* symtab.h (lookup_symbol_in_language): Remove SYMTAB parameter.
[deliverable/binutils-gdb.git] / gdb / symtab.c
1 /* Symbol table lookup for the GNU debugger, GDB.
2
3 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2007, 2008
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "symtab.h"
24 #include "gdbtypes.h"
25 #include "gdbcore.h"
26 #include "frame.h"
27 #include "target.h"
28 #include "value.h"
29 #include "symfile.h"
30 #include "objfiles.h"
31 #include "gdbcmd.h"
32 #include "call-cmds.h"
33 #include "gdb_regex.h"
34 #include "expression.h"
35 #include "language.h"
36 #include "demangle.h"
37 #include "inferior.h"
38 #include "linespec.h"
39 #include "source.h"
40 #include "filenames.h" /* for FILENAME_CMP */
41 #include "objc-lang.h"
42 #include "ada-lang.h"
43 #include "p-lang.h"
44 #include "addrmap.h"
45
46 #include "hashtab.h"
47
48 #include "gdb_obstack.h"
49 #include "block.h"
50 #include "dictionary.h"
51
52 #include <sys/types.h>
53 #include <fcntl.h>
54 #include "gdb_string.h"
55 #include "gdb_stat.h"
56 #include <ctype.h>
57 #include "cp-abi.h"
58 #include "observer.h"
59 #include "gdb_assert.h"
60 #include "solist.h"
61
62 /* Prototypes for local functions */
63
64 static void completion_list_add_name (char *, char *, int, char *, char *);
65
66 static void rbreak_command (char *, int);
67
68 static void types_info (char *, int);
69
70 static void functions_info (char *, int);
71
72 static void variables_info (char *, int);
73
74 static void sources_info (char *, int);
75
76 static void output_source_filename (const char *, int *);
77
78 static int find_line_common (struct linetable *, int, int *);
79
80 /* This one is used by linespec.c */
81
82 char *operator_chars (char *p, char **end);
83
84 static struct symbol *lookup_symbol_aux (const char *name,
85 const char *linkage_name,
86 const struct block *block,
87 const domain_enum domain,
88 enum language language,
89 int *is_a_field_of_this);
90
91 static
92 struct symbol *lookup_symbol_aux_local (const char *name,
93 const char *linkage_name,
94 const struct block *block,
95 const domain_enum domain);
96
97 static
98 struct symbol *lookup_symbol_aux_symtabs (int block_index,
99 const char *name,
100 const char *linkage_name,
101 const domain_enum domain);
102
103 static
104 struct symbol *lookup_symbol_aux_psymtabs (int block_index,
105 const char *name,
106 const char *linkage_name,
107 const domain_enum domain);
108
109 static int file_matches (char *, char **, int);
110
111 static void print_symbol_info (domain_enum,
112 struct symtab *, struct symbol *, int, char *);
113
114 static void print_msymbol_info (struct minimal_symbol *);
115
116 static void symtab_symbol_info (char *, domain_enum, int);
117
118 void _initialize_symtab (void);
119
120 /* */
121
122 /* Allow the user to configure the debugger behavior with respect
123 to multiple-choice menus when more than one symbol matches during
124 a symbol lookup. */
125
126 const char multiple_symbols_ask[] = "ask";
127 const char multiple_symbols_all[] = "all";
128 const char multiple_symbols_cancel[] = "cancel";
129 static const char *multiple_symbols_modes[] =
130 {
131 multiple_symbols_ask,
132 multiple_symbols_all,
133 multiple_symbols_cancel,
134 NULL
135 };
136 static const char *multiple_symbols_mode = multiple_symbols_all;
137
138 /* Read-only accessor to AUTO_SELECT_MODE. */
139
140 const char *
141 multiple_symbols_select_mode (void)
142 {
143 return multiple_symbols_mode;
144 }
145
146 /* The single non-language-specific builtin type */
147 struct type *builtin_type_error;
148
149 /* Block in which the most recently searched-for symbol was found.
150 Might be better to make this a parameter to lookup_symbol and
151 value_of_this. */
152
153 const struct block *block_found;
154
155 /* Check for a symtab of a specific name; first in symtabs, then in
156 psymtabs. *If* there is no '/' in the name, a match after a '/'
157 in the symtab filename will also work. */
158
159 struct symtab *
160 lookup_symtab (const char *name)
161 {
162 struct symtab *s;
163 struct partial_symtab *ps;
164 struct objfile *objfile;
165 char *real_path = NULL;
166 char *full_path = NULL;
167
168 /* Here we are interested in canonicalizing an absolute path, not
169 absolutizing a relative path. */
170 if (IS_ABSOLUTE_PATH (name))
171 {
172 full_path = xfullpath (name);
173 make_cleanup (xfree, full_path);
174 real_path = gdb_realpath (name);
175 make_cleanup (xfree, real_path);
176 }
177
178 got_symtab:
179
180 /* First, search for an exact match */
181
182 ALL_SYMTABS (objfile, s)
183 {
184 if (FILENAME_CMP (name, s->filename) == 0)
185 {
186 return s;
187 }
188
189 /* If the user gave us an absolute path, try to find the file in
190 this symtab and use its absolute path. */
191
192 if (full_path != NULL)
193 {
194 const char *fp = symtab_to_fullname (s);
195 if (fp != NULL && FILENAME_CMP (full_path, fp) == 0)
196 {
197 return s;
198 }
199 }
200
201 if (real_path != NULL)
202 {
203 char *fullname = symtab_to_fullname (s);
204 if (fullname != NULL)
205 {
206 char *rp = gdb_realpath (fullname);
207 make_cleanup (xfree, rp);
208 if (FILENAME_CMP (real_path, rp) == 0)
209 {
210 return s;
211 }
212 }
213 }
214 }
215
216 /* Now, search for a matching tail (only if name doesn't have any dirs) */
217
218 if (lbasename (name) == name)
219 ALL_SYMTABS (objfile, s)
220 {
221 if (FILENAME_CMP (lbasename (s->filename), name) == 0)
222 return s;
223 }
224
225 /* Same search rules as above apply here, but now we look thru the
226 psymtabs. */
227
228 ps = lookup_partial_symtab (name);
229 if (!ps)
230 return (NULL);
231
232 if (ps->readin)
233 error (_("Internal: readin %s pst for `%s' found when no symtab found."),
234 ps->filename, name);
235
236 s = PSYMTAB_TO_SYMTAB (ps);
237
238 if (s)
239 return s;
240
241 /* At this point, we have located the psymtab for this file, but
242 the conversion to a symtab has failed. This usually happens
243 when we are looking up an include file. In this case,
244 PSYMTAB_TO_SYMTAB doesn't return a symtab, even though one has
245 been created. So, we need to run through the symtabs again in
246 order to find the file.
247 XXX - This is a crock, and should be fixed inside of the the
248 symbol parsing routines. */
249 goto got_symtab;
250 }
251
252 /* Lookup the partial symbol table of a source file named NAME.
253 *If* there is no '/' in the name, a match after a '/'
254 in the psymtab filename will also work. */
255
256 struct partial_symtab *
257 lookup_partial_symtab (const char *name)
258 {
259 struct partial_symtab *pst;
260 struct objfile *objfile;
261 char *full_path = NULL;
262 char *real_path = NULL;
263
264 /* Here we are interested in canonicalizing an absolute path, not
265 absolutizing a relative path. */
266 if (IS_ABSOLUTE_PATH (name))
267 {
268 full_path = xfullpath (name);
269 make_cleanup (xfree, full_path);
270 real_path = gdb_realpath (name);
271 make_cleanup (xfree, real_path);
272 }
273
274 ALL_PSYMTABS (objfile, pst)
275 {
276 if (FILENAME_CMP (name, pst->filename) == 0)
277 {
278 return (pst);
279 }
280
281 /* If the user gave us an absolute path, try to find the file in
282 this symtab and use its absolute path. */
283 if (full_path != NULL)
284 {
285 psymtab_to_fullname (pst);
286 if (pst->fullname != NULL
287 && FILENAME_CMP (full_path, pst->fullname) == 0)
288 {
289 return pst;
290 }
291 }
292
293 if (real_path != NULL)
294 {
295 char *rp = NULL;
296 psymtab_to_fullname (pst);
297 if (pst->fullname != NULL)
298 {
299 rp = gdb_realpath (pst->fullname);
300 make_cleanup (xfree, rp);
301 }
302 if (rp != NULL && FILENAME_CMP (real_path, rp) == 0)
303 {
304 return pst;
305 }
306 }
307 }
308
309 /* Now, search for a matching tail (only if name doesn't have any dirs) */
310
311 if (lbasename (name) == name)
312 ALL_PSYMTABS (objfile, pst)
313 {
314 if (FILENAME_CMP (lbasename (pst->filename), name) == 0)
315 return (pst);
316 }
317
318 return (NULL);
319 }
320 \f
321 /* Mangle a GDB method stub type. This actually reassembles the pieces of the
322 full method name, which consist of the class name (from T), the unadorned
323 method name from METHOD_ID, and the signature for the specific overload,
324 specified by SIGNATURE_ID. Note that this function is g++ specific. */
325
326 char *
327 gdb_mangle_name (struct type *type, int method_id, int signature_id)
328 {
329 int mangled_name_len;
330 char *mangled_name;
331 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
332 struct fn_field *method = &f[signature_id];
333 char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
334 char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
335 char *newname = type_name_no_tag (type);
336
337 /* Does the form of physname indicate that it is the full mangled name
338 of a constructor (not just the args)? */
339 int is_full_physname_constructor;
340
341 int is_constructor;
342 int is_destructor = is_destructor_name (physname);
343 /* Need a new type prefix. */
344 char *const_prefix = method->is_const ? "C" : "";
345 char *volatile_prefix = method->is_volatile ? "V" : "";
346 char buf[20];
347 int len = (newname == NULL ? 0 : strlen (newname));
348
349 /* Nothing to do if physname already contains a fully mangled v3 abi name
350 or an operator name. */
351 if ((physname[0] == '_' && physname[1] == 'Z')
352 || is_operator_name (field_name))
353 return xstrdup (physname);
354
355 is_full_physname_constructor = is_constructor_name (physname);
356
357 is_constructor =
358 is_full_physname_constructor || (newname && strcmp (field_name, newname) == 0);
359
360 if (!is_destructor)
361 is_destructor = (strncmp (physname, "__dt", 4) == 0);
362
363 if (is_destructor || is_full_physname_constructor)
364 {
365 mangled_name = (char *) xmalloc (strlen (physname) + 1);
366 strcpy (mangled_name, physname);
367 return mangled_name;
368 }
369
370 if (len == 0)
371 {
372 sprintf (buf, "__%s%s", const_prefix, volatile_prefix);
373 }
374 else if (physname[0] == 't' || physname[0] == 'Q')
375 {
376 /* The physname for template and qualified methods already includes
377 the class name. */
378 sprintf (buf, "__%s%s", const_prefix, volatile_prefix);
379 newname = NULL;
380 len = 0;
381 }
382 else
383 {
384 sprintf (buf, "__%s%s%d", const_prefix, volatile_prefix, len);
385 }
386 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
387 + strlen (buf) + len + strlen (physname) + 1);
388
389 {
390 mangled_name = (char *) xmalloc (mangled_name_len);
391 if (is_constructor)
392 mangled_name[0] = '\0';
393 else
394 strcpy (mangled_name, field_name);
395 }
396 strcat (mangled_name, buf);
397 /* If the class doesn't have a name, i.e. newname NULL, then we just
398 mangle it using 0 for the length of the class. Thus it gets mangled
399 as something starting with `::' rather than `classname::'. */
400 if (newname != NULL)
401 strcat (mangled_name, newname);
402
403 strcat (mangled_name, physname);
404 return (mangled_name);
405 }
406
407 \f
408 /* Initialize the language dependent portion of a symbol
409 depending upon the language for the symbol. */
410 void
411 symbol_init_language_specific (struct general_symbol_info *gsymbol,
412 enum language language)
413 {
414 gsymbol->language = language;
415 if (gsymbol->language == language_cplus
416 || gsymbol->language == language_java
417 || gsymbol->language == language_objc)
418 {
419 gsymbol->language_specific.cplus_specific.demangled_name = NULL;
420 }
421 else
422 {
423 memset (&gsymbol->language_specific, 0,
424 sizeof (gsymbol->language_specific));
425 }
426 }
427
428 /* Functions to initialize a symbol's mangled name. */
429
430 /* Create the hash table used for demangled names. Each hash entry is
431 a pair of strings; one for the mangled name and one for the demangled
432 name. The entry is hashed via just the mangled name. */
433
434 static void
435 create_demangled_names_hash (struct objfile *objfile)
436 {
437 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
438 The hash table code will round this up to the next prime number.
439 Choosing a much larger table size wastes memory, and saves only about
440 1% in symbol reading. */
441
442 objfile->demangled_names_hash = htab_create_alloc
443 (256, htab_hash_string, (int (*) (const void *, const void *)) streq,
444 NULL, xcalloc, xfree);
445 }
446
447 /* Try to determine the demangled name for a symbol, based on the
448 language of that symbol. If the language is set to language_auto,
449 it will attempt to find any demangling algorithm that works and
450 then set the language appropriately. The returned name is allocated
451 by the demangler and should be xfree'd. */
452
453 static char *
454 symbol_find_demangled_name (struct general_symbol_info *gsymbol,
455 const char *mangled)
456 {
457 char *demangled = NULL;
458
459 if (gsymbol->language == language_unknown)
460 gsymbol->language = language_auto;
461
462 if (gsymbol->language == language_objc
463 || gsymbol->language == language_auto)
464 {
465 demangled =
466 objc_demangle (mangled, 0);
467 if (demangled != NULL)
468 {
469 gsymbol->language = language_objc;
470 return demangled;
471 }
472 }
473 if (gsymbol->language == language_cplus
474 || gsymbol->language == language_auto)
475 {
476 demangled =
477 cplus_demangle (mangled, DMGL_PARAMS | DMGL_ANSI);
478 if (demangled != NULL)
479 {
480 gsymbol->language = language_cplus;
481 return demangled;
482 }
483 }
484 if (gsymbol->language == language_java)
485 {
486 demangled =
487 cplus_demangle (mangled,
488 DMGL_PARAMS | DMGL_ANSI | DMGL_JAVA);
489 if (demangled != NULL)
490 {
491 gsymbol->language = language_java;
492 return demangled;
493 }
494 }
495 return NULL;
496 }
497
498 /* Set both the mangled and demangled (if any) names for GSYMBOL based
499 on LINKAGE_NAME and LEN. The hash table corresponding to OBJFILE
500 is used, and the memory comes from that objfile's objfile_obstack.
501 LINKAGE_NAME is copied, so the pointer can be discarded after
502 calling this function. */
503
504 /* We have to be careful when dealing with Java names: when we run
505 into a Java minimal symbol, we don't know it's a Java symbol, so it
506 gets demangled as a C++ name. This is unfortunate, but there's not
507 much we can do about it: but when demangling partial symbols and
508 regular symbols, we'd better not reuse the wrong demangled name.
509 (See PR gdb/1039.) We solve this by putting a distinctive prefix
510 on Java names when storing them in the hash table. */
511
512 /* FIXME: carlton/2003-03-13: This is an unfortunate situation. I
513 don't mind the Java prefix so much: different languages have
514 different demangling requirements, so it's only natural that we
515 need to keep language data around in our demangling cache. But
516 it's not good that the minimal symbol has the wrong demangled name.
517 Unfortunately, I can't think of any easy solution to that
518 problem. */
519
520 #define JAVA_PREFIX "##JAVA$$"
521 #define JAVA_PREFIX_LEN 8
522
523 void
524 symbol_set_names (struct general_symbol_info *gsymbol,
525 const char *linkage_name, int len, struct objfile *objfile)
526 {
527 char **slot;
528 /* A 0-terminated copy of the linkage name. */
529 const char *linkage_name_copy;
530 /* A copy of the linkage name that might have a special Java prefix
531 added to it, for use when looking names up in the hash table. */
532 const char *lookup_name;
533 /* The length of lookup_name. */
534 int lookup_len;
535
536 if (objfile->demangled_names_hash == NULL)
537 create_demangled_names_hash (objfile);
538
539 if (gsymbol->language == language_ada)
540 {
541 /* In Ada, we do the symbol lookups using the mangled name, so
542 we can save some space by not storing the demangled name.
543
544 As a side note, we have also observed some overlap between
545 the C++ mangling and Ada mangling, similarly to what has
546 been observed with Java. Because we don't store the demangled
547 name with the symbol, we don't need to use the same trick
548 as Java. */
549 gsymbol->name = obstack_alloc (&objfile->objfile_obstack, len + 1);
550 memcpy (gsymbol->name, linkage_name, len);
551 gsymbol->name[len] = '\0';
552 gsymbol->language_specific.cplus_specific.demangled_name = NULL;
553
554 return;
555 }
556
557 /* The stabs reader generally provides names that are not
558 NUL-terminated; most of the other readers don't do this, so we
559 can just use the given copy, unless we're in the Java case. */
560 if (gsymbol->language == language_java)
561 {
562 char *alloc_name;
563 lookup_len = len + JAVA_PREFIX_LEN;
564
565 alloc_name = alloca (lookup_len + 1);
566 memcpy (alloc_name, JAVA_PREFIX, JAVA_PREFIX_LEN);
567 memcpy (alloc_name + JAVA_PREFIX_LEN, linkage_name, len);
568 alloc_name[lookup_len] = '\0';
569
570 lookup_name = alloc_name;
571 linkage_name_copy = alloc_name + JAVA_PREFIX_LEN;
572 }
573 else if (linkage_name[len] != '\0')
574 {
575 char *alloc_name;
576 lookup_len = len;
577
578 alloc_name = alloca (lookup_len + 1);
579 memcpy (alloc_name, linkage_name, len);
580 alloc_name[lookup_len] = '\0';
581
582 lookup_name = alloc_name;
583 linkage_name_copy = alloc_name;
584 }
585 else
586 {
587 lookup_len = len;
588 lookup_name = linkage_name;
589 linkage_name_copy = linkage_name;
590 }
591
592 slot = (char **) htab_find_slot (objfile->demangled_names_hash,
593 lookup_name, INSERT);
594
595 /* If this name is not in the hash table, add it. */
596 if (*slot == NULL)
597 {
598 char *demangled_name = symbol_find_demangled_name (gsymbol,
599 linkage_name_copy);
600 int demangled_len = demangled_name ? strlen (demangled_name) : 0;
601
602 /* If there is a demangled name, place it right after the mangled name.
