4e9f91056b8889383b38aca8807fccc4e6ed6706
[deliverable/binutils-gdb.git] / gdb / symtab.c
1 /* Symbol table lookup for the GNU debugger, GDB.
2
3 Copyright (C) 1986-2020 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "gdbcore.h"
24 #include "frame.h"
25 #include "target.h"
26 #include "value.h"
27 #include "symfile.h"
28 #include "objfiles.h"
29 #include "gdbcmd.h"
30 #include "gdb_regex.h"
31 #include "expression.h"
32 #include "language.h"
33 #include "demangle.h"
34 #include "inferior.h"
35 #include "source.h"
36 #include "filenames.h" /* for FILENAME_CMP */
37 #include "objc-lang.h"
38 #include "d-lang.h"
39 #include "ada-lang.h"
40 #include "go-lang.h"
41 #include "p-lang.h"
42 #include "addrmap.h"
43 #include "cli/cli-utils.h"
44 #include "cli/cli-style.h"
45 #include "fnmatch.h"
46 #include "hashtab.h"
47 #include "typeprint.h"
48
49 #include "gdb_obstack.h"
50 #include "block.h"
51 #include "dictionary.h"
52
53 #include <sys/types.h>
54 #include <fcntl.h>
55 #include <sys/stat.h>
56 #include <ctype.h>
57 #include "cp-abi.h"
58 #include "cp-support.h"
59 #include "observable.h"
60 #include "solist.h"
61 #include "macrotab.h"
62 #include "macroscope.h"
63
64 #include "parser-defs.h"
65 #include "completer.h"
66 #include "progspace-and-thread.h"
67 #include "gdbsupport/gdb_optional.h"
68 #include "filename-seen-cache.h"
69 #include "arch-utils.h"
70 #include <algorithm>
71 #include "gdbsupport/gdb_string_view.h"
72 #include "gdbsupport/pathstuff.h"
73 #include "gdbsupport/common-utils.h"
74
75 /* Forward declarations for local functions. */
76
77 static void rbreak_command (const char *, int);
78
79 static int find_line_common (struct linetable *, int, int *, int);
80
81 static struct block_symbol
82 lookup_symbol_aux (const char *name,
83 symbol_name_match_type match_type,
84 const struct block *block,
85 const domain_enum domain,
86 enum language language,
87 struct field_of_this_result *);
88
89 static
90 struct block_symbol lookup_local_symbol (const char *name,
91 symbol_name_match_type match_type,
92 const struct block *block,
93 const domain_enum domain,
94 enum language language);
95
96 static struct block_symbol
97 lookup_symbol_in_objfile (struct objfile *objfile,
98 enum block_enum block_index,
99 const char *name, const domain_enum domain);
100
101 /* Type of the data stored on the program space. */
102
103 struct main_info
104 {
105 main_info () = default;
106
107 ~main_info ()
108 {
109 xfree (name_of_main);
110 }
111
112 /* Name of "main". */
113
114 char *name_of_main = nullptr;
115
116 /* Language of "main". */
117
118 enum language language_of_main = language_unknown;
119 };
120
121 /* Program space key for finding name and language of "main". */
122
123 static const program_space_key<main_info> main_progspace_key;
124
125 /* The default symbol cache size.
126 There is no extra cpu cost for large N (except when flushing the cache,
127 which is rare). The value here is just a first attempt. A better default
128 value may be higher or lower. A prime number can make up for a bad hash
129 computation, so that's why the number is what it is. */
130 #define DEFAULT_SYMBOL_CACHE_SIZE 1021
131
132 /* The maximum symbol cache size.
133 There's no method to the decision of what value to use here, other than
134 there's no point in allowing a user typo to make gdb consume all memory. */
135 #define MAX_SYMBOL_CACHE_SIZE (1024*1024)
136
137 /* symbol_cache_lookup returns this if a previous lookup failed to find the
138 symbol in any objfile. */
139 #define SYMBOL_LOOKUP_FAILED \
140 ((struct block_symbol) {(struct symbol *) 1, NULL})
141 #define SYMBOL_LOOKUP_FAILED_P(SIB) (SIB.symbol == (struct symbol *) 1)
142
143 /* Recording lookups that don't find the symbol is just as important, if not
144 more so, than recording found symbols. */
145
146 enum symbol_cache_slot_state
147 {
148 SYMBOL_SLOT_UNUSED,
149 SYMBOL_SLOT_NOT_FOUND,
150 SYMBOL_SLOT_FOUND
151 };
152
153 struct symbol_cache_slot
154 {
155 enum symbol_cache_slot_state state;
156
157 /* The objfile that was current when the symbol was looked up.
158 This is only needed for global blocks, but for simplicity's sake
159 we allocate the space for both. If data shows the extra space used
160 for static blocks is a problem, we can split things up then.
161
162 Global blocks need cache lookup to include the objfile context because
163 we need to account for gdbarch_iterate_over_objfiles_in_search_order
164 which can traverse objfiles in, effectively, any order, depending on
165 the current objfile, thus affecting which symbol is found. Normally,
166 only the current objfile is searched first, and then the rest are
167 searched in recorded order; but putting cache lookup inside
168 gdbarch_iterate_over_objfiles_in_search_order would be awkward.
169 Instead we just make the current objfile part of the context of
170 cache lookup. This means we can record the same symbol multiple times,
171 each with a different "current objfile" that was in effect when the
172 lookup was saved in the cache, but cache space is pretty cheap. */
173 const struct objfile *objfile_context;
174
175 union
176 {
177 struct block_symbol found;
178 struct
179 {
180 char *name;
181 domain_enum domain;
182 } not_found;
183 } value;
184 };
185
186 /* Clear out SLOT. */
187
188 static void
189 symbol_cache_clear_slot (struct symbol_cache_slot *slot)
190 {
191 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
192 xfree (slot->value.not_found.name);
193 slot->state = SYMBOL_SLOT_UNUSED;
194 }
195
196 /* Symbols don't specify global vs static block.
197 So keep them in separate caches. */
198
199 struct block_symbol_cache
200 {
201 unsigned int hits;
202 unsigned int misses;
203 unsigned int collisions;
204
205 /* SYMBOLS is a variable length array of this size.
206 One can imagine that in general one cache (global/static) should be a
207 fraction of the size of the other, but there's no data at the moment
208 on which to decide. */
209 unsigned int size;
210
211 struct symbol_cache_slot symbols[1];
212 };
213
214 /* Clear all slots of BSC and free BSC. */
215
216 static void
217 destroy_block_symbol_cache (struct block_symbol_cache *bsc)
218 {
219 if (bsc != nullptr)
220 {
221 for (unsigned int i = 0; i < bsc->size; i++)
222 symbol_cache_clear_slot (&bsc->symbols[i]);
223 xfree (bsc);
224 }
225 }
226
227 /* The symbol cache.
228
229 Searching for symbols in the static and global blocks over multiple objfiles
230 again and again can be slow, as can searching very big objfiles. This is a
231 simple cache to improve symbol lookup performance, which is critical to
232 overall gdb performance.
233
234 Symbols are hashed on the name, its domain, and block.
235 They are also hashed on their objfile for objfile-specific lookups. */
236
237 struct symbol_cache
238 {
239 symbol_cache () = default;
240
241 ~symbol_cache ()
242 {
243 destroy_block_symbol_cache (global_symbols);
244 destroy_block_symbol_cache (static_symbols);
245 }
246
247 struct block_symbol_cache *global_symbols = nullptr;
248 struct block_symbol_cache *static_symbols = nullptr;
249 };
250
251 /* Program space key for finding its symbol cache. */
252
253 static const program_space_key<symbol_cache> symbol_cache_key;
254
255 /* When non-zero, print debugging messages related to symtab creation. */
256 unsigned int symtab_create_debug = 0;
257
258 /* When non-zero, print debugging messages related to symbol lookup. */
259 unsigned int symbol_lookup_debug = 0;
260
261 /* The size of the cache is staged here. */
262 static unsigned int new_symbol_cache_size = DEFAULT_SYMBOL_CACHE_SIZE;
263
264 /* The current value of the symbol cache size.
265 This is saved so that if the user enters a value too big we can restore
266 the original value from here. */
267 static unsigned int symbol_cache_size = DEFAULT_SYMBOL_CACHE_SIZE;
268
269 /* True if a file may be known by two different basenames.
270 This is the uncommon case, and significantly slows down gdb.
271 Default set to "off" to not slow down the common case. */
272 bool basenames_may_differ = false;
273
274 /* Allow the user to configure the debugger behavior with respect
275 to multiple-choice menus when more than one symbol matches during
276 a symbol lookup. */
277
278 const char multiple_symbols_ask[] = "ask";
279 const char multiple_symbols_all[] = "all";
280 const char multiple_symbols_cancel[] = "cancel";
281 static const char *const multiple_symbols_modes[] =
282 {
283 multiple_symbols_ask,
284 multiple_symbols_all,
285 multiple_symbols_cancel,
286 NULL
287 };
288 static const char *multiple_symbols_mode = multiple_symbols_all;
289
290 /* Read-only accessor to AUTO_SELECT_MODE. */
291
292 const char *
293 multiple_symbols_select_mode (void)
294 {
295 return multiple_symbols_mode;
296 }
297
298 /* Return the name of a domain_enum. */
299
300 const char *
301 domain_name (domain_enum e)
302 {
303 switch (e)
304 {
305 case UNDEF_DOMAIN: return "UNDEF_DOMAIN";
306 case VAR_DOMAIN: return "VAR_DOMAIN";
307 case STRUCT_DOMAIN: return "STRUCT_DOMAIN";
308 case MODULE_DOMAIN: return "MODULE_DOMAIN";
309 case LABEL_DOMAIN: return "LABEL_DOMAIN";
310 case COMMON_BLOCK_DOMAIN: return "COMMON_BLOCK_DOMAIN";
311 default: gdb_assert_not_reached ("bad domain_enum");
312 }
313 }
314
315 /* Return the name of a search_domain . */
316
317 const char *
318 search_domain_name (enum search_domain e)
319 {
320 switch (e)
321 {
322 case VARIABLES_DOMAIN: return "VARIABLES_DOMAIN";
323 case FUNCTIONS_DOMAIN: return "FUNCTIONS_DOMAIN";
324 case TYPES_DOMAIN: return "TYPES_DOMAIN";
325 case MODULES_DOMAIN: return "MODULES_DOMAIN";
326 case ALL_DOMAIN: return "ALL_DOMAIN";
327 default: gdb_assert_not_reached ("bad search_domain");
328 }
329 }
330
331 /* See symtab.h. */
332
333 struct symtab *
334 compunit_primary_filetab (const struct compunit_symtab *cust)
335 {
336 gdb_assert (COMPUNIT_FILETABS (cust) != NULL);
337
338 /* The primary file symtab is the first one in the list. */
339 return COMPUNIT_FILETABS (cust);
340 }
341
342 /* See symtab.h. */
343
344 enum language
345 compunit_language (const struct compunit_symtab *cust)
346 {
347 struct symtab *symtab = compunit_primary_filetab (cust);
348
349 /* The language of the compunit symtab is the language of its primary
350 source file. */
351 return SYMTAB_LANGUAGE (symtab);
352 }
353
354 /* See symtab.h. */
355
356 bool
357 minimal_symbol::data_p () const
358 {
359 return type == mst_data
360 || type == mst_bss
361 || type == mst_abs
362 || type == mst_file_data
363 || type == mst_file_bss;
364 }
365
366 /* See symtab.h. */
367
368 bool
369 minimal_symbol::text_p () const
370 {
371 return type == mst_text
372 || type == mst_text_gnu_ifunc
373 || type == mst_data_gnu_ifunc
374 || type == mst_slot_got_plt
375 || type == mst_solib_trampoline
376 || type == mst_file_text;
377 }
378
379 /* See whether FILENAME matches SEARCH_NAME using the rule that we
380 advertise to the user. (The manual's description of linespecs
381 describes what we advertise). Returns true if they match, false
382 otherwise. */
383
384 bool
385 compare_filenames_for_search (const char *filename, const char *search_name)
386 {
387 int len = strlen (filename);
388 size_t search_len = strlen (search_name);
389
390 if (len < search_len)
391 return false;
392
393 /* The tail of FILENAME must match. */
394 if (FILENAME_CMP (filename + len - search_len, search_name) != 0)
395 return false;
396
397 /* Either the names must completely match, or the character
398 preceding the trailing SEARCH_NAME segment of FILENAME must be a
399 directory separator.
400
401 The check !IS_ABSOLUTE_PATH ensures SEARCH_NAME "/dir/file.c"
402 cannot match FILENAME "/path//dir/file.c" - as user has requested
403 absolute path. The sama applies for "c:\file.c" possibly
404 incorrectly hypothetically matching "d:\dir\c:\file.c".
405
406 The HAS_DRIVE_SPEC purpose is to make FILENAME "c:file.c"
407 compatible with SEARCH_NAME "file.c". In such case a compiler had
408 to put the "c:file.c" name into debug info. Such compatibility
409 works only on GDB built for DOS host. */
410 return (len == search_len
411 || (!IS_ABSOLUTE_PATH (search_name)
412 && IS_DIR_SEPARATOR (filename[len - search_len - 1]))
413 || (HAS_DRIVE_SPEC (filename)
414 && STRIP_DRIVE_SPEC (filename) == &filename[len - search_len]));
415 }
416
417 /* Same as compare_filenames_for_search, but for glob-style patterns.
418 Heads up on the order of the arguments. They match the order of
419 compare_filenames_for_search, but it's the opposite of the order of
420 arguments to gdb_filename_fnmatch. */
421
422 bool
423 compare_glob_filenames_for_search (const char *filename,
424 const char *search_name)
425 {
426 /* We rely on the property of glob-style patterns with FNM_FILE_NAME that
427 all /s have to be explicitly specified. */
428 int file_path_elements = count_path_elements (filename);
429 int search_path_elements = count_path_elements (search_name);
430
431 if (search_path_elements > file_path_elements)
432 return false;
433
434 if (IS_ABSOLUTE_PATH (search_name))
435 {
436 return (search_path_elements == file_path_elements
437 && gdb_filename_fnmatch (search_name, filename,
438 FNM_FILE_NAME | FNM_NOESCAPE) == 0);
439 }
440
441 {
442 const char *file_to_compare
443 = strip_leading_path_elements (filename,
444 file_path_elements - search_path_elements);
445
446 return gdb_filename_fnmatch (search_name, file_to_compare,
447 FNM_FILE_NAME | FNM_NOESCAPE) == 0;
448 }
449 }
450
451 /* Check for a symtab of a specific name by searching some symtabs.
452 This is a helper function for callbacks of iterate_over_symtabs.
453
454 If NAME is not absolute, then REAL_PATH is NULL
455 If NAME is absolute, then REAL_PATH is the gdb_realpath form of NAME.
456
457 The return value, NAME, REAL_PATH and CALLBACK are identical to the
458 `map_symtabs_matching_filename' method of quick_symbol_functions.
459
460 FIRST and AFTER_LAST indicate the range of compunit symtabs to search.
461 Each symtab within the specified compunit symtab is also searched.
462 AFTER_LAST is one past the last compunit symtab to search; NULL means to
463 search until the end of the list. */
464
465 bool
466 iterate_over_some_symtabs (const char *name,
467 const char *real_path,
468 struct compunit_symtab *first,
469 struct compunit_symtab *after_last,
470 gdb::function_view<bool (symtab *)> callback)
471 {
472 struct compunit_symtab *cust;
473 const char* base_name = lbasename (name);
474
475 for (cust = first; cust != NULL && cust != after_last; cust = cust->next)
476 {
477 for (symtab *s : compunit_filetabs (cust))
478 {
479 if (compare_filenames_for_search (s->filename, name))
480 {
481 if (callback (s))
482 return true;
483 continue;
484 }
485
486 /* Before we invoke realpath, which can get expensive when many
487 files are involved, do a quick comparison of the basenames. */
488 if (! basenames_may_differ
489 && FILENAME_CMP (base_name, lbasename (s->filename)) != 0)
490 continue;
491
492 if (compare_filenames_for_search (symtab_to_fullname (s), name))
493 {
494 if (callback (s))
495 return true;
496 continue;
497 }
498
499 /* If the user gave us an absolute path, try to find the file in
500 this symtab and use its absolute path. */
501 if (real_path != NULL)
502 {
503 const char *fullname = symtab_to_fullname (s);
504
505 gdb_assert (IS_ABSOLUTE_PATH (real_path));
506 gdb_assert (IS_ABSOLUTE_PATH (name));
507 gdb::unique_xmalloc_ptr<char> fullname_real_path
508 = gdb_realpath (fullname);
509 fullname = fullname_real_path.get ();
510 if (FILENAME_CMP (real_path, fullname) == 0)
511 {
512 if (callback (s))
513 return true;
514 continue;
515 }
516 }
517 }
518 }
519
520 return false;
521 }
522
523 /* Check for a symtab of a specific name; first in symtabs, then in
524 psymtabs. *If* there is no '/' in the name, a match after a '/'
525 in the symtab filename will also work.
526
527 Calls CALLBACK with each symtab that is found. If CALLBACK returns
528 true, the search stops. */
529
530 void
531 iterate_over_symtabs (const char *name,
532 gdb::function_view<bool (symtab *)> callback)
533 {
534 gdb::unique_xmalloc_ptr<char> real_path;
535
536 /* Here we are interested in canonicalizing an absolute path, not
537 absolutizing a relative path. */
538 if (IS_ABSOLUTE_PATH (name))
539 {
540 real_path = gdb_realpath (name);
541 gdb_assert (IS_ABSOLUTE_PATH (real_path.get ()));
542 }
543
544 for (objfile *objfile : current_program_space->objfiles ())
545 {
546 if (iterate_over_some_symtabs (name, real_path.get (),
547 objfile->compunit_symtabs, NULL,
548 callback))
549 return;
550 }
551
552 /* Same search rules as above apply here, but now we look thru the
553 psymtabs. */
554
555 for (objfile *objfile : current_program_space->objfiles ())
556 {
557 if (objfile->sf
558 && objfile->sf->qf->map_symtabs_matching_filename (objfile,
559 name,
560 real_path.get (),
561 callback))
562 return;
563 }
564 }
565
566 /* A wrapper for iterate_over_symtabs that returns the first matching
567 symtab, or NULL. */
568
569 struct symtab *
570 lookup_symtab (const char *name)
571 {
572 struct symtab *result = NULL;
573
574 iterate_over_symtabs (name, [&] (symtab *symtab)
575 {
576 result = symtab;
577 return true;
578 });
579
580 return result;
581 }
582
583 \f
584 /* Mangle a GDB method stub type. This actually reassembles the pieces of the
585 full method name, which consist of the class name (from T), the unadorned
586 method name from METHOD_ID, and the signature for the specific overload,
587 specified by SIGNATURE_ID. Note that this function is g++ specific. */
588
589 char *
590 gdb_mangle_name (struct type *type, int method_id, int signature_id)
591 {
592 int mangled_name_len;
593 char *mangled_name;
594 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
595 struct fn_field *method = &f[signature_id];
596 const char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
597 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
598 const char *newname = TYPE_NAME (type);
599
600 /* Does the form of physname indicate that it is the full mangled name
601 of a constructor (not just the args)? */
602 int is_full_physname_constructor;
603
604 int is_constructor;
605 int is_destructor = is_destructor_name (physname);
606 /* Need a new type prefix. */
607 const char *const_prefix = method->is_const ? "C" : "";
608 const char *volatile_prefix = method->is_volatile ? "V" : "";
609 char buf[20];
610 int len = (newname == NULL ? 0 : strlen (newname));
611
612 /* Nothing to do if physname already contains a fully mangled v3 abi name
613 or an operator name. */
614 if ((physname[0] == '_' && physname[1] == 'Z')
615 || is_operator_name (field_name))
616 return xstrdup (physname);
617
618 is_full_physname_constructor = is_constructor_name (physname);
619
620 is_constructor = is_full_physname_constructor
621 || (newname && strcmp (field_name, newname) == 0);
622
623 if (!is_destructor)
624 is_destructor = (startswith (physname, "__dt"));
625
626 if (is_destructor || is_full_physname_constructor)
627 {
628 mangled_name = (char *) xmalloc (strlen (physname) + 1);
629 strcpy (mangled_name, physname);
630 return mangled_name;
631 }
632
633 if (len == 0)
634 {
635 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
636 }
637 else if (physname[0] == 't' || physname[0] == 'Q')
638 {
639 /* The physname for template and qualified methods already includes
640 the class name. */
641 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
642 newname = NULL;
643 len = 0;
644 }
645 else
646 {
647 xsnprintf (buf, sizeof (buf), "__%s%s%d", const_prefix,
648 volatile_prefix, len);
649 }
650 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
651 + strlen (buf) + len + strlen (physname) + 1);
652
653 mangled_name = (char *) xmalloc (mangled_name_len);
654 if (is_constructor)
655 mangled_name[0] = '\0';
656 else
657 strcpy (mangled_name, field_name);
658
659 strcat (mangled_name, buf);
660 /* If the class doesn't have a name, i.e. newname NULL, then we just
661 mangle it using 0 for the length of the class. Thus it gets mangled
662 as something starting with `::' rather than `classname::'. */
663 if (newname != NULL)
664 strcat (mangled_name, newname);
665
666 strcat (mangled_name, physname);
667 return (mangled_name);
668 }
669
670 /* Set the demangled name of GSYMBOL to NAME. NAME must be already
671 correctly allocated. */
672
673 void
674 symbol_set_demangled_name (struct general_symbol_info *gsymbol,
675 const char *name,
676 struct obstack *obstack)
677 {
678 if (gsymbol->language () == language_ada)
679 {
680 if (name == NULL)
681 {
682 gsymbol->ada_mangled = 0;
683 gsymbol->language_specific.obstack = obstack;
684 }
685 else
686 {
687 gsymbol->ada_mangled = 1;
688 gsymbol->language_specific.demangled_name = name;
689 }
690 }
691 else
692 gsymbol->language_specific.demangled_name = name;
693 }
694
695 /* Return the demangled name of GSYMBOL. */
696
697 const char *
698 symbol_get_demangled_name (const struct general_symbol_info *gsymbol)
699 {
700 if (gsymbol->language () == language_ada)
701 {
702 if (!gsymbol->ada_mangled)
703 return NULL;
704 /* Fall through. */
705 }
706
707 return gsymbol->language_specific.demangled_name;
708 }
709
710 \f
711 /* Initialize the language dependent portion of a symbol
712 depending upon the language for the symbol. */
713
714 void
715 general_symbol_info::set_language (enum language language,
716 struct obstack *obstack)
717 {
718 m_language = language;
719 if (language == language_cplus
720 || language == language_d
721 || language == language_go
722 || language == language_objc
723 || language == language_fortran)
724 {
725 symbol_set_demangled_name (this, NULL, obstack);
726 }
727 else if (language == language_ada)
728 {
729 gdb_assert (ada_mangled == 0);
730 language_specific.obstack = obstack;
731 }
732 else
733 {
734 memset (&language_specific, 0, sizeof (language_specific));
735 }
736 }
737
738 /* Functions to initialize a symbol's mangled name. */
739
740 /* Objects of this type are stored in the demangled name hash table. */
741 struct demangled_name_entry
742 {
743 demangled_name_entry (gdb::string_view mangled_name)
744 : mangled (mangled_name) {}
745
746 gdb::string_view mangled;
747 enum language language;
748 gdb::unique_xmalloc_ptr<char> demangled;
749 };
750
751 /* Hash function for the demangled name hash. */
752
753 static hashval_t
754 hash_demangled_name_entry (const void *data)
755 {
756 const struct demangled_name_entry *e
757 = (const struct demangled_name_entry *) data;
758
759 return fast_hash (e->mangled.data (), e->mangled.length ());
760 }
761
762 /* Equality function for the demangled name hash. */
763
764 static int
765 eq_demangled_name_entry (const void *a, const void *b)
766 {
767 const struct demangled_name_entry *da
768 = (const struct demangled_name_entry *) a;
769 const struct demangled_name_entry *db
770 = (const struct demangled_name_entry *) b;
771
772 return da->mangled == db->mangled;
773 }
774
775 static void
776 free_demangled_name_entry (void *data)
777 {
778 struct demangled_name_entry *e
779 = (struct demangled_name_entry *) data;
780
781 e->~demangled_name_entry();
782 }
783
784 /* Create the hash table used for demangled names. Each hash entry is
785 a pair of strings; one for the mangled name and one for the demangled
786 name. The entry is hashed via just the mangled name. */
787
788 static void
789 create_demangled_names_hash (struct objfile_per_bfd_storage *per_bfd)
790 {
791 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
792 The hash table code will round this up to the next prime number.
793 Choosing a much larger table size wastes memory, and saves only about
794 1% in symbol reading. However, if the minsym count is already
795 initialized (e.g. because symbol name setting was deferred to
796 a background thread) we can initialize the hashtable with a count
797 based on that, because we will almost certainly have at least that
798 many entries. If we have a nonzero number but less than 256,
799 we still stay with 256 to have some space for psymbols, etc. */
800
801 /* htab will expand the table when it is 3/4th full, so we account for that
802 here. +2 to round up. */
803 int minsym_based_count = (per_bfd->minimal_symbol_count + 2) / 3 * 4;
804 int count = std::max (per_bfd->minimal_symbol_count, minsym_based_count);
805
806 per_bfd->demangled_names_hash.reset (htab_create_alloc
807 (count, hash_demangled_name_entry, eq_demangled_name_entry,
808 free_demangled_name_entry, xcalloc, xfree));
809 }
810
811 /* See symtab.h */
812
813 char *
814 symbol_find_demangled_name (struct general_symbol_info *gsymbol,
815 const char *mangled)
816 {
817 char *demangled = NULL;
818 int i;
819
820 if (gsymbol->language () == language_unknown)
821 gsymbol->m_language = language_auto;
822
823 if (gsymbol->language () != language_auto)
824 {
825 const struct language_defn *lang = language_def (gsymbol->language ());
826
827 language_sniff_from_mangled_name (lang, mangled, &demangled);
828 return demangled;
829 }
830
831 for (i = language_unknown; i < nr_languages; ++i)
832 {
833 enum language l = (enum language) i;
834 const struct language_defn *lang = language_def (l);
835
836 if (language_sniff_from_mangled_name (lang, mangled, &demangled))
837 {
838 gsymbol->m_language = l;
839 return demangled;
840 }
841 }
842
843 return NULL;
844 }
845
846 /* Set both the mangled and demangled (if any) names for GSYMBOL based
847 on LINKAGE_NAME and LEN. Ordinarily, NAME is copied onto the
848 objfile's obstack; but if COPY_NAME is 0 and if NAME is
849 NUL-terminated, then this function assumes that NAME is already
850 correctly saved (either permanently or with a lifetime tied to the
851 objfile), and it will not be copied.
852
853 The hash table corresponding to OBJFILE is used, and the memory
854 comes from the per-BFD storage_obstack. LINKAGE_NAME is copied,
855 so the pointer can be discarded after calling this function. */
856
857 void
858 general_symbol_info::compute_and_set_names (gdb::string_view linkage_name,
859 bool copy_name,
860 objfile_per_bfd_storage *per_bfd,
861 gdb::optional<hashval_t> hash)
862 {
863 struct demangled_name_entry **slot;
864
865 if (language () == language_ada)
866 {
867 /* In Ada, we do the symbol lookups using the mangled name, so
868 we can save some space by not storing the demangled name. */
869 if (!copy_name)
870 m_name = linkage_name.data ();
871 else
872 m_name = obstack_strndup (&per_bfd->storage_obstack,
873 linkage_name.data (),
874 linkage_name.length ());
875 symbol_set_demangled_name (this, NULL, &per_bfd->storage_obstack);
876
877 return;
878 }
879
880 if (per_bfd->demangled_names_hash == NULL)
881 create_demangled_names_hash (per_bfd);
882
883 struct demangled_name_entry entry (linkage_name);
884 if (!hash.has_value ())
885 hash = hash_demangled_name_entry (&entry);
886 slot = ((struct demangled_name_entry **)
887 htab_find_slot_with_hash (per_bfd->demangled_names_hash.get (),
888 &entry, *hash, INSERT));
889
890 /* The const_cast is safe because the only reason it is already
891 initialized is if we purposefully set it from a background
892 thread to avoid doing the work here. However, it is still
893 allocated from the heap and needs to be freed by us, just
894 like if we called symbol_find_demangled_name here. If this is
895 nullptr, we call symbol_find_demangled_name below, but we put
896 this smart pointer here to be sure that we don't leak this name. */
897 gdb::unique_xmalloc_ptr<char> demangled_name
898 (const_cast<char *> (language_specific.demangled_name));
899
900 /* If this name is not in the hash table, add it. */
901 if (*slot == NULL
902 /* A C version of the symbol may have already snuck into the table.
