[gdb/testsuite] Set EDITOR to true before using edit
[deliverable/binutils-gdb.git] / gdb / symtab.c
1 /* Symbol table lookup for the GNU debugger, GDB.
2
3 Copyright (C) 1986-2020 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "gdbcore.h"
24 #include "frame.h"
25 #include "target.h"
26 #include "value.h"
27 #include "symfile.h"
28 #include "objfiles.h"
29 #include "gdbcmd.h"
30 #include "gdb_regex.h"
31 #include "expression.h"
32 #include "language.h"
33 #include "demangle.h"
34 #include "inferior.h"
35 #include "source.h"
36 #include "filenames.h" /* for FILENAME_CMP */
37 #include "objc-lang.h"
38 #include "d-lang.h"
39 #include "ada-lang.h"
40 #include "go-lang.h"
41 #include "p-lang.h"
42 #include "addrmap.h"
43 #include "cli/cli-utils.h"
44 #include "cli/cli-style.h"
45 #include "fnmatch.h"
46 #include "hashtab.h"
47 #include "typeprint.h"
48
49 #include "gdb_obstack.h"
50 #include "block.h"
51 #include "dictionary.h"
52
53 #include <sys/types.h>
54 #include <fcntl.h>
55 #include <sys/stat.h>
56 #include <ctype.h>
57 #include "cp-abi.h"
58 #include "cp-support.h"
59 #include "observable.h"
60 #include "solist.h"
61 #include "macrotab.h"
62 #include "macroscope.h"
63
64 #include "parser-defs.h"
65 #include "completer.h"
66 #include "progspace-and-thread.h"
67 #include "gdbsupport/gdb_optional.h"
68 #include "filename-seen-cache.h"
69 #include "arch-utils.h"
70 #include <algorithm>
71 #include "gdbsupport/gdb_string_view.h"
72 #include "gdbsupport/pathstuff.h"
73 #include "gdbsupport/common-utils.h"
74
75 /* Forward declarations for local functions. */
76
77 static void rbreak_command (const char *, int);
78
79 static int find_line_common (struct linetable *, int, int *, int);
80
81 static struct block_symbol
82 lookup_symbol_aux (const char *name,
83 symbol_name_match_type match_type,
84 const struct block *block,
85 const domain_enum domain,
86 enum language language,
87 struct field_of_this_result *);
88
89 static
90 struct block_symbol lookup_local_symbol (const char *name,
91 symbol_name_match_type match_type,
92 const struct block *block,
93 const domain_enum domain,
94 enum language language);
95
96 static struct block_symbol
97 lookup_symbol_in_objfile (struct objfile *objfile,
98 enum block_enum block_index,
99 const char *name, const domain_enum domain);
100
101 /* Type of the data stored on the program space. */
102
103 struct main_info
104 {
105 main_info () = default;
106
107 ~main_info ()
108 {
109 xfree (name_of_main);
110 }
111
112 /* Name of "main". */
113
114 char *name_of_main = nullptr;
115
116 /* Language of "main". */
117
118 enum language language_of_main = language_unknown;
119 };
120
121 /* Program space key for finding name and language of "main". */
122
123 static const program_space_key<main_info> main_progspace_key;
124
125 /* The default symbol cache size.
126 There is no extra cpu cost for large N (except when flushing the cache,
127 which is rare). The value here is just a first attempt. A better default
128 value may be higher or lower. A prime number can make up for a bad hash
129 computation, so that's why the number is what it is. */
130 #define DEFAULT_SYMBOL_CACHE_SIZE 1021
131
132 /* The maximum symbol cache size.
133 There's no method to the decision of what value to use here, other than
134 there's no point in allowing a user typo to make gdb consume all memory. */
135 #define MAX_SYMBOL_CACHE_SIZE (1024*1024)
136
137 /* symbol_cache_lookup returns this if a previous lookup failed to find the
138 symbol in any objfile. */
139 #define SYMBOL_LOOKUP_FAILED \
140 ((struct block_symbol) {(struct symbol *) 1, NULL})
141 #define SYMBOL_LOOKUP_FAILED_P(SIB) (SIB.symbol == (struct symbol *) 1)
142
143 /* Recording lookups that don't find the symbol is just as important, if not
144 more so, than recording found symbols. */
145
146 enum symbol_cache_slot_state
147 {
148 SYMBOL_SLOT_UNUSED,
149 SYMBOL_SLOT_NOT_FOUND,
150 SYMBOL_SLOT_FOUND
151 };
152
153 struct symbol_cache_slot
154 {
155 enum symbol_cache_slot_state state;
156
157 /* The objfile that was current when the symbol was looked up.
158 This is only needed for global blocks, but for simplicity's sake
159 we allocate the space for both. If data shows the extra space used
160 for static blocks is a problem, we can split things up then.
161
162 Global blocks need cache lookup to include the objfile context because
163 we need to account for gdbarch_iterate_over_objfiles_in_search_order
164 which can traverse objfiles in, effectively, any order, depending on
165 the current objfile, thus affecting which symbol is found. Normally,
166 only the current objfile is searched first, and then the rest are
167 searched in recorded order; but putting cache lookup inside
168 gdbarch_iterate_over_objfiles_in_search_order would be awkward.
169 Instead we just make the current objfile part of the context of
170 cache lookup. This means we can record the same symbol multiple times,
171 each with a different "current objfile" that was in effect when the
172 lookup was saved in the cache, but cache space is pretty cheap. */
173 const struct objfile *objfile_context;
174
175 union
176 {
177 struct block_symbol found;
178 struct
179 {
180 char *name;
181 domain_enum domain;
182 } not_found;
183 } value;
184 };
185
186 /* Clear out SLOT. */
187
188 static void
189 symbol_cache_clear_slot (struct symbol_cache_slot *slot)
190 {
191 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
192 xfree (slot->value.not_found.name);
193 slot->state = SYMBOL_SLOT_UNUSED;
194 }
195
196 /* Symbols don't specify global vs static block.
197 So keep them in separate caches. */
198
199 struct block_symbol_cache
200 {
201 unsigned int hits;
202 unsigned int misses;
203 unsigned int collisions;
204
205 /* SYMBOLS is a variable length array of this size.
206 One can imagine that in general one cache (global/static) should be a
207 fraction of the size of the other, but there's no data at the moment
208 on which to decide. */
209 unsigned int size;
210
211 struct symbol_cache_slot symbols[1];
212 };
213
214 /* Clear all slots of BSC and free BSC. */
215
216 static void
217 destroy_block_symbol_cache (struct block_symbol_cache *bsc)
218 {
219 if (bsc != nullptr)
220 {
221 for (unsigned int i = 0; i < bsc->size; i++)
222 symbol_cache_clear_slot (&bsc->symbols[i]);
223 xfree (bsc);
224 }
225 }
226
227 /* The symbol cache.
228
229 Searching for symbols in the static and global blocks over multiple objfiles
230 again and again can be slow, as can searching very big objfiles. This is a
231 simple cache to improve symbol lookup performance, which is critical to
232 overall gdb performance.
233
234 Symbols are hashed on the name, its domain, and block.
235 They are also hashed on their objfile for objfile-specific lookups. */
236
237 struct symbol_cache
238 {
239 symbol_cache () = default;
240
241 ~symbol_cache ()
242 {
243 destroy_block_symbol_cache (global_symbols);
244 destroy_block_symbol_cache (static_symbols);
245 }
246
247 struct block_symbol_cache *global_symbols = nullptr;
248 struct block_symbol_cache *static_symbols = nullptr;
249 };
250
251 /* Program space key for finding its symbol cache. */
252
253 static const program_space_key<symbol_cache> symbol_cache_key;
254
255 /* When non-zero, print debugging messages related to symtab creation. */
256 unsigned int symtab_create_debug = 0;
257
258 /* When non-zero, print debugging messages related to symbol lookup. */
259 unsigned int symbol_lookup_debug = 0;
260
261 /* The size of the cache is staged here. */
262 static unsigned int new_symbol_cache_size = DEFAULT_SYMBOL_CACHE_SIZE;
263
264 /* The current value of the symbol cache size.
265 This is saved so that if the user enters a value too big we can restore
266 the original value from here. */
267 static unsigned int symbol_cache_size = DEFAULT_SYMBOL_CACHE_SIZE;
268
269 /* True if a file may be known by two different basenames.
270 This is the uncommon case, and significantly slows down gdb.
271 Default set to "off" to not slow down the common case. */
272 bool basenames_may_differ = false;
273
274 /* Allow the user to configure the debugger behavior with respect
275 to multiple-choice menus when more than one symbol matches during
276 a symbol lookup. */
277
278 const char multiple_symbols_ask[] = "ask";
279 const char multiple_symbols_all[] = "all";
280 const char multiple_symbols_cancel[] = "cancel";
281 static const char *const multiple_symbols_modes[] =
282 {
283 multiple_symbols_ask,
284 multiple_symbols_all,
285 multiple_symbols_cancel,
286 NULL
287 };
288 static const char *multiple_symbols_mode = multiple_symbols_all;
289
290 /* Read-only accessor to AUTO_SELECT_MODE. */
291
292 const char *
293 multiple_symbols_select_mode (void)
294 {
295 return multiple_symbols_mode;
296 }
297
298 /* Return the name of a domain_enum. */
299
300 const char *
301 domain_name (domain_enum e)
302 {
303 switch (e)
304 {
305 case UNDEF_DOMAIN: return "UNDEF_DOMAIN";
306 case VAR_DOMAIN: return "VAR_DOMAIN";
307 case STRUCT_DOMAIN: return "STRUCT_DOMAIN";
308 case MODULE_DOMAIN: return "MODULE_DOMAIN";
309 case LABEL_DOMAIN: return "LABEL_DOMAIN";
310 case COMMON_BLOCK_DOMAIN: return "COMMON_BLOCK_DOMAIN";
311 default: gdb_assert_not_reached ("bad domain_enum");
312 }
313 }
314
315 /* Return the name of a search_domain . */
316
317 const char *
318 search_domain_name (enum search_domain e)
319 {
320 switch (e)
321 {
322 case VARIABLES_DOMAIN: return "VARIABLES_DOMAIN";
323 case FUNCTIONS_DOMAIN: return "FUNCTIONS_DOMAIN";
324 case TYPES_DOMAIN: return "TYPES_DOMAIN";
325 case MODULES_DOMAIN: return "MODULES_DOMAIN";
326 case ALL_DOMAIN: return "ALL_DOMAIN";
327 default: gdb_assert_not_reached ("bad search_domain");
328 }
329 }
330
331 /* See symtab.h. */
332
333 struct symtab *
334 compunit_primary_filetab (const struct compunit_symtab *cust)
335 {
336 gdb_assert (COMPUNIT_FILETABS (cust) != NULL);
337
338 /* The primary file symtab is the first one in the list. */
339 return COMPUNIT_FILETABS (cust);
340 }
341
342 /* See symtab.h. */
343
344 enum language
345 compunit_language (const struct compunit_symtab *cust)
346 {
347 struct symtab *symtab = compunit_primary_filetab (cust);
348
349 /* The language of the compunit symtab is the language of its primary
350 source file. */
351 return SYMTAB_LANGUAGE (symtab);
352 }
353
354 /* See symtab.h. */
355
356 bool
357 minimal_symbol::data_p () const
358 {
359 return type == mst_data
360 || type == mst_bss
361 || type == mst_abs
362 || type == mst_file_data
363 || type == mst_file_bss;
364 }
365
366 /* See symtab.h. */
367
368 bool
369 minimal_symbol::text_p () const
370 {
371 return type == mst_text
372 || type == mst_text_gnu_ifunc
373 || type == mst_data_gnu_ifunc
374 || type == mst_slot_got_plt
375 || type == mst_solib_trampoline
376 || type == mst_file_text;
377 }
378
379 /* See whether FILENAME matches SEARCH_NAME using the rule that we
380 advertise to the user. (The manual's description of linespecs
381 describes what we advertise). Returns true if they match, false
382 otherwise. */
383
384 bool
385 compare_filenames_for_search (const char *filename, const char *search_name)
386 {
387 int len = strlen (filename);
388 size_t search_len = strlen (search_name);
389
390 if (len < search_len)
391 return false;
392
393 /* The tail of FILENAME must match. */
394 if (FILENAME_CMP (filename + len - search_len, search_name) != 0)
395 return false;
396
397 /* Either the names must completely match, or the character
398 preceding the trailing SEARCH_NAME segment of FILENAME must be a
399 directory separator.
400
401 The check !IS_ABSOLUTE_PATH ensures SEARCH_NAME "/dir/file.c"
402 cannot match FILENAME "/path//dir/file.c" - as user has requested
403 absolute path. The sama applies for "c:\file.c" possibly
404 incorrectly hypothetically matching "d:\dir\c:\file.c".
405
406 The HAS_DRIVE_SPEC purpose is to make FILENAME "c:file.c"
407 compatible with SEARCH_NAME "file.c". In such case a compiler had
408 to put the "c:file.c" name into debug info. Such compatibility
409 works only on GDB built for DOS host. */
410 return (len == search_len
411 || (!IS_ABSOLUTE_PATH (search_name)
412 && IS_DIR_SEPARATOR (filename[len - search_len - 1]))
413 || (HAS_DRIVE_SPEC (filename)
414 && STRIP_DRIVE_SPEC (filename) == &filename[len - search_len]));
415 }
416
417 /* Same as compare_filenames_for_search, but for glob-style patterns.
418 Heads up on the order of the arguments. They match the order of
419 compare_filenames_for_search, but it's the opposite of the order of
420 arguments to gdb_filename_fnmatch. */
421
422 bool
423 compare_glob_filenames_for_search (const char *filename,
424 const char *search_name)
425 {
426 /* We rely on the property of glob-style patterns with FNM_FILE_NAME that
427 all /s have to be explicitly specified. */
428 int file_path_elements = count_path_elements (filename);
429 int search_path_elements = count_path_elements (search_name);
430
431 if (search_path_elements > file_path_elements)
432 return false;
433
434 if (IS_ABSOLUTE_PATH (search_name))
435 {
436 return (search_path_elements == file_path_elements
437 && gdb_filename_fnmatch (search_name, filename,
438 FNM_FILE_NAME | FNM_NOESCAPE) == 0);
439 }
440
441 {
442 const char *file_to_compare
443 = strip_leading_path_elements (filename,
444 file_path_elements - search_path_elements);
445
446 return gdb_filename_fnmatch (search_name, file_to_compare,
447 FNM_FILE_NAME | FNM_NOESCAPE) == 0;
448 }
449 }
450
451 /* Check for a symtab of a specific name by searching some symtabs.
452 This is a helper function for callbacks of iterate_over_symtabs.
453
454 If NAME is not absolute, then REAL_PATH is NULL
455 If NAME is absolute, then REAL_PATH is the gdb_realpath form of NAME.
456
457 The return value, NAME, REAL_PATH and CALLBACK are identical to the
458 `map_symtabs_matching_filename' method of quick_symbol_functions.
459
460 FIRST and AFTER_LAST indicate the range of compunit symtabs to search.
461 Each symtab within the specified compunit symtab is also searched.
462 AFTER_LAST is one past the last compunit symtab to search; NULL means to
463 search until the end of the list. */
464
465 bool
466 iterate_over_some_symtabs (const char *name,
467 const char *real_path,
468 struct compunit_symtab *first,
469 struct compunit_symtab *after_last,
470 gdb::function_view<bool (symtab *)> callback)
471 {
472 struct compunit_symtab *cust;
473 const char* base_name = lbasename (name);
474
475 for (cust = first; cust != NULL && cust != after_last; cust = cust->next)
476 {
477 for (symtab *s : compunit_filetabs (cust))
478 {
479 if (compare_filenames_for_search (s->filename, name))
480 {
481 if (callback (s))
482 return true;
483 continue;
484 }
485
486 /* Before we invoke realpath, which can get expensive when many
487 files are involved, do a quick comparison of the basenames. */
488 if (! basenames_may_differ
489 && FILENAME_CMP (base_name, lbasename (s->filename)) != 0)
490 continue;
491
492 if (compare_filenames_for_search (symtab_to_fullname (s), name))
493 {
494 if (callback (s))
495 return true;
496 continue;
497 }
498
499 /* If the user gave us an absolute path, try to find the file in
500 this symtab and use its absolute path. */
501 if (real_path != NULL)
502 {
503 const char *fullname = symtab_to_fullname (s);
504
505 gdb_assert (IS_ABSOLUTE_PATH (real_path));
506 gdb_assert (IS_ABSOLUTE_PATH (name));
507 gdb::unique_xmalloc_ptr<char> fullname_real_path
508 = gdb_realpath (fullname);
509 fullname = fullname_real_path.get ();
510 if (FILENAME_CMP (real_path, fullname) == 0)
511 {
512 if (callback (s))
513 return true;
514 continue;
515 }
516 }
517 }
518 }
519
520 return false;
521 }
522
523 /* Check for a symtab of a specific name; first in symtabs, then in
524 psymtabs. *If* there is no '/' in the name, a match after a '/'
525 in the symtab filename will also work.
526
527 Calls CALLBACK with each symtab that is found. If CALLBACK returns
528 true, the search stops. */
529
530 void
531 iterate_over_symtabs (const char *name,
532 gdb::function_view<bool (symtab *)> callback)
533 {
534 gdb::unique_xmalloc_ptr<char> real_path;
535
536 /* Here we are interested in canonicalizing an absolute path, not
537 absolutizing a relative path. */
538 if (IS_ABSOLUTE_PATH (name))
539 {
540 real_path = gdb_realpath (name);
541 gdb_assert (IS_ABSOLUTE_PATH (real_path.get ()));
542 }
543
544 for (objfile *objfile : current_program_space->objfiles ())
545 {
546 if (iterate_over_some_symtabs (name, real_path.get (),
547 objfile->compunit_symtabs, NULL,
548 callback))
549 return;
550 }
551
552 /* Same search rules as above apply here, but now we look thru the
553 psymtabs. */
554
555 for (objfile *objfile : current_program_space->objfiles ())
556 {
557 if (objfile->sf
558 && objfile->sf->qf->map_symtabs_matching_filename (objfile,
559 name,
560 real_path.get (),
561 callback))
562 return;
563 }
564 }
565
566 /* A wrapper for iterate_over_symtabs that returns the first matching
567 symtab, or NULL. */
568
569 struct symtab *
570 lookup_symtab (const char *name)
571 {
572 struct symtab *result = NULL;
573
574 iterate_over_symtabs (name, [&] (symtab *symtab)
575 {
576 result = symtab;
577 return true;
578 });
579
580 return result;
581 }
582
583 \f
584 /* Mangle a GDB method stub type. This actually reassembles the pieces of the
585 full method name, which consist of the class name (from T), the unadorned
586 method name from METHOD_ID, and the signature for the specific overload,
587 specified by SIGNATURE_ID. Note that this function is g++ specific. */
588
589 char *
590 gdb_mangle_name (struct type *type, int method_id, int signature_id)
591 {
592 int mangled_name_len;
593 char *mangled_name;
594 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
595 struct fn_field *method = &f[signature_id];
596 const char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
597 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
598 const char *newname = TYPE_NAME (type);
599
600 /* Does the form of physname indicate that it is the full mangled name
601 of a constructor (not just the args)? */
602 int is_full_physname_constructor;
603
604 int is_constructor;
605 int is_destructor = is_destructor_name (physname);
606 /* Need a new type prefix. */
607 const char *const_prefix = method->is_const ? "C" : "";
608 const char *volatile_prefix = method->is_volatile ? "V" : "";
609 char buf[20];
610 int len = (newname == NULL ? 0 : strlen (newname));
611
612 /* Nothing to do if physname already contains a fully mangled v3 abi name
613 or an operator name. */
614 if ((physname[0] == '_' && physname[1] == 'Z')
615 || is_operator_name (field_name))
616 return xstrdup (physname);
617
618 is_full_physname_constructor = is_constructor_name (physname);
619
620 is_constructor = is_full_physname_constructor
621 || (newname && strcmp (field_name, newname) == 0);
622
623 if (!is_destructor)
624 is_destructor = (startswith (physname, "__dt"));
625
626 if (is_destructor || is_full_physname_constructor)
627 {
628 mangled_name = (char *) xmalloc (strlen (physname) + 1);
629 strcpy (mangled_name, physname);
630 return mangled_name;
631 }
632
633 if (len == 0)
634 {
635 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
636 }
637 else if (physname[0] == 't' || physname[0] == 'Q')
638 {
639 /* The physname for template and qualified methods already includes
640 the class name. */
641 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
642 newname = NULL;
643 len = 0;
644 }
645 else
646 {
647 xsnprintf (buf, sizeof (buf), "__%s%s%d", const_prefix,
648 volatile_prefix, len);
649 }
650 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
651 + strlen (buf) + len + strlen (physname) + 1);
652
653 mangled_name = (char *) xmalloc (mangled_name_len);
654 if (is_constructor)
655 mangled_name[0] = '\0';
656 else
657 strcpy (mangled_name, field_name);
658
659 strcat (mangled_name, buf);
660 /* If the class doesn't have a name, i.e. newname NULL, then we just
661 mangle it using 0 for the length of the class. Thus it gets mangled
662 as something starting with `::' rather than `classname::'. */
663 if (newname != NULL)
664 strcat (mangled_name, newname);
665
666 strcat (mangled_name, physname);
667 return (mangled_name);
668 }
669
670 /* Set the demangled name of GSYMBOL to NAME. NAME must be already
671 correctly allocated. */
672
673 void
674 symbol_set_demangled_name (struct general_symbol_info *gsymbol,
675 const char *name,
676 struct obstack *obstack)
677 {
678 if (gsymbol->language () == language_ada)
679 {
680 if (name == NULL)
681 {
682 gsymbol->ada_mangled = 0;
683 gsymbol->language_specific.obstack = obstack;
684 }
685 else
686 {
687 gsymbol->ada_mangled = 1;
688 gsymbol->language_specific.demangled_name = name;
689 }
690 }
691 else
692 gsymbol->language_specific.demangled_name = name;
693 }
694
695 /* Return the demangled name of GSYMBOL. */
696
697 const char *
698 symbol_get_demangled_name (const struct general_symbol_info *gsymbol)
699 {
700 if (gsymbol->language () == language_ada)
701 {
702 if (!gsymbol->ada_mangled)
703 return NULL;
704 /* Fall through. */
705 }
706
707 return gsymbol->language_specific.demangled_name;
708 }
709
710 \f
711 /* Initialize the language dependent portion of a symbol
712 depending upon the language for the symbol. */
713
714 void
715 general_symbol_info::set_language (enum language language,
716 struct obstack *obstack)
717 {
718 m_language = language;
719 if (language == language_cplus
720 || language == language_d
721 || language == language_go
722 || language == language_objc
723 || language == language_fortran)
724 {
725 symbol_set_demangled_name (this, NULL, obstack);
726 }
727 else if (language == language_ada)
728 {
729 gdb_assert (ada_mangled == 0);
730 language_specific.obstack = obstack;
731 }
732 else
733 {
734 memset (&language_specific, 0, sizeof (language_specific));
735 }
736 }
737
738 /* Functions to initialize a symbol's mangled name. */
739
740 /* Objects of this type are stored in the demangled name hash table. */
741 struct demangled_name_entry
742 {
743 demangled_name_entry (gdb::string_view mangled_name)
744 : mangled (mangled_name) {}
745
746 gdb::string_view mangled;
747 enum language language;
748 gdb::unique_xmalloc_ptr<char> demangled;
749 };
750
751 /* Hash function for the demangled name hash. */
752
753 static hashval_t
754 hash_demangled_name_entry (const void *data)
755 {
756 const struct demangled_name_entry *e
757 = (const struct demangled_name_entry *) data;
758
759 return fast_hash (e->mangled.data (), e->mangled.length ());
760 }
761
762 /* Equality function for the demangled name hash. */
763
764 static int
765 eq_demangled_name_entry (const void *a, const void *b)
766 {
767 const struct demangled_name_entry *da
768 = (const struct demangled_name_entry *) a;
769 const struct demangled_name_entry *db
770 = (const struct demangled_name_entry *) b;
771
772 return da->mangled == db->mangled;
773 }
774
775 static void
776 free_demangled_name_entry (void *data)
777 {
778 struct demangled_name_entry *e
779 = (struct demangled_name_entry *) data;
780
781 e->~demangled_name_entry();
782 }
783
784 /* Create the hash table used for demangled names. Each hash entry is
785 a pair of strings; one for the mangled name and one for the demangled
786 name. The entry is hashed via just the mangled name. */
787
788 static void
789 create_demangled_names_hash (struct objfile_per_bfd_storage *per_bfd)
790 {
791 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
792 The hash table code will round this up to the next prime number.
793 Choosing a much larger table size wastes memory, and saves only about
794 1% in symbol reading. However, if the minsym count is already
795 initialized (e.g. because symbol name setting was deferred to
796 a background thread) we can initialize the hashtable with a count
797 based on that, because we will almost certainly have at least that
798 many entries. If we have a nonzero number but less than 256,
799 we still stay with 256 to have some space for psymbols, etc. */
800
801 /* htab will expand the table when it is 3/4th full, so we account for that
802 here. +2 to round up. */
803 int minsym_based_count = (per_bfd->minimal_symbol_count + 2) / 3 * 4;
804 int count = std::max (per_bfd->minimal_symbol_count, minsym_based_count);
805
806 per_bfd->demangled_names_hash.reset (htab_create_alloc
807 (count, hash_demangled_name_entry, eq_demangled_name_entry,
808 free_demangled_name_entry, xcalloc, xfree));
809 }
810
811 /* See symtab.h */
812
813 char *
814 symbol_find_demangled_name (struct general_symbol_info *gsymbol,
815 const char *mangled)
816 {
817 char *demangled = NULL;
818 int i;
819
820 if (gsymbol->language () == language_unknown)
821 gsymbol->m_language = language_auto;
822
823 if (gsymbol->language () != language_auto)
824 {
825 const struct language_defn *lang = language_def (gsymbol->language ());
826
827 language_sniff_from_mangled_name (lang, mangled, &demangled);
828 return demangled;
829 }
830
831 for (i = language_unknown; i < nr_languages; ++i)
832 {
833 enum language l = (enum language) i;
834 const struct language_defn *lang = language_def (l);
835
836 if (language_sniff_from_mangled_name (lang, mangled, &demangled))
837 {
838 gsymbol->m_language = l;
839 return demangled;
840 }
841 }
842
843 return NULL;
844 }
845
846 /* Set both the mangled and demangled (if any) names for GSYMBOL based
847 on LINKAGE_NAME and LEN. Ordinarily, NAME is copied onto the
848 objfile's obstack; but if COPY_NAME is 0 and if NAME is
849 NUL-terminated, then this function assumes that NAME is already
850 correctly saved (either permanently or with a lifetime tied to the
851 objfile), and it will not be copied.
852
853 The hash table corresponding to OBJFILE is used, and the memory
854 comes from the per-BFD storage_obstack. LINKAGE_NAME is copied,
855 so the pointer can be discarded after calling this function. */
856
857 void
858 general_symbol_info::compute_and_set_names (gdb::string_view linkage_name,
859 bool copy_name,
860 objfile_per_bfd_storage *per_bfd,
861 gdb::optional<hashval_t> hash)
862 {
863 struct demangled_name_entry **slot;
864
865 if (language () == language_ada)
866 {
867 /* In Ada, we do the symbol lookups using the mangled name, so
868 we can save some space by not storing the demangled name. */
869 if (!copy_name)
870 m_name = linkage_name.data ();
871 else
872 m_name = obstack_strndup (&per_bfd->storage_obstack,
873 linkage_name.data (),
874 linkage_name.length ());
875 symbol_set_demangled_name (this, NULL, &per_bfd->storage_obstack);
876
877 return;
878 }
879
880 if (per_bfd->demangled_names_hash == NULL)
881 create_demangled_names_hash (per_bfd);
882
883 struct demangled_name_entry entry (linkage_name);
884 if (!hash.has_value ())
885 hash = hash_demangled_name_entry (&entry);
886 slot = ((struct demangled_name_entry **)
887 htab_find_slot_with_hash (per_bfd->demangled_names_hash.get (),
888 &entry, *hash, INSERT));
889
890 /* The const_cast is safe because the only reason it is already
891 initialized is if we purposefully set it from a background
892 thread to avoid doing the work here. However, it is still
893 allocated from the heap and needs to be freed by us, just
894 like if we called symbol_find_demangled_name here. If this is
895 nullptr, we call symbol_find_demangled_name below, but we put
896 this smart pointer here to be sure that we don't leak this name. */
897 gdb::unique_xmalloc_ptr<char> demangled_name
898 (const_cast<char *> (language_specific.demangled_name));
899
900 /* If this name is not in the hash table, add it. */
901 if (*slot == NULL
902 /* A C version of the symbol may have already snuck into the table.