603 Otherwise, just place a second zero byte after the end of the mangled
604 name. */
605 *slot = obstack_alloc (&objfile->objfile_obstack,
606 lookup_len + demangled_len + 2);
607 memcpy (*slot, lookup_name, lookup_len + 1);
608 if (demangled_name != NULL)
609 {
610 memcpy (*slot + lookup_len + 1, demangled_name, demangled_len + 1);
611 xfree (demangled_name);
612 }
613 else
614 (*slot)[lookup_len + 1] = '\0';
615 }
616
617 gsymbol->name = *slot + lookup_len - len;
618 if ((*slot)[lookup_len + 1] != '\0')
619 gsymbol->language_specific.cplus_specific.demangled_name
620 = &(*slot)[lookup_len + 1];
621 else
622 gsymbol->language_specific.cplus_specific.demangled_name = NULL;
623 }
624
625 /* Return the source code name of a symbol. In languages where
626 demangling is necessary, this is the demangled name. */
627
628 char *
629 symbol_natural_name (const struct general_symbol_info *gsymbol)
630 {
631 switch (gsymbol->language)
632 {
633 case language_cplus:
634 case language_java:
635 case language_objc:
636 if (gsymbol->language_specific.cplus_specific.demangled_name != NULL)
637 return gsymbol->language_specific.cplus_specific.demangled_name;
638 break;
639 case language_ada:
640 if (gsymbol->language_specific.cplus_specific.demangled_name != NULL)
641 return gsymbol->language_specific.cplus_specific.demangled_name;
642 else
643 return ada_decode_symbol (gsymbol);
644 break;
645 default:
646 break;
647 }
648 return gsymbol->name;
649 }
650
651 /* Return the demangled name for a symbol based on the language for
652 that symbol. If no demangled name exists, return NULL. */
653 char *
654 symbol_demangled_name (struct general_symbol_info *gsymbol)
655 {
656 switch (gsymbol->language)
657 {
658 case language_cplus:
659 case language_java:
660 case language_objc:
661 if (gsymbol->language_specific.cplus_specific.demangled_name != NULL)
662 return gsymbol->language_specific.cplus_specific.demangled_name;
663 break;
664 case language_ada:
665 if (gsymbol->language_specific.cplus_specific.demangled_name != NULL)
666 return gsymbol->language_specific.cplus_specific.demangled_name;
667 else
668 return ada_decode_symbol (gsymbol);
669 break;
670 default:
671 break;
672 }
673 return NULL;
674 }
675
676 /* Return the search name of a symbol---generally the demangled or
677 linkage name of the symbol, depending on how it will be searched for.
678 If there is no distinct demangled name, then returns the same value
679 (same pointer) as SYMBOL_LINKAGE_NAME. */
680 char *
681 symbol_search_name (const struct general_symbol_info *gsymbol)
682 {
683 if (gsymbol->language == language_ada)
684 return gsymbol->name;
685 else
686 return symbol_natural_name (gsymbol);
687 }
688
689 /* Initialize the structure fields to zero values. */
690 void
691 init_sal (struct symtab_and_line *sal)
692 {
693 sal->symtab = 0;
694 sal->section = 0;
695 sal->line = 0;
696 sal->pc = 0;
697 sal->end = 0;
698 sal->explicit_pc = 0;
699 sal->explicit_line = 0;
700 }
701 \f
702
703 /* Return 1 if the two sections are the same, or if they could
704 plausibly be copies of each other, one in an original object
705 file and another in a separated debug file. */
706
707 int
708 matching_bfd_sections (asection *first, asection *second)
709 {
710 struct objfile *obj;
711
712 /* If they're the same section, then they match. */
713 if (first == second)
714 return 1;
715
716 /* If either is NULL, give up. */
717 if (first == NULL || second == NULL)
718 return 0;
719
720 /* This doesn't apply to absolute symbols. */
721 if (first->owner == NULL || second->owner == NULL)
722 return 0;
723
724 /* If they're in the same object file, they must be different sections. */
725 if (first->owner == second->owner)
726 return 0;
727
728 /* Check whether the two sections are potentially corresponding. They must
729 have the same size, address, and name. We can't compare section indexes,
730 which would be more reliable, because some sections may have been
731 stripped. */
732 if (bfd_get_section_size (first) != bfd_get_section_size (second))
733 return 0;
734
735 /* In-memory addresses may start at a different offset, relativize them. */
736 if (bfd_get_section_vma (first->owner, first)
737 - bfd_get_start_address (first->owner)
738 != bfd_get_section_vma (second->owner, second)
739 - bfd_get_start_address (second->owner))
740 return 0;
741
742 if (bfd_get_section_name (first->owner, first) == NULL
743 || bfd_get_section_name (second->owner, second) == NULL
744 || strcmp (bfd_get_section_name (first->owner, first),
745 bfd_get_section_name (second->owner, second)) != 0)
746 return 0;
747
748 /* Otherwise check that they are in corresponding objfiles. */
749
750 ALL_OBJFILES (obj)
751 if (obj->obfd == first->owner)
752 break;
753 gdb_assert (obj != NULL);
754
755 if (obj->separate_debug_objfile != NULL
756 && obj->separate_debug_objfile->obfd == second->owner)
757 return 1;
758 if (obj->separate_debug_objfile_backlink != NULL
759 && obj->separate_debug_objfile_backlink->obfd == second->owner)
760 return 1;
761
762 return 0;
763 }
764
765 /* Find which partial symtab contains PC and SECTION starting at psymtab PST.
766 We may find a different psymtab than PST. See FIND_PC_SECT_PSYMTAB. */
767
768 struct partial_symtab *
769 find_pc_sect_psymtab_closer (CORE_ADDR pc, asection *section,
770 struct partial_symtab *pst,
771 struct minimal_symbol *msymbol)
772 {
773 struct objfile *objfile = pst->objfile;
774 struct partial_symtab *tpst;
775 struct partial_symtab *best_pst = pst;
776 CORE_ADDR best_addr = pst->textlow;
777
778 /* An objfile that has its functions reordered might have
779 many partial symbol tables containing the PC, but
780 we want the partial symbol table that contains the
781 function containing the PC. */
782 if (!(objfile->flags & OBJF_REORDERED) &&
783 section == 0) /* can't validate section this way */
784 return pst;
785
786 if (msymbol == NULL)
787 return (pst);
788
789 /* The code range of partial symtabs sometimes overlap, so, in
790 the loop below, we need to check all partial symtabs and
791 find the one that fits better for the given PC address. We
792 select the partial symtab that contains a symbol whose
793 address is closest to the PC address. By closest we mean
794 that find_pc_sect_symbol returns the symbol with address
795 that is closest and still less than the given PC. */
796 for (tpst = pst; tpst != NULL; tpst = tpst->next)
797 {
798 if (pc >= tpst->textlow && pc < tpst->texthigh)
799 {
800 struct partial_symbol *p;
801 CORE_ADDR this_addr;
802
803 /* NOTE: This assumes that every psymbol has a
804 corresponding msymbol, which is not necessarily
805 true; the debug info might be much richer than the
806 object's symbol table. */
807 p = find_pc_sect_psymbol (tpst, pc, section);
808 if (p != NULL
809 && SYMBOL_VALUE_ADDRESS (p)
810 == SYMBOL_VALUE_ADDRESS (msymbol))
811 return tpst;
812
813 /* Also accept the textlow value of a psymtab as a
814 "symbol", to provide some support for partial
815 symbol tables with line information but no debug
816 symbols (e.g. those produced by an assembler). */
817 if (p != NULL)
818 this_addr = SYMBOL_VALUE_ADDRESS (p);
819 else
820 this_addr = tpst->textlow;
821
822 /* Check whether it is closer than our current
823 BEST_ADDR. Since this symbol address is
824 necessarily lower or equal to PC, the symbol closer
825 to PC is the symbol which address is the highest.
826 This way we return the psymtab which contains such
827 best match symbol. This can help in cases where the
828 symbol information/debuginfo is not complete, like
829 for instance on IRIX6 with gcc, where no debug info
830 is emitted for statics. (See also the nodebug.exp
831 testcase.) */
832 if (this_addr > best_addr)
833 {
834 best_addr = this_addr;
835 best_pst = tpst;
836 }
837 }
838 }
839 return best_pst;
840 }
841
842 /* Find which partial symtab contains PC and SECTION. Return 0 if
843 none. We return the psymtab that contains a symbol whose address
844 exactly matches PC, or, if we cannot find an exact match, the
845 psymtab that contains a symbol whose address is closest to PC. */
846 struct partial_symtab *
847 find_pc_sect_psymtab (CORE_ADDR pc, asection *section)
848 {
849 struct objfile *objfile;
850 struct minimal_symbol *msymbol;
851
852 /* If we know that this is not a text address, return failure. This is
853 necessary because we loop based on texthigh and textlow, which do
854 not include the data ranges. */
855 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
856 if (msymbol
857 && (msymbol->type == mst_data
858 || msymbol->type == mst_bss
859 || msymbol->type == mst_abs
860 || msymbol->type == mst_file_data
861 || msymbol->type == mst_file_bss))
862 return NULL;
863
864 /* Try just the PSYMTABS_ADDRMAP mapping first as it has better granularity
865 than the later used TEXTLOW/TEXTHIGH one. */
866
867 ALL_OBJFILES (objfile)
868 if (objfile->psymtabs_addrmap != NULL)
869 {
870 struct partial_symtab *pst;
871
872 pst = addrmap_find (objfile->psymtabs_addrmap, pc);
873 if (pst != NULL)
874 {
875 /* FIXME: addrmaps currently do not handle overlayed sections,
876 so fall back to the non-addrmap case if we're debugging
877 overlays and the addrmap returned the wrong section. */
878 if (overlay_debugging && msymbol && section)
879 {
880 struct partial_symbol *p;
881 /* NOTE: This assumes that every psymbol has a
882 corresponding msymbol, which is not necessarily
883 true; the debug info might be much richer than the
884 object's symbol table. */
885 p = find_pc_sect_psymbol (pst, pc, section);
886 if (!p
887 || SYMBOL_VALUE_ADDRESS (p)
888 != SYMBOL_VALUE_ADDRESS (msymbol))
889 continue;
890 }
891
892 /* We do not try to call FIND_PC_SECT_PSYMTAB_CLOSER as
893 PSYMTABS_ADDRMAP we used has already the best 1-byte
894 granularity and FIND_PC_SECT_PSYMTAB_CLOSER may mislead us into
895 a worse chosen section due to the TEXTLOW/TEXTHIGH ranges
896 overlap. */
897
898 return pst;
899 }
900 }
901
902 /* Existing PSYMTABS_ADDRMAP mapping is present even for PARTIAL_SYMTABs
903 which still have no corresponding full SYMTABs read. But it is not
904 present for non-DWARF2 debug infos not supporting PSYMTABS_ADDRMAP in GDB
905 so far. */
906
907 ALL_OBJFILES (objfile)
908 {
909 struct partial_symtab *pst;
910
911 /* Check even OBJFILE with non-zero PSYMTABS_ADDRMAP as only several of
912 its CUs may be missing in PSYMTABS_ADDRMAP as they may be varying
913 debug info type in single OBJFILE. */
914
915 ALL_OBJFILE_PSYMTABS (objfile, pst)
916 if (pc >= pst->textlow && pc < pst->texthigh)
917 {
918 struct partial_symtab *best_pst;
919
920 best_pst = find_pc_sect_psymtab_closer (pc, section, pst,
921 msymbol);
922 if (best_pst != NULL)
923 return best_pst;
924 }
925 }
926
927 return NULL;
928 }
929
930 /* Find which partial symtab contains PC. Return 0 if none.
931 Backward compatibility, no section */
932
933 struct partial_symtab *
934 find_pc_psymtab (CORE_ADDR pc)
935 {
936 return find_pc_sect_psymtab (pc, find_pc_mapped_section (pc));
937 }
938
939 /* Find which partial symbol within a psymtab matches PC and SECTION.
940 Return 0 if none. Check all psymtabs if PSYMTAB is 0. */
941
942 struct partial_symbol *
943 find_pc_sect_psymbol (struct partial_symtab *psymtab, CORE_ADDR pc,
944 asection *section)
945 {
946 struct partial_symbol *best = NULL, *p, **pp;
947 CORE_ADDR best_pc;
948
949 if (!psymtab)
950 psymtab = find_pc_sect_psymtab (pc, section);
951 if (!psymtab)
952 return 0;
953
954 /* Cope with programs that start at address 0 */
955 best_pc = (psymtab->textlow != 0) ? psymtab->textlow - 1 : 0;
956
957 /* Search the global symbols as well as the static symbols, so that
958 find_pc_partial_function doesn't use a minimal symbol and thus
959 cache a bad endaddr. */
960 for (pp = psymtab->objfile->global_psymbols.list + psymtab->globals_offset;
961 (pp - (psymtab->objfile->global_psymbols.list + psymtab->globals_offset)
962 < psymtab->n_global_syms);
963 pp++)
964 {
965 p = *pp;
966 if (SYMBOL_DOMAIN (p) == VAR_DOMAIN
967 && SYMBOL_CLASS (p) == LOC_BLOCK
968 && pc >= SYMBOL_VALUE_ADDRESS (p)
969 && (SYMBOL_VALUE_ADDRESS (p) > best_pc
970 || (psymtab->textlow == 0
971 && best_pc == 0 && SYMBOL_VALUE_ADDRESS (p) == 0)))
972 {
973 if (section) /* match on a specific section */
974 {
975 fixup_psymbol_section (p, psymtab->objfile);
976 if (!matching_bfd_sections (SYMBOL_BFD_SECTION (p), section))
977 continue;
978 }
979 best_pc = SYMBOL_VALUE_ADDRESS (p);
980 best = p;
981 }
982 }
983
984 for (pp = psymtab->objfile->static_psymbols.list + psymtab->statics_offset;
985 (pp - (psymtab->objfile->static_psymbols.list + psymtab->statics_offset)
986 < psymtab->n_static_syms);
987 pp++)
988 {
989 p = *pp;
990 if (SYMBOL_DOMAIN (p) == VAR_DOMAIN
991 && SYMBOL_CLASS (p) == LOC_BLOCK
992 && pc >= SYMBOL_VALUE_ADDRESS (p)
993 && (SYMBOL_VALUE_ADDRESS (p) > best_pc
994 || (psymtab->textlow == 0
995 && best_pc == 0 && SYMBOL_VALUE_ADDRESS (p) == 0)))
996 {
997 if (section) /* match on a specific section */
998 {
999 fixup_psymbol_section (p, psymtab->objfile);
1000 if (!matching_bfd_sections (SYMBOL_BFD_SECTION (p), section))
1001 continue;
1002 }
1003 best_pc = SYMBOL_VALUE_ADDRESS (p);
1004 best = p;
1005 }
1006 }
1007
1008 return best;
1009 }
1010
1011 /* Find which partial symbol within a psymtab matches PC. Return 0 if none.
1012 Check all psymtabs if PSYMTAB is 0. Backwards compatibility, no section. */
1013
1014 struct partial_symbol *
1015 find_pc_psymbol (struct partial_symtab *psymtab, CORE_ADDR pc)
1016 {
1017 return find_pc_sect_psymbol (psymtab, pc, find_pc_mapped_section (pc));
1018 }
1019 \f
1020 /* Debug symbols usually don't have section information. We need to dig that
1021 out of the minimal symbols and stash that in the debug symbol. */
1022
1023 static void
1024 fixup_section (struct general_symbol_info *ginfo,
1025 CORE_ADDR addr, struct objfile *objfile)
1026 {
1027 struct minimal_symbol *msym;
1028
1029 /* First, check whether a minimal symbol with the same name exists
1030 and points to the same address. The address check is required
1031 e.g. on PowerPC64, where the minimal symbol for a function will
1032 point to the function descriptor, while the debug symbol will
1033 point to the actual function code. */
1034 msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->name, objfile);
1035 if (msym)
1036 {
1037 ginfo->bfd_section = SYMBOL_BFD_SECTION (msym);
1038 ginfo->section = SYMBOL_SECTION (msym);
1039 }
1040 else
1041 {
1042 /* Static, function-local variables do appear in the linker
1043 (minimal) symbols, but are frequently given names that won't
1044 be found via lookup_minimal_symbol(). E.g., it has been
1045 observed in frv-uclinux (ELF) executables that a static,
1046 function-local variable named "foo" might appear in the
1047 linker symbols as "foo.6" or "foo.3". Thus, there is no
1048 point in attempting to extend the lookup-by-name mechanism to
1049 handle this case due to the fact that there can be multiple
1050 names.
1051
1052 So, instead, search the section table when lookup by name has
1053 failed. The ``addr'' and ``endaddr'' fields may have already
1054 been relocated. If so, the relocation offset (i.e. the
1055 ANOFFSET value) needs to be subtracted from these values when
1056 performing the comparison. We unconditionally subtract it,
1057 because, when no relocation has been performed, the ANOFFSET
1058 value will simply be zero.
1059
1060 The address of the symbol whose section we're fixing up HAS
1061 NOT BEEN adjusted (relocated) yet. It can't have been since
1062 the section isn't yet known and knowing the section is
1063 necessary in order to add the correct relocation value. In
1064 other words, we wouldn't even be in this function (attempting
1065 to compute the section) if it were already known.
1066
1067 Note that it is possible to search the minimal symbols
1068 (subtracting the relocation value if necessary) to find the
1069 matching minimal symbol, but this is overkill and much less
1070 efficient. It is not necessary to find the matching minimal
1071 symbol, only its section.
1072
1073 Note that this technique (of doing a section table search)
1074 can fail when unrelocated section addresses overlap. For
1075 this reason, we still attempt a lookup by name prior to doing
1076 a search of the section table. */
1077
1078 struct obj_section *s;
1079 ALL_OBJFILE_OSECTIONS (objfile, s)
1080 {
1081 int idx = s->the_bfd_section->index;
1082 CORE_ADDR offset = ANOFFSET (objfile->section_offsets, idx);
1083
1084 if (s->addr - offset <= addr && addr < s->endaddr - offset)
1085 {
1086 ginfo->bfd_section = s->the_bfd_section;
1087 ginfo->section = idx;
1088 return;
1089 }
1090 }
1091 }
1092 }
1093
1094 struct symbol *
1095 fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
1096 {
1097 CORE_ADDR addr;
1098
1099 if (!sym)
1100 return NULL;
1101
1102 if (SYMBOL_BFD_SECTION (sym))
1103 return sym;
1104
1105 /* We either have an OBJFILE, or we can get at it from the sym's
1106 symtab. Anything else is a bug. */
1107 gdb_assert (objfile || SYMBOL_SYMTAB (sym));
1108
1109 if (objfile == NULL)
1110 objfile = SYMBOL_SYMTAB (sym)->objfile;
1111
1112 /* We should have an objfile by now. */
1113 gdb_assert (objfile);
1114
1115 switch (SYMBOL_CLASS (sym))
1116 {
1117 case LOC_STATIC:
1118 case LOC_LABEL:
1119 case LOC_INDIRECT:
1120 addr = SYMBOL_VALUE_ADDRESS (sym);
1121 break;
1122 case LOC_BLOCK:
1123 addr = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
1124 break;
1125
1126 default:
1127 /* Nothing else will be listed in the minsyms -- no use looking
1128 it up. */
1129 return sym;
1130 }
1131
1132 fixup_section (&sym->ginfo, addr, objfile);
1133
1134 return sym;
1135 }
1136
1137 struct partial_symbol *
1138 fixup_psymbol_section (struct partial_symbol *psym, struct objfile *objfile)
1139 {
1140 CORE_ADDR addr;
1141
1142 if (!psym)
1143 return NULL;
1144
1145 if (SYMBOL_BFD_SECTION (psym))
1146 return psym;
1147
1148 gdb_assert (objfile);
1149
1150 switch (SYMBOL_CLASS (psym))
1151 {
1152 case LOC_STATIC:
1153 case LOC_LABEL:
1154 case LOC_INDIRECT:
1155 case LOC_BLOCK:
1156 addr = SYMBOL_VALUE_ADDRESS (psym);
1157 break;
1158 default:
1159 /* Nothing else will be listed in the minsyms -- no use looking
1160 it up. */
1161 return psym;
1162 }
1163
1164 fixup_section (&psym->ginfo, addr, objfile);
1165
1166 return psym;
1167 }
1168
1169 /* Find the definition for a specified symbol name NAME
1170 in domain DOMAIN, visible from lexical block BLOCK.