903 This happens to, e.g., main.init (__go_init_main). Cope. */
904 || (language () == language_go && (*slot)->demangled == nullptr))
905 {
906 /* A 0-terminated copy of the linkage name. Callers must set COPY_NAME
907 to true if the string might not be nullterminated. We have to make
908 this copy because demangling needs a nullterminated string. */
909 gdb::string_view linkage_name_copy;
910 if (copy_name)
911 {
912 char *alloc_name = (char *) alloca (linkage_name.length () + 1);
913 memcpy (alloc_name, linkage_name.data (), linkage_name.length ());
914 alloc_name[linkage_name.length ()] = '\0';
915
916 linkage_name_copy = gdb::string_view (alloc_name,
917 linkage_name.length ());
918 }
919 else
920 linkage_name_copy = linkage_name;
921
922 if (demangled_name.get () == nullptr)
923 demangled_name.reset
924 (symbol_find_demangled_name (this, linkage_name_copy.data ()));
925
926 /* Suppose we have demangled_name==NULL, copy_name==0, and
927 linkage_name_copy==linkage_name. In this case, we already have the
928 mangled name saved, and we don't have a demangled name. So,
929 you might think we could save a little space by not recording
930 this in the hash table at all.
931
932 It turns out that it is actually important to still save such
933 an entry in the hash table, because storing this name gives
934 us better bcache hit rates for partial symbols. */
935 if (!copy_name)
936 {
937 *slot
938 = ((struct demangled_name_entry *)
939 obstack_alloc (&per_bfd->storage_obstack,
940 sizeof (demangled_name_entry)));
941 new (*slot) demangled_name_entry (linkage_name);
942 }
943 else
944 {
945 /* If we must copy the mangled name, put it directly after
946 the struct so we can have a single allocation. */
947 *slot
948 = ((struct demangled_name_entry *)
949 obstack_alloc (&per_bfd->storage_obstack,
950 sizeof (demangled_name_entry)
951 + linkage_name.length () + 1));
952 char *mangled_ptr = reinterpret_cast<char *> (*slot + 1);
953 memcpy (mangled_ptr, linkage_name.data (), linkage_name.length ());
954 mangled_ptr [linkage_name.length ()] = '\0';
955 new (*slot) demangled_name_entry
956 (gdb::string_view (mangled_ptr, linkage_name.length ()));
957 }
958 (*slot)->demangled = std::move (demangled_name);
959 (*slot)->language = language ();
960 }
961 else if (language () == language_unknown || language () == language_auto)
962 m_language = (*slot)->language;
963
964 m_name = (*slot)->mangled.data ();
965 symbol_set_demangled_name (this, (*slot)->demangled.get (),
966 &per_bfd->storage_obstack);
967 }
968
969 /* See symtab.h. */
970
971 const char *
972 general_symbol_info::natural_name () const
973 {
974 switch (language ())
975 {
976 case language_cplus:
977 case language_d:
978 case language_go:
979 case language_objc:
980 case language_fortran:
981 if (symbol_get_demangled_name (this) != NULL)
982 return symbol_get_demangled_name (this);
983 break;
984 case language_ada:
985 return ada_decode_symbol (this);
986 default:
987 break;
988 }
989 return linkage_name ();
990 }
991
992 /* See symtab.h. */
993
994 const char *
995 general_symbol_info::demangled_name () const
996 {
997 const char *dem_name = NULL;
998
999 switch (language ())
1000 {
1001 case language_cplus:
1002 case language_d:
1003 case language_go:
1004 case language_objc:
1005 case language_fortran:
1006 dem_name = symbol_get_demangled_name (this);
1007 break;
1008 case language_ada:
1009 dem_name = ada_decode_symbol (this);
1010 break;
1011 default:
1012 break;
1013 }
1014 return dem_name;
1015 }
1016
1017 /* See symtab.h. */
1018
1019 const char *
1020 general_symbol_info::search_name () const
1021 {
1022 if (language () == language_ada)
1023 return linkage_name ();
1024 else
1025 return natural_name ();
1026 }
1027
1028 /* See symtab.h. */
1029
1030 bool
1031 symbol_matches_search_name (const struct general_symbol_info *gsymbol,
1032 const lookup_name_info &name)
1033 {
1034 symbol_name_matcher_ftype *name_match
1035 = get_symbol_name_matcher (language_def (gsymbol->language ()), name);
1036 return name_match (gsymbol->search_name (), name, NULL);
1037 }
1038
1039 \f
1040
1041 /* Return true if the two sections are the same, or if they could
1042 plausibly be copies of each other, one in an original object
1043 file and another in a separated debug file. */
1044
1045 bool
1046 matching_obj_sections (struct obj_section *obj_first,
1047 struct obj_section *obj_second)
1048 {
1049 asection *first = obj_first? obj_first->the_bfd_section : NULL;
1050 asection *second = obj_second? obj_second->the_bfd_section : NULL;
1051
1052 /* If they're the same section, then they match. */
1053 if (first == second)
1054 return true;
1055
1056 /* If either is NULL, give up. */
1057 if (first == NULL || second == NULL)
1058 return false;
1059
1060 /* This doesn't apply to absolute symbols. */
1061 if (first->owner == NULL || second->owner == NULL)
1062 return false;
1063
1064 /* If they're in the same object file, they must be different sections. */
1065 if (first->owner == second->owner)
1066 return false;
1067
1068 /* Check whether the two sections are potentially corresponding. They must
1069 have the same size, address, and name. We can't compare section indexes,
1070 which would be more reliable, because some sections may have been
1071 stripped. */
1072 if (bfd_section_size (first) != bfd_section_size (second))
1073 return false;
1074
1075 /* In-memory addresses may start at a different offset, relativize them. */
1076 if (bfd_section_vma (first) - bfd_get_start_address (first->owner)
1077 != bfd_section_vma (second) - bfd_get_start_address (second->owner))
1078 return false;
1079
1080 if (bfd_section_name (first) == NULL
1081 || bfd_section_name (second) == NULL
1082 || strcmp (bfd_section_name (first), bfd_section_name (second)) != 0)
1083 return false;
1084
1085 /* Otherwise check that they are in corresponding objfiles. */
1086
1087 struct objfile *obj = NULL;
1088 for (objfile *objfile : current_program_space->objfiles ())
1089 if (objfile->obfd == first->owner)
1090 {
1091 obj = objfile;
1092 break;
1093 }
1094 gdb_assert (obj != NULL);
1095
1096 if (obj->separate_debug_objfile != NULL
1097 && obj->separate_debug_objfile->obfd == second->owner)
1098 return true;
1099 if (obj->separate_debug_objfile_backlink != NULL
1100 && obj->separate_debug_objfile_backlink->obfd == second->owner)
1101 return true;
1102
1103 return false;
1104 }
1105
1106 /* See symtab.h. */
1107
1108 void
1109 expand_symtab_containing_pc (CORE_ADDR pc, struct obj_section *section)
1110 {
1111 struct bound_minimal_symbol msymbol;
1112
1113 /* If we know that this is not a text address, return failure. This is
1114 necessary because we loop based on texthigh and textlow, which do
1115 not include the data ranges. */
1116 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
1117 if (msymbol.minsym && msymbol.minsym->data_p ())
1118 return;
1119
1120 for (objfile *objfile : current_program_space->objfiles ())
1121 {
1122 struct compunit_symtab *cust = NULL;
1123
1124 if (objfile->sf)
1125 cust = objfile->sf->qf->find_pc_sect_compunit_symtab (objfile, msymbol,
1126 pc, section, 0);
1127 if (cust)
1128 return;
1129 }
1130 }
1131 \f
1132 /* Hash function for the symbol cache. */
1133
1134 static unsigned int
1135 hash_symbol_entry (const struct objfile *objfile_context,
1136 const char *name, domain_enum domain)
1137 {
1138 unsigned int hash = (uintptr_t) objfile_context;
1139
1140 if (name != NULL)
1141 hash += htab_hash_string (name);
1142
1143 /* Because of symbol_matches_domain we need VAR_DOMAIN and STRUCT_DOMAIN
1144 to map to the same slot. */
1145 if (domain == STRUCT_DOMAIN)
1146 hash += VAR_DOMAIN * 7;
1147 else
1148 hash += domain * 7;
1149
1150 return hash;
1151 }
1152
1153 /* Equality function for the symbol cache. */
1154
1155 static int
1156 eq_symbol_entry (const struct symbol_cache_slot *slot,
1157 const struct objfile *objfile_context,
1158 const char *name, domain_enum domain)
1159 {
1160 const char *slot_name;
1161 domain_enum slot_domain;
1162
1163 if (slot->state == SYMBOL_SLOT_UNUSED)
1164 return 0;
1165
1166 if (slot->objfile_context != objfile_context)
1167 return 0;
1168
1169 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1170 {
1171 slot_name = slot->value.not_found.name;
1172 slot_domain = slot->value.not_found.domain;
1173 }
1174 else
1175 {
1176 slot_name = slot->value.found.symbol->search_name ();
1177 slot_domain = SYMBOL_DOMAIN (slot->value.found.symbol);
1178 }
1179
1180 /* NULL names match. */
1181 if (slot_name == NULL && name == NULL)
1182 {
1183 /* But there's no point in calling symbol_matches_domain in the
1184 SYMBOL_SLOT_FOUND case. */
1185 if (slot_domain != domain)
1186 return 0;
1187 }
1188 else if (slot_name != NULL && name != NULL)
1189 {
1190 /* It's important that we use the same comparison that was done
1191 the first time through. If the slot records a found symbol,
1192 then this means using the symbol name comparison function of
1193 the symbol's language with symbol->search_name (). See
1194 dictionary.c. It also means using symbol_matches_domain for
1195 found symbols. See block.c.
1196
1197 If the slot records a not-found symbol, then require a precise match.
1198 We could still be lax with whitespace like strcmp_iw though. */
1199
1200 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1201 {
1202 if (strcmp (slot_name, name) != 0)
1203 return 0;
1204 if (slot_domain != domain)
1205 return 0;
1206 }
1207 else
1208 {
1209 struct symbol *sym = slot->value.found.symbol;
1210 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
1211
1212 if (!SYMBOL_MATCHES_SEARCH_NAME (sym, lookup_name))
1213 return 0;
1214
1215 if (!symbol_matches_domain (sym->language (), slot_domain, domain))
1216 return 0;
1217 }
1218 }
1219 else
1220 {
1221 /* Only one name is NULL. */
1222 return 0;
1223 }
1224
1225 return 1;
1226 }
1227
1228 /* Given a cache of size SIZE, return the size of the struct (with variable
1229 length array) in bytes. */
1230
1231 static size_t
1232 symbol_cache_byte_size (unsigned int size)
1233 {
1234 return (sizeof (struct block_symbol_cache)
1235 + ((size - 1) * sizeof (struct symbol_cache_slot)));
1236 }
1237
1238 /* Resize CACHE. */
1239
1240 static void
1241 resize_symbol_cache (struct symbol_cache *cache, unsigned int new_size)
1242 {
1243 /* If there's no change in size, don't do anything.
1244 All caches have the same size, so we can just compare with the size
1245 of the global symbols cache. */
1246 if ((cache->global_symbols != NULL
1247 && cache->global_symbols->size == new_size)
1248 || (cache->global_symbols == NULL
1249 && new_size == 0))
1250 return;
1251
1252 destroy_block_symbol_cache (cache->global_symbols);
1253 destroy_block_symbol_cache (cache->static_symbols);
1254
1255 if (new_size == 0)
1256 {
1257 cache->global_symbols = NULL;
1258 cache->static_symbols = NULL;
1259 }
1260 else
1261 {
1262 size_t total_size = symbol_cache_byte_size (new_size);
1263
1264 cache->global_symbols
1265 = (struct block_symbol_cache *) xcalloc (1, total_size);
1266 cache->static_symbols
1267 = (struct block_symbol_cache *) xcalloc (1, total_size);
1268 cache->global_symbols->size = new_size;
1269 cache->static_symbols->size = new_size;
1270 }
1271 }
1272
1273 /* Return the symbol cache of PSPACE.
1274 Create one if it doesn't exist yet. */
1275
1276 static struct symbol_cache *
1277 get_symbol_cache (struct program_space *pspace)
1278 {
1279 struct symbol_cache *cache = symbol_cache_key.get (pspace);
1280
1281 if (cache == NULL)
1282 {
1283 cache = symbol_cache_key.emplace (pspace);
1284 resize_symbol_cache (cache, symbol_cache_size);
1285 }
1286
1287 return cache;
1288 }
1289
1290 /* Set the size of the symbol cache in all program spaces. */
1291
1292 static void
1293 set_symbol_cache_size (unsigned int new_size)
1294 {
1295 struct program_space *pspace;
1296
1297 ALL_PSPACES (pspace)
1298 {
1299 struct symbol_cache *cache = symbol_cache_key.get (pspace);
1300
1301 /* The pspace could have been created but not have a cache yet. */
1302 if (cache != NULL)
1303 resize_symbol_cache (cache, new_size);
1304 }
1305 }
1306
1307 /* Called when symbol-cache-size is set. */
1308
1309 static void
1310 set_symbol_cache_size_handler (const char *args, int from_tty,
1311 struct cmd_list_element *c)
1312 {
1313 if (new_symbol_cache_size > MAX_SYMBOL_CACHE_SIZE)
1314 {
1315 /* Restore the previous value.
1316 This is the value the "show" command prints. */
1317 new_symbol_cache_size = symbol_cache_size;
1318
1319 error (_("Symbol cache size is too large, max is %u."),
1320 MAX_SYMBOL_CACHE_SIZE);
1321 }
1322 symbol_cache_size = new_symbol_cache_size;
1323
1324 set_symbol_cache_size (symbol_cache_size);
1325 }
1326
1327 /* Lookup symbol NAME,DOMAIN in BLOCK in the symbol cache of PSPACE.
1328 OBJFILE_CONTEXT is the current objfile, which may be NULL.
1329 The result is the symbol if found, SYMBOL_LOOKUP_FAILED if a previous lookup
1330 failed (and thus this one will too), or NULL if the symbol is not present
1331 in the cache.
1332 *BSC_PTR and *SLOT_PTR are set to the cache and slot of the symbol, which
1333 can be used to save the result of a full lookup attempt. */
1334
1335 static struct block_symbol
1336 symbol_cache_lookup (struct symbol_cache *cache,
1337 struct objfile *objfile_context, enum block_enum block,
1338 const char *name, domain_enum domain,
1339 struct block_symbol_cache **bsc_ptr,
1340 struct symbol_cache_slot **slot_ptr)
1341 {
1342 struct block_symbol_cache *bsc;
1343 unsigned int hash;
1344 struct symbol_cache_slot *slot;
1345
1346 if (block == GLOBAL_BLOCK)
1347 bsc = cache->global_symbols;
1348 else
1349 bsc = cache->static_symbols;
1350 if (bsc == NULL)
1351 {
1352 *bsc_ptr = NULL;
1353 *slot_ptr = NULL;
1354 return {};
1355 }
1356
1357 hash = hash_symbol_entry (objfile_context, name, domain);
1358 slot = bsc->symbols + hash % bsc->size;
1359
1360 *bsc_ptr = bsc;
1361 *slot_ptr = slot;
1362
1363 if (eq_symbol_entry (slot, objfile_context, name, domain))
1364 {
1365 if (symbol_lookup_debug)
1366 fprintf_unfiltered (gdb_stdlog,
1367 "%s block symbol cache hit%s for %s, %s\n",
1368 block == GLOBAL_BLOCK ? "Global" : "Static",
1369 slot->state == SYMBOL_SLOT_NOT_FOUND
1370 ? " (not found)" : "",
1371 name, domain_name (domain));
1372 ++bsc->hits;
1373 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1374 return SYMBOL_LOOKUP_FAILED;
1375 return slot->value.found;
1376 }
1377
1378 /* Symbol is not present in the cache. */
1379
1380 if (symbol_lookup_debug)
1381 {
1382 fprintf_unfiltered (gdb_stdlog,
1383 "%s block symbol cache miss for %s, %s\n",
1384 block == GLOBAL_BLOCK ? "Global" : "Static",
1385 name, domain_name (domain));
1386 }
1387 ++bsc->misses;
1388 return {};
1389 }
1390
1391 /* Mark SYMBOL as found in SLOT.
1392 OBJFILE_CONTEXT is the current objfile when the lookup was done, or NULL
1393 if it's not needed to distinguish lookups (STATIC_BLOCK). It is *not*
1394 necessarily the objfile the symbol was found in. */
1395
1396 static void
1397 symbol_cache_mark_found (struct block_symbol_cache *bsc,
1398 struct symbol_cache_slot *slot,
1399 struct objfile *objfile_context,
1400 struct symbol *symbol,
1401 const struct block *block)
1402 {
1403 if (bsc == NULL)
1404 return;
1405 if (slot->state != SYMBOL_SLOT_UNUSED)
1406 {
1407 ++bsc->collisions;
1408 symbol_cache_clear_slot (slot);
1409 }
1410 slot->state = SYMBOL_SLOT_FOUND;
1411 slot->objfile_context = objfile_context;
1412 slot->value.found.symbol = symbol;
1413 slot->value.found.block = block;
1414 }
1415
1416 /* Mark symbol NAME, DOMAIN as not found in SLOT.
1417 OBJFILE_CONTEXT is the current objfile when the lookup was done, or NULL
1418 if it's not needed to distinguish lookups (STATIC_BLOCK). */
1419
1420 static void
1421 symbol_cache_mark_not_found (struct block_symbol_cache *bsc,
1422 struct symbol_cache_slot *slot,
1423 struct objfile *objfile_context,
1424 const char *name, domain_enum domain)
1425 {
1426 if (bsc == NULL)
1427 return;
1428 if (slot->state != SYMBOL_SLOT_UNUSED)
1429 {
1430 ++bsc->collisions;
1431 symbol_cache_clear_slot (slot);
1432 }
1433 slot->state = SYMBOL_SLOT_NOT_FOUND;
1434 slot->objfile_context = objfile_context;
1435 slot->value.not_found.name = xstrdup (name);
1436 slot->value.not_found.domain = domain;
1437 }
1438
1439 /* Flush the symbol cache of PSPACE. */
1440
1441 static void
1442 symbol_cache_flush (struct program_space *pspace)
1443 {
1444 struct symbol_cache *cache = symbol_cache_key.get (pspace);
1445 int pass;
1446
1447 if (cache == NULL)
1448 return;
1449 if (cache->global_symbols == NULL)
1450 {
1451 gdb_assert (symbol_cache_size == 0);
1452 gdb_assert (cache->static_symbols == NULL);
1453 return;
1454 }
1455
1456 /* If the cache is untouched since the last flush, early exit.
1457 This is important for performance during the startup of a program linked
1458 with 100s (or 1000s) of shared libraries. */
1459 if (cache->global_symbols->misses == 0
1460 && cache->static_symbols->misses == 0)
1461 return;
1462
1463 gdb_assert (cache->global_symbols->size == symbol_cache_size);
1464 gdb_assert (cache->static_symbols->size == symbol_cache_size);
1465
1466 for (pass = 0; pass < 2; ++pass)
1467 {
1468 struct block_symbol_cache *bsc
1469 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1470 unsigned int i;
1471
1472 for (i = 0; i < bsc->size; ++i)
1473 symbol_cache_clear_slot (&bsc->symbols[i]);
1474 }
1475
1476 cache->global_symbols->hits = 0;
1477 cache->global_symbols->misses = 0;
1478 cache->global_symbols->collisions = 0;
1479 cache->static_symbols->hits = 0;
1480 cache->static_symbols->misses = 0;
1481 cache->static_symbols->collisions = 0;
1482 }
1483
1484 /* Dump CACHE. */
1485
1486 static void
1487 symbol_cache_dump (const struct symbol_cache *cache)
1488 {
1489 int pass;
1490
1491 if (cache->global_symbols == NULL)
1492 {
1493 printf_filtered (" <disabled>\n");
1494 return;
1495 }
1496
1497 for (pass = 0; pass < 2; ++pass)
1498 {
1499 const struct block_symbol_cache *bsc
1500 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1501 unsigned int i;
1502
1503 if (pass == 0)
1504 printf_filtered ("Global symbols:\n");
1505 else
1506 printf_filtered ("Static symbols:\n");
1507
1508 for (i = 0; i < bsc->size; ++i)
1509 {
1510 const struct symbol_cache_slot *slot = &bsc->symbols[i];
1511
1512 QUIT;
1513
1514 switch (slot->state)
1515 {
1516 case SYMBOL_SLOT_UNUSED:
1517 break;
1518 case SYMBOL_SLOT_NOT_FOUND:
1519 printf_filtered (" [%4u] = %s, %s %s (not found)\n", i,
1520 host_address_to_string (slot->objfile_context),
1521 slot->value.not_found.name,
1522 domain_name (slot->value.not_found.domain));
1523 break;
1524 case SYMBOL_SLOT_FOUND:
1525 {
1526 struct symbol *found = slot->value.found.symbol;
1527 const struct objfile *context = slot->objfile_context;
1528
1529 printf_filtered (" [%4u] = %s, %s %s\n", i,
1530 host_address_to_string (context),
1531 found->print_name (),
1532 domain_name (SYMBOL_DOMAIN (found)));
1533 break;
1534 }
1535 }
1536 }
1537 }
1538 }
1539
1540 /* The "mt print symbol-cache" command. */
1541
1542 static void
1543 maintenance_print_symbol_cache (const char *args, int from_tty)
1544 {
1545 struct program_space *pspace;
1546
1547 ALL_PSPACES (pspace)
1548 {
1549 struct symbol_cache *cache;
1550
1551 printf_filtered (_("Symbol cache for pspace %d\n%s:\n"),
1552 pspace->num,
1553 pspace->symfile_object_file != NULL
1554 ? objfile_name (pspace->symfile_object_file)
1555 : "(no object file)");
1556
1557 /* If the cache hasn't been created yet, avoid creating one. */
1558 cache = symbol_cache_key.get (pspace);
1559 if (cache == NULL)
1560 printf_filtered (" <empty>\n");
1561 else
1562 symbol_cache_dump (cache);
1563 }
1564 }
1565
1566 /* The "mt flush-symbol-cache" command. */
1567
1568 static void
1569 maintenance_flush_symbol_cache (const char *args, int from_tty)
1570 {
1571 struct program_space *pspace;
1572
1573 ALL_PSPACES (pspace)
1574 {
1575 symbol_cache_flush (pspace);
1576 }
1577 }
1578
1579 /* Print usage statistics of CACHE. */
1580
1581 static void
1582 symbol_cache_stats (struct symbol_cache *cache)
1583 {
1584 int pass;
1585
1586 if (cache->global_symbols == NULL)
1587 {
1588 printf_filtered (" <disabled>\n");
1589 return;
1590 }
1591
1592 for (pass = 0; pass < 2; ++pass)
1593 {
1594 const struct block_symbol_cache *bsc
1595 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1596
1597 QUIT;
1598
1599 if (pass == 0)
1600 printf_filtered ("Global block cache stats:\n");
1601 else
1602 printf_filtered ("Static block cache stats:\n");
1603
1604 printf_filtered (" size: %u\n", bsc->size);
1605 printf_filtered (" hits: %u\n", bsc->hits);
1606 printf_filtered (" misses: %u\n", bsc->misses);
1607 printf_filtered (" collisions: %u\n", bsc->collisions);
1608 }
1609 }
1610
1611 /* The "mt print symbol-cache-statistics" command. */
1612
1613 static void
1614 maintenance_print_symbol_cache_statistics (const char *args, int from_tty)
1615 {
1616 struct program_space *pspace;
1617
1618 ALL_PSPACES (pspace)
1619 {
1620 struct symbol_cache *cache;
1621
1622 printf_filtered (_("Symbol cache statistics for pspace %d\n%s:\n"),
1623 pspace->num,
1624 pspace->symfile_object_file != NULL
1625 ? objfile_name (pspace->symfile_object_file)
1626 : "(no object file)");
1627
1628 /* If the cache hasn't been created yet, avoid creating one. */
1629 cache = symbol_cache_key.get (pspace);
1630 if (cache == NULL)
1631 printf_filtered (" empty, no stats available\n");
1632 else
1633 symbol_cache_stats (cache);
1634 }
1635 }
1636
1637 /* This module's 'new_objfile' observer. */
1638
1639 static void
1640 symtab_new_objfile_observer (struct objfile *objfile)
1641 {
1642 /* Ideally we'd use OBJFILE->pspace, but OBJFILE may be NULL. */
1643 symbol_cache_flush (current_program_space);
1644 }
1645
1646 /* This module's 'free_objfile' observer. */
1647
1648 static void
1649 symtab_free_objfile_observer (struct objfile *objfile)
1650 {
1651 symbol_cache_flush (objfile->pspace);
1652 }
1653 \f
1654 /* Debug symbols usually don't have section information. We need to dig that
1655 out of the minimal symbols and stash that in the debug symbol. */
1656
1657 void
1658 fixup_section (struct general_symbol_info *ginfo,
1659 CORE_ADDR addr, struct objfile *objfile)
1660 {
1661 struct minimal_symbol *msym;
1662
1663 /* First, check whether a minimal symbol with the same name exists
1664 and points to the same address. The address check is required
1665 e.g. on PowerPC64, where the minimal symbol for a function will
1666 point to the function descriptor, while the debug symbol will
1667 point to the actual function code. */
1668 msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->linkage_name (),
1669 objfile);
1670 if (msym)
1671 ginfo->section = MSYMBOL_SECTION (msym);
1672 else
1673 {
1674 /* Static, function-local variables do appear in the linker
1675 (minimal) symbols, but are frequently given names that won't
1676 be found via lookup_minimal_symbol(). E.g., it has been
1677 observed in frv-uclinux (ELF) executables that a static,
1678 function-local variable named "foo" might appear in the
1679 linker symbols as "foo.6" or "foo.3". Thus, there is no
1680 point in attempting to extend the lookup-by-name mechanism to
1681 handle this case due to the fact that there can be multiple
1682 names.
1683
1684 So, instead, search the section table when lookup by name has
1685 failed. The ``addr'' and ``endaddr'' fields may have already
1686 been relocated. If so, the relocation offset needs to be
1687 subtracted from these values when performing the comparison.
1688 We unconditionally subtract it, because, when no relocation
1689 has been performed, the value will simply be zero.
1690
1691 The address of the symbol whose section we're fixing up HAS
1692 NOT BEEN adjusted (relocated) yet. It can't have been since
1693 the section isn't yet known and knowing the section is
1694 necessary in order to add the correct relocation value. In
1695 other words, we wouldn't even be in this function (attempting
1696 to compute the section) if it were already known.
1697
1698 Note that it is possible to search the minimal symbols
1699 (subtracting the relocation value if necessary) to find the
1700 matching minimal symbol, but this is overkill and much less
1701 efficient. It is not necessary to find the matching minimal
1702 symbol, only its section.
1703
1704 Note that this technique (of doing a section table search)
1705 can fail when unrelocated section addresses overlap. For
1706 this reason, we still attempt a lookup by name prior to doing
1707 a search of the section table. */
1708
1709 struct obj_section *s;
1710 int fallback = -1;
1711
1712 ALL_OBJFILE_OSECTIONS (objfile, s)
1713 {
1714 int idx = s - objfile->sections;
1715 CORE_ADDR offset = objfile->section_offsets[idx];
1716
1717 if (fallback == -1)
1718 fallback = idx;
1719
1720 if (obj_section_addr (s) - offset <= addr
1721 && addr < obj_section_endaddr (s) - offset)
1722 {
1723 ginfo->section = idx;
1724 return;
1725 }
1726 }
1727
1728 /* If we didn't find the section, assume it is in the first
1729 section. If there is no allocated section, then it hardly
1730 matters what we pick, so just pick zero. */
1731 if (fallback == -1)
1732 ginfo->section = 0;
1733 else
1734 ginfo->section = fallback;
1735 }
1736 }
1737
1738 struct symbol *
1739 fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
1740 {
1741 CORE_ADDR addr;
1742
1743 if (!sym)
1744 return NULL;
1745
1746 if (!SYMBOL_OBJFILE_OWNED (sym))
1747 return sym;
1748
1749 /* We either have an OBJFILE, or we can get at it from the sym's
1750 symtab. Anything else is a bug. */
1751 gdb_assert (objfile || symbol_symtab (sym));
1752
1753 if (objfile == NULL)
1754 objfile = symbol_objfile (sym);
1755
1756 if (SYMBOL_OBJ_SECTION (objfile, sym))
1757 return sym;
1758
1759 /* We should have an objfile by now. */
1760 gdb_assert (objfile);
1761
1762 switch (SYMBOL_CLASS (sym))
1763 {
1764 case LOC_STATIC:
1765 case LOC_LABEL:
1766 addr = SYMBOL_VALUE_ADDRESS (sym);
1767 break;
1768 case LOC_BLOCK:
1769 addr = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym));
1770 break;
1771
1772 default:
1773 /* Nothing else will be listed in the minsyms -- no use looking
1774 it up. */
1775 return sym;
1776 }
1777
1778 fixup_section (sym, addr, objfile);
1779
1780 return sym;
1781 }
1782
1783 /* See symtab.h. */
1784
1785 demangle_for_lookup_info::demangle_for_lookup_info
1786 (const lookup_name_info &lookup_name, language lang)
1787 {
1788 demangle_result_storage storage;
1789
1790 if (lookup_name.ignore_parameters () && lang == language_cplus)
1791 {
1792 gdb::unique_xmalloc_ptr<char> without_params
1793 = cp_remove_params_if_any (lookup_name.c_str (),
1794 lookup_name.completion_mode ());
1795
1796 if (without_params != NULL)
1797 {
1798 if (lookup_name.match_type () != symbol_name_match_type::SEARCH_NAME)
1799 m_demangled_name = demangle_for_lookup (without_params.get (),
1800 lang, storage);
1801 return;
1802 }
1803 }
1804
1805 if (lookup_name.match_type () == symbol_name_match_type::SEARCH_NAME)
1806 m_demangled_name = lookup_name.c_str ();
1807 else
1808 m_demangled_name = demangle_for_lookup (lookup_name.c_str (),
1809 lang, storage);
1810 }
1811
1812 /* See symtab.h. */
1813
1814 const lookup_name_info &
1815 lookup_name_info::match_any ()
1816 {
1817 /* Lookup any symbol that "" would complete. I.e., this matches all
1818 symbol names. */
1819 static const lookup_name_info lookup_name ("", symbol_name_match_type::FULL,
1820 true);
1821
1822 return lookup_name;
1823 }
1824
1825 /* Compute the demangled form of NAME as used by the various symbol
1826 lookup functions. The result can either be the input NAME
1827 directly, or a pointer to a buffer owned by the STORAGE object.
