Make gdb.lookup_typename work for Rust types
[deliverable/binutils-gdb.git] / gdb / symtab.c
1 /* Symbol table lookup for the GNU debugger, GDB.
2
3 Copyright (C) 1986-2017 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "gdbcore.h"
24 #include "frame.h"
25 #include "target.h"
26 #include "value.h"
27 #include "symfile.h"
28 #include "objfiles.h"
29 #include "gdbcmd.h"
30 #include "gdb_regex.h"
31 #include "expression.h"
32 #include "language.h"
33 #include "demangle.h"
34 #include "inferior.h"
35 #include "source.h"
36 #include "filenames.h" /* for FILENAME_CMP */
37 #include "objc-lang.h"
38 #include "d-lang.h"
39 #include "ada-lang.h"
40 #include "go-lang.h"
41 #include "p-lang.h"
42 #include "addrmap.h"
43 #include "cli/cli-utils.h"
44 #include "fnmatch.h"
45 #include "hashtab.h"
46
47 #include "gdb_obstack.h"
48 #include "block.h"
49 #include "dictionary.h"
50
51 #include <sys/types.h>
52 #include <fcntl.h>
53 #include <sys/stat.h>
54 #include <ctype.h>
55 #include "cp-abi.h"
56 #include "cp-support.h"
57 #include "observer.h"
58 #include "solist.h"
59 #include "macrotab.h"
60 #include "macroscope.h"
61
62 #include "parser-defs.h"
63 #include "completer.h"
64 #include "progspace-and-thread.h"
65 #include "common/gdb_optional.h"
66
67 /* Forward declarations for local functions. */
68
69 static void rbreak_command (char *, int);
70
71 static int find_line_common (struct linetable *, int, int *, int);
72
73 static struct block_symbol
74 lookup_symbol_aux (const char *name,
75 const struct block *block,
76 const domain_enum domain,
77 enum language language,
78 struct field_of_this_result *);
79
80 static
81 struct block_symbol lookup_local_symbol (const char *name,
82 const struct block *block,
83 const domain_enum domain,
84 enum language language);
85
86 static struct block_symbol
87 lookup_symbol_in_objfile (struct objfile *objfile, int block_index,
88 const char *name, const domain_enum domain);
89
90 /* See symtab.h. */
91 const struct block_symbol null_block_symbol = { NULL, NULL };
92
93 extern initialize_file_ftype _initialize_symtab;
94
95 /* Program space key for finding name and language of "main". */
96
97 static const struct program_space_data *main_progspace_key;
98
99 /* Type of the data stored on the program space. */
100
101 struct main_info
102 {
103 /* Name of "main". */
104
105 char *name_of_main;
106
107 /* Language of "main". */
108
109 enum language language_of_main;
110 };
111
112 /* Program space key for finding its symbol cache. */
113
114 static const struct program_space_data *symbol_cache_key;
115
116 /* The default symbol cache size.
117 There is no extra cpu cost for large N (except when flushing the cache,
118 which is rare). The value here is just a first attempt. A better default
119 value may be higher or lower. A prime number can make up for a bad hash
120 computation, so that's why the number is what it is. */
121 #define DEFAULT_SYMBOL_CACHE_SIZE 1021
122
123 /* The maximum symbol cache size.
124 There's no method to the decision of what value to use here, other than
125 there's no point in allowing a user typo to make gdb consume all memory. */
126 #define MAX_SYMBOL_CACHE_SIZE (1024*1024)
127
128 /* symbol_cache_lookup returns this if a previous lookup failed to find the
129 symbol in any objfile. */
130 #define SYMBOL_LOOKUP_FAILED \
131 ((struct block_symbol) {(struct symbol *) 1, NULL})
132 #define SYMBOL_LOOKUP_FAILED_P(SIB) (SIB.symbol == (struct symbol *) 1)
133
134 /* Recording lookups that don't find the symbol is just as important, if not
135 more so, than recording found symbols. */
136
137 enum symbol_cache_slot_state
138 {
139 SYMBOL_SLOT_UNUSED,
140 SYMBOL_SLOT_NOT_FOUND,
141 SYMBOL_SLOT_FOUND
142 };
143
144 struct symbol_cache_slot
145 {
146 enum symbol_cache_slot_state state;
147
148 /* The objfile that was current when the symbol was looked up.
149 This is only needed for global blocks, but for simplicity's sake
150 we allocate the space for both. If data shows the extra space used
151 for static blocks is a problem, we can split things up then.
152
153 Global blocks need cache lookup to include the objfile context because
154 we need to account for gdbarch_iterate_over_objfiles_in_search_order
155 which can traverse objfiles in, effectively, any order, depending on
156 the current objfile, thus affecting which symbol is found. Normally,
157 only the current objfile is searched first, and then the rest are
158 searched in recorded order; but putting cache lookup inside
159 gdbarch_iterate_over_objfiles_in_search_order would be awkward.
160 Instead we just make the current objfile part of the context of
161 cache lookup. This means we can record the same symbol multiple times,
162 each with a different "current objfile" that was in effect when the
163 lookup was saved in the cache, but cache space is pretty cheap. */
164 const struct objfile *objfile_context;
165
166 union
167 {
168 struct block_symbol found;
169 struct
170 {
171 char *name;
172 domain_enum domain;
173 } not_found;
174 } value;
175 };
176
177 /* Symbols don't specify global vs static block.
178 So keep them in separate caches. */
179
180 struct block_symbol_cache
181 {
182 unsigned int hits;
183 unsigned int misses;
184 unsigned int collisions;
185
186 /* SYMBOLS is a variable length array of this size.
187 One can imagine that in general one cache (global/static) should be a
188 fraction of the size of the other, but there's no data at the moment
189 on which to decide. */
190 unsigned int size;
191
192 struct symbol_cache_slot symbols[1];
193 };
194
195 /* The symbol cache.
196
197 Searching for symbols in the static and global blocks over multiple objfiles
198 again and again can be slow, as can searching very big objfiles. This is a
199 simple cache to improve symbol lookup performance, which is critical to
200 overall gdb performance.
201
202 Symbols are hashed on the name, its domain, and block.
203 They are also hashed on their objfile for objfile-specific lookups. */
204
205 struct symbol_cache
206 {
207 struct block_symbol_cache *global_symbols;
208 struct block_symbol_cache *static_symbols;
209 };
210
211 /* When non-zero, print debugging messages related to symtab creation. */
212 unsigned int symtab_create_debug = 0;
213
214 /* When non-zero, print debugging messages related to symbol lookup. */
215 unsigned int symbol_lookup_debug = 0;
216
217 /* The size of the cache is staged here. */
218 static unsigned int new_symbol_cache_size = DEFAULT_SYMBOL_CACHE_SIZE;
219
220 /* The current value of the symbol cache size.
221 This is saved so that if the user enters a value too big we can restore
222 the original value from here. */
223 static unsigned int symbol_cache_size = DEFAULT_SYMBOL_CACHE_SIZE;
224
225 /* Non-zero if a file may be known by two different basenames.
226 This is the uncommon case, and significantly slows down gdb.
227 Default set to "off" to not slow down the common case. */
228 int basenames_may_differ = 0;
229
230 /* Allow the user to configure the debugger behavior with respect
231 to multiple-choice menus when more than one symbol matches during
232 a symbol lookup. */
233
234 const char multiple_symbols_ask[] = "ask";
235 const char multiple_symbols_all[] = "all";
236 const char multiple_symbols_cancel[] = "cancel";
237 static const char *const multiple_symbols_modes[] =
238 {
239 multiple_symbols_ask,
240 multiple_symbols_all,
241 multiple_symbols_cancel,
242 NULL
243 };
244 static const char *multiple_symbols_mode = multiple_symbols_all;
245
246 /* Read-only accessor to AUTO_SELECT_MODE. */
247
248 const char *
249 multiple_symbols_select_mode (void)
250 {
251 return multiple_symbols_mode;
252 }
253
254 /* Return the name of a domain_enum. */
255
256 const char *
257 domain_name (domain_enum e)
258 {
259 switch (e)
260 {
261 case UNDEF_DOMAIN: return "UNDEF_DOMAIN";
262 case VAR_DOMAIN: return "VAR_DOMAIN";
263 case STRUCT_DOMAIN: return "STRUCT_DOMAIN";
264 case MODULE_DOMAIN: return "MODULE_DOMAIN";
265 case LABEL_DOMAIN: return "LABEL_DOMAIN";
266 case COMMON_BLOCK_DOMAIN: return "COMMON_BLOCK_DOMAIN";
267 default: gdb_assert_not_reached ("bad domain_enum");
268 }
269 }
270
271 /* Return the name of a search_domain . */
272
273 const char *
274 search_domain_name (enum search_domain e)
275 {
276 switch (e)
277 {
278 case VARIABLES_DOMAIN: return "VARIABLES_DOMAIN";
279 case FUNCTIONS_DOMAIN: return "FUNCTIONS_DOMAIN";
280 case TYPES_DOMAIN: return "TYPES_DOMAIN";
281 case ALL_DOMAIN: return "ALL_DOMAIN";
282 default: gdb_assert_not_reached ("bad search_domain");
283 }
284 }
285
286 /* See symtab.h. */
287
288 struct symtab *
289 compunit_primary_filetab (const struct compunit_symtab *cust)
290 {
291 gdb_assert (COMPUNIT_FILETABS (cust) != NULL);
292
293 /* The primary file symtab is the first one in the list. */
294 return COMPUNIT_FILETABS (cust);
295 }
296
297 /* See symtab.h. */
298
299 enum language
300 compunit_language (const struct compunit_symtab *cust)
301 {
302 struct symtab *symtab = compunit_primary_filetab (cust);
303
304 /* The language of the compunit symtab is the language of its primary
305 source file. */
306 return SYMTAB_LANGUAGE (symtab);
307 }
308
309 /* See whether FILENAME matches SEARCH_NAME using the rule that we
310 advertise to the user. (The manual's description of linespecs
311 describes what we advertise). Returns true if they match, false
312 otherwise. */
313
314 int
315 compare_filenames_for_search (const char *filename, const char *search_name)
316 {
317 int len = strlen (filename);
318 size_t search_len = strlen (search_name);
319
320 if (len < search_len)
321 return 0;
322
323 /* The tail of FILENAME must match. */
324 if (FILENAME_CMP (filename + len - search_len, search_name) != 0)
325 return 0;
326
327 /* Either the names must completely match, or the character
328 preceding the trailing SEARCH_NAME segment of FILENAME must be a
329 directory separator.
330
331 The check !IS_ABSOLUTE_PATH ensures SEARCH_NAME "/dir/file.c"
332 cannot match FILENAME "/path//dir/file.c" - as user has requested
333 absolute path. The sama applies for "c:\file.c" possibly
334 incorrectly hypothetically matching "d:\dir\c:\file.c".
335
336 The HAS_DRIVE_SPEC purpose is to make FILENAME "c:file.c"
337 compatible with SEARCH_NAME "file.c". In such case a compiler had
338 to put the "c:file.c" name into debug info. Such compatibility
339 works only on GDB built for DOS host. */
340 return (len == search_len
341 || (!IS_ABSOLUTE_PATH (search_name)
342 && IS_DIR_SEPARATOR (filename[len - search_len - 1]))
343 || (HAS_DRIVE_SPEC (filename)
344 && STRIP_DRIVE_SPEC (filename) == &filename[len - search_len]));
345 }
346
347 /* Same as compare_filenames_for_search, but for glob-style patterns.
348 Heads up on the order of the arguments. They match the order of
349 compare_filenames_for_search, but it's the opposite of the order of
350 arguments to gdb_filename_fnmatch. */
351
352 int
353 compare_glob_filenames_for_search (const char *filename,
354 const char *search_name)
355 {
356 /* We rely on the property of glob-style patterns with FNM_FILE_NAME that
357 all /s have to be explicitly specified. */
358 int file_path_elements = count_path_elements (filename);
359 int search_path_elements = count_path_elements (search_name);
360
361 if (search_path_elements > file_path_elements)
362 return 0;
363
364 if (IS_ABSOLUTE_PATH (search_name))
365 {
366 return (search_path_elements == file_path_elements
367 && gdb_filename_fnmatch (search_name, filename,
368 FNM_FILE_NAME | FNM_NOESCAPE) == 0);
369 }
370
371 {
372 const char *file_to_compare
373 = strip_leading_path_elements (filename,
374 file_path_elements - search_path_elements);
375
376 return gdb_filename_fnmatch (search_name, file_to_compare,
377 FNM_FILE_NAME | FNM_NOESCAPE) == 0;
378 }
379 }
380
381 /* Check for a symtab of a specific name by searching some symtabs.
382 This is a helper function for callbacks of iterate_over_symtabs.
383
384 If NAME is not absolute, then REAL_PATH is NULL
385 If NAME is absolute, then REAL_PATH is the gdb_realpath form of NAME.
386
387 The return value, NAME, REAL_PATH and CALLBACK are identical to the
388 `map_symtabs_matching_filename' method of quick_symbol_functions.
389
390 FIRST and AFTER_LAST indicate the range of compunit symtabs to search.
391 Each symtab within the specified compunit symtab is also searched.
392 AFTER_LAST is one past the last compunit symtab to search; NULL means to
393 search until the end of the list. */
394
395 bool
396 iterate_over_some_symtabs (const char *name,
397 const char *real_path,
398 struct compunit_symtab *first,
399 struct compunit_symtab *after_last,
400 gdb::function_view<bool (symtab *)> callback)
401 {
402 struct compunit_symtab *cust;
403 struct symtab *s;
404 const char* base_name = lbasename (name);
405
406 for (cust = first; cust != NULL && cust != after_last; cust = cust->next)
407 {
408 ALL_COMPUNIT_FILETABS (cust, s)
409 {
410 if (compare_filenames_for_search (s->filename, name))
411 {
412 if (callback (s))
413 return true;
414 continue;
415 }
416
417 /* Before we invoke realpath, which can get expensive when many
418 files are involved, do a quick comparison of the basenames. */
419 if (! basenames_may_differ
420 && FILENAME_CMP (base_name, lbasename (s->filename)) != 0)
421 continue;
422
423 if (compare_filenames_for_search (symtab_to_fullname (s), name))
424 {
425 if (callback (s))
426 return true;
427 continue;
428 }
429
430 /* If the user gave us an absolute path, try to find the file in
431 this symtab and use its absolute path. */
432 if (real_path != NULL)
433 {
434 const char *fullname = symtab_to_fullname (s);
435
436 gdb_assert (IS_ABSOLUTE_PATH (real_path));
437 gdb_assert (IS_ABSOLUTE_PATH (name));
438 if (FILENAME_CMP (real_path, fullname) == 0)
439 {
440 if (callback (s))
441 return true;
442 continue;
443 }
444 }
445 }
446 }
447
448 return false;
449 }
450
451 /* Check for a symtab of a specific name; first in symtabs, then in
452 psymtabs. *If* there is no '/' in the name, a match after a '/'
453 in the symtab filename will also work.
454
455 Calls CALLBACK with each symtab that is found. If CALLBACK returns
456 true, the search stops. */
457
458 void
459 iterate_over_symtabs (const char *name,
460 gdb::function_view<bool (symtab *)> callback)
461 {
462 struct objfile *objfile;
463 gdb::unique_xmalloc_ptr<char> real_path;
464
465 /* Here we are interested in canonicalizing an absolute path, not
466 absolutizing a relative path. */
467 if (IS_ABSOLUTE_PATH (name))
468 {
469 real_path.reset (gdb_realpath (name));
470 gdb_assert (IS_ABSOLUTE_PATH (real_path.get ()));
471 }
472
473 ALL_OBJFILES (objfile)
474 {
475 if (iterate_over_some_symtabs (name, real_path.get (),
476 objfile->compunit_symtabs, NULL,
477 callback))
478 return;
479 }
480
481 /* Same search rules as above apply here, but now we look thru the
482 psymtabs. */
483
484 ALL_OBJFILES (objfile)
485 {
486 if (objfile->sf
487 && objfile->sf->qf->map_symtabs_matching_filename (objfile,
488 name,
489 real_path.get (),
490 callback))
491 return;
492 }
493 }
494
495 /* A wrapper for iterate_over_symtabs that returns the first matching
496 symtab, or NULL. */
497
498 struct symtab *
499 lookup_symtab (const char *name)
500 {
501 struct symtab *result = NULL;
502
503 iterate_over_symtabs (name, [&] (symtab *symtab)
504 {
505 result = symtab;
506 return true;
507 });
508
509 return result;
510 }
511
512 \f
513 /* Mangle a GDB method stub type. This actually reassembles the pieces of the
514 full method name, which consist of the class name (from T), the unadorned
515 method name from METHOD_ID, and the signature for the specific overload,
516 specified by SIGNATURE_ID. Note that this function is g++ specific. */
517
518 char *
519 gdb_mangle_name (struct type *type, int method_id, int signature_id)
520 {
521 int mangled_name_len;
522 char *mangled_name;
523 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
524 struct fn_field *method = &f[signature_id];
525 const char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
526 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
527 const char *newname = type_name_no_tag (type);
528
529 /* Does the form of physname indicate that it is the full mangled name
530 of a constructor (not just the args)? */
531 int is_full_physname_constructor;
532
533 int is_constructor;
534 int is_destructor = is_destructor_name (physname);
535 /* Need a new type prefix. */
536 const char *const_prefix = method->is_const ? "C" : "";
537 const char *volatile_prefix = method->is_volatile ? "V" : "";
538 char buf[20];
539 int len = (newname == NULL ? 0 : strlen (newname));
540
541 /* Nothing to do if physname already contains a fully mangled v3 abi name
542 or an operator name. */
543 if ((physname[0] == '_' && physname[1] == 'Z')
544 || is_operator_name (field_name))
545 return xstrdup (physname);
546
547 is_full_physname_constructor = is_constructor_name (physname);
548
549 is_constructor = is_full_physname_constructor
550 || (newname && strcmp (field_name, newname) == 0);
551
552 if (!is_destructor)
553 is_destructor = (startswith (physname, "__dt"));
554
555 if (is_destructor || is_full_physname_constructor)
556 {
557 mangled_name = (char *) xmalloc (strlen (physname) + 1);
558 strcpy (mangled_name, physname);
559 return mangled_name;
560 }
561
562 if (len == 0)
563 {
564 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
565 }
566 else if (physname[0] == 't' || physname[0] == 'Q')
567 {
568 /* The physname for template and qualified methods already includes
569 the class name. */
570 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
571 newname = NULL;
572 len = 0;
573 }
574 else
575 {
576 xsnprintf (buf, sizeof (buf), "__%s%s%d", const_prefix,
577 volatile_prefix, len);
578 }
579 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
580 + strlen (buf) + len + strlen (physname) + 1);
581
582 mangled_name = (char *) xmalloc (mangled_name_len);
583 if (is_constructor)
584 mangled_name[0] = '\0';
585 else
586 strcpy (mangled_name, field_name);
587
588 strcat (mangled_name, buf);
589 /* If the class doesn't have a name, i.e. newname NULL, then we just
590 mangle it using 0 for the length of the class. Thus it gets mangled
591 as something starting with `::' rather than `classname::'. */
592 if (newname != NULL)
593 strcat (mangled_name, newname);
594
595 strcat (mangled_name, physname);
596 return (mangled_name);
597 }
598
599 /* Set the demangled name of GSYMBOL to NAME. NAME must be already
600 correctly allocated. */
601
602 void
603 symbol_set_demangled_name (struct general_symbol_info *gsymbol,
604 const char *name,
605 struct obstack *obstack)
606 {
607 if (gsymbol->language == language_ada)
608 {
609 if (name == NULL)
610 {
611 gsymbol->ada_mangled = 0;
612 gsymbol->language_specific.obstack = obstack;
613 }
614 else
615 {
616 gsymbol->ada_mangled = 1;
617 gsymbol->language_specific.demangled_name = name;
618 }
619 }
620 else
621 gsymbol->language_specific.demangled_name = name;
622 }
623
624 /* Return the demangled name of GSYMBOL. */
625
626 const char *
627 symbol_get_demangled_name (const struct general_symbol_info *gsymbol)
628 {
629 if (gsymbol->language == language_ada)
630 {
631 if (!gsymbol->ada_mangled)
632 return NULL;
633 /* Fall through. */
634 }
635
636 return gsymbol->language_specific.demangled_name;
637 }
638
639 \f
640 /* Initialize the language dependent portion of a symbol
641 depending upon the language for the symbol. */
642
643 void
644 symbol_set_language (struct general_symbol_info *gsymbol,
645 enum language language,
646 struct obstack *obstack)
647 {
648 gsymbol->language = language;
649 if (gsymbol->language == language_cplus
650 || gsymbol->language == language_d
651 || gsymbol->language == language_go
652 || gsymbol->language == language_objc
653 || gsymbol->language == language_fortran)
654 {
655 symbol_set_demangled_name (gsymbol, NULL, obstack);
656 }
657 else if (gsymbol->language == language_ada)
658 {
659 gdb_assert (gsymbol->ada_mangled == 0);
660 gsymbol->language_specific.obstack = obstack;
661 }
662 else
663 {
664 memset (&gsymbol->language_specific, 0,
665 sizeof (gsymbol->language_specific));
666 }
667 }
668
669 /* Functions to initialize a symbol's mangled name. */
670
671 /* Objects of this type are stored in the demangled name hash table. */
672 struct demangled_name_entry
673 {
674 const char *mangled;
675 char demangled[1];
676 };
677
678 /* Hash function for the demangled name hash. */
679
680 static hashval_t
681 hash_demangled_name_entry (const void *data)
682 {
683 const struct demangled_name_entry *e
684 = (const struct demangled_name_entry *) data;
685
686 return htab_hash_string (e->mangled);
687 }
688
689 /* Equality function for the demangled name hash. */
690
691 static int
692 eq_demangled_name_entry (const void *a, const void *b)
693 {
694 const struct demangled_name_entry *da
695 = (const struct demangled_name_entry *) a;
696 const struct demangled_name_entry *db
697 = (const struct demangled_name_entry *) b;
698
699 return strcmp (da->mangled, db->mangled) == 0;
700 }
701
702 /* Create the hash table used for demangled names. Each hash entry is
703 a pair of strings; one for the mangled name and one for the demangled
704 name. The entry is hashed via just the mangled name. */
705
706 static void
707 create_demangled_names_hash (struct objfile *objfile)
708 {
709 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
710 The hash table code will round this up to the next prime number.
711 Choosing a much larger table size wastes memory, and saves only about
712 1% in symbol reading. */
713
714 objfile->per_bfd->demangled_names_hash = htab_create_alloc
715 (256, hash_demangled_name_entry, eq_demangled_name_entry,
716 NULL, xcalloc, xfree);
717 }
718
719 /* Try to determine the demangled name for a symbol, based on the
720 language of that symbol. If the language is set to language_auto,
721 it will attempt to find any demangling algorithm that works and
722 then set the language appropriately. The returned name is allocated
723 by the demangler and should be xfree'd. */
724
725 static char *
726 symbol_find_demangled_name (struct general_symbol_info *gsymbol,
727 const char *mangled)
728 {
729 char *demangled = NULL;
730 int i;
731 int recognized;
732
733 if (gsymbol->language == language_unknown)
734 gsymbol->language = language_auto;
735
736 if (gsymbol->language != language_auto)
737 {
738 const struct language_defn *lang = language_def (gsymbol->language);
739
740 language_sniff_from_mangled_name (lang, mangled, &demangled);
741 return demangled;
742 }
743
744 for (i = language_unknown; i < nr_languages; ++i)
745 {
746 enum language l = (enum language) i;
747 const struct language_defn *lang = language_def (l);
748
749 if (language_sniff_from_mangled_name (lang, mangled, &demangled))
750 {
751 gsymbol->language = l;
752 return demangled;
753 }
754 }
755
756 return NULL;
757 }
758
759 /* Set both the mangled and demangled (if any) names for GSYMBOL based
760 on LINKAGE_NAME and LEN. Ordinarily, NAME is copied onto the
761 objfile's obstack; but if COPY_NAME is 0 and if NAME is
762 NUL-terminated, then this function assumes that NAME is already
763 correctly saved (either permanently or with a lifetime tied to the
764 objfile), and it will not be copied.
765
766 The hash table corresponding to OBJFILE is used, and the memory
767 comes from the per-BFD storage_obstack. LINKAGE_NAME is copied,
768 so the pointer can be discarded after calling this function. */
769
770 void
771 symbol_set_names (struct general_symbol_info *gsymbol,
772 const char *linkage_name, int len, int copy_name,
773 struct objfile *objfile)
774 {
775 struct demangled_name_entry **slot;
776 /* A 0-terminated copy of the linkage name. */
777 const char *linkage_name_copy;
778 struct demangled_name_entry entry;
779 struct objfile_per_bfd_storage *per_bfd = objfile->per_bfd;
780
781 if (gsymbol->language == language_ada)
782 {
783 /* In Ada, we do the symbol lookups using the mangled name, so
784 we can save some space by not storing the demangled name. */
785 if (!copy_name)
786 gsymbol->name = linkage_name;
787 else
788 {
789 char *name = (char *) obstack_alloc (&per_bfd->storage_obstack,
790 len + 1);
791
792 memcpy (name, linkage_name, len);
793 name[len] = '\0';
794 gsymbol->name = name;
795 }
796 symbol_set_demangled_name (gsymbol, NULL, &per_bfd->storage_obstack);
797
798 return;
799 }
800
801 if (per_bfd->demangled_names_hash == NULL)
802 create_demangled_names_hash (objfile);
803
804 if (linkage_name[len] != '\0')
805 {
806 char *alloc_name;
807
808 alloc_name = (char *) alloca (len + 1);
809 memcpy (alloc_name, linkage_name, len);
810 alloc_name[len] = '\0';
811
812 linkage_name_copy = alloc_name;
813 }
814 else
815 linkage_name_copy = linkage_name;
816
817 entry.mangled = linkage_name_copy;
818 slot = ((struct demangled_name_entry **)
819 htab_find_slot (per_bfd->demangled_names_hash,
820 &entry, INSERT));
821
822 /* If this name is not in the hash table, add it. */
823 if (*slot == NULL
824 /* A C version of the symbol may have already snuck into the table.