903 This happens to, e.g., main.init (__go_init_main). Cope. */
904 || (language () == language_go && (*slot)->demangled == nullptr))
905 {
906 /* A 0-terminated copy of the linkage name. Callers must set COPY_NAME
907 to true if the string might not be nullterminated. We have to make
908 this copy because demangling needs a nullterminated string. */
909 gdb::string_view linkage_name_copy;
910 if (copy_name)
911 {
912 char *alloc_name = (char *) alloca (linkage_name.length () + 1);
913 memcpy (alloc_name, linkage_name.data (), linkage_name.length ());
914 alloc_name[linkage_name.length ()] = '\0';
915
916 linkage_name_copy = gdb::string_view (alloc_name,
917 linkage_name.length ());
918 }
919 else
920 linkage_name_copy = linkage_name;
921
922 if (demangled_name.get () == nullptr)
923 demangled_name.reset
924 (symbol_find_demangled_name (this, linkage_name_copy.data ()));
925
926 /* Suppose we have demangled_name==NULL, copy_name==0, and
927 linkage_name_copy==linkage_name. In this case, we already have the
928 mangled name saved, and we don't have a demangled name. So,
929 you might think we could save a little space by not recording
930 this in the hash table at all.
931
932 It turns out that it is actually important to still save such
933 an entry in the hash table, because storing this name gives
934 us better bcache hit rates for partial symbols. */
935 if (!copy_name)
936 {
937 *slot
938 = ((struct demangled_name_entry *)
939 obstack_alloc (&per_bfd->storage_obstack,
940 sizeof (demangled_name_entry)));
941 new (*slot) demangled_name_entry (linkage_name);
942 }
943 else
944 {
945 /* If we must copy the mangled name, put it directly after
946 the struct so we can have a single allocation. */
947 *slot
948 = ((struct demangled_name_entry *)
949 obstack_alloc (&per_bfd->storage_obstack,
950 sizeof (demangled_name_entry)
951 + linkage_name.length () + 1));
952 char *mangled_ptr = reinterpret_cast<char *> (*slot + 1);
953 memcpy (mangled_ptr, linkage_name.data (), linkage_name.length ());
954 mangled_ptr [linkage_name.length ()] = '\0';
955 new (*slot) demangled_name_entry
956 (gdb::string_view (mangled_ptr, linkage_name.length ()));
957 }
958 (*slot)->demangled = std::move (demangled_name);
959 (*slot)->language = language ();
960 }
961 else if (language () == language_unknown || language () == language_auto)
962 m_language = (*slot)->language;
963
964 m_name = (*slot)->mangled.data ();
965 symbol_set_demangled_name (this, (*slot)->demangled.get (),
966 &per_bfd->storage_obstack);
967 }
968
969 /* See symtab.h. */
970
971 const char *
972 general_symbol_info::natural_name () const
973 {
974 switch (language ())
975 {
976 case language_cplus:
977 case language_d:
978 case language_go:
979 case language_objc:
980 case language_fortran:
981 if (symbol_get_demangled_name (this) != NULL)
982 return symbol_get_demangled_name (this);
983 break;
984 case language_ada:
985 return ada_decode_symbol (this);
986 default:
987 break;
988 }
989 return linkage_name ();
990 }
991
992 /* See symtab.h. */
993
994 const char *
995 general_symbol_info::demangled_name () const
996 {
997 const char *dem_name = NULL;
998
999 switch (language ())
1000 {
1001 case language_cplus:
1002 case language_d:
1003 case language_go:
1004 case language_objc:
1005 case language_fortran:
1006 dem_name = symbol_get_demangled_name (this);
1007 break;
1008 case language_ada:
1009 dem_name = ada_decode_symbol (this);
1010 break;
1011 default:
1012 break;
1013 }
1014 return dem_name;
1015 }
1016
1017 /* See symtab.h. */
1018
1019 const char *
1020 general_symbol_info::search_name () const
1021 {
1022 if (language () == language_ada)
1023 return linkage_name ();
1024 else
1025 return natural_name ();
1026 }
1027
1028 /* See symtab.h. */
1029
1030 bool
1031 symbol_matches_search_name (const struct general_symbol_info *gsymbol,
1032 const lookup_name_info &name)
1033 {
1034 symbol_name_matcher_ftype *name_match
1035 = get_symbol_name_matcher (language_def (gsymbol->language ()), name);
1036 return name_match (gsymbol->search_name (), name, NULL);
1037 }
1038
1039 \f
1040
1041 /* Return true if the two sections are the same, or if they could
1042 plausibly be copies of each other, one in an original object
1043 file and another in a separated debug file. */
1044
1045 bool
1046 matching_obj_sections (struct obj_section *obj_first,
1047 struct obj_section *obj_second)
1048 {
1049 asection *first = obj_first? obj_first->the_bfd_section : NULL;
1050 asection *second = obj_second? obj_second->the_bfd_section : NULL;
1051
1052 /* If they're the same section, then they match. */
1053 if (first == second)
1054 return true;
1055
1056 /* If either is NULL, give up. */
1057 if (first == NULL || second == NULL)
1058 return false;
1059
1060 /* This doesn't apply to absolute symbols. */
1061 if (first->owner == NULL || second->owner == NULL)
1062 return false;
1063
1064 /* If they're in the same object file, they must be different sections. */
1065 if (first->owner == second->owner)
1066 return false;
1067
1068 /* Check whether the two sections are potentially corresponding. They must
1069 have the same size, address, and name. We can't compare section indexes,
1070 which would be more reliable, because some sections may have been
1071 stripped. */
1072 if (bfd_section_size (first) != bfd_section_size (second))
1073 return false;
1074
1075 /* In-memory addresses may start at a different offset, relativize them. */
1076 if (bfd_section_vma (first) - bfd_get_start_address (first->owner)
1077 != bfd_section_vma (second) - bfd_get_start_address (second->owner))
1078 return false;
1079
1080 if (bfd_section_name (first) == NULL
1081 || bfd_section_name (second) == NULL
1082 || strcmp (bfd_section_name (first), bfd_section_name (second)) != 0)
1083 return false;
1084
1085 /* Otherwise check that they are in corresponding objfiles. */
1086
1087 struct objfile *obj = NULL;
1088 for (objfile *objfile : current_program_space->objfiles ())
1089 if (objfile->obfd == first->owner)
1090 {
1091 obj = objfile;
1092 break;
1093 }
1094 gdb_assert (obj != NULL);
1095
1096 if (obj->separate_debug_objfile != NULL
1097 && obj->separate_debug_objfile->obfd == second->owner)
1098 return true;
1099 if (obj->separate_debug_objfile_backlink != NULL
1100 && obj->separate_debug_objfile_backlink->obfd == second->owner)
1101 return true;
1102
1103 return false;
1104 }
1105
1106 /* See symtab.h. */
1107
1108 void
1109 expand_symtab_containing_pc (CORE_ADDR pc, struct obj_section *section)
1110 {
1111 struct bound_minimal_symbol msymbol;
1112
1113 /* If we know that this is not a text address, return failure. This is
1114 necessary because we loop based on texthigh and textlow, which do
1115 not include the data ranges. */
1116 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
1117 if (msymbol.minsym && msymbol.minsym->data_p ())
1118 return;
1119
1120 for (objfile *objfile : current_program_space->objfiles ())
1121 {
1122 struct compunit_symtab *cust = NULL;
1123
1124 if (objfile->sf)
1125 cust = objfile->sf->qf->find_pc_sect_compunit_symtab (objfile, msymbol,
1126 pc, section, 0);
1127 if (cust)
1128 return;
1129 }
1130 }
1131 \f
1132 /* Hash function for the symbol cache. */
1133
1134 static unsigned int
1135 hash_symbol_entry (const struct objfile *objfile_context,
1136 const char *name, domain_enum domain)
1137 {
1138 unsigned int hash = (uintptr_t) objfile_context;
1139
1140 if (name != NULL)
1141 hash += htab_hash_string (name);
1142
1143 /* Because of symbol_matches_domain we need VAR_DOMAIN and STRUCT_DOMAIN
1144 to map to the same slot. */
1145 if (domain == STRUCT_DOMAIN)
1146 hash += VAR_DOMAIN * 7;
1147 else
1148 hash += domain * 7;
1149
1150 return hash;
1151 }
1152
1153 /* Equality function for the symbol cache. */
1154
1155 static int
1156 eq_symbol_entry (const struct symbol_cache_slot *slot,
1157 const struct objfile *objfile_context,
1158 const char *name, domain_enum domain)
1159 {
1160 const char *slot_name;
1161 domain_enum slot_domain;
1162
1163 if (slot->state == SYMBOL_SLOT_UNUSED)
1164 return 0;
1165
1166 if (slot->objfile_context != objfile_context)
1167 return 0;
1168
1169 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1170 {
1171 slot_name = slot->value.not_found.name;
1172 slot_domain = slot->value.not_found.domain;
1173 }
1174 else
1175 {
1176 slot_name = slot->value.found.symbol->search_name ();
1177 slot_domain = SYMBOL_DOMAIN (slot->value.found.symbol);
1178 }
1179
1180 /* NULL names match. */
1181 if (slot_name == NULL && name == NULL)
1182 {
1183 /* But there's no point in calling symbol_matches_domain in the
1184 SYMBOL_SLOT_FOUND case. */
1185 if (slot_domain != domain)
1186 return 0;
1187 }
1188 else if (slot_name != NULL && name != NULL)
1189 {
1190 /* It's important that we use the same comparison that was done
1191 the first time through. If the slot records a found symbol,
1192 then this means using the symbol name comparison function of
1193 the symbol's language with symbol->search_name (). See
1194 dictionary.c. It also means using symbol_matches_domain for
1195 found symbols. See block.c.
1196
1197 If the slot records a not-found symbol, then require a precise match.
1198 We could still be lax with whitespace like strcmp_iw though. */
1199
1200 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1201 {
1202 if (strcmp (slot_name, name) != 0)
1203 return 0;
1204 if (slot_domain != domain)
1205 return 0;
1206 }
1207 else
1208 {
1209 struct symbol *sym = slot->value.found.symbol;
1210 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
1211
1212 if (!SYMBOL_MATCHES_SEARCH_NAME (sym, lookup_name))
1213 return 0;
1214
1215 if (!symbol_matches_domain (sym->language (), slot_domain, domain))
1216 return 0;
1217 }
1218 }
1219 else
1220 {
1221 /* Only one name is NULL. */
1222 return 0;
1223 }
1224
1225 return 1;
1226 }
1227
1228 /* Given a cache of size SIZE, return the size of the struct (with variable
1229 length array) in bytes. */
1230
1231 static size_t
1232 symbol_cache_byte_size (unsigned int size)
1233 {
1234 return (sizeof (struct block_symbol_cache)
1235 + ((size - 1) * sizeof (struct symbol_cache_slot)));
1236 }
1237
1238 /* Resize CACHE. */
1239
1240 static void
1241 resize_symbol_cache (struct symbol_cache *cache, unsigned int new_size)
1242 {
1243 /* If there's no change in size, don't do anything.
1244 All caches have the same size, so we can just compare with the size
1245 of the global symbols cache. */
1246 if ((cache->global_symbols != NULL
1247 && cache->global_symbols->size == new_size)
1248 || (cache->global_symbols == NULL
1249 && new_size == 0))
1250 return;
1251
1252 destroy_block_symbol_cache (cache->global_symbols);
1253 destroy_block_symbol_cache (cache->static_symbols);
1254
1255 if (new_size == 0)
1256 {
1257 cache->global_symbols = NULL;
1258 cache->static_symbols = NULL;
1259 }
1260 else
1261 {
1262 size_t total_size = symbol_cache_byte_size (new_size);
1263
1264 cache->global_symbols
1265 = (struct block_symbol_cache *) xcalloc (1, total_size);
1266 cache->static_symbols
1267 = (struct block_symbol_cache *) xcalloc (1, total_size);
1268 cache->global_symbols->size = new_size;
1269 cache->static_symbols->size = new_size;
1270 }
1271 }
1272
1273 /* Return the symbol cache of PSPACE.
1274 Create one if it doesn't exist yet. */
1275
1276 static struct symbol_cache *
1277 get_symbol_cache (struct program_space *pspace)
1278 {
1279 struct symbol_cache *cache = symbol_cache_key.get (pspace);
1280
1281 if (cache == NULL)
1282 {
1283 cache = symbol_cache_key.emplace (pspace);
1284 resize_symbol_cache (cache, symbol_cache_size);
1285 }
1286
1287 return cache;
1288 }
1289
1290 /* Set the size of the symbol cache in all program spaces. */
1291
1292 static void
1293 set_symbol_cache_size (unsigned int new_size)
1294 {
1295 struct program_space *pspace;
1296
1297 ALL_PSPACES (pspace)
1298 {
1299 struct symbol_cache *cache = symbol_cache_key.get (pspace);
1300
1301 /* The pspace could have been created but not have a cache yet. */
1302 if (cache != NULL)
1303 resize_symbol_cache (cache, new_size);
1304 }
1305 }
1306
1307 /* Called when symbol-cache-size is set. */
1308
1309 static void
1310 set_symbol_cache_size_handler (const char *args, int from_tty,
1311 struct cmd_list_element *c)
1312 {
1313 if (new_symbol_cache_size > MAX_SYMBOL_CACHE_SIZE)
1314 {
1315 /* Restore the previous value.
1316 This is the value the "show" command prints. */
1317 new_symbol_cache_size = symbol_cache_size;
1318
1319 error (_("Symbol cache size is too large, max is %u."),
1320 MAX_SYMBOL_CACHE_SIZE);
1321 }
1322 symbol_cache_size = new_symbol_cache_size;
1323
1324 set_symbol_cache_size (symbol_cache_size);
1325 }
1326
1327 /* Lookup symbol NAME,DOMAIN in BLOCK in the symbol cache of PSPACE.
1328 OBJFILE_CONTEXT is the current objfile, which may be NULL.
1329 The result is the symbol if found, SYMBOL_LOOKUP_FAILED if a previous lookup
1330 failed (and thus this one will too), or NULL if the symbol is not present
1331 in the cache.
1332 *BSC_PTR and *SLOT_PTR are set to the cache and slot of the symbol, which
1333 can be used to save the result of a full lookup attempt. */
1334
1335 static struct block_symbol
1336 symbol_cache_lookup (struct symbol_cache *cache,
1337 struct objfile *objfile_context, enum block_enum block,
1338 const char *name, domain_enum domain,
1339 struct block_symbol_cache **bsc_ptr,
1340 struct symbol_cache_slot **slot_ptr)
1341 {
1342 struct block_symbol_cache *bsc;
1343 unsigned int hash;
1344 struct symbol_cache_slot *slot;
1345
1346 if (block == GLOBAL_BLOCK)
1347 bsc = cache->global_symbols;
1348 else
1349 bsc = cache->static_symbols;
1350 if (bsc == NULL)
1351 {
1352 *bsc_ptr = NULL;
1353 *slot_ptr = NULL;
1354 return {};
1355 }
1356
1357 hash = hash_symbol_entry (objfile_context, name, domain);
1358 slot = bsc->symbols + hash % bsc->size;
1359
1360 *bsc_ptr = bsc;
1361 *slot_ptr = slot;
1362
1363 if (eq_symbol_entry (slot, objfile_context, name, domain))
1364 {
1365 if (symbol_lookup_debug)
1366 fprintf_unfiltered (gdb_stdlog,
1367 "%s block symbol cache hit%s for %s, %s\n",
1368 block == GLOBAL_BLOCK ? "Global" : "Static",
1369 slot->state == SYMBOL_SLOT_NOT_FOUND
1370 ? " (not found)" : "",
1371 name, domain_name (domain));
1372 ++bsc->hits;
1373 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1374 return SYMBOL_LOOKUP_FAILED;
1375 return slot->value.found;
1376 }
1377
1378 /* Symbol is not present in the cache. */
1379
1380 if (symbol_lookup_debug)
1381 {
1382 fprintf_unfiltered (gdb_stdlog,
1383 "%s block symbol cache miss for %s, %s\n",
1384 block == GLOBAL_BLOCK ? "Global" : "Static",
1385 name, domain_name (domain));
1386 }
1387 ++bsc->misses;
1388 return {};
1389 }
1390
1391 /* Mark SYMBOL as found in SLOT.
1392 OBJFILE_CONTEXT is the current objfile when the lookup was done, or NULL
1393 if it's not needed to distinguish lookups (STATIC_BLOCK). It is *not*
1394 necessarily the objfile the symbol was found in. */
1395
1396 static void
1397 symbol_cache_mark_found (struct block_symbol_cache *bsc,
1398 struct symbol_cache_slot *slot,
1399 struct objfile *objfile_context,
1400 struct symbol *symbol,
1401 const struct block *block)
1402 {
1403 if (bsc == NULL)
1404 return;
1405 if (slot->state != SYMBOL_SLOT_UNUSED)
1406 {
1407 ++bsc->collisions;
1408 symbol_cache_clear_slot (slot);
1409 }
1410 slot->state = SYMBOL_SLOT_FOUND;
1411 slot->objfile_context = objfile_context;
1412 slot->value.found.symbol = symbol;
1413 slot->value.found.block = block;
1414 }
1415
1416 /* Mark symbol NAME, DOMAIN as not found in SLOT.
1417 OBJFILE_CONTEXT is the current objfile when the lookup was done, or NULL
1418 if it's not needed to distinguish lookups (STATIC_BLOCK). */
1419
1420 static void
1421 symbol_cache_mark_not_found (struct block_symbol_cache *bsc,
1422 struct symbol_cache_slot *slot,
1423 struct objfile *objfile_context,
1424 const char *name, domain_enum domain)
1425 {
1426 if (bsc == NULL)
1427 return;
1428 if (slot->state != SYMBOL_SLOT_UNUSED)
1429 {
1430 ++bsc->collisions;
1431 symbol_cache_clear_slot (slot);
1432 }
1433 slot->state = SYMBOL_SLOT_NOT_FOUND;
1434 slot->objfile_context = objfile_context;
1435 slot->value.not_found.name = xstrdup (name);
1436 slot->value.not_found.domain = domain;
1437 }
1438
1439 /* Flush the symbol cache of PSPACE. */
1440
1441 static void
1442 symbol_cache_flush (struct program_space *pspace)
1443 {
1444 struct symbol_cache *cache = symbol_cache_key.get (pspace);
1445 int pass;
1446
1447 if (cache == NULL)
1448 return;
1449 if (cache->global_symbols == NULL)
1450 {
1451 gdb_assert (symbol_cache_size == 0);
1452 gdb_assert (cache->static_symbols == NULL);
1453 return;
1454 }
1455
1456 /* If the cache is untouched since the last flush, early exit.
1457 This is important for performance during the startup of a program linked
1458 with 100s (or 1000s) of shared libraries. */
1459 if (cache->global_symbols->misses == 0
1460 && cache->static_symbols->misses == 0)
1461 return;
1462
1463 gdb_assert (cache->global_symbols->size == symbol_cache_size);
1464 gdb_assert (cache->static_symbols->size == symbol_cache_size);
1465
1466 for (pass = 0; pass < 2; ++pass)
1467 {
1468 struct block_symbol_cache *bsc
1469 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1470 unsigned int i;
1471
1472 for (i = 0; i < bsc->size; ++i)
1473 symbol_cache_clear_slot (&bsc->symbols[i]);
1474 }
1475
1476 cache->global_symbols->hits = 0;
1477 cache->global_symbols->misses = 0;
1478 cache->global_symbols->collisions = 0;
1479 cache->static_symbols->hits = 0;
1480 cache->static_symbols->misses = 0;
1481 cache->static_symbols->collisions = 0;
1482 }
1483
1484 /* Dump CACHE. */
1485
1486 static void
1487 symbol_cache_dump (const struct symbol_cache *cache)
1488 {
1489 int pass;
1490
1491 if (cache->global_symbols == NULL)
1492 {
1493 printf_filtered (" <disabled>\n");
1494 return;
1495 }
1496
1497 for (pass = 0; pass < 2; ++pass)
1498 {
1499 const struct block_symbol_cache *bsc
1500 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1501 unsigned int i;
1502
1503 if (pass == 0)
1504 printf_filtered ("Global symbols:\n");
1505 else
1506 printf_filtered ("Static symbols:\n");
1507
1508 for (i = 0; i < bsc->size; ++i)
1509 {
1510 const struct symbol_cache_slot *slot = &bsc->symbols[i];
1511
1512 QUIT;
1513
1514 switch (slot->state)
1515 {
1516 case SYMBOL_SLOT_UNUSED:
1517 break;
1518 case SYMBOL_SLOT_NOT_FOUND:
1519 printf_filtered (" [%4u] = %s, %s %s (not found)\n", i,
1520 host_address_to_string (slot->objfile_context),
1521 slot->value.not_found.name,
1522 domain_name (slot->value.not_found.domain));
1523 break;
1524 case SYMBOL_SLOT_FOUND:
1525 {
1526 struct symbol *found = slot->value.found.symbol;
1527 const struct objfile *context = slot->objfile_context;
1528
1529 printf_filtered (" [%4u] = %s, %s %s\n", i,
1530 host_address_to_string (context),
1531 found->print_name (),
1532 domain_name (SYMBOL_DOMAIN (found)));
1533 break;
1534 }
1535 }
1536 }
1537 }
1538 }
1539
1540 /* The "mt print symbol-cache" command. */
1541
1542 static void
1543 maintenance_print_symbol_cache (const char *args, int from_tty)
1544 {
1545 struct program_space *pspace;
1546
1547 ALL_PSPACES (pspace)
1548 {
1549 struct symbol_cache *cache;
1550
1551 printf_filtered (_("Symbol cache for pspace %d\n%s:\n"),
1552 pspace->num,
1553 pspace->symfile_object_file != NULL
1554 ? objfile_name (pspace->symfile_object_file)
1555 : "(no object file)");
1556
1557 /* If the cache hasn't been created yet, avoid creating one. */
1558 cache = symbol_cache_key.get (pspace);
1559 if (cache == NULL)
1560 printf_filtered (" <empty>\n");
1561 else
1562 symbol_cache_dump (cache);
1563 }
1564 }
1565
1566 /* The "mt flush-symbol-cache" command. */
1567
1568 static void
1569 maintenance_flush_symbol_cache (const char *args, int from_tty)
1570 {
1571 struct program_space *pspace;
1572
1573 ALL_PSPACES (pspace)
1574 {
1575 symbol_cache_flush (pspace);
1576 }
1577 }
1578
1579 /* Print usage statistics of CACHE. */
1580
1581 static void
1582 symbol_cache_stats (struct symbol_cache *cache)
1583 {
1584 int pass;
1585
1586 if (cache->global_symbols == NULL)
1587 {
1588 printf_filtered (" <disabled>\n");
1589 return;
1590 }
1591
1592 for (pass = 0; pass < 2; ++pass)
1593 {
1594 const struct block_symbol_cache *bsc
1595 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1596
1597 QUIT;
1598
1599 if (pass == 0)
1600 printf_filtered ("Global block cache stats:\n");
1601 else
1602 printf_filtered ("Static block cache stats:\n");
1603
1604 printf_filtered (" size: %u\n", bsc->size);
1605 printf_filtered (" hits: %u\n", bsc->hits);
1606 printf_filtered (" misses: %u\n", bsc->misses);
1607 printf_filtered (" collisions: %u\n", bsc->collisions);
1608 }
1609 }
1610
1611 /* The "mt print symbol-cache-statistics" command. */
1612
1613 static void
1614 maintenance_print_symbol_cache_statistics (const char *args, int from_tty)
1615 {
1616 struct program_space *pspace;
1617
1618 ALL_PSPACES (pspace)
1619 {
1620 struct symbol_cache *cache;
1621
1622 printf_filtered (_("Symbol cache statistics for pspace %d\n%s:\n"),
1623 pspace->num,
1624 pspace->symfile_object_file != NULL
1625 ? objfile_name (pspace->symfile_object_file)
1626 : "(no object file)");
1627
1628 /* If the cache hasn't been created yet, avoid creating one. */
1629 cache = symbol_cache_key.get (pspace);
1630 if (cache == NULL)
1631 printf_filtered (" empty, no stats available\n");
1632 else
1633 symbol_cache_stats (cache);
1634 }
1635 }
1636
1637 /* This module's 'new_objfile' observer. */
1638
1639 static void
1640 symtab_new_objfile_observer (struct objfile *objfile)
1641 {
1642 /* Ideally we'd use OBJFILE->pspace, but OBJFILE may be NULL. */
1643 symbol_cache_flush (current_program_space);
1644 }
1645
1646 /* This module's 'free_objfile' observer. */
1647
1648 static void
1649 symtab_free_objfile_observer (struct objfile *objfile)
1650 {
1651 symbol_cache_flush (objfile->pspace);
1652 }
1653 \f
1654 /* Debug symbols usually don't have section information. We need to dig that
1655 out of the minimal symbols and stash that in the debug symbol. */
1656
1657 void
1658 fixup_section (struct general_symbol_info *ginfo,
1659 CORE_ADDR addr, struct objfile *objfile)
1660 {
1661 struct minimal_symbol *msym;
1662
1663 /* First, check whether a minimal symbol with the same name exists
1664 and points to the same address. The address check is required
1665 e.g. on PowerPC64, where the minimal symbol for a function will
1666 point to the function descriptor, while the debug symbol will
1667 point to the actual function code. */
1668 msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->linkage_name (),
1669 objfile);
1670 if (msym)
1671 ginfo->section = MSYMBOL_SECTION (msym);
1672 else
1673 {
1674 /* Static, function-local variables do appear in the linker
1675 (minimal) symbols, but are frequently given names that won't
1676 be found via lookup_minimal_symbol(). E.g., it has been
1677 observed in frv-uclinux (ELF) executables that a static,
1678 function-local variable named "foo" might appear in the
1679 linker symbols as "foo.6" or "foo.3". Thus, there is no
1680 point in attempting to extend the lookup-by-name mechanism to
1681 handle this case due to the fact that there can be multiple
1682 names.
1683
1684 So, instead, search the section table when lookup by name has
1685 failed. The ``addr'' and ``endaddr'' fields may have already
1686 been relocated. If so, the relocation offset needs to be
1687 subtracted from these values when performing the comparison.
1688 We unconditionally subtract it, because, when no relocation
1689 has been performed, the value will simply be zero.
1690
1691 The address of the symbol whose section we're fixing up HAS
1692 NOT BEEN adjusted (relocated) yet. It can't have been since
1693 the section isn't yet known and knowing the section is
1694 necessary in order to add the correct relocation value. In
1695 other words, we wouldn't even be in this function (attempting
1696 to compute the section) if it were already known.
1697
1698 Note that it is possible to search the minimal symbols
1699 (subtracting the relocation value if necessary) to find the
1700 matching minimal symbol, but this is overkill and much less
1701 efficient. It is not necessary to find the matching minimal
1702 symbol, only its section.
1703
1704 Note that this technique (of doing a section table search)
1705 can fail when unrelocated section addresses overlap. For
1706 this reason, we still attempt a lookup by name prior to doing
1707 a search of the section table. */
1708
1709 struct obj_section *s;
1710 int fallback = -1;
1711
1712 ALL_OBJFILE_OSECTIONS (objfile, s)
1713 {
1714 int idx = s - objfile->sections;
1715 CORE_ADDR offset = objfile->section_offsets[idx];
1716
1717 if (fallback == -1)
1718 fallback = idx;
1719
1720 if (obj_section_addr (s) - offset <= addr
1721 && addr < obj_section_endaddr (s) - offset)
1722 {
1723 ginfo->section = idx;
1724 return;
1725 }
1726 }
1727
1728 /* If we didn't find the section, assume it is in the first
1729 section. If there is no allocated section, then it hardly
1730 matters what we pick, so just pick zero. */
1731 if (fallback == -1)
1732 ginfo->section = 0;
1733 else
1734 ginfo->section = fallback;
1735 }
1736 }
1737
1738 struct symbol *
1739 fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
1740 {
1741 CORE_ADDR addr;
1742
1743 if (!sym)
1744 return NULL;
1745
1746 if (!SYMBOL_OBJFILE_OWNED (sym))
1747 return sym;
1748
1749 /* We either have an OBJFILE, or we can get at it from the sym's
1750 symtab. Anything else is a bug. */
1751 gdb_assert (objfile || symbol_symtab (sym));
1752
1753 if (objfile == NULL)
1754 objfile = symbol_objfile (sym);
1755
1756 if (SYMBOL_OBJ_SECTION (objfile, sym))
1757 return sym;
1758
1759 /* We should have an objfile by now. */
1760 gdb_assert (objfile);
1761
1762 switch (SYMBOL_CLASS (sym))
1763 {
1764 case LOC_STATIC:
1765 case LOC_LABEL:
1766 addr = SYMBOL_VALUE_ADDRESS (sym);
1767 break;
1768 case LOC_BLOCK:
1769 addr = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym));
1770 break;
1771
1772 default:
1773 /* Nothing else will be listed in the minsyms -- no use looking
1774 it up. */
1775 return sym;
1776 }
1777
1778 fixup_section (sym, addr, objfile);
1779
1780 return sym;
1781 }
1782
1783 /* See symtab.h. */
1784
1785 demangle_for_lookup_info::demangle_for_lookup_info
1786 (const lookup_name_info &lookup_name, language lang)
1787 {
1788 demangle_result_storage storage;
1789
1790 if (lookup_name.ignore_parameters () && lang == language_cplus)
1791 {
1792 gdb::unique_xmalloc_ptr<char> without_params
1793 = cp_remove_params_if_any (lookup_name.name ().c_str (),
1794 lookup_name.completion_mode ());
1795
1796 if (without_params != NULL)
1797 {
1798 if (lookup_name.match_type () != symbol_name_match_type::SEARCH_NAME)
1799 m_demangled_name = demangle_for_lookup (without_params.get (),
1800 lang, storage);
1801 return;
1802 }
1803 }
1804
1805 if (lookup_name.match_type () == symbol_name_match_type::SEARCH_NAME)
1806 m_demangled_name = lookup_name.name ();
1807 else
1808 m_demangled_name = demangle_for_lookup (lookup_name.name ().c_str (),
1809 lang, storage);
1810 }
1811
1812 /* See symtab.h. */
1813
1814 const lookup_name_info &
1815 lookup_name_info::match_any ()
1816 {
1817 /* Lookup any symbol that "" would complete. I.e., this matches all
1818 symbol names. */
1819 static const lookup_name_info lookup_name ({}, symbol_name_match_type::FULL,
1820 true);
1821
1822 return lookup_name;
1823 }
1824
1825 /* Compute the demangled form of NAME as used by the various symbol
1826 lookup functions. The result can either be the input NAME
1827 directly, or a pointer to a buffer owned by the STORAGE object.
