struct symbol *found = slot->value.found.symbol;
1514 const struct objfile *context = slot->objfile_context;
1515
1516 printf_filtered (" [%4u] = %s, %s %s\n", i,
1517 host_address_to_string (context),
1518 SYMBOL_PRINT_NAME (found),
1519 domain_name (SYMBOL_DOMAIN (found)));
1520 break;
1521 }
1522 }
1523 }
1524 }
1525 }
1526
1527 /* The "mt print symbol-cache" command. */
1528
1529 static void
1530 maintenance_print_symbol_cache (char *args, int from_tty)
1531 {
1532 struct program_space *pspace;
1533
1534 ALL_PSPACES (pspace)
1535 {
1536 struct symbol_cache *cache;
1537
1538 printf_filtered (_("Symbol cache for pspace %d\n%s:\n"),
1539 pspace->num,
1540 pspace->symfile_object_file != NULL
1541 ? objfile_name (pspace->symfile_object_file)
1542 : "(no object file)");
1543
1544 /* If the cache hasn't been created yet, avoid creating one. */
1545 cache
1546 = (struct symbol_cache *) program_space_data (pspace, symbol_cache_key);
1547 if (cache == NULL)
1548 printf_filtered (" <empty>\n");
1549 else
1550 symbol_cache_dump (cache);
1551 }
1552 }
1553
1554 /* The "mt flush-symbol-cache" command. */
1555
1556 static void
1557 maintenance_flush_symbol_cache (char *args, int from_tty)
1558 {
1559 struct program_space *pspace;
1560
1561 ALL_PSPACES (pspace)
1562 {
1563 symbol_cache_flush (pspace);
1564 }
1565 }
1566
1567 /* Print usage statistics of CACHE. */
1568
1569 static void
1570 symbol_cache_stats (struct symbol_cache *cache)
1571 {
1572 int pass;
1573
1574 if (cache->global_symbols == NULL)
1575 {
1576 printf_filtered (" <disabled>\n");
1577 return;
1578 }
1579
1580 for (pass = 0; pass < 2; ++pass)
1581 {
1582 const struct block_symbol_cache *bsc
1583 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1584
1585 QUIT;
1586
1587 if (pass == 0)
1588 printf_filtered ("Global block cache stats:\n");
1589 else
1590 printf_filtered ("Static block cache stats:\n");
1591
1592 printf_filtered (" size: %u\n", bsc->size);
1593 printf_filtered (" hits: %u\n", bsc->hits);
1594 printf_filtered (" misses: %u\n", bsc->misses);
1595 printf_filtered (" collisions: %u\n", bsc->collisions);
1596 }
1597 }
1598
1599 /* The "mt print symbol-cache-statistics" command. */
1600
1601 static void
1602 maintenance_print_symbol_cache_statistics (char *args, int from_tty)
1603 {
1604 struct program_space *pspace;
1605
1606 ALL_PSPACES (pspace)
1607 {
1608 struct symbol_cache *cache;
1609
1610 printf_filtered (_("Symbol cache statistics for pspace %d\n%s:\n"),
1611 pspace->num,
1612 pspace->symfile_object_file != NULL
1613 ? objfile_name (pspace->symfile_object_file)
1614 : "(no object file)");
1615
1616 /* If the cache hasn't been created yet, avoid creating one. */
1617 cache
1618 = (struct symbol_cache *) program_space_data (pspace, symbol_cache_key);
1619 if (cache == NULL)
1620 printf_filtered (" empty, no stats available\n");
1621 else
1622 symbol_cache_stats (cache);
1623 }
1624 }
1625
1626 /* This module's 'new_objfile' observer. */
1627
1628 static void
1629 symtab_new_objfile_observer (struct objfile *objfile)
1630 {
1631 /* Ideally we'd use OBJFILE->pspace, but OBJFILE may be NULL. */
1632 symbol_cache_flush (current_program_space);
1633 }
1634
1635 /* This module's 'free_objfile' observer. */
1636
1637 static void
1638 symtab_free_objfile_observer (struct objfile *objfile)
1639 {
1640 symbol_cache_flush (objfile->pspace);
1641 }
1642 \f
1643 /* Debug symbols usually don't have section information. We need to dig that
1644 out of the minimal symbols and stash that in the debug symbol. */
1645
1646 void
1647 fixup_section (struct general_symbol_info *ginfo,
1648 CORE_ADDR addr, struct objfile *objfile)
1649 {
1650 struct minimal_symbol *msym;
1651
1652 /* First, check whether a minimal symbol with the same name exists
1653 and points to the same address. The address check is required
1654 e.g. on PowerPC64, where the minimal symbol for a function will
1655 point to the function descriptor, while the debug symbol will
1656 point to the actual function code. */
1657 msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->name, objfile);
1658 if (msym)
1659 ginfo->section = MSYMBOL_SECTION (msym);
1660 else
1661 {
1662 /* Static, function-local variables do appear in the linker
1663 (minimal) symbols, but are frequently given names that won't
1664 be found via lookup_minimal_symbol(). E.g., it has been
1665 observed in frv-uclinux (ELF) executables that a static,
1666 function-local variable named "foo" might appear in the
1667 linker symbols as "foo.6" or "foo.3". Thus, there is no
1668 point in attempting to extend the lookup-by-name mechanism to
1669 handle this case due to the fact that there can be multiple
1670 names.
1671
1672 So, instead, search the section table when lookup by name has
1673 failed. The ``addr'' and ``endaddr'' fields may have already
1674 been relocated. If so, the relocation offset (i.e. the
1675 ANOFFSET value) needs to be subtracted from these values when
1676 performing the comparison. We unconditionally subtract it,
1677 because, when no relocation has been performed, the ANOFFSET
1678 value will simply be zero.
1679
1680 The address of the symbol whose section we're fixing up HAS
1681 NOT BEEN adjusted (relocated) yet. It can't have been since
1682 the section isn't yet known and knowing the section is
1683 necessary in order to add the correct relocation value. In
1684 other words, we wouldn't even be in this function (attempting
1685 to compute the section) if it were already known.
1686
1687 Note that it is possible to search the minimal symbols
1688 (subtracting the relocation value if necessary) to find the
1689 matching minimal symbol, but this is overkill and much less
1690 efficient. It is not necessary to find the matching minimal
1691 symbol, only its section.
1692
1693 Note that this technique (of doing a section table search)
1694 can fail when unrelocated section addresses overlap. For
1695 this reason, we still attempt a lookup by name prior to doing
1696 a search of the section table. */
1697
1698 struct obj_section *s;
1699 int fallback = -1;
1700
1701 ALL_OBJFILE_OSECTIONS (objfile, s)
1702 {
1703 int idx = s - objfile->sections;
1704 CORE_ADDR offset = ANOFFSET (objfile->section_offsets, idx);
1705
1706 if (fallback == -1)
1707 fallback = idx;
1708
1709 if (obj_section_addr (s) - offset <= addr
1710 && addr < obj_section_endaddr (s) - offset)
1711 {
1712 ginfo->section = idx;
1713 return;
1714 }
1715 }
1716
1717 /* If we didn't find the section, assume it is in the first
1718 section. If there is no allocated section, then it hardly
1719 matters what we pick, so just pick zero. */
1720 if (fallback == -1)
1721 ginfo->section = 0;
1722 else
1723 ginfo->section = fallback;
1724 }
1725 }
1726
1727 struct symbol *
1728 fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
1729 {
1730 CORE_ADDR addr;
1731
1732 if (!sym)
1733 return NULL;
1734
1735 if (!SYMBOL_OBJFILE_OWNED (sym))
1736 return sym;
1737
1738 /* We either have an OBJFILE, or we can get at it from the sym's
1739 symtab. Anything else is a bug. */
1740 gdb_assert (objfile || symbol_symtab (sym));
1741
1742 if (objfile == NULL)
1743 objfile = symbol_objfile (sym);
1744
1745 if (SYMBOL_OBJ_SECTION (objfile, sym))
1746 return sym;
1747
1748 /* We should have an objfile by now. */
1749 gdb_assert (objfile);
1750
1751 switch (SYMBOL_CLASS (sym))
1752 {
1753 case LOC_STATIC:
1754 case LOC_LABEL:
1755 addr = SYMBOL_VALUE_ADDRESS (sym);
1756 break;
1757 case LOC_BLOCK:
1758 addr = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
1759 break;
1760
1761 default:
1762 /* Nothing else will be listed in the minsyms -- no use looking
1763 it up. */
1764 return sym;
1765 }
1766
1767 fixup_section (&sym->ginfo, addr, objfile);
1768
1769 return sym;
1770 }
1771
1772 /* Compute the demangled form of NAME as used by the various symbol
1773 lookup functions. The result can either be the input NAME
1774 directly, or a pointer to a buffer owned by the STORAGE object.
1775
1776 For Ada, this function just returns NAME, unmodified.
1777 Normally, Ada symbol lookups are performed using the encoded name
1778 rather than the demangled name, and so it might seem to make sense
1779 for this function to return an encoded version of NAME.
1780 Unfortunately, we cannot do this, because this function is used in
1781 circumstances where it is not appropriate to try to encode NAME.
1782 For instance, when displaying the frame info, we demangle the name
1783 of each parameter, and then perform a symbol lookup inside our
1784 function using that demangled name. In Ada, certain functions
1785 have internally-generated parameters whose name contain uppercase
1786 characters. Encoding those name would result in those uppercase
1787 characters to become lowercase, and thus cause the symbol lookup
1788 to fail. */
1789
1790 const char *
1791 demangle_for_lookup (const char *name, enum language lang,
1792 demangle_result_storage &storage)
1793 {
1794 /* If we are using C++, D, or Go, demangle the name before doing a
1795 lookup, so we can always binary search. */
1796 if (lang == language_cplus)
1797 {
1798 char *demangled_name = gdb_demangle (name, DMGL_ANSI | DMGL_PARAMS);
1799 if (demangled_name != NULL)
1800 return storage.set_malloc_ptr (demangled_name);
1801
1802 /* If we were given a non-mangled name, canonicalize it
1803 according to the language (so far only for C++). */
1804 std::string canon = cp_canonicalize_string (name);
1805 if (!canon.empty ())
1806 return storage.swap_string (canon);
1807 }
1808 else if (lang == language_d)
1809 {
1810 char *demangled_name = d_demangle (name, 0);
1811 if (demangled_name != NULL)
1812 return storage.set_malloc_ptr (demangled_name);
1813 }
1814 else if (lang == language_go)
1815 {
1816 char *demangled_name = go_demangle (name, 0);
1817 if (demangled_name != NULL)
1818 return storage.set_malloc_ptr (demangled_name);
1819 }
1820
1821 return name;
1822 }
1823
1824 /* See symtab.h.
1825
1826 This function (or rather its subordinates) have a bunch of loops and
1827 it would seem to be attractive to put in some QUIT's (though I'm not really
1828 sure whether it can run long enough to be really important). But there
1829 are a few calls for which it would appear to be bad news to quit
1830 out of here: e.g., find_proc_desc in alpha-mdebug-tdep.c. (Note
1831 that there is C++ code below which can error(), but that probably
1832 doesn't affect these calls since they are looking for a known
1833 variable and thus can probably assume it will never hit the C++
1834 code). */
1835
1836 struct block_symbol
1837 lookup_symbol_in_language (const char *name, const struct block *block,
1838 const domain_enum domain, enum language lang,
1839 struct field_of_this_result *is_a_field_of_this)
1840 {
1841 demangle_result_storage storage;
1842 const char *modified_name = demangle_for_lookup (name, lang, storage);
1843
1844 return lookup_symbol_aux (modified_name, block, domain, lang,
1845 is_a_field_of_this);
1846 }
1847
1848 /* See symtab.h. */
1849
1850 struct block_symbol
1851 lookup_symbol (const char *name, const struct block *block,
1852 domain_enum domain,
1853 struct field_of_this_result *is_a_field_of_this)
1854 {
1855 return lookup_symbol_in_language (name, block, domain,
1856 current_language->la_language,
1857 is_a_field_of_this);
1858 }
1859
1860 /* See symtab.h. */
1861
1862 struct block_symbol
1863 lookup_language_this (const struct language_defn *lang,
1864 const struct block *block)
1865 {
1866 if (lang->la_name_of_this == NULL || block == NULL)
1867 return (struct block_symbol) {NULL, NULL};
1868
1869 if (symbol_lookup_debug > 1)
1870 {
1871 struct objfile *objfile = lookup_objfile_from_block (block);
1872
1873 fprintf_unfiltered (gdb_stdlog,
1874 "lookup_language_this (%s, %s (objfile %s))",
1875 lang->la_name, host_address_to_string (block),
1876 objfile_debug_name (objfile));
1877 }
1878
1879 while (block)
1880 {
1881 struct symbol *sym;
1882
1883 sym = block_lookup_symbol (block, lang->la_name_of_this, VAR_DOMAIN);
1884 if (sym != NULL)
1885 {
1886 if (symbol_lookup_debug > 1)
1887 {
1888 fprintf_unfiltered (gdb_stdlog, " = %s (%s, block %s)\n",
1889 SYMBOL_PRINT_NAME (sym),
1890 host_address_to_string (sym),
1891 host_address_to_string (block));
1892 }
1893 return (struct block_symbol) {sym, block};
1894 }
1895 if (BLOCK_FUNCTION (block))
1896 break;
1897 block = BLOCK_SUPERBLOCK (block);
1898 }
1899
1900 if (symbol_lookup_debug > 1)
1901 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
1902 return (struct block_symbol) {NULL, NULL};
1903 }
1904
1905 /* Given TYPE, a structure/union,
1906 return 1 if the component named NAME from the ultimate target
1907 structure/union is defined, otherwise, return 0. */
1908
1909 static int
1910 check_field (struct type *type, const char *name,
1911 struct field_of_this_result *is_a_field_of_this)
1912 {
1913 int i;
1914
1915 /* The type may be a stub. */
1916 type = check_typedef (type);
1917
1918 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1919 {
1920 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1921
1922 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1923 {
1924 is_a_field_of_this->type = type;
1925 is_a_field_of_this->field = &TYPE_FIELD (type, i);
1926 return 1;
1927 }
1928 }
1929
1930 /* C++: If it was not found as a data field, then try to return it
1931 as a pointer to a method. */
1932
1933 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
1934 {
1935 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
1936 {
1937 is_a_field_of_this->type = type;
1938 is_a_field_of_this->fn_field = &TYPE_FN_FIELDLIST (type, i);
1939 return 1;
1940 }
1941 }
1942
1943 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1944 if (check_field (TYPE_BASECLASS (type, i), name, is_a_field_of_this))
1945 return 1;
1946
1947 return 0;
1948 }
1949
1950 /* Behave like lookup_symbol except that NAME is the natural name
1951 (e.g., demangled name) of the symbol that we're looking for. */
1952
1953 static struct block_symbol
1954 lookup_symbol_aux (const char *name, const struct block *block,
1955 const domain_enum domain, enum language language,
1956 struct field_of_this_result *is_a_field_of_this)
1957 {
1958 struct block_symbol result;
1959 const struct language_defn *langdef;
1960
1961 if (symbol_lookup_debug)
1962 {
1963 struct objfile *objfile = lookup_objfile_from_block (block);
1964
1965 fprintf_unfiltered (gdb_stdlog,
1966 "lookup_symbol_aux (%s, %s (objfile %s), %s, %s)\n",
1967 name, host_address_to_string (block),
1968 objfile != NULL
1969 ? objfile_debug_name (objfile) : "NULL",
1970 domain_name (domain), language_str (language));
1971 }
1972
1973 /* Make sure we do something sensible with is_a_field_of_this, since
1974 the callers that set this parameter to some non-null value will
1975 certainly use it later. If we don't set it, the contents of
1976 is_a_field_of_this are undefined. */
1977 if (is_a_field_of_this != NULL)
1978 memset (is_a_field_of_this, 0, sizeof (*is_a_field_of_this));
1979
1980 /* Search specified block and its superiors. Don't search
1981 STATIC_BLOCK or GLOBAL_BLOCK. */
1982
1983 result = lookup_local_symbol (name, block, domain, language);
1984 if (result.symbol != NULL)
1985 {
1986 if (symbol_lookup_debug)
1987 {
1988 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
1989 host_address_to_string (result.symbol));
1990 }
1991 return result;
1992 }
1993
1994 /* If requested to do so by the caller and if appropriate for LANGUAGE,
1995 check to see if NAME is a field of `this'. */
1996
1997 langdef = language_def (language);
1998
1999 /* Don't do this check if we are searching for a struct. It will
2000 not be found by check_field, but will be found by other
2001 means. */
2002 if (is_a_field_of_this != NULL && domain != STRUCT_DOMAIN)
2003 {
2004 result = lookup_language_this (langdef, block);
2005
2006 if (result.symbol)
2007 {
2008 struct type *t = result.symbol->type;
2009
2010 /* I'm not really sure that type of this can ever
2011 be typedefed; just be safe. */
2012 t = check_typedef (t);
2013 if (TYPE_CODE (t) == TYPE_CODE_PTR
2014 || TYPE_CODE (t) == TYPE_CODE_REF)
2015 t = TYPE_TARGET_TYPE (t);
2016
2017 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2018 && TYPE_CODE (t) != TYPE_CODE_UNION)
2019 error (_("Internal error: `%s' is not an aggregate"),
2020 langdef->la_name_of_this);
2021
2022 if (check_field (t, name, is_a_field_of_this))
2023 {
2024 if (symbol_lookup_debug)
2025 {
2026 fprintf_unfiltered (gdb_stdlog,
2027 "lookup_symbol_aux (...) = NULL\n");
2028 }
2029 return (struct block_symbol) {NULL, NULL};
2030 }
2031 }
2032 }
2033
2034 /* Now do whatever is appropriate for LANGUAGE to look
2035 up static and global variables. */
2036
2037 result = langdef->la_lookup_symbol_nonlocal (langdef, name, block, domain);
2038 if (result.symbol != NULL)
2039 {
2040 if (symbol_lookup_debug)
2041 {
2042 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2043 host_address_to_string (result.symbol));
2044 }
2045 return result;
2046 }
2047
2048 /* Now search all static file-level symbols. Not strictly correct,
2049 but more useful than an error. */
2050
2051 result = lookup_static_symbol (name, domain);
2052 if (symbol_lookup_debug)
2053 {
2054 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2055 result.symbol != NULL
2056 ? host_address_to_string (result.symbol)
2057 : "NULL");
2058 }
2059 return result;
2060 }
2061
2062 /* Check to see if the symbol is defined in BLOCK or its superiors.