1828
1829 For Ada, this function just returns NAME, unmodified.
1830 Normally, Ada symbol lookups are performed using the encoded name
1831 rather than the demangled name, and so it might seem to make sense
1832 for this function to return an encoded version of NAME.
1833 Unfortunately, we cannot do this, because this function is used in
1834 circumstances where it is not appropriate to try to encode NAME.
1835 For instance, when displaying the frame info, we demangle the name
1836 of each parameter, and then perform a symbol lookup inside our
1837 function using that demangled name. In Ada, certain functions
1838 have internally-generated parameters whose name contain uppercase
1839 characters. Encoding those name would result in those uppercase
1840 characters to become lowercase, and thus cause the symbol lookup
1841 to fail. */
1842
1843 const char *
1844 demangle_for_lookup (const char *name, enum language lang,
1845 demangle_result_storage &storage)
1846 {
1847 /* If we are using C++, D, or Go, demangle the name before doing a
1848 lookup, so we can always binary search. */
1849 if (lang == language_cplus)
1850 {
1851 char *demangled_name = gdb_demangle (name, DMGL_ANSI | DMGL_PARAMS);
1852 if (demangled_name != NULL)
1853 return storage.set_malloc_ptr (demangled_name);
1854
1855 /* If we were given a non-mangled name, canonicalize it
1856 according to the language (so far only for C++). */
1857 std::string canon = cp_canonicalize_string (name);
1858 if (!canon.empty ())
1859 return storage.swap_string (canon);
1860 }
1861 else if (lang == language_d)
1862 {
1863 char *demangled_name = d_demangle (name, 0);
1864 if (demangled_name != NULL)
1865 return storage.set_malloc_ptr (demangled_name);
1866 }
1867 else if (lang == language_go)
1868 {
1869 char *demangled_name = go_demangle (name, 0);
1870 if (demangled_name != NULL)
1871 return storage.set_malloc_ptr (demangled_name);
1872 }
1873
1874 return name;
1875 }
1876
1877 /* See symtab.h. */
1878
1879 unsigned int
1880 search_name_hash (enum language language, const char *search_name)
1881 {
1882 return language_def (language)->la_search_name_hash (search_name);
1883 }
1884
1885 /* See symtab.h.
1886
1887 This function (or rather its subordinates) have a bunch of loops and
1888 it would seem to be attractive to put in some QUIT's (though I'm not really
1889 sure whether it can run long enough to be really important). But there
1890 are a few calls for which it would appear to be bad news to quit
1891 out of here: e.g., find_proc_desc in alpha-mdebug-tdep.c. (Note
1892 that there is C++ code below which can error(), but that probably
1893 doesn't affect these calls since they are looking for a known
1894 variable and thus can probably assume it will never hit the C++
1895 code). */
1896
1897 struct block_symbol
1898 lookup_symbol_in_language (const char *name, const struct block *block,
1899 const domain_enum domain, enum language lang,
1900 struct field_of_this_result *is_a_field_of_this)
1901 {
1902 demangle_result_storage storage;
1903 const char *modified_name = demangle_for_lookup (name, lang, storage);
1904
1905 return lookup_symbol_aux (modified_name,
1906 symbol_name_match_type::FULL,
1907 block, domain, lang,
1908 is_a_field_of_this);
1909 }
1910
1911 /* See symtab.h. */
1912
1913 struct block_symbol
1914 lookup_symbol (const char *name, const struct block *block,
1915 domain_enum domain,
1916 struct field_of_this_result *is_a_field_of_this)
1917 {
1918 return lookup_symbol_in_language (name, block, domain,
1919 current_language->la_language,
1920 is_a_field_of_this);
1921 }
1922
1923 /* See symtab.h. */
1924
1925 struct block_symbol
1926 lookup_symbol_search_name (const char *search_name, const struct block *block,
1927 domain_enum domain)
1928 {
1929 return lookup_symbol_aux (search_name, symbol_name_match_type::SEARCH_NAME,
1930 block, domain, language_asm, NULL);
1931 }
1932
1933 /* See symtab.h. */
1934
1935 struct block_symbol
1936 lookup_language_this (const struct language_defn *lang,
1937 const struct block *block)
1938 {
1939 if (lang->la_name_of_this == NULL || block == NULL)
1940 return {};
1941
1942 if (symbol_lookup_debug > 1)
1943 {
1944 struct objfile *objfile = lookup_objfile_from_block (block);
1945
1946 fprintf_unfiltered (gdb_stdlog,
1947 "lookup_language_this (%s, %s (objfile %s))",
1948 lang->la_name, host_address_to_string (block),
1949 objfile_debug_name (objfile));
1950 }
1951
1952 while (block)
1953 {
1954 struct symbol *sym;
1955
1956 sym = block_lookup_symbol (block, lang->la_name_of_this,
1957 symbol_name_match_type::SEARCH_NAME,
1958 VAR_DOMAIN);
1959 if (sym != NULL)
1960 {
1961 if (symbol_lookup_debug > 1)
1962 {
1963 fprintf_unfiltered (gdb_stdlog, " = %s (%s, block %s)\n",
1964 sym->print_name (),
1965 host_address_to_string (sym),
1966 host_address_to_string (block));
1967 }
1968 return (struct block_symbol) {sym, block};
1969 }
1970 if (BLOCK_FUNCTION (block))
1971 break;
1972 block = BLOCK_SUPERBLOCK (block);
1973 }
1974
1975 if (symbol_lookup_debug > 1)
1976 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
1977 return {};
1978 }
1979
1980 /* Given TYPE, a structure/union,
1981 return 1 if the component named NAME from the ultimate target
1982 structure/union is defined, otherwise, return 0. */
1983
1984 static int
1985 check_field (struct type *type, const char *name,
1986 struct field_of_this_result *is_a_field_of_this)
1987 {
1988 int i;
1989
1990 /* The type may be a stub. */
1991 type = check_typedef (type);
1992
1993 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1994 {
1995 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1996
1997 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1998 {
1999 is_a_field_of_this->type = type;
2000 is_a_field_of_this->field = &TYPE_FIELD (type, i);
2001 return 1;
2002 }
2003 }
2004
2005 /* C++: If it was not found as a data field, then try to return it
2006 as a pointer to a method. */
2007
2008 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
2009 {
2010 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
2011 {
2012 is_a_field_of_this->type = type;
2013 is_a_field_of_this->fn_field = &TYPE_FN_FIELDLIST (type, i);
2014 return 1;
2015 }
2016 }
2017
2018 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2019 if (check_field (TYPE_BASECLASS (type, i), name, is_a_field_of_this))
2020 return 1;
2021
2022 return 0;
2023 }
2024
2025 /* Behave like lookup_symbol except that NAME is the natural name
2026 (e.g., demangled name) of the symbol that we're looking for. */
2027
2028 static struct block_symbol
2029 lookup_symbol_aux (const char *name, symbol_name_match_type match_type,
2030 const struct block *block,
2031 const domain_enum domain, enum language language,
2032 struct field_of_this_result *is_a_field_of_this)
2033 {
2034 struct block_symbol result;
2035 const struct language_defn *langdef;
2036
2037 if (symbol_lookup_debug)
2038 {
2039 struct objfile *objfile = lookup_objfile_from_block (block);
2040
2041 fprintf_unfiltered (gdb_stdlog,
2042 "lookup_symbol_aux (%s, %s (objfile %s), %s, %s)\n",
2043 name, host_address_to_string (block),
2044 objfile != NULL
2045 ? objfile_debug_name (objfile) : "NULL",
2046 domain_name (domain), language_str (language));
2047 }
2048
2049 /* Make sure we do something sensible with is_a_field_of_this, since
2050 the callers that set this parameter to some non-null value will
2051 certainly use it later. If we don't set it, the contents of
2052 is_a_field_of_this are undefined. */
2053 if (is_a_field_of_this != NULL)
2054 memset (is_a_field_of_this, 0, sizeof (*is_a_field_of_this));
2055
2056 /* Search specified block and its superiors. Don't search
2057 STATIC_BLOCK or GLOBAL_BLOCK. */
2058
2059 result = lookup_local_symbol (name, match_type, block, domain, language);
2060 if (result.symbol != NULL)
2061 {
2062 if (symbol_lookup_debug)
2063 {
2064 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2065 host_address_to_string (result.symbol));
2066 }
2067 return result;
2068 }
2069
2070 /* If requested to do so by the caller and if appropriate for LANGUAGE,
2071 check to see if NAME is a field of `this'. */
2072
2073 langdef = language_def (language);
2074
2075 /* Don't do this check if we are searching for a struct. It will
2076 not be found by check_field, but will be found by other
2077 means. */
2078 if (is_a_field_of_this != NULL && domain != STRUCT_DOMAIN)
2079 {
2080 result = lookup_language_this (langdef, block);
2081
2082 if (result.symbol)
2083 {
2084 struct type *t = result.symbol->type;
2085
2086 /* I'm not really sure that type of this can ever
2087 be typedefed; just be safe. */
2088 t = check_typedef (t);
2089 if (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_IS_REFERENCE (t))
2090 t = TYPE_TARGET_TYPE (t);
2091
2092 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2093 && TYPE_CODE (t) != TYPE_CODE_UNION)
2094 error (_("Internal error: `%s' is not an aggregate"),
2095 langdef->la_name_of_this);
2096
2097 if (check_field (t, name, is_a_field_of_this))
2098 {
2099 if (symbol_lookup_debug)
2100 {
2101 fprintf_unfiltered (gdb_stdlog,
2102 "lookup_symbol_aux (...) = NULL\n");
2103 }
2104 return {};
2105 }
2106 }
2107 }
2108
2109 /* Now do whatever is appropriate for LANGUAGE to look
2110 up static and global variables. */
2111
2112 result = langdef->la_lookup_symbol_nonlocal (langdef, name, block, domain);
2113 if (result.symbol != NULL)
2114 {
2115 if (symbol_lookup_debug)
2116 {
2117 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2118 host_address_to_string (result.symbol));
2119 }
2120 return result;
2121 }
2122
2123 /* Now search all static file-level symbols. Not strictly correct,
2124 but more useful than an error. */
2125
2126 result = lookup_static_symbol (name, domain);
2127 if (symbol_lookup_debug)
2128 {
2129 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2130 result.symbol != NULL
2131 ? host_address_to_string (result.symbol)
2132 : "NULL");
2133 }
2134 return result;
2135 }
2136
2137 /* Check to see if the symbol is defined in BLOCK or its superiors.
2138 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
2139
2140 static struct block_symbol
2141 lookup_local_symbol (const char *name,
2142 symbol_name_match_type match_type,
2143 const struct block *block,
2144 const domain_enum domain,
2145 enum language language)
2146 {
2147 struct symbol *sym;
2148 const struct block *static_block = block_static_block (block);
2149 const char *scope = block_scope (block);
2150
2151 /* Check if either no block is specified or it's a global block. */
2152
2153 if (static_block == NULL)
2154 return {};
2155
2156 while (block != static_block)
2157 {
2158 sym = lookup_symbol_in_block (name, match_type, block, domain);
2159 if (sym != NULL)
2160 return (struct block_symbol) {sym, block};
2161
2162 if (language == language_cplus || language == language_fortran)
2163 {
2164 struct block_symbol blocksym
2165 = cp_lookup_symbol_imports_or_template (scope, name, block,
2166 domain);
2167
2168 if (blocksym.symbol != NULL)
2169 return blocksym;
2170 }
2171
2172 if (BLOCK_FUNCTION (block) != NULL && block_inlined_p (block))
2173 break;
2174 block = BLOCK_SUPERBLOCK (block);
2175 }
2176
2177 /* We've reached the end of the function without finding a result. */
2178
2179 return {};
2180 }
2181
2182 /* See symtab.h. */
2183
2184 struct objfile *
2185 lookup_objfile_from_block (const struct block *block)
2186 {
2187 if (block == NULL)
2188 return NULL;
2189
2190 block = block_global_block (block);
2191 /* Look through all blockvectors. */
2192 for (objfile *obj : current_program_space->objfiles ())
2193 {
2194 for (compunit_symtab *cust : obj->compunits ())
2195 if (block == BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust),
2196 GLOBAL_BLOCK))
2197 {
2198 if (obj->separate_debug_objfile_backlink)
2199 obj = obj->separate_debug_objfile_backlink;
2200
2201 return obj;
2202 }
2203 }
2204
2205 return NULL;
2206 }
2207
2208 /* See symtab.h. */
2209
2210 struct symbol *
2211 lookup_symbol_in_block (const char *name, symbol_name_match_type match_type,
2212 const struct block *block,
2213 const domain_enum domain)
2214 {
2215 struct symbol *sym;
2216
2217 if (symbol_lookup_debug > 1)
2218 {
2219 struct objfile *objfile = lookup_objfile_from_block (block);
2220
2221 fprintf_unfiltered (gdb_stdlog,
2222 "lookup_symbol_in_block (%s, %s (objfile %s), %s)",
2223 name, host_address_to_string (block),
2224 objfile_debug_name (objfile),
2225 domain_name (domain));
2226 }
2227
2228 sym = block_lookup_symbol (block, name, match_type, domain);
2229 if (sym)
2230 {
2231 if (symbol_lookup_debug > 1)
2232 {
2233 fprintf_unfiltered (gdb_stdlog, " = %s\n",
2234 host_address_to_string (sym));
2235 }
2236 return fixup_symbol_section (sym, NULL);
2237 }
2238
2239 if (symbol_lookup_debug > 1)
2240 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
2241 return NULL;
2242 }
2243
2244 /* See symtab.h. */
2245
2246 struct block_symbol
2247 lookup_global_symbol_from_objfile (struct objfile *main_objfile,
2248 enum block_enum block_index,
2249 const char *name,
2250 const domain_enum domain)
2251 {
2252 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2253
2254 for (objfile *objfile : main_objfile->separate_debug_objfiles ())
2255 {
2256 struct block_symbol result
2257 = lookup_symbol_in_objfile (objfile, block_index, name, domain);
2258
2259 if (result.symbol != nullptr)
2260 return result;
2261 }
2262
2263 return {};
2264 }
2265
2266 /* Check to see if the symbol is defined in one of the OBJFILE's
2267 symtabs. BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
2268 depending on whether or not we want to search global symbols or
2269 static symbols. */
2270
2271 static struct block_symbol
2272 lookup_symbol_in_objfile_symtabs (struct objfile *objfile,
2273 enum block_enum block_index, const char *name,
2274 const domain_enum domain)
2275 {
2276 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2277
2278 if (symbol_lookup_debug > 1)
2279 {
2280 fprintf_unfiltered (gdb_stdlog,
2281 "lookup_symbol_in_objfile_symtabs (%s, %s, %s, %s)",
2282 objfile_debug_name (objfile),
2283 block_index == GLOBAL_BLOCK
2284 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2285 name, domain_name (domain));
2286 }
2287
2288 struct block_symbol other;
2289 other.symbol = NULL;
2290 for (compunit_symtab *cust : objfile->compunits ())
2291 {
2292 const struct blockvector *bv;
2293 const struct block *block;
2294 struct block_symbol result;
2295
2296 bv = COMPUNIT_BLOCKVECTOR (cust);
2297 block = BLOCKVECTOR_BLOCK (bv, block_index);
2298 result.symbol = block_lookup_symbol_primary (block, name, domain);
2299 result.block = block;
2300 if (result.symbol == NULL)
2301 continue;
2302 if (best_symbol (result.symbol, domain))
2303 {
2304 other = result;
2305 break;
2306 }
2307 if (symbol_matches_domain (result.symbol->language (),
2308 SYMBOL_DOMAIN (result.symbol), domain))
2309 {
2310 struct symbol *better
2311 = better_symbol (other.symbol, result.symbol, domain);
2312 if (better != other.symbol)
2313 {
2314 other.symbol = better;
2315 other.block = block;
2316 }
2317 }
2318 }
2319
2320 if (other.symbol != NULL)
2321 {
2322 if (symbol_lookup_debug > 1)
2323 {
2324 fprintf_unfiltered (gdb_stdlog, " = %s (block %s)\n",
2325 host_address_to_string (other.symbol),
2326 host_address_to_string (other.block));
2327 }
2328 other.symbol = fixup_symbol_section (other.symbol, objfile);
2329 return other;
2330 }
2331
2332 if (symbol_lookup_debug > 1)
2333 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
2334 return {};
2335 }
2336
2337 /* Wrapper around lookup_symbol_in_objfile_symtabs for search_symbols.
2338 Look up LINKAGE_NAME in DOMAIN in the global and static blocks of OBJFILE
2339 and all associated separate debug objfiles.
2340
2341 Normally we only look in OBJFILE, and not any separate debug objfiles
2342 because the outer loop will cause them to be searched too. This case is
2343 different. Here we're called from search_symbols where it will only
2344 call us for the objfile that contains a matching minsym. */
2345
2346 static struct block_symbol
2347 lookup_symbol_in_objfile_from_linkage_name (struct objfile *objfile,
2348 const char *linkage_name,
2349 domain_enum domain)
2350 {
2351 enum language lang = current_language->la_language;
2352 struct objfile *main_objfile;
2353
2354 demangle_result_storage storage;
2355 const char *modified_name = demangle_for_lookup (linkage_name, lang, storage);
2356
2357 if (objfile->separate_debug_objfile_backlink)
2358 main_objfile = objfile->separate_debug_objfile_backlink;
2359 else
2360 main_objfile = objfile;
2361
2362 for (::objfile *cur_objfile : main_objfile->separate_debug_objfiles ())
2363 {
2364 struct block_symbol result;
2365
2366 result = lookup_symbol_in_objfile_symtabs (cur_objfile, GLOBAL_BLOCK,
2367 modified_name, domain);
2368 if (result.symbol == NULL)
2369 result = lookup_symbol_in_objfile_symtabs (cur_objfile, STATIC_BLOCK,
2370 modified_name, domain);
2371 if (result.symbol != NULL)
2372 return result;
2373 }
2374
2375 return {};
2376 }
2377
2378 /* A helper function that throws an exception when a symbol was found
2379 in a psymtab but not in a symtab. */
2380
2381 static void ATTRIBUTE_NORETURN
2382 error_in_psymtab_expansion (enum block_enum block_index, const char *name,
2383 struct compunit_symtab *cust)
2384 {
2385 error (_("\
2386 Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n\
2387 %s may be an inlined function, or may be a template function\n \
2388 (if a template, try specifying an instantiation: %s<type>)."),
2389 block_index == GLOBAL_BLOCK ? "global" : "static",
2390 name,
2391 symtab_to_filename_for_display (compunit_primary_filetab (cust)),
2392 name, name);
2393 }
2394
2395 /* A helper function for various lookup routines that interfaces with
2396 the "quick" symbol table functions. */
2397
2398 static struct block_symbol
2399 lookup_symbol_via_quick_fns (struct objfile *objfile,
2400 enum block_enum block_index, const char *name,
2401 const domain_enum domain)
2402 {
2403 struct compunit_symtab *cust;
2404 const struct blockvector *bv;
2405 const struct block *block;
2406 struct block_symbol result;
2407
2408 if (!objfile->sf)
2409 return {};
2410
2411 if (symbol_lookup_debug > 1)
2412 {
2413 fprintf_unfiltered (gdb_stdlog,
2414 "lookup_symbol_via_quick_fns (%s, %s, %s, %s)\n",
2415 objfile_debug_name (objfile),
2416 block_index == GLOBAL_BLOCK
2417 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2418 name, domain_name (domain));
2419 }
2420
2421 cust = objfile->sf->qf->lookup_symbol (objfile, block_index, name, domain);
2422 if (cust == NULL)
2423 {
2424 if (symbol_lookup_debug > 1)
2425 {
2426 fprintf_unfiltered (gdb_stdlog,
2427 "lookup_symbol_via_quick_fns (...) = NULL\n");
2428 }
2429 return {};
2430 }
2431
2432 bv = COMPUNIT_BLOCKVECTOR (cust);
2433 block = BLOCKVECTOR_BLOCK (bv, block_index);
2434 result.symbol = block_lookup_symbol (block, name,
2435 symbol_name_match_type::FULL, domain);
2436 if (result.symbol == NULL)
2437 error_in_psymtab_expansion (block_index, name, cust);
2438
2439 if (symbol_lookup_debug > 1)
2440 {
2441 fprintf_unfiltered (gdb_stdlog,
2442 "lookup_symbol_via_quick_fns (...) = %s (block %s)\n",
2443 host_address_to_string (result.symbol),
2444 host_address_to_string (block));
2445 }
2446
2447 result.symbol = fixup_symbol_section (result.symbol, objfile);
2448 result.block = block;
2449 return result;
2450 }
2451
2452 /* See symtab.h. */
2453
2454 struct block_symbol
2455 basic_lookup_symbol_nonlocal (const struct language_defn *langdef,
2456 const char *name,
2457 const struct block *block,
2458 const domain_enum domain)
2459 {
2460 struct block_symbol result;
2461
2462 /* NOTE: dje/2014-10-26: The lookup in all objfiles search could skip
2463 the current objfile. Searching the current objfile first is useful
2464 for both matching user expectations as well as performance. */
2465
2466 result = lookup_symbol_in_static_block (name, block, domain);
2467 if (result.symbol != NULL)
2468 return result;
2469
2470 /* If we didn't find a definition for a builtin type in the static block,
2471 search for it now. This is actually the right thing to do and can be
2472 a massive performance win. E.g., when debugging a program with lots of
2473 shared libraries we could search all of them only to find out the
2474 builtin type isn't defined in any of them. This is common for types
2475 like "void". */
2476 if (domain == VAR_DOMAIN)
2477 {
2478 struct gdbarch *gdbarch;
2479
2480 if (block == NULL)
2481 gdbarch = target_gdbarch ();
2482 else
2483 gdbarch = block_gdbarch (block);
2484 result.symbol = language_lookup_primitive_type_as_symbol (langdef,
2485 gdbarch, name);
2486 result.block = NULL;
2487 if (result.symbol != NULL)
2488 return result;
2489 }
2490
2491 return lookup_global_symbol (name, block, domain);
2492 }
2493
2494 /* See symtab.h. */
2495
2496 struct block_symbol
2497 lookup_symbol_in_static_block (const char *name,
2498 const struct block *block,
2499 const domain_enum domain)
2500 {
2501 const struct block *static_block = block_static_block (block);
2502 struct symbol *sym;
2503
2504 if (static_block == NULL)
2505 return {};
2506
2507 if (symbol_lookup_debug)
2508 {
2509 struct objfile *objfile = lookup_objfile_from_block (static_block);
2510
2511 fprintf_unfiltered (gdb_stdlog,
2512 "lookup_symbol_in_static_block (%s, %s (objfile %s),"
2513 " %s)\n",
2514 name,
2515 host_address_to_string (block),
2516 objfile_debug_name (objfile),
2517 domain_name (domain));
2518 }
2519
2520 sym = lookup_symbol_in_block (name,
2521 symbol_name_match_type::FULL,
2522 static_block, domain);
2523 if (symbol_lookup_debug)
2524 {
2525 fprintf_unfiltered (gdb_stdlog,
2526 "lookup_symbol_in_static_block (...) = %s\n",
2527 sym != NULL ? host_address_to_string (sym) : "NULL");
2528 }
2529 return (struct block_symbol) {sym, static_block};
2530 }
2531
2532 /* Perform the standard symbol lookup of NAME in OBJFILE:
2533 1) First search expanded symtabs, and if not found
2534 2) Search the "quick" symtabs (partial or .gdb_index).
2535 BLOCK_INDEX is one of GLOBAL_BLOCK or STATIC_BLOCK. */
2536
2537 static struct block_symbol
2538 lookup_symbol_in_objfile (struct objfile *objfile, enum block_enum block_index,
2539 const char *name, const domain_enum domain)
2540 {
2541 struct block_symbol result;
2542
2543 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2544
2545 if (symbol_lookup_debug)
2546 {
2547 fprintf_unfiltered (gdb_stdlog,
2548 "lookup_symbol_in_objfile (%s, %s, %s, %s)\n",
2549 objfile_debug_name (objfile),
2550 block_index == GLOBAL_BLOCK
2551 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2552 name, domain_name (domain));
2553 }
2554
2555 result = lookup_symbol_in_objfile_symtabs (objfile, block_index,
2556 name, domain);
2557 if (result.symbol != NULL)
2558 {
2559 if (symbol_lookup_debug)
2560 {
2561 fprintf_unfiltered (gdb_stdlog,
2562 "lookup_symbol_in_objfile (...) = %s"
2563 " (in symtabs)\n",
2564 host_address_to_string (result.symbol));
2565 }
2566 return result;
2567 }
2568
2569 result = lookup_symbol_via_quick_fns (objfile, block_index,
2570 name, domain);
2571 if (symbol_lookup_debug)
2572 {
2573 fprintf_unfiltered (gdb_stdlog,
2574 "lookup_symbol_in_objfile (...) = %s%s\n",
2575 result.symbol != NULL
2576 ? host_address_to_string (result.symbol)
2577 : "NULL",
2578 result.symbol != NULL ? " (via quick fns)" : "");
2579 }
2580 return result;
2581 }
2582
2583 /* Find the language for partial symbol with NAME. */
2584
2585 static enum language
2586 find_quick_global_symbol_language (const char *name, const domain_enum domain)
2587 {
2588 for (objfile *objfile : current_program_space->objfiles ())
2589 {
2590 if (objfile->sf && objfile->sf->qf
2591 && objfile->sf->qf->lookup_global_symbol_language)
2592 continue;
2593 return language_unknown;
2594 }
2595
2596 for (objfile *objfile : current_program_space->objfiles ())
2597 {
2598 bool symbol_found_p;
2599 enum language lang
2600 = objfile->sf->qf->lookup_global_symbol_language (objfile, name, domain,
2601 &symbol_found_p);
2602 if (!symbol_found_p)
2603 continue;
2604 return lang;
2605 }
2606
2607 return language_unknown;
2608 }
2609
2610 /* Private data to be used with lookup_symbol_global_iterator_cb. */
2611
2612 struct global_or_static_sym_lookup_data
2613 {
2614 /* The name of the symbol we are searching for. */
2615 const char *name;
2616
2617 /* The domain to use for our search. */
2618 domain_enum domain;
2619
2620 /* The block index in which to search. */
2621 enum block_enum block_index;
2622
2623 /* The field where the callback should store the symbol if found.
2624 It should be initialized to {NULL, NULL} before the search is started. */
2625 struct block_symbol result;
2626 };
2627
2628 /* A callback function for gdbarch_iterate_over_objfiles_in_search_order.
2629 It searches by name for a symbol in the block given by BLOCK_INDEX of the
2630 given OBJFILE. The arguments for the search are passed via CB_DATA, which
2631 in reality is a pointer to struct global_or_static_sym_lookup_data. */
2632
2633 static int
2634 lookup_symbol_global_or_static_iterator_cb (struct objfile *objfile,
2635 void *cb_data)
2636 {
2637 struct global_or_static_sym_lookup_data *data =
2638 (struct global_or_static_sym_lookup_data *) cb_data;
2639
2640 gdb_assert (data->result.symbol == NULL
2641 && data->result.block == NULL);
2642
2643 data->result = lookup_symbol_in_objfile (objfile, data->block_index,
2644 data->name, data->domain);
2645
2646 /* If we found a match, tell the iterator to stop. Otherwise,
2647 keep going. */
2648 return (data->result.symbol != NULL);
2649 }
2650
2651 /* This function contains the common code of lookup_{global,static}_symbol.
2652 OBJFILE is only used if BLOCK_INDEX is GLOBAL_SCOPE, in which case it is
2653 the objfile to start the lookup in. */
2654
2655 static struct block_symbol
2656 lookup_global_or_static_symbol (const char *name,
2657 enum block_enum block_index,
2658 struct objfile *objfile,
2659 const domain_enum domain)
2660 {
2661 struct symbol_cache *cache = get_symbol_cache (current_program_space);
2662 struct block_symbol result;
2663 struct global_or_static_sym_lookup_data lookup_data;
2664 struct block_symbol_cache *bsc;
2665 struct symbol_cache_slot *slot;
2666
2667 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2668 gdb_assert (objfile == nullptr || block_index == GLOBAL_BLOCK);
2669
2670 /* First see if we can find the symbol in the cache.