825 This happens to, e.g., main.init (__go_init_main). Cope. */
826 || (gsymbol->language == language_go
827 && (*slot)->demangled[0] == '\0'))
828 {
829 char *demangled_name = symbol_find_demangled_name (gsymbol,
830 linkage_name_copy);
831 int demangled_len = demangled_name ? strlen (demangled_name) : 0;
832
833 /* Suppose we have demangled_name==NULL, copy_name==0, and
834 linkage_name_copy==linkage_name. In this case, we already have the
835 mangled name saved, and we don't have a demangled name. So,
836 you might think we could save a little space by not recording
837 this in the hash table at all.
838
839 It turns out that it is actually important to still save such
840 an entry in the hash table, because storing this name gives
841 us better bcache hit rates for partial symbols. */
842 if (!copy_name && linkage_name_copy == linkage_name)
843 {
844 *slot
845 = ((struct demangled_name_entry *)
846 obstack_alloc (&per_bfd->storage_obstack,
847 offsetof (struct demangled_name_entry, demangled)
848 + demangled_len + 1));
849 (*slot)->mangled = linkage_name;
850 }
851 else
852 {
853 char *mangled_ptr;
854
855 /* If we must copy the mangled name, put it directly after
856 the demangled name so we can have a single
857 allocation. */
858 *slot
859 = ((struct demangled_name_entry *)
860 obstack_alloc (&per_bfd->storage_obstack,
861 offsetof (struct demangled_name_entry, demangled)
862 + len + demangled_len + 2));
863 mangled_ptr = &((*slot)->demangled[demangled_len + 1]);
864 strcpy (mangled_ptr, linkage_name_copy);
865 (*slot)->mangled = mangled_ptr;
866 }
867
868 if (demangled_name != NULL)
869 {
870 strcpy ((*slot)->demangled, demangled_name);
871 xfree (demangled_name);
872 }
873 else
874 (*slot)->demangled[0] = '\0';
875 }
876
877 gsymbol->name = (*slot)->mangled;
878 if ((*slot)->demangled[0] != '\0')
879 symbol_set_demangled_name (gsymbol, (*slot)->demangled,
880 &per_bfd->storage_obstack);
881 else
882 symbol_set_demangled_name (gsymbol, NULL, &per_bfd->storage_obstack);
883 }
884
885 /* Return the source code name of a symbol. In languages where
886 demangling is necessary, this is the demangled name. */
887
888 const char *
889 symbol_natural_name (const struct general_symbol_info *gsymbol)
890 {
891 switch (gsymbol->language)
892 {
893 case language_cplus:
894 case language_d:
895 case language_go:
896 case language_objc:
897 case language_fortran:
898 if (symbol_get_demangled_name (gsymbol) != NULL)
899 return symbol_get_demangled_name (gsymbol);
900 break;
901 case language_ada:
902 return ada_decode_symbol (gsymbol);
903 default:
904 break;
905 }
906 return gsymbol->name;
907 }
908
909 /* Return the demangled name for a symbol based on the language for
910 that symbol. If no demangled name exists, return NULL. */
911
912 const char *
913 symbol_demangled_name (const struct general_symbol_info *gsymbol)
914 {
915 const char *dem_name = NULL;
916
917 switch (gsymbol->language)
918 {
919 case language_cplus:
920 case language_d:
921 case language_go:
922 case language_objc:
923 case language_fortran:
924 dem_name = symbol_get_demangled_name (gsymbol);
925 break;
926 case language_ada:
927 dem_name = ada_decode_symbol (gsymbol);
928 break;
929 default:
930 break;
931 }
932 return dem_name;
933 }
934
935 /* Return the search name of a symbol---generally the demangled or
936 linkage name of the symbol, depending on how it will be searched for.
937 If there is no distinct demangled name, then returns the same value
938 (same pointer) as SYMBOL_LINKAGE_NAME. */
939
940 const char *
941 symbol_search_name (const struct general_symbol_info *gsymbol)
942 {
943 if (gsymbol->language == language_ada)
944 return gsymbol->name;
945 else
946 return symbol_natural_name (gsymbol);
947 }
948
949 /* Initialize the structure fields to zero values. */
950
951 void
952 init_sal (struct symtab_and_line *sal)
953 {
954 memset (sal, 0, sizeof (*sal));
955 }
956 \f
957
958 /* Return 1 if the two sections are the same, or if they could
959 plausibly be copies of each other, one in an original object
960 file and another in a separated debug file. */
961
962 int
963 matching_obj_sections (struct obj_section *obj_first,
964 struct obj_section *obj_second)
965 {
966 asection *first = obj_first? obj_first->the_bfd_section : NULL;
967 asection *second = obj_second? obj_second->the_bfd_section : NULL;
968 struct objfile *obj;
969
970 /* If they're the same section, then they match. */
971 if (first == second)
972 return 1;
973
974 /* If either is NULL, give up. */
975 if (first == NULL || second == NULL)
976 return 0;
977
978 /* This doesn't apply to absolute symbols. */
979 if (first->owner == NULL || second->owner == NULL)
980 return 0;
981
982 /* If they're in the same object file, they must be different sections. */
983 if (first->owner == second->owner)
984 return 0;
985
986 /* Check whether the two sections are potentially corresponding. They must
987 have the same size, address, and name. We can't compare section indexes,
988 which would be more reliable, because some sections may have been
989 stripped. */
990 if (bfd_get_section_size (first) != bfd_get_section_size (second))
991 return 0;
992
993 /* In-memory addresses may start at a different offset, relativize them. */
994 if (bfd_get_section_vma (first->owner, first)
995 - bfd_get_start_address (first->owner)
996 != bfd_get_section_vma (second->owner, second)
997 - bfd_get_start_address (second->owner))
998 return 0;
999
1000 if (bfd_get_section_name (first->owner, first) == NULL
1001 || bfd_get_section_name (second->owner, second) == NULL
1002 || strcmp (bfd_get_section_name (first->owner, first),
1003 bfd_get_section_name (second->owner, second)) != 0)
1004 return 0;
1005
1006 /* Otherwise check that they are in corresponding objfiles. */
1007
1008 ALL_OBJFILES (obj)
1009 if (obj->obfd == first->owner)
1010 break;
1011 gdb_assert (obj != NULL);
1012
1013 if (obj->separate_debug_objfile != NULL
1014 && obj->separate_debug_objfile->obfd == second->owner)
1015 return 1;
1016 if (obj->separate_debug_objfile_backlink != NULL
1017 && obj->separate_debug_objfile_backlink->obfd == second->owner)
1018 return 1;
1019
1020 return 0;
1021 }
1022
1023 /* See symtab.h. */
1024
1025 void
1026 expand_symtab_containing_pc (CORE_ADDR pc, struct obj_section *section)
1027 {
1028 struct objfile *objfile;
1029 struct bound_minimal_symbol msymbol;
1030
1031 /* If we know that this is not a text address, return failure. This is
1032 necessary because we loop based on texthigh and textlow, which do
1033 not include the data ranges. */
1034 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
1035 if (msymbol.minsym
1036 && (MSYMBOL_TYPE (msymbol.minsym) == mst_data
1037 || MSYMBOL_TYPE (msymbol.minsym) == mst_bss
1038 || MSYMBOL_TYPE (msymbol.minsym) == mst_abs
1039 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_data
1040 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_bss))
1041 return;
1042
1043 ALL_OBJFILES (objfile)
1044 {
1045 struct compunit_symtab *cust = NULL;
1046
1047 if (objfile->sf)
1048 cust = objfile->sf->qf->find_pc_sect_compunit_symtab (objfile, msymbol,
1049 pc, section, 0);
1050 if (cust)
1051 return;
1052 }
1053 }
1054 \f
1055 /* Hash function for the symbol cache. */
1056
1057 static unsigned int
1058 hash_symbol_entry (const struct objfile *objfile_context,
1059 const char *name, domain_enum domain)
1060 {
1061 unsigned int hash = (uintptr_t) objfile_context;
1062
1063 if (name != NULL)
1064 hash += htab_hash_string (name);
1065
1066 /* Because of symbol_matches_domain we need VAR_DOMAIN and STRUCT_DOMAIN
1067 to map to the same slot. */
1068 if (domain == STRUCT_DOMAIN)
1069 hash += VAR_DOMAIN * 7;
1070 else
1071 hash += domain * 7;
1072
1073 return hash;
1074 }
1075
1076 /* Equality function for the symbol cache. */
1077
1078 static int
1079 eq_symbol_entry (const struct symbol_cache_slot *slot,
1080 const struct objfile *objfile_context,
1081 const char *name, domain_enum domain)
1082 {
1083 const char *slot_name;
1084 domain_enum slot_domain;
1085
1086 if (slot->state == SYMBOL_SLOT_UNUSED)
1087 return 0;
1088
1089 if (slot->objfile_context != objfile_context)
1090 return 0;
1091
1092 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1093 {
1094 slot_name = slot->value.not_found.name;
1095 slot_domain = slot->value.not_found.domain;
1096 }
1097 else
1098 {
1099 slot_name = SYMBOL_SEARCH_NAME (slot->value.found.symbol);
1100 slot_domain = SYMBOL_DOMAIN (slot->value.found.symbol);
1101 }
1102
1103 /* NULL names match. */
1104 if (slot_name == NULL && name == NULL)
1105 {
1106 /* But there's no point in calling symbol_matches_domain in the
1107 SYMBOL_SLOT_FOUND case. */
1108 if (slot_domain != domain)
1109 return 0;
1110 }
1111 else if (slot_name != NULL && name != NULL)
1112 {
1113 /* It's important that we use the same comparison that was done the
1114 first time through. If the slot records a found symbol, then this
1115 means using strcmp_iw on SYMBOL_SEARCH_NAME. See dictionary.c.
1116 It also means using symbol_matches_domain for found symbols.
1117 See block.c.
1118
1119 If the slot records a not-found symbol, then require a precise match.
1120 We could still be lax with whitespace like strcmp_iw though. */
1121
1122 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1123 {
1124 if (strcmp (slot_name, name) != 0)
1125 return 0;
1126 if (slot_domain != domain)
1127 return 0;
1128 }
1129 else
1130 {
1131 struct symbol *sym = slot->value.found.symbol;
1132
1133 if (strcmp_iw (slot_name, name) != 0)
1134 return 0;
1135 if (!symbol_matches_domain (SYMBOL_LANGUAGE (sym),
1136 slot_domain, domain))
1137 return 0;
1138 }
1139 }
1140 else
1141 {
1142 /* Only one name is NULL. */
1143 return 0;
1144 }
1145
1146 return 1;
1147 }
1148
1149 /* Given a cache of size SIZE, return the size of the struct (with variable
1150 length array) in bytes. */
1151
1152 static size_t
1153 symbol_cache_byte_size (unsigned int size)
1154 {
1155 return (sizeof (struct block_symbol_cache)
1156 + ((size - 1) * sizeof (struct symbol_cache_slot)));
1157 }
1158
1159 /* Resize CACHE. */
1160
1161 static void
1162 resize_symbol_cache (struct symbol_cache *cache, unsigned int new_size)
1163 {
1164 /* If there's no change in size, don't do anything.
1165 All caches have the same size, so we can just compare with the size
1166 of the global symbols cache. */
1167 if ((cache->global_symbols != NULL
1168 && cache->global_symbols->size == new_size)
1169 || (cache->global_symbols == NULL
1170 && new_size == 0))
1171 return;
1172
1173 xfree (cache->global_symbols);
1174 xfree (cache->static_symbols);
1175
1176 if (new_size == 0)
1177 {
1178 cache->global_symbols = NULL;
1179 cache->static_symbols = NULL;
1180 }
1181 else
1182 {
1183 size_t total_size = symbol_cache_byte_size (new_size);
1184
1185 cache->global_symbols
1186 = (struct block_symbol_cache *) xcalloc (1, total_size);
1187 cache->static_symbols
1188 = (struct block_symbol_cache *) xcalloc (1, total_size);
1189 cache->global_symbols->size = new_size;
1190 cache->static_symbols->size = new_size;
1191 }
1192 }
1193
1194 /* Make a symbol cache of size SIZE. */
1195
1196 static struct symbol_cache *
1197 make_symbol_cache (unsigned int size)
1198 {
1199 struct symbol_cache *cache;
1200
1201 cache = XCNEW (struct symbol_cache);
1202 resize_symbol_cache (cache, symbol_cache_size);
1203 return cache;
1204 }
1205
1206 /* Free the space used by CACHE. */
1207
1208 static void
1209 free_symbol_cache (struct symbol_cache *cache)
1210 {
1211 xfree (cache->global_symbols);
1212 xfree (cache->static_symbols);
1213 xfree (cache);
1214 }
1215
1216 /* Return the symbol cache of PSPACE.
1217 Create one if it doesn't exist yet. */
1218
1219 static struct symbol_cache *
1220 get_symbol_cache (struct program_space *pspace)
1221 {
1222 struct symbol_cache *cache
1223 = (struct symbol_cache *) program_space_data (pspace, symbol_cache_key);
1224
1225 if (cache == NULL)
1226 {
1227 cache = make_symbol_cache (symbol_cache_size);
1228 set_program_space_data (pspace, symbol_cache_key, cache);
1229 }
1230
1231 return cache;
1232 }
1233
1234 /* Delete the symbol cache of PSPACE.
1235 Called when PSPACE is destroyed. */
1236
1237 static void
1238 symbol_cache_cleanup (struct program_space *pspace, void *data)
1239 {
1240 struct symbol_cache *cache = (struct symbol_cache *) data;
1241
1242 free_symbol_cache (cache);
1243 }
1244
1245 /* Set the size of the symbol cache in all program spaces. */
1246
1247 static void
1248 set_symbol_cache_size (unsigned int new_size)
1249 {
1250 struct program_space *pspace;
1251
1252 ALL_PSPACES (pspace)
1253 {
1254 struct symbol_cache *cache
1255 = (struct symbol_cache *) program_space_data (pspace, symbol_cache_key);
1256
1257 /* The pspace could have been created but not have a cache yet. */
1258 if (cache != NULL)
1259 resize_symbol_cache (cache, new_size);
1260 }
1261 }
1262
1263 /* Called when symbol-cache-size is set. */
1264
1265 static void
1266 set_symbol_cache_size_handler (char *args, int from_tty,
1267 struct cmd_list_element *c)
1268 {
1269 if (new_symbol_cache_size > MAX_SYMBOL_CACHE_SIZE)
1270 {
1271 /* Restore the previous value.
1272 This is the value the "show" command prints. */
1273 new_symbol_cache_size = symbol_cache_size;
1274
1275 error (_("Symbol cache size is too large, max is %u."),
1276 MAX_SYMBOL_CACHE_SIZE);
1277 }
1278 symbol_cache_size = new_symbol_cache_size;
1279
1280 set_symbol_cache_size (symbol_cache_size);
1281 }
1282
1283 /* Lookup symbol NAME,DOMAIN in BLOCK in the symbol cache of PSPACE.
1284 OBJFILE_CONTEXT is the current objfile, which may be NULL.
1285 The result is the symbol if found, SYMBOL_LOOKUP_FAILED if a previous lookup
1286 failed (and thus this one will too), or NULL if the symbol is not present
1287 in the cache.
1288 If the symbol is not present in the cache, then *BSC_PTR and *SLOT_PTR are
1289 set to the cache and slot of the symbol to save the result of a full lookup
1290 attempt. */
1291
1292 static struct block_symbol
1293 symbol_cache_lookup (struct symbol_cache *cache,
1294 struct objfile *objfile_context, int block,
1295 const char *name, domain_enum domain,
1296 struct block_symbol_cache **bsc_ptr,
1297 struct symbol_cache_slot **slot_ptr)
1298 {
1299 struct block_symbol_cache *bsc;
1300 unsigned int hash;
1301 struct symbol_cache_slot *slot;
1302
1303 if (block == GLOBAL_BLOCK)
1304 bsc = cache->global_symbols;
1305 else
1306 bsc = cache->static_symbols;
1307 if (bsc == NULL)
1308 {
1309 *bsc_ptr = NULL;
1310 *slot_ptr = NULL;
1311 return (struct block_symbol) {NULL, NULL};
1312 }
1313
1314 hash = hash_symbol_entry (objfile_context, name, domain);
1315 slot = bsc->symbols + hash % bsc->size;
1316
1317 if (eq_symbol_entry (slot, objfile_context, name, domain))
1318 {
1319 if (symbol_lookup_debug)
1320 fprintf_unfiltered (gdb_stdlog,
1321 "%s block symbol cache hit%s for %s, %s\n",
1322 block == GLOBAL_BLOCK ? "Global" : "Static",
1323 slot->state == SYMBOL_SLOT_NOT_FOUND
1324 ? " (not found)" : "",
1325 name, domain_name (domain));
1326 ++bsc->hits;
1327 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1328 return SYMBOL_LOOKUP_FAILED;
1329 return slot->value.found;
1330 }
1331
1332 /* Symbol is not present in the cache. */
1333
1334 *bsc_ptr = bsc;
1335 *slot_ptr = slot;
1336
1337 if (symbol_lookup_debug)
1338 {
1339 fprintf_unfiltered (gdb_stdlog,
1340 "%s block symbol cache miss for %s, %s\n",
1341 block == GLOBAL_BLOCK ? "Global" : "Static",
1342 name, domain_name (domain));
1343 }
1344 ++bsc->misses;
1345 return (struct block_symbol) {NULL, NULL};
1346 }
1347
1348 /* Clear out SLOT. */
1349
1350 static void
1351 symbol_cache_clear_slot (struct symbol_cache_slot *slot)
1352 {
1353 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1354 xfree (slot->value.not_found.name);
1355 slot->state = SYMBOL_SLOT_UNUSED;
1356 }
1357
1358 /* Mark SYMBOL as found in SLOT.
1359 OBJFILE_CONTEXT is the current objfile when the lookup was done, or NULL
1360 if it's not needed to distinguish lookups (STATIC_BLOCK). It is *not*
1361 necessarily the objfile the symbol was found in. */
1362
1363 static void
1364 symbol_cache_mark_found (struct block_symbol_cache *bsc,
1365 struct symbol_cache_slot *slot,
1366 struct objfile *objfile_context,
1367 struct symbol *symbol,
1368 const struct block *block)
1369 {
1370 if (bsc == NULL)
1371 return;
1372 if (slot->state != SYMBOL_SLOT_UNUSED)
1373 {
1374 ++bsc->collisions;
1375 symbol_cache_clear_slot (slot);
1376 }
1377 slot->state = SYMBOL_SLOT_FOUND;
1378 slot->objfile_context = objfile_context;
1379 slot->value.found.symbol = symbol;
1380 slot->value.found.block = block;
1381 }
1382
1383 /* Mark symbol NAME, DOMAIN as not found in SLOT.
1384 OBJFILE_CONTEXT is the current objfile when the lookup was done, or NULL
1385 if it's not needed to distinguish lookups (STATIC_BLOCK). */
1386
1387 static void
1388 symbol_cache_mark_not_found (struct block_symbol_cache *bsc,
1389 struct symbol_cache_slot *slot,
1390 struct objfile *objfile_context,
1391 const char *name, domain_enum domain)
1392 {
1393 if (bsc == NULL)
1394 return;
1395 if (slot->state != SYMBOL_SLOT_UNUSED)
1396 {
1397 ++bsc->collisions;
1398 symbol_cache_clear_slot (slot);
1399 }
1400 slot->state = SYMBOL_SLOT_NOT_FOUND;
1401 slot->objfile_context = objfile_context;
1402 slot->value.not_found.name = xstrdup (name);
1403 slot->value.not_found.domain = domain;
1404 }
1405
1406 /* Flush the symbol cache of PSPACE. */
1407
1408 static void
1409 symbol_cache_flush (struct program_space *pspace)
1410 {
1411 struct symbol_cache *cache
1412 = (struct symbol_cache *) program_space_data (pspace, symbol_cache_key);
1413 int pass;
1414
1415 if (cache == NULL)
1416 return;
1417 if (cache->global_symbols == NULL)
1418 {
1419 gdb_assert (symbol_cache_size == 0);
1420 gdb_assert (cache->static_symbols == NULL);
1421 return;
1422 }
1423
1424 /* If the cache is untouched since the last flush, early exit.
1425 This is important for performance during the startup of a program linked
1426 with 100s (or 1000s) of shared libraries. */
1427 if (cache->global_symbols->misses == 0
1428 && cache->static_symbols->misses == 0)
1429 return;
1430
1431 gdb_assert (cache->global_symbols->size == symbol_cache_size);
1432 gdb_assert (cache->static_symbols->size == symbol_cache_size);
1433
1434 for (pass = 0; pass < 2; ++pass)
1435 {
1436 struct block_symbol_cache *bsc
1437 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1438 unsigned int i;
1439
1440 for (i = 0; i < bsc->size; ++i)
1441 symbol_cache_clear_slot (&bsc->symbols[i]);
1442 }
1443
1444 cache->global_symbols->hits = 0;
1445 cache->global_symbols->misses = 0;
1446 cache->global_symbols->collisions = 0;
1447 cache->static_symbols->hits = 0;
1448 cache->static_symbols->misses = 0;
1449 cache->static_symbols->collisions = 0;
1450 }
1451
1452 /* Dump CACHE. */
1453
1454 static void
1455 symbol_cache_dump (const struct symbol_cache *cache)
1456 {
1457 int pass;
1458
1459 if (cache->global_symbols == NULL)
1460 {
1461 printf_filtered (" <disabled>\n");
1462 return;
1463 }
1464
1465 for (pass = 0; pass < 2; ++pass)
1466 {
1467 const struct block_symbol_cache *bsc
1468 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1469 unsigned int i;
1470
1471 if (pass == 0)
1472 printf_filtered ("Global symbols:\n");
1473 else
1474 printf_filtered ("Static symbols:\n");
1475
1476 for (i = 0; i < bsc->size; ++i)
1477 {
1478 const struct symbol_cache_slot *slot = &bsc->symbols[i];
1479
1480 QUIT;
1481
1482 switch (slot->state)
1483 {
1484 case SYMBOL_SLOT_UNUSED:
1485 break;
1486 case SYMBOL_SLOT_NOT_FOUND:
1487 printf_filtered (" [%4u] = %s, %s %s (not found)\n", i,
1488 host_address_to_string (slot->objfile_context),
1489 slot->value.not_found.name,
1490 domain_name (slot->value.not_found.domain));
1491 break;
1492 case SYMBOL_SLOT_FOUND:
1493 {
1494 struct symbol *found = slot->value.found.symbol;
1495 const struct objfile *context = slot->objfile_context;
1496
1497 printf_filtered (" [%4u] = %s, %s %s\n", i,
1498 host_address_to_string (context),
1499 SYMBOL_PRINT_NAME (found),
1500 domain_name (SYMBOL_DOMAIN (found)));
1501 break;
1502 }
1503 }
1504 }
1505 }
1506 }
1507
1508 /* The "mt print symbol-cache" command. */
1509
1510 static void
1511 maintenance_print_symbol_cache (char *args, int from_tty)
1512 {
1513 struct program_space *pspace;
1514
1515 ALL_PSPACES (pspace)
1516 {
1517 struct symbol_cache *cache;
1518
1519 printf_filtered (_("Symbol cache for pspace %d\n%s:\n"),
1520 pspace->num,
1521 pspace->symfile_object_file != NULL
1522 ? objfile_name (pspace->symfile_object_file)
1523 : "(no object file)");
1524
1525 /* If the cache hasn't been created yet, avoid creating one. */
1526 cache
1527 = (struct symbol_cache *) program_space_data (pspace, symbol_cache_key);
1528 if (cache == NULL)
1529 printf_filtered (" <empty>\n");
1530 else
1531 symbol_cache_dump (cache);
1532 }
1533 }
1534
1535 /* The "mt flush-symbol-cache" command. */
1536
1537 static void
1538 maintenance_flush_symbol_cache (char *args, int from_tty)
1539 {
1540 struct program_space *pspace;
1541
1542 ALL_PSPACES (pspace)
1543 {
1544 symbol_cache_flush (pspace);
1545 }
1546 }
1547
1548 /* Print usage statistics of CACHE. */
1549
1550 static void
1551 symbol_cache_stats (struct symbol_cache *cache)
1552 {
1553 int pass;
1554
1555 if (cache->global_symbols == NULL)
1556 {
1557 printf_filtered (" <disabled>\n");
1558 return;
1559 }
1560
1561 for (pass = 0; pass < 2; ++pass)
1562 {
1563 const struct block_symbol_cache *bsc
1564 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1565
1566 QUIT;
1567
1568 if (pass == 0)
1569 printf_filtered ("Global block cache stats:\n");
1570 else
1571 printf_filtered ("Static block cache stats:\n");
1572
1573 printf_filtered (" size: %u\n", bsc->size);
1574 printf_filtered (" hits: %u\n", bsc->hits);
1575 printf_filtered (" misses: %u\n", bsc->misses);
1576 printf_filtered (" collisions: %u\n", bsc->collisions);
1577 }
1578 }
1579
1580 /* The "mt print symbol-cache-statistics" command. */
1581
1582 static void
1583 maintenance_print_symbol_cache_statistics (char *args, int from_tty)
1584 {
1585 struct program_space *pspace;
1586
1587 ALL_PSPACES (pspace)
1588 {
1589 struct symbol_cache *cache;
1590
1591 printf_filtered (_("Symbol cache statistics for pspace %d\n%s:\n"),
1592 pspace->num,
1593 pspace->symfile_object_file != NULL
1594 ? objfile_name (pspace->symfile_object_file)
1595 : "(no object file)");
1596
1597 /* If the cache hasn't been created yet, avoid creating one. */
1598 cache
1599 = (struct symbol_cache *) program_space_data (pspace, symbol_cache_key);
1600 if (cache == NULL)
1601 printf_filtered (" empty, no stats available\n");
1602 else
1603 symbol_cache_stats (cache);
1604 }
1605 }
1606
1607 /* This module's 'new_objfile' observer. */
1608
1609 static void
1610 symtab_new_objfile_observer (struct objfile *objfile)
1611 {
1612 /* Ideally we'd use OBJFILE->pspace, but OBJFILE may be NULL. */
1613 symbol_cache_flush (current_program_space);
1614 }
1615
1616 /* This module's 'free_objfile' observer. */
1617
1618 static void
1619 symtab_free_objfile_observer (struct objfile *objfile)
1620 {
1621 symbol_cache_flush (objfile->pspace);
1622 }
1623 \f
1624 /* Debug symbols usually don't have section information. We need to dig that
1625 out of the minimal symbols and stash that in the debug symbol. */
1626
1627 void
1628 fixup_section (struct general_symbol_info *ginfo,
1629 CORE_ADDR addr, struct objfile *objfile)
1630 {
1631 struct minimal_symbol *msym;
1632
1633 /* First, check whether a minimal symbol with the same name exists
1634 and points to the same address. The address check is required
1635 e.g. on PowerPC64, where the minimal symbol for a function will
1636 point to the function descriptor, while the debug symbol will
1637 point to the actual function code. */
1638 msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->name, objfile);
1639 if (msym)
1640 ginfo->section = MSYMBOL_SECTION (msym);
1641 else
1642 {
1643 /* Static, function-local variables do appear in the linker
1644 (minimal) symbols, but are frequently given names that won't
1645 be found via lookup_minimal_symbol(). E.g., it has been
1646 observed in frv-uclinux (ELF) executables that a static,
1647 function-local variable named "foo" might appear in the
1648 linker symbols as "foo.6" or "foo.3". Thus, there is no
1649 point in attempting to extend the lookup-by-name mechanism to
1650 handle this case due to the fact that there can be multiple
1651 names.