2063 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
2064
2065 static struct block_symbol
2066 lookup_local_symbol (const char *name, const struct block *block,
2067 const domain_enum domain,
2068 enum language language)
2069 {
2070 struct symbol *sym;
2071 const struct block *static_block = block_static_block (block);
2072 const char *scope = block_scope (block);
2073
2074 /* Check if either no block is specified or it's a global block. */
2075
2076 if (static_block == NULL)
2077 return (struct block_symbol) {NULL, NULL};
2078
2079 while (block != static_block)
2080 {
2081 sym = lookup_symbol_in_block (name, block, domain);
2082 if (sym != NULL)
2083 return (struct block_symbol) {sym, block};
2084
2085 if (language == language_cplus || language == language_fortran)
2086 {
2087 struct block_symbol sym
2088 = cp_lookup_symbol_imports_or_template (scope, name, block,
2089 domain);
2090
2091 if (sym.symbol != NULL)
2092 return sym;
2093 }
2094
2095 if (BLOCK_FUNCTION (block) != NULL && block_inlined_p (block))
2096 break;
2097 block = BLOCK_SUPERBLOCK (block);
2098 }
2099
2100 /* We've reached the end of the function without finding a result. */
2101
2102 return (struct block_symbol) {NULL, NULL};
2103 }
2104
2105 /* See symtab.h. */
2106
2107 struct objfile *
2108 lookup_objfile_from_block (const struct block *block)
2109 {
2110 struct objfile *obj;
2111 struct compunit_symtab *cust;
2112
2113 if (block == NULL)
2114 return NULL;
2115
2116 block = block_global_block (block);
2117 /* Look through all blockvectors. */
2118 ALL_COMPUNITS (obj, cust)
2119 if (block == BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust),
2120 GLOBAL_BLOCK))
2121 {
2122 if (obj->separate_debug_objfile_backlink)
2123 obj = obj->separate_debug_objfile_backlink;
2124
2125 return obj;
2126 }
2127
2128 return NULL;
2129 }
2130
2131 /* See symtab.h. */
2132
2133 struct symbol *
2134 lookup_symbol_in_block (const char *name, const struct block *block,
2135 const domain_enum domain)
2136 {
2137 struct symbol *sym;
2138
2139 if (symbol_lookup_debug > 1)
2140 {
2141 struct objfile *objfile = lookup_objfile_from_block (block);
2142
2143 fprintf_unfiltered (gdb_stdlog,
2144 "lookup_symbol_in_block (%s, %s (objfile %s), %s)",
2145 name, host_address_to_string (block),
2146 objfile_debug_name (objfile),
2147 domain_name (domain));
2148 }
2149
2150 sym = block_lookup_symbol (block, name, domain);
2151 if (sym)
2152 {
2153 if (symbol_lookup_debug > 1)
2154 {
2155 fprintf_unfiltered (gdb_stdlog, " = %s\n",
2156 host_address_to_string (sym));
2157 }
2158 return fixup_symbol_section (sym, NULL);
2159 }
2160
2161 if (symbol_lookup_debug > 1)
2162 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
2163 return NULL;
2164 }
2165
2166 /* See symtab.h. */
2167
2168 struct block_symbol
2169 lookup_global_symbol_from_objfile (struct objfile *main_objfile,
2170 const char *name,
2171 const domain_enum domain)
2172 {
2173 struct objfile *objfile;
2174
2175 for (objfile = main_objfile;
2176 objfile;
2177 objfile = objfile_separate_debug_iterate (main_objfile, objfile))
2178 {
2179 struct block_symbol result
2180 = lookup_symbol_in_objfile (objfile, GLOBAL_BLOCK, name, domain);
2181
2182 if (result.symbol != NULL)
2183 return result;
2184 }
2185
2186 return (struct block_symbol) {NULL, NULL};
2187 }
2188
2189 /* Check to see if the symbol is defined in one of the OBJFILE's
2190 symtabs. BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
2191 depending on whether or not we want to search global symbols or
2192 static symbols. */
2193
2194 static struct block_symbol
2195 lookup_symbol_in_objfile_symtabs (struct objfile *objfile, int block_index,
2196 const char *name, const domain_enum domain)
2197 {
2198 struct compunit_symtab *cust;
2199
2200 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2201
2202 if (symbol_lookup_debug > 1)
2203 {
2204 fprintf_unfiltered (gdb_stdlog,
2205 "lookup_symbol_in_objfile_symtabs (%s, %s, %s, %s)",
2206 objfile_debug_name (objfile),
2207 block_index == GLOBAL_BLOCK
2208 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2209 name, domain_name (domain));
2210 }
2211
2212 ALL_OBJFILE_COMPUNITS (objfile, cust)
2213 {
2214 const struct blockvector *bv;
2215 const struct block *block;
2216 struct block_symbol result;
2217
2218 bv = COMPUNIT_BLOCKVECTOR (cust);
2219 block = BLOCKVECTOR_BLOCK (bv, block_index);
2220 result.symbol = block_lookup_symbol_primary (block, name, domain);
2221 result.block = block;
2222 if (result.symbol != NULL)
2223 {
2224 if (symbol_lookup_debug > 1)
2225 {
2226 fprintf_unfiltered (gdb_stdlog, " = %s (block %s)\n",
2227 host_address_to_string (result.symbol),
2228 host_address_to_string (block));
2229 }
2230 result.symbol = fixup_symbol_section (result.symbol, objfile);
2231 return result;
2232
2233 }
2234 }
2235
2236 if (symbol_lookup_debug > 1)
2237 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
2238 return (struct block_symbol) {NULL, NULL};
2239 }
2240
2241 /* Wrapper around lookup_symbol_in_objfile_symtabs for search_symbols.
2242 Look up LINKAGE_NAME in DOMAIN in the global and static blocks of OBJFILE
2243 and all associated separate debug objfiles.
2244
2245 Normally we only look in OBJFILE, and not any separate debug objfiles
2246 because the outer loop will cause them to be searched too. This case is
2247 different. Here we're called from search_symbols where it will only
2248 call us for the the objfile that contains a matching minsym. */
2249
2250 static struct block_symbol
2251 lookup_symbol_in_objfile_from_linkage_name (struct objfile *objfile,
2252 const char *linkage_name,
2253 domain_enum domain)
2254 {
2255 enum language lang = current_language->la_language;
2256 struct objfile *main_objfile, *cur_objfile;
2257
2258 demangle_result_storage storage;
2259 const char *modified_name = demangle_for_lookup (linkage_name, lang, storage);
2260
2261 if (objfile->separate_debug_objfile_backlink)
2262 main_objfile = objfile->separate_debug_objfile_backlink;
2263 else
2264 main_objfile = objfile;
2265
2266 for (cur_objfile = main_objfile;
2267 cur_objfile;
2268 cur_objfile = objfile_separate_debug_iterate (main_objfile, cur_objfile))
2269 {
2270 struct block_symbol result;
2271
2272 result = lookup_symbol_in_objfile_symtabs (cur_objfile, GLOBAL_BLOCK,
2273 modified_name, domain);
2274 if (result.symbol == NULL)
2275 result = lookup_symbol_in_objfile_symtabs (cur_objfile, STATIC_BLOCK,
2276 modified_name, domain);
2277 if (result.symbol != NULL)
2278 return result;
2279 }
2280
2281 return (struct block_symbol) {NULL, NULL};
2282 }
2283
2284 /* A helper function that throws an exception when a symbol was found
2285 in a psymtab but not in a symtab. */
2286
2287 static void ATTRIBUTE_NORETURN
2288 error_in_psymtab_expansion (int block_index, const char *name,
2289 struct compunit_symtab *cust)
2290 {
2291 error (_("\
2292 Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n\
2293 %s may be an inlined function, or may be a template function\n \
2294 (if a template, try specifying an instantiation: %s<type>)."),
2295 block_index == GLOBAL_BLOCK ? "global" : "static",
2296 name,
2297 symtab_to_filename_for_display (compunit_primary_filetab (cust)),
2298 name, name);
2299 }
2300
2301 /* A helper function for various lookup routines that interfaces with
2302 the "quick" symbol table functions. */
2303
2304 static struct block_symbol
2305 lookup_symbol_via_quick_fns (struct objfile *objfile, int block_index,
2306 const char *name, const domain_enum domain)
2307 {
2308 struct compunit_symtab *cust;
2309 const struct blockvector *bv;
2310 const struct block *block;
2311 struct block_symbol result;
2312
2313 if (!objfile->sf)
2314 return (struct block_symbol) {NULL, NULL};
2315
2316 if (symbol_lookup_debug > 1)
2317 {
2318 fprintf_unfiltered (gdb_stdlog,
2319 "lookup_symbol_via_quick_fns (%s, %s, %s, %s)\n",
2320 objfile_debug_name (objfile),
2321 block_index == GLOBAL_BLOCK
2322 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2323 name, domain_name (domain));
2324 }
2325
2326 cust = objfile->sf->qf->lookup_symbol (objfile, block_index, name, domain);
2327 if (cust == NULL)
2328 {
2329 if (symbol_lookup_debug > 1)
2330 {
2331 fprintf_unfiltered (gdb_stdlog,
2332 "lookup_symbol_via_quick_fns (...) = NULL\n");
2333 }
2334 return (struct block_symbol) {NULL, NULL};
2335 }
2336
2337 bv = COMPUNIT_BLOCKVECTOR (cust);
2338 block = BLOCKVECTOR_BLOCK (bv, block_index);
2339 result.symbol = block_lookup_symbol (block, name, domain);
2340 if (result.symbol == NULL)
2341 error_in_psymtab_expansion (block_index, name, cust);
2342
2343 if (symbol_lookup_debug > 1)
2344 {
2345 fprintf_unfiltered (gdb_stdlog,
2346 "lookup_symbol_via_quick_fns (...) = %s (block %s)\n",
2347 host_address_to_string (result.symbol),
2348 host_address_to_string (block));
2349 }
2350
2351 result.symbol = fixup_symbol_section (result.symbol, objfile);
2352 result.block = block;
2353 return result;
2354 }
2355
2356 /* See symtab.h. */
2357
2358 struct block_symbol
2359 basic_lookup_symbol_nonlocal (const struct language_defn *langdef,
2360 const char *name,
2361 const struct block *block,
2362 const domain_enum domain)
2363 {
2364 struct block_symbol result;
2365
2366 /* NOTE: carlton/2003-05-19: The comments below were written when
2367 this (or what turned into this) was part of lookup_symbol_aux;
2368 I'm much less worried about these questions now, since these
2369 decisions have turned out well, but I leave these comments here
2370 for posterity. */
2371
2372 /* NOTE: carlton/2002-12-05: There is a question as to whether or
2373 not it would be appropriate to search the current global block
2374 here as well. (That's what this code used to do before the
2375 is_a_field_of_this check was moved up.) On the one hand, it's
2376 redundant with the lookup in all objfiles search that happens
2377 next. On the other hand, if decode_line_1 is passed an argument
2378 like filename:var, then the user presumably wants 'var' to be
2379 searched for in filename. On the third hand, there shouldn't be
2380 multiple global variables all of which are named 'var', and it's
2381 not like decode_line_1 has ever restricted its search to only
2382 global variables in a single filename. All in all, only
2383 searching the static block here seems best: it's correct and it's
2384 cleanest. */
2385
2386 /* NOTE: carlton/2002-12-05: There's also a possible performance
2387 issue here: if you usually search for global symbols in the
2388 current file, then it would be slightly better to search the
2389 current global block before searching all the symtabs. But there
2390 are other factors that have a much greater effect on performance
2391 than that one, so I don't think we should worry about that for
2392 now. */
2393
2394 /* NOTE: dje/2014-10-26: The lookup in all objfiles search could skip
2395 the current objfile. Searching the current objfile first is useful
2396 for both matching user expectations as well as performance. */
2397
2398 result = lookup_symbol_in_static_block (name, block, domain);
2399 if (result.symbol != NULL)
2400 return result;
2401
2402 /* If we didn't find a definition for a builtin type in the static block,
2403 search for it now. This is actually the right thing to do and can be
2404 a massive performance win. E.g., when debugging a program with lots of
2405 shared libraries we could search all of them only to find out the
2406 builtin type isn't defined in any of them. This is common for types
2407 like "void". */
2408 if (domain == VAR_DOMAIN)
2409 {
2410 struct gdbarch *gdbarch;
2411
2412 if (block == NULL)
2413 gdbarch = target_gdbarch ();
2414 else
2415 gdbarch = block_gdbarch (block);
2416 result.symbol = language_lookup_primitive_type_as_symbol (langdef,
2417 gdbarch, name);
2418 result.block = NULL;
2419 if (result.symbol != NULL)
2420 return result;
2421 }
2422
2423 return lookup_global_symbol (name, block, domain);
2424 }
2425
2426 /* See symtab.h. */
2427
2428 struct block_symbol
2429 lookup_symbol_in_static_block (const char *name,
2430 const struct block *block,
2431 const domain_enum domain)
2432 {
2433 const struct block *static_block = block_static_block (block);
2434 struct symbol *sym;
2435
2436 if (static_block == NULL)
2437 return (struct block_symbol) {NULL, NULL};
2438
2439 if (symbol_lookup_debug)
2440 {
2441 struct objfile *objfile = lookup_objfile_from_block (static_block);
2442
2443 fprintf_unfiltered (gdb_stdlog,
2444 "lookup_symbol_in_static_block (%s, %s (objfile %s),"
2445 " %s)\n",
2446 name,
2447 host_address_to_string (block),
2448 objfile_debug_name (objfile),
2449 domain_name (domain));
2450 }
2451
2452 sym = lookup_symbol_in_block (name, static_block, domain);
2453 if (symbol_lookup_debug)
2454 {
2455 fprintf_unfiltered (gdb_stdlog,
2456 "lookup_symbol_in_static_block (...) = %s\n",
2457 sym != NULL ? host_address_to_string (sym) : "NULL");
2458 }
2459 return (struct block_symbol) {sym, static_block};
2460 }
2461
2462 /* Perform the standard symbol lookup of NAME in OBJFILE:
2463 1) First search expanded symtabs, and if not found
2464 2) Search the "quick" symtabs (partial or .gdb_index).
2465 BLOCK_INDEX is one of GLOBAL_BLOCK or STATIC_BLOCK. */
2466
2467 static struct block_symbol
2468 lookup_symbol_in_objfile (struct objfile *objfile, int block_index,
2469 const char *name, const domain_enum domain)
2470 {
2471 struct block_symbol result;
2472
2473 if (symbol_lookup_debug)
2474 {
2475 fprintf_unfiltered (gdb_stdlog,
2476 "lookup_symbol_in_objfile (%s, %s, %s, %s)\n",
2477 objfile_debug_name (objfile),
2478 block_index == GLOBAL_BLOCK
2479 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2480 name, domain_name (domain));
2481 }
2482
2483 result = lookup_symbol_in_objfile_symtabs (objfile, block_index,
2484 name, domain);
2485 if (result.symbol != NULL)
2486 {
2487 if (symbol_lookup_debug)
2488 {
2489 fprintf_unfiltered (gdb_stdlog,
2490 "lookup_symbol_in_objfile (...) = %s"
2491 " (in symtabs)\n",
2492 host_address_to_string (result.symbol));
2493 }
2494 return result;
2495 }
2496
2497 result = lookup_symbol_via_quick_fns (objfile, block_index,
2498 name, domain);
2499 if (symbol_lookup_debug)
2500 {
2501 fprintf_unfiltered (gdb_stdlog,
2502 "lookup_symbol_in_objfile (...) = %s%s\n",
2503 result.symbol != NULL
2504 ? host_address_to_string (result.symbol)
2505 : "NULL",
2506 result.symbol != NULL ? " (via quick fns)" : "");
2507 }
2508 return result;
2509 }
2510
2511 /* See symtab.h. */
2512
2513 struct block_symbol
2514 lookup_static_symbol (const char *name, const domain_enum domain)
2515 {
2516 struct symbol_cache *cache = get_symbol_cache (current_program_space);
2517 struct objfile *objfile;
2518 struct block_symbol result;
2519 struct block_symbol_cache *bsc;
2520 struct symbol_cache_slot *slot;
2521
2522 /* Lookup in STATIC_BLOCK is not current-objfile-dependent, so just pass
2523 NULL for OBJFILE_CONTEXT. */
2524 result = symbol_cache_lookup (cache, NULL, STATIC_BLOCK, name, domain,
2525 &bsc, &slot);
2526 if (result.symbol != NULL)
2527 {
2528 if (SYMBOL_LOOKUP_FAILED_P (result))
2529 return (struct block_symbol) {NULL, NULL};
2530 return result;
2531 }
2532
2533 ALL_OBJFILES (objfile)
2534 {
2535 result = lookup_symbol_in_objfile (objfile, STATIC_BLOCK, name, domain);
2536 if (result.symbol != NULL)
2537 {
2538 /* Still pass NULL for OBJFILE_CONTEXT here. */
2539 symbol_cache_mark_found (bsc, slot, NULL, result.symbol,
2540 result.block);
2541 return result;
2542 }
2543 }
2544
2545 /* Still pass NULL for OBJFILE_CONTEXT here. */
2546 symbol_cache_mark_not_found (bsc, slot, NULL, name, domain);
2547 return (struct block_symbol) {NULL, NULL};
2548 }
2549
2550 /* Private data to be used with lookup_symbol_global_iterator_cb. */
2551
2552 struct global_sym_lookup_data
2553 {
2554 /* The name of the symbol we are searching for. */
2555 const char *name;
2556
2557 /* The domain to use for our search. */
2558 domain_enum domain;
2559
2560 /* The field where the callback should store the symbol if found.
2561 It should be initialized to {NULL, NULL} before the search is started. */
2562 struct block_symbol result;
2563 };
2564
2565 /* A callback function for gdbarch_iterate_over_objfiles_in_search_order.
2566 It searches by name for a symbol in the GLOBAL_BLOCK of the given
2567 OBJFILE. The arguments for the search are passed via CB_DATA,
2568 which in reality is a pointer to struct global_sym_lookup_data. */
2569
2570 static int
2571 lookup_symbol_global_iterator_cb (struct objfile *objfile,
2572 void *cb_data)
2573 {
2574 struct global_sym_lookup_data *data =
2575 (struct global_sym_lookup_data *) cb_data;
2576
2577 gdb_assert (data->result.symbol == NULL
2578 && data->result.block == NULL);
2579
2580 data->result = lookup_symbol_in_objfile (objfile, GLOBAL_BLOCK,
2581 data->name, data->domain);
2582
2583 /* If we found a match, tell the iterator to stop. Otherwise,
2584 keep going. */
2585 return (data->result.symbol != NULL);
2586 }
2587
2588 /* See symtab.h. */
2589
2590 struct block_symbol
2591 lookup_global_symbol (const char *name,
2592 const struct block *block,
2593 const domain_enum domain)
2594 {
2595 struct symbol_cache *cache = get_symbol_cache (current_program_space);
2596 struct block_symbol result;
2597 struct objfile *objfile;
2598 struct global_sym_lookup_data lookup_data;
2599 struct block_symbol_cache *bsc;
2600 struct symbol_cache_slot *slot;
2601
2602 objfile = lookup_objfile_from_block (block);
2603
2604 /* First see if we can find the symbol in the cache.
2605 This works because we use the current objfile to qualify the lookup. */
2606 result = symbol_cache_lookup (cache, objfile, GLOBAL_BLOCK, name, domain,
2607 &bsc, &slot);
2608 if (result.symbol != NULL)
2609 {
2610 if (SYMBOL_LOOKUP_FAILED_P (result))
2611 return (struct block_symbol) {NULL, NULL};
2612 return result;
2613 }
2614
2615 /* Call library-specific lookup procedure. */
2616 if (objfile != NULL)
2617 result = solib_global_lookup (objfile, name, domain);
2618
2619 /* If that didn't work go a global search (of global blocks, heh). */
2620 if (result.symbol == NULL)
2621 {
2622 memset (&lookup_data, 0, sizeof (lookup_data));
2623 lookup_data.name = name;
2624 lookup_data.domain = domain;
2625 gdbarch_iterate_over_objfiles_in_search_order
2626 (objfile != NULL ? get_objfile_arch (objfile) : target_gdbarch (),
2627 lookup_symbol_global_iterator_cb, &lookup_data, objfile);
2628 result = lookup_data.result;
2629 }
2630
2631 if (result.symbol != NULL)
2632 symbol_cache_mark_found (bsc, slot, objfile, result.symbol, result.block);
2633 else
2634 symbol_cache_mark_not_found (bsc, slot, objfile, name, domain);
2635
2636 return result;
2637 }
2638
2639 int
2640 symbol_matches_domain (enum language symbol_language,
2641 domain_enum symbol_domain,
2642 domain_enum domain)
2643 {
2644 /* For C++ "struct foo { ... }" also defines a typedef for "foo".
2645 Similarly, any Ada type declaration implicitly defines a typedef. */
2646 if (symbol_language == language_cplus
2647 || symbol_language == language_d
2648 || symbol_language == language_ada)
2649 {
2650 if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN)
2651 && symbol_domain == STRUCT_DOMAIN)
2652 return 1;
2653 }
2654 /* For all other languages, strict match is required. */
2655 return (symbol_domain == domain);
2656 }
2657
2658 /* See symtab.h. */
2659
2660 struct type *
2661 lookup_transparent_type (const char *name)
2662 {
2663 return current_language->la_lookup_transparent_type (name);
2664 }
2665
2666 /* A helper for basic_lookup_transparent_type that interfaces with the
2667 "quick" symbol table functions. */
2668
2669 static struct type *
2670 basic_lookup_transparent_type_quick (struct objfile *objfile, int block_index,
2671 const char *name)
2672 {
2673 struct compunit_symtab *cust;
2674 const struct blockvector *bv;
2675 struct block *block;
2676 struct symbol *sym;
2677
2678 if (!objfile->sf)
2679 return NULL;
2680 cust = objfile->sf->qf->lookup_symbol (objfile, block_index, name,
2681 STRUCT_DOMAIN);
2682 if (cust == NULL)
2683 return NULL;
2684
2685 bv = COMPUNIT_BLOCKVECTOR (cust);
2686 block = BLOCKVECTOR_BLOCK (bv, block_index);
2687 sym = block_find_symbol (block, name, STRUCT_DOMAIN,
2688 block_find_non_opaque_type, NULL);
2689 if (sym == NULL)
2690 error_in_psymtab_expansion (block_index, name, cust);
2691 gdb_assert (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)));
2692 return SYMBOL_TYPE (sym);
2693 }
2694
2695 /* Subroutine of basic_lookup_transparent_type to simplify it.
