gdb/
[deliverable/binutils-gdb.git] / gdb / symtab.c
1 /* Symbol table lookup for the GNU debugger, GDB.
2
3 Copyright (C) 1986-2013 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "gdbcore.h"
24 #include "frame.h"
25 #include "target.h"
26 #include "value.h"
27 #include "symfile.h"
28 #include "objfiles.h"
29 #include "gdbcmd.h"
30 #include "gdb_regex.h"
31 #include "expression.h"
32 #include "language.h"
33 #include "demangle.h"
34 #include "inferior.h"
35 #include "source.h"
36 #include "filenames.h" /* for FILENAME_CMP */
37 #include "objc-lang.h"
38 #include "d-lang.h"
39 #include "ada-lang.h"
40 #include "go-lang.h"
41 #include "p-lang.h"
42 #include "addrmap.h"
43
44 #include "hashtab.h"
45
46 #include "gdb_obstack.h"
47 #include "block.h"
48 #include "dictionary.h"
49
50 #include <sys/types.h>
51 #include <fcntl.h>
52 #include "gdb_string.h"
53 #include "gdb_stat.h"
54 #include <ctype.h>
55 #include "cp-abi.h"
56 #include "cp-support.h"
57 #include "observer.h"
58 #include "gdb_assert.h"
59 #include "solist.h"
60 #include "macrotab.h"
61 #include "macroscope.h"
62
63 #include "psymtab.h"
64 #include "parser-defs.h"
65
66 /* Prototypes for local functions */
67
68 static void rbreak_command (char *, int);
69
70 static void types_info (char *, int);
71
72 static void functions_info (char *, int);
73
74 static void variables_info (char *, int);
75
76 static void sources_info (char *, int);
77
78 static int find_line_common (struct linetable *, int, int *, int);
79
80 static struct symbol *lookup_symbol_aux (const char *name,
81 const struct block *block,
82 const domain_enum domain,
83 enum language language,
84 struct field_of_this_result *is_a_field_of_this);
85
86 static
87 struct symbol *lookup_symbol_aux_local (const char *name,
88 const struct block *block,
89 const domain_enum domain,
90 enum language language);
91
92 static
93 struct symbol *lookup_symbol_aux_symtabs (int block_index,
94 const char *name,
95 const domain_enum domain);
96
97 static
98 struct symbol *lookup_symbol_aux_quick (struct objfile *objfile,
99 int block_index,
100 const char *name,
101 const domain_enum domain);
102
103 static void print_msymbol_info (struct minimal_symbol *);
104
105 void _initialize_symtab (void);
106
107 /* */
108
109 /* When non-zero, print debugging messages related to symtab creation. */
110 int symtab_create_debug = 0;
111
112 /* Non-zero if a file may be known by two different basenames.
113 This is the uncommon case, and significantly slows down gdb.
114 Default set to "off" to not slow down the common case. */
115 int basenames_may_differ = 0;
116
117 /* Allow the user to configure the debugger behavior with respect
118 to multiple-choice menus when more than one symbol matches during
119 a symbol lookup. */
120
121 const char multiple_symbols_ask[] = "ask";
122 const char multiple_symbols_all[] = "all";
123 const char multiple_symbols_cancel[] = "cancel";
124 static const char *const multiple_symbols_modes[] =
125 {
126 multiple_symbols_ask,
127 multiple_symbols_all,
128 multiple_symbols_cancel,
129 NULL
130 };
131 static const char *multiple_symbols_mode = multiple_symbols_all;
132
133 /* Read-only accessor to AUTO_SELECT_MODE. */
134
135 const char *
136 multiple_symbols_select_mode (void)
137 {
138 return multiple_symbols_mode;
139 }
140
141 /* Block in which the most recently searched-for symbol was found.
142 Might be better to make this a parameter to lookup_symbol and
143 value_of_this. */
144
145 const struct block *block_found;
146
147 /* See whether FILENAME matches SEARCH_NAME using the rule that we
148 advertise to the user. (The manual's description of linespecs
149 describes what we advertise). Returns true if they match, false
150 otherwise. */
151
152 int
153 compare_filenames_for_search (const char *filename, const char *search_name)
154 {
155 int len = strlen (filename);
156 size_t search_len = strlen (search_name);
157
158 if (len < search_len)
159 return 0;
160
161 /* The tail of FILENAME must match. */
162 if (FILENAME_CMP (filename + len - search_len, search_name) != 0)
163 return 0;
164
165 /* Either the names must completely match, or the character
166 preceding the trailing SEARCH_NAME segment of FILENAME must be a
167 directory separator.
168
169 The check !IS_ABSOLUTE_PATH ensures SEARCH_NAME "/dir/file.c"
170 cannot match FILENAME "/path//dir/file.c" - as user has requested
171 absolute path. The sama applies for "c:\file.c" possibly
172 incorrectly hypothetically matching "d:\dir\c:\file.c".
173
174 The HAS_DRIVE_SPEC purpose is to make FILENAME "c:file.c"
175 compatible with SEARCH_NAME "file.c". In such case a compiler had
176 to put the "c:file.c" name into debug info. Such compatibility
177 works only on GDB built for DOS host. */
178 return (len == search_len
179 || (!IS_ABSOLUTE_PATH (search_name)
180 && IS_DIR_SEPARATOR (filename[len - search_len - 1]))
181 || (HAS_DRIVE_SPEC (filename)
182 && STRIP_DRIVE_SPEC (filename) == &filename[len - search_len]));
183 }
184
185 /* Check for a symtab of a specific name by searching some symtabs.
186 This is a helper function for callbacks of iterate_over_symtabs.
187
188 The return value, NAME, REAL_PATH, CALLBACK, and DATA
189 are identical to the `map_symtabs_matching_filename' method of
190 quick_symbol_functions.
191
192 FIRST and AFTER_LAST indicate the range of symtabs to search.
193 AFTER_LAST is one past the last symtab to search; NULL means to
194 search until the end of the list. */
195
196 int
197 iterate_over_some_symtabs (const char *name,
198 const char *real_path,
199 int (*callback) (struct symtab *symtab,
200 void *data),
201 void *data,
202 struct symtab *first,
203 struct symtab *after_last)
204 {
205 struct symtab *s = NULL;
206 const char* base_name = lbasename (name);
207
208 for (s = first; s != NULL && s != after_last; s = s->next)
209 {
210 if (compare_filenames_for_search (s->filename, name))
211 {
212 if (callback (s, data))
213 return 1;
214 }
215
216 /* Before we invoke realpath, which can get expensive when many
217 files are involved, do a quick comparison of the basenames. */
218 if (! basenames_may_differ
219 && FILENAME_CMP (base_name, lbasename (s->filename)) != 0)
220 continue;
221
222 if (compare_filenames_for_search (symtab_to_fullname (s), name))
223 {
224 if (callback (s, data))
225 return 1;
226 }
227
228 /* If the user gave us an absolute path, try to find the file in
229 this symtab and use its absolute path. */
230
231 if (real_path != NULL)
232 {
233 const char *fullname = symtab_to_fullname (s);
234
235 gdb_assert (IS_ABSOLUTE_PATH (real_path));
236 gdb_assert (IS_ABSOLUTE_PATH (name));
237 if (FILENAME_CMP (real_path, fullname) == 0)
238 {
239 if (callback (s, data))
240 return 1;
241 }
242 }
243 }
244
245 return 0;
246 }
247
248 /* Check for a symtab of a specific name; first in symtabs, then in
249 psymtabs. *If* there is no '/' in the name, a match after a '/'
250 in the symtab filename will also work.
251
252 Calls CALLBACK with each symtab that is found and with the supplied
253 DATA. If CALLBACK returns true, the search stops. */
254
255 void
256 iterate_over_symtabs (const char *name,
257 int (*callback) (struct symtab *symtab,
258 void *data),
259 void *data)
260 {
261 struct objfile *objfile;
262 char *real_path = NULL;
263 struct cleanup *cleanups = make_cleanup (null_cleanup, NULL);
264
265 /* Here we are interested in canonicalizing an absolute path, not
266 absolutizing a relative path. */
267 if (IS_ABSOLUTE_PATH (name))
268 {
269 real_path = gdb_realpath (name);
270 make_cleanup (xfree, real_path);
271 gdb_assert (IS_ABSOLUTE_PATH (real_path));
272 }
273
274 ALL_OBJFILES (objfile)
275 {
276 if (iterate_over_some_symtabs (name, real_path, callback, data,
277 objfile->symtabs, NULL))
278 {
279 do_cleanups (cleanups);
280 return;
281 }
282 }
283
284 /* Same search rules as above apply here, but now we look thru the
285 psymtabs. */
286
287 ALL_OBJFILES (objfile)
288 {
289 if (objfile->sf
290 && objfile->sf->qf->map_symtabs_matching_filename (objfile,
291 name,
292 real_path,
293 callback,
294 data))
295 {
296 do_cleanups (cleanups);
297 return;
298 }
299 }
300
301 do_cleanups (cleanups);
302 }
303
304 /* The callback function used by lookup_symtab. */
305
306 static int
307 lookup_symtab_callback (struct symtab *symtab, void *data)
308 {
309 struct symtab **result_ptr = data;
310
311 *result_ptr = symtab;
312 return 1;
313 }
314
315 /* A wrapper for iterate_over_symtabs that returns the first matching
316 symtab, or NULL. */
317
318 struct symtab *
319 lookup_symtab (const char *name)
320 {
321 struct symtab *result = NULL;
322
323 iterate_over_symtabs (name, lookup_symtab_callback, &result);
324 return result;
325 }
326
327 \f
328 /* Mangle a GDB method stub type. This actually reassembles the pieces of the
329 full method name, which consist of the class name (from T), the unadorned
330 method name from METHOD_ID, and the signature for the specific overload,
331 specified by SIGNATURE_ID. Note that this function is g++ specific. */
332
333 char *
334 gdb_mangle_name (struct type *type, int method_id, int signature_id)
335 {
336 int mangled_name_len;
337 char *mangled_name;
338 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
339 struct fn_field *method = &f[signature_id];
340 const char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
341 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
342 const char *newname = type_name_no_tag (type);
343
344 /* Does the form of physname indicate that it is the full mangled name
345 of a constructor (not just the args)? */
346 int is_full_physname_constructor;
347
348 int is_constructor;
349 int is_destructor = is_destructor_name (physname);
350 /* Need a new type prefix. */
351 char *const_prefix = method->is_const ? "C" : "";
352 char *volatile_prefix = method->is_volatile ? "V" : "";
353 char buf[20];
354 int len = (newname == NULL ? 0 : strlen (newname));
355
356 /* Nothing to do if physname already contains a fully mangled v3 abi name
357 or an operator name. */
358 if ((physname[0] == '_' && physname[1] == 'Z')
359 || is_operator_name (field_name))
360 return xstrdup (physname);
361
362 is_full_physname_constructor = is_constructor_name (physname);
363
364 is_constructor = is_full_physname_constructor
365 || (newname && strcmp (field_name, newname) == 0);
366
367 if (!is_destructor)
368 is_destructor = (strncmp (physname, "__dt", 4) == 0);
369
370 if (is_destructor || is_full_physname_constructor)
371 {
372 mangled_name = (char *) xmalloc (strlen (physname) + 1);
373 strcpy (mangled_name, physname);
374 return mangled_name;
375 }
376
377 if (len == 0)
378 {
379 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
380 }
381 else if (physname[0] == 't' || physname[0] == 'Q')
382 {
383 /* The physname for template and qualified methods already includes
384 the class name. */
385 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
386 newname = NULL;
387 len = 0;
388 }
389 else
390 {
391 xsnprintf (buf, sizeof (buf), "__%s%s%d", const_prefix,
392 volatile_prefix, len);
393 }
394 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
395 + strlen (buf) + len + strlen (physname) + 1);
396
397 mangled_name = (char *) xmalloc (mangled_name_len);
398 if (is_constructor)
399 mangled_name[0] = '\0';
400 else
401 strcpy (mangled_name, field_name);
402
403 strcat (mangled_name, buf);
404 /* If the class doesn't have a name, i.e. newname NULL, then we just
405 mangle it using 0 for the length of the class. Thus it gets mangled
406 as something starting with `::' rather than `classname::'. */
407 if (newname != NULL)
408 strcat (mangled_name, newname);
409
410 strcat (mangled_name, physname);
411 return (mangled_name);
412 }
413
414 /* Initialize the cplus_specific structure. 'cplus_specific' should
415 only be allocated for use with cplus symbols. */
416
417 static void
418 symbol_init_cplus_specific (struct general_symbol_info *gsymbol,
419 struct objfile *objfile)
420 {
421 /* A language_specific structure should not have been previously
422 initialized. */
423 gdb_assert (gsymbol->language_specific.cplus_specific == NULL);
424 gdb_assert (objfile != NULL);
425
426 gsymbol->language_specific.cplus_specific =
427 OBSTACK_ZALLOC (&objfile->objfile_obstack, struct cplus_specific);
428 }
429
430 /* Set the demangled name of GSYMBOL to NAME. NAME must be already
431 correctly allocated. For C++ symbols a cplus_specific struct is
432 allocated so OBJFILE must not be NULL. If this is a non C++ symbol
433 OBJFILE can be NULL. */
434
435 void
436 symbol_set_demangled_name (struct general_symbol_info *gsymbol,
437 const char *name,
438 struct objfile *objfile)
439 {
440 if (gsymbol->language == language_cplus)
441 {
442 if (gsymbol->language_specific.cplus_specific == NULL)
443 symbol_init_cplus_specific (gsymbol, objfile);
444
445 gsymbol->language_specific.cplus_specific->demangled_name = name;
446 }
447 else
448 gsymbol->language_specific.mangled_lang.demangled_name = name;
449 }
450
451 /* Return the demangled name of GSYMBOL. */
452
453 const char *
454 symbol_get_demangled_name (const struct general_symbol_info *gsymbol)
455 {
456 if (gsymbol->language == language_cplus)
457 {
458 if (gsymbol->language_specific.cplus_specific != NULL)
459 return gsymbol->language_specific.cplus_specific->demangled_name;
460 else
461 return NULL;
462 }
463 else
464 return gsymbol->language_specific.mangled_lang.demangled_name;
465 }
466
467 \f
468 /* Initialize the language dependent portion of a symbol
469 depending upon the language for the symbol. */
470
471 void
472 symbol_set_language (struct general_symbol_info *gsymbol,
473 enum language language)
474 {
475 gsymbol->language = language;
476 if (gsymbol->language == language_d
477 || gsymbol->language == language_go
478 || gsymbol->language == language_java
479 || gsymbol->language == language_objc
480 || gsymbol->language == language_fortran)
481 {
482 symbol_set_demangled_name (gsymbol, NULL, NULL);
483 }
484 else if (gsymbol->language == language_cplus)
485 gsymbol->language_specific.cplus_specific = NULL;
486 else
487 {
488 memset (&gsymbol->language_specific, 0,
489 sizeof (gsymbol->language_specific));
490 }
491 }
492
493 /* Functions to initialize a symbol's mangled name. */
494
495 /* Objects of this type are stored in the demangled name hash table. */
496 struct demangled_name_entry
497 {
498 const char *mangled;
499 char demangled[1];
500 };
501
502 /* Hash function for the demangled name hash. */
503
504 static hashval_t
505 hash_demangled_name_entry (const void *data)
506 {
507 const struct demangled_name_entry *e = data;
508
509 return htab_hash_string (e->mangled);
510 }
511
512 /* Equality function for the demangled name hash. */
513
514 static int
515 eq_demangled_name_entry (const void *a, const void *b)
516 {
517 const struct demangled_name_entry *da = a;
518 const struct demangled_name_entry *db = b;
519
520 return strcmp (da->mangled, db->mangled) == 0;
521 }
522
523 /* Create the hash table used for demangled names. Each hash entry is
524 a pair of strings; one for the mangled name and one for the demangled
525 name. The entry is hashed via just the mangled name. */
526
527 static void
528 create_demangled_names_hash (struct objfile *objfile)
529 {
530 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
531 The hash table code will round this up to the next prime number.
532 Choosing a much larger table size wastes memory, and saves only about
533 1% in symbol reading. */
534
535 objfile->demangled_names_hash = htab_create_alloc
536 (256, hash_demangled_name_entry, eq_demangled_name_entry,
537 NULL, xcalloc, xfree);
538 }
539
540 /* Try to determine the demangled name for a symbol, based on the
541 language of that symbol. If the language is set to language_auto,
542 it will attempt to find any demangling algorithm that works and
543 then set the language appropriately. The returned name is allocated
544 by the demangler and should be xfree'd. */
545
546 static char *
547 symbol_find_demangled_name (struct general_symbol_info *gsymbol,
548 const char *mangled)
549 {
550 char *demangled = NULL;
551
552 if (gsymbol->language == language_unknown)
553 gsymbol->language = language_auto;
554
555 if (gsymbol->language == language_objc
556 || gsymbol->language == language_auto)
557 {
558 demangled =
559 objc_demangle (mangled, 0);
560 if (demangled != NULL)
561 {
562 gsymbol->language = language_objc;
563 return demangled;
564 }
565 }
566 if (gsymbol->language == language_cplus
567 || gsymbol->language == language_auto)
568 {
569 demangled =
570 cplus_demangle (mangled, DMGL_PARAMS | DMGL_ANSI);
571 if (demangled != NULL)
572 {
573 gsymbol->language = language_cplus;
574 return demangled;
575 }
576 }
577 if (gsymbol->language == language_java)
578 {
579 demangled =
580 cplus_demangle (mangled,
581 DMGL_PARAMS | DMGL_ANSI | DMGL_JAVA);
582 if (demangled != NULL)
583 {
584 gsymbol->language = language_java;
585 return demangled;
586 }
587 }
588 if (gsymbol->language == language_d
589 || gsymbol->language == language_auto)
590 {
591 demangled = d_demangle(mangled, 0);
592 if (demangled != NULL)
593 {
594 gsymbol->language = language_d;
595 return demangled;
596 }
597 }
598 /* FIXME(dje): Continually adding languages here is clumsy.