1828
1829 For Ada, this function just returns NAME, unmodified.
1830 Normally, Ada symbol lookups are performed using the encoded name
1831 rather than the demangled name, and so it might seem to make sense
1832 for this function to return an encoded version of NAME.
1833 Unfortunately, we cannot do this, because this function is used in
1834 circumstances where it is not appropriate to try to encode NAME.
1835 For instance, when displaying the frame info, we demangle the name
1836 of each parameter, and then perform a symbol lookup inside our
1837 function using that demangled name. In Ada, certain functions
1838 have internally-generated parameters whose name contain uppercase
1839 characters. Encoding those name would result in those uppercase
1840 characters to become lowercase, and thus cause the symbol lookup
1841 to fail. */
1842
1843 const char *
1844 demangle_for_lookup (const char *name, enum language lang,
1845 demangle_result_storage &storage)
1846 {
1847 /* If we are using C++, D, or Go, demangle the name before doing a
1848 lookup, so we can always binary search. */
1849 if (lang == language_cplus)
1850 {
1851 char *demangled_name = gdb_demangle (name, DMGL_ANSI | DMGL_PARAMS);
1852 if (demangled_name != NULL)
1853 return storage.set_malloc_ptr (demangled_name);
1854
1855 /* If we were given a non-mangled name, canonicalize it
1856 according to the language (so far only for C++). */
1857 std::string canon = cp_canonicalize_string (name);
1858 if (!canon.empty ())
1859 return storage.swap_string (canon);
1860 }
1861 else if (lang == language_d)
1862 {
1863 char *demangled_name = d_demangle (name, 0);
1864 if (demangled_name != NULL)
1865 return storage.set_malloc_ptr (demangled_name);
1866 }
1867 else if (lang == language_go)
1868 {
1869 char *demangled_name = go_demangle (name, 0);
1870 if (demangled_name != NULL)
1871 return storage.set_malloc_ptr (demangled_name);
1872 }
1873
1874 return name;
1875 }
1876
1877 /* See symtab.h. */
1878
1879 unsigned int
1880 search_name_hash (enum language language, const char *search_name)
1881 {
1882 return language_def (language)->la_search_name_hash (search_name);
1883 }
1884
1885 /* See symtab.h.
1886
1887 This function (or rather its subordinates) have a bunch of loops and
1888 it would seem to be attractive to put in some QUIT's (though I'm not really
1889 sure whether it can run long enough to be really important). But there
1890 are a few calls for which it would appear to be bad news to quit
1891 out of here: e.g., find_proc_desc in alpha-mdebug-tdep.c. (Note
1892 that there is C++ code below which can error(), but that probably
1893 doesn't affect these calls since they are looking for a known
1894 variable and thus can probably assume it will never hit the C++
1895 code). */
1896
1897 struct block_symbol
1898 lookup_symbol_in_language (const char *name, const struct block *block,
1899 const domain_enum domain, enum language lang,
1900 struct field_of_this_result *is_a_field_of_this)
1901 {
1902 demangle_result_storage storage;
1903 const char *modified_name = demangle_for_lookup (name, lang, storage);
1904
1905 return lookup_symbol_aux (modified_name,
1906 symbol_name_match_type::FULL,
1907 block, domain, lang,
1908 is_a_field_of_this);
1909 }
1910
1911 /* See symtab.h. */
1912
1913 struct block_symbol
1914 lookup_symbol (const char *name, const struct block *block,
1915 domain_enum domain,
1916 struct field_of_this_result *is_a_field_of_this)
1917 {
1918 return lookup_symbol_in_language (name, block, domain,
1919 current_language->la_language,
1920 is_a_field_of_this);
1921 }
1922
1923 /* See symtab.h. */
1924
1925 struct block_symbol
1926 lookup_symbol_search_name (const char *search_name, const struct block *block,
1927 domain_enum domain)
1928 {
1929 return lookup_symbol_aux (search_name, symbol_name_match_type::SEARCH_NAME,
1930 block, domain, language_asm, NULL);
1931 }
1932
1933 /* See symtab.h. */
1934
1935 struct block_symbol
1936 lookup_language_this (const struct language_defn *lang,
1937 const struct block *block)
1938 {
1939 if (lang->la_name_of_this == NULL || block == NULL)
1940 return {};
1941
1942 if (symbol_lookup_debug > 1)
1943 {
1944 struct objfile *objfile = lookup_objfile_from_block (block);
1945
1946 fprintf_unfiltered (gdb_stdlog,
1947 "lookup_language_this (%s, %s (objfile %s))",
1948 lang->la_name, host_address_to_string (block),
1949 objfile_debug_name (objfile));
1950 }
1951
1952 while (block)
1953 {
1954 struct symbol *sym;
1955
1956 sym = block_lookup_symbol (block, lang->la_name_of_this,
1957 symbol_name_match_type::SEARCH_NAME,
1958 VAR_DOMAIN);
1959 if (sym != NULL)
1960 {
1961 if (symbol_lookup_debug > 1)
1962 {
1963 fprintf_unfiltered (gdb_stdlog, " = %s (%s, block %s)\n",
1964 sym->print_name (),
1965 host_address_to_string (sym),
1966 host_address_to_string (block));
1967 }
1968 return (struct block_symbol) {sym, block};
1969 }
1970 if (BLOCK_FUNCTION (block))
1971 break;
1972 block = BLOCK_SUPERBLOCK (block);
1973 }
1974
1975 if (symbol_lookup_debug > 1)
1976 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
1977 return {};
1978 }
1979
1980 /* Given TYPE, a structure/union,
1981 return 1 if the component named NAME from the ultimate target
1982 structure/union is defined, otherwise, return 0. */
1983
1984 static int
1985 check_field (struct type *type, const char *name,
1986 struct field_of_this_result *is_a_field_of_this)
1987 {
1988 int i;
1989
1990 /* The type may be a stub. */
1991 type = check_typedef (type);
1992
1993 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1994 {
1995 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1996
1997 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1998 {
1999 is_a_field_of_this->type = type;
2000 is_a_field_of_this->field = &TYPE_FIELD (type, i);
2001 return 1;
2002 }
2003 }
2004
2005 /* C++: If it was not found as a data field, then try to return it
2006 as a pointer to a method. */
2007
2008 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
2009 {
2010 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
2011 {
2012 is_a_field_of_this->type = type;
2013 is_a_field_of_this->fn_field = &TYPE_FN_FIELDLIST (type, i);
2014 return 1;
2015 }
2016 }
2017
2018 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2019 if (check_field (TYPE_BASECLASS (type, i), name, is_a_field_of_this))
2020 return 1;
2021
2022 return 0;
2023 }
2024
2025 /* Behave like lookup_symbol except that NAME is the natural name
2026 (e.g., demangled name) of the symbol that we're looking for. */
2027
2028 static struct block_symbol
2029 lookup_symbol_aux (const char *name, symbol_name_match_type match_type,
2030 const struct block *block,
2031 const domain_enum domain, enum language language,
2032 struct field_of_this_result *is_a_field_of_this)
2033 {
2034 struct block_symbol result;
2035 const struct language_defn *langdef;
2036
2037 if (symbol_lookup_debug)
2038 {
2039 struct objfile *objfile = lookup_objfile_from_block (block);
2040
2041 fprintf_unfiltered (gdb_stdlog,
2042 "lookup_symbol_aux (%s, %s (objfile %s), %s, %s)\n",
2043 name, host_address_to_string (block),
2044 objfile != NULL
2045 ? objfile_debug_name (objfile) : "NULL",
2046 domain_name (domain), language_str (language));
2047 }
2048
2049 /* Make sure we do something sensible with is_a_field_of_this, since
2050 the callers that set this parameter to some non-null value will
2051 certainly use it later. If we don't set it, the contents of
2052 is_a_field_of_this are undefined. */
2053 if (is_a_field_of_this != NULL)
2054 memset (is_a_field_of_this, 0, sizeof (*is_a_field_of_this));
2055
2056 /* Search specified block and its superiors. Don't search
2057 STATIC_BLOCK or GLOBAL_BLOCK. */
2058
2059 result = lookup_local_symbol (name, match_type, block, domain, language);
2060 if (result.symbol != NULL)
2061 {
2062 if (symbol_lookup_debug)
2063 {
2064 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2065 host_address_to_string (result.symbol));
2066 }
2067 return result;
2068 }
2069
2070 /* If requested to do so by the caller and if appropriate for LANGUAGE,
2071 check to see if NAME is a field of `this'. */
2072
2073 langdef = language_def (language);
2074
2075 /* Don't do this check if we are searching for a struct. It will
2076 not be found by check_field, but will be found by other
2077 means. */
2078 if (is_a_field_of_this != NULL && domain != STRUCT_DOMAIN)
2079 {
2080 result = lookup_language_this (langdef, block);
2081
2082 if (result.symbol)
2083 {
2084 struct type *t = result.symbol->type;
2085
2086 /* I'm not really sure that type of this can ever
2087 be typedefed; just be safe. */
2088 t = check_typedef (t);
2089 if (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_IS_REFERENCE (t))
2090 t = TYPE_TARGET_TYPE (t);
2091
2092 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2093 && TYPE_CODE (t) != TYPE_CODE_UNION)
2094 error (_("Internal error: `%s' is not an aggregate"),
2095 langdef->la_name_of_this);
2096
2097 if (check_field (t, name, is_a_field_of_this))
2098 {
2099 if (symbol_lookup_debug)
2100 {
2101 fprintf_unfiltered (gdb_stdlog,
2102 "lookup_symbol_aux (...) = NULL\n");
2103 }
2104 return {};
2105 }
2106 }
2107 }
2108
2109 /* Now do whatever is appropriate for LANGUAGE to look
2110 up static and global variables. */
2111
2112 result = langdef->la_lookup_symbol_nonlocal (langdef, name, block, domain);
2113 if (result.symbol != NULL)
2114 {
2115 if (symbol_lookup_debug)
2116 {
2117 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2118 host_address_to_string (result.symbol));
2119 }
2120 return result;
2121 }
2122
2123 /* Now search all static file-level symbols. Not strictly correct,
2124 but more useful than an error. */
2125
2126 result = lookup_static_symbol (name, domain);
2127 if (symbol_lookup_debug)
2128 {
2129 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2130 result.symbol != NULL
2131 ? host_address_to_string (result.symbol)
2132 : "NULL");
2133 }
2134 return result;
2135 }
2136
2137 /* Check to see if the symbol is defined in BLOCK or its superiors.
2138 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
2139
2140 static struct block_symbol
2141 lookup_local_symbol (const char *name,
2142 symbol_name_match_type match_type,
2143 const struct block *block,
2144 const domain_enum domain,
2145 enum language language)
2146 {
2147 struct symbol *sym;
2148 const struct block *static_block = block_static_block (block);
2149 const char *scope = block_scope (block);
2150
2151 /* Check if either no block is specified or it's a global block. */
2152
2153 if (static_block == NULL)
2154 return {};
2155
2156 while (block != static_block)
2157 {
2158 sym = lookup_symbol_in_block (name, match_type, block, domain);
2159 if (sym != NULL)
2160 return (struct block_symbol) {sym, block};
2161
2162 if (language == language_cplus || language == language_fortran)
2163 {
2164 struct block_symbol blocksym
2165 = cp_lookup_symbol_imports_or_template (scope, name, block,
2166 domain);
2167
2168 if (blocksym.symbol != NULL)
2169 return blocksym;
2170 }
2171
2172 if (BLOCK_FUNCTION (block) != NULL && block_inlined_p (block))
2173 break;
2174 block = BLOCK_SUPERBLOCK (block);
2175 }
2176
2177 /* We've reached the end of the function without finding a result. */
2178
2179 return {};
2180 }
2181
2182 /* See symtab.h. */
2183
2184 struct objfile *
2185 lookup_objfile_from_block (const struct block *block)
2186 {
2187 if (block == NULL)
2188 return NULL;
2189
2190 block = block_global_block (block);
2191 /* Look through all blockvectors. */
2192 for (objfile *obj : current_program_space->objfiles ())
2193 {
2194 for (compunit_symtab *cust : obj->compunits ())
2195 if (block == BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust),
2196 GLOBAL_BLOCK))
2197 {
2198 if (obj->separate_debug_objfile_backlink)
2199 obj = obj->separate_debug_objfile_backlink;
2200
2201 return obj;
2202 }
2203 }
2204
2205 return NULL;
2206 }
2207
2208 /* See symtab.h. */
2209
2210 struct symbol *
2211 lookup_symbol_in_block (const char *name, symbol_name_match_type match_type,
2212 const struct block *block,
2213 const domain_enum domain)
2214 {
2215 struct symbol *sym;
2216
2217 if (symbol_lookup_debug > 1)
2218 {
2219 struct objfile *objfile = lookup_objfile_from_block (block);
2220
2221 fprintf_unfiltered (gdb_stdlog,
2222 "lookup_symbol_in_block (%s, %s (objfile %s), %s)",
2223 name, host_address_to_string (block),
2224 objfile_debug_name (objfile),
2225 domain_name (domain));
2226 }
2227
2228 sym = block_lookup_symbol (block, name, match_type, domain);
2229 if (sym)
2230 {
2231 if (symbol_lookup_debug > 1)
2232 {
2233 fprintf_unfiltered (gdb_stdlog, " = %s\n",
2234 host_address_to_string (sym));
2235 }
2236 return fixup_symbol_section (sym, NULL);
2237 }
2238
2239 if (symbol_lookup_debug > 1)
2240 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
2241 return NULL;
2242 }
2243
2244 /* See symtab.h. */
2245
2246 struct block_symbol
2247 lookup_global_symbol_from_objfile (struct objfile *main_objfile,
2248 enum block_enum block_index,
2249 const char *name,
2250 const domain_enum domain)
2251 {
2252 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2253
2254 for (objfile *objfile : main_objfile->separate_debug_objfiles ())
2255 {
2256 struct block_symbol result
2257 = lookup_symbol_in_objfile (objfile, block_index, name, domain);
2258
2259 if (result.symbol != nullptr)
2260 return result;
2261 }
2262
2263 return {};
2264 }
2265
2266 /* Check to see if the symbol is defined in one of the OBJFILE's
2267 symtabs. BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
2268 depending on whether or not we want to search global symbols or
2269 static symbols. */
2270
2271 static struct block_symbol
2272 lookup_symbol_in_objfile_symtabs (struct objfile *objfile,
2273 enum block_enum block_index, const char *name,
2274 const domain_enum domain)
2275 {
2276 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2277
2278 if (symbol_lookup_debug > 1)
2279 {
2280 fprintf_unfiltered (gdb_stdlog,
2281 "lookup_symbol_in_objfile_symtabs (%s, %s, %s, %s)",
2282 objfile_debug_name (objfile),
2283 block_index == GLOBAL_BLOCK
2284 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2285 name, domain_name (domain));
2286 }
2287
2288 for (compunit_symtab *cust : objfile->compunits ())
2289 {
2290 const struct blockvector *bv;
2291 const struct block *block;
2292 struct block_symbol result;
2293
2294 bv = COMPUNIT_BLOCKVECTOR (cust);
2295 block = BLOCKVECTOR_BLOCK (bv, block_index);
2296 result.symbol = block_lookup_symbol_primary (block, name, domain);
2297 result.block = block;
2298 if (result.symbol != NULL)
2299 {
2300 if (symbol_lookup_debug > 1)
2301 {
2302 fprintf_unfiltered (gdb_stdlog, " = %s (block %s)\n",
2303 host_address_to_string (result.symbol),
2304 host_address_to_string (block));
2305 }
2306 result.symbol = fixup_symbol_section (result.symbol, objfile);
2307 return result;
2308
2309 }
2310 }
2311
2312 if (symbol_lookup_debug > 1)
2313 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
2314 return {};
2315 }
2316
2317 /* Wrapper around lookup_symbol_in_objfile_symtabs for search_symbols.
2318 Look up LINKAGE_NAME in DOMAIN in the global and static blocks of OBJFILE
2319 and all associated separate debug objfiles.
2320
2321 Normally we only look in OBJFILE, and not any separate debug objfiles
2322 because the outer loop will cause them to be searched too. This case is
2323 different. Here we're called from search_symbols where it will only
2324 call us for the objfile that contains a matching minsym. */
2325
2326 static struct block_symbol
2327 lookup_symbol_in_objfile_from_linkage_name (struct objfile *objfile,
2328 const char *linkage_name,
2329 domain_enum domain)
2330 {
2331 enum language lang = current_language->la_language;
2332 struct objfile *main_objfile;
2333
2334 demangle_result_storage storage;
2335 const char *modified_name = demangle_for_lookup (linkage_name, lang, storage);
2336
2337 if (objfile->separate_debug_objfile_backlink)
2338 main_objfile = objfile->separate_debug_objfile_backlink;
2339 else
2340 main_objfile = objfile;
2341
2342 for (::objfile *cur_objfile : main_objfile->separate_debug_objfiles ())
2343 {
2344 struct block_symbol result;
2345
2346 result = lookup_symbol_in_objfile_symtabs (cur_objfile, GLOBAL_BLOCK,
2347 modified_name, domain);
2348 if (result.symbol == NULL)
2349 result = lookup_symbol_in_objfile_symtabs (cur_objfile, STATIC_BLOCK,
2350 modified_name, domain);
2351 if (result.symbol != NULL)
2352 return result;
2353 }
2354
2355 return {};
2356 }
2357
2358 /* A helper function that throws an exception when a symbol was found
2359 in a psymtab but not in a symtab. */
2360
2361 static void ATTRIBUTE_NORETURN
2362 error_in_psymtab_expansion (enum block_enum block_index, const char *name,
2363 struct compunit_symtab *cust)
2364 {
2365 error (_("\
2366 Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n\
2367 %s may be an inlined function, or may be a template function\n \
2368 (if a template, try specifying an instantiation: %s<type>)."),
2369 block_index == GLOBAL_BLOCK ? "global" : "static",
2370 name,
2371 symtab_to_filename_for_display (compunit_primary_filetab (cust)),
2372 name, name);
2373 }
2374
2375 /* A helper function for various lookup routines that interfaces with
2376 the "quick" symbol table functions. */
2377
2378 static struct block_symbol
2379 lookup_symbol_via_quick_fns (struct objfile *objfile,
2380 enum block_enum block_index, const char *name,
2381 const domain_enum domain)
2382 {
2383 struct compunit_symtab *cust;
2384 const struct blockvector *bv;
2385 const struct block *block;
2386 struct block_symbol result;
2387
2388 if (!objfile->sf)
2389 return {};
2390
2391 if (symbol_lookup_debug > 1)
2392 {
2393 fprintf_unfiltered (gdb_stdlog,
2394 "lookup_symbol_via_quick_fns (%s, %s, %s, %s)\n",
2395 objfile_debug_name (objfile),
2396 block_index == GLOBAL_BLOCK
2397 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2398 name, domain_name (domain));
2399 }
2400
2401 cust = objfile->sf->qf->lookup_symbol (objfile, block_index, name, domain);
2402 if (cust == NULL)
2403 {
2404 if (symbol_lookup_debug > 1)
2405 {
2406 fprintf_unfiltered (gdb_stdlog,
2407 "lookup_symbol_via_quick_fns (...) = NULL\n");
2408 }
2409 return {};
2410 }
2411
2412 bv = COMPUNIT_BLOCKVECTOR (cust);
2413 block = BLOCKVECTOR_BLOCK (bv, block_index);
2414 result.symbol = block_lookup_symbol (block, name,
2415 symbol_name_match_type::FULL, domain);
2416 if (result.symbol == NULL)
2417 error_in_psymtab_expansion (block_index, name, cust);
2418
2419 if (symbol_lookup_debug > 1)
2420 {
2421 fprintf_unfiltered (gdb_stdlog,
2422 "lookup_symbol_via_quick_fns (...) = %s (block %s)\n",
2423 host_address_to_string (result.symbol),
2424 host_address_to_string (block));
2425 }
2426
2427 result.symbol = fixup_symbol_section (result.symbol, objfile);
2428 result.block = block;
2429 return result;
2430 }
2431
2432 /* See symtab.h. */
2433
2434 struct block_symbol
2435 basic_lookup_symbol_nonlocal (const struct language_defn *langdef,
2436 const char *name,
2437 const struct block *block,
2438 const domain_enum domain)
2439 {
2440 struct block_symbol result;
2441
2442 /* NOTE: dje/2014-10-26: The lookup in all objfiles search could skip
2443 the current objfile. Searching the current objfile first is useful
2444 for both matching user expectations as well as performance. */
2445
2446 result = lookup_symbol_in_static_block (name, block, domain);
2447 if (result.symbol != NULL)
2448 return result;
2449
2450 /* If we didn't find a definition for a builtin type in the static block,
2451 search for it now. This is actually the right thing to do and can be
2452 a massive performance win. E.g., when debugging a program with lots of
2453 shared libraries we could search all of them only to find out the
2454 builtin type isn't defined in any of them. This is common for types
2455 like "void". */
2456 if (domain == VAR_DOMAIN)
2457 {
2458 struct gdbarch *gdbarch;
2459
2460 if (block == NULL)
2461 gdbarch = target_gdbarch ();
2462 else
2463 gdbarch = block_gdbarch (block);
2464 result.symbol = language_lookup_primitive_type_as_symbol (langdef,
2465 gdbarch, name);
2466 result.block = NULL;
2467 if (result.symbol != NULL)
2468 return result;
2469 }
2470
2471 return lookup_global_symbol (name, block, domain);
2472 }
2473
2474 /* See symtab.h. */
2475
2476 struct block_symbol
2477 lookup_symbol_in_static_block (const char *name,
2478 const struct block *block,
2479 const domain_enum domain)
2480 {
2481 const struct block *static_block = block_static_block (block);
2482 struct symbol *sym;
2483
2484 if (static_block == NULL)
2485 return {};
2486
2487 if (symbol_lookup_debug)
2488 {
2489 struct objfile *objfile = lookup_objfile_from_block (static_block);
2490
2491 fprintf_unfiltered (gdb_stdlog,
2492 "lookup_symbol_in_static_block (%s, %s (objfile %s),"
2493 " %s)\n",
2494 name,
2495 host_address_to_string (block),
2496 objfile_debug_name (objfile),
2497 domain_name (domain));
2498 }
2499
2500 sym = lookup_symbol_in_block (name,
2501 symbol_name_match_type::FULL,
2502 static_block, domain);
2503 if (symbol_lookup_debug)
2504 {
2505 fprintf_unfiltered (gdb_stdlog,
2506 "lookup_symbol_in_static_block (...) = %s\n",
2507 sym != NULL ? host_address_to_string (sym) : "NULL");
2508 }
2509 return (struct block_symbol) {sym, static_block};
2510 }
2511
2512 /* Perform the standard symbol lookup of NAME in OBJFILE:
2513 1) First search expanded symtabs, and if not found
2514 2) Search the "quick" symtabs (partial or .gdb_index).
2515 BLOCK_INDEX is one of GLOBAL_BLOCK or STATIC_BLOCK. */
2516
2517 static struct block_symbol
2518 lookup_symbol_in_objfile (struct objfile *objfile, enum block_enum block_index,
2519 const char *name, const domain_enum domain)
2520 {
2521 struct block_symbol result;
2522
2523 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2524
2525 if (symbol_lookup_debug)
2526 {
2527 fprintf_unfiltered (gdb_stdlog,
2528 "lookup_symbol_in_objfile (%s, %s, %s, %s)\n",
2529 objfile_debug_name (objfile),
2530 block_index == GLOBAL_BLOCK
2531 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2532 name, domain_name (domain));
2533 }
2534
2535 result = lookup_symbol_in_objfile_symtabs (objfile, block_index,
2536 name, domain);
2537 if (result.symbol != NULL)
2538 {
2539 if (symbol_lookup_debug)
2540 {
2541 fprintf_unfiltered (gdb_stdlog,
2542 "lookup_symbol_in_objfile (...) = %s"
2543 " (in symtabs)\n",
2544 host_address_to_string (result.symbol));
2545 }
2546 return result;
2547 }
2548
2549 result = lookup_symbol_via_quick_fns (objfile, block_index,
2550 name, domain);
2551 if (symbol_lookup_debug)
2552 {
2553 fprintf_unfiltered (gdb_stdlog,
2554 "lookup_symbol_in_objfile (...) = %s%s\n",
2555 result.symbol != NULL
2556 ? host_address_to_string (result.symbol)
2557 : "NULL",
2558 result.symbol != NULL ? " (via quick fns)" : "");
2559 }
2560 return result;
2561 }
2562
2563 /* Private data to be used with lookup_symbol_global_iterator_cb. */
2564
2565 struct global_or_static_sym_lookup_data
2566 {
2567 /* The name of the symbol we are searching for. */
2568 const char *name;
2569
2570 /* The domain to use for our search. */
2571 domain_enum domain;
2572
2573 /* The block index in which to search. */
2574 enum block_enum block_index;
2575
2576 /* The field where the callback should store the symbol if found.
2577 It should be initialized to {NULL, NULL} before the search is started. */
2578 struct block_symbol result;
2579 };
2580
2581 /* A callback function for gdbarch_iterate_over_objfiles_in_search_order.
2582 It searches by name for a symbol in the block given by BLOCK_INDEX of the
2583 given OBJFILE. The arguments for the search are passed via CB_DATA, which
2584 in reality is a pointer to struct global_or_static_sym_lookup_data. */
2585
2586 static int
2587 lookup_symbol_global_or_static_iterator_cb (struct objfile *objfile,
2588 void *cb_data)
2589 {
2590 struct global_or_static_sym_lookup_data *data =
2591 (struct global_or_static_sym_lookup_data *) cb_data;
2592
2593 gdb_assert (data->result.symbol == NULL
2594 && data->result.block == NULL);
2595
2596 data->result = lookup_symbol_in_objfile (objfile, data->block_index,
2597 data->name, data->domain);
2598
2599 /* If we found a match, tell the iterator to stop. Otherwise,
2600 keep going. */
2601 return (data->result.symbol != NULL);
2602 }
2603
2604 /* This function contains the common code of lookup_{global,static}_symbol.
2605 OBJFILE is only used if BLOCK_INDEX is GLOBAL_SCOPE, in which case it is
2606 the objfile to start the lookup in. */
2607
2608 static struct block_symbol
2609 lookup_global_or_static_symbol (const char *name,
2610 enum block_enum block_index,
2611 struct objfile *objfile,
2612 const domain_enum domain)
2613 {
2614 struct symbol_cache *cache = get_symbol_cache (current_program_space);
2615 struct block_symbol result;
2616 struct global_or_static_sym_lookup_data lookup_data;
2617 struct block_symbol_cache *bsc;
2618 struct symbol_cache_slot *slot;
2619
2620 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2621 gdb_assert (objfile == nullptr || block_index == GLOBAL_BLOCK);
2622
2623 /* First see if we can find the symbol in the cache.