1652
1653 So, instead, search the section table when lookup by name has
1654 failed. The ``addr'' and ``endaddr'' fields may have already
1655 been relocated. If so, the relocation offset (i.e. the
1656 ANOFFSET value) needs to be subtracted from these values when
1657 performing the comparison. We unconditionally subtract it,
1658 because, when no relocation has been performed, the ANOFFSET
1659 value will simply be zero.
1660
1661 The address of the symbol whose section we're fixing up HAS
1662 NOT BEEN adjusted (relocated) yet. It can't have been since
1663 the section isn't yet known and knowing the section is
1664 necessary in order to add the correct relocation value. In
1665 other words, we wouldn't even be in this function (attempting
1666 to compute the section) if it were already known.
1667
1668 Note that it is possible to search the minimal symbols
1669 (subtracting the relocation value if necessary) to find the
1670 matching minimal symbol, but this is overkill and much less
1671 efficient. It is not necessary to find the matching minimal
1672 symbol, only its section.
1673
1674 Note that this technique (of doing a section table search)
1675 can fail when unrelocated section addresses overlap. For
1676 this reason, we still attempt a lookup by name prior to doing
1677 a search of the section table. */
1678
1679 struct obj_section *s;
1680 int fallback = -1;
1681
1682 ALL_OBJFILE_OSECTIONS (objfile, s)
1683 {
1684 int idx = s - objfile->sections;
1685 CORE_ADDR offset = ANOFFSET (objfile->section_offsets, idx);
1686
1687 if (fallback == -1)
1688 fallback = idx;
1689
1690 if (obj_section_addr (s) - offset <= addr
1691 && addr < obj_section_endaddr (s) - offset)
1692 {
1693 ginfo->section = idx;
1694 return;
1695 }
1696 }
1697
1698 /* If we didn't find the section, assume it is in the first
1699 section. If there is no allocated section, then it hardly
1700 matters what we pick, so just pick zero. */
1701 if (fallback == -1)
1702 ginfo->section = 0;
1703 else
1704 ginfo->section = fallback;
1705 }
1706 }
1707
1708 struct symbol *
1709 fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
1710 {
1711 CORE_ADDR addr;
1712
1713 if (!sym)
1714 return NULL;
1715
1716 if (!SYMBOL_OBJFILE_OWNED (sym))
1717 return sym;
1718
1719 /* We either have an OBJFILE, or we can get at it from the sym's
1720 symtab. Anything else is a bug. */
1721 gdb_assert (objfile || symbol_symtab (sym));
1722
1723 if (objfile == NULL)
1724 objfile = symbol_objfile (sym);
1725
1726 if (SYMBOL_OBJ_SECTION (objfile, sym))
1727 return sym;
1728
1729 /* We should have an objfile by now. */
1730 gdb_assert (objfile);
1731
1732 switch (SYMBOL_CLASS (sym))
1733 {
1734 case LOC_STATIC:
1735 case LOC_LABEL:
1736 addr = SYMBOL_VALUE_ADDRESS (sym);
1737 break;
1738 case LOC_BLOCK:
1739 addr = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
1740 break;
1741
1742 default:
1743 /* Nothing else will be listed in the minsyms -- no use looking
1744 it up. */
1745 return sym;
1746 }
1747
1748 fixup_section (&sym->ginfo, addr, objfile);
1749
1750 return sym;
1751 }
1752
1753 /* Compute the demangled form of NAME as used by the various symbol
1754 lookup functions. The result can either be the input NAME
1755 directly, or a pointer to a buffer owned by the STORAGE object.
1756
1757 For Ada, this function just returns NAME, unmodified.
1758 Normally, Ada symbol lookups are performed using the encoded name
1759 rather than the demangled name, and so it might seem to make sense
1760 for this function to return an encoded version of NAME.
1761 Unfortunately, we cannot do this, because this function is used in
1762 circumstances where it is not appropriate to try to encode NAME.
1763 For instance, when displaying the frame info, we demangle the name
1764 of each parameter, and then perform a symbol lookup inside our
1765 function using that demangled name. In Ada, certain functions
1766 have internally-generated parameters whose name contain uppercase
1767 characters. Encoding those name would result in those uppercase
1768 characters to become lowercase, and thus cause the symbol lookup
1769 to fail. */
1770
1771 const char *
1772 demangle_for_lookup (const char *name, enum language lang,
1773 demangle_result_storage &storage)
1774 {
1775 /* If we are using C++, D, or Go, demangle the name before doing a
1776 lookup, so we can always binary search. */
1777 if (lang == language_cplus)
1778 {
1779 char *demangled_name = gdb_demangle (name, DMGL_ANSI | DMGL_PARAMS);
1780 if (demangled_name != NULL)
1781 return storage.set_malloc_ptr (demangled_name);
1782
1783 /* If we were given a non-mangled name, canonicalize it
1784 according to the language (so far only for C++). */
1785 std::string canon = cp_canonicalize_string (name);
1786 if (!canon.empty ())
1787 return storage.swap_string (canon);
1788 }
1789 else if (lang == language_d)
1790 {
1791 char *demangled_name = d_demangle (name, 0);
1792 if (demangled_name != NULL)
1793 return storage.set_malloc_ptr (demangled_name);
1794 }
1795 else if (lang == language_go)
1796 {
1797 char *demangled_name = go_demangle (name, 0);
1798 if (demangled_name != NULL)
1799 return storage.set_malloc_ptr (demangled_name);
1800 }
1801
1802 return name;
1803 }
1804
1805 /* See symtab.h.
1806
1807 This function (or rather its subordinates) have a bunch of loops and
1808 it would seem to be attractive to put in some QUIT's (though I'm not really
1809 sure whether it can run long enough to be really important). But there
1810 are a few calls for which it would appear to be bad news to quit
1811 out of here: e.g., find_proc_desc in alpha-mdebug-tdep.c. (Note
1812 that there is C++ code below which can error(), but that probably
1813 doesn't affect these calls since they are looking for a known
1814 variable and thus can probably assume it will never hit the C++
1815 code). */
1816
1817 struct block_symbol
1818 lookup_symbol_in_language (const char *name, const struct block *block,
1819 const domain_enum domain, enum language lang,
1820 struct field_of_this_result *is_a_field_of_this)
1821 {
1822 demangle_result_storage storage;
1823 const char *modified_name = demangle_for_lookup (name, lang, storage);
1824
1825 return lookup_symbol_aux (modified_name, block, domain, lang,
1826 is_a_field_of_this);
1827 }
1828
1829 /* See symtab.h. */
1830
1831 struct block_symbol
1832 lookup_symbol (const char *name, const struct block *block,
1833 domain_enum domain,
1834 struct field_of_this_result *is_a_field_of_this)
1835 {
1836 return lookup_symbol_in_language (name, block, domain,
1837 current_language->la_language,
1838 is_a_field_of_this);
1839 }
1840
1841 /* See symtab.h. */
1842
1843 struct block_symbol
1844 lookup_language_this (const struct language_defn *lang,
1845 const struct block *block)
1846 {
1847 if (lang->la_name_of_this == NULL || block == NULL)
1848 return (struct block_symbol) {NULL, NULL};
1849
1850 if (symbol_lookup_debug > 1)
1851 {
1852 struct objfile *objfile = lookup_objfile_from_block (block);
1853
1854 fprintf_unfiltered (gdb_stdlog,
1855 "lookup_language_this (%s, %s (objfile %s))",
1856 lang->la_name, host_address_to_string (block),
1857 objfile_debug_name (objfile));
1858 }
1859
1860 while (block)
1861 {
1862 struct symbol *sym;
1863
1864 sym = block_lookup_symbol (block, lang->la_name_of_this, VAR_DOMAIN);
1865 if (sym != NULL)
1866 {
1867 if (symbol_lookup_debug > 1)
1868 {
1869 fprintf_unfiltered (gdb_stdlog, " = %s (%s, block %s)\n",
1870 SYMBOL_PRINT_NAME (sym),
1871 host_address_to_string (sym),
1872 host_address_to_string (block));
1873 }
1874 return (struct block_symbol) {sym, block};
1875 }
1876 if (BLOCK_FUNCTION (block))
1877 break;
1878 block = BLOCK_SUPERBLOCK (block);
1879 }
1880
1881 if (symbol_lookup_debug > 1)
1882 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
1883 return (struct block_symbol) {NULL, NULL};
1884 }
1885
1886 /* Given TYPE, a structure/union,
1887 return 1 if the component named NAME from the ultimate target
1888 structure/union is defined, otherwise, return 0. */
1889
1890 static int
1891 check_field (struct type *type, const char *name,
1892 struct field_of_this_result *is_a_field_of_this)
1893 {
1894 int i;
1895
1896 /* The type may be a stub. */
1897 type = check_typedef (type);
1898
1899 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1900 {
1901 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1902
1903 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1904 {
1905 is_a_field_of_this->type = type;
1906 is_a_field_of_this->field = &TYPE_FIELD (type, i);
1907 return 1;
1908 }
1909 }
1910
1911 /* C++: If it was not found as a data field, then try to return it
1912 as a pointer to a method. */
1913
1914 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
1915 {
1916 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
1917 {
1918 is_a_field_of_this->type = type;
1919 is_a_field_of_this->fn_field = &TYPE_FN_FIELDLIST (type, i);
1920 return 1;
1921 }
1922 }
1923
1924 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1925 if (check_field (TYPE_BASECLASS (type, i), name, is_a_field_of_this))
1926 return 1;
1927
1928 return 0;
1929 }
1930
1931 /* Behave like lookup_symbol except that NAME is the natural name
1932 (e.g., demangled name) of the symbol that we're looking for. */
1933
1934 static struct block_symbol
1935 lookup_symbol_aux (const char *name, const struct block *block,
1936 const domain_enum domain, enum language language,
1937 struct field_of_this_result *is_a_field_of_this)
1938 {
1939 struct block_symbol result;
1940 const struct language_defn *langdef;
1941
1942 if (symbol_lookup_debug)
1943 {
1944 struct objfile *objfile = lookup_objfile_from_block (block);
1945
1946 fprintf_unfiltered (gdb_stdlog,
1947 "lookup_symbol_aux (%s, %s (objfile %s), %s, %s)\n",
1948 name, host_address_to_string (block),
1949 objfile != NULL
1950 ? objfile_debug_name (objfile) : "NULL",
1951 domain_name (domain), language_str (language));
1952 }
1953
1954 /* Make sure we do something sensible with is_a_field_of_this, since
1955 the callers that set this parameter to some non-null value will
1956 certainly use it later. If we don't set it, the contents of
1957 is_a_field_of_this are undefined. */
1958 if (is_a_field_of_this != NULL)
1959 memset (is_a_field_of_this, 0, sizeof (*is_a_field_of_this));
1960
1961 /* Search specified block and its superiors. Don't search
1962 STATIC_BLOCK or GLOBAL_BLOCK. */
1963
1964 result = lookup_local_symbol (name, block, domain, language);
1965 if (result.symbol != NULL)
1966 {
1967 if (symbol_lookup_debug)
1968 {
1969 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
1970 host_address_to_string (result.symbol));
1971 }
1972 return result;
1973 }
1974
1975 /* If requested to do so by the caller and if appropriate for LANGUAGE,
1976 check to see if NAME is a field of `this'. */
1977
1978 langdef = language_def (language);
1979
1980 /* Don't do this check if we are searching for a struct. It will
1981 not be found by check_field, but will be found by other
1982 means. */
1983 if (is_a_field_of_this != NULL && domain != STRUCT_DOMAIN)
1984 {
1985 result = lookup_language_this (langdef, block);
1986
1987 if (result.symbol)
1988 {
1989 struct type *t = result.symbol->type;
1990
1991 /* I'm not really sure that type of this can ever
1992 be typedefed; just be safe. */
1993 t = check_typedef (t);
1994 if (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_IS_REFERENCE (t))
1995 t = TYPE_TARGET_TYPE (t);
1996
1997 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
1998 && TYPE_CODE (t) != TYPE_CODE_UNION)
1999 error (_("Internal error: `%s' is not an aggregate"),
2000 langdef->la_name_of_this);
2001
2002 if (check_field (t, name, is_a_field_of_this))
2003 {
2004 if (symbol_lookup_debug)
2005 {
2006 fprintf_unfiltered (gdb_stdlog,
2007 "lookup_symbol_aux (...) = NULL\n");
2008 }
2009 return (struct block_symbol) {NULL, NULL};
2010 }
2011 }
2012 }
2013
2014 /* Now do whatever is appropriate for LANGUAGE to look
2015 up static and global variables. */
2016
2017 result = langdef->la_lookup_symbol_nonlocal (langdef, name, block, domain);
2018 if (result.symbol != NULL)
2019 {
2020 if (symbol_lookup_debug)
2021 {
2022 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2023 host_address_to_string (result.symbol));
2024 }
2025 return result;
2026 }
2027
2028 /* Now search all static file-level symbols. Not strictly correct,
2029 but more useful than an error. */
2030
2031 result = lookup_static_symbol (name, domain);
2032 if (symbol_lookup_debug)
2033 {
2034 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2035 result.symbol != NULL
2036 ? host_address_to_string (result.symbol)
2037 : "NULL");
2038 }
2039 return result;
2040 }
2041
2042 /* Check to see if the symbol is defined in BLOCK or its superiors.
2043 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
2044
2045 static struct block_symbol
2046 lookup_local_symbol (const char *name, const struct block *block,
2047 const domain_enum domain,
2048 enum language language)
2049 {
2050 struct symbol *sym;
2051 const struct block *static_block = block_static_block (block);
2052 const char *scope = block_scope (block);
2053
2054 /* Check if either no block is specified or it's a global block. */
2055
2056 if (static_block == NULL)
2057 return (struct block_symbol) {NULL, NULL};
2058
2059 while (block != static_block)
2060 {
2061 sym = lookup_symbol_in_block (name, block, domain);
2062 if (sym != NULL)
2063 return (struct block_symbol) {sym, block};
2064
2065 if (language == language_cplus || language == language_fortran)
2066 {
2067 struct block_symbol sym
2068 = cp_lookup_symbol_imports_or_template (scope, name, block,
2069 domain);
2070
2071 if (sym.symbol != NULL)
2072 return sym;
2073 }
2074
2075 if (BLOCK_FUNCTION (block) != NULL && block_inlined_p (block))
2076 break;
2077 block = BLOCK_SUPERBLOCK (block);
2078 }
2079
2080 /* We've reached the end of the function without finding a result. */
2081
2082 return (struct block_symbol) {NULL, NULL};
2083 }
2084
2085 /* See symtab.h. */
2086
2087 struct objfile *
2088 lookup_objfile_from_block (const struct block *block)
2089 {
2090 struct objfile *obj;
2091 struct compunit_symtab *cust;
2092
2093 if (block == NULL)
2094 return NULL;
2095
2096 block = block_global_block (block);
2097 /* Look through all blockvectors. */
2098 ALL_COMPUNITS (obj, cust)
2099 if (block == BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust),
2100 GLOBAL_BLOCK))
2101 {
2102 if (obj->separate_debug_objfile_backlink)
2103 obj = obj->separate_debug_objfile_backlink;
2104
2105 return obj;
2106 }
2107
2108 return NULL;
2109 }
2110
2111 /* See symtab.h. */
2112
2113 struct symbol *
2114 lookup_symbol_in_block (const char *name, const struct block *block,
2115 const domain_enum domain)
2116 {
2117 struct symbol *sym;
2118
2119 if (symbol_lookup_debug > 1)
2120 {
2121 struct objfile *objfile = lookup_objfile_from_block (block);
2122
2123 fprintf_unfiltered (gdb_stdlog,
2124 "lookup_symbol_in_block (%s, %s (objfile %s), %s)",
2125 name, host_address_to_string (block),
2126 objfile_debug_name (objfile),
2127 domain_name (domain));
2128 }
2129
2130 sym = block_lookup_symbol (block, name, domain);
2131 if (sym)
2132 {
2133 if (symbol_lookup_debug > 1)
2134 {
2135 fprintf_unfiltered (gdb_stdlog, " = %s\n",
2136 host_address_to_string (sym));
2137 }
2138 return fixup_symbol_section (sym, NULL);
2139 }
2140
2141 if (symbol_lookup_debug > 1)
2142 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
2143 return NULL;
2144 }
2145
2146 /* See symtab.h. */
2147
2148 struct block_symbol
2149 lookup_global_symbol_from_objfile (struct objfile *main_objfile,
2150 const char *name,
2151 const domain_enum domain)
2152 {
2153 struct objfile *objfile;
2154
2155 for (objfile = main_objfile;
2156 objfile;
2157 objfile = objfile_separate_debug_iterate (main_objfile, objfile))
2158 {
2159 struct block_symbol result
2160 = lookup_symbol_in_objfile (objfile, GLOBAL_BLOCK, name, domain);
2161
2162 if (result.symbol != NULL)
2163 return result;
2164 }
2165
2166 return (struct block_symbol) {NULL, NULL};
2167 }
2168
2169 /* Check to see if the symbol is defined in one of the OBJFILE's
2170 symtabs. BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
2171 depending on whether or not we want to search global symbols or
2172 static symbols. */
2173
2174 static struct block_symbol
2175 lookup_symbol_in_objfile_symtabs (struct objfile *objfile, int block_index,
2176 const char *name, const domain_enum domain)
2177 {
2178 struct compunit_symtab *cust;
2179
2180 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2181
2182 if (symbol_lookup_debug > 1)
2183 {
2184 fprintf_unfiltered (gdb_stdlog,
2185 "lookup_symbol_in_objfile_symtabs (%s, %s, %s, %s)",
2186 objfile_debug_name (objfile),
2187 block_index == GLOBAL_BLOCK
2188 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2189 name, domain_name (domain));
2190 }
2191
2192 ALL_OBJFILE_COMPUNITS (objfile, cust)
2193 {
2194 const struct blockvector *bv;
2195 const struct block *block;
2196 struct block_symbol result;
2197
2198 bv = COMPUNIT_BLOCKVECTOR (cust);
2199 block = BLOCKVECTOR_BLOCK (bv, block_index);
2200 result.symbol = block_lookup_symbol_primary (block, name, domain);
2201 result.block = block;
2202 if (result.symbol != NULL)
2203 {
2204 if (symbol_lookup_debug > 1)
2205 {
2206 fprintf_unfiltered (gdb_stdlog, " = %s (block %s)\n",
2207 host_address_to_string (result.symbol),
2208 host_address_to_string (block));
2209 }
2210 result.symbol = fixup_symbol_section (result.symbol, objfile);
2211 return result;
2212
2213 }
2214 }
2215
2216 if (symbol_lookup_debug > 1)
2217 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
2218 return (struct block_symbol) {NULL, NULL};
2219 }
2220
2221 /* Wrapper around lookup_symbol_in_objfile_symtabs for search_symbols.
2222 Look up LINKAGE_NAME in DOMAIN in the global and static blocks of OBJFILE
2223 and all associated separate debug objfiles.
2224
2225 Normally we only look in OBJFILE, and not any separate debug objfiles
2226 because the outer loop will cause them to be searched too. This case is
2227 different. Here we're called from search_symbols where it will only
2228 call us for the the objfile that contains a matching minsym. */
2229
2230 static struct block_symbol
2231 lookup_symbol_in_objfile_from_linkage_name (struct objfile *objfile,
2232 const char *linkage_name,
2233 domain_enum domain)
2234 {
2235 enum language lang = current_language->la_language;
2236 struct objfile *main_objfile, *cur_objfile;
2237
2238 demangle_result_storage storage;
2239 const char *modified_name = demangle_for_lookup (linkage_name, lang, storage);
2240
2241 if (objfile->separate_debug_objfile_backlink)
2242 main_objfile = objfile->separate_debug_objfile_backlink;
2243 else
2244 main_objfile = objfile;
2245
2246 for (cur_objfile = main_objfile;
2247 cur_objfile;
2248 cur_objfile = objfile_separate_debug_iterate (main_objfile, cur_objfile))
2249 {
2250 struct block_symbol result;
2251
2252 result = lookup_symbol_in_objfile_symtabs (cur_objfile, GLOBAL_BLOCK,
2253 modified_name, domain);
2254 if (result.symbol == NULL)
2255 result = lookup_symbol_in_objfile_symtabs (cur_objfile, STATIC_BLOCK,
2256 modified_name, domain);
2257 if (result.symbol != NULL)
2258 return result;
2259 }
2260
2261 return (struct block_symbol) {NULL, NULL};
2262 }
2263
2264 /* A helper function that throws an exception when a symbol was found
2265 in a psymtab but not in a symtab. */
2266
2267 static void ATTRIBUTE_NORETURN
2268 error_in_psymtab_expansion (int block_index, const char *name,
2269 struct compunit_symtab *cust)
2270 {
2271 error (_("\
2272 Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n\
2273 %s may be an inlined function, or may be a template function\n \
2274 (if a template, try specifying an instantiation: %s<type>)."),
2275 block_index == GLOBAL_BLOCK ? "global" : "static",
2276 name,
2277 symtab_to_filename_for_display (compunit_primary_filetab (cust)),
2278 name, name);
2279 }
2280
2281 /* A helper function for various lookup routines that interfaces with
2282 the "quick" symbol table functions. */
2283
2284 static struct block_symbol
2285 lookup_symbol_via_quick_fns (struct objfile *objfile, int block_index,
2286 const char *name, const domain_enum domain)
2287 {
2288 struct compunit_symtab *cust;
2289 const struct blockvector *bv;
2290 const struct block *block;
2291 struct block_symbol result;
2292
2293 if (!objfile->sf)
2294 return (struct block_symbol) {NULL, NULL};
2295
2296 if (symbol_lookup_debug > 1)
2297 {
2298 fprintf_unfiltered (gdb_stdlog,
2299 "lookup_symbol_via_quick_fns (%s, %s, %s, %s)\n",
2300 objfile_debug_name (objfile),
2301 block_index == GLOBAL_BLOCK
2302 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2303 name, domain_name (domain));
2304 }
2305
2306 cust = objfile->sf->qf->lookup_symbol (objfile, block_index, name, domain);
2307 if (cust == NULL)
2308 {
2309 if (symbol_lookup_debug > 1)
2310 {
2311 fprintf_unfiltered (gdb_stdlog,
2312 "lookup_symbol_via_quick_fns (...) = NULL\n");
2313 }
2314 return (struct block_symbol) {NULL, NULL};
2315 }
2316
2317 bv = COMPUNIT_BLOCKVECTOR (cust);
2318 block = BLOCKVECTOR_BLOCK (bv, block_index);
2319 result.symbol = block_lookup_symbol (block, name, domain);
2320 if (result.symbol == NULL)
2321 error_in_psymtab_expansion (block_index, name, cust);
2322
2323 if (symbol_lookup_debug > 1)
2324 {
2325 fprintf_unfiltered (gdb_stdlog,
2326 "lookup_symbol_via_quick_fns (...) = %s (block %s)\n",
2327 host_address_to_string (result.symbol),
2328 host_address_to_string (block));
2329 }
2330
2331 result.symbol = fixup_symbol_section (result.symbol, objfile);
2332 result.block = block;
2333 return result;
2334 }
2335
2336 /* See symtab.h. */
2337
2338 struct block_symbol
2339 basic_lookup_symbol_nonlocal (const struct language_defn *langdef,
2340 const char *name,
2341 const struct block *block,
2342 const domain_enum domain)
2343 {
2344 struct block_symbol result;
2345
2346 /* NOTE: carlton/2003-05-19: The comments below were written when
2347 this (or what turned into this) was part of lookup_symbol_aux;
2348 I'm much less worried about these questions now, since these
2349 decisions have turned out well, but I leave these comments here
2350 for posterity. */
2351
2352 /* NOTE: carlton/2002-12-05: There is a question as to whether or
2353 not it would be appropriate to search the current global block
2354 here as well. (That's what this code used to do before the
2355 is_a_field_of_this check was moved up.) On the one hand, it's
2356 redundant with the lookup in all objfiles search that happens
2357 next. On the other hand, if decode_line_1 is passed an argument
2358 like filename:var, then the user presumably wants 'var' to be
2359 searched for in filename. On the third hand, there shouldn't be
2360 multiple global variables all of which are named 'var', and it's
2361 not like decode_line_1 has ever restricted its search to only
2362 global variables in a single filename. All in all, only
2363 searching the static block here seems best: it's correct and it's
2364 cleanest. */
2365
2366 /* NOTE: carlton/2002-12-05: There's also a possible performance
2367 issue here: if you usually search for global symbols in the
2368 current file, then it would be slightly better to search the
2369 current global block before searching all the symtabs. But there
2370 are other factors that have a much greater effect on performance
2371 than that one, so I don't think we should worry about that for
2372 now. */
2373
2374 /* NOTE: dje/2014-10-26: The lookup in all objfiles search could skip
2375 the current objfile. Searching the current objfile first is useful
2376 for both matching user expectations as well as performance. */
2377
2378 result = lookup_symbol_in_static_block (name, block, domain);
2379 if (result.symbol != NULL)
2380 return result;
2381
2382 /* If we didn't find a definition for a builtin type in the static block,
2383 search for it now. This is actually the right thing to do and can be
2384 a massive performance win. E.g., when debugging a program with lots of
2385 shared libraries we could search all of them only to find out the
2386 builtin type isn't defined in any of them. This is common for types
2387 like "void". */
2388 if (domain == VAR_DOMAIN)
2389 {
2390 struct gdbarch *gdbarch;
2391
2392 if (block == NULL)
2393 gdbarch = target_gdbarch ();
2394 else
2395 gdbarch = block_gdbarch (block);
2396 result.symbol = language_lookup_primitive_type_as_symbol (langdef,
2397 gdbarch, name);
2398 result.block = NULL;
2399 if (result.symbol != NULL)
2400 return result;
2401 }
2402
2403 return lookup_global_symbol (name, block, domain);
2404 }
2405
2406 /* See symtab.h. */
2407
2408 struct block_symbol
2409 lookup_symbol_in_static_block (const char *name,
2410 const struct block *block,
2411 const domain_enum domain)
2412 {
2413 const struct block *static_block = block_static_block (block);
2414 struct symbol *sym;
2415
2416 if (static_block == NULL)
2417 return (struct block_symbol) {NULL, NULL};
2418
2419 if (symbol_lookup_debug)
2420 {
2421 struct objfile *objfile = lookup_objfile_from_block (static_block);
2422
2423 fprintf_unfiltered (gdb_stdlog,
2424 "lookup_symbol_in_static_block (%s, %s (objfile %s),"
2425 " %s)\n",
2426 name,
2427 host_address_to_string (block),
2428 objfile_debug_name (objfile),
2429 domain_name (domain));
2430 }
2431
2432 sym = lookup_symbol_in_block (name, static_block, domain);
2433 if (symbol_lookup_debug)
2434 {
2435 fprintf_unfiltered (gdb_stdlog,
2436 "lookup_symbol_in_static_block (...) = %s\n",
2437 sym != NULL ? host_address_to_string (sym) : "NULL");
2438 }
2439 return (struct block_symbol) {sym, static_block};
2440 }
2441
2442 /* Perform the standard symbol lookup of NAME in OBJFILE:
2443 1) First search expanded symtabs, and if not found
2444 2) Search the "quick" symtabs (partial or .gdb_index).