599 Better to just call la_demangle if !auto, and if auto then call
600 a utility routine that tries successive languages in turn and reports
601 which one it finds. I realize the la_demangle options may be different
602 for different languages but there's already a FIXME for that. */
603 if (gsymbol->language == language_go
604 || gsymbol->language == language_auto)
605 {
606 demangled = go_demangle (mangled, 0);
607 if (demangled != NULL)
608 {
609 gsymbol->language = language_go;
610 return demangled;
611 }
612 }
613
614 /* We could support `gsymbol->language == language_fortran' here to provide
615 module namespaces also for inferiors with only minimal symbol table (ELF
616 symbols). Just the mangling standard is not standardized across compilers
617 and there is no DW_AT_producer available for inferiors with only the ELF
618 symbols to check the mangling kind. */
619 return NULL;
620 }
621
622 /* Set both the mangled and demangled (if any) names for GSYMBOL based
623 on LINKAGE_NAME and LEN. Ordinarily, NAME is copied onto the
624 objfile's obstack; but if COPY_NAME is 0 and if NAME is
625 NUL-terminated, then this function assumes that NAME is already
626 correctly saved (either permanently or with a lifetime tied to the
627 objfile), and it will not be copied.
628
629 The hash table corresponding to OBJFILE is used, and the memory
630 comes from that objfile's objfile_obstack. LINKAGE_NAME is copied,
631 so the pointer can be discarded after calling this function. */
632
633 /* We have to be careful when dealing with Java names: when we run
634 into a Java minimal symbol, we don't know it's a Java symbol, so it
635 gets demangled as a C++ name. This is unfortunate, but there's not
636 much we can do about it: but when demangling partial symbols and
637 regular symbols, we'd better not reuse the wrong demangled name.
638 (See PR gdb/1039.) We solve this by putting a distinctive prefix
639 on Java names when storing them in the hash table. */
640
641 /* FIXME: carlton/2003-03-13: This is an unfortunate situation. I
642 don't mind the Java prefix so much: different languages have
643 different demangling requirements, so it's only natural that we
644 need to keep language data around in our demangling cache. But
645 it's not good that the minimal symbol has the wrong demangled name.
646 Unfortunately, I can't think of any easy solution to that
647 problem. */
648
649 #define JAVA_PREFIX "##JAVA$$"
650 #define JAVA_PREFIX_LEN 8
651
652 void
653 symbol_set_names (struct general_symbol_info *gsymbol,
654 const char *linkage_name, int len, int copy_name,
655 struct objfile *objfile)
656 {
657 struct demangled_name_entry **slot;
658 /* A 0-terminated copy of the linkage name. */
659 const char *linkage_name_copy;
660 /* A copy of the linkage name that might have a special Java prefix
661 added to it, for use when looking names up in the hash table. */
662 const char *lookup_name;
663 /* The length of lookup_name. */
664 int lookup_len;
665 struct demangled_name_entry entry;
666
667 if (gsymbol->language == language_ada)
668 {
669 /* In Ada, we do the symbol lookups using the mangled name, so
670 we can save some space by not storing the demangled name.
671
672 As a side note, we have also observed some overlap between
673 the C++ mangling and Ada mangling, similarly to what has
674 been observed with Java. Because we don't store the demangled
675 name with the symbol, we don't need to use the same trick
676 as Java. */
677 if (!copy_name)
678 gsymbol->name = linkage_name;
679 else
680 {
681 char *name = obstack_alloc (&objfile->objfile_obstack, len + 1);
682
683 memcpy (name, linkage_name, len);
684 name[len] = '\0';
685 gsymbol->name = name;
686 }
687 symbol_set_demangled_name (gsymbol, NULL, NULL);
688
689 return;
690 }
691
692 if (objfile->demangled_names_hash == NULL)
693 create_demangled_names_hash (objfile);
694
695 /* The stabs reader generally provides names that are not
696 NUL-terminated; most of the other readers don't do this, so we
697 can just use the given copy, unless we're in the Java case. */
698 if (gsymbol->language == language_java)
699 {
700 char *alloc_name;
701
702 lookup_len = len + JAVA_PREFIX_LEN;
703 alloc_name = alloca (lookup_len + 1);
704 memcpy (alloc_name, JAVA_PREFIX, JAVA_PREFIX_LEN);
705 memcpy (alloc_name + JAVA_PREFIX_LEN, linkage_name, len);
706 alloc_name[lookup_len] = '\0';
707
708 lookup_name = alloc_name;
709 linkage_name_copy = alloc_name + JAVA_PREFIX_LEN;
710 }
711 else if (linkage_name[len] != '\0')
712 {
713 char *alloc_name;
714
715 lookup_len = len;
716 alloc_name = alloca (lookup_len + 1);
717 memcpy (alloc_name, linkage_name, len);
718 alloc_name[lookup_len] = '\0';
719
720 lookup_name = alloc_name;
721 linkage_name_copy = alloc_name;
722 }
723 else
724 {
725 lookup_len = len;
726 lookup_name = linkage_name;
727 linkage_name_copy = linkage_name;
728 }
729
730 entry.mangled = lookup_name;
731 slot = ((struct demangled_name_entry **)
732 htab_find_slot (objfile->demangled_names_hash,
733 &entry, INSERT));
734
735 /* If this name is not in the hash table, add it. */
736 if (*slot == NULL
737 /* A C version of the symbol may have already snuck into the table.
738 This happens to, e.g., main.init (__go_init_main). Cope. */
739 || (gsymbol->language == language_go
740 && (*slot)->demangled[0] == '\0'))
741 {
742 char *demangled_name = symbol_find_demangled_name (gsymbol,
743 linkage_name_copy);
744 int demangled_len = demangled_name ? strlen (demangled_name) : 0;
745
746 /* Suppose we have demangled_name==NULL, copy_name==0, and
747 lookup_name==linkage_name. In this case, we already have the
748 mangled name saved, and we don't have a demangled name. So,
749 you might think we could save a little space by not recording
750 this in the hash table at all.
751
752 It turns out that it is actually important to still save such
753 an entry in the hash table, because storing this name gives
754 us better bcache hit rates for partial symbols. */
755 if (!copy_name && lookup_name == linkage_name)
756 {
757 *slot = obstack_alloc (&objfile->objfile_obstack,
758 offsetof (struct demangled_name_entry,
759 demangled)
760 + demangled_len + 1);
761 (*slot)->mangled = lookup_name;
762 }
763 else
764 {
765 char *mangled_ptr;
766
767 /* If we must copy the mangled name, put it directly after
768 the demangled name so we can have a single
769 allocation. */
770 *slot = obstack_alloc (&objfile->objfile_obstack,
771 offsetof (struct demangled_name_entry,
772 demangled)
773 + lookup_len + demangled_len + 2);
774 mangled_ptr = &((*slot)->demangled[demangled_len + 1]);
775 strcpy (mangled_ptr, lookup_name);
776 (*slot)->mangled = mangled_ptr;
777 }
778
779 if (demangled_name != NULL)
780 {
781 strcpy ((*slot)->demangled, demangled_name);
782 xfree (demangled_name);
783 }
784 else
785 (*slot)->demangled[0] = '\0';
786 }
787
788 gsymbol->name = (*slot)->mangled + lookup_len - len;
789 if ((*slot)->demangled[0] != '\0')
790 symbol_set_demangled_name (gsymbol, (*slot)->demangled, objfile);
791 else
792 symbol_set_demangled_name (gsymbol, NULL, objfile);
793 }
794
795 /* Return the source code name of a symbol. In languages where
796 demangling is necessary, this is the demangled name. */
797
798 const char *
799 symbol_natural_name (const struct general_symbol_info *gsymbol)
800 {
801 switch (gsymbol->language)
802 {
803 case language_cplus:
804 case language_d:
805 case language_go:
806 case language_java:
807 case language_objc:
808 case language_fortran:
809 if (symbol_get_demangled_name (gsymbol) != NULL)
810 return symbol_get_demangled_name (gsymbol);
811 break;
812 case language_ada:
813 if (symbol_get_demangled_name (gsymbol) != NULL)
814 return symbol_get_demangled_name (gsymbol);
815 else
816 return ada_decode_symbol (gsymbol);
817 break;
818 default:
819 break;
820 }
821 return gsymbol->name;
822 }
823
824 /* Return the demangled name for a symbol based on the language for
825 that symbol. If no demangled name exists, return NULL. */
826
827 const char *
828 symbol_demangled_name (const struct general_symbol_info *gsymbol)
829 {
830 const char *dem_name = NULL;
831
832 switch (gsymbol->language)
833 {
834 case language_cplus:
835 case language_d:
836 case language_go:
837 case language_java:
838 case language_objc:
839 case language_fortran:
840 dem_name = symbol_get_demangled_name (gsymbol);
841 break;
842 case language_ada:
843 dem_name = symbol_get_demangled_name (gsymbol);
844 if (dem_name == NULL)
845 dem_name = ada_decode_symbol (gsymbol);
846 break;
847 default:
848 break;
849 }
850 return dem_name;
851 }
852
853 /* Return the search name of a symbol---generally the demangled or
854 linkage name of the symbol, depending on how it will be searched for.
855 If there is no distinct demangled name, then returns the same value
856 (same pointer) as SYMBOL_LINKAGE_NAME. */
857
858 const char *
859 symbol_search_name (const struct general_symbol_info *gsymbol)
860 {
861 if (gsymbol->language == language_ada)
862 return gsymbol->name;
863 else
864 return symbol_natural_name (gsymbol);
865 }
866
867 /* Initialize the structure fields to zero values. */
868
869 void
870 init_sal (struct symtab_and_line *sal)
871 {
872 sal->pspace = NULL;
873 sal->symtab = 0;
874 sal->section = 0;
875 sal->line = 0;
876 sal->pc = 0;
877 sal->end = 0;
878 sal->explicit_pc = 0;
879 sal->explicit_line = 0;
880 sal->probe = NULL;
881 }
882 \f
883
884 /* Return 1 if the two sections are the same, or if they could
885 plausibly be copies of each other, one in an original object
886 file and another in a separated debug file. */
887
888 int
889 matching_obj_sections (struct obj_section *obj_first,
890 struct obj_section *obj_second)
891 {
892 asection *first = obj_first? obj_first->the_bfd_section : NULL;
893 asection *second = obj_second? obj_second->the_bfd_section : NULL;
894 struct objfile *obj;
895
896 /* If they're the same section, then they match. */
897 if (first == second)
898 return 1;
899
900 /* If either is NULL, give up. */
901 if (first == NULL || second == NULL)
902 return 0;
903
904 /* This doesn't apply to absolute symbols. */
905 if (first->owner == NULL || second->owner == NULL)
906 return 0;
907
908 /* If they're in the same object file, they must be different sections. */
909 if (first->owner == second->owner)
910 return 0;
911
912 /* Check whether the two sections are potentially corresponding. They must
913 have the same size, address, and name. We can't compare section indexes,
914 which would be more reliable, because some sections may have been
915 stripped. */
916 if (bfd_get_section_size (first) != bfd_get_section_size (second))
917 return 0;
918
919 /* In-memory addresses may start at a different offset, relativize them. */
920 if (bfd_get_section_vma (first->owner, first)
921 - bfd_get_start_address (first->owner)
922 != bfd_get_section_vma (second->owner, second)
923 - bfd_get_start_address (second->owner))
924 return 0;
925
926 if (bfd_get_section_name (first->owner, first) == NULL
927 || bfd_get_section_name (second->owner, second) == NULL
928 || strcmp (bfd_get_section_name (first->owner, first),
929 bfd_get_section_name (second->owner, second)) != 0)
930 return 0;
931
932 /* Otherwise check that they are in corresponding objfiles. */
933
934 ALL_OBJFILES (obj)
935 if (obj->obfd == first->owner)
936 break;
937 gdb_assert (obj != NULL);
938
939 if (obj->separate_debug_objfile != NULL
940 && obj->separate_debug_objfile->obfd == second->owner)
941 return 1;
942 if (obj->separate_debug_objfile_backlink != NULL
943 && obj->separate_debug_objfile_backlink->obfd == second->owner)
944 return 1;
945
946 return 0;
947 }
948
949 struct symtab *
950 find_pc_sect_symtab_via_partial (CORE_ADDR pc, struct obj_section *section)
951 {
952 struct objfile *objfile;
953 struct minimal_symbol *msymbol;
954
955 /* If we know that this is not a text address, return failure. This is
956 necessary because we loop based on texthigh and textlow, which do
957 not include the data ranges. */
958 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
959 if (msymbol
960 && (MSYMBOL_TYPE (msymbol) == mst_data
961 || MSYMBOL_TYPE (msymbol) == mst_bss
962 || MSYMBOL_TYPE (msymbol) == mst_abs
963 || MSYMBOL_TYPE (msymbol) == mst_file_data
964 || MSYMBOL_TYPE (msymbol) == mst_file_bss))
965 return NULL;
966
967 ALL_OBJFILES (objfile)
968 {
969 struct symtab *result = NULL;
970
971 if (objfile->sf)
972 result = objfile->sf->qf->find_pc_sect_symtab (objfile, msymbol,
973 pc, section, 0);
974 if (result)
975 return result;
976 }
977
978 return NULL;
979 }
980 \f
981 /* Debug symbols usually don't have section information. We need to dig that
982 out of the minimal symbols and stash that in the debug symbol. */
983
984 void
985 fixup_section (struct general_symbol_info *ginfo,
986 CORE_ADDR addr, struct objfile *objfile)
987 {
988 struct minimal_symbol *msym;
989
990 /* First, check whether a minimal symbol with the same name exists
991 and points to the same address. The address check is required
992 e.g. on PowerPC64, where the minimal symbol for a function will
993 point to the function descriptor, while the debug symbol will
994 point to the actual function code. */
995 msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->name, objfile);
996 if (msym)
997 {
998 ginfo->obj_section = SYMBOL_OBJ_SECTION (msym);
999 ginfo->section = SYMBOL_SECTION (msym);
1000 }
1001 else
1002 {
1003 /* Static, function-local variables do appear in the linker
1004 (minimal) symbols, but are frequently given names that won't
1005 be found via lookup_minimal_symbol(). E.g., it has been
1006 observed in frv-uclinux (ELF) executables that a static,
1007 function-local variable named "foo" might appear in the
1008 linker symbols as "foo.6" or "foo.3". Thus, there is no
1009 point in attempting to extend the lookup-by-name mechanism to
1010 handle this case due to the fact that there can be multiple
1011 names.
1012
1013 So, instead, search the section table when lookup by name has
1014 failed. The ``addr'' and ``endaddr'' fields may have already
1015 been relocated. If so, the relocation offset (i.e. the
1016 ANOFFSET value) needs to be subtracted from these values when
1017 performing the comparison. We unconditionally subtract it,
1018 because, when no relocation has been performed, the ANOFFSET
1019 value will simply be zero.