2624 This works because we use the current objfile to qualify the lookup. */
2625 result = symbol_cache_lookup (cache, objfile, block_index, name, domain,
2626 &bsc, &slot);
2627 if (result.symbol != NULL)
2628 {
2629 if (SYMBOL_LOOKUP_FAILED_P (result))
2630 return {};
2631 return result;
2632 }
2633
2634 /* Do a global search (of global blocks, heh). */
2635 if (result.symbol == NULL)
2636 {
2637 memset (&lookup_data, 0, sizeof (lookup_data));
2638 lookup_data.name = name;
2639 lookup_data.block_index = block_index;
2640 lookup_data.domain = domain;
2641 gdbarch_iterate_over_objfiles_in_search_order
2642 (objfile != NULL ? get_objfile_arch (objfile) : target_gdbarch (),
2643 lookup_symbol_global_or_static_iterator_cb, &lookup_data, objfile);
2644 result = lookup_data.result;
2645 }
2646
2647 if (result.symbol != NULL)
2648 symbol_cache_mark_found (bsc, slot, objfile, result.symbol, result.block);
2649 else
2650 symbol_cache_mark_not_found (bsc, slot, objfile, name, domain);
2651
2652 return result;
2653 }
2654
2655 /* See symtab.h. */
2656
2657 struct block_symbol
2658 lookup_static_symbol (const char *name, const domain_enum domain)
2659 {
2660 return lookup_global_or_static_symbol (name, STATIC_BLOCK, nullptr, domain);
2661 }
2662
2663 /* See symtab.h. */
2664
2665 struct block_symbol
2666 lookup_global_symbol (const char *name,
2667 const struct block *block,
2668 const domain_enum domain)
2669 {
2670 /* If a block was passed in, we want to search the corresponding
2671 global block first. This yields "more expected" behavior, and is
2672 needed to support 'FILENAME'::VARIABLE lookups. */
2673 const struct block *global_block = block_global_block (block);
2674 if (global_block != nullptr)
2675 {
2676 symbol *sym = lookup_symbol_in_block (name,
2677 symbol_name_match_type::FULL,
2678 global_block, domain);
2679 if (sym != nullptr)
2680 return { sym, global_block };
2681 }
2682
2683 struct objfile *objfile = lookup_objfile_from_block (block);
2684 return lookup_global_or_static_symbol (name, GLOBAL_BLOCK, objfile, domain);
2685 }
2686
2687 bool
2688 symbol_matches_domain (enum language symbol_language,
2689 domain_enum symbol_domain,
2690 domain_enum domain)
2691 {
2692 /* For C++ "struct foo { ... }" also defines a typedef for "foo".
2693 Similarly, any Ada type declaration implicitly defines a typedef. */
2694 if (symbol_language == language_cplus
2695 || symbol_language == language_d
2696 || symbol_language == language_ada
2697 || symbol_language == language_rust)
2698 {
2699 if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN)
2700 && symbol_domain == STRUCT_DOMAIN)
2701 return true;
2702 }
2703 /* For all other languages, strict match is required. */
2704 return (symbol_domain == domain);
2705 }
2706
2707 /* See symtab.h. */
2708
2709 struct type *
2710 lookup_transparent_type (const char *name)
2711 {
2712 return current_language->la_lookup_transparent_type (name);
2713 }
2714
2715 /* A helper for basic_lookup_transparent_type that interfaces with the
2716 "quick" symbol table functions. */
2717
2718 static struct type *
2719 basic_lookup_transparent_type_quick (struct objfile *objfile,
2720 enum block_enum block_index,
2721 const char *name)
2722 {
2723 struct compunit_symtab *cust;
2724 const struct blockvector *bv;
2725 const struct block *block;
2726 struct symbol *sym;
2727
2728 if (!objfile->sf)
2729 return NULL;
2730 cust = objfile->sf->qf->lookup_symbol (objfile, block_index, name,
2731 STRUCT_DOMAIN);
2732 if (cust == NULL)
2733 return NULL;
2734
2735 bv = COMPUNIT_BLOCKVECTOR (cust);
2736 block = BLOCKVECTOR_BLOCK (bv, block_index);
2737 sym = block_find_symbol (block, name, STRUCT_DOMAIN,
2738 block_find_non_opaque_type, NULL);
2739 if (sym == NULL)
2740 error_in_psymtab_expansion (block_index, name, cust);
2741 gdb_assert (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)));
2742 return SYMBOL_TYPE (sym);
2743 }
2744
2745 /* Subroutine of basic_lookup_transparent_type to simplify it.
2746 Look up the non-opaque definition of NAME in BLOCK_INDEX of OBJFILE.
2747 BLOCK_INDEX is either GLOBAL_BLOCK or STATIC_BLOCK. */
2748
2749 static struct type *
2750 basic_lookup_transparent_type_1 (struct objfile *objfile,
2751 enum block_enum block_index,
2752 const char *name)
2753 {
2754 const struct blockvector *bv;
2755 const struct block *block;
2756 const struct symbol *sym;
2757
2758 for (compunit_symtab *cust : objfile->compunits ())
2759 {
2760 bv = COMPUNIT_BLOCKVECTOR (cust);
2761 block = BLOCKVECTOR_BLOCK (bv, block_index);
2762 sym = block_find_symbol (block, name, STRUCT_DOMAIN,
2763 block_find_non_opaque_type, NULL);
2764 if (sym != NULL)
2765 {
2766 gdb_assert (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)));
2767 return SYMBOL_TYPE (sym);
2768 }
2769 }
2770
2771 return NULL;
2772 }
2773
2774 /* The standard implementation of lookup_transparent_type. This code
2775 was modeled on lookup_symbol -- the parts not relevant to looking
2776 up types were just left out. In particular it's assumed here that
2777 types are available in STRUCT_DOMAIN and only in file-static or
2778 global blocks. */
2779
2780 struct type *
2781 basic_lookup_transparent_type (const char *name)
2782 {
2783 struct type *t;
2784
2785 /* Now search all the global symbols. Do the symtab's first, then
2786 check the psymtab's. If a psymtab indicates the existence
2787 of the desired name as a global, then do psymtab-to-symtab
2788 conversion on the fly and return the found symbol. */
2789
2790 for (objfile *objfile : current_program_space->objfiles ())
2791 {
2792 t = basic_lookup_transparent_type_1 (objfile, GLOBAL_BLOCK, name);
2793 if (t)
2794 return t;
2795 }
2796
2797 for (objfile *objfile : current_program_space->objfiles ())
2798 {
2799 t = basic_lookup_transparent_type_quick (objfile, GLOBAL_BLOCK, name);
2800 if (t)
2801 return t;
2802 }
2803
2804 /* Now search the static file-level symbols.
2805 Not strictly correct, but more useful than an error.
2806 Do the symtab's first, then
2807 check the psymtab's. If a psymtab indicates the existence
2808 of the desired name as a file-level static, then do psymtab-to-symtab
2809 conversion on the fly and return the found symbol. */
2810
2811 for (objfile *objfile : current_program_space->objfiles ())
2812 {
2813 t = basic_lookup_transparent_type_1 (objfile, STATIC_BLOCK, name);
2814 if (t)
2815 return t;
2816 }
2817
2818 for (objfile *objfile : current_program_space->objfiles ())
2819 {
2820 t = basic_lookup_transparent_type_quick (objfile, STATIC_BLOCK, name);
2821 if (t)
2822 return t;
2823 }
2824
2825 return (struct type *) 0;
2826 }
2827
2828 /* See symtab.h. */
2829
2830 bool
2831 iterate_over_symbols (const struct block *block,
2832 const lookup_name_info &name,
2833 const domain_enum domain,
2834 gdb::function_view<symbol_found_callback_ftype> callback)
2835 {
2836 struct block_iterator iter;
2837 struct symbol *sym;
2838
2839 ALL_BLOCK_SYMBOLS_WITH_NAME (block, name, iter, sym)
2840 {
2841 if (symbol_matches_domain (sym->language (), SYMBOL_DOMAIN (sym), domain))
2842 {
2843 struct block_symbol block_sym = {sym, block};
2844
2845 if (!callback (&block_sym))
2846 return false;
2847 }
2848 }
2849 return true;
2850 }
2851
2852 /* See symtab.h. */
2853
2854 bool
2855 iterate_over_symbols_terminated
2856 (const struct block *block,
2857 const lookup_name_info &name,
2858 const domain_enum domain,
2859 gdb::function_view<symbol_found_callback_ftype> callback)
2860 {
2861 if (!iterate_over_symbols (block, name, domain, callback))
2862 return false;
2863 struct block_symbol block_sym = {nullptr, block};
2864 return callback (&block_sym);
2865 }
2866
2867 /* Find the compunit symtab associated with PC and SECTION.
2868 This will read in debug info as necessary. */
2869
2870 struct compunit_symtab *
2871 find_pc_sect_compunit_symtab (CORE_ADDR pc, struct obj_section *section)
2872 {
2873 struct compunit_symtab *best_cust = NULL;
2874 CORE_ADDR distance = 0;
2875 struct bound_minimal_symbol msymbol;
2876
2877 /* If we know that this is not a text address, return failure. This is
2878 necessary because we loop based on the block's high and low code
2879 addresses, which do not include the data ranges, and because
2880 we call find_pc_sect_psymtab which has a similar restriction based
2881 on the partial_symtab's texthigh and textlow. */
2882 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
2883 if (msymbol.minsym && msymbol.minsym->data_p ())
2884 return NULL;
2885
2886 /* Search all symtabs for the one whose file contains our address, and which
2887 is the smallest of all the ones containing the address. This is designed
2888 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
2889 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
2890 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
2891
2892 This happens for native ecoff format, where code from included files
2893 gets its own symtab. The symtab for the included file should have
2894 been read in already via the dependency mechanism.
2895 It might be swifter to create several symtabs with the same name
2896 like xcoff does (I'm not sure).
2897
2898 It also happens for objfiles that have their functions reordered.
2899 For these, the symtab we are looking for is not necessarily read in. */
2900
2901 for (objfile *obj_file : current_program_space->objfiles ())
2902 {
2903 for (compunit_symtab *cust : obj_file->compunits ())
2904 {
2905 const struct block *b;
2906 const struct blockvector *bv;
2907
2908 bv = COMPUNIT_BLOCKVECTOR (cust);
2909 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
2910
2911 if (BLOCK_START (b) <= pc
2912 && BLOCK_END (b) > pc
2913 && (distance == 0
2914 || BLOCK_END (b) - BLOCK_START (b) < distance))
2915 {
2916 /* For an objfile that has its functions reordered,
2917 find_pc_psymtab will find the proper partial symbol table
2918 and we simply return its corresponding symtab. */
2919 /* In order to better support objfiles that contain both
2920 stabs and coff debugging info, we continue on if a psymtab
2921 can't be found. */
2922 if ((obj_file->flags & OBJF_REORDERED) && obj_file->sf)
2923 {
2924 struct compunit_symtab *result;
2925
2926 result
2927 = obj_file->sf->qf->find_pc_sect_compunit_symtab (obj_file,
2928 msymbol,
2929 pc,
2930 section,
2931 0);
2932 if (result != NULL)
2933 return result;
2934 }
2935 if (section != 0)
2936 {
2937 struct block_iterator iter;
2938 struct symbol *sym = NULL;
2939
2940 ALL_BLOCK_SYMBOLS (b, iter, sym)
2941 {
2942 fixup_symbol_section (sym, obj_file);
2943 if (matching_obj_sections (SYMBOL_OBJ_SECTION (obj_file,
2944 sym),
2945 section))
2946 break;
2947 }
2948 if (sym == NULL)
2949 continue; /* No symbol in this symtab matches
2950 section. */
2951 }
2952 distance = BLOCK_END (b) - BLOCK_START (b);
2953 best_cust = cust;
2954 }
2955 }
2956 }
2957
2958 if (best_cust != NULL)
2959 return best_cust;
2960
2961 /* Not found in symtabs, search the "quick" symtabs (e.g. psymtabs). */
2962
2963 for (objfile *objf : current_program_space->objfiles ())
2964 {
2965 struct compunit_symtab *result;
2966
2967 if (!objf->sf)
2968 continue;
2969 result = objf->sf->qf->find_pc_sect_compunit_symtab (objf,
2970 msymbol,
2971 pc, section,
2972 1);
2973 if (result != NULL)
2974 return result;
2975 }
2976
2977 return NULL;
2978 }
2979
2980 /* Find the compunit symtab associated with PC.
2981 This will read in debug info as necessary.
2982 Backward compatibility, no section. */
2983
2984 struct compunit_symtab *
2985 find_pc_compunit_symtab (CORE_ADDR pc)
2986 {
2987 return find_pc_sect_compunit_symtab (pc, find_pc_mapped_section (pc));
2988 }
2989
2990 /* See symtab.h. */
2991
2992 struct symbol *
2993 find_symbol_at_address (CORE_ADDR address)
2994 {
2995 for (objfile *objfile : current_program_space->objfiles ())
2996 {
2997 if (objfile->sf == NULL
2998 || objfile->sf->qf->find_compunit_symtab_by_address == NULL)
2999 continue;
3000
3001 struct compunit_symtab *symtab
3002 = objfile->sf->qf->find_compunit_symtab_by_address (objfile, address);
3003 if (symtab != NULL)
3004 {
3005 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (symtab);
3006
3007 for (int i = GLOBAL_BLOCK; i <= STATIC_BLOCK; ++i)
3008 {
3009 const struct block *b = BLOCKVECTOR_BLOCK (bv, i);
3010 struct block_iterator iter;
3011 struct symbol *sym;
3012
3013 ALL_BLOCK_SYMBOLS (b, iter, sym)
3014 {
3015 if (SYMBOL_CLASS (sym) == LOC_STATIC
3016 && SYMBOL_VALUE_ADDRESS (sym) == address)
3017 return sym;
3018 }
3019 }
3020 }
3021 }
3022
3023 return NULL;
3024 }
3025
3026 \f
3027
3028 /* Find the source file and line number for a given PC value and SECTION.
3029 Return a structure containing a symtab pointer, a line number,
3030 and a pc range for the entire source line.
3031 The value's .pc field is NOT the specified pc.
3032 NOTCURRENT nonzero means, if specified pc is on a line boundary,
3033 use the line that ends there. Otherwise, in that case, the line
3034 that begins there is used. */
3035
3036 /* The big complication here is that a line may start in one file, and end just
3037 before the start of another file. This usually occurs when you #include
3038 code in the middle of a subroutine. To properly find the end of a line's PC
3039 range, we must search all symtabs associated with this compilation unit, and
3040 find the one whose first PC is closer than that of the next line in this
3041 symtab. */
3042
3043 struct symtab_and_line
3044 find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent)
3045 {
3046 struct compunit_symtab *cust;
3047 struct linetable *l;
3048 int len;
3049 struct linetable_entry *item;
3050 const struct blockvector *bv;
3051 struct bound_minimal_symbol msymbol;
3052
3053 /* Info on best line seen so far, and where it starts, and its file. */
3054
3055 struct linetable_entry *best = NULL;
3056 CORE_ADDR best_end = 0;
3057 struct symtab *best_symtab = 0;
3058
3059 /* Store here the first line number
3060 of a file which contains the line at the smallest pc after PC.
3061 If we don't find a line whose range contains PC,
3062 we will use a line one less than this,
3063 with a range from the start of that file to the first line's pc. */
3064 struct linetable_entry *alt = NULL;
3065
3066 /* Info on best line seen in this file. */
3067
3068 struct linetable_entry *prev;
3069
3070 /* If this pc is not from the current frame,
3071 it is the address of the end of a call instruction.
3072 Quite likely that is the start of the following statement.
3073 But what we want is the statement containing the instruction.
3074 Fudge the pc to make sure we get that. */
3075
3076 /* It's tempting to assume that, if we can't find debugging info for
3077 any function enclosing PC, that we shouldn't search for line
3078 number info, either. However, GAS can emit line number info for
3079 assembly files --- very helpful when debugging hand-written
3080 assembly code. In such a case, we'd have no debug info for the
3081 function, but we would have line info. */
3082
3083 if (notcurrent)
3084 pc -= 1;
3085
3086 /* elz: added this because this function returned the wrong
3087 information if the pc belongs to a stub (import/export)
3088 to call a shlib function. This stub would be anywhere between
3089 two functions in the target, and the line info was erroneously
3090 taken to be the one of the line before the pc. */
3091
3092 /* RT: Further explanation:
3093
3094 * We have stubs (trampolines) inserted between procedures.
3095 *
3096 * Example: "shr1" exists in a shared library, and a "shr1" stub also
3097 * exists in the main image.
3098 *
3099 * In the minimal symbol table, we have a bunch of symbols
3100 * sorted by start address. The stubs are marked as "trampoline",
3101 * the others appear as text. E.g.:
3102 *
3103 * Minimal symbol table for main image
3104 * main: code for main (text symbol)
3105 * shr1: stub (trampoline symbol)
3106 * foo: code for foo (text symbol)
3107 * ...
3108 * Minimal symbol table for "shr1" image:
3109 * ...
3110 * shr1: code for shr1 (text symbol)
3111 * ...
3112 *
3113 * So the code below is trying to detect if we are in the stub
3114 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
3115 * and if found, do the symbolization from the real-code address
3116 * rather than the stub address.
3117 *
3118 * Assumptions being made about the minimal symbol table:
3119 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
3120 * if we're really in the trampoline.s If we're beyond it (say
3121 * we're in "foo" in the above example), it'll have a closer
3122 * symbol (the "foo" text symbol for example) and will not
3123 * return the trampoline.
3124 * 2. lookup_minimal_symbol_text() will find a real text symbol
3125 * corresponding to the trampoline, and whose address will
3126 * be different than the trampoline address. I put in a sanity
3127 * check for the address being the same, to avoid an
3128 * infinite recursion.
3129 */
3130 msymbol = lookup_minimal_symbol_by_pc (pc);
3131 if (msymbol.minsym != NULL)
3132 if (MSYMBOL_TYPE (msymbol.minsym) == mst_solib_trampoline)
3133 {
3134 struct bound_minimal_symbol mfunsym
3135 = lookup_minimal_symbol_text (msymbol.minsym->linkage_name (),
3136 NULL);
3137
3138 if (mfunsym.minsym == NULL)
3139 /* I eliminated this warning since it is coming out
3140 * in the following situation:
3141 * gdb shmain // test program with shared libraries
3142 * (gdb) break shr1 // function in shared lib
3143 * Warning: In stub for ...
3144 * In the above situation, the shared lib is not loaded yet,
3145 * so of course we can't find the real func/line info,
3146 * but the "break" still works, and the warning is annoying.
3147 * So I commented out the warning. RT */
3148 /* warning ("In stub for %s; unable to find real function/line info",
3149 msymbol->linkage_name ()); */
3150 ;
3151 /* fall through */
3152 else if (BMSYMBOL_VALUE_ADDRESS (mfunsym)
3153 == BMSYMBOL_VALUE_ADDRESS (msymbol))
3154 /* Avoid infinite recursion */
3155 /* See above comment about why warning is commented out. */
3156 /* warning ("In stub for %s; unable to find real function/line info",
3157 msymbol->linkage_name ()); */
3158 ;
3159 /* fall through */
3160 else
3161 return find_pc_line (BMSYMBOL_VALUE_ADDRESS (mfunsym), 0);
3162 }
3163
3164 symtab_and_line val;
3165 val.pspace = current_program_space;
3166
3167 cust = find_pc_sect_compunit_symtab (pc, section);
3168 if (cust == NULL)
3169 {
3170 /* If no symbol information, return previous pc. */
3171 if (notcurrent)
3172 pc++;
3173 val.pc = pc;
3174 return val;
3175 }
3176
3177 bv = COMPUNIT_BLOCKVECTOR (cust);
3178
3179 /* Look at all the symtabs that share this blockvector.
3180 They all have the same apriori range, that we found was right;
3181 but they have different line tables. */
3182
3183 for (symtab *iter_s : compunit_filetabs (cust))
3184 {
3185 /* Find the best line in this symtab. */
3186 l = SYMTAB_LINETABLE (iter_s);
3187 if (!l)
3188 continue;
3189 len = l->nitems;
3190 if (len <= 0)
3191 {
3192 /* I think len can be zero if the symtab lacks line numbers
3193 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
3194 I'm not sure which, and maybe it depends on the symbol
3195 reader). */
3196 continue;
3197 }
3198
3199 prev = NULL;
3200 item = l->item; /* Get first line info. */
3201
3202 /* Is this file's first line closer than the first lines of other files?
3203 If so, record this file, and its first line, as best alternate. */
3204 if (item->pc > pc && (!alt || item->pc < alt->pc))
3205 alt = item;
3206
3207 auto pc_compare = [](const CORE_ADDR & comp_pc,
3208 const struct linetable_entry & lhs)->bool
3209 {
3210 return comp_pc < lhs.pc;
3211 };
3212
3213 struct linetable_entry *first = item;
3214 struct linetable_entry *last = item + len;
3215 item = std::upper_bound (first, last, pc, pc_compare);
3216 if (item != first)
3217 {
3218 /* Found a matching item. Skip backwards over any end of
3219 sequence markers. */
3220 for (prev = item - 1; prev->line == 0 && prev != first; prev--)
3221 /* Nothing. */;
3222 }
3223
3224 /* At this point, prev points at the line whose start addr is <= pc, and
3225 item points at the next line. If we ran off the end of the linetable
3226 (pc >= start of the last line), then prev == item. If pc < start of
3227 the first line, prev will not be set. */
3228
3229 /* Is this file's best line closer than the best in the other files?
3230 If so, record this file, and its best line, as best so far. Don't
3231 save prev if it represents the end of a function (i.e. line number
3232 0) instead of a real line. */
3233
3234 if (prev && prev->line && (!best || prev->pc > best->pc))
3235 {
3236 best = prev;
3237 best_symtab = iter_s;
3238
3239 /* If during the binary search we land on a non-statement entry,
3240 scan backward through entries at the same address to see if
3241 there is an entry marked as is-statement. In theory this
3242 duplication should have been removed from the line table
3243 during construction, this is just a double check. If the line
3244 table has had the duplication removed then this should be
3245 pretty cheap. */
3246 if (!best->is_stmt)
3247 {
3248 struct linetable_entry *tmp = best;
3249 while (tmp > first && (tmp - 1)->pc == tmp->pc
3250 && (tmp - 1)->line != 0 && !tmp->is_stmt)
3251 --tmp;
3252 if (tmp->is_stmt)
3253 best = tmp;
3254 }
3255
3256 /* Discard BEST_END if it's before the PC of the current BEST. */
3257 if (best_end <= best->pc)
3258 best_end = 0;
3259 }
3260
3261 /* If another line (denoted by ITEM) is in the linetable and its
3262 PC is after BEST's PC, but before the current BEST_END, then
3263 use ITEM's PC as the new best_end. */
3264 if (best && item < last && item->pc > best->pc
3265 && (best_end == 0 || best_end > item->pc))
3266 best_end = item->pc;
3267 }
3268
3269 if (!best_symtab)
3270 {
3271 /* If we didn't find any line number info, just return zeros.
3272 We used to return alt->line - 1 here, but that could be
3273 anywhere; if we don't have line number info for this PC,
3274 don't make some up. */
3275 val.pc = pc;
3276 }
3277 else if (best->line == 0)
3278 {
3279 /* If our best fit is in a range of PC's for which no line
3280 number info is available (line number is zero) then we didn't
3281 find any valid line information. */
3282 val.pc = pc;
3283 }
3284 else
3285 {
3286 val.is_stmt = best->is_stmt;
3287 val.symtab = best_symtab;
3288 val.line = best->line;
3289 val.pc = best->pc;
3290 if (best_end && (!alt || best_end < alt->pc))
3291 val.end = best_end;
3292 else if (alt)
3293 val.end = alt->pc;
3294 else
3295 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
3296 }
3297 val.section = section;
3298 return val;
3299 }
3300
3301 /* Backward compatibility (no section). */
3302
3303 struct symtab_and_line
3304 find_pc_line (CORE_ADDR pc, int notcurrent)
3305 {
3306 struct obj_section *section;
3307
3308 section = find_pc_overlay (pc);
3309 if (pc_in_unmapped_range (pc, section))
3310 pc = overlay_mapped_address (pc, section);
3311 return find_pc_sect_line (pc, section, notcurrent);
3312 }
3313
3314 /* See symtab.h. */
3315
3316 struct symtab *
3317 find_pc_line_symtab (CORE_ADDR pc)
3318 {
3319 struct symtab_and_line sal;
3320
3321 /* This always passes zero for NOTCURRENT to find_pc_line.
3322 There are currently no callers that ever pass non-zero. */
3323 sal = find_pc_line (pc, 0);
3324 return sal.symtab;
3325 }
3326 \f
3327 /* Find line number LINE in any symtab whose name is the same as
3328 SYMTAB.
3329
3330 If found, return the symtab that contains the linetable in which it was
3331 found, set *INDEX to the index in the linetable of the best entry
3332 found, and set *EXACT_MATCH to true if the value returned is an
3333 exact match.
3334
3335 If not found, return NULL. */
3336
3337 struct symtab *
3338 find_line_symtab (struct symtab *sym_tab, int line,
3339 int *index, bool *exact_match)
3340 {
3341 int exact = 0; /* Initialized here to avoid a compiler warning. */
3342
3343 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
3344 so far seen. */
3345
3346 int best_index;
3347 struct linetable *best_linetable;
3348 struct symtab *best_symtab;
3349
3350 /* First try looking it up in the given symtab. */
3351 best_linetable = SYMTAB_LINETABLE (sym_tab);
3352 best_symtab = sym_tab;
3353 best_index = find_line_common (best_linetable, line, &exact, 0);
3354 if (best_index < 0 || !exact)
3355 {
3356 /* Didn't find an exact match. So we better keep looking for
3357 another symtab with the same name. In the case of xcoff,
3358 multiple csects for one source file (produced by IBM's FORTRAN
3359 compiler) produce multiple symtabs (this is unavoidable
3360 assuming csects can be at arbitrary places in memory and that
3361 the GLOBAL_BLOCK of a symtab has a begin and end address). */
3362
3363 /* BEST is the smallest linenumber > LINE so far seen,
3364 or 0 if none has been seen so far.
3365 BEST_INDEX and BEST_LINETABLE identify the item for it. */
3366 int best;
3367
3368 if (best_index >= 0)
3369 best = best_linetable->item[best_index].line;
3370 else
3371 best = 0;
3372
3373 for (objfile *objfile : current_program_space->objfiles ())
3374 {
3375 if (objfile->sf)
3376 objfile->sf->qf->expand_symtabs_with_fullname
3377 (objfile, symtab_to_fullname (sym_tab));
3378 }
3379
3380 for (objfile *objfile : current_program_space->objfiles ())
3381 {
3382 for (compunit_symtab *cu : objfile->compunits ())
3383 {
3384 for (symtab *s : compunit_filetabs (cu))
3385 {
3386 struct linetable *l;
3387 int ind;
3388
3389 if (FILENAME_CMP (sym_tab->filename, s->filename) != 0)
3390 continue;
3391 if (FILENAME_CMP (symtab_to_fullname (sym_tab),
3392 symtab_to_fullname (s)) != 0)
3393 continue;
3394 l = SYMTAB_LINETABLE (s);
3395 ind = find_line_common (l, line, &exact, 0);
3396 if (ind >= 0)
3397 {
3398 if (exact)
3399 {
3400 best_index = ind;
3401 best_linetable = l;
3402 best_symtab = s;
3403 goto done;
3404 }
3405 if (best == 0 || l->item[ind].line < best)
3406 {
3407 best = l->item[ind].line;
3408 best_index = ind;
3409 best_linetable = l;
3410 best_symtab = s;
3411 }
3412 }
3413 }
3414 }
3415 }
3416 }
3417 done:
3418 if (best_index < 0)
3419 return NULL;
3420
3421 if (index)
3422 *index = best_index;
3423 if (exact_match)
3424 *exact_match = (exact != 0);
3425
3426 return best_symtab;
3427 }
3428
3429 /* Given SYMTAB, returns all the PCs function in the symtab that
3430 exactly match LINE. Returns an empty vector if there are no exact
3431 matches, but updates BEST_ITEM in this case. */
3432
3433 std::vector<CORE_ADDR>
3434 find_pcs_for_symtab_line (struct symtab *symtab, int line,
3435 struct linetable_entry **best_item)
3436 {
3437 int start = 0;
3438 std::vector<CORE_ADDR> result;
3439
3440 /* First, collect all the PCs that are at this line. */
3441 while (1)
3442 {
3443 int was_exact;
3444 int idx;
3445
3446 idx = find_line_common (SYMTAB_LINETABLE (symtab), line, &was_exact,
3447 start);
3448 if (idx < 0)
3449 break;
3450
3451 if (!was_exact)
3452 {
3453 struct linetable_entry *item = &SYMTAB_LINETABLE (symtab)->item[idx];
3454
3455 if (*best_item == NULL
3456 || (item->line < (*best_item)->line && item->is_stmt))
3457 *best_item = item;
3458
3459 break;
3460 }
3461
3462 result.push_back (SYMTAB_LINETABLE (symtab)->item[idx].pc);
3463 start = idx + 1;
3464 }
3465
3466 return result;
3467 }
3468
3469 \f
3470 /* Set the PC value for a given source file and line number and return true.
3471 Returns false for invalid line number (and sets the PC to 0).
3472 The source file is specified with a struct symtab. */
3473
3474 bool
3475 find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
3476 {
3477 struct linetable *l;
3478 int ind;
3479
3480 *pc = 0;
3481 if (symtab == 0)
3482 return false;
3483
3484 symtab = find_line_symtab (symtab, line, &ind, NULL);
3485 if (symtab != NULL)
3486 {
3487 l = SYMTAB_LINETABLE (symtab);
3488 *pc = l->item[ind].pc;
3489 return true;
3490 }
3491 else
3492 return false;
3493 }
3494
3495 /* Find the range of pc values in a line.