2445 BLOCK_INDEX is one of GLOBAL_BLOCK or STATIC_BLOCK. */
2446
2447 static struct block_symbol
2448 lookup_symbol_in_objfile (struct objfile *objfile, int block_index,
2449 const char *name, const domain_enum domain)
2450 {
2451 struct block_symbol result;
2452
2453 if (symbol_lookup_debug)
2454 {
2455 fprintf_unfiltered (gdb_stdlog,
2456 "lookup_symbol_in_objfile (%s, %s, %s, %s)\n",
2457 objfile_debug_name (objfile),
2458 block_index == GLOBAL_BLOCK
2459 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2460 name, domain_name (domain));
2461 }
2462
2463 result = lookup_symbol_in_objfile_symtabs (objfile, block_index,
2464 name, domain);
2465 if (result.symbol != NULL)
2466 {
2467 if (symbol_lookup_debug)
2468 {
2469 fprintf_unfiltered (gdb_stdlog,
2470 "lookup_symbol_in_objfile (...) = %s"
2471 " (in symtabs)\n",
2472 host_address_to_string (result.symbol));
2473 }
2474 return result;
2475 }
2476
2477 result = lookup_symbol_via_quick_fns (objfile, block_index,
2478 name, domain);
2479 if (symbol_lookup_debug)
2480 {
2481 fprintf_unfiltered (gdb_stdlog,
2482 "lookup_symbol_in_objfile (...) = %s%s\n",
2483 result.symbol != NULL
2484 ? host_address_to_string (result.symbol)
2485 : "NULL",
2486 result.symbol != NULL ? " (via quick fns)" : "");
2487 }
2488 return result;
2489 }
2490
2491 /* See symtab.h. */
2492
2493 struct block_symbol
2494 lookup_static_symbol (const char *name, const domain_enum domain)
2495 {
2496 struct symbol_cache *cache = get_symbol_cache (current_program_space);
2497 struct objfile *objfile;
2498 struct block_symbol result;
2499 struct block_symbol_cache *bsc;
2500 struct symbol_cache_slot *slot;
2501
2502 /* Lookup in STATIC_BLOCK is not current-objfile-dependent, so just pass
2503 NULL for OBJFILE_CONTEXT. */
2504 result = symbol_cache_lookup (cache, NULL, STATIC_BLOCK, name, domain,
2505 &bsc, &slot);
2506 if (result.symbol != NULL)
2507 {
2508 if (SYMBOL_LOOKUP_FAILED_P (result))
2509 return (struct block_symbol) {NULL, NULL};
2510 return result;
2511 }
2512
2513 ALL_OBJFILES (objfile)
2514 {
2515 result = lookup_symbol_in_objfile (objfile, STATIC_BLOCK, name, domain);
2516 if (result.symbol != NULL)
2517 {
2518 /* Still pass NULL for OBJFILE_CONTEXT here. */
2519 symbol_cache_mark_found (bsc, slot, NULL, result.symbol,
2520 result.block);
2521 return result;
2522 }
2523 }
2524
2525 /* Still pass NULL for OBJFILE_CONTEXT here. */
2526 symbol_cache_mark_not_found (bsc, slot, NULL, name, domain);
2527 return (struct block_symbol) {NULL, NULL};
2528 }
2529
2530 /* Private data to be used with lookup_symbol_global_iterator_cb. */
2531
2532 struct global_sym_lookup_data
2533 {
2534 /* The name of the symbol we are searching for. */
2535 const char *name;
2536
2537 /* The domain to use for our search. */
2538 domain_enum domain;
2539
2540 /* The field where the callback should store the symbol if found.
2541 It should be initialized to {NULL, NULL} before the search is started. */
2542 struct block_symbol result;
2543 };
2544
2545 /* A callback function for gdbarch_iterate_over_objfiles_in_search_order.
2546 It searches by name for a symbol in the GLOBAL_BLOCK of the given
2547 OBJFILE. The arguments for the search are passed via CB_DATA,
2548 which in reality is a pointer to struct global_sym_lookup_data. */
2549
2550 static int
2551 lookup_symbol_global_iterator_cb (struct objfile *objfile,
2552 void *cb_data)
2553 {
2554 struct global_sym_lookup_data *data =
2555 (struct global_sym_lookup_data *) cb_data;
2556
2557 gdb_assert (data->result.symbol == NULL
2558 && data->result.block == NULL);
2559
2560 data->result = lookup_symbol_in_objfile (objfile, GLOBAL_BLOCK,
2561 data->name, data->domain);
2562
2563 /* If we found a match, tell the iterator to stop. Otherwise,
2564 keep going. */
2565 return (data->result.symbol != NULL);
2566 }
2567
2568 /* See symtab.h. */
2569
2570 struct block_symbol
2571 lookup_global_symbol (const char *name,
2572 const struct block *block,
2573 const domain_enum domain)
2574 {
2575 struct symbol_cache *cache = get_symbol_cache (current_program_space);
2576 struct block_symbol result;
2577 struct objfile *objfile;
2578 struct global_sym_lookup_data lookup_data;
2579 struct block_symbol_cache *bsc;
2580 struct symbol_cache_slot *slot;
2581
2582 objfile = lookup_objfile_from_block (block);
2583
2584 /* First see if we can find the symbol in the cache.
2585 This works because we use the current objfile to qualify the lookup. */
2586 result = symbol_cache_lookup (cache, objfile, GLOBAL_BLOCK, name, domain,
2587 &bsc, &slot);
2588 if (result.symbol != NULL)
2589 {
2590 if (SYMBOL_LOOKUP_FAILED_P (result))
2591 return (struct block_symbol) {NULL, NULL};
2592 return result;
2593 }
2594
2595 /* Call library-specific lookup procedure. */
2596 if (objfile != NULL)
2597 result = solib_global_lookup (objfile, name, domain);
2598
2599 /* If that didn't work go a global search (of global blocks, heh). */
2600 if (result.symbol == NULL)
2601 {
2602 memset (&lookup_data, 0, sizeof (lookup_data));
2603 lookup_data.name = name;
2604 lookup_data.domain = domain;
2605 gdbarch_iterate_over_objfiles_in_search_order
2606 (objfile != NULL ? get_objfile_arch (objfile) : target_gdbarch (),
2607 lookup_symbol_global_iterator_cb, &lookup_data, objfile);
2608 result = lookup_data.result;
2609 }
2610
2611 if (result.symbol != NULL)
2612 symbol_cache_mark_found (bsc, slot, objfile, result.symbol, result.block);
2613 else
2614 symbol_cache_mark_not_found (bsc, slot, objfile, name, domain);
2615
2616 return result;
2617 }
2618
2619 int
2620 symbol_matches_domain (enum language symbol_language,
2621 domain_enum symbol_domain,
2622 domain_enum domain)
2623 {
2624 /* For C++ "struct foo { ... }" also defines a typedef for "foo".
2625 Similarly, any Ada type declaration implicitly defines a typedef. */
2626 if (symbol_language == language_cplus
2627 || symbol_language == language_d
2628 || symbol_language == language_ada
2629 || symbol_language == language_rust)
2630 {
2631 if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN)
2632 && symbol_domain == STRUCT_DOMAIN)
2633 return 1;
2634 }
2635 /* For all other languages, strict match is required. */
2636 return (symbol_domain == domain);
2637 }
2638
2639 /* See symtab.h. */
2640
2641 struct type *
2642 lookup_transparent_type (const char *name)
2643 {
2644 return current_language->la_lookup_transparent_type (name);
2645 }
2646
2647 /* A helper for basic_lookup_transparent_type that interfaces with the
2648 "quick" symbol table functions. */
2649
2650 static struct type *
2651 basic_lookup_transparent_type_quick (struct objfile *objfile, int block_index,
2652 const char *name)
2653 {
2654 struct compunit_symtab *cust;
2655 const struct blockvector *bv;
2656 struct block *block;
2657 struct symbol *sym;
2658
2659 if (!objfile->sf)
2660 return NULL;
2661 cust = objfile->sf->qf->lookup_symbol (objfile, block_index, name,
2662 STRUCT_DOMAIN);
2663 if (cust == NULL)
2664 return NULL;
2665
2666 bv = COMPUNIT_BLOCKVECTOR (cust);
2667 block = BLOCKVECTOR_BLOCK (bv, block_index);
2668 sym = block_find_symbol (block, name, STRUCT_DOMAIN,
2669 block_find_non_opaque_type, NULL);
2670 if (sym == NULL)
2671 error_in_psymtab_expansion (block_index, name, cust);
2672 gdb_assert (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)));
2673 return SYMBOL_TYPE (sym);
2674 }
2675
2676 /* Subroutine of basic_lookup_transparent_type to simplify it.
2677 Look up the non-opaque definition of NAME in BLOCK_INDEX of OBJFILE.
2678 BLOCK_INDEX is either GLOBAL_BLOCK or STATIC_BLOCK. */
2679
2680 static struct type *
2681 basic_lookup_transparent_type_1 (struct objfile *objfile, int block_index,
2682 const char *name)
2683 {
2684 const struct compunit_symtab *cust;
2685 const struct blockvector *bv;
2686 const struct block *block;
2687 const struct symbol *sym;
2688
2689 ALL_OBJFILE_COMPUNITS (objfile, cust)
2690 {
2691 bv = COMPUNIT_BLOCKVECTOR (cust);
2692 block = BLOCKVECTOR_BLOCK (bv, block_index);
2693 sym = block_find_symbol (block, name, STRUCT_DOMAIN,
2694 block_find_non_opaque_type, NULL);
2695 if (sym != NULL)
2696 {
2697 gdb_assert (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)));
2698 return SYMBOL_TYPE (sym);
2699 }
2700 }
2701
2702 return NULL;
2703 }
2704
2705 /* The standard implementation of lookup_transparent_type. This code
2706 was modeled on lookup_symbol -- the parts not relevant to looking
2707 up types were just left out. In particular it's assumed here that
2708 types are available in STRUCT_DOMAIN and only in file-static or
2709 global blocks. */
2710
2711 struct type *
2712 basic_lookup_transparent_type (const char *name)
2713 {
2714 struct objfile *objfile;
2715 struct type *t;
2716
2717 /* Now search all the global symbols. Do the symtab's first, then
2718 check the psymtab's. If a psymtab indicates the existence
2719 of the desired name as a global, then do psymtab-to-symtab
2720 conversion on the fly and return the found symbol. */
2721
2722 ALL_OBJFILES (objfile)
2723 {
2724 t = basic_lookup_transparent_type_1 (objfile, GLOBAL_BLOCK, name);
2725 if (t)
2726 return t;
2727 }
2728
2729 ALL_OBJFILES (objfile)
2730 {
2731 t = basic_lookup_transparent_type_quick (objfile, GLOBAL_BLOCK, name);
2732 if (t)
2733 return t;
2734 }
2735
2736 /* Now search the static file-level symbols.
2737 Not strictly correct, but more useful than an error.
2738 Do the symtab's first, then
2739 check the psymtab's. If a psymtab indicates the existence
2740 of the desired name as a file-level static, then do psymtab-to-symtab
2741 conversion on the fly and return the found symbol. */
2742
2743 ALL_OBJFILES (objfile)
2744 {
2745 t = basic_lookup_transparent_type_1 (objfile, STATIC_BLOCK, name);
2746 if (t)
2747 return t;
2748 }
2749
2750 ALL_OBJFILES (objfile)
2751 {
2752 t = basic_lookup_transparent_type_quick (objfile, STATIC_BLOCK, name);
2753 if (t)
2754 return t;
2755 }
2756
2757 return (struct type *) 0;
2758 }
2759
2760 /* Iterate over the symbols named NAME, matching DOMAIN, in BLOCK.
2761
2762 For each symbol that matches, CALLBACK is called. The symbol is
2763 passed to the callback.
2764
2765 If CALLBACK returns false, the iteration ends. Otherwise, the
2766 search continues. */
2767
2768 void
2769 iterate_over_symbols (const struct block *block, const char *name,
2770 const domain_enum domain,
2771 gdb::function_view<symbol_found_callback_ftype> callback)
2772 {
2773 struct block_iterator iter;
2774 struct symbol *sym;
2775
2776 ALL_BLOCK_SYMBOLS_WITH_NAME (block, name, iter, sym)
2777 {
2778 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
2779 SYMBOL_DOMAIN (sym), domain))
2780 {
2781 if (!callback (sym))
2782 return;
2783 }
2784 }
2785 }
2786
2787 /* Find the compunit symtab associated with PC and SECTION.
2788 This will read in debug info as necessary. */
2789
2790 struct compunit_symtab *
2791 find_pc_sect_compunit_symtab (CORE_ADDR pc, struct obj_section *section)
2792 {
2793 struct compunit_symtab *cust;
2794 struct compunit_symtab *best_cust = NULL;
2795 struct objfile *objfile;
2796 CORE_ADDR distance = 0;
2797 struct bound_minimal_symbol msymbol;
2798
2799 /* If we know that this is not a text address, return failure. This is
2800 necessary because we loop based on the block's high and low code
2801 addresses, which do not include the data ranges, and because
2802 we call find_pc_sect_psymtab which has a similar restriction based
2803 on the partial_symtab's texthigh and textlow. */
2804 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
2805 if (msymbol.minsym
2806 && (MSYMBOL_TYPE (msymbol.minsym) == mst_data
2807 || MSYMBOL_TYPE (msymbol.minsym) == mst_bss
2808 || MSYMBOL_TYPE (msymbol.minsym) == mst_abs
2809 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_data
2810 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_bss))
2811 return NULL;
2812
2813 /* Search all symtabs for the one whose file contains our address, and which
2814 is the smallest of all the ones containing the address. This is designed
2815 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
2816 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
2817 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
2818
2819 This happens for native ecoff format, where code from included files
2820 gets its own symtab. The symtab for the included file should have
2821 been read in already via the dependency mechanism.
2822 It might be swifter to create several symtabs with the same name
2823 like xcoff does (I'm not sure).
2824
2825 It also happens for objfiles that have their functions reordered.
2826 For these, the symtab we are looking for is not necessarily read in. */
2827
2828 ALL_COMPUNITS (objfile, cust)
2829 {
2830 struct block *b;
2831 const struct blockvector *bv;
2832
2833 bv = COMPUNIT_BLOCKVECTOR (cust);
2834 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
2835
2836 if (BLOCK_START (b) <= pc
2837 && BLOCK_END (b) > pc
2838 && (distance == 0
2839 || BLOCK_END (b) - BLOCK_START (b) < distance))
2840 {
2841 /* For an objfile that has its functions reordered,
2842 find_pc_psymtab will find the proper partial symbol table
2843 and we simply return its corresponding symtab. */
2844 /* In order to better support objfiles that contain both
2845 stabs and coff debugging info, we continue on if a psymtab
2846 can't be found. */
2847 if ((objfile->flags & OBJF_REORDERED) && objfile->sf)
2848 {
2849 struct compunit_symtab *result;
2850
2851 result
2852 = objfile->sf->qf->find_pc_sect_compunit_symtab (objfile,
2853 msymbol,
2854 pc, section,
2855 0);
2856 if (result != NULL)
2857 return result;
2858 }
2859 if (section != 0)
2860 {
2861 struct block_iterator iter;
2862 struct symbol *sym = NULL;
2863
2864 ALL_BLOCK_SYMBOLS (b, iter, sym)
2865 {
2866 fixup_symbol_section (sym, objfile);
2867 if (matching_obj_sections (SYMBOL_OBJ_SECTION (objfile, sym),
2868 section))
2869 break;
2870 }
2871 if (sym == NULL)
2872 continue; /* No symbol in this symtab matches
2873 section. */
2874 }
2875 distance = BLOCK_END (b) - BLOCK_START (b);
2876 best_cust = cust;
2877 }
2878 }
2879
2880 if (best_cust != NULL)
2881 return best_cust;
2882
2883 /* Not found in symtabs, search the "quick" symtabs (e.g. psymtabs). */
2884
2885 ALL_OBJFILES (objfile)
2886 {
2887 struct compunit_symtab *result;
2888
2889 if (!objfile->sf)
2890 continue;
2891 result = objfile->sf->qf->find_pc_sect_compunit_symtab (objfile,
2892 msymbol,
2893 pc, section,
2894 1);
2895 if (result != NULL)
2896 return result;
2897 }
2898
2899 return NULL;
2900 }
2901
2902 /* Find the compunit symtab associated with PC.
2903 This will read in debug info as necessary.
2904 Backward compatibility, no section. */
2905
2906 struct compunit_symtab *
2907 find_pc_compunit_symtab (CORE_ADDR pc)
2908 {
2909 return find_pc_sect_compunit_symtab (pc, find_pc_mapped_section (pc));
2910 }
2911 \f
2912
2913 /* Find the source file and line number for a given PC value and SECTION.
2914 Return a structure containing a symtab pointer, a line number,
2915 and a pc range for the entire source line.
2916 The value's .pc field is NOT the specified pc.
2917 NOTCURRENT nonzero means, if specified pc is on a line boundary,
2918 use the line that ends there. Otherwise, in that case, the line
2919 that begins there is used. */
2920
2921 /* The big complication here is that a line may start in one file, and end just
2922 before the start of another file. This usually occurs when you #include
2923 code in the middle of a subroutine. To properly find the end of a line's PC
2924 range, we must search all symtabs associated with this compilation unit, and
2925 find the one whose first PC is closer than that of the next line in this
2926 symtab. */
2927
2928 /* If it's worth the effort, we could be using a binary search. */
2929
2930 struct symtab_and_line
2931 find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent)
2932 {
2933 struct compunit_symtab *cust;
2934 struct symtab *iter_s;
2935 struct linetable *l;
2936 int len;
2937 int i;
2938 struct linetable_entry *item;
2939 struct symtab_and_line val;
2940 const struct blockvector *bv;
2941 struct bound_minimal_symbol msymbol;
2942
2943 /* Info on best line seen so far, and where it starts, and its file. */
2944
2945 struct linetable_entry *best = NULL;
2946 CORE_ADDR best_end = 0;
2947 struct symtab *best_symtab = 0;
2948
2949 /* Store here the first line number
2950 of a file which contains the line at the smallest pc after PC.
2951 If we don't find a line whose range contains PC,
2952 we will use a line one less than this,
2953 with a range from the start of that file to the first line's pc. */
2954 struct linetable_entry *alt = NULL;
2955
2956 /* Info on best line seen in this file. */
2957
2958 struct linetable_entry *prev;
2959
2960 /* If this pc is not from the current frame,
2961 it is the address of the end of a call instruction.
2962 Quite likely that is the start of the following statement.
2963 But what we want is the statement containing the instruction.
2964 Fudge the pc to make sure we get that. */
2965
2966 init_sal (&val); /* initialize to zeroes */
2967
2968 val.pspace = current_program_space;
2969
2970 /* It's tempting to assume that, if we can't find debugging info for
2971 any function enclosing PC, that we shouldn't search for line
2972 number info, either. However, GAS can emit line number info for
2973 assembly files --- very helpful when debugging hand-written
2974 assembly code. In such a case, we'd have no debug info for the
2975 function, but we would have line info. */
2976
2977 if (notcurrent)
2978 pc -= 1;
2979
2980 /* elz: added this because this function returned the wrong
2981 information if the pc belongs to a stub (import/export)
2982 to call a shlib function. This stub would be anywhere between
2983 two functions in the target, and the line info was erroneously
2984 taken to be the one of the line before the pc. */
2985
2986 /* RT: Further explanation:
2987
2988 * We have stubs (trampolines) inserted between procedures.
2989 *
2990 * Example: "shr1" exists in a shared library, and a "shr1" stub also
2991 * exists in the main image.
2992 *
2993 * In the minimal symbol table, we have a bunch of symbols
2994 * sorted by start address. The stubs are marked as "trampoline",
2995 * the others appear as text. E.g.:
2996 *
2997 * Minimal symbol table for main image
2998 * main: code for main (text symbol)
2999 * shr1: stub (trampoline symbol)
3000 * foo: code for foo (text symbol)
3001 * ...
3002 * Minimal symbol table for "shr1" image:
3003 * ...
3004 * shr1: code for shr1 (text symbol)
3005 * ...
3006 *
3007 * So the code below is trying to detect if we are in the stub
3008 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
3009 * and if found, do the symbolization from the real-code address
3010 * rather than the stub address.
3011 *
3012 * Assumptions being made about the minimal symbol table:
3013 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
3014 * if we're really in the trampoline.s If we're beyond it (say
3015 * we're in "foo" in the above example), it'll have a closer
3016 * symbol (the "foo" text symbol for example) and will not
3017 * return the trampoline.
3018 * 2. lookup_minimal_symbol_text() will find a real text symbol
3019 * corresponding to the trampoline, and whose address will
3020 * be different than the trampoline address. I put in a sanity
3021 * check for the address being the same, to avoid an
3022 * infinite recursion.
3023 */
3024 msymbol = lookup_minimal_symbol_by_pc (pc);
3025 if (msymbol.minsym != NULL)
3026 if (MSYMBOL_TYPE (msymbol.minsym) == mst_solib_trampoline)
3027 {
3028 struct bound_minimal_symbol mfunsym
3029 = lookup_minimal_symbol_text (MSYMBOL_LINKAGE_NAME (msymbol.minsym),
3030 NULL);
3031
3032 if (mfunsym.minsym == NULL)
3033 /* I eliminated this warning since it is coming out
3034 * in the following situation:
3035 * gdb shmain // test program with shared libraries
3036 * (gdb) break shr1 // function in shared lib
3037 * Warning: In stub for ...
3038 * In the above situation, the shared lib is not loaded yet,
3039 * so of course we can't find the real func/line info,
3040 * but the "break" still works, and the warning is annoying.
3041 * So I commented out the warning. RT */
3042 /* warning ("In stub for %s; unable to find real function/line info",
3043 SYMBOL_LINKAGE_NAME (msymbol)); */
3044 ;
3045 /* fall through */
3046 else if (BMSYMBOL_VALUE_ADDRESS (mfunsym)
3047 == BMSYMBOL_VALUE_ADDRESS (msymbol))
3048 /* Avoid infinite recursion */
3049 /* See above comment about why warning is commented out. */
3050 /* warning ("In stub for %s; unable to find real function/line info",
3051 SYMBOL_LINKAGE_NAME (msymbol)); */
3052 ;
3053 /* fall through */
3054 else
3055 return find_pc_line (BMSYMBOL_VALUE_ADDRESS (mfunsym), 0);
3056 }
3057
3058
3059 cust = find_pc_sect_compunit_symtab (pc, section);
3060 if (cust == NULL)
3061 {
3062 /* If no symbol information, return previous pc. */
3063 if (notcurrent)
3064 pc++;
3065 val.pc = pc;
3066 return val;
3067 }
3068
3069 bv = COMPUNIT_BLOCKVECTOR (cust);
3070
3071 /* Look at all the symtabs that share this blockvector.