1020
1021 The address of the symbol whose section we're fixing up HAS
1022 NOT BEEN adjusted (relocated) yet. It can't have been since
1023 the section isn't yet known and knowing the section is
1024 necessary in order to add the correct relocation value. In
1025 other words, we wouldn't even be in this function (attempting
1026 to compute the section) if it were already known.
1027
1028 Note that it is possible to search the minimal symbols
1029 (subtracting the relocation value if necessary) to find the
1030 matching minimal symbol, but this is overkill and much less
1031 efficient. It is not necessary to find the matching minimal
1032 symbol, only its section.
1033
1034 Note that this technique (of doing a section table search)
1035 can fail when unrelocated section addresses overlap. For
1036 this reason, we still attempt a lookup by name prior to doing
1037 a search of the section table. */
1038
1039 struct obj_section *s;
1040
1041 ALL_OBJFILE_OSECTIONS (objfile, s)
1042 {
1043 int idx = s->the_bfd_section->index;
1044 CORE_ADDR offset = ANOFFSET (objfile->section_offsets, idx);
1045
1046 if (obj_section_addr (s) - offset <= addr
1047 && addr < obj_section_endaddr (s) - offset)
1048 {
1049 ginfo->obj_section = s;
1050 ginfo->section = idx;
1051 return;
1052 }
1053 }
1054 }
1055 }
1056
1057 struct symbol *
1058 fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
1059 {
1060 CORE_ADDR addr;
1061
1062 if (!sym)
1063 return NULL;
1064
1065 if (SYMBOL_OBJ_SECTION (sym))
1066 return sym;
1067
1068 /* We either have an OBJFILE, or we can get at it from the sym's
1069 symtab. Anything else is a bug. */
1070 gdb_assert (objfile || SYMBOL_SYMTAB (sym));
1071
1072 if (objfile == NULL)
1073 objfile = SYMBOL_SYMTAB (sym)->objfile;
1074
1075 /* We should have an objfile by now. */
1076 gdb_assert (objfile);
1077
1078 switch (SYMBOL_CLASS (sym))
1079 {
1080 case LOC_STATIC:
1081 case LOC_LABEL:
1082 addr = SYMBOL_VALUE_ADDRESS (sym);
1083 break;
1084 case LOC_BLOCK:
1085 addr = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
1086 break;
1087
1088 default:
1089 /* Nothing else will be listed in the minsyms -- no use looking
1090 it up. */
1091 return sym;
1092 }
1093
1094 fixup_section (&sym->ginfo, addr, objfile);
1095
1096 return sym;
1097 }
1098
1099 /* Compute the demangled form of NAME as used by the various symbol
1100 lookup functions. The result is stored in *RESULT_NAME. Returns a
1101 cleanup which can be used to clean up the result.
1102
1103 For Ada, this function just sets *RESULT_NAME to NAME, unmodified.
1104 Normally, Ada symbol lookups are performed using the encoded name
1105 rather than the demangled name, and so it might seem to make sense
1106 for this function to return an encoded version of NAME.
1107 Unfortunately, we cannot do this, because this function is used in
1108 circumstances where it is not appropriate to try to encode NAME.
1109 For instance, when displaying the frame info, we demangle the name
1110 of each parameter, and then perform a symbol lookup inside our
1111 function using that demangled name. In Ada, certain functions
1112 have internally-generated parameters whose name contain uppercase
1113 characters. Encoding those name would result in those uppercase
1114 characters to become lowercase, and thus cause the symbol lookup
1115 to fail. */
1116
1117 struct cleanup *
1118 demangle_for_lookup (const char *name, enum language lang,
1119 const char **result_name)
1120 {
1121 char *demangled_name = NULL;
1122 const char *modified_name = NULL;
1123 struct cleanup *cleanup = make_cleanup (null_cleanup, 0);
1124
1125 modified_name = name;
1126
1127 /* If we are using C++, D, Go, or Java, demangle the name before doing a
1128 lookup, so we can always binary search. */
1129 if (lang == language_cplus)
1130 {
1131 demangled_name = cplus_demangle (name, DMGL_ANSI | DMGL_PARAMS);
1132 if (demangled_name)
1133 {
1134 modified_name = demangled_name;
1135 make_cleanup (xfree, demangled_name);
1136 }
1137 else
1138 {
1139 /* If we were given a non-mangled name, canonicalize it
1140 according to the language (so far only for C++). */
1141 demangled_name = cp_canonicalize_string (name);
1142 if (demangled_name)
1143 {
1144 modified_name = demangled_name;
1145 make_cleanup (xfree, demangled_name);
1146 }
1147 }
1148 }
1149 else if (lang == language_java)
1150 {
1151 demangled_name = cplus_demangle (name,
1152 DMGL_ANSI | DMGL_PARAMS | DMGL_JAVA);
1153 if (demangled_name)
1154 {
1155 modified_name = demangled_name;
1156 make_cleanup (xfree, demangled_name);
1157 }
1158 }
1159 else if (lang == language_d)
1160 {
1161 demangled_name = d_demangle (name, 0);
1162 if (demangled_name)
1163 {
1164 modified_name = demangled_name;
1165 make_cleanup (xfree, demangled_name);
1166 }
1167 }
1168 else if (lang == language_go)
1169 {
1170 demangled_name = go_demangle (name, 0);
1171 if (demangled_name)
1172 {
1173 modified_name = demangled_name;
1174 make_cleanup (xfree, demangled_name);
1175 }
1176 }
1177
1178 *result_name = modified_name;
1179 return cleanup;
1180 }
1181
1182 /* Find the definition for a specified symbol name NAME
1183 in domain DOMAIN, visible from lexical block BLOCK.
1184 Returns the struct symbol pointer, or zero if no symbol is found.
1185 C++: if IS_A_FIELD_OF_THIS is nonzero on entry, check to see if
1186 NAME is a field of the current implied argument `this'. If so set
1187 *IS_A_FIELD_OF_THIS to 1, otherwise set it to zero.
1188 BLOCK_FOUND is set to the block in which NAME is found (in the case of
1189 a field of `this', value_of_this sets BLOCK_FOUND to the proper value.) */
1190
1191 /* This function (or rather its subordinates) have a bunch of loops and
1192 it would seem to be attractive to put in some QUIT's (though I'm not really
1193 sure whether it can run long enough to be really important). But there
1194 are a few calls for which it would appear to be bad news to quit
1195 out of here: e.g., find_proc_desc in alpha-mdebug-tdep.c. (Note
1196 that there is C++ code below which can error(), but that probably
1197 doesn't affect these calls since they are looking for a known
1198 variable and thus can probably assume it will never hit the C++
1199 code). */
1200
1201 struct symbol *
1202 lookup_symbol_in_language (const char *name, const struct block *block,
1203 const domain_enum domain, enum language lang,
1204 struct field_of_this_result *is_a_field_of_this)
1205 {
1206 const char *modified_name;
1207 struct symbol *returnval;
1208 struct cleanup *cleanup = demangle_for_lookup (name, lang, &modified_name);
1209
1210 returnval = lookup_symbol_aux (modified_name, block, domain, lang,
1211 is_a_field_of_this);
1212 do_cleanups (cleanup);
1213
1214 return returnval;
1215 }
1216
1217 /* Behave like lookup_symbol_in_language, but performed with the
1218 current language. */
1219
1220 struct symbol *
1221 lookup_symbol (const char *name, const struct block *block,
1222 domain_enum domain,
1223 struct field_of_this_result *is_a_field_of_this)
1224 {
1225 return lookup_symbol_in_language (name, block, domain,
1226 current_language->la_language,
1227 is_a_field_of_this);
1228 }
1229
1230 /* Look up the `this' symbol for LANG in BLOCK. Return the symbol if
1231 found, or NULL if not found. */
1232
1233 struct symbol *
1234 lookup_language_this (const struct language_defn *lang,
1235 const struct block *block)
1236 {
1237 if (lang->la_name_of_this == NULL || block == NULL)
1238 return NULL;
1239
1240 while (block)
1241 {
1242 struct symbol *sym;
1243
1244 sym = lookup_block_symbol (block, lang->la_name_of_this, VAR_DOMAIN);
1245 if (sym != NULL)
1246 {
1247 block_found = block;
1248 return sym;
1249 }
1250 if (BLOCK_FUNCTION (block))
1251 break;
1252 block = BLOCK_SUPERBLOCK (block);
1253 }
1254
1255 return NULL;
1256 }
1257
1258 /* Given TYPE, a structure/union,
1259 return 1 if the component named NAME from the ultimate target
1260 structure/union is defined, otherwise, return 0. */
1261
1262 static int
1263 check_field (struct type *type, const char *name,
1264 struct field_of_this_result *is_a_field_of_this)
1265 {
1266 int i;
1267
1268 /* The type may be a stub. */
1269 CHECK_TYPEDEF (type);
1270
1271 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1272 {
1273 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1274
1275 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1276 {
1277 is_a_field_of_this->type = type;
1278 is_a_field_of_this->field = &TYPE_FIELD (type, i);
1279 return 1;
1280 }
1281 }
1282
1283 /* C++: If it was not found as a data field, then try to return it
1284 as a pointer to a method. */
1285
1286 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
1287 {
1288 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
1289 {
1290 is_a_field_of_this->type = type;
1291 is_a_field_of_this->fn_field = &TYPE_FN_FIELDLIST (type, i);
1292 return 1;
1293 }
1294 }
1295
1296 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1297 if (check_field (TYPE_BASECLASS (type, i), name, is_a_field_of_this))
1298 return 1;
1299
1300 return 0;
1301 }
1302
1303 /* Behave like lookup_symbol except that NAME is the natural name
1304 (e.g., demangled name) of the symbol that we're looking for. */
1305
1306 static struct symbol *
1307 lookup_symbol_aux (const char *name, const struct block *block,
1308 const domain_enum domain, enum language language,
1309 struct field_of_this_result *is_a_field_of_this)
1310 {
1311 struct symbol *sym;
1312 const struct language_defn *langdef;
1313
1314 /* Make sure we do something sensible with is_a_field_of_this, since
1315 the callers that set this parameter to some non-null value will
1316 certainly use it later. If we don't set it, the contents of
1317 is_a_field_of_this are undefined. */
1318 if (is_a_field_of_this != NULL)
1319 memset (is_a_field_of_this, 0, sizeof (*is_a_field_of_this));
1320
1321 /* Search specified block and its superiors. Don't search
1322 STATIC_BLOCK or GLOBAL_BLOCK. */
1323
1324 sym = lookup_symbol_aux_local (name, block, domain, language);
1325 if (sym != NULL)
1326 return sym;
1327
1328 /* If requested to do so by the caller and if appropriate for LANGUAGE,
1329 check to see if NAME is a field of `this'. */
1330
1331 langdef = language_def (language);
1332
1333 /* Don't do this check if we are searching for a struct. It will
1334 not be found by check_field, but will be found by other
1335 means. */
1336 if (is_a_field_of_this != NULL && domain != STRUCT_DOMAIN)
1337 {
1338 struct symbol *sym = lookup_language_this (langdef, block);
1339
1340 if (sym)
1341 {
1342 struct type *t = sym->type;
1343
1344 /* I'm not really sure that type of this can ever
1345 be typedefed; just be safe. */
1346 CHECK_TYPEDEF (t);
1347 if (TYPE_CODE (t) == TYPE_CODE_PTR
1348 || TYPE_CODE (t) == TYPE_CODE_REF)
1349 t = TYPE_TARGET_TYPE (t);
1350
1351 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
1352 && TYPE_CODE (t) != TYPE_CODE_UNION)
1353 error (_("Internal error: `%s' is not an aggregate"),
1354 langdef->la_name_of_this);
1355
1356 if (check_field (t, name, is_a_field_of_this))
1357 return NULL;
1358 }
1359 }
1360
1361 /* Now do whatever is appropriate for LANGUAGE to look
1362 up static and global variables. */
1363
1364 sym = langdef->la_lookup_symbol_nonlocal (name, block, domain);
1365 if (sym != NULL)
1366 return sym;
1367
1368 /* Now search all static file-level symbols. Not strictly correct,
1369 but more useful than an error. */
1370
1371 return lookup_static_symbol_aux (name, domain);
1372 }
1373
1374 /* Search all static file-level symbols for NAME from DOMAIN. Do the symtabs
1375 first, then check the psymtabs. If a psymtab indicates the existence of the
1376 desired name as a file-level static, then do psymtab-to-symtab conversion on
1377 the fly and return the found symbol. */
1378
1379 struct symbol *
1380 lookup_static_symbol_aux (const char *name, const domain_enum domain)
1381 {
1382 struct objfile *objfile;
1383 struct symbol *sym;
1384
1385 sym = lookup_symbol_aux_symtabs (STATIC_BLOCK, name, domain);
1386 if (sym != NULL)
1387 return sym;
1388
1389 ALL_OBJFILES (objfile)
1390 {
1391 sym = lookup_symbol_aux_quick (objfile, STATIC_BLOCK, name, domain);
1392 if (sym != NULL)
1393 return sym;
1394 }
1395
1396 return NULL;
1397 }
1398
1399 /* Check to see if the symbol is defined in BLOCK or its superiors.
1400 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
1401
1402 static struct symbol *
1403 lookup_symbol_aux_local (const char *name, const struct block *block,
1404 const domain_enum domain,
1405 enum language language)
1406 {
1407 struct symbol *sym;
1408 const struct block *static_block = block_static_block (block);
1409 const char *scope = block_scope (block);
1410
1411 /* Check if either no block is specified or it's a global block. */
1412
1413 if (static_block == NULL)
1414 return NULL;
1415
1416 while (block != static_block)
1417 {
1418 sym = lookup_symbol_aux_block (name, block, domain);
1419 if (sym != NULL)
1420 return sym;
1421
1422 if (language == language_cplus || language == language_fortran)
1423 {
1424 sym = cp_lookup_symbol_imports_or_template (scope, name, block,
1425 domain);
1426 if (sym != NULL)
1427 return sym;
1428 }
1429
1430 if (BLOCK_FUNCTION (block) != NULL && block_inlined_p (block))
1431 break;
1432 block = BLOCK_SUPERBLOCK (block);
1433 }
1434
1435 /* We've reached the edge of the function without finding a result. */
1436
1437 return NULL;
1438 }
1439
1440 /* Look up OBJFILE to BLOCK. */
1441
1442 struct objfile *
1443 lookup_objfile_from_block (const struct block *block)
1444 {
1445 struct objfile *obj;
1446 struct symtab *s;
1447
1448 if (block == NULL)
1449 return NULL;
1450
1451 block = block_global_block (block);
1452 /* Go through SYMTABS. */
1453 ALL_SYMTABS (obj, s)
1454 if (block == BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK))
1455 {
1456 if (obj->separate_debug_objfile_backlink)
1457 obj = obj->separate_debug_objfile_backlink;
1458
1459 return obj;
1460 }
1461
1462 return NULL;
1463 }
1464
1465 /* Look up a symbol in a block; if found, fixup the symbol, and set
1466 block_found appropriately. */
1467
1468 struct symbol *
1469 lookup_symbol_aux_block (const char *name, const struct block *block,
1470 const domain_enum domain)
1471 {
1472 struct symbol *sym;
1473
1474 sym = lookup_block_symbol (block, name, domain);
1475 if (sym)
1476 {
1477 block_found = block;
1478 return fixup_symbol_section (sym, NULL);
1479 }
1480
1481 return NULL;
1482 }
1483
1484 /* Check all global symbols in OBJFILE in symtabs and
1485 psymtabs. */
1486
1487 struct symbol *
1488 lookup_global_symbol_from_objfile (const struct objfile *main_objfile,
1489 const char *name,
1490 const domain_enum domain)
1491 {
1492 const struct objfile *objfile;
1493 struct symbol *sym;
1494 struct blockvector *bv;
1495 const struct block *block;
1496 struct symtab *s;
1497
1498 for (objfile = main_objfile;
1499 objfile;
1500 objfile = objfile_separate_debug_iterate (main_objfile, objfile))
1501 {
1502 /* Go through symtabs. */
1503 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
1504 {
1505 bv = BLOCKVECTOR (s);
1506 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1507 sym = lookup_block_symbol (block, name, domain);
1508 if (sym)
1509 {
1510 block_found = block;
1511 return fixup_symbol_section (sym, (struct objfile *)objfile);
1512 }
1513 }
1514
1515 sym = lookup_symbol_aux_quick ((struct objfile *) objfile, GLOBAL_BLOCK,
1516 name, domain);
1517 if (sym)
1518 return sym;
1519 }
1520
1521 return NULL;
1522 }
1523
1524 /* Check to see if the symbol is defined in one of the OBJFILE's
1525 symtabs. BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
1526 depending on whether or not we want to search global symbols or
1527 static symbols. */
1528
1529 static struct symbol *
1530 lookup_symbol_aux_objfile (struct objfile *objfile, int block_index,
1531 const char *name, const domain_enum domain)
1532 {
1533 struct symbol *sym = NULL;
1534 struct blockvector *bv;
1535 const struct block *block;
1536 struct symtab *s;
1537
1538 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
1539 {
1540 bv = BLOCKVECTOR (s);
1541 block = BLOCKVECTOR_BLOCK (bv, block_index);
1542 sym = lookup_block_symbol (block, name, domain);
1543 if (sym)
1544 {
1545 block_found = block;
1546 return fixup_symbol_section (sym, objfile);
1547 }
1548 }
1549
1550 return NULL;
1551 }
1552
1553 /* Same as lookup_symbol_aux_objfile, except that it searches all
1554 objfiles. Return the first match found. */
1555
1556 static struct symbol *
1557 lookup_symbol_aux_symtabs (int block_index, const char *name,
1558 const domain_enum domain)
1559 {
1560 struct symbol *sym;
1561 struct objfile *objfile;
1562
1563 ALL_OBJFILES (objfile)
1564 {
1565 sym = lookup_symbol_aux_objfile (objfile, block_index, name, domain);
1566 if (sym)
1567 return sym;
1568 }
1569
1570 return NULL;
1571 }
1572
1573 /* Wrapper around lookup_symbol_aux_objfile for search_symbols.