2696 Look up the non-opaque definition of NAME in BLOCK_INDEX of OBJFILE.
2697 BLOCK_INDEX is either GLOBAL_BLOCK or STATIC_BLOCK. */
2698
2699 static struct type *
2700 basic_lookup_transparent_type_1 (struct objfile *objfile, int block_index,
2701 const char *name)
2702 {
2703 const struct compunit_symtab *cust;
2704 const struct blockvector *bv;
2705 const struct block *block;
2706 const struct symbol *sym;
2707
2708 ALL_OBJFILE_COMPUNITS (objfile, cust)
2709 {
2710 bv = COMPUNIT_BLOCKVECTOR (cust);
2711 block = BLOCKVECTOR_BLOCK (bv, block_index);
2712 sym = block_find_symbol (block, name, STRUCT_DOMAIN,
2713 block_find_non_opaque_type, NULL);
2714 if (sym != NULL)
2715 {
2716 gdb_assert (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)));
2717 return SYMBOL_TYPE (sym);
2718 }
2719 }
2720
2721 return NULL;
2722 }
2723
2724 /* The standard implementation of lookup_transparent_type. This code
2725 was modeled on lookup_symbol -- the parts not relevant to looking
2726 up types were just left out. In particular it's assumed here that
2727 types are available in STRUCT_DOMAIN and only in file-static or
2728 global blocks. */
2729
2730 struct type *
2731 basic_lookup_transparent_type (const char *name)
2732 {
2733 struct objfile *objfile;
2734 struct type *t;
2735
2736 /* Now search all the global symbols. Do the symtab's first, then
2737 check the psymtab's. If a psymtab indicates the existence
2738 of the desired name as a global, then do psymtab-to-symtab
2739 conversion on the fly and return the found symbol. */
2740
2741 ALL_OBJFILES (objfile)
2742 {
2743 t = basic_lookup_transparent_type_1 (objfile, GLOBAL_BLOCK, name);
2744 if (t)
2745 return t;
2746 }
2747
2748 ALL_OBJFILES (objfile)
2749 {
2750 t = basic_lookup_transparent_type_quick (objfile, GLOBAL_BLOCK, name);
2751 if (t)
2752 return t;
2753 }
2754
2755 /* Now search the static file-level symbols.
2756 Not strictly correct, but more useful than an error.
2757 Do the symtab's first, then
2758 check the psymtab's. If a psymtab indicates the existence
2759 of the desired name as a file-level static, then do psymtab-to-symtab
2760 conversion on the fly and return the found symbol. */
2761
2762 ALL_OBJFILES (objfile)
2763 {
2764 t = basic_lookup_transparent_type_1 (objfile, STATIC_BLOCK, name);
2765 if (t)
2766 return t;
2767 }
2768
2769 ALL_OBJFILES (objfile)
2770 {
2771 t = basic_lookup_transparent_type_quick (objfile, STATIC_BLOCK, name);
2772 if (t)
2773 return t;
2774 }
2775
2776 return (struct type *) 0;
2777 }
2778
2779 /* Iterate over the symbols named NAME, matching DOMAIN, in BLOCK.
2780
2781 For each symbol that matches, CALLBACK is called. The symbol and
2782 DATA are passed to the callback.
2783
2784 If CALLBACK returns zero, the iteration ends. Otherwise, the
2785 search continues. */
2786
2787 void
2788 iterate_over_symbols (const struct block *block, const char *name,
2789 const domain_enum domain,
2790 symbol_found_callback_ftype *callback,
2791 void *data)
2792 {
2793 struct block_iterator iter;
2794 struct symbol *sym;
2795
2796 ALL_BLOCK_SYMBOLS_WITH_NAME (block, name, iter, sym)
2797 {
2798 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
2799 SYMBOL_DOMAIN (sym), domain))
2800 {
2801 if (!callback (sym, data))
2802 return;
2803 }
2804 }
2805 }
2806
2807 /* Find the compunit symtab associated with PC and SECTION.
2808 This will read in debug info as necessary. */
2809
2810 struct compunit_symtab *
2811 find_pc_sect_compunit_symtab (CORE_ADDR pc, struct obj_section *section)
2812 {
2813 struct compunit_symtab *cust;
2814 struct compunit_symtab *best_cust = NULL;
2815 struct objfile *objfile;
2816 CORE_ADDR distance = 0;
2817 struct bound_minimal_symbol msymbol;
2818
2819 /* If we know that this is not a text address, return failure. This is
2820 necessary because we loop based on the block's high and low code
2821 addresses, which do not include the data ranges, and because
2822 we call find_pc_sect_psymtab which has a similar restriction based
2823 on the partial_symtab's texthigh and textlow. */
2824 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
2825 if (msymbol.minsym
2826 && (MSYMBOL_TYPE (msymbol.minsym) == mst_data
2827 || MSYMBOL_TYPE (msymbol.minsym) == mst_bss
2828 || MSYMBOL_TYPE (msymbol.minsym) == mst_abs
2829 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_data
2830 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_bss))
2831 return NULL;
2832
2833 /* Search all symtabs for the one whose file contains our address, and which
2834 is the smallest of all the ones containing the address. This is designed
2835 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
2836 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
2837 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
2838
2839 This happens for native ecoff format, where code from included files
2840 gets its own symtab. The symtab for the included file should have
2841 been read in already via the dependency mechanism.
2842 It might be swifter to create several symtabs with the same name
2843 like xcoff does (I'm not sure).
2844
2845 It also happens for objfiles that have their functions reordered.
2846 For these, the symtab we are looking for is not necessarily read in. */
2847
2848 ALL_COMPUNITS (objfile, cust)
2849 {
2850 struct block *b;
2851 const struct blockvector *bv;
2852
2853 bv = COMPUNIT_BLOCKVECTOR (cust);
2854 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
2855
2856 if (BLOCK_START (b) <= pc
2857 && BLOCK_END (b) > pc
2858 && (distance == 0
2859 || BLOCK_END (b) - BLOCK_START (b) < distance))
2860 {
2861 /* For an objfile that has its functions reordered,
2862 find_pc_psymtab will find the proper partial symbol table
2863 and we simply return its corresponding symtab. */
2864 /* In order to better support objfiles that contain both
2865 stabs and coff debugging info, we continue on if a psymtab
2866 can't be found. */
2867 if ((objfile->flags & OBJF_REORDERED) && objfile->sf)
2868 {
2869 struct compunit_symtab *result;
2870
2871 result
2872 = objfile->sf->qf->find_pc_sect_compunit_symtab (objfile,
2873 msymbol,
2874 pc, section,
2875 0);
2876 if (result != NULL)
2877 return result;
2878 }
2879 if (section != 0)
2880 {
2881 struct block_iterator iter;
2882 struct symbol *sym = NULL;
2883
2884 ALL_BLOCK_SYMBOLS (b, iter, sym)
2885 {
2886 fixup_symbol_section (sym, objfile);
2887 if (matching_obj_sections (SYMBOL_OBJ_SECTION (objfile, sym),
2888 section))
2889 break;
2890 }
2891 if (sym == NULL)
2892 continue; /* No symbol in this symtab matches
2893 section. */
2894 }
2895 distance = BLOCK_END (b) - BLOCK_START (b);
2896 best_cust = cust;
2897 }
2898 }
2899
2900 if (best_cust != NULL)
2901 return best_cust;
2902
2903 /* Not found in symtabs, search the "quick" symtabs (e.g. psymtabs). */
2904
2905 ALL_OBJFILES (objfile)
2906 {
2907 struct compunit_symtab *result;
2908
2909 if (!objfile->sf)
2910 continue;
2911 result = objfile->sf->qf->find_pc_sect_compunit_symtab (objfile,
2912 msymbol,
2913 pc, section,
2914 1);
2915 if (result != NULL)
2916 return result;
2917 }
2918
2919 return NULL;
2920 }
2921
2922 /* Find the compunit symtab associated with PC.
2923 This will read in debug info as necessary.
2924 Backward compatibility, no section. */
2925
2926 struct compunit_symtab *
2927 find_pc_compunit_symtab (CORE_ADDR pc)
2928 {
2929 return find_pc_sect_compunit_symtab (pc, find_pc_mapped_section (pc));
2930 }
2931 \f
2932
2933 /* Find the source file and line number for a given PC value and SECTION.
2934 Return a structure containing a symtab pointer, a line number,
2935 and a pc range for the entire source line.
2936 The value's .pc field is NOT the specified pc.
2937 NOTCURRENT nonzero means, if specified pc is on a line boundary,
2938 use the line that ends there. Otherwise, in that case, the line
2939 that begins there is used. */
2940
2941 /* The big complication here is that a line may start in one file, and end just
2942 before the start of another file. This usually occurs when you #include
2943 code in the middle of a subroutine. To properly find the end of a line's PC
2944 range, we must search all symtabs associated with this compilation unit, and
2945 find the one whose first PC is closer than that of the next line in this
2946 symtab. */
2947
2948 /* If it's worth the effort, we could be using a binary search. */
2949
2950 struct symtab_and_line
2951 find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent)
2952 {
2953 struct compunit_symtab *cust;
2954 struct symtab *iter_s;
2955 struct linetable *l;
2956 int len;
2957 int i;
2958 struct linetable_entry *item;
2959 struct symtab_and_line val;
2960 const struct blockvector *bv;
2961 struct bound_minimal_symbol msymbol;
2962
2963 /* Info on best line seen so far, and where it starts, and its file. */
2964
2965 struct linetable_entry *best = NULL;
2966 CORE_ADDR best_end = 0;
2967 struct symtab *best_symtab = 0;
2968
2969 /* Store here the first line number
2970 of a file which contains the line at the smallest pc after PC.
2971 If we don't find a line whose range contains PC,
2972 we will use a line one less than this,
2973 with a range from the start of that file to the first line's pc. */
2974 struct linetable_entry *alt = NULL;
2975
2976 /* Info on best line seen in this file. */
2977
2978 struct linetable_entry *prev;
2979
2980 /* If this pc is not from the current frame,
2981 it is the address of the end of a call instruction.
2982 Quite likely that is the start of the following statement.
2983 But what we want is the statement containing the instruction.
2984 Fudge the pc to make sure we get that. */
2985
2986 init_sal (&val); /* initialize to zeroes */
2987
2988 val.pspace = current_program_space;
2989
2990 /* It's tempting to assume that, if we can't find debugging info for
2991 any function enclosing PC, that we shouldn't search for line
2992 number info, either. However, GAS can emit line number info for
2993 assembly files --- very helpful when debugging hand-written
2994 assembly code. In such a case, we'd have no debug info for the
2995 function, but we would have line info. */
2996
2997 if (notcurrent)
2998 pc -= 1;
2999
3000 /* elz: added this because this function returned the wrong
3001 information if the pc belongs to a stub (import/export)
3002 to call a shlib function. This stub would be anywhere between
3003 two functions in the target, and the line info was erroneously
3004 taken to be the one of the line before the pc. */
3005
3006 /* RT: Further explanation:
3007
3008 * We have stubs (trampolines) inserted between procedures.
3009 *
3010 * Example: "shr1" exists in a shared library, and a "shr1" stub also
3011 * exists in the main image.
3012 *
3013 * In the minimal symbol table, we have a bunch of symbols
3014 * sorted by start address. The stubs are marked as "trampoline",
3015 * the others appear as text. E.g.:
3016 *
3017 * Minimal symbol table for main image
3018 * main: code for main (text symbol)
3019 * shr1: stub (trampoline symbol)
3020 * foo: code for foo (text symbol)
3021 * ...
3022 * Minimal symbol table for "shr1" image:
3023 * ...
3024 * shr1: code for shr1 (text symbol)
3025 * ...
3026 *
3027 * So the code below is trying to detect if we are in the stub
3028 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
3029 * and if found, do the symbolization from the real-code address
3030 * rather than the stub address.
3031 *
3032 * Assumptions being made about the minimal symbol table:
3033 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
3034 * if we're really in the trampoline.s If we're beyond it (say
3035 * we're in "foo" in the above example), it'll have a closer
3036 * symbol (the "foo" text symbol for example) and will not
3037 * return the trampoline.
3038 * 2. lookup_minimal_symbol_text() will find a real text symbol
3039 * corresponding to the trampoline, and whose address will
3040 * be different than the trampoline address. I put in a sanity
3041 * check for the address being the same, to avoid an
3042 * infinite recursion.
3043 */
3044 msymbol = lookup_minimal_symbol_by_pc (pc);
3045 if (msymbol.minsym != NULL)
3046 if (MSYMBOL_TYPE (msymbol.minsym) == mst_solib_trampoline)
3047 {
3048 struct bound_minimal_symbol mfunsym
3049 = lookup_minimal_symbol_text (MSYMBOL_LINKAGE_NAME (msymbol.minsym),
3050 NULL);
3051
3052 if (mfunsym.minsym == NULL)
3053 /* I eliminated this warning since it is coming out
3054 * in the following situation:
3055 * gdb shmain // test program with shared libraries
3056 * (gdb) break shr1 // function in shared lib
3057 * Warning: In stub for ...
3058 * In the above situation, the shared lib is not loaded yet,
3059 * so of course we can't find the real func/line info,
3060 * but the "break" still works, and the warning is annoying.
3061 * So I commented out the warning. RT */
3062 /* warning ("In stub for %s; unable to find real function/line info",
3063 SYMBOL_LINKAGE_NAME (msymbol)); */
3064 ;
3065 /* fall through */
3066 else if (BMSYMBOL_VALUE_ADDRESS (mfunsym)
3067 == BMSYMBOL_VALUE_ADDRESS (msymbol))
3068 /* Avoid infinite recursion */
3069 /* See above comment about why warning is commented out. */
3070 /* warning ("In stub for %s; unable to find real function/line info",
3071 SYMBOL_LINKAGE_NAME (msymbol)); */
3072 ;
3073 /* fall through */
3074 else
3075 return find_pc_line (BMSYMBOL_VALUE_ADDRESS (mfunsym), 0);
3076 }
3077
3078
3079 cust = find_pc_sect_compunit_symtab (pc, section);
3080 if (cust == NULL)
3081 {
3082 /* If no symbol information, return previous pc. */
3083 if (notcurrent)
3084 pc++;
3085 val.pc = pc;
3086 return val;
3087 }
3088
3089 bv = COMPUNIT_BLOCKVECTOR (cust);
3090
3091 /* Look at all the symtabs that share this blockvector.
3092 They all have the same apriori range, that we found was right;
3093 but they have different line tables. */
3094
3095 ALL_COMPUNIT_FILETABS (cust, iter_s)
3096 {
3097 /* Find the best line in this symtab. */
3098 l = SYMTAB_LINETABLE (iter_s);
3099 if (!l)
3100 continue;
3101 len = l->nitems;
3102 if (len <= 0)
3103 {
3104 /* I think len can be zero if the symtab lacks line numbers
3105 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
3106 I'm not sure which, and maybe it depends on the symbol
3107 reader). */
3108 continue;
3109 }
3110
3111 prev = NULL;
3112 item = l->item; /* Get first line info. */
3113
3114 /* Is this file's first line closer than the first lines of other files?
3115 If so, record this file, and its first line, as best alternate. */
3116 if (item->pc > pc && (!alt || item->pc < alt->pc))
3117 alt = item;
3118
3119 for (i = 0; i < len; i++, item++)
3120 {
3121 /* Leave prev pointing to the linetable entry for the last line
3122 that started at or before PC. */
3123 if (item->pc > pc)
3124 break;
3125
3126 prev = item;
3127 }
3128
3129 /* At this point, prev points at the line whose start addr is <= pc, and
3130 item points at the next line. If we ran off the end of the linetable
3131 (pc >= start of the last line), then prev == item. If pc < start of
3132 the first line, prev will not be set. */
3133
3134 /* Is this file's best line closer than the best in the other files?
3135 If so, record this file, and its best line, as best so far. Don't
3136 save prev if it represents the end of a function (i.e. line number
3137 0) instead of a real line. */
3138
3139 if (prev && prev->line && (!best || prev->pc > best->pc))
3140 {
3141 best = prev;
3142 best_symtab = iter_s;
3143
3144 /* Discard BEST_END if it's before the PC of the current BEST. */
3145 if (best_end <= best->pc)
3146 best_end = 0;
3147 }
3148
3149 /* If another line (denoted by ITEM) is in the linetable and its
3150 PC is after BEST's PC, but before the current BEST_END, then
3151 use ITEM's PC as the new best_end. */
3152 if (best && i < len && item->pc > best->pc
3153 && (best_end == 0 || best_end > item->pc))
3154 best_end = item->pc;
3155 }
3156
3157 if (!best_symtab)
3158 {
3159 /* If we didn't find any line number info, just return zeros.
3160 We used to return alt->line - 1 here, but that could be
3161 anywhere; if we don't have line number info for this PC,
3162 don't make some up. */
3163 val.pc = pc;
3164 }
3165 else if (best->line == 0)
3166 {
3167 /* If our best fit is in a range of PC's for which no line
3168 number info is available (line number is zero) then we didn't
3169 find any valid line information. */
3170 val.pc = pc;
3171 }
3172 else
3173 {
3174 val.symtab = best_symtab;
3175 val.line = best->line;
3176 val.pc = best->pc;
3177 if (best_end && (!alt || best_end < alt->pc))
3178 val.end = best_end;
3179 else if (alt)
3180 val.end = alt->pc;
3181 else
3182 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
3183 }
3184 val.section = section;
3185 return val;
3186 }
3187
3188 /* Backward compatibility (no section). */
3189
3190 struct symtab_and_line
3191 find_pc_line (CORE_ADDR pc, int notcurrent)
3192 {
3193 struct obj_section *section;
3194
3195 section = find_pc_overlay (pc);
3196 if (pc_in_unmapped_range (pc, section))
3197 pc = overlay_mapped_address (pc, section);
3198 return find_pc_sect_line (pc, section, notcurrent);
3199 }
3200
3201 /* See symtab.h. */
3202
3203 struct symtab *
3204 find_pc_line_symtab (CORE_ADDR pc)
3205 {
3206 struct symtab_and_line sal;
3207
3208 /* This always passes zero for NOTCURRENT to find_pc_line.
3209 There are currently no callers that ever pass non-zero. */
3210 sal = find_pc_line (pc, 0);
3211 return sal.symtab;
3212 }
3213 \f
3214 /* Find line number LINE in any symtab whose name is the same as
3215 SYMTAB.
3216
3217 If found, return the symtab that contains the linetable in which it was
3218 found, set *INDEX to the index in the linetable of the best entry
3219 found, and set *EXACT_MATCH nonzero if the value returned is an
3220 exact match.
3221
3222 If not found, return NULL. */
3223
3224 struct symtab *
3225 find_line_symtab (struct symtab *symtab, int line,
3226 int *index, int *exact_match)
3227 {
3228 int exact = 0; /* Initialized here to avoid a compiler warning. */
3229
3230 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
3231 so far seen. */
3232
3233 int best_index;
3234 struct linetable *best_linetable;
3235 struct symtab *best_symtab;
3236
3237 /* First try looking it up in the given symtab. */
3238 best_linetable = SYMTAB_LINETABLE (symtab);
3239 best_symtab = symtab;
3240 best_index = find_line_common (best_linetable, line, &exact, 0);
3241 if (best_index < 0 || !exact)
3242 {
3243 /* Didn't find an exact match. So we better keep looking for
3244 another symtab with the same name. In the case of xcoff,
3245 multiple csects for one source file (produced by IBM's FORTRAN
3246 compiler) produce multiple symtabs (this is unavoidable
3247 assuming csects can be at arbitrary places in memory and that
3248 the GLOBAL_BLOCK of a symtab has a begin and end address). */
3249
3250 /* BEST is the smallest linenumber > LINE so far seen,
3251 or 0 if none has been seen so far.