3072 They all have the same apriori range, that we found was right;
3073 but they have different line tables. */
3074
3075 ALL_COMPUNIT_FILETABS (cust, iter_s)
3076 {
3077 /* Find the best line in this symtab. */
3078 l = SYMTAB_LINETABLE (iter_s);
3079 if (!l)
3080 continue;
3081 len = l->nitems;
3082 if (len <= 0)
3083 {
3084 /* I think len can be zero if the symtab lacks line numbers
3085 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
3086 I'm not sure which, and maybe it depends on the symbol
3087 reader). */
3088 continue;
3089 }
3090
3091 prev = NULL;
3092 item = l->item; /* Get first line info. */
3093
3094 /* Is this file's first line closer than the first lines of other files?
3095 If so, record this file, and its first line, as best alternate. */
3096 if (item->pc > pc && (!alt || item->pc < alt->pc))
3097 alt = item;
3098
3099 for (i = 0; i < len; i++, item++)
3100 {
3101 /* Leave prev pointing to the linetable entry for the last line
3102 that started at or before PC. */
3103 if (item->pc > pc)
3104 break;
3105
3106 prev = item;
3107 }
3108
3109 /* At this point, prev points at the line whose start addr is <= pc, and
3110 item points at the next line. If we ran off the end of the linetable
3111 (pc >= start of the last line), then prev == item. If pc < start of
3112 the first line, prev will not be set. */
3113
3114 /* Is this file's best line closer than the best in the other files?
3115 If so, record this file, and its best line, as best so far. Don't
3116 save prev if it represents the end of a function (i.e. line number
3117 0) instead of a real line. */
3118
3119 if (prev && prev->line && (!best || prev->pc > best->pc))
3120 {
3121 best = prev;
3122 best_symtab = iter_s;
3123
3124 /* Discard BEST_END if it's before the PC of the current BEST. */
3125 if (best_end <= best->pc)
3126 best_end = 0;
3127 }
3128
3129 /* If another line (denoted by ITEM) is in the linetable and its
3130 PC is after BEST's PC, but before the current BEST_END, then
3131 use ITEM's PC as the new best_end. */
3132 if (best && i < len && item->pc > best->pc
3133 && (best_end == 0 || best_end > item->pc))
3134 best_end = item->pc;
3135 }
3136
3137 if (!best_symtab)
3138 {
3139 /* If we didn't find any line number info, just return zeros.
3140 We used to return alt->line - 1 here, but that could be
3141 anywhere; if we don't have line number info for this PC,
3142 don't make some up. */
3143 val.pc = pc;
3144 }
3145 else if (best->line == 0)
3146 {
3147 /* If our best fit is in a range of PC's for which no line
3148 number info is available (line number is zero) then we didn't
3149 find any valid line information. */
3150 val.pc = pc;
3151 }
3152 else
3153 {
3154 val.symtab = best_symtab;
3155 val.line = best->line;
3156 val.pc = best->pc;
3157 if (best_end && (!alt || best_end < alt->pc))
3158 val.end = best_end;
3159 else if (alt)
3160 val.end = alt->pc;
3161 else
3162 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
3163 }
3164 val.section = section;
3165 return val;
3166 }
3167
3168 /* Backward compatibility (no section). */
3169
3170 struct symtab_and_line
3171 find_pc_line (CORE_ADDR pc, int notcurrent)
3172 {
3173 struct obj_section *section;
3174
3175 section = find_pc_overlay (pc);
3176 if (pc_in_unmapped_range (pc, section))
3177 pc = overlay_mapped_address (pc, section);
3178 return find_pc_sect_line (pc, section, notcurrent);
3179 }
3180
3181 /* See symtab.h. */
3182
3183 struct symtab *
3184 find_pc_line_symtab (CORE_ADDR pc)
3185 {
3186 struct symtab_and_line sal;
3187
3188 /* This always passes zero for NOTCURRENT to find_pc_line.
3189 There are currently no callers that ever pass non-zero. */
3190 sal = find_pc_line (pc, 0);
3191 return sal.symtab;
3192 }
3193 \f
3194 /* Find line number LINE in any symtab whose name is the same as
3195 SYMTAB.
3196
3197 If found, return the symtab that contains the linetable in which it was
3198 found, set *INDEX to the index in the linetable of the best entry
3199 found, and set *EXACT_MATCH nonzero if the value returned is an
3200 exact match.
3201
3202 If not found, return NULL. */
3203
3204 struct symtab *
3205 find_line_symtab (struct symtab *symtab, int line,
3206 int *index, int *exact_match)
3207 {
3208 int exact = 0; /* Initialized here to avoid a compiler warning. */
3209
3210 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
3211 so far seen. */
3212
3213 int best_index;
3214 struct linetable *best_linetable;
3215 struct symtab *best_symtab;
3216
3217 /* First try looking it up in the given symtab. */
3218 best_linetable = SYMTAB_LINETABLE (symtab);
3219 best_symtab = symtab;
3220 best_index = find_line_common (best_linetable, line, &exact, 0);
3221 if (best_index < 0 || !exact)
3222 {
3223 /* Didn't find an exact match. So we better keep looking for
3224 another symtab with the same name. In the case of xcoff,
3225 multiple csects for one source file (produced by IBM's FORTRAN
3226 compiler) produce multiple symtabs (this is unavoidable
3227 assuming csects can be at arbitrary places in memory and that
3228 the GLOBAL_BLOCK of a symtab has a begin and end address). */
3229
3230 /* BEST is the smallest linenumber > LINE so far seen,
3231 or 0 if none has been seen so far.
3232 BEST_INDEX and BEST_LINETABLE identify the item for it. */
3233 int best;
3234
3235 struct objfile *objfile;
3236 struct compunit_symtab *cu;
3237 struct symtab *s;
3238
3239 if (best_index >= 0)
3240 best = best_linetable->item[best_index].line;
3241 else
3242 best = 0;
3243
3244 ALL_OBJFILES (objfile)
3245 {
3246 if (objfile->sf)
3247 objfile->sf->qf->expand_symtabs_with_fullname (objfile,
3248 symtab_to_fullname (symtab));
3249 }
3250
3251 ALL_FILETABS (objfile, cu, s)
3252 {
3253 struct linetable *l;
3254 int ind;
3255
3256 if (FILENAME_CMP (symtab->filename, s->filename) != 0)
3257 continue;
3258 if (FILENAME_CMP (symtab_to_fullname (symtab),
3259 symtab_to_fullname (s)) != 0)
3260 continue;
3261 l = SYMTAB_LINETABLE (s);
3262 ind = find_line_common (l, line, &exact, 0);
3263 if (ind >= 0)
3264 {
3265 if (exact)
3266 {
3267 best_index = ind;
3268 best_linetable = l;
3269 best_symtab = s;
3270 goto done;
3271 }
3272 if (best == 0 || l->item[ind].line < best)
3273 {
3274 best = l->item[ind].line;
3275 best_index = ind;
3276 best_linetable = l;
3277 best_symtab = s;
3278 }
3279 }
3280 }
3281 }
3282 done:
3283 if (best_index < 0)
3284 return NULL;
3285
3286 if (index)
3287 *index = best_index;
3288 if (exact_match)
3289 *exact_match = exact;
3290
3291 return best_symtab;
3292 }
3293
3294 /* Given SYMTAB, returns all the PCs function in the symtab that
3295 exactly match LINE. Returns an empty vector if there are no exact
3296 matches, but updates BEST_ITEM in this case. */
3297
3298 std::vector<CORE_ADDR>
3299 find_pcs_for_symtab_line (struct symtab *symtab, int line,
3300 struct linetable_entry **best_item)
3301 {
3302 int start = 0;
3303 std::vector<CORE_ADDR> result;
3304
3305 /* First, collect all the PCs that are at this line. */
3306 while (1)
3307 {
3308 int was_exact;
3309 int idx;
3310
3311 idx = find_line_common (SYMTAB_LINETABLE (symtab), line, &was_exact,
3312 start);
3313 if (idx < 0)
3314 break;
3315
3316 if (!was_exact)
3317 {
3318 struct linetable_entry *item = &SYMTAB_LINETABLE (symtab)->item[idx];
3319
3320 if (*best_item == NULL || item->line < (*best_item)->line)
3321 *best_item = item;
3322
3323 break;
3324 }
3325
3326 result.push_back (SYMTAB_LINETABLE (symtab)->item[idx].pc);
3327 start = idx + 1;
3328 }
3329
3330 return result;
3331 }
3332
3333 \f
3334 /* Set the PC value for a given source file and line number and return true.
3335 Returns zero for invalid line number (and sets the PC to 0).
3336 The source file is specified with a struct symtab. */
3337
3338 int
3339 find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
3340 {
3341 struct linetable *l;
3342 int ind;
3343
3344 *pc = 0;
3345 if (symtab == 0)
3346 return 0;
3347
3348 symtab = find_line_symtab (symtab, line, &ind, NULL);
3349 if (symtab != NULL)
3350 {
3351 l = SYMTAB_LINETABLE (symtab);
3352 *pc = l->item[ind].pc;
3353 return 1;
3354 }
3355 else
3356 return 0;
3357 }
3358
3359 /* Find the range of pc values in a line.
3360 Store the starting pc of the line into *STARTPTR
3361 and the ending pc (start of next line) into *ENDPTR.
3362 Returns 1 to indicate success.
3363 Returns 0 if could not find the specified line. */
3364
3365 int
3366 find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
3367 CORE_ADDR *endptr)
3368 {
3369 CORE_ADDR startaddr;
3370 struct symtab_and_line found_sal;
3371
3372 startaddr = sal.pc;
3373 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
3374 return 0;
3375
3376 /* This whole function is based on address. For example, if line 10 has
3377 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
3378 "info line *0x123" should say the line goes from 0x100 to 0x200
3379 and "info line *0x355" should say the line goes from 0x300 to 0x400.
3380 This also insures that we never give a range like "starts at 0x134
3381 and ends at 0x12c". */
3382
3383 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
3384 if (found_sal.line != sal.line)
3385 {
3386 /* The specified line (sal) has zero bytes. */
3387 *startptr = found_sal.pc;
3388 *endptr = found_sal.pc;
3389 }
3390 else
3391 {
3392 *startptr = found_sal.pc;
3393 *endptr = found_sal.end;
3394 }
3395 return 1;
3396 }
3397
3398 /* Given a line table and a line number, return the index into the line
3399 table for the pc of the nearest line whose number is >= the specified one.
3400 Return -1 if none is found. The value is >= 0 if it is an index.
3401 START is the index at which to start searching the line table.
3402
3403 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
3404
3405 static int
3406 find_line_common (struct linetable *l, int lineno,
3407 int *exact_match, int start)
3408 {
3409 int i;
3410 int len;
3411
3412 /* BEST is the smallest linenumber > LINENO so far seen,
3413 or 0 if none has been seen so far.
3414 BEST_INDEX identifies the item for it. */
3415
3416 int best_index = -1;
3417 int best = 0;
3418
3419 *exact_match = 0;
3420
3421 if (lineno <= 0)
3422 return -1;
3423 if (l == 0)
3424 return -1;
3425
3426 len = l->nitems;
3427 for (i = start; i < len; i++)
3428 {
3429 struct linetable_entry *item = &(l->item[i]);
3430
3431 if (item->line == lineno)
3432 {
3433 /* Return the first (lowest address) entry which matches. */
3434 *exact_match = 1;
3435 return i;
3436 }
3437
3438 if (item->line > lineno && (best == 0 || item->line < best))
3439 {
3440 best = item->line;
3441 best_index = i;
3442 }
3443 }
3444
3445 /* If we got here, we didn't get an exact match. */
3446 return best_index;
3447 }
3448
3449 int
3450 find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
3451 {
3452 struct symtab_and_line sal;
3453
3454 sal = find_pc_line (pc, 0);
3455 *startptr = sal.pc;
3456 *endptr = sal.end;
3457 return sal.symtab != 0;
3458 }
3459
3460 /* Given a function symbol SYM, find the symtab and line for the start
3461 of the function.
3462 If the argument FUNFIRSTLINE is nonzero, we want the first line
3463 of real code inside the function.
3464 This function should return SALs matching those from minsym_found,
3465 otherwise false multiple-locations breakpoints could be placed. */
3466
3467 struct symtab_and_line
3468 find_function_start_sal (struct symbol *sym, int funfirstline)
3469 {
3470 struct symtab_and_line sal;
3471 struct obj_section *section;
3472
3473 fixup_symbol_section (sym, NULL);
3474 section = SYMBOL_OBJ_SECTION (symbol_objfile (sym), sym);
3475 sal = find_pc_sect_line (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)), section, 0);
3476
3477 if (funfirstline && sal.symtab != NULL
3478 && (COMPUNIT_LOCATIONS_VALID (SYMTAB_COMPUNIT (sal.symtab))
3479 || SYMTAB_LANGUAGE (sal.symtab) == language_asm))
3480 {
3481 struct gdbarch *gdbarch = symbol_arch (sym);
3482
3483 sal.pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
3484 if (gdbarch_skip_entrypoint_p (gdbarch))
3485 sal.pc = gdbarch_skip_entrypoint (gdbarch, sal.pc);
3486 return sal;
3487 }
3488
3489 /* We always should have a line for the function start address.
3490 If we don't, something is odd. Create a plain SAL refering
3491 just the PC and hope that skip_prologue_sal (if requested)
3492 can find a line number for after the prologue. */
3493 if (sal.pc < BLOCK_START (SYMBOL_BLOCK_VALUE (sym)))
3494 {
3495 init_sal (&sal);
3496 sal.pspace = current_program_space;
3497 sal.pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
3498 sal.section = section;
3499 }
3500
3501 if (funfirstline)
3502 skip_prologue_sal (&sal);
3503
3504 return sal;
3505 }
3506
3507 /* Given a function start address FUNC_ADDR and SYMTAB, find the first
3508 address for that function that has an entry in SYMTAB's line info
3509 table. If such an entry cannot be found, return FUNC_ADDR
3510 unaltered. */
3511
3512 static CORE_ADDR
3513 skip_prologue_using_lineinfo (CORE_ADDR func_addr, struct symtab *symtab)
3514 {
3515 CORE_ADDR func_start, func_end;
3516 struct linetable *l;
3517 int i;
3518
3519 /* Give up if this symbol has no lineinfo table. */
3520 l = SYMTAB_LINETABLE (symtab);
3521 if (l == NULL)
3522 return func_addr;
3523
3524 /* Get the range for the function's PC values, or give up if we
3525 cannot, for some reason. */
3526 if (!find_pc_partial_function (func_addr, NULL, &func_start, &func_end))
3527 return func_addr;
3528
3529 /* Linetable entries are ordered by PC values, see the commentary in
3530 symtab.h where `struct linetable' is defined. Thus, the first
3531 entry whose PC is in the range [FUNC_START..FUNC_END[ is the
3532 address we are looking for. */
3533 for (i = 0; i < l->nitems; i++)
3534 {
3535 struct linetable_entry *item = &(l->item[i]);
3536
3537 /* Don't use line numbers of zero, they mark special entries in
3538 the table. See the commentary on symtab.h before the
3539 definition of struct linetable. */
3540 if (item->line > 0 && func_start <= item->pc && item->pc < func_end)
3541 return item->pc;
3542 }
3543
3544 return func_addr;
3545 }
3546
3547 /* Adjust SAL to the first instruction past the function prologue.
3548 If the PC was explicitly specified, the SAL is not changed.
3549 If the line number was explicitly specified, at most the SAL's PC
3550 is updated. If SAL is already past the prologue, then do nothing. */
3551
3552 void
3553 skip_prologue_sal (struct symtab_and_line *sal)
3554 {
3555 struct symbol *sym;
3556 struct symtab_and_line start_sal;
3557 CORE_ADDR pc, saved_pc;
3558 struct obj_section *section;
3559 const char *name;
3560 struct objfile *objfile;
3561 struct gdbarch *gdbarch;
3562 const struct block *b, *function_block;
3563 int force_skip, skip;
3564
3565 /* Do not change the SAL if PC was specified explicitly. */
3566 if (sal->explicit_pc)
3567 return;
3568
3569 scoped_restore_current_pspace_and_thread restore_pspace_thread;
3570
3571 switch_to_program_space_and_thread (sal->pspace);
3572
3573 sym = find_pc_sect_function (sal->pc, sal->section);
3574 if (sym != NULL)
3575 {
3576 fixup_symbol_section (sym, NULL);
3577
3578 objfile = symbol_objfile (sym);
3579 pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
3580 section = SYMBOL_OBJ_SECTION (objfile, sym);
3581 name = SYMBOL_LINKAGE_NAME (sym);
3582 }
3583 else
3584 {
3585 struct bound_minimal_symbol msymbol
3586 = lookup_minimal_symbol_by_pc_section (sal->pc, sal->section);
3587
3588 if (msymbol.minsym == NULL)
3589 return;
3590
3591 objfile = msymbol.objfile;
3592 pc = BMSYMBOL_VALUE_ADDRESS (msymbol);
3593 section = MSYMBOL_OBJ_SECTION (objfile, msymbol.minsym);
3594 name = MSYMBOL_LINKAGE_NAME (msymbol.minsym);
3595 }
3596
3597 gdbarch = get_objfile_arch (objfile);
3598
3599 /* Process the prologue in two passes. In the first pass try to skip the
3600 prologue (SKIP is true) and verify there is a real need for it (indicated
3601 by FORCE_SKIP). If no such reason was found run a second pass where the
3602 prologue is not skipped (SKIP is false). */
3603
3604 skip = 1;
3605 force_skip = 1;
3606
3607 /* Be conservative - allow direct PC (without skipping prologue) only if we
3608 have proven the CU (Compilation Unit) supports it. sal->SYMTAB does not
3609 have to be set by the caller so we use SYM instead. */
3610 if (sym != NULL
3611 && COMPUNIT_LOCATIONS_VALID (SYMTAB_COMPUNIT (symbol_symtab (sym))))
3612 force_skip = 0;
3613
3614 saved_pc = pc;
3615 do
3616 {
3617 pc = saved_pc;
3618
3619 /* If the function is in an unmapped overlay, use its unmapped LMA address,
3620 so that gdbarch_skip_prologue has something unique to work on. */
3621 if (section_is_overlay (section) && !section_is_mapped (section))
3622 pc = overlay_unmapped_address (pc, section);
3623
3624 /* Skip "first line" of function (which is actually its prologue). */
3625 pc += gdbarch_deprecated_function_start_offset (gdbarch);
3626 if (gdbarch_skip_entrypoint_p (gdbarch))
3627 pc = gdbarch_skip_entrypoint (gdbarch, pc);
3628 if (skip)
3629 pc = gdbarch_skip_prologue (gdbarch, pc);
3630
3631 /* For overlays, map pc back into its mapped VMA range. */
3632 pc = overlay_mapped_address (pc, section);
3633
3634 /* Calculate line number. */
3635 start_sal = find_pc_sect_line (pc, section, 0);
3636
3637 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
3638 line is still part of the same function. */
3639 if (skip && start_sal.pc != pc
3640 && (sym ? (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) <= start_sal.end
3641 && start_sal.end < BLOCK_END (SYMBOL_BLOCK_VALUE (sym)))
3642 : (lookup_minimal_symbol_by_pc_section (start_sal.end, section).minsym
3643 == lookup_minimal_symbol_by_pc_section (pc, section).minsym)))
3644 {
3645 /* First pc of next line */
3646 pc = start_sal.end;
3647 /* Recalculate the line number (might not be N+1). */
3648 start_sal = find_pc_sect_line (pc, section, 0);
3649 }
3650
3651 /* On targets with executable formats that don't have a concept of
3652 constructors (ELF with .init has, PE doesn't), gcc emits a call
3653 to `__main' in `main' between the prologue and before user
3654 code. */
3655 if (gdbarch_skip_main_prologue_p (gdbarch)
3656 && name && strcmp_iw (name, "main") == 0)
3657 {
3658 pc = gdbarch_skip_main_prologue (gdbarch, pc);
3659 /* Recalculate the line number (might not be N+1). */
3660 start_sal = find_pc_sect_line (pc, section, 0);
3661 force_skip = 1;
3662 }
3663 }
3664 while (!force_skip && skip--);
3665
3666 /* If we still don't have a valid source line, try to find the first
3667 PC in the lineinfo table that belongs to the same function. This
3668 happens with COFF debug info, which does not seem to have an
3669 entry in lineinfo table for the code after the prologue which has
3670 no direct relation to source. For example, this was found to be
3671 the case with the DJGPP target using "gcc -gcoff" when the
3672 compiler inserted code after the prologue to make sure the stack
3673 is aligned. */
3674 if (!force_skip && sym && start_sal.symtab == NULL)
3675 {
3676 pc = skip_prologue_using_lineinfo (pc, symbol_symtab (sym));
3677 /* Recalculate the line number. */
3678 start_sal = find_pc_sect_line (pc, section, 0);
3679 }
3680
3681 /* If we're already past the prologue, leave SAL unchanged. Otherwise
3682 forward SAL to the end of the prologue. */
3683 if (sal->pc >= pc)
3684 return;
3685
3686 sal->pc = pc;
3687 sal->section = section;
3688
3689 /* Unless the explicit_line flag was set, update the SAL line
3690 and symtab to correspond to the modified PC location. */
3691 if (sal->explicit_line)
3692 return;
3693
3694 sal->symtab = start_sal.symtab;
3695 sal->line = start_sal.line;
3696 sal->end = start_sal.end;
3697
3698 /* Check if we are now inside an inlined function. If we can,
3699 use the call site of the function instead. */
3700 b = block_for_pc_sect (sal->pc, sal->section);
3701 function_block = NULL;
3702 while (b != NULL)
3703 {
3704 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
3705 function_block = b;
3706 else if (BLOCK_FUNCTION (b) != NULL)
3707 break;
3708 b = BLOCK_SUPERBLOCK (b);
3709 }
3710 if (function_block != NULL
3711 && SYMBOL_LINE (BLOCK_FUNCTION (function_block)) != 0)
3712 {
3713 sal->line = SYMBOL_LINE (BLOCK_FUNCTION (function_block));
3714 sal->symtab = symbol_symtab (BLOCK_FUNCTION (function_block));
3715 }
3716 }
3717
3718 /* Given PC at the function's start address, attempt to find the
3719 prologue end using SAL information. Return zero if the skip fails.
3720
3721 A non-optimized prologue traditionally has one SAL for the function
3722 and a second for the function body. A single line function has
3723 them both pointing at the same line.
3724
3725 An optimized prologue is similar but the prologue may contain
3726 instructions (SALs) from the instruction body. Need to skip those
3727 while not getting into the function body.
3728
3729 The functions end point and an increasing SAL line are used as
3730 indicators of the prologue's endpoint.
3731
3732 This code is based on the function refine_prologue_limit
3733 (found in ia64). */
3734
3735 CORE_ADDR
3736 skip_prologue_using_sal (struct gdbarch *gdbarch, CORE_ADDR func_addr)
3737 {
3738 struct symtab_and_line prologue_sal;
3739 CORE_ADDR start_pc;
3740 CORE_ADDR end_pc;
3741 const struct block *bl;
3742
3743 /* Get an initial range for the function. */
3744 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
3745 start_pc += gdbarch_deprecated_function_start_offset (gdbarch);
3746
3747 prologue_sal = find_pc_line (start_pc, 0);
3748 if (prologue_sal.line != 0)
3749 {
3750 /* For languages other than assembly, treat two consecutive line
3751 entries at the same address as a zero-instruction prologue.
3752 The GNU assembler emits separate line notes for each instruction
3753 in a multi-instruction macro, but compilers generally will not
3754 do this. */
3755 if (prologue_sal.symtab->language != language_asm)
3756 {
3757 struct linetable *linetable = SYMTAB_LINETABLE (prologue_sal.symtab);
3758 int idx = 0;
3759
3760 /* Skip any earlier lines, and any end-of-sequence marker
3761 from a previous function. */
3762 while (linetable->item[idx].pc != prologue_sal.pc
3763 || linetable->item[idx].line == 0)
3764 idx++;
3765
3766 if (idx+1 < linetable->nitems
3767 && linetable->item[idx+1].line != 0
3768 && linetable->item[idx+1].pc == start_pc)
3769 return start_pc;
3770 }
3771
3772 /* If there is only one sal that covers the entire function,
3773 then it is probably a single line function, like
3774 "foo(){}". */
3775 if (prologue_sal.end >= end_pc)
3776 return 0;
3777
3778 while (prologue_sal.end < end_pc)
3779 {
3780 struct symtab_and_line sal;
3781
3782 sal = find_pc_line (prologue_sal.end, 0);
3783 if (sal.line == 0)
3784 break;
3785 /* Assume that a consecutive SAL for the same (or larger)
3786 line mark the prologue -> body transition. */
3787 if (sal.line >= prologue_sal.line)
3788 break;
3789 /* Likewise if we are in a different symtab altogether
3790 (e.g. within a file included via #include).  */
3791 if (sal.symtab != prologue_sal.symtab)
3792 break;
3793
3794 /* The line number is smaller. Check that it's from the
3795 same function, not something inlined. If it's inlined,
3796 then there is no point comparing the line numbers. */
3797 bl = block_for_pc (prologue_sal.end);
3798 while (bl)
3799 {
3800 if (block_inlined_p (bl))
3801 break;
3802 if (BLOCK_FUNCTION (bl))
3803 {
3804 bl = NULL;
3805 break;
3806 }
3807 bl = BLOCK_SUPERBLOCK (bl);
3808 }
3809 if (bl != NULL)
3810 break;
3811
3812 /* The case in which compiler's optimizer/scheduler has
3813 moved instructions into the prologue. We look ahead in
3814 the function looking for address ranges whose
3815 corresponding line number is less the first one that we
3816 found for the function. This is more conservative then
3817 refine_prologue_limit which scans a large number of SALs
3818 looking for any in the prologue. */
3819 prologue_sal = sal;
3820 }
3821 }
3822
3823 if (prologue_sal.end < end_pc)
3824 /* Return the end of this line, or zero if we could not find a
3825 line. */
3826 return prologue_sal.end;
3827 else
3828 /* Don't return END_PC, which is past the end of the function. */
3829 return prologue_sal.pc;
3830 }
3831 \f
3832 /* If P is of the form "operator[ \t]+..." where `...' is
3833 some legitimate operator text, return a pointer to the
3834 beginning of the substring of the operator text.
