4e2b2a5043e982ba7d67103ebeb6533abe1de3a3
[deliverable/binutils-gdb.git] / gdb / symtab.c
1 /* Symbol table lookup for the GNU debugger, GDB.
2
3 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2007, 2008
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "symtab.h"
24 #include "gdbtypes.h"
25 #include "gdbcore.h"
26 #include "frame.h"
27 #include "target.h"
28 #include "value.h"
29 #include "symfile.h"
30 #include "objfiles.h"
31 #include "gdbcmd.h"
32 #include "call-cmds.h"
33 #include "gdb_regex.h"
34 #include "expression.h"
35 #include "language.h"
36 #include "demangle.h"
37 #include "inferior.h"
38 #include "linespec.h"
39 #include "source.h"
40 #include "filenames.h" /* for FILENAME_CMP */
41 #include "objc-lang.h"
42 #include "ada-lang.h"
43 #include "p-lang.h"
44 #include "addrmap.h"
45
46 #include "hashtab.h"
47
48 #include "gdb_obstack.h"
49 #include "block.h"
50 #include "dictionary.h"
51
52 #include <sys/types.h>
53 #include <fcntl.h>
54 #include "gdb_string.h"
55 #include "gdb_stat.h"
56 #include <ctype.h>
57 #include "cp-abi.h"
58 #include "observer.h"
59 #include "gdb_assert.h"
60 #include "solist.h"
61
62 /* Prototypes for local functions */
63
64 static void completion_list_add_name (char *, char *, int, char *, char *);
65
66 static void rbreak_command (char *, int);
67
68 static void types_info (char *, int);
69
70 static void functions_info (char *, int);
71
72 static void variables_info (char *, int);
73
74 static void sources_info (char *, int);
75
76 static void output_source_filename (const char *, int *);
77
78 static int find_line_common (struct linetable *, int, int *);
79
80 /* This one is used by linespec.c */
81
82 char *operator_chars (char *p, char **end);
83
84 static struct symbol *lookup_symbol_aux (const char *name,
85 const char *linkage_name,
86 const struct block *block,
87 const domain_enum domain,
88 enum language language,
89 int *is_a_field_of_this);
90
91 static
92 struct symbol *lookup_symbol_aux_local (const char *name,
93 const char *linkage_name,
94 const struct block *block,
95 const domain_enum domain);
96
97 static
98 struct symbol *lookup_symbol_aux_symtabs (int block_index,
99 const char *name,
100 const char *linkage_name,
101 const domain_enum domain);
102
103 static
104 struct symbol *lookup_symbol_aux_psymtabs (int block_index,
105 const char *name,
106 const char *linkage_name,
107 const domain_enum domain);
108
109 static int file_matches (char *, char **, int);
110
111 static void print_symbol_info (domain_enum,
112 struct symtab *, struct symbol *, int, char *);
113
114 static void print_msymbol_info (struct minimal_symbol *);
115
116 static void symtab_symbol_info (char *, domain_enum, int);
117
118 void _initialize_symtab (void);
119
120 /* */
121
122 /* Allow the user to configure the debugger behavior with respect
123 to multiple-choice menus when more than one symbol matches during
124 a symbol lookup. */
125
126 const char multiple_symbols_ask[] = "ask";
127 const char multiple_symbols_all[] = "all";
128 const char multiple_symbols_cancel[] = "cancel";
129 static const char *multiple_symbols_modes[] =
130 {
131 multiple_symbols_ask,
132 multiple_symbols_all,
133 multiple_symbols_cancel,
134 NULL
135 };
136 static const char *multiple_symbols_mode = multiple_symbols_all;
137
138 /* Read-only accessor to AUTO_SELECT_MODE. */
139
140 const char *
141 multiple_symbols_select_mode (void)
142 {
143 return multiple_symbols_mode;
144 }
145
146 /* The single non-language-specific builtin type */
147 struct type *builtin_type_error;
148
149 /* Block in which the most recently searched-for symbol was found.
150 Might be better to make this a parameter to lookup_symbol and
151 value_of_this. */
152
153 const struct block *block_found;
154
155 /* Check for a symtab of a specific name; first in symtabs, then in
156 psymtabs. *If* there is no '/' in the name, a match after a '/'
157 in the symtab filename will also work. */
158
159 struct symtab *
160 lookup_symtab (const char *name)
161 {
162 struct symtab *s;
163 struct partial_symtab *ps;
164 struct objfile *objfile;
165 char *real_path = NULL;
166 char *full_path = NULL;
167
168 /* Here we are interested in canonicalizing an absolute path, not
169 absolutizing a relative path. */
170 if (IS_ABSOLUTE_PATH (name))
171 {
172 full_path = xfullpath (name);
173 make_cleanup (xfree, full_path);
174 real_path = gdb_realpath (name);
175 make_cleanup (xfree, real_path);
176 }
177
178 got_symtab:
179
180 /* First, search for an exact match */
181
182 ALL_SYMTABS (objfile, s)
183 {
184 if (FILENAME_CMP (name, s->filename) == 0)
185 {
186 return s;
187 }
188
189 /* If the user gave us an absolute path, try to find the file in
190 this symtab and use its absolute path. */
191
192 if (full_path != NULL)
193 {
194 const char *fp = symtab_to_fullname (s);
195 if (fp != NULL && FILENAME_CMP (full_path, fp) == 0)
196 {
197 return s;
198 }
199 }
200
201 if (real_path != NULL)
202 {
203 char *fullname = symtab_to_fullname (s);
204 if (fullname != NULL)
205 {
206 char *rp = gdb_realpath (fullname);
207 make_cleanup (xfree, rp);
208 if (FILENAME_CMP (real_path, rp) == 0)
209 {
210 return s;
211 }
212 }
213 }
214 }
215
216 /* Now, search for a matching tail (only if name doesn't have any dirs) */
217
218 if (lbasename (name) == name)
219 ALL_SYMTABS (objfile, s)
220 {
221 if (FILENAME_CMP (lbasename (s->filename), name) == 0)
222 return s;
223 }
224
225 /* Same search rules as above apply here, but now we look thru the
226 psymtabs. */
227
228 ps = lookup_partial_symtab (name);
229 if (!ps)
230 return (NULL);
231
232 if (ps->readin)
233 error (_("Internal: readin %s pst for `%s' found when no symtab found."),
234 ps->filename, name);
235
236 s = PSYMTAB_TO_SYMTAB (ps);
237
238 if (s)
239 return s;
240
241 /* At this point, we have located the psymtab for this file, but
242 the conversion to a symtab has failed. This usually happens
243 when we are looking up an include file. In this case,
244 PSYMTAB_TO_SYMTAB doesn't return a symtab, even though one has
245 been created. So, we need to run through the symtabs again in
246 order to find the file.
247 XXX - This is a crock, and should be fixed inside of the the
248 symbol parsing routines. */
249 goto got_symtab;
250 }
251
252 /* Lookup the partial symbol table of a source file named NAME.
253 *If* there is no '/' in the name, a match after a '/'
254 in the psymtab filename will also work. */
255
256 struct partial_symtab *
257 lookup_partial_symtab (const char *name)
258 {
259 struct partial_symtab *pst;
260 struct objfile *objfile;
261 char *full_path = NULL;
262 char *real_path = NULL;
263
264 /* Here we are interested in canonicalizing an absolute path, not
265 absolutizing a relative path. */
266 if (IS_ABSOLUTE_PATH (name))
267 {
268 full_path = xfullpath (name);
269 make_cleanup (xfree, full_path);
270 real_path = gdb_realpath (name);
271 make_cleanup (xfree, real_path);
272 }
273
274 ALL_PSYMTABS (objfile, pst)
275 {
276 if (FILENAME_CMP (name, pst->filename) == 0)
277 {
278 return (pst);
279 }
280
281 /* If the user gave us an absolute path, try to find the file in
282 this symtab and use its absolute path. */
283 if (full_path != NULL)
284 {
285 psymtab_to_fullname (pst);
286 if (pst->fullname != NULL
287 && FILENAME_CMP (full_path, pst->fullname) == 0)
288 {
289 return pst;
290 }
291 }
292
293 if (real_path != NULL)
294 {
295 char *rp = NULL;
296 psymtab_to_fullname (pst);
297 if (pst->fullname != NULL)
298 {
299 rp = gdb_realpath (pst->fullname);
300 make_cleanup (xfree, rp);
301 }
302 if (rp != NULL && FILENAME_CMP (real_path, rp) == 0)
303 {
304 return pst;
305 }
306 }
307 }
308
309 /* Now, search for a matching tail (only if name doesn't have any dirs) */
310
311 if (lbasename (name) == name)
312 ALL_PSYMTABS (objfile, pst)
313 {
314 if (FILENAME_CMP (lbasename (pst->filename), name) == 0)
315 return (pst);
316 }
317
318 return (NULL);
319 }
320 \f
321 /* Mangle a GDB method stub type. This actually reassembles the pieces of the
322 full method name, which consist of the class name (from T), the unadorned
323 method name from METHOD_ID, and the signature for the specific overload,
324 specified by SIGNATURE_ID. Note that this function is g++ specific. */
325
326 char *
327 gdb_mangle_name (struct type *type, int method_id, int signature_id)
328 {
329 int mangled_name_len;
330 char *mangled_name;
331 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
332 struct fn_field *method = &f[signature_id];
333 char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
334 char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
335 char *newname = type_name_no_tag (type);
336
337 /* Does the form of physname indicate that it is the full mangled name
338 of a constructor (not just the args)? */
339 int is_full_physname_constructor;
340
341 int is_constructor;
342 int is_destructor = is_destructor_name (physname);
343 /* Need a new type prefix. */
344 char *const_prefix = method->is_const ? "C" : "";
345 char *volatile_prefix = method->is_volatile ? "V" : "";
346 char buf[20];
347 int len = (newname == NULL ? 0 : strlen (newname));
348
349 /* Nothing to do if physname already contains a fully mangled v3 abi name
350 or an operator name. */
351 if ((physname[0] == '_' && physname[1] == 'Z')
352 || is_operator_name (field_name))
353 return xstrdup (physname);
354
355 is_full_physname_constructor = is_constructor_name (physname);
356
357 is_constructor =
358 is_full_physname_constructor || (newname && strcmp (field_name, newname) == 0);
359
360 if (!is_destructor)
361 is_destructor = (strncmp (physname, "__dt", 4) == 0);
362
363 if (is_destructor || is_full_physname_constructor)
364 {
365 mangled_name = (char *) xmalloc (strlen (physname) + 1);
366 strcpy (mangled_name, physname);
367 return mangled_name;
368 }
369
370 if (len == 0)
371 {
372 sprintf (buf, "__%s%s", const_prefix, volatile_prefix);
373 }
374 else if (physname[0] == 't' || physname[0] == 'Q')
375 {
376 /* The physname for template and qualified methods already includes
377 the class name. */
378 sprintf (buf, "__%s%s", const_prefix, volatile_prefix);
379 newname = NULL;
380 len = 0;
381 }
382 else
383 {
384 sprintf (buf, "__%s%s%d", const_prefix, volatile_prefix, len);
385 }
386 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
387 + strlen (buf) + len + strlen (physname) + 1);
388
389 {
390 mangled_name = (char *) xmalloc (mangled_name_len);
391 if (is_constructor)
392 mangled_name[0] = '\0';
393 else
394 strcpy (mangled_name, field_name);
395 }
396 strcat (mangled_name, buf);
397 /* If the class doesn't have a name, i.e. newname NULL, then we just
398 mangle it using 0 for the length of the class. Thus it gets mangled
399 as something starting with `::' rather than `classname::'. */
400 if (newname != NULL)
401 strcat (mangled_name, newname);
402
403 strcat (mangled_name, physname);
404 return (mangled_name);
405 }
406
407 \f
408 /* Initialize the language dependent portion of a symbol
409 depending upon the language for the symbol. */
410 void
411 symbol_init_language_specific (struct general_symbol_info *gsymbol,
412 enum language language)
413 {
414 gsymbol->language = language;
415 if (gsymbol->language == language_cplus
416 || gsymbol->language == language_java
417 || gsymbol->language == language_objc)
418 {
419 gsymbol->language_specific.cplus_specific.demangled_name = NULL;
420 }
421 else
422 {
423 memset (&gsymbol->language_specific, 0,
424 sizeof (gsymbol->language_specific));
425 }
426 }
427
428 /* Functions to initialize a symbol's mangled name. */
429
430 /* Create the hash table used for demangled names. Each hash entry is
431 a pair of strings; one for the mangled name and one for the demangled
432 name. The entry is hashed via just the mangled name. */
433
434 static void
435 create_demangled_names_hash (struct objfile *objfile)
436 {
437 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
438 The hash table code will round this up to the next prime number.
439 Choosing a much larger table size wastes memory, and saves only about
440 1% in symbol reading. */
441
442 objfile->demangled_names_hash = htab_create_alloc
443 (256, htab_hash_string, (int (*) (const void *, const void *)) streq,
444 NULL, xcalloc, xfree);
445 }
446
447 /* Try to determine the demangled name for a symbol, based on the
448 language of that symbol. If the language is set to language_auto,
449 it will attempt to find any demangling algorithm that works and
450 then set the language appropriately. The returned name is allocated
451 by the demangler and should be xfree'd. */
452
453 static char *
454 symbol_find_demangled_name (struct general_symbol_info *gsymbol,
455 const char *mangled)
456 {
457 char *demangled = NULL;
458
459 if (gsymbol->language == language_unknown)
460 gsymbol->language = language_auto;
461
462 if (gsymbol->language == language_objc
463 || gsymbol->language == language_auto)
464 {
465 demangled =
466 objc_demangle (mangled, 0);
467 if (demangled != NULL)
468 {
469 gsymbol->language = language_objc;
470 return demangled;
471 }
472 }
473 if (gsymbol->language == language_cplus
474 || gsymbol->language == language_auto)
475 {
476 demangled =
477 cplus_demangle (mangled, DMGL_PARAMS | DMGL_ANSI);
478 if (demangled != NULL)
479 {
480 gsymbol->language = language_cplus;
481 return demangled;
482 }
483 }
484 if (gsymbol->language == language_java)
485 {
486 demangled =
487 cplus_demangle (mangled,
488 DMGL_PARAMS | DMGL_ANSI | DMGL_JAVA);
489 if (demangled != NULL)
490 {
491 gsymbol->language = language_java;
492 return demangled;
493 }
494 }
495 return NULL;
496 }
497
498 /* Set both the mangled and demangled (if any) names for GSYMBOL based
499 on LINKAGE_NAME and LEN. The hash table corresponding to OBJFILE
500 is used, and the memory comes from that objfile's objfile_obstack.
501 LINKAGE_NAME is copied, so the pointer can be discarded after
502 calling this function. */
503
504 /* We have to be careful when dealing with Java names: when we run
505 into a Java minimal symbol, we don't know it's a Java symbol, so it
506 gets demangled as a C++ name. This is unfortunate, but there's not
507 much we can do about it: but when demangling partial symbols and
508 regular symbols, we'd better not reuse the wrong demangled name.
509 (See PR gdb/1039.) We solve this by putting a distinctive prefix
510 on Java names when storing them in the hash table. */
511
512 /* FIXME: carlton/2003-03-13: This is an unfortunate situation. I
513 don't mind the Java prefix so much: different languages have
514 different demangling requirements, so it's only natural that we
515 need to keep language data around in our demangling cache. But
516 it's not good that the minimal symbol has the wrong demangled name.
517 Unfortunately, I can't think of any easy solution to that
518 problem. */
519
520 #define JAVA_PREFIX "##JAVA$$"
521 #define JAVA_PREFIX_LEN 8
522
523 void
524 symbol_set_names (struct general_symbol_info *gsymbol,
525 const char *linkage_name, int len, struct objfile *objfile)
526 {
527 char **slot;
528 /* A 0-terminated copy of the linkage name. */
529 const char *linkage_name_copy;
530 /* A copy of the linkage name that might have a special Java prefix
531 added to it, for use when looking names up in the hash table. */
532 const char *lookup_name;
533 /* The length of lookup_name. */
534 int lookup_len;
535
536 if (objfile->demangled_names_hash == NULL)
537 create_demangled_names_hash (objfile);
538
539 if (gsymbol->language == language_ada)
540 {
541 /* In Ada, we do the symbol lookups using the mangled name, so
542 we can save some space by not storing the demangled name.
543
544 As a side note, we have also observed some overlap between
545 the C++ mangling and Ada mangling, similarly to what has
546 been observed with Java. Because we don't store the demangled
547 name with the symbol, we don't need to use the same trick
548 as Java. */
549 gsymbol->name = obstack_alloc (&objfile->objfile_obstack, len + 1);
550 memcpy (gsymbol->name, linkage_name, len);
551 gsymbol->name[len] = '\0';
552 gsymbol->language_specific.cplus_specific.demangled_name = NULL;
553
554 return;
555 }
556
557 /* The stabs reader generally provides names that are not
558 NUL-terminated; most of the other readers don't do this, so we
559 can just use the given copy, unless we're in the Java case. */
560 if (gsymbol->language == language_java)
561 {
562 char *alloc_name;
563 lookup_len = len + JAVA_PREFIX_LEN;
564
565 alloc_name = alloca (lookup_len + 1);
566 memcpy (alloc_name, JAVA_PREFIX, JAVA_PREFIX_LEN);
567 memcpy (alloc_name + JAVA_PREFIX_LEN, linkage_name, len);
568 alloc_name[lookup_len] = '\0';
569
570 lookup_name = alloc_name;
571 linkage_name_copy = alloc_name + JAVA_PREFIX_LEN;
572 }
573 else if (linkage_name[len] != '\0')
574 {
575 char *alloc_name;
576 lookup_len = len;
577
578 alloc_name = alloca (lookup_len + 1);
579 memcpy (alloc_name, linkage_name, len);
580 alloc_name[lookup_len] = '\0';
581
582 lookup_name = alloc_name;
583 linkage_name_copy = alloc_name;
584 }
585 else
586 {
587 lookup_len = len;
588 lookup_name = linkage_name;
589 linkage_name_copy = linkage_name;
590 }
591
592 slot = (char **) htab_find_slot (objfile->demangled_names_hash,
593 lookup_name, INSERT);
594
595 /* If this name is not in the hash table, add it. */
596 if (*slot == NULL)
597 {
598 char *demangled_name = symbol_find_demangled_name (gsymbol,
599 linkage_name_copy);
600 int demangled_len = demangled_name ? strlen (demangled_name) : 0;
601
602 /* If there is a demangled name, place it right after the mangled name.