1171 Returns the struct symbol pointer, or zero if no symbol is found.
1172 If SYMTAB is non-NULL, store the symbol table in which the
1173 symbol was found there, or NULL if not found.
1174 C++: if IS_A_FIELD_OF_THIS is nonzero on entry, check to see if
1175 NAME is a field of the current implied argument `this'. If so set
1176 *IS_A_FIELD_OF_THIS to 1, otherwise set it to zero.
1177 BLOCK_FOUND is set to the block in which NAME is found (in the case of
1178 a field of `this', value_of_this sets BLOCK_FOUND to the proper value.) */
1179
1180 /* This function has a bunch of loops in it and it would seem to be
1181 attractive to put in some QUIT's (though I'm not really sure
1182 whether it can run long enough to be really important). But there
1183 are a few calls for which it would appear to be bad news to quit
1184 out of here: find_proc_desc in alpha-tdep.c and mips-tdep.c. (Note
1185 that there is C++ code below which can error(), but that probably
1186 doesn't affect these calls since they are looking for a known
1187 variable and thus can probably assume it will never hit the C++
1188 code). */
1189
1190 struct symbol *
1191 lookup_symbol_in_language (const char *name, const struct block *block,
1192 const domain_enum domain, enum language lang,
1193 int *is_a_field_of_this)
1194 {
1195 char *demangled_name = NULL;
1196 const char *modified_name = NULL;
1197 const char *mangled_name = NULL;
1198 int needtofreename = 0;
1199 struct symbol *returnval;
1200
1201 modified_name = name;
1202
1203 /* If we are using C++ or Java, demangle the name before doing a lookup, so
1204 we can always binary search. */
1205 if (lang == language_cplus)
1206 {
1207 demangled_name = cplus_demangle (name, DMGL_ANSI | DMGL_PARAMS);
1208 if (demangled_name)
1209 {
1210 mangled_name = name;
1211 modified_name = demangled_name;
1212 needtofreename = 1;
1213 }
1214 }
1215 else if (lang == language_java)
1216 {
1217 demangled_name = cplus_demangle (name,
1218 DMGL_ANSI | DMGL_PARAMS | DMGL_JAVA);
1219 if (demangled_name)
1220 {
1221 mangled_name = name;
1222 modified_name = demangled_name;
1223 needtofreename = 1;
1224 }
1225 }
1226
1227 if (case_sensitivity == case_sensitive_off)
1228 {
1229 char *copy;
1230 int len, i;
1231
1232 len = strlen (name);
1233 copy = (char *) alloca (len + 1);
1234 for (i= 0; i < len; i++)
1235 copy[i] = tolower (name[i]);
1236 copy[len] = 0;
1237 modified_name = copy;
1238 }
1239
1240 returnval = lookup_symbol_aux (modified_name, mangled_name, block,
1241 domain, lang, is_a_field_of_this);
1242 if (needtofreename)
1243 xfree (demangled_name);
1244
1245 return returnval;
1246 }
1247
1248 /* Behave like lookup_symbol_in_language, but performed with the
1249 current language. */
1250
1251 struct symbol *
1252 lookup_symbol (const char *name, const struct block *block,
1253 domain_enum domain, int *is_a_field_of_this)
1254 {
1255 return lookup_symbol_in_language (name, block, domain,
1256 current_language->la_language,
1257 is_a_field_of_this);
1258 }
1259
1260 /* Behave like lookup_symbol except that NAME is the natural name
1261 of the symbol that we're looking for and, if LINKAGE_NAME is
1262 non-NULL, ensure that the symbol's linkage name matches as
1263 well. */
1264
1265 static struct symbol *
1266 lookup_symbol_aux (const char *name, const char *linkage_name,
1267 const struct block *block, const domain_enum domain,
1268 enum language language, int *is_a_field_of_this)
1269 {
1270 struct symbol *sym;
1271 const struct language_defn *langdef;
1272
1273 /* Make sure we do something sensible with is_a_field_of_this, since
1274 the callers that set this parameter to some non-null value will
1275 certainly use it later and expect it to be either 0 or 1.
1276 If we don't set it, the contents of is_a_field_of_this are
1277 undefined. */
1278 if (is_a_field_of_this != NULL)
1279 *is_a_field_of_this = 0;
1280
1281 /* Search specified block and its superiors. Don't search
1282 STATIC_BLOCK or GLOBAL_BLOCK. */
1283
1284 sym = lookup_symbol_aux_local (name, linkage_name, block, domain);
1285 if (sym != NULL)
1286 return sym;
1287
1288 /* If requested to do so by the caller and if appropriate for LANGUAGE,
1289 check to see if NAME is a field of `this'. */
1290
1291 langdef = language_def (language);
1292
1293 if (langdef->la_name_of_this != NULL && is_a_field_of_this != NULL
1294 && block != NULL)
1295 {
1296 struct symbol *sym = NULL;
1297 /* 'this' is only defined in the function's block, so find the
1298 enclosing function block. */
1299 for (; block && !BLOCK_FUNCTION (block);
1300 block = BLOCK_SUPERBLOCK (block));
1301
1302 if (block && !dict_empty (BLOCK_DICT (block)))
1303 sym = lookup_block_symbol (block, langdef->la_name_of_this,
1304 NULL, VAR_DOMAIN);
1305 if (sym)
1306 {
1307 struct type *t = sym->type;
1308
1309 /* I'm not really sure that type of this can ever
1310 be typedefed; just be safe. */
1311 CHECK_TYPEDEF (t);
1312 if (TYPE_CODE (t) == TYPE_CODE_PTR
1313 || TYPE_CODE (t) == TYPE_CODE_REF)
1314 t = TYPE_TARGET_TYPE (t);
1315
1316 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
1317 && TYPE_CODE (t) != TYPE_CODE_UNION)
1318 error (_("Internal error: `%s' is not an aggregate"),
1319 langdef->la_name_of_this);
1320
1321 if (check_field (t, name))
1322 {
1323 *is_a_field_of_this = 1;
1324 return NULL;
1325 }
1326 }
1327 }
1328
1329 /* Now do whatever is appropriate for LANGUAGE to look
1330 up static and global variables. */
1331
1332 sym = langdef->la_lookup_symbol_nonlocal (name, linkage_name, block, domain);
1333 if (sym != NULL)
1334 return sym;
1335
1336 /* Now search all static file-level symbols. Not strictly correct,
1337 but more useful than an error. Do the symtabs first, then check
1338 the psymtabs. If a psymtab indicates the existence of the
1339 desired name as a file-level static, then do psymtab-to-symtab
1340 conversion on the fly and return the found symbol. */
1341
1342 sym = lookup_symbol_aux_symtabs (STATIC_BLOCK, name, linkage_name, domain);
1343 if (sym != NULL)
1344 return sym;
1345
1346 sym = lookup_symbol_aux_psymtabs (STATIC_BLOCK, name, linkage_name, domain);
1347 if (sym != NULL)
1348 return sym;
1349
1350 return NULL;
1351 }
1352
1353 /* Check to see if the symbol is defined in BLOCK or its superiors.
1354 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
1355
1356 static struct symbol *
1357 lookup_symbol_aux_local (const char *name, const char *linkage_name,
1358 const struct block *block,
1359 const domain_enum domain)
1360 {
1361 struct symbol *sym;
1362 const struct block *static_block = block_static_block (block);
1363
1364 /* Check if either no block is specified or it's a global block. */
1365
1366 if (static_block == NULL)
1367 return NULL;
1368
1369 while (block != static_block)
1370 {
1371 sym = lookup_symbol_aux_block (name, linkage_name, block, domain);
1372 if (sym != NULL)
1373 return sym;
1374 block = BLOCK_SUPERBLOCK (block);
1375 }
1376
1377 /* We've reached the static block without finding a result. */
1378
1379 return NULL;
1380 }
1381
1382 /* Look up OBJFILE to BLOCK. */
1383
1384 static struct objfile *
1385 lookup_objfile_from_block (const struct block *block)
1386 {
1387 struct objfile *obj;
1388 struct symtab *s;
1389
1390 if (block == NULL)
1391 return NULL;
1392
1393 block = block_global_block (block);
1394 /* Go through SYMTABS. */
1395 ALL_SYMTABS (obj, s)
1396 if (block == BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK))
1397 return obj;
1398
1399 return NULL;
1400 }
1401
1402 /* Look up a symbol in a block; if found, locate its symtab, fixup the
1403 symbol, and set block_found appropriately. */
1404
1405 struct symbol *
1406 lookup_symbol_aux_block (const char *name, const char *linkage_name,
1407 const struct block *block,
1408 const domain_enum domain)
1409 {
1410 struct symbol *sym;
1411
1412 sym = lookup_block_symbol (block, name, linkage_name, domain);
1413 if (sym)
1414 {
1415 block_found = block;
1416 return fixup_symbol_section (sym, NULL);
1417 }
1418
1419 return NULL;
1420 }
1421
1422 /* Check all global symbols in OBJFILE in symtabs and
1423 psymtabs. */
1424
1425 struct symbol *
1426 lookup_global_symbol_from_objfile (const struct objfile *objfile,
1427 const char *name,
1428 const char *linkage_name,
1429 const domain_enum domain)
1430 {
1431 struct symbol *sym;
1432 struct blockvector *bv;
1433 const struct block *block;
1434 struct symtab *s;
1435 struct partial_symtab *ps;
1436
1437 /* Go through symtabs. */
1438 ALL_OBJFILE_SYMTABS (objfile, s)
1439 {
1440 bv = BLOCKVECTOR (s);
1441 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1442 sym = lookup_block_symbol (block, name, linkage_name, domain);
1443 if (sym)
1444 {
1445 block_found = block;
1446 return fixup_symbol_section (sym, (struct objfile *)objfile);
1447 }
1448 }
1449
1450 /* Now go through psymtabs. */
1451 ALL_OBJFILE_PSYMTABS (objfile, ps)
1452 {
1453 if (!ps->readin
1454 && lookup_partial_symbol (ps, name, linkage_name,
1455 1, domain))
1456 {
1457 s = PSYMTAB_TO_SYMTAB (ps);
1458 bv = BLOCKVECTOR (s);
1459 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1460 sym = lookup_block_symbol (block, name, linkage_name, domain);
1461 return fixup_symbol_section (sym, (struct objfile *)objfile);
1462 }
1463 }
1464
1465 if (objfile->separate_debug_objfile)
1466 return lookup_global_symbol_from_objfile (objfile->separate_debug_objfile,
1467 name, linkage_name, domain);
1468
1469 return NULL;
1470 }
1471
1472 /* Check to see if the symbol is defined in one of the symtabs.
1473 BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
1474 depending on whether or not we want to search global symbols or
1475 static symbols. */
1476
1477 static struct symbol *
1478 lookup_symbol_aux_symtabs (int block_index,
1479 const char *name, const char *linkage_name,
1480 const domain_enum domain)
1481 {
1482 struct symbol *sym;
1483 struct objfile *objfile;
1484 struct blockvector *bv;
1485 const struct block *block;
1486 struct symtab *s;
1487
1488 ALL_PRIMARY_SYMTABS (objfile, s)
1489 {
1490 bv = BLOCKVECTOR (s);
1491 block = BLOCKVECTOR_BLOCK (bv, block_index);
1492 sym = lookup_block_symbol (block, name, linkage_name, domain);
1493 if (sym)
1494 {
1495 block_found = block;
1496 return fixup_symbol_section (sym, objfile);
1497 }
1498 }
1499
1500 return NULL;
1501 }
1502
1503 /* Check to see if the symbol is defined in one of the partial
1504 symtabs. BLOCK_INDEX should be either GLOBAL_BLOCK or
1505 STATIC_BLOCK, depending on whether or not we want to search global
1506 symbols or static symbols. */
1507
1508 static struct symbol *
1509 lookup_symbol_aux_psymtabs (int block_index, const char *name,
1510 const char *linkage_name,
1511 const domain_enum domain)
1512 {
1513 struct symbol *sym;
1514 struct objfile *objfile;
1515 struct blockvector *bv;
1516 const struct block *block;
1517 struct partial_symtab *ps;
1518 struct symtab *s;
1519 const int psymtab_index = (block_index == GLOBAL_BLOCK ? 1 : 0);
1520
1521 ALL_PSYMTABS (objfile, ps)
1522 {
1523 if (!ps->readin
1524 && lookup_partial_symbol (ps, name, linkage_name,
1525 psymtab_index, domain))
1526 {
1527 s = PSYMTAB_TO_SYMTAB (ps);
1528 bv = BLOCKVECTOR (s);
1529 block = BLOCKVECTOR_BLOCK (bv, block_index);
1530 sym = lookup_block_symbol (block, name, linkage_name, domain);
1531 if (!sym)
1532 {
1533 /* This shouldn't be necessary, but as a last resort try
1534 looking in the statics even though the psymtab claimed
1535 the symbol was global, or vice-versa. It's possible
1536 that the psymtab gets it wrong in some cases. */
1537
1538 /* FIXME: carlton/2002-09-30: Should we really do that?
1539 If that happens, isn't it likely to be a GDB error, in
1540 which case we should fix the GDB error rather than
1541 silently dealing with it here? So I'd vote for
1542 removing the check for the symbol in the other
1543 block. */
1544 block = BLOCKVECTOR_BLOCK (bv,
1545 block_index == GLOBAL_BLOCK ?
1546 STATIC_BLOCK : GLOBAL_BLOCK);
1547 sym = lookup_block_symbol (block, name, linkage_name, domain);
1548 if (!sym)
1549 error (_("Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n%s may be an inlined function, or may be a template function\n(if a template, try specifying an instantiation: %s<type>)."),
1550 block_index == GLOBAL_BLOCK ? "global" : "static",
1551 name, ps->filename, name, name);
1552 }
1553 return fixup_symbol_section (sym, objfile);
1554 }
1555 }
1556
1557 return NULL;
1558 }
1559
1560 /* A default version of lookup_symbol_nonlocal for use by languages
1561 that can't think of anything better to do. This implements the C
1562 lookup rules. */
1563
1564 struct symbol *
1565 basic_lookup_symbol_nonlocal (const char *name,
1566 const char *linkage_name,
1567 const struct block *block,
1568 const domain_enum domain)
1569 {
1570 struct symbol *sym;
1571
1572 /* NOTE: carlton/2003-05-19: The comments below were written when
1573 this (or what turned into this) was part of lookup_symbol_aux;
1574 I'm much less worried about these questions now, since these
1575 decisions have turned out well, but I leave these comments here
1576 for posterity. */
1577
1578 /* NOTE: carlton/2002-12-05: There is a question as to whether or
1579 not it would be appropriate to search the current global block
1580 here as well. (That's what this code used to do before the
1581 is_a_field_of_this check was moved up.) On the one hand, it's
1582 redundant with the lookup_symbol_aux_symtabs search that happens
1583 next. On the other hand, if decode_line_1 is passed an argument
1584 like filename:var, then the user presumably wants 'var' to be
1585 searched for in filename. On the third hand, there shouldn't be
1586 multiple global variables all of which are named 'var', and it's
1587 not like decode_line_1 has ever restricted its search to only
1588 global variables in a single filename. All in all, only
1589 searching the static block here seems best: it's correct and it's
1590 cleanest. */
1591
1592 /* NOTE: carlton/2002-12-05: There's also a possible performance
1593 issue here: if you usually search for global symbols in the
1594 current file, then it would be slightly better to search the
1595 current global block before searching all the symtabs. But there
1596 are other factors that have a much greater effect on performance
1597 than that one, so I don't think we should worry about that for
1598 now. */
1599
1600 sym = lookup_symbol_static (name, linkage_name, block, domain);
1601 if (sym != NULL)
1602 return sym;
1603
1604 return lookup_symbol_global (name, linkage_name, block, domain);
1605 }
1606
1607 /* Lookup a symbol in the static block associated to BLOCK, if there
1608 is one; do nothing if BLOCK is NULL or a global block. */
1609
1610 struct symbol *
1611 lookup_symbol_static (const char *name,
1612 const char *linkage_name,
1613 const struct block *block,
1614 const domain_enum domain)
1615 {
1616 const struct block *static_block = block_static_block (block);
1617
1618 if (static_block != NULL)
1619 return lookup_symbol_aux_block (name, linkage_name, static_block, domain);
1620 else
1621 return NULL;
1622 }
1623
1624 /* Lookup a symbol in all files' global blocks (searching psymtabs if
1625 necessary). */
1626
1627 struct symbol *
1628 lookup_symbol_global (const char *name,
1629 const char *linkage_name,
1630 const struct block *block,
1631 const domain_enum domain)
1632 {
1633 struct symbol *sym = NULL;
1634 struct objfile *objfile = NULL;
1635
1636 /* Call library-specific lookup procedure. */
1637 objfile = lookup_objfile_from_block (block);
1638 if (objfile != NULL)
1639 sym = solib_global_lookup (objfile, name, linkage_name, domain);
1640 if (sym != NULL)
1641 return sym;
1642
1643 sym = lookup_symbol_aux_symtabs (GLOBAL_BLOCK, name, linkage_name, domain);
1644 if (sym != NULL)
1645 return sym;
1646
1647 return lookup_symbol_aux_psymtabs (GLOBAL_BLOCK, name, linkage_name, domain);
1648 }
1649
1650 int
1651 symbol_matches_domain (enum language symbol_language,
1652 domain_enum symbol_domain,
1653 domain_enum domain)
1654 {
1655 /* For C++ "struct foo { ... }" also defines a typedef for "foo".
1656 A Java class declaration also defines a typedef for the class.
1657 Similarly, any Ada type declaration implicitly defines a typedef. */
1658 if (symbol_language == language_cplus
1659 || symbol_language == language_java
1660 || symbol_language == language_ada)
1661 {
1662 if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN)
1663 && symbol_domain == STRUCT_DOMAIN)
1664 return 1;
1665 }
1666 /* For all other languages, strict match is required. */
1667 return (symbol_domain == domain);
1668 }
1669
1670 /* Look, in partial_symtab PST, for symbol whose natural name is NAME.
1671 If LINKAGE_NAME is non-NULL, check in addition that the symbol's
1672 linkage name matches it. Check the global symbols if GLOBAL, the
1673 static symbols if not */
1674
1675 struct partial_symbol *
1676 lookup_partial_symbol (struct partial_symtab *pst, const char *name,
1677 const char *linkage_name, int global,
1678 domain_enum domain)
1679 {
1680 struct partial_symbol *temp;
1681 struct partial_symbol **start, **psym;
1682 struct partial_symbol **top, **real_top, **bottom, **center;
1683 int length = (global ? pst->n_global_syms : pst->n_static_syms);
1684 int do_linear_search = 1;
1685
1686 if (length == 0)
1687 {
1688 return (NULL);
1689 }
1690 start = (global ?