3496 Store the starting pc of the line into *STARTPTR
3497 and the ending pc (start of next line) into *ENDPTR.
3498 Returns true to indicate success.
3499 Returns false if could not find the specified line. */
3500
3501 bool
3502 find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
3503 CORE_ADDR *endptr)
3504 {
3505 CORE_ADDR startaddr;
3506 struct symtab_and_line found_sal;
3507
3508 startaddr = sal.pc;
3509 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
3510 return false;
3511
3512 /* This whole function is based on address. For example, if line 10 has
3513 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
3514 "info line *0x123" should say the line goes from 0x100 to 0x200
3515 and "info line *0x355" should say the line goes from 0x300 to 0x400.
3516 This also insures that we never give a range like "starts at 0x134
3517 and ends at 0x12c". */
3518
3519 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
3520 if (found_sal.line != sal.line)
3521 {
3522 /* The specified line (sal) has zero bytes. */
3523 *startptr = found_sal.pc;
3524 *endptr = found_sal.pc;
3525 }
3526 else
3527 {
3528 *startptr = found_sal.pc;
3529 *endptr = found_sal.end;
3530 }
3531 return true;
3532 }
3533
3534 /* Given a line table and a line number, return the index into the line
3535 table for the pc of the nearest line whose number is >= the specified one.
3536 Return -1 if none is found. The value is >= 0 if it is an index.
3537 START is the index at which to start searching the line table.
3538
3539 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
3540
3541 static int
3542 find_line_common (struct linetable *l, int lineno,
3543 int *exact_match, int start)
3544 {
3545 int i;
3546 int len;
3547
3548 /* BEST is the smallest linenumber > LINENO so far seen,
3549 or 0 if none has been seen so far.
3550 BEST_INDEX identifies the item for it. */
3551
3552 int best_index = -1;
3553 int best = 0;
3554
3555 *exact_match = 0;
3556
3557 if (lineno <= 0)
3558 return -1;
3559 if (l == 0)
3560 return -1;
3561
3562 len = l->nitems;
3563 for (i = start; i < len; i++)
3564 {
3565 struct linetable_entry *item = &(l->item[i]);
3566
3567 /* Ignore non-statements. */
3568 if (!item->is_stmt)
3569 continue;
3570
3571 if (item->line == lineno)
3572 {
3573 /* Return the first (lowest address) entry which matches. */
3574 *exact_match = 1;
3575 return i;
3576 }
3577
3578 if (item->line > lineno && (best == 0 || item->line < best))
3579 {
3580 best = item->line;
3581 best_index = i;
3582 }
3583 }
3584
3585 /* If we got here, we didn't get an exact match. */
3586 return best_index;
3587 }
3588
3589 bool
3590 find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
3591 {
3592 struct symtab_and_line sal;
3593
3594 sal = find_pc_line (pc, 0);
3595 *startptr = sal.pc;
3596 *endptr = sal.end;
3597 return sal.symtab != 0;
3598 }
3599
3600 /* Helper for find_function_start_sal. Does most of the work, except
3601 setting the sal's symbol. */
3602
3603 static symtab_and_line
3604 find_function_start_sal_1 (CORE_ADDR func_addr, obj_section *section,
3605 bool funfirstline)
3606 {
3607 symtab_and_line sal = find_pc_sect_line (func_addr, section, 0);
3608
3609 if (funfirstline && sal.symtab != NULL
3610 && (COMPUNIT_LOCATIONS_VALID (SYMTAB_COMPUNIT (sal.symtab))
3611 || SYMTAB_LANGUAGE (sal.symtab) == language_asm))
3612 {
3613 struct gdbarch *gdbarch = get_objfile_arch (SYMTAB_OBJFILE (sal.symtab));
3614
3615 sal.pc = func_addr;
3616 if (gdbarch_skip_entrypoint_p (gdbarch))
3617 sal.pc = gdbarch_skip_entrypoint (gdbarch, sal.pc);
3618 return sal;
3619 }
3620
3621 /* We always should have a line for the function start address.
3622 If we don't, something is odd. Create a plain SAL referring
3623 just the PC and hope that skip_prologue_sal (if requested)
3624 can find a line number for after the prologue. */
3625 if (sal.pc < func_addr)
3626 {
3627 sal = {};
3628 sal.pspace = current_program_space;
3629 sal.pc = func_addr;
3630 sal.section = section;
3631 }
3632
3633 if (funfirstline)
3634 skip_prologue_sal (&sal);
3635
3636 return sal;
3637 }
3638
3639 /* See symtab.h. */
3640
3641 symtab_and_line
3642 find_function_start_sal (CORE_ADDR func_addr, obj_section *section,
3643 bool funfirstline)
3644 {
3645 symtab_and_line sal
3646 = find_function_start_sal_1 (func_addr, section, funfirstline);
3647
3648 /* find_function_start_sal_1 does a linetable search, so it finds
3649 the symtab and linenumber, but not a symbol. Fill in the
3650 function symbol too. */
3651 sal.symbol = find_pc_sect_containing_function (sal.pc, sal.section);
3652
3653 return sal;
3654 }
3655
3656 /* See symtab.h. */
3657
3658 symtab_and_line
3659 find_function_start_sal (symbol *sym, bool funfirstline)
3660 {
3661 fixup_symbol_section (sym, NULL);
3662 symtab_and_line sal
3663 = find_function_start_sal_1 (BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)),
3664 SYMBOL_OBJ_SECTION (symbol_objfile (sym), sym),
3665 funfirstline);
3666 sal.symbol = sym;
3667 return sal;
3668 }
3669
3670
3671 /* Given a function start address FUNC_ADDR and SYMTAB, find the first
3672 address for that function that has an entry in SYMTAB's line info
3673 table. If such an entry cannot be found, return FUNC_ADDR
3674 unaltered. */
3675
3676 static CORE_ADDR
3677 skip_prologue_using_lineinfo (CORE_ADDR func_addr, struct symtab *symtab)
3678 {
3679 CORE_ADDR func_start, func_end;
3680 struct linetable *l;
3681 int i;
3682
3683 /* Give up if this symbol has no lineinfo table. */
3684 l = SYMTAB_LINETABLE (symtab);
3685 if (l == NULL)
3686 return func_addr;
3687
3688 /* Get the range for the function's PC values, or give up if we
3689 cannot, for some reason. */
3690 if (!find_pc_partial_function (func_addr, NULL, &func_start, &func_end))
3691 return func_addr;
3692
3693 /* Linetable entries are ordered by PC values, see the commentary in
3694 symtab.h where `struct linetable' is defined. Thus, the first
3695 entry whose PC is in the range [FUNC_START..FUNC_END[ is the
3696 address we are looking for. */
3697 for (i = 0; i < l->nitems; i++)
3698 {
3699 struct linetable_entry *item = &(l->item[i]);
3700
3701 /* Don't use line numbers of zero, they mark special entries in
3702 the table. See the commentary on symtab.h before the
3703 definition of struct linetable. */
3704 if (item->line > 0 && func_start <= item->pc && item->pc < func_end)
3705 return item->pc;
3706 }
3707
3708 return func_addr;
3709 }
3710
3711 /* Adjust SAL to the first instruction past the function prologue.
3712 If the PC was explicitly specified, the SAL is not changed.
3713 If the line number was explicitly specified then the SAL can still be
3714 updated, unless the language for SAL is assembler, in which case the SAL
3715 will be left unchanged.
3716 If SAL is already past the prologue, then do nothing. */
3717
3718 void
3719 skip_prologue_sal (struct symtab_and_line *sal)
3720 {
3721 struct symbol *sym;
3722 struct symtab_and_line start_sal;
3723 CORE_ADDR pc, saved_pc;
3724 struct obj_section *section;
3725 const char *name;
3726 struct objfile *objfile;
3727 struct gdbarch *gdbarch;
3728 const struct block *b, *function_block;
3729 int force_skip, skip;
3730
3731 /* Do not change the SAL if PC was specified explicitly. */
3732 if (sal->explicit_pc)
3733 return;
3734
3735 /* In assembly code, if the user asks for a specific line then we should
3736 not adjust the SAL. The user already has instruction level
3737 visibility in this case, so selecting a line other than one requested
3738 is likely to be the wrong choice. */
3739 if (sal->symtab != nullptr
3740 && sal->explicit_line
3741 && SYMTAB_LANGUAGE (sal->symtab) == language_asm)
3742 return;
3743
3744 scoped_restore_current_pspace_and_thread restore_pspace_thread;
3745
3746 switch_to_program_space_and_thread (sal->pspace);
3747
3748 sym = find_pc_sect_function (sal->pc, sal->section);
3749 if (sym != NULL)
3750 {
3751 fixup_symbol_section (sym, NULL);
3752
3753 objfile = symbol_objfile (sym);
3754 pc = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym));
3755 section = SYMBOL_OBJ_SECTION (objfile, sym);
3756 name = sym->linkage_name ();
3757 }
3758 else
3759 {
3760 struct bound_minimal_symbol msymbol
3761 = lookup_minimal_symbol_by_pc_section (sal->pc, sal->section);
3762
3763 if (msymbol.minsym == NULL)
3764 return;
3765
3766 objfile = msymbol.objfile;
3767 pc = BMSYMBOL_VALUE_ADDRESS (msymbol);
3768 section = MSYMBOL_OBJ_SECTION (objfile, msymbol.minsym);
3769 name = msymbol.minsym->linkage_name ();
3770 }
3771
3772 gdbarch = get_objfile_arch (objfile);
3773
3774 /* Process the prologue in two passes. In the first pass try to skip the
3775 prologue (SKIP is true) and verify there is a real need for it (indicated
3776 by FORCE_SKIP). If no such reason was found run a second pass where the
3777 prologue is not skipped (SKIP is false). */
3778
3779 skip = 1;
3780 force_skip = 1;
3781
3782 /* Be conservative - allow direct PC (without skipping prologue) only if we
3783 have proven the CU (Compilation Unit) supports it. sal->SYMTAB does not
3784 have to be set by the caller so we use SYM instead. */
3785 if (sym != NULL
3786 && COMPUNIT_LOCATIONS_VALID (SYMTAB_COMPUNIT (symbol_symtab (sym))))
3787 force_skip = 0;
3788
3789 saved_pc = pc;
3790 do
3791 {
3792 pc = saved_pc;
3793
3794 /* If the function is in an unmapped overlay, use its unmapped LMA address,
3795 so that gdbarch_skip_prologue has something unique to work on. */
3796 if (section_is_overlay (section) && !section_is_mapped (section))
3797 pc = overlay_unmapped_address (pc, section);
3798
3799 /* Skip "first line" of function (which is actually its prologue). */
3800 pc += gdbarch_deprecated_function_start_offset (gdbarch);
3801 if (gdbarch_skip_entrypoint_p (gdbarch))
3802 pc = gdbarch_skip_entrypoint (gdbarch, pc);
3803 if (skip)
3804 pc = gdbarch_skip_prologue_noexcept (gdbarch, pc);
3805
3806 /* For overlays, map pc back into its mapped VMA range. */
3807 pc = overlay_mapped_address (pc, section);
3808
3809 /* Calculate line number. */
3810 start_sal = find_pc_sect_line (pc, section, 0);
3811
3812 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
3813 line is still part of the same function. */
3814 if (skip && start_sal.pc != pc
3815 && (sym ? (BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)) <= start_sal.end
3816 && start_sal.end < BLOCK_END (SYMBOL_BLOCK_VALUE (sym)))
3817 : (lookup_minimal_symbol_by_pc_section (start_sal.end, section).minsym
3818 == lookup_minimal_symbol_by_pc_section (pc, section).minsym)))
3819 {
3820 /* First pc of next line */
3821 pc = start_sal.end;
3822 /* Recalculate the line number (might not be N+1). */
3823 start_sal = find_pc_sect_line (pc, section, 0);
3824 }
3825
3826 /* On targets with executable formats that don't have a concept of
3827 constructors (ELF with .init has, PE doesn't), gcc emits a call
3828 to `__main' in `main' between the prologue and before user
3829 code. */
3830 if (gdbarch_skip_main_prologue_p (gdbarch)
3831 && name && strcmp_iw (name, "main") == 0)
3832 {
3833 pc = gdbarch_skip_main_prologue (gdbarch, pc);
3834 /* Recalculate the line number (might not be N+1). */
3835 start_sal = find_pc_sect_line (pc, section, 0);
3836 force_skip = 1;
3837 }
3838 }
3839 while (!force_skip && skip--);
3840
3841 /* If we still don't have a valid source line, try to find the first
3842 PC in the lineinfo table that belongs to the same function. This
3843 happens with COFF debug info, which does not seem to have an
3844 entry in lineinfo table for the code after the prologue which has
3845 no direct relation to source. For example, this was found to be
3846 the case with the DJGPP target using "gcc -gcoff" when the
3847 compiler inserted code after the prologue to make sure the stack
3848 is aligned. */
3849 if (!force_skip && sym && start_sal.symtab == NULL)
3850 {
3851 pc = skip_prologue_using_lineinfo (pc, symbol_symtab (sym));
3852 /* Recalculate the line number. */
3853 start_sal = find_pc_sect_line (pc, section, 0);
3854 }
3855
3856 /* If we're already past the prologue, leave SAL unchanged. Otherwise
3857 forward SAL to the end of the prologue. */
3858 if (sal->pc >= pc)
3859 return;
3860
3861 sal->pc = pc;
3862 sal->section = section;
3863 sal->symtab = start_sal.symtab;
3864 sal->line = start_sal.line;
3865 sal->end = start_sal.end;
3866
3867 /* Check if we are now inside an inlined function. If we can,
3868 use the call site of the function instead. */
3869 b = block_for_pc_sect (sal->pc, sal->section);
3870 function_block = NULL;
3871 while (b != NULL)
3872 {
3873 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
3874 function_block = b;
3875 else if (BLOCK_FUNCTION (b) != NULL)
3876 break;
3877 b = BLOCK_SUPERBLOCK (b);
3878 }
3879 if (function_block != NULL
3880 && SYMBOL_LINE (BLOCK_FUNCTION (function_block)) != 0)
3881 {
3882 sal->line = SYMBOL_LINE (BLOCK_FUNCTION (function_block));
3883 sal->symtab = symbol_symtab (BLOCK_FUNCTION (function_block));
3884 }
3885 }
3886
3887 /* Given PC at the function's start address, attempt to find the
3888 prologue end using SAL information. Return zero if the skip fails.
3889
3890 A non-optimized prologue traditionally has one SAL for the function
3891 and a second for the function body. A single line function has
3892 them both pointing at the same line.
3893
3894 An optimized prologue is similar but the prologue may contain
3895 instructions (SALs) from the instruction body. Need to skip those
3896 while not getting into the function body.
3897
3898 The functions end point and an increasing SAL line are used as
3899 indicators of the prologue's endpoint.
3900
3901 This code is based on the function refine_prologue_limit
3902 (found in ia64). */
3903
3904 CORE_ADDR
3905 skip_prologue_using_sal (struct gdbarch *gdbarch, CORE_ADDR func_addr)
3906 {
3907 struct symtab_and_line prologue_sal;
3908 CORE_ADDR start_pc;
3909 CORE_ADDR end_pc;
3910 const struct block *bl;
3911
3912 /* Get an initial range for the function. */
3913 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
3914 start_pc += gdbarch_deprecated_function_start_offset (gdbarch);
3915
3916 prologue_sal = find_pc_line (start_pc, 0);
3917 if (prologue_sal.line != 0)
3918 {
3919 /* For languages other than assembly, treat two consecutive line
3920 entries at the same address as a zero-instruction prologue.
3921 The GNU assembler emits separate line notes for each instruction
3922 in a multi-instruction macro, but compilers generally will not
3923 do this. */
3924 if (prologue_sal.symtab->language != language_asm)
3925 {
3926 struct linetable *linetable = SYMTAB_LINETABLE (prologue_sal.symtab);
3927 int idx = 0;
3928
3929 /* Skip any earlier lines, and any end-of-sequence marker
3930 from a previous function. */
3931 while (linetable->item[idx].pc != prologue_sal.pc
3932 || linetable->item[idx].line == 0)
3933 idx++;
3934
3935 if (idx+1 < linetable->nitems
3936 && linetable->item[idx+1].line != 0
3937 && linetable->item[idx+1].pc == start_pc)
3938 return start_pc;
3939 }
3940
3941 /* If there is only one sal that covers the entire function,
3942 then it is probably a single line function, like
3943 "foo(){}". */
3944 if (prologue_sal.end >= end_pc)
3945 return 0;
3946
3947 while (prologue_sal.end < end_pc)
3948 {
3949 struct symtab_and_line sal;
3950
3951 sal = find_pc_line (prologue_sal.end, 0);
3952 if (sal.line == 0)
3953 break;
3954 /* Assume that a consecutive SAL for the same (or larger)
3955 line mark the prologue -> body transition. */
3956 if (sal.line >= prologue_sal.line)
3957 break;
3958 /* Likewise if we are in a different symtab altogether
3959 (e.g. within a file included via #include).  */
3960 if (sal.symtab != prologue_sal.symtab)
3961 break;
3962
3963 /* The line number is smaller. Check that it's from the
3964 same function, not something inlined. If it's inlined,
3965 then there is no point comparing the line numbers. */
3966 bl = block_for_pc (prologue_sal.end);
3967 while (bl)
3968 {
3969 if (block_inlined_p (bl))
3970 break;
3971 if (BLOCK_FUNCTION (bl))
3972 {
3973 bl = NULL;
3974 break;
3975 }
3976 bl = BLOCK_SUPERBLOCK (bl);
3977 }
3978 if (bl != NULL)
3979 break;
3980
3981 /* The case in which compiler's optimizer/scheduler has
3982 moved instructions into the prologue. We look ahead in
3983 the function looking for address ranges whose
3984 corresponding line number is less the first one that we
3985 found for the function. This is more conservative then
3986 refine_prologue_limit which scans a large number of SALs
3987 looking for any in the prologue. */
3988 prologue_sal = sal;
3989 }
3990 }
3991
3992 if (prologue_sal.end < end_pc)
3993 /* Return the end of this line, or zero if we could not find a
3994 line. */
3995 return prologue_sal.end;
3996 else
3997 /* Don't return END_PC, which is past the end of the function. */
3998 return prologue_sal.pc;
3999 }
4000
4001 /* See symtab.h. */
4002
4003 symbol *
4004 find_function_alias_target (bound_minimal_symbol msymbol)
4005 {
4006 CORE_ADDR func_addr;
4007 if (!msymbol_is_function (msymbol.objfile, msymbol.minsym, &func_addr))
4008 return NULL;
4009
4010 symbol *sym = find_pc_function (func_addr);
4011 if (sym != NULL
4012 && SYMBOL_CLASS (sym) == LOC_BLOCK
4013 && BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)) == func_addr)
4014 return sym;
4015
4016 return NULL;
4017 }
4018
4019 \f
4020 /* If P is of the form "operator[ \t]+..." where `...' is
4021 some legitimate operator text, return a pointer to the
4022 beginning of the substring of the operator text.
4023 Otherwise, return "". */
4024
4025 static const char *
4026 operator_chars (const char *p, const char **end)
4027 {
4028 *end = "";
4029 if (!startswith (p, CP_OPERATOR_STR))
4030 return *end;
4031 p += CP_OPERATOR_LEN;
4032
4033 /* Don't get faked out by `operator' being part of a longer
4034 identifier. */
4035 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
4036 return *end;
4037
4038 /* Allow some whitespace between `operator' and the operator symbol. */
4039 while (*p == ' ' || *p == '\t')
4040 p++;
4041
4042 /* Recognize 'operator TYPENAME'. */
4043
4044 if (isalpha (*p) || *p == '_' || *p == '$')
4045 {
4046 const char *q = p + 1;
4047
4048 while (isalnum (*q) || *q == '_' || *q == '$')
4049 q++;
4050 *end = q;
4051 return p;
4052 }
4053
4054 while (*p)
4055 switch (*p)
4056 {
4057 case '\\': /* regexp quoting */
4058 if (p[1] == '*')
4059 {
4060 if (p[2] == '=') /* 'operator\*=' */
4061 *end = p + 3;
4062 else /* 'operator\*' */
4063 *end = p + 2;
4064 return p;
4065 }
4066 else if (p[1] == '[')
4067 {
4068 if (p[2] == ']')
4069 error (_("mismatched quoting on brackets, "
4070 "try 'operator\\[\\]'"));
4071 else if (p[2] == '\\' && p[3] == ']')
4072 {
4073 *end = p + 4; /* 'operator\[\]' */
4074 return p;
4075 }
4076 else
4077 error (_("nothing is allowed between '[' and ']'"));
4078 }
4079 else
4080 {
4081 /* Gratuitous quote: skip it and move on. */
4082 p++;
4083 continue;
4084 }
4085 break;
4086 case '!':
4087 case '=':
4088 case '*':
4089 case '/':
4090 case '%':
4091 case '^':
4092 if (p[1] == '=')
4093 *end = p + 2;
4094 else
4095 *end = p + 1;
4096 return p;
4097 case '<':
4098 case '>':
4099 case '+':
4100 case '-':
4101 case '&':
4102 case '|':
4103 if (p[0] == '-' && p[1] == '>')
4104 {
4105 /* Struct pointer member operator 'operator->'. */
4106 if (p[2] == '*')
4107 {
4108 *end = p + 3; /* 'operator->*' */
4109 return p;
4110 }
4111 else if (p[2] == '\\')
4112 {
4113 *end = p + 4; /* Hopefully 'operator->\*' */
4114 return p;
4115 }
4116 else
4117 {
4118 *end = p + 2; /* 'operator->' */
4119 return p;
4120 }
4121 }
4122 if (p[1] == '=' || p[1] == p[0])
4123 *end = p + 2;
4124 else
4125 *end = p + 1;
4126 return p;
4127 case '~':
4128 case ',':
4129 *end = p + 1;
4130 return p;
4131 case '(':
4132 if (p[1] != ')')
4133 error (_("`operator ()' must be specified "
4134 "without whitespace in `()'"));
4135 *end = p + 2;
4136 return p;
4137 case '?':
4138 if (p[1] != ':')
4139 error (_("`operator ?:' must be specified "
4140 "without whitespace in `?:'"));
4141 *end = p + 2;
4142 return p;
4143 case '[':
4144 if (p[1] != ']')
4145 error (_("`operator []' must be specified "
4146 "without whitespace in `[]'"));
4147 *end = p + 2;
4148 return p;
4149 default:
4150 error (_("`operator %s' not supported"), p);
4151 break;
4152 }
4153
4154 *end = "";
4155 return *end;
4156 }
4157 \f
4158
4159 /* What part to match in a file name. */
4160
4161 struct filename_partial_match_opts
4162 {
4163 /* Only match the directory name part. */
4164 bool dirname = false;
4165
4166 /* Only match the basename part. */
4167 bool basename = false;
4168 };
4169
4170 /* Data structure to maintain printing state for output_source_filename. */
4171
4172 struct output_source_filename_data
4173 {
4174 /* Output only filenames matching REGEXP. */
4175 std::string regexp;
4176 gdb::optional<compiled_regex> c_regexp;
4177 /* Possibly only match a part of the filename. */
4178 filename_partial_match_opts partial_match;
4179
4180
4181 /* Cache of what we've seen so far. */
4182 struct filename_seen_cache *filename_seen_cache;
4183
4184 /* Flag of whether we're printing the first one. */
4185 int first;
4186 };
4187
4188 /* Slave routine for sources_info. Force line breaks at ,'s.
4189 NAME is the name to print.
4190 DATA contains the state for printing and watching for duplicates. */
4191
4192 static void
4193 output_source_filename (const char *name,
4194 struct output_source_filename_data *data)
4195 {
4196 /* Since a single source file can result in several partial symbol
4197 tables, we need to avoid printing it more than once. Note: if
4198 some of the psymtabs are read in and some are not, it gets
4199 printed both under "Source files for which symbols have been
4200 read" and "Source files for which symbols will be read in on
4201 demand". I consider this a reasonable way to deal with the
4202 situation. I'm not sure whether this can also happen for
4203 symtabs; it doesn't hurt to check. */
4204
4205 /* Was NAME already seen? */
4206 if (data->filename_seen_cache->seen (name))
4207 {
4208 /* Yes; don't print it again. */
4209 return;
4210 }
4211
4212 /* Does it match data->regexp? */
4213 if (data->c_regexp.has_value ())
4214 {
4215 const char *to_match;
4216 std::string dirname;
4217
4218 if (data->partial_match.dirname)
4219 {
4220 dirname = ldirname (name);
4221 to_match = dirname.c_str ();
4222 }
4223 else if (data->partial_match.basename)
4224 to_match = lbasename (name);
4225 else
4226 to_match = name;
4227
4228 if (data->c_regexp->exec (to_match, 0, NULL, 0) != 0)
4229 return;
4230 }
4231
4232 /* Print it and reset *FIRST. */
4233 if (! data->first)
4234 printf_filtered (", ");
4235 data->first = 0;
4236
4237 wrap_here ("");
4238 fputs_styled (name, file_name_style.style (), gdb_stdout);
4239 }
4240
4241 /* A callback for map_partial_symbol_filenames. */
4242
4243 static void
4244 output_partial_symbol_filename (const char *filename, const char *fullname,
4245 void *data)
4246 {
4247 output_source_filename (fullname ? fullname : filename,
4248 (struct output_source_filename_data *) data);
4249 }
4250
4251 using isrc_flag_option_def
4252 = gdb::option::flag_option_def<filename_partial_match_opts>;
4253
4254 static const gdb::option::option_def info_sources_option_defs[] = {
4255
4256 isrc_flag_option_def {
4257 "dirname",
4258 [] (filename_partial_match_opts *opts) { return &opts->dirname; },
4259 N_("Show only the files having a dirname matching REGEXP."),
4260 },
4261
4262 isrc_flag_option_def {
4263 "basename",
4264 [] (filename_partial_match_opts *opts) { return &opts->basename; },
4265 N_("Show only the files having a basename matching REGEXP."),
4266 },
4267
4268 };
4269
4270 /* Create an option_def_group for the "info sources" options, with
4271 ISRC_OPTS as context. */
4272
4273 static inline gdb::option::option_def_group
4274 make_info_sources_options_def_group (filename_partial_match_opts *isrc_opts)
4275 {
4276 return {{info_sources_option_defs}, isrc_opts};
4277 }
4278
4279 /* Prints the header message for the source files that will be printed
4280 with the matching info present in DATA. SYMBOL_MSG is a message
4281 that tells what will or has been done with the symbols of the
4282 matching source files. */
4283
4284 static void
4285 print_info_sources_header (const char *symbol_msg,
4286 const struct output_source_filename_data *data)
4287 {
4288 puts_filtered (symbol_msg);
4289 if (!data->regexp.empty ())
4290 {
4291 if (data->partial_match.dirname)
4292 printf_filtered (_("(dirname matching regular expression \"%s\")"),
4293 data->regexp.c_str ());
4294 else if (data->partial_match.basename)
4295 printf_filtered (_("(basename matching regular expression \"%s\")"),
4296 data->regexp.c_str ());
4297 else
4298 printf_filtered (_("(filename matching regular expression \"%s\")"),
4299 data->regexp.c_str ());
4300 }
4301 puts_filtered ("\n");
4302 }
4303
4304 /* Completer for "info sources". */
4305
4306 static void
4307 info_sources_command_completer (cmd_list_element *ignore,
4308 completion_tracker &tracker,
4309 const char *text, const char *word)
4310 {
4311 const auto group = make_info_sources_options_def_group (nullptr);
4312 if (gdb::option::complete_options
4313 (tracker, &text, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, group))
4314 return;
4315 }
4316
4317 static void
4318 info_sources_command (const char *args, int from_tty)
4319 {
4320 struct output_source_filename_data data;
4321
4322 if (!have_full_symbols () && !have_partial_symbols ())
4323 {
4324 error (_("No symbol table is loaded. Use the \"file\" command."));
4325 }
4326
4327 filename_seen_cache filenames_seen;
4328
4329 auto group = make_info_sources_options_def_group (&data.partial_match);
4330
4331 gdb::option::process_options
4332 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_ERROR, group);
4333
4334 if (args != NULL && *args != '\000')
4335 data.regexp = args;
4336
4337 data.filename_seen_cache = &filenames_seen;
4338 data.first = 1;
4339
4340 if (data.partial_match.dirname && data.partial_match.basename)
4341 error (_("You cannot give both -basename and -dirname to 'info sources'."));
4342 if ((data.partial_match.dirname || data.partial_match.basename)
4343 && data.regexp.empty ())
4344 error (_("Missing REGEXP for 'info sources'."));
4345
4346 if (data.regexp.empty ())
4347 data.c_regexp.reset ();
4348 else
4349 {
4350 int cflags = REG_NOSUB;
4351 #ifdef HAVE_CASE_INSENSITIVE_FILE_SYSTEM
4352 cflags |= REG_ICASE;
4353 #endif
4354 data.c_regexp.emplace (data.regexp.c_str (), cflags,
4355 _("Invalid regexp"));
4356 }
4357
4358 print_info_sources_header
4359 (_("Source files for which symbols have been read in:\n"), &data);
4360
4361 for (objfile *objfile : current_program_space->objfiles ())
4362 {
4363 for (compunit_symtab *cu : objfile->compunits ())
4364 {
4365 for (symtab *s : compunit_filetabs (cu))
4366 {
4367 const char *fullname = symtab_to_fullname (s);
4368
4369 output_source_filename (fullname, &data);
4370 }
4371 }
4372 }
4373 printf_filtered ("\n\n");
4374
4375 print_info_sources_header
4376 (_("Source files for which symbols will be read in on demand:\n"), &data);
4377
4378 filenames_seen.clear ();
4379 data.first = 1;
4380 map_symbol_filenames (output_partial_symbol_filename, &data,
4381 1 /*need_fullname*/);
4382 printf_filtered ("\n");
4383 }
4384
4385 /* Compare FILE against all the entries of FILENAMES. If BASENAMES is
4386 true compare only lbasename of FILENAMES. */
4387
4388 static bool
4389 file_matches (const char *file, const std::vector<const char *> &filenames,
4390 bool basenames)
4391 {
4392 if (filenames.empty ())
4393 return true;
4394
4395 for (const char *name : filenames)
4396 {
4397 name = (basenames ? lbasename (name) : name);
4398 if (compare_filenames_for_search (file, name))
4399 return true;
4400 }
4401
4402 return false;
4403 }
4404
4405 /* Helper function for std::sort on symbol_search objects. Can only sort
4406 symbols, not minimal symbols. */
4407
4408 int
4409 symbol_search::compare_search_syms (const symbol_search &sym_a,
4410 const symbol_search &sym_b)
4411 {
4412 int c;
4413
4414 c = FILENAME_CMP (symbol_symtab (sym_a.symbol)->filename,
4415 symbol_symtab (sym_b.symbol)->filename);
4416 if (c != 0)
4417 return c;
4418
4419 if (sym_a.block != sym_b.block)
4420 return sym_a.block - sym_b.block;
4421
4422 return strcmp (sym_a.symbol->print_name (), sym_b.symbol->print_name ());
4423 }
4424
4425 /* Returns true if the type_name of symbol_type of SYM matches TREG.