603 Otherwise, just place a second zero byte after the end of the mangled
604 name. */
605 *slot = obstack_alloc (&objfile->objfile_obstack,
606 lookup_len + demangled_len + 2);
607 memcpy (*slot, lookup_name, lookup_len + 1);
608 if (demangled_name != NULL)
609 {
610 memcpy (*slot + lookup_len + 1, demangled_name, demangled_len + 1);
611 xfree (demangled_name);
612 }
613 else
614 (*slot)[lookup_len + 1] = '\0';
615 }
616
617 gsymbol->name = *slot + lookup_len - len;
618 if ((*slot)[lookup_len + 1] != '\0')
619 gsymbol->language_specific.cplus_specific.demangled_name
620 = &(*slot)[lookup_len + 1];
621 else
622 gsymbol->language_specific.cplus_specific.demangled_name = NULL;
623 }
624
625 /* Return the source code name of a symbol. In languages where
626 demangling is necessary, this is the demangled name. */
627
628 char *
629 symbol_natural_name (const struct general_symbol_info *gsymbol)
630 {
631 switch (gsymbol->language)
632 {
633 case language_cplus:
634 case language_java:
635 case language_objc:
636 if (gsymbol->language_specific.cplus_specific.demangled_name != NULL)
637 return gsymbol->language_specific.cplus_specific.demangled_name;
638 break;
639 case language_ada:
640 if (gsymbol->language_specific.cplus_specific.demangled_name != NULL)
641 return gsymbol->language_specific.cplus_specific.demangled_name;
642 else
643 return ada_decode_symbol (gsymbol);
644 break;
645 default:
646 break;
647 }
648 return gsymbol->name;
649 }
650
651 /* Return the demangled name for a symbol based on the language for
652 that symbol. If no demangled name exists, return NULL. */
653 char *
654 symbol_demangled_name (struct general_symbol_info *gsymbol)
655 {
656 switch (gsymbol->language)
657 {
658 case language_cplus:
659 case language_java:
660 case language_objc:
661 if (gsymbol->language_specific.cplus_specific.demangled_name != NULL)
662 return gsymbol->language_specific.cplus_specific.demangled_name;
663 break;
664 case language_ada:
665 if (gsymbol->language_specific.cplus_specific.demangled_name != NULL)
666 return gsymbol->language_specific.cplus_specific.demangled_name;
667 else
668 return ada_decode_symbol (gsymbol);
669 break;
670 default:
671 break;
672 }
673 return NULL;
674 }
675
676 /* Return the search name of a symbol---generally the demangled or
677 linkage name of the symbol, depending on how it will be searched for.
678 If there is no distinct demangled name, then returns the same value
679 (same pointer) as SYMBOL_LINKAGE_NAME. */
680 char *
681 symbol_search_name (const struct general_symbol_info *gsymbol)
682 {
683 if (gsymbol->language == language_ada)
684 return gsymbol->name;
685 else
686 return symbol_natural_name (gsymbol);
687 }
688
689 /* Initialize the structure fields to zero values. */
690 void
691 init_sal (struct symtab_and_line *sal)
692 {
693 sal->symtab = 0;
694 sal->section = 0;
695 sal->line = 0;
696 sal->pc = 0;
697 sal->end = 0;
698 sal->explicit_pc = 0;
699 sal->explicit_line = 0;
700 }
701 \f
702
703 /* Return 1 if the two sections are the same, or if they could
704 plausibly be copies of each other, one in an original object
705 file and another in a separated debug file. */
706
707 int
708 matching_bfd_sections (asection *first, asection *second)
709 {
710 struct objfile *obj;
711
712 /* If they're the same section, then they match. */
713 if (first == second)
714 return 1;
715
716 /* If either is NULL, give up. */
717 if (first == NULL || second == NULL)
718 return 0;
719
720 /* This doesn't apply to absolute symbols. */
721 if (first->owner == NULL || second->owner == NULL)
722 return 0;
723
724 /* If they're in the same object file, they must be different sections. */
725 if (first->owner == second->owner)
726 return 0;
727
728 /* Check whether the two sections are potentially corresponding. They must
729 have the same size, address, and name. We can't compare section indexes,
730 which would be more reliable, because some sections may have been
731 stripped. */
732 if (bfd_get_section_size (first) != bfd_get_section_size (second))
733 return 0;
734
735 /* In-memory addresses may start at a different offset, relativize them. */
736 if (bfd_get_section_vma (first->owner, first)
737 - bfd_get_start_address (first->owner)
738 != bfd_get_section_vma (second->owner, second)
739 - bfd_get_start_address (second->owner))
740 return 0;
741
742 if (bfd_get_section_name (first->owner, first) == NULL
743 || bfd_get_section_name (second->owner, second) == NULL
744 || strcmp (bfd_get_section_name (first->owner, first),
745 bfd_get_section_name (second->owner, second)) != 0)
746 return 0;
747
748 /* Otherwise check that they are in corresponding objfiles. */
749
750 ALL_OBJFILES (obj)
751 if (obj->obfd == first->owner)
752 break;
753 gdb_assert (obj != NULL);
754
755 if (obj->separate_debug_objfile != NULL
756 && obj->separate_debug_objfile->obfd == second->owner)
757 return 1;
758 if (obj->separate_debug_objfile_backlink != NULL
759 && obj->separate_debug_objfile_backlink->obfd == second->owner)
760 return 1;
761
762 return 0;
763 }
764
765 /* Find which partial symtab contains PC and SECTION starting at psymtab PST.
766 We may find a different psymtab than PST. See FIND_PC_SECT_PSYMTAB. */
767
768 struct partial_symtab *
769 find_pc_sect_psymtab_closer (CORE_ADDR pc, asection *section,
770 struct partial_symtab *pst,
771 struct minimal_symbol *msymbol)
772 {
773 struct objfile *objfile = pst->objfile;
774 struct partial_symtab *tpst;
775 struct partial_symtab *best_pst = pst;
776 CORE_ADDR best_addr = pst->textlow;
777
778 /* An objfile that has its functions reordered might have
779 many partial symbol tables containing the PC, but
780 we want the partial symbol table that contains the
781 function containing the PC. */
782 if (!(objfile->flags & OBJF_REORDERED) &&
783 section == 0) /* can't validate section this way */
784 return pst;
785
786 if (msymbol == NULL)
787 return (pst);
788
789 /* The code range of partial symtabs sometimes overlap, so, in
790 the loop below, we need to check all partial symtabs and
791 find the one that fits better for the given PC address. We
792 select the partial symtab that contains a symbol whose
793 address is closest to the PC address. By closest we mean
794 that find_pc_sect_symbol returns the symbol with address
795 that is closest and still less than the given PC. */
796 for (tpst = pst; tpst != NULL; tpst = tpst->next)
797 {
798 if (pc >= tpst->textlow && pc < tpst->texthigh)
799 {
800 struct partial_symbol *p;
801 CORE_ADDR this_addr;
802
803 /* NOTE: This assumes that every psymbol has a
804 corresponding msymbol, which is not necessarily
805 true; the debug info might be much richer than the
806 object's symbol table. */
807 p = find_pc_sect_psymbol (tpst, pc, section);
808 if (p != NULL
809 && SYMBOL_VALUE_ADDRESS (p)
810 == SYMBOL_VALUE_ADDRESS (msymbol))
811 return tpst;
812
813 /* Also accept the textlow value of a psymtab as a
814 "symbol", to provide some support for partial
815 symbol tables with line information but no debug
816 symbols (e.g. those produced by an assembler). */
817 if (p != NULL)
818 this_addr = SYMBOL_VALUE_ADDRESS (p);
819 else
820 this_addr = tpst->textlow;
821
822 /* Check whether it is closer than our current
823 BEST_ADDR. Since this symbol address is
824 necessarily lower or equal to PC, the symbol closer
825 to PC is the symbol which address is the highest.
826 This way we return the psymtab which contains such
827 best match symbol. This can help in cases where the
828 symbol information/debuginfo is not complete, like
829 for instance on IRIX6 with gcc, where no debug info
830 is emitted for statics. (See also the nodebug.exp
831 testcase.) */
832 if (this_addr > best_addr)
833 {
834 best_addr = this_addr;
835 best_pst = tpst;
836 }
837 }
838 }
839 return best_pst;
840 }
841
842 /* Find which partial symtab contains PC and SECTION. Return 0 if
843 none. We return the psymtab that contains a symbol whose address
844 exactly matches PC, or, if we cannot find an exact match, the
845 psymtab that contains a symbol whose address is closest to PC. */
846 struct partial_symtab *
847 find_pc_sect_psymtab (CORE_ADDR pc, asection *section)
848 {
849 struct objfile *objfile;
850 struct minimal_symbol *msymbol;
851
852 /* If we know that this is not a text address, return failure. This is
853 necessary because we loop based on texthigh and textlow, which do
854 not include the data ranges. */
855 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
856 if (msymbol
857 && (msymbol->type == mst_data
858 || msymbol->type == mst_bss
859 || msymbol->type == mst_abs
860 || msymbol->type == mst_file_data
861 || msymbol->type == mst_file_bss))
862 return NULL;
863
864 /* Try just the PSYMTABS_ADDRMAP mapping first as it has better granularity
865 than the later used TEXTLOW/TEXTHIGH one. */
866
867 ALL_OBJFILES (objfile)
868 if (objfile->psymtabs_addrmap != NULL)
869 {
870 struct partial_symtab *pst;
871
872 pst = addrmap_find (objfile->psymtabs_addrmap, pc);
873 if (pst != NULL)
874 {
875 /* FIXME: addrmaps currently do not handle overlayed sections,
876 so fall back to the non-addrmap case if we're debugging
877 overlays and the addrmap returned the wrong section. */
878 if (overlay_debugging && msymbol && section)
879 {
880 struct partial_symbol *p;
881 /* NOTE: This assumes that every psymbol has a
882 corresponding msymbol, which is not necessarily
883 true; the debug info might be much richer than the
884 object's symbol table. */
885 p = find_pc_sect_psymbol (pst, pc, section);
886 if (!p
887 || SYMBOL_VALUE_ADDRESS (p)
888 != SYMBOL_VALUE_ADDRESS (msymbol))
889 continue;
890 }
891
892 /* We do not try to call FIND_PC_SECT_PSYMTAB_CLOSER as
893 PSYMTABS_ADDRMAP we used has already the best 1-byte
894 granularity and FIND_PC_SECT_PSYMTAB_CLOSER may mislead us into
895 a worse chosen section due to the TEXTLOW/TEXTHIGH ranges
896 overlap. */
897
898 return pst;
899 }
900 }
901
902 /* Existing PSYMTABS_ADDRMAP mapping is present even for PARTIAL_SYMTABs
903 which still have no corresponding full SYMTABs read. But it is not
904 present for non-DWARF2 debug infos not supporting PSYMTABS_ADDRMAP in GDB
905 so far. */
906
907 ALL_OBJFILES (objfile)
908 {
909 struct partial_symtab *pst;
910
911 /* Check even OBJFILE with non-zero PSYMTABS_ADDRMAP as only several of
912 its CUs may be missing in PSYMTABS_ADDRMAP as they may be varying
913 debug info type in single OBJFILE. */
914
915 ALL_OBJFILE_PSYMTABS (objfile, pst)
916 if (pc >= pst->textlow && pc < pst->texthigh)
917 {
918 struct partial_symtab *best_pst;
919
920 best_pst = find_pc_sect_psymtab_closer (pc, section, pst,
921 msymbol);
922 if (best_pst != NULL)
923 return best_pst;
924 }
925 }
926
927 return NULL;
928 }
929
930 /* Find which partial symtab contains PC. Return 0 if none.
931 Backward compatibility, no section */
932
933 struct partial_symtab *
934 find_pc_psymtab (CORE_ADDR pc)
935 {
936 return find_pc_sect_psymtab (pc, find_pc_mapped_section (pc));
937 }
938
939 /* Find which partial symbol within a psymtab matches PC and SECTION.
940 Return 0 if none. Check all psymtabs if PSYMTAB is 0. */
941
942 struct partial_symbol *
943 find_pc_sect_psymbol (struct partial_symtab *psymtab, CORE_ADDR pc,
944 asection *section)
945 {
946 struct partial_symbol *best = NULL, *p, **pp;
947 CORE_ADDR best_pc;
948
949 if (!psymtab)
950 psymtab = find_pc_sect_psymtab (pc, section);
951 if (!psymtab)
952 return 0;
953
954 /* Cope with programs that start at address 0 */
955 best_pc = (psymtab->textlow != 0) ? psymtab->textlow - 1 : 0;
956
957 /* Search the global symbols as well as the static symbols, so that
958 find_pc_partial_function doesn't use a minimal symbol and thus
959 cache a bad endaddr. */
960 for (pp = psymtab->objfile->global_psymbols.list + psymtab->globals_offset;
961 (pp - (psymtab->objfile->global_psymbols.list + psymtab->globals_offset)
962 < psymtab->n_global_syms);
963 pp++)
964 {
965 p = *pp;
966 if (SYMBOL_DOMAIN (p) == VAR_DOMAIN
967 && SYMBOL_CLASS (p) == LOC_BLOCK
968 && pc >= SYMBOL_VALUE_ADDRESS (p)
969 && (SYMBOL_VALUE_ADDRESS (p) > best_pc
970 || (psymtab->textlow == 0
971 && best_pc == 0 && SYMBOL_VALUE_ADDRESS (p) == 0)))
972 {
973 if (section) /* match on a specific section */
974 {
975 fixup_psymbol_section (p, psymtab->objfile);
976 if (!matching_bfd_sections (SYMBOL_BFD_SECTION (p), section))
977 continue;
978 }
979 best_pc = SYMBOL_VALUE_ADDRESS (p);
980 best = p;
981 }
982 }
983
984 for (pp = psymtab->objfile->static_psymbols.list + psymtab->statics_offset;
985 (pp - (psymtab->objfile->static_psymbols.list + psymtab->statics_offset)
986 < psymtab->n_static_syms);
987 pp++)
988 {
989 p = *pp;
990 if (SYMBOL_DOMAIN (p) == VAR_DOMAIN
991 && SYMBOL_CLASS (p) == LOC_BLOCK
992 && pc >= SYMBOL_VALUE_ADDRESS (p)
993 && (SYMBOL_VALUE_ADDRESS (p) > best_pc
994 || (psymtab->textlow == 0
995 && best_pc == 0 && SYMBOL_VALUE_ADDRESS (p) == 0)))
996 {
997 if (section) /* match on a specific section */
998 {
999 fixup_psymbol_section (p, psymtab->objfile);
1000 if (!matching_bfd_sections (SYMBOL_BFD_SECTION (p), section))
1001 continue;
1002 }
1003 best_pc = SYMBOL_VALUE_ADDRESS (p);
1004 best = p;
1005 }
1006 }
1007
1008 return best;
1009 }
1010
1011 /* Find which partial symbol within a psymtab matches PC. Return 0 if none.
1012 Check all psymtabs if PSYMTAB is 0. Backwards compatibility, no section. */
1013
1014 struct partial_symbol *
1015 find_pc_psymbol (struct partial_symtab *psymtab, CORE_ADDR pc)
1016 {
1017 return find_pc_sect_psymbol (psymtab, pc, find_pc_mapped_section (pc));
1018 }
1019 \f
1020 /* Debug symbols usually don't have section information. We need to dig that
1021 out of the minimal symbols and stash that in the debug symbol. */
1022
1023 static void
1024 fixup_section (struct general_symbol_info *ginfo,
1025 CORE_ADDR addr, struct objfile *objfile)
1026 {
1027 struct minimal_symbol *msym;
1028
1029 /* First, check whether a minimal symbol with the same name exists
1030 and points to the same address. The address check is required
1031 e.g. on PowerPC64, where the minimal symbol for a function will
1032 point to the function descriptor, while the debug symbol will
1033 point to the actual function code. */
1034 msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->name, objfile);
1035 if (msym)
1036 {
1037 ginfo->bfd_section = SYMBOL_BFD_SECTION (msym);
1038 ginfo->section = SYMBOL_SECTION (msym);
1039 }
1040 else
1041 {
1042 /* Static, function-local variables do appear in the linker
1043 (minimal) symbols, but are frequently given names that won't
1044 be found via lookup_minimal_symbol(). E.g., it has been
1045 observed in frv-uclinux (ELF) executables that a static,
1046 function-local variable named "foo" might appear in the
1047 linker symbols as "foo.6" or "foo.3". Thus, there is no
1048 point in attempting to extend the lookup-by-name mechanism to
1049 handle this case due to the fact that there can be multiple
1050 names.
1051
1052 So, instead, search the section table when lookup by name has
1053 failed. The ``addr'' and ``endaddr'' fields may have already
1054 been relocated. If so, the relocation offset (i.e. the
1055 ANOFFSET value) needs to be subtracted from these values when
1056 performing the comparison. We unconditionally subtract it,
1057 because, when no relocation has been performed, the ANOFFSET
1058 value will simply be zero.
1059
1060 The address of the symbol whose section we're fixing up HAS
1061 NOT BEEN adjusted (relocated) yet. It can't have been since
1062 the section isn't yet known and knowing the section is
1063 necessary in order to add the correct relocation value. In
1064 other words, we wouldn't even be in this function (attempting
1065 to compute the section) if it were already known.
1066
1067 Note that it is possible to search the minimal symbols
1068 (subtracting the relocation value if necessary) to find the
1069 matching minimal symbol, but this is overkill and much less
1070 efficient. It is not necessary to find the matching minimal
1071 symbol, only its section.
1072
1073 Note that this technique (of doing a section table search)
1074 can fail when unrelocated section addresses overlap. For
1075 this reason, we still attempt a lookup by name prior to doing
1076 a search of the section table. */
1077
1078 struct obj_section *s;
1079 ALL_OBJFILE_OSECTIONS (objfile, s)
1080 {
1081 int idx = s->the_bfd_section->index;
1082 CORE_ADDR offset = ANOFFSET (objfile->section_offsets, idx);
1083
1084 if (s->addr - offset <= addr && addr < s->endaddr - offset)
1085 {
1086 ginfo->bfd_section = s->the_bfd_section;
1087 ginfo->section = idx;
1088 return;
1089 }
1090 }
1091 }
1092 }
1093
1094 struct symbol *
1095 fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
1096 {
1097 CORE_ADDR addr;
1098
1099 if (!sym)
1100 return NULL;
1101
1102 if (SYMBOL_BFD_SECTION (sym))
1103 return sym;
1104
1105 /* We either have an OBJFILE, or we can get at it from the sym's
1106 symtab. Anything else is a bug. */
1107 gdb_assert (objfile || SYMBOL_SYMTAB (sym));
1108
1109 if (objfile == NULL)
1110 objfile = SYMBOL_SYMTAB (sym)->objfile;
1111
1112 /* We should have an objfile by now. */
1113 gdb_assert (objfile);
1114
1115 switch (SYMBOL_CLASS (sym))
1116 {
1117 case LOC_STATIC:
1118 case LOC_LABEL:
1119 case LOC_INDIRECT:
1120 addr = SYMBOL_VALUE_ADDRESS (sym);
1121 break;
1122 case LOC_BLOCK:
1123 addr = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
1124 break;
1125
1126 default:
1127 /* Nothing else will be listed in the minsyms -- no use looking
1128 it up. */
1129 return sym;
1130 }
1131
1132 fixup_section (&sym->ginfo, addr, objfile);
1133
1134 return sym;
1135 }
1136
1137 struct partial_symbol *
1138 fixup_psymbol_section (struct partial_symbol *psym, struct objfile *objfile)
1139 {
1140 CORE_ADDR addr;
1141
1142 if (!psym)
1143 return NULL;
1144
1145 if (SYMBOL_BFD_SECTION (psym))
1146 return psym;
1147
1148 gdb_assert (objfile);
1149
1150 switch (SYMBOL_CLASS (psym))
1151 {
1152 case LOC_STATIC:
1153 case LOC_LABEL:
1154 case LOC_INDIRECT:
1155 case LOC_BLOCK:
1156 addr = SYMBOL_VALUE_ADDRESS (psym);
1157 break;
1158 default:
1159 /* Nothing else will be listed in the minsyms -- no use looking
1160 it up. */
1161 return psym;
1162 }
1163
1164 fixup_section (&psym->ginfo, addr, objfile);
1165
1166 return psym;
1167 }
1168
1169 /* Find the definition for a specified symbol name NAME
1170 in domain DOMAIN, visible from lexical block BLOCK.