1691 pst->objfile->global_psymbols.list + pst->globals_offset :
1692 pst->objfile->static_psymbols.list + pst->statics_offset);
1693
1694 if (global) /* This means we can use a binary search. */
1695 {
1696 do_linear_search = 0;
1697
1698 /* Binary search. This search is guaranteed to end with center
1699 pointing at the earliest partial symbol whose name might be
1700 correct. At that point *all* partial symbols with an
1701 appropriate name will be checked against the correct
1702 domain. */
1703
1704 bottom = start;
1705 top = start + length - 1;
1706 real_top = top;
1707 while (top > bottom)
1708 {
1709 center = bottom + (top - bottom) / 2;
1710 if (!(center < top))
1711 internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
1712 if (!do_linear_search
1713 && (SYMBOL_LANGUAGE (*center) == language_java))
1714 {
1715 do_linear_search = 1;
1716 }
1717 if (strcmp_iw_ordered (SYMBOL_SEARCH_NAME (*center), name) >= 0)
1718 {
1719 top = center;
1720 }
1721 else
1722 {
1723 bottom = center + 1;
1724 }
1725 }
1726 if (!(top == bottom))
1727 internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
1728
1729 while (top <= real_top
1730 && (linkage_name != NULL
1731 ? strcmp (SYMBOL_LINKAGE_NAME (*top), linkage_name) == 0
1732 : SYMBOL_MATCHES_SEARCH_NAME (*top,name)))
1733 {
1734 if (symbol_matches_domain (SYMBOL_LANGUAGE (*top),
1735 SYMBOL_DOMAIN (*top), domain))
1736 return (*top);
1737 top++;
1738 }
1739 }
1740
1741 /* Can't use a binary search or else we found during the binary search that
1742 we should also do a linear search. */
1743
1744 if (do_linear_search)
1745 {
1746 for (psym = start; psym < start + length; psym++)
1747 {
1748 if (symbol_matches_domain (SYMBOL_LANGUAGE (*psym),
1749 SYMBOL_DOMAIN (*psym), domain))
1750 {
1751 if (linkage_name != NULL
1752 ? strcmp (SYMBOL_LINKAGE_NAME (*psym), linkage_name) == 0
1753 : SYMBOL_MATCHES_SEARCH_NAME (*psym, name))
1754 {
1755 return (*psym);
1756 }
1757 }
1758 }
1759 }
1760
1761 return (NULL);
1762 }
1763
1764 /* Look up a type named NAME in the struct_domain. The type returned
1765 must not be opaque -- i.e., must have at least one field
1766 defined. */
1767
1768 struct type *
1769 lookup_transparent_type (const char *name)
1770 {
1771 return current_language->la_lookup_transparent_type (name);
1772 }
1773
1774 /* The standard implementation of lookup_transparent_type. This code
1775 was modeled on lookup_symbol -- the parts not relevant to looking
1776 up types were just left out. In particular it's assumed here that
1777 types are available in struct_domain and only at file-static or
1778 global blocks. */
1779
1780 struct type *
1781 basic_lookup_transparent_type (const char *name)
1782 {
1783 struct symbol *sym;
1784 struct symtab *s = NULL;
1785 struct partial_symtab *ps;
1786 struct blockvector *bv;
1787 struct objfile *objfile;
1788 struct block *block;
1789
1790 /* Now search all the global symbols. Do the symtab's first, then
1791 check the psymtab's. If a psymtab indicates the existence
1792 of the desired name as a global, then do psymtab-to-symtab
1793 conversion on the fly and return the found symbol. */
1794
1795 ALL_PRIMARY_SYMTABS (objfile, s)
1796 {
1797 bv = BLOCKVECTOR (s);
1798 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1799 sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN);
1800 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1801 {
1802 return SYMBOL_TYPE (sym);
1803 }
1804 }
1805
1806 ALL_PSYMTABS (objfile, ps)
1807 {
1808 if (!ps->readin && lookup_partial_symbol (ps, name, NULL,
1809 1, STRUCT_DOMAIN))
1810 {
1811 s = PSYMTAB_TO_SYMTAB (ps);
1812 bv = BLOCKVECTOR (s);
1813 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1814 sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN);
1815 if (!sym)
1816 {
1817 /* This shouldn't be necessary, but as a last resort
1818 * try looking in the statics even though the psymtab
1819 * claimed the symbol was global. It's possible that
1820 * the psymtab gets it wrong in some cases.
1821 */
1822 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
1823 sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN);
1824 if (!sym)
1825 error (_("Internal: global symbol `%s' found in %s psymtab but not in symtab.\n\
1826 %s may be an inlined function, or may be a template function\n\
1827 (if a template, try specifying an instantiation: %s<type>)."),
1828 name, ps->filename, name, name);
1829 }
1830 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1831 return SYMBOL_TYPE (sym);
1832 }
1833 }
1834
1835 /* Now search the static file-level symbols.
1836 Not strictly correct, but more useful than an error.
1837 Do the symtab's first, then
1838 check the psymtab's. If a psymtab indicates the existence
1839 of the desired name as a file-level static, then do psymtab-to-symtab
1840 conversion on the fly and return the found symbol.
1841 */
1842
1843 ALL_PRIMARY_SYMTABS (objfile, s)
1844 {
1845 bv = BLOCKVECTOR (s);
1846 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
1847 sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN);
1848 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1849 {
1850 return SYMBOL_TYPE (sym);
1851 }
1852 }
1853
1854 ALL_PSYMTABS (objfile, ps)
1855 {
1856 if (!ps->readin && lookup_partial_symbol (ps, name, NULL, 0, STRUCT_DOMAIN))
1857 {
1858 s = PSYMTAB_TO_SYMTAB (ps);
1859 bv = BLOCKVECTOR (s);
1860 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
1861 sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN);
1862 if (!sym)
1863 {
1864 /* This shouldn't be necessary, but as a last resort
1865 * try looking in the globals even though the psymtab
1866 * claimed the symbol was static. It's possible that
1867 * the psymtab gets it wrong in some cases.
1868 */
1869 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1870 sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN);
1871 if (!sym)
1872 error (_("Internal: static symbol `%s' found in %s psymtab but not in symtab.\n\
1873 %s may be an inlined function, or may be a template function\n\
1874 (if a template, try specifying an instantiation: %s<type>)."),
1875 name, ps->filename, name, name);
1876 }
1877 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1878 return SYMBOL_TYPE (sym);
1879 }
1880 }
1881 return (struct type *) 0;
1882 }
1883
1884
1885 /* Find the psymtab containing main(). */
1886 /* FIXME: What about languages without main() or specially linked
1887 executables that have no main() ? */
1888
1889 struct partial_symtab *
1890 find_main_psymtab (void)
1891 {
1892 struct partial_symtab *pst;
1893 struct objfile *objfile;
1894
1895 ALL_PSYMTABS (objfile, pst)
1896 {
1897 if (lookup_partial_symbol (pst, main_name (), NULL, 1, VAR_DOMAIN))
1898 {
1899 return (pst);
1900 }
1901 }
1902 return (NULL);
1903 }
1904
1905 /* Search BLOCK for symbol NAME in DOMAIN.
1906
1907 Note that if NAME is the demangled form of a C++ symbol, we will fail
1908 to find a match during the binary search of the non-encoded names, but
1909 for now we don't worry about the slight inefficiency of looking for
1910 a match we'll never find, since it will go pretty quick. Once the
1911 binary search terminates, we drop through and do a straight linear
1912 search on the symbols. Each symbol which is marked as being a ObjC/C++
1913 symbol (language_cplus or language_objc set) has both the encoded and
1914 non-encoded names tested for a match.
1915
1916 If LINKAGE_NAME is non-NULL, verify that any symbol we find has this
1917 particular mangled name.
1918 */
1919
1920 struct symbol *
1921 lookup_block_symbol (const struct block *block, const char *name,
1922 const char *linkage_name,
1923 const domain_enum domain)
1924 {
1925 struct dict_iterator iter;
1926 struct symbol *sym;
1927
1928 if (!BLOCK_FUNCTION (block))
1929 {
1930 for (sym = dict_iter_name_first (BLOCK_DICT (block), name, &iter);
1931 sym != NULL;
1932 sym = dict_iter_name_next (name, &iter))
1933 {
1934 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
1935 SYMBOL_DOMAIN (sym), domain)
1936 && (linkage_name != NULL
1937 ? strcmp (SYMBOL_LINKAGE_NAME (sym), linkage_name) == 0 : 1))
1938 return sym;
1939 }
1940 return NULL;
1941 }
1942 else
1943 {
1944 /* Note that parameter symbols do not always show up last in the
1945 list; this loop makes sure to take anything else other than
1946 parameter symbols first; it only uses parameter symbols as a
1947 last resort. Note that this only takes up extra computation
1948 time on a match. */
1949
1950 struct symbol *sym_found = NULL;
1951
1952 for (sym = dict_iter_name_first (BLOCK_DICT (block), name, &iter);
1953 sym != NULL;
1954 sym = dict_iter_name_next (name, &iter))
1955 {
1956 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
1957 SYMBOL_DOMAIN (sym), domain)
1958 && (linkage_name != NULL
1959 ? strcmp (SYMBOL_LINKAGE_NAME (sym), linkage_name) == 0 : 1))
1960 {
1961 sym_found = sym;
1962 if (SYMBOL_CLASS (sym) != LOC_ARG &&
1963 SYMBOL_CLASS (sym) != LOC_LOCAL_ARG &&
1964 SYMBOL_CLASS (sym) != LOC_REF_ARG &&
1965 SYMBOL_CLASS (sym) != LOC_REGPARM &&
1966 SYMBOL_CLASS (sym) != LOC_REGPARM_ADDR &&
1967 SYMBOL_CLASS (sym) != LOC_BASEREG_ARG &&
1968 SYMBOL_CLASS (sym) != LOC_COMPUTED_ARG)
1969 {
1970 break;
1971 }
1972 }
1973 }
1974 return (sym_found); /* Will be NULL if not found. */
1975 }
1976 }
1977
1978 /* Find the symtab associated with PC and SECTION. Look through the
1979 psymtabs and read in another symtab if necessary. */
1980
1981 struct symtab *
1982 find_pc_sect_symtab (CORE_ADDR pc, asection *section)
1983 {
1984 struct block *b;
1985 struct blockvector *bv;
1986 struct symtab *s = NULL;
1987 struct symtab *best_s = NULL;
1988 struct partial_symtab *ps;
1989 struct objfile *objfile;
1990 CORE_ADDR distance = 0;
1991 struct minimal_symbol *msymbol;
1992
1993 /* If we know that this is not a text address, return failure. This is
1994 necessary because we loop based on the block's high and low code
1995 addresses, which do not include the data ranges, and because
1996 we call find_pc_sect_psymtab which has a similar restriction based
1997 on the partial_symtab's texthigh and textlow. */
1998 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
1999 if (msymbol
2000 && (msymbol->type == mst_data
2001 || msymbol->type == mst_bss
2002 || msymbol->type == mst_abs
2003 || msymbol->type == mst_file_data
2004 || msymbol->type == mst_file_bss))
2005 return NULL;
2006
2007 /* Search all symtabs for the one whose file contains our address, and which
2008 is the smallest of all the ones containing the address. This is designed
2009 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
2010 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
2011 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
2012
2013 This happens for native ecoff format, where code from included files
2014 gets its own symtab. The symtab for the included file should have
2015 been read in already via the dependency mechanism.
2016 It might be swifter to create several symtabs with the same name
2017 like xcoff does (I'm not sure).
2018
2019 It also happens for objfiles that have their functions reordered.
2020 For these, the symtab we are looking for is not necessarily read in. */
2021
2022 ALL_PRIMARY_SYMTABS (objfile, s)
2023 {
2024 bv = BLOCKVECTOR (s);
2025 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
2026
2027 if (BLOCK_START (b) <= pc
2028 && BLOCK_END (b) > pc
2029 && (distance == 0
2030 || BLOCK_END (b) - BLOCK_START (b) < distance))
2031 {
2032 /* For an objfile that has its functions reordered,
2033 find_pc_psymtab will find the proper partial symbol table
2034 and we simply return its corresponding symtab. */
2035 /* In order to better support objfiles that contain both
2036 stabs and coff debugging info, we continue on if a psymtab
2037 can't be found. */
2038 if ((objfile->flags & OBJF_REORDERED) && objfile->psymtabs)
2039 {
2040 ps = find_pc_sect_psymtab (pc, section);
2041 if (ps)
2042 return PSYMTAB_TO_SYMTAB (ps);
2043 }
2044 if (section != 0)
2045 {
2046 struct dict_iterator iter;
2047 struct symbol *sym = NULL;
2048
2049 ALL_BLOCK_SYMBOLS (b, iter, sym)
2050 {
2051 fixup_symbol_section (sym, objfile);
2052 if (matching_bfd_sections (SYMBOL_BFD_SECTION (sym), section))
2053 break;
2054 }
2055 if (sym == NULL)
2056 continue; /* no symbol in this symtab matches section */
2057 }
2058 distance = BLOCK_END (b) - BLOCK_START (b);
2059 best_s = s;
2060 }
2061 }
2062
2063 if (best_s != NULL)
2064 return (best_s);
2065
2066 s = NULL;
2067 ps = find_pc_sect_psymtab (pc, section);
2068 if (ps)
2069 {
2070 if (ps->readin)
2071 /* Might want to error() here (in case symtab is corrupt and
2072 will cause a core dump), but maybe we can successfully
2073 continue, so let's not. */
2074 warning (_("\
2075 (Internal error: pc 0x%s in read in psymtab, but not in symtab.)\n"),
2076 paddr_nz (pc));
2077 s = PSYMTAB_TO_SYMTAB (ps);
2078 }
2079 return (s);
2080 }
2081
2082 /* Find the symtab associated with PC. Look through the psymtabs and
2083 read in another symtab if necessary. Backward compatibility, no section */
2084
2085 struct symtab *
2086 find_pc_symtab (CORE_ADDR pc)
2087 {
2088 return find_pc_sect_symtab (pc, find_pc_mapped_section (pc));
2089 }
2090 \f
2091
2092 /* Find the source file and line number for a given PC value and SECTION.
2093 Return a structure containing a symtab pointer, a line number,
2094 and a pc range for the entire source line.
2095 The value's .pc field is NOT the specified pc.
2096 NOTCURRENT nonzero means, if specified pc is on a line boundary,
2097 use the line that ends there. Otherwise, in that case, the line
2098 that begins there is used. */
2099
2100 /* The big complication here is that a line may start in one file, and end just
2101 before the start of another file. This usually occurs when you #include
2102 code in the middle of a subroutine. To properly find the end of a line's PC
2103 range, we must search all symtabs associated with this compilation unit, and
2104 find the one whose first PC is closer than that of the next line in this
2105 symtab. */
2106
2107 /* If it's worth the effort, we could be using a binary search. */
2108
2109 struct symtab_and_line
2110 find_pc_sect_line (CORE_ADDR pc, struct bfd_section *section, int notcurrent)
2111 {
2112 struct symtab *s;
2113 struct linetable *l;
2114 int len;
2115 int i;
2116 struct linetable_entry *item;
2117 struct symtab_and_line val;
2118 struct blockvector *bv;
2119 struct minimal_symbol *msymbol;
2120 struct minimal_symbol *mfunsym;
2121
2122 /* Info on best line seen so far, and where it starts, and its file. */
2123
2124 struct linetable_entry *best = NULL;
2125 CORE_ADDR best_end = 0;
2126 struct symtab *best_symtab = 0;
2127
2128 /* Store here the first line number
2129 of a file which contains the line at the smallest pc after PC.
2130 If we don't find a line whose range contains PC,
2131 we will use a line one less than this,
2132 with a range from the start of that file to the first line's pc. */
2133 struct linetable_entry *alt = NULL;
2134 struct symtab *alt_symtab = 0;
2135
2136 /* Info on best line seen in this file. */
2137
2138 struct linetable_entry *prev;
2139
2140 /* If this pc is not from the current frame,
2141 it is the address of the end of a call instruction.
2142 Quite likely that is the start of the following statement.
2143 But what we want is the statement containing the instruction.
2144 Fudge the pc to make sure we get that. */
2145
2146 init_sal (&val); /* initialize to zeroes */
2147
2148 /* It's tempting to assume that, if we can't find debugging info for
2149 any function enclosing PC, that we shouldn't search for line
2150 number info, either. However, GAS can emit line number info for
2151 assembly files --- very helpful when debugging hand-written
2152 assembly code. In such a case, we'd have no debug info for the
2153 function, but we would have line info. */
2154
2155 if (notcurrent)
2156 pc -= 1;
2157
2158 /* elz: added this because this function returned the wrong
2159 information if the pc belongs to a stub (import/export)
2160 to call a shlib function. This stub would be anywhere between
2161 two functions in the target, and the line info was erroneously
2162 taken to be the one of the line before the pc.
2163 */
2164 /* RT: Further explanation:
2165
2166 * We have stubs (trampolines) inserted between procedures.
2167 *
2168 * Example: "shr1" exists in a shared library, and a "shr1" stub also
2169 * exists in the main image.
2170 *
2171 * In the minimal symbol table, we have a bunch of symbols
2172 * sorted by start address. The stubs are marked as "trampoline",
2173 * the others appear as text. E.g.:
2174 *
2175 * Minimal symbol table for main image
2176 * main: code for main (text symbol)
2177 * shr1: stub (trampoline symbol)
2178 * foo: code for foo (text symbol)
2179 * ...
2180 * Minimal symbol table for "shr1" image:
2181 * ...
2182 * shr1: code for shr1 (text symbol)
2183 * ...
2184 *
2185 * So the code below is trying to detect if we are in the stub
2186 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
2187 * and if found, do the symbolization from the real-code address
2188 * rather than the stub address.
2189 *
2190 * Assumptions being made about the minimal symbol table:
2191 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
2192 * if we're really in the trampoline. If we're beyond it (say
2193 * we're in "foo" in the above example), it'll have a closer
2194 * symbol (the "foo" text symbol for example) and will not
2195 * return the trampoline.
2196 * 2. lookup_minimal_symbol_text() will find a real text symbol
2197 * corresponding to the trampoline, and whose address will
2198 * be different than the trampoline address. I put in a sanity
2199 * check for the address being the same, to avoid an
2200 * infinite recursion.
2201 */
2202 msymbol = lookup_minimal_symbol_by_pc (pc);
2203 if (msymbol != NULL)
2204 if (MSYMBOL_TYPE (msymbol) == mst_solib_trampoline)
2205 {
2206 mfunsym = lookup_minimal_symbol_text (SYMBOL_LINKAGE_NAME (msymbol),
2207 NULL);
2208 if (mfunsym == NULL)
2209 /* I eliminated this warning since it is coming out
2210 * in the following situation:
2211 * gdb shmain // test program with shared libraries
2212 * (gdb) break shr1 // function in shared lib
2213 * Warning: In stub for ...
2214 * In the above situation, the shared lib is not loaded yet,
2215 * so of course we can't find the real func/line info,
2216 * but the "break" still works, and the warning is annoying.