3252 BEST_INDEX and BEST_LINETABLE identify the item for it. */
3253 int best;
3254
3255 struct objfile *objfile;
3256 struct compunit_symtab *cu;
3257 struct symtab *s;
3258
3259 if (best_index >= 0)
3260 best = best_linetable->item[best_index].line;
3261 else
3262 best = 0;
3263
3264 ALL_OBJFILES (objfile)
3265 {
3266 if (objfile->sf)
3267 objfile->sf->qf->expand_symtabs_with_fullname (objfile,
3268 symtab_to_fullname (symtab));
3269 }
3270
3271 ALL_FILETABS (objfile, cu, s)
3272 {
3273 struct linetable *l;
3274 int ind;
3275
3276 if (FILENAME_CMP (symtab->filename, s->filename) != 0)
3277 continue;
3278 if (FILENAME_CMP (symtab_to_fullname (symtab),
3279 symtab_to_fullname (s)) != 0)
3280 continue;
3281 l = SYMTAB_LINETABLE (s);
3282 ind = find_line_common (l, line, &exact, 0);
3283 if (ind >= 0)
3284 {
3285 if (exact)
3286 {
3287 best_index = ind;
3288 best_linetable = l;
3289 best_symtab = s;
3290 goto done;
3291 }
3292 if (best == 0 || l->item[ind].line < best)
3293 {
3294 best = l->item[ind].line;
3295 best_index = ind;
3296 best_linetable = l;
3297 best_symtab = s;
3298 }
3299 }
3300 }
3301 }
3302 done:
3303 if (best_index < 0)
3304 return NULL;
3305
3306 if (index)
3307 *index = best_index;
3308 if (exact_match)
3309 *exact_match = exact;
3310
3311 return best_symtab;
3312 }
3313
3314 /* Given SYMTAB, returns all the PCs function in the symtab that
3315 exactly match LINE. Returns NULL if there are no exact matches,
3316 but updates BEST_ITEM in this case. */
3317
3318 VEC (CORE_ADDR) *
3319 find_pcs_for_symtab_line (struct symtab *symtab, int line,
3320 struct linetable_entry **best_item)
3321 {
3322 int start = 0;
3323 VEC (CORE_ADDR) *result = NULL;
3324
3325 /* First, collect all the PCs that are at this line. */
3326 while (1)
3327 {
3328 int was_exact;
3329 int idx;
3330
3331 idx = find_line_common (SYMTAB_LINETABLE (symtab), line, &was_exact,
3332 start);
3333 if (idx < 0)
3334 break;
3335
3336 if (!was_exact)
3337 {
3338 struct linetable_entry *item = &SYMTAB_LINETABLE (symtab)->item[idx];
3339
3340 if (*best_item == NULL || item->line < (*best_item)->line)
3341 *best_item = item;
3342
3343 break;
3344 }
3345
3346 VEC_safe_push (CORE_ADDR, result,
3347 SYMTAB_LINETABLE (symtab)->item[idx].pc);
3348 start = idx + 1;
3349 }
3350
3351 return result;
3352 }
3353
3354 \f
3355 /* Set the PC value for a given source file and line number and return true.
3356 Returns zero for invalid line number (and sets the PC to 0).
3357 The source file is specified with a struct symtab. */
3358
3359 int
3360 find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
3361 {
3362 struct linetable *l;
3363 int ind;
3364
3365 *pc = 0;
3366 if (symtab == 0)
3367 return 0;
3368
3369 symtab = find_line_symtab (symtab, line, &ind, NULL);
3370 if (symtab != NULL)
3371 {
3372 l = SYMTAB_LINETABLE (symtab);
3373 *pc = l->item[ind].pc;
3374 return 1;
3375 }
3376 else
3377 return 0;
3378 }
3379
3380 /* Find the range of pc values in a line.
3381 Store the starting pc of the line into *STARTPTR
3382 and the ending pc (start of next line) into *ENDPTR.
3383 Returns 1 to indicate success.
3384 Returns 0 if could not find the specified line. */
3385
3386 int
3387 find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
3388 CORE_ADDR *endptr)
3389 {
3390 CORE_ADDR startaddr;
3391 struct symtab_and_line found_sal;
3392
3393 startaddr = sal.pc;
3394 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
3395 return 0;
3396
3397 /* This whole function is based on address. For example, if line 10 has
3398 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
3399 "info line *0x123" should say the line goes from 0x100 to 0x200
3400 and "info line *0x355" should say the line goes from 0x300 to 0x400.
3401 This also insures that we never give a range like "starts at 0x134
3402 and ends at 0x12c". */
3403
3404 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
3405 if (found_sal.line != sal.line)
3406 {
3407 /* The specified line (sal) has zero bytes. */
3408 *startptr = found_sal.pc;
3409 *endptr = found_sal.pc;
3410 }
3411 else
3412 {
3413 *startptr = found_sal.pc;
3414 *endptr = found_sal.end;
3415 }
3416 return 1;
3417 }
3418
3419 /* Given a line table and a line number, return the index into the line
3420 table for the pc of the nearest line whose number is >= the specified one.
3421 Return -1 if none is found. The value is >= 0 if it is an index.
3422 START is the index at which to start searching the line table.
3423
3424 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
3425
3426 static int
3427 find_line_common (struct linetable *l, int lineno,
3428 int *exact_match, int start)
3429 {
3430 int i;
3431 int len;
3432
3433 /* BEST is the smallest linenumber > LINENO so far seen,
3434 or 0 if none has been seen so far.
3435 BEST_INDEX identifies the item for it. */
3436
3437 int best_index = -1;
3438 int best = 0;
3439
3440 *exact_match = 0;
3441
3442 if (lineno <= 0)
3443 return -1;
3444 if (l == 0)
3445 return -1;
3446
3447 len = l->nitems;
3448 for (i = start; i < len; i++)
3449 {
3450 struct linetable_entry *item = &(l->item[i]);
3451
3452 if (item->line == lineno)
3453 {
3454 /* Return the first (lowest address) entry which matches. */
3455 *exact_match = 1;
3456 return i;
3457 }
3458
3459 if (item->line > lineno && (best == 0 || item->line < best))
3460 {
3461 best = item->line;
3462 best_index = i;
3463 }
3464 }
3465
3466 /* If we got here, we didn't get an exact match. */
3467 return best_index;
3468 }
3469
3470 int
3471 find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
3472 {
3473 struct symtab_and_line sal;
3474
3475 sal = find_pc_line (pc, 0);
3476 *startptr = sal.pc;
3477 *endptr = sal.end;
3478 return sal.symtab != 0;
3479 }
3480
3481 /* Given a function symbol SYM, find the symtab and line for the start
3482 of the function.
3483 If the argument FUNFIRSTLINE is nonzero, we want the first line
3484 of real code inside the function.
3485 This function should return SALs matching those from minsym_found,
3486 otherwise false multiple-locations breakpoints could be placed. */
3487
3488 struct symtab_and_line
3489 find_function_start_sal (struct symbol *sym, int funfirstline)
3490 {
3491 struct symtab_and_line sal;
3492 struct obj_section *section;
3493
3494 fixup_symbol_section (sym, NULL);
3495 section = SYMBOL_OBJ_SECTION (symbol_objfile (sym), sym);
3496 sal = find_pc_sect_line (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)), section, 0);
3497
3498 if (funfirstline && sal.symtab != NULL
3499 && (COMPUNIT_LOCATIONS_VALID (SYMTAB_COMPUNIT (sal.symtab))
3500 || SYMTAB_LANGUAGE (sal.symtab) == language_asm))
3501 {
3502 struct gdbarch *gdbarch = symbol_arch (sym);
3503
3504 sal.pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
3505 if (gdbarch_skip_entrypoint_p (gdbarch))
3506 sal.pc = gdbarch_skip_entrypoint (gdbarch, sal.pc);
3507 return sal;
3508 }
3509
3510 /* We always should have a line for the function start address.
3511 If we don't, something is odd. Create a plain SAL refering
3512 just the PC and hope that skip_prologue_sal (if requested)
3513 can find a line number for after the prologue. */
3514 if (sal.pc < BLOCK_START (SYMBOL_BLOCK_VALUE (sym)))
3515 {
3516 init_sal (&sal);
3517 sal.pspace = current_program_space;
3518 sal.pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
3519 sal.section = section;
3520 }
3521
3522 if (funfirstline)
3523 skip_prologue_sal (&sal);
3524
3525 return sal;
3526 }
3527
3528 /* Given a function start address FUNC_ADDR and SYMTAB, find the first
3529 address for that function that has an entry in SYMTAB's line info
3530 table. If such an entry cannot be found, return FUNC_ADDR
3531 unaltered. */
3532
3533 static CORE_ADDR
3534 skip_prologue_using_lineinfo (CORE_ADDR func_addr, struct symtab *symtab)
3535 {
3536 CORE_ADDR func_start, func_end;
3537 struct linetable *l;
3538 int i;
3539
3540 /* Give up if this symbol has no lineinfo table. */
3541 l = SYMTAB_LINETABLE (symtab);
3542 if (l == NULL)
3543 return func_addr;
3544
3545 /* Get the range for the function's PC values, or give up if we
3546 cannot, for some reason. */
3547 if (!find_pc_partial_function (func_addr, NULL, &func_start, &func_end))
3548 return func_addr;
3549
3550 /* Linetable entries are ordered by PC values, see the commentary in
3551 symtab.h where `struct linetable' is defined. Thus, the first
3552 entry whose PC is in the range [FUNC_START..FUNC_END[ is the
3553 address we are looking for. */
3554 for (i = 0; i < l->nitems; i++)
3555 {
3556 struct linetable_entry *item = &(l->item[i]);
3557
3558 /* Don't use line numbers of zero, they mark special entries in
3559 the table. See the commentary on symtab.h before the
3560 definition of struct linetable. */
3561 if (item->line > 0 && func_start <= item->pc && item->pc < func_end)
3562 return item->pc;
3563 }
3564
3565 return func_addr;
3566 }
3567
3568 /* Adjust SAL to the first instruction past the function prologue.
3569 If the PC was explicitly specified, the SAL is not changed.
3570 If the line number was explicitly specified, at most the SAL's PC
3571 is updated. If SAL is already past the prologue, then do nothing. */
3572
3573 void
3574 skip_prologue_sal (struct symtab_and_line *sal)
3575 {
3576 struct symbol *sym;
3577 struct symtab_and_line start_sal;
3578 struct cleanup *old_chain;
3579 CORE_ADDR pc, saved_pc;
3580 struct obj_section *section;
3581 const char *name;
3582 struct objfile *objfile;
3583 struct gdbarch *gdbarch;
3584 const struct block *b, *function_block;
3585 int force_skip, skip;
3586
3587 /* Do not change the SAL if PC was specified explicitly. */
3588 if (sal->explicit_pc)
3589 return;
3590
3591 old_chain = save_current_space_and_thread ();
3592 switch_to_program_space_and_thread (sal->pspace);
3593
3594 sym = find_pc_sect_function (sal->pc, sal->section);
3595 if (sym != NULL)
3596 {
3597 fixup_symbol_section (sym, NULL);
3598
3599 objfile = symbol_objfile (sym);
3600 pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
3601 section = SYMBOL_OBJ_SECTION (objfile, sym);
3602 name = SYMBOL_LINKAGE_NAME (sym);
3603 }
3604 else
3605 {
3606 struct bound_minimal_symbol msymbol
3607 = lookup_minimal_symbol_by_pc_section (sal->pc, sal->section);
3608
3609 if (msymbol.minsym == NULL)
3610 {
3611 do_cleanups (old_chain);
3612 return;
3613 }
3614
3615 objfile = msymbol.objfile;
3616 pc = BMSYMBOL_VALUE_ADDRESS (msymbol);
3617 section = MSYMBOL_OBJ_SECTION (objfile, msymbol.minsym);
3618 name = MSYMBOL_LINKAGE_NAME (msymbol.minsym);
3619 }
3620
3621 gdbarch = get_objfile_arch (objfile);
3622
3623 /* Process the prologue in two passes. In the first pass try to skip the
3624 prologue (SKIP is true) and verify there is a real need for it (indicated
3625 by FORCE_SKIP). If no such reason was found run a second pass where the
3626 prologue is not skipped (SKIP is false). */
3627
3628 skip = 1;
3629 force_skip = 1;
3630
3631 /* Be conservative - allow direct PC (without skipping prologue) only if we
3632 have proven the CU (Compilation Unit) supports it. sal->SYMTAB does not
3633 have to be set by the caller so we use SYM instead. */
3634 if (sym != NULL
3635 && COMPUNIT_LOCATIONS_VALID (SYMTAB_COMPUNIT (symbol_symtab (sym))))
3636 force_skip = 0;
3637
3638 saved_pc = pc;
3639 do
3640 {
3641 pc = saved_pc;
3642
3643 /* If the function is in an unmapped overlay, use its unmapped LMA address,
3644 so that gdbarch_skip_prologue has something unique to work on. */
3645 if (section_is_overlay (section) && !section_is_mapped (section))
3646 pc = overlay_unmapped_address (pc, section);
3647
3648 /* Skip "first line" of function (which is actually its prologue). */
3649 pc += gdbarch_deprecated_function_start_offset (gdbarch);
3650 if (gdbarch_skip_entrypoint_p (gdbarch))
3651 pc = gdbarch_skip_entrypoint (gdbarch, pc);
3652 if (skip)
3653 pc = gdbarch_skip_prologue (gdbarch, pc);
3654
3655 /* For overlays, map pc back into its mapped VMA range. */
3656 pc = overlay_mapped_address (pc, section);
3657
3658 /* Calculate line number. */
3659 start_sal = find_pc_sect_line (pc, section, 0);
3660
3661 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
3662 line is still part of the same function. */
3663 if (skip && start_sal.pc != pc
3664 && (sym ? (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) <= start_sal.end
3665 && start_sal.end < BLOCK_END (SYMBOL_BLOCK_VALUE (sym)))
3666 : (lookup_minimal_symbol_by_pc_section (start_sal.end, section).minsym
3667 == lookup_minimal_symbol_by_pc_section (pc, section).minsym)))
3668 {
3669 /* First pc of next line */
3670 pc = start_sal.end;
3671 /* Recalculate the line number (might not be N+1). */
3672 start_sal = find_pc_sect_line (pc, section, 0);
3673 }
3674
3675 /* On targets with executable formats that don't have a concept of
3676 constructors (ELF with .init has, PE doesn't), gcc emits a call
3677 to `__main' in `main' between the prologue and before user
3678 code. */
3679 if (gdbarch_skip_main_prologue_p (gdbarch)
3680 && name && strcmp_iw (name, "main") == 0)
3681 {
3682 pc = gdbarch_skip_main_prologue (gdbarch, pc);
3683 /* Recalculate the line number (might not be N+1). */
3684 start_sal = find_pc_sect_line (pc, section, 0);
3685 force_skip = 1;
3686 }
3687 }
3688 while (!force_skip && skip--);
3689
3690 /* If we still don't have a valid source line, try to find the first
3691 PC in the lineinfo table that belongs to the same function. This
3692 happens with COFF debug info, which does not seem to have an
3693 entry in lineinfo table for the code after the prologue which has
3694 no direct relation to source. For example, this was found to be
3695 the case with the DJGPP target using "gcc -gcoff" when the
3696 compiler inserted code after the prologue to make sure the stack
3697 is aligned. */
3698 if (!force_skip && sym && start_sal.symtab == NULL)
3699 {
3700 pc = skip_prologue_using_lineinfo (pc, symbol_symtab (sym));
3701 /* Recalculate the line number. */
3702 start_sal = find_pc_sect_line (pc, section, 0);
3703 }
3704
3705 do_cleanups (old_chain);
3706
3707 /* If we're already past the prologue, leave SAL unchanged. Otherwise
3708 forward SAL to the end of the prologue. */
3709 if (sal->pc >= pc)
3710 return;
3711
3712 sal->pc = pc;
3713 sal->section = section;
3714
3715 /* Unless the explicit_line flag was set, update the SAL line
3716 and symtab to correspond to the modified PC location. */
3717 if (sal->explicit_line)
3718 return;
3719
3720 sal->symtab = start_sal.symtab;
3721 sal->line = start_sal.line;
3722 sal->end = start_sal.end;
3723
3724 /* Check if we are now inside an inlined function. If we can,
3725 use the call site of the function instead. */
3726 b = block_for_pc_sect (sal->pc, sal->section);
3727 function_block = NULL;
3728 while (b != NULL)
3729 {
3730 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
3731 function_block = b;
3732 else if (BLOCK_FUNCTION (b) != NULL)
3733 break;
3734 b = BLOCK_SUPERBLOCK (b);
3735 }
3736 if (function_block != NULL
3737 && SYMBOL_LINE (BLOCK_FUNCTION (function_block)) != 0)
3738 {
3739 sal->line = SYMBOL_LINE (BLOCK_FUNCTION (function_block));
3740 sal->symtab = symbol_symtab (BLOCK_FUNCTION (function_block));
3741 }
3742 }
3743
3744 /* Given PC at the function's start address, attempt to find the
3745 prologue end using SAL information. Return zero if the skip fails.
3746
3747 A non-optimized prologue traditionally has one SAL for the function
3748 and a second for the function body. A single line function has
3749 them both pointing at the same line.
3750
3751 An optimized prologue is similar but the prologue may contain
3752 instructions (SALs) from the instruction body. Need to skip those
3753 while not getting into the function body.
3754
3755 The functions end point and an increasing SAL line are used as
3756 indicators of the prologue's endpoint.
3757
3758 This code is based on the function refine_prologue_limit
3759 (found in ia64). */
3760
3761 CORE_ADDR
3762 skip_prologue_using_sal (struct gdbarch *gdbarch, CORE_ADDR func_addr)
3763 {
3764 struct symtab_and_line prologue_sal;
3765 CORE_ADDR start_pc;
3766 CORE_ADDR end_pc;
3767 const struct block *bl;
3768
3769 /* Get an initial range for the function. */
3770 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
3771 start_pc += gdbarch_deprecated_function_start_offset (gdbarch);
3772
3773 prologue_sal = find_pc_line (start_pc, 0);
3774 if (prologue_sal.line != 0)
3775 {
3776 /* For languages other than assembly, treat two consecutive line
3777 entries at the same address as a zero-instruction prologue.
3778 The GNU assembler emits separate line notes for each instruction
3779 in a multi-instruction macro, but compilers generally will not
3780 do this. */
3781 if (prologue_sal.symtab->language != language_asm)
3782 {
3783 struct linetable *linetable = SYMTAB_LINETABLE (prologue_sal.symtab);
3784 int idx = 0;
3785
3786 /* Skip any earlier lines, and any end-of-sequence marker
3787 from a previous function. */
3788 while (linetable->item[idx].pc != prologue_sal.pc
3789 || linetable->item[idx].line == 0)
3790 idx++;
3791
3792 if (idx+1 < linetable->nitems
3793 && linetable->item[idx+1].line != 0
3794 && linetable->item[idx+1].pc == start_pc)
3795 return start_pc;
3796 }
3797
3798 /* If there is only one sal that covers the entire function,
3799 then it is probably a single line function, like
3800 "foo(){}". */
3801 if (prologue_sal.end >= end_pc)
3802 return 0;
3803
3804 while (prologue_sal.end < end_pc)
3805 {
3806 struct symtab_and_line sal;
3807
3808 sal = find_pc_line (prologue_sal.end, 0);
3809 if (sal.line == 0)
3810 break;
3811 /* Assume that a consecutive SAL for the same (or larger)
3812 line mark the prologue -> body transition. */
3813 if (sal.line >= prologue_sal.line)
3814 break;
3815 /* Likewise if we are in a different symtab altogether
3816 (e.g. within a file included via #include).  */
3817 if (sal.symtab != prologue_sal.symtab)
3818 break;
3819
3820 /* The line number is smaller. Check that it's from the
3821 same function, not something inlined. If it's inlined,
3822 then there is no point comparing the line numbers. */
3823 bl = block_for_pc (prologue_sal.end);
3824 while (bl)
3825 {
3826 if (block_inlined_p (bl))
3827 break;
3828 if (BLOCK_FUNCTION (bl))
3829 {
3830 bl = NULL;
3831 break;
3832 }
3833 bl = BLOCK_SUPERBLOCK (bl);
3834 }
3835 if (bl != NULL)
3836 break;
3837
3838 /* The case in which compiler's optimizer/scheduler has
3839 moved instructions into the prologue. We look ahead in
3840 the function looking for address ranges whose
3841 corresponding line number is less the first one that we
3842 found for the function. This is more conservative then
3843 refine_prologue_limit which scans a large number of SALs
3844 looking for any in the prologue. */
3845 prologue_sal = sal;
3846 }
3847 }
3848
3849 if (prologue_sal.end < end_pc)
3850 /* Return the end of this line, or zero if we could not find a
3851 line. */
3852 return prologue_sal.end;
3853 else
3854 /* Don't return END_PC, which is past the end of the function. */
3855 return prologue_sal.pc;
3856 }
3857 \f
3858 /* If P is of the form "operator[ \t]+..." where `...' is
3859 some legitimate operator text, return a pointer to the
3860 beginning of the substring of the operator text.