1574 Look up LINKAGE_NAME in DOMAIN in the global and static blocks of OBJFILE
1575 and all related objfiles. */
1576
1577 static struct symbol *
1578 lookup_symbol_in_objfile_from_linkage_name (struct objfile *objfile,
1579 const char *linkage_name,
1580 domain_enum domain)
1581 {
1582 enum language lang = current_language->la_language;
1583 const char *modified_name;
1584 struct cleanup *cleanup = demangle_for_lookup (linkage_name, lang,
1585 &modified_name);
1586 struct objfile *main_objfile, *cur_objfile;
1587
1588 if (objfile->separate_debug_objfile_backlink)
1589 main_objfile = objfile->separate_debug_objfile_backlink;
1590 else
1591 main_objfile = objfile;
1592
1593 for (cur_objfile = main_objfile;
1594 cur_objfile;
1595 cur_objfile = objfile_separate_debug_iterate (main_objfile, cur_objfile))
1596 {
1597 struct symbol *sym;
1598
1599 sym = lookup_symbol_aux_objfile (cur_objfile, GLOBAL_BLOCK,
1600 modified_name, domain);
1601 if (sym == NULL)
1602 sym = lookup_symbol_aux_objfile (cur_objfile, STATIC_BLOCK,
1603 modified_name, domain);
1604 if (sym != NULL)
1605 {
1606 do_cleanups (cleanup);
1607 return sym;
1608 }
1609 }
1610
1611 do_cleanups (cleanup);
1612 return NULL;
1613 }
1614
1615 /* A helper function for lookup_symbol_aux that interfaces with the
1616 "quick" symbol table functions. */
1617
1618 static struct symbol *
1619 lookup_symbol_aux_quick (struct objfile *objfile, int kind,
1620 const char *name, const domain_enum domain)
1621 {
1622 struct symtab *symtab;
1623 struct blockvector *bv;
1624 const struct block *block;
1625 struct symbol *sym;
1626
1627 if (!objfile->sf)
1628 return NULL;
1629 symtab = objfile->sf->qf->lookup_symbol (objfile, kind, name, domain);
1630 if (!symtab)
1631 return NULL;
1632
1633 bv = BLOCKVECTOR (symtab);
1634 block = BLOCKVECTOR_BLOCK (bv, kind);
1635 sym = lookup_block_symbol (block, name, domain);
1636 if (!sym)
1637 {
1638 /* This shouldn't be necessary, but as a last resort try
1639 looking in the statics even though the psymtab claimed
1640 the symbol was global, or vice-versa. It's possible
1641 that the psymtab gets it wrong in some cases. */
1642
1643 /* FIXME: carlton/2002-09-30: Should we really do that?
1644 If that happens, isn't it likely to be a GDB error, in
1645 which case we should fix the GDB error rather than
1646 silently dealing with it here? So I'd vote for
1647 removing the check for the symbol in the other
1648 block. */
1649 block = BLOCKVECTOR_BLOCK (bv,
1650 kind == GLOBAL_BLOCK ?
1651 STATIC_BLOCK : GLOBAL_BLOCK);
1652 sym = lookup_block_symbol (block, name, domain);
1653 if (!sym)
1654 error (_("\
1655 Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n\
1656 %s may be an inlined function, or may be a template function\n\
1657 (if a template, try specifying an instantiation: %s<type>)."),
1658 kind == GLOBAL_BLOCK ? "global" : "static",
1659 name, symtab_to_filename_for_display (symtab), name, name);
1660 }
1661 return fixup_symbol_section (sym, objfile);
1662 }
1663
1664 /* A default version of lookup_symbol_nonlocal for use by languages
1665 that can't think of anything better to do. This implements the C
1666 lookup rules. */
1667
1668 struct symbol *
1669 basic_lookup_symbol_nonlocal (const char *name,
1670 const struct block *block,
1671 const domain_enum domain)
1672 {
1673 struct symbol *sym;
1674
1675 /* NOTE: carlton/2003-05-19: The comments below were written when
1676 this (or what turned into this) was part of lookup_symbol_aux;
1677 I'm much less worried about these questions now, since these
1678 decisions have turned out well, but I leave these comments here
1679 for posterity. */
1680
1681 /* NOTE: carlton/2002-12-05: There is a question as to whether or
1682 not it would be appropriate to search the current global block
1683 here as well. (That's what this code used to do before the
1684 is_a_field_of_this check was moved up.) On the one hand, it's
1685 redundant with the lookup_symbol_aux_symtabs search that happens
1686 next. On the other hand, if decode_line_1 is passed an argument
1687 like filename:var, then the user presumably wants 'var' to be
1688 searched for in filename. On the third hand, there shouldn't be
1689 multiple global variables all of which are named 'var', and it's
1690 not like decode_line_1 has ever restricted its search to only
1691 global variables in a single filename. All in all, only
1692 searching the static block here seems best: it's correct and it's
1693 cleanest. */
1694
1695 /* NOTE: carlton/2002-12-05: There's also a possible performance
1696 issue here: if you usually search for global symbols in the
1697 current file, then it would be slightly better to search the
1698 current global block before searching all the symtabs. But there
1699 are other factors that have a much greater effect on performance
1700 than that one, so I don't think we should worry about that for
1701 now. */
1702
1703 sym = lookup_symbol_static (name, block, domain);
1704 if (sym != NULL)
1705 return sym;
1706
1707 return lookup_symbol_global (name, block, domain);
1708 }
1709
1710 /* Lookup a symbol in the static block associated to BLOCK, if there
1711 is one; do nothing if BLOCK is NULL or a global block. */
1712
1713 struct symbol *
1714 lookup_symbol_static (const char *name,
1715 const struct block *block,
1716 const domain_enum domain)
1717 {
1718 const struct block *static_block = block_static_block (block);
1719
1720 if (static_block != NULL)
1721 return lookup_symbol_aux_block (name, static_block, domain);
1722 else
1723 return NULL;
1724 }
1725
1726 /* Private data to be used with lookup_symbol_global_iterator_cb. */
1727
1728 struct global_sym_lookup_data
1729 {
1730 /* The name of the symbol we are searching for. */
1731 const char *name;
1732
1733 /* The domain to use for our search. */
1734 domain_enum domain;
1735
1736 /* The field where the callback should store the symbol if found.
1737 It should be initialized to NULL before the search is started. */
1738 struct symbol *result;
1739 };
1740
1741 /* A callback function for gdbarch_iterate_over_objfiles_in_search_order.
1742 It searches by name for a symbol in the GLOBAL_BLOCK of the given
1743 OBJFILE. The arguments for the search are passed via CB_DATA,
1744 which in reality is a pointer to struct global_sym_lookup_data. */
1745
1746 static int
1747 lookup_symbol_global_iterator_cb (struct objfile *objfile,
1748 void *cb_data)
1749 {
1750 struct global_sym_lookup_data *data =
1751 (struct global_sym_lookup_data *) cb_data;
1752
1753 gdb_assert (data->result == NULL);
1754
1755 data->result = lookup_symbol_aux_objfile (objfile, GLOBAL_BLOCK,
1756 data->name, data->domain);
1757 if (data->result == NULL)
1758 data->result = lookup_symbol_aux_quick (objfile, GLOBAL_BLOCK,
1759 data->name, data->domain);
1760
1761 /* If we found a match, tell the iterator to stop. Otherwise,
1762 keep going. */
1763 return (data->result != NULL);
1764 }
1765
1766 /* Lookup a symbol in all files' global blocks (searching psymtabs if
1767 necessary). */
1768
1769 struct symbol *
1770 lookup_symbol_global (const char *name,
1771 const struct block *block,
1772 const domain_enum domain)
1773 {
1774 struct symbol *sym = NULL;
1775 struct objfile *objfile = NULL;
1776 struct global_sym_lookup_data lookup_data;
1777
1778 /* Call library-specific lookup procedure. */
1779 objfile = lookup_objfile_from_block (block);
1780 if (objfile != NULL)
1781 sym = solib_global_lookup (objfile, name, domain);
1782 if (sym != NULL)
1783 return sym;
1784
1785 memset (&lookup_data, 0, sizeof (lookup_data));
1786 lookup_data.name = name;
1787 lookup_data.domain = domain;
1788 gdbarch_iterate_over_objfiles_in_search_order
1789 (objfile != NULL ? get_objfile_arch (objfile) : target_gdbarch (),
1790 lookup_symbol_global_iterator_cb, &lookup_data, objfile);
1791
1792 return lookup_data.result;
1793 }
1794
1795 int
1796 symbol_matches_domain (enum language symbol_language,
1797 domain_enum symbol_domain,
1798 domain_enum domain)
1799 {
1800 /* For C++ "struct foo { ... }" also defines a typedef for "foo".
1801 A Java class declaration also defines a typedef for the class.
1802 Similarly, any Ada type declaration implicitly defines a typedef. */
1803 if (symbol_language == language_cplus
1804 || symbol_language == language_d
1805 || symbol_language == language_java
1806 || symbol_language == language_ada)
1807 {
1808 if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN)
1809 && symbol_domain == STRUCT_DOMAIN)
1810 return 1;
1811 }
1812 /* For all other languages, strict match is required. */
1813 return (symbol_domain == domain);
1814 }
1815
1816 /* Look up a type named NAME in the struct_domain. The type returned
1817 must not be opaque -- i.e., must have at least one field
1818 defined. */
1819
1820 struct type *
1821 lookup_transparent_type (const char *name)
1822 {
1823 return current_language->la_lookup_transparent_type (name);
1824 }
1825
1826 /* A helper for basic_lookup_transparent_type that interfaces with the
1827 "quick" symbol table functions. */
1828
1829 static struct type *
1830 basic_lookup_transparent_type_quick (struct objfile *objfile, int kind,
1831 const char *name)
1832 {
1833 struct symtab *symtab;
1834 struct blockvector *bv;
1835 struct block *block;
1836 struct symbol *sym;
1837
1838 if (!objfile->sf)
1839 return NULL;
1840 symtab = objfile->sf->qf->lookup_symbol (objfile, kind, name, STRUCT_DOMAIN);
1841 if (!symtab)
1842 return NULL;
1843
1844 bv = BLOCKVECTOR (symtab);
1845 block = BLOCKVECTOR_BLOCK (bv, kind);
1846 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1847 if (!sym)
1848 {
1849 int other_kind = kind == GLOBAL_BLOCK ? STATIC_BLOCK : GLOBAL_BLOCK;
1850
1851 /* This shouldn't be necessary, but as a last resort
1852 * try looking in the 'other kind' even though the psymtab
1853 * claimed the symbol was one thing. It's possible that
1854 * the psymtab gets it wrong in some cases.
1855 */
1856 block = BLOCKVECTOR_BLOCK (bv, other_kind);
1857 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1858 if (!sym)
1859 /* FIXME; error is wrong in one case. */
1860 error (_("\
1861 Internal: global symbol `%s' found in %s psymtab but not in symtab.\n\
1862 %s may be an inlined function, or may be a template function\n\
1863 (if a template, try specifying an instantiation: %s<type>)."),
1864 name, symtab_to_filename_for_display (symtab), name, name);
1865 }
1866 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1867 return SYMBOL_TYPE (sym);
1868
1869 return NULL;
1870 }
1871
1872 /* The standard implementation of lookup_transparent_type. This code
1873 was modeled on lookup_symbol -- the parts not relevant to looking
1874 up types were just left out. In particular it's assumed here that
1875 types are available in struct_domain and only at file-static or
1876 global blocks. */
1877
1878 struct type *
1879 basic_lookup_transparent_type (const char *name)
1880 {
1881 struct symbol *sym;
1882 struct symtab *s = NULL;
1883 struct blockvector *bv;
1884 struct objfile *objfile;
1885 struct block *block;
1886 struct type *t;
1887
1888 /* Now search all the global symbols. Do the symtab's first, then
1889 check the psymtab's. If a psymtab indicates the existence
1890 of the desired name as a global, then do psymtab-to-symtab
1891 conversion on the fly and return the found symbol. */
1892
1893 ALL_OBJFILES (objfile)
1894 {
1895 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
1896 {
1897 bv = BLOCKVECTOR (s);
1898 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1899 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1900 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1901 {
1902 return SYMBOL_TYPE (sym);
1903 }
1904 }
1905 }
1906
1907 ALL_OBJFILES (objfile)
1908 {
1909 t = basic_lookup_transparent_type_quick (objfile, GLOBAL_BLOCK, name);
1910 if (t)
1911 return t;
1912 }
1913
1914 /* Now search the static file-level symbols.
1915 Not strictly correct, but more useful than an error.
1916 Do the symtab's first, then
1917 check the psymtab's. If a psymtab indicates the existence
1918 of the desired name as a file-level static, then do psymtab-to-symtab
1919 conversion on the fly and return the found symbol. */
1920
1921 ALL_OBJFILES (objfile)
1922 {
1923 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
1924 {
1925 bv = BLOCKVECTOR (s);
1926 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
1927 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1928 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1929 {
1930 return SYMBOL_TYPE (sym);
1931 }
1932 }
1933 }
1934
1935 ALL_OBJFILES (objfile)
1936 {
1937 t = basic_lookup_transparent_type_quick (objfile, STATIC_BLOCK, name);
1938 if (t)
1939 return t;
1940 }
1941
1942 return (struct type *) 0;
1943 }
1944
1945 /* Find the name of the file containing main(). */
1946 /* FIXME: What about languages without main() or specially linked
1947 executables that have no main() ? */
1948
1949 const char *
1950 find_main_filename (void)
1951 {
1952 struct objfile *objfile;
1953 char *name = main_name ();
1954
1955 ALL_OBJFILES (objfile)
1956 {
1957 const char *result;
1958
1959 if (!objfile->sf)
1960 continue;
1961 result = objfile->sf->qf->find_symbol_file (objfile, name);
1962 if (result)
1963 return result;
1964 }
1965 return (NULL);
1966 }
1967
1968 /* Search BLOCK for symbol NAME in DOMAIN.