2217 * So I commented out the warning. RT */
2218 /* warning ("In stub for %s; unable to find real function/line info", SYMBOL_LINKAGE_NAME (msymbol)) */ ;
2219 /* fall through */
2220 else if (SYMBOL_VALUE_ADDRESS (mfunsym) == SYMBOL_VALUE_ADDRESS (msymbol))
2221 /* Avoid infinite recursion */
2222 /* See above comment about why warning is commented out */
2223 /* warning ("In stub for %s; unable to find real function/line info", SYMBOL_LINKAGE_NAME (msymbol)) */ ;
2224 /* fall through */
2225 else
2226 return find_pc_line (SYMBOL_VALUE_ADDRESS (mfunsym), 0);
2227 }
2228
2229
2230 s = find_pc_sect_symtab (pc, section);
2231 if (!s)
2232 {
2233 /* if no symbol information, return previous pc */
2234 if (notcurrent)
2235 pc++;
2236 val.pc = pc;
2237 return val;
2238 }
2239
2240 bv = BLOCKVECTOR (s);
2241
2242 /* Look at all the symtabs that share this blockvector.
2243 They all have the same apriori range, that we found was right;
2244 but they have different line tables. */
2245
2246 for (; s && BLOCKVECTOR (s) == bv; s = s->next)
2247 {
2248 /* Find the best line in this symtab. */
2249 l = LINETABLE (s);
2250 if (!l)
2251 continue;
2252 len = l->nitems;
2253 if (len <= 0)
2254 {
2255 /* I think len can be zero if the symtab lacks line numbers
2256 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
2257 I'm not sure which, and maybe it depends on the symbol
2258 reader). */
2259 continue;
2260 }
2261
2262 prev = NULL;
2263 item = l->item; /* Get first line info */
2264
2265 /* Is this file's first line closer than the first lines of other files?
2266 If so, record this file, and its first line, as best alternate. */
2267 if (item->pc > pc && (!alt || item->pc < alt->pc))
2268 {
2269 alt = item;
2270 alt_symtab = s;
2271 }
2272
2273 for (i = 0; i < len; i++, item++)
2274 {
2275 /* Leave prev pointing to the linetable entry for the last line
2276 that started at or before PC. */
2277 if (item->pc > pc)
2278 break;
2279
2280 prev = item;
2281 }
2282
2283 /* At this point, prev points at the line whose start addr is <= pc, and
2284 item points at the next line. If we ran off the end of the linetable
2285 (pc >= start of the last line), then prev == item. If pc < start of
2286 the first line, prev will not be set. */
2287
2288 /* Is this file's best line closer than the best in the other files?
2289 If so, record this file, and its best line, as best so far. Don't
2290 save prev if it represents the end of a function (i.e. line number
2291 0) instead of a real line. */
2292
2293 if (prev && prev->line && (!best || prev->pc > best->pc))
2294 {
2295 best = prev;
2296 best_symtab = s;
2297
2298 /* Discard BEST_END if it's before the PC of the current BEST. */
2299 if (best_end <= best->pc)
2300 best_end = 0;
2301 }
2302
2303 /* If another line (denoted by ITEM) is in the linetable and its
2304 PC is after BEST's PC, but before the current BEST_END, then
2305 use ITEM's PC as the new best_end. */
2306 if (best && i < len && item->pc > best->pc
2307 && (best_end == 0 || best_end > item->pc))
2308 best_end = item->pc;
2309 }
2310
2311 if (!best_symtab)
2312 {
2313 /* If we didn't find any line number info, just return zeros.
2314 We used to return alt->line - 1 here, but that could be
2315 anywhere; if we don't have line number info for this PC,
2316 don't make some up. */
2317 val.pc = pc;
2318 }
2319 else if (best->line == 0)
2320 {
2321 /* If our best fit is in a range of PC's for which no line
2322 number info is available (line number is zero) then we didn't
2323 find any valid line information. */
2324 val.pc = pc;
2325 }
2326 else
2327 {
2328 val.symtab = best_symtab;
2329 val.line = best->line;
2330 val.pc = best->pc;
2331 if (best_end && (!alt || best_end < alt->pc))
2332 val.end = best_end;
2333 else if (alt)
2334 val.end = alt->pc;
2335 else
2336 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
2337 }
2338 val.section = section;
2339 return val;
2340 }
2341
2342 /* Backward compatibility (no section) */
2343
2344 struct symtab_and_line
2345 find_pc_line (CORE_ADDR pc, int notcurrent)
2346 {
2347 asection *section;
2348
2349 section = find_pc_overlay (pc);
2350 if (pc_in_unmapped_range (pc, section))
2351 pc = overlay_mapped_address (pc, section);
2352 return find_pc_sect_line (pc, section, notcurrent);
2353 }
2354 \f
2355 /* Find line number LINE in any symtab whose name is the same as
2356 SYMTAB.
2357
2358 If found, return the symtab that contains the linetable in which it was
2359 found, set *INDEX to the index in the linetable of the best entry
2360 found, and set *EXACT_MATCH nonzero if the value returned is an
2361 exact match.
2362
2363 If not found, return NULL. */
2364
2365 struct symtab *
2366 find_line_symtab (struct symtab *symtab, int line, int *index, int *exact_match)
2367 {
2368 int exact;
2369
2370 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
2371 so far seen. */
2372
2373 int best_index;
2374 struct linetable *best_linetable;
2375 struct symtab *best_symtab;
2376
2377 /* First try looking it up in the given symtab. */
2378 best_linetable = LINETABLE (symtab);
2379 best_symtab = symtab;
2380 best_index = find_line_common (best_linetable, line, &exact);
2381 if (best_index < 0 || !exact)
2382 {
2383 /* Didn't find an exact match. So we better keep looking for
2384 another symtab with the same name. In the case of xcoff,
2385 multiple csects for one source file (produced by IBM's FORTRAN
2386 compiler) produce multiple symtabs (this is unavoidable
2387 assuming csects can be at arbitrary places in memory and that
2388 the GLOBAL_BLOCK of a symtab has a begin and end address). */
2389
2390 /* BEST is the smallest linenumber > LINE so far seen,
2391 or 0 if none has been seen so far.
2392 BEST_INDEX and BEST_LINETABLE identify the item for it. */
2393 int best;
2394
2395 struct objfile *objfile;
2396 struct symtab *s;
2397 struct partial_symtab *p;
2398
2399 if (best_index >= 0)
2400 best = best_linetable->item[best_index].line;
2401 else
2402 best = 0;
2403
2404 ALL_PSYMTABS (objfile, p)
2405 {
2406 if (strcmp (symtab->filename, p->filename) != 0)
2407 continue;
2408 PSYMTAB_TO_SYMTAB (p);
2409 }
2410
2411 ALL_SYMTABS (objfile, s)
2412 {
2413 struct linetable *l;
2414 int ind;
2415
2416 if (strcmp (symtab->filename, s->filename) != 0)
2417 continue;
2418 l = LINETABLE (s);
2419 ind = find_line_common (l, line, &exact);
2420 if (ind >= 0)
2421 {
2422 if (exact)
2423 {
2424 best_index = ind;
2425 best_linetable = l;
2426 best_symtab = s;
2427 goto done;
2428 }
2429 if (best == 0 || l->item[ind].line < best)
2430 {
2431 best = l->item[ind].line;
2432 best_index = ind;
2433 best_linetable = l;
2434 best_symtab = s;
2435 }
2436 }
2437 }
2438 }
2439 done:
2440 if (best_index < 0)
2441 return NULL;
2442
2443 if (index)
2444 *index = best_index;
2445 if (exact_match)
2446 *exact_match = exact;
2447
2448 return best_symtab;
2449 }
2450 \f
2451 /* Set the PC value for a given source file and line number and return true.
2452 Returns zero for invalid line number (and sets the PC to 0).
2453 The source file is specified with a struct symtab. */
2454
2455 int
2456 find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
2457 {
2458 struct linetable *l;
2459 int ind;
2460
2461 *pc = 0;
2462 if (symtab == 0)
2463 return 0;
2464
2465 symtab = find_line_symtab (symtab, line, &ind, NULL);
2466 if (symtab != NULL)
2467 {
2468 l = LINETABLE (symtab);
2469 *pc = l->item[ind].pc;
2470 return 1;
2471 }
2472 else
2473 return 0;
2474 }
2475
2476 /* Find the range of pc values in a line.
2477 Store the starting pc of the line into *STARTPTR
2478 and the ending pc (start of next line) into *ENDPTR.
2479 Returns 1 to indicate success.
2480 Returns 0 if could not find the specified line. */
2481
2482 int
2483 find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
2484 CORE_ADDR *endptr)
2485 {
2486 CORE_ADDR startaddr;
2487 struct symtab_and_line found_sal;
2488
2489 startaddr = sal.pc;
2490 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
2491 return 0;
2492
2493 /* This whole function is based on address. For example, if line 10 has
2494 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
2495 "info line *0x123" should say the line goes from 0x100 to 0x200
2496 and "info line *0x355" should say the line goes from 0x300 to 0x400.
2497 This also insures that we never give a range like "starts at 0x134
2498 and ends at 0x12c". */
2499
2500 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
2501 if (found_sal.line != sal.line)
2502 {
2503 /* The specified line (sal) has zero bytes. */
2504 *startptr = found_sal.pc;
2505 *endptr = found_sal.pc;
2506 }
2507 else
2508 {
2509 *startptr = found_sal.pc;
2510 *endptr = found_sal.end;
2511 }
2512 return 1;
2513 }
2514
2515 /* Given a line table and a line number, return the index into the line
2516 table for the pc of the nearest line whose number is >= the specified one.
2517 Return -1 if none is found. The value is >= 0 if it is an index.
2518
2519 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
2520
2521 static int
2522 find_line_common (struct linetable *l, int lineno,
2523 int *exact_match)
2524 {
2525 int i;
2526 int len;
2527
2528 /* BEST is the smallest linenumber > LINENO so far seen,
2529 or 0 if none has been seen so far.
2530 BEST_INDEX identifies the item for it. */
2531
2532 int best_index = -1;
2533 int best = 0;
2534
2535 *exact_match = 0;
2536
2537 if (lineno <= 0)
2538 return -1;
2539 if (l == 0)
2540 return -1;
2541
2542 len = l->nitems;
2543 for (i = 0; i < len; i++)
2544 {
2545 struct linetable_entry *item = &(l->item[i]);
2546
2547 if (item->line == lineno)
2548 {
2549 /* Return the first (lowest address) entry which matches. */
2550 *exact_match = 1;
2551 return i;
2552 }
2553
2554 if (item->line > lineno && (best == 0 || item->line < best))
2555 {
2556 best = item->line;
2557 best_index = i;
2558 }
2559 }
2560
2561 /* If we got here, we didn't get an exact match. */
2562 return best_index;
2563 }
2564
2565 int
2566 find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
2567 {
2568 struct symtab_and_line sal;
2569 sal = find_pc_line (pc, 0);
2570 *startptr = sal.pc;
2571 *endptr = sal.end;
2572 return sal.symtab != 0;
2573 }
2574
2575 /* Given a function start address PC and SECTION, find the first
2576 address after the function prologue. */
2577 CORE_ADDR
2578 find_function_start_pc (struct gdbarch *gdbarch,
2579 CORE_ADDR pc, asection *section)
2580 {
2581 /* If the function is in an unmapped overlay, use its unmapped LMA address,
2582 so that gdbarch_skip_prologue has something unique to work on. */
2583 if (section_is_overlay (section) && !section_is_mapped (section))
2584 pc = overlay_unmapped_address (pc, section);
2585
2586 pc += gdbarch_deprecated_function_start_offset (gdbarch);
2587 pc = gdbarch_skip_prologue (gdbarch, pc);
2588
2589 /* For overlays, map pc back into its mapped VMA range. */
2590 pc = overlay_mapped_address (pc, section);
2591
2592 return pc;
2593 }
2594
2595 /* Given a function symbol SYM, find the symtab and line for the start
2596 of the function.
2597 If the argument FUNFIRSTLINE is nonzero, we want the first line
2598 of real code inside the function. */
2599
2600 struct symtab_and_line
2601 find_function_start_sal (struct symbol *sym, int funfirstline)
2602 {
2603 struct block *block = SYMBOL_BLOCK_VALUE (sym);
2604 struct objfile *objfile = lookup_objfile_from_block (block);
2605 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2606
2607 CORE_ADDR pc;
2608 struct symtab_and_line sal;
2609
2610 pc = BLOCK_START (block);
2611 fixup_symbol_section (sym, objfile);
2612 if (funfirstline)
2613 {
2614 /* Skip "first line" of function (which is actually its prologue). */
2615 pc = find_function_start_pc (gdbarch, pc, SYMBOL_BFD_SECTION (sym));
2616 }
2617 sal = find_pc_sect_line (pc, SYMBOL_BFD_SECTION (sym), 0);
2618
2619 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
2620 line is still part of the same function. */
2621 if (sal.pc != pc
2622 && BLOCK_START (block) <= sal.end
2623 && sal.end < BLOCK_END (block))
2624 {
2625 /* First pc of next line */
2626 pc = sal.end;
2627 /* Recalculate the line number (might not be N+1). */
2628 sal = find_pc_sect_line (pc, SYMBOL_BFD_SECTION (sym), 0);
2629 }
2630 sal.pc = pc;
2631
2632 return sal;
2633 }
2634
2635 /* If P is of the form "operator[ \t]+..." where `...' is
2636 some legitimate operator text, return a pointer to the
2637 beginning of the substring of the operator text.
2638 Otherwise, return "". */
2639 char *
2640 operator_chars (char *p, char **end)
2641 {
2642 *end = "";
2643 if (strncmp (p, "operator", 8))
2644 return *end;
2645 p += 8;
2646
2647 /* Don't get faked out by `operator' being part of a longer
2648 identifier. */
2649 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
2650 return *end;
2651
2652 /* Allow some whitespace between `operator' and the operator symbol. */
2653 while (*p == ' ' || *p == '\t')
2654 p++;
2655
2656 /* Recognize 'operator TYPENAME'. */
2657
2658 if (isalpha (*p) || *p == '_' || *p == '$')
2659 {
2660 char *q = p + 1;
2661 while (isalnum (*q) || *q == '_' || *q == '$')
2662 q++;
2663 *end = q;
2664 return p;
2665 }
2666
2667 while (*p)
2668 switch (*p)
2669 {
2670 case '\\': /* regexp quoting */
2671 if (p[1] == '*')
2672 {
2673 if (p[2] == '=') /* 'operator\*=' */
2674 *end = p + 3;
2675 else /* 'operator\*' */
2676 *end = p + 2;
2677 return p;
2678 }
2679 else if (p[1] == '[')
2680 {
2681 if (p[2] == ']')
2682 error (_("mismatched quoting on brackets, try 'operator\\[\\]'"));
2683 else if (p[2] == '\\' && p[3] == ']')
2684 {
2685 *end = p + 4; /* 'operator\[\]' */
2686 return p;
2687 }
2688 else
2689 error (_("nothing is allowed between '[' and ']'"));
2690 }
2691 else
2692 {
2693 /* Gratuitous qoute: skip it and move on. */
2694 p++;
2695 continue;
2696 }
2697 break;
2698 case '!':
2699 case '=':
2700 case '*':
2701 case '/':
2702 case '%':
2703 case '^':
2704 if (p[1] == '=')
2705 *end = p + 2;
2706 else
2707 *end = p + 1;
2708 return p;
2709 case '<':
2710 case '>':
2711 case '+':
2712 case '-':
2713 case '&':
2714 case '|':
2715 if (p[0] == '-' && p[1] == '>')
2716 {
2717 /* Struct pointer member operator 'operator->'. */
2718 if (p[2] == '*')
2719 {
2720 *end = p + 3; /* 'operator->*' */
2721 return p;
2722 }
2723 else if (p[2] == '\\')
2724 {
2725 *end = p + 4; /* Hopefully 'operator->\*' */
2726 return p;
2727 }
2728 else
2729 {
2730 *end = p + 2; /* 'operator->' */
2731 return p;
2732 }
2733 }
2734 if (p[1] == '=' || p[1] == p[0])
2735 *end = p + 2;
2736 else
2737 *end = p + 1;
2738 return p;
2739 case '~':
2740 case ',':
2741 *end = p + 1;
2742 return p;
2743 case '(':
2744 if (p[1] != ')')
2745 error (_("`operator ()' must be specified without whitespace in `()'"));
2746 *end = p + 2;
2747 return p;
2748 case '?':
2749 if (p[1] != ':')
2750 error (_("`operator ?:' must be specified without whitespace in `?:'"));
2751 *end = p + 2;
2752 return p;
2753 case '[':
2754 if (p[1] != ']')
2755 error (_("`operator []' must be specified without whitespace in `[]'"));
2756 *end = p + 2;
2757 return p;
2758 default:
2759 error (_("`operator %s' not supported"), p);
2760 break;
2761 }
2762
2763 *end = "";
2764 return *end;
2765 }
2766 \f
2767
2768 /* If FILE is not already in the table of files, return zero;
2769 otherwise return non-zero. Optionally add FILE to the table if ADD
2770 is non-zero. If *FIRST is non-zero, forget the old table
2771 contents. */
2772 static int
2773 filename_seen (const char *file, int add, int *first)
2774 {
2775 /* Table of files seen so far. */
2776 static const char **tab = NULL;
2777 /* Allocated size of tab in elements.
2778 Start with one 256-byte block (when using GNU malloc.c).
2779 24 is the malloc overhead when range checking is in effect. */
2780 static int tab_alloc_size = (256 - 24) / sizeof (char *);
2781 /* Current size of tab in elements. */
2782 static int tab_cur_size;
2783 const char **p;
2784
2785 if (*first)
2786 {
2787 if (tab == NULL)
2788 tab = (const char **) xmalloc (tab_alloc_size * sizeof (*tab));
2789 tab_cur_size = 0;
2790 }
2791
2792 /* Is FILE in tab? */
2793 for (p = tab; p < tab + tab_cur_size; p++)
2794 if (strcmp (*p, file) == 0)
2795 return 1;
2796
2797 /* No; maybe add it to tab. */
2798 if (add)
2799 {
2800 if (tab_cur_size == tab_alloc_size)
2801 {
2802 tab_alloc_size *= 2;
2803 tab = (const char **) xrealloc ((char *) tab,
2804 tab_alloc_size * sizeof (*tab));
2805 }
2806 tab[tab_cur_size++] = file;
2807 }
2808
2809 return 0;
2810 }
2811
2812 /* Slave routine for sources_info. Force line breaks at ,'s.