1171 Returns the struct symbol pointer, or zero if no symbol is found.
1172 C++: if IS_A_FIELD_OF_THIS is nonzero on entry, check to see if
1173 NAME is a field of the current implied argument `this'. If so set
1174 *IS_A_FIELD_OF_THIS to 1, otherwise set it to zero.
1175 BLOCK_FOUND is set to the block in which NAME is found (in the case of
1176 a field of `this', value_of_this sets BLOCK_FOUND to the proper value.) */
1177
1178 /* This function has a bunch of loops in it and it would seem to be
1179 attractive to put in some QUIT's (though I'm not really sure
1180 whether it can run long enough to be really important). But there
1181 are a few calls for which it would appear to be bad news to quit
1182 out of here: find_proc_desc in alpha-tdep.c and mips-tdep.c. (Note
1183 that there is C++ code below which can error(), but that probably
1184 doesn't affect these calls since they are looking for a known
1185 variable and thus can probably assume it will never hit the C++
1186 code). */
1187
1188 struct symbol *
1189 lookup_symbol_in_language (const char *name, const struct block *block,
1190 const domain_enum domain, enum language lang,
1191 int *is_a_field_of_this)
1192 {
1193 char *demangled_name = NULL;
1194 const char *modified_name = NULL;
1195 const char *mangled_name = NULL;
1196 int needtofreename = 0;
1197 struct symbol *returnval;
1198
1199 modified_name = name;
1200
1201 /* If we are using C++ or Java, demangle the name before doing a lookup, so
1202 we can always binary search. */
1203 if (lang == language_cplus)
1204 {
1205 demangled_name = cplus_demangle (name, DMGL_ANSI | DMGL_PARAMS);
1206 if (demangled_name)
1207 {
1208 mangled_name = name;
1209 modified_name = demangled_name;
1210 needtofreename = 1;
1211 }
1212 }
1213 else if (lang == language_java)
1214 {
1215 demangled_name = cplus_demangle (name,
1216 DMGL_ANSI | DMGL_PARAMS | DMGL_JAVA);
1217 if (demangled_name)
1218 {
1219 mangled_name = name;
1220 modified_name = demangled_name;
1221 needtofreename = 1;
1222 }
1223 }
1224
1225 if (case_sensitivity == case_sensitive_off)
1226 {
1227 char *copy;
1228 int len, i;
1229
1230 len = strlen (name);
1231 copy = (char *) alloca (len + 1);
1232 for (i= 0; i < len; i++)
1233 copy[i] = tolower (name[i]);
1234 copy[len] = 0;
1235 modified_name = copy;
1236 }
1237
1238 returnval = lookup_symbol_aux (modified_name, mangled_name, block,
1239 domain, lang, is_a_field_of_this);
1240 if (needtofreename)
1241 xfree (demangled_name);
1242
1243 return returnval;
1244 }
1245
1246 /* Behave like lookup_symbol_in_language, but performed with the
1247 current language. */
1248
1249 struct symbol *
1250 lookup_symbol (const char *name, const struct block *block,
1251 domain_enum domain, int *is_a_field_of_this)
1252 {
1253 return lookup_symbol_in_language (name, block, domain,
1254 current_language->la_language,
1255 is_a_field_of_this);
1256 }
1257
1258 /* Behave like lookup_symbol except that NAME is the natural name
1259 of the symbol that we're looking for and, if LINKAGE_NAME is
1260 non-NULL, ensure that the symbol's linkage name matches as
1261 well. */
1262
1263 static struct symbol *
1264 lookup_symbol_aux (const char *name, const char *linkage_name,
1265 const struct block *block, const domain_enum domain,
1266 enum language language, int *is_a_field_of_this)
1267 {
1268 struct symbol *sym;
1269 const struct language_defn *langdef;
1270
1271 /* Make sure we do something sensible with is_a_field_of_this, since
1272 the callers that set this parameter to some non-null value will
1273 certainly use it later and expect it to be either 0 or 1.
1274 If we don't set it, the contents of is_a_field_of_this are
1275 undefined. */
1276 if (is_a_field_of_this != NULL)
1277 *is_a_field_of_this = 0;
1278
1279 /* Search specified block and its superiors. Don't search
1280 STATIC_BLOCK or GLOBAL_BLOCK. */
1281
1282 sym = lookup_symbol_aux_local (name, linkage_name, block, domain);
1283 if (sym != NULL)
1284 return sym;
1285
1286 /* If requested to do so by the caller and if appropriate for LANGUAGE,
1287 check to see if NAME is a field of `this'. */
1288
1289 langdef = language_def (language);
1290
1291 if (langdef->la_name_of_this != NULL && is_a_field_of_this != NULL
1292 && block != NULL)
1293 {
1294 struct symbol *sym = NULL;
1295 /* 'this' is only defined in the function's block, so find the
1296 enclosing function block. */
1297 for (; block && !BLOCK_FUNCTION (block);
1298 block = BLOCK_SUPERBLOCK (block));
1299
1300 if (block && !dict_empty (BLOCK_DICT (block)))
1301 sym = lookup_block_symbol (block, langdef->la_name_of_this,
1302 NULL, VAR_DOMAIN);
1303 if (sym)
1304 {
1305 struct type *t = sym->type;
1306
1307 /* I'm not really sure that type of this can ever
1308 be typedefed; just be safe. */
1309 CHECK_TYPEDEF (t);
1310 if (TYPE_CODE (t) == TYPE_CODE_PTR
1311 || TYPE_CODE (t) == TYPE_CODE_REF)
1312 t = TYPE_TARGET_TYPE (t);
1313
1314 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
1315 && TYPE_CODE (t) != TYPE_CODE_UNION)
1316 error (_("Internal error: `%s' is not an aggregate"),
1317 langdef->la_name_of_this);
1318
1319 if (check_field (t, name))
1320 {
1321 *is_a_field_of_this = 1;
1322 return NULL;
1323 }
1324 }
1325 }
1326
1327 /* Now do whatever is appropriate for LANGUAGE to look
1328 up static and global variables. */
1329
1330 sym = langdef->la_lookup_symbol_nonlocal (name, linkage_name, block, domain);
1331 if (sym != NULL)
1332 return sym;
1333
1334 /* Now search all static file-level symbols. Not strictly correct,
1335 but more useful than an error. Do the symtabs first, then check
1336 the psymtabs. If a psymtab indicates the existence of the
1337 desired name as a file-level static, then do psymtab-to-symtab
1338 conversion on the fly and return the found symbol. */
1339
1340 sym = lookup_symbol_aux_symtabs (STATIC_BLOCK, name, linkage_name, domain);
1341 if (sym != NULL)
1342 return sym;
1343
1344 sym = lookup_symbol_aux_psymtabs (STATIC_BLOCK, name, linkage_name, domain);
1345 if (sym != NULL)
1346 return sym;
1347
1348 return NULL;
1349 }
1350
1351 /* Check to see if the symbol is defined in BLOCK or its superiors.
1352 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
1353
1354 static struct symbol *
1355 lookup_symbol_aux_local (const char *name, const char *linkage_name,
1356 const struct block *block,
1357 const domain_enum domain)
1358 {
1359 struct symbol *sym;
1360 const struct block *static_block = block_static_block (block);
1361
1362 /* Check if either no block is specified or it's a global block. */
1363
1364 if (static_block == NULL)
1365 return NULL;
1366
1367 while (block != static_block)
1368 {
1369 sym = lookup_symbol_aux_block (name, linkage_name, block, domain);
1370 if (sym != NULL)
1371 return sym;
1372 block = BLOCK_SUPERBLOCK (block);
1373 }
1374
1375 /* We've reached the static block without finding a result. */
1376
1377 return NULL;
1378 }
1379
1380 /* Look up OBJFILE to BLOCK. */
1381
1382 static struct objfile *
1383 lookup_objfile_from_block (const struct block *block)
1384 {
1385 struct objfile *obj;
1386 struct symtab *s;
1387
1388 if (block == NULL)
1389 return NULL;
1390
1391 block = block_global_block (block);
1392 /* Go through SYMTABS. */
1393 ALL_SYMTABS (obj, s)
1394 if (block == BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK))
1395 return obj;
1396
1397 return NULL;
1398 }
1399
1400 /* Look up a symbol in a block; if found, fixup the symbol, and set
1401 block_found appropriately. */
1402
1403 struct symbol *
1404 lookup_symbol_aux_block (const char *name, const char *linkage_name,
1405 const struct block *block,
1406 const domain_enum domain)
1407 {
1408 struct symbol *sym;
1409
1410 sym = lookup_block_symbol (block, name, linkage_name, domain);
1411 if (sym)
1412 {
1413 block_found = block;
1414 return fixup_symbol_section (sym, NULL);
1415 }
1416
1417 return NULL;
1418 }
1419
1420 /* Check all global symbols in OBJFILE in symtabs and
1421 psymtabs. */
1422
1423 struct symbol *
1424 lookup_global_symbol_from_objfile (const struct objfile *objfile,
1425 const char *name,
1426 const char *linkage_name,
1427 const domain_enum domain)
1428 {
1429 struct symbol *sym;
1430 struct blockvector *bv;
1431 const struct block *block;
1432 struct symtab *s;
1433 struct partial_symtab *ps;
1434
1435 /* Go through symtabs. */
1436 ALL_OBJFILE_SYMTABS (objfile, s)
1437 {
1438 bv = BLOCKVECTOR (s);
1439 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1440 sym = lookup_block_symbol (block, name, linkage_name, domain);
1441 if (sym)
1442 {
1443 block_found = block;
1444 return fixup_symbol_section (sym, (struct objfile *)objfile);
1445 }
1446 }
1447
1448 /* Now go through psymtabs. */
1449 ALL_OBJFILE_PSYMTABS (objfile, ps)
1450 {
1451 if (!ps->readin
1452 && lookup_partial_symbol (ps, name, linkage_name,
1453 1, domain))
1454 {
1455 s = PSYMTAB_TO_SYMTAB (ps);
1456 bv = BLOCKVECTOR (s);
1457 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1458 sym = lookup_block_symbol (block, name, linkage_name, domain);
1459 return fixup_symbol_section (sym, (struct objfile *)objfile);
1460 }
1461 }
1462
1463 if (objfile->separate_debug_objfile)
1464 return lookup_global_symbol_from_objfile (objfile->separate_debug_objfile,
1465 name, linkage_name, domain);
1466
1467 return NULL;
1468 }
1469
1470 /* Check to see if the symbol is defined in one of the symtabs.
1471 BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
1472 depending on whether or not we want to search global symbols or
1473 static symbols. */
1474
1475 static struct symbol *
1476 lookup_symbol_aux_symtabs (int block_index,
1477 const char *name, const char *linkage_name,
1478 const domain_enum domain)
1479 {
1480 struct symbol *sym;
1481 struct objfile *objfile;
1482 struct blockvector *bv;
1483 const struct block *block;
1484 struct symtab *s;
1485
1486 ALL_PRIMARY_SYMTABS (objfile, s)
1487 {
1488 bv = BLOCKVECTOR (s);
1489 block = BLOCKVECTOR_BLOCK (bv, block_index);
1490 sym = lookup_block_symbol (block, name, linkage_name, domain);
1491 if (sym)
1492 {
1493 block_found = block;
1494 return fixup_symbol_section (sym, objfile);
1495 }
1496 }
1497
1498 return NULL;
1499 }
1500
1501 /* Check to see if the symbol is defined in one of the partial
1502 symtabs. BLOCK_INDEX should be either GLOBAL_BLOCK or
1503 STATIC_BLOCK, depending on whether or not we want to search global
1504 symbols or static symbols. */
1505
1506 static struct symbol *
1507 lookup_symbol_aux_psymtabs (int block_index, const char *name,
1508 const char *linkage_name,
1509 const domain_enum domain)
1510 {
1511 struct symbol *sym;
1512 struct objfile *objfile;
1513 struct blockvector *bv;
1514 const struct block *block;
1515 struct partial_symtab *ps;
1516 struct symtab *s;
1517 const int psymtab_index = (block_index == GLOBAL_BLOCK ? 1 : 0);
1518
1519 ALL_PSYMTABS (objfile, ps)
1520 {
1521 if (!ps->readin
1522 && lookup_partial_symbol (ps, name, linkage_name,
1523 psymtab_index, domain))
1524 {
1525 s = PSYMTAB_TO_SYMTAB (ps);
1526 bv = BLOCKVECTOR (s);
1527 block = BLOCKVECTOR_BLOCK (bv, block_index);
1528 sym = lookup_block_symbol (block, name, linkage_name, domain);
1529 if (!sym)
1530 {
1531 /* This shouldn't be necessary, but as a last resort try
1532 looking in the statics even though the psymtab claimed
1533 the symbol was global, or vice-versa. It's possible
1534 that the psymtab gets it wrong in some cases. */
1535
1536 /* FIXME: carlton/2002-09-30: Should we really do that?
1537 If that happens, isn't it likely to be a GDB error, in
1538 which case we should fix the GDB error rather than
1539 silently dealing with it here? So I'd vote for
1540 removing the check for the symbol in the other
1541 block. */
1542 block = BLOCKVECTOR_BLOCK (bv,
1543 block_index == GLOBAL_BLOCK ?
1544 STATIC_BLOCK : GLOBAL_BLOCK);
1545 sym = lookup_block_symbol (block, name, linkage_name, domain);
1546 if (!sym)
1547 error (_("Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n%s may be an inlined function, or may be a template function\n(if a template, try specifying an instantiation: %s<type>)."),
1548 block_index == GLOBAL_BLOCK ? "global" : "static",
1549 name, ps->filename, name, name);
1550 }
1551 return fixup_symbol_section (sym, objfile);
1552 }
1553 }
1554
1555 return NULL;
1556 }
1557
1558 /* A default version of lookup_symbol_nonlocal for use by languages
1559 that can't think of anything better to do. This implements the C
1560 lookup rules. */
1561
1562 struct symbol *
1563 basic_lookup_symbol_nonlocal (const char *name,
1564 const char *linkage_name,
1565 const struct block *block,
1566 const domain_enum domain)
1567 {
1568 struct symbol *sym;
1569
1570 /* NOTE: carlton/2003-05-19: The comments below were written when
1571 this (or what turned into this) was part of lookup_symbol_aux;
1572 I'm much less worried about these questions now, since these
1573 decisions have turned out well, but I leave these comments here
1574 for posterity. */
1575
1576 /* NOTE: carlton/2002-12-05: There is a question as to whether or
1577 not it would be appropriate to search the current global block
1578 here as well. (That's what this code used to do before the
1579 is_a_field_of_this check was moved up.) On the one hand, it's
1580 redundant with the lookup_symbol_aux_symtabs search that happens
1581 next. On the other hand, if decode_line_1 is passed an argument
1582 like filename:var, then the user presumably wants 'var' to be
1583 searched for in filename. On the third hand, there shouldn't be
1584 multiple global variables all of which are named 'var', and it's
1585 not like decode_line_1 has ever restricted its search to only
1586 global variables in a single filename. All in all, only
1587 searching the static block here seems best: it's correct and it's
1588 cleanest. */
1589
1590 /* NOTE: carlton/2002-12-05: There's also a possible performance
1591 issue here: if you usually search for global symbols in the
1592 current file, then it would be slightly better to search the
1593 current global block before searching all the symtabs. But there
1594 are other factors that have a much greater effect on performance
1595 than that one, so I don't think we should worry about that for
1596 now. */
1597
1598 sym = lookup_symbol_static (name, linkage_name, block, domain);
1599 if (sym != NULL)
1600 return sym;
1601
1602 return lookup_symbol_global (name, linkage_name, block, domain);
1603 }
1604
1605 /* Lookup a symbol in the static block associated to BLOCK, if there
1606 is one; do nothing if BLOCK is NULL or a global block. */
1607
1608 struct symbol *
1609 lookup_symbol_static (const char *name,
1610 const char *linkage_name,
1611 const struct block *block,
1612 const domain_enum domain)
1613 {
1614 const struct block *static_block = block_static_block (block);
1615
1616 if (static_block != NULL)
1617 return lookup_symbol_aux_block (name, linkage_name, static_block, domain);
1618 else
1619 return NULL;
1620 }
1621
1622 /* Lookup a symbol in all files' global blocks (searching psymtabs if
1623 necessary). */
1624
1625 struct symbol *
1626 lookup_symbol_global (const char *name,
1627 const char *linkage_name,
1628 const struct block *block,
1629 const domain_enum domain)
1630 {
1631 struct symbol *sym = NULL;
1632 struct objfile *objfile = NULL;
1633
1634 /* Call library-specific lookup procedure. */
1635 objfile = lookup_objfile_from_block (block);
1636 if (objfile != NULL)
1637 sym = solib_global_lookup (objfile, name, linkage_name, domain);
1638 if (sym != NULL)
1639 return sym;
1640
1641 sym = lookup_symbol_aux_symtabs (GLOBAL_BLOCK, name, linkage_name, domain);
1642 if (sym != NULL)
1643 return sym;
1644
1645 return lookup_symbol_aux_psymtabs (GLOBAL_BLOCK, name, linkage_name, domain);
1646 }
1647
1648 int
1649 symbol_matches_domain (enum language symbol_language,
1650 domain_enum symbol_domain,
1651 domain_enum domain)
1652 {
1653 /* For C++ "struct foo { ... }" also defines a typedef for "foo".
1654 A Java class declaration also defines a typedef for the class.
1655 Similarly, any Ada type declaration implicitly defines a typedef. */
1656 if (symbol_language == language_cplus
1657 || symbol_language == language_java
1658 || symbol_language == language_ada)
1659 {
1660 if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN)
1661 && symbol_domain == STRUCT_DOMAIN)
1662 return 1;
1663 }
1664 /* For all other languages, strict match is required. */
1665 return (symbol_domain == domain);
1666 }
1667
1668 /* Look, in partial_symtab PST, for symbol whose natural name is NAME.
1669 If LINKAGE_NAME is non-NULL, check in addition that the symbol's
1670 linkage name matches it. Check the global symbols if GLOBAL, the
1671 static symbols if not */
1672
1673 struct partial_symbol *
1674 lookup_partial_symbol (struct partial_symtab *pst, const char *name,
1675 const char *linkage_name, int global,
1676 domain_enum domain)
1677 {
1678 struct partial_symbol *temp;
1679 struct partial_symbol **start, **psym;
1680 struct partial_symbol **top, **real_top, **bottom, **center;
1681 int length = (global ? pst->n_global_syms : pst->n_static_syms);
1682 int do_linear_search = 1;
1683
1684 if (length == 0)
1685 {
1686 return (NULL);
1687 }
1688 start = (global ?