2671 This works because we use the current objfile to qualify the lookup. */
2672 result = symbol_cache_lookup (cache, objfile, block_index, name, domain,
2673 &bsc, &slot);
2674 if (result.symbol != NULL)
2675 {
2676 if (SYMBOL_LOOKUP_FAILED_P (result))
2677 return {};
2678 return result;
2679 }
2680
2681 /* Do a global search (of global blocks, heh). */
2682 if (result.symbol == NULL)
2683 {
2684 memset (&lookup_data, 0, sizeof (lookup_data));
2685 lookup_data.name = name;
2686 lookup_data.block_index = block_index;
2687 lookup_data.domain = domain;
2688 gdbarch_iterate_over_objfiles_in_search_order
2689 (objfile != NULL ? objfile->arch () : target_gdbarch (),
2690 lookup_symbol_global_or_static_iterator_cb, &lookup_data, objfile);
2691 result = lookup_data.result;
2692 }
2693
2694 if (result.symbol != NULL)
2695 symbol_cache_mark_found (bsc, slot, objfile, result.symbol, result.block);
2696 else
2697 symbol_cache_mark_not_found (bsc, slot, objfile, name, domain);
2698
2699 return result;
2700 }
2701
2702 /* See symtab.h. */
2703
2704 struct block_symbol
2705 lookup_static_symbol (const char *name, const domain_enum domain)
2706 {
2707 return lookup_global_or_static_symbol (name, STATIC_BLOCK, nullptr, domain);
2708 }
2709
2710 /* See symtab.h. */
2711
2712 struct block_symbol
2713 lookup_global_symbol (const char *name,
2714 const struct block *block,
2715 const domain_enum domain)
2716 {
2717 /* If a block was passed in, we want to search the corresponding
2718 global block first. This yields "more expected" behavior, and is
2719 needed to support 'FILENAME'::VARIABLE lookups. */
2720 const struct block *global_block = block_global_block (block);
2721 symbol *sym = NULL;
2722 if (global_block != nullptr)
2723 {
2724 sym = lookup_symbol_in_block (name,
2725 symbol_name_match_type::FULL,
2726 global_block, domain);
2727 if (sym != NULL && best_symbol (sym, domain))
2728 return { sym, global_block };
2729 }
2730
2731 struct objfile *objfile = lookup_objfile_from_block (block);
2732 block_symbol bs
2733 = lookup_global_or_static_symbol (name, GLOBAL_BLOCK, objfile, domain);
2734 if (better_symbol (sym, bs.symbol, domain) == sym)
2735 return { sym, global_block };
2736 else
2737 return bs;
2738 }
2739
2740 bool
2741 symbol_matches_domain (enum language symbol_language,
2742 domain_enum symbol_domain,
2743 domain_enum domain)
2744 {
2745 /* For C++ "struct foo { ... }" also defines a typedef for "foo".
2746 Similarly, any Ada type declaration implicitly defines a typedef. */
2747 if (symbol_language == language_cplus
2748 || symbol_language == language_d
2749 || symbol_language == language_ada
2750 || symbol_language == language_rust)
2751 {
2752 if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN)
2753 && symbol_domain == STRUCT_DOMAIN)
2754 return true;
2755 }
2756 /* For all other languages, strict match is required. */
2757 return (symbol_domain == domain);
2758 }
2759
2760 /* See symtab.h. */
2761
2762 struct type *
2763 lookup_transparent_type (const char *name)
2764 {
2765 return current_language->la_lookup_transparent_type (name);
2766 }
2767
2768 /* A helper for basic_lookup_transparent_type that interfaces with the
2769 "quick" symbol table functions. */
2770
2771 static struct type *
2772 basic_lookup_transparent_type_quick (struct objfile *objfile,
2773 enum block_enum block_index,
2774 const char *name)
2775 {
2776 struct compunit_symtab *cust;
2777 const struct blockvector *bv;
2778 const struct block *block;
2779 struct symbol *sym;
2780
2781 if (!objfile->sf)
2782 return NULL;
2783 cust = objfile->sf->qf->lookup_symbol (objfile, block_index, name,
2784 STRUCT_DOMAIN);
2785 if (cust == NULL)
2786 return NULL;
2787
2788 bv = COMPUNIT_BLOCKVECTOR (cust);
2789 block = BLOCKVECTOR_BLOCK (bv, block_index);
2790 sym = block_find_symbol (block, name, STRUCT_DOMAIN,
2791 block_find_non_opaque_type, NULL);
2792 if (sym == NULL)
2793 error_in_psymtab_expansion (block_index, name, cust);
2794 gdb_assert (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)));
2795 return SYMBOL_TYPE (sym);
2796 }
2797
2798 /* Subroutine of basic_lookup_transparent_type to simplify it.
2799 Look up the non-opaque definition of NAME in BLOCK_INDEX of OBJFILE.
2800 BLOCK_INDEX is either GLOBAL_BLOCK or STATIC_BLOCK. */
2801
2802 static struct type *
2803 basic_lookup_transparent_type_1 (struct objfile *objfile,
2804 enum block_enum block_index,
2805 const char *name)
2806 {
2807 const struct blockvector *bv;
2808 const struct block *block;
2809 const struct symbol *sym;
2810
2811 for (compunit_symtab *cust : objfile->compunits ())
2812 {
2813 bv = COMPUNIT_BLOCKVECTOR (cust);
2814 block = BLOCKVECTOR_BLOCK (bv, block_index);
2815 sym = block_find_symbol (block, name, STRUCT_DOMAIN,
2816 block_find_non_opaque_type, NULL);
2817 if (sym != NULL)
2818 {
2819 gdb_assert (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)));
2820 return SYMBOL_TYPE (sym);
2821 }
2822 }
2823
2824 return NULL;
2825 }
2826
2827 /* The standard implementation of lookup_transparent_type. This code
2828 was modeled on lookup_symbol -- the parts not relevant to looking
2829 up types were just left out. In particular it's assumed here that
2830 types are available in STRUCT_DOMAIN and only in file-static or
2831 global blocks. */
2832
2833 struct type *
2834 basic_lookup_transparent_type (const char *name)
2835 {
2836 struct type *t;
2837
2838 /* Now search all the global symbols. Do the symtab's first, then
2839 check the psymtab's. If a psymtab indicates the existence
2840 of the desired name as a global, then do psymtab-to-symtab
2841 conversion on the fly and return the found symbol. */
2842
2843 for (objfile *objfile : current_program_space->objfiles ())
2844 {
2845 t = basic_lookup_transparent_type_1 (objfile, GLOBAL_BLOCK, name);
2846 if (t)
2847 return t;
2848 }
2849
2850 for (objfile *objfile : current_program_space->objfiles ())
2851 {
2852 t = basic_lookup_transparent_type_quick (objfile, GLOBAL_BLOCK, name);
2853 if (t)
2854 return t;
2855 }
2856
2857 /* Now search the static file-level symbols.
2858 Not strictly correct, but more useful than an error.
2859 Do the symtab's first, then
2860 check the psymtab's. If a psymtab indicates the existence
2861 of the desired name as a file-level static, then do psymtab-to-symtab
2862 conversion on the fly and return the found symbol. */
2863
2864 for (objfile *objfile : current_program_space->objfiles ())
2865 {
2866 t = basic_lookup_transparent_type_1 (objfile, STATIC_BLOCK, name);
2867 if (t)
2868 return t;
2869 }
2870
2871 for (objfile *objfile : current_program_space->objfiles ())
2872 {
2873 t = basic_lookup_transparent_type_quick (objfile, STATIC_BLOCK, name);
2874 if (t)
2875 return t;
2876 }
2877
2878 return (struct type *) 0;
2879 }
2880
2881 /* See symtab.h. */
2882
2883 bool
2884 iterate_over_symbols (const struct block *block,
2885 const lookup_name_info &name,
2886 const domain_enum domain,
2887 gdb::function_view<symbol_found_callback_ftype> callback)
2888 {
2889 struct block_iterator iter;
2890 struct symbol *sym;
2891
2892 ALL_BLOCK_SYMBOLS_WITH_NAME (block, name, iter, sym)
2893 {
2894 if (symbol_matches_domain (sym->language (), SYMBOL_DOMAIN (sym), domain))
2895 {
2896 struct block_symbol block_sym = {sym, block};
2897
2898 if (!callback (&block_sym))
2899 return false;
2900 }
2901 }
2902 return true;
2903 }
2904
2905 /* See symtab.h. */
2906
2907 bool
2908 iterate_over_symbols_terminated
2909 (const struct block *block,
2910 const lookup_name_info &name,
2911 const domain_enum domain,
2912 gdb::function_view<symbol_found_callback_ftype> callback)
2913 {
2914 if (!iterate_over_symbols (block, name, domain, callback))
2915 return false;
2916 struct block_symbol block_sym = {nullptr, block};
2917 return callback (&block_sym);
2918 }
2919
2920 /* Find the compunit symtab associated with PC and SECTION.
2921 This will read in debug info as necessary. */
2922
2923 struct compunit_symtab *
2924 find_pc_sect_compunit_symtab (CORE_ADDR pc, struct obj_section *section)
2925 {
2926 struct compunit_symtab *best_cust = NULL;
2927 CORE_ADDR distance = 0;
2928 struct bound_minimal_symbol msymbol;
2929
2930 /* If we know that this is not a text address, return failure. This is
2931 necessary because we loop based on the block's high and low code
2932 addresses, which do not include the data ranges, and because
2933 we call find_pc_sect_psymtab which has a similar restriction based
2934 on the partial_symtab's texthigh and textlow. */
2935 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
2936 if (msymbol.minsym && msymbol.minsym->data_p ())
2937 return NULL;
2938
2939 /* Search all symtabs for the one whose file contains our address, and which
2940 is the smallest of all the ones containing the address. This is designed
2941 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
2942 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
2943 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
2944
2945 This happens for native ecoff format, where code from included files
2946 gets its own symtab. The symtab for the included file should have
2947 been read in already via the dependency mechanism.
2948 It might be swifter to create several symtabs with the same name
2949 like xcoff does (I'm not sure).
2950
2951 It also happens for objfiles that have their functions reordered.
2952 For these, the symtab we are looking for is not necessarily read in. */
2953
2954 for (objfile *obj_file : current_program_space->objfiles ())
2955 {
2956 for (compunit_symtab *cust : obj_file->compunits ())
2957 {
2958 const struct block *b;
2959 const struct blockvector *bv;
2960
2961 bv = COMPUNIT_BLOCKVECTOR (cust);
2962 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
2963
2964 if (BLOCK_START (b) <= pc
2965 && BLOCK_END (b) > pc
2966 && (distance == 0
2967 || BLOCK_END (b) - BLOCK_START (b) < distance))
2968 {
2969 /* For an objfile that has its functions reordered,
2970 find_pc_psymtab will find the proper partial symbol table
2971 and we simply return its corresponding symtab. */
2972 /* In order to better support objfiles that contain both
2973 stabs and coff debugging info, we continue on if a psymtab
2974 can't be found. */
2975 if ((obj_file->flags & OBJF_REORDERED) && obj_file->sf)
2976 {
2977 struct compunit_symtab *result;
2978
2979 result
2980 = obj_file->sf->qf->find_pc_sect_compunit_symtab (obj_file,
2981 msymbol,
2982 pc,
2983 section,
2984 0);
2985 if (result != NULL)
2986 return result;
2987 }
2988 if (section != 0)
2989 {
2990 struct block_iterator iter;
2991 struct symbol *sym = NULL;
2992
2993 ALL_BLOCK_SYMBOLS (b, iter, sym)
2994 {
2995 fixup_symbol_section (sym, obj_file);
2996 if (matching_obj_sections (SYMBOL_OBJ_SECTION (obj_file,
2997 sym),
2998 section))
2999 break;
3000 }
3001 if (sym == NULL)
3002 continue; /* No symbol in this symtab matches
3003 section. */
3004 }
3005 distance = BLOCK_END (b) - BLOCK_START (b);
3006 best_cust = cust;
3007 }
3008 }
3009 }
3010
3011 if (best_cust != NULL)
3012 return best_cust;
3013
3014 /* Not found in symtabs, search the "quick" symtabs (e.g. psymtabs). */
3015
3016 for (objfile *objf : current_program_space->objfiles ())
3017 {
3018 struct compunit_symtab *result;
3019
3020 if (!objf->sf)
3021 continue;
3022 result = objf->sf->qf->find_pc_sect_compunit_symtab (objf,
3023 msymbol,
3024 pc, section,
3025 1);
3026 if (result != NULL)
3027 return result;
3028 }
3029
3030 return NULL;
3031 }
3032
3033 /* Find the compunit symtab associated with PC.
3034 This will read in debug info as necessary.
3035 Backward compatibility, no section. */
3036
3037 struct compunit_symtab *
3038 find_pc_compunit_symtab (CORE_ADDR pc)
3039 {
3040 return find_pc_sect_compunit_symtab (pc, find_pc_mapped_section (pc));
3041 }
3042
3043 /* See symtab.h. */
3044
3045 struct symbol *
3046 find_symbol_at_address (CORE_ADDR address)
3047 {
3048 for (objfile *objfile : current_program_space->objfiles ())
3049 {
3050 if (objfile->sf == NULL
3051 || objfile->sf->qf->find_compunit_symtab_by_address == NULL)
3052 continue;
3053
3054 struct compunit_symtab *symtab
3055 = objfile->sf->qf->find_compunit_symtab_by_address (objfile, address);
3056 if (symtab != NULL)
3057 {
3058 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (symtab);
3059
3060 for (int i = GLOBAL_BLOCK; i <= STATIC_BLOCK; ++i)
3061 {
3062 const struct block *b = BLOCKVECTOR_BLOCK (bv, i);
3063 struct block_iterator iter;
3064 struct symbol *sym;
3065
3066 ALL_BLOCK_SYMBOLS (b, iter, sym)
3067 {
3068 if (SYMBOL_CLASS (sym) == LOC_STATIC
3069 && SYMBOL_VALUE_ADDRESS (sym) == address)
3070 return sym;
3071 }
3072 }
3073 }
3074 }
3075
3076 return NULL;
3077 }
3078
3079 \f
3080
3081 /* Find the source file and line number for a given PC value and SECTION.
3082 Return a structure containing a symtab pointer, a line number,
3083 and a pc range for the entire source line.
3084 The value's .pc field is NOT the specified pc.
3085 NOTCURRENT nonzero means, if specified pc is on a line boundary,
3086 use the line that ends there. Otherwise, in that case, the line
3087 that begins there is used. */
3088
3089 /* The big complication here is that a line may start in one file, and end just
3090 before the start of another file. This usually occurs when you #include
3091 code in the middle of a subroutine. To properly find the end of a line's PC
3092 range, we must search all symtabs associated with this compilation unit, and
3093 find the one whose first PC is closer than that of the next line in this
3094 symtab. */
3095
3096 struct symtab_and_line
3097 find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent)
3098 {
3099 struct compunit_symtab *cust;
3100 struct linetable *l;
3101 int len;
3102 struct linetable_entry *item;
3103 const struct blockvector *bv;
3104 struct bound_minimal_symbol msymbol;
3105
3106 /* Info on best line seen so far, and where it starts, and its file. */
3107
3108 struct linetable_entry *best = NULL;
3109 CORE_ADDR best_end = 0;
3110 struct symtab *best_symtab = 0;
3111
3112 /* Store here the first line number
3113 of a file which contains the line at the smallest pc after PC.
3114 If we don't find a line whose range contains PC,
3115 we will use a line one less than this,
3116 with a range from the start of that file to the first line's pc. */
3117 struct linetable_entry *alt = NULL;
3118
3119 /* Info on best line seen in this file. */
3120
3121 struct linetable_entry *prev;
3122
3123 /* If this pc is not from the current frame,
3124 it is the address of the end of a call instruction.
3125 Quite likely that is the start of the following statement.
3126 But what we want is the statement containing the instruction.
3127 Fudge the pc to make sure we get that. */
3128
3129 /* It's tempting to assume that, if we can't find debugging info for
3130 any function enclosing PC, that we shouldn't search for line
3131 number info, either. However, GAS can emit line number info for
3132 assembly files --- very helpful when debugging hand-written
3133 assembly code. In such a case, we'd have no debug info for the
3134 function, but we would have line info. */
3135
3136 if (notcurrent)
3137 pc -= 1;
3138
3139 /* elz: added this because this function returned the wrong
3140 information if the pc belongs to a stub (import/export)
3141 to call a shlib function. This stub would be anywhere between
3142 two functions in the target, and the line info was erroneously
3143 taken to be the one of the line before the pc. */
3144
3145 /* RT: Further explanation:
3146
3147 * We have stubs (trampolines) inserted between procedures.
3148 *
3149 * Example: "shr1" exists in a shared library, and a "shr1" stub also
3150 * exists in the main image.
3151 *
3152 * In the minimal symbol table, we have a bunch of symbols
3153 * sorted by start address. The stubs are marked as "trampoline",
3154 * the others appear as text. E.g.:
3155 *
3156 * Minimal symbol table for main image
3157 * main: code for main (text symbol)
3158 * shr1: stub (trampoline symbol)
3159 * foo: code for foo (text symbol)
3160 * ...
3161 * Minimal symbol table for "shr1" image:
3162 * ...
3163 * shr1: code for shr1 (text symbol)
3164 * ...
3165 *
3166 * So the code below is trying to detect if we are in the stub
3167 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
3168 * and if found, do the symbolization from the real-code address
3169 * rather than the stub address.
3170 *
3171 * Assumptions being made about the minimal symbol table:
3172 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
3173 * if we're really in the trampoline.s If we're beyond it (say
3174 * we're in "foo" in the above example), it'll have a closer
3175 * symbol (the "foo" text symbol for example) and will not
3176 * return the trampoline.
3177 * 2. lookup_minimal_symbol_text() will find a real text symbol
3178 * corresponding to the trampoline, and whose address will
3179 * be different than the trampoline address. I put in a sanity
3180 * check for the address being the same, to avoid an
3181 * infinite recursion.
3182 */
3183 msymbol = lookup_minimal_symbol_by_pc (pc);
3184 if (msymbol.minsym != NULL)
3185 if (MSYMBOL_TYPE (msymbol.minsym) == mst_solib_trampoline)
3186 {
3187 struct bound_minimal_symbol mfunsym
3188 = lookup_minimal_symbol_text (msymbol.minsym->linkage_name (),
3189 NULL);
3190
3191 if (mfunsym.minsym == NULL)
3192 /* I eliminated this warning since it is coming out
3193 * in the following situation:
3194 * gdb shmain // test program with shared libraries
3195 * (gdb) break shr1 // function in shared lib
3196 * Warning: In stub for ...
3197 * In the above situation, the shared lib is not loaded yet,
3198 * so of course we can't find the real func/line info,
3199 * but the "break" still works, and the warning is annoying.
3200 * So I commented out the warning. RT */
3201 /* warning ("In stub for %s; unable to find real function/line info",
3202 msymbol->linkage_name ()); */
3203 ;
3204 /* fall through */
3205 else if (BMSYMBOL_VALUE_ADDRESS (mfunsym)
3206 == BMSYMBOL_VALUE_ADDRESS (msymbol))
3207 /* Avoid infinite recursion */
3208 /* See above comment about why warning is commented out. */
3209 /* warning ("In stub for %s; unable to find real function/line info",
3210 msymbol->linkage_name ()); */
3211 ;
3212 /* fall through */
3213 else
3214 {
3215 /* Detect an obvious case of infinite recursion. If this
3216 should occur, we'd like to know about it, so error out,
3217 fatally. */
3218 if (BMSYMBOL_VALUE_ADDRESS (mfunsym) == pc)
3219 internal_error (__FILE__, __LINE__,
3220 _("Infinite recursion detected in find_pc_sect_line;"
3221 "please file a bug report"));
3222
3223 return find_pc_line (BMSYMBOL_VALUE_ADDRESS (mfunsym), 0);
3224 }
3225 }
3226
3227 symtab_and_line val;
3228 val.pspace = current_program_space;
3229
3230 cust = find_pc_sect_compunit_symtab (pc, section);
3231 if (cust == NULL)
3232 {
3233 /* If no symbol information, return previous pc. */
3234 if (notcurrent)
3235 pc++;
3236 val.pc = pc;
3237 return val;
3238 }
3239
3240 bv = COMPUNIT_BLOCKVECTOR (cust);
3241
3242 /* Look at all the symtabs that share this blockvector.
3243 They all have the same apriori range, that we found was right;
3244 but they have different line tables. */
3245
3246 for (symtab *iter_s : compunit_filetabs (cust))
3247 {
3248 /* Find the best line in this symtab. */
3249 l = SYMTAB_LINETABLE (iter_s);
3250 if (!l)
3251 continue;
3252 len = l->nitems;
3253 if (len <= 0)
3254 {
3255 /* I think len can be zero if the symtab lacks line numbers
3256 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
3257 I'm not sure which, and maybe it depends on the symbol
3258 reader). */
3259 continue;
3260 }
3261
3262 prev = NULL;
3263 item = l->item; /* Get first line info. */
3264
3265 /* Is this file's first line closer than the first lines of other files?
3266 If so, record this file, and its first line, as best alternate. */
3267 if (item->pc > pc && (!alt || item->pc < alt->pc))
3268 alt = item;
3269
3270 auto pc_compare = [](const CORE_ADDR & comp_pc,
3271 const struct linetable_entry & lhs)->bool
3272 {
3273 return comp_pc < lhs.pc;
3274 };
3275
3276 struct linetable_entry *first = item;
3277 struct linetable_entry *last = item + len;
3278 item = std::upper_bound (first, last, pc, pc_compare);
3279 if (item != first)
3280 {
3281 /* Found a matching item. Skip backwards over any end of
3282 sequence markers. */
3283 for (prev = item - 1; prev->line == 0 && prev != first; prev--)
3284 /* Nothing. */;
3285 }
3286
3287 /* At this point, prev points at the line whose start addr is <= pc, and
3288 item points at the next line. If we ran off the end of the linetable
3289 (pc >= start of the last line), then prev == item. If pc < start of
3290 the first line, prev will not be set. */
3291
3292 /* Is this file's best line closer than the best in the other files?
3293 If so, record this file, and its best line, as best so far. Don't
3294 save prev if it represents the end of a function (i.e. line number
3295 0) instead of a real line. */
3296
3297 if (prev && prev->line && (!best || prev->pc > best->pc))
3298 {
3299 best = prev;
3300 best_symtab = iter_s;
3301
3302 /* If during the binary search we land on a non-statement entry,
3303 scan backward through entries at the same address to see if
3304 there is an entry marked as is-statement. In theory this
3305 duplication should have been removed from the line table
3306 during construction, this is just a double check. If the line
3307 table has had the duplication removed then this should be
3308 pretty cheap. */
3309 if (!best->is_stmt)
3310 {
3311 struct linetable_entry *tmp = best;
3312 while (tmp > first && (tmp - 1)->pc == tmp->pc
3313 && (tmp - 1)->line != 0 && !tmp->is_stmt)
3314 --tmp;
3315 if (tmp->is_stmt)
3316 best = tmp;
3317 }
3318
3319 /* Discard BEST_END if it's before the PC of the current BEST. */
3320 if (best_end <= best->pc)
3321 best_end = 0;
3322 }
3323
3324 /* If another line (denoted by ITEM) is in the linetable and its
3325 PC is after BEST's PC, but before the current BEST_END, then
3326 use ITEM's PC as the new best_end. */
3327 if (best && item < last && item->pc > best->pc
3328 && (best_end == 0 || best_end > item->pc))
3329 best_end = item->pc;
3330 }
3331
3332 if (!best_symtab)
3333 {
3334 /* If we didn't find any line number info, just return zeros.
3335 We used to return alt->line - 1 here, but that could be
3336 anywhere; if we don't have line number info for this PC,
3337 don't make some up. */
3338 val.pc = pc;
3339 }
3340 else if (best->line == 0)
3341 {
3342 /* If our best fit is in a range of PC's for which no line
3343 number info is available (line number is zero) then we didn't
3344 find any valid line information. */
3345 val.pc = pc;
3346 }
3347 else
3348 {
3349 val.is_stmt = best->is_stmt;
3350 val.symtab = best_symtab;
3351 val.line = best->line;
3352 val.pc = best->pc;
3353 if (best_end && (!alt || best_end < alt->pc))
3354 val.end = best_end;
3355 else if (alt)
3356 val.end = alt->pc;
3357 else
3358 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
3359 }
3360 val.section = section;
3361 return val;
3362 }
3363
3364 /* Backward compatibility (no section). */
3365
3366 struct symtab_and_line
3367 find_pc_line (CORE_ADDR pc, int notcurrent)
3368 {
3369 struct obj_section *section;
3370
3371 section = find_pc_overlay (pc);
3372 if (pc_in_unmapped_range (pc, section))
3373 pc = overlay_mapped_address (pc, section);
3374 return find_pc_sect_line (pc, section, notcurrent);
3375 }
3376
3377 /* See symtab.h. */
3378
3379 struct symtab *
3380 find_pc_line_symtab (CORE_ADDR pc)
3381 {
3382 struct symtab_and_line sal;
3383
3384 /* This always passes zero for NOTCURRENT to find_pc_line.
3385 There are currently no callers that ever pass non-zero. */
3386 sal = find_pc_line (pc, 0);
3387 return sal.symtab;
3388 }
3389 \f
3390 /* Find line number LINE in any symtab whose name is the same as
3391 SYMTAB.
3392
3393 If found, return the symtab that contains the linetable in which it was
3394 found, set *INDEX to the index in the linetable of the best entry
3395 found, and set *EXACT_MATCH to true if the value returned is an
3396 exact match.
3397
3398 If not found, return NULL. */
3399
3400 struct symtab *
3401 find_line_symtab (struct symtab *sym_tab, int line,
3402 int *index, bool *exact_match)
3403 {
3404 int exact = 0; /* Initialized here to avoid a compiler warning. */
3405
3406 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
3407 so far seen. */
3408
3409 int best_index;
3410 struct linetable *best_linetable;
3411 struct symtab *best_symtab;
3412
3413 /* First try looking it up in the given symtab. */
3414 best_linetable = SYMTAB_LINETABLE (sym_tab);
3415 best_symtab = sym_tab;
3416 best_index = find_line_common (best_linetable, line, &exact, 0);
3417 if (best_index < 0 || !exact)
3418 {
3419 /* Didn't find an exact match. So we better keep looking for
3420 another symtab with the same name. In the case of xcoff,
3421 multiple csects for one source file (produced by IBM's FORTRAN
3422 compiler) produce multiple symtabs (this is unavoidable
3423 assuming csects can be at arbitrary places in memory and that
3424 the GLOBAL_BLOCK of a symtab has a begin and end address). */
3425
3426 /* BEST is the smallest linenumber > LINE so far seen,
3427 or 0 if none has been seen so far.
3428 BEST_INDEX and BEST_LINETABLE identify the item for it. */
3429 int best;
3430
3431 if (best_index >= 0)
3432 best = best_linetable->item[best_index].line;
3433 else
3434 best = 0;
3435
3436 for (objfile *objfile : current_program_space->objfiles ())
3437 {
3438 if (objfile->sf)
3439 objfile->sf->qf->expand_symtabs_with_fullname
3440 (objfile, symtab_to_fullname (sym_tab));
3441 }
3442
3443 for (objfile *objfile : current_program_space->objfiles ())
3444 {
3445 for (compunit_symtab *cu : objfile->compunits ())
3446 {
3447 for (symtab *s : compunit_filetabs (cu))
3448 {
3449 struct linetable *l;
3450 int ind;
3451
3452 if (FILENAME_CMP (sym_tab->filename, s->filename) != 0)
3453 continue;
3454 if (FILENAME_CMP (symtab_to_fullname (sym_tab),
3455 symtab_to_fullname (s)) != 0)
3456 continue;
3457 l = SYMTAB_LINETABLE (s);
3458 ind = find_line_common (l, line, &exact, 0);
3459 if (ind >= 0)
3460 {
3461 if (exact)
3462 {
3463 best_index = ind;
3464 best_linetable = l;
3465 best_symtab = s;
3466 goto done;
3467 }
3468 if (best == 0 || l->item[ind].line < best)
3469 {
3470 best = l->item[ind].line;
3471 best_index = ind;
3472 best_linetable = l;
3473 best_symtab = s;
3474 }
3475 }
3476 }
3477 }
3478 }
3479 }
3480 done:
3481 if (best_index < 0)
3482 return NULL;
3483
3484 if (index)
3485 *index = best_index;
3486 if (exact_match)
3487 *exact_match = (exact != 0);
3488
3489 return best_symtab;
3490 }
3491
3492 /* Given SYMTAB, returns all the PCs function in the symtab that
3493 exactly match LINE. Returns an empty vector if there are no exact
3494 matches, but updates BEST_ITEM in this case. */
3495
3496 std::vector<CORE_ADDR>
3497 find_pcs_for_symtab_line (struct symtab *symtab, int line,
3498 struct linetable_entry **best_item)
3499 {
3500 int start = 0;
3501 std::vector<CORE_ADDR> result;
3502
3503 /* First, collect all the PCs that are at this line. */
3504 while (1)
3505 {
3506 int was_exact;
3507 int idx;
3508
3509 idx = find_line_common (SYMTAB_LINETABLE (symtab), line, &was_exact,
3510 start);
3511 if (idx < 0)
3512 break;
3513
3514 if (!was_exact)
3515 {
3516 struct linetable_entry *item = &SYMTAB_LINETABLE (symtab)->item[idx];
3517
3518 if (*best_item == NULL
3519 || (item->line < (*best_item)->line && item->is_stmt))
3520 *best_item = item;
3521
3522 break;
3523 }
3524
3525 result.push_back (SYMTAB_LINETABLE (symtab)->item[idx].pc);
3526 start = idx + 1;
3527 }
3528
3529 return result;
3530 }
3531
3532 \f
3533 /* Set the PC value for a given source file and line number and return true.