2813 NAME is the name to print and *FIRST is nonzero if this is the first
2814 name printed. Set *FIRST to zero. */
2815 static void
2816 output_source_filename (const char *name, int *first)
2817 {
2818 /* Since a single source file can result in several partial symbol
2819 tables, we need to avoid printing it more than once. Note: if
2820 some of the psymtabs are read in and some are not, it gets
2821 printed both under "Source files for which symbols have been
2822 read" and "Source files for which symbols will be read in on
2823 demand". I consider this a reasonable way to deal with the
2824 situation. I'm not sure whether this can also happen for
2825 symtabs; it doesn't hurt to check. */
2826
2827 /* Was NAME already seen? */
2828 if (filename_seen (name, 1, first))
2829 {
2830 /* Yes; don't print it again. */
2831 return;
2832 }
2833 /* No; print it and reset *FIRST. */
2834 if (*first)
2835 {
2836 *first = 0;
2837 }
2838 else
2839 {
2840 printf_filtered (", ");
2841 }
2842
2843 wrap_here ("");
2844 fputs_filtered (name, gdb_stdout);
2845 }
2846
2847 static void
2848 sources_info (char *ignore, int from_tty)
2849 {
2850 struct symtab *s;
2851 struct partial_symtab *ps;
2852 struct objfile *objfile;
2853 int first;
2854
2855 if (!have_full_symbols () && !have_partial_symbols ())
2856 {
2857 error (_("No symbol table is loaded. Use the \"file\" command."));
2858 }
2859
2860 printf_filtered ("Source files for which symbols have been read in:\n\n");
2861
2862 first = 1;
2863 ALL_SYMTABS (objfile, s)
2864 {
2865 const char *fullname = symtab_to_fullname (s);
2866 output_source_filename (fullname ? fullname : s->filename, &first);
2867 }
2868 printf_filtered ("\n\n");
2869
2870 printf_filtered ("Source files for which symbols will be read in on demand:\n\n");
2871
2872 first = 1;
2873 ALL_PSYMTABS (objfile, ps)
2874 {
2875 if (!ps->readin)
2876 {
2877 const char *fullname = psymtab_to_fullname (ps);
2878 output_source_filename (fullname ? fullname : ps->filename, &first);
2879 }
2880 }
2881 printf_filtered ("\n");
2882 }
2883
2884 static int
2885 file_matches (char *file, char *files[], int nfiles)
2886 {
2887 int i;
2888
2889 if (file != NULL && nfiles != 0)
2890 {
2891 for (i = 0; i < nfiles; i++)
2892 {
2893 if (strcmp (files[i], lbasename (file)) == 0)
2894 return 1;
2895 }
2896 }
2897 else if (nfiles == 0)
2898 return 1;
2899 return 0;
2900 }
2901
2902 /* Free any memory associated with a search. */
2903 void
2904 free_search_symbols (struct symbol_search *symbols)
2905 {
2906 struct symbol_search *p;
2907 struct symbol_search *next;
2908
2909 for (p = symbols; p != NULL; p = next)
2910 {
2911 next = p->next;
2912 xfree (p);
2913 }
2914 }
2915
2916 static void
2917 do_free_search_symbols_cleanup (void *symbols)
2918 {
2919 free_search_symbols (symbols);
2920 }
2921
2922 struct cleanup *
2923 make_cleanup_free_search_symbols (struct symbol_search *symbols)
2924 {
2925 return make_cleanup (do_free_search_symbols_cleanup, symbols);
2926 }
2927
2928 /* Helper function for sort_search_symbols and qsort. Can only
2929 sort symbols, not minimal symbols. */
2930 static int
2931 compare_search_syms (const void *sa, const void *sb)
2932 {
2933 struct symbol_search **sym_a = (struct symbol_search **) sa;
2934 struct symbol_search **sym_b = (struct symbol_search **) sb;
2935
2936 return strcmp (SYMBOL_PRINT_NAME ((*sym_a)->symbol),
2937 SYMBOL_PRINT_NAME ((*sym_b)->symbol));
2938 }
2939
2940 /* Sort the ``nfound'' symbols in the list after prevtail. Leave
2941 prevtail where it is, but update its next pointer to point to
2942 the first of the sorted symbols. */
2943 static struct symbol_search *
2944 sort_search_symbols (struct symbol_search *prevtail, int nfound)
2945 {
2946 struct symbol_search **symbols, *symp, *old_next;
2947 int i;
2948
2949 symbols = (struct symbol_search **) xmalloc (sizeof (struct symbol_search *)
2950 * nfound);
2951 symp = prevtail->next;
2952 for (i = 0; i < nfound; i++)
2953 {
2954 symbols[i] = symp;
2955 symp = symp->next;
2956 }
2957 /* Generally NULL. */
2958 old_next = symp;
2959
2960 qsort (symbols, nfound, sizeof (struct symbol_search *),
2961 compare_search_syms);
2962
2963 symp = prevtail;
2964 for (i = 0; i < nfound; i++)
2965 {
2966 symp->next = symbols[i];
2967 symp = symp->next;
2968 }
2969 symp->next = old_next;
2970
2971 xfree (symbols);
2972 return symp;
2973 }
2974
2975 /* Search the symbol table for matches to the regular expression REGEXP,
2976 returning the results in *MATCHES.
2977
2978 Only symbols of KIND are searched:
2979 FUNCTIONS_DOMAIN - search all functions
2980 TYPES_DOMAIN - search all type names
2981 METHODS_DOMAIN - search all methods NOT IMPLEMENTED
2982 VARIABLES_DOMAIN - search all symbols, excluding functions, type names,
2983 and constants (enums)
2984
2985 free_search_symbols should be called when *MATCHES is no longer needed.
2986
2987 The results are sorted locally; each symtab's global and static blocks are
2988 separately alphabetized.
2989 */
2990 void
2991 search_symbols (char *regexp, domain_enum kind, int nfiles, char *files[],
2992 struct symbol_search **matches)
2993 {
2994 struct symtab *s;
2995 struct partial_symtab *ps;
2996 struct blockvector *bv;
2997 struct block *b;
2998 int i = 0;
2999 struct dict_iterator iter;
3000 struct symbol *sym;
3001 struct partial_symbol **psym;
3002 struct objfile *objfile;
3003 struct minimal_symbol *msymbol;
3004 char *val;
3005 int found_misc = 0;
3006 static enum minimal_symbol_type types[]
3007 =
3008 {mst_data, mst_text, mst_abs, mst_unknown};
3009 static enum minimal_symbol_type types2[]
3010 =
3011 {mst_bss, mst_file_text, mst_abs, mst_unknown};
3012 static enum minimal_symbol_type types3[]
3013 =
3014 {mst_file_data, mst_solib_trampoline, mst_abs, mst_unknown};
3015 static enum minimal_symbol_type types4[]
3016 =
3017 {mst_file_bss, mst_text, mst_abs, mst_unknown};
3018 enum minimal_symbol_type ourtype;
3019 enum minimal_symbol_type ourtype2;
3020 enum minimal_symbol_type ourtype3;
3021 enum minimal_symbol_type ourtype4;
3022 struct symbol_search *sr;
3023 struct symbol_search *psr;
3024 struct symbol_search *tail;
3025 struct cleanup *old_chain = NULL;
3026
3027 if (kind < VARIABLES_DOMAIN)
3028 error (_("must search on specific domain"));
3029
3030 ourtype = types[(int) (kind - VARIABLES_DOMAIN)];
3031 ourtype2 = types2[(int) (kind - VARIABLES_DOMAIN)];
3032 ourtype3 = types3[(int) (kind - VARIABLES_DOMAIN)];
3033 ourtype4 = types4[(int) (kind - VARIABLES_DOMAIN)];
3034
3035 sr = *matches = NULL;
3036 tail = NULL;
3037
3038 if (regexp != NULL)
3039 {
3040 /* Make sure spacing is right for C++ operators.
3041 This is just a courtesy to make the matching less sensitive
3042 to how many spaces the user leaves between 'operator'
3043 and <TYPENAME> or <OPERATOR>. */
3044 char *opend;
3045 char *opname = operator_chars (regexp, &opend);
3046 if (*opname)
3047 {
3048 int fix = -1; /* -1 means ok; otherwise number of spaces needed. */
3049 if (isalpha (*opname) || *opname == '_' || *opname == '$')
3050 {
3051 /* There should 1 space between 'operator' and 'TYPENAME'. */
3052 if (opname[-1] != ' ' || opname[-2] == ' ')
3053 fix = 1;
3054 }
3055 else
3056 {
3057 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
3058 if (opname[-1] == ' ')
3059 fix = 0;
3060 }
3061 /* If wrong number of spaces, fix it. */
3062 if (fix >= 0)
3063 {
3064 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
3065 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
3066 regexp = tmp;
3067 }
3068 }
3069
3070 if (0 != (val = re_comp (regexp)))
3071 error (_("Invalid regexp (%s): %s"), val, regexp);
3072 }
3073
3074 /* Search through the partial symtabs *first* for all symbols
3075 matching the regexp. That way we don't have to reproduce all of
3076 the machinery below. */
3077
3078 ALL_PSYMTABS (objfile, ps)
3079 {
3080 struct partial_symbol **bound, **gbound, **sbound;
3081 int keep_going = 1;
3082
3083 if (ps->readin)
3084 continue;
3085
3086 gbound = objfile->global_psymbols.list + ps->globals_offset + ps->n_global_syms;
3087 sbound = objfile->static_psymbols.list + ps->statics_offset + ps->n_static_syms;
3088 bound = gbound;
3089
3090 /* Go through all of the symbols stored in a partial
3091 symtab in one loop. */
3092 psym = objfile->global_psymbols.list + ps->globals_offset;
3093 while (keep_going)
3094 {
3095 if (psym >= bound)
3096 {
3097 if (bound == gbound && ps->n_static_syms != 0)
3098 {
3099 psym = objfile->static_psymbols.list + ps->statics_offset;
3100 bound = sbound;
3101 }
3102 else
3103 keep_going = 0;
3104 continue;
3105 }
3106 else
3107 {
3108 QUIT;
3109
3110 /* If it would match (logic taken from loop below)
3111 load the file and go on to the next one. We check the
3112 filename here, but that's a bit bogus: we don't know
3113 what file it really comes from until we have full
3114 symtabs. The symbol might be in a header file included by
3115 this psymtab. This only affects Insight. */
3116 if (file_matches (ps->filename, files, nfiles)
3117 && ((regexp == NULL
3118 || re_exec (SYMBOL_NATURAL_NAME (*psym)) != 0)
3119 && ((kind == VARIABLES_DOMAIN && SYMBOL_CLASS (*psym) != LOC_TYPEDEF
3120 && SYMBOL_CLASS (*psym) != LOC_BLOCK)
3121 || (kind == FUNCTIONS_DOMAIN && SYMBOL_CLASS (*psym) == LOC_BLOCK)
3122 || (kind == TYPES_DOMAIN && SYMBOL_CLASS (*psym) == LOC_TYPEDEF)
3123 || (kind == METHODS_DOMAIN && SYMBOL_CLASS (*psym) == LOC_BLOCK))))
3124 {
3125 PSYMTAB_TO_SYMTAB (ps);
3126 keep_going = 0;
3127 }
3128 }
3129 psym++;
3130 }
3131 }
3132
3133 /* Here, we search through the minimal symbol tables for functions
3134 and variables that match, and force their symbols to be read.
3135 This is in particular necessary for demangled variable names,
3136 which are no longer put into the partial symbol tables.
3137 The symbol will then be found during the scan of symtabs below.
3138
3139 For functions, find_pc_symtab should succeed if we have debug info
3140 for the function, for variables we have to call lookup_symbol
3141 to determine if the variable has debug info.
3142 If the lookup fails, set found_misc so that we will rescan to print
3143 any matching symbols without debug info.
3144 */
3145
3146 if (nfiles == 0 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
3147 {
3148 ALL_MSYMBOLS (objfile, msymbol)
3149 {
3150 if (MSYMBOL_TYPE (msymbol) == ourtype ||
3151 MSYMBOL_TYPE (msymbol) == ourtype2 ||
3152 MSYMBOL_TYPE (msymbol) == ourtype3 ||
3153 MSYMBOL_TYPE (msymbol) == ourtype4)
3154 {
3155 if (regexp == NULL
3156 || re_exec (SYMBOL_NATURAL_NAME (msymbol)) != 0)
3157 {
3158 if (0 == find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol)))
3159 {
3160 /* FIXME: carlton/2003-02-04: Given that the
3161 semantics of lookup_symbol keeps on changing
3162 slightly, it would be a nice idea if we had a
3163 function lookup_symbol_minsym that found the
3164 symbol associated to a given minimal symbol (if
3165 any). */
3166 if (kind == FUNCTIONS_DOMAIN
3167 || lookup_symbol (SYMBOL_LINKAGE_NAME (msymbol),
3168 (struct block *) NULL,
3169 VAR_DOMAIN, 0)
3170 == NULL)
3171 found_misc = 1;
3172 }
3173 }
3174 }
3175 }
3176 }
3177
3178 ALL_PRIMARY_SYMTABS (objfile, s)
3179 {
3180 bv = BLOCKVECTOR (s);
3181 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
3182 {
3183 struct symbol_search *prevtail = tail;
3184 int nfound = 0;
3185 b = BLOCKVECTOR_BLOCK (bv, i);
3186 ALL_BLOCK_SYMBOLS (b, iter, sym)
3187 {
3188 struct symtab *real_symtab = SYMBOL_SYMTAB (sym);
3189 QUIT;
3190
3191 if (file_matches (real_symtab->filename, files, nfiles)
3192 && ((regexp == NULL
3193 || re_exec (SYMBOL_NATURAL_NAME (sym)) != 0)
3194 && ((kind == VARIABLES_DOMAIN && SYMBOL_CLASS (sym) != LOC_TYPEDEF
3195 && SYMBOL_CLASS (sym) != LOC_BLOCK
3196 && SYMBOL_CLASS (sym) != LOC_CONST)
3197 || (kind == FUNCTIONS_DOMAIN && SYMBOL_CLASS (sym) == LOC_BLOCK)
3198 || (kind == TYPES_DOMAIN && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
3199 || (kind == METHODS_DOMAIN && SYMBOL_CLASS (sym) == LOC_BLOCK))))
3200 {
3201 /* match */
3202 psr = (struct symbol_search *) xmalloc (sizeof (struct symbol_search));
3203 psr->block = i;
3204 psr->symtab = real_symtab;
3205 psr->symbol = sym;
3206 psr->msymbol = NULL;
3207 psr->next = NULL;
3208 if (tail == NULL)
3209 sr = psr;
3210 else
3211 tail->next = psr;
3212 tail = psr;
3213 nfound ++;
3214 }
3215 }
3216 if (nfound > 0)
3217 {
3218 if (prevtail == NULL)
3219 {
3220 struct symbol_search dummy;
3221
3222 dummy.next = sr;
3223 tail = sort_search_symbols (&dummy, nfound);
3224 sr = dummy.next;
3225
3226 old_chain = make_cleanup_free_search_symbols (sr);
3227 }
3228 else
3229 tail = sort_search_symbols (prevtail, nfound);
3230 }
3231 }
3232 }
3233
3234 /* If there are no eyes, avoid all contact. I mean, if there are
3235 no debug symbols, then print directly from the msymbol_vector. */
3236
3237 if (found_misc || kind != FUNCTIONS_DOMAIN)
3238 {
3239 ALL_MSYMBOLS (objfile, msymbol)
3240 {
3241 if (MSYMBOL_TYPE (msymbol) == ourtype ||
3242 MSYMBOL_TYPE (msymbol) == ourtype2 ||
3243 MSYMBOL_TYPE (msymbol) == ourtype3 ||
3244 MSYMBOL_TYPE (msymbol) == ourtype4)
3245 {
3246 if (regexp == NULL
3247 || re_exec (SYMBOL_NATURAL_NAME (msymbol)) != 0)
3248 {
3249 /* Functions: Look up by address. */
3250 if (kind != FUNCTIONS_DOMAIN ||
3251 (0 == find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol))))
3252 {
3253 /* Variables/Absolutes: Look up by name */
3254 if (lookup_symbol (SYMBOL_LINKAGE_NAME (msymbol),
3255 (struct block *) NULL, VAR_DOMAIN, 0)
3256 == NULL)
3257 {
3258 /* match */
3259 psr = (struct symbol_search *) xmalloc (sizeof (struct symbol_search));
3260 psr->block = i;
3261 psr->msymbol = msymbol;
3262 psr->symtab = NULL;
3263 psr->symbol = NULL;
3264 psr->next = NULL;
3265 if (tail == NULL)
3266 {
3267 sr = psr;
3268 old_chain = make_cleanup_free_search_symbols (sr);
3269 }
3270 else
3271 tail->next = psr;
3272 tail = psr;
3273 }
3274 }
3275 }
3276 }
3277 }
3278 }
3279
3280 *matches = sr;
3281 if (sr != NULL)
3282 discard_cleanups (old_chain);
3283 }
3284
3285 /* Helper function for symtab_symbol_info, this function uses
3286 the data returned from search_symbols() to print information
3287 regarding the match to gdb_stdout.
3288 */
3289 static void
3290 print_symbol_info (domain_enum kind, struct symtab *s, struct symbol *sym,
3291 int block, char *last)
3292 {
3293 if (last == NULL || strcmp (last, s->filename) != 0)
3294 {
3295 fputs_filtered ("\nFile ", gdb_stdout);
3296 fputs_filtered (s->filename, gdb_stdout);
3297 fputs_filtered (":\n", gdb_stdout);
3298 }
3299
3300 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
3301 printf_filtered ("static ");
3302
3303 /* Typedef that is not a C++ class */
3304 if (kind == TYPES_DOMAIN
3305 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
3306 typedef_print (SYMBOL_TYPE (sym), sym, gdb_stdout);
3307 /* variable, func, or typedef-that-is-c++-class */
3308 else if (kind < TYPES_DOMAIN ||
3309 (kind == TYPES_DOMAIN &&
3310 SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
3311 {
3312 type_print (SYMBOL_TYPE (sym),
3313 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
3314 ? "" : SYMBOL_PRINT_NAME (sym)),
3315 gdb_stdout, 0);
3316
3317 printf_filtered (";\n");
3318 }
3319 }
3320
3321 /* This help function for symtab_symbol_info() prints information
3322 for non-debugging symbols to gdb_stdout.
3323 */
3324 static void
3325 print_msymbol_info (struct minimal_symbol *msymbol)
3326 {
3327 char *tmp;
3328
3329 if (gdbarch_addr_bit (current_gdbarch) <= 32)
3330 tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol)
3331 & (CORE_ADDR) 0xffffffff,
3332 8);
3333 else
3334 tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol),
3335 16);
3336 printf_filtered ("%s %s\n",
3337 tmp, SYMBOL_PRINT_NAME (msymbol));
3338 }
3339
3340 /* This is the guts of the commands "info functions", "info types", and
3341 "info variables". It calls search_symbols to find all matches and then
3342 print_[m]symbol_info to print out some useful information about the
3343 matches.