1969
1970 Note that if NAME is the demangled form of a C++ symbol, we will fail
1971 to find a match during the binary search of the non-encoded names, but
1972 for now we don't worry about the slight inefficiency of looking for
1973 a match we'll never find, since it will go pretty quick. Once the
1974 binary search terminates, we drop through and do a straight linear
1975 search on the symbols. Each symbol which is marked as being a ObjC/C++
1976 symbol (language_cplus or language_objc set) has both the encoded and
1977 non-encoded names tested for a match. */
1978
1979 struct symbol *
1980 lookup_block_symbol (const struct block *block, const char *name,
1981 const domain_enum domain)
1982 {
1983 struct block_iterator iter;
1984 struct symbol *sym;
1985
1986 if (!BLOCK_FUNCTION (block))
1987 {
1988 for (sym = block_iter_name_first (block, name, &iter);
1989 sym != NULL;
1990 sym = block_iter_name_next (name, &iter))
1991 {
1992 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
1993 SYMBOL_DOMAIN (sym), domain))
1994 return sym;
1995 }
1996 return NULL;
1997 }
1998 else
1999 {
2000 /* Note that parameter symbols do not always show up last in the
2001 list; this loop makes sure to take anything else other than
2002 parameter symbols first; it only uses parameter symbols as a
2003 last resort. Note that this only takes up extra computation
2004 time on a match. */
2005
2006 struct symbol *sym_found = NULL;
2007
2008 for (sym = block_iter_name_first (block, name, &iter);
2009 sym != NULL;
2010 sym = block_iter_name_next (name, &iter))
2011 {
2012 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
2013 SYMBOL_DOMAIN (sym), domain))
2014 {
2015 sym_found = sym;
2016 if (!SYMBOL_IS_ARGUMENT (sym))
2017 {
2018 break;
2019 }
2020 }
2021 }
2022 return (sym_found); /* Will be NULL if not found. */
2023 }
2024 }
2025
2026 /* Iterate over the symbols named NAME, matching DOMAIN, starting with
2027 BLOCK.
2028
2029 For each symbol that matches, CALLBACK is called. The symbol and
2030 DATA are passed to the callback.
2031
2032 If CALLBACK returns zero, the iteration ends. Otherwise, the
2033 search continues. This function iterates upward through blocks.
2034 When the outermost block has been finished, the function
2035 returns. */
2036
2037 void
2038 iterate_over_symbols (const struct block *block, const char *name,
2039 const domain_enum domain,
2040 symbol_found_callback_ftype *callback,
2041 void *data)
2042 {
2043 while (block)
2044 {
2045 struct block_iterator iter;
2046 struct symbol *sym;
2047
2048 for (sym = block_iter_name_first (block, name, &iter);
2049 sym != NULL;
2050 sym = block_iter_name_next (name, &iter))
2051 {
2052 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
2053 SYMBOL_DOMAIN (sym), domain))
2054 {
2055 if (!callback (sym, data))
2056 return;
2057 }
2058 }
2059
2060 block = BLOCK_SUPERBLOCK (block);
2061 }
2062 }
2063
2064 /* Find the symtab associated with PC and SECTION. Look through the
2065 psymtabs and read in another symtab if necessary. */
2066
2067 struct symtab *
2068 find_pc_sect_symtab (CORE_ADDR pc, struct obj_section *section)
2069 {
2070 struct block *b;
2071 struct blockvector *bv;
2072 struct symtab *s = NULL;
2073 struct symtab *best_s = NULL;
2074 struct objfile *objfile;
2075 CORE_ADDR distance = 0;
2076 struct minimal_symbol *msymbol;
2077
2078 /* If we know that this is not a text address, return failure. This is
2079 necessary because we loop based on the block's high and low code
2080 addresses, which do not include the data ranges, and because
2081 we call find_pc_sect_psymtab which has a similar restriction based
2082 on the partial_symtab's texthigh and textlow. */
2083 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
2084 if (msymbol
2085 && (MSYMBOL_TYPE (msymbol) == mst_data
2086 || MSYMBOL_TYPE (msymbol) == mst_bss
2087 || MSYMBOL_TYPE (msymbol) == mst_abs
2088 || MSYMBOL_TYPE (msymbol) == mst_file_data
2089 || MSYMBOL_TYPE (msymbol) == mst_file_bss))
2090 return NULL;
2091
2092 /* Search all symtabs for the one whose file contains our address, and which
2093 is the smallest of all the ones containing the address. This is designed
2094 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
2095 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
2096 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
2097
2098 This happens for native ecoff format, where code from included files
2099 gets its own symtab. The symtab for the included file should have
2100 been read in already via the dependency mechanism.
2101 It might be swifter to create several symtabs with the same name
2102 like xcoff does (I'm not sure).
2103
2104 It also happens for objfiles that have their functions reordered.
2105 For these, the symtab we are looking for is not necessarily read in. */
2106
2107 ALL_PRIMARY_SYMTABS (objfile, s)
2108 {
2109 bv = BLOCKVECTOR (s);
2110 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
2111
2112 if (BLOCK_START (b) <= pc
2113 && BLOCK_END (b) > pc
2114 && (distance == 0
2115 || BLOCK_END (b) - BLOCK_START (b) < distance))
2116 {
2117 /* For an objfile that has its functions reordered,
2118 find_pc_psymtab will find the proper partial symbol table
2119 and we simply return its corresponding symtab. */
2120 /* In order to better support objfiles that contain both
2121 stabs and coff debugging info, we continue on if a psymtab
2122 can't be found. */
2123 if ((objfile->flags & OBJF_REORDERED) && objfile->sf)
2124 {
2125 struct symtab *result;
2126
2127 result
2128 = objfile->sf->qf->find_pc_sect_symtab (objfile,
2129 msymbol,
2130 pc, section,
2131 0);
2132 if (result)
2133 return result;
2134 }
2135 if (section != 0)
2136 {
2137 struct block_iterator iter;
2138 struct symbol *sym = NULL;
2139
2140 ALL_BLOCK_SYMBOLS (b, iter, sym)
2141 {
2142 fixup_symbol_section (sym, objfile);
2143 if (matching_obj_sections (SYMBOL_OBJ_SECTION (sym), section))
2144 break;
2145 }
2146 if (sym == NULL)
2147 continue; /* No symbol in this symtab matches
2148 section. */
2149 }
2150 distance = BLOCK_END (b) - BLOCK_START (b);
2151 best_s = s;
2152 }
2153 }
2154
2155 if (best_s != NULL)
2156 return (best_s);
2157
2158 /* Not found in symtabs, search the "quick" symtabs (e.g. psymtabs). */
2159
2160 ALL_OBJFILES (objfile)
2161 {
2162 struct symtab *result;
2163
2164 if (!objfile->sf)
2165 continue;
2166 result = objfile->sf->qf->find_pc_sect_symtab (objfile,
2167 msymbol,
2168 pc, section,
2169 1);
2170 if (result)
2171 return result;
2172 }
2173
2174 return NULL;
2175 }
2176
2177 /* Find the symtab associated with PC. Look through the psymtabs and read
2178 in another symtab if necessary. Backward compatibility, no section. */
2179
2180 struct symtab *
2181 find_pc_symtab (CORE_ADDR pc)
2182 {
2183 return find_pc_sect_symtab (pc, find_pc_mapped_section (pc));
2184 }
2185 \f
2186
2187 /* Find the source file and line number for a given PC value and SECTION.
2188 Return a structure containing a symtab pointer, a line number,
2189 and a pc range for the entire source line.
2190 The value's .pc field is NOT the specified pc.
2191 NOTCURRENT nonzero means, if specified pc is on a line boundary,
2192 use the line that ends there. Otherwise, in that case, the line
2193 that begins there is used. */
2194
2195 /* The big complication here is that a line may start in one file, and end just
2196 before the start of another file. This usually occurs when you #include
2197 code in the middle of a subroutine. To properly find the end of a line's PC
2198 range, we must search all symtabs associated with this compilation unit, and
2199 find the one whose first PC is closer than that of the next line in this
2200 symtab. */
2201
2202 /* If it's worth the effort, we could be using a binary search. */
2203
2204 struct symtab_and_line
2205 find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent)
2206 {
2207 struct symtab *s;
2208 struct linetable *l;
2209 int len;
2210 int i;
2211 struct linetable_entry *item;
2212 struct symtab_and_line val;
2213 struct blockvector *bv;
2214 struct minimal_symbol *msymbol;
2215 struct minimal_symbol *mfunsym;
2216 struct objfile *objfile;
2217
2218 /* Info on best line seen so far, and where it starts, and its file. */
2219
2220 struct linetable_entry *best = NULL;
2221 CORE_ADDR best_end = 0;
2222 struct symtab *best_symtab = 0;
2223
2224 /* Store here the first line number
2225 of a file which contains the line at the smallest pc after PC.
2226 If we don't find a line whose range contains PC,
2227 we will use a line one less than this,
2228 with a range from the start of that file to the first line's pc. */
2229 struct linetable_entry *alt = NULL;
2230
2231 /* Info on best line seen in this file. */
2232
2233 struct linetable_entry *prev;
2234
2235 /* If this pc is not from the current frame,
2236 it is the address of the end of a call instruction.
2237 Quite likely that is the start of the following statement.
2238 But what we want is the statement containing the instruction.
2239 Fudge the pc to make sure we get that. */
2240
2241 init_sal (&val); /* initialize to zeroes */
2242
2243 val.pspace = current_program_space;
2244
2245 /* It's tempting to assume that, if we can't find debugging info for
2246 any function enclosing PC, that we shouldn't search for line
2247 number info, either. However, GAS can emit line number info for
2248 assembly files --- very helpful when debugging hand-written
2249 assembly code. In such a case, we'd have no debug info for the
2250 function, but we would have line info. */
2251
2252 if (notcurrent)
2253 pc -= 1;
2254
2255 /* elz: added this because this function returned the wrong
2256 information if the pc belongs to a stub (import/export)
2257 to call a shlib function. This stub would be anywhere between
2258 two functions in the target, and the line info was erroneously
2259 taken to be the one of the line before the pc. */
2260
2261 /* RT: Further explanation:
2262
2263 * We have stubs (trampolines) inserted between procedures.
2264 *
2265 * Example: "shr1" exists in a shared library, and a "shr1" stub also
2266 * exists in the main image.
2267 *
2268 * In the minimal symbol table, we have a bunch of symbols
2269 * sorted by start address. The stubs are marked as "trampoline",
2270 * the others appear as text. E.g.:
2271 *
2272 * Minimal symbol table for main image
2273 * main: code for main (text symbol)
2274 * shr1: stub (trampoline symbol)
2275 * foo: code for foo (text symbol)
2276 * ...
2277 * Minimal symbol table for "shr1" image:
2278 * ...
2279 * shr1: code for shr1 (text symbol)
2280 * ...
2281 *
2282 * So the code below is trying to detect if we are in the stub
2283 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
2284 * and if found, do the symbolization from the real-code address
2285 * rather than the stub address.
2286 *
2287 * Assumptions being made about the minimal symbol table:
2288 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
2289 * if we're really in the trampoline.s If we're beyond it (say
2290 * we're in "foo" in the above example), it'll have a closer
2291 * symbol (the "foo" text symbol for example) and will not
2292 * return the trampoline.
2293 * 2. lookup_minimal_symbol_text() will find a real text symbol
2294 * corresponding to the trampoline, and whose address will
2295 * be different than the trampoline address. I put in a sanity
2296 * check for the address being the same, to avoid an
2297 * infinite recursion.
2298 */
2299 msymbol = lookup_minimal_symbol_by_pc (pc);
2300 if (msymbol != NULL)
2301 if (MSYMBOL_TYPE (msymbol) == mst_solib_trampoline)
2302 {
2303 mfunsym = lookup_minimal_symbol_text (SYMBOL_LINKAGE_NAME (msymbol),
2304 NULL);
2305 if (mfunsym == NULL)
2306 /* I eliminated this warning since it is coming out
2307 * in the following situation:
2308 * gdb shmain // test program with shared libraries
2309 * (gdb) break shr1 // function in shared lib
2310 * Warning: In stub for ...
2311 * In the above situation, the shared lib is not loaded yet,
2312 * so of course we can't find the real func/line info,
2313 * but the "break" still works, and the warning is annoying.
2314 * So I commented out the warning. RT */
2315 /* warning ("In stub for %s; unable to find real function/line info",
2316 SYMBOL_LINKAGE_NAME (msymbol)); */
2317 ;
2318 /* fall through */
2319 else if (SYMBOL_VALUE_ADDRESS (mfunsym)
2320 == SYMBOL_VALUE_ADDRESS (msymbol))
2321 /* Avoid infinite recursion */
2322 /* See above comment about why warning is commented out. */
2323 /* warning ("In stub for %s; unable to find real function/line info",
2324 SYMBOL_LINKAGE_NAME (msymbol)); */
2325 ;
2326 /* fall through */
2327 else
2328 return find_pc_line (SYMBOL_VALUE_ADDRESS (mfunsym), 0);
2329 }
2330
2331
2332 s = find_pc_sect_symtab (pc, section);
2333 if (!s)
2334 {
2335 /* If no symbol information, return previous pc. */
2336 if (notcurrent)
2337 pc++;
2338 val.pc = pc;
2339 return val;
2340 }
2341
2342 bv = BLOCKVECTOR (s);
2343 objfile = s->objfile;
2344
2345 /* Look at all the symtabs that share this blockvector.
2346 They all have the same apriori range, that we found was right;
2347 but they have different line tables. */
2348
2349 ALL_OBJFILE_SYMTABS (objfile, s)
2350 {
2351 if (BLOCKVECTOR (s) != bv)
2352 continue;
2353
2354 /* Find the best line in this symtab. */
2355 l = LINETABLE (s);
2356 if (!l)
2357 continue;
2358 len = l->nitems;
2359 if (len <= 0)
2360 {
2361 /* I think len can be zero if the symtab lacks line numbers
2362 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
2363 I'm not sure which, and maybe it depends on the symbol
2364 reader). */
2365 continue;
2366 }
2367
2368 prev = NULL;
2369 item = l->item; /* Get first line info. */
2370
2371 /* Is this file's first line closer than the first lines of other files?
2372 If so, record this file, and its first line, as best alternate. */
2373 if (item->pc > pc && (!alt || item->pc < alt->pc))
2374 alt = item;
2375
2376 for (i = 0; i < len; i++, item++)
2377 {
2378 /* Leave prev pointing to the linetable entry for the last line
2379 that started at or before PC. */
2380 if (item->pc > pc)
2381 break;
2382
2383 prev = item;
2384 }
2385
2386 /* At this point, prev points at the line whose start addr is <= pc, and
2387 item points at the next line. If we ran off the end of the linetable
2388 (pc >= start of the last line), then prev == item. If pc < start of
2389 the first line, prev will not be set. */
2390
2391 /* Is this file's best line closer than the best in the other files?
2392 If so, record this file, and its best line, as best so far. Don't
2393 save prev if it represents the end of a function (i.e. line number
2394 0) instead of a real line. */
2395
2396 if (prev && prev->line && (!best || prev->pc > best->pc))
2397 {
2398 best = prev;
2399 best_symtab = s;
2400
2401 /* Discard BEST_END if it's before the PC of the current BEST. */
2402 if (best_end <= best->pc)
2403 best_end = 0;
2404 }
2405
2406 /* If another line (denoted by ITEM) is in the linetable and its
2407 PC is after BEST's PC, but before the current BEST_END, then
2408 use ITEM's PC as the new best_end. */
2409 if (best && i < len && item->pc > best->pc
2410 && (best_end == 0 || best_end > item->pc))
2411 best_end = item->pc;
2412 }
2413
2414 if (!best_symtab)
2415 {
2416 /* If we didn't find any line number info, just return zeros.
2417 We used to return alt->line - 1 here, but that could be
2418 anywhere; if we don't have line number info for this PC,
2419 don't make some up. */
2420 val.pc = pc;
2421 }
2422 else if (best->line == 0)
2423 {
2424 /* If our best fit is in a range of PC's for which no line
2425 number info is available (line number is zero) then we didn't
2426 find any valid line information. */
2427 val.pc = pc;
2428 }
2429 else
2430 {
2431 val.symtab = best_symtab;
2432 val.line = best->line;
2433 val.pc = best->pc;
2434 if (best_end && (!alt || best_end < alt->pc))
2435 val.end = best_end;
2436 else if (alt)
2437 val.end = alt->pc;
2438 else
2439 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
2440 }
2441 val.section = section;
2442 return val;
2443 }
2444
2445 /* Backward compatibility (no section). */
2446
2447 struct symtab_and_line
2448 find_pc_line (CORE_ADDR pc, int notcurrent)
2449 {
2450 struct obj_section *section;
2451
2452 section = find_pc_overlay (pc);
2453 if (pc_in_unmapped_range (pc, section))
2454 pc = overlay_mapped_address (pc, section);
2455 return find_pc_sect_line (pc, section, notcurrent);
2456 }
2457 \f
2458 /* Find line number LINE in any symtab whose name is the same as
2459 SYMTAB.
2460
2461 If found, return the symtab that contains the linetable in which it was
2462 found, set *INDEX to the index in the linetable of the best entry
2463 found, and set *EXACT_MATCH nonzero if the value returned is an
2464 exact match.