4426 If SYM has no symbol_type or symbol_name, returns false. */
4427
4428 bool
4429 treg_matches_sym_type_name (const compiled_regex &treg,
4430 const struct symbol *sym)
4431 {
4432 struct type *sym_type;
4433 std::string printed_sym_type_name;
4434
4435 if (symbol_lookup_debug > 1)
4436 {
4437 fprintf_unfiltered (gdb_stdlog,
4438 "treg_matches_sym_type_name\n sym %s\n",
4439 sym->natural_name ());
4440 }
4441
4442 sym_type = SYMBOL_TYPE (sym);
4443 if (sym_type == NULL)
4444 return false;
4445
4446 {
4447 scoped_switch_to_sym_language_if_auto l (sym);
4448
4449 printed_sym_type_name = type_to_string (sym_type);
4450 }
4451
4452
4453 if (symbol_lookup_debug > 1)
4454 {
4455 fprintf_unfiltered (gdb_stdlog,
4456 " sym_type_name %s\n",
4457 printed_sym_type_name.c_str ());
4458 }
4459
4460
4461 if (printed_sym_type_name.empty ())
4462 return false;
4463
4464 return treg.exec (printed_sym_type_name.c_str (), 0, NULL, 0) == 0;
4465 }
4466
4467 /* See symtab.h. */
4468
4469 bool
4470 global_symbol_searcher::is_suitable_msymbol
4471 (const enum search_domain kind, const minimal_symbol *msymbol)
4472 {
4473 switch (MSYMBOL_TYPE (msymbol))
4474 {
4475 case mst_data:
4476 case mst_bss:
4477 case mst_file_data:
4478 case mst_file_bss:
4479 return kind == VARIABLES_DOMAIN;
4480 case mst_text:
4481 case mst_file_text:
4482 case mst_solib_trampoline:
4483 case mst_text_gnu_ifunc:
4484 return kind == FUNCTIONS_DOMAIN;
4485 default:
4486 return false;
4487 }
4488 }
4489
4490 /* See symtab.h. */
4491
4492 bool
4493 global_symbol_searcher::expand_symtabs
4494 (objfile *objfile, const gdb::optional<compiled_regex> &preg) const
4495 {
4496 enum search_domain kind = m_kind;
4497 bool found_msymbol = false;
4498
4499 if (objfile->sf)
4500 objfile->sf->qf->expand_symtabs_matching
4501 (objfile,
4502 [&] (const char *filename, bool basenames)
4503 {
4504 return file_matches (filename, filenames, basenames);
4505 },
4506 lookup_name_info::match_any (),
4507 [&] (const char *symname)
4508 {
4509 return (!preg.has_value ()
4510 || preg->exec (symname, 0, NULL, 0) == 0);
4511 },
4512 NULL,
4513 kind);
4514
4515 /* Here, we search through the minimal symbol tables for functions and
4516 variables that match, and force their symbols to be read. This is in
4517 particular necessary for demangled variable names, which are no longer
4518 put into the partial symbol tables. The symbol will then be found
4519 during the scan of symtabs later.
4520
4521 For functions, find_pc_symtab should succeed if we have debug info for
4522 the function, for variables we have to call
4523 lookup_symbol_in_objfile_from_linkage_name to determine if the
4524 variable has debug info. If the lookup fails, set found_msymbol so
4525 that we will rescan to print any matching symbols without debug info.
4526 We only search the objfile the msymbol came from, we no longer search
4527 all objfiles. In large programs (1000s of shared libs) searching all
4528 objfiles is not worth the pain. */
4529 if (filenames.empty ()
4530 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
4531 {
4532 for (minimal_symbol *msymbol : objfile->msymbols ())
4533 {
4534 QUIT;
4535
4536 if (msymbol->created_by_gdb)
4537 continue;
4538
4539 if (is_suitable_msymbol (kind, msymbol))
4540 {
4541 if (!preg.has_value ()
4542 || preg->exec (msymbol->natural_name (), 0,
4543 NULL, 0) == 0)
4544 {
4545 /* An important side-effect of these lookup functions is
4546 to expand the symbol table if msymbol is found, later
4547 in the process we will add matching symbols or
4548 msymbols to the results list, and that requires that
4549 the symbols tables are expanded. */
4550 if (kind == FUNCTIONS_DOMAIN
4551 ? (find_pc_compunit_symtab
4552 (MSYMBOL_VALUE_ADDRESS (objfile, msymbol))
4553 == NULL)
4554 : (lookup_symbol_in_objfile_from_linkage_name
4555 (objfile, msymbol->linkage_name (),
4556 VAR_DOMAIN)
4557 .symbol == NULL))
4558 found_msymbol = true;
4559 }
4560 }
4561 }
4562 }
4563
4564 return found_msymbol;
4565 }
4566
4567 /* See symtab.h. */
4568
4569 bool
4570 global_symbol_searcher::add_matching_symbols
4571 (objfile *objfile,
4572 const gdb::optional<compiled_regex> &preg,
4573 const gdb::optional<compiled_regex> &treg,
4574 std::set<symbol_search> *result_set) const
4575 {
4576 enum search_domain kind = m_kind;
4577
4578 /* Add matching symbols (if not already present). */
4579 for (compunit_symtab *cust : objfile->compunits ())
4580 {
4581 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (cust);
4582
4583 for (block_enum block : { GLOBAL_BLOCK, STATIC_BLOCK })
4584 {
4585 struct block_iterator iter;
4586 struct symbol *sym;
4587 const struct block *b = BLOCKVECTOR_BLOCK (bv, block);
4588
4589 ALL_BLOCK_SYMBOLS (b, iter, sym)
4590 {
4591 struct symtab *real_symtab = symbol_symtab (sym);
4592
4593 QUIT;
4594
4595 /* Check first sole REAL_SYMTAB->FILENAME. It does
4596 not need to be a substring of symtab_to_fullname as
4597 it may contain "./" etc. */
4598 if ((file_matches (real_symtab->filename, filenames, false)
4599 || ((basenames_may_differ
4600 || file_matches (lbasename (real_symtab->filename),
4601 filenames, true))
4602 && file_matches (symtab_to_fullname (real_symtab),
4603 filenames, false)))
4604 && ((!preg.has_value ()
4605 || preg->exec (sym->natural_name (), 0,
4606 NULL, 0) == 0)
4607 && ((kind == VARIABLES_DOMAIN
4608 && SYMBOL_CLASS (sym) != LOC_TYPEDEF
4609 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
4610 && SYMBOL_CLASS (sym) != LOC_BLOCK
4611 /* LOC_CONST can be used for more than
4612 just enums, e.g., c++ static const
4613 members. We only want to skip enums
4614 here. */
4615 && !(SYMBOL_CLASS (sym) == LOC_CONST
4616 && (TYPE_CODE (SYMBOL_TYPE (sym))
4617 == TYPE_CODE_ENUM))
4618 && (!treg.has_value ()
4619 || treg_matches_sym_type_name (*treg, sym)))
4620 || (kind == FUNCTIONS_DOMAIN
4621 && SYMBOL_CLASS (sym) == LOC_BLOCK
4622 && (!treg.has_value ()
4623 || treg_matches_sym_type_name (*treg,
4624 sym)))
4625 || (kind == TYPES_DOMAIN
4626 && SYMBOL_CLASS (sym) == LOC_TYPEDEF
4627 && SYMBOL_DOMAIN (sym) != MODULE_DOMAIN)
4628 || (kind == MODULES_DOMAIN
4629 && SYMBOL_DOMAIN (sym) == MODULE_DOMAIN
4630 && SYMBOL_LINE (sym) != 0))))
4631 {
4632 if (result_set->size () < m_max_search_results)
4633 {
4634 /* Match, insert if not already in the results. */
4635 symbol_search ss (block, sym);
4636 if (result_set->find (ss) == result_set->end ())
4637 result_set->insert (ss);
4638 }
4639 else
4640 return false;
4641 }
4642 }
4643 }
4644 }
4645
4646 return true;
4647 }
4648
4649 /* See symtab.h. */
4650
4651 bool
4652 global_symbol_searcher::add_matching_msymbols
4653 (objfile *objfile, const gdb::optional<compiled_regex> &preg,
4654 std::vector<symbol_search> *results) const
4655 {
4656 enum search_domain kind = m_kind;
4657
4658 for (minimal_symbol *msymbol : objfile->msymbols ())
4659 {
4660 QUIT;
4661
4662 if (msymbol->created_by_gdb)
4663 continue;
4664
4665 if (is_suitable_msymbol (kind, msymbol))
4666 {
4667 if (!preg.has_value ()
4668 || preg->exec (msymbol->natural_name (), 0,
4669 NULL, 0) == 0)
4670 {
4671 /* For functions we can do a quick check of whether the
4672 symbol might be found via find_pc_symtab. */
4673 if (kind != FUNCTIONS_DOMAIN
4674 || (find_pc_compunit_symtab
4675 (MSYMBOL_VALUE_ADDRESS (objfile, msymbol))
4676 == NULL))
4677 {
4678 if (lookup_symbol_in_objfile_from_linkage_name
4679 (objfile, msymbol->linkage_name (),
4680 VAR_DOMAIN).symbol == NULL)
4681 {
4682 /* Matching msymbol, add it to the results list. */
4683 if (results->size () < m_max_search_results)
4684 results->emplace_back (GLOBAL_BLOCK, msymbol, objfile);
4685 else
4686 return false;
4687 }
4688 }
4689 }
4690 }
4691 }
4692
4693 return true;
4694 }
4695
4696 /* See symtab.h. */
4697
4698 std::vector<symbol_search>
4699 global_symbol_searcher::search () const
4700 {
4701 gdb::optional<compiled_regex> preg;
4702 gdb::optional<compiled_regex> treg;
4703
4704 gdb_assert (m_kind != ALL_DOMAIN);
4705
4706 if (m_symbol_name_regexp != NULL)
4707 {
4708 const char *symbol_name_regexp = m_symbol_name_regexp;
4709
4710 /* Make sure spacing is right for C++ operators.
4711 This is just a courtesy to make the matching less sensitive
4712 to how many spaces the user leaves between 'operator'
4713 and <TYPENAME> or <OPERATOR>. */
4714 const char *opend;
4715 const char *opname = operator_chars (symbol_name_regexp, &opend);
4716
4717 if (*opname)
4718 {
4719 int fix = -1; /* -1 means ok; otherwise number of
4720 spaces needed. */
4721
4722 if (isalpha (*opname) || *opname == '_' || *opname == '$')
4723 {
4724 /* There should 1 space between 'operator' and 'TYPENAME'. */
4725 if (opname[-1] != ' ' || opname[-2] == ' ')
4726 fix = 1;
4727 }
4728 else
4729 {
4730 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
4731 if (opname[-1] == ' ')
4732 fix = 0;
4733 }
4734 /* If wrong number of spaces, fix it. */
4735 if (fix >= 0)
4736 {
4737 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
4738
4739 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
4740 symbol_name_regexp = tmp;
4741 }
4742 }
4743
4744 int cflags = REG_NOSUB | (case_sensitivity == case_sensitive_off
4745 ? REG_ICASE : 0);
4746 preg.emplace (symbol_name_regexp, cflags,
4747 _("Invalid regexp"));
4748 }
4749
4750 if (m_symbol_type_regexp != NULL)
4751 {
4752 int cflags = REG_NOSUB | (case_sensitivity == case_sensitive_off
4753 ? REG_ICASE : 0);
4754 treg.emplace (m_symbol_type_regexp, cflags,
4755 _("Invalid regexp"));
4756 }
4757
4758 bool found_msymbol = false;
4759 std::set<symbol_search> result_set;
4760 for (objfile *objfile : current_program_space->objfiles ())
4761 {
4762 /* Expand symtabs within objfile that possibly contain matching
4763 symbols. */
4764 found_msymbol |= expand_symtabs (objfile, preg);
4765
4766 /* Find matching symbols within OBJFILE and add them in to the
4767 RESULT_SET set. Use a set here so that we can easily detect
4768 duplicates as we go, and can therefore track how many unique
4769 matches we have found so far. */
4770 if (!add_matching_symbols (objfile, preg, treg, &result_set))
4771 break;
4772 }
4773
4774 /* Convert the result set into a sorted result list, as std::set is
4775 defined to be sorted then no explicit call to std::sort is needed. */
4776 std::vector<symbol_search> result (result_set.begin (), result_set.end ());
4777
4778 /* If there are no debug symbols, then add matching minsyms. But if the
4779 user wants to see symbols matching a type regexp, then never give a
4780 minimal symbol, as we assume that a minimal symbol does not have a
4781 type. */
4782 if ((found_msymbol || (filenames.empty () && m_kind == VARIABLES_DOMAIN))
4783 && !m_exclude_minsyms
4784 && !treg.has_value ())
4785 {
4786 gdb_assert (m_kind == VARIABLES_DOMAIN || m_kind == FUNCTIONS_DOMAIN);
4787 for (objfile *objfile : current_program_space->objfiles ())
4788 if (!add_matching_msymbols (objfile, preg, &result))
4789 break;
4790 }
4791
4792 return result;
4793 }
4794
4795 /* See symtab.h. */
4796
4797 std::string
4798 symbol_to_info_string (struct symbol *sym, int block,
4799 enum search_domain kind)
4800 {
4801 std::string str;
4802
4803 gdb_assert (block == GLOBAL_BLOCK || block == STATIC_BLOCK);
4804
4805 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
4806 str += "static ";
4807
4808 /* Typedef that is not a C++ class. */
4809 if (kind == TYPES_DOMAIN
4810 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
4811 {
4812 string_file tmp_stream;
4813
4814 /* FIXME: For C (and C++) we end up with a difference in output here
4815 between how a typedef is printed, and non-typedefs are printed.
4816 The TYPEDEF_PRINT code places a ";" at the end in an attempt to
4817 appear C-like, while TYPE_PRINT doesn't.
4818
4819 For the struct printing case below, things are worse, we force
4820 printing of the ";" in this function, which is going to be wrong
4821 for languages that don't require a ";" between statements. */
4822 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_TYPEDEF)
4823 typedef_print (SYMBOL_TYPE (sym), sym, &tmp_stream);
4824 else
4825 type_print (SYMBOL_TYPE (sym), "", &tmp_stream, -1);
4826 str += tmp_stream.string ();
4827 }
4828 /* variable, func, or typedef-that-is-c++-class. */
4829 else if (kind < TYPES_DOMAIN
4830 || (kind == TYPES_DOMAIN
4831 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
4832 {
4833 string_file tmp_stream;
4834
4835 type_print (SYMBOL_TYPE (sym),
4836 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
4837 ? "" : sym->print_name ()),
4838 &tmp_stream, 0);
4839
4840 str += tmp_stream.string ();
4841 str += ";";
4842 }
4843 /* Printing of modules is currently done here, maybe at some future
4844 point we might want a language specific method to print the module
4845 symbol so that we can customise the output more. */
4846 else if (kind == MODULES_DOMAIN)
4847 str += sym->print_name ();
4848
4849 return str;
4850 }
4851
4852 /* Helper function for symbol info commands, for example 'info functions',
4853 'info variables', etc. KIND is the kind of symbol we searched for, and
4854 BLOCK is the type of block the symbols was found in, either GLOBAL_BLOCK
4855 or STATIC_BLOCK. SYM is the symbol we found. If LAST is not NULL,
4856 print file and line number information for the symbol as well. Skip
4857 printing the filename if it matches LAST. */
4858
4859 static void
4860 print_symbol_info (enum search_domain kind,
4861 struct symbol *sym,
4862 int block, const char *last)
4863 {
4864 scoped_switch_to_sym_language_if_auto l (sym);
4865 struct symtab *s = symbol_symtab (sym);
4866
4867 if (last != NULL)
4868 {
4869 const char *s_filename = symtab_to_filename_for_display (s);
4870
4871 if (filename_cmp (last, s_filename) != 0)
4872 {
4873 printf_filtered (_("\nFile %ps:\n"),
4874 styled_string (file_name_style.style (),
4875 s_filename));
4876 }
4877
4878 if (SYMBOL_LINE (sym) != 0)
4879 printf_filtered ("%d:\t", SYMBOL_LINE (sym));
4880 else
4881 puts_filtered ("\t");
4882 }
4883
4884 std::string str = symbol_to_info_string (sym, block, kind);
4885 printf_filtered ("%s\n", str.c_str ());
4886 }
4887
4888 /* This help function for symtab_symbol_info() prints information
4889 for non-debugging symbols to gdb_stdout. */
4890
4891 static void
4892 print_msymbol_info (struct bound_minimal_symbol msymbol)
4893 {
4894 struct gdbarch *gdbarch = get_objfile_arch (msymbol.objfile);
4895 char *tmp;
4896
4897 if (gdbarch_addr_bit (gdbarch) <= 32)
4898 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol)
4899 & (CORE_ADDR) 0xffffffff,
4900 8);
4901 else
4902 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol),
4903 16);
4904
4905 ui_file_style sym_style = (msymbol.minsym->text_p ()
4906 ? function_name_style.style ()
4907 : ui_file_style ());
4908
4909 printf_filtered (_("%ps %ps\n"),
4910 styled_string (address_style.style (), tmp),
4911 styled_string (sym_style, msymbol.minsym->print_name ()));
4912 }
4913
4914 /* This is the guts of the commands "info functions", "info types", and
4915 "info variables". It calls search_symbols to find all matches and then
4916 print_[m]symbol_info to print out some useful information about the
4917 matches. */
4918
4919 static void
4920 symtab_symbol_info (bool quiet, bool exclude_minsyms,
4921 const char *regexp, enum search_domain kind,
4922 const char *t_regexp, int from_tty)
4923 {
4924 static const char * const classnames[] =
4925 {"variable", "function", "type", "module"};
4926 const char *last_filename = "";
4927 int first = 1;
4928
4929 gdb_assert (kind != ALL_DOMAIN);
4930
4931 if (regexp != nullptr && *regexp == '\0')
4932 regexp = nullptr;
4933
4934 global_symbol_searcher spec (kind, regexp);
4935 spec.set_symbol_type_regexp (t_regexp);
4936 spec.set_exclude_minsyms (exclude_minsyms);
4937 std::vector<symbol_search> symbols = spec.search ();
4938
4939 if (!quiet)
4940 {
4941 if (regexp != NULL)
4942 {
4943 if (t_regexp != NULL)
4944 printf_filtered
4945 (_("All %ss matching regular expression \"%s\""
4946 " with type matching regular expression \"%s\":\n"),
4947 classnames[kind], regexp, t_regexp);
4948 else
4949 printf_filtered (_("All %ss matching regular expression \"%s\":\n"),
4950 classnames[kind], regexp);
4951 }
4952 else
4953 {
4954 if (t_regexp != NULL)
4955 printf_filtered
4956 (_("All defined %ss"
4957 " with type matching regular expression \"%s\" :\n"),
4958 classnames[kind], t_regexp);
4959 else
4960 printf_filtered (_("All defined %ss:\n"), classnames[kind]);
4961 }
4962 }
4963
4964 for (const symbol_search &p : symbols)
4965 {
4966 QUIT;
4967
4968 if (p.msymbol.minsym != NULL)
4969 {
4970 if (first)
4971 {
4972 if (!quiet)
4973 printf_filtered (_("\nNon-debugging symbols:\n"));
4974 first = 0;
4975 }
4976 print_msymbol_info (p.msymbol);
4977 }
4978 else
4979 {
4980 print_symbol_info (kind,
4981 p.symbol,
4982 p.block,
4983 last_filename);
4984 last_filename
4985 = symtab_to_filename_for_display (symbol_symtab (p.symbol));
4986 }
4987 }
4988 }
4989
4990 /* Structure to hold the values of the options used by the 'info variables'
4991 and 'info functions' commands. These correspond to the -q, -t, and -n
4992 options. */
4993
4994 struct info_vars_funcs_options
4995 {
4996 bool quiet = false;
4997 bool exclude_minsyms = false;
4998 char *type_regexp = nullptr;
4999
5000 ~info_vars_funcs_options ()
5001 {
5002 xfree (type_regexp);
5003 }
5004 };
5005
5006 /* The options used by the 'info variables' and 'info functions'
5007 commands. */
5008
5009 static const gdb::option::option_def info_vars_funcs_options_defs[] = {
5010 gdb::option::boolean_option_def<info_vars_funcs_options> {
5011 "q",
5012 [] (info_vars_funcs_options *opt) { return &opt->quiet; },
5013 nullptr, /* show_cmd_cb */
5014 nullptr /* set_doc */
5015 },
5016
5017 gdb::option::boolean_option_def<info_vars_funcs_options> {
5018 "n",
5019 [] (info_vars_funcs_options *opt) { return &opt->exclude_minsyms; },
5020 nullptr, /* show_cmd_cb */
5021 nullptr /* set_doc */
5022 },
5023
5024 gdb::option::string_option_def<info_vars_funcs_options> {
5025 "t",
5026 [] (info_vars_funcs_options *opt) { return &opt->type_regexp;
5027 },
5028 nullptr, /* show_cmd_cb */
5029 nullptr /* set_doc */
5030 }
5031 };
5032
5033 /* Returns the option group used by 'info variables' and 'info
5034 functions'. */
5035
5036 static gdb::option::option_def_group
5037 make_info_vars_funcs_options_def_group (info_vars_funcs_options *opts)
5038 {
5039 return {{info_vars_funcs_options_defs}, opts};
5040 }
5041
5042 /* Command completer for 'info variables' and 'info functions'. */
5043
5044 static void
5045 info_vars_funcs_command_completer (struct cmd_list_element *ignore,
5046 completion_tracker &tracker,
5047 const char *text, const char * /* word */)
5048 {
5049 const auto group
5050 = make_info_vars_funcs_options_def_group (nullptr);
5051 if (gdb::option::complete_options
5052 (tracker, &text, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, group))
5053 return;
5054
5055 const char *word = advance_to_expression_complete_word_point (tracker, text);
5056 symbol_completer (ignore, tracker, text, word);
5057 }
5058
5059 /* Implement the 'info variables' command. */
5060
5061 static void
5062 info_variables_command (const char *args, int from_tty)
5063 {
5064 info_vars_funcs_options opts;
5065 auto grp = make_info_vars_funcs_options_def_group (&opts);
5066 gdb::option::process_options
5067 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
5068 if (args != nullptr && *args == '\0')
5069 args = nullptr;
5070
5071 symtab_symbol_info (opts.quiet, opts.exclude_minsyms, args, VARIABLES_DOMAIN,
5072 opts.type_regexp, from_tty);
5073 }
5074
5075 /* Implement the 'info functions' command. */
5076
5077 static void
5078 info_functions_command (const char *args, int from_tty)
5079 {
5080 info_vars_funcs_options opts;
5081
5082 auto grp = make_info_vars_funcs_options_def_group (&opts);
5083 gdb::option::process_options
5084 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
5085 if (args != nullptr && *args == '\0')
5086 args = nullptr;
5087
5088 symtab_symbol_info (opts.quiet, opts.exclude_minsyms, args,
5089 FUNCTIONS_DOMAIN, opts.type_regexp, from_tty);
5090 }
5091
5092 /* Holds the -q option for the 'info types' command. */
5093
5094 struct info_types_options
5095 {
5096 bool quiet = false;
5097 };
5098
5099 /* The options used by the 'info types' command. */
5100
5101 static const gdb::option::option_def info_types_options_defs[] = {
5102 gdb::option::boolean_option_def<info_types_options> {
5103 "q",
5104 [] (info_types_options *opt) { return &opt->quiet; },
5105 nullptr, /* show_cmd_cb */
5106 nullptr /* set_doc */
5107 }
5108 };
5109
5110 /* Returns the option group used by 'info types'. */
5111
5112 static gdb::option::option_def_group
5113 make_info_types_options_def_group (info_types_options *opts)
5114 {
5115 return {{info_types_options_defs}, opts};
5116 }
5117
5118 /* Implement the 'info types' command. */
5119
5120 static void
5121 info_types_command (const char *args, int from_tty)
5122 {
5123 info_types_options opts;
5124
5125 auto grp = make_info_types_options_def_group (&opts);
5126 gdb::option::process_options
5127 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
5128 if (args != nullptr && *args == '\0')
5129 args = nullptr;
5130 symtab_symbol_info (opts.quiet, false, args, TYPES_DOMAIN, NULL, from_tty);
5131 }
5132
5133 /* Command completer for 'info types' command. */
5134
5135 static void
5136 info_types_command_completer (struct cmd_list_element *ignore,
5137 completion_tracker &tracker,
5138 const char *text, const char * /* word */)
5139 {
5140 const auto group
5141 = make_info_types_options_def_group (nullptr);
5142 if (gdb::option::complete_options
5143 (tracker, &text, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, group))
5144 return;
5145
5146 const char *word = advance_to_expression_complete_word_point (tracker, text);
5147 symbol_completer (ignore, tracker, text, word);
5148 }
5149
5150 /* Implement the 'info modules' command. */
5151
5152 static void
5153 info_modules_command (const char *args, int from_tty)
5154 {
5155 info_types_options opts;
5156
5157 auto grp = make_info_types_options_def_group (&opts);
5158 gdb::option::process_options
5159 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
5160 if (args != nullptr && *args == '\0')
5161 args = nullptr;
5162 symtab_symbol_info (opts.quiet, true, args, MODULES_DOMAIN, NULL,
5163 from_tty);
5164 }
5165
5166 static void
5167 rbreak_command (const char *regexp, int from_tty)
5168 {
5169 std::string string;
5170 const char *file_name = nullptr;
5171
5172 if (regexp != nullptr)
5173 {
5174 const char *colon = strchr (regexp, ':');
5175
5176 if (colon && *(colon + 1) != ':')
5177 {
5178 int colon_index;
5179 char *local_name;
5180
5181 colon_index = colon - regexp;
5182 local_name = (char *) alloca (colon_index + 1);
5183 memcpy (local_name, regexp, colon_index);
5184 local_name[colon_index--] = 0;
5185 while (isspace (local_name[colon_index]))
5186 local_name[colon_index--] = 0;
5187 file_name = local_name;
5188 regexp = skip_spaces (colon + 1);
5189 }
5190 }
5191
5192 global_symbol_searcher spec (FUNCTIONS_DOMAIN, regexp);
5193 if (file_name != nullptr)
5194 spec.filenames.push_back (file_name);
5195 std::vector<symbol_search> symbols = spec.search ();
5196
5197 scoped_rbreak_breakpoints finalize;
5198 for (const symbol_search &p : symbols)
5199 {
5200 if (p.msymbol.minsym == NULL)
5201 {
5202 struct symtab *symtab = symbol_symtab (p.symbol);
5203 const char *fullname = symtab_to_fullname (symtab);
5204
5205 string = string_printf ("%s:'%s'", fullname,
5206 p.symbol->linkage_name ());
5207 break_command (&string[0], from_tty);
5208 print_symbol_info (FUNCTIONS_DOMAIN, p.symbol, p.block, NULL);
5209 }
5210 else
5211 {
5212 string = string_printf ("'%s'",
5213 p.msymbol.minsym->linkage_name ());
5214
5215 break_command (&string[0], from_tty);
5216 printf_filtered ("<function, no debug info> %s;\n",
5217 p.msymbol.minsym->print_name ());
5218 }
5219 }
5220 }
5221 \f
5222
5223 /* Evaluate if SYMNAME matches LOOKUP_NAME. */
5224
5225 static int
5226 compare_symbol_name (const char *symbol_name, language symbol_language,
5227 const lookup_name_info &lookup_name,
5228 completion_match_result &match_res)
5229 {
5230 const language_defn *lang = language_def (symbol_language);
5231
5232 symbol_name_matcher_ftype *name_match
5233 = get_symbol_name_matcher (lang, lookup_name);
5234
5235 return name_match (symbol_name, lookup_name, &match_res);
5236 }
5237
5238 /* See symtab.h. */
5239
5240 void
5241 completion_list_add_name (completion_tracker &tracker,
5242 language symbol_language,
5243 const char *symname,
5244 const lookup_name_info &lookup_name,
5245 const char *text, const char *word)
5246 {
5247 completion_match_result &match_res
5248 = tracker.reset_completion_match_result ();
5249
5250 /* Clip symbols that cannot match. */
5251 if (!compare_symbol_name (symname, symbol_language, lookup_name, match_res))
5252 return;
5253
5254 /* Refresh SYMNAME from the match string. It's potentially
5255 different depending on language. (E.g., on Ada, the match may be
5256 the encoded symbol name wrapped in "<>"). */
5257 symname = match_res.match.match ();
5258 gdb_assert (symname != NULL);
5259
5260 /* We have a match for a completion, so add SYMNAME to the current list
5261 of matches. Note that the name is moved to freshly malloc'd space. */
5262
5263 {
5264 gdb::unique_xmalloc_ptr<char> completion
5265 = make_completion_match_str (symname, text, word);
5266
5267 /* Here we pass the match-for-lcd object to add_completion. Some
5268 languages match the user text against substrings of symbol
5269 names in some cases. E.g., in C++, "b push_ba" completes to
5270 "std::vector::push_back", "std::string::push_back", etc., and
5271 in this case we want the completion lowest common denominator
5272 to be "push_back" instead of "std::". */
5273 tracker.add_completion (std::move (completion),
5274 &match_res.match_for_lcd, text, word);
5275 }
5276 }
5277
5278 /* completion_list_add_name wrapper for struct symbol. */
5279
5280 static void
5281 completion_list_add_symbol (completion_tracker &tracker,
5282 symbol *sym,
5283 const lookup_name_info &lookup_name,
5284 const char *text, const char *word)
5285 {
5286 completion_list_add_name (tracker, sym->language (),
5287 sym->natural_name (),
5288 lookup_name, text, word);
5289 }
5290
5291 /* completion_list_add_name wrapper for struct minimal_symbol. */
5292
5293 static void
5294 completion_list_add_msymbol (completion_tracker &tracker,
5295 minimal_symbol *sym,
5296 const lookup_name_info &lookup_name,
5297 const char *text, const char *word)
5298 {
5299 completion_list_add_name (tracker, sym->language (),
5300 sym->natural_name (),
5301 lookup_name, text, word);
5302 }
5303
5304
5305 /* ObjC: In case we are completing on a selector, look as the msymbol
5306 again and feed all the selectors into the mill. */
5307
5308 static void
5309 completion_list_objc_symbol (completion_tracker &tracker,
5310 struct minimal_symbol *msymbol,
5311 const lookup_name_info &lookup_name,
5312 const char *text, const char *word)
5313 {
5314 static char *tmp = NULL;
5315 static unsigned int tmplen = 0;
5316
5317 const char *method, *category, *selector;
5318 char *tmp2 = NULL;
5319
5320 method = msymbol->natural_name ();
5321
5322 /* Is it a method? */
5323 if ((method[0] != '-') && (method[0] != '+'))
5324 return;
5325
5326 if (text[0] == '[')
5327 /* Complete on shortened method method. */
5328 completion_list_add_name (tracker, language_objc,
5329 method + 1,
5330 lookup_name,
5331 text, word);
5332
5333 while ((strlen (method) + 1) >= tmplen)
5334 {
5335 if (tmplen == 0)
5336 tmplen = 1024;
5337 else
5338 tmplen *= 2;
5339 tmp = (char *) xrealloc (tmp, tmplen);
5340 }
5341 selector = strchr (method, ' ');
5342 if (selector != NULL)
5343 selector++;
5344
5345 category = strchr (method, '(');
5346
5347 if ((category != NULL) && (selector != NULL))
5348 {
5349 memcpy (tmp, method, (category - method));
5350 tmp[category - method] = ' ';
5351 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
5352 completion_list_add_name (tracker, language_objc, tmp,
5353 lookup_name, text, word);
5354 if (text[0] == '[')
5355 completion_list_add_name (tracker, language_objc, tmp + 1,
5356 lookup_name, text, word);
5357 }
5358
5359 if (selector != NULL)
5360 {
5361 /* Complete on selector only. */
5362 strcpy (tmp, selector);
5363 tmp2 = strchr (tmp, ']');
5364 if (tmp2 != NULL)
5365 *tmp2 = '\0';
5366
5367 completion_list_add_name (tracker, language_objc, tmp,
5368 lookup_name, text, word);
5369 }
5370 }
5371
5372 /* Break the non-quoted text based on the characters which are in
5373 symbols. FIXME: This should probably be language-specific. */
5374
5375 static const char *
5376 language_search_unquoted_string (const char *text, const char *p)
5377 {
5378 for (; p > text; --p)
5379 {
5380 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
5381 continue;
5382 else
5383 {
5384 if ((current_language->la_language == language_objc))
5385 {
5386 if (p[-1] == ':') /* Might be part of a method name. */
5387 continue;
5388 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
5389 p -= 2; /* Beginning of a method name. */
5390 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
5391 { /* Might be part of a method name. */
5392 const char *t = p;
5393
5394 /* Seeing a ' ' or a '(' is not conclusive evidence
5395 that we are in the middle of a method name. However,
5396 finding "-[" or "+[" should be pretty un-ambiguous.