3861 Otherwise, return "". */
3862
3863 static const char *
3864 operator_chars (const char *p, const char **end)
3865 {
3866 *end = "";
3867 if (!startswith (p, "operator"))
3868 return *end;
3869 p += 8;
3870
3871 /* Don't get faked out by `operator' being part of a longer
3872 identifier. */
3873 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
3874 return *end;
3875
3876 /* Allow some whitespace between `operator' and the operator symbol. */
3877 while (*p == ' ' || *p == '\t')
3878 p++;
3879
3880 /* Recognize 'operator TYPENAME'. */
3881
3882 if (isalpha (*p) || *p == '_' || *p == '$')
3883 {
3884 const char *q = p + 1;
3885
3886 while (isalnum (*q) || *q == '_' || *q == '$')
3887 q++;
3888 *end = q;
3889 return p;
3890 }
3891
3892 while (*p)
3893 switch (*p)
3894 {
3895 case '\\': /* regexp quoting */
3896 if (p[1] == '*')
3897 {
3898 if (p[2] == '=') /* 'operator\*=' */
3899 *end = p + 3;
3900 else /* 'operator\*' */
3901 *end = p + 2;
3902 return p;
3903 }
3904 else if (p[1] == '[')
3905 {
3906 if (p[2] == ']')
3907 error (_("mismatched quoting on brackets, "
3908 "try 'operator\\[\\]'"));
3909 else if (p[2] == '\\' && p[3] == ']')
3910 {
3911 *end = p + 4; /* 'operator\[\]' */
3912 return p;
3913 }
3914 else
3915 error (_("nothing is allowed between '[' and ']'"));
3916 }
3917 else
3918 {
3919 /* Gratuitous qoute: skip it and move on. */
3920 p++;
3921 continue;
3922 }
3923 break;
3924 case '!':
3925 case '=':
3926 case '*':
3927 case '/':
3928 case '%':
3929 case '^':
3930 if (p[1] == '=')
3931 *end = p + 2;
3932 else
3933 *end = p + 1;
3934 return p;
3935 case '<':
3936 case '>':
3937 case '+':
3938 case '-':
3939 case '&':
3940 case '|':
3941 if (p[0] == '-' && p[1] == '>')
3942 {
3943 /* Struct pointer member operator 'operator->'. */
3944 if (p[2] == '*')
3945 {
3946 *end = p + 3; /* 'operator->*' */
3947 return p;
3948 }
3949 else if (p[2] == '\\')
3950 {
3951 *end = p + 4; /* Hopefully 'operator->\*' */
3952 return p;
3953 }
3954 else
3955 {
3956 *end = p + 2; /* 'operator->' */
3957 return p;
3958 }
3959 }
3960 if (p[1] == '=' || p[1] == p[0])
3961 *end = p + 2;
3962 else
3963 *end = p + 1;
3964 return p;
3965 case '~':
3966 case ',':
3967 *end = p + 1;
3968 return p;
3969 case '(':
3970 if (p[1] != ')')
3971 error (_("`operator ()' must be specified "
3972 "without whitespace in `()'"));
3973 *end = p + 2;
3974 return p;
3975 case '?':
3976 if (p[1] != ':')
3977 error (_("`operator ?:' must be specified "
3978 "without whitespace in `?:'"));
3979 *end = p + 2;
3980 return p;
3981 case '[':
3982 if (p[1] != ']')
3983 error (_("`operator []' must be specified "
3984 "without whitespace in `[]'"));
3985 *end = p + 2;
3986 return p;
3987 default:
3988 error (_("`operator %s' not supported"), p);
3989 break;
3990 }
3991
3992 *end = "";
3993 return *end;
3994 }
3995 \f
3996
3997 /* Cache to watch for file names already seen by filename_seen. */
3998
3999 struct filename_seen_cache
4000 {
4001 /* Table of files seen so far. */
4002 htab_t tab;
4003 /* Initial size of the table. It automagically grows from here. */
4004 #define INITIAL_FILENAME_SEEN_CACHE_SIZE 100
4005 };
4006
4007 /* filename_seen_cache constructor. */
4008
4009 static struct filename_seen_cache *
4010 create_filename_seen_cache (void)
4011 {
4012 struct filename_seen_cache *cache = XNEW (struct filename_seen_cache);
4013
4014 cache->tab = htab_create_alloc (INITIAL_FILENAME_SEEN_CACHE_SIZE,
4015 filename_hash, filename_eq,
4016 NULL, xcalloc, xfree);
4017
4018 return cache;
4019 }
4020
4021 /* Empty the cache, but do not delete it. */
4022
4023 static void
4024 clear_filename_seen_cache (struct filename_seen_cache *cache)
4025 {
4026 htab_empty (cache->tab);
4027 }
4028
4029 /* filename_seen_cache destructor.
4030 This takes a void * argument as it is generally used as a cleanup. */
4031
4032 static void
4033 delete_filename_seen_cache (void *ptr)
4034 {
4035 struct filename_seen_cache *cache = (struct filename_seen_cache *) ptr;
4036
4037 htab_delete (cache->tab);
4038 xfree (cache);
4039 }
4040
4041 /* If FILE is not already in the table of files in CACHE, return zero;
4042 otherwise return non-zero. Optionally add FILE to the table if ADD
4043 is non-zero.
4044
4045 NOTE: We don't manage space for FILE, we assume FILE lives as long
4046 as the caller needs. */
4047
4048 static int
4049 filename_seen (struct filename_seen_cache *cache, const char *file, int add)
4050 {
4051 void **slot;
4052
4053 /* Is FILE in tab? */
4054 slot = htab_find_slot (cache->tab, file, add ? INSERT : NO_INSERT);
4055 if (*slot != NULL)
4056 return 1;
4057
4058 /* No; maybe add it to tab. */
4059 if (add)
4060 *slot = (char *) file;
4061
4062 return 0;
4063 }
4064
4065 /* Data structure to maintain printing state for output_source_filename. */
4066
4067 struct output_source_filename_data
4068 {
4069 /* Cache of what we've seen so far. */
4070 struct filename_seen_cache *filename_seen_cache;
4071
4072 /* Flag of whether we're printing the first one. */
4073 int first;
4074 };
4075
4076 /* Slave routine for sources_info. Force line breaks at ,'s.
4077 NAME is the name to print.
4078 DATA contains the state for printing and watching for duplicates. */
4079
4080 static void
4081 output_source_filename (const char *name,
4082 struct output_source_filename_data *data)
4083 {
4084 /* Since a single source file can result in several partial symbol
4085 tables, we need to avoid printing it more than once. Note: if
4086 some of the psymtabs are read in and some are not, it gets
4087 printed both under "Source files for which symbols have been
4088 read" and "Source files for which symbols will be read in on
4089 demand". I consider this a reasonable way to deal with the
4090 situation. I'm not sure whether this can also happen for
4091 symtabs; it doesn't hurt to check. */
4092
4093 /* Was NAME already seen? */
4094 if (filename_seen (data->filename_seen_cache, name, 1))
4095 {
4096 /* Yes; don't print it again. */
4097 return;
4098 }
4099
4100 /* No; print it and reset *FIRST. */
4101 if (! data->first)
4102 printf_filtered (", ");
4103 data->first = 0;
4104
4105 wrap_here ("");
4106 fputs_filtered (name, gdb_stdout);
4107 }
4108
4109 /* A callback for map_partial_symbol_filenames. */
4110
4111 static void
4112 output_partial_symbol_filename (const char *filename, const char *fullname,
4113 void *data)
4114 {
4115 output_source_filename (fullname ? fullname : filename,
4116 (struct output_source_filename_data *) data);
4117 }
4118
4119 static void
4120 sources_info (char *ignore, int from_tty)
4121 {
4122 struct compunit_symtab *cu;
4123 struct symtab *s;
4124 struct objfile *objfile;
4125 struct output_source_filename_data data;
4126 struct cleanup *cleanups;
4127
4128 if (!have_full_symbols () && !have_partial_symbols ())
4129 {
4130 error (_("No symbol table is loaded. Use the \"file\" command."));
4131 }
4132
4133 data.filename_seen_cache = create_filename_seen_cache ();
4134 cleanups = make_cleanup (delete_filename_seen_cache,
4135 data.filename_seen_cache);
4136
4137 printf_filtered ("Source files for which symbols have been read in:\n\n");
4138
4139 data.first = 1;
4140 ALL_FILETABS (objfile, cu, s)
4141 {
4142 const char *fullname = symtab_to_fullname (s);
4143
4144 output_source_filename (fullname, &data);
4145 }
4146 printf_filtered ("\n\n");
4147
4148 printf_filtered ("Source files for which symbols "
4149 "will be read in on demand:\n\n");
4150
4151 clear_filename_seen_cache (data.filename_seen_cache);
4152 data.first = 1;
4153 map_symbol_filenames (output_partial_symbol_filename, &data,
4154 1 /*need_fullname*/);
4155 printf_filtered ("\n");
4156
4157 do_cleanups (cleanups);
4158 }
4159
4160 /* Compare FILE against all the NFILES entries of FILES. If BASENAMES is
4161 non-zero compare only lbasename of FILES. */
4162
4163 static int
4164 file_matches (const char *file, const char *files[], int nfiles, int basenames)
4165 {
4166 int i;
4167
4168 if (file != NULL && nfiles != 0)
4169 {
4170 for (i = 0; i < nfiles; i++)
4171 {
4172 if (compare_filenames_for_search (file, (basenames
4173 ? lbasename (files[i])
4174 : files[i])))
4175 return 1;
4176 }
4177 }
4178 else if (nfiles == 0)
4179 return 1;
4180 return 0;
4181 }
4182
4183 /* Free any memory associated with a search. */
4184
4185 void
4186 free_search_symbols (struct symbol_search *symbols)
4187 {
4188 struct symbol_search *p;
4189 struct symbol_search *next;
4190
4191 for (p = symbols; p != NULL; p = next)
4192 {
4193 next = p->next;
4194 xfree (p);
4195 }
4196 }
4197
4198 static void
4199 do_free_search_symbols_cleanup (void *symbolsp)
4200 {
4201 struct symbol_search *symbols = *(struct symbol_search **) symbolsp;
4202
4203 free_search_symbols (symbols);
4204 }
4205
4206 struct cleanup *
4207 make_cleanup_free_search_symbols (struct symbol_search **symbolsp)
4208 {
4209 return make_cleanup (do_free_search_symbols_cleanup, symbolsp);
4210 }
4211
4212 /* Helper function for sort_search_symbols_remove_dups and qsort. Can only
4213 sort symbols, not minimal symbols. */
4214
4215 static int
4216 compare_search_syms (const void *sa, const void *sb)
4217 {
4218 struct symbol_search *sym_a = *(struct symbol_search **) sa;
4219 struct symbol_search *sym_b = *(struct symbol_search **) sb;
4220 int c;
4221
4222 c = FILENAME_CMP (symbol_symtab (sym_a->symbol)->filename,
4223 symbol_symtab (sym_b->symbol)->filename);
4224 if (c != 0)
4225 return c;
4226
4227 if (sym_a->block != sym_b->block)
4228 return sym_a->block - sym_b->block;
4229
4230 return strcmp (SYMBOL_PRINT_NAME (sym_a->symbol),
4231 SYMBOL_PRINT_NAME (sym_b->symbol));
4232 }
4233
4234 /* Sort the NFOUND symbols in list FOUND and remove duplicates.
4235 The duplicates are freed, and the new list is returned in
4236 *NEW_HEAD, *NEW_TAIL. */
4237
4238 static void
4239 sort_search_symbols_remove_dups (struct symbol_search *found, int nfound,
4240 struct symbol_search **new_head,
4241 struct symbol_search **new_tail)
4242 {
4243 struct symbol_search **symbols, *symp;
4244 int i, j, nunique;
4245
4246 gdb_assert (found != NULL && nfound > 0);
4247
4248 /* Build an array out of the list so we can easily sort them. */
4249 symbols = XNEWVEC (struct symbol_search *, nfound);
4250
4251 symp = found;
4252 for (i = 0; i < nfound; i++)
4253 {
4254 gdb_assert (symp != NULL);
4255 gdb_assert (symp->block >= 0 && symp->block <= 1);
4256 symbols[i] = symp;
4257 symp = symp->next;
4258 }
4259 gdb_assert (symp == NULL);
4260
4261 qsort (symbols, nfound, sizeof (struct symbol_search *),
4262 compare_search_syms);
4263
4264 /* Collapse out the dups. */
4265 for (i = 1, j = 1; i < nfound; ++i)
4266 {
4267 if (compare_search_syms (&symbols[j - 1], &symbols[i]) != 0)
4268 symbols[j++] = symbols[i];
4269 else
4270 xfree (symbols[i]);
4271 }
4272 nunique = j;
4273 symbols[j - 1]->next = NULL;
4274
4275 /* Rebuild the linked list. */
4276 for (i = 0; i < nunique - 1; i++)
4277 symbols[i]->next = symbols[i + 1];
4278 symbols[nunique - 1]->next = NULL;
4279
4280 *new_head = symbols[0];
4281 *new_tail = symbols[nunique - 1];
4282 xfree (symbols);
4283 }
4284
4285 /* An object of this type is passed as the user_data to the
4286 expand_symtabs_matching method. */
4287 struct search_symbols_data
4288 {
4289 int nfiles;
4290 const char **files;
4291
4292 /* It is true if PREG contains valid data, false otherwise. */
4293 unsigned preg_p : 1;
4294 regex_t preg;
4295 };
4296
4297 /* A callback for expand_symtabs_matching. */
4298
4299 static int
4300 search_symbols_file_matches (const char *filename, void *user_data,
4301 int basenames)
4302 {
4303 struct search_symbols_data *data = (struct search_symbols_data *) user_data;
4304
4305 return file_matches (filename, data->files, data->nfiles, basenames);
4306 }
4307
4308 /* A callback for expand_symtabs_matching. */
4309
4310 static int
4311 search_symbols_name_matches (const char *symname, void *user_data)
4312 {
4313 struct search_symbols_data *data = (struct search_symbols_data *) user_data;
4314
4315 return !data->preg_p || regexec (&data->preg, symname, 0, NULL, 0) == 0;
4316 }
4317
4318 /* Search the symbol table for matches to the regular expression REGEXP,
4319 returning the results in *MATCHES.
4320
4321 Only symbols of KIND are searched:
4322 VARIABLES_DOMAIN - search all symbols, excluding functions, type names,
4323 and constants (enums)
4324 FUNCTIONS_DOMAIN - search all functions
4325 TYPES_DOMAIN - search all type names
4326 ALL_DOMAIN - an internal error for this function
4327
4328 free_search_symbols should be called when *MATCHES is no longer needed.
4329
4330 Within each file the results are sorted locally; each symtab's global and
4331 static blocks are separately alphabetized.
4332 Duplicate entries are removed. */
4333
4334 void
4335 search_symbols (const char *regexp, enum search_domain kind,
4336 int nfiles, const char *files[],
4337 struct symbol_search **matches)
4338 {
4339 struct compunit_symtab *cust;
4340 const struct blockvector *bv;
4341 struct block *b;
4342 int i = 0;
4343 struct block_iterator iter;
4344 struct symbol *sym;
4345 struct objfile *objfile;
4346 struct minimal_symbol *msymbol;
4347 int found_misc = 0;
4348 static const enum minimal_symbol_type types[]
4349 = {mst_data, mst_text, mst_abs};
4350 static const enum minimal_symbol_type types2[]
4351 = {mst_bss, mst_file_text, mst_abs};
4352 static const enum minimal_symbol_type types3[]
4353 = {mst_file_data, mst_solib_trampoline, mst_abs};
4354 static const enum minimal_symbol_type types4[]
4355 = {mst_file_bss, mst_text_gnu_ifunc, mst_abs};
4356 enum minimal_symbol_type ourtype;
4357 enum minimal_symbol_type ourtype2;
4358 enum minimal_symbol_type ourtype3;
4359 enum minimal_symbol_type ourtype4;
4360 struct symbol_search *found;
4361 struct symbol_search *tail;
4362 struct search_symbols_data datum;
4363 int nfound;
4364
4365 /* OLD_CHAIN .. RETVAL_CHAIN is always freed, RETVAL_CHAIN .. current
4366 CLEANUP_CHAIN is freed only in the case of an error. */
4367 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
4368 struct cleanup *retval_chain;
4369
4370 gdb_assert (kind <= TYPES_DOMAIN);
4371
4372 ourtype = types[kind];
4373 ourtype2 = types2[kind];
4374 ourtype3 = types3[kind];
4375 ourtype4 = types4[kind];
4376
4377 *matches = NULL;
4378 datum.preg_p = 0;
4379
4380 if (regexp != NULL)
4381 {
4382 /* Make sure spacing is right for C++ operators.
4383 This is just a courtesy to make the matching less sensitive
4384 to how many spaces the user leaves between 'operator'
4385 and <TYPENAME> or <OPERATOR>. */
4386 const char *opend;
4387 const char *opname = operator_chars (regexp, &opend);
4388 int errcode;
4389
4390 if (*opname)
4391 {
4392 int fix = -1; /* -1 means ok; otherwise number of
4393 spaces needed. */
4394
4395 if (isalpha (*opname) || *opname == '_' || *opname == '$')
4396 {
4397 /* There should 1 space between 'operator' and 'TYPENAME'. */
4398 if (opname[-1] != ' ' || opname[-2] == ' ')
4399 fix = 1;
4400 }
4401 else
4402 {
4403 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
4404 if (opname[-1] == ' ')
4405 fix = 0;
4406 }
4407 /* If wrong number of spaces, fix it. */
4408 if (fix >= 0)
4409 {
4410 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
4411
4412 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
4413 regexp = tmp;
4414 }
4415 }
4416
4417 errcode = regcomp (&datum.preg, regexp,
4418 REG_NOSUB | (case_sensitivity == case_sensitive_off
4419 ? REG_ICASE : 0));
4420 if (errcode != 0)
4421 {
4422 char *err = get_regcomp_error (errcode, &datum.preg);
4423
4424 make_cleanup (xfree, err);
4425 error (_("Invalid regexp (%s): %s"), err, regexp);
4426 }
4427 datum.preg_p = 1;
4428 make_regfree_cleanup (&datum.preg);
4429 }
4430
4431 /* Search through the partial symtabs *first* for all symbols
4432 matching the regexp. That way we don't have to reproduce all of
4433 the machinery below. */
4434
4435 datum.nfiles = nfiles;
4436 datum.files = files;
4437 expand_symtabs_matching ((nfiles == 0
4438 ? NULL
4439 : search_symbols_file_matches),
4440 search_symbols_name_matches,
4441 NULL, kind, &datum);
4442
4443 /* Here, we search through the minimal symbol tables for functions
4444 and variables that match, and force their symbols to be read.
4445 This is in particular necessary for demangled variable names,
4446 which are no longer put into the partial symbol tables.
4447 The symbol will then be found during the scan of symtabs below.
4448
4449 For functions, find_pc_symtab should succeed if we have debug info
4450 for the function, for variables we have to call
4451 lookup_symbol_in_objfile_from_linkage_name to determine if the variable
4452 has debug info.
4453 If the lookup fails, set found_misc so that we will rescan to print
4454 any matching symbols without debug info.