3344 */
3345 static void
3346 symtab_symbol_info (char *regexp, domain_enum kind, int from_tty)
3347 {
3348 static char *classnames[]
3349 =
3350 {"variable", "function", "type", "method"};
3351 struct symbol_search *symbols;
3352 struct symbol_search *p;
3353 struct cleanup *old_chain;
3354 char *last_filename = NULL;
3355 int first = 1;
3356
3357 /* must make sure that if we're interrupted, symbols gets freed */
3358 search_symbols (regexp, kind, 0, (char **) NULL, &symbols);
3359 old_chain = make_cleanup_free_search_symbols (symbols);
3360
3361 printf_filtered (regexp
3362 ? "All %ss matching regular expression \"%s\":\n"
3363 : "All defined %ss:\n",
3364 classnames[(int) (kind - VARIABLES_DOMAIN)], regexp);
3365
3366 for (p = symbols; p != NULL; p = p->next)
3367 {
3368 QUIT;
3369
3370 if (p->msymbol != NULL)
3371 {
3372 if (first)
3373 {
3374 printf_filtered ("\nNon-debugging symbols:\n");
3375 first = 0;
3376 }
3377 print_msymbol_info (p->msymbol);
3378 }
3379 else
3380 {
3381 print_symbol_info (kind,
3382 p->symtab,
3383 p->symbol,
3384 p->block,
3385 last_filename);
3386 last_filename = p->symtab->filename;
3387 }
3388 }
3389
3390 do_cleanups (old_chain);
3391 }
3392
3393 static void
3394 variables_info (char *regexp, int from_tty)
3395 {
3396 symtab_symbol_info (regexp, VARIABLES_DOMAIN, from_tty);
3397 }
3398
3399 static void
3400 functions_info (char *regexp, int from_tty)
3401 {
3402 symtab_symbol_info (regexp, FUNCTIONS_DOMAIN, from_tty);
3403 }
3404
3405
3406 static void
3407 types_info (char *regexp, int from_tty)
3408 {
3409 symtab_symbol_info (regexp, TYPES_DOMAIN, from_tty);
3410 }
3411
3412 /* Breakpoint all functions matching regular expression. */
3413
3414 void
3415 rbreak_command_wrapper (char *regexp, int from_tty)
3416 {
3417 rbreak_command (regexp, from_tty);
3418 }
3419
3420 static void
3421 rbreak_command (char *regexp, int from_tty)
3422 {
3423 struct symbol_search *ss;
3424 struct symbol_search *p;
3425 struct cleanup *old_chain;
3426
3427 search_symbols (regexp, FUNCTIONS_DOMAIN, 0, (char **) NULL, &ss);
3428 old_chain = make_cleanup_free_search_symbols (ss);
3429
3430 for (p = ss; p != NULL; p = p->next)
3431 {
3432 if (p->msymbol == NULL)
3433 {
3434 char *string = alloca (strlen (p->symtab->filename)
3435 + strlen (SYMBOL_LINKAGE_NAME (p->symbol))
3436 + 4);
3437 strcpy (string, p->symtab->filename);
3438 strcat (string, ":'");
3439 strcat (string, SYMBOL_LINKAGE_NAME (p->symbol));
3440 strcat (string, "'");
3441 break_command (string, from_tty);
3442 print_symbol_info (FUNCTIONS_DOMAIN,
3443 p->symtab,
3444 p->symbol,
3445 p->block,
3446 p->symtab->filename);
3447 }
3448 else
3449 {
3450 char *string = alloca (strlen (SYMBOL_LINKAGE_NAME (p->msymbol))
3451 + 3);
3452 strcpy (string, "'");
3453 strcat (string, SYMBOL_LINKAGE_NAME (p->msymbol));
3454 strcat (string, "'");
3455
3456 break_command (string, from_tty);
3457 printf_filtered ("<function, no debug info> %s;\n",
3458 SYMBOL_PRINT_NAME (p->msymbol));
3459 }
3460 }
3461
3462 do_cleanups (old_chain);
3463 }
3464 \f
3465
3466 /* Helper routine for make_symbol_completion_list. */
3467
3468 static int return_val_size;
3469 static int return_val_index;
3470 static char **return_val;
3471
3472 #define COMPLETION_LIST_ADD_SYMBOL(symbol, sym_text, len, text, word) \
3473 completion_list_add_name \
3474 (SYMBOL_NATURAL_NAME (symbol), (sym_text), (len), (text), (word))
3475
3476 /* Test to see if the symbol specified by SYMNAME (which is already
3477 demangled for C++ symbols) matches SYM_TEXT in the first SYM_TEXT_LEN
3478 characters. If so, add it to the current completion list. */
3479
3480 static void
3481 completion_list_add_name (char *symname, char *sym_text, int sym_text_len,
3482 char *text, char *word)
3483 {
3484 int newsize;
3485 int i;
3486
3487 /* clip symbols that cannot match */
3488
3489 if (strncmp (symname, sym_text, sym_text_len) != 0)
3490 {
3491 return;
3492 }
3493
3494 /* We have a match for a completion, so add SYMNAME to the current list
3495 of matches. Note that the name is moved to freshly malloc'd space. */
3496
3497 {
3498 char *new;
3499 if (word == sym_text)
3500 {
3501 new = xmalloc (strlen (symname) + 5);
3502 strcpy (new, symname);
3503 }
3504 else if (word > sym_text)
3505 {
3506 /* Return some portion of symname. */
3507 new = xmalloc (strlen (symname) + 5);
3508 strcpy (new, symname + (word - sym_text));
3509 }
3510 else
3511 {
3512 /* Return some of SYM_TEXT plus symname. */
3513 new = xmalloc (strlen (symname) + (sym_text - word) + 5);
3514 strncpy (new, word, sym_text - word);
3515 new[sym_text - word] = '\0';
3516 strcat (new, symname);
3517 }
3518
3519 if (return_val_index + 3 > return_val_size)
3520 {
3521 newsize = (return_val_size *= 2) * sizeof (char *);
3522 return_val = (char **) xrealloc ((char *) return_val, newsize);
3523 }
3524 return_val[return_val_index++] = new;
3525 return_val[return_val_index] = NULL;
3526 }
3527 }
3528
3529 /* ObjC: In case we are completing on a selector, look as the msymbol
3530 again and feed all the selectors into the mill. */
3531
3532 static void
3533 completion_list_objc_symbol (struct minimal_symbol *msymbol, char *sym_text,
3534 int sym_text_len, char *text, char *word)
3535 {
3536 static char *tmp = NULL;
3537 static unsigned int tmplen = 0;
3538
3539 char *method, *category, *selector;
3540 char *tmp2 = NULL;
3541
3542 method = SYMBOL_NATURAL_NAME (msymbol);
3543
3544 /* Is it a method? */
3545 if ((method[0] != '-') && (method[0] != '+'))
3546 return;
3547
3548 if (sym_text[0] == '[')
3549 /* Complete on shortened method method. */
3550 completion_list_add_name (method + 1, sym_text, sym_text_len, text, word);
3551
3552 while ((strlen (method) + 1) >= tmplen)
3553 {
3554 if (tmplen == 0)
3555 tmplen = 1024;
3556 else
3557 tmplen *= 2;
3558 tmp = xrealloc (tmp, tmplen);
3559 }
3560 selector = strchr (method, ' ');
3561 if (selector != NULL)
3562 selector++;
3563
3564 category = strchr (method, '(');
3565
3566 if ((category != NULL) && (selector != NULL))
3567 {
3568 memcpy (tmp, method, (category - method));
3569 tmp[category - method] = ' ';
3570 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
3571 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
3572 if (sym_text[0] == '[')
3573 completion_list_add_name (tmp + 1, sym_text, sym_text_len, text, word);
3574 }
3575
3576 if (selector != NULL)
3577 {
3578 /* Complete on selector only. */
3579 strcpy (tmp, selector);
3580 tmp2 = strchr (tmp, ']');
3581 if (tmp2 != NULL)
3582 *tmp2 = '\0';
3583
3584 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
3585 }
3586 }
3587
3588 /* Break the non-quoted text based on the characters which are in
3589 symbols. FIXME: This should probably be language-specific. */
3590
3591 static char *
3592 language_search_unquoted_string (char *text, char *p)
3593 {
3594 for (; p > text; --p)
3595 {
3596 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
3597 continue;
3598 else
3599 {
3600 if ((current_language->la_language == language_objc))
3601 {
3602 if (p[-1] == ':') /* might be part of a method name */
3603 continue;
3604 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
3605 p -= 2; /* beginning of a method name */
3606 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
3607 { /* might be part of a method name */
3608 char *t = p;
3609
3610 /* Seeing a ' ' or a '(' is not conclusive evidence
3611 that we are in the middle of a method name. However,
3612 finding "-[" or "+[" should be pretty un-ambiguous.
3613 Unfortunately we have to find it now to decide. */
3614
3615 while (t > text)
3616 if (isalnum (t[-1]) || t[-1] == '_' ||
3617 t[-1] == ' ' || t[-1] == ':' ||
3618 t[-1] == '(' || t[-1] == ')')
3619 --t;
3620 else
3621 break;
3622
3623 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
3624 p = t - 2; /* method name detected */
3625 /* else we leave with p unchanged */
3626 }
3627 }
3628 break;
3629 }
3630 }
3631 return p;
3632 }
3633
3634 char **
3635 default_make_symbol_completion_list (char *text, char *word)
3636 {
3637 /* Problem: All of the symbols have to be copied because readline
3638 frees them. I'm not going to worry about this; hopefully there
3639 won't be that many. */
3640
3641 struct symbol *sym;
3642 struct symtab *s;
3643 struct partial_symtab *ps;
3644 struct minimal_symbol *msymbol;
3645 struct objfile *objfile;
3646 struct block *b, *surrounding_static_block = 0;
3647 struct dict_iterator iter;
3648 int j;
3649 struct partial_symbol **psym;
3650 /* The symbol we are completing on. Points in same buffer as text. */
3651 char *sym_text;
3652 /* Length of sym_text. */
3653 int sym_text_len;
3654
3655 /* Now look for the symbol we are supposed to complete on. */
3656 {
3657 char *p;
3658 char quote_found;
3659 char *quote_pos = NULL;
3660
3661 /* First see if this is a quoted string. */
3662 quote_found = '\0';
3663 for (p = text; *p != '\0'; ++p)
3664 {
3665 if (quote_found != '\0')
3666 {
3667 if (*p == quote_found)
3668 /* Found close quote. */
3669 quote_found = '\0';
3670 else if (*p == '\\' && p[1] == quote_found)
3671 /* A backslash followed by the quote character
3672 doesn't end the string. */
3673 ++p;
3674 }
3675 else if (*p == '\'' || *p == '"')
3676 {
3677 quote_found = *p;
3678 quote_pos = p;
3679 }
3680 }
3681 if (quote_found == '\'')
3682 /* A string within single quotes can be a symbol, so complete on it. */
3683 sym_text = quote_pos + 1;
3684 else if (quote_found == '"')
3685 /* A double-quoted string is never a symbol, nor does it make sense
3686 to complete it any other way. */
3687 {
3688 return_val = (char **) xmalloc (sizeof (char *));
3689 return_val[0] = NULL;
3690 return return_val;
3691 }
3692 else
3693 {
3694 /* It is not a quoted string. Break it based on the characters
3695 which are in symbols. */
3696 while (p > text)
3697 {
3698 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
3699 --p;
3700 else
3701 break;
3702 }
3703 sym_text = p;
3704 }
3705 }
3706
3707 sym_text_len = strlen (sym_text);
3708
3709 return_val_size = 100;
3710 return_val_index = 0;
3711 return_val = (char **) xmalloc ((return_val_size + 1) * sizeof (char *));
3712 return_val[0] = NULL;
3713
3714 /* Look through the partial symtabs for all symbols which begin
3715 by matching SYM_TEXT. Add each one that you find to the list. */
3716
3717 ALL_PSYMTABS (objfile, ps)
3718 {
3719 /* If the psymtab's been read in we'll get it when we search
3720 through the blockvector. */
3721 if (ps->readin)
3722 continue;
3723
3724 for (psym = objfile->global_psymbols.list + ps->globals_offset;
3725 psym < (objfile->global_psymbols.list + ps->globals_offset
3726 + ps->n_global_syms);
3727 psym++)
3728 {
3729 /* If interrupted, then quit. */
3730 QUIT;
3731 COMPLETION_LIST_ADD_SYMBOL (*psym, sym_text, sym_text_len, text, word);
3732 }
3733
3734 for (psym = objfile->static_psymbols.list + ps->statics_offset;
3735 psym < (objfile->static_psymbols.list + ps->statics_offset
3736 + ps->n_static_syms);
3737 psym++)
3738 {
3739 QUIT;
3740 COMPLETION_LIST_ADD_SYMBOL (*psym, sym_text, sym_text_len, text, word);
3741 }
3742 }
3743
3744 /* At this point scan through the misc symbol vectors and add each
3745 symbol you find to the list. Eventually we want to ignore
3746 anything that isn't a text symbol (everything else will be
3747 handled by the psymtab code above). */
3748
3749 ALL_MSYMBOLS (objfile, msymbol)
3750 {
3751 QUIT;
3752 COMPLETION_LIST_ADD_SYMBOL (msymbol, sym_text, sym_text_len, text, word);
3753
3754 completion_list_objc_symbol (msymbol, sym_text, sym_text_len, text, word);
3755 }
3756
3757 /* Search upwards from currently selected frame (so that we can
3758 complete on local vars. */
3759
3760 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
3761 {
3762 if (!BLOCK_SUPERBLOCK (b))
3763 {
3764 surrounding_static_block = b; /* For elmin of dups */
3765 }
3766
3767 /* Also catch fields of types defined in this places which match our
3768 text string. Only complete on types visible from current context. */
3769
3770 ALL_BLOCK_SYMBOLS (b, iter, sym)
3771 {
3772 QUIT;
3773 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
3774 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
3775 {
3776 struct type *t = SYMBOL_TYPE (sym);
3777 enum type_code c = TYPE_CODE (t);
3778
3779 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
3780 {
3781 for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++)
3782 {
3783 if (TYPE_FIELD_NAME (t, j))
3784 {
3785 completion_list_add_name (TYPE_FIELD_NAME (t, j),
3786 sym_text, sym_text_len, text, word);
3787 }
3788 }
3789 }
3790 }
3791 }
3792 }
3793
3794 /* Go through the symtabs and check the externs and statics for
3795 symbols which match. */
3796
3797 ALL_PRIMARY_SYMTABS (objfile, s)
3798 {
3799 QUIT;
3800 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
3801 ALL_BLOCK_SYMBOLS (b, iter, sym)
3802 {
3803 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
3804 }
3805 }
3806
3807 ALL_PRIMARY_SYMTABS (objfile, s)
3808 {
3809 QUIT;
3810 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
3811 /* Don't do this block twice. */
3812 if (b == surrounding_static_block)
3813 continue;
3814 ALL_BLOCK_SYMBOLS (b, iter, sym)
3815 {
3816 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
3817 }
3818 }
3819
3820 return (return_val);
3821 }
3822
3823 /* Return a NULL terminated array of all symbols (regardless of class)
3824 which begin by matching TEXT. If the answer is no symbols, then
3825 the return value is an array which contains only a NULL pointer. */
3826
3827 char **
3828 make_symbol_completion_list (char *text, char *word)
3829 {
3830 return current_language->la_make_symbol_completion_list (text, word);
3831 }
3832
3833 /* Like make_symbol_completion_list, but returns a list of symbols
3834 defined in a source file FILE. */
3835
3836 char **
3837 make_file_symbol_completion_list (char *text, char *word, char *srcfile)
3838 {
3839 struct symbol *sym;
3840 struct symtab *s;
3841 struct block *b;
3842 struct dict_iterator iter;
3843 /* The symbol we are completing on. Points in same buffer as text. */
3844 char *sym_text;
3845 /* Length of sym_text. */
3846 int sym_text_len;
3847
3848 /* Now look for the symbol we are supposed to complete on.
3849 FIXME: This should be language-specific. */
3850 {
3851 char *p;
3852 char quote_found;
3853 char *quote_pos = NULL;
3854
3855 /* First see if this is a quoted string. */
3856 quote_found = '\0';
3857 for (p = text; *p != '\0'; ++p)
3858 {
3859 if (quote_found != '\0')
3860 {
3861 if (*p == quote_found)
3862 /* Found close quote. */
3863 quote_found = '\0';
3864 else if (*p == '\\' && p[1] == quote_found)
3865 /* A backslash followed by the quote character
3866 doesn't end the string. */
3867 ++p;
3868 }
3869 else if (*p == '\'' || *p == '"')
3870 {
3871 quote_found = *p;
3872 quote_pos = p;
3873 }
3874 }
3875 if (quote_found == '\'')
3876 /* A string within single quotes can be a symbol, so complete on it. */
3877 sym_text = quote_pos + 1;
3878 else if (quote_found == '"')
3879 /* A double-quoted string is never a symbol, nor does it make sense
3880 to complete it any other way. */
3881 {
3882 return_val = (char **) xmalloc (sizeof (char *));
3883 return_val[0] = NULL;
3884 return return_val;
3885 }
3886 else
3887 {
3888 /* Not a quoted string. */
3889 sym_text = language_search_unquoted_string (text, p);
3890 }
3891 }
3892
3893 sym_text_len = strlen (sym_text);
3894
3895 return_val_size = 10;
3896 return_val_index = 0;
3897 return_val = (char **) xmalloc ((return_val_size + 1) * sizeof (char *));
3898 return_val[0] = NULL;
3899
3900 /* Find the symtab for SRCFILE (this loads it if it was not yet read
3901 in). */
3902 s = lookup_symtab (srcfile);
3903 if (s == NULL)
3904 {
3905 /* Maybe they typed the file with leading directories, while the
3906 symbol tables record only its basename. */
3907 const char *tail = lbasename (srcfile);
3908
3909 if (tail > srcfile)
3910 s = lookup_symtab (tail);
3911 }
3912
3913 /* If we have no symtab for that file, return an empty list. */
3914 if (s == NULL)
3915 return (return_val);
3916
3917 /* Go through this symtab and check the externs and statics for
3918 symbols which match. */
3919
3920 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
3921 ALL_BLOCK_SYMBOLS (b, iter, sym)
3922 {
3923 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
3924 }
3925
3926 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
3927 ALL_BLOCK_SYMBOLS (b, iter, sym)
3928 {
3929 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
3930 }
3931
3932 return (return_val);
3933 }
3934
3935 /* A helper function for make_source_files_completion_list. It adds
3936 another file name to a list of possible completions, growing the
3937 list as necessary. */
3938
3939 static void
3940 add_filename_to_list (const char *fname, char *text, char *word,
3941 char ***list, int *list_used, int *list_alloced)
3942 {
3943 char *new;
3944 size_t fnlen = strlen (fname);
3945
3946 if (*list_used + 1 >= *list_alloced)
3947 {
3948 *list_alloced *= 2;
3949 *list = (char **) xrealloc ((char *) *list,
3950 *list_alloced * sizeof (char *));
3951 }
3952
3953 if (word == text)
3954 {
3955 /* Return exactly fname. */
3956 new = xmalloc (fnlen + 5);
3957 strcpy (new, fname);
3958 }
3959 else if (word > text)
3960 {
3961 /* Return some portion of fname. */
3962 new = xmalloc (fnlen + 5);
3963 strcpy (new, fname + (word - text));
3964 }
3965 else
3966 {
3967 /* Return some of TEXT plus fname. */
3968 new = xmalloc (fnlen + (text - word) + 5);
3969 strncpy (new, word, text - word);
3970 new[text - word] = '\0';
3971 strcat (new, fname);
3972 }
3973 (*list)[*list_used] = new;
3974 (*list)[++*list_used] = NULL;
3975 }
3976
3977 static int
3978 not_interesting_fname (const char *fname)
3979 {
3980 static const char *illegal_aliens[] = {
3981 "_globals_", /* inserted by coff_symtab_read */
3982 NULL
3983 };
3984 int i;
3985
3986 for (i = 0; illegal_aliens[i]; i++)
3987 {
3988 if (strcmp (fname, illegal_aliens[i]) == 0)
3989 return 1;
3990 }
3991 return 0;
3992 }
3993
3994 /* Return a NULL terminated array of all source files whose names
3995 begin with matching TEXT. The file names are looked up in the
3996 symbol tables of this program. If the answer is no matchess, then
3997 the return value is an array which contains only a NULL pointer. */
3998
3999 char **
4000 make_source_files_completion_list (char *text, char *word)
4001 {
4002 struct symtab *s;
4003 struct partial_symtab *ps;
4004 struct objfile *objfile;
4005 int first = 1;
4006 int list_alloced = 1;
4007 int list_used = 0;
4008 size_t text_len = strlen (text);
4009 char **list = (char **) xmalloc (list_alloced * sizeof (char *));
4010 const char *base_name;
4011
4012 list[0] = NULL;
4013
4014 if (!have_full_symbols () && !have_partial_symbols ())
4015 return list;
4016
4017 ALL_SYMTABS (objfile, s)
4018 {
4019 if (not_interesting_fname (s->filename))
4020 continue;
4021 if (!filename_seen (s->filename, 1, &first)
4022 #if HAVE_DOS_BASED_FILE_SYSTEM
4023 && strncasecmp (s->filename, text, text_len) == 0
4024 #else
4025 && strncmp (s->filename, text, text_len) == 0
4026 #endif
4027 )
4028 {
4029 /* This file matches for a completion; add it to the current
4030 list of matches. */
4031 add_filename_to_list (s->filename, text, word,
4032 &list, &list_used, &list_alloced);
4033 }
4034 else
4035 {
4036 /* NOTE: We allow the user to type a base name when the
4037 debug info records leading directories, but not the other
4038 way around. This is what subroutines of breakpoint
4039 command do when they parse file names. */
4040 base_name = lbasename (s->filename);
4041 if (base_name != s->filename
4042 && !filename_seen (base_name, 1, &first)
4043 #if HAVE_DOS_BASED_FILE_SYSTEM
4044 && strncasecmp (base_name, text, text_len) == 0
4045 #else
4046 && strncmp (base_name, text, text_len) == 0
4047 #endif
4048 )
4049 add_filename_to_list (base_name, text, word,
4050 &list, &list_used, &list_alloced);
4051 }
4052 }
4053
4054 ALL_PSYMTABS (objfile, ps)
4055 {
4056 if (not_interesting_fname (ps->filename))
4057 continue;
4058 if (!ps->readin)
4059 {
4060 if (!filename_seen (ps->filename, 1, &first)
4061 #if HAVE_DOS_BASED_FILE_SYSTEM
4062 && strncasecmp (ps->filename, text, text_len) == 0
4063 #else
4064 && strncmp (ps->filename, text, text_len) == 0
4065 #endif
4066 )
4067 {
4068 /* This file matches for a completion; add it to the
4069 current list of matches. */
4070 add_filename_to_list (ps->filename, text, word,
4071 &list, &list_used, &list_alloced);
4072
4073 }
4074 else
4075 {
4076 base_name = lbasename (ps->filename);
4077 if (base_name != ps->filename
4078 && !filename_seen (base_name, 1, &first)
4079 #if HAVE_DOS_BASED_FILE_SYSTEM
4080 && strncasecmp (base_name, text, text_len) == 0
4081 #else
4082 && strncmp (base_name, text, text_len) == 0
4083 #endif
4084 )
4085 add_filename_to_list (base_name, text, word,
4086 &list, &list_used, &list_alloced);
4087 }
4088 }
4089 }
4090
4091 return list;
4092 }
4093
4094 /* Determine if PC is in the prologue of a function. The prologue is the area
4095 between the first instruction of a function, and the first executable line.