5397 Unfortunately we have to find it now to decide. */
5398
5399 while (t > text)
5400 if (isalnum (t[-1]) || t[-1] == '_' ||
5401 t[-1] == ' ' || t[-1] == ':' ||
5402 t[-1] == '(' || t[-1] == ')')
5403 --t;
5404 else
5405 break;
5406
5407 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
5408 p = t - 2; /* Method name detected. */
5409 /* Else we leave with p unchanged. */
5410 }
5411 }
5412 break;
5413 }
5414 }
5415 return p;
5416 }
5417
5418 static void
5419 completion_list_add_fields (completion_tracker &tracker,
5420 struct symbol *sym,
5421 const lookup_name_info &lookup_name,
5422 const char *text, const char *word)
5423 {
5424 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5425 {
5426 struct type *t = SYMBOL_TYPE (sym);
5427 enum type_code c = TYPE_CODE (t);
5428 int j;
5429
5430 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
5431 for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++)
5432 if (TYPE_FIELD_NAME (t, j))
5433 completion_list_add_name (tracker, sym->language (),
5434 TYPE_FIELD_NAME (t, j),
5435 lookup_name, text, word);
5436 }
5437 }
5438
5439 /* See symtab.h. */
5440
5441 bool
5442 symbol_is_function_or_method (symbol *sym)
5443 {
5444 switch (TYPE_CODE (SYMBOL_TYPE (sym)))
5445 {
5446 case TYPE_CODE_FUNC:
5447 case TYPE_CODE_METHOD:
5448 return true;
5449 default:
5450 return false;
5451 }
5452 }
5453
5454 /* See symtab.h. */
5455
5456 bool
5457 symbol_is_function_or_method (minimal_symbol *msymbol)
5458 {
5459 switch (MSYMBOL_TYPE (msymbol))
5460 {
5461 case mst_text:
5462 case mst_text_gnu_ifunc:
5463 case mst_solib_trampoline:
5464 case mst_file_text:
5465 return true;
5466 default:
5467 return false;
5468 }
5469 }
5470
5471 /* See symtab.h. */
5472
5473 bound_minimal_symbol
5474 find_gnu_ifunc (const symbol *sym)
5475 {
5476 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
5477 return {};
5478
5479 lookup_name_info lookup_name (sym->search_name (),
5480 symbol_name_match_type::SEARCH_NAME);
5481 struct objfile *objfile = symbol_objfile (sym);
5482
5483 CORE_ADDR address = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym));
5484 minimal_symbol *ifunc = NULL;
5485
5486 iterate_over_minimal_symbols (objfile, lookup_name,
5487 [&] (minimal_symbol *minsym)
5488 {
5489 if (MSYMBOL_TYPE (minsym) == mst_text_gnu_ifunc
5490 || MSYMBOL_TYPE (minsym) == mst_data_gnu_ifunc)
5491 {
5492 CORE_ADDR msym_addr = MSYMBOL_VALUE_ADDRESS (objfile, minsym);
5493 if (MSYMBOL_TYPE (minsym) == mst_data_gnu_ifunc)
5494 {
5495 struct gdbarch *gdbarch = get_objfile_arch (objfile);
5496 msym_addr
5497 = gdbarch_convert_from_func_ptr_addr (gdbarch,
5498 msym_addr,
5499 current_top_target ());
5500 }
5501 if (msym_addr == address)
5502 {
5503 ifunc = minsym;
5504 return true;
5505 }
5506 }
5507 return false;
5508 });
5509
5510 if (ifunc != NULL)
5511 return {ifunc, objfile};
5512 return {};
5513 }
5514
5515 /* Add matching symbols from SYMTAB to the current completion list. */
5516
5517 static void
5518 add_symtab_completions (struct compunit_symtab *cust,
5519 completion_tracker &tracker,
5520 complete_symbol_mode mode,
5521 const lookup_name_info &lookup_name,
5522 const char *text, const char *word,
5523 enum type_code code)
5524 {
5525 struct symbol *sym;
5526 const struct block *b;
5527 struct block_iterator iter;
5528 int i;
5529
5530 if (cust == NULL)
5531 return;
5532
5533 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
5534 {
5535 QUIT;
5536 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust), i);
5537 ALL_BLOCK_SYMBOLS (b, iter, sym)
5538 {
5539 if (completion_skip_symbol (mode, sym))
5540 continue;
5541
5542 if (code == TYPE_CODE_UNDEF
5543 || (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
5544 && TYPE_CODE (SYMBOL_TYPE (sym)) == code))
5545 completion_list_add_symbol (tracker, sym,
5546 lookup_name,
5547 text, word);
5548 }
5549 }
5550 }
5551
5552 void
5553 default_collect_symbol_completion_matches_break_on
5554 (completion_tracker &tracker, complete_symbol_mode mode,
5555 symbol_name_match_type name_match_type,
5556 const char *text, const char *word,
5557 const char *break_on, enum type_code code)
5558 {
5559 /* Problem: All of the symbols have to be copied because readline
5560 frees them. I'm not going to worry about this; hopefully there
5561 won't be that many. */
5562
5563 struct symbol *sym;
5564 const struct block *b;
5565 const struct block *surrounding_static_block, *surrounding_global_block;
5566 struct block_iterator iter;
5567 /* The symbol we are completing on. Points in same buffer as text. */
5568 const char *sym_text;
5569
5570 /* Now look for the symbol we are supposed to complete on. */
5571 if (mode == complete_symbol_mode::LINESPEC)
5572 sym_text = text;
5573 else
5574 {
5575 const char *p;
5576 char quote_found;
5577 const char *quote_pos = NULL;
5578
5579 /* First see if this is a quoted string. */
5580 quote_found = '\0';
5581 for (p = text; *p != '\0'; ++p)
5582 {
5583 if (quote_found != '\0')
5584 {
5585 if (*p == quote_found)
5586 /* Found close quote. */
5587 quote_found = '\0';
5588 else if (*p == '\\' && p[1] == quote_found)
5589 /* A backslash followed by the quote character
5590 doesn't end the string. */
5591 ++p;
5592 }
5593 else if (*p == '\'' || *p == '"')
5594 {
5595 quote_found = *p;
5596 quote_pos = p;
5597 }
5598 }
5599 if (quote_found == '\'')
5600 /* A string within single quotes can be a symbol, so complete on it. */
5601 sym_text = quote_pos + 1;
5602 else if (quote_found == '"')
5603 /* A double-quoted string is never a symbol, nor does it make sense
5604 to complete it any other way. */
5605 {
5606 return;
5607 }
5608 else
5609 {
5610 /* It is not a quoted string. Break it based on the characters
5611 which are in symbols. */
5612 while (p > text)
5613 {
5614 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0'
5615 || p[-1] == ':' || strchr (break_on, p[-1]) != NULL)
5616 --p;
5617 else
5618 break;
5619 }
5620 sym_text = p;
5621 }
5622 }
5623
5624 lookup_name_info lookup_name (sym_text, name_match_type, true);
5625
5626 /* At this point scan through the misc symbol vectors and add each
5627 symbol you find to the list. Eventually we want to ignore
5628 anything that isn't a text symbol (everything else will be
5629 handled by the psymtab code below). */
5630
5631 if (code == TYPE_CODE_UNDEF)
5632 {
5633 for (objfile *objfile : current_program_space->objfiles ())
5634 {
5635 for (minimal_symbol *msymbol : objfile->msymbols ())
5636 {
5637 QUIT;
5638
5639 if (completion_skip_symbol (mode, msymbol))
5640 continue;
5641
5642 completion_list_add_msymbol (tracker, msymbol, lookup_name,
5643 sym_text, word);
5644
5645 completion_list_objc_symbol (tracker, msymbol, lookup_name,
5646 sym_text, word);
5647 }
5648 }
5649 }
5650
5651 /* Add completions for all currently loaded symbol tables. */
5652 for (objfile *objfile : current_program_space->objfiles ())
5653 {
5654 for (compunit_symtab *cust : objfile->compunits ())
5655 add_symtab_completions (cust, tracker, mode, lookup_name,
5656 sym_text, word, code);
5657 }
5658
5659 /* Look through the partial symtabs for all symbols which begin by
5660 matching SYM_TEXT. Expand all CUs that you find to the list. */
5661 expand_symtabs_matching (NULL,
5662 lookup_name,
5663 NULL,
5664 [&] (compunit_symtab *symtab) /* expansion notify */
5665 {
5666 add_symtab_completions (symtab,
5667 tracker, mode, lookup_name,
5668 sym_text, word, code);
5669 },
5670 ALL_DOMAIN);
5671
5672 /* Search upwards from currently selected frame (so that we can
5673 complete on local vars). Also catch fields of types defined in
5674 this places which match our text string. Only complete on types
5675 visible from current context. */
5676
5677 b = get_selected_block (0);
5678 surrounding_static_block = block_static_block (b);
5679 surrounding_global_block = block_global_block (b);
5680 if (surrounding_static_block != NULL)
5681 while (b != surrounding_static_block)
5682 {
5683 QUIT;
5684
5685 ALL_BLOCK_SYMBOLS (b, iter, sym)
5686 {
5687 if (code == TYPE_CODE_UNDEF)
5688 {
5689 completion_list_add_symbol (tracker, sym, lookup_name,
5690 sym_text, word);
5691 completion_list_add_fields (tracker, sym, lookup_name,
5692 sym_text, word);
5693 }
5694 else if (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
5695 && TYPE_CODE (SYMBOL_TYPE (sym)) == code)
5696 completion_list_add_symbol (tracker, sym, lookup_name,
5697 sym_text, word);
5698 }
5699
5700 /* Stop when we encounter an enclosing function. Do not stop for
5701 non-inlined functions - the locals of the enclosing function
5702 are in scope for a nested function. */
5703 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
5704 break;
5705 b = BLOCK_SUPERBLOCK (b);
5706 }
5707
5708 /* Add fields from the file's types; symbols will be added below. */
5709
5710 if (code == TYPE_CODE_UNDEF)
5711 {
5712 if (surrounding_static_block != NULL)
5713 ALL_BLOCK_SYMBOLS (surrounding_static_block, iter, sym)
5714 completion_list_add_fields (tracker, sym, lookup_name,
5715 sym_text, word);
5716
5717 if (surrounding_global_block != NULL)
5718 ALL_BLOCK_SYMBOLS (surrounding_global_block, iter, sym)
5719 completion_list_add_fields (tracker, sym, lookup_name,
5720 sym_text, word);
5721 }
5722
5723 /* Skip macros if we are completing a struct tag -- arguable but
5724 usually what is expected. */
5725 if (current_language->la_macro_expansion == macro_expansion_c
5726 && code == TYPE_CODE_UNDEF)
5727 {
5728 gdb::unique_xmalloc_ptr<struct macro_scope> scope;
5729
5730 /* This adds a macro's name to the current completion list. */
5731 auto add_macro_name = [&] (const char *macro_name,
5732 const macro_definition *,
5733 macro_source_file *,
5734 int)
5735 {
5736 completion_list_add_name (tracker, language_c, macro_name,
5737 lookup_name, sym_text, word);
5738 };
5739
5740 /* Add any macros visible in the default scope. Note that this
5741 may yield the occasional wrong result, because an expression
5742 might be evaluated in a scope other than the default. For
5743 example, if the user types "break file:line if <TAB>", the
5744 resulting expression will be evaluated at "file:line" -- but
5745 at there does not seem to be a way to detect this at
5746 completion time. */
5747 scope = default_macro_scope ();
5748 if (scope)
5749 macro_for_each_in_scope (scope->file, scope->line,
5750 add_macro_name);
5751
5752 /* User-defined macros are always visible. */
5753 macro_for_each (macro_user_macros, add_macro_name);
5754 }
5755 }
5756
5757 void
5758 default_collect_symbol_completion_matches (completion_tracker &tracker,
5759 complete_symbol_mode mode,
5760 symbol_name_match_type name_match_type,
5761 const char *text, const char *word,
5762 enum type_code code)
5763 {
5764 return default_collect_symbol_completion_matches_break_on (tracker, mode,
5765 name_match_type,
5766 text, word, "",
5767 code);
5768 }
5769
5770 /* Collect all symbols (regardless of class) which begin by matching
5771 TEXT. */
5772
5773 void
5774 collect_symbol_completion_matches (completion_tracker &tracker,
5775 complete_symbol_mode mode,
5776 symbol_name_match_type name_match_type,
5777 const char *text, const char *word)
5778 {
5779 current_language->la_collect_symbol_completion_matches (tracker, mode,
5780 name_match_type,
5781 text, word,
5782 TYPE_CODE_UNDEF);
5783 }
5784
5785 /* Like collect_symbol_completion_matches, but only collect
5786 STRUCT_DOMAIN symbols whose type code is CODE. */
5787
5788 void
5789 collect_symbol_completion_matches_type (completion_tracker &tracker,
5790 const char *text, const char *word,
5791 enum type_code code)
5792 {
5793 complete_symbol_mode mode = complete_symbol_mode::EXPRESSION;
5794 symbol_name_match_type name_match_type = symbol_name_match_type::EXPRESSION;
5795
5796 gdb_assert (code == TYPE_CODE_UNION
5797 || code == TYPE_CODE_STRUCT
5798 || code == TYPE_CODE_ENUM);
5799 current_language->la_collect_symbol_completion_matches (tracker, mode,
5800 name_match_type,
5801 text, word, code);
5802 }
5803
5804 /* Like collect_symbol_completion_matches, but collects a list of
5805 symbols defined in all source files named SRCFILE. */
5806
5807 void
5808 collect_file_symbol_completion_matches (completion_tracker &tracker,
5809 complete_symbol_mode mode,
5810 symbol_name_match_type name_match_type,
5811 const char *text, const char *word,
5812 const char *srcfile)
5813 {
5814 /* The symbol we are completing on. Points in same buffer as text. */
5815 const char *sym_text;
5816
5817 /* Now look for the symbol we are supposed to complete on.
5818 FIXME: This should be language-specific. */
5819 if (mode == complete_symbol_mode::LINESPEC)
5820 sym_text = text;
5821 else
5822 {
5823 const char *p;
5824 char quote_found;
5825 const char *quote_pos = NULL;
5826
5827 /* First see if this is a quoted string. */
5828 quote_found = '\0';
5829 for (p = text; *p != '\0'; ++p)
5830 {
5831 if (quote_found != '\0')
5832 {
5833 if (*p == quote_found)
5834 /* Found close quote. */
5835 quote_found = '\0';
5836 else if (*p == '\\' && p[1] == quote_found)
5837 /* A backslash followed by the quote character
5838 doesn't end the string. */
5839 ++p;
5840 }
5841 else if (*p == '\'' || *p == '"')
5842 {
5843 quote_found = *p;
5844 quote_pos = p;
5845 }
5846 }
5847 if (quote_found == '\'')
5848 /* A string within single quotes can be a symbol, so complete on it. */
5849 sym_text = quote_pos + 1;
5850 else if (quote_found == '"')
5851 /* A double-quoted string is never a symbol, nor does it make sense
5852 to complete it any other way. */
5853 {
5854 return;
5855 }
5856 else
5857 {
5858 /* Not a quoted string. */
5859 sym_text = language_search_unquoted_string (text, p);
5860 }
5861 }
5862
5863 lookup_name_info lookup_name (sym_text, name_match_type, true);
5864
5865 /* Go through symtabs for SRCFILE and check the externs and statics
5866 for symbols which match. */
5867 iterate_over_symtabs (srcfile, [&] (symtab *s)
5868 {
5869 add_symtab_completions (SYMTAB_COMPUNIT (s),
5870 tracker, mode, lookup_name,
5871 sym_text, word, TYPE_CODE_UNDEF);
5872 return false;
5873 });
5874 }
5875
5876 /* A helper function for make_source_files_completion_list. It adds
5877 another file name to a list of possible completions, growing the
5878 list as necessary. */
5879
5880 static void
5881 add_filename_to_list (const char *fname, const char *text, const char *word,
5882 completion_list *list)
5883 {
5884 list->emplace_back (make_completion_match_str (fname, text, word));
5885 }
5886
5887 static int
5888 not_interesting_fname (const char *fname)
5889 {
5890 static const char *illegal_aliens[] = {
5891 "_globals_", /* inserted by coff_symtab_read */
5892 NULL
5893 };
5894 int i;
5895
5896 for (i = 0; illegal_aliens[i]; i++)
5897 {
5898 if (filename_cmp (fname, illegal_aliens[i]) == 0)
5899 return 1;
5900 }
5901 return 0;
5902 }
5903
5904 /* An object of this type is passed as the user_data argument to
5905 map_partial_symbol_filenames. */
5906 struct add_partial_filename_data
5907 {
5908 struct filename_seen_cache *filename_seen_cache;
5909 const char *text;
5910 const char *word;
5911 int text_len;
5912 completion_list *list;
5913 };
5914
5915 /* A callback for map_partial_symbol_filenames. */
5916
5917 static void
5918 maybe_add_partial_symtab_filename (const char *filename, const char *fullname,
5919 void *user_data)
5920 {
5921 struct add_partial_filename_data *data
5922 = (struct add_partial_filename_data *) user_data;
5923
5924 if (not_interesting_fname (filename))
5925 return;
5926 if (!data->filename_seen_cache->seen (filename)
5927 && filename_ncmp (filename, data->text, data->text_len) == 0)
5928 {
5929 /* This file matches for a completion; add it to the
5930 current list of matches. */
5931 add_filename_to_list (filename, data->text, data->word, data->list);
5932 }
5933 else
5934 {
5935 const char *base_name = lbasename (filename);
5936
5937 if (base_name != filename
5938 && !data->filename_seen_cache->seen (base_name)
5939 && filename_ncmp (base_name, data->text, data->text_len) == 0)
5940 add_filename_to_list (base_name, data->text, data->word, data->list);
5941 }
5942 }
5943
5944 /* Return a list of all source files whose names begin with matching
5945 TEXT. The file names are looked up in the symbol tables of this
5946 program. */
5947
5948 completion_list
5949 make_source_files_completion_list (const char *text, const char *word)
5950 {
5951 size_t text_len = strlen (text);
5952 completion_list list;
5953 const char *base_name;
5954 struct add_partial_filename_data datum;
5955
5956 if (!have_full_symbols () && !have_partial_symbols ())
5957 return list;
5958
5959 filename_seen_cache filenames_seen;
5960
5961 for (objfile *objfile : current_program_space->objfiles ())
5962 {
5963 for (compunit_symtab *cu : objfile->compunits ())
5964 {
5965 for (symtab *s : compunit_filetabs (cu))
5966 {
5967 if (not_interesting_fname (s->filename))
5968 continue;
5969 if (!filenames_seen.seen (s->filename)
5970 && filename_ncmp (s->filename, text, text_len) == 0)
5971 {
5972 /* This file matches for a completion; add it to the current
5973 list of matches. */
5974 add_filename_to_list (s->filename, text, word, &list);
5975 }
5976 else
5977 {
5978 /* NOTE: We allow the user to type a base name when the
5979 debug info records leading directories, but not the other
5980 way around. This is what subroutines of breakpoint
5981 command do when they parse file names. */
5982 base_name = lbasename (s->filename);
5983 if (base_name != s->filename
5984 && !filenames_seen.seen (base_name)
5985 && filename_ncmp (base_name, text, text_len) == 0)
5986 add_filename_to_list (base_name, text, word, &list);
5987 }
5988 }
5989 }
5990 }
5991
5992 datum.filename_seen_cache = &filenames_seen;
5993 datum.text = text;
5994 datum.word = word;
5995 datum.text_len = text_len;
5996 datum.list = &list;
5997 map_symbol_filenames (maybe_add_partial_symtab_filename, &datum,
5998 0 /*need_fullname*/);
5999
6000 return list;
6001 }
6002 \f
6003 /* Track MAIN */
6004
6005 /* Return the "main_info" object for the current program space. If
6006 the object has not yet been created, create it and fill in some
6007 default values. */
6008
6009 static struct main_info *
6010 get_main_info (void)
6011 {
6012 struct main_info *info = main_progspace_key.get (current_program_space);
6013
6014 if (info == NULL)
6015 {
6016 /* It may seem strange to store the main name in the progspace
6017 and also in whatever objfile happens to see a main name in
6018 its debug info. The reason for this is mainly historical:
6019 gdb returned "main" as the name even if no function named
6020 "main" was defined the program; and this approach lets us
6021 keep compatibility. */
6022 info = main_progspace_key.emplace (current_program_space);
6023 }
6024
6025 return info;
6026 }
6027
6028 static void
6029 set_main_name (const char *name, enum language lang)
6030 {
6031 struct main_info *info = get_main_info ();
6032
6033 if (info->name_of_main != NULL)
6034 {
6035 xfree (info->name_of_main);
6036 info->name_of_main = NULL;
6037 info->language_of_main = language_unknown;
6038 }
6039 if (name != NULL)
6040 {
6041 info->name_of_main = xstrdup (name);
6042 info->language_of_main = lang;
6043 }
6044 }
6045
6046 /* Deduce the name of the main procedure, and set NAME_OF_MAIN
6047 accordingly. */
6048
6049 static void
6050 find_main_name (void)
6051 {
6052 const char *new_main_name;
6053
6054 /* First check the objfiles to see whether a debuginfo reader has
6055 picked up the appropriate main name. Historically the main name
6056 was found in a more or less random way; this approach instead
6057 relies on the order of objfile creation -- which still isn't
6058 guaranteed to get the correct answer, but is just probably more
6059 accurate. */
6060 for (objfile *objfile : current_program_space->objfiles ())
6061 {
6062 if (objfile->per_bfd->name_of_main != NULL)
6063 {
6064 set_main_name (objfile->per_bfd->name_of_main,
6065 objfile->per_bfd->language_of_main);
6066 return;
6067 }
6068 }
6069
6070 /* Try to see if the main procedure is in Ada. */
6071 /* FIXME: brobecker/2005-03-07: Another way of doing this would
6072 be to add a new method in the language vector, and call this
6073 method for each language until one of them returns a non-empty
6074 name. This would allow us to remove this hard-coded call to
6075 an Ada function. It is not clear that this is a better approach
6076 at this point, because all methods need to be written in a way
6077 such that false positives never be returned. For instance, it is
6078 important that a method does not return a wrong name for the main
6079 procedure if the main procedure is actually written in a different
6080 language. It is easy to guaranty this with Ada, since we use a
6081 special symbol generated only when the main in Ada to find the name
6082 of the main procedure. It is difficult however to see how this can
6083 be guarantied for languages such as C, for instance. This suggests
6084 that order of call for these methods becomes important, which means
6085 a more complicated approach. */
6086 new_main_name = ada_main_name ();
6087 if (new_main_name != NULL)
6088 {
6089 set_main_name (new_main_name, language_ada);
6090 return;
6091 }
6092
6093 new_main_name = d_main_name ();
6094 if (new_main_name != NULL)
6095 {
6096 set_main_name (new_main_name, language_d);
6097 return;
6098 }
6099
6100 new_main_name = go_main_name ();
6101 if (new_main_name != NULL)
6102 {
6103 set_main_name (new_main_name, language_go);
6104 return;
6105 }
6106
6107 new_main_name = pascal_main_name ();
6108 if (new_main_name != NULL)
6109 {
6110 set_main_name (new_main_name, language_pascal);
6111 return;
6112 }
6113
6114 /* The languages above didn't identify the name of the main procedure.