4455 We only search the objfile the msymbol came from, we no longer search
4456 all objfiles. In large programs (1000s of shared libs) searching all
4457 objfiles is not worth the pain. */
4458
4459 if (nfiles == 0 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
4460 {
4461 ALL_MSYMBOLS (objfile, msymbol)
4462 {
4463 QUIT;
4464
4465 if (msymbol->created_by_gdb)
4466 continue;
4467
4468 if (MSYMBOL_TYPE (msymbol) == ourtype
4469 || MSYMBOL_TYPE (msymbol) == ourtype2
4470 || MSYMBOL_TYPE (msymbol) == ourtype3
4471 || MSYMBOL_TYPE (msymbol) == ourtype4)
4472 {
4473 if (!datum.preg_p
4474 || regexec (&datum.preg, MSYMBOL_NATURAL_NAME (msymbol), 0,
4475 NULL, 0) == 0)
4476 {
4477 /* Note: An important side-effect of these lookup functions
4478 is to expand the symbol table if msymbol is found, for the
4479 benefit of the next loop on ALL_COMPUNITS. */
4480 if (kind == FUNCTIONS_DOMAIN
4481 ? (find_pc_compunit_symtab
4482 (MSYMBOL_VALUE_ADDRESS (objfile, msymbol)) == NULL)
4483 : (lookup_symbol_in_objfile_from_linkage_name
4484 (objfile, MSYMBOL_LINKAGE_NAME (msymbol), VAR_DOMAIN)
4485 .symbol == NULL))
4486 found_misc = 1;
4487 }
4488 }
4489 }
4490 }
4491
4492 found = NULL;
4493 tail = NULL;
4494 nfound = 0;
4495 retval_chain = make_cleanup_free_search_symbols (&found);
4496
4497 ALL_COMPUNITS (objfile, cust)
4498 {
4499 bv = COMPUNIT_BLOCKVECTOR (cust);
4500 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
4501 {
4502 b = BLOCKVECTOR_BLOCK (bv, i);
4503 ALL_BLOCK_SYMBOLS (b, iter, sym)
4504 {
4505 struct symtab *real_symtab = symbol_symtab (sym);
4506
4507 QUIT;
4508
4509 /* Check first sole REAL_SYMTAB->FILENAME. It does not need to be
4510 a substring of symtab_to_fullname as it may contain "./" etc. */
4511 if ((file_matches (real_symtab->filename, files, nfiles, 0)
4512 || ((basenames_may_differ
4513 || file_matches (lbasename (real_symtab->filename),
4514 files, nfiles, 1))
4515 && file_matches (symtab_to_fullname (real_symtab),
4516 files, nfiles, 0)))
4517 && ((!datum.preg_p
4518 || regexec (&datum.preg, SYMBOL_NATURAL_NAME (sym), 0,
4519 NULL, 0) == 0)
4520 && ((kind == VARIABLES_DOMAIN
4521 && SYMBOL_CLASS (sym) != LOC_TYPEDEF
4522 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
4523 && SYMBOL_CLASS (sym) != LOC_BLOCK
4524 /* LOC_CONST can be used for more than just enums,
4525 e.g., c++ static const members.
4526 We only want to skip enums here. */
4527 && !(SYMBOL_CLASS (sym) == LOC_CONST
4528 && (TYPE_CODE (SYMBOL_TYPE (sym))
4529 == TYPE_CODE_ENUM)))
4530 || (kind == FUNCTIONS_DOMAIN
4531 && SYMBOL_CLASS (sym) == LOC_BLOCK)
4532 || (kind == TYPES_DOMAIN
4533 && SYMBOL_CLASS (sym) == LOC_TYPEDEF))))
4534 {
4535 /* match */
4536 struct symbol_search *psr = XCNEW (struct symbol_search);
4537
4538 psr->block = i;
4539 psr->symbol = sym;
4540 psr->next = NULL;
4541 if (tail == NULL)
4542 found = psr;
4543 else
4544 tail->next = psr;
4545 tail = psr;
4546 nfound ++;
4547 }
4548 }
4549 }
4550 }
4551
4552 if (found != NULL)
4553 {
4554 sort_search_symbols_remove_dups (found, nfound, &found, &tail);
4555 /* Note: nfound is no longer useful beyond this point. */
4556 }
4557
4558 /* If there are no eyes, avoid all contact. I mean, if there are
4559 no debug symbols, then add matching minsyms. */
4560
4561 if (found_misc || (nfiles == 0 && kind != FUNCTIONS_DOMAIN))
4562 {
4563 ALL_MSYMBOLS (objfile, msymbol)
4564 {
4565 QUIT;
4566
4567 if (msymbol->created_by_gdb)
4568 continue;
4569
4570 if (MSYMBOL_TYPE (msymbol) == ourtype
4571 || MSYMBOL_TYPE (msymbol) == ourtype2
4572 || MSYMBOL_TYPE (msymbol) == ourtype3
4573 || MSYMBOL_TYPE (msymbol) == ourtype4)
4574 {
4575 if (!datum.preg_p
4576 || regexec (&datum.preg, MSYMBOL_NATURAL_NAME (msymbol), 0,
4577 NULL, 0) == 0)
4578 {
4579 /* For functions we can do a quick check of whether the
4580 symbol might be found via find_pc_symtab. */
4581 if (kind != FUNCTIONS_DOMAIN
4582 || (find_pc_compunit_symtab
4583 (MSYMBOL_VALUE_ADDRESS (objfile, msymbol)) == NULL))
4584 {
4585 if (lookup_symbol_in_objfile_from_linkage_name
4586 (objfile, MSYMBOL_LINKAGE_NAME (msymbol), VAR_DOMAIN)
4587 .symbol == NULL)
4588 {
4589 /* match */
4590 struct symbol_search *psr = XNEW (struct symbol_search);
4591 psr->block = i;
4592 psr->msymbol.minsym = msymbol;
4593 psr->msymbol.objfile = objfile;
4594 psr->symbol = NULL;
4595 psr->next = NULL;
4596 if (tail == NULL)
4597 found = psr;
4598 else
4599 tail->next = psr;
4600 tail = psr;
4601 }
4602 }
4603 }
4604 }
4605 }
4606 }
4607
4608 discard_cleanups (retval_chain);
4609 do_cleanups (old_chain);
4610 *matches = found;
4611 }
4612
4613 /* Helper function for symtab_symbol_info, this function uses
4614 the data returned from search_symbols() to print information
4615 regarding the match to gdb_stdout. */
4616
4617 static void
4618 print_symbol_info (enum search_domain kind,
4619 struct symbol *sym,
4620 int block, const char *last)
4621 {
4622 struct symtab *s = symbol_symtab (sym);
4623 const char *s_filename = symtab_to_filename_for_display (s);
4624
4625 if (last == NULL || filename_cmp (last, s_filename) != 0)
4626 {
4627 fputs_filtered ("\nFile ", gdb_stdout);
4628 fputs_filtered (s_filename, gdb_stdout);
4629 fputs_filtered (":\n", gdb_stdout);
4630 }
4631
4632 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
4633 printf_filtered ("static ");
4634
4635 /* Typedef that is not a C++ class. */
4636 if (kind == TYPES_DOMAIN
4637 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
4638 typedef_print (SYMBOL_TYPE (sym), sym, gdb_stdout);
4639 /* variable, func, or typedef-that-is-c++-class. */
4640 else if (kind < TYPES_DOMAIN
4641 || (kind == TYPES_DOMAIN
4642 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
4643 {
4644 type_print (SYMBOL_TYPE (sym),
4645 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
4646 ? "" : SYMBOL_PRINT_NAME (sym)),
4647 gdb_stdout, 0);
4648
4649 printf_filtered (";\n");
4650 }
4651 }
4652
4653 /* This help function for symtab_symbol_info() prints information
4654 for non-debugging symbols to gdb_stdout. */
4655
4656 static void
4657 print_msymbol_info (struct bound_minimal_symbol msymbol)
4658 {
4659 struct gdbarch *gdbarch = get_objfile_arch (msymbol.objfile);
4660 char *tmp;
4661
4662 if (gdbarch_addr_bit (gdbarch) <= 32)
4663 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol)
4664 & (CORE_ADDR) 0xffffffff,
4665 8);
4666 else
4667 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol),
4668 16);
4669 printf_filtered ("%s %s\n",
4670 tmp, MSYMBOL_PRINT_NAME (msymbol.minsym));
4671 }
4672
4673 /* This is the guts of the commands "info functions", "info types", and
4674 "info variables". It calls search_symbols to find all matches and then
4675 print_[m]symbol_info to print out some useful information about the
4676 matches. */
4677
4678 static void
4679 symtab_symbol_info (char *regexp, enum search_domain kind, int from_tty)
4680 {
4681 static const char * const classnames[] =
4682 {"variable", "function", "type"};
4683 struct symbol_search *symbols;
4684 struct symbol_search *p;
4685 struct cleanup *old_chain;
4686 const char *last_filename = NULL;
4687 int first = 1;
4688
4689 gdb_assert (kind <= TYPES_DOMAIN);
4690
4691 /* Must make sure that if we're interrupted, symbols gets freed. */
4692 search_symbols (regexp, kind, 0, NULL, &symbols);
4693 old_chain = make_cleanup_free_search_symbols (&symbols);
4694
4695 if (regexp != NULL)
4696 printf_filtered (_("All %ss matching regular expression \"%s\":\n"),
4697 classnames[kind], regexp);
4698 else
4699 printf_filtered (_("All defined %ss:\n"), classnames[kind]);
4700
4701 for (p = symbols; p != NULL; p = p->next)
4702 {
4703 QUIT;
4704
4705 if (p->msymbol.minsym != NULL)
4706 {
4707 if (first)
4708 {
4709 printf_filtered (_("\nNon-debugging symbols:\n"));
4710 first = 0;
4711 }
4712 print_msymbol_info (p->msymbol);
4713 }
4714 else
4715 {
4716 print_symbol_info (kind,
4717 p->symbol,
4718 p->block,
4719 last_filename);
4720 last_filename
4721 = symtab_to_filename_for_display (symbol_symtab (p->symbol));
4722 }
4723 }
4724
4725 do_cleanups (old_chain);
4726 }
4727
4728 static void
4729 variables_info (char *regexp, int from_tty)
4730 {
4731 symtab_symbol_info (regexp, VARIABLES_DOMAIN, from_tty);
4732 }
4733
4734 static void
4735 functions_info (char *regexp, int from_tty)
4736 {
4737 symtab_symbol_info (regexp, FUNCTIONS_DOMAIN, from_tty);
4738 }
4739
4740
4741 static void
4742 types_info (char *regexp, int from_tty)
4743 {
4744 symtab_symbol_info (regexp, TYPES_DOMAIN, from_tty);
4745 }
4746
4747 /* Breakpoint all functions matching regular expression. */
4748
4749 void
4750 rbreak_command_wrapper (char *regexp, int from_tty)
4751 {
4752 rbreak_command (regexp, from_tty);
4753 }
4754
4755 /* A cleanup function that calls end_rbreak_breakpoints. */
4756
4757 static void
4758 do_end_rbreak_breakpoints (void *ignore)
4759 {
4760 end_rbreak_breakpoints ();
4761 }
4762
4763 static void
4764 rbreak_command (char *regexp, int from_tty)
4765 {
4766 struct symbol_search *ss;
4767 struct symbol_search *p;
4768 struct cleanup *old_chain;
4769 char *string = NULL;
4770 int len = 0;
4771 const char **files = NULL;
4772 const char *file_name;
4773 int nfiles = 0;
4774
4775 if (regexp)
4776 {
4777 char *colon = strchr (regexp, ':');
4778
4779 if (colon && *(colon + 1) != ':')
4780 {
4781 int colon_index;
4782 char *local_name;
4783
4784 colon_index = colon - regexp;
4785 local_name = (char *) alloca (colon_index + 1);
4786 memcpy (local_name, regexp, colon_index);
4787 local_name[colon_index--] = 0;
4788 while (isspace (local_name[colon_index]))
4789 local_name[colon_index--] = 0;
4790 file_name = local_name;
4791 files = &file_name;
4792 nfiles = 1;
4793 regexp = skip_spaces (colon + 1);
4794 }
4795 }
4796
4797 search_symbols (regexp, FUNCTIONS_DOMAIN, nfiles, files, &ss);
4798 old_chain = make_cleanup_free_search_symbols (&ss);
4799 make_cleanup (free_current_contents, &string);
4800
4801 start_rbreak_breakpoints ();
4802 make_cleanup (do_end_rbreak_breakpoints, NULL);
4803 for (p = ss; p != NULL; p = p->next)
4804 {
4805 if (p->msymbol.minsym == NULL)
4806 {
4807 struct symtab *symtab = symbol_symtab (p->symbol);
4808 const char *fullname = symtab_to_fullname (symtab);
4809
4810 int newlen = (strlen (fullname)
4811 + strlen (SYMBOL_LINKAGE_NAME (p->symbol))
4812 + 4);
4813
4814 if (newlen > len)
4815 {
4816 string = (char *) xrealloc (string, newlen);
4817 len = newlen;
4818 }
4819 strcpy (string, fullname);
4820 strcat (string, ":'");
4821 strcat (string, SYMBOL_LINKAGE_NAME (p->symbol));
4822 strcat (string, "'");
4823 break_command (string, from_tty);
4824 print_symbol_info (FUNCTIONS_DOMAIN,
4825 p->symbol,
4826 p->block,
4827 symtab_to_filename_for_display (symtab));
4828 }
4829 else
4830 {
4831 int newlen = (strlen (MSYMBOL_LINKAGE_NAME (p->msymbol.minsym)) + 3);
4832
4833 if (newlen > len)
4834 {
4835 string = (char *) xrealloc (string, newlen);
4836 len = newlen;
4837 }
4838 strcpy (string, "'");
4839 strcat (string, MSYMBOL_LINKAGE_NAME (p->msymbol.minsym));
4840 strcat (string, "'");
4841
4842 break_command (string, from_tty);
4843 printf_filtered ("<function, no debug info> %s;\n",
4844 MSYMBOL_PRINT_NAME (p->msymbol.minsym));
4845 }
4846 }
4847
4848 do_cleanups (old_chain);
4849 }
4850 \f
4851
4852 /* Evaluate if NAME matches SYM_TEXT and SYM_TEXT_LEN.
4853
4854 Either sym_text[sym_text_len] != '(' and then we search for any
4855 symbol starting with SYM_TEXT text.
4856
4857 Otherwise sym_text[sym_text_len] == '(' and then we require symbol name to
4858 be terminated at that point. Partial symbol tables do not have parameters
4859 information. */
4860
4861 static int
4862 compare_symbol_name (const char *name, const char *sym_text, int sym_text_len)
4863 {
4864 int (*ncmp) (const char *, const char *, size_t);
4865
4866 ncmp = (case_sensitivity == case_sensitive_on ? strncmp : strncasecmp);
4867
4868 if (ncmp (name, sym_text, sym_text_len) != 0)
4869 return 0;
4870
4871 if (sym_text[sym_text_len] == '(')
4872 {
4873 /* User searches for `name(someth...'. Require NAME to be terminated.
4874 Normally psymtabs and gdbindex have no parameter types so '\0' will be
4875 present but accept even parameters presence. In this case this
4876 function is in fact strcmp_iw but whitespace skipping is not supported
4877 for tab completion. */
4878
4879 if (name[sym_text_len] != '\0' && name[sym_text_len] != '(')
4880 return 0;
4881 }
4882
4883 return 1;
4884 }
4885
4886 /* Free any memory associated with a completion list. */
4887
4888 static void
4889 free_completion_list (VEC (char_ptr) **list_ptr)
4890 {
4891 int i;
4892 char *p;
4893
4894 for (i = 0; VEC_iterate (char_ptr, *list_ptr, i, p); ++i)
4895 xfree (p);
4896 VEC_free (char_ptr, *list_ptr);
4897 }
4898
4899 /* Callback for make_cleanup. */
4900
4901 static void
4902 do_free_completion_list (void *list)
4903 {
4904 free_completion_list ((VEC (char_ptr) **) list);
4905 }
4906
4907 /* Helper routine for make_symbol_completion_list. */
4908
4909 static VEC (char_ptr) *return_val;
4910
4911 #define COMPLETION_LIST_ADD_SYMBOL(symbol, sym_text, len, text, word) \
4912 completion_list_add_name \
4913 (SYMBOL_NATURAL_NAME (symbol), (sym_text), (len), (text), (word))
4914
4915 #define MCOMPLETION_LIST_ADD_SYMBOL(symbol, sym_text, len, text, word) \
4916 completion_list_add_name \
4917 (MSYMBOL_NATURAL_NAME (symbol), (sym_text), (len), (text), (word))
4918
4919 /* Tracker for how many unique completions have been generated. Used
4920 to terminate completion list generation early if the list has grown
4921 to a size so large as to be useless. This helps avoid GDB seeming
4922 to lock up in the event the user requests to complete on something
4923 vague that necessitates the time consuming expansion of many symbol
4924 tables. */
4925
4926 static completion_tracker_t completion_tracker;
4927
4928 /* Test to see if the symbol specified by SYMNAME (which is already
4929 demangled for C++ symbols) matches SYM_TEXT in the first SYM_TEXT_LEN
4930 characters. If so, add it to the current completion list. */
4931
4932 static void
4933 completion_list_add_name (const char *symname,
4934 const char *sym_text, int sym_text_len,
4935 const char *text, const char *word)
4936 {
4937 /* Clip symbols that cannot match. */
4938 if (!compare_symbol_name (symname, sym_text, sym_text_len))
4939 return;
4940
4941 /* We have a match for a completion, so add SYMNAME to the current list
4942 of matches. Note that the name is moved to freshly malloc'd space. */
4943
4944 {
4945 char *newobj;
4946 enum maybe_add_completion_enum add_status;
4947
4948 if (word == sym_text)
4949 {
4950 newobj = (char *) xmalloc (strlen (symname) + 5);
4951 strcpy (newobj, symname);
4952 }
4953 else if (word > sym_text)
4954 {
4955 /* Return some portion of symname. */
4956 newobj = (char *) xmalloc (strlen (symname) + 5);
4957 strcpy (newobj, symname + (word - sym_text));
4958 }
4959 else
4960 {
4961 /* Return some of SYM_TEXT plus symname. */
4962 newobj = (char *) xmalloc (strlen (symname) + (sym_text - word) + 5);
4963 strncpy (newobj, word, sym_text - word);
4964 newobj[sym_text - word] = '\0';
4965 strcat (newobj, symname);
4966 }
4967
4968 add_status = maybe_add_completion (completion_tracker, newobj);
4969
4970 switch (add_status)
4971 {
4972 case MAYBE_ADD_COMPLETION_OK:
4973 VEC_safe_push (char_ptr, return_val, newobj);
4974 break;
4975 case MAYBE_ADD_COMPLETION_OK_MAX_REACHED:
4976 VEC_safe_push (char_ptr, return_val, newobj);
4977 throw_max_completions_reached_error ();
4978 case MAYBE_ADD_COMPLETION_MAX_REACHED:
4979 xfree (newobj);
4980 throw_max_completions_reached_error ();
4981 case MAYBE_ADD_COMPLETION_DUPLICATE:
4982 xfree (newobj);
4983 break;
4984 }
4985 }
4986 }
4987
4988 /* ObjC: In case we are completing on a selector, look as the msymbol
4989 again and feed all the selectors into the mill. */
4990
4991 static void
4992 completion_list_objc_symbol (struct minimal_symbol *msymbol,
4993 const char *sym_text, int sym_text_len,
4994 const char *text, const char *word)
4995 {
4996 static char *tmp = NULL;
4997 static unsigned int tmplen = 0;
4998
4999 const char *method, *category, *selector;
5000 char *tmp2 = NULL;
5001
5002 method = MSYMBOL_NATURAL_NAME (msymbol);
5003
5004 /* Is it a method? */
5005 if ((method[0] != '-') && (method[0] != '+'))
5006 return;
5007
5008 if (sym_text[0] == '[')
5009 /* Complete on shortened method method. */
5010 completion_list_add_name (method + 1, sym_text, sym_text_len, text, word);
5011
5012 while ((strlen (method) + 1) >= tmplen)
5013 {
5014 if (tmplen == 0)
5015 tmplen = 1024;
5016 else
5017 tmplen *= 2;
5018 tmp = (char *) xrealloc (tmp, tmplen);
5019 }
5020 selector = strchr (method, ' ');
5021 if (selector != NULL)
5022 selector++;
5023
5024 category = strchr (method, '(');
5025
5026 if ((category != NULL) && (selector != NULL))
5027 {
5028 memcpy (tmp, method, (category - method));
5029 tmp[category - method] = ' ';
5030 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
5031 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
5032 if (sym_text[0] == '[')
5033 completion_list_add_name (tmp + 1, sym_text, sym_text_len, text, word);
5034 }
5035
5036 if (selector != NULL)
5037 {
5038 /* Complete on selector only. */
5039 strcpy (tmp, selector);
5040 tmp2 = strchr (tmp, ']');
5041 if (tmp2 != NULL)
5042 *tmp2 = '\0';
5043
5044 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
5045 }
5046 }
5047
5048 /* Break the non-quoted text based on the characters which are in
5049 symbols. FIXME: This should probably be language-specific. */
5050
5051 static const char *
5052 language_search_unquoted_string (const char *text, const char *p)
5053 {
5054 for (; p > text; --p)
5055 {
5056 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
5057 continue;
5058 else
5059 {
5060 if ((current_language->la_language == language_objc))
5061 {
5062 if (p[-1] == ':') /* Might be part of a method name. */
5063 continue;
5064 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
5065 p -= 2; /* Beginning of a method name. */
5066 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
5067 { /* Might be part of a method name. */
5068 const char *t = p;
5069
5070 /* Seeing a ' ' or a '(' is not conclusive evidence
5071 that we are in the middle of a method name. However,
5072 finding "-[" or "+[" should be pretty un-ambiguous.