3534 Returns false for invalid line number (and sets the PC to 0).
3535 The source file is specified with a struct symtab. */
3536
3537 bool
3538 find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
3539 {
3540 struct linetable *l;
3541 int ind;
3542
3543 *pc = 0;
3544 if (symtab == 0)
3545 return false;
3546
3547 symtab = find_line_symtab (symtab, line, &ind, NULL);
3548 if (symtab != NULL)
3549 {
3550 l = SYMTAB_LINETABLE (symtab);
3551 *pc = l->item[ind].pc;
3552 return true;
3553 }
3554 else
3555 return false;
3556 }
3557
3558 /* Find the range of pc values in a line.
3559 Store the starting pc of the line into *STARTPTR
3560 and the ending pc (start of next line) into *ENDPTR.
3561 Returns true to indicate success.
3562 Returns false if could not find the specified line. */
3563
3564 bool
3565 find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
3566 CORE_ADDR *endptr)
3567 {
3568 CORE_ADDR startaddr;
3569 struct symtab_and_line found_sal;
3570
3571 startaddr = sal.pc;
3572 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
3573 return false;
3574
3575 /* This whole function is based on address. For example, if line 10 has
3576 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
3577 "info line *0x123" should say the line goes from 0x100 to 0x200
3578 and "info line *0x355" should say the line goes from 0x300 to 0x400.
3579 This also insures that we never give a range like "starts at 0x134
3580 and ends at 0x12c". */
3581
3582 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
3583 if (found_sal.line != sal.line)
3584 {
3585 /* The specified line (sal) has zero bytes. */
3586 *startptr = found_sal.pc;
3587 *endptr = found_sal.pc;
3588 }
3589 else
3590 {
3591 *startptr = found_sal.pc;
3592 *endptr = found_sal.end;
3593 }
3594 return true;
3595 }
3596
3597 /* Given a line table and a line number, return the index into the line
3598 table for the pc of the nearest line whose number is >= the specified one.
3599 Return -1 if none is found. The value is >= 0 if it is an index.
3600 START is the index at which to start searching the line table.
3601
3602 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
3603
3604 static int
3605 find_line_common (struct linetable *l, int lineno,
3606 int *exact_match, int start)
3607 {
3608 int i;
3609 int len;
3610
3611 /* BEST is the smallest linenumber > LINENO so far seen,
3612 or 0 if none has been seen so far.
3613 BEST_INDEX identifies the item for it. */
3614
3615 int best_index = -1;
3616 int best = 0;
3617
3618 *exact_match = 0;
3619
3620 if (lineno <= 0)
3621 return -1;
3622 if (l == 0)
3623 return -1;
3624
3625 len = l->nitems;
3626 for (i = start; i < len; i++)
3627 {
3628 struct linetable_entry *item = &(l->item[i]);
3629
3630 /* Ignore non-statements. */
3631 if (!item->is_stmt)
3632 continue;
3633
3634 if (item->line == lineno)
3635 {
3636 /* Return the first (lowest address) entry which matches. */
3637 *exact_match = 1;
3638 return i;
3639 }
3640
3641 if (item->line > lineno && (best == 0 || item->line < best))
3642 {
3643 best = item->line;
3644 best_index = i;
3645 }
3646 }
3647
3648 /* If we got here, we didn't get an exact match. */
3649 return best_index;
3650 }
3651
3652 bool
3653 find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
3654 {
3655 struct symtab_and_line sal;
3656
3657 sal = find_pc_line (pc, 0);
3658 *startptr = sal.pc;
3659 *endptr = sal.end;
3660 return sal.symtab != 0;
3661 }
3662
3663 /* Helper for find_function_start_sal. Does most of the work, except
3664 setting the sal's symbol. */
3665
3666 static symtab_and_line
3667 find_function_start_sal_1 (CORE_ADDR func_addr, obj_section *section,
3668 bool funfirstline)
3669 {
3670 symtab_and_line sal = find_pc_sect_line (func_addr, section, 0);
3671
3672 if (funfirstline && sal.symtab != NULL
3673 && (COMPUNIT_LOCATIONS_VALID (SYMTAB_COMPUNIT (sal.symtab))
3674 || SYMTAB_LANGUAGE (sal.symtab) == language_asm))
3675 {
3676 struct gdbarch *gdbarch = SYMTAB_OBJFILE (sal.symtab)->arch ();
3677
3678 sal.pc = func_addr;
3679 if (gdbarch_skip_entrypoint_p (gdbarch))
3680 sal.pc = gdbarch_skip_entrypoint (gdbarch, sal.pc);
3681 return sal;
3682 }
3683
3684 /* We always should have a line for the function start address.
3685 If we don't, something is odd. Create a plain SAL referring
3686 just the PC and hope that skip_prologue_sal (if requested)
3687 can find a line number for after the prologue. */
3688 if (sal.pc < func_addr)
3689 {
3690 sal = {};
3691 sal.pspace = current_program_space;
3692 sal.pc = func_addr;
3693 sal.section = section;
3694 }
3695
3696 if (funfirstline)
3697 skip_prologue_sal (&sal);
3698
3699 return sal;
3700 }
3701
3702 /* See symtab.h. */
3703
3704 symtab_and_line
3705 find_function_start_sal (CORE_ADDR func_addr, obj_section *section,
3706 bool funfirstline)
3707 {
3708 symtab_and_line sal
3709 = find_function_start_sal_1 (func_addr, section, funfirstline);
3710
3711 /* find_function_start_sal_1 does a linetable search, so it finds
3712 the symtab and linenumber, but not a symbol. Fill in the
3713 function symbol too. */
3714 sal.symbol = find_pc_sect_containing_function (sal.pc, sal.section);
3715
3716 return sal;
3717 }
3718
3719 /* See symtab.h. */
3720
3721 symtab_and_line
3722 find_function_start_sal (symbol *sym, bool funfirstline)
3723 {
3724 fixup_symbol_section (sym, NULL);
3725 symtab_and_line sal
3726 = find_function_start_sal_1 (BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)),
3727 SYMBOL_OBJ_SECTION (symbol_objfile (sym), sym),
3728 funfirstline);
3729 sal.symbol = sym;
3730 return sal;
3731 }
3732
3733
3734 /* Given a function start address FUNC_ADDR and SYMTAB, find the first
3735 address for that function that has an entry in SYMTAB's line info
3736 table. If such an entry cannot be found, return FUNC_ADDR
3737 unaltered. */
3738
3739 static CORE_ADDR
3740 skip_prologue_using_lineinfo (CORE_ADDR func_addr, struct symtab *symtab)
3741 {
3742 CORE_ADDR func_start, func_end;
3743 struct linetable *l;
3744 int i;
3745
3746 /* Give up if this symbol has no lineinfo table. */
3747 l = SYMTAB_LINETABLE (symtab);
3748 if (l == NULL)
3749 return func_addr;
3750
3751 /* Get the range for the function's PC values, or give up if we
3752 cannot, for some reason. */
3753 if (!find_pc_partial_function (func_addr, NULL, &func_start, &func_end))
3754 return func_addr;
3755
3756 /* Linetable entries are ordered by PC values, see the commentary in
3757 symtab.h where `struct linetable' is defined. Thus, the first
3758 entry whose PC is in the range [FUNC_START..FUNC_END[ is the
3759 address we are looking for. */
3760 for (i = 0; i < l->nitems; i++)
3761 {
3762 struct linetable_entry *item = &(l->item[i]);
3763
3764 /* Don't use line numbers of zero, they mark special entries in
3765 the table. See the commentary on symtab.h before the
3766 definition of struct linetable. */
3767 if (item->line > 0 && func_start <= item->pc && item->pc < func_end)
3768 return item->pc;
3769 }
3770
3771 return func_addr;
3772 }
3773
3774 /* Adjust SAL to the first instruction past the function prologue.
3775 If the PC was explicitly specified, the SAL is not changed.
3776 If the line number was explicitly specified then the SAL can still be
3777 updated, unless the language for SAL is assembler, in which case the SAL
3778 will be left unchanged.
3779 If SAL is already past the prologue, then do nothing. */
3780
3781 void
3782 skip_prologue_sal (struct symtab_and_line *sal)
3783 {
3784 struct symbol *sym;
3785 struct symtab_and_line start_sal;
3786 CORE_ADDR pc, saved_pc;
3787 struct obj_section *section;
3788 const char *name;
3789 struct objfile *objfile;
3790 struct gdbarch *gdbarch;
3791 const struct block *b, *function_block;
3792 int force_skip, skip;
3793
3794 /* Do not change the SAL if PC was specified explicitly. */
3795 if (sal->explicit_pc)
3796 return;
3797
3798 /* In assembly code, if the user asks for a specific line then we should
3799 not adjust the SAL. The user already has instruction level
3800 visibility in this case, so selecting a line other than one requested
3801 is likely to be the wrong choice. */
3802 if (sal->symtab != nullptr
3803 && sal->explicit_line
3804 && SYMTAB_LANGUAGE (sal->symtab) == language_asm)
3805 return;
3806
3807 scoped_restore_current_pspace_and_thread restore_pspace_thread;
3808
3809 switch_to_program_space_and_thread (sal->pspace);
3810
3811 sym = find_pc_sect_function (sal->pc, sal->section);
3812 if (sym != NULL)
3813 {
3814 fixup_symbol_section (sym, NULL);
3815
3816 objfile = symbol_objfile (sym);
3817 pc = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym));
3818 section = SYMBOL_OBJ_SECTION (objfile, sym);
3819 name = sym->linkage_name ();
3820 }
3821 else
3822 {
3823 struct bound_minimal_symbol msymbol
3824 = lookup_minimal_symbol_by_pc_section (sal->pc, sal->section);
3825
3826 if (msymbol.minsym == NULL)
3827 return;
3828
3829 objfile = msymbol.objfile;
3830 pc = BMSYMBOL_VALUE_ADDRESS (msymbol);
3831 section = MSYMBOL_OBJ_SECTION (objfile, msymbol.minsym);
3832 name = msymbol.minsym->linkage_name ();
3833 }
3834
3835 gdbarch = objfile->arch ();
3836
3837 /* Process the prologue in two passes. In the first pass try to skip the
3838 prologue (SKIP is true) and verify there is a real need for it (indicated
3839 by FORCE_SKIP). If no such reason was found run a second pass where the
3840 prologue is not skipped (SKIP is false). */
3841
3842 skip = 1;
3843 force_skip = 1;
3844
3845 /* Be conservative - allow direct PC (without skipping prologue) only if we
3846 have proven the CU (Compilation Unit) supports it. sal->SYMTAB does not
3847 have to be set by the caller so we use SYM instead. */
3848 if (sym != NULL
3849 && COMPUNIT_LOCATIONS_VALID (SYMTAB_COMPUNIT (symbol_symtab (sym))))
3850 force_skip = 0;
3851
3852 saved_pc = pc;
3853 do
3854 {
3855 pc = saved_pc;
3856
3857 /* If the function is in an unmapped overlay, use its unmapped LMA address,
3858 so that gdbarch_skip_prologue has something unique to work on. */
3859 if (section_is_overlay (section) && !section_is_mapped (section))
3860 pc = overlay_unmapped_address (pc, section);
3861
3862 /* Skip "first line" of function (which is actually its prologue). */
3863 pc += gdbarch_deprecated_function_start_offset (gdbarch);
3864 if (gdbarch_skip_entrypoint_p (gdbarch))
3865 pc = gdbarch_skip_entrypoint (gdbarch, pc);
3866 if (skip)
3867 pc = gdbarch_skip_prologue_noexcept (gdbarch, pc);
3868
3869 /* For overlays, map pc back into its mapped VMA range. */
3870 pc = overlay_mapped_address (pc, section);
3871
3872 /* Calculate line number. */
3873 start_sal = find_pc_sect_line (pc, section, 0);
3874
3875 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
3876 line is still part of the same function. */
3877 if (skip && start_sal.pc != pc
3878 && (sym ? (BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)) <= start_sal.end
3879 && start_sal.end < BLOCK_END (SYMBOL_BLOCK_VALUE (sym)))
3880 : (lookup_minimal_symbol_by_pc_section (start_sal.end, section).minsym
3881 == lookup_minimal_symbol_by_pc_section (pc, section).minsym)))
3882 {
3883 /* First pc of next line */
3884 pc = start_sal.end;
3885 /* Recalculate the line number (might not be N+1). */
3886 start_sal = find_pc_sect_line (pc, section, 0);
3887 }
3888
3889 /* On targets with executable formats that don't have a concept of
3890 constructors (ELF with .init has, PE doesn't), gcc emits a call
3891 to `__main' in `main' between the prologue and before user
3892 code. */
3893 if (gdbarch_skip_main_prologue_p (gdbarch)
3894 && name && strcmp_iw (name, "main") == 0)
3895 {
3896 pc = gdbarch_skip_main_prologue (gdbarch, pc);
3897 /* Recalculate the line number (might not be N+1). */
3898 start_sal = find_pc_sect_line (pc, section, 0);
3899 force_skip = 1;
3900 }
3901 }
3902 while (!force_skip && skip--);
3903
3904 /* If we still don't have a valid source line, try to find the first
3905 PC in the lineinfo table that belongs to the same function. This
3906 happens with COFF debug info, which does not seem to have an
3907 entry in lineinfo table for the code after the prologue which has
3908 no direct relation to source. For example, this was found to be
3909 the case with the DJGPP target using "gcc -gcoff" when the
3910 compiler inserted code after the prologue to make sure the stack
3911 is aligned. */
3912 if (!force_skip && sym && start_sal.symtab == NULL)
3913 {
3914 pc = skip_prologue_using_lineinfo (pc, symbol_symtab (sym));
3915 /* Recalculate the line number. */
3916 start_sal = find_pc_sect_line (pc, section, 0);
3917 }
3918
3919 /* If we're already past the prologue, leave SAL unchanged. Otherwise
3920 forward SAL to the end of the prologue. */
3921 if (sal->pc >= pc)
3922 return;
3923
3924 sal->pc = pc;
3925 sal->section = section;
3926 sal->symtab = start_sal.symtab;
3927 sal->line = start_sal.line;
3928 sal->end = start_sal.end;
3929
3930 /* Check if we are now inside an inlined function. If we can,
3931 use the call site of the function instead. */
3932 b = block_for_pc_sect (sal->pc, sal->section);
3933 function_block = NULL;
3934 while (b != NULL)
3935 {
3936 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
3937 function_block = b;
3938 else if (BLOCK_FUNCTION (b) != NULL)
3939 break;
3940 b = BLOCK_SUPERBLOCK (b);
3941 }
3942 if (function_block != NULL
3943 && SYMBOL_LINE (BLOCK_FUNCTION (function_block)) != 0)
3944 {
3945 sal->line = SYMBOL_LINE (BLOCK_FUNCTION (function_block));
3946 sal->symtab = symbol_symtab (BLOCK_FUNCTION (function_block));
3947 }
3948 }
3949
3950 /* Given PC at the function's start address, attempt to find the
3951 prologue end using SAL information. Return zero if the skip fails.
3952
3953 A non-optimized prologue traditionally has one SAL for the function
3954 and a second for the function body. A single line function has
3955 them both pointing at the same line.
3956
3957 An optimized prologue is similar but the prologue may contain
3958 instructions (SALs) from the instruction body. Need to skip those
3959 while not getting into the function body.
3960
3961 The functions end point and an increasing SAL line are used as
3962 indicators of the prologue's endpoint.
3963
3964 This code is based on the function refine_prologue_limit
3965 (found in ia64). */
3966
3967 CORE_ADDR
3968 skip_prologue_using_sal (struct gdbarch *gdbarch, CORE_ADDR func_addr)
3969 {
3970 struct symtab_and_line prologue_sal;
3971 CORE_ADDR start_pc;
3972 CORE_ADDR end_pc;
3973 const struct block *bl;
3974
3975 /* Get an initial range for the function. */
3976 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
3977 start_pc += gdbarch_deprecated_function_start_offset (gdbarch);
3978
3979 prologue_sal = find_pc_line (start_pc, 0);
3980 if (prologue_sal.line != 0)
3981 {
3982 /* For languages other than assembly, treat two consecutive line
3983 entries at the same address as a zero-instruction prologue.
3984 The GNU assembler emits separate line notes for each instruction
3985 in a multi-instruction macro, but compilers generally will not
3986 do this. */
3987 if (prologue_sal.symtab->language != language_asm)
3988 {
3989 struct linetable *linetable = SYMTAB_LINETABLE (prologue_sal.symtab);
3990 int idx = 0;
3991
3992 /* Skip any earlier lines, and any end-of-sequence marker
3993 from a previous function. */
3994 while (linetable->item[idx].pc != prologue_sal.pc
3995 || linetable->item[idx].line == 0)
3996 idx++;
3997
3998 if (idx+1 < linetable->nitems
3999 && linetable->item[idx+1].line != 0
4000 && linetable->item[idx+1].pc == start_pc)
4001 return start_pc;
4002 }
4003
4004 /* If there is only one sal that covers the entire function,
4005 then it is probably a single line function, like
4006 "foo(){}". */
4007 if (prologue_sal.end >= end_pc)
4008 return 0;
4009
4010 while (prologue_sal.end < end_pc)
4011 {
4012 struct symtab_and_line sal;
4013
4014 sal = find_pc_line (prologue_sal.end, 0);
4015 if (sal.line == 0)
4016 break;
4017 /* Assume that a consecutive SAL for the same (or larger)
4018 line mark the prologue -> body transition. */
4019 if (sal.line >= prologue_sal.line)
4020 break;
4021 /* Likewise if we are in a different symtab altogether
4022 (e.g. within a file included via #include).  */
4023 if (sal.symtab != prologue_sal.symtab)
4024 break;
4025
4026 /* The line number is smaller. Check that it's from the
4027 same function, not something inlined. If it's inlined,
4028 then there is no point comparing the line numbers. */
4029 bl = block_for_pc (prologue_sal.end);
4030 while (bl)
4031 {
4032 if (block_inlined_p (bl))
4033 break;
4034 if (BLOCK_FUNCTION (bl))
4035 {
4036 bl = NULL;
4037 break;
4038 }
4039 bl = BLOCK_SUPERBLOCK (bl);
4040 }
4041 if (bl != NULL)
4042 break;
4043
4044 /* The case in which compiler's optimizer/scheduler has
4045 moved instructions into the prologue. We look ahead in
4046 the function looking for address ranges whose
4047 corresponding line number is less the first one that we
4048 found for the function. This is more conservative then
4049 refine_prologue_limit which scans a large number of SALs
4050 looking for any in the prologue. */
4051 prologue_sal = sal;
4052 }
4053 }
4054
4055 if (prologue_sal.end < end_pc)
4056 /* Return the end of this line, or zero if we could not find a
4057 line. */
4058 return prologue_sal.end;
4059 else
4060 /* Don't return END_PC, which is past the end of the function. */
4061 return prologue_sal.pc;
4062 }
4063
4064 /* See symtab.h. */
4065
4066 symbol *
4067 find_function_alias_target (bound_minimal_symbol msymbol)
4068 {
4069 CORE_ADDR func_addr;
4070 if (!msymbol_is_function (msymbol.objfile, msymbol.minsym, &func_addr))
4071 return NULL;
4072
4073 symbol *sym = find_pc_function (func_addr);
4074 if (sym != NULL
4075 && SYMBOL_CLASS (sym) == LOC_BLOCK
4076 && BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)) == func_addr)
4077 return sym;
4078
4079 return NULL;
4080 }
4081
4082 \f
4083 /* If P is of the form "operator[ \t]+..." where `...' is
4084 some legitimate operator text, return a pointer to the
4085 beginning of the substring of the operator text.
4086 Otherwise, return "". */
4087
4088 static const char *
4089 operator_chars (const char *p, const char **end)
4090 {
4091 *end = "";
4092 if (!startswith (p, CP_OPERATOR_STR))
4093 return *end;
4094 p += CP_OPERATOR_LEN;
4095
4096 /* Don't get faked out by `operator' being part of a longer
4097 identifier. */
4098 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
4099 return *end;
4100
4101 /* Allow some whitespace between `operator' and the operator symbol. */
4102 while (*p == ' ' || *p == '\t')
4103 p++;
4104
4105 /* Recognize 'operator TYPENAME'. */
4106
4107 if (isalpha (*p) || *p == '_' || *p == '$')
4108 {
4109 const char *q = p + 1;
4110
4111 while (isalnum (*q) || *q == '_' || *q == '$')
4112 q++;
4113 *end = q;
4114 return p;
4115 }
4116
4117 while (*p)
4118 switch (*p)
4119 {
4120 case '\\': /* regexp quoting */
4121 if (p[1] == '*')
4122 {
4123 if (p[2] == '=') /* 'operator\*=' */
4124 *end = p + 3;
4125 else /* 'operator\*' */
4126 *end = p + 2;
4127 return p;
4128 }
4129 else if (p[1] == '[')
4130 {
4131 if (p[2] == ']')
4132 error (_("mismatched quoting on brackets, "
4133 "try 'operator\\[\\]'"));
4134 else if (p[2] == '\\' && p[3] == ']')
4135 {
4136 *end = p + 4; /* 'operator\[\]' */
4137 return p;
4138 }
4139 else
4140 error (_("nothing is allowed between '[' and ']'"));
4141 }
4142 else
4143 {
4144 /* Gratuitous quote: skip it and move on. */
4145 p++;
4146 continue;
4147 }
4148 break;
4149 case '!':
4150 case '=':
4151 case '*':
4152 case '/':
4153 case '%':
4154 case '^':
4155 if (p[1] == '=')
4156 *end = p + 2;
4157 else
4158 *end = p + 1;
4159 return p;
4160 case '<':
4161 case '>':
4162 case '+':
4163 case '-':
4164 case '&':
4165 case '|':
4166 if (p[0] == '-' && p[1] == '>')
4167 {
4168 /* Struct pointer member operator 'operator->'. */
4169 if (p[2] == '*')
4170 {
4171 *end = p + 3; /* 'operator->*' */
4172 return p;
4173 }
4174 else if (p[2] == '\\')
4175 {
4176 *end = p + 4; /* Hopefully 'operator->\*' */
4177 return p;
4178 }
4179 else
4180 {
4181 *end = p + 2; /* 'operator->' */
4182 return p;
4183 }
4184 }
4185 if (p[1] == '=' || p[1] == p[0])
4186 *end = p + 2;
4187 else
4188 *end = p + 1;
4189 return p;
4190 case '~':
4191 case ',':
4192 *end = p + 1;
4193 return p;
4194 case '(':
4195 if (p[1] != ')')
4196 error (_("`operator ()' must be specified "
4197 "without whitespace in `()'"));
4198 *end = p + 2;
4199 return p;
4200 case '?':
4201 if (p[1] != ':')
4202 error (_("`operator ?:' must be specified "
4203 "without whitespace in `?:'"));
4204 *end = p + 2;
4205 return p;
4206 case '[':
4207 if (p[1] != ']')
4208 error (_("`operator []' must be specified "
4209 "without whitespace in `[]'"));
4210 *end = p + 2;
4211 return p;
4212 default:
4213 error (_("`operator %s' not supported"), p);
4214 break;
4215 }
4216
4217 *end = "";
4218 return *end;
4219 }
4220 \f
4221
4222 /* What part to match in a file name. */
4223
4224 struct filename_partial_match_opts
4225 {
4226 /* Only match the directory name part. */
4227 bool dirname = false;
4228
4229 /* Only match the basename part. */
4230 bool basename = false;
4231 };
4232
4233 /* Data structure to maintain printing state for output_source_filename. */
4234
4235 struct output_source_filename_data
4236 {
4237 /* Output only filenames matching REGEXP. */
4238 std::string regexp;
4239 gdb::optional<compiled_regex> c_regexp;
4240 /* Possibly only match a part of the filename. */
4241 filename_partial_match_opts partial_match;
4242
4243
4244 /* Cache of what we've seen so far. */
4245 struct filename_seen_cache *filename_seen_cache;
4246
4247 /* Flag of whether we're printing the first one. */
4248 int first;
4249 };
4250
4251 /* Slave routine for sources_info. Force line breaks at ,'s.
4252 NAME is the name to print.
4253 DATA contains the state for printing and watching for duplicates. */
4254
4255 static void
4256 output_source_filename (const char *name,
4257 struct output_source_filename_data *data)
4258 {
4259 /* Since a single source file can result in several partial symbol
4260 tables, we need to avoid printing it more than once. Note: if
4261 some of the psymtabs are read in and some are not, it gets
4262 printed both under "Source files for which symbols have been
4263 read" and "Source files for which symbols will be read in on
4264 demand". I consider this a reasonable way to deal with the
4265 situation. I'm not sure whether this can also happen for
4266 symtabs; it doesn't hurt to check. */
4267
4268 /* Was NAME already seen? */
4269 if (data->filename_seen_cache->seen (name))
4270 {
4271 /* Yes; don't print it again. */
4272 return;
4273 }
4274
4275 /* Does it match data->regexp? */
4276 if (data->c_regexp.has_value ())
4277 {
4278 const char *to_match;
4279 std::string dirname;
4280
4281 if (data->partial_match.dirname)
4282 {
4283 dirname = ldirname (name);
4284 to_match = dirname.c_str ();
4285 }
4286 else if (data->partial_match.basename)
4287 to_match = lbasename (name);
4288 else
4289 to_match = name;
4290
4291 if (data->c_regexp->exec (to_match, 0, NULL, 0) != 0)
4292 return;
4293 }
4294
4295 /* Print it and reset *FIRST. */
4296 if (! data->first)
4297 printf_filtered (", ");
4298 data->first = 0;
4299
4300 wrap_here ("");
4301 fputs_styled (name, file_name_style.style (), gdb_stdout);
4302 }
4303
4304 /* A callback for map_partial_symbol_filenames. */
4305
4306 static void
4307 output_partial_symbol_filename (const char *filename, const char *fullname,
4308 void *data)
4309 {
4310 output_source_filename (fullname ? fullname : filename,
4311 (struct output_source_filename_data *) data);
4312 }
4313
4314 using isrc_flag_option_def
4315 = gdb::option::flag_option_def<filename_partial_match_opts>;
4316
4317 static const gdb::option::option_def info_sources_option_defs[] = {
4318
4319 isrc_flag_option_def {
4320 "dirname",
4321 [] (filename_partial_match_opts *opts) { return &opts->dirname; },
4322 N_("Show only the files having a dirname matching REGEXP."),
4323 },
4324
4325 isrc_flag_option_def {
4326 "basename",
4327 [] (filename_partial_match_opts *opts) { return &opts->basename; },
4328 N_("Show only the files having a basename matching REGEXP."),
4329 },
4330
4331 };
4332
4333 /* Create an option_def_group for the "info sources" options, with
4334 ISRC_OPTS as context. */
4335
4336 static inline gdb::option::option_def_group
4337 make_info_sources_options_def_group (filename_partial_match_opts *isrc_opts)
4338 {
4339 return {{info_sources_option_defs}, isrc_opts};
4340 }
4341
4342 /* Prints the header message for the source files that will be printed
4343 with the matching info present in DATA. SYMBOL_MSG is a message
4344 that tells what will or has been done with the symbols of the
4345 matching source files. */
4346
4347 static void
4348 print_info_sources_header (const char *symbol_msg,
4349 const struct output_source_filename_data *data)
4350 {
4351 puts_filtered (symbol_msg);
4352 if (!data->regexp.empty ())
4353 {
4354 if (data->partial_match.dirname)
4355 printf_filtered (_("(dirname matching regular expression \"%s\")"),
4356 data->regexp.c_str ());
4357 else if (data->partial_match.basename)
4358 printf_filtered (_("(basename matching regular expression \"%s\")"),
4359 data->regexp.c_str ());
4360 else
4361 printf_filtered (_("(filename matching regular expression \"%s\")"),
4362 data->regexp.c_str ());
4363 }
4364 puts_filtered ("\n");
4365 }
4366
4367 /* Completer for "info sources". */
4368
4369 static void
4370 info_sources_command_completer (cmd_list_element *ignore,
4371 completion_tracker &tracker,
4372 const char *text, const char *word)
4373 {
4374 const auto group = make_info_sources_options_def_group (nullptr);
4375 if (gdb::option::complete_options
4376 (tracker, &text, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, group))
4377 return;
4378 }
4379
4380 static void
4381 info_sources_command (const char *args, int from_tty)
4382 {
4383 struct output_source_filename_data data;
4384
4385 if (!have_full_symbols () && !have_partial_symbols ())
4386 {
4387 error (_("No symbol table is loaded. Use the \"file\" command."));
4388 }
4389
4390 filename_seen_cache filenames_seen;
4391
4392 auto group = make_info_sources_options_def_group (&data.partial_match);
4393
4394 gdb::option::process_options
4395 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_ERROR, group);
4396
4397 if (args != NULL && *args != '\000')
4398 data.regexp = args;
4399
4400 data.filename_seen_cache = &filenames_seen;
4401 data.first = 1;
4402
4403 if (data.partial_match.dirname && data.partial_match.basename)
4404 error (_("You cannot give both -basename and -dirname to 'info sources'."));
4405 if ((data.partial_match.dirname || data.partial_match.basename)
4406 && data.regexp.empty ())
4407 error (_("Missing REGEXP for 'info sources'."));
4408
4409 if (data.regexp.empty ())
4410 data.c_regexp.reset ();
4411 else
4412 {
4413 int cflags = REG_NOSUB;
4414 #ifdef HAVE_CASE_INSENSITIVE_FILE_SYSTEM
4415 cflags |= REG_ICASE;
4416 #endif
4417 data.c_regexp.emplace (data.regexp.c_str (), cflags,
4418 _("Invalid regexp"));
4419 }
4420
4421 print_info_sources_header
4422 (_("Source files for which symbols have been read in:\n"), &data);
4423
4424 for (objfile *objfile : current_program_space->objfiles ())
4425 {
4426 for (compunit_symtab *cu : objfile->compunits ())
4427 {
4428 for (symtab *s : compunit_filetabs (cu))
4429 {
4430 const char *fullname = symtab_to_fullname (s);
4431
4432 output_source_filename (fullname, &data);
4433 }
4434 }
4435 }
4436 printf_filtered ("\n\n");
4437
4438 print_info_sources_header
4439 (_("Source files for which symbols will be read in on demand:\n"), &data);
4440
4441 filenames_seen.clear ();
4442 data.first = 1;
4443 map_symbol_filenames (output_partial_symbol_filename, &data,
4444 1 /*need_fullname*/);
4445 printf_filtered ("\n");
4446 }
4447
4448 /* Compare FILE against all the entries of FILENAMES. If BASENAMES is
4449 true compare only lbasename of FILENAMES. */
4450
4451 static bool
4452 file_matches (const char *file, const std::vector<const char *> &filenames,
4453 bool basenames)
4454 {
4455 if (filenames.empty ())
4456 return true;
4457
4458 for (const char *name : filenames)
4459 {
4460 name = (basenames ? lbasename (name) : name);
4461 if (compare_filenames_for_search (file, name))
4462 return true;
4463 }
4464
4465 return false;
4466 }
4467
4468 /* Helper function for std::sort on symbol_search objects. Can only sort
4469 symbols, not minimal symbols. */
4470
4471 int
4472 symbol_search::compare_search_syms (const symbol_search &sym_a,
4473 const symbol_search &sym_b)
4474 {
4475 int c;
4476
4477 c = FILENAME_CMP (symbol_symtab (sym_a.symbol)->filename,
4478 symbol_symtab (sym_b.symbol)->filename);
4479 if (c != 0)
4480 return c;
4481
4482 if (sym_a.block != sym_b.block)
4483 return sym_a.block - sym_b.block;
4484
4485 return strcmp (sym_a.symbol->print_name (), sym_b.symbol->print_name ());
4486 }
4487
4488 /* Returns true if the type_name of symbol_type of SYM matches TREG.