1689 pst->objfile->global_psymbols.list + pst->globals_offset :
1690 pst->objfile->static_psymbols.list + pst->statics_offset);
1691
1692 if (global) /* This means we can use a binary search. */
1693 {
1694 do_linear_search = 0;
1695
1696 /* Binary search. This search is guaranteed to end with center
1697 pointing at the earliest partial symbol whose name might be
1698 correct. At that point *all* partial symbols with an
1699 appropriate name will be checked against the correct
1700 domain. */
1701
1702 bottom = start;
1703 top = start + length - 1;
1704 real_top = top;
1705 while (top > bottom)
1706 {
1707 center = bottom + (top - bottom) / 2;
1708 if (!(center < top))
1709 internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
1710 if (!do_linear_search
1711 && (SYMBOL_LANGUAGE (*center) == language_java))
1712 {
1713 do_linear_search = 1;
1714 }
1715 if (strcmp_iw_ordered (SYMBOL_SEARCH_NAME (*center), name) >= 0)
1716 {
1717 top = center;
1718 }
1719 else
1720 {
1721 bottom = center + 1;
1722 }
1723 }
1724 if (!(top == bottom))
1725 internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
1726
1727 while (top <= real_top
1728 && (linkage_name != NULL
1729 ? strcmp (SYMBOL_LINKAGE_NAME (*top), linkage_name) == 0
1730 : SYMBOL_MATCHES_SEARCH_NAME (*top,name)))
1731 {
1732 if (symbol_matches_domain (SYMBOL_LANGUAGE (*top),
1733 SYMBOL_DOMAIN (*top), domain))
1734 return (*top);
1735 top++;
1736 }
1737 }
1738
1739 /* Can't use a binary search or else we found during the binary search that
1740 we should also do a linear search. */
1741
1742 if (do_linear_search)
1743 {
1744 for (psym = start; psym < start + length; psym++)
1745 {
1746 if (symbol_matches_domain (SYMBOL_LANGUAGE (*psym),
1747 SYMBOL_DOMAIN (*psym), domain))
1748 {
1749 if (linkage_name != NULL
1750 ? strcmp (SYMBOL_LINKAGE_NAME (*psym), linkage_name) == 0
1751 : SYMBOL_MATCHES_SEARCH_NAME (*psym, name))
1752 {
1753 return (*psym);
1754 }
1755 }
1756 }
1757 }
1758
1759 return (NULL);
1760 }
1761
1762 /* Look up a type named NAME in the struct_domain. The type returned
1763 must not be opaque -- i.e., must have at least one field
1764 defined. */
1765
1766 struct type *
1767 lookup_transparent_type (const char *name)
1768 {
1769 return current_language->la_lookup_transparent_type (name);
1770 }
1771
1772 /* The standard implementation of lookup_transparent_type. This code
1773 was modeled on lookup_symbol -- the parts not relevant to looking
1774 up types were just left out. In particular it's assumed here that
1775 types are available in struct_domain and only at file-static or
1776 global blocks. */
1777
1778 struct type *
1779 basic_lookup_transparent_type (const char *name)
1780 {
1781 struct symbol *sym;
1782 struct symtab *s = NULL;
1783 struct partial_symtab *ps;
1784 struct blockvector *bv;
1785 struct objfile *objfile;
1786 struct block *block;
1787
1788 /* Now search all the global symbols. Do the symtab's first, then
1789 check the psymtab's. If a psymtab indicates the existence
1790 of the desired name as a global, then do psymtab-to-symtab
1791 conversion on the fly and return the found symbol. */
1792
1793 ALL_PRIMARY_SYMTABS (objfile, s)
1794 {
1795 bv = BLOCKVECTOR (s);
1796 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1797 sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN);
1798 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1799 {
1800 return SYMBOL_TYPE (sym);
1801 }
1802 }
1803
1804 ALL_PSYMTABS (objfile, ps)
1805 {
1806 if (!ps->readin && lookup_partial_symbol (ps, name, NULL,
1807 1, STRUCT_DOMAIN))
1808 {
1809 s = PSYMTAB_TO_SYMTAB (ps);
1810 bv = BLOCKVECTOR (s);
1811 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1812 sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN);
1813 if (!sym)
1814 {
1815 /* This shouldn't be necessary, but as a last resort
1816 * try looking in the statics even though the psymtab
1817 * claimed the symbol was global. It's possible that
1818 * the psymtab gets it wrong in some cases.
1819 */
1820 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
1821 sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN);
1822 if (!sym)
1823 error (_("Internal: global symbol `%s' found in %s psymtab but not in symtab.\n\
1824 %s may be an inlined function, or may be a template function\n\
1825 (if a template, try specifying an instantiation: %s<type>)."),
1826 name, ps->filename, name, name);
1827 }
1828 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1829 return SYMBOL_TYPE (sym);
1830 }
1831 }
1832
1833 /* Now search the static file-level symbols.
1834 Not strictly correct, but more useful than an error.
1835 Do the symtab's first, then
1836 check the psymtab's. If a psymtab indicates the existence
1837 of the desired name as a file-level static, then do psymtab-to-symtab
1838 conversion on the fly and return the found symbol.
1839 */
1840
1841 ALL_PRIMARY_SYMTABS (objfile, s)
1842 {
1843 bv = BLOCKVECTOR (s);
1844 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
1845 sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN);
1846 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1847 {
1848 return SYMBOL_TYPE (sym);
1849 }
1850 }
1851
1852 ALL_PSYMTABS (objfile, ps)
1853 {
1854 if (!ps->readin && lookup_partial_symbol (ps, name, NULL, 0, STRUCT_DOMAIN))
1855 {
1856 s = PSYMTAB_TO_SYMTAB (ps);
1857 bv = BLOCKVECTOR (s);
1858 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
1859 sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN);
1860 if (!sym)
1861 {
1862 /* This shouldn't be necessary, but as a last resort
1863 * try looking in the globals even though the psymtab
1864 * claimed the symbol was static. It's possible that
1865 * the psymtab gets it wrong in some cases.
1866 */
1867 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1868 sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN);
1869 if (!sym)
1870 error (_("Internal: static symbol `%s' found in %s psymtab but not in symtab.\n\
1871 %s may be an inlined function, or may be a template function\n\
1872 (if a template, try specifying an instantiation: %s<type>)."),
1873 name, ps->filename, name, name);
1874 }
1875 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1876 return SYMBOL_TYPE (sym);
1877 }
1878 }
1879 return (struct type *) 0;
1880 }
1881
1882
1883 /* Find the psymtab containing main(). */
1884 /* FIXME: What about languages without main() or specially linked
1885 executables that have no main() ? */
1886
1887 struct partial_symtab *
1888 find_main_psymtab (void)
1889 {
1890 struct partial_symtab *pst;
1891 struct objfile *objfile;
1892
1893 ALL_PSYMTABS (objfile, pst)
1894 {
1895 if (lookup_partial_symbol (pst, main_name (), NULL, 1, VAR_DOMAIN))
1896 {
1897 return (pst);
1898 }
1899 }
1900 return (NULL);
1901 }
1902
1903 /* Search BLOCK for symbol NAME in DOMAIN.
1904
1905 Note that if NAME is the demangled form of a C++ symbol, we will fail
1906 to find a match during the binary search of the non-encoded names, but
1907 for now we don't worry about the slight inefficiency of looking for
1908 a match we'll never find, since it will go pretty quick. Once the
1909 binary search terminates, we drop through and do a straight linear
1910 search on the symbols. Each symbol which is marked as being a ObjC/C++
1911 symbol (language_cplus or language_objc set) has both the encoded and
1912 non-encoded names tested for a match.
1913
1914 If LINKAGE_NAME is non-NULL, verify that any symbol we find has this
1915 particular mangled name.
1916 */
1917
1918 struct symbol *
1919 lookup_block_symbol (const struct block *block, const char *name,
1920 const char *linkage_name,
1921 const domain_enum domain)
1922 {
1923 struct dict_iterator iter;
1924 struct symbol *sym;
1925
1926 if (!BLOCK_FUNCTION (block))
1927 {
1928 for (sym = dict_iter_name_first (BLOCK_DICT (block), name, &iter);
1929 sym != NULL;
1930 sym = dict_iter_name_next (name, &iter))
1931 {
1932 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
1933 SYMBOL_DOMAIN (sym), domain)
1934 && (linkage_name != NULL
1935 ? strcmp (SYMBOL_LINKAGE_NAME (sym), linkage_name) == 0 : 1))
1936 return sym;
1937 }
1938 return NULL;
1939 }
1940 else
1941 {
1942 /* Note that parameter symbols do not always show up last in the
1943 list; this loop makes sure to take anything else other than
1944 parameter symbols first; it only uses parameter symbols as a
1945 last resort. Note that this only takes up extra computation
1946 time on a match. */
1947
1948 struct symbol *sym_found = NULL;
1949
1950 for (sym = dict_iter_name_first (BLOCK_DICT (block), name, &iter);
1951 sym != NULL;
1952 sym = dict_iter_name_next (name, &iter))
1953 {
1954 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
1955 SYMBOL_DOMAIN (sym), domain)
1956 && (linkage_name != NULL
1957 ? strcmp (SYMBOL_LINKAGE_NAME (sym), linkage_name) == 0 : 1))
1958 {
1959 sym_found = sym;
1960 if (SYMBOL_CLASS (sym) != LOC_ARG &&
1961 SYMBOL_CLASS (sym) != LOC_LOCAL_ARG &&
1962 SYMBOL_CLASS (sym) != LOC_REF_ARG &&
1963 SYMBOL_CLASS (sym) != LOC_REGPARM &&
1964 SYMBOL_CLASS (sym) != LOC_REGPARM_ADDR &&
1965 SYMBOL_CLASS (sym) != LOC_BASEREG_ARG &&
1966 SYMBOL_CLASS (sym) != LOC_COMPUTED_ARG)
1967 {
1968 break;
1969 }
1970 }
1971 }
1972 return (sym_found); /* Will be NULL if not found. */
1973 }
1974 }
1975
1976 /* Find the symtab associated with PC and SECTION. Look through the
1977 psymtabs and read in another symtab if necessary. */
1978
1979 struct symtab *
1980 find_pc_sect_symtab (CORE_ADDR pc, asection *section)
1981 {
1982 struct block *b;
1983 struct blockvector *bv;
1984 struct symtab *s = NULL;
1985 struct symtab *best_s = NULL;
1986 struct partial_symtab *ps;
1987 struct objfile *objfile;
1988 CORE_ADDR distance = 0;
1989 struct minimal_symbol *msymbol;
1990
1991 /* If we know that this is not a text address, return failure. This is
1992 necessary because we loop based on the block's high and low code
1993 addresses, which do not include the data ranges, and because
1994 we call find_pc_sect_psymtab which has a similar restriction based
1995 on the partial_symtab's texthigh and textlow. */
1996 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
1997 if (msymbol
1998 && (msymbol->type == mst_data
1999 || msymbol->type == mst_bss
2000 || msymbol->type == mst_abs
2001 || msymbol->type == mst_file_data
2002 || msymbol->type == mst_file_bss))
2003 return NULL;
2004
2005 /* Search all symtabs for the one whose file contains our address, and which
2006 is the smallest of all the ones containing the address. This is designed
2007 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
2008 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
2009 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
2010
2011 This happens for native ecoff format, where code from included files
2012 gets its own symtab. The symtab for the included file should have
2013 been read in already via the dependency mechanism.
2014 It might be swifter to create several symtabs with the same name
2015 like xcoff does (I'm not sure).
2016
2017 It also happens for objfiles that have their functions reordered.
2018 For these, the symtab we are looking for is not necessarily read in. */
2019
2020 ALL_PRIMARY_SYMTABS (objfile, s)
2021 {
2022 bv = BLOCKVECTOR (s);
2023 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
2024
2025 if (BLOCK_START (b) <= pc
2026 && BLOCK_END (b) > pc
2027 && (distance == 0
2028 || BLOCK_END (b) - BLOCK_START (b) < distance))
2029 {
2030 /* For an objfile that has its functions reordered,
2031 find_pc_psymtab will find the proper partial symbol table
2032 and we simply return its corresponding symtab. */
2033 /* In order to better support objfiles that contain both
2034 stabs and coff debugging info, we continue on if a psymtab
2035 can't be found. */
2036 if ((objfile->flags & OBJF_REORDERED) && objfile->psymtabs)
2037 {
2038 ps = find_pc_sect_psymtab (pc, section);
2039 if (ps)
2040 return PSYMTAB_TO_SYMTAB (ps);
2041 }
2042 if (section != 0)
2043 {
2044 struct dict_iterator iter;
2045 struct symbol *sym = NULL;
2046
2047 ALL_BLOCK_SYMBOLS (b, iter, sym)
2048 {
2049 fixup_symbol_section (sym, objfile);
2050 if (matching_bfd_sections (SYMBOL_BFD_SECTION (sym), section))
2051 break;
2052 }
2053 if (sym == NULL)
2054 continue; /* no symbol in this symtab matches section */
2055 }
2056 distance = BLOCK_END (b) - BLOCK_START (b);
2057 best_s = s;
2058 }
2059 }
2060
2061 if (best_s != NULL)
2062 return (best_s);
2063
2064 s = NULL;
2065 ps = find_pc_sect_psymtab (pc, section);
2066 if (ps)
2067 {
2068 if (ps->readin)
2069 /* Might want to error() here (in case symtab is corrupt and
2070 will cause a core dump), but maybe we can successfully
2071 continue, so let's not. */
2072 warning (_("\
2073 (Internal error: pc 0x%s in read in psymtab, but not in symtab.)\n"),
2074 paddr_nz (pc));
2075 s = PSYMTAB_TO_SYMTAB (ps);
2076 }
2077 return (s);
2078 }
2079
2080 /* Find the symtab associated with PC. Look through the psymtabs and
2081 read in another symtab if necessary. Backward compatibility, no section */
2082
2083 struct symtab *
2084 find_pc_symtab (CORE_ADDR pc)
2085 {
2086 return find_pc_sect_symtab (pc, find_pc_mapped_section (pc));
2087 }
2088 \f
2089
2090 /* Find the source file and line number for a given PC value and SECTION.
2091 Return a structure containing a symtab pointer, a line number,
2092 and a pc range for the entire source line.
2093 The value's .pc field is NOT the specified pc.
2094 NOTCURRENT nonzero means, if specified pc is on a line boundary,
2095 use the line that ends there. Otherwise, in that case, the line
2096 that begins there is used. */
2097
2098 /* The big complication here is that a line may start in one file, and end just
2099 before the start of another file. This usually occurs when you #include
2100 code in the middle of a subroutine. To properly find the end of a line's PC
2101 range, we must search all symtabs associated with this compilation unit, and
2102 find the one whose first PC is closer than that of the next line in this
2103 symtab. */
2104
2105 /* If it's worth the effort, we could be using a binary search. */
2106
2107 struct symtab_and_line
2108 find_pc_sect_line (CORE_ADDR pc, struct bfd_section *section, int notcurrent)
2109 {
2110 struct symtab *s;
2111 struct linetable *l;
2112 int len;
2113 int i;
2114 struct linetable_entry *item;
2115 struct symtab_and_line val;
2116 struct blockvector *bv;
2117 struct minimal_symbol *msymbol;
2118 struct minimal_symbol *mfunsym;
2119
2120 /* Info on best line seen so far, and where it starts, and its file. */
2121
2122 struct linetable_entry *best = NULL;
2123 CORE_ADDR best_end = 0;
2124 struct symtab *best_symtab = 0;
2125
2126 /* Store here the first line number
2127 of a file which contains the line at the smallest pc after PC.
2128 If we don't find a line whose range contains PC,
2129 we will use a line one less than this,
2130 with a range from the start of that file to the first line's pc. */
2131 struct linetable_entry *alt = NULL;
2132 struct symtab *alt_symtab = 0;
2133
2134 /* Info on best line seen in this file. */
2135
2136 struct linetable_entry *prev;
2137
2138 /* If this pc is not from the current frame,
2139 it is the address of the end of a call instruction.
2140 Quite likely that is the start of the following statement.
2141 But what we want is the statement containing the instruction.
2142 Fudge the pc to make sure we get that. */
2143
2144 init_sal (&val); /* initialize to zeroes */
2145
2146 /* It's tempting to assume that, if we can't find debugging info for
2147 any function enclosing PC, that we shouldn't search for line
2148 number info, either. However, GAS can emit line number info for
2149 assembly files --- very helpful when debugging hand-written
2150 assembly code. In such a case, we'd have no debug info for the
2151 function, but we would have line info. */
2152
2153 if (notcurrent)
2154 pc -= 1;
2155
2156 /* elz: added this because this function returned the wrong
2157 information if the pc belongs to a stub (import/export)
2158 to call a shlib function. This stub would be anywhere between
2159 two functions in the target, and the line info was erroneously
2160 taken to be the one of the line before the pc.
2161 */
2162 /* RT: Further explanation:
2163
2164 * We have stubs (trampolines) inserted between procedures.
2165 *
2166 * Example: "shr1" exists in a shared library, and a "shr1" stub also
2167 * exists in the main image.
2168 *
2169 * In the minimal symbol table, we have a bunch of symbols
2170 * sorted by start address. The stubs are marked as "trampoline",
2171 * the others appear as text. E.g.:
2172 *
2173 * Minimal symbol table for main image
2174 * main: code for main (text symbol)
2175 * shr1: stub (trampoline symbol)
2176 * foo: code for foo (text symbol)
2177 * ...
2178 * Minimal symbol table for "shr1" image:
2179 * ...
2180 * shr1: code for shr1 (text symbol)
2181 * ...
2182 *
2183 * So the code below is trying to detect if we are in the stub
2184 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
2185 * and if found, do the symbolization from the real-code address
2186 * rather than the stub address.
2187 *
2188 * Assumptions being made about the minimal symbol table:
2189 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
2190 * if we're really in the trampoline. If we're beyond it (say
2191 * we're in "foo" in the above example), it'll have a closer
2192 * symbol (the "foo" text symbol for example) and will not
2193 * return the trampoline.
2194 * 2. lookup_minimal_symbol_text() will find a real text symbol
2195 * corresponding to the trampoline, and whose address will
2196 * be different than the trampoline address. I put in a sanity
2197 * check for the address being the same, to avoid an
2198 * infinite recursion.
2199 */
2200 msymbol = lookup_minimal_symbol_by_pc (pc);
2201 if (msymbol != NULL)
2202 if (MSYMBOL_TYPE (msymbol) == mst_solib_trampoline)
2203 {
2204 mfunsym = lookup_minimal_symbol_text (SYMBOL_LINKAGE_NAME (msymbol),
2205 NULL);
2206 if (mfunsym == NULL)
2207 /* I eliminated this warning since it is coming out
2208 * in the following situation:
2209 * gdb shmain // test program with shared libraries
2210 * (gdb) break shr1 // function in shared lib
2211 * Warning: In stub for ...
2212 * In the above situation, the shared lib is not loaded yet,
2213 * so of course we can't find the real func/line info,
2214 * but the "break" still works, and the warning is annoying.