5073 Unfortunately we have to find it now to decide. */
5074
5075 while (t > text)
5076 if (isalnum (t[-1]) || t[-1] == '_' ||
5077 t[-1] == ' ' || t[-1] == ':' ||
5078 t[-1] == '(' || t[-1] == ')')
5079 --t;
5080 else
5081 break;
5082
5083 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
5084 p = t - 2; /* Method name detected. */
5085 /* Else we leave with p unchanged. */
5086 }
5087 }
5088 break;
5089 }
5090 }
5091 return p;
5092 }
5093
5094 static void
5095 completion_list_add_fields (struct symbol *sym, const char *sym_text,
5096 int sym_text_len, const char *text,
5097 const char *word)
5098 {
5099 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5100 {
5101 struct type *t = SYMBOL_TYPE (sym);
5102 enum type_code c = TYPE_CODE (t);
5103 int j;
5104
5105 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
5106 for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++)
5107 if (TYPE_FIELD_NAME (t, j))
5108 completion_list_add_name (TYPE_FIELD_NAME (t, j),
5109 sym_text, sym_text_len, text, word);
5110 }
5111 }
5112
5113 /* Type of the user_data argument passed to add_macro_name,
5114 symbol_completion_matcher and symtab_expansion_callback. */
5115
5116 struct add_name_data
5117 {
5118 /* Arguments required by completion_list_add_name. */
5119 const char *sym_text;
5120 int sym_text_len;
5121 const char *text;
5122 const char *word;
5123
5124 /* Extra argument required for add_symtab_completions. */
5125 enum type_code code;
5126 };
5127
5128 /* A callback used with macro_for_each and macro_for_each_in_scope.
5129 This adds a macro's name to the current completion list. */
5130
5131 static void
5132 add_macro_name (const char *name, const struct macro_definition *ignore,
5133 struct macro_source_file *ignore2, int ignore3,
5134 void *user_data)
5135 {
5136 struct add_name_data *datum = (struct add_name_data *) user_data;
5137
5138 completion_list_add_name (name,
5139 datum->sym_text, datum->sym_text_len,
5140 datum->text, datum->word);
5141 }
5142
5143 /* A callback for expand_symtabs_matching. */
5144
5145 static int
5146 symbol_completion_matcher (const char *name, void *user_data)
5147 {
5148 struct add_name_data *datum = (struct add_name_data *) user_data;
5149
5150 return compare_symbol_name (name, datum->sym_text, datum->sym_text_len);
5151 }
5152
5153 /* Add matching symbols from SYMTAB to the current completion list. */
5154
5155 static void
5156 add_symtab_completions (struct compunit_symtab *cust,
5157 const char *sym_text, int sym_text_len,
5158 const char *text, const char *word,
5159 enum type_code code)
5160 {
5161 struct symbol *sym;
5162 const struct block *b;
5163 struct block_iterator iter;
5164 int i;
5165
5166 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
5167 {
5168 QUIT;
5169 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust), i);
5170 ALL_BLOCK_SYMBOLS (b, iter, sym)
5171 {
5172 if (code == TYPE_CODE_UNDEF
5173 || (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
5174 && TYPE_CODE (SYMBOL_TYPE (sym)) == code))
5175 COMPLETION_LIST_ADD_SYMBOL (sym,
5176 sym_text, sym_text_len,
5177 text, word);
5178 }
5179 }
5180 }
5181
5182 /* Callback to add completions to the current list when symbol tables
5183 are expanded during completion list generation. */
5184
5185 static void
5186 symtab_expansion_callback (struct compunit_symtab *symtab,
5187 void *user_data)
5188 {
5189 struct add_name_data *datum = (struct add_name_data *) user_data;
5190
5191 add_symtab_completions (symtab,
5192 datum->sym_text, datum->sym_text_len,
5193 datum->text, datum->word,
5194 datum->code);
5195 }
5196
5197 static void
5198 default_make_symbol_completion_list_break_on_1 (const char *text,
5199 const char *word,
5200 const char *break_on,
5201 enum type_code code)
5202 {
5203 /* Problem: All of the symbols have to be copied because readline
5204 frees them. I'm not going to worry about this; hopefully there
5205 won't be that many. */
5206
5207 struct symbol *sym;
5208 struct compunit_symtab *cust;
5209 struct minimal_symbol *msymbol;
5210 struct objfile *objfile;
5211 const struct block *b;
5212 const struct block *surrounding_static_block, *surrounding_global_block;
5213 struct block_iterator iter;
5214 /* The symbol we are completing on. Points in same buffer as text. */
5215 const char *sym_text;
5216 /* Length of sym_text. */
5217 int sym_text_len;
5218 struct add_name_data datum;
5219 struct cleanup *cleanups;
5220
5221 /* Now look for the symbol we are supposed to complete on. */
5222 {
5223 const char *p;
5224 char quote_found;
5225 const char *quote_pos = NULL;
5226
5227 /* First see if this is a quoted string. */
5228 quote_found = '\0';
5229 for (p = text; *p != '\0'; ++p)
5230 {
5231 if (quote_found != '\0')
5232 {
5233 if (*p == quote_found)
5234 /* Found close quote. */
5235 quote_found = '\0';
5236 else if (*p == '\\' && p[1] == quote_found)
5237 /* A backslash followed by the quote character
5238 doesn't end the string. */
5239 ++p;
5240 }
5241 else if (*p == '\'' || *p == '"')
5242 {
5243 quote_found = *p;
5244 quote_pos = p;
5245 }
5246 }
5247 if (quote_found == '\'')
5248 /* A string within single quotes can be a symbol, so complete on it. */
5249 sym_text = quote_pos + 1;
5250 else if (quote_found == '"')
5251 /* A double-quoted string is never a symbol, nor does it make sense
5252 to complete it any other way. */
5253 {
5254 return;
5255 }
5256 else
5257 {
5258 /* It is not a quoted string. Break it based on the characters
5259 which are in symbols. */
5260 while (p > text)
5261 {
5262 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0'
5263 || p[-1] == ':' || strchr (break_on, p[-1]) != NULL)
5264 --p;
5265 else
5266 break;
5267 }
5268 sym_text = p;
5269 }
5270 }
5271
5272 sym_text_len = strlen (sym_text);
5273
5274 /* Prepare SYM_TEXT_LEN for compare_symbol_name. */
5275
5276 if (current_language->la_language == language_cplus
5277 || current_language->la_language == language_fortran)
5278 {
5279 /* These languages may have parameters entered by user but they are never
5280 present in the partial symbol tables. */
5281
5282 const char *cs = (const char *) memchr (sym_text, '(', sym_text_len);
5283
5284 if (cs)
5285 sym_text_len = cs - sym_text;
5286 }
5287 gdb_assert (sym_text[sym_text_len] == '\0' || sym_text[sym_text_len] == '(');
5288
5289 completion_tracker = new_completion_tracker ();
5290 cleanups = make_cleanup_free_completion_tracker (&completion_tracker);
5291
5292 datum.sym_text = sym_text;
5293 datum.sym_text_len = sym_text_len;
5294 datum.text = text;
5295 datum.word = word;
5296 datum.code = code;
5297
5298 /* At this point scan through the misc symbol vectors and add each
5299 symbol you find to the list. Eventually we want to ignore
5300 anything that isn't a text symbol (everything else will be
5301 handled by the psymtab code below). */
5302
5303 if (code == TYPE_CODE_UNDEF)
5304 {
5305 ALL_MSYMBOLS (objfile, msymbol)
5306 {
5307 QUIT;
5308 MCOMPLETION_LIST_ADD_SYMBOL (msymbol, sym_text, sym_text_len, text,
5309 word);
5310
5311 completion_list_objc_symbol (msymbol, sym_text, sym_text_len, text,
5312 word);
5313 }
5314 }
5315
5316 /* Add completions for all currently loaded symbol tables. */
5317 ALL_COMPUNITS (objfile, cust)
5318 add_symtab_completions (cust, sym_text, sym_text_len, text, word,
5319 code);
5320
5321 /* Look through the partial symtabs for all symbols which begin
5322 by matching SYM_TEXT. Expand all CUs that you find to the list.
5323 symtab_expansion_callback is called for each expanded symtab,
5324 causing those symtab's completions to be added to the list too. */
5325 expand_symtabs_matching (NULL, symbol_completion_matcher,
5326 symtab_expansion_callback, ALL_DOMAIN,
5327 &datum);
5328
5329 /* Search upwards from currently selected frame (so that we can
5330 complete on local vars). Also catch fields of types defined in
5331 this places which match our text string. Only complete on types
5332 visible from current context. */
5333
5334 b = get_selected_block (0);
5335 surrounding_static_block = block_static_block (b);
5336 surrounding_global_block = block_global_block (b);
5337 if (surrounding_static_block != NULL)
5338 while (b != surrounding_static_block)
5339 {
5340 QUIT;
5341
5342 ALL_BLOCK_SYMBOLS (b, iter, sym)
5343 {
5344 if (code == TYPE_CODE_UNDEF)
5345 {
5346 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text,
5347 word);
5348 completion_list_add_fields (sym, sym_text, sym_text_len, text,
5349 word);
5350 }
5351 else if (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
5352 && TYPE_CODE (SYMBOL_TYPE (sym)) == code)
5353 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text,
5354 word);
5355 }
5356
5357 /* Stop when we encounter an enclosing function. Do not stop for
5358 non-inlined functions - the locals of the enclosing function
5359 are in scope for a nested function. */
5360 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
5361 break;
5362 b = BLOCK_SUPERBLOCK (b);
5363 }
5364
5365 /* Add fields from the file's types; symbols will be added below. */
5366
5367 if (code == TYPE_CODE_UNDEF)
5368 {
5369 if (surrounding_static_block != NULL)
5370 ALL_BLOCK_SYMBOLS (surrounding_static_block, iter, sym)
5371 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
5372
5373 if (surrounding_global_block != NULL)
5374 ALL_BLOCK_SYMBOLS (surrounding_global_block, iter, sym)
5375 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
5376 }
5377
5378 /* Skip macros if we are completing a struct tag -- arguable but
5379 usually what is expected. */
5380 if (current_language->la_macro_expansion == macro_expansion_c
5381 && code == TYPE_CODE_UNDEF)
5382 {
5383 struct macro_scope *scope;
5384
5385 /* Add any macros visible in the default scope. Note that this
5386 may yield the occasional wrong result, because an expression
5387 might be evaluated in a scope other than the default. For
5388 example, if the user types "break file:line if <TAB>", the
5389 resulting expression will be evaluated at "file:line" -- but
5390 at there does not seem to be a way to detect this at
5391 completion time. */
5392 scope = default_macro_scope ();
5393 if (scope)
5394 {
5395 macro_for_each_in_scope (scope->file, scope->line,
5396 add_macro_name, &datum);
5397 xfree (scope);
5398 }
5399
5400 /* User-defined macros are always visible. */
5401 macro_for_each (macro_user_macros, add_macro_name, &datum);
5402 }
5403
5404 do_cleanups (cleanups);
5405 }
5406
5407 VEC (char_ptr) *
5408 default_make_symbol_completion_list_break_on (const char *text,
5409 const char *word,
5410 const char *break_on,
5411 enum type_code code)
5412 {
5413 struct cleanup *back_to;
5414
5415 return_val = NULL;
5416 back_to = make_cleanup (do_free_completion_list, &return_val);
5417
5418 TRY
5419 {
5420 default_make_symbol_completion_list_break_on_1 (text, word,
5421 break_on, code);
5422 }
5423 CATCH (except, RETURN_MASK_ERROR)
5424 {
5425 if (except.error != MAX_COMPLETIONS_REACHED_ERROR)
5426 throw_exception (except);
5427 }
5428 END_CATCH
5429
5430 discard_cleanups (back_to);
5431 return return_val;
5432 }
5433
5434 VEC (char_ptr) *
5435 default_make_symbol_completion_list (const char *text, const char *word,
5436 enum type_code code)
5437 {
5438 return default_make_symbol_completion_list_break_on (text, word, "", code);
5439 }
5440
5441 /* Return a vector of all symbols (regardless of class) which begin by
5442 matching TEXT. If the answer is no symbols, then the return value
5443 is NULL. */
5444
5445 VEC (char_ptr) *
5446 make_symbol_completion_list (const char *text, const char *word)
5447 {
5448 return current_language->la_make_symbol_completion_list (text, word,
5449 TYPE_CODE_UNDEF);
5450 }
5451
5452 /* Like make_symbol_completion_list, but only return STRUCT_DOMAIN
5453 symbols whose type code is CODE. */
5454
5455 VEC (char_ptr) *
5456 make_symbol_completion_type (const char *text, const char *word,
5457 enum type_code code)
5458 {
5459 gdb_assert (code == TYPE_CODE_UNION
5460 || code == TYPE_CODE_STRUCT
5461 || code == TYPE_CODE_ENUM);
5462 return current_language->la_make_symbol_completion_list (text, word, code);
5463 }
5464
5465 /* Like make_symbol_completion_list, but suitable for use as a
5466 completion function. */
5467
5468 VEC (char_ptr) *
5469 make_symbol_completion_list_fn (struct cmd_list_element *ignore,
5470 const char *text, const char *word)
5471 {
5472 return make_symbol_completion_list (text, word);
5473 }
5474
5475 /* Like make_symbol_completion_list, but returns a list of symbols
5476 defined in a source file FILE. */
5477
5478 static VEC (char_ptr) *
5479 make_file_symbol_completion_list_1 (const char *text, const char *word,
5480 const char *srcfile)
5481 {
5482 struct symbol *sym;
5483 struct symtab *s;
5484 struct block *b;
5485 struct block_iterator iter;
5486 /* The symbol we are completing on. Points in same buffer as text. */
5487 const char *sym_text;
5488 /* Length of sym_text. */
5489 int sym_text_len;
5490
5491 /* Now look for the symbol we are supposed to complete on.