4489 If SYM has no symbol_type or symbol_name, returns false. */
4490
4491 bool
4492 treg_matches_sym_type_name (const compiled_regex &treg,
4493 const struct symbol *sym)
4494 {
4495 struct type *sym_type;
4496 std::string printed_sym_type_name;
4497
4498 if (symbol_lookup_debug > 1)
4499 {
4500 fprintf_unfiltered (gdb_stdlog,
4501 "treg_matches_sym_type_name\n sym %s\n",
4502 sym->natural_name ());
4503 }
4504
4505 sym_type = SYMBOL_TYPE (sym);
4506 if (sym_type == NULL)
4507 return false;
4508
4509 {
4510 scoped_switch_to_sym_language_if_auto l (sym);
4511
4512 printed_sym_type_name = type_to_string (sym_type);
4513 }
4514
4515
4516 if (symbol_lookup_debug > 1)
4517 {
4518 fprintf_unfiltered (gdb_stdlog,
4519 " sym_type_name %s\n",
4520 printed_sym_type_name.c_str ());
4521 }
4522
4523
4524 if (printed_sym_type_name.empty ())
4525 return false;
4526
4527 return treg.exec (printed_sym_type_name.c_str (), 0, NULL, 0) == 0;
4528 }
4529
4530 /* See symtab.h. */
4531
4532 bool
4533 global_symbol_searcher::is_suitable_msymbol
4534 (const enum search_domain kind, const minimal_symbol *msymbol)
4535 {
4536 switch (MSYMBOL_TYPE (msymbol))
4537 {
4538 case mst_data:
4539 case mst_bss:
4540 case mst_file_data:
4541 case mst_file_bss:
4542 return kind == VARIABLES_DOMAIN;
4543 case mst_text:
4544 case mst_file_text:
4545 case mst_solib_trampoline:
4546 case mst_text_gnu_ifunc:
4547 return kind == FUNCTIONS_DOMAIN;
4548 default:
4549 return false;
4550 }
4551 }
4552
4553 /* See symtab.h. */
4554
4555 bool
4556 global_symbol_searcher::expand_symtabs
4557 (objfile *objfile, const gdb::optional<compiled_regex> &preg) const
4558 {
4559 enum search_domain kind = m_kind;
4560 bool found_msymbol = false;
4561
4562 if (objfile->sf)
4563 objfile->sf->qf->expand_symtabs_matching
4564 (objfile,
4565 [&] (const char *filename, bool basenames)
4566 {
4567 return file_matches (filename, filenames, basenames);
4568 },
4569 &lookup_name_info::match_any (),
4570 [&] (const char *symname)
4571 {
4572 return (!preg.has_value ()
4573 || preg->exec (symname, 0, NULL, 0) == 0);
4574 },
4575 NULL,
4576 kind);
4577
4578 /* Here, we search through the minimal symbol tables for functions and
4579 variables that match, and force their symbols to be read. This is in
4580 particular necessary for demangled variable names, which are no longer
4581 put into the partial symbol tables. The symbol will then be found
4582 during the scan of symtabs later.
4583
4584 For functions, find_pc_symtab should succeed if we have debug info for
4585 the function, for variables we have to call
4586 lookup_symbol_in_objfile_from_linkage_name to determine if the
4587 variable has debug info. If the lookup fails, set found_msymbol so
4588 that we will rescan to print any matching symbols without debug info.
4589 We only search the objfile the msymbol came from, we no longer search
4590 all objfiles. In large programs (1000s of shared libs) searching all
4591 objfiles is not worth the pain. */
4592 if (filenames.empty ()
4593 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
4594 {
4595 for (minimal_symbol *msymbol : objfile->msymbols ())
4596 {
4597 QUIT;
4598
4599 if (msymbol->created_by_gdb)
4600 continue;
4601
4602 if (is_suitable_msymbol (kind, msymbol))
4603 {
4604 if (!preg.has_value ()
4605 || preg->exec (msymbol->natural_name (), 0,
4606 NULL, 0) == 0)
4607 {
4608 /* An important side-effect of these lookup functions is
4609 to expand the symbol table if msymbol is found, later
4610 in the process we will add matching symbols or
4611 msymbols to the results list, and that requires that
4612 the symbols tables are expanded. */
4613 if (kind == FUNCTIONS_DOMAIN
4614 ? (find_pc_compunit_symtab
4615 (MSYMBOL_VALUE_ADDRESS (objfile, msymbol))
4616 == NULL)
4617 : (lookup_symbol_in_objfile_from_linkage_name
4618 (objfile, msymbol->linkage_name (),
4619 VAR_DOMAIN)
4620 .symbol == NULL))
4621 found_msymbol = true;
4622 }
4623 }
4624 }
4625 }
4626
4627 return found_msymbol;
4628 }
4629
4630 /* See symtab.h. */
4631
4632 bool
4633 global_symbol_searcher::add_matching_symbols
4634 (objfile *objfile,
4635 const gdb::optional<compiled_regex> &preg,
4636 const gdb::optional<compiled_regex> &treg,
4637 std::set<symbol_search> *result_set) const
4638 {
4639 enum search_domain kind = m_kind;
4640
4641 /* Add matching symbols (if not already present). */
4642 for (compunit_symtab *cust : objfile->compunits ())
4643 {
4644 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (cust);
4645
4646 for (block_enum block : { GLOBAL_BLOCK, STATIC_BLOCK })
4647 {
4648 struct block_iterator iter;
4649 struct symbol *sym;
4650 const struct block *b = BLOCKVECTOR_BLOCK (bv, block);
4651
4652 ALL_BLOCK_SYMBOLS (b, iter, sym)
4653 {
4654 struct symtab *real_symtab = symbol_symtab (sym);
4655
4656 QUIT;
4657
4658 /* Check first sole REAL_SYMTAB->FILENAME. It does
4659 not need to be a substring of symtab_to_fullname as
4660 it may contain "./" etc. */
4661 if ((file_matches (real_symtab->filename, filenames, false)
4662 || ((basenames_may_differ
4663 || file_matches (lbasename (real_symtab->filename),
4664 filenames, true))
4665 && file_matches (symtab_to_fullname (real_symtab),
4666 filenames, false)))
4667 && ((!preg.has_value ()
4668 || preg->exec (sym->natural_name (), 0,
4669 NULL, 0) == 0)
4670 && ((kind == VARIABLES_DOMAIN
4671 && SYMBOL_CLASS (sym) != LOC_TYPEDEF
4672 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
4673 && SYMBOL_CLASS (sym) != LOC_BLOCK
4674 /* LOC_CONST can be used for more than
4675 just enums, e.g., c++ static const
4676 members. We only want to skip enums
4677 here. */
4678 && !(SYMBOL_CLASS (sym) == LOC_CONST
4679 && (TYPE_CODE (SYMBOL_TYPE (sym))
4680 == TYPE_CODE_ENUM))
4681 && (!treg.has_value ()
4682 || treg_matches_sym_type_name (*treg, sym)))
4683 || (kind == FUNCTIONS_DOMAIN
4684 && SYMBOL_CLASS (sym) == LOC_BLOCK
4685 && (!treg.has_value ()
4686 || treg_matches_sym_type_name (*treg,
4687 sym)))
4688 || (kind == TYPES_DOMAIN
4689 && SYMBOL_CLASS (sym) == LOC_TYPEDEF
4690 && SYMBOL_DOMAIN (sym) != MODULE_DOMAIN)
4691 || (kind == MODULES_DOMAIN
4692 && SYMBOL_DOMAIN (sym) == MODULE_DOMAIN
4693 && SYMBOL_LINE (sym) != 0))))
4694 {
4695 if (result_set->size () < m_max_search_results)
4696 {
4697 /* Match, insert if not already in the results. */
4698 symbol_search ss (block, sym);
4699 if (result_set->find (ss) == result_set->end ())
4700 result_set->insert (ss);
4701 }
4702 else
4703 return false;
4704 }
4705 }
4706 }
4707 }
4708
4709 return true;
4710 }
4711
4712 /* See symtab.h. */
4713
4714 bool
4715 global_symbol_searcher::add_matching_msymbols
4716 (objfile *objfile, const gdb::optional<compiled_regex> &preg,
4717 std::vector<symbol_search> *results) const
4718 {
4719 enum search_domain kind = m_kind;
4720
4721 for (minimal_symbol *msymbol : objfile->msymbols ())
4722 {
4723 QUIT;
4724
4725 if (msymbol->created_by_gdb)
4726 continue;
4727
4728 if (is_suitable_msymbol (kind, msymbol))
4729 {
4730 if (!preg.has_value ()
4731 || preg->exec (msymbol->natural_name (), 0,
4732 NULL, 0) == 0)
4733 {
4734 /* For functions we can do a quick check of whether the
4735 symbol might be found via find_pc_symtab. */
4736 if (kind != FUNCTIONS_DOMAIN
4737 || (find_pc_compunit_symtab
4738 (MSYMBOL_VALUE_ADDRESS (objfile, msymbol))
4739 == NULL))
4740 {
4741 if (lookup_symbol_in_objfile_from_linkage_name
4742 (objfile, msymbol->linkage_name (),
4743 VAR_DOMAIN).symbol == NULL)
4744 {
4745 /* Matching msymbol, add it to the results list. */
4746 if (results->size () < m_max_search_results)
4747 results->emplace_back (GLOBAL_BLOCK, msymbol, objfile);
4748 else
4749 return false;
4750 }
4751 }
4752 }
4753 }
4754 }
4755
4756 return true;
4757 }
4758
4759 /* See symtab.h. */
4760
4761 std::vector<symbol_search>
4762 global_symbol_searcher::search () const
4763 {
4764 gdb::optional<compiled_regex> preg;
4765 gdb::optional<compiled_regex> treg;
4766
4767 gdb_assert (m_kind != ALL_DOMAIN);
4768
4769 if (m_symbol_name_regexp != NULL)
4770 {
4771 const char *symbol_name_regexp = m_symbol_name_regexp;
4772
4773 /* Make sure spacing is right for C++ operators.
4774 This is just a courtesy to make the matching less sensitive
4775 to how many spaces the user leaves between 'operator'
4776 and <TYPENAME> or <OPERATOR>. */
4777 const char *opend;
4778 const char *opname = operator_chars (symbol_name_regexp, &opend);
4779
4780 if (*opname)
4781 {
4782 int fix = -1; /* -1 means ok; otherwise number of
4783 spaces needed. */
4784
4785 if (isalpha (*opname) || *opname == '_' || *opname == '$')
4786 {
4787 /* There should 1 space between 'operator' and 'TYPENAME'. */
4788 if (opname[-1] != ' ' || opname[-2] == ' ')
4789 fix = 1;
4790 }
4791 else
4792 {
4793 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
4794 if (opname[-1] == ' ')
4795 fix = 0;
4796 }
4797 /* If wrong number of spaces, fix it. */
4798 if (fix >= 0)
4799 {
4800 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
4801
4802 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
4803 symbol_name_regexp = tmp;
4804 }
4805 }
4806
4807 int cflags = REG_NOSUB | (case_sensitivity == case_sensitive_off
4808 ? REG_ICASE : 0);
4809 preg.emplace (symbol_name_regexp, cflags,
4810 _("Invalid regexp"));
4811 }
4812
4813 if (m_symbol_type_regexp != NULL)
4814 {
4815 int cflags = REG_NOSUB | (case_sensitivity == case_sensitive_off
4816 ? REG_ICASE : 0);
4817 treg.emplace (m_symbol_type_regexp, cflags,
4818 _("Invalid regexp"));
4819 }
4820
4821 bool found_msymbol = false;
4822 std::set<symbol_search> result_set;
4823 for (objfile *objfile : current_program_space->objfiles ())
4824 {
4825 /* Expand symtabs within objfile that possibly contain matching
4826 symbols. */
4827 found_msymbol |= expand_symtabs (objfile, preg);
4828
4829 /* Find matching symbols within OBJFILE and add them in to the
4830 RESULT_SET set. Use a set here so that we can easily detect
4831 duplicates as we go, and can therefore track how many unique
4832 matches we have found so far. */
4833 if (!add_matching_symbols (objfile, preg, treg, &result_set))
4834 break;
4835 }
4836
4837 /* Convert the result set into a sorted result list, as std::set is
4838 defined to be sorted then no explicit call to std::sort is needed. */
4839 std::vector<symbol_search> result (result_set.begin (), result_set.end ());
4840
4841 /* If there are no debug symbols, then add matching minsyms. But if the
4842 user wants to see symbols matching a type regexp, then never give a
4843 minimal symbol, as we assume that a minimal symbol does not have a
4844 type. */
4845 if ((found_msymbol || (filenames.empty () && m_kind == VARIABLES_DOMAIN))
4846 && !m_exclude_minsyms
4847 && !treg.has_value ())
4848 {
4849 gdb_assert (m_kind == VARIABLES_DOMAIN || m_kind == FUNCTIONS_DOMAIN);
4850 for (objfile *objfile : current_program_space->objfiles ())
4851 if (!add_matching_msymbols (objfile, preg, &result))
4852 break;
4853 }
4854
4855 return result;
4856 }
4857
4858 /* See symtab.h. */
4859
4860 std::string
4861 symbol_to_info_string (struct symbol *sym, int block,
4862 enum search_domain kind)
4863 {
4864 std::string str;
4865
4866 gdb_assert (block == GLOBAL_BLOCK || block == STATIC_BLOCK);
4867
4868 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
4869 str += "static ";
4870
4871 /* Typedef that is not a C++ class. */
4872 if (kind == TYPES_DOMAIN
4873 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
4874 {
4875 string_file tmp_stream;
4876
4877 /* FIXME: For C (and C++) we end up with a difference in output here
4878 between how a typedef is printed, and non-typedefs are printed.
4879 The TYPEDEF_PRINT code places a ";" at the end in an attempt to
4880 appear C-like, while TYPE_PRINT doesn't.
4881
4882 For the struct printing case below, things are worse, we force
4883 printing of the ";" in this function, which is going to be wrong
4884 for languages that don't require a ";" between statements. */
4885 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_TYPEDEF)
4886 typedef_print (SYMBOL_TYPE (sym), sym, &tmp_stream);
4887 else
4888 type_print (SYMBOL_TYPE (sym), "", &tmp_stream, -1);
4889 str += tmp_stream.string ();
4890 }
4891 /* variable, func, or typedef-that-is-c++-class. */
4892 else if (kind < TYPES_DOMAIN
4893 || (kind == TYPES_DOMAIN
4894 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
4895 {
4896 string_file tmp_stream;
4897
4898 type_print (SYMBOL_TYPE (sym),
4899 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
4900 ? "" : sym->print_name ()),
4901 &tmp_stream, 0);
4902
4903 str += tmp_stream.string ();
4904 str += ";";
4905 }
4906 /* Printing of modules is currently done here, maybe at some future
4907 point we might want a language specific method to print the module
4908 symbol so that we can customise the output more. */
4909 else if (kind == MODULES_DOMAIN)
4910 str += sym->print_name ();
4911
4912 return str;
4913 }
4914
4915 /* Helper function for symbol info commands, for example 'info functions',
4916 'info variables', etc. KIND is the kind of symbol we searched for, and
4917 BLOCK is the type of block the symbols was found in, either GLOBAL_BLOCK
4918 or STATIC_BLOCK. SYM is the symbol we found. If LAST is not NULL,
4919 print file and line number information for the symbol as well. Skip
4920 printing the filename if it matches LAST. */
4921
4922 static void
4923 print_symbol_info (enum search_domain kind,
4924 struct symbol *sym,
4925 int block, const char *last)
4926 {
4927 scoped_switch_to_sym_language_if_auto l (sym);
4928 struct symtab *s = symbol_symtab (sym);
4929
4930 if (last != NULL)
4931 {
4932 const char *s_filename = symtab_to_filename_for_display (s);
4933
4934 if (filename_cmp (last, s_filename) != 0)
4935 {
4936 printf_filtered (_("\nFile %ps:\n"),
4937 styled_string (file_name_style.style (),
4938 s_filename));
4939 }
4940
4941 if (SYMBOL_LINE (sym) != 0)
4942 printf_filtered ("%d:\t", SYMBOL_LINE (sym));
4943 else
4944 puts_filtered ("\t");
4945 }
4946
4947 std::string str = symbol_to_info_string (sym, block, kind);
4948 printf_filtered ("%s\n", str.c_str ());
4949 }
4950
4951 /* This help function for symtab_symbol_info() prints information
4952 for non-debugging symbols to gdb_stdout. */
4953
4954 static void
4955 print_msymbol_info (struct bound_minimal_symbol msymbol)
4956 {
4957 struct gdbarch *gdbarch = msymbol.objfile->arch ();
4958 char *tmp;
4959
4960 if (gdbarch_addr_bit (gdbarch) <= 32)
4961 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol)
4962 & (CORE_ADDR) 0xffffffff,
4963 8);
4964 else
4965 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol),
4966 16);
4967
4968 ui_file_style sym_style = (msymbol.minsym->text_p ()
4969 ? function_name_style.style ()
4970 : ui_file_style ());
4971
4972 printf_filtered (_("%ps %ps\n"),
4973 styled_string (address_style.style (), tmp),
4974 styled_string (sym_style, msymbol.minsym->print_name ()));
4975 }
4976
4977 /* This is the guts of the commands "info functions", "info types", and
4978 "info variables". It calls search_symbols to find all matches and then
4979 print_[m]symbol_info to print out some useful information about the
4980 matches. */
4981
4982 static void
4983 symtab_symbol_info (bool quiet, bool exclude_minsyms,
4984 const char *regexp, enum search_domain kind,
4985 const char *t_regexp, int from_tty)
4986 {
4987 static const char * const classnames[] =
4988 {"variable", "function", "type", "module"};
4989 const char *last_filename = "";
4990 int first = 1;
4991
4992 gdb_assert (kind != ALL_DOMAIN);
4993
4994 if (regexp != nullptr && *regexp == '\0')
4995 regexp = nullptr;
4996
4997 global_symbol_searcher spec (kind, regexp);
4998 spec.set_symbol_type_regexp (t_regexp);
4999 spec.set_exclude_minsyms (exclude_minsyms);
5000 std::vector<symbol_search> symbols = spec.search ();
5001
5002 if (!quiet)
5003 {
5004 if (regexp != NULL)
5005 {
5006 if (t_regexp != NULL)
5007 printf_filtered
5008 (_("All %ss matching regular expression \"%s\""
5009 " with type matching regular expression \"%s\":\n"),
5010 classnames[kind], regexp, t_regexp);
5011 else
5012 printf_filtered (_("All %ss matching regular expression \"%s\":\n"),
5013 classnames[kind], regexp);
5014 }
5015 else
5016 {
5017 if (t_regexp != NULL)
5018 printf_filtered
5019 (_("All defined %ss"
5020 " with type matching regular expression \"%s\" :\n"),
5021 classnames[kind], t_regexp);
5022 else
5023 printf_filtered (_("All defined %ss:\n"), classnames[kind]);
5024 }
5025 }
5026
5027 for (const symbol_search &p : symbols)
5028 {
5029 QUIT;
5030
5031 if (p.msymbol.minsym != NULL)
5032 {
5033 if (first)
5034 {
5035 if (!quiet)
5036 printf_filtered (_("\nNon-debugging symbols:\n"));
5037 first = 0;
5038 }
5039 print_msymbol_info (p.msymbol);
5040 }
5041 else
5042 {
5043 print_symbol_info (kind,
5044 p.symbol,
5045 p.block,
5046 last_filename);
5047 last_filename
5048 = symtab_to_filename_for_display (symbol_symtab (p.symbol));
5049 }
5050 }
5051 }
5052
5053 /* Structure to hold the values of the options used by the 'info variables'
5054 and 'info functions' commands. These correspond to the -q, -t, and -n
5055 options. */
5056
5057 struct info_vars_funcs_options
5058 {
5059 bool quiet = false;
5060 bool exclude_minsyms = false;
5061 char *type_regexp = nullptr;
5062
5063 ~info_vars_funcs_options ()
5064 {
5065 xfree (type_regexp);
5066 }
5067 };
5068
5069 /* The options used by the 'info variables' and 'info functions'
5070 commands. */
5071
5072 static const gdb::option::option_def info_vars_funcs_options_defs[] = {
5073 gdb::option::boolean_option_def<info_vars_funcs_options> {
5074 "q",
5075 [] (info_vars_funcs_options *opt) { return &opt->quiet; },
5076 nullptr, /* show_cmd_cb */
5077 nullptr /* set_doc */
5078 },
5079
5080 gdb::option::boolean_option_def<info_vars_funcs_options> {
5081 "n",
5082 [] (info_vars_funcs_options *opt) { return &opt->exclude_minsyms; },
5083 nullptr, /* show_cmd_cb */
5084 nullptr /* set_doc */
5085 },
5086
5087 gdb::option::string_option_def<info_vars_funcs_options> {
5088 "t",
5089 [] (info_vars_funcs_options *opt) { return &opt->type_regexp;
5090 },
5091 nullptr, /* show_cmd_cb */
5092 nullptr /* set_doc */
5093 }
5094 };
5095
5096 /* Returns the option group used by 'info variables' and 'info
5097 functions'. */
5098
5099 static gdb::option::option_def_group
5100 make_info_vars_funcs_options_def_group (info_vars_funcs_options *opts)
5101 {
5102 return {{info_vars_funcs_options_defs}, opts};
5103 }
5104
5105 /* Command completer for 'info variables' and 'info functions'. */
5106
5107 static void
5108 info_vars_funcs_command_completer (struct cmd_list_element *ignore,
5109 completion_tracker &tracker,
5110 const char *text, const char * /* word */)
5111 {
5112 const auto group
5113 = make_info_vars_funcs_options_def_group (nullptr);
5114 if (gdb::option::complete_options
5115 (tracker, &text, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, group))
5116 return;
5117
5118 const char *word = advance_to_expression_complete_word_point (tracker, text);
5119 symbol_completer (ignore, tracker, text, word);
5120 }
5121
5122 /* Implement the 'info variables' command. */
5123
5124 static void
5125 info_variables_command (const char *args, int from_tty)
5126 {
5127 info_vars_funcs_options opts;
5128 auto grp = make_info_vars_funcs_options_def_group (&opts);
5129 gdb::option::process_options
5130 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
5131 if (args != nullptr && *args == '\0')
5132 args = nullptr;
5133
5134 symtab_symbol_info (opts.quiet, opts.exclude_minsyms, args, VARIABLES_DOMAIN,
5135 opts.type_regexp, from_tty);
5136 }
5137
5138 /* Implement the 'info functions' command. */
5139
5140 static void
5141 info_functions_command (const char *args, int from_tty)
5142 {
5143 info_vars_funcs_options opts;
5144
5145 auto grp = make_info_vars_funcs_options_def_group (&opts);
5146 gdb::option::process_options
5147 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
5148 if (args != nullptr && *args == '\0')
5149 args = nullptr;
5150
5151 symtab_symbol_info (opts.quiet, opts.exclude_minsyms, args,
5152 FUNCTIONS_DOMAIN, opts.type_regexp, from_tty);
5153 }
5154
5155 /* Holds the -q option for the 'info types' command. */
5156
5157 struct info_types_options
5158 {
5159 bool quiet = false;
5160 };
5161
5162 /* The options used by the 'info types' command. */
5163
5164 static const gdb::option::option_def info_types_options_defs[] = {
5165 gdb::option::boolean_option_def<info_types_options> {
5166 "q",
5167 [] (info_types_options *opt) { return &opt->quiet; },
5168 nullptr, /* show_cmd_cb */
5169 nullptr /* set_doc */
5170 }
5171 };
5172
5173 /* Returns the option group used by 'info types'. */
5174
5175 static gdb::option::option_def_group
5176 make_info_types_options_def_group (info_types_options *opts)
5177 {
5178 return {{info_types_options_defs}, opts};
5179 }
5180
5181 /* Implement the 'info types' command. */
5182
5183 static void
5184 info_types_command (const char *args, int from_tty)
5185 {
5186 info_types_options opts;
5187
5188 auto grp = make_info_types_options_def_group (&opts);
5189 gdb::option::process_options
5190 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
5191 if (args != nullptr && *args == '\0')
5192 args = nullptr;
5193 symtab_symbol_info (opts.quiet, false, args, TYPES_DOMAIN, NULL, from_tty);
5194 }
5195
5196 /* Command completer for 'info types' command. */
5197
5198 static void
5199 info_types_command_completer (struct cmd_list_element *ignore,
5200 completion_tracker &tracker,
5201 const char *text, const char * /* word */)
5202 {
5203 const auto group
5204 = make_info_types_options_def_group (nullptr);
5205 if (gdb::option::complete_options
5206 (tracker, &text, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, group))
5207 return;
5208
5209 const char *word = advance_to_expression_complete_word_point (tracker, text);
5210 symbol_completer (ignore, tracker, text, word);
5211 }
5212
5213 /* Implement the 'info modules' command. */
5214
5215 static void
5216 info_modules_command (const char *args, int from_tty)
5217 {
5218 info_types_options opts;
5219
5220 auto grp = make_info_types_options_def_group (&opts);
5221 gdb::option::process_options
5222 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
5223 if (args != nullptr && *args == '\0')
5224 args = nullptr;
5225 symtab_symbol_info (opts.quiet, true, args, MODULES_DOMAIN, NULL,
5226 from_tty);
5227 }
5228
5229 static void
5230 rbreak_command (const char *regexp, int from_tty)
5231 {
5232 std::string string;
5233 const char *file_name = nullptr;
5234
5235 if (regexp != nullptr)
5236 {
5237 const char *colon = strchr (regexp, ':');
5238
5239 if (colon && *(colon + 1) != ':')
5240 {
5241 int colon_index;
5242 char *local_name;
5243
5244 colon_index = colon - regexp;
5245 local_name = (char *) alloca (colon_index + 1);
5246 memcpy (local_name, regexp, colon_index);
5247 local_name[colon_index--] = 0;
5248 while (isspace (local_name[colon_index]))
5249 local_name[colon_index--] = 0;
5250 file_name = local_name;
5251 regexp = skip_spaces (colon + 1);
5252 }
5253 }
5254
5255 global_symbol_searcher spec (FUNCTIONS_DOMAIN, regexp);
5256 if (file_name != nullptr)
5257 spec.filenames.push_back (file_name);
5258 std::vector<symbol_search> symbols = spec.search ();
5259
5260 scoped_rbreak_breakpoints finalize;
5261 for (const symbol_search &p : symbols)
5262 {
5263 if (p.msymbol.minsym == NULL)
5264 {
5265 struct symtab *symtab = symbol_symtab (p.symbol);
5266 const char *fullname = symtab_to_fullname (symtab);
5267
5268 string = string_printf ("%s:'%s'", fullname,
5269 p.symbol->linkage_name ());
5270 break_command (&string[0], from_tty);
5271 print_symbol_info (FUNCTIONS_DOMAIN, p.symbol, p.block, NULL);
5272 }
5273 else
5274 {
5275 string = string_printf ("'%s'",
5276 p.msymbol.minsym->linkage_name ());
5277
5278 break_command (&string[0], from_tty);
5279 printf_filtered ("<function, no debug info> %s;\n",
5280 p.msymbol.minsym->print_name ());
5281 }
5282 }
5283 }
5284 \f
5285
5286 /* Evaluate if SYMNAME matches LOOKUP_NAME. */
5287
5288 static int
5289 compare_symbol_name (const char *symbol_name, language symbol_language,
5290 const lookup_name_info &lookup_name,
5291 completion_match_result &match_res)
5292 {
5293 const language_defn *lang = language_def (symbol_language);
5294
5295 symbol_name_matcher_ftype *name_match
5296 = get_symbol_name_matcher (lang, lookup_name);
5297
5298 return name_match (symbol_name, lookup_name, &match_res);
5299 }
5300
5301 /* See symtab.h. */
5302
5303 void
5304 completion_list_add_name (completion_tracker &tracker,
5305 language symbol_language,
5306 const char *symname,
5307 const lookup_name_info &lookup_name,
5308 const char *text, const char *word)
5309 {
5310 completion_match_result &match_res
5311 = tracker.reset_completion_match_result ();
5312
5313 /* Clip symbols that cannot match. */
5314 if (!compare_symbol_name (symname, symbol_language, lookup_name, match_res))
5315 return;
5316
5317 /* Refresh SYMNAME from the match string. It's potentially
5318 different depending on language. (E.g., on Ada, the match may be
5319 the encoded symbol name wrapped in "<>"). */
5320 symname = match_res.match.match ();
5321 gdb_assert (symname != NULL);
5322
5323 /* We have a match for a completion, so add SYMNAME to the current list
5324 of matches. Note that the name is moved to freshly malloc'd space. */
5325
5326 {
5327 gdb::unique_xmalloc_ptr<char> completion
5328 = make_completion_match_str (symname, text, word);
5329
5330 /* Here we pass the match-for-lcd object to add_completion. Some
5331 languages match the user text against substrings of symbol
5332 names in some cases. E.g., in C++, "b push_ba" completes to
5333 "std::vector::push_back", "std::string::push_back", etc., and
5334 in this case we want the completion lowest common denominator
5335 to be "push_back" instead of "std::". */
5336 tracker.add_completion (std::move (completion),
5337 &match_res.match_for_lcd, text, word);
5338 }
5339 }
5340
5341 /* completion_list_add_name wrapper for struct symbol. */
5342
5343 static void
5344 completion_list_add_symbol (completion_tracker &tracker,
5345 symbol *sym,
5346 const lookup_name_info &lookup_name,
5347 const char *text, const char *word)
5348 {
5349 completion_list_add_name (tracker, sym->language (),
5350 sym->natural_name (),
5351 lookup_name, text, word);
5352
5353 /* C++ function symbols include the parameters within both the msymbol
5354 name and the symbol name. The problem is that the msymbol name will
5355 describe the parameters in the most basic way, with typedefs stripped
5356 out, while the symbol name will represent the types as they appear in
5357 the program. This means we will see duplicate entries in the
5358 completion tracker. The following converts the symbol name back to
5359 the msymbol name and removes the msymbol name from the completion
5360 tracker. */
5361 if (sym->language () == language_cplus
5362 && SYMBOL_DOMAIN (sym) == VAR_DOMAIN
5363 && SYMBOL_CLASS (sym) == LOC_BLOCK)
5364 {
5365 /* The call to canonicalize returns the empty string if the input
5366 string is already in canonical form, thanks to this we don't
5367 remove the symbol we just added above. */
5368 std::string str
5369 = cp_canonicalize_string_no_typedefs (sym->natural_name ());
5370 if (!str.empty ())
5371 tracker.remove_completion (str.c_str ());
5372 }
5373 }
5374
5375 /* completion_list_add_name wrapper for struct minimal_symbol. */
5376
5377 static void
5378 completion_list_add_msymbol (completion_tracker &tracker,
5379 minimal_symbol *sym,
5380 const lookup_name_info &lookup_name,
5381 const char *text, const char *word)
5382 {
5383 completion_list_add_name (tracker, sym->language (),
5384 sym->natural_name (),
5385 lookup_name, text, word);
5386 }
5387
5388
5389 /* ObjC: In case we are completing on a selector, look as the msymbol
5390 again and feed all the selectors into the mill. */
5391
5392 static void
5393 completion_list_objc_symbol (completion_tracker &tracker,
5394 struct minimal_symbol *msymbol,
5395 const lookup_name_info &lookup_name,
5396 const char *text, const char *word)
5397 {
5398 static char *tmp = NULL;
5399 static unsigned int tmplen = 0;
5400
5401 const char *method, *category, *selector;
5402 char *tmp2 = NULL;
5403
5404 method = msymbol->natural_name ();
5405
5406 /* Is it a method? */
5407 if ((method[0] != '-') && (method[0] != '+'))
5408 return;
5409
5410 if (text[0] == '[')
5411 /* Complete on shortened method method. */
5412 completion_list_add_name (tracker, language_objc,
5413 method + 1,
5414 lookup_name,
5415 text, word);
5416
5417 while ((strlen (method) + 1) >= tmplen)
5418 {
5419 if (tmplen == 0)
5420 tmplen = 1024;
5421 else
5422 tmplen *= 2;
5423 tmp = (char *) xrealloc (tmp, tmplen);
5424 }
5425 selector = strchr (method, ' ');
5426 if (selector != NULL)
5427 selector++;
5428
5429 category = strchr (method, '(');
5430
5431 if ((category != NULL) && (selector != NULL))
5432 {
5433 memcpy (tmp, method, (category - method));
5434 tmp[category - method] = ' ';
5435 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
5436 completion_list_add_name (tracker, language_objc, tmp,
5437 lookup_name, text, word);
5438 if (text[0] == '[')
5439 completion_list_add_name (tracker, language_objc, tmp + 1,
5440 lookup_name, text, word);
5441 }
5442
5443 if (selector != NULL)
5444 {
5445 /* Complete on selector only. */
5446 strcpy (tmp, selector);
5447 tmp2 = strchr (tmp, ']');
5448 if (tmp2 != NULL)
5449 *tmp2 = '\0';
5450
5451 completion_list_add_name (tracker, language_objc, tmp,
5452 lookup_name, text, word);
5453 }
5454 }
5455
5456 /* Break the non-quoted text based on the characters which are in
5457 symbols. FIXME: This should probably be language-specific. */
5458
5459 static const char *
5460 language_search_unquoted_string (const char *text, const char *p)
5461 {
5462 for (; p > text; --p)
5463 {
5464 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
5465 continue;
5466 else
5467 {
5468 if ((current_language->la_language == language_objc))
5469 {
5470 if (p[-1] == ':') /* Might be part of a method name. */
5471 continue;
5472 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
5473 p -= 2; /* Beginning of a method name. */
5474 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
5475 { /* Might be part of a method name. */
5476 const char *t = p;
5477
5478 /* Seeing a ' ' or a '(' is not conclusive evidence
5479 that we are in the middle of a method name. However,
5480 finding "-[" or "+[" should be pretty un-ambiguous.