2215 * So I commented out the warning. RT */
2216 /* warning ("In stub for %s; unable to find real function/line info", SYMBOL_LINKAGE_NAME (msymbol)) */ ;
2217 /* fall through */
2218 else if (SYMBOL_VALUE_ADDRESS (mfunsym) == SYMBOL_VALUE_ADDRESS (msymbol))
2219 /* Avoid infinite recursion */
2220 /* See above comment about why warning is commented out */
2221 /* warning ("In stub for %s; unable to find real function/line info", SYMBOL_LINKAGE_NAME (msymbol)) */ ;
2222 /* fall through */
2223 else
2224 return find_pc_line (SYMBOL_VALUE_ADDRESS (mfunsym), 0);
2225 }
2226
2227
2228 s = find_pc_sect_symtab (pc, section);
2229 if (!s)
2230 {
2231 /* if no symbol information, return previous pc */
2232 if (notcurrent)
2233 pc++;
2234 val.pc = pc;
2235 return val;
2236 }
2237
2238 bv = BLOCKVECTOR (s);
2239
2240 /* Look at all the symtabs that share this blockvector.
2241 They all have the same apriori range, that we found was right;
2242 but they have different line tables. */
2243
2244 for (; s && BLOCKVECTOR (s) == bv; s = s->next)
2245 {
2246 /* Find the best line in this symtab. */
2247 l = LINETABLE (s);
2248 if (!l)
2249 continue;
2250 len = l->nitems;
2251 if (len <= 0)
2252 {
2253 /* I think len can be zero if the symtab lacks line numbers
2254 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
2255 I'm not sure which, and maybe it depends on the symbol
2256 reader). */
2257 continue;
2258 }
2259
2260 prev = NULL;
2261 item = l->item; /* Get first line info */
2262
2263 /* Is this file's first line closer than the first lines of other files?
2264 If so, record this file, and its first line, as best alternate. */
2265 if (item->pc > pc && (!alt || item->pc < alt->pc))
2266 {
2267 alt = item;
2268 alt_symtab = s;
2269 }
2270
2271 for (i = 0; i < len; i++, item++)
2272 {
2273 /* Leave prev pointing to the linetable entry for the last line
2274 that started at or before PC. */
2275 if (item->pc > pc)
2276 break;
2277
2278 prev = item;
2279 }
2280
2281 /* At this point, prev points at the line whose start addr is <= pc, and
2282 item points at the next line. If we ran off the end of the linetable
2283 (pc >= start of the last line), then prev == item. If pc < start of
2284 the first line, prev will not be set. */
2285
2286 /* Is this file's best line closer than the best in the other files?
2287 If so, record this file, and its best line, as best so far. Don't
2288 save prev if it represents the end of a function (i.e. line number
2289 0) instead of a real line. */
2290
2291 if (prev && prev->line && (!best || prev->pc > best->pc))
2292 {
2293 best = prev;
2294 best_symtab = s;
2295
2296 /* Discard BEST_END if it's before the PC of the current BEST. */
2297 if (best_end <= best->pc)
2298 best_end = 0;
2299 }
2300
2301 /* If another line (denoted by ITEM) is in the linetable and its
2302 PC is after BEST's PC, but before the current BEST_END, then
2303 use ITEM's PC as the new best_end. */
2304 if (best && i < len && item->pc > best->pc
2305 && (best_end == 0 || best_end > item->pc))
2306 best_end = item->pc;
2307 }
2308
2309 if (!best_symtab)
2310 {
2311 /* If we didn't find any line number info, just return zeros.
2312 We used to return alt->line - 1 here, but that could be
2313 anywhere; if we don't have line number info for this PC,
2314 don't make some up. */
2315 val.pc = pc;
2316 }
2317 else if (best->line == 0)
2318 {
2319 /* If our best fit is in a range of PC's for which no line
2320 number info is available (line number is zero) then we didn't
2321 find any valid line information. */
2322 val.pc = pc;
2323 }
2324 else
2325 {
2326 val.symtab = best_symtab;
2327 val.line = best->line;
2328 val.pc = best->pc;
2329 if (best_end && (!alt || best_end < alt->pc))
2330 val.end = best_end;
2331 else if (alt)
2332 val.end = alt->pc;
2333 else
2334 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
2335 }
2336 val.section = section;
2337 return val;
2338 }
2339
2340 /* Backward compatibility (no section) */
2341
2342 struct symtab_and_line
2343 find_pc_line (CORE_ADDR pc, int notcurrent)
2344 {
2345 asection *section;
2346
2347 section = find_pc_overlay (pc);
2348 if (pc_in_unmapped_range (pc, section))
2349 pc = overlay_mapped_address (pc, section);
2350 return find_pc_sect_line (pc, section, notcurrent);
2351 }
2352 \f
2353 /* Find line number LINE in any symtab whose name is the same as
2354 SYMTAB.
2355
2356 If found, return the symtab that contains the linetable in which it was
2357 found, set *INDEX to the index in the linetable of the best entry
2358 found, and set *EXACT_MATCH nonzero if the value returned is an
2359 exact match.
2360
2361 If not found, return NULL. */
2362
2363 struct symtab *
2364 find_line_symtab (struct symtab *symtab, int line, int *index, int *exact_match)
2365 {
2366 int exact;
2367
2368 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
2369 so far seen. */
2370
2371 int best_index;
2372 struct linetable *best_linetable;
2373 struct symtab *best_symtab;
2374
2375 /* First try looking it up in the given symtab. */
2376 best_linetable = LINETABLE (symtab);
2377 best_symtab = symtab;
2378 best_index = find_line_common (best_linetable, line, &exact);
2379 if (best_index < 0 || !exact)
2380 {
2381 /* Didn't find an exact match. So we better keep looking for
2382 another symtab with the same name. In the case of xcoff,
2383 multiple csects for one source file (produced by IBM's FORTRAN
2384 compiler) produce multiple symtabs (this is unavoidable
2385 assuming csects can be at arbitrary places in memory and that
2386 the GLOBAL_BLOCK of a symtab has a begin and end address). */
2387
2388 /* BEST is the smallest linenumber > LINE so far seen,
2389 or 0 if none has been seen so far.
2390 BEST_INDEX and BEST_LINETABLE identify the item for it. */
2391 int best;
2392
2393 struct objfile *objfile;
2394 struct symtab *s;
2395 struct partial_symtab *p;
2396
2397 if (best_index >= 0)
2398 best = best_linetable->item[best_index].line;
2399 else
2400 best = 0;
2401
2402 ALL_PSYMTABS (objfile, p)
2403 {
2404 if (strcmp (symtab->filename, p->filename) != 0)
2405 continue;
2406 PSYMTAB_TO_SYMTAB (p);
2407 }
2408
2409 ALL_SYMTABS (objfile, s)
2410 {
2411 struct linetable *l;
2412 int ind;
2413
2414 if (strcmp (symtab->filename, s->filename) != 0)
2415 continue;
2416 l = LINETABLE (s);
2417 ind = find_line_common (l, line, &exact);
2418 if (ind >= 0)
2419 {
2420 if (exact)
2421 {
2422 best_index = ind;
2423 best_linetable = l;
2424 best_symtab = s;
2425 goto done;
2426 }
2427 if (best == 0 || l->item[ind].line < best)
2428 {
2429 best = l->item[ind].line;
2430 best_index = ind;
2431 best_linetable = l;
2432 best_symtab = s;
2433 }
2434 }
2435 }
2436 }
2437 done:
2438 if (best_index < 0)
2439 return NULL;
2440
2441 if (index)
2442 *index = best_index;
2443 if (exact_match)
2444 *exact_match = exact;
2445
2446 return best_symtab;
2447 }
2448 \f
2449 /* Set the PC value for a given source file and line number and return true.
2450 Returns zero for invalid line number (and sets the PC to 0).
2451 The source file is specified with a struct symtab. */
2452
2453 int
2454 find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
2455 {
2456 struct linetable *l;
2457 int ind;
2458
2459 *pc = 0;
2460 if (symtab == 0)
2461 return 0;
2462
2463 symtab = find_line_symtab (symtab, line, &ind, NULL);
2464 if (symtab != NULL)
2465 {
2466 l = LINETABLE (symtab);
2467 *pc = l->item[ind].pc;
2468 return 1;
2469 }
2470 else
2471 return 0;
2472 }
2473
2474 /* Find the range of pc values in a line.
2475 Store the starting pc of the line into *STARTPTR
2476 and the ending pc (start of next line) into *ENDPTR.
2477 Returns 1 to indicate success.
2478 Returns 0 if could not find the specified line. */
2479
2480 int
2481 find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
2482 CORE_ADDR *endptr)
2483 {
2484 CORE_ADDR startaddr;
2485 struct symtab_and_line found_sal;
2486
2487 startaddr = sal.pc;
2488 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
2489 return 0;
2490
2491 /* This whole function is based on address. For example, if line 10 has
2492 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
2493 "info line *0x123" should say the line goes from 0x100 to 0x200
2494 and "info line *0x355" should say the line goes from 0x300 to 0x400.
2495 This also insures that we never give a range like "starts at 0x134
2496 and ends at 0x12c". */
2497
2498 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
2499 if (found_sal.line != sal.line)
2500 {
2501 /* The specified line (sal) has zero bytes. */
2502 *startptr = found_sal.pc;
2503 *endptr = found_sal.pc;
2504 }
2505 else
2506 {
2507 *startptr = found_sal.pc;
2508 *endptr = found_sal.end;
2509 }
2510 return 1;
2511 }
2512
2513 /* Given a line table and a line number, return the index into the line
2514 table for the pc of the nearest line whose number is >= the specified one.
2515 Return -1 if none is found. The value is >= 0 if it is an index.
2516
2517 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
2518
2519 static int
2520 find_line_common (struct linetable *l, int lineno,
2521 int *exact_match)
2522 {
2523 int i;
2524 int len;
2525
2526 /* BEST is the smallest linenumber > LINENO so far seen,
2527 or 0 if none has been seen so far.
2528 BEST_INDEX identifies the item for it. */
2529
2530 int best_index = -1;
2531 int best = 0;
2532
2533 *exact_match = 0;
2534
2535 if (lineno <= 0)
2536 return -1;
2537 if (l == 0)
2538 return -1;
2539
2540 len = l->nitems;
2541 for (i = 0; i < len; i++)
2542 {
2543 struct linetable_entry *item = &(l->item[i]);
2544
2545 if (item->line == lineno)
2546 {
2547 /* Return the first (lowest address) entry which matches. */
2548 *exact_match = 1;
2549 return i;
2550 }
2551
2552 if (item->line > lineno && (best == 0 || item->line < best))
2553 {
2554 best = item->line;
2555 best_index = i;
2556 }
2557 }
2558
2559 /* If we got here, we didn't get an exact match. */
2560 return best_index;
2561 }
2562
2563 int
2564 find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
2565 {
2566 struct symtab_and_line sal;
2567 sal = find_pc_line (pc, 0);
2568 *startptr = sal.pc;
2569 *endptr = sal.end;
2570 return sal.symtab != 0;
2571 }
2572
2573 /* Given a function start address PC and SECTION, find the first
2574 address after the function prologue. */
2575 CORE_ADDR
2576 find_function_start_pc (struct gdbarch *gdbarch,
2577 CORE_ADDR pc, asection *section)
2578 {
2579 /* If the function is in an unmapped overlay, use its unmapped LMA address,
2580 so that gdbarch_skip_prologue has something unique to work on. */
2581 if (section_is_overlay (section) && !section_is_mapped (section))
2582 pc = overlay_unmapped_address (pc, section);
2583
2584 pc += gdbarch_deprecated_function_start_offset (gdbarch);
2585 pc = gdbarch_skip_prologue (gdbarch, pc);
2586
2587 /* For overlays, map pc back into its mapped VMA range. */
2588 pc = overlay_mapped_address (pc, section);
2589
2590 return pc;
2591 }
2592
2593 /* Given a function symbol SYM, find the symtab and line for the start
2594 of the function.
2595 If the argument FUNFIRSTLINE is nonzero, we want the first line
2596 of real code inside the function. */
2597
2598 struct symtab_and_line
2599 find_function_start_sal (struct symbol *sym, int funfirstline)
2600 {
2601 struct block *block = SYMBOL_BLOCK_VALUE (sym);
2602 struct objfile *objfile = lookup_objfile_from_block (block);
2603 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2604
2605 CORE_ADDR pc;
2606 struct symtab_and_line sal;
2607
2608 pc = BLOCK_START (block);
2609 fixup_symbol_section (sym, objfile);
2610 if (funfirstline)
2611 {
2612 /* Skip "first line" of function (which is actually its prologue). */
2613 pc = find_function_start_pc (gdbarch, pc, SYMBOL_BFD_SECTION (sym));
2614 }
2615 sal = find_pc_sect_line (pc, SYMBOL_BFD_SECTION (sym), 0);
2616
2617 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
2618 line is still part of the same function. */
2619 if (sal.pc != pc
2620 && BLOCK_START (block) <= sal.end
2621 && sal.end < BLOCK_END (block))
2622 {
2623 /* First pc of next line */
2624 pc = sal.end;
2625 /* Recalculate the line number (might not be N+1). */
2626 sal = find_pc_sect_line (pc, SYMBOL_BFD_SECTION (sym), 0);
2627 }
2628 sal.pc = pc;
2629
2630 return sal;
2631 }
2632
2633 /* If P is of the form "operator[ \t]+..." where `...' is
2634 some legitimate operator text, return a pointer to the
2635 beginning of the substring of the operator text.
2636 Otherwise, return "". */
2637 char *
2638 operator_chars (char *p, char **end)
2639 {
2640 *end = "";
2641 if (strncmp (p, "operator", 8))
2642 return *end;
2643 p += 8;
2644
2645 /* Don't get faked out by `operator' being part of a longer
2646 identifier. */
2647 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
2648 return *end;
2649
2650 /* Allow some whitespace between `operator' and the operator symbol. */
2651 while (*p == ' ' || *p == '\t')
2652 p++;
2653
2654 /* Recognize 'operator TYPENAME'. */
2655
2656 if (isalpha (*p) || *p == '_' || *p == '$')
2657 {
2658 char *q = p + 1;
2659 while (isalnum (*q) || *q == '_' || *q == '$')
2660 q++;
2661 *end = q;
2662 return p;
2663 }
2664
2665 while (*p)
2666 switch (*p)
2667 {
2668 case '\\': /* regexp quoting */
2669 if (p[1] == '*')
2670 {
2671 if (p[2] == '=') /* 'operator\*=' */
2672 *end = p + 3;
2673 else /* 'operator\*' */
2674 *end = p + 2;
2675 return p;
2676 }
2677 else if (p[1] == '[')
2678 {
2679 if (p[2] == ']')
2680 error (_("mismatched quoting on brackets, try 'operator\\[\\]'"));
2681 else if (p[2] == '\\' && p[3] == ']')
2682 {
2683 *end = p + 4; /* 'operator\[\]' */
2684 return p;
2685 }
2686 else
2687 error (_("nothing is allowed between '[' and ']'"));
2688 }
2689 else
2690 {
2691 /* Gratuitous qoute: skip it and move on. */
2692 p++;
2693 continue;
2694 }
2695 break;
2696 case '!':
2697 case '=':
2698 case '*':
2699 case '/':
2700 case '%':
2701 case '^':
2702 if (p[1] == '=')
2703 *end = p + 2;
2704 else
2705 *end = p + 1;
2706 return p;
2707 case '<':
2708 case '>':
2709 case '+':
2710 case '-':
2711 case '&':
2712 case '|':
2713 if (p[0] == '-' && p[1] == '>')
2714 {
2715 /* Struct pointer member operator 'operator->'. */
2716 if (p[2] == '*')
2717 {
2718 *end = p + 3; /* 'operator->*' */
2719 return p;
2720 }
2721 else if (p[2] == '\\')
2722 {
2723 *end = p + 4; /* Hopefully 'operator->\*' */
2724 return p;
2725 }
2726 else
2727 {
2728 *end = p + 2; /* 'operator->' */
2729 return p;
2730 }
2731 }
2732 if (p[1] == '=' || p[1] == p[0])
2733 *end = p + 2;
2734 else
2735 *end = p + 1;
2736 return p;
2737 case '~':
2738 case ',':
2739 *end = p + 1;
2740 return p;
2741 case '(':
2742 if (p[1] != ')')
2743 error (_("`operator ()' must be specified without whitespace in `()'"));
2744 *end = p + 2;
2745 return p;
2746 case '?':
2747 if (p[1] != ':')
2748 error (_("`operator ?:' must be specified without whitespace in `?:'"));
2749 *end = p + 2;
2750 return p;
2751 case '[':
2752 if (p[1] != ']')
2753 error (_("`operator []' must be specified without whitespace in `[]'"));
2754 *end = p + 2;
2755 return p;
2756 default:
2757 error (_("`operator %s' not supported"), p);
2758 break;
2759 }
2760
2761 *end = "";
2762 return *end;
2763 }
2764 \f
2765
2766 /* If FILE is not already in the table of files, return zero;
2767 otherwise return non-zero. Optionally add FILE to the table if ADD
2768 is non-zero. If *FIRST is non-zero, forget the old table
2769 contents. */
2770 static int
2771 filename_seen (const char *file, int add, int *first)
2772 {
2773 /* Table of files seen so far. */
2774 static const char **tab = NULL;
2775 /* Allocated size of tab in elements.
2776 Start with one 256-byte block (when using GNU malloc.c).
2777 24 is the malloc overhead when range checking is in effect. */
2778 static int tab_alloc_size = (256 - 24) / sizeof (char *);
2779 /* Current size of tab in elements. */
2780 static int tab_cur_size;
2781 const char **p;
2782
2783 if (*first)
2784 {
2785 if (tab == NULL)
2786 tab = (const char **) xmalloc (tab_alloc_size * sizeof (*tab));
2787 tab_cur_size = 0;
2788 }
2789
2790 /* Is FILE in tab? */
2791 for (p = tab; p < tab + tab_cur_size; p++)
2792 if (strcmp (*p, file) == 0)
2793 return 1;
2794
2795 /* No; maybe add it to tab. */
2796 if (add)
2797 {
2798 if (tab_cur_size == tab_alloc_size)
2799 {
2800 tab_alloc_size *= 2;
2801 tab = (const char **) xrealloc ((char *) tab,
2802 tab_alloc_size * sizeof (*tab));
2803 }
2804 tab[tab_cur_size++] = file;
2805 }
2806
2807 return 0;
2808 }
2809
2810 /* Slave routine for sources_info. Force line breaks at ,'s.