5492 FIXME: This should be language-specific. */
5493 {
5494 const char *p;
5495 char quote_found;
5496 const char *quote_pos = NULL;
5497
5498 /* First see if this is a quoted string. */
5499 quote_found = '\0';
5500 for (p = text; *p != '\0'; ++p)
5501 {
5502 if (quote_found != '\0')
5503 {
5504 if (*p == quote_found)
5505 /* Found close quote. */
5506 quote_found = '\0';
5507 else if (*p == '\\' && p[1] == quote_found)
5508 /* A backslash followed by the quote character
5509 doesn't end the string. */
5510 ++p;
5511 }
5512 else if (*p == '\'' || *p == '"')
5513 {
5514 quote_found = *p;
5515 quote_pos = p;
5516 }
5517 }
5518 if (quote_found == '\'')
5519 /* A string within single quotes can be a symbol, so complete on it. */
5520 sym_text = quote_pos + 1;
5521 else if (quote_found == '"')
5522 /* A double-quoted string is never a symbol, nor does it make sense
5523 to complete it any other way. */
5524 {
5525 return NULL;
5526 }
5527 else
5528 {
5529 /* Not a quoted string. */
5530 sym_text = language_search_unquoted_string (text, p);
5531 }
5532 }
5533
5534 sym_text_len = strlen (sym_text);
5535
5536 /* Find the symtab for SRCFILE (this loads it if it was not yet read
5537 in). */
5538 s = lookup_symtab (srcfile);
5539 if (s == NULL)
5540 {
5541 /* Maybe they typed the file with leading directories, while the
5542 symbol tables record only its basename. */
5543 const char *tail = lbasename (srcfile);
5544
5545 if (tail > srcfile)
5546 s = lookup_symtab (tail);
5547 }
5548
5549 /* If we have no symtab for that file, return an empty list. */
5550 if (s == NULL)
5551 return (return_val);
5552
5553 /* Go through this symtab and check the externs and statics for
5554 symbols which match. */
5555
5556 b = BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (s), GLOBAL_BLOCK);
5557 ALL_BLOCK_SYMBOLS (b, iter, sym)
5558 {
5559 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
5560 }
5561
5562 b = BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (s), STATIC_BLOCK);
5563 ALL_BLOCK_SYMBOLS (b, iter, sym)
5564 {
5565 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
5566 }
5567
5568 return (return_val);
5569 }
5570
5571 /* Wrapper around make_file_symbol_completion_list_1
5572 to handle MAX_COMPLETIONS_REACHED_ERROR. */
5573
5574 VEC (char_ptr) *
5575 make_file_symbol_completion_list (const char *text, const char *word,
5576 const char *srcfile)
5577 {
5578 struct cleanup *back_to, *cleanups;
5579
5580 completion_tracker = new_completion_tracker ();
5581 cleanups = make_cleanup_free_completion_tracker (&completion_tracker);
5582 return_val = NULL;
5583 back_to = make_cleanup (do_free_completion_list, &return_val);
5584
5585 TRY
5586 {
5587 make_file_symbol_completion_list_1 (text, word, srcfile);
5588 }
5589 CATCH (except, RETURN_MASK_ERROR)
5590 {
5591 if (except.error != MAX_COMPLETIONS_REACHED_ERROR)
5592 throw_exception (except);
5593 }
5594 END_CATCH
5595
5596 discard_cleanups (back_to);
5597 do_cleanups (cleanups);
5598 return return_val;
5599 }
5600
5601 /* A helper function for make_source_files_completion_list. It adds
5602 another file name to a list of possible completions, growing the
5603 list as necessary. */
5604
5605 static void
5606 add_filename_to_list (const char *fname, const char *text, const char *word,
5607 VEC (char_ptr) **list)
5608 {
5609 char *newobj;
5610 size_t fnlen = strlen (fname);
5611
5612 if (word == text)
5613 {
5614 /* Return exactly fname. */
5615 newobj = (char *) xmalloc (fnlen + 5);
5616 strcpy (newobj, fname);
5617 }
5618 else if (word > text)
5619 {
5620 /* Return some portion of fname. */
5621 newobj = (char *) xmalloc (fnlen + 5);
5622 strcpy (newobj, fname + (word - text));
5623 }
5624 else
5625 {
5626 /* Return some of TEXT plus fname. */
5627 newobj = (char *) xmalloc (fnlen + (text - word) + 5);
5628 strncpy (newobj, word, text - word);
5629 newobj[text - word] = '\0';
5630 strcat (newobj, fname);
5631 }
5632 VEC_safe_push (char_ptr, *list, newobj);
5633 }
5634
5635 static int
5636 not_interesting_fname (const char *fname)
5637 {
5638 static const char *illegal_aliens[] = {
5639 "_globals_", /* inserted by coff_symtab_read */
5640 NULL
5641 };
5642 int i;
5643
5644 for (i = 0; illegal_aliens[i]; i++)
5645 {
5646 if (filename_cmp (fname, illegal_aliens[i]) == 0)
5647 return 1;
5648 }
5649 return 0;
5650 }
5651
5652 /* An object of this type is passed as the user_data argument to
5653 map_partial_symbol_filenames. */
5654 struct add_partial_filename_data
5655 {
5656 struct filename_seen_cache *filename_seen_cache;
5657 const char *text;
5658 const char *word;
5659 int text_len;
5660 VEC (char_ptr) **list;
5661 };
5662
5663 /* A callback for map_partial_symbol_filenames. */
5664
5665 static void
5666 maybe_add_partial_symtab_filename (const char *filename, const char *fullname,
5667 void *user_data)
5668 {
5669 struct add_partial_filename_data *data
5670 = (struct add_partial_filename_data *) user_data;
5671
5672 if (not_interesting_fname (filename))
5673 return;
5674 if (!filename_seen (data->filename_seen_cache, filename, 1)
5675 && filename_ncmp (filename, data->text, data->text_len) == 0)
5676 {
5677 /* This file matches for a completion; add it to the
5678 current list of matches. */
5679 add_filename_to_list (filename, data->text, data->word, data->list);
5680 }
5681 else
5682 {
5683 const char *base_name = lbasename (filename);
5684
5685 if (base_name != filename
5686 && !filename_seen (data->filename_seen_cache, base_name, 1)
5687 && filename_ncmp (base_name, data->text, data->text_len) == 0)
5688 add_filename_to_list (base_name, data->text, data->word, data->list);
5689 }
5690 }
5691
5692 /* Return a vector of all source files whose names begin with matching
5693 TEXT. The file names are looked up in the symbol tables of this
5694 program. If the answer is no matchess, then the return value is
5695 NULL. */
5696
5697 VEC (char_ptr) *
5698 make_source_files_completion_list (const char *text, const char *word)
5699 {
5700 struct compunit_symtab *cu;
5701 struct symtab *s;
5702 struct objfile *objfile;
5703 size_t text_len = strlen (text);
5704 VEC (char_ptr) *list = NULL;
5705 const char *base_name;
5706 struct add_partial_filename_data datum;
5707 struct filename_seen_cache *filename_seen_cache;
5708 struct cleanup *back_to, *cache_cleanup;
5709
5710 if (!have_full_symbols () && !have_partial_symbols ())
5711 return list;
5712
5713 back_to = make_cleanup (do_free_completion_list, &list);
5714
5715 filename_seen_cache = create_filename_seen_cache ();
5716 cache_cleanup = make_cleanup (delete_filename_seen_cache,
5717 filename_seen_cache);
5718
5719 ALL_FILETABS (objfile, cu, s)
5720 {
5721 if (not_interesting_fname (s->filename))
5722 continue;
5723 if (!filename_seen (filename_seen_cache, s->filename, 1)
5724 && filename_ncmp (s->filename, text, text_len) == 0)
5725 {
5726 /* This file matches for a completion; add it to the current
5727 list of matches. */
5728 add_filename_to_list (s->filename, text, word, &list);
5729 }
5730 else
5731 {
5732 /* NOTE: We allow the user to type a base name when the
5733 debug info records leading directories, but not the other
5734 way around. This is what subroutines of breakpoint
5735 command do when they parse file names. */
5736 base_name = lbasename (s->filename);
5737 if (base_name != s->filename
5738 && !filename_seen (filename_seen_cache, base_name, 1)
5739 && filename_ncmp (base_name, text, text_len) == 0)
5740 add_filename_to_list (base_name, text, word, &list);
5741 }
5742 }
5743
5744 datum.filename_seen_cache = filename_seen_cache;
5745 datum.text = text;
5746 datum.word = word;
5747 datum.text_len = text_len;
5748 datum.list = &list;
5749 map_symbol_filenames (maybe_add_partial_symtab_filename, &datum,
5750 0 /*need_fullname*/);
5751
5752 do_cleanups (cache_cleanup);
5753 discard_cleanups (back_to);
5754
5755 return list;
5756 }
5757 \f
5758 /* Track MAIN */
5759
5760 /* Return the "main_info" object for the current program space. If
5761 the object has not yet been created, create it and fill in some
5762 default values. */
5763
5764 static struct main_info *
5765 get_main_info (void)
5766 {
5767 struct main_info *info
5768 = (struct main_info *) program_space_data (current_program_space,
5769 main_progspace_key);
5770
5771 if (info == NULL)
5772 {
5773 /* It may seem strange to store the main name in the progspace
5774 and also in whatever objfile happens to see a main name in
5775 its debug info. The reason for this is mainly historical:
5776 gdb returned "main" as the name even if no function named
5777 "main" was defined the program; and this approach lets us
5778 keep compatibility. */
5779 info = XCNEW (struct main_info);
5780 info->language_of_main = language_unknown;
5781 set_program_space_data (current_program_space, main_progspace_key,
5782 info);
5783 }
5784
5785 return info;
5786 }
5787
5788 /* A cleanup to destroy a struct main_info when a progspace is
5789 destroyed. */
5790
5791 static void
5792 main_info_cleanup (struct program_space *pspace, void *data)
5793 {
5794 struct main_info *info = (struct main_info *) data;
5795
5796 if (info != NULL)
5797 xfree (info->name_of_main);
5798 xfree (info);
5799 }
5800
5801 static void
5802 set_main_name (const char *name, enum language lang)
5803 {
5804 struct main_info *info = get_main_info ();
5805
5806 if (info->name_of_main != NULL)
5807 {
5808 xfree (info->name_of_main);
5809 info->name_of_main = NULL;
5810 info->language_of_main = language_unknown;
5811 }
5812 if (name != NULL)
5813 {
5814 info->name_of_main = xstrdup (name);
5815 info->language_of_main = lang;
5816 }
5817 }
5818
5819 /* Deduce the name of the main procedure, and set NAME_OF_MAIN
5820 accordingly. */
5821
5822 static void
5823 find_main_name (void)
5824 {
5825 const char *new_main_name;
5826 struct objfile *objfile;
5827
5828 /* First check the objfiles to see whether a debuginfo reader has
5829 picked up the appropriate main name. Historically the main name
5830 was found in a more or less random way; this approach instead
5831 relies on the order of objfile creation -- which still isn't
5832 guaranteed to get the correct answer, but is just probably more
5833 accurate. */
5834 ALL_OBJFILES (objfile)
5835 {
5836 if (objfile->per_bfd->name_of_main != NULL)
5837 {
5838 set_main_name (objfile->per_bfd->name_of_main,
5839 objfile->per_bfd->language_of_main);
5840 return;
5841 }
5842 }
5843
5844 /* Try to see if the main procedure is in Ada. */
5845 /* FIXME: brobecker/2005-03-07: Another way of doing this would
5846 be to add a new method in the language vector, and call this
5847 method for each language until one of them returns a non-empty
5848 name. This would allow us to remove this hard-coded call to
5849 an Ada function. It is not clear that this is a better approach
5850 at this point, because all methods need to be written in a way
5851 such that false positives never be returned. For instance, it is
5852 important that a method does not return a wrong name for the main
5853 procedure if the main procedure is actually written in a different
5854 language. It is easy to guaranty this with Ada, since we use a
5855 special symbol generated only when the main in Ada to find the name
5856 of the main procedure. It is difficult however to see how this can
5857 be guarantied for languages such as C, for instance. This suggests
5858 that order of call for these methods becomes important, which means
5859 a more complicated approach. */
5860 new_main_name = ada_main_name ();
5861 if (new_main_name != NULL)
5862 {
5863 set_main_name (new_main_name, language_ada);
5864 return;
5865 }
5866
5867 new_main_name = d_main_name ();
5868 if (new_main_name != NULL)
5869 {
5870 set_main_name (new_main_name, language_d);
5871 return;
5872 }
5873
5874 new_main_name = go_main_name ();
5875 if (new_main_name != NULL)
5876 {
5877 set_main_name (new_main_name, language_go);
5878 return;
5879 }
5880
5881 new_main_name = pascal_main_name ();
5882 if (new_main_name != NULL)
5883 {
5884 set_main_name (new_main_name, language_pascal);
5885 return;
5886 }
5887
5888 /* The languages above didn't identify the name of the main procedure.
5889 Fallback to "main". */
5890 set_main_name ("main", language_unknown);
5891 }
5892
5893 char *
5894 main_name (void)
5895 {
5896 struct main_info *info = get_main_info ();
5897
5898 if (info->name_of_main == NULL)
5899 find_main_name ();
5900
5901 return info->name_of_main;
5902 }
5903
5904 /* Return the language of the main function. If it is not known,
5905 return language_unknown. */
5906
5907 enum language
5908 main_language (void)
5909 {
5910 struct main_info *info = get_main_info ();
5911
5912 if (info->name_of_main == NULL)
5913 find_main_name ();
5914
5915 return info->language_of_main;
5916 }
5917
5918 /* Handle ``executable_changed'' events for the symtab module. */
5919
5920 static void
5921 symtab_observer_executable_changed (void)
5922 {
5923 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
5924 set_main_name (NULL, language_unknown);
5925 }
5926
5927 /* Return 1 if the supplied producer string matches the ARM RealView
5928 compiler (armcc). */
5929
5930 int
5931 producer_is_realview (const char *producer)
5932 {
5933 static const char *const arm_idents[] = {
5934 "ARM C Compiler, ADS",
5935 "Thumb C Compiler, ADS",
5936 "ARM C++ Compiler, ADS",
5937 "Thumb C++ Compiler, ADS",
5938 "ARM/Thumb C/C++ Compiler, RVCT",
5939 "ARM C/C++ Compiler, RVCT"
5940 };
5941 int i;
5942
5943 if (producer == NULL)
5944 return 0;
5945
5946 for (i = 0; i < ARRAY_SIZE (arm_idents); i++)
5947 if (startswith (producer, arm_idents[i]))
5948 return 1;
5949
5950 return 0;
5951 }
5952
5953 \f
5954
5955 /* The next index to hand out in response to a registration request. */
5956
5957 static int next_aclass_value = LOC_FINAL_VALUE;
5958
5959 /* The maximum number of "aclass" registrations we support. This is
5960 constant for convenience. */
5961 #define MAX_SYMBOL_IMPLS (LOC_FINAL_VALUE + 10)
5962
5963 /* The objects representing the various "aclass" values. The elements
5964 from 0 up to LOC_FINAL_VALUE-1 represent themselves, and subsequent
5965 elements are those registered at gdb initialization time. */
5966
5967 static struct symbol_impl symbol_impl[MAX_SYMBOL_IMPLS];
5968
5969 /* The globally visible pointer. This is separate from 'symbol_impl'
5970 so that it can be const. */
5971
5972 const struct symbol_impl *symbol_impls = &symbol_impl[0];
5973
5974 /* Make sure we saved enough room in struct symbol. */
5975
5976 gdb_static_assert (MAX_SYMBOL_IMPLS <= (1 << SYMBOL_ACLASS_BITS));
5977
5978 /* Register a computed symbol type. ACLASS must be LOC_COMPUTED. OPS
5979 is the ops vector associated with this index. This returns the new
5980 index, which should be used as the aclass_index field for symbols
5981 of this type. */
5982
5983 int
5984 register_symbol_computed_impl (enum address_class aclass,
5985 const struct symbol_computed_ops *ops)
5986 {
5987 int result = next_aclass_value++;
5988
5989 gdb_assert (aclass == LOC_COMPUTED);
5990 gdb_assert (result < MAX_SYMBOL_IMPLS);
5991 symbol_impl[result].aclass = aclass;
5992 symbol_impl[result].ops_computed = ops;
5993
5994 /* Sanity check OPS. */
5995 gdb_assert (ops != NULL);
5996 gdb_assert (ops->tracepoint_var_ref != NULL);
5997 gdb_assert (ops->describe_location != NULL);
5998 gdb_assert (ops->get_symbol_read_needs != NULL);
5999 gdb_assert (ops->read_variable != NULL);
6000
6001 return result;
6002 }
6003
6004 /* Register a function with frame base type. ACLASS must be LOC_BLOCK.
6005 OPS is the ops vector associated with this index. This returns the
6006 new index, which should be used as the aclass_index field for symbols
6007 of this type. */
6008
6009 int
6010 register_symbol_block_impl (enum address_class aclass,
6011 const struct symbol_block_ops *ops)
6012 {
6013 int result = next_aclass_value++;
6014
6015 gdb_assert (aclass == LOC_BLOCK);
6016 gdb_assert (result < MAX_SYMBOL_IMPLS);
6017 symbol_impl[result].aclass = aclass;
6018 symbol_impl[result].ops_block = ops;
6019
6020 /* Sanity check OPS. */
6021 gdb_assert (ops != NULL);
6022 gdb_assert (ops->find_frame_base_location != NULL);
6023
6024 return result;
6025 }
6026
6027 /* Register a register symbol type. ACLASS must be LOC_REGISTER or
6028 LOC_REGPARM_ADDR. OPS is the register ops vector associated with
6029 this index. This returns the new index, which should be used as
6030 the aclass_index field for symbols of this type. */
6031
6032 int
6033 register_symbol_register_impl (enum address_class aclass,
6034 const struct symbol_register_ops *ops)
6035 {
6036 int result = next_aclass_value++;
6037
6038 gdb_assert (aclass == LOC_REGISTER || aclass == LOC_REGPARM_ADDR);
6039 gdb_assert (result < MAX_SYMBOL_IMPLS);
6040 symbol_impl[result].aclass = aclass;
6041 symbol_impl[result].ops_register = ops;
6042
6043 return result;
6044 }
6045
6046 /* Initialize elements of 'symbol_impl' for the constants in enum
6047 address_class. */
6048
6049 static void
6050 initialize_ordinary_address_classes (void)
6051 {
6052 int i;
6053
6054 for (i = 0; i < LOC_FINAL_VALUE; ++i)
6055 symbol_impl[i].aclass = (enum address_class) i;
6056 }
6057
6058 \f
6059
6060 /* Helper function to initialize the fields of an objfile-owned symbol.
6061 It assumed that *SYM is already all zeroes. */
6062
6063 static void
6064 initialize_objfile_symbol_1 (struct symbol *sym)
6065 {
6066 SYMBOL_OBJFILE_OWNED (sym) = 1;
6067 SYMBOL_SECTION (sym) = -1;
6068 }
6069
6070 /* Initialize the symbol SYM, and mark it as being owned by an objfile. */
6071
6072 void
6073 initialize_objfile_symbol (struct symbol *sym)
6074 {
6075 memset (sym, 0, sizeof (*sym));
6076 initialize_objfile_symbol_1 (sym);
6077 }
6078
6079 /* Allocate and initialize a new 'struct symbol' on OBJFILE's
6080 obstack. */
6081
6082 struct symbol *
6083 allocate_symbol (struct objfile *objfile)
6084 {
6085 struct symbol *result;
6086
6087 result = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symbol);
6088 initialize_objfile_symbol_1 (result);
6089
6090 return result;
6091 }
6092
6093 /* Allocate and initialize a new 'struct template_symbol' on OBJFILE's
6094 obstack. */
6095
6096 struct template_symbol *
6097 allocate_template_symbol (struct objfile *objfile)
6098 {
6099 struct template_symbol *result;
6100
6101 result = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct template_symbol);
6102 initialize_objfile_symbol_1 (&result->base);
6103
6104 return result;
6105 }
6106
6107 /* See symtab.h. */
6108
6109 struct objfile *
6110 symbol_objfile (const struct symbol *symbol)
6111 {
6112 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
6113 return SYMTAB_OBJFILE (symbol->owner.symtab);
6114 }
6115
6116 /* See symtab.h. */
6117
6118 struct gdbarch *
6119 symbol_arch (const struct symbol *symbol)
6120 {
6121 if (!SYMBOL_OBJFILE_OWNED (symbol))
6122 return symbol->owner.arch;
6123 return get_objfile_arch (SYMTAB_OBJFILE (symbol->owner.symtab));
6124 }
6125
6126 /* See symtab.h. */
6127
6128 struct symtab *
6129 symbol_symtab (const struct symbol *symbol)
6130 {
6131 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
6132 return symbol->owner.symtab;
6133 }
6134
6135 /* See symtab.h. */
6136
6137 void
6138 symbol_set_symtab (struct symbol *symbol, struct symtab *symtab)
6139 {
6140 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
6141 symbol->owner.symtab = symtab;
6142 }
6143
6144 \f
6145
6146 void
6147 _initialize_symtab (void)
6148 {
6149 initialize_ordinary_address_classes ();
6150
6151 main_progspace_key
6152 = register_program_space_data_with_cleanup (NULL, main_info_cleanup);
6153
6154 symbol_cache_key
6155 = register_program_space_data_with_cleanup (NULL, symbol_cache_cleanup);
6156
6157 add_info ("variables", variables_info, _("\
6158 All global and static variable names, or those matching REGEXP."));
6159 if (dbx_commands)
6160 add_com ("whereis", class_info, variables_info, _("\
6161 All global and static variable names, or those matching REGEXP."));
6162
6163 add_info ("functions", functions_info,
6164 _("All function names, or those matching REGEXP."));
6165
6166 /* FIXME: This command has at least the following problems:
6167 1. It prints builtin types (in a very strange and confusing fashion).
6168 2. It doesn't print right, e.g. with
6169 typedef struct foo *FOO
6170 type_print prints "FOO" when we want to make it (in this situation)
6171 print "struct foo *".
6172 I also think "ptype" or "whatis" is more likely to be useful (but if
6173 there is much disagreement "info types" can be fixed). */
6174 add_info ("types", types_info,
6175 _("All type names, or those matching REGEXP."));
6176
6177 add_info ("sources", sources_info,
6178 _("Source files in the program."));
6179
6180 add_com ("rbreak", class_breakpoint, rbreak_command,
6181 _("Set a breakpoint for all functions matching REGEXP."));
6182
6183 add_setshow_enum_cmd ("multiple-symbols", no_class,
6184 multiple_symbols_modes, &multiple_symbols_mode,
6185 _("\
6186 Set the debugger behavior when more than one symbol are possible matches\n\
6187 in an expression."), _("\
6188 Show how the debugger handles ambiguities in expressions."), _("\
6189 Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
6190 NULL, NULL, &setlist, &showlist);
6191
6192 add_setshow_boolean_cmd ("basenames-may-differ", class_obscure,
6193 &basenames_may_differ, _("\
6194 Set whether a source file may have multiple base names."), _("\
6195 Show whether a source file may have multiple base names."), _("\
6196 (A \"base name\" is the name of a file with the directory part removed.\n\
6197 Example: The base name of \"/home/user/hello.c\" is \"hello.c\".)\n\
6198 If set, GDB will canonicalize file names (e.g., expand symlinks)\n\
6199 before comparing them. Canonicalization is an expensive operation,\n\
6200 but it allows the same file be known by more than one base name.\n\
6201 If not set (the default), all source files are assumed to have just\n\
6202 one base name, and gdb will do file name comparisons more efficiently."),
6203 NULL, NULL,
6204 &setlist, &showlist);
6205
6206 add_setshow_zuinteger_cmd ("symtab-create", no_class, &symtab_create_debug,
6207 _("Set debugging of symbol table creation."),
6208 _("Show debugging of symbol table creation."), _("\
6209 When enabled (non-zero), debugging messages are printed when building\n\
6210 symbol tables. A value of 1 (one) normally provides enough information.\n\
6211 A value greater than 1 provides more verbose information."),
6212 NULL,
6213 NULL,
6214 &setdebuglist, &showdebuglist);
6215
6216 add_setshow_zuinteger_cmd ("symbol-lookup", no_class, &symbol_lookup_debug,
6217 _("\
6218 Set debugging of symbol lookup."), _("\
6219 Show debugging of symbol lookup."), _("\
6220 When enabled (non-zero), symbol lookups are logged."),
6221 NULL, NULL,
6222 &setdebuglist, &showdebuglist);
6223
6224 add_setshow_zuinteger_cmd ("symbol-cache-size", no_class,
6225 &new_symbol_cache_size,
6226 _("Set the size of the symbol cache."),
6227 _("Show the size of the symbol cache."), _("\
6228 The size of the symbol cache.\n\
6229 If zero then the symbol cache is disabled."),
6230 set_symbol_cache_size_handler, NULL,
6231 &maintenance_set_cmdlist,
6232 &maintenance_show_cmdlist);
6233
6234 add_cmd ("symbol-cache", class_maintenance, maintenance_print_symbol_cache,
6235 _("Dump the symbol cache for each program space."),
6236 &maintenanceprintlist);
6237
6238 add_cmd ("symbol-cache-statistics", class_maintenance,
6239 maintenance_print_symbol_cache_statistics,
6240 _("Print symbol cache statistics for each program space."),
6241 &maintenanceprintlist);
6242
6243 add_cmd ("flush-symbol-cache", class_maintenance,
6244 maintenance_flush_symbol_cache,
6245 _("Flush the symbol cache for each program space."),
6246 &maintenancelist);
6247
6248 observer_attach_executable_changed (symtab_observer_executable_changed);
6249 observer_attach_new_objfile (symtab_new_objfile_observer);
6250 observer_attach_free_objfile (symtab_free_objfile_observer);
6251 }
This page took 0.174754 seconds and 4 git commands to generate.