6115 Fallback to "main". */
6116 set_main_name ("main", language_unknown);
6117 }
6118
6119 /* See symtab.h. */
6120
6121 const char *
6122 main_name ()
6123 {
6124 struct main_info *info = get_main_info ();
6125
6126 if (info->name_of_main == NULL)
6127 find_main_name ();
6128
6129 return info->name_of_main;
6130 }
6131
6132 /* Return the language of the main function. If it is not known,
6133 return language_unknown. */
6134
6135 enum language
6136 main_language (void)
6137 {
6138 struct main_info *info = get_main_info ();
6139
6140 if (info->name_of_main == NULL)
6141 find_main_name ();
6142
6143 return info->language_of_main;
6144 }
6145
6146 /* Handle ``executable_changed'' events for the symtab module. */
6147
6148 static void
6149 symtab_observer_executable_changed (void)
6150 {
6151 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
6152 set_main_name (NULL, language_unknown);
6153 }
6154
6155 /* Return 1 if the supplied producer string matches the ARM RealView
6156 compiler (armcc). */
6157
6158 bool
6159 producer_is_realview (const char *producer)
6160 {
6161 static const char *const arm_idents[] = {
6162 "ARM C Compiler, ADS",
6163 "Thumb C Compiler, ADS",
6164 "ARM C++ Compiler, ADS",
6165 "Thumb C++ Compiler, ADS",
6166 "ARM/Thumb C/C++ Compiler, RVCT",
6167 "ARM C/C++ Compiler, RVCT"
6168 };
6169 int i;
6170
6171 if (producer == NULL)
6172 return false;
6173
6174 for (i = 0; i < ARRAY_SIZE (arm_idents); i++)
6175 if (startswith (producer, arm_idents[i]))
6176 return true;
6177
6178 return false;
6179 }
6180
6181 \f
6182
6183 /* The next index to hand out in response to a registration request. */
6184
6185 static int next_aclass_value = LOC_FINAL_VALUE;
6186
6187 /* The maximum number of "aclass" registrations we support. This is
6188 constant for convenience. */
6189 #define MAX_SYMBOL_IMPLS (LOC_FINAL_VALUE + 10)
6190
6191 /* The objects representing the various "aclass" values. The elements
6192 from 0 up to LOC_FINAL_VALUE-1 represent themselves, and subsequent
6193 elements are those registered at gdb initialization time. */
6194
6195 static struct symbol_impl symbol_impl[MAX_SYMBOL_IMPLS];
6196
6197 /* The globally visible pointer. This is separate from 'symbol_impl'
6198 so that it can be const. */
6199
6200 const struct symbol_impl *symbol_impls = &symbol_impl[0];
6201
6202 /* Make sure we saved enough room in struct symbol. */
6203
6204 gdb_static_assert (MAX_SYMBOL_IMPLS <= (1 << SYMBOL_ACLASS_BITS));
6205
6206 /* Register a computed symbol type. ACLASS must be LOC_COMPUTED. OPS
6207 is the ops vector associated with this index. This returns the new
6208 index, which should be used as the aclass_index field for symbols
6209 of this type. */
6210
6211 int
6212 register_symbol_computed_impl (enum address_class aclass,
6213 const struct symbol_computed_ops *ops)
6214 {
6215 int result = next_aclass_value++;
6216
6217 gdb_assert (aclass == LOC_COMPUTED);
6218 gdb_assert (result < MAX_SYMBOL_IMPLS);
6219 symbol_impl[result].aclass = aclass;
6220 symbol_impl[result].ops_computed = ops;
6221
6222 /* Sanity check OPS. */
6223 gdb_assert (ops != NULL);
6224 gdb_assert (ops->tracepoint_var_ref != NULL);
6225 gdb_assert (ops->describe_location != NULL);
6226 gdb_assert (ops->get_symbol_read_needs != NULL);
6227 gdb_assert (ops->read_variable != NULL);
6228
6229 return result;
6230 }
6231
6232 /* Register a function with frame base type. ACLASS must be LOC_BLOCK.
6233 OPS is the ops vector associated with this index. This returns the
6234 new index, which should be used as the aclass_index field for symbols
6235 of this type. */
6236
6237 int
6238 register_symbol_block_impl (enum address_class aclass,
6239 const struct symbol_block_ops *ops)
6240 {
6241 int result = next_aclass_value++;
6242
6243 gdb_assert (aclass == LOC_BLOCK);
6244 gdb_assert (result < MAX_SYMBOL_IMPLS);
6245 symbol_impl[result].aclass = aclass;
6246 symbol_impl[result].ops_block = ops;
6247
6248 /* Sanity check OPS. */
6249 gdb_assert (ops != NULL);
6250 gdb_assert (ops->find_frame_base_location != NULL);
6251
6252 return result;
6253 }
6254
6255 /* Register a register symbol type. ACLASS must be LOC_REGISTER or
6256 LOC_REGPARM_ADDR. OPS is the register ops vector associated with
6257 this index. This returns the new index, which should be used as
6258 the aclass_index field for symbols of this type. */
6259
6260 int
6261 register_symbol_register_impl (enum address_class aclass,
6262 const struct symbol_register_ops *ops)
6263 {
6264 int result = next_aclass_value++;
6265
6266 gdb_assert (aclass == LOC_REGISTER || aclass == LOC_REGPARM_ADDR);
6267 gdb_assert (result < MAX_SYMBOL_IMPLS);
6268 symbol_impl[result].aclass = aclass;
6269 symbol_impl[result].ops_register = ops;
6270
6271 return result;
6272 }
6273
6274 /* Initialize elements of 'symbol_impl' for the constants in enum
6275 address_class. */
6276
6277 static void
6278 initialize_ordinary_address_classes (void)
6279 {
6280 int i;
6281
6282 for (i = 0; i < LOC_FINAL_VALUE; ++i)
6283 symbol_impl[i].aclass = (enum address_class) i;
6284 }
6285
6286 \f
6287
6288 /* Initialize the symbol SYM, and mark it as being owned by an objfile. */
6289
6290 void
6291 initialize_objfile_symbol (struct symbol *sym)
6292 {
6293 SYMBOL_OBJFILE_OWNED (sym) = 1;
6294 SYMBOL_SECTION (sym) = -1;
6295 }
6296
6297 /* Allocate and initialize a new 'struct symbol' on OBJFILE's
6298 obstack. */
6299
6300 struct symbol *
6301 allocate_symbol (struct objfile *objfile)
6302 {
6303 struct symbol *result = new (&objfile->objfile_obstack) symbol ();
6304
6305 initialize_objfile_symbol (result);
6306
6307 return result;
6308 }
6309
6310 /* Allocate and initialize a new 'struct template_symbol' on OBJFILE's
6311 obstack. */
6312
6313 struct template_symbol *
6314 allocate_template_symbol (struct objfile *objfile)
6315 {
6316 struct template_symbol *result;
6317
6318 result = new (&objfile->objfile_obstack) template_symbol ();
6319 initialize_objfile_symbol (result);
6320
6321 return result;
6322 }
6323
6324 /* See symtab.h. */
6325
6326 struct objfile *
6327 symbol_objfile (const struct symbol *symbol)
6328 {
6329 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
6330 return SYMTAB_OBJFILE (symbol->owner.symtab);
6331 }
6332
6333 /* See symtab.h. */
6334
6335 struct gdbarch *
6336 symbol_arch (const struct symbol *symbol)
6337 {
6338 if (!SYMBOL_OBJFILE_OWNED (symbol))
6339 return symbol->owner.arch;
6340 return get_objfile_arch (SYMTAB_OBJFILE (symbol->owner.symtab));
6341 }
6342
6343 /* See symtab.h. */
6344
6345 struct symtab *
6346 symbol_symtab (const struct symbol *symbol)
6347 {
6348 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
6349 return symbol->owner.symtab;
6350 }
6351
6352 /* See symtab.h. */
6353
6354 void
6355 symbol_set_symtab (struct symbol *symbol, struct symtab *symtab)
6356 {
6357 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
6358 symbol->owner.symtab = symtab;
6359 }
6360
6361 /* See symtab.h. */
6362
6363 CORE_ADDR
6364 get_symbol_address (const struct symbol *sym)
6365 {
6366 gdb_assert (sym->maybe_copied);
6367 gdb_assert (SYMBOL_CLASS (sym) == LOC_STATIC);
6368
6369 const char *linkage_name = sym->linkage_name ();
6370
6371 for (objfile *objfile : current_program_space->objfiles ())
6372 {
6373 bound_minimal_symbol minsym
6374 = lookup_minimal_symbol_linkage (linkage_name, objfile);
6375 if (minsym.minsym != nullptr)
6376 return BMSYMBOL_VALUE_ADDRESS (minsym);
6377 }
6378 return sym->value.address;
6379 }
6380
6381 /* See symtab.h. */
6382
6383 CORE_ADDR
6384 get_msymbol_address (struct objfile *objf, const struct minimal_symbol *minsym)
6385 {
6386 gdb_assert (minsym->maybe_copied);
6387 gdb_assert ((objf->flags & OBJF_MAINLINE) == 0);
6388
6389 const char *linkage_name = minsym->linkage_name ();
6390
6391 for (objfile *objfile : current_program_space->objfiles ())
6392 {
6393 if ((objfile->flags & OBJF_MAINLINE) != 0)
6394 {
6395 bound_minimal_symbol found
6396 = lookup_minimal_symbol_linkage (linkage_name, objfile);
6397 if (found.minsym != nullptr)
6398 return BMSYMBOL_VALUE_ADDRESS (found);
6399 }
6400 }
6401 return minsym->value.address + objf->section_offsets[minsym->section];
6402 }
6403
6404 \f
6405
6406 /* Hold the sub-commands of 'info module'. */
6407
6408 static struct cmd_list_element *info_module_cmdlist = NULL;
6409
6410 /* Implement the 'info module' command, just displays some help text for
6411 the available sub-commands. */
6412
6413 static void
6414 info_module_command (const char *args, int from_tty)
6415 {
6416 help_list (info_module_cmdlist, "info module ", class_info, gdb_stdout);
6417 }
6418
6419 /* See symtab.h. */
6420
6421 std::vector<module_symbol_search>
6422 search_module_symbols (const char *module_regexp, const char *regexp,
6423 const char *type_regexp, search_domain kind)
6424 {
6425 std::vector<module_symbol_search> results;
6426
6427 /* Search for all modules matching MODULE_REGEXP. */
6428 global_symbol_searcher spec1 (MODULES_DOMAIN, module_regexp);
6429 spec1.set_exclude_minsyms (true);
6430 std::vector<symbol_search> modules = spec1.search ();
6431
6432 /* Now search for all symbols of the required KIND matching the required
6433 regular expressions. We figure out which ones are in which modules
6434 below. */
6435 global_symbol_searcher spec2 (kind, regexp);
6436 spec2.set_symbol_type_regexp (type_regexp);
6437 spec2.set_exclude_minsyms (true);
6438 std::vector<symbol_search> symbols = spec2.search ();
6439
6440 /* Now iterate over all MODULES, checking to see which items from
6441 SYMBOLS are in each module. */
6442 for (const symbol_search &p : modules)
6443 {
6444 QUIT;
6445
6446 /* This is a module. */
6447 gdb_assert (p.symbol != nullptr);
6448
6449 std::string prefix = p.symbol->print_name ();
6450 prefix += "::";
6451
6452 for (const symbol_search &q : symbols)
6453 {
6454 if (q.symbol == nullptr)
6455 continue;
6456
6457 if (strncmp (q.symbol->print_name (), prefix.c_str (),
6458 prefix.size ()) != 0)
6459 continue;
6460
6461 results.push_back ({p, q});
6462 }
6463 }
6464
6465 return results;
6466 }
6467
6468 /* Implement the core of both 'info module functions' and 'info module
6469 variables'. */
6470
6471 static void
6472 info_module_subcommand (bool quiet, const char *module_regexp,
6473 const char *regexp, const char *type_regexp,
6474 search_domain kind)
6475 {
6476 /* Print a header line. Don't build the header line bit by bit as this
6477 prevents internationalisation. */
6478 if (!quiet)
6479 {
6480 if (module_regexp == nullptr)
6481 {
6482 if (type_regexp == nullptr)
6483 {
6484 if (regexp == nullptr)
6485 printf_filtered ((kind == VARIABLES_DOMAIN
6486 ? _("All variables in all modules:")
6487 : _("All functions in all modules:")));
6488 else
6489 printf_filtered
6490 ((kind == VARIABLES_DOMAIN
6491 ? _("All variables matching regular expression"
6492 " \"%s\" in all modules:")
6493 : _("All functions matching regular expression"
6494 " \"%s\" in all modules:")),
6495 regexp);
6496 }
6497 else
6498 {
6499 if (regexp == nullptr)
6500 printf_filtered
6501 ((kind == VARIABLES_DOMAIN
6502 ? _("All variables with type matching regular "
6503 "expression \"%s\" in all modules:")
6504 : _("All functions with type matching regular "
6505 "expression \"%s\" in all modules:")),
6506 type_regexp);
6507 else
6508 printf_filtered
6509 ((kind == VARIABLES_DOMAIN
6510 ? _("All variables matching regular expression "
6511 "\"%s\",\n\twith type matching regular "
6512 "expression \"%s\" in all modules:")
6513 : _("All functions matching regular expression "
6514 "\"%s\",\n\twith type matching regular "
6515 "expression \"%s\" in all modules:")),
6516 regexp, type_regexp);
6517 }
6518 }
6519 else
6520 {
6521 if (type_regexp == nullptr)
6522 {
6523 if (regexp == nullptr)
6524 printf_filtered
6525 ((kind == VARIABLES_DOMAIN
6526 ? _("All variables in all modules matching regular "
6527 "expression \"%s\":")
6528 : _("All functions in all modules matching regular "
6529 "expression \"%s\":")),
6530 module_regexp);
6531 else
6532 printf_filtered
6533 ((kind == VARIABLES_DOMAIN
6534 ? _("All variables matching regular expression "
6535 "\"%s\",\n\tin all modules matching regular "
6536 "expression \"%s\":")
6537 : _("All functions matching regular expression "
6538 "\"%s\",\n\tin all modules matching regular "
6539 "expression \"%s\":")),
6540 regexp, module_regexp);
6541 }
6542 else
6543 {
6544 if (regexp == nullptr)
6545 printf_filtered
6546 ((kind == VARIABLES_DOMAIN
6547 ? _("All variables with type matching regular "
6548 "expression \"%s\"\n\tin all modules matching "
6549 "regular expression \"%s\":")
6550 : _("All functions with type matching regular "
6551 "expression \"%s\"\n\tin all modules matching "
6552 "regular expression \"%s\":")),
6553 type_regexp, module_regexp);
6554 else
6555 printf_filtered
6556 ((kind == VARIABLES_DOMAIN
6557 ? _("All variables matching regular expression "
6558 "\"%s\",\n\twith type matching regular expression "
6559 "\"%s\",\n\tin all modules matching regular "
6560 "expression \"%s\":")
6561 : _("All functions matching regular expression "
6562 "\"%s\",\n\twith type matching regular expression "
6563 "\"%s\",\n\tin all modules matching regular "
6564 "expression \"%s\":")),
6565 regexp, type_regexp, module_regexp);
6566 }
6567 }
6568 printf_filtered ("\n");
6569 }
6570
6571 /* Find all symbols of type KIND matching the given regular expressions
6572 along with the symbols for the modules in which those symbols
6573 reside. */
6574 std::vector<module_symbol_search> module_symbols
6575 = search_module_symbols (module_regexp, regexp, type_regexp, kind);
6576
6577 std::sort (module_symbols.begin (), module_symbols.end (),
6578 [] (const module_symbol_search &a, const module_symbol_search &b)
6579 {
6580 if (a.first < b.first)
6581 return true;
6582 else if (a.first == b.first)
6583 return a.second < b.second;
6584 else
6585 return false;
6586 });
6587
6588 const char *last_filename = "";
6589 const symbol *last_module_symbol = nullptr;
6590 for (const module_symbol_search &ms : module_symbols)
6591 {
6592 const symbol_search &p = ms.first;
6593 const symbol_search &q = ms.second;
6594
6595 gdb_assert (q.symbol != nullptr);
6596
6597 if (last_module_symbol != p.symbol)
6598 {
6599 printf_filtered ("\n");
6600 printf_filtered (_("Module \"%s\":\n"), p.symbol->print_name ());
6601 last_module_symbol = p.symbol;
6602 last_filename = "";
6603 }
6604
6605 print_symbol_info (FUNCTIONS_DOMAIN, q.symbol, q.block,
6606 last_filename);
6607 last_filename
6608 = symtab_to_filename_for_display (symbol_symtab (q.symbol));
6609 }
6610 }
6611
6612 /* Hold the option values for the 'info module .....' sub-commands. */
6613
6614 struct info_modules_var_func_options
6615 {
6616 bool quiet = false;
6617 char *type_regexp = nullptr;
6618 char *module_regexp = nullptr;
6619
6620 ~info_modules_var_func_options ()
6621 {
6622 xfree (type_regexp);
6623 xfree (module_regexp);
6624 }
6625 };
6626
6627 /* The options used by 'info module variables' and 'info module functions'
6628 commands. */
6629
6630 static const gdb::option::option_def info_modules_var_func_options_defs [] = {
6631 gdb::option::boolean_option_def<info_modules_var_func_options> {
6632 "q",
6633 [] (info_modules_var_func_options *opt) { return &opt->quiet; },
6634 nullptr, /* show_cmd_cb */
6635 nullptr /* set_doc */
6636 },
6637
6638 gdb::option::string_option_def<info_modules_var_func_options> {
6639 "t",
6640 [] (info_modules_var_func_options *opt) { return &opt->type_regexp; },
6641 nullptr, /* show_cmd_cb */
6642 nullptr /* set_doc */
6643 },
6644
6645 gdb::option::string_option_def<info_modules_var_func_options> {
6646 "m",
6647 [] (info_modules_var_func_options *opt) { return &opt->module_regexp; },
6648 nullptr, /* show_cmd_cb */
6649 nullptr /* set_doc */
6650 }
6651 };
6652
6653 /* Return the option group used by the 'info module ...' sub-commands. */
6654
6655 static inline gdb::option::option_def_group
6656 make_info_modules_var_func_options_def_group
6657 (info_modules_var_func_options *opts)
6658 {
6659 return {{info_modules_var_func_options_defs}, opts};
6660 }
6661
6662 /* Implements the 'info module functions' command. */
6663
6664 static void
6665 info_module_functions_command (const char *args, int from_tty)
6666 {
6667 info_modules_var_func_options opts;
6668 auto grp = make_info_modules_var_func_options_def_group (&opts);
6669 gdb::option::process_options
6670 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
6671 if (args != nullptr && *args == '\0')
6672 args = nullptr;
6673
6674 info_module_subcommand (opts.quiet, opts.module_regexp, args,
6675 opts.type_regexp, FUNCTIONS_DOMAIN);
6676 }
6677
6678 /* Implements the 'info module variables' command. */
6679
6680 static void
6681 info_module_variables_command (const char *args, int from_tty)
6682 {
6683 info_modules_var_func_options opts;
6684 auto grp = make_info_modules_var_func_options_def_group (&opts);
6685 gdb::option::process_options
6686 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
6687 if (args != nullptr && *args == '\0')
6688 args = nullptr;
6689
6690 info_module_subcommand (opts.quiet, opts.module_regexp, args,
6691 opts.type_regexp, VARIABLES_DOMAIN);
6692 }
6693
6694 /* Command completer for 'info module ...' sub-commands. */
6695
6696 static void
6697 info_module_var_func_command_completer (struct cmd_list_element *ignore,
6698 completion_tracker &tracker,
6699 const char *text,
6700 const char * /* word */)
6701 {
6702
6703 const auto group = make_info_modules_var_func_options_def_group (nullptr);
6704 if (gdb::option::complete_options
6705 (tracker, &text, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, group))
6706 return;
6707
6708 const char *word = advance_to_expression_complete_word_point (tracker, text);
6709 symbol_completer (ignore, tracker, text, word);
6710 }
6711
6712 \f
6713
6714 void _initialize_symtab ();
6715 void
6716 _initialize_symtab ()
6717 {
6718 cmd_list_element *c;
6719
6720 initialize_ordinary_address_classes ();
6721
6722 c = add_info ("variables", info_variables_command,
6723 info_print_args_help (_("\
6724 All global and static variable names or those matching REGEXPs.\n\
6725 Usage: info variables [-q] [-n] [-t TYPEREGEXP] [NAMEREGEXP]\n\
6726 Prints the global and static variables.\n"),
6727 _("global and static variables"),
6728 true));
6729 set_cmd_completer_handle_brkchars (c, info_vars_funcs_command_completer);
6730 if (dbx_commands)
6731 {
6732 c = add_com ("whereis", class_info, info_variables_command,
6733 info_print_args_help (_("\
6734 All global and static variable names, or those matching REGEXPs.\n\
6735 Usage: whereis [-q] [-n] [-t TYPEREGEXP] [NAMEREGEXP]\n\
6736 Prints the global and static variables.\n"),
6737 _("global and static variables"),
6738 true));
6739 set_cmd_completer_handle_brkchars (c, info_vars_funcs_command_completer);
6740 }
6741
6742 c = add_info ("functions", info_functions_command,
6743 info_print_args_help (_("\
6744 All function names or those matching REGEXPs.\n\
6745 Usage: info functions [-q] [-n] [-t TYPEREGEXP] [NAMEREGEXP]\n\
6746 Prints the functions.\n"),
6747 _("functions"),
6748 true));
6749 set_cmd_completer_handle_brkchars (c, info_vars_funcs_command_completer);
6750
6751 c = add_info ("types", info_types_command, _("\
6752 All type names, or those matching REGEXP.\n\
6753 Usage: info types [-q] [REGEXP]\n\
6754 Print information about all types matching REGEXP, or all types if no\n\
6755 REGEXP is given. The optional flag -q disables printing of headers."));
6756 set_cmd_completer_handle_brkchars (c, info_types_command_completer);
6757
6758 const auto info_sources_opts = make_info_sources_options_def_group (nullptr);
6759
6760 static std::string info_sources_help
6761 = gdb::option::build_help (_("\
6762 All source files in the program or those matching REGEXP.\n\
6763 Usage: info sources [OPTION]... [REGEXP]\n\
6764 By default, REGEXP is used to match anywhere in the filename.\n\
6765 \n\
6766 Options:\n\
6767 %OPTIONS%"),
6768 info_sources_opts);
6769
6770 c = add_info ("sources", info_sources_command, info_sources_help.c_str ());
6771 set_cmd_completer_handle_brkchars (c, info_sources_command_completer);
6772
6773 c = add_info ("modules", info_modules_command,
6774 _("All module names, or those matching REGEXP."));
6775 set_cmd_completer_handle_brkchars (c, info_types_command_completer);
6776
6777 add_prefix_cmd ("module", class_info, info_module_command, _("\
6778 Print information about modules."),
6779 &info_module_cmdlist, "info module ",
6780 0, &infolist);
6781
6782 c = add_cmd ("functions", class_info, info_module_functions_command, _("\
6783 Display functions arranged by modules.\n\
6784 Usage: info module functions [-q] [-m MODREGEXP] [-t TYPEREGEXP] [REGEXP]\n\
6785 Print a summary of all functions within each Fortran module, grouped by\n\
6786 module and file. For each function the line on which the function is\n\
6787 defined is given along with the type signature and name of the function.\n\
6788 \n\
6789 If REGEXP is provided then only functions whose name matches REGEXP are\n\
6790 listed. If MODREGEXP is provided then only functions in modules matching\n\
6791 MODREGEXP are listed. If TYPEREGEXP is given then only functions whose\n\
6792 type signature matches TYPEREGEXP are listed.\n\
6793 \n\
6794 The -q flag suppresses printing some header information."),
6795 &info_module_cmdlist);
6796 set_cmd_completer_handle_brkchars
6797 (c, info_module_var_func_command_completer);
6798
6799 c = add_cmd ("variables", class_info, info_module_variables_command, _("\
6800 Display variables arranged by modules.\n\
6801 Usage: info module variables [-q] [-m MODREGEXP] [-t TYPEREGEXP] [REGEXP]\n\
6802 Print a summary of all variables within each Fortran module, grouped by\n\
6803 module and file. For each variable the line on which the variable is\n\
6804 defined is given along with the type and name of the variable.\n\
6805 \n\
6806 If REGEXP is provided then only variables whose name matches REGEXP are\n\
6807 listed. If MODREGEXP is provided then only variables in modules matching\n\
6808 MODREGEXP are listed. If TYPEREGEXP is given then only variables whose\n\
6809 type matches TYPEREGEXP are listed.\n\
6810 \n\
6811 The -q flag suppresses printing some header information."),
6812 &info_module_cmdlist);
6813 set_cmd_completer_handle_brkchars
6814 (c, info_module_var_func_command_completer);
6815
6816 add_com ("rbreak", class_breakpoint, rbreak_command,
6817 _("Set a breakpoint for all functions matching REGEXP."));
6818
6819 add_setshow_enum_cmd ("multiple-symbols", no_class,
6820 multiple_symbols_modes, &multiple_symbols_mode,
6821 _("\
6822 Set how the debugger handles ambiguities in expressions."), _("\
6823 Show how the debugger handles ambiguities in expressions."), _("\
6824 Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
6825 NULL, NULL, &setlist, &showlist);
6826
6827 add_setshow_boolean_cmd ("basenames-may-differ", class_obscure,
6828 &basenames_may_differ, _("\
6829 Set whether a source file may have multiple base names."), _("\
6830 Show whether a source file may have multiple base names."), _("\
6831 (A \"base name\" is the name of a file with the directory part removed.\n\
6832 Example: The base name of \"/home/user/hello.c\" is \"hello.c\".)\n\
6833 If set, GDB will canonicalize file names (e.g., expand symlinks)\n\
6834 before comparing them. Canonicalization is an expensive operation,\n\
6835 but it allows the same file be known by more than one base name.\n\
6836 If not set (the default), all source files are assumed to have just\n\
6837 one base name, and gdb will do file name comparisons more efficiently."),
6838 NULL, NULL,
6839 &setlist, &showlist);
6840
6841 add_setshow_zuinteger_cmd ("symtab-create", no_class, &symtab_create_debug,
6842 _("Set debugging of symbol table creation."),
6843 _("Show debugging of symbol table creation."), _("\
6844 When enabled (non-zero), debugging messages are printed when building\n\
6845 symbol tables. A value of 1 (one) normally provides enough information.\n\
6846 A value greater than 1 provides more verbose information."),
6847 NULL,
6848 NULL,
6849 &setdebuglist, &showdebuglist);
6850
6851 add_setshow_zuinteger_cmd ("symbol-lookup", no_class, &symbol_lookup_debug,
6852 _("\
6853 Set debugging of symbol lookup."), _("\
6854 Show debugging of symbol lookup."), _("\
6855 When enabled (non-zero), symbol lookups are logged."),
6856 NULL, NULL,
6857 &setdebuglist, &showdebuglist);
6858
6859 add_setshow_zuinteger_cmd ("symbol-cache-size", no_class,
6860 &new_symbol_cache_size,
6861 _("Set the size of the symbol cache."),
6862 _("Show the size of the symbol cache."), _("\
6863 The size of the symbol cache.\n\
6864 If zero then the symbol cache is disabled."),
6865 set_symbol_cache_size_handler, NULL,
6866 &maintenance_set_cmdlist,
6867 &maintenance_show_cmdlist);
6868
6869 add_cmd ("symbol-cache", class_maintenance, maintenance_print_symbol_cache,
6870 _("Dump the symbol cache for each program space."),
6871 &maintenanceprintlist);
6872
6873 add_cmd ("symbol-cache-statistics", class_maintenance,
6874 maintenance_print_symbol_cache_statistics,
6875 _("Print symbol cache statistics for each program space."),
6876 &maintenanceprintlist);
6877
6878 add_cmd ("flush-symbol-cache", class_maintenance,
6879 maintenance_flush_symbol_cache,
6880 _("Flush the symbol cache for each program space."),
6881 &maintenancelist);
6882
6883 gdb::observers::executable_changed.attach (symtab_observer_executable_changed);
6884 gdb::observers::new_objfile.attach (symtab_new_objfile_observer);
6885 gdb::observers::free_objfile.attach (symtab_free_objfile_observer);
6886 }
This page took 0.217232 seconds and 4 git commands to generate.