2465
2466 If not found, return NULL. */
2467
2468 struct symtab *
2469 find_line_symtab (struct symtab *symtab, int line,
2470 int *index, int *exact_match)
2471 {
2472 int exact = 0; /* Initialized here to avoid a compiler warning. */
2473
2474 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
2475 so far seen. */
2476
2477 int best_index;
2478 struct linetable *best_linetable;
2479 struct symtab *best_symtab;
2480
2481 /* First try looking it up in the given symtab. */
2482 best_linetable = LINETABLE (symtab);
2483 best_symtab = symtab;
2484 best_index = find_line_common (best_linetable, line, &exact, 0);
2485 if (best_index < 0 || !exact)
2486 {
2487 /* Didn't find an exact match. So we better keep looking for
2488 another symtab with the same name. In the case of xcoff,
2489 multiple csects for one source file (produced by IBM's FORTRAN
2490 compiler) produce multiple symtabs (this is unavoidable
2491 assuming csects can be at arbitrary places in memory and that
2492 the GLOBAL_BLOCK of a symtab has a begin and end address). */
2493
2494 /* BEST is the smallest linenumber > LINE so far seen,
2495 or 0 if none has been seen so far.
2496 BEST_INDEX and BEST_LINETABLE identify the item for it. */
2497 int best;
2498
2499 struct objfile *objfile;
2500 struct symtab *s;
2501
2502 if (best_index >= 0)
2503 best = best_linetable->item[best_index].line;
2504 else
2505 best = 0;
2506
2507 ALL_OBJFILES (objfile)
2508 {
2509 if (objfile->sf)
2510 objfile->sf->qf->expand_symtabs_with_fullname (objfile,
2511 symtab_to_fullname (symtab));
2512 }
2513
2514 ALL_SYMTABS (objfile, s)
2515 {
2516 struct linetable *l;
2517 int ind;
2518
2519 if (FILENAME_CMP (symtab->filename, s->filename) != 0)
2520 continue;
2521 if (FILENAME_CMP (symtab_to_fullname (symtab),
2522 symtab_to_fullname (s)) != 0)
2523 continue;
2524 l = LINETABLE (s);
2525 ind = find_line_common (l, line, &exact, 0);
2526 if (ind >= 0)
2527 {
2528 if (exact)
2529 {
2530 best_index = ind;
2531 best_linetable = l;
2532 best_symtab = s;
2533 goto done;
2534 }
2535 if (best == 0 || l->item[ind].line < best)
2536 {
2537 best = l->item[ind].line;
2538 best_index = ind;
2539 best_linetable = l;
2540 best_symtab = s;
2541 }
2542 }
2543 }
2544 }
2545 done:
2546 if (best_index < 0)
2547 return NULL;
2548
2549 if (index)
2550 *index = best_index;
2551 if (exact_match)
2552 *exact_match = exact;
2553
2554 return best_symtab;
2555 }
2556
2557 /* Given SYMTAB, returns all the PCs function in the symtab that
2558 exactly match LINE. Returns NULL if there are no exact matches,
2559 but updates BEST_ITEM in this case. */
2560
2561 VEC (CORE_ADDR) *
2562 find_pcs_for_symtab_line (struct symtab *symtab, int line,
2563 struct linetable_entry **best_item)
2564 {
2565 int start = 0;
2566 VEC (CORE_ADDR) *result = NULL;
2567
2568 /* First, collect all the PCs that are at this line. */
2569 while (1)
2570 {
2571 int was_exact;
2572 int idx;
2573
2574 idx = find_line_common (LINETABLE (symtab), line, &was_exact, start);
2575 if (idx < 0)
2576 break;
2577
2578 if (!was_exact)
2579 {
2580 struct linetable_entry *item = &LINETABLE (symtab)->item[idx];
2581
2582 if (*best_item == NULL || item->line < (*best_item)->line)
2583 *best_item = item;
2584
2585 break;
2586 }
2587
2588 VEC_safe_push (CORE_ADDR, result, LINETABLE (symtab)->item[idx].pc);
2589 start = idx + 1;
2590 }
2591
2592 return result;
2593 }
2594
2595 \f
2596 /* Set the PC value for a given source file and line number and return true.
2597 Returns zero for invalid line number (and sets the PC to 0).
2598 The source file is specified with a struct symtab. */
2599
2600 int
2601 find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
2602 {
2603 struct linetable *l;
2604 int ind;
2605
2606 *pc = 0;
2607 if (symtab == 0)
2608 return 0;
2609
2610 symtab = find_line_symtab (symtab, line, &ind, NULL);
2611 if (symtab != NULL)
2612 {
2613 l = LINETABLE (symtab);
2614 *pc = l->item[ind].pc;
2615 return 1;
2616 }
2617 else
2618 return 0;
2619 }
2620
2621 /* Find the range of pc values in a line.
2622 Store the starting pc of the line into *STARTPTR
2623 and the ending pc (start of next line) into *ENDPTR.
2624 Returns 1 to indicate success.
2625 Returns 0 if could not find the specified line. */
2626
2627 int
2628 find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
2629 CORE_ADDR *endptr)
2630 {
2631 CORE_ADDR startaddr;
2632 struct symtab_and_line found_sal;
2633
2634 startaddr = sal.pc;
2635 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
2636 return 0;
2637
2638 /* This whole function is based on address. For example, if line 10 has
2639 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
2640 "info line *0x123" should say the line goes from 0x100 to 0x200
2641 and "info line *0x355" should say the line goes from 0x300 to 0x400.
2642 This also insures that we never give a range like "starts at 0x134
2643 and ends at 0x12c". */
2644
2645 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
2646 if (found_sal.line != sal.line)
2647 {
2648 /* The specified line (sal) has zero bytes. */
2649 *startptr = found_sal.pc;
2650 *endptr = found_sal.pc;
2651 }
2652 else
2653 {
2654 *startptr = found_sal.pc;
2655 *endptr = found_sal.end;
2656 }
2657 return 1;
2658 }
2659
2660 /* Given a line table and a line number, return the index into the line
2661 table for the pc of the nearest line whose number is >= the specified one.
2662 Return -1 if none is found. The value is >= 0 if it is an index.
2663 START is the index at which to start searching the line table.
2664
2665 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
2666
2667 static int
2668 find_line_common (struct linetable *l, int lineno,
2669 int *exact_match, int start)
2670 {
2671 int i;
2672 int len;
2673
2674 /* BEST is the smallest linenumber > LINENO so far seen,
2675 or 0 if none has been seen so far.
2676 BEST_INDEX identifies the item for it. */
2677
2678 int best_index = -1;
2679 int best = 0;
2680
2681 *exact_match = 0;
2682
2683 if (lineno <= 0)
2684 return -1;
2685 if (l == 0)
2686 return -1;
2687
2688 len = l->nitems;
2689 for (i = start; i < len; i++)
2690 {
2691 struct linetable_entry *item = &(l->item[i]);
2692
2693 if (item->line == lineno)
2694 {
2695 /* Return the first (lowest address) entry which matches. */
2696 *exact_match = 1;
2697 return i;
2698 }
2699
2700 if (item->line > lineno && (best == 0 || item->line < best))
2701 {
2702 best = item->line;
2703 best_index = i;
2704 }
2705 }
2706
2707 /* If we got here, we didn't get an exact match. */
2708 return best_index;
2709 }
2710
2711 int
2712 find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
2713 {
2714 struct symtab_and_line sal;
2715
2716 sal = find_pc_line (pc, 0);
2717 *startptr = sal.pc;
2718 *endptr = sal.end;
2719 return sal.symtab != 0;
2720 }
2721
2722 /* Given a function start address FUNC_ADDR and SYMTAB, find the first
2723 address for that function that has an entry in SYMTAB's line info
2724 table. If such an entry cannot be found, return FUNC_ADDR
2725 unaltered. */
2726
2727 static CORE_ADDR
2728 skip_prologue_using_lineinfo (CORE_ADDR func_addr, struct symtab *symtab)
2729 {
2730 CORE_ADDR func_start, func_end;
2731 struct linetable *l;
2732 int i;
2733
2734 /* Give up if this symbol has no lineinfo table. */
2735 l = LINETABLE (symtab);
2736 if (l == NULL)
2737 return func_addr;
2738
2739 /* Get the range for the function's PC values, or give up if we
2740 cannot, for some reason. */
2741 if (!find_pc_partial_function (func_addr, NULL, &func_start, &func_end))
2742 return func_addr;
2743
2744 /* Linetable entries are ordered by PC values, see the commentary in
2745 symtab.h where `struct linetable' is defined. Thus, the first
2746 entry whose PC is in the range [FUNC_START..FUNC_END[ is the
2747 address we are looking for. */
2748 for (i = 0; i < l->nitems; i++)
2749 {
2750 struct linetable_entry *item = &(l->item[i]);
2751
2752 /* Don't use line numbers of zero, they mark special entries in
2753 the table. See the commentary on symtab.h before the
2754 definition of struct linetable. */
2755 if (item->line > 0 && func_start <= item->pc && item->pc < func_end)
2756 return item->pc;
2757 }
2758
2759 return func_addr;
2760 }
2761
2762 /* Given a function symbol SYM, find the symtab and line for the start
2763 of the function.
2764 If the argument FUNFIRSTLINE is nonzero, we want the first line
2765 of real code inside the function. */
2766
2767 struct symtab_and_line
2768 find_function_start_sal (struct symbol *sym, int funfirstline)
2769 {
2770 struct symtab_and_line sal;
2771
2772 fixup_symbol_section (sym, NULL);
2773 sal = find_pc_sect_line (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)),
2774 SYMBOL_OBJ_SECTION (sym), 0);
2775
2776 /* We always should have a line for the function start address.
2777 If we don't, something is odd. Create a plain SAL refering
2778 just the PC and hope that skip_prologue_sal (if requested)
2779 can find a line number for after the prologue. */
2780 if (sal.pc < BLOCK_START (SYMBOL_BLOCK_VALUE (sym)))
2781 {
2782 init_sal (&sal);
2783 sal.pspace = current_program_space;
2784 sal.pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
2785 sal.section = SYMBOL_OBJ_SECTION (sym);
2786 }
2787
2788 if (funfirstline)
2789 skip_prologue_sal (&sal);
2790
2791 return sal;
2792 }
2793
2794 /* Adjust SAL to the first instruction past the function prologue.
2795 If the PC was explicitly specified, the SAL is not changed.
2796 If the line number was explicitly specified, at most the SAL's PC
2797 is updated. If SAL is already past the prologue, then do nothing. */
2798
2799 void
2800 skip_prologue_sal (struct symtab_and_line *sal)
2801 {
2802 struct symbol *sym;
2803 struct symtab_and_line start_sal;
2804 struct cleanup *old_chain;
2805 CORE_ADDR pc, saved_pc;
2806 struct obj_section *section;
2807 const char *name;
2808 struct objfile *objfile;
2809 struct gdbarch *gdbarch;
2810 struct block *b, *function_block;
2811 int force_skip, skip;
2812
2813 /* Do not change the SAL if PC was specified explicitly. */
2814 if (sal->explicit_pc)
2815 return;
2816
2817 old_chain = save_current_space_and_thread ();
2818 switch_to_program_space_and_thread (sal->pspace);
2819
2820 sym = find_pc_sect_function (sal->pc, sal->section);
2821 if (sym != NULL)
2822 {
2823 fixup_symbol_section (sym, NULL);
2824
2825 pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
2826 section = SYMBOL_OBJ_SECTION (sym);
2827 name = SYMBOL_LINKAGE_NAME (sym);
2828 objfile = SYMBOL_SYMTAB (sym)->objfile;
2829 }
2830 else
2831 {
2832 struct minimal_symbol *msymbol
2833 = lookup_minimal_symbol_by_pc_section (sal->pc, sal->section);
2834
2835 if (msymbol == NULL)
2836 {
2837 do_cleanups (old_chain);
2838 return;
2839 }
2840
2841 pc = SYMBOL_VALUE_ADDRESS (msymbol);
2842 section = SYMBOL_OBJ_SECTION (msymbol);
2843 name = SYMBOL_LINKAGE_NAME (msymbol);
2844 objfile = msymbol_objfile (msymbol);
2845 }
2846
2847 gdbarch = get_objfile_arch (objfile);
2848
2849 /* Process the prologue in two passes. In the first pass try to skip the
2850 prologue (SKIP is true) and verify there is a real need for it (indicated
2851 by FORCE_SKIP). If no such reason was found run a second pass where the
2852 prologue is not skipped (SKIP is false). */
2853
2854 skip = 1;
2855 force_skip = 1;
2856
2857 /* Be conservative - allow direct PC (without skipping prologue) only if we
2858 have proven the CU (Compilation Unit) supports it. sal->SYMTAB does not
2859 have to be set by the caller so we use SYM instead. */
2860 if (sym && SYMBOL_SYMTAB (sym)->locations_valid)
2861 force_skip = 0;
2862
2863 saved_pc = pc;
2864 do
2865 {
2866 pc = saved_pc;
2867
2868 /* If the function is in an unmapped overlay, use its unmapped LMA address,
2869 so that gdbarch_skip_prologue has something unique to work on. */
2870 if (section_is_overlay (section) && !section_is_mapped (section))
2871 pc = overlay_unmapped_address (pc, section);
2872
2873 /* Skip "first line" of function (which is actually its prologue). */
2874 pc += gdbarch_deprecated_function_start_offset (gdbarch);
2875 if (skip)
2876 pc = gdbarch_skip_prologue (gdbarch, pc);
2877
2878 /* For overlays, map pc back into its mapped VMA range. */
2879 pc = overlay_mapped_address (pc, section);
2880
2881 /* Calculate line number. */
2882 start_sal = find_pc_sect_line (pc, section, 0);
2883
2884 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
2885 line is still part of the same function. */
2886 if (skip && start_sal.pc != pc
2887 && (sym ? (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) <= start_sal.end
2888 && start_sal.end < BLOCK_END (SYMBOL_BLOCK_VALUE (sym)))
2889 : (lookup_minimal_symbol_by_pc_section (start_sal.end, section)
2890 == lookup_minimal_symbol_by_pc_section (pc, section))))
2891 {
2892 /* First pc of next line */
2893 pc = start_sal.end;
2894 /* Recalculate the line number (might not be N+1). */
2895 start_sal = find_pc_sect_line (pc, section, 0);
2896 }
2897
2898 /* On targets with executable formats that don't have a concept of
2899 constructors (ELF with .init has, PE doesn't), gcc emits a call
2900 to `__main' in `main' between the prologue and before user
2901 code. */
2902 if (gdbarch_skip_main_prologue_p (gdbarch)
2903 && name && strcmp_iw (name, "main") == 0)
2904 {
2905 pc = gdbarch_skip_main_prologue (gdbarch, pc);
2906 /* Recalculate the line number (might not be N+1). */
2907 start_sal = find_pc_sect_line (pc, section, 0);
2908 force_skip = 1;
2909 }
2910 }
2911 while (!force_skip && skip--);
2912
2913 /* If we still don't have a valid source line, try to find the first
2914 PC in the lineinfo table that belongs to the same function. This
2915 happens with COFF debug info, which does not seem to have an
2916 entry in lineinfo table for the code after the prologue which has
2917 no direct relation to source. For example, this was found to be
2918 the case with the DJGPP target using "gcc -gcoff" when the
2919 compiler inserted code after the prologue to make sure the stack
2920 is aligned. */
2921 if (!force_skip && sym && start_sal.symtab == NULL)
2922 {
2923 pc = skip_prologue_using_lineinfo (pc, SYMBOL_SYMTAB (sym));
2924 /* Recalculate the line number. */
2925 start_sal = find_pc_sect_line (pc, section, 0);
2926 }
2927
2928 do_cleanups (old_chain);
2929
2930 /* If we're already past the prologue, leave SAL unchanged. Otherwise
2931 forward SAL to the end of the prologue. */
2932 if (sal->pc >= pc)
2933 return;
2934
2935 sal->pc = pc;
2936 sal->section = section;
2937
2938 /* Unless the explicit_line flag was set, update the SAL line
2939 and symtab to correspond to the modified PC location. */
2940 if (sal->explicit_line)
2941 return;
2942
2943 sal->symtab = start_sal.symtab;
2944 sal->line = start_sal.line;
2945 sal->end = start_sal.end;
2946
2947 /* Check if we are now inside an inlined function. If we can,
2948 use the call site of the function instead. */
2949 b = block_for_pc_sect (sal->pc, sal->section);
2950 function_block = NULL;
2951 while (b != NULL)
2952 {
2953 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
2954 function_block = b;
2955 else if (BLOCK_FUNCTION (b) != NULL)
2956 break;
2957 b = BLOCK_SUPERBLOCK (b);
2958 }
2959 if (function_block != NULL
2960 && SYMBOL_LINE (BLOCK_FUNCTION (function_block)) != 0)
2961 {
2962 sal->line = SYMBOL_LINE (BLOCK_FUNCTION (function_block));
2963 sal->symtab = SYMBOL_SYMTAB (BLOCK_FUNCTION (function_block));
2964 }
2965 }
2966
2967 /* If P is of the form "operator[ \t]+..." where `...' is
2968 some legitimate operator text, return a pointer to the
2969 beginning of the substring of the operator text.