3835 Otherwise, return "". */
3836
3837 static const char *
3838 operator_chars (const char *p, const char **end)
3839 {
3840 *end = "";
3841 if (!startswith (p, "operator"))
3842 return *end;
3843 p += 8;
3844
3845 /* Don't get faked out by `operator' being part of a longer
3846 identifier. */
3847 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
3848 return *end;
3849
3850 /* Allow some whitespace between `operator' and the operator symbol. */
3851 while (*p == ' ' || *p == '\t')
3852 p++;
3853
3854 /* Recognize 'operator TYPENAME'. */
3855
3856 if (isalpha (*p) || *p == '_' || *p == '$')
3857 {
3858 const char *q = p + 1;
3859
3860 while (isalnum (*q) || *q == '_' || *q == '$')
3861 q++;
3862 *end = q;
3863 return p;
3864 }
3865
3866 while (*p)
3867 switch (*p)
3868 {
3869 case '\\': /* regexp quoting */
3870 if (p[1] == '*')
3871 {
3872 if (p[2] == '=') /* 'operator\*=' */
3873 *end = p + 3;
3874 else /* 'operator\*' */
3875 *end = p + 2;
3876 return p;
3877 }
3878 else if (p[1] == '[')
3879 {
3880 if (p[2] == ']')
3881 error (_("mismatched quoting on brackets, "
3882 "try 'operator\\[\\]'"));
3883 else if (p[2] == '\\' && p[3] == ']')
3884 {
3885 *end = p + 4; /* 'operator\[\]' */
3886 return p;
3887 }
3888 else
3889 error (_("nothing is allowed between '[' and ']'"));
3890 }
3891 else
3892 {
3893 /* Gratuitous qoute: skip it and move on. */
3894 p++;
3895 continue;
3896 }
3897 break;
3898 case '!':
3899 case '=':
3900 case '*':
3901 case '/':
3902 case '%':
3903 case '^':
3904 if (p[1] == '=')
3905 *end = p + 2;
3906 else
3907 *end = p + 1;
3908 return p;
3909 case '<':
3910 case '>':
3911 case '+':
3912 case '-':
3913 case '&':
3914 case '|':
3915 if (p[0] == '-' && p[1] == '>')
3916 {
3917 /* Struct pointer member operator 'operator->'. */
3918 if (p[2] == '*')
3919 {
3920 *end = p + 3; /* 'operator->*' */
3921 return p;
3922 }
3923 else if (p[2] == '\\')
3924 {
3925 *end = p + 4; /* Hopefully 'operator->\*' */
3926 return p;
3927 }
3928 else
3929 {
3930 *end = p + 2; /* 'operator->' */
3931 return p;
3932 }
3933 }
3934 if (p[1] == '=' || p[1] == p[0])
3935 *end = p + 2;
3936 else
3937 *end = p + 1;
3938 return p;
3939 case '~':
3940 case ',':
3941 *end = p + 1;
3942 return p;
3943 case '(':
3944 if (p[1] != ')')
3945 error (_("`operator ()' must be specified "
3946 "without whitespace in `()'"));
3947 *end = p + 2;
3948 return p;
3949 case '?':
3950 if (p[1] != ':')
3951 error (_("`operator ?:' must be specified "
3952 "without whitespace in `?:'"));
3953 *end = p + 2;
3954 return p;
3955 case '[':
3956 if (p[1] != ']')
3957 error (_("`operator []' must be specified "
3958 "without whitespace in `[]'"));
3959 *end = p + 2;
3960 return p;
3961 default:
3962 error (_("`operator %s' not supported"), p);
3963 break;
3964 }
3965
3966 *end = "";
3967 return *end;
3968 }
3969 \f
3970
3971 /* Cache to watch for file names already seen by filename_seen. */
3972
3973 struct filename_seen_cache
3974 {
3975 /* Table of files seen so far. */
3976 htab_t tab;
3977 /* Initial size of the table. It automagically grows from here. */
3978 #define INITIAL_FILENAME_SEEN_CACHE_SIZE 100
3979 };
3980
3981 /* filename_seen_cache constructor. */
3982
3983 static struct filename_seen_cache *
3984 create_filename_seen_cache (void)
3985 {
3986 struct filename_seen_cache *cache = XNEW (struct filename_seen_cache);
3987
3988 cache->tab = htab_create_alloc (INITIAL_FILENAME_SEEN_CACHE_SIZE,
3989 filename_hash, filename_eq,
3990 NULL, xcalloc, xfree);
3991
3992 return cache;
3993 }
3994
3995 /* Empty the cache, but do not delete it. */
3996
3997 static void
3998 clear_filename_seen_cache (struct filename_seen_cache *cache)
3999 {
4000 htab_empty (cache->tab);
4001 }
4002
4003 /* filename_seen_cache destructor.
4004 This takes a void * argument as it is generally used as a cleanup. */
4005
4006 static void
4007 delete_filename_seen_cache (void *ptr)
4008 {
4009 struct filename_seen_cache *cache = (struct filename_seen_cache *) ptr;
4010
4011 htab_delete (cache->tab);
4012 xfree (cache);
4013 }
4014
4015 /* If FILE is not already in the table of files in CACHE, return zero;
4016 otherwise return non-zero. Optionally add FILE to the table if ADD
4017 is non-zero.
4018
4019 NOTE: We don't manage space for FILE, we assume FILE lives as long
4020 as the caller needs. */
4021
4022 static int
4023 filename_seen (struct filename_seen_cache *cache, const char *file, int add)
4024 {
4025 void **slot;
4026
4027 /* Is FILE in tab? */
4028 slot = htab_find_slot (cache->tab, file, add ? INSERT : NO_INSERT);
4029 if (*slot != NULL)
4030 return 1;
4031
4032 /* No; maybe add it to tab. */
4033 if (add)
4034 *slot = (char *) file;
4035
4036 return 0;
4037 }
4038
4039 /* Data structure to maintain printing state for output_source_filename. */
4040
4041 struct output_source_filename_data
4042 {
4043 /* Cache of what we've seen so far. */
4044 struct filename_seen_cache *filename_seen_cache;
4045
4046 /* Flag of whether we're printing the first one. */
4047 int first;
4048 };
4049
4050 /* Slave routine for sources_info. Force line breaks at ,'s.
4051 NAME is the name to print.
4052 DATA contains the state for printing and watching for duplicates. */
4053
4054 static void
4055 output_source_filename (const char *name,
4056 struct output_source_filename_data *data)
4057 {
4058 /* Since a single source file can result in several partial symbol
4059 tables, we need to avoid printing it more than once. Note: if
4060 some of the psymtabs are read in and some are not, it gets
4061 printed both under "Source files for which symbols have been
4062 read" and "Source files for which symbols will be read in on
4063 demand". I consider this a reasonable way to deal with the
4064 situation. I'm not sure whether this can also happen for
4065 symtabs; it doesn't hurt to check. */
4066
4067 /* Was NAME already seen? */
4068 if (filename_seen (data->filename_seen_cache, name, 1))
4069 {
4070 /* Yes; don't print it again. */
4071 return;
4072 }
4073
4074 /* No; print it and reset *FIRST. */
4075 if (! data->first)
4076 printf_filtered (", ");
4077 data->first = 0;
4078
4079 wrap_here ("");
4080 fputs_filtered (name, gdb_stdout);
4081 }
4082
4083 /* A callback for map_partial_symbol_filenames. */
4084
4085 static void
4086 output_partial_symbol_filename (const char *filename, const char *fullname,
4087 void *data)
4088 {
4089 output_source_filename (fullname ? fullname : filename,
4090 (struct output_source_filename_data *) data);
4091 }
4092
4093 static void
4094 sources_info (char *ignore, int from_tty)
4095 {
4096 struct compunit_symtab *cu;
4097 struct symtab *s;
4098 struct objfile *objfile;
4099 struct output_source_filename_data data;
4100 struct cleanup *cleanups;
4101
4102 if (!have_full_symbols () && !have_partial_symbols ())
4103 {
4104 error (_("No symbol table is loaded. Use the \"file\" command."));
4105 }
4106
4107 data.filename_seen_cache = create_filename_seen_cache ();
4108 cleanups = make_cleanup (delete_filename_seen_cache,
4109 data.filename_seen_cache);
4110
4111 printf_filtered ("Source files for which symbols have been read in:\n\n");
4112
4113 data.first = 1;
4114 ALL_FILETABS (objfile, cu, s)
4115 {
4116 const char *fullname = symtab_to_fullname (s);
4117
4118 output_source_filename (fullname, &data);
4119 }
4120 printf_filtered ("\n\n");
4121
4122 printf_filtered ("Source files for which symbols "
4123 "will be read in on demand:\n\n");
4124
4125 clear_filename_seen_cache (data.filename_seen_cache);
4126 data.first = 1;
4127 map_symbol_filenames (output_partial_symbol_filename, &data,
4128 1 /*need_fullname*/);
4129 printf_filtered ("\n");
4130
4131 do_cleanups (cleanups);
4132 }
4133
4134 /* Compare FILE against all the NFILES entries of FILES. If BASENAMES is
4135 non-zero compare only lbasename of FILES. */
4136
4137 static int
4138 file_matches (const char *file, const char *files[], int nfiles, int basenames)
4139 {
4140 int i;
4141
4142 if (file != NULL && nfiles != 0)
4143 {
4144 for (i = 0; i < nfiles; i++)
4145 {
4146 if (compare_filenames_for_search (file, (basenames
4147 ? lbasename (files[i])
4148 : files[i])))
4149 return 1;
4150 }
4151 }
4152 else if (nfiles == 0)
4153 return 1;
4154 return 0;
4155 }
4156
4157 /* Free any memory associated with a search. */
4158
4159 void
4160 free_search_symbols (struct symbol_search *symbols)
4161 {
4162 struct symbol_search *p;
4163 struct symbol_search *next;
4164
4165 for (p = symbols; p != NULL; p = next)
4166 {
4167 next = p->next;
4168 xfree (p);
4169 }
4170 }
4171
4172 static void
4173 do_free_search_symbols_cleanup (void *symbolsp)
4174 {
4175 struct symbol_search *symbols = *(struct symbol_search **) symbolsp;
4176
4177 free_search_symbols (symbols);
4178 }
4179
4180 struct cleanup *
4181 make_cleanup_free_search_symbols (struct symbol_search **symbolsp)
4182 {
4183 return make_cleanup (do_free_search_symbols_cleanup, symbolsp);
4184 }
4185
4186 /* Helper function for sort_search_symbols_remove_dups and qsort. Can only
4187 sort symbols, not minimal symbols. */
4188
4189 static int
4190 compare_search_syms (const void *sa, const void *sb)
4191 {
4192 struct symbol_search *sym_a = *(struct symbol_search **) sa;
4193 struct symbol_search *sym_b = *(struct symbol_search **) sb;
4194 int c;
4195
4196 c = FILENAME_CMP (symbol_symtab (sym_a->symbol)->filename,
4197 symbol_symtab (sym_b->symbol)->filename);
4198 if (c != 0)
4199 return c;
4200
4201 if (sym_a->block != sym_b->block)
4202 return sym_a->block - sym_b->block;
4203
4204 return strcmp (SYMBOL_PRINT_NAME (sym_a->symbol),
4205 SYMBOL_PRINT_NAME (sym_b->symbol));
4206 }
4207
4208 /* Sort the NFOUND symbols in list FOUND and remove duplicates.
4209 The duplicates are freed, and the new list is returned in
4210 *NEW_HEAD, *NEW_TAIL. */
4211
4212 static void
4213 sort_search_symbols_remove_dups (struct symbol_search *found, int nfound,
4214 struct symbol_search **new_head,
4215 struct symbol_search **new_tail)
4216 {
4217 struct symbol_search **symbols, *symp;
4218 int i, j, nunique;
4219
4220 gdb_assert (found != NULL && nfound > 0);
4221
4222 /* Build an array out of the list so we can easily sort them. */
4223 symbols = XNEWVEC (struct symbol_search *, nfound);
4224
4225 symp = found;
4226 for (i = 0; i < nfound; i++)
4227 {
4228 gdb_assert (symp != NULL);
4229 gdb_assert (symp->block >= 0 && symp->block <= 1);
4230 symbols[i] = symp;
4231 symp = symp->next;
4232 }
4233 gdb_assert (symp == NULL);
4234
4235 qsort (symbols, nfound, sizeof (struct symbol_search *),
4236 compare_search_syms);
4237
4238 /* Collapse out the dups. */
4239 for (i = 1, j = 1; i < nfound; ++i)
4240 {
4241 if (compare_search_syms (&symbols[j - 1], &symbols[i]) != 0)
4242 symbols[j++] = symbols[i];
4243 else
4244 xfree (symbols[i]);
4245 }
4246 nunique = j;
4247 symbols[j - 1]->next = NULL;
4248
4249 /* Rebuild the linked list. */
4250 for (i = 0; i < nunique - 1; i++)
4251 symbols[i]->next = symbols[i + 1];
4252 symbols[nunique - 1]->next = NULL;
4253
4254 *new_head = symbols[0];
4255 *new_tail = symbols[nunique - 1];
4256 xfree (symbols);
4257 }
4258
4259 /* Search the symbol table for matches to the regular expression REGEXP,
4260 returning the results in *MATCHES.
4261
4262 Only symbols of KIND are searched:
4263 VARIABLES_DOMAIN - search all symbols, excluding functions, type names,
4264 and constants (enums)
4265 FUNCTIONS_DOMAIN - search all functions
4266 TYPES_DOMAIN - search all type names
4267 ALL_DOMAIN - an internal error for this function
4268
4269 free_search_symbols should be called when *MATCHES is no longer needed.
4270
4271 Within each file the results are sorted locally; each symtab's global and
4272 static blocks are separately alphabetized.
4273 Duplicate entries are removed. */
4274
4275 void
4276 search_symbols (const char *regexp, enum search_domain kind,
4277 int nfiles, const char *files[],
4278 struct symbol_search **matches)
4279 {
4280 struct compunit_symtab *cust;
4281 const struct blockvector *bv;
4282 struct block *b;
4283 int i = 0;
4284 struct block_iterator iter;
4285 struct symbol *sym;
4286 struct objfile *objfile;
4287 struct minimal_symbol *msymbol;
4288 int found_misc = 0;
4289 static const enum minimal_symbol_type types[]
4290 = {mst_data, mst_text, mst_abs};
4291 static const enum minimal_symbol_type types2[]
4292 = {mst_bss, mst_file_text, mst_abs};
4293 static const enum minimal_symbol_type types3[]
4294 = {mst_file_data, mst_solib_trampoline, mst_abs};
4295 static const enum minimal_symbol_type types4[]
4296 = {mst_file_bss, mst_text_gnu_ifunc, mst_abs};
4297 enum minimal_symbol_type ourtype;
4298 enum minimal_symbol_type ourtype2;
4299 enum minimal_symbol_type ourtype3;
4300 enum minimal_symbol_type ourtype4;
4301 struct symbol_search *found;
4302 struct symbol_search *tail;
4303 int nfound;
4304 gdb::optional<compiled_regex> preg;
4305
4306 /* OLD_CHAIN .. RETVAL_CHAIN is always freed, RETVAL_CHAIN .. current
4307 CLEANUP_CHAIN is freed only in the case of an error. */
4308 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
4309 struct cleanup *retval_chain;
4310
4311 gdb_assert (kind <= TYPES_DOMAIN);
4312
4313 ourtype = types[kind];
4314 ourtype2 = types2[kind];
4315 ourtype3 = types3[kind];
4316 ourtype4 = types4[kind];
4317
4318 *matches = NULL;
4319
4320 if (regexp != NULL)
4321 {
4322 /* Make sure spacing is right for C++ operators.
4323 This is just a courtesy to make the matching less sensitive
4324 to how many spaces the user leaves between 'operator'
4325 and <TYPENAME> or <OPERATOR>. */
4326 const char *opend;
4327 const char *opname = operator_chars (regexp, &opend);
4328 int errcode;
4329
4330 if (*opname)
4331 {
4332 int fix = -1; /* -1 means ok; otherwise number of
4333 spaces needed. */
4334
4335 if (isalpha (*opname) || *opname == '_' || *opname == '$')
4336 {
4337 /* There should 1 space between 'operator' and 'TYPENAME'. */
4338 if (opname[-1] != ' ' || opname[-2] == ' ')
4339 fix = 1;
4340 }
4341 else
4342 {
4343 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
4344 if (opname[-1] == ' ')
4345 fix = 0;
4346 }
4347 /* If wrong number of spaces, fix it. */
4348 if (fix >= 0)
4349 {
4350 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
4351
4352 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
4353 regexp = tmp;
4354 }
4355 }
4356
4357 int cflags = REG_NOSUB | (case_sensitivity == case_sensitive_off
4358 ? REG_ICASE : 0);
4359 preg.emplace (regexp, cflags, _("Invalid regexp"));
4360 }
4361
4362 /* Search through the partial symtabs *first* for all symbols
4363 matching the regexp. That way we don't have to reproduce all of
4364 the machinery below. */
4365 expand_symtabs_matching ([&] (const char *filename, bool basenames)
4366 {
4367 return file_matches (filename, files, nfiles,
4368 basenames);
4369 },
4370 [&] (const char *symname)
4371 {
4372 return (!preg || preg->exec (symname,
4373 0, NULL, 0) == 0);
4374 },
4375 NULL,
4376 kind);
4377
4378 /* Here, we search through the minimal symbol tables for functions
4379 and variables that match, and force their symbols to be read.
4380 This is in particular necessary for demangled variable names,
4381 which are no longer put into the partial symbol tables.
4382 The symbol will then be found during the scan of symtabs below.
4383
4384 For functions, find_pc_symtab should succeed if we have debug info
4385 for the function, for variables we have to call
4386 lookup_symbol_in_objfile_from_linkage_name to determine if the variable
4387 has debug info.
4388 If the lookup fails, set found_misc so that we will rescan to print
4389 any matching symbols without debug info.
4390 We only search the objfile the msymbol came from, we no longer search
4391 all objfiles. In large programs (1000s of shared libs) searching all
4392 objfiles is not worth the pain. */
4393
4394 if (nfiles == 0 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
4395 {
4396 ALL_MSYMBOLS (objfile, msymbol)
4397 {
4398 QUIT;
4399
4400 if (msymbol->created_by_gdb)
4401 continue;
4402
4403 if (MSYMBOL_TYPE (msymbol) == ourtype
4404 || MSYMBOL_TYPE (msymbol) == ourtype2
4405 || MSYMBOL_TYPE (msymbol) == ourtype3
4406 || MSYMBOL_TYPE (msymbol) == ourtype4)
4407 {
4408 if (!preg
4409 || preg->exec (MSYMBOL_NATURAL_NAME (msymbol), 0,
4410 NULL, 0) == 0)
4411 {
4412 /* Note: An important side-effect of these lookup functions
4413 is to expand the symbol table if msymbol is found, for the
4414 benefit of the next loop on ALL_COMPUNITS. */
4415 if (kind == FUNCTIONS_DOMAIN
4416 ? (find_pc_compunit_symtab
4417 (MSYMBOL_VALUE_ADDRESS (objfile, msymbol)) == NULL)
4418 : (lookup_symbol_in_objfile_from_linkage_name
4419 (objfile, MSYMBOL_LINKAGE_NAME (msymbol), VAR_DOMAIN)
4420 .symbol == NULL))
4421 found_misc = 1;
4422 }
4423 }
4424 }
4425 }
4426
4427 found = NULL;
4428 tail = NULL;
4429 nfound = 0;
4430 retval_chain = make_cleanup_free_search_symbols (&found);
4431
4432 ALL_COMPUNITS (objfile, cust)
4433 {
4434 bv = COMPUNIT_BLOCKVECTOR (cust);
4435 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
4436 {
4437 b = BLOCKVECTOR_BLOCK (bv, i);
4438 ALL_BLOCK_SYMBOLS (b, iter, sym)
4439 {
4440 struct symtab *real_symtab = symbol_symtab (sym);
4441
4442 QUIT;
4443
4444 /* Check first sole REAL_SYMTAB->FILENAME. It does not need to be
4445 a substring of symtab_to_fullname as it may contain "./" etc. */
4446 if ((file_matches (real_symtab->filename, files, nfiles, 0)
4447 || ((basenames_may_differ
4448 || file_matches (lbasename (real_symtab->filename),
4449 files, nfiles, 1))
4450 && file_matches (symtab_to_fullname (real_symtab),
4451 files, nfiles, 0)))
4452 && ((!preg
4453 || preg->exec (SYMBOL_NATURAL_NAME (sym), 0,
4454 NULL, 0) == 0)
4455 && ((kind == VARIABLES_DOMAIN
4456 && SYMBOL_CLASS (sym) != LOC_TYPEDEF
4457 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
4458 && SYMBOL_CLASS (sym) != LOC_BLOCK
4459 /* LOC_CONST can be used for more than just enums,
4460 e.g., c++ static const members.