4096 Returns 1 if PC *might* be in prologue, 0 if definately *not* in prologue.
4097
4098 If non-zero, func_start is where we think the prologue starts, possibly
4099 by previous examination of symbol table information.
4100 */
4101
4102 int
4103 in_prologue (CORE_ADDR pc, CORE_ADDR func_start)
4104 {
4105 struct symtab_and_line sal;
4106 CORE_ADDR func_addr, func_end;
4107
4108 /* We have several sources of information we can consult to figure
4109 this out.
4110 - Compilers usually emit line number info that marks the prologue
4111 as its own "source line". So the ending address of that "line"
4112 is the end of the prologue. If available, this is the most
4113 reliable method.
4114 - The minimal symbols and partial symbols, which can usually tell
4115 us the starting and ending addresses of a function.
4116 - If we know the function's start address, we can call the
4117 architecture-defined gdbarch_skip_prologue function to analyze the
4118 instruction stream and guess where the prologue ends.
4119 - Our `func_start' argument; if non-zero, this is the caller's
4120 best guess as to the function's entry point. At the time of
4121 this writing, handle_inferior_event doesn't get this right, so
4122 it should be our last resort. */
4123
4124 /* Consult the partial symbol table, to find which function
4125 the PC is in. */
4126 if (! find_pc_partial_function (pc, NULL, &func_addr, &func_end))
4127 {
4128 CORE_ADDR prologue_end;
4129
4130 /* We don't even have minsym information, so fall back to using
4131 func_start, if given. */
4132 if (! func_start)
4133 return 1; /* We *might* be in a prologue. */
4134
4135 prologue_end = gdbarch_skip_prologue (current_gdbarch, func_start);
4136
4137 return func_start <= pc && pc < prologue_end;
4138 }
4139
4140 /* If we have line number information for the function, that's
4141 usually pretty reliable. */
4142 sal = find_pc_line (func_addr, 0);
4143
4144 /* Now sal describes the source line at the function's entry point,
4145 which (by convention) is the prologue. The end of that "line",
4146 sal.end, is the end of the prologue.
4147
4148 Note that, for functions whose source code is all on a single
4149 line, the line number information doesn't always end up this way.
4150 So we must verify that our purported end-of-prologue address is
4151 *within* the function, not at its start or end. */
4152 if (sal.line == 0
4153 || sal.end <= func_addr
4154 || func_end <= sal.end)
4155 {
4156 /* We don't have any good line number info, so use the minsym
4157 information, together with the architecture-specific prologue
4158 scanning code. */
4159 CORE_ADDR prologue_end = gdbarch_skip_prologue
4160 (current_gdbarch, func_addr);
4161
4162 return func_addr <= pc && pc < prologue_end;
4163 }
4164
4165 /* We have line number info, and it looks good. */
4166 return func_addr <= pc && pc < sal.end;
4167 }
4168
4169 /* Given PC at the function's start address, attempt to find the
4170 prologue end using SAL information. Return zero if the skip fails.
4171
4172 A non-optimized prologue traditionally has one SAL for the function
4173 and a second for the function body. A single line function has
4174 them both pointing at the same line.
4175
4176 An optimized prologue is similar but the prologue may contain
4177 instructions (SALs) from the instruction body. Need to skip those
4178 while not getting into the function body.
4179
4180 The functions end point and an increasing SAL line are used as
4181 indicators of the prologue's endpoint.
4182
4183 This code is based on the function refine_prologue_limit (versions
4184 found in both ia64 and ppc). */
4185
4186 CORE_ADDR
4187 skip_prologue_using_sal (CORE_ADDR func_addr)
4188 {
4189 struct symtab_and_line prologue_sal;
4190 CORE_ADDR start_pc;
4191 CORE_ADDR end_pc;
4192
4193 /* Get an initial range for the function. */
4194 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
4195 start_pc += gdbarch_deprecated_function_start_offset (current_gdbarch);
4196
4197 prologue_sal = find_pc_line (start_pc, 0);
4198 if (prologue_sal.line != 0)
4199 {
4200 /* If there is only one sal that covers the entire function,
4201 then it is probably a single line function, like
4202 "foo(){}". */
4203 if (prologue_sal.end >= end_pc)
4204 return 0;
4205 while (prologue_sal.end < end_pc)
4206 {
4207 struct symtab_and_line sal;
4208
4209 sal = find_pc_line (prologue_sal.end, 0);
4210 if (sal.line == 0)
4211 break;
4212 /* Assume that a consecutive SAL for the same (or larger)
4213 line mark the prologue -> body transition. */
4214 if (sal.line >= prologue_sal.line)
4215 break;
4216 /* The case in which compiler's optimizer/scheduler has
4217 moved instructions into the prologue. We look ahead in
4218 the function looking for address ranges whose
4219 corresponding line number is less the first one that we
4220 found for the function. This is more conservative then
4221 refine_prologue_limit which scans a large number of SALs
4222 looking for any in the prologue */
4223 prologue_sal = sal;
4224 }
4225 }
4226 return prologue_sal.end;
4227 }
4228 \f
4229 struct symtabs_and_lines
4230 decode_line_spec (char *string, int funfirstline)
4231 {
4232 struct symtabs_and_lines sals;
4233 struct symtab_and_line cursal;
4234
4235 if (string == 0)
4236 error (_("Empty line specification."));
4237
4238 /* We use whatever is set as the current source line. We do not try
4239 and get a default or it will recursively call us! */
4240 cursal = get_current_source_symtab_and_line ();
4241
4242 sals = decode_line_1 (&string, funfirstline,
4243 cursal.symtab, cursal.line,
4244 (char ***) NULL, NULL);
4245
4246 if (*string)
4247 error (_("Junk at end of line specification: %s"), string);
4248 return sals;
4249 }
4250
4251 /* Track MAIN */
4252 static char *name_of_main;
4253
4254 void
4255 set_main_name (const char *name)
4256 {
4257 if (name_of_main != NULL)
4258 {
4259 xfree (name_of_main);
4260 name_of_main = NULL;
4261 }
4262 if (name != NULL)
4263 {
4264 name_of_main = xstrdup (name);
4265 }
4266 }
4267
4268 /* Deduce the name of the main procedure, and set NAME_OF_MAIN
4269 accordingly. */
4270
4271 static void
4272 find_main_name (void)
4273 {
4274 const char *new_main_name;
4275
4276 /* Try to see if the main procedure is in Ada. */
4277 /* FIXME: brobecker/2005-03-07: Another way of doing this would
4278 be to add a new method in the language vector, and call this
4279 method for each language until one of them returns a non-empty
4280 name. This would allow us to remove this hard-coded call to
4281 an Ada function. It is not clear that this is a better approach
4282 at this point, because all methods need to be written in a way
4283 such that false positives never be returned. For instance, it is
4284 important that a method does not return a wrong name for the main
4285 procedure if the main procedure is actually written in a different
4286 language. It is easy to guaranty this with Ada, since we use a
4287 special symbol generated only when the main in Ada to find the name
4288 of the main procedure. It is difficult however to see how this can
4289 be guarantied for languages such as C, for instance. This suggests
4290 that order of call for these methods becomes important, which means
4291 a more complicated approach. */
4292 new_main_name = ada_main_name ();
4293 if (new_main_name != NULL)
4294 {
4295 set_main_name (new_main_name);
4296 return;
4297 }
4298
4299 new_main_name = pascal_main_name ();
4300 if (new_main_name != NULL)
4301 {
4302 set_main_name (new_main_name);
4303 return;
4304 }
4305
4306 /* The languages above didn't identify the name of the main procedure.
4307 Fallback to "main". */
4308 set_main_name ("main");
4309 }
4310
4311 char *
4312 main_name (void)
4313 {
4314 if (name_of_main == NULL)
4315 find_main_name ();
4316
4317 return name_of_main;
4318 }
4319
4320 /* Handle ``executable_changed'' events for the symtab module. */
4321
4322 static void
4323 symtab_observer_executable_changed (void *unused)
4324 {
4325 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
4326 set_main_name (NULL);
4327 }
4328
4329 /* Helper to expand_line_sal below. Appends new sal to SAL,
4330 initializing it from SYMTAB, LINENO and PC. */
4331 static void
4332 append_expanded_sal (struct symtabs_and_lines *sal,
4333 struct symtab *symtab,
4334 int lineno, CORE_ADDR pc)
4335 {
4336 CORE_ADDR func_addr, func_end;
4337
4338 sal->sals = xrealloc (sal->sals,
4339 sizeof (sal->sals[0])
4340 * (sal->nelts + 1));
4341 init_sal (sal->sals + sal->nelts);
4342 sal->sals[sal->nelts].symtab = symtab;
4343 sal->sals[sal->nelts].section = NULL;
4344 sal->sals[sal->nelts].end = 0;
4345 sal->sals[sal->nelts].line = lineno;
4346 sal->sals[sal->nelts].pc = pc;
4347 ++sal->nelts;
4348 }
4349
4350 /* Compute a set of all sals in
4351 the entire program that correspond to same file
4352 and line as SAL and return those. If there
4353 are several sals that belong to the same block,
4354 only one sal for the block is included in results. */
4355
4356 struct symtabs_and_lines
4357 expand_line_sal (struct symtab_and_line sal)
4358 {
4359 struct symtabs_and_lines ret, this_line;
4360 int i, j;
4361 struct objfile *objfile;
4362 struct partial_symtab *psymtab;
4363 struct symtab *symtab;
4364 int lineno;
4365 int deleted = 0;
4366 struct block **blocks = NULL;
4367 int *filter;
4368
4369 ret.nelts = 0;
4370 ret.sals = NULL;
4371
4372 if (sal.symtab == NULL || sal.line == 0 || sal.pc != 0)
4373 {
4374 ret.sals = xmalloc (sizeof (struct symtab_and_line));
4375 ret.sals[0] = sal;
4376 ret.nelts = 1;
4377 return ret;
4378 }
4379 else
4380 {
4381 struct linetable_entry *best_item = 0;
4382 struct symtab *best_symtab = 0;
4383 int exact = 0;
4384
4385 lineno = sal.line;
4386
4387 /* We meed to find all symtabs for a file which name
4388 is described by sal. We cannot just directly
4389 iterate over symtabs, since a symtab might not be
4390 yet created. We also cannot iterate over psymtabs,
4391 calling PSYMTAB_TO_SYMTAB and working on that symtab,
4392 since PSYMTAB_TO_SYMTAB will return NULL for psymtab
4393 corresponding to an included file. Therefore, we do
4394 first pass over psymtabs, reading in those with
4395 the right name. Then, we iterate over symtabs, knowing
4396 that all symtabs we're interested in are loaded. */
4397
4398 ALL_PSYMTABS (objfile, psymtab)
4399 {
4400 if (strcmp (sal.symtab->filename,
4401 psymtab->filename) == 0)
4402 PSYMTAB_TO_SYMTAB (psymtab);
4403 }
4404
4405
4406 /* For each symtab, we add all pcs to ret.sals. I'm actually
4407 not sure what to do if we have exact match in one symtab,
4408 and non-exact match on another symtab.
4409 */
4410 ALL_SYMTABS (objfile, symtab)
4411 {
4412 if (strcmp (sal.symtab->filename,
4413 symtab->filename) == 0)
4414 {
4415 struct linetable *l;
4416 int len;
4417 l = LINETABLE (symtab);
4418 if (!l)
4419 continue;
4420 len = l->nitems;
4421
4422 for (j = 0; j < len; j++)
4423 {
4424 struct linetable_entry *item = &(l->item[j]);
4425
4426 if (item->line == lineno)
4427 {
4428 exact = 1;
4429 append_expanded_sal (&ret, symtab, lineno, item->pc);
4430 }
4431 else if (!exact && item->line > lineno
4432 && (best_item == NULL || item->line < best_item->line))
4433
4434 {
4435 best_item = item;
4436 best_symtab = symtab;
4437 }
4438 }
4439 }
4440 }
4441 if (!exact && best_item)
4442 append_expanded_sal (&ret, best_symtab, lineno, best_item->pc);
4443 }
4444
4445 /* For optimized code, compiler can scatter one source line accross
4446 disjoint ranges of PC values, even when no duplicate functions
4447 or inline functions are involved. For example, 'for (;;)' inside
4448 non-template non-inline non-ctor-or-dtor function can result
4449 in two PC ranges. In this case, we don't want to set breakpoint
4450 on first PC of each range. To filter such cases, we use containing
4451 blocks -- for each PC found above we see if there are other PCs
4452 that are in the same block. If yes, the other PCs are filtered out. */
4453
4454 filter = xmalloc (ret.nelts * sizeof (int));
4455 blocks = xmalloc (ret.nelts * sizeof (struct block *));
4456 for (i = 0; i < ret.nelts; ++i)
4457 {
4458 filter[i] = 1;
4459 blocks[i] = block_for_pc (ret.sals[i].pc);
4460 }
4461
4462 for (i = 0; i < ret.nelts; ++i)
4463 if (blocks[i] != NULL)
4464 for (j = i+1; j < ret.nelts; ++j)
4465 if (blocks[j] == blocks[i])
4466 {
4467 filter[j] = 0;
4468 ++deleted;
4469 break;
4470 }
4471
4472 {
4473 struct symtab_and_line *final =
4474 xmalloc (sizeof (struct symtab_and_line) * (ret.nelts-deleted));
4475
4476 for (i = 0, j = 0; i < ret.nelts; ++i)
4477 if (filter[i])
4478 final[j++] = ret.sals[i];
4479
4480 ret.nelts -= deleted;
4481 xfree (ret.sals);
4482 ret.sals = final;
4483 }
4484
4485 return ret;
4486 }
4487
4488
4489 void
4490 _initialize_symtab (void)
4491 {
4492 add_info ("variables", variables_info, _("\
4493 All global and static variable names, or those matching REGEXP."));
4494 if (dbx_commands)
4495 add_com ("whereis", class_info, variables_info, _("\
4496 All global and static variable names, or those matching REGEXP."));
4497
4498 add_info ("functions", functions_info,
4499 _("All function names, or those matching REGEXP."));
4500
4501
4502 /* FIXME: This command has at least the following problems:
4503 1. It prints builtin types (in a very strange and confusing fashion).
4504 2. It doesn't print right, e.g. with
4505 typedef struct foo *FOO
4506 type_print prints "FOO" when we want to make it (in this situation)
4507 print "struct foo *".
4508 I also think "ptype" or "whatis" is more likely to be useful (but if
4509 there is much disagreement "info types" can be fixed). */
4510 add_info ("types", types_info,
4511 _("All type names, or those matching REGEXP."));
4512
4513 add_info ("sources", sources_info,
4514 _("Source files in the program."));
4515
4516 add_com ("rbreak", class_breakpoint, rbreak_command,
4517 _("Set a breakpoint for all functions matching REGEXP."));
4518
4519 if (xdb_commands)
4520 {
4521 add_com ("lf", class_info, sources_info,
4522 _("Source files in the program"));
4523 add_com ("lg", class_info, variables_info, _("\
4524 All global and static variable names, or those matching REGEXP."));
4525 }
4526
4527 add_setshow_enum_cmd ("multiple-symbols", no_class,
4528 multiple_symbols_modes, &multiple_symbols_mode,
4529 _("\
4530 Set the debugger behavior when more than one symbol are possible matches\n\
4531 in an expression."), _("\
4532 Show how the debugger handles ambiguities in expressions."), _("\
4533 Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
4534 NULL, NULL, &setlist, &showlist);
4535
4536 /* Initialize the one built-in type that isn't language dependent... */
4537 builtin_type_error = init_type (TYPE_CODE_ERROR, 0, 0,
4538 "<unknown type>", (struct objfile *) NULL);
4539
4540 observer_attach_executable_changed (symtab_observer_executable_changed);
4541 }
This page took 0.125799 seconds and 4 git commands to generate.