2811 NAME is the name to print and *FIRST is nonzero if this is the first
2812 name printed. Set *FIRST to zero. */
2813 static void
2814 output_source_filename (const char *name, int *first)
2815 {
2816 /* Since a single source file can result in several partial symbol
2817 tables, we need to avoid printing it more than once. Note: if
2818 some of the psymtabs are read in and some are not, it gets
2819 printed both under "Source files for which symbols have been
2820 read" and "Source files for which symbols will be read in on
2821 demand". I consider this a reasonable way to deal with the
2822 situation. I'm not sure whether this can also happen for
2823 symtabs; it doesn't hurt to check. */
2824
2825 /* Was NAME already seen? */
2826 if (filename_seen (name, 1, first))
2827 {
2828 /* Yes; don't print it again. */
2829 return;
2830 }
2831 /* No; print it and reset *FIRST. */
2832 if (*first)
2833 {
2834 *first = 0;
2835 }
2836 else
2837 {
2838 printf_filtered (", ");
2839 }
2840
2841 wrap_here ("");
2842 fputs_filtered (name, gdb_stdout);
2843 }
2844
2845 static void
2846 sources_info (char *ignore, int from_tty)
2847 {
2848 struct symtab *s;
2849 struct partial_symtab *ps;
2850 struct objfile *objfile;
2851 int first;
2852
2853 if (!have_full_symbols () && !have_partial_symbols ())
2854 {
2855 error (_("No symbol table is loaded. Use the \"file\" command."));
2856 }
2857
2858 printf_filtered ("Source files for which symbols have been read in:\n\n");
2859
2860 first = 1;
2861 ALL_SYMTABS (objfile, s)
2862 {
2863 const char *fullname = symtab_to_fullname (s);
2864 output_source_filename (fullname ? fullname : s->filename, &first);
2865 }
2866 printf_filtered ("\n\n");
2867
2868 printf_filtered ("Source files for which symbols will be read in on demand:\n\n");
2869
2870 first = 1;
2871 ALL_PSYMTABS (objfile, ps)
2872 {
2873 if (!ps->readin)
2874 {
2875 const char *fullname = psymtab_to_fullname (ps);
2876 output_source_filename (fullname ? fullname : ps->filename, &first);
2877 }
2878 }
2879 printf_filtered ("\n");
2880 }
2881
2882 static int
2883 file_matches (char *file, char *files[], int nfiles)
2884 {
2885 int i;
2886
2887 if (file != NULL && nfiles != 0)
2888 {
2889 for (i = 0; i < nfiles; i++)
2890 {
2891 if (strcmp (files[i], lbasename (file)) == 0)
2892 return 1;
2893 }
2894 }
2895 else if (nfiles == 0)
2896 return 1;
2897 return 0;
2898 }
2899
2900 /* Free any memory associated with a search. */
2901 void
2902 free_search_symbols (struct symbol_search *symbols)
2903 {
2904 struct symbol_search *p;
2905 struct symbol_search *next;
2906
2907 for (p = symbols; p != NULL; p = next)
2908 {
2909 next = p->next;
2910 xfree (p);
2911 }
2912 }
2913
2914 static void
2915 do_free_search_symbols_cleanup (void *symbols)
2916 {
2917 free_search_symbols (symbols);
2918 }
2919
2920 struct cleanup *
2921 make_cleanup_free_search_symbols (struct symbol_search *symbols)
2922 {
2923 return make_cleanup (do_free_search_symbols_cleanup, symbols);
2924 }
2925
2926 /* Helper function for sort_search_symbols and qsort. Can only
2927 sort symbols, not minimal symbols. */
2928 static int
2929 compare_search_syms (const void *sa, const void *sb)
2930 {
2931 struct symbol_search **sym_a = (struct symbol_search **) sa;
2932 struct symbol_search **sym_b = (struct symbol_search **) sb;
2933
2934 return strcmp (SYMBOL_PRINT_NAME ((*sym_a)->symbol),
2935 SYMBOL_PRINT_NAME ((*sym_b)->symbol));
2936 }
2937
2938 /* Sort the ``nfound'' symbols in the list after prevtail. Leave
2939 prevtail where it is, but update its next pointer to point to
2940 the first of the sorted symbols. */
2941 static struct symbol_search *
2942 sort_search_symbols (struct symbol_search *prevtail, int nfound)
2943 {
2944 struct symbol_search **symbols, *symp, *old_next;
2945 int i;
2946
2947 symbols = (struct symbol_search **) xmalloc (sizeof (struct symbol_search *)
2948 * nfound);
2949 symp = prevtail->next;
2950 for (i = 0; i < nfound; i++)
2951 {
2952 symbols[i] = symp;
2953 symp = symp->next;
2954 }
2955 /* Generally NULL. */
2956 old_next = symp;
2957
2958 qsort (symbols, nfound, sizeof (struct symbol_search *),
2959 compare_search_syms);
2960
2961 symp = prevtail;
2962 for (i = 0; i < nfound; i++)
2963 {
2964 symp->next = symbols[i];
2965 symp = symp->next;
2966 }
2967 symp->next = old_next;
2968
2969 xfree (symbols);
2970 return symp;
2971 }
2972
2973 /* Search the symbol table for matches to the regular expression REGEXP,
2974 returning the results in *MATCHES.
2975
2976 Only symbols of KIND are searched:
2977 FUNCTIONS_DOMAIN - search all functions
2978 TYPES_DOMAIN - search all type names
2979 METHODS_DOMAIN - search all methods NOT IMPLEMENTED
2980 VARIABLES_DOMAIN - search all symbols, excluding functions, type names,
2981 and constants (enums)
2982
2983 free_search_symbols should be called when *MATCHES is no longer needed.
2984
2985 The results are sorted locally; each symtab's global and static blocks are
2986 separately alphabetized.
2987 */
2988 void
2989 search_symbols (char *regexp, domain_enum kind, int nfiles, char *files[],
2990 struct symbol_search **matches)
2991 {
2992 struct symtab *s;
2993 struct partial_symtab *ps;
2994 struct blockvector *bv;
2995 struct block *b;
2996 int i = 0;
2997 struct dict_iterator iter;
2998 struct symbol *sym;
2999 struct partial_symbol **psym;
3000 struct objfile *objfile;
3001 struct minimal_symbol *msymbol;
3002 char *val;
3003 int found_misc = 0;
3004 static enum minimal_symbol_type types[]
3005 =
3006 {mst_data, mst_text, mst_abs, mst_unknown};
3007 static enum minimal_symbol_type types2[]
3008 =
3009 {mst_bss, mst_file_text, mst_abs, mst_unknown};
3010 static enum minimal_symbol_type types3[]
3011 =
3012 {mst_file_data, mst_solib_trampoline, mst_abs, mst_unknown};
3013 static enum minimal_symbol_type types4[]
3014 =
3015 {mst_file_bss, mst_text, mst_abs, mst_unknown};
3016 enum minimal_symbol_type ourtype;
3017 enum minimal_symbol_type ourtype2;
3018 enum minimal_symbol_type ourtype3;
3019 enum minimal_symbol_type ourtype4;
3020 struct symbol_search *sr;
3021 struct symbol_search *psr;
3022 struct symbol_search *tail;
3023 struct cleanup *old_chain = NULL;
3024
3025 if (kind < VARIABLES_DOMAIN)
3026 error (_("must search on specific domain"));
3027
3028 ourtype = types[(int) (kind - VARIABLES_DOMAIN)];
3029 ourtype2 = types2[(int) (kind - VARIABLES_DOMAIN)];
3030 ourtype3 = types3[(int) (kind - VARIABLES_DOMAIN)];
3031 ourtype4 = types4[(int) (kind - VARIABLES_DOMAIN)];
3032
3033 sr = *matches = NULL;
3034 tail = NULL;
3035
3036 if (regexp != NULL)
3037 {
3038 /* Make sure spacing is right for C++ operators.
3039 This is just a courtesy to make the matching less sensitive
3040 to how many spaces the user leaves between 'operator'
3041 and <TYPENAME> or <OPERATOR>. */
3042 char *opend;
3043 char *opname = operator_chars (regexp, &opend);
3044 if (*opname)
3045 {
3046 int fix = -1; /* -1 means ok; otherwise number of spaces needed. */
3047 if (isalpha (*opname) || *opname == '_' || *opname == '$')
3048 {
3049 /* There should 1 space between 'operator' and 'TYPENAME'. */
3050 if (opname[-1] != ' ' || opname[-2] == ' ')
3051 fix = 1;
3052 }
3053 else
3054 {
3055 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
3056 if (opname[-1] == ' ')
3057 fix = 0;
3058 }
3059 /* If wrong number of spaces, fix it. */
3060 if (fix >= 0)
3061 {
3062 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
3063 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
3064 regexp = tmp;
3065 }
3066 }
3067
3068 if (0 != (val = re_comp (regexp)))
3069 error (_("Invalid regexp (%s): %s"), val, regexp);
3070 }
3071
3072 /* Search through the partial symtabs *first* for all symbols
3073 matching the regexp. That way we don't have to reproduce all of
3074 the machinery below. */
3075
3076 ALL_PSYMTABS (objfile, ps)
3077 {
3078 struct partial_symbol **bound, **gbound, **sbound;
3079 int keep_going = 1;
3080
3081 if (ps->readin)
3082 continue;
3083
3084 gbound = objfile->global_psymbols.list + ps->globals_offset + ps->n_global_syms;
3085 sbound = objfile->static_psymbols.list + ps->statics_offset + ps->n_static_syms;
3086 bound = gbound;
3087
3088 /* Go through all of the symbols stored in a partial
3089 symtab in one loop. */
3090 psym = objfile->global_psymbols.list + ps->globals_offset;
3091 while (keep_going)
3092 {
3093 if (psym >= bound)
3094 {
3095 if (bound == gbound && ps->n_static_syms != 0)
3096 {
3097 psym = objfile->static_psymbols.list + ps->statics_offset;
3098 bound = sbound;
3099 }
3100 else
3101 keep_going = 0;
3102 continue;
3103 }
3104 else
3105 {
3106 QUIT;
3107
3108 /* If it would match (logic taken from loop below)
3109 load the file and go on to the next one. We check the
3110 filename here, but that's a bit bogus: we don't know
3111 what file it really comes from until we have full
3112 symtabs. The symbol might be in a header file included by
3113 this psymtab. This only affects Insight. */
3114 if (file_matches (ps->filename, files, nfiles)
3115 && ((regexp == NULL
3116 || re_exec (SYMBOL_NATURAL_NAME (*psym)) != 0)
3117 && ((kind == VARIABLES_DOMAIN && SYMBOL_CLASS (*psym) != LOC_TYPEDEF
3118 && SYMBOL_CLASS (*psym) != LOC_BLOCK)
3119 || (kind == FUNCTIONS_DOMAIN && SYMBOL_CLASS (*psym) == LOC_BLOCK)
3120 || (kind == TYPES_DOMAIN && SYMBOL_CLASS (*psym) == LOC_TYPEDEF)
3121 || (kind == METHODS_DOMAIN && SYMBOL_CLASS (*psym) == LOC_BLOCK))))
3122 {
3123 PSYMTAB_TO_SYMTAB (ps);
3124 keep_going = 0;
3125 }
3126 }
3127 psym++;
3128 }
3129 }
3130
3131 /* Here, we search through the minimal symbol tables for functions
3132 and variables that match, and force their symbols to be read.
3133 This is in particular necessary for demangled variable names,
3134 which are no longer put into the partial symbol tables.
3135 The symbol will then be found during the scan of symtabs below.
3136
3137 For functions, find_pc_symtab should succeed if we have debug info
3138 for the function, for variables we have to call lookup_symbol
3139 to determine if the variable has debug info.
3140 If the lookup fails, set found_misc so that we will rescan to print
3141 any matching symbols without debug info.
3142 */
3143
3144 if (nfiles == 0 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
3145 {
3146 ALL_MSYMBOLS (objfile, msymbol)
3147 {
3148 if (MSYMBOL_TYPE (msymbol) == ourtype ||
3149 MSYMBOL_TYPE (msymbol) == ourtype2 ||
3150 MSYMBOL_TYPE (msymbol) == ourtype3 ||
3151 MSYMBOL_TYPE (msymbol) == ourtype4)
3152 {
3153 if (regexp == NULL
3154 || re_exec (SYMBOL_NATURAL_NAME (msymbol)) != 0)
3155 {
3156 if (0 == find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol)))
3157 {
3158 /* FIXME: carlton/2003-02-04: Given that the
3159 semantics of lookup_symbol keeps on changing
3160 slightly, it would be a nice idea if we had a
3161 function lookup_symbol_minsym that found the
3162 symbol associated to a given minimal symbol (if
3163 any). */
3164 if (kind == FUNCTIONS_DOMAIN
3165 || lookup_symbol (SYMBOL_LINKAGE_NAME (msymbol),
3166 (struct block *) NULL,
3167 VAR_DOMAIN, 0)
3168 == NULL)
3169 found_misc = 1;
3170 }
3171 }
3172 }
3173 }
3174 }
3175
3176 ALL_PRIMARY_SYMTABS (objfile, s)
3177 {
3178 bv = BLOCKVECTOR (s);
3179 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
3180 {
3181 struct symbol_search *prevtail = tail;
3182 int nfound = 0;
3183 b = BLOCKVECTOR_BLOCK (bv, i);
3184 ALL_BLOCK_SYMBOLS (b, iter, sym)
3185 {
3186 struct symtab *real_symtab = SYMBOL_SYMTAB (sym);
3187 QUIT;
3188
3189 if (file_matches (real_symtab->filename, files, nfiles)
3190 && ((regexp == NULL
3191 || re_exec (SYMBOL_NATURAL_NAME (sym)) != 0)
3192 && ((kind == VARIABLES_DOMAIN && SYMBOL_CLASS (sym) != LOC_TYPEDEF
3193 && SYMBOL_CLASS (sym) != LOC_BLOCK
3194 && SYMBOL_CLASS (sym) != LOC_CONST)
3195 || (kind == FUNCTIONS_DOMAIN && SYMBOL_CLASS (sym) == LOC_BLOCK)
3196 || (kind == TYPES_DOMAIN && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
3197 || (kind == METHODS_DOMAIN && SYMBOL_CLASS (sym) == LOC_BLOCK))))
3198 {
3199 /* match */
3200 psr = (struct symbol_search *) xmalloc (sizeof (struct symbol_search));
3201 psr->block = i;
3202 psr->symtab = real_symtab;
3203 psr->symbol = sym;
3204 psr->msymbol = NULL;
3205 psr->next = NULL;
3206 if (tail == NULL)
3207 sr = psr;
3208 else
3209 tail->next = psr;
3210 tail = psr;
3211 nfound ++;
3212 }
3213 }
3214 if (nfound > 0)
3215 {
3216 if (prevtail == NULL)
3217 {
3218 struct symbol_search dummy;
3219
3220 dummy.next = sr;
3221 tail = sort_search_symbols (&dummy, nfound);
3222 sr = dummy.next;
3223
3224 old_chain = make_cleanup_free_search_symbols (sr);
3225 }
3226 else
3227 tail = sort_search_symbols (prevtail, nfound);
3228 }
3229 }
3230 }
3231
3232 /* If there are no eyes, avoid all contact. I mean, if there are
3233 no debug symbols, then print directly from the msymbol_vector. */
3234
3235 if (found_misc || kind != FUNCTIONS_DOMAIN)
3236 {
3237 ALL_MSYMBOLS (objfile, msymbol)
3238 {
3239 if (MSYMBOL_TYPE (msymbol) == ourtype ||
3240 MSYMBOL_TYPE (msymbol) == ourtype2 ||
3241 MSYMBOL_TYPE (msymbol) == ourtype3 ||
3242 MSYMBOL_TYPE (msymbol) == ourtype4)
3243 {
3244 if (regexp == NULL
3245 || re_exec (SYMBOL_NATURAL_NAME (msymbol)) != 0)
3246 {
3247 /* Functions: Look up by address. */
3248 if (kind != FUNCTIONS_DOMAIN ||
3249 (0 == find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol))))
3250 {
3251 /* Variables/Absolutes: Look up by name */
3252 if (lookup_symbol (SYMBOL_LINKAGE_NAME (msymbol),
3253 (struct block *) NULL, VAR_DOMAIN, 0)
3254 == NULL)
3255 {
3256 /* match */
3257 psr = (struct symbol_search *) xmalloc (sizeof (struct symbol_search));
3258 psr->block = i;
3259 psr->msymbol = msymbol;
3260 psr->symtab = NULL;
3261 psr->symbol = NULL;
3262 psr->next = NULL;
3263 if (tail == NULL)
3264 {
3265 sr = psr;
3266 old_chain = make_cleanup_free_search_symbols (sr);
3267 }
3268 else
3269 tail->next = psr;
3270 tail = psr;
3271 }
3272 }
3273 }
3274 }
3275 }
3276 }
3277
3278 *matches = sr;
3279 if (sr != NULL)
3280 discard_cleanups (old_chain);
3281 }
3282
3283 /* Helper function for symtab_symbol_info, this function uses
3284 the data returned from search_symbols() to print information
3285 regarding the match to gdb_stdout.
3286 */
3287 static void
3288 print_symbol_info (domain_enum kind, struct symtab *s, struct symbol *sym,
3289 int block, char *last)
3290 {
3291 if (last == NULL || strcmp (last, s->filename) != 0)
3292 {
3293 fputs_filtered ("\nFile ", gdb_stdout);
3294 fputs_filtered (s->filename, gdb_stdout);
3295 fputs_filtered (":\n", gdb_stdout);
3296 }
3297
3298 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
3299 printf_filtered ("static ");
3300
3301 /* Typedef that is not a C++ class */
3302 if (kind == TYPES_DOMAIN
3303 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
3304 typedef_print (SYMBOL_TYPE (sym), sym, gdb_stdout);
3305 /* variable, func, or typedef-that-is-c++-class */
3306 else if (kind < TYPES_DOMAIN ||
3307 (kind == TYPES_DOMAIN &&
3308 SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
3309 {
3310 type_print (SYMBOL_TYPE (sym),
3311 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
3312 ? "" : SYMBOL_PRINT_NAME (sym)),
3313 gdb_stdout, 0);
3314
3315 printf_filtered (";\n");
3316 }
3317 }
3318
3319 /* This help function for symtab_symbol_info() prints information
3320 for non-debugging symbols to gdb_stdout.
3321 */
3322 static void
3323 print_msymbol_info (struct minimal_symbol *msymbol)
3324 {
3325 char *tmp;
3326
3327 if (gdbarch_addr_bit (current_gdbarch) <= 32)
3328 tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol)
3329 & (CORE_ADDR) 0xffffffff,
3330 8);
3331 else
3332 tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol),
3333 16);
3334 printf_filtered ("%s %s\n",
3335 tmp, SYMBOL_PRINT_NAME (msymbol));
3336 }
3337
3338 /* This is the guts of the commands "info functions", "info types", and
3339 "info variables". It calls search_symbols to find all matches and then
3340 print_[m]symbol_info to print out some useful information about the
3341 matches.