4461 We only want to skip enums here. */
4462 && !(SYMBOL_CLASS (sym) == LOC_CONST
4463 && (TYPE_CODE (SYMBOL_TYPE (sym))
4464 == TYPE_CODE_ENUM)))
4465 || (kind == FUNCTIONS_DOMAIN
4466 && SYMBOL_CLASS (sym) == LOC_BLOCK)
4467 || (kind == TYPES_DOMAIN
4468 && SYMBOL_CLASS (sym) == LOC_TYPEDEF))))
4469 {
4470 /* match */
4471 struct symbol_search *psr = XCNEW (struct symbol_search);
4472
4473 psr->block = i;
4474 psr->symbol = sym;
4475 psr->next = NULL;
4476 if (tail == NULL)
4477 found = psr;
4478 else
4479 tail->next = psr;
4480 tail = psr;
4481 nfound ++;
4482 }
4483 }
4484 }
4485 }
4486
4487 if (found != NULL)
4488 {
4489 sort_search_symbols_remove_dups (found, nfound, &found, &tail);
4490 /* Note: nfound is no longer useful beyond this point. */
4491 }
4492
4493 /* If there are no eyes, avoid all contact. I mean, if there are
4494 no debug symbols, then add matching minsyms. */
4495
4496 if (found_misc || (nfiles == 0 && kind != FUNCTIONS_DOMAIN))
4497 {
4498 ALL_MSYMBOLS (objfile, msymbol)
4499 {
4500 QUIT;
4501
4502 if (msymbol->created_by_gdb)
4503 continue;
4504
4505 if (MSYMBOL_TYPE (msymbol) == ourtype
4506 || MSYMBOL_TYPE (msymbol) == ourtype2
4507 || MSYMBOL_TYPE (msymbol) == ourtype3
4508 || MSYMBOL_TYPE (msymbol) == ourtype4)
4509 {
4510 if (!preg || preg->exec (MSYMBOL_NATURAL_NAME (msymbol), 0,
4511 NULL, 0) == 0)
4512 {
4513 /* For functions we can do a quick check of whether the
4514 symbol might be found via find_pc_symtab. */
4515 if (kind != FUNCTIONS_DOMAIN
4516 || (find_pc_compunit_symtab
4517 (MSYMBOL_VALUE_ADDRESS (objfile, msymbol)) == NULL))
4518 {
4519 if (lookup_symbol_in_objfile_from_linkage_name
4520 (objfile, MSYMBOL_LINKAGE_NAME (msymbol), VAR_DOMAIN)
4521 .symbol == NULL)
4522 {
4523 /* match */
4524 struct symbol_search *psr = XNEW (struct symbol_search);
4525 psr->block = i;
4526 psr->msymbol.minsym = msymbol;
4527 psr->msymbol.objfile = objfile;
4528 psr->symbol = NULL;
4529 psr->next = NULL;
4530 if (tail == NULL)
4531 found = psr;
4532 else
4533 tail->next = psr;
4534 tail = psr;
4535 }
4536 }
4537 }
4538 }
4539 }
4540 }
4541
4542 discard_cleanups (retval_chain);
4543 do_cleanups (old_chain);
4544 *matches = found;
4545 }
4546
4547 /* Helper function for symtab_symbol_info, this function uses
4548 the data returned from search_symbols() to print information
4549 regarding the match to gdb_stdout. */
4550
4551 static void
4552 print_symbol_info (enum search_domain kind,
4553 struct symbol *sym,
4554 int block, const char *last)
4555 {
4556 struct symtab *s = symbol_symtab (sym);
4557 const char *s_filename = symtab_to_filename_for_display (s);
4558
4559 if (last == NULL || filename_cmp (last, s_filename) != 0)
4560 {
4561 fputs_filtered ("\nFile ", gdb_stdout);
4562 fputs_filtered (s_filename, gdb_stdout);
4563 fputs_filtered (":\n", gdb_stdout);
4564 }
4565
4566 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
4567 printf_filtered ("static ");
4568
4569 /* Typedef that is not a C++ class. */
4570 if (kind == TYPES_DOMAIN
4571 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
4572 typedef_print (SYMBOL_TYPE (sym), sym, gdb_stdout);
4573 /* variable, func, or typedef-that-is-c++-class. */
4574 else if (kind < TYPES_DOMAIN
4575 || (kind == TYPES_DOMAIN
4576 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
4577 {
4578 type_print (SYMBOL_TYPE (sym),
4579 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
4580 ? "" : SYMBOL_PRINT_NAME (sym)),
4581 gdb_stdout, 0);
4582
4583 printf_filtered (";\n");
4584 }
4585 }
4586
4587 /* This help function for symtab_symbol_info() prints information
4588 for non-debugging symbols to gdb_stdout. */
4589
4590 static void
4591 print_msymbol_info (struct bound_minimal_symbol msymbol)
4592 {
4593 struct gdbarch *gdbarch = get_objfile_arch (msymbol.objfile);
4594 char *tmp;
4595
4596 if (gdbarch_addr_bit (gdbarch) <= 32)
4597 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol)
4598 & (CORE_ADDR) 0xffffffff,
4599 8);
4600 else
4601 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol),
4602 16);
4603 printf_filtered ("%s %s\n",
4604 tmp, MSYMBOL_PRINT_NAME (msymbol.minsym));
4605 }
4606
4607 /* This is the guts of the commands "info functions", "info types", and
4608 "info variables". It calls search_symbols to find all matches and then
4609 print_[m]symbol_info to print out some useful information about the
4610 matches. */
4611
4612 static void
4613 symtab_symbol_info (char *regexp, enum search_domain kind, int from_tty)
4614 {
4615 static const char * const classnames[] =
4616 {"variable", "function", "type"};
4617 struct symbol_search *symbols;
4618 struct symbol_search *p;
4619 struct cleanup *old_chain;
4620 const char *last_filename = NULL;
4621 int first = 1;
4622
4623 gdb_assert (kind <= TYPES_DOMAIN);
4624
4625 /* Must make sure that if we're interrupted, symbols gets freed. */
4626 search_symbols (regexp, kind, 0, NULL, &symbols);
4627 old_chain = make_cleanup_free_search_symbols (&symbols);
4628
4629 if (regexp != NULL)
4630 printf_filtered (_("All %ss matching regular expression \"%s\":\n"),
4631 classnames[kind], regexp);
4632 else
4633 printf_filtered (_("All defined %ss:\n"), classnames[kind]);
4634
4635 for (p = symbols; p != NULL; p = p->next)
4636 {
4637 QUIT;
4638
4639 if (p->msymbol.minsym != NULL)
4640 {
4641 if (first)
4642 {
4643 printf_filtered (_("\nNon-debugging symbols:\n"));
4644 first = 0;
4645 }
4646 print_msymbol_info (p->msymbol);
4647 }
4648 else
4649 {
4650 print_symbol_info (kind,
4651 p->symbol,
4652 p->block,
4653 last_filename);
4654 last_filename
4655 = symtab_to_filename_for_display (symbol_symtab (p->symbol));
4656 }
4657 }
4658
4659 do_cleanups (old_chain);
4660 }
4661
4662 static void
4663 variables_info (char *regexp, int from_tty)
4664 {
4665 symtab_symbol_info (regexp, VARIABLES_DOMAIN, from_tty);
4666 }
4667
4668 static void
4669 functions_info (char *regexp, int from_tty)
4670 {
4671 symtab_symbol_info (regexp, FUNCTIONS_DOMAIN, from_tty);
4672 }
4673
4674
4675 static void
4676 types_info (char *regexp, int from_tty)
4677 {
4678 symtab_symbol_info (regexp, TYPES_DOMAIN, from_tty);
4679 }
4680
4681 /* Breakpoint all functions matching regular expression. */
4682
4683 void
4684 rbreak_command_wrapper (char *regexp, int from_tty)
4685 {
4686 rbreak_command (regexp, from_tty);
4687 }
4688
4689 /* A cleanup function that calls end_rbreak_breakpoints. */
4690
4691 static void
4692 do_end_rbreak_breakpoints (void *ignore)
4693 {
4694 end_rbreak_breakpoints ();
4695 }
4696
4697 static void
4698 rbreak_command (char *regexp, int from_tty)
4699 {
4700 struct symbol_search *ss;
4701 struct symbol_search *p;
4702 struct cleanup *old_chain;
4703 char *string = NULL;
4704 int len = 0;
4705 const char **files = NULL;
4706 const char *file_name;
4707 int nfiles = 0;
4708
4709 if (regexp)
4710 {
4711 char *colon = strchr (regexp, ':');
4712
4713 if (colon && *(colon + 1) != ':')
4714 {
4715 int colon_index;
4716 char *local_name;
4717
4718 colon_index = colon - regexp;
4719 local_name = (char *) alloca (colon_index + 1);
4720 memcpy (local_name, regexp, colon_index);
4721 local_name[colon_index--] = 0;
4722 while (isspace (local_name[colon_index]))
4723 local_name[colon_index--] = 0;
4724 file_name = local_name;
4725 files = &file_name;
4726 nfiles = 1;
4727 regexp = skip_spaces (colon + 1);
4728 }
4729 }
4730
4731 search_symbols (regexp, FUNCTIONS_DOMAIN, nfiles, files, &ss);
4732 old_chain = make_cleanup_free_search_symbols (&ss);
4733 make_cleanup (free_current_contents, &string);
4734
4735 start_rbreak_breakpoints ();
4736 make_cleanup (do_end_rbreak_breakpoints, NULL);
4737 for (p = ss; p != NULL; p = p->next)
4738 {
4739 if (p->msymbol.minsym == NULL)
4740 {
4741 struct symtab *symtab = symbol_symtab (p->symbol);
4742 const char *fullname = symtab_to_fullname (symtab);
4743
4744 int newlen = (strlen (fullname)
4745 + strlen (SYMBOL_LINKAGE_NAME (p->symbol))
4746 + 4);
4747
4748 if (newlen > len)
4749 {
4750 string = (char *) xrealloc (string, newlen);
4751 len = newlen;
4752 }
4753 strcpy (string, fullname);
4754 strcat (string, ":'");
4755 strcat (string, SYMBOL_LINKAGE_NAME (p->symbol));
4756 strcat (string, "'");
4757 break_command (string, from_tty);
4758 print_symbol_info (FUNCTIONS_DOMAIN,
4759 p->symbol,
4760 p->block,
4761 symtab_to_filename_for_display (symtab));
4762 }
4763 else
4764 {
4765 int newlen = (strlen (MSYMBOL_LINKAGE_NAME (p->msymbol.minsym)) + 3);
4766
4767 if (newlen > len)
4768 {
4769 string = (char *) xrealloc (string, newlen);
4770 len = newlen;
4771 }
4772 strcpy (string, "'");
4773 strcat (string, MSYMBOL_LINKAGE_NAME (p->msymbol.minsym));
4774 strcat (string, "'");
4775
4776 break_command (string, from_tty);
4777 printf_filtered ("<function, no debug info> %s;\n",
4778 MSYMBOL_PRINT_NAME (p->msymbol.minsym));
4779 }
4780 }
4781
4782 do_cleanups (old_chain);
4783 }
4784 \f
4785
4786 /* Evaluate if NAME matches SYM_TEXT and SYM_TEXT_LEN.
4787
4788 Either sym_text[sym_text_len] != '(' and then we search for any
4789 symbol starting with SYM_TEXT text.
4790
4791 Otherwise sym_text[sym_text_len] == '(' and then we require symbol name to
4792 be terminated at that point. Partial symbol tables do not have parameters
4793 information. */
4794
4795 static int
4796 compare_symbol_name (const char *name, const char *sym_text, int sym_text_len)
4797 {
4798 int (*ncmp) (const char *, const char *, size_t);
4799
4800 ncmp = (case_sensitivity == case_sensitive_on ? strncmp : strncasecmp);
4801
4802 if (ncmp (name, sym_text, sym_text_len) != 0)
4803 return 0;
4804
4805 if (sym_text[sym_text_len] == '(')
4806 {
4807 /* User searches for `name(someth...'. Require NAME to be terminated.
4808 Normally psymtabs and gdbindex have no parameter types so '\0' will be
4809 present but accept even parameters presence. In this case this
4810 function is in fact strcmp_iw but whitespace skipping is not supported
4811 for tab completion. */
4812
4813 if (name[sym_text_len] != '\0' && name[sym_text_len] != '(')
4814 return 0;
4815 }
4816
4817 return 1;
4818 }
4819
4820 /* Free any memory associated with a completion list. */
4821
4822 static void
4823 free_completion_list (VEC (char_ptr) **list_ptr)
4824 {
4825 int i;
4826 char *p;
4827
4828 for (i = 0; VEC_iterate (char_ptr, *list_ptr, i, p); ++i)
4829 xfree (p);
4830 VEC_free (char_ptr, *list_ptr);
4831 }
4832
4833 /* Callback for make_cleanup. */
4834
4835 static void
4836 do_free_completion_list (void *list)
4837 {
4838 free_completion_list ((VEC (char_ptr) **) list);
4839 }
4840
4841 static VEC (char_ptr) *return_val;
4842
4843 /* Tracker for how many unique completions have been generated. Used
4844 to terminate completion list generation early if the list has grown
4845 to a size so large as to be useless. This helps avoid GDB seeming
4846 to lock up in the event the user requests to complete on something
4847 vague that necessitates the time consuming expansion of many symbol
4848 tables. */
4849
4850 static completion_tracker_t completion_tracker;
4851
4852 /* Test to see if the symbol specified by SYMNAME (which is already
4853 demangled for C++ symbols) matches SYM_TEXT in the first SYM_TEXT_LEN
4854 characters. If so, add it to the current completion list. */
4855
4856 static void
4857 completion_list_add_name (const char *symname,
4858 const char *sym_text, int sym_text_len,
4859 const char *text, const char *word)
4860 {
4861 /* Clip symbols that cannot match. */
4862 if (!compare_symbol_name (symname, sym_text, sym_text_len))
4863 return;
4864
4865 /* We have a match for a completion, so add SYMNAME to the current list
4866 of matches. Note that the name is moved to freshly malloc'd space. */
4867
4868 {
4869 char *newobj;
4870 enum maybe_add_completion_enum add_status;
4871
4872 if (word == sym_text)
4873 {
4874 newobj = (char *) xmalloc (strlen (symname) + 5);
4875 strcpy (newobj, symname);
4876 }
4877 else if (word > sym_text)
4878 {
4879 /* Return some portion of symname. */
4880 newobj = (char *) xmalloc (strlen (symname) + 5);
4881 strcpy (newobj, symname + (word - sym_text));
4882 }
4883 else
4884 {
4885 /* Return some of SYM_TEXT plus symname. */
4886 newobj = (char *) xmalloc (strlen (symname) + (sym_text - word) + 5);
4887 strncpy (newobj, word, sym_text - word);
4888 newobj[sym_text - word] = '\0';
4889 strcat (newobj, symname);
4890 }
4891
4892 add_status = maybe_add_completion (completion_tracker, newobj);
4893
4894 switch (add_status)
4895 {
4896 case MAYBE_ADD_COMPLETION_OK:
4897 VEC_safe_push (char_ptr, return_val, newobj);
4898 break;
4899 case MAYBE_ADD_COMPLETION_OK_MAX_REACHED:
4900 VEC_safe_push (char_ptr, return_val, newobj);
4901 throw_max_completions_reached_error ();
4902 case MAYBE_ADD_COMPLETION_MAX_REACHED:
4903 xfree (newobj);
4904 throw_max_completions_reached_error ();
4905 case MAYBE_ADD_COMPLETION_DUPLICATE:
4906 xfree (newobj);
4907 break;
4908 }
4909 }
4910 }
4911
4912 /* completion_list_add_name wrapper for struct symbol. */
4913
4914 static void
4915 completion_list_add_symbol (symbol *sym,
4916 const char *sym_text, int sym_text_len,
4917 const char *text, const char *word)
4918 {
4919 completion_list_add_name (SYMBOL_NATURAL_NAME (sym),
4920 sym_text, sym_text_len, text, word);
4921 }
4922
4923 /* completion_list_add_name wrapper for struct minimal_symbol. */
4924
4925 static void
4926 completion_list_add_msymbol (minimal_symbol *sym,
4927 const char *sym_text, int sym_text_len,
4928 const char *text, const char *word)
4929 {
4930 completion_list_add_name (MSYMBOL_NATURAL_NAME (sym),
4931 sym_text, sym_text_len, text, word);
4932 }
4933
4934 /* ObjC: In case we are completing on a selector, look as the msymbol
4935 again and feed all the selectors into the mill. */
4936
4937 static void
4938 completion_list_objc_symbol (struct minimal_symbol *msymbol,
4939 const char *sym_text, int sym_text_len,
4940 const char *text, const char *word)
4941 {
4942 static char *tmp = NULL;
4943 static unsigned int tmplen = 0;
4944
4945 const char *method, *category, *selector;
4946 char *tmp2 = NULL;
4947
4948 method = MSYMBOL_NATURAL_NAME (msymbol);
4949
4950 /* Is it a method? */
4951 if ((method[0] != '-') && (method[0] != '+'))
4952 return;
4953
4954 if (sym_text[0] == '[')
4955 /* Complete on shortened method method. */
4956 completion_list_add_name (method + 1, sym_text, sym_text_len, text, word);
4957
4958 while ((strlen (method) + 1) >= tmplen)
4959 {
4960 if (tmplen == 0)
4961 tmplen = 1024;
4962 else
4963 tmplen *= 2;
4964 tmp = (char *) xrealloc (tmp, tmplen);
4965 }
4966 selector = strchr (method, ' ');
4967 if (selector != NULL)
4968 selector++;
4969
4970 category = strchr (method, '(');
4971
4972 if ((category != NULL) && (selector != NULL))
4973 {
4974 memcpy (tmp, method, (category - method));
4975 tmp[category - method] = ' ';
4976 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
4977 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
4978 if (sym_text[0] == '[')
4979 completion_list_add_name (tmp + 1, sym_text, sym_text_len, text, word);
4980 }
4981
4982 if (selector != NULL)
4983 {
4984 /* Complete on selector only. */
4985 strcpy (tmp, selector);
4986 tmp2 = strchr (tmp, ']');
4987 if (tmp2 != NULL)
4988 *tmp2 = '\0';
4989
4990 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
4991 }
4992 }
4993
4994 /* Break the non-quoted text based on the characters which are in
4995 symbols. FIXME: This should probably be language-specific. */
4996
4997 static const char *
4998 language_search_unquoted_string (const char *text, const char *p)
4999 {
5000 for (; p > text; --p)
5001 {
5002 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
5003 continue;
5004 else
5005 {
5006 if ((current_language->la_language == language_objc))
5007 {
5008 if (p[-1] == ':') /* Might be part of a method name. */
5009 continue;
5010 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
5011 p -= 2; /* Beginning of a method name. */
5012 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
5013 { /* Might be part of a method name. */
5014 const char *t = p;
5015
5016 /* Seeing a ' ' or a '(' is not conclusive evidence
5017 that we are in the middle of a method name. However,
5018 finding "-[" or "+[" should be pretty un-ambiguous.
5019 Unfortunately we have to find it now to decide. */
5020
5021 while (t > text)
5022 if (isalnum (t[-1]) || t[-1] == '_' ||
5023 t[-1] == ' ' || t[-1] == ':' ||
5024 t[-1] == '(' || t[-1] == ')')
5025 --t;
5026 else
5027 break;
5028
5029 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
5030 p = t - 2; /* Method name detected. */
5031 /* Else we leave with p unchanged. */
5032 }
5033 }
5034 break;
5035 }
5036 }
5037 return p;
5038 }
5039
5040 static void
5041 completion_list_add_fields (struct symbol *sym, const char *sym_text,
5042 int sym_text_len, const char *text,
5043 const char *word)
5044 {
5045 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5046 {
5047 struct type *t = SYMBOL_TYPE (sym);
5048 enum type_code c = TYPE_CODE (t);
5049 int j;
5050
5051 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
5052 for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++)
5053 if (TYPE_FIELD_NAME (t, j))
5054 completion_list_add_name (TYPE_FIELD_NAME (t, j),
5055 sym_text, sym_text_len, text, word);
5056 }
5057 }
5058
5059 /* Add matching symbols from SYMTAB to the current completion list. */
5060
5061 static void
5062 add_symtab_completions (struct compunit_symtab *cust,
5063 const char *sym_text, int sym_text_len,
5064 const char *text, const char *word,
5065 enum type_code code)
5066 {
5067 struct symbol *sym;
5068 const struct block *b;
5069 struct block_iterator iter;
5070 int i;
5071
5072 if (cust == NULL)
5073 return;
5074
5075 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
5076 {
5077 QUIT;
5078 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust), i);
5079 ALL_BLOCK_SYMBOLS (b, iter, sym)
5080 {
5081 if (code == TYPE_CODE_UNDEF
5082 || (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
5083 && TYPE_CODE (SYMBOL_TYPE (sym)) == code))
5084 completion_list_add_symbol (sym,
5085 sym_text, sym_text_len,
5086 text, word);
5087 }
5088 }
5089 }
5090
5091 static void
5092 default_make_symbol_completion_list_break_on_1 (const char *text,
5093 const char *word,
5094 const char *break_on,
5095 enum type_code code)
5096 {
5097 /* Problem: All of the symbols have to be copied because readline
5098 frees them. I'm not going to worry about this; hopefully there
5099 won't be that many. */
5100
5101 struct symbol *sym;
5102 struct compunit_symtab *cust;
5103 struct minimal_symbol *msymbol;
5104 struct objfile *objfile;
5105 const struct block *b;
5106 const struct block *surrounding_static_block, *surrounding_global_block;
5107 struct block_iterator iter;
5108 /* The symbol we are completing on. Points in same buffer as text. */
5109 const char *sym_text;
5110 /* Length of sym_text. */
5111 int sym_text_len;
5112 struct cleanup *cleanups;
5113
5114 /* Now look for the symbol we are supposed to complete on. */
5115 {
5116 const char *p;
5117 char quote_found;
5118 const char *quote_pos = NULL;
5119
5120 /* First see if this is a quoted string. */
5121 quote_found = '\0';
5122 for (p = text; *p != '\0'; ++p)
5123 {
5124 if (quote_found != '\0')
5125 {
5126 if (*p == quote_found)
5127 /* Found close quote. */
5128 quote_found = '\0';
5129 else if (*p == '\\' && p[1] == quote_found)
5130 /* A backslash followed by the quote character
5131 doesn't end the string. */
5132 ++p;
5133 }
5134 else if (*p == '\'' || *p == '"')
5135 {
5136 quote_found = *p;
5137 quote_pos = p;
5138 }
5139 }
5140 if (quote_found == '\'')
5141 /* A string within single quotes can be a symbol, so complete on it. */
5142 sym_text = quote_pos + 1;
5143 else if (quote_found == '"')
5144 /* A double-quoted string is never a symbol, nor does it make sense
5145 to complete it any other way. */
5146 {
5147 return;
5148 }
5149 else
5150 {
5151 /* It is not a quoted string. Break it based on the characters
5152 which are in symbols. */
5153 while (p > text)
5154 {
5155 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0'
5156 || p[-1] == ':' || strchr (break_on, p[-1]) != NULL)
5157 --p;
5158 else
5159 break;
5160 }
5161 sym_text = p;
5162 }
5163 }
5164
5165 sym_text_len = strlen (sym_text);
5166
5167 /* Prepare SYM_TEXT_LEN for compare_symbol_name. */
5168
5169 if (current_language->la_language == language_cplus
5170 || current_language->la_language == language_fortran)
5171 {
5172 /* These languages may have parameters entered by user but they are never
5173 present in the partial symbol tables. */
5174
5175 const char *cs = (const char *) memchr (sym_text, '(', sym_text_len);
5176
5177 if (cs)
5178 sym_text_len = cs - sym_text;
5179 }
5180 gdb_assert (sym_text[sym_text_len] == '\0' || sym_text[sym_text_len] == '(');
5181
5182 completion_tracker = new_completion_tracker ();
5183 cleanups = make_cleanup_free_completion_tracker (&completion_tracker);
5184
5185 /* At this point scan through the misc symbol vectors and add each
5186 symbol you find to the list. Eventually we want to ignore
5187 anything that isn't a text symbol (everything else will be
5188 handled by the psymtab code below). */
5189
5190 if (code == TYPE_CODE_UNDEF)
5191 {
5192 ALL_MSYMBOLS (objfile, msymbol)
5193 {
5194 QUIT;
5195 completion_list_add_msymbol (msymbol, sym_text, sym_text_len, text,
5196 word);
5197
5198 completion_list_objc_symbol (msymbol, sym_text, sym_text_len, text,
5199 word);
5200 }
5201 }
5202
5203 /* Add completions for all currently loaded symbol tables. */
5204 ALL_COMPUNITS (objfile, cust)
5205 add_symtab_completions (cust, sym_text, sym_text_len, text, word,
5206 code);
5207
5208 /* Look through the partial symtabs for all symbols which begin by
5209 matching SYM_TEXT. Expand all CUs that you find to the list. */
5210 expand_symtabs_matching (NULL,
5211 [&] (const char *name) /* symbol matcher */
5212 {
5213 return compare_symbol_name (name,
5214 sym_text,
5215 sym_text_len);
5216 },
5217 [&] (compunit_symtab *symtab) /* expansion notify */
5218 {
5219 add_symtab_completions (symtab,
5220 sym_text, sym_text_len,
5221 text, word, code);
5222 },
5223 ALL_DOMAIN);
5224
5225 /* Search upwards from currently selected frame (so that we can
5226 complete on local vars). Also catch fields of types defined in
5227 this places which match our text string. Only complete on types
5228 visible from current context. */
5229
5230 b = get_selected_block (0);
5231 surrounding_static_block = block_static_block (b);
5232 surrounding_global_block = block_global_block (b);
5233 if (surrounding_static_block != NULL)
5234 while (b != surrounding_static_block)
5235 {
5236 QUIT;
5237
5238 ALL_BLOCK_SYMBOLS (b, iter, sym)
5239 {
5240 if (code == TYPE_CODE_UNDEF)
5241 {
5242 completion_list_add_symbol (sym, sym_text, sym_text_len, text,
5243 word);
5244 completion_list_add_fields (sym, sym_text, sym_text_len, text,
5245 word);
5246 }
5247 else if (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
5248 && TYPE_CODE (SYMBOL_TYPE (sym)) == code)
5249 completion_list_add_symbol (sym, sym_text, sym_text_len, text,
5250 word);
5251 }
5252
5253 /* Stop when we encounter an enclosing function. Do not stop for
5254 non-inlined functions - the locals of the enclosing function
5255 are in scope for a nested function. */
5256 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
5257 break;
5258 b = BLOCK_SUPERBLOCK (b);
5259 }
5260
5261 /* Add fields from the file's types; symbols will be added below. */
5262
5263 if (code == TYPE_CODE_UNDEF)
5264 {
5265 if (surrounding_static_block != NULL)
5266 ALL_BLOCK_SYMBOLS (surrounding_static_block, iter, sym)
5267 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
5268
5269 if (surrounding_global_block != NULL)
5270 ALL_BLOCK_SYMBOLS (surrounding_global_block, iter, sym)
5271 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
5272 }
5273
5274 /* Skip macros if we are completing a struct tag -- arguable but
5275 usually what is expected. */
5276 if (current_language->la_macro_expansion == macro_expansion_c
5277 && code == TYPE_CODE_UNDEF)
5278 {
5279 struct macro_scope *scope;
5280
5281 /* This adds a macro's name to the current completion list. */
5282 auto add_macro_name = [&] (const char *macro_name,
5283 const macro_definition *,
5284 macro_source_file *,
5285 int)
5286 {
5287 completion_list_add_name (macro_name,
5288 sym_text, sym_text_len,
5289 text, word);
5290 };
5291
5292 /* Add any macros visible in the default scope. Note that this
5293 may yield the occasional wrong result, because an expression
5294 might be evaluated in a scope other than the default. For
5295 example, if the user types "break file:line if <TAB>", the
5296 resulting expression will be evaluated at "file:line" -- but
5297 at there does not seem to be a way to detect this at
5298 completion time. */
5299 scope = default_macro_scope ();
5300 if (scope)
5301 {
5302 macro_for_each_in_scope (scope->file, scope->line,
5303 add_macro_name);
5304 xfree (scope);
5305 }
5306
5307 /* User-defined macros are always visible. */
5308 macro_for_each (macro_user_macros, add_macro_name);
5309 }
5310
5311 do_cleanups (cleanups);
5312 }
5313
5314 VEC (char_ptr) *
5315 default_make_symbol_completion_list_break_on (const char *text,
5316 const char *word,
5317 const char *break_on,
5318 enum type_code code)
5319 {
5320 struct cleanup *back_to;
5321
5322 return_val = NULL;
5323 back_to = make_cleanup (do_free_completion_list, &return_val);
5324
5325 TRY
5326 {
5327 default_make_symbol_completion_list_break_on_1 (text, word,
5328 break_on, code);
5329 }
5330 CATCH (except, RETURN_MASK_ERROR)
5331 {
5332 if (except.error != MAX_COMPLETIONS_REACHED_ERROR)
5333 throw_exception (except);
5334 }
5335 END_CATCH
5336
5337 discard_cleanups (back_to);
5338 return return_val;
5339 }
5340
5341 VEC (char_ptr) *
5342 default_make_symbol_completion_list (const char *text, const char *word,
5343 enum type_code code)
5344 {
5345 return default_make_symbol_completion_list_break_on (text, word, "", code);
5346 }
5347
5348 /* Return a vector of all symbols (regardless of class) which begin by
5349 matching TEXT. If the answer is no symbols, then the return value
5350 is NULL. */
5351
5352 VEC (char_ptr) *
5353 make_symbol_completion_list (const char *text, const char *word)
5354 {
5355 return current_language->la_make_symbol_completion_list (text, word,
5356 TYPE_CODE_UNDEF);
5357 }
5358
5359 /* Like make_symbol_completion_list, but only return STRUCT_DOMAIN
5360 symbols whose type code is CODE. */
5361
5362 VEC (char_ptr) *
5363 make_symbol_completion_type (const char *text, const char *word,
5364 enum type_code code)
5365 {
5366 gdb_assert (code == TYPE_CODE_UNION
5367 || code == TYPE_CODE_STRUCT
5368 || code == TYPE_CODE_ENUM);
5369 return current_language->la_make_symbol_completion_list (text, word, code);
5370 }
5371
5372 /* Like make_symbol_completion_list, but suitable for use as a
5373 completion function. */
5374
5375 VEC (char_ptr) *
5376 make_symbol_completion_list_fn (struct cmd_list_element *ignore,
5377 const char *text, const char *word)
5378 {
5379 return make_symbol_completion_list (text, word);
5380 }
5381
5382 /* Like make_symbol_completion_list, but returns a list of symbols
5383 defined in all source files name SRCFILE. */
5384
5385 static VEC (char_ptr) *
5386 make_file_symbol_completion_list_1 (const char *text, const char *word,
5387 const char *srcfile)
5388 {
5389 /* The symbol we are completing on. Points in same buffer as text. */
5390 const char *sym_text;
5391 /* Length of sym_text. */
5392 int sym_text_len;
5393
5394 /* Now look for the symbol we are supposed to complete on.