2970 Otherwise, return "". */
2971
2972 static char *
2973 operator_chars (char *p, char **end)
2974 {
2975 *end = "";
2976 if (strncmp (p, "operator", 8))
2977 return *end;
2978 p += 8;
2979
2980 /* Don't get faked out by `operator' being part of a longer
2981 identifier. */
2982 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
2983 return *end;
2984
2985 /* Allow some whitespace between `operator' and the operator symbol. */
2986 while (*p == ' ' || *p == '\t')
2987 p++;
2988
2989 /* Recognize 'operator TYPENAME'. */
2990
2991 if (isalpha (*p) || *p == '_' || *p == '$')
2992 {
2993 char *q = p + 1;
2994
2995 while (isalnum (*q) || *q == '_' || *q == '$')
2996 q++;
2997 *end = q;
2998 return p;
2999 }
3000
3001 while (*p)
3002 switch (*p)
3003 {
3004 case '\\': /* regexp quoting */
3005 if (p[1] == '*')
3006 {
3007 if (p[2] == '=') /* 'operator\*=' */
3008 *end = p + 3;
3009 else /* 'operator\*' */
3010 *end = p + 2;
3011 return p;
3012 }
3013 else if (p[1] == '[')
3014 {
3015 if (p[2] == ']')
3016 error (_("mismatched quoting on brackets, "
3017 "try 'operator\\[\\]'"));
3018 else if (p[2] == '\\' && p[3] == ']')
3019 {
3020 *end = p + 4; /* 'operator\[\]' */
3021 return p;
3022 }
3023 else
3024 error (_("nothing is allowed between '[' and ']'"));
3025 }
3026 else
3027 {
3028 /* Gratuitous qoute: skip it and move on. */
3029 p++;
3030 continue;
3031 }
3032 break;
3033 case '!':
3034 case '=':
3035 case '*':
3036 case '/':
3037 case '%':
3038 case '^':
3039 if (p[1] == '=')
3040 *end = p + 2;
3041 else
3042 *end = p + 1;
3043 return p;
3044 case '<':
3045 case '>':
3046 case '+':
3047 case '-':
3048 case '&':
3049 case '|':
3050 if (p[0] == '-' && p[1] == '>')
3051 {
3052 /* Struct pointer member operator 'operator->'. */
3053 if (p[2] == '*')
3054 {
3055 *end = p + 3; /* 'operator->*' */
3056 return p;
3057 }
3058 else if (p[2] == '\\')
3059 {
3060 *end = p + 4; /* Hopefully 'operator->\*' */
3061 return p;
3062 }
3063 else
3064 {
3065 *end = p + 2; /* 'operator->' */
3066 return p;
3067 }
3068 }
3069 if (p[1] == '=' || p[1] == p[0])
3070 *end = p + 2;
3071 else
3072 *end = p + 1;
3073 return p;
3074 case '~':
3075 case ',':
3076 *end = p + 1;
3077 return p;
3078 case '(':
3079 if (p[1] != ')')
3080 error (_("`operator ()' must be specified "
3081 "without whitespace in `()'"));
3082 *end = p + 2;
3083 return p;
3084 case '?':
3085 if (p[1] != ':')
3086 error (_("`operator ?:' must be specified "
3087 "without whitespace in `?:'"));
3088 *end = p + 2;
3089 return p;
3090 case '[':
3091 if (p[1] != ']')
3092 error (_("`operator []' must be specified "
3093 "without whitespace in `[]'"));
3094 *end = p + 2;
3095 return p;
3096 default:
3097 error (_("`operator %s' not supported"), p);
3098 break;
3099 }
3100
3101 *end = "";
3102 return *end;
3103 }
3104 \f
3105
3106 /* Cache to watch for file names already seen by filename_seen. */
3107
3108 struct filename_seen_cache
3109 {
3110 /* Table of files seen so far. */
3111 htab_t tab;
3112 /* Initial size of the table. It automagically grows from here. */
3113 #define INITIAL_FILENAME_SEEN_CACHE_SIZE 100
3114 };
3115
3116 /* filename_seen_cache constructor. */
3117
3118 static struct filename_seen_cache *
3119 create_filename_seen_cache (void)
3120 {
3121 struct filename_seen_cache *cache;
3122
3123 cache = XNEW (struct filename_seen_cache);
3124 cache->tab = htab_create_alloc (INITIAL_FILENAME_SEEN_CACHE_SIZE,
3125 filename_hash, filename_eq,
3126 NULL, xcalloc, xfree);
3127
3128 return cache;
3129 }
3130
3131 /* Empty the cache, but do not delete it. */
3132
3133 static void
3134 clear_filename_seen_cache (struct filename_seen_cache *cache)
3135 {
3136 htab_empty (cache->tab);
3137 }
3138
3139 /* filename_seen_cache destructor.
3140 This takes a void * argument as it is generally used as a cleanup. */
3141
3142 static void
3143 delete_filename_seen_cache (void *ptr)
3144 {
3145 struct filename_seen_cache *cache = ptr;
3146
3147 htab_delete (cache->tab);
3148 xfree (cache);
3149 }
3150
3151 /* If FILE is not already in the table of files in CACHE, return zero;
3152 otherwise return non-zero. Optionally add FILE to the table if ADD
3153 is non-zero.
3154
3155 NOTE: We don't manage space for FILE, we assume FILE lives as long
3156 as the caller needs. */
3157
3158 static int
3159 filename_seen (struct filename_seen_cache *cache, const char *file, int add)
3160 {
3161 void **slot;
3162
3163 /* Is FILE in tab? */
3164 slot = htab_find_slot (cache->tab, file, add ? INSERT : NO_INSERT);
3165 if (*slot != NULL)
3166 return 1;
3167
3168 /* No; maybe add it to tab. */
3169 if (add)
3170 *slot = (char *) file;
3171
3172 return 0;
3173 }
3174
3175 /* Data structure to maintain printing state for output_source_filename. */
3176
3177 struct output_source_filename_data
3178 {
3179 /* Cache of what we've seen so far. */
3180 struct filename_seen_cache *filename_seen_cache;
3181
3182 /* Flag of whether we're printing the first one. */
3183 int first;
3184 };
3185
3186 /* Slave routine for sources_info. Force line breaks at ,'s.
3187 NAME is the name to print.
3188 DATA contains the state for printing and watching for duplicates. */
3189
3190 static void
3191 output_source_filename (const char *name,
3192 struct output_source_filename_data *data)
3193 {
3194 /* Since a single source file can result in several partial symbol
3195 tables, we need to avoid printing it more than once. Note: if
3196 some of the psymtabs are read in and some are not, it gets
3197 printed both under "Source files for which symbols have been
3198 read" and "Source files for which symbols will be read in on
3199 demand". I consider this a reasonable way to deal with the
3200 situation. I'm not sure whether this can also happen for
3201 symtabs; it doesn't hurt to check. */
3202
3203 /* Was NAME already seen? */
3204 if (filename_seen (data->filename_seen_cache, name, 1))
3205 {
3206 /* Yes; don't print it again. */
3207 return;
3208 }
3209
3210 /* No; print it and reset *FIRST. */
3211 if (! data->first)
3212 printf_filtered (", ");
3213 data->first = 0;
3214
3215 wrap_here ("");
3216 fputs_filtered (name, gdb_stdout);
3217 }
3218
3219 /* A callback for map_partial_symbol_filenames. */
3220
3221 static void
3222 output_partial_symbol_filename (const char *filename, const char *fullname,
3223 void *data)
3224 {
3225 output_source_filename (fullname ? fullname : filename, data);
3226 }
3227
3228 static void
3229 sources_info (char *ignore, int from_tty)
3230 {
3231 struct symtab *s;
3232 struct objfile *objfile;
3233 struct output_source_filename_data data;
3234 struct cleanup *cleanups;
3235
3236 if (!have_full_symbols () && !have_partial_symbols ())
3237 {
3238 error (_("No symbol table is loaded. Use the \"file\" command."));
3239 }
3240
3241 data.filename_seen_cache = create_filename_seen_cache ();
3242 cleanups = make_cleanup (delete_filename_seen_cache,
3243 data.filename_seen_cache);
3244
3245 printf_filtered ("Source files for which symbols have been read in:\n\n");
3246
3247 data.first = 1;
3248 ALL_SYMTABS (objfile, s)
3249 {
3250 const char *fullname = symtab_to_fullname (s);
3251
3252 output_source_filename (fullname, &data);
3253 }
3254 printf_filtered ("\n\n");
3255
3256 printf_filtered ("Source files for which symbols "
3257 "will be read in on demand:\n\n");
3258
3259 clear_filename_seen_cache (data.filename_seen_cache);
3260 data.first = 1;
3261 map_partial_symbol_filenames (output_partial_symbol_filename, &data,
3262 1 /*need_fullname*/);
3263 printf_filtered ("\n");
3264
3265 do_cleanups (cleanups);
3266 }
3267
3268 /* Compare FILE against all the NFILES entries of FILES. If BASENAMES is
3269 non-zero compare only lbasename of FILES. */
3270
3271 static int
3272 file_matches (const char *file, char *files[], int nfiles, int basenames)
3273 {
3274 int i;
3275
3276 if (file != NULL && nfiles != 0)
3277 {
3278 for (i = 0; i < nfiles; i++)
3279 {
3280 if (compare_filenames_for_search (file, (basenames
3281 ? lbasename (files[i])
3282 : files[i])))
3283 return 1;
3284 }
3285 }
3286 else if (nfiles == 0)
3287 return 1;
3288 return 0;
3289 }
3290
3291 /* Free any memory associated with a search. */
3292
3293 void
3294 free_search_symbols (struct symbol_search *symbols)
3295 {
3296 struct symbol_search *p;
3297 struct symbol_search *next;
3298
3299 for (p = symbols; p != NULL; p = next)
3300 {
3301 next = p->next;
3302 xfree (p);
3303 }
3304 }
3305
3306 static void
3307 do_free_search_symbols_cleanup (void *symbols)
3308 {
3309 free_search_symbols (symbols);
3310 }
3311
3312 struct cleanup *
3313 make_cleanup_free_search_symbols (struct symbol_search *symbols)
3314 {
3315 return make_cleanup (do_free_search_symbols_cleanup, symbols);
3316 }
3317
3318 /* Helper function for sort_search_symbols and qsort. Can only
3319 sort symbols, not minimal symbols. */
3320
3321 static int
3322 compare_search_syms (const void *sa, const void *sb)
3323 {
3324 struct symbol_search **sym_a = (struct symbol_search **) sa;
3325 struct symbol_search **sym_b = (struct symbol_search **) sb;
3326
3327 return strcmp (SYMBOL_PRINT_NAME ((*sym_a)->symbol),
3328 SYMBOL_PRINT_NAME ((*sym_b)->symbol));
3329 }
3330
3331 /* Sort the ``nfound'' symbols in the list after prevtail. Leave
3332 prevtail where it is, but update its next pointer to point to
3333 the first of the sorted symbols. */
3334
3335 static struct symbol_search *
3336 sort_search_symbols (struct symbol_search *prevtail, int nfound)
3337 {
3338 struct symbol_search **symbols, *symp, *old_next;
3339 int i;
3340
3341 symbols = (struct symbol_search **) xmalloc (sizeof (struct symbol_search *)
3342 * nfound);
3343 symp = prevtail->next;
3344 for (i = 0; i < nfound; i++)
3345 {
3346 symbols[i] = symp;
3347 symp = symp->next;
3348 }
3349 /* Generally NULL. */
3350 old_next = symp;
3351
3352 qsort (symbols, nfound, sizeof (struct symbol_search *),
3353 compare_search_syms);
3354
3355 symp = prevtail;
3356 for (i = 0; i < nfound; i++)
3357 {
3358 symp->next = symbols[i];
3359 symp = symp->next;
3360 }
3361 symp->next = old_next;
3362
3363 xfree (symbols);
3364 return symp;
3365 }
3366
3367 /* An object of this type is passed as the user_data to the
3368 expand_symtabs_matching method. */
3369 struct search_symbols_data
3370 {
3371 int nfiles;
3372 char **files;
3373
3374 /* It is true if PREG contains valid data, false otherwise. */
3375 unsigned preg_p : 1;
3376 regex_t preg;
3377 };
3378
3379 /* A callback for expand_symtabs_matching. */
3380
3381 static int
3382 search_symbols_file_matches (const char *filename, void *user_data,
3383 int basenames)
3384 {
3385 struct search_symbols_data *data = user_data;
3386
3387 return file_matches (filename, data->files, data->nfiles, basenames);
3388 }
3389
3390 /* A callback for expand_symtabs_matching. */
3391
3392 static int
3393 search_symbols_name_matches (const char *symname, void *user_data)
3394 {
3395 struct search_symbols_data *data = user_data;
3396
3397 return !data->preg_p || regexec (&data->preg, symname, 0, NULL, 0) == 0;
3398 }
3399
3400 /* Search the symbol table for matches to the regular expression REGEXP,
3401 returning the results in *MATCHES.
3402
3403 Only symbols of KIND are searched:
3404 VARIABLES_DOMAIN - search all symbols, excluding functions, type names,
3405 and constants (enums)
3406 FUNCTIONS_DOMAIN - search all functions
3407 TYPES_DOMAIN - search all type names
3408 ALL_DOMAIN - an internal error for this function
3409
3410 free_search_symbols should be called when *MATCHES is no longer needed.
3411
3412 The results are sorted locally; each symtab's global and static blocks are
3413 separately alphabetized. */
3414
3415 void
3416 search_symbols (char *regexp, enum search_domain kind,
3417 int nfiles, char *files[],
3418 struct symbol_search **matches)
3419 {
3420 struct symtab *s;
3421 struct blockvector *bv;
3422 struct block *b;
3423 int i = 0;
3424 struct block_iterator iter;
3425 struct symbol *sym;
3426 struct objfile *objfile;
3427 struct minimal_symbol *msymbol;
3428 int found_misc = 0;
3429 static const enum minimal_symbol_type types[]
3430 = {mst_data, mst_text, mst_abs};
3431 static const enum minimal_symbol_type types2[]
3432 = {mst_bss, mst_file_text, mst_abs};
3433 static const enum minimal_symbol_type types3[]
3434 = {mst_file_data, mst_solib_trampoline, mst_abs};
3435 static const enum minimal_symbol_type types4[]
3436 = {mst_file_bss, mst_text_gnu_ifunc, mst_abs};
3437 enum minimal_symbol_type ourtype;
3438 enum minimal_symbol_type ourtype2;
3439 enum minimal_symbol_type ourtype3;
3440 enum minimal_symbol_type ourtype4;
3441 struct symbol_search *sr;
3442 struct symbol_search *psr;
3443 struct symbol_search *tail;
3444 struct search_symbols_data datum;
3445
3446 /* OLD_CHAIN .. RETVAL_CHAIN is always freed, RETVAL_CHAIN .. current
3447 CLEANUP_CHAIN is freed only in the case of an error. */
3448 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
3449 struct cleanup *retval_chain;
3450
3451 gdb_assert (kind <= TYPES_DOMAIN);
3452
3453 ourtype = types[kind];
3454 ourtype2 = types2[kind];
3455 ourtype3 = types3[kind];
3456 ourtype4 = types4[kind];
3457
3458 sr = *matches = NULL;
3459 tail = NULL;
3460 datum.preg_p = 0;
3461
3462 if (regexp != NULL)
3463 {
3464 /* Make sure spacing is right for C++ operators.