5481 Unfortunately we have to find it now to decide. */
5482
5483 while (t > text)
5484 if (isalnum (t[-1]) || t[-1] == '_' ||
5485 t[-1] == ' ' || t[-1] == ':' ||
5486 t[-1] == '(' || t[-1] == ')')
5487 --t;
5488 else
5489 break;
5490
5491 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
5492 p = t - 2; /* Method name detected. */
5493 /* Else we leave with p unchanged. */
5494 }
5495 }
5496 break;
5497 }
5498 }
5499 return p;
5500 }
5501
5502 static void
5503 completion_list_add_fields (completion_tracker &tracker,
5504 struct symbol *sym,
5505 const lookup_name_info &lookup_name,
5506 const char *text, const char *word)
5507 {
5508 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5509 {
5510 struct type *t = SYMBOL_TYPE (sym);
5511 enum type_code c = TYPE_CODE (t);
5512 int j;
5513
5514 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
5515 for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++)
5516 if (TYPE_FIELD_NAME (t, j))
5517 completion_list_add_name (tracker, sym->language (),
5518 TYPE_FIELD_NAME (t, j),
5519 lookup_name, text, word);
5520 }
5521 }
5522
5523 /* See symtab.h. */
5524
5525 bool
5526 symbol_is_function_or_method (symbol *sym)
5527 {
5528 switch (TYPE_CODE (SYMBOL_TYPE (sym)))
5529 {
5530 case TYPE_CODE_FUNC:
5531 case TYPE_CODE_METHOD:
5532 return true;
5533 default:
5534 return false;
5535 }
5536 }
5537
5538 /* See symtab.h. */
5539
5540 bool
5541 symbol_is_function_or_method (minimal_symbol *msymbol)
5542 {
5543 switch (MSYMBOL_TYPE (msymbol))
5544 {
5545 case mst_text:
5546 case mst_text_gnu_ifunc:
5547 case mst_solib_trampoline:
5548 case mst_file_text:
5549 return true;
5550 default:
5551 return false;
5552 }
5553 }
5554
5555 /* See symtab.h. */
5556
5557 bound_minimal_symbol
5558 find_gnu_ifunc (const symbol *sym)
5559 {
5560 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
5561 return {};
5562
5563 lookup_name_info lookup_name (sym->search_name (),
5564 symbol_name_match_type::SEARCH_NAME);
5565 struct objfile *objfile = symbol_objfile (sym);
5566
5567 CORE_ADDR address = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym));
5568 minimal_symbol *ifunc = NULL;
5569
5570 iterate_over_minimal_symbols (objfile, lookup_name,
5571 [&] (minimal_symbol *minsym)
5572 {
5573 if (MSYMBOL_TYPE (minsym) == mst_text_gnu_ifunc
5574 || MSYMBOL_TYPE (minsym) == mst_data_gnu_ifunc)
5575 {
5576 CORE_ADDR msym_addr = MSYMBOL_VALUE_ADDRESS (objfile, minsym);
5577 if (MSYMBOL_TYPE (minsym) == mst_data_gnu_ifunc)
5578 {
5579 struct gdbarch *gdbarch = objfile->arch ();
5580 msym_addr
5581 = gdbarch_convert_from_func_ptr_addr (gdbarch,
5582 msym_addr,
5583 current_top_target ());
5584 }
5585 if (msym_addr == address)
5586 {
5587 ifunc = minsym;
5588 return true;
5589 }
5590 }
5591 return false;
5592 });
5593
5594 if (ifunc != NULL)
5595 return {ifunc, objfile};
5596 return {};
5597 }
5598
5599 /* Add matching symbols from SYMTAB to the current completion list. */
5600
5601 static void
5602 add_symtab_completions (struct compunit_symtab *cust,
5603 completion_tracker &tracker,
5604 complete_symbol_mode mode,
5605 const lookup_name_info &lookup_name,
5606 const char *text, const char *word,
5607 enum type_code code)
5608 {
5609 struct symbol *sym;
5610 const struct block *b;
5611 struct block_iterator iter;
5612 int i;
5613
5614 if (cust == NULL)
5615 return;
5616
5617 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
5618 {
5619 QUIT;
5620 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust), i);
5621 ALL_BLOCK_SYMBOLS (b, iter, sym)
5622 {
5623 if (completion_skip_symbol (mode, sym))
5624 continue;
5625
5626 if (code == TYPE_CODE_UNDEF
5627 || (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
5628 && TYPE_CODE (SYMBOL_TYPE (sym)) == code))
5629 completion_list_add_symbol (tracker, sym,
5630 lookup_name,
5631 text, word);
5632 }
5633 }
5634 }
5635
5636 void
5637 default_collect_symbol_completion_matches_break_on
5638 (completion_tracker &tracker, complete_symbol_mode mode,
5639 symbol_name_match_type name_match_type,
5640 const char *text, const char *word,
5641 const char *break_on, enum type_code code)
5642 {
5643 /* Problem: All of the symbols have to be copied because readline
5644 frees them. I'm not going to worry about this; hopefully there
5645 won't be that many. */
5646
5647 struct symbol *sym;
5648 const struct block *b;
5649 const struct block *surrounding_static_block, *surrounding_global_block;
5650 struct block_iterator iter;
5651 /* The symbol we are completing on. Points in same buffer as text. */
5652 const char *sym_text;
5653
5654 /* Now look for the symbol we are supposed to complete on. */
5655 if (mode == complete_symbol_mode::LINESPEC)
5656 sym_text = text;
5657 else
5658 {
5659 const char *p;
5660 char quote_found;
5661 const char *quote_pos = NULL;
5662
5663 /* First see if this is a quoted string. */
5664 quote_found = '\0';
5665 for (p = text; *p != '\0'; ++p)
5666 {
5667 if (quote_found != '\0')
5668 {
5669 if (*p == quote_found)
5670 /* Found close quote. */
5671 quote_found = '\0';
5672 else if (*p == '\\' && p[1] == quote_found)
5673 /* A backslash followed by the quote character
5674 doesn't end the string. */
5675 ++p;
5676 }
5677 else if (*p == '\'' || *p == '"')
5678 {
5679 quote_found = *p;
5680 quote_pos = p;
5681 }
5682 }
5683 if (quote_found == '\'')
5684 /* A string within single quotes can be a symbol, so complete on it. */
5685 sym_text = quote_pos + 1;
5686 else if (quote_found == '"')
5687 /* A double-quoted string is never a symbol, nor does it make sense
5688 to complete it any other way. */
5689 {
5690 return;
5691 }
5692 else
5693 {
5694 /* It is not a quoted string. Break it based on the characters
5695 which are in symbols. */
5696 while (p > text)
5697 {
5698 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0'
5699 || p[-1] == ':' || strchr (break_on, p[-1]) != NULL)
5700 --p;
5701 else
5702 break;
5703 }
5704 sym_text = p;
5705 }
5706 }
5707
5708 lookup_name_info lookup_name (sym_text, name_match_type, true);
5709
5710 /* At this point scan through the misc symbol vectors and add each
5711 symbol you find to the list. Eventually we want to ignore
5712 anything that isn't a text symbol (everything else will be
5713 handled by the psymtab code below). */
5714
5715 if (code == TYPE_CODE_UNDEF)
5716 {
5717 for (objfile *objfile : current_program_space->objfiles ())
5718 {
5719 for (minimal_symbol *msymbol : objfile->msymbols ())
5720 {
5721 QUIT;
5722
5723 if (completion_skip_symbol (mode, msymbol))
5724 continue;
5725
5726 completion_list_add_msymbol (tracker, msymbol, lookup_name,
5727 sym_text, word);
5728
5729 completion_list_objc_symbol (tracker, msymbol, lookup_name,
5730 sym_text, word);
5731 }
5732 }
5733 }
5734
5735 /* Add completions for all currently loaded symbol tables. */
5736 for (objfile *objfile : current_program_space->objfiles ())
5737 {
5738 for (compunit_symtab *cust : objfile->compunits ())
5739 add_symtab_completions (cust, tracker, mode, lookup_name,
5740 sym_text, word, code);
5741 }
5742
5743 /* Look through the partial symtabs for all symbols which begin by
5744 matching SYM_TEXT. Expand all CUs that you find to the list. */
5745 expand_symtabs_matching (NULL,
5746 lookup_name,
5747 NULL,
5748 [&] (compunit_symtab *symtab) /* expansion notify */
5749 {
5750 add_symtab_completions (symtab,
5751 tracker, mode, lookup_name,
5752 sym_text, word, code);
5753 },
5754 ALL_DOMAIN);
5755
5756 /* Search upwards from currently selected frame (so that we can
5757 complete on local vars). Also catch fields of types defined in
5758 this places which match our text string. Only complete on types
5759 visible from current context. */
5760
5761 b = get_selected_block (0);
5762 surrounding_static_block = block_static_block (b);
5763 surrounding_global_block = block_global_block (b);
5764 if (surrounding_static_block != NULL)
5765 while (b != surrounding_static_block)
5766 {
5767 QUIT;
5768
5769 ALL_BLOCK_SYMBOLS (b, iter, sym)
5770 {
5771 if (code == TYPE_CODE_UNDEF)
5772 {
5773 completion_list_add_symbol (tracker, sym, lookup_name,
5774 sym_text, word);
5775 completion_list_add_fields (tracker, sym, lookup_name,
5776 sym_text, word);
5777 }
5778 else if (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
5779 && TYPE_CODE (SYMBOL_TYPE (sym)) == code)
5780 completion_list_add_symbol (tracker, sym, lookup_name,
5781 sym_text, word);
5782 }
5783
5784 /* Stop when we encounter an enclosing function. Do not stop for
5785 non-inlined functions - the locals of the enclosing function
5786 are in scope for a nested function. */
5787 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
5788 break;
5789 b = BLOCK_SUPERBLOCK (b);
5790 }
5791
5792 /* Add fields from the file's types; symbols will be added below. */
5793
5794 if (code == TYPE_CODE_UNDEF)
5795 {
5796 if (surrounding_static_block != NULL)
5797 ALL_BLOCK_SYMBOLS (surrounding_static_block, iter, sym)
5798 completion_list_add_fields (tracker, sym, lookup_name,
5799 sym_text, word);
5800
5801 if (surrounding_global_block != NULL)
5802 ALL_BLOCK_SYMBOLS (surrounding_global_block, iter, sym)
5803 completion_list_add_fields (tracker, sym, lookup_name,
5804 sym_text, word);
5805 }
5806
5807 /* Skip macros if we are completing a struct tag -- arguable but
5808 usually what is expected. */
5809 if (current_language->la_macro_expansion == macro_expansion_c
5810 && code == TYPE_CODE_UNDEF)
5811 {
5812 gdb::unique_xmalloc_ptr<struct macro_scope> scope;
5813
5814 /* This adds a macro's name to the current completion list. */
5815 auto add_macro_name = [&] (const char *macro_name,
5816 const macro_definition *,
5817 macro_source_file *,
5818 int)
5819 {
5820 completion_list_add_name (tracker, language_c, macro_name,
5821 lookup_name, sym_text, word);
5822 };
5823
5824 /* Add any macros visible in the default scope. Note that this
5825 may yield the occasional wrong result, because an expression
5826 might be evaluated in a scope other than the default. For
5827 example, if the user types "break file:line if <TAB>", the
5828 resulting expression will be evaluated at "file:line" -- but
5829 at there does not seem to be a way to detect this at
5830 completion time. */
5831 scope = default_macro_scope ();
5832 if (scope)
5833 macro_for_each_in_scope (scope->file, scope->line,
5834 add_macro_name);
5835
5836 /* User-defined macros are always visible. */
5837 macro_for_each (macro_user_macros, add_macro_name);
5838 }
5839 }
5840
5841 void
5842 default_collect_symbol_completion_matches (completion_tracker &tracker,
5843 complete_symbol_mode mode,
5844 symbol_name_match_type name_match_type,
5845 const char *text, const char *word,
5846 enum type_code code)
5847 {
5848 return default_collect_symbol_completion_matches_break_on (tracker, mode,
5849 name_match_type,
5850 text, word, "",
5851 code);
5852 }
5853
5854 /* Collect all symbols (regardless of class) which begin by matching
5855 TEXT. */
5856
5857 void
5858 collect_symbol_completion_matches (completion_tracker &tracker,
5859 complete_symbol_mode mode,
5860 symbol_name_match_type name_match_type,
5861 const char *text, const char *word)
5862 {
5863 current_language->la_collect_symbol_completion_matches (tracker, mode,
5864 name_match_type,
5865 text, word,
5866 TYPE_CODE_UNDEF);
5867 }
5868
5869 /* Like collect_symbol_completion_matches, but only collect
5870 STRUCT_DOMAIN symbols whose type code is CODE. */
5871
5872 void
5873 collect_symbol_completion_matches_type (completion_tracker &tracker,
5874 const char *text, const char *word,
5875 enum type_code code)
5876 {
5877 complete_symbol_mode mode = complete_symbol_mode::EXPRESSION;
5878 symbol_name_match_type name_match_type = symbol_name_match_type::EXPRESSION;
5879
5880 gdb_assert (code == TYPE_CODE_UNION
5881 || code == TYPE_CODE_STRUCT
5882 || code == TYPE_CODE_ENUM);
5883 current_language->la_collect_symbol_completion_matches (tracker, mode,
5884 name_match_type,
5885 text, word, code);
5886 }
5887
5888 /* Like collect_symbol_completion_matches, but collects a list of
5889 symbols defined in all source files named SRCFILE. */
5890
5891 void
5892 collect_file_symbol_completion_matches (completion_tracker &tracker,
5893 complete_symbol_mode mode,
5894 symbol_name_match_type name_match_type,
5895 const char *text, const char *word,
5896 const char *srcfile)
5897 {
5898 /* The symbol we are completing on. Points in same buffer as text. */
5899 const char *sym_text;
5900
5901 /* Now look for the symbol we are supposed to complete on.
5902 FIXME: This should be language-specific. */
5903 if (mode == complete_symbol_mode::LINESPEC)
5904 sym_text = text;
5905 else
5906 {
5907 const char *p;
5908 char quote_found;
5909 const char *quote_pos = NULL;
5910
5911 /* First see if this is a quoted string. */
5912 quote_found = '\0';
5913 for (p = text; *p != '\0'; ++p)
5914 {
5915 if (quote_found != '\0')
5916 {
5917 if (*p == quote_found)
5918 /* Found close quote. */
5919 quote_found = '\0';
5920 else if (*p == '\\' && p[1] == quote_found)
5921 /* A backslash followed by the quote character
5922 doesn't end the string. */
5923 ++p;
5924 }
5925 else if (*p == '\'' || *p == '"')
5926 {
5927 quote_found = *p;
5928 quote_pos = p;
5929 }
5930 }
5931 if (quote_found == '\'')
5932 /* A string within single quotes can be a symbol, so complete on it. */
5933 sym_text = quote_pos + 1;
5934 else if (quote_found == '"')
5935 /* A double-quoted string is never a symbol, nor does it make sense
5936 to complete it any other way. */
5937 {
5938 return;
5939 }
5940 else
5941 {
5942 /* Not a quoted string. */
5943 sym_text = language_search_unquoted_string (text, p);
5944 }
5945 }
5946
5947 lookup_name_info lookup_name (sym_text, name_match_type, true);
5948
5949 /* Go through symtabs for SRCFILE and check the externs and statics
5950 for symbols which match. */
5951 iterate_over_symtabs (srcfile, [&] (symtab *s)
5952 {
5953 add_symtab_completions (SYMTAB_COMPUNIT (s),
5954 tracker, mode, lookup_name,
5955 sym_text, word, TYPE_CODE_UNDEF);
5956 return false;
5957 });
5958 }
5959
5960 /* A helper function for make_source_files_completion_list. It adds
5961 another file name to a list of possible completions, growing the
5962 list as necessary. */
5963
5964 static void
5965 add_filename_to_list (const char *fname, const char *text, const char *word,
5966 completion_list *list)
5967 {
5968 list->emplace_back (make_completion_match_str (fname, text, word));
5969 }
5970
5971 static int
5972 not_interesting_fname (const char *fname)
5973 {
5974 static const char *illegal_aliens[] = {
5975 "_globals_", /* inserted by coff_symtab_read */
5976 NULL
5977 };
5978 int i;
5979
5980 for (i = 0; illegal_aliens[i]; i++)
5981 {
5982 if (filename_cmp (fname, illegal_aliens[i]) == 0)
5983 return 1;
5984 }
5985 return 0;
5986 }
5987
5988 /* An object of this type is passed as the user_data argument to
5989 map_partial_symbol_filenames. */
5990 struct add_partial_filename_data
5991 {
5992 struct filename_seen_cache *filename_seen_cache;
5993 const char *text;
5994 const char *word;
5995 int text_len;
5996 completion_list *list;
5997 };
5998
5999 /* A callback for map_partial_symbol_filenames. */
6000
6001 static void
6002 maybe_add_partial_symtab_filename (const char *filename, const char *fullname,
6003 void *user_data)
6004 {
6005 struct add_partial_filename_data *data
6006 = (struct add_partial_filename_data *) user_data;
6007
6008 if (not_interesting_fname (filename))
6009 return;
6010 if (!data->filename_seen_cache->seen (filename)
6011 && filename_ncmp (filename, data->text, data->text_len) == 0)
6012 {
6013 /* This file matches for a completion; add it to the
6014 current list of matches. */
6015 add_filename_to_list (filename, data->text, data->word, data->list);
6016 }
6017 else
6018 {
6019 const char *base_name = lbasename (filename);
6020
6021 if (base_name != filename
6022 && !data->filename_seen_cache->seen (base_name)
6023 && filename_ncmp (base_name, data->text, data->text_len) == 0)
6024 add_filename_to_list (base_name, data->text, data->word, data->list);
6025 }
6026 }
6027
6028 /* Return a list of all source files whose names begin with matching
6029 TEXT. The file names are looked up in the symbol tables of this
6030 program. */
6031
6032 completion_list
6033 make_source_files_completion_list (const char *text, const char *word)
6034 {
6035 size_t text_len = strlen (text);
6036 completion_list list;
6037 const char *base_name;
6038 struct add_partial_filename_data datum;
6039
6040 if (!have_full_symbols () && !have_partial_symbols ())
6041 return list;
6042
6043 filename_seen_cache filenames_seen;
6044
6045 for (objfile *objfile : current_program_space->objfiles ())
6046 {
6047 for (compunit_symtab *cu : objfile->compunits ())
6048 {
6049 for (symtab *s : compunit_filetabs (cu))
6050 {
6051 if (not_interesting_fname (s->filename))
6052 continue;
6053 if (!filenames_seen.seen (s->filename)
6054 && filename_ncmp (s->filename, text, text_len) == 0)
6055 {
6056 /* This file matches for a completion; add it to the current
6057 list of matches. */
6058 add_filename_to_list (s->filename, text, word, &list);
6059 }
6060 else
6061 {
6062 /* NOTE: We allow the user to type a base name when the
6063 debug info records leading directories, but not the other
6064 way around. This is what subroutines of breakpoint
6065 command do when they parse file names. */
6066 base_name = lbasename (s->filename);
6067 if (base_name != s->filename
6068 && !filenames_seen.seen (base_name)
6069 && filename_ncmp (base_name, text, text_len) == 0)
6070 add_filename_to_list (base_name, text, word, &list);
6071 }
6072 }
6073 }
6074 }
6075
6076 datum.filename_seen_cache = &filenames_seen;
6077 datum.text = text;
6078 datum.word = word;
6079 datum.text_len = text_len;
6080 datum.list = &list;
6081 map_symbol_filenames (maybe_add_partial_symtab_filename, &datum,
6082 0 /*need_fullname*/);
6083
6084 return list;
6085 }
6086 \f
6087 /* Track MAIN */
6088
6089 /* Return the "main_info" object for the current program space. If
6090 the object has not yet been created, create it and fill in some
6091 default values. */
6092
6093 static struct main_info *
6094 get_main_info (void)
6095 {
6096 struct main_info *info = main_progspace_key.get (current_program_space);
6097
6098 if (info == NULL)
6099 {
6100 /* It may seem strange to store the main name in the progspace
6101 and also in whatever objfile happens to see a main name in
6102 its debug info. The reason for this is mainly historical:
6103 gdb returned "main" as the name even if no function named
6104 "main" was defined the program; and this approach lets us
6105 keep compatibility. */
6106 info = main_progspace_key.emplace (current_program_space);
6107 }
6108
6109 return info;
6110 }
6111
6112 static void
6113 set_main_name (const char *name, enum language lang)
6114 {
6115 struct main_info *info = get_main_info ();
6116
6117 if (info->name_of_main != NULL)
6118 {
6119 xfree (info->name_of_main);
6120 info->name_of_main = NULL;
6121 info->language_of_main = language_unknown;
6122 }
6123 if (name != NULL)
6124 {
6125 info->name_of_main = xstrdup (name);
6126 info->language_of_main = lang;
6127 }
6128 }
6129
6130 /* Deduce the name of the main procedure, and set NAME_OF_MAIN
6131 accordingly. */
6132
6133 static void
6134 find_main_name (void)
6135 {
6136 const char *new_main_name;
6137
6138 /* First check the objfiles to see whether a debuginfo reader has
6139 picked up the appropriate main name. Historically the main name
6140 was found in a more or less random way; this approach instead
6141 relies on the order of objfile creation -- which still isn't
6142 guaranteed to get the correct answer, but is just probably more
6143 accurate. */
6144 for (objfile *objfile : current_program_space->objfiles ())
6145 {
6146 if (objfile->per_bfd->name_of_main != NULL)
6147 {
6148 set_main_name (objfile->per_bfd->name_of_main,
6149 objfile->per_bfd->language_of_main);
6150 return;
6151 }
6152 }
6153
6154 /* Try to see if the main procedure is in Ada. */
6155 /* FIXME: brobecker/2005-03-07: Another way of doing this would
6156 be to add a new method in the language vector, and call this
6157 method for each language until one of them returns a non-empty
6158 name. This would allow us to remove this hard-coded call to
6159 an Ada function. It is not clear that this is a better approach
6160 at this point, because all methods need to be written in a way
6161 such that false positives never be returned. For instance, it is
6162 important that a method does not return a wrong name for the main
6163 procedure if the main procedure is actually written in a different
6164 language. It is easy to guaranty this with Ada, since we use a
6165 special symbol generated only when the main in Ada to find the name
6166 of the main procedure. It is difficult however to see how this can
6167 be guarantied for languages such as C, for instance. This suggests
6168 that order of call for these methods becomes important, which means
6169 a more complicated approach. */
6170 new_main_name = ada_main_name ();
6171 if (new_main_name != NULL)
6172 {
6173 set_main_name (new_main_name, language_ada);
6174 return;
6175 }
6176
6177 new_main_name = d_main_name ();
6178 if (new_main_name != NULL)
6179 {
6180 set_main_name (new_main_name, language_d);
6181 return;
6182 }
6183
6184 new_main_name = go_main_name ();
6185 if (new_main_name != NULL)
6186 {
6187 set_main_name (new_main_name, language_go);
6188 return;
6189 }
6190
6191 new_main_name = pascal_main_name ();
6192 if (new_main_name != NULL)
6193 {
6194 set_main_name (new_main_name, language_pascal);
6195 return;
6196 }
6197
6198 /* The languages above didn't identify the name of the main procedure.