3342 */
3343 static void
3344 symtab_symbol_info (char *regexp, domain_enum kind, int from_tty)
3345 {
3346 static char *classnames[]
3347 =
3348 {"variable", "function", "type", "method"};
3349 struct symbol_search *symbols;
3350 struct symbol_search *p;
3351 struct cleanup *old_chain;
3352 char *last_filename = NULL;
3353 int first = 1;
3354
3355 /* must make sure that if we're interrupted, symbols gets freed */
3356 search_symbols (regexp, kind, 0, (char **) NULL, &symbols);
3357 old_chain = make_cleanup_free_search_symbols (symbols);
3358
3359 printf_filtered (regexp
3360 ? "All %ss matching regular expression \"%s\":\n"
3361 : "All defined %ss:\n",
3362 classnames[(int) (kind - VARIABLES_DOMAIN)], regexp);
3363
3364 for (p = symbols; p != NULL; p = p->next)
3365 {
3366 QUIT;
3367
3368 if (p->msymbol != NULL)
3369 {
3370 if (first)
3371 {
3372 printf_filtered ("\nNon-debugging symbols:\n");
3373 first = 0;
3374 }
3375 print_msymbol_info (p->msymbol);
3376 }
3377 else
3378 {
3379 print_symbol_info (kind,
3380 p->symtab,
3381 p->symbol,
3382 p->block,
3383 last_filename);
3384 last_filename = p->symtab->filename;
3385 }
3386 }
3387
3388 do_cleanups (old_chain);
3389 }
3390
3391 static void
3392 variables_info (char *regexp, int from_tty)
3393 {
3394 symtab_symbol_info (regexp, VARIABLES_DOMAIN, from_tty);
3395 }
3396
3397 static void
3398 functions_info (char *regexp, int from_tty)
3399 {
3400 symtab_symbol_info (regexp, FUNCTIONS_DOMAIN, from_tty);
3401 }
3402
3403
3404 static void
3405 types_info (char *regexp, int from_tty)
3406 {
3407 symtab_symbol_info (regexp, TYPES_DOMAIN, from_tty);
3408 }
3409
3410 /* Breakpoint all functions matching regular expression. */
3411
3412 void
3413 rbreak_command_wrapper (char *regexp, int from_tty)
3414 {
3415 rbreak_command (regexp, from_tty);
3416 }
3417
3418 static void
3419 rbreak_command (char *regexp, int from_tty)
3420 {
3421 struct symbol_search *ss;
3422 struct symbol_search *p;
3423 struct cleanup *old_chain;
3424
3425 search_symbols (regexp, FUNCTIONS_DOMAIN, 0, (char **) NULL, &ss);
3426 old_chain = make_cleanup_free_search_symbols (ss);
3427
3428 for (p = ss; p != NULL; p = p->next)
3429 {
3430 if (p->msymbol == NULL)
3431 {
3432 char *string = alloca (strlen (p->symtab->filename)
3433 + strlen (SYMBOL_LINKAGE_NAME (p->symbol))
3434 + 4);
3435 strcpy (string, p->symtab->filename);
3436 strcat (string, ":'");
3437 strcat (string, SYMBOL_LINKAGE_NAME (p->symbol));
3438 strcat (string, "'");
3439 break_command (string, from_tty);
3440 print_symbol_info (FUNCTIONS_DOMAIN,
3441 p->symtab,
3442 p->symbol,
3443 p->block,
3444 p->symtab->filename);
3445 }
3446 else
3447 {
3448 char *string = alloca (strlen (SYMBOL_LINKAGE_NAME (p->msymbol))
3449 + 3);
3450 strcpy (string, "'");
3451 strcat (string, SYMBOL_LINKAGE_NAME (p->msymbol));
3452 strcat (string, "'");
3453
3454 break_command (string, from_tty);
3455 printf_filtered ("<function, no debug info> %s;\n",
3456 SYMBOL_PRINT_NAME (p->msymbol));
3457 }
3458 }
3459
3460 do_cleanups (old_chain);
3461 }
3462 \f
3463
3464 /* Helper routine for make_symbol_completion_list. */
3465
3466 static int return_val_size;
3467 static int return_val_index;
3468 static char **return_val;
3469
3470 #define COMPLETION_LIST_ADD_SYMBOL(symbol, sym_text, len, text, word) \
3471 completion_list_add_name \
3472 (SYMBOL_NATURAL_NAME (symbol), (sym_text), (len), (text), (word))
3473
3474 /* Test to see if the symbol specified by SYMNAME (which is already
3475 demangled for C++ symbols) matches SYM_TEXT in the first SYM_TEXT_LEN
3476 characters. If so, add it to the current completion list. */
3477
3478 static void
3479 completion_list_add_name (char *symname, char *sym_text, int sym_text_len,
3480 char *text, char *word)
3481 {
3482 int newsize;
3483 int i;
3484
3485 /* clip symbols that cannot match */
3486
3487 if (strncmp (symname, sym_text, sym_text_len) != 0)
3488 {
3489 return;
3490 }
3491
3492 /* We have a match for a completion, so add SYMNAME to the current list
3493 of matches. Note that the name is moved to freshly malloc'd space. */
3494
3495 {
3496 char *new;
3497 if (word == sym_text)
3498 {
3499 new = xmalloc (strlen (symname) + 5);
3500 strcpy (new, symname);
3501 }
3502 else if (word > sym_text)
3503 {
3504 /* Return some portion of symname. */
3505 new = xmalloc (strlen (symname) + 5);
3506 strcpy (new, symname + (word - sym_text));
3507 }
3508 else
3509 {
3510 /* Return some of SYM_TEXT plus symname. */
3511 new = xmalloc (strlen (symname) + (sym_text - word) + 5);
3512 strncpy (new, word, sym_text - word);
3513 new[sym_text - word] = '\0';
3514 strcat (new, symname);
3515 }
3516
3517 if (return_val_index + 3 > return_val_size)
3518 {
3519 newsize = (return_val_size *= 2) * sizeof (char *);
3520 return_val = (char **) xrealloc ((char *) return_val, newsize);
3521 }
3522 return_val[return_val_index++] = new;
3523 return_val[return_val_index] = NULL;
3524 }
3525 }
3526
3527 /* ObjC: In case we are completing on a selector, look as the msymbol
3528 again and feed all the selectors into the mill. */
3529
3530 static void
3531 completion_list_objc_symbol (struct minimal_symbol *msymbol, char *sym_text,
3532 int sym_text_len, char *text, char *word)
3533 {
3534 static char *tmp = NULL;
3535 static unsigned int tmplen = 0;
3536
3537 char *method, *category, *selector;
3538 char *tmp2 = NULL;
3539
3540 method = SYMBOL_NATURAL_NAME (msymbol);
3541
3542 /* Is it a method? */
3543 if ((method[0] != '-') && (method[0] != '+'))
3544 return;
3545
3546 if (sym_text[0] == '[')
3547 /* Complete on shortened method method. */
3548 completion_list_add_name (method + 1, sym_text, sym_text_len, text, word);
3549
3550 while ((strlen (method) + 1) >= tmplen)
3551 {
3552 if (tmplen == 0)
3553 tmplen = 1024;
3554 else
3555 tmplen *= 2;
3556 tmp = xrealloc (tmp, tmplen);
3557 }
3558 selector = strchr (method, ' ');
3559 if (selector != NULL)
3560 selector++;
3561
3562 category = strchr (method, '(');
3563
3564 if ((category != NULL) && (selector != NULL))
3565 {
3566 memcpy (tmp, method, (category - method));
3567 tmp[category - method] = ' ';
3568 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
3569 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
3570 if (sym_text[0] == '[')
3571 completion_list_add_name (tmp + 1, sym_text, sym_text_len, text, word);
3572 }
3573
3574 if (selector != NULL)
3575 {
3576 /* Complete on selector only. */
3577 strcpy (tmp, selector);
3578 tmp2 = strchr (tmp, ']');
3579 if (tmp2 != NULL)
3580 *tmp2 = '\0';
3581
3582 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
3583 }
3584 }
3585
3586 /* Break the non-quoted text based on the characters which are in
3587 symbols. FIXME: This should probably be language-specific. */
3588
3589 static char *
3590 language_search_unquoted_string (char *text, char *p)
3591 {
3592 for (; p > text; --p)
3593 {
3594 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
3595 continue;
3596 else
3597 {
3598 if ((current_language->la_language == language_objc))
3599 {
3600 if (p[-1] == ':') /* might be part of a method name */
3601 continue;
3602 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
3603 p -= 2; /* beginning of a method name */
3604 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
3605 { /* might be part of a method name */
3606 char *t = p;
3607
3608 /* Seeing a ' ' or a '(' is not conclusive evidence
3609 that we are in the middle of a method name. However,
3610 finding "-[" or "+[" should be pretty un-ambiguous.
3611 Unfortunately we have to find it now to decide. */
3612
3613 while (t > text)
3614 if (isalnum (t[-1]) || t[-1] == '_' ||
3615 t[-1] == ' ' || t[-1] == ':' ||
3616 t[-1] == '(' || t[-1] == ')')
3617 --t;
3618 else
3619 break;
3620
3621 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
3622 p = t - 2; /* method name detected */
3623 /* else we leave with p unchanged */
3624 }
3625 }
3626 break;
3627 }
3628 }
3629 return p;
3630 }
3631
3632 char **
3633 default_make_symbol_completion_list (char *text, char *word)
3634 {
3635 /* Problem: All of the symbols have to be copied because readline
3636 frees them. I'm not going to worry about this; hopefully there
3637 won't be that many. */
3638
3639 struct symbol *sym;
3640 struct symtab *s;
3641 struct partial_symtab *ps;
3642 struct minimal_symbol *msymbol;
3643 struct objfile *objfile;
3644 struct block *b, *surrounding_static_block = 0;
3645 struct dict_iterator iter;
3646 int j;
3647 struct partial_symbol **psym;
3648 /* The symbol we are completing on. Points in same buffer as text. */
3649 char *sym_text;
3650 /* Length of sym_text. */
3651 int sym_text_len;
3652
3653 /* Now look for the symbol we are supposed to complete on. */
3654 {
3655 char *p;
3656 char quote_found;
3657 char *quote_pos = NULL;
3658
3659 /* First see if this is a quoted string. */
3660 quote_found = '\0';
3661 for (p = text; *p != '\0'; ++p)
3662 {
3663 if (quote_found != '\0')
3664 {
3665 if (*p == quote_found)
3666 /* Found close quote. */
3667 quote_found = '\0';
3668 else if (*p == '\\' && p[1] == quote_found)
3669 /* A backslash followed by the quote character
3670 doesn't end the string. */
3671 ++p;
3672 }
3673 else if (*p == '\'' || *p == '"')
3674 {
3675 quote_found = *p;
3676 quote_pos = p;
3677 }
3678 }
3679 if (quote_found == '\'')
3680 /* A string within single quotes can be a symbol, so complete on it. */
3681 sym_text = quote_pos + 1;
3682 else if (quote_found == '"')
3683 /* A double-quoted string is never a symbol, nor does it make sense
3684 to complete it any other way. */
3685 {
3686 return_val = (char **) xmalloc (sizeof (char *));
3687 return_val[0] = NULL;
3688 return return_val;
3689 }
3690 else
3691 {
3692 /* It is not a quoted string. Break it based on the characters
3693 which are in symbols. */
3694 while (p > text)
3695 {
3696 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
3697 --p;
3698 else
3699 break;
3700 }
3701 sym_text = p;
3702 }
3703 }
3704
3705 sym_text_len = strlen (sym_text);
3706
3707 return_val_size = 100;
3708 return_val_index = 0;
3709 return_val = (char **) xmalloc ((return_val_size + 1) * sizeof (char *));
3710 return_val[0] = NULL;
3711
3712 /* Look through the partial symtabs for all symbols which begin
3713 by matching SYM_TEXT. Add each one that you find to the list. */
3714
3715 ALL_PSYMTABS (objfile, ps)
3716 {
3717 /* If the psymtab's been read in we'll get it when we search
3718 through the blockvector. */
3719 if (ps->readin)
3720 continue;
3721
3722 for (psym = objfile->global_psymbols.list + ps->globals_offset;
3723 psym < (objfile->global_psymbols.list + ps->globals_offset
3724 + ps->n_global_syms);
3725 psym++)
3726 {
3727 /* If interrupted, then quit. */
3728 QUIT;
3729 COMPLETION_LIST_ADD_SYMBOL (*psym, sym_text, sym_text_len, text, word);
3730 }
3731
3732 for (psym = objfile->static_psymbols.list + ps->statics_offset;
3733 psym < (objfile->static_psymbols.list + ps->statics_offset
3734 + ps->n_static_syms);
3735 psym++)
3736 {
3737 QUIT;
3738 COMPLETION_LIST_ADD_SYMBOL (*psym, sym_text, sym_text_len, text, word);
3739 }
3740 }
3741
3742 /* At this point scan through the misc symbol vectors and add each
3743 symbol you find to the list. Eventually we want to ignore
3744 anything that isn't a text symbol (everything else will be
3745 handled by the psymtab code above). */
3746
3747 ALL_MSYMBOLS (objfile, msymbol)
3748 {
3749 QUIT;
3750 COMPLETION_LIST_ADD_SYMBOL (msymbol, sym_text, sym_text_len, text, word);
3751
3752 completion_list_objc_symbol (msymbol, sym_text, sym_text_len, text, word);
3753 }
3754
3755 /* Search upwards from currently selected frame (so that we can
3756 complete on local vars. */
3757
3758 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
3759 {
3760 if (!BLOCK_SUPERBLOCK (b))
3761 {
3762 surrounding_static_block = b; /* For elmin of dups */
3763 }
3764
3765 /* Also catch fields of types defined in this places which match our
3766 text string. Only complete on types visible from current context. */
3767
3768 ALL_BLOCK_SYMBOLS (b, iter, sym)
3769 {
3770 QUIT;
3771 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
3772 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
3773 {
3774 struct type *t = SYMBOL_TYPE (sym);
3775 enum type_code c = TYPE_CODE (t);
3776
3777 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
3778 {
3779 for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++)
3780 {
3781 if (TYPE_FIELD_NAME (t, j))
3782 {
3783 completion_list_add_name (TYPE_FIELD_NAME (t, j),
3784 sym_text, sym_text_len, text, word);
3785 }
3786 }
3787 }
3788 }
3789 }
3790 }
3791
3792 /* Go through the symtabs and check the externs and statics for
3793 symbols which match. */
3794
3795 ALL_PRIMARY_SYMTABS (objfile, s)
3796 {
3797 QUIT;
3798 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
3799 ALL_BLOCK_SYMBOLS (b, iter, sym)
3800 {
3801 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
3802 }
3803 }
3804
3805 ALL_PRIMARY_SYMTABS (objfile, s)
3806 {
3807 QUIT;
3808 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
3809 /* Don't do this block twice. */
3810 if (b == surrounding_static_block)
3811 continue;
3812 ALL_BLOCK_SYMBOLS (b, iter, sym)
3813 {
3814 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
3815 }
3816 }
3817
3818 return (return_val);
3819 }
3820
3821 /* Return a NULL terminated array of all symbols (regardless of class)
3822 which begin by matching TEXT. If the answer is no symbols, then
3823 the return value is an array which contains only a NULL pointer. */
3824
3825 char **
3826 make_symbol_completion_list (char *text, char *word)
3827 {
3828 return current_language->la_make_symbol_completion_list (text, word);
3829 }
3830
3831 /* Like make_symbol_completion_list, but returns a list of symbols
3832 defined in a source file FILE. */
3833
3834 char **
3835 make_file_symbol_completion_list (char *text, char *word, char *srcfile)
3836 {
3837 struct symbol *sym;
3838 struct symtab *s;
3839 struct block *b;
3840 struct dict_iterator iter;
3841 /* The symbol we are completing on. Points in same buffer as text. */
3842 char *sym_text;
3843 /* Length of sym_text. */
3844 int sym_text_len;
3845
3846 /* Now look for the symbol we are supposed to complete on.
3847 FIXME: This should be language-specific. */
3848 {
3849 char *p;
3850 char quote_found;
3851 char *quote_pos = NULL;
3852
3853 /* First see if this is a quoted string. */
3854 quote_found = '\0';
3855 for (p = text; *p != '\0'; ++p)
3856 {
3857 if (quote_found != '\0')
3858 {
3859 if (*p == quote_found)
3860 /* Found close quote. */
3861 quote_found = '\0';
3862 else if (*p == '\\' && p[1] == quote_found)
3863 /* A backslash followed by the quote character
3864 doesn't end the string. */
3865 ++p;
3866 }
3867 else if (*p == '\'' || *p == '"')
3868 {
3869 quote_found = *p;
3870 quote_pos = p;
3871 }
3872 }
3873 if (quote_found == '\'')
3874 /* A string within single quotes can be a symbol, so complete on it. */
3875 sym_text = quote_pos + 1;
3876 else if (quote_found == '"')
3877 /* A double-quoted string is never a symbol, nor does it make sense
3878 to complete it any other way. */
3879 {
3880 return_val = (char **) xmalloc (sizeof (char *));
3881 return_val[0] = NULL;
3882 return return_val;
3883 }
3884 else
3885 {
3886 /* Not a quoted string. */
3887 sym_text = language_search_unquoted_string (text, p);
3888 }
3889 }
3890
3891 sym_text_len = strlen (sym_text);
3892
3893 return_val_size = 10;
3894 return_val_index = 0;
3895 return_val = (char **) xmalloc ((return_val_size + 1) * sizeof (char *));
3896 return_val[0] = NULL;
3897
3898 /* Find the symtab for SRCFILE (this loads it if it was not yet read
3899 in). */
3900 s = lookup_symtab (srcfile);
3901 if (s == NULL)
3902 {
3903 /* Maybe they typed the file with leading directories, while the
3904 symbol tables record only its basename. */
3905 const char *tail = lbasename (srcfile);
3906
3907 if (tail > srcfile)
3908 s = lookup_symtab (tail);
3909 }
3910
3911 /* If we have no symtab for that file, return an empty list. */
3912 if (s == NULL)
3913 return (return_val);
3914
3915 /* Go through this symtab and check the externs and statics for
3916 symbols which match. */
3917
3918 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
3919 ALL_BLOCK_SYMBOLS (b, iter, sym)
3920 {
3921 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
3922 }
3923
3924 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
3925 ALL_BLOCK_SYMBOLS (b, iter, sym)
3926 {
3927 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
3928 }
3929
3930 return (return_val);
3931 }
3932
3933 /* A helper function for make_source_files_completion_list. It adds
3934 another file name to a list of possible completions, growing the
3935 list as necessary. */
3936
3937 static void
3938 add_filename_to_list (const char *fname, char *text, char *word,
3939 char ***list, int *list_used, int *list_alloced)
3940 {
3941 char *new;
3942 size_t fnlen = strlen (fname);
3943
3944 if (*list_used + 1 >= *list_alloced)
3945 {
3946 *list_alloced *= 2;
3947 *list = (char **) xrealloc ((char *) *list,
3948 *list_alloced * sizeof (char *));
3949 }
3950
3951 if (word == text)
3952 {
3953 /* Return exactly fname. */
3954 new = xmalloc (fnlen + 5);
3955 strcpy (new, fname);
3956 }
3957 else if (word > text)
3958 {
3959 /* Return some portion of fname. */
3960 new = xmalloc (fnlen + 5);
3961 strcpy (new, fname + (word - text));
3962 }
3963 else
3964 {
3965 /* Return some of TEXT plus fname. */
3966 new = xmalloc (fnlen + (text - word) + 5);
3967 strncpy (new, word, text - word);
3968 new[text - word] = '\0';
3969 strcat (new, fname);
3970 }
3971 (*list)[*list_used] = new;
3972 (*list)[++*list_used] = NULL;
3973 }
3974
3975 static int
3976 not_interesting_fname (const char *fname)
3977 {
3978 static const char *illegal_aliens[] = {
3979 "_globals_", /* inserted by coff_symtab_read */
3980 NULL
3981 };
3982 int i;
3983
3984 for (i = 0; illegal_aliens[i]; i++)
3985 {
3986 if (strcmp (fname, illegal_aliens[i]) == 0)
3987 return 1;
3988 }
3989 return 0;
3990 }
3991
3992 /* Return a NULL terminated array of all source files whose names
3993 begin with matching TEXT. The file names are looked up in the
3994 symbol tables of this program. If the answer is no matchess, then
3995 the return value is an array which contains only a NULL pointer. */
3996
3997 char **
3998 make_source_files_completion_list (char *text, char *word)
3999 {
4000 struct symtab *s;
4001 struct partial_symtab *ps;
4002 struct objfile *objfile;
4003 int first = 1;
4004 int list_alloced = 1;
4005 int list_used = 0;
4006 size_t text_len = strlen (text);
4007 char **list = (char **) xmalloc (list_alloced * sizeof (char *));
4008 const char *base_name;
4009
4010 list[0] = NULL;
4011
4012 if (!have_full_symbols () && !have_partial_symbols ())
4013 return list;
4014
4015 ALL_SYMTABS (objfile, s)
4016 {
4017 if (not_interesting_fname (s->filename))
4018 continue;
4019 if (!filename_seen (s->filename, 1, &first)
4020 #if HAVE_DOS_BASED_FILE_SYSTEM
4021 && strncasecmp (s->filename, text, text_len) == 0
4022 #else
4023 && strncmp (s->filename, text, text_len) == 0
4024 #endif
4025 )
4026 {
4027 /* This file matches for a completion; add it to the current
4028 list of matches. */
4029 add_filename_to_list (s->filename, text, word,
4030 &list, &list_used, &list_alloced);
4031 }
4032 else
4033 {
4034 /* NOTE: We allow the user to type a base name when the
4035 debug info records leading directories, but not the other
4036 way around. This is what subroutines of breakpoint
4037 command do when they parse file names. */
4038 base_name = lbasename (s->filename);
4039 if (base_name != s->filename
4040 && !filename_seen (base_name, 1, &first)
4041 #if HAVE_DOS_BASED_FILE_SYSTEM
4042 && strncasecmp (base_name, text, text_len) == 0
4043 #else
4044 && strncmp (base_name, text, text_len) == 0
4045 #endif
4046 )
4047 add_filename_to_list (base_name, text, word,
4048 &list, &list_used, &list_alloced);
4049 }
4050 }
4051
4052 ALL_PSYMTABS (objfile, ps)
4053 {
4054 if (not_interesting_fname (ps->filename))
4055 continue;
4056 if (!ps->readin)
4057 {
4058 if (!filename_seen (ps->filename, 1, &first)
4059 #if HAVE_DOS_BASED_FILE_SYSTEM
4060 && strncasecmp (ps->filename, text, text_len) == 0
4061 #else
4062 && strncmp (ps->filename, text, text_len) == 0
4063 #endif
4064 )
4065 {
4066 /* This file matches for a completion; add it to the
4067 current list of matches. */
4068 add_filename_to_list (ps->filename, text, word,
4069 &list, &list_used, &list_alloced);
4070
4071 }
4072 else
4073 {
4074 base_name = lbasename (ps->filename);
4075 if (base_name != ps->filename
4076 && !filename_seen (base_name, 1, &first)
4077 #if HAVE_DOS_BASED_FILE_SYSTEM
4078 && strncasecmp (base_name, text, text_len) == 0
4079 #else
4080 && strncmp (base_name, text, text_len) == 0
4081 #endif
4082 )
4083 add_filename_to_list (base_name, text, word,
4084 &list, &list_used, &list_alloced);
4085 }
4086 }
4087 }
4088
4089 return list;
4090 }
4091
4092 /* Determine if PC is in the prologue of a function. The prologue is the area
4093 between the first instruction of a function, and the first executable line.