3465 This is just a courtesy to make the matching less sensitive
3466 to how many spaces the user leaves between 'operator'
3467 and <TYPENAME> or <OPERATOR>. */
3468 char *opend;
3469 char *opname = operator_chars (regexp, &opend);
3470 int errcode;
3471
3472 if (*opname)
3473 {
3474 int fix = -1; /* -1 means ok; otherwise number of
3475 spaces needed. */
3476
3477 if (isalpha (*opname) || *opname == '_' || *opname == '$')
3478 {
3479 /* There should 1 space between 'operator' and 'TYPENAME'. */
3480 if (opname[-1] != ' ' || opname[-2] == ' ')
3481 fix = 1;
3482 }
3483 else
3484 {
3485 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
3486 if (opname[-1] == ' ')
3487 fix = 0;
3488 }
3489 /* If wrong number of spaces, fix it. */
3490 if (fix >= 0)
3491 {
3492 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
3493
3494 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
3495 regexp = tmp;
3496 }
3497 }
3498
3499 errcode = regcomp (&datum.preg, regexp,
3500 REG_NOSUB | (case_sensitivity == case_sensitive_off
3501 ? REG_ICASE : 0));
3502 if (errcode != 0)
3503 {
3504 char *err = get_regcomp_error (errcode, &datum.preg);
3505
3506 make_cleanup (xfree, err);
3507 error (_("Invalid regexp (%s): %s"), err, regexp);
3508 }
3509 datum.preg_p = 1;
3510 make_regfree_cleanup (&datum.preg);
3511 }
3512
3513 /* Search through the partial symtabs *first* for all symbols
3514 matching the regexp. That way we don't have to reproduce all of
3515 the machinery below. */
3516
3517 datum.nfiles = nfiles;
3518 datum.files = files;
3519 ALL_OBJFILES (objfile)
3520 {
3521 if (objfile->sf)
3522 objfile->sf->qf->expand_symtabs_matching (objfile,
3523 (nfiles == 0
3524 ? NULL
3525 : search_symbols_file_matches),
3526 search_symbols_name_matches,
3527 kind,
3528 &datum);
3529 }
3530
3531 retval_chain = old_chain;
3532
3533 /* Here, we search through the minimal symbol tables for functions
3534 and variables that match, and force their symbols to be read.
3535 This is in particular necessary for demangled variable names,
3536 which are no longer put into the partial symbol tables.
3537 The symbol will then be found during the scan of symtabs below.
3538
3539 For functions, find_pc_symtab should succeed if we have debug info
3540 for the function, for variables we have to call
3541 lookup_symbol_in_objfile_from_linkage_name to determine if the variable
3542 has debug info.
3543 If the lookup fails, set found_misc so that we will rescan to print
3544 any matching symbols without debug info.
3545 We only search the objfile the msymbol came from, we no longer search
3546 all objfiles. In large programs (1000s of shared libs) searching all
3547 objfiles is not worth the pain. */
3548
3549 if (nfiles == 0 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
3550 {
3551 ALL_MSYMBOLS (objfile, msymbol)
3552 {
3553 QUIT;
3554
3555 if (msymbol->created_by_gdb)
3556 continue;
3557
3558 if (MSYMBOL_TYPE (msymbol) == ourtype
3559 || MSYMBOL_TYPE (msymbol) == ourtype2
3560 || MSYMBOL_TYPE (msymbol) == ourtype3
3561 || MSYMBOL_TYPE (msymbol) == ourtype4)
3562 {
3563 if (!datum.preg_p
3564 || regexec (&datum.preg, SYMBOL_NATURAL_NAME (msymbol), 0,
3565 NULL, 0) == 0)
3566 {
3567 /* Note: An important side-effect of these lookup functions
3568 is to expand the symbol table if msymbol is found, for the
3569 benefit of the next loop on ALL_PRIMARY_SYMTABS. */
3570 if (kind == FUNCTIONS_DOMAIN
3571 ? find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol)) == NULL
3572 : (lookup_symbol_in_objfile_from_linkage_name
3573 (objfile, SYMBOL_LINKAGE_NAME (msymbol), VAR_DOMAIN)
3574 == NULL))
3575 found_misc = 1;
3576 }
3577 }
3578 }
3579 }
3580
3581 ALL_PRIMARY_SYMTABS (objfile, s)
3582 {
3583 bv = BLOCKVECTOR (s);
3584 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
3585 {
3586 struct symbol_search *prevtail = tail;
3587 int nfound = 0;
3588
3589 b = BLOCKVECTOR_BLOCK (bv, i);
3590 ALL_BLOCK_SYMBOLS (b, iter, sym)
3591 {
3592 struct symtab *real_symtab = SYMBOL_SYMTAB (sym);
3593
3594 QUIT;
3595
3596 /* Check first sole REAL_SYMTAB->FILENAME. It does not need to be
3597 a substring of symtab_to_fullname as it may contain "./" etc. */
3598 if ((file_matches (real_symtab->filename, files, nfiles, 0)
3599 || ((basenames_may_differ
3600 || file_matches (lbasename (real_symtab->filename),
3601 files, nfiles, 1))
3602 && file_matches (symtab_to_fullname (real_symtab),
3603 files, nfiles, 0)))
3604 && ((!datum.preg_p
3605 || regexec (&datum.preg, SYMBOL_NATURAL_NAME (sym), 0,
3606 NULL, 0) == 0)
3607 && ((kind == VARIABLES_DOMAIN
3608 && SYMBOL_CLASS (sym) != LOC_TYPEDEF
3609 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
3610 && SYMBOL_CLASS (sym) != LOC_BLOCK
3611 /* LOC_CONST can be used for more than just enums,
3612 e.g., c++ static const members.
3613 We only want to skip enums here. */
3614 && !(SYMBOL_CLASS (sym) == LOC_CONST
3615 && TYPE_CODE (SYMBOL_TYPE (sym))
3616 == TYPE_CODE_ENUM))
3617 || (kind == FUNCTIONS_DOMAIN
3618 && SYMBOL_CLASS (sym) == LOC_BLOCK)
3619 || (kind == TYPES_DOMAIN
3620 && SYMBOL_CLASS (sym) == LOC_TYPEDEF))))
3621 {
3622 /* match */
3623 psr = (struct symbol_search *)
3624 xmalloc (sizeof (struct symbol_search));
3625 psr->block = i;
3626 psr->symtab = real_symtab;
3627 psr->symbol = sym;
3628 psr->msymbol = NULL;
3629 psr->next = NULL;
3630 if (tail == NULL)
3631 sr = psr;
3632 else
3633 tail->next = psr;
3634 tail = psr;
3635 nfound ++;
3636 }
3637 }
3638 if (nfound > 0)
3639 {
3640 if (prevtail == NULL)
3641 {
3642 struct symbol_search dummy;
3643
3644 dummy.next = sr;
3645 tail = sort_search_symbols (&dummy, nfound);
3646 sr = dummy.next;
3647
3648 make_cleanup_free_search_symbols (sr);
3649 }
3650 else
3651 tail = sort_search_symbols (prevtail, nfound);
3652 }
3653 }
3654 }
3655
3656 /* If there are no eyes, avoid all contact. I mean, if there are
3657 no debug symbols, then print directly from the msymbol_vector. */
3658
3659 if (found_misc || (nfiles == 0 && kind != FUNCTIONS_DOMAIN))
3660 {
3661 ALL_MSYMBOLS (objfile, msymbol)
3662 {
3663 QUIT;
3664
3665 if (msymbol->created_by_gdb)
3666 continue;
3667
3668 if (MSYMBOL_TYPE (msymbol) == ourtype
3669 || MSYMBOL_TYPE (msymbol) == ourtype2
3670 || MSYMBOL_TYPE (msymbol) == ourtype3
3671 || MSYMBOL_TYPE (msymbol) == ourtype4)
3672 {
3673 if (!datum.preg_p
3674 || regexec (&datum.preg, SYMBOL_NATURAL_NAME (msymbol), 0,
3675 NULL, 0) == 0)
3676 {
3677 /* For functions we can do a quick check of whether the
3678 symbol might be found via find_pc_symtab. */
3679 if (kind != FUNCTIONS_DOMAIN
3680 || find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol)) == NULL)
3681 {
3682 if (lookup_symbol_in_objfile_from_linkage_name
3683 (objfile, SYMBOL_LINKAGE_NAME (msymbol), VAR_DOMAIN)
3684 == NULL)
3685 {
3686 /* match */
3687 psr = (struct symbol_search *)
3688 xmalloc (sizeof (struct symbol_search));
3689 psr->block = i;
3690 psr->msymbol = msymbol;
3691 psr->symtab = NULL;
3692 psr->symbol = NULL;
3693 psr->next = NULL;
3694 if (tail == NULL)
3695 {
3696 sr = psr;
3697 make_cleanup_free_search_symbols (sr);
3698 }
3699 else
3700 tail->next = psr;
3701 tail = psr;
3702 }
3703 }
3704 }
3705 }
3706 }
3707 }
3708
3709 discard_cleanups (retval_chain);
3710 do_cleanups (old_chain);
3711 *matches = sr;
3712 }
3713
3714 /* Helper function for symtab_symbol_info, this function uses
3715 the data returned from search_symbols() to print information
3716 regarding the match to gdb_stdout. */
3717
3718 static void
3719 print_symbol_info (enum search_domain kind,
3720 struct symtab *s, struct symbol *sym,
3721 int block, const char *last)
3722 {
3723 const char *s_filename = symtab_to_filename_for_display (s);
3724
3725 if (last == NULL || filename_cmp (last, s_filename) != 0)
3726 {
3727 fputs_filtered ("\nFile ", gdb_stdout);
3728 fputs_filtered (s_filename, gdb_stdout);
3729 fputs_filtered (":\n", gdb_stdout);
3730 }
3731
3732 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
3733 printf_filtered ("static ");
3734
3735 /* Typedef that is not a C++ class. */
3736 if (kind == TYPES_DOMAIN
3737 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
3738 typedef_print (SYMBOL_TYPE (sym), sym, gdb_stdout);
3739 /* variable, func, or typedef-that-is-c++-class. */
3740 else if (kind < TYPES_DOMAIN
3741 || (kind == TYPES_DOMAIN
3742 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
3743 {
3744 type_print (SYMBOL_TYPE (sym),
3745 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
3746 ? "" : SYMBOL_PRINT_NAME (sym)),
3747 gdb_stdout, 0);
3748
3749 printf_filtered (";\n");
3750 }
3751 }
3752
3753 /* This help function for symtab_symbol_info() prints information
3754 for non-debugging symbols to gdb_stdout. */
3755
3756 static void
3757 print_msymbol_info (struct minimal_symbol *msymbol)
3758 {
3759 struct gdbarch *gdbarch = get_objfile_arch (msymbol_objfile (msymbol));
3760 char *tmp;
3761
3762 if (gdbarch_addr_bit (gdbarch) <= 32)
3763 tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol)
3764 & (CORE_ADDR) 0xffffffff,
3765 8);
3766 else
3767 tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol),
3768 16);
3769 printf_filtered ("%s %s\n",
3770 tmp, SYMBOL_PRINT_NAME (msymbol));
3771 }
3772
3773 /* This is the guts of the commands "info functions", "info types", and
3774 "info variables". It calls search_symbols to find all matches and then
3775 print_[m]symbol_info to print out some useful information about the
3776 matches. */
3777
3778 static void
3779 symtab_symbol_info (char *regexp, enum search_domain kind, int from_tty)
3780 {
3781 static const char * const classnames[] =
3782 {"variable", "function", "type"};
3783 struct symbol_search *symbols;
3784 struct symbol_search *p;
3785 struct cleanup *old_chain;
3786 const char *last_filename = NULL;
3787 int first = 1;
3788
3789 gdb_assert (kind <= TYPES_DOMAIN);
3790
3791 /* Must make sure that if we're interrupted, symbols gets freed. */
3792 search_symbols (regexp, kind, 0, (char **) NULL, &symbols);
3793 old_chain = make_cleanup_free_search_symbols (symbols);
3794
3795 if (regexp != NULL)
3796 printf_filtered (_("All %ss matching regular expression \"%s\":\n"),
3797 classnames[kind], regexp);
3798 else
3799 printf_filtered (_("All defined %ss:\n"), classnames[kind]);
3800
3801 for (p = symbols; p != NULL; p = p->next)
3802 {
3803 QUIT;
3804
3805 if (p->msymbol != NULL)
3806 {
3807 if (first)
3808 {
3809 printf_filtered (_("\nNon-debugging symbols:\n"));
3810 first = 0;
3811 }
3812 print_msymbol_info (p->msymbol);
3813 }
3814 else
3815 {
3816 print_symbol_info (kind,
3817 p->symtab,
3818 p->symbol,
3819 p->block,
3820 last_filename);
3821 last_filename = symtab_to_filename_for_display (p->symtab);
3822 }
3823 }
3824
3825 do_cleanups (old_chain);
3826 }
3827
3828 static void
3829 variables_info (char *regexp, int from_tty)
3830 {
3831 symtab_symbol_info (regexp, VARIABLES_DOMAIN, from_tty);
3832 }
3833
3834 static void
3835 functions_info (char *regexp, int from_tty)
3836 {
3837 symtab_symbol_info (regexp, FUNCTIONS_DOMAIN, from_tty);
3838 }
3839
3840
3841 static void
3842 types_info (char *regexp, int from_tty)
3843 {
3844 symtab_symbol_info (regexp, TYPES_DOMAIN, from_tty);
3845 }
3846
3847 /* Breakpoint all functions matching regular expression. */
3848
3849 void
3850 rbreak_command_wrapper (char *regexp, int from_tty)
3851 {
3852 rbreak_command (regexp, from_tty);
3853 }
3854
3855 /* A cleanup function that calls end_rbreak_breakpoints. */
3856
3857 static void
3858 do_end_rbreak_breakpoints (void *ignore)
3859 {
3860 end_rbreak_breakpoints ();
3861 }
3862
3863 static void
3864 rbreak_command (char *regexp, int from_tty)
3865 {
3866 struct symbol_search *ss;
3867 struct symbol_search *p;
3868 struct cleanup *old_chain;
3869 char *string = NULL;
3870 int len = 0;
3871 char **files = NULL, *file_name;
3872 int nfiles = 0;
3873
3874 if (regexp)
3875 {
3876 char *colon = strchr (regexp, ':');
3877
3878 if (colon && *(colon + 1) != ':')
3879 {
3880 int colon_index;
3881
3882 colon_index = colon - regexp;
3883 file_name = alloca (colon_index + 1);
3884 memcpy (file_name, regexp, colon_index);
3885 file_name[colon_index--] = 0;
3886 while (isspace (file_name[colon_index]))
3887 file_name[colon_index--] = 0;
3888 files = &file_name;
3889 nfiles = 1;
3890 regexp = colon + 1;
3891 while (isspace (*regexp)) regexp++;
3892 }
3893 }
3894
3895 search_symbols (regexp, FUNCTIONS_DOMAIN, nfiles, files, &ss);
3896 old_chain = make_cleanup_free_search_symbols (ss);
3897 make_cleanup (free_current_contents, &string);
3898
3899 start_rbreak_breakpoints ();
3900 make_cleanup (do_end_rbreak_breakpoints, NULL);
3901 for (p = ss; p != NULL; p = p->next)
3902 {
3903 if (p->msymbol == NULL)
3904 {
3905 const char *fullname = symtab_to_fullname (p->symtab);
3906
3907 int newlen = (strlen (fullname)
3908 + strlen (SYMBOL_LINKAGE_NAME (p->symbol))
3909 + 4);
3910
3911 if (newlen > len)
3912 {
3913 string = xrealloc (string, newlen);
3914 len = newlen;
3915 }
3916 strcpy (string, fullname);
3917 strcat (string, ":'");
3918 strcat (string, SYMBOL_LINKAGE_NAME (p->symbol));
3919 strcat (string, "'");
3920 break_command (string, from_tty);
3921 print_symbol_info (FUNCTIONS_DOMAIN,
3922 p->symtab,
3923 p->symbol,
3924 p->block,
3925 symtab_to_filename_for_display (p->symtab));
3926 }
3927 else
3928 {
3929 int newlen = (strlen (SYMBOL_LINKAGE_NAME (p->msymbol)) + 3);
3930
3931 if (newlen > len)
3932 {
3933 string = xrealloc (string, newlen);
3934 len = newlen;
3935 }
3936 strcpy (string, "'");
3937 strcat (string, SYMBOL_LINKAGE_NAME (p->msymbol));
3938 strcat (string, "'");
3939
3940 break_command (string, from_tty);
3941 printf_filtered ("<function, no debug info> %s;\n",
3942 SYMBOL_PRINT_NAME