5395 FIXME: This should be language-specific. */
5396 {
5397 const char *p;
5398 char quote_found;
5399 const char *quote_pos = NULL;
5400
5401 /* First see if this is a quoted string. */
5402 quote_found = '\0';
5403 for (p = text; *p != '\0'; ++p)
5404 {
5405 if (quote_found != '\0')
5406 {
5407 if (*p == quote_found)
5408 /* Found close quote. */
5409 quote_found = '\0';
5410 else if (*p == '\\' && p[1] == quote_found)
5411 /* A backslash followed by the quote character
5412 doesn't end the string. */
5413 ++p;
5414 }
5415 else if (*p == '\'' || *p == '"')
5416 {
5417 quote_found = *p;
5418 quote_pos = p;
5419 }
5420 }
5421 if (quote_found == '\'')
5422 /* A string within single quotes can be a symbol, so complete on it. */
5423 sym_text = quote_pos + 1;
5424 else if (quote_found == '"')
5425 /* A double-quoted string is never a symbol, nor does it make sense
5426 to complete it any other way. */
5427 {
5428 return NULL;
5429 }
5430 else
5431 {
5432 /* Not a quoted string. */
5433 sym_text = language_search_unquoted_string (text, p);
5434 }
5435 }
5436
5437 sym_text_len = strlen (sym_text);
5438
5439 /* Go through symtabs for SRCFILE and check the externs and statics
5440 for symbols which match. */
5441 iterate_over_symtabs (srcfile, [&] (symtab *s)
5442 {
5443 add_symtab_completions (SYMTAB_COMPUNIT (s),
5444 sym_text, sym_text_len,
5445 text, word, TYPE_CODE_UNDEF);
5446 return false;
5447 });
5448
5449 return (return_val);
5450 }
5451
5452 /* Wrapper around make_file_symbol_completion_list_1
5453 to handle MAX_COMPLETIONS_REACHED_ERROR. */
5454
5455 VEC (char_ptr) *
5456 make_file_symbol_completion_list (const char *text, const char *word,
5457 const char *srcfile)
5458 {
5459 struct cleanup *back_to, *cleanups;
5460
5461 completion_tracker = new_completion_tracker ();
5462 cleanups = make_cleanup_free_completion_tracker (&completion_tracker);
5463 return_val = NULL;
5464 back_to = make_cleanup (do_free_completion_list, &return_val);
5465
5466 TRY
5467 {
5468 make_file_symbol_completion_list_1 (text, word, srcfile);
5469 }
5470 CATCH (except, RETURN_MASK_ERROR)
5471 {
5472 if (except.error != MAX_COMPLETIONS_REACHED_ERROR)
5473 throw_exception (except);
5474 }
5475 END_CATCH
5476
5477 discard_cleanups (back_to);
5478 do_cleanups (cleanups);
5479 return return_val;
5480 }
5481
5482 /* A helper function for make_source_files_completion_list. It adds
5483 another file name to a list of possible completions, growing the
5484 list as necessary. */
5485
5486 static void
5487 add_filename_to_list (const char *fname, const char *text, const char *word,
5488 VEC (char_ptr) **list)
5489 {
5490 char *newobj;
5491 size_t fnlen = strlen (fname);
5492
5493 if (word == text)
5494 {
5495 /* Return exactly fname. */
5496 newobj = (char *) xmalloc (fnlen + 5);
5497 strcpy (newobj, fname);
5498 }
5499 else if (word > text)
5500 {
5501 /* Return some portion of fname. */
5502 newobj = (char *) xmalloc (fnlen + 5);
5503 strcpy (newobj, fname + (word - text));
5504 }
5505 else
5506 {
5507 /* Return some of TEXT plus fname. */
5508 newobj = (char *) xmalloc (fnlen + (text - word) + 5);
5509 strncpy (newobj, word, text - word);
5510 newobj[text - word] = '\0';
5511 strcat (newobj, fname);
5512 }
5513 VEC_safe_push (char_ptr, *list, newobj);
5514 }
5515
5516 static int
5517 not_interesting_fname (const char *fname)
5518 {
5519 static const char *illegal_aliens[] = {
5520 "_globals_", /* inserted by coff_symtab_read */
5521 NULL
5522 };
5523 int i;
5524
5525 for (i = 0; illegal_aliens[i]; i++)
5526 {
5527 if (filename_cmp (fname, illegal_aliens[i]) == 0)
5528 return 1;
5529 }
5530 return 0;
5531 }
5532
5533 /* An object of this type is passed as the user_data argument to
5534 map_partial_symbol_filenames. */
5535 struct add_partial_filename_data
5536 {
5537 struct filename_seen_cache *filename_seen_cache;
5538 const char *text;
5539 const char *word;
5540 int text_len;
5541 VEC (char_ptr) **list;
5542 };
5543
5544 /* A callback for map_partial_symbol_filenames. */
5545
5546 static void
5547 maybe_add_partial_symtab_filename (const char *filename, const char *fullname,
5548 void *user_data)
5549 {
5550 struct add_partial_filename_data *data
5551 = (struct add_partial_filename_data *) user_data;
5552
5553 if (not_interesting_fname (filename))
5554 return;
5555 if (!filename_seen (data->filename_seen_cache, filename, 1)
5556 && filename_ncmp (filename, data->text, data->text_len) == 0)
5557 {
5558 /* This file matches for a completion; add it to the
5559 current list of matches. */
5560 add_filename_to_list (filename, data->text, data->word, data->list);
5561 }
5562 else
5563 {
5564 const char *base_name = lbasename (filename);
5565
5566 if (base_name != filename
5567 && !filename_seen (data->filename_seen_cache, base_name, 1)
5568 && filename_ncmp (base_name, data->text, data->text_len) == 0)
5569 add_filename_to_list (base_name, data->text, data->word, data->list);
5570 }
5571 }
5572
5573 /* Return a vector of all source files whose names begin with matching
5574 TEXT. The file names are looked up in the symbol tables of this
5575 program. If the answer is no matchess, then the return value is
5576 NULL. */
5577
5578 VEC (char_ptr) *
5579 make_source_files_completion_list (const char *text, const char *word)
5580 {
5581 struct compunit_symtab *cu;
5582 struct symtab *s;
5583 struct objfile *objfile;
5584 size_t text_len = strlen (text);
5585 VEC (char_ptr) *list = NULL;
5586 const char *base_name;
5587 struct add_partial_filename_data datum;
5588 struct filename_seen_cache *filename_seen_cache;
5589 struct cleanup *back_to, *cache_cleanup;
5590
5591 if (!have_full_symbols () && !have_partial_symbols ())
5592 return list;
5593
5594 back_to = make_cleanup (do_free_completion_list, &list);
5595
5596 filename_seen_cache = create_filename_seen_cache ();
5597 cache_cleanup = make_cleanup (delete_filename_seen_cache,
5598 filename_seen_cache);
5599
5600 ALL_FILETABS (objfile, cu, s)
5601 {
5602 if (not_interesting_fname (s->filename))
5603 continue;
5604 if (!filename_seen (filename_seen_cache, s->filename, 1)
5605 && filename_ncmp (s->filename, text, text_len) == 0)
5606 {
5607 /* This file matches for a completion; add it to the current
5608 list of matches. */
5609 add_filename_to_list (s->filename, text, word, &list);
5610 }
5611 else
5612 {
5613 /* NOTE: We allow the user to type a base name when the
5614 debug info records leading directories, but not the other
5615 way around. This is what subroutines of breakpoint
5616 command do when they parse file names. */
5617 base_name = lbasename (s->filename);
5618 if (base_name != s->filename
5619 && !filename_seen (filename_seen_cache, base_name, 1)
5620 && filename_ncmp (base_name, text, text_len) == 0)
5621 add_filename_to_list (base_name, text, word, &list);
5622 }
5623 }
5624
5625 datum.filename_seen_cache = filename_seen_cache;
5626 datum.text = text;
5627 datum.word = word;
5628 datum.text_len = text_len;
5629 datum.list = &list;
5630 map_symbol_filenames (maybe_add_partial_symtab_filename, &datum,
5631 0 /*need_fullname*/);
5632
5633 do_cleanups (cache_cleanup);
5634 discard_cleanups (back_to);
5635
5636 return list;
5637 }
5638 \f
5639 /* Track MAIN */
5640
5641 /* Return the "main_info" object for the current program space. If
5642 the object has not yet been created, create it and fill in some
5643 default values. */
5644
5645 static struct main_info *
5646 get_main_info (void)
5647 {
5648 struct main_info *info
5649 = (struct main_info *) program_space_data (current_program_space,
5650 main_progspace_key);
5651
5652 if (info == NULL)
5653 {
5654 /* It may seem strange to store the main name in the progspace
5655 and also in whatever objfile happens to see a main name in
5656 its debug info. The reason for this is mainly historical:
5657 gdb returned "main" as the name even if no function named
5658 "main" was defined the program; and this approach lets us
5659 keep compatibility. */
5660 info = XCNEW (struct main_info);
5661 info->language_of_main = language_unknown;
5662 set_program_space_data (current_program_space, main_progspace_key,
5663 info);
5664 }
5665
5666 return info;
5667 }
5668
5669 /* A cleanup to destroy a struct main_info when a progspace is
5670 destroyed. */
5671
5672 static void
5673 main_info_cleanup (struct program_space *pspace, void *data)
5674 {
5675 struct main_info *info = (struct main_info *) data;
5676
5677 if (info != NULL)
5678 xfree (info->name_of_main);
5679 xfree (info);
5680 }
5681
5682 static void
5683 set_main_name (const char *name, enum language lang)
5684 {
5685 struct main_info *info = get_main_info ();
5686
5687 if (info->name_of_main != NULL)
5688 {
5689 xfree (info->name_of_main);
5690 info->name_of_main = NULL;
5691 info->language_of_main = language_unknown;
5692 }
5693 if (name != NULL)
5694 {
5695 info->name_of_main = xstrdup (name);
5696 info->language_of_main = lang;
5697 }
5698 }
5699
5700 /* Deduce the name of the main procedure, and set NAME_OF_MAIN
5701 accordingly. */
5702
5703 static void
5704 find_main_name (void)
5705 {
5706 const char *new_main_name;
5707 struct objfile *objfile;
5708
5709 /* First check the objfiles to see whether a debuginfo reader has
5710 picked up the appropriate main name. Historically the main name
5711 was found in a more or less random way; this approach instead
5712 relies on the order of objfile creation -- which still isn't
5713 guaranteed to get the correct answer, but is just probably more
5714 accurate. */
5715 ALL_OBJFILES (objfile)
5716 {
5717 if (objfile->per_bfd->name_of_main != NULL)
5718 {
5719 set_main_name (objfile->per_bfd->name_of_main,
5720 objfile->per_bfd->language_of_main);
5721 return;
5722 }
5723 }
5724
5725 /* Try to see if the main procedure is in Ada. */
5726 /* FIXME: brobecker/2005-03-07: Another way of doing this would
5727 be to add a new method in the language vector, and call this
5728 method for each language until one of them returns a non-empty
5729 name. This would allow us to remove this hard-coded call to
5730 an Ada function. It is not clear that this is a better approach
5731 at this point, because all methods need to be written in a way
5732 such that false positives never be returned. For instance, it is
5733 important that a method does not return a wrong name for the main
5734 procedure if the main procedure is actually written in a different
5735 language. It is easy to guaranty this with Ada, since we use a
5736 special symbol generated only when the main in Ada to find the name
5737 of the main procedure. It is difficult however to see how this can
5738 be guarantied for languages such as C, for instance. This suggests
5739 that order of call for these methods becomes important, which means
5740 a more complicated approach. */
5741 new_main_name = ada_main_name ();
5742 if (new_main_name != NULL)
5743 {
5744 set_main_name (new_main_name, language_ada);
5745 return;
5746 }
5747
5748 new_main_name = d_main_name ();
5749 if (new_main_name != NULL)
5750 {
5751 set_main_name (new_main_name, language_d);
5752 return;
5753 }
5754
5755 new_main_name = go_main_name ();
5756 if (new_main_name != NULL)
5757 {
5758 set_main_name (new_main_name, language_go);
5759 return;
5760 }
5761
5762 new_main_name = pascal_main_name ();
5763 if (new_main_name != NULL)
5764 {
5765 set_main_name (new_main_name, language_pascal);
5766 return;
5767 }
5768
5769 /* The languages above didn't identify the name of the main procedure.
5770 Fallback to "main". */
5771 set_main_name ("main", language_unknown);
5772 }
5773
5774 char *
5775 main_name (void)
5776 {
5777 struct main_info *info = get_main_info ();
5778
5779 if (info->name_of_main == NULL)
5780 find_main_name ();
5781
5782 return info->name_of_main;
5783 }
5784
5785 /* Return the language of the main function. If it is not known,
5786 return language_unknown. */
5787
5788 enum language
5789 main_language (void)
5790 {
5791 struct main_info *info = get_main_info ();
5792
5793 if (info->name_of_main == NULL)
5794 find_main_name ();
5795
5796 return info->language_of_main;
5797 }
5798
5799 /* Handle ``executable_changed'' events for the symtab module. */
5800
5801 static void
5802 symtab_observer_executable_changed (void)
5803 {
5804 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
5805 set_main_name (NULL, language_unknown);
5806 }
5807
5808 /* Return 1 if the supplied producer string matches the ARM RealView
5809 compiler (armcc). */
5810
5811 int
5812 producer_is_realview (const char *producer)
5813 {
5814 static const char *const arm_idents[] = {
5815 "ARM C Compiler, ADS",
5816 "Thumb C Compiler, ADS",
5817 "ARM C++ Compiler, ADS",
5818 "Thumb C++ Compiler, ADS",
5819 "ARM/Thumb C/C++ Compiler, RVCT",
5820 "ARM C/C++ Compiler, RVCT"
5821 };
5822 int i;
5823
5824 if (producer == NULL)
5825 return 0;
5826
5827 for (i = 0; i < ARRAY_SIZE (arm_idents); i++)
5828 if (startswith (producer, arm_idents[i]))
5829 return 1;
5830
5831 return 0;
5832 }
5833
5834 \f
5835
5836 /* The next index to hand out in response to a registration request. */
5837
5838 static int next_aclass_value = LOC_FINAL_VALUE;
5839
5840 /* The maximum number of "aclass" registrations we support. This is
5841 constant for convenience. */
5842 #define MAX_SYMBOL_IMPLS (LOC_FINAL_VALUE + 10)
5843
5844 /* The objects representing the various "aclass" values. The elements
5845 from 0 up to LOC_FINAL_VALUE-1 represent themselves, and subsequent
5846 elements are those registered at gdb initialization time. */
5847
5848 static struct symbol_impl symbol_impl[MAX_SYMBOL_IMPLS];
5849
5850 /* The globally visible pointer. This is separate from 'symbol_impl'
5851 so that it can be const. */
5852
5853 const struct symbol_impl *symbol_impls = &symbol_impl[0];
5854
5855 /* Make sure we saved enough room in struct symbol. */
5856
5857 gdb_static_assert (MAX_SYMBOL_IMPLS <= (1 << SYMBOL_ACLASS_BITS));
5858
5859 /* Register a computed symbol type. ACLASS must be LOC_COMPUTED. OPS
5860 is the ops vector associated with this index. This returns the new
5861 index, which should be used as the aclass_index field for symbols
5862 of this type. */
5863
5864 int
5865 register_symbol_computed_impl (enum address_class aclass,
5866 const struct symbol_computed_ops *ops)
5867 {
5868 int result = next_aclass_value++;
5869
5870 gdb_assert (aclass == LOC_COMPUTED);
5871 gdb_assert (result < MAX_SYMBOL_IMPLS);
5872 symbol_impl[result].aclass = aclass;
5873 symbol_impl[result].ops_computed = ops;
5874
5875 /* Sanity check OPS. */
5876 gdb_assert (ops != NULL);
5877 gdb_assert (ops->tracepoint_var_ref != NULL);
5878 gdb_assert (ops->describe_location != NULL);
5879 gdb_assert (ops->get_symbol_read_needs != NULL);
5880 gdb_assert (ops->read_variable != NULL);
5881
5882 return result;
5883 }
5884
5885 /* Register a function with frame base type. ACLASS must be LOC_BLOCK.
5886 OPS is the ops vector associated with this index. This returns the
5887 new index, which should be used as the aclass_index field for symbols
5888 of this type. */
5889
5890 int
5891 register_symbol_block_impl (enum address_class aclass,
5892 const struct symbol_block_ops *ops)
5893 {
5894 int result = next_aclass_value++;
5895
5896 gdb_assert (aclass == LOC_BLOCK);
5897 gdb_assert (result < MAX_SYMBOL_IMPLS);
5898 symbol_impl[result].aclass = aclass;
5899 symbol_impl[result].ops_block = ops;
5900
5901 /* Sanity check OPS. */
5902 gdb_assert (ops != NULL);
5903 gdb_assert (ops->find_frame_base_location != NULL);
5904
5905 return result;
5906 }
5907
5908 /* Register a register symbol type. ACLASS must be LOC_REGISTER or
5909 LOC_REGPARM_ADDR. OPS is the register ops vector associated with
5910 this index. This returns the new index, which should be used as
5911 the aclass_index field for symbols of this type. */
5912
5913 int
5914 register_symbol_register_impl (enum address_class aclass,
5915 const struct symbol_register_ops *ops)
5916 {
5917 int result = next_aclass_value++;
5918
5919 gdb_assert (aclass == LOC_REGISTER || aclass == LOC_REGPARM_ADDR);
5920 gdb_assert (result < MAX_SYMBOL_IMPLS);
5921 symbol_impl[result].aclass = aclass;
5922 symbol_impl[result].ops_register = ops;
5923
5924 return result;
5925 }
5926
5927 /* Initialize elements of 'symbol_impl' for the constants in enum
5928 address_class. */
5929
5930 static void
5931 initialize_ordinary_address_classes (void)
5932 {
5933 int i;
5934
5935 for (i = 0; i < LOC_FINAL_VALUE; ++i)
5936 symbol_impl[i].aclass = (enum address_class) i;
5937 }
5938
5939 \f
5940
5941 /* Helper function to initialize the fields of an objfile-owned symbol.
5942 It assumed that *SYM is already all zeroes. */
5943
5944 static void
5945 initialize_objfile_symbol_1 (struct symbol *sym)
5946 {
5947 SYMBOL_OBJFILE_OWNED (sym) = 1;
5948 SYMBOL_SECTION (sym) = -1;
5949 }
5950
5951 /* Initialize the symbol SYM, and mark it as being owned by an objfile. */
5952
5953 void
5954 initialize_objfile_symbol (struct symbol *sym)
5955 {
5956 memset (sym, 0, sizeof (*sym));
5957 initialize_objfile_symbol_1 (sym);
5958 }
5959
5960 /* Allocate and initialize a new 'struct symbol' on OBJFILE's
5961 obstack. */
5962
5963 struct symbol *
5964 allocate_symbol (struct objfile *objfile)
5965 {
5966 struct symbol *result;
5967
5968 result = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symbol);
5969 initialize_objfile_symbol_1 (result);
5970
5971 return result;
5972 }
5973
5974 /* Allocate and initialize a new 'struct template_symbol' on OBJFILE's
5975 obstack. */
5976
5977 struct template_symbol *
5978 allocate_template_symbol (struct objfile *objfile)
5979 {
5980 struct template_symbol *result;
5981
5982 result = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct template_symbol);
5983 initialize_objfile_symbol_1 (&result->base);
5984
5985 return result;
5986 }
5987
5988 /* See symtab.h. */
5989
5990 struct objfile *
5991 symbol_objfile (const struct symbol *symbol)
5992 {
5993 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
5994 return SYMTAB_OBJFILE (symbol->owner.symtab);
5995 }
5996
5997 /* See symtab.h. */
5998
5999 struct gdbarch *
6000 symbol_arch (const struct symbol *symbol)
6001 {
6002 if (!SYMBOL_OBJFILE_OWNED (symbol))
6003 return symbol->owner.arch;
6004 return get_objfile_arch (SYMTAB_OBJFILE (symbol->owner.symtab));
6005 }
6006
6007 /* See symtab.h. */
6008
6009 struct symtab *
6010 symbol_symtab (const struct symbol *symbol)
6011 {
6012 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
6013 return symbol->owner.symtab;
6014 }
6015
6016 /* See symtab.h. */
6017
6018 void
6019 symbol_set_symtab (struct symbol *symbol, struct symtab *symtab)
6020 {
6021 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
6022 symbol->owner.symtab = symtab;
6023 }
6024
6025 \f
6026
6027 void
6028 _initialize_symtab (void)
6029 {
6030 initialize_ordinary_address_classes ();
6031
6032 main_progspace_key
6033 = register_program_space_data_with_cleanup (NULL, main_info_cleanup);
6034
6035 symbol_cache_key
6036 = register_program_space_data_with_cleanup (NULL, symbol_cache_cleanup);
6037
6038 add_info ("variables", variables_info, _("\
6039 All global and static variable names, or those matching REGEXP."));
6040 if (dbx_commands)
6041 add_com ("whereis", class_info, variables_info, _("\
6042 All global and static variable names, or those matching REGEXP."));
6043
6044 add_info ("functions", functions_info,
6045 _("All function names, or those matching REGEXP."));
6046
6047 /* FIXME: This command has at least the following problems:
6048 1. It prints builtin types (in a very strange and confusing fashion).
6049 2. It doesn't print right, e.g. with
6050 typedef struct foo *FOO
6051 type_print prints "FOO" when we want to make it (in this situation)
6052 print "struct foo *".
6053 I also think "ptype" or "whatis" is more likely to be useful (but if
6054 there is much disagreement "info types" can be fixed). */
6055 add_info ("types", types_info,
6056 _("All type names, or those matching REGEXP."));
6057
6058 add_info ("sources", sources_info,
6059 _("Source files in the program."));
6060
6061 add_com ("rbreak", class_breakpoint, rbreak_command,
6062 _("Set a breakpoint for all functions matching REGEXP."));
6063
6064 add_setshow_enum_cmd ("multiple-symbols", no_class,
6065 multiple_symbols_modes, &multiple_symbols_mode,
6066 _("\
6067 Set the debugger behavior when more than one symbol are possible matches\n\
6068 in an expression."), _("\
6069 Show how the debugger handles ambiguities in expressions."), _("\
6070 Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
6071 NULL, NULL, &setlist, &showlist);
6072
6073 add_setshow_boolean_cmd ("basenames-may-differ", class_obscure,
6074 &basenames_may_differ, _("\
6075 Set whether a source file may have multiple base names."), _("\
6076 Show whether a source file may have multiple base names."), _("\
6077 (A \"base name\" is the name of a file with the directory part removed.\n\
6078 Example: The base name of \"/home/user/hello.c\" is \"hello.c\".)\n\
6079 If set, GDB will canonicalize file names (e.g., expand symlinks)\n\
6080 before comparing them. Canonicalization is an expensive operation,\n\
6081 but it allows the same file be known by more than one base name.\n\
6082 If not set (the default), all source files are assumed to have just\n\
6083 one base name, and gdb will do file name comparisons more efficiently."),
6084 NULL, NULL,
6085 &setlist, &showlist);
6086
6087 add_setshow_zuinteger_cmd ("symtab-create", no_class, &symtab_create_debug,
6088 _("Set debugging of symbol table creation."),
6089 _("Show debugging of symbol table creation."), _("\
6090 When enabled (non-zero), debugging messages are printed when building\n\
6091 symbol tables. A value of 1 (one) normally provides enough information.\n\
6092 A value greater than 1 provides more verbose information."),
6093 NULL,
6094 NULL,
6095 &setdebuglist, &showdebuglist);
6096
6097 add_setshow_zuinteger_cmd ("symbol-lookup", no_class, &symbol_lookup_debug,
6098 _("\
6099 Set debugging of symbol lookup."), _("\
6100 Show debugging of symbol lookup."), _("\
6101 When enabled (non-zero), symbol lookups are logged."),
6102 NULL, NULL,
6103 &setdebuglist, &showdebuglist);
6104
6105 add_setshow_zuinteger_cmd ("symbol-cache-size", no_class,
6106 &new_symbol_cache_size,
6107 _("Set the size of the symbol cache."),
6108 _("Show the size of the symbol cache."), _("\
6109 The size of the symbol cache.\n\
6110 If zero then the symbol cache is disabled."),
6111 set_symbol_cache_size_handler, NULL,
6112 &maintenance_set_cmdlist,
6113 &maintenance_show_cmdlist);
6114
6115 add_cmd ("symbol-cache", class_maintenance, maintenance_print_symbol_cache,
6116 _("Dump the symbol cache for each program space."),
6117 &maintenanceprintlist);
6118
6119 add_cmd ("symbol-cache-statistics", class_maintenance,
6120 maintenance_print_symbol_cache_statistics,
6121 _("Print symbol cache statistics for each program space."),
6122 &maintenanceprintlist);
6123
6124 add_cmd ("flush-symbol-cache", class_maintenance,
6125 maintenance_flush_symbol_cache,
6126 _("Flush the symbol cache for each program space."),
6127 &maintenancelist);
6128
6129 observer_attach_executable_changed (symtab_observer_executable_changed);
6130 observer_attach_new_objfile (symtab_new_objfile_observer);
6131 observer_attach_free_objfile (symtab_free_objfile_observer);
6132 }
This page took 0.249235 seconds and 4 git commands to generate.