6199 Fallback to "main". */
6200
6201 /* Try to find language for main in psymtabs. */
6202 enum language lang
6203 = find_quick_global_symbol_language ("main", VAR_DOMAIN);
6204 if (lang != language_unknown)
6205 {
6206 set_main_name ("main", lang);
6207 return;
6208 }
6209
6210 set_main_name ("main", language_unknown);
6211 }
6212
6213 /* See symtab.h. */
6214
6215 const char *
6216 main_name ()
6217 {
6218 struct main_info *info = get_main_info ();
6219
6220 if (info->name_of_main == NULL)
6221 find_main_name ();
6222
6223 return info->name_of_main;
6224 }
6225
6226 /* Return the language of the main function. If it is not known,
6227 return language_unknown. */
6228
6229 enum language
6230 main_language (void)
6231 {
6232 struct main_info *info = get_main_info ();
6233
6234 if (info->name_of_main == NULL)
6235 find_main_name ();
6236
6237 return info->language_of_main;
6238 }
6239
6240 /* Handle ``executable_changed'' events for the symtab module. */
6241
6242 static void
6243 symtab_observer_executable_changed (void)
6244 {
6245 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
6246 set_main_name (NULL, language_unknown);
6247 }
6248
6249 /* Return 1 if the supplied producer string matches the ARM RealView
6250 compiler (armcc). */
6251
6252 bool
6253 producer_is_realview (const char *producer)
6254 {
6255 static const char *const arm_idents[] = {
6256 "ARM C Compiler, ADS",
6257 "Thumb C Compiler, ADS",
6258 "ARM C++ Compiler, ADS",
6259 "Thumb C++ Compiler, ADS",
6260 "ARM/Thumb C/C++ Compiler, RVCT",
6261 "ARM C/C++ Compiler, RVCT"
6262 };
6263 int i;
6264
6265 if (producer == NULL)
6266 return false;
6267
6268 for (i = 0; i < ARRAY_SIZE (arm_idents); i++)
6269 if (startswith (producer, arm_idents[i]))
6270 return true;
6271
6272 return false;
6273 }
6274
6275 \f
6276
6277 /* The next index to hand out in response to a registration request. */
6278
6279 static int next_aclass_value = LOC_FINAL_VALUE;
6280
6281 /* The maximum number of "aclass" registrations we support. This is
6282 constant for convenience. */
6283 #define MAX_SYMBOL_IMPLS (LOC_FINAL_VALUE + 10)
6284
6285 /* The objects representing the various "aclass" values. The elements
6286 from 0 up to LOC_FINAL_VALUE-1 represent themselves, and subsequent
6287 elements are those registered at gdb initialization time. */
6288
6289 static struct symbol_impl symbol_impl[MAX_SYMBOL_IMPLS];
6290
6291 /* The globally visible pointer. This is separate from 'symbol_impl'
6292 so that it can be const. */
6293
6294 const struct symbol_impl *symbol_impls = &symbol_impl[0];
6295
6296 /* Make sure we saved enough room in struct symbol. */
6297
6298 gdb_static_assert (MAX_SYMBOL_IMPLS <= (1 << SYMBOL_ACLASS_BITS));
6299
6300 /* Register a computed symbol type. ACLASS must be LOC_COMPUTED. OPS
6301 is the ops vector associated with this index. This returns the new
6302 index, which should be used as the aclass_index field for symbols
6303 of this type. */
6304
6305 int
6306 register_symbol_computed_impl (enum address_class aclass,
6307 const struct symbol_computed_ops *ops)
6308 {
6309 int result = next_aclass_value++;
6310
6311 gdb_assert (aclass == LOC_COMPUTED);
6312 gdb_assert (result < MAX_SYMBOL_IMPLS);
6313 symbol_impl[result].aclass = aclass;
6314 symbol_impl[result].ops_computed = ops;
6315
6316 /* Sanity check OPS. */
6317 gdb_assert (ops != NULL);
6318 gdb_assert (ops->tracepoint_var_ref != NULL);
6319 gdb_assert (ops->describe_location != NULL);
6320 gdb_assert (ops->get_symbol_read_needs != NULL);
6321 gdb_assert (ops->read_variable != NULL);
6322
6323 return result;
6324 }
6325
6326 /* Register a function with frame base type. ACLASS must be LOC_BLOCK.
6327 OPS is the ops vector associated with this index. This returns the
6328 new index, which should be used as the aclass_index field for symbols
6329 of this type. */
6330
6331 int
6332 register_symbol_block_impl (enum address_class aclass,
6333 const struct symbol_block_ops *ops)
6334 {
6335 int result = next_aclass_value++;
6336
6337 gdb_assert (aclass == LOC_BLOCK);
6338 gdb_assert (result < MAX_SYMBOL_IMPLS);
6339 symbol_impl[result].aclass = aclass;
6340 symbol_impl[result].ops_block = ops;
6341
6342 /* Sanity check OPS. */
6343 gdb_assert (ops != NULL);
6344 gdb_assert (ops->find_frame_base_location != NULL);
6345
6346 return result;
6347 }
6348
6349 /* Register a register symbol type. ACLASS must be LOC_REGISTER or
6350 LOC_REGPARM_ADDR. OPS is the register ops vector associated with
6351 this index. This returns the new index, which should be used as
6352 the aclass_index field for symbols of this type. */
6353
6354 int
6355 register_symbol_register_impl (enum address_class aclass,
6356 const struct symbol_register_ops *ops)
6357 {
6358 int result = next_aclass_value++;
6359
6360 gdb_assert (aclass == LOC_REGISTER || aclass == LOC_REGPARM_ADDR);
6361 gdb_assert (result < MAX_SYMBOL_IMPLS);
6362 symbol_impl[result].aclass = aclass;
6363 symbol_impl[result].ops_register = ops;
6364
6365 return result;
6366 }
6367
6368 /* Initialize elements of 'symbol_impl' for the constants in enum
6369 address_class. */
6370
6371 static void
6372 initialize_ordinary_address_classes (void)
6373 {
6374 int i;
6375
6376 for (i = 0; i < LOC_FINAL_VALUE; ++i)
6377 symbol_impl[i].aclass = (enum address_class) i;
6378 }
6379
6380 \f
6381
6382 /* Initialize the symbol SYM, and mark it as being owned by an objfile. */
6383
6384 void
6385 initialize_objfile_symbol (struct symbol *sym)
6386 {
6387 SYMBOL_OBJFILE_OWNED (sym) = 1;
6388 SYMBOL_SECTION (sym) = -1;
6389 }
6390
6391 /* Allocate and initialize a new 'struct symbol' on OBJFILE's
6392 obstack. */
6393
6394 struct symbol *
6395 allocate_symbol (struct objfile *objfile)
6396 {
6397 struct symbol *result = new (&objfile->objfile_obstack) symbol ();
6398
6399 initialize_objfile_symbol (result);
6400
6401 return result;
6402 }
6403
6404 /* Allocate and initialize a new 'struct template_symbol' on OBJFILE's
6405 obstack. */
6406
6407 struct template_symbol *
6408 allocate_template_symbol (struct objfile *objfile)
6409 {
6410 struct template_symbol *result;
6411
6412 result = new (&objfile->objfile_obstack) template_symbol ();
6413 initialize_objfile_symbol (result);
6414
6415 return result;
6416 }
6417
6418 /* See symtab.h. */
6419
6420 struct objfile *
6421 symbol_objfile (const struct symbol *symbol)
6422 {
6423 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
6424 return SYMTAB_OBJFILE (symbol->owner.symtab);
6425 }
6426
6427 /* See symtab.h. */
6428
6429 struct gdbarch *
6430 symbol_arch (const struct symbol *symbol)
6431 {
6432 if (!SYMBOL_OBJFILE_OWNED (symbol))
6433 return symbol->owner.arch;
6434 return SYMTAB_OBJFILE (symbol->owner.symtab)->arch ();
6435 }
6436
6437 /* See symtab.h. */
6438
6439 struct symtab *
6440 symbol_symtab (const struct symbol *symbol)
6441 {
6442 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
6443 return symbol->owner.symtab;
6444 }
6445
6446 /* See symtab.h. */
6447
6448 void
6449 symbol_set_symtab (struct symbol *symbol, struct symtab *symtab)
6450 {
6451 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
6452 symbol->owner.symtab = symtab;
6453 }
6454
6455 /* See symtab.h. */
6456
6457 CORE_ADDR
6458 get_symbol_address (const struct symbol *sym)
6459 {
6460 gdb_assert (sym->maybe_copied);
6461 gdb_assert (SYMBOL_CLASS (sym) == LOC_STATIC);
6462
6463 const char *linkage_name = sym->linkage_name ();
6464
6465 for (objfile *objfile : current_program_space->objfiles ())
6466 {
6467 if (objfile->separate_debug_objfile_backlink != nullptr)
6468 continue;
6469
6470 bound_minimal_symbol minsym
6471 = lookup_minimal_symbol_linkage (linkage_name, objfile);
6472 if (minsym.minsym != nullptr)
6473 return BMSYMBOL_VALUE_ADDRESS (minsym);
6474 }
6475 return sym->value.address;
6476 }
6477
6478 /* See symtab.h. */
6479
6480 CORE_ADDR
6481 get_msymbol_address (struct objfile *objf, const struct minimal_symbol *minsym)
6482 {
6483 gdb_assert (minsym->maybe_copied);
6484 gdb_assert ((objf->flags & OBJF_MAINLINE) == 0);
6485
6486 const char *linkage_name = minsym->linkage_name ();
6487
6488 for (objfile *objfile : current_program_space->objfiles ())
6489 {
6490 if (objfile->separate_debug_objfile_backlink == nullptr
6491 && (objfile->flags & OBJF_MAINLINE) != 0)
6492 {
6493 bound_minimal_symbol found
6494 = lookup_minimal_symbol_linkage (linkage_name, objfile);
6495 if (found.minsym != nullptr)
6496 return BMSYMBOL_VALUE_ADDRESS (found);
6497 }
6498 }
6499 return minsym->value.address + objf->section_offsets[minsym->section];
6500 }
6501
6502 \f
6503
6504 /* Hold the sub-commands of 'info module'. */
6505
6506 static struct cmd_list_element *info_module_cmdlist = NULL;
6507
6508 /* See symtab.h. */
6509
6510 std::vector<module_symbol_search>
6511 search_module_symbols (const char *module_regexp, const char *regexp,
6512 const char *type_regexp, search_domain kind)
6513 {
6514 std::vector<module_symbol_search> results;
6515
6516 /* Search for all modules matching MODULE_REGEXP. */
6517 global_symbol_searcher spec1 (MODULES_DOMAIN, module_regexp);
6518 spec1.set_exclude_minsyms (true);
6519 std::vector<symbol_search> modules = spec1.search ();
6520
6521 /* Now search for all symbols of the required KIND matching the required
6522 regular expressions. We figure out which ones are in which modules
6523 below. */
6524 global_symbol_searcher spec2 (kind, regexp);
6525 spec2.set_symbol_type_regexp (type_regexp);
6526 spec2.set_exclude_minsyms (true);
6527 std::vector<symbol_search> symbols = spec2.search ();
6528
6529 /* Now iterate over all MODULES, checking to see which items from
6530 SYMBOLS are in each module. */
6531 for (const symbol_search &p : modules)
6532 {
6533 QUIT;
6534
6535 /* This is a module. */
6536 gdb_assert (p.symbol != nullptr);
6537
6538 std::string prefix = p.symbol->print_name ();
6539 prefix += "::";
6540
6541 for (const symbol_search &q : symbols)
6542 {
6543 if (q.symbol == nullptr)
6544 continue;
6545
6546 if (strncmp (q.symbol->print_name (), prefix.c_str (),
6547 prefix.size ()) != 0)
6548 continue;
6549
6550 results.push_back ({p, q});
6551 }
6552 }
6553
6554 return results;
6555 }
6556
6557 /* Implement the core of both 'info module functions' and 'info module
6558 variables'. */
6559
6560 static void
6561 info_module_subcommand (bool quiet, const char *module_regexp,
6562 const char *regexp, const char *type_regexp,
6563 search_domain kind)
6564 {
6565 /* Print a header line. Don't build the header line bit by bit as this
6566 prevents internationalisation. */
6567 if (!quiet)
6568 {
6569 if (module_regexp == nullptr)
6570 {
6571 if (type_regexp == nullptr)
6572 {
6573 if (regexp == nullptr)
6574 printf_filtered ((kind == VARIABLES_DOMAIN
6575 ? _("All variables in all modules:")
6576 : _("All functions in all modules:")));
6577 else
6578 printf_filtered
6579 ((kind == VARIABLES_DOMAIN
6580 ? _("All variables matching regular expression"
6581 " \"%s\" in all modules:")
6582 : _("All functions matching regular expression"
6583 " \"%s\" in all modules:")),
6584 regexp);
6585 }
6586 else
6587 {
6588 if (regexp == nullptr)
6589 printf_filtered
6590 ((kind == VARIABLES_DOMAIN
6591 ? _("All variables with type matching regular "
6592 "expression \"%s\" in all modules:")
6593 : _("All functions with type matching regular "
6594 "expression \"%s\" in all modules:")),
6595 type_regexp);
6596 else
6597 printf_filtered
6598 ((kind == VARIABLES_DOMAIN
6599 ? _("All variables matching regular expression "
6600 "\"%s\",\n\twith type matching regular "
6601 "expression \"%s\" in all modules:")
6602 : _("All functions matching regular expression "
6603 "\"%s\",\n\twith type matching regular "
6604 "expression \"%s\" in all modules:")),
6605 regexp, type_regexp);
6606 }
6607 }
6608 else
6609 {
6610 if (type_regexp == nullptr)
6611 {
6612 if (regexp == nullptr)
6613 printf_filtered
6614 ((kind == VARIABLES_DOMAIN
6615 ? _("All variables in all modules matching regular "
6616 "expression \"%s\":")
6617 : _("All functions in all modules matching regular "
6618 "expression \"%s\":")),
6619 module_regexp);
6620 else
6621 printf_filtered
6622 ((kind == VARIABLES_DOMAIN
6623 ? _("All variables matching regular expression "
6624 "\"%s\",\n\tin all modules matching regular "
6625 "expression \"%s\":")
6626 : _("All functions matching regular expression "
6627 "\"%s\",\n\tin all modules matching regular "
6628 "expression \"%s\":")),
6629 regexp, module_regexp);
6630 }
6631 else
6632 {
6633 if (regexp == nullptr)
6634 printf_filtered
6635 ((kind == VARIABLES_DOMAIN
6636 ? _("All variables with type matching regular "
6637 "expression \"%s\"\n\tin all modules matching "
6638 "regular expression \"%s\":")
6639 : _("All functions with type matching regular "
6640 "expression \"%s\"\n\tin all modules matching "
6641 "regular expression \"%s\":")),
6642 type_regexp, module_regexp);
6643 else
6644 printf_filtered
6645 ((kind == VARIABLES_DOMAIN
6646 ? _("All variables matching regular expression "
6647 "\"%s\",\n\twith type matching regular expression "
6648 "\"%s\",\n\tin all modules matching regular "
6649 "expression \"%s\":")
6650 : _("All functions matching regular expression "
6651 "\"%s\",\n\twith type matching regular expression "
6652 "\"%s\",\n\tin all modules matching regular "
6653 "expression \"%s\":")),
6654 regexp, type_regexp, module_regexp);
6655 }
6656 }
6657 printf_filtered ("\n");
6658 }
6659
6660 /* Find all symbols of type KIND matching the given regular expressions
6661 along with the symbols for the modules in which those symbols
6662 reside. */
6663 std::vector<module_symbol_search> module_symbols
6664 = search_module_symbols (module_regexp, regexp, type_regexp, kind);
6665
6666 std::sort (module_symbols.begin (), module_symbols.end (),
6667 [] (const module_symbol_search &a, const module_symbol_search &b)
6668 {
6669 if (a.first < b.first)
6670 return true;
6671 else if (a.first == b.first)
6672 return a.second < b.second;
6673 else
6674 return false;
6675 });
6676
6677 const char *last_filename = "";
6678 const symbol *last_module_symbol = nullptr;
6679 for (const module_symbol_search &ms : module_symbols)
6680 {
6681 const symbol_search &p = ms.first;
6682 const symbol_search &q = ms.second;
6683
6684 gdb_assert (q.symbol != nullptr);
6685
6686 if (last_module_symbol != p.symbol)
6687 {
6688 printf_filtered ("\n");
6689 printf_filtered (_("Module \"%s\":\n"), p.symbol->print_name ());
6690 last_module_symbol = p.symbol;
6691 last_filename = "";
6692 }
6693
6694 print_symbol_info (FUNCTIONS_DOMAIN, q.symbol, q.block,
6695 last_filename);
6696 last_filename
6697 = symtab_to_filename_for_display (symbol_symtab (q.symbol));
6698 }
6699 }
6700
6701 /* Hold the option values for the 'info module .....' sub-commands. */
6702
6703 struct info_modules_var_func_options
6704 {
6705 bool quiet = false;
6706 char *type_regexp = nullptr;
6707 char *module_regexp = nullptr;
6708
6709 ~info_modules_var_func_options ()
6710 {
6711 xfree (type_regexp);
6712 xfree (module_regexp);
6713 }
6714 };
6715
6716 /* The options used by 'info module variables' and 'info module functions'
6717 commands. */
6718
6719 static const gdb::option::option_def info_modules_var_func_options_defs [] = {
6720 gdb::option::boolean_option_def<info_modules_var_func_options> {
6721 "q",
6722 [] (info_modules_var_func_options *opt) { return &opt->quiet; },
6723 nullptr, /* show_cmd_cb */
6724 nullptr /* set_doc */
6725 },
6726
6727 gdb::option::string_option_def<info_modules_var_func_options> {
6728 "t",
6729 [] (info_modules_var_func_options *opt) { return &opt->type_regexp; },
6730 nullptr, /* show_cmd_cb */
6731 nullptr /* set_doc */
6732 },
6733
6734 gdb::option::string_option_def<info_modules_var_func_options> {
6735 "m",
6736 [] (info_modules_var_func_options *opt) { return &opt->module_regexp; },
6737 nullptr, /* show_cmd_cb */
6738 nullptr /* set_doc */
6739 }
6740 };
6741
6742 /* Return the option group used by the 'info module ...' sub-commands. */
6743
6744 static inline gdb::option::option_def_group
6745 make_info_modules_var_func_options_def_group
6746 (info_modules_var_func_options *opts)
6747 {
6748 return {{info_modules_var_func_options_defs}, opts};
6749 }
6750
6751 /* Implements the 'info module functions' command. */
6752
6753 static void
6754 info_module_functions_command (const char *args, int from_tty)
6755 {
6756 info_modules_var_func_options opts;
6757 auto grp = make_info_modules_var_func_options_def_group (&opts);
6758 gdb::option::process_options
6759 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
6760 if (args != nullptr && *args == '\0')
6761 args = nullptr;
6762
6763 info_module_subcommand (opts.quiet, opts.module_regexp, args,
6764 opts.type_regexp, FUNCTIONS_DOMAIN);
6765 }
6766
6767 /* Implements the 'info module variables' command. */
6768
6769 static void
6770 info_module_variables_command (const char *args, int from_tty)
6771 {
6772 info_modules_var_func_options opts;
6773 auto grp = make_info_modules_var_func_options_def_group (&opts);
6774 gdb::option::process_options
6775 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
6776 if (args != nullptr && *args == '\0')
6777 args = nullptr;
6778
6779 info_module_subcommand (opts.quiet, opts.module_regexp, args,
6780 opts.type_regexp, VARIABLES_DOMAIN);
6781 }
6782
6783 /* Command completer for 'info module ...' sub-commands. */
6784
6785 static void
6786 info_module_var_func_command_completer (struct cmd_list_element *ignore,
6787 completion_tracker &tracker,
6788 const char *text,
6789 const char * /* word */)
6790 {
6791
6792 const auto group = make_info_modules_var_func_options_def_group (nullptr);
6793 if (gdb::option::complete_options
6794 (tracker, &text, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, group))
6795 return;
6796
6797 const char *word = advance_to_expression_complete_word_point (tracker, text);
6798 symbol_completer (ignore, tracker, text, word);
6799 }
6800
6801 \f
6802
6803 void _initialize_symtab ();
6804 void
6805 _initialize_symtab ()
6806 {
6807 cmd_list_element *c;
6808
6809 initialize_ordinary_address_classes ();
6810
6811 c = add_info ("variables", info_variables_command,
6812 info_print_args_help (_("\
6813 All global and static variable names or those matching REGEXPs.\n\
6814 Usage: info variables [-q] [-n] [-t TYPEREGEXP] [NAMEREGEXP]\n\
6815 Prints the global and static variables.\n"),
6816 _("global and static variables"),
6817 true));
6818 set_cmd_completer_handle_brkchars (c, info_vars_funcs_command_completer);
6819 if (dbx_commands)
6820 {
6821 c = add_com ("whereis", class_info, info_variables_command,
6822 info_print_args_help (_("\
6823 All global and static variable names, or those matching REGEXPs.\n\
6824 Usage: whereis [-q] [-n] [-t TYPEREGEXP] [NAMEREGEXP]\n\
6825 Prints the global and static variables.\n"),
6826 _("global and static variables"),
6827 true));
6828 set_cmd_completer_handle_brkchars (c, info_vars_funcs_command_completer);
6829 }
6830
6831 c = add_info ("functions", info_functions_command,
6832 info_print_args_help (_("\
6833 All function names or those matching REGEXPs.\n\
6834 Usage: info functions [-q] [-n] [-t TYPEREGEXP] [NAMEREGEXP]\n\
6835 Prints the functions.\n"),
6836 _("functions"),
6837 true));
6838 set_cmd_completer_handle_brkchars (c, info_vars_funcs_command_completer);
6839
6840 c = add_info ("types", info_types_command, _("\
6841 All type names, or those matching REGEXP.\n\
6842 Usage: info types [-q] [REGEXP]\n\
6843 Print information about all types matching REGEXP, or all types if no\n\
6844 REGEXP is given. The optional flag -q disables printing of headers."));
6845 set_cmd_completer_handle_brkchars (c, info_types_command_completer);
6846
6847 const auto info_sources_opts = make_info_sources_options_def_group (nullptr);
6848
6849 static std::string info_sources_help
6850 = gdb::option::build_help (_("\
6851 All source files in the program or those matching REGEXP.\n\
6852 Usage: info sources [OPTION]... [REGEXP]\n\
6853 By default, REGEXP is used to match anywhere in the filename.\n\
6854 \n\
6855 Options:\n\
6856 %OPTIONS%"),
6857 info_sources_opts);
6858
6859 c = add_info ("sources", info_sources_command, info_sources_help.c_str ());
6860 set_cmd_completer_handle_brkchars (c, info_sources_command_completer);
6861
6862 c = add_info ("modules", info_modules_command,
6863 _("All module names, or those matching REGEXP."));
6864 set_cmd_completer_handle_brkchars (c, info_types_command_completer);
6865
6866 add_basic_prefix_cmd ("module", class_info, _("\
6867 Print information about modules."),
6868 &info_module_cmdlist, "info module ",
6869 0, &infolist);
6870
6871 c = add_cmd ("functions", class_info, info_module_functions_command, _("\
6872 Display functions arranged by modules.\n\
6873 Usage: info module functions [-q] [-m MODREGEXP] [-t TYPEREGEXP] [REGEXP]\n\
6874 Print a summary of all functions within each Fortran module, grouped by\n\
6875 module and file. For each function the line on which the function is\n\
6876 defined is given along with the type signature and name of the function.\n\
6877 \n\
6878 If REGEXP is provided then only functions whose name matches REGEXP are\n\
6879 listed. If MODREGEXP is provided then only functions in modules matching\n\
6880 MODREGEXP are listed. If TYPEREGEXP is given then only functions whose\n\
6881 type signature matches TYPEREGEXP are listed.\n\
6882 \n\
6883 The -q flag suppresses printing some header information."),
6884 &info_module_cmdlist);
6885 set_cmd_completer_handle_brkchars
6886 (c, info_module_var_func_command_completer);
6887
6888 c = add_cmd ("variables", class_info, info_module_variables_command, _("\
6889 Display variables arranged by modules.\n\
6890 Usage: info module variables [-q] [-m MODREGEXP] [-t TYPEREGEXP] [REGEXP]\n\
6891 Print a summary of all variables within each Fortran module, grouped by\n\
6892 module and file. For each variable the line on which the variable is\n\
6893 defined is given along with the type and name of the variable.\n\
6894 \n\
6895 If REGEXP is provided then only variables whose name matches REGEXP are\n\
6896 listed. If MODREGEXP is provided then only variables in modules matching\n\
6897 MODREGEXP are listed. If TYPEREGEXP is given then only variables whose\n\
6898 type matches TYPEREGEXP are listed.\n\
6899 \n\
6900 The -q flag suppresses printing some header information."),
6901 &info_module_cmdlist);
6902 set_cmd_completer_handle_brkchars
6903 (c, info_module_var_func_command_completer);
6904
6905 add_com ("rbreak", class_breakpoint, rbreak_command,
6906 _("Set a breakpoint for all functions matching REGEXP."));
6907
6908 add_setshow_enum_cmd ("multiple-symbols", no_class,
6909 multiple_symbols_modes, &multiple_symbols_mode,
6910 _("\
6911 Set how the debugger handles ambiguities in expressions."), _("\
6912 Show how the debugger handles ambiguities in expressions."), _("\
6913 Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
6914 NULL, NULL, &setlist, &showlist);
6915
6916 add_setshow_boolean_cmd ("basenames-may-differ", class_obscure,
6917 &basenames_may_differ, _("\
6918 Set whether a source file may have multiple base names."), _("\
6919 Show whether a source file may have multiple base names."), _("\
6920 (A \"base name\" is the name of a file with the directory part removed.\n\
6921 Example: The base name of \"/home/user/hello.c\" is \"hello.c\".)\n\
6922 If set, GDB will canonicalize file names (e.g., expand symlinks)\n\
6923 before comparing them. Canonicalization is an expensive operation,\n\
6924 but it allows the same file be known by more than one base name.\n\
6925 If not set (the default), all source files are assumed to have just\n\
6926 one base name, and gdb will do file name comparisons more efficiently."),
6927 NULL, NULL,
6928 &setlist, &showlist);
6929
6930 add_setshow_zuinteger_cmd ("symtab-create", no_class, &symtab_create_debug,
6931 _("Set debugging of symbol table creation."),
6932 _("Show debugging of symbol table creation."), _("\
6933 When enabled (non-zero), debugging messages are printed when building\n\
6934 symbol tables. A value of 1 (one) normally provides enough information.\n\
6935 A value greater than 1 provides more verbose information."),
6936 NULL,
6937 NULL,
6938 &setdebuglist, &showdebuglist);
6939
6940 add_setshow_zuinteger_cmd ("symbol-lookup", no_class, &symbol_lookup_debug,
6941 _("\
6942 Set debugging of symbol lookup."), _("\
6943 Show debugging of symbol lookup."), _("\
6944 When enabled (non-zero), symbol lookups are logged."),
6945 NULL, NULL,
6946 &setdebuglist, &showdebuglist);
6947
6948 add_setshow_zuinteger_cmd ("symbol-cache-size", no_class,
6949 &new_symbol_cache_size,
6950 _("Set the size of the symbol cache."),
6951 _("Show the size of the symbol cache."), _("\
6952 The size of the symbol cache.\n\
6953 If zero then the symbol cache is disabled."),
6954 set_symbol_cache_size_handler, NULL,
6955 &maintenance_set_cmdlist,
6956 &maintenance_show_cmdlist);
6957
6958 add_cmd ("symbol-cache", class_maintenance, maintenance_print_symbol_cache,
6959 _("Dump the symbol cache for each program space."),
6960 &maintenanceprintlist);
6961
6962 add_cmd ("symbol-cache-statistics", class_maintenance,
6963 maintenance_print_symbol_cache_statistics,
6964 _("Print symbol cache statistics for each program space."),
6965 &maintenanceprintlist);
6966
6967 add_cmd ("flush-symbol-cache", class_maintenance,
6968 maintenance_flush_symbol_cache,
6969 _("Flush the symbol cache for each program space."),
6970 &maintenancelist);
6971
6972 gdb::observers::executable_changed.attach (symtab_observer_executable_changed);
6973 gdb::observers::new_objfile.attach (symtab_new_objfile_observer);
6974 gdb::observers::free_objfile.attach (symtab_free_objfile_observer);
6975 }
This page took 0.179081 seconds and 3 git commands to generate.