4094 Returns 1 if PC *might* be in prologue, 0 if definately *not* in prologue.
4095
4096 If non-zero, func_start is where we think the prologue starts, possibly
4097 by previous examination of symbol table information.
4098 */
4099
4100 int
4101 in_prologue (CORE_ADDR pc, CORE_ADDR func_start)
4102 {
4103 struct symtab_and_line sal;
4104 CORE_ADDR func_addr, func_end;
4105
4106 /* We have several sources of information we can consult to figure
4107 this out.
4108 - Compilers usually emit line number info that marks the prologue
4109 as its own "source line". So the ending address of that "line"
4110 is the end of the prologue. If available, this is the most
4111 reliable method.
4112 - The minimal symbols and partial symbols, which can usually tell
4113 us the starting and ending addresses of a function.
4114 - If we know the function's start address, we can call the
4115 architecture-defined gdbarch_skip_prologue function to analyze the
4116 instruction stream and guess where the prologue ends.
4117 - Our `func_start' argument; if non-zero, this is the caller's
4118 best guess as to the function's entry point. At the time of
4119 this writing, handle_inferior_event doesn't get this right, so
4120 it should be our last resort. */
4121
4122 /* Consult the partial symbol table, to find which function
4123 the PC is in. */
4124 if (! find_pc_partial_function (pc, NULL, &func_addr, &func_end))
4125 {
4126 CORE_ADDR prologue_end;
4127
4128 /* We don't even have minsym information, so fall back to using
4129 func_start, if given. */
4130 if (! func_start)
4131 return 1; /* We *might* be in a prologue. */
4132
4133 prologue_end = gdbarch_skip_prologue (current_gdbarch, func_start);
4134
4135 return func_start <= pc && pc < prologue_end;
4136 }
4137
4138 /* If we have line number information for the function, that's
4139 usually pretty reliable. */
4140 sal = find_pc_line (func_addr, 0);
4141
4142 /* Now sal describes the source line at the function's entry point,
4143 which (by convention) is the prologue. The end of that "line",
4144 sal.end, is the end of the prologue.
4145
4146 Note that, for functions whose source code is all on a single
4147 line, the line number information doesn't always end up this way.
4148 So we must verify that our purported end-of-prologue address is
4149 *within* the function, not at its start or end. */
4150 if (sal.line == 0
4151 || sal.end <= func_addr
4152 || func_end <= sal.end)
4153 {
4154 /* We don't have any good line number info, so use the minsym
4155 information, together with the architecture-specific prologue
4156 scanning code. */
4157 CORE_ADDR prologue_end = gdbarch_skip_prologue
4158 (current_gdbarch, func_addr);
4159
4160 return func_addr <= pc && pc < prologue_end;
4161 }
4162
4163 /* We have line number info, and it looks good. */
4164 return func_addr <= pc && pc < sal.end;
4165 }
4166
4167 /* Given PC at the function's start address, attempt to find the
4168 prologue end using SAL information. Return zero if the skip fails.
4169
4170 A non-optimized prologue traditionally has one SAL for the function
4171 and a second for the function body. A single line function has
4172 them both pointing at the same line.
4173
4174 An optimized prologue is similar but the prologue may contain
4175 instructions (SALs) from the instruction body. Need to skip those
4176 while not getting into the function body.
4177
4178 The functions end point and an increasing SAL line are used as
4179 indicators of the prologue's endpoint.
4180
4181 This code is based on the function refine_prologue_limit (versions
4182 found in both ia64 and ppc). */
4183
4184 CORE_ADDR
4185 skip_prologue_using_sal (CORE_ADDR func_addr)
4186 {
4187 struct symtab_and_line prologue_sal;
4188 CORE_ADDR start_pc;
4189 CORE_ADDR end_pc;
4190
4191 /* Get an initial range for the function. */
4192 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
4193 start_pc += gdbarch_deprecated_function_start_offset (current_gdbarch);
4194
4195 prologue_sal = find_pc_line (start_pc, 0);
4196 if (prologue_sal.line != 0)
4197 {
4198 /* If there is only one sal that covers the entire function,
4199 then it is probably a single line function, like
4200 "foo(){}". */
4201 if (prologue_sal.end >= end_pc)
4202 return 0;
4203 while (prologue_sal.end < end_pc)
4204 {
4205 struct symtab_and_line sal;
4206
4207 sal = find_pc_line (prologue_sal.end, 0);
4208 if (sal.line == 0)
4209 break;
4210 /* Assume that a consecutive SAL for the same (or larger)
4211 line mark the prologue -> body transition. */
4212 if (sal.line >= prologue_sal.line)
4213 break;
4214 /* The case in which compiler's optimizer/scheduler has
4215 moved instructions into the prologue. We look ahead in
4216 the function looking for address ranges whose
4217 corresponding line number is less the first one that we
4218 found for the function. This is more conservative then
4219 refine_prologue_limit which scans a large number of SALs
4220 looking for any in the prologue */
4221 prologue_sal = sal;
4222 }
4223 }
4224 return prologue_sal.end;
4225 }
4226 \f
4227 struct symtabs_and_lines
4228 decode_line_spec (char *string, int funfirstline)
4229 {
4230 struct symtabs_and_lines sals;
4231 struct symtab_and_line cursal;
4232
4233 if (string == 0)
4234 error (_("Empty line specification."));
4235
4236 /* We use whatever is set as the current source line. We do not try
4237 and get a default or it will recursively call us! */
4238 cursal = get_current_source_symtab_and_line ();
4239
4240 sals = decode_line_1 (&string, funfirstline,
4241 cursal.symtab, cursal.line,
4242 (char ***) NULL, NULL);
4243
4244 if (*string)
4245 error (_("Junk at end of line specification: %s"), string);
4246 return sals;
4247 }
4248
4249 /* Track MAIN */
4250 static char *name_of_main;
4251
4252 void
4253 set_main_name (const char *name)
4254 {
4255 if (name_of_main != NULL)
4256 {
4257 xfree (name_of_main);
4258 name_of_main = NULL;
4259 }
4260 if (name != NULL)
4261 {
4262 name_of_main = xstrdup (name);
4263 }
4264 }
4265
4266 /* Deduce the name of the main procedure, and set NAME_OF_MAIN
4267 accordingly. */
4268
4269 static void
4270 find_main_name (void)
4271 {
4272 const char *new_main_name;
4273
4274 /* Try to see if the main procedure is in Ada. */
4275 /* FIXME: brobecker/2005-03-07: Another way of doing this would
4276 be to add a new method in the language vector, and call this
4277 method for each language until one of them returns a non-empty
4278 name. This would allow us to remove this hard-coded call to
4279 an Ada function. It is not clear that this is a better approach
4280 at this point, because all methods need to be written in a way
4281 such that false positives never be returned. For instance, it is
4282 important that a method does not return a wrong name for the main
4283 procedure if the main procedure is actually written in a different
4284 language. It is easy to guaranty this with Ada, since we use a
4285 special symbol generated only when the main in Ada to find the name
4286 of the main procedure. It is difficult however to see how this can
4287 be guarantied for languages such as C, for instance. This suggests
4288 that order of call for these methods becomes important, which means
4289 a more complicated approach. */
4290 new_main_name = ada_main_name ();
4291 if (new_main_name != NULL)
4292 {
4293 set_main_name (new_main_name);
4294 return;
4295 }
4296
4297 new_main_name = pascal_main_name ();
4298 if (new_main_name != NULL)
4299 {
4300 set_main_name (new_main_name);
4301 return;
4302 }
4303
4304 /* The languages above didn't identify the name of the main procedure.
4305 Fallback to "main". */
4306 set_main_name ("main");
4307 }
4308
4309 char *
4310 main_name (void)
4311 {
4312 if (name_of_main == NULL)
4313 find_main_name ();
4314
4315 return name_of_main;
4316 }
4317
4318 /* Handle ``executable_changed'' events for the symtab module. */
4319
4320 static void
4321 symtab_observer_executable_changed (void *unused)
4322 {
4323 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
4324 set_main_name (NULL);
4325 }
4326
4327 /* Helper to expand_line_sal below. Appends new sal to SAL,
4328 initializing it from SYMTAB, LINENO and PC. */
4329 static void
4330 append_expanded_sal (struct symtabs_and_lines *sal,
4331 struct symtab *symtab,
4332 int lineno, CORE_ADDR pc)
4333 {
4334 CORE_ADDR func_addr, func_end;
4335
4336 sal->sals = xrealloc (sal->sals,
4337 sizeof (sal->sals[0])
4338 * (sal->nelts + 1));
4339 init_sal (sal->sals + sal->nelts);
4340 sal->sals[sal->nelts].symtab = symtab;
4341 sal->sals[sal->nelts].section = NULL;
4342 sal->sals[sal->nelts].end = 0;
4343 sal->sals[sal->nelts].line = lineno;
4344 sal->sals[sal->nelts].pc = pc;
4345 ++sal->nelts;
4346 }
4347
4348 /* Compute a set of all sals in
4349 the entire program that correspond to same file
4350 and line as SAL and return those. If there
4351 are several sals that belong to the same block,
4352 only one sal for the block is included in results. */
4353
4354 struct symtabs_and_lines
4355 expand_line_sal (struct symtab_and_line sal)
4356 {
4357 struct symtabs_and_lines ret, this_line;
4358 int i, j;
4359 struct objfile *objfile;
4360 struct partial_symtab *psymtab;
4361 struct symtab *symtab;
4362 int lineno;
4363 int deleted = 0;
4364 struct block **blocks = NULL;
4365 int *filter;
4366
4367 ret.nelts = 0;
4368 ret.sals = NULL;
4369
4370 if (sal.symtab == NULL || sal.line == 0 || sal.pc != 0)
4371 {
4372 ret.sals = xmalloc (sizeof (struct symtab_and_line));
4373 ret.sals[0] = sal;
4374 ret.nelts = 1;
4375 return ret;
4376 }
4377 else
4378 {
4379 struct linetable_entry *best_item = 0;
4380 struct symtab *best_symtab = 0;
4381 int exact = 0;
4382
4383 lineno = sal.line;
4384
4385 /* We meed to find all symtabs for a file which name
4386 is described by sal. We cannot just directly
4387 iterate over symtabs, since a symtab might not be
4388 yet created. We also cannot iterate over psymtabs,
4389 calling PSYMTAB_TO_SYMTAB and working on that symtab,
4390 since PSYMTAB_TO_SYMTAB will return NULL for psymtab
4391 corresponding to an included file. Therefore, we do
4392 first pass over psymtabs, reading in those with
4393 the right name. Then, we iterate over symtabs, knowing
4394 that all symtabs we're interested in are loaded. */
4395
4396 ALL_PSYMTABS (objfile, psymtab)
4397 {
4398 if (strcmp (sal.symtab->filename,
4399 psymtab->filename) == 0)
4400 PSYMTAB_TO_SYMTAB (psymtab);
4401 }
4402
4403
4404 /* For each symtab, we add all pcs to ret.sals. I'm actually
4405 not sure what to do if we have exact match in one symtab,
4406 and non-exact match on another symtab.
4407 */
4408 ALL_SYMTABS (objfile, symtab)
4409 {
4410 if (strcmp (sal.symtab->filename,
4411 symtab->filename) == 0)
4412 {
4413 struct linetable *l;
4414 int len;
4415 l = LINETABLE (symtab);
4416 if (!l)
4417 continue;
4418 len = l->nitems;
4419
4420 for (j = 0; j < len; j++)
4421 {
4422 struct linetable_entry *item = &(l->item[j]);
4423
4424 if (item->line == lineno)
4425 {
4426 exact = 1;
4427 append_expanded_sal (&ret, symtab, lineno, item->pc);
4428 }
4429 else if (!exact && item->line > lineno
4430 && (best_item == NULL || item->line < best_item->line))
4431
4432 {
4433 best_item = item;
4434 best_symtab = symtab;
4435 }
4436 }
4437 }
4438 }
4439 if (!exact && best_item)
4440 append_expanded_sal (&ret, best_symtab, lineno, best_item->pc);
4441 }
4442
4443 /* For optimized code, compiler can scatter one source line accross
4444 disjoint ranges of PC values, even when no duplicate functions
4445 or inline functions are involved. For example, 'for (;;)' inside
4446 non-template non-inline non-ctor-or-dtor function can result
4447 in two PC ranges. In this case, we don't want to set breakpoint
4448 on first PC of each range. To filter such cases, we use containing
4449 blocks -- for each PC found above we see if there are other PCs
4450 that are in the same block. If yes, the other PCs are filtered out. */
4451
4452 filter = xmalloc (ret.nelts * sizeof (int));
4453 blocks = xmalloc (ret.nelts * sizeof (struct block *));
4454 for (i = 0; i < ret.nelts; ++i)
4455 {
4456 filter[i] = 1;
4457 blocks[i] = block_for_pc (ret.sals[i].pc);
4458 }
4459
4460 for (i = 0; i < ret.nelts; ++i)
4461 if (blocks[i] != NULL)
4462 for (j = i+1; j < ret.nelts; ++j)
4463 if (blocks[j] == blocks[i])
4464 {
4465 filter[j] = 0;
4466 ++deleted;
4467 break;
4468 }
4469
4470 {
4471 struct symtab_and_line *final =
4472 xmalloc (sizeof (struct symtab_and_line) * (ret.nelts-deleted));
4473
4474 for (i = 0, j = 0; i < ret.nelts; ++i)
4475 if (filter[i])
4476 final[j++] = ret.sals[i];
4477
4478 ret.nelts -= deleted;
4479 xfree (ret.sals);
4480 ret.sals = final;
4481 }
4482
4483 return ret;
4484 }
4485
4486
4487 void
4488 _initialize_symtab (void)
4489 {
4490 add_info ("variables", variables_info, _("\
4491 All global and static variable names, or those matching REGEXP."));
4492 if (dbx_commands)
4493 add_com ("whereis", class_info, variables_info, _("\
4494 All global and static variable names, or those matching REGEXP."));
4495
4496 add_info ("functions", functions_info,
4497 _("All function names, or those matching REGEXP."));
4498
4499
4500 /* FIXME: This command has at least the following problems:
4501 1. It prints builtin types (in a very strange and confusing fashion).
4502 2. It doesn't print right, e.g. with
4503 typedef struct foo *FOO
4504 type_print prints "FOO" when we want to make it (in this situation)
4505 print "struct foo *".
4506 I also think "ptype" or "whatis" is more likely to be useful (but if
4507 there is much disagreement "info types" can be fixed). */
4508 add_info ("types", types_info,
4509 _("All type names, or those matching REGEXP."));
4510
4511 add_info ("sources", sources_info,
4512 _("Source files in the program."));
4513
4514 add_com ("rbreak", class_breakpoint, rbreak_command,
4515 _("Set a breakpoint for all functions matching REGEXP."));
4516
4517 if (xdb_commands)
4518 {
4519 add_com ("lf", class_info, sources_info,
4520 _("Source files in the program"));
4521 add_com ("lg", class_info, variables_info, _("\
4522 All global and static variable names, or those matching REGEXP."));
4523 }
4524
4525 add_setshow_enum_cmd ("multiple-symbols", no_class,
4526 multiple_symbols_modes, &multiple_symbols_mode,
4527 _("\
4528 Set the debugger behavior when more than one symbol are possible matches\n\
4529 in an expression."), _("\
4530 Show how the debugger handles ambiguities in expressions."), _("\
4531 Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
4532 NULL, NULL, &setlist, &showlist);
4533
4534 /* Initialize the one built-in type that isn't language dependent... */
4535 builtin_type_error = init_type (TYPE_CODE_ERROR, 0, 0,
4536 "<unknown type>", (struct objfile *) NULL);
4537
4538 observer_attach_executable_changed (symtab_observer_executable_changed);
4539 }
This page took 0.237204 seconds and 4 git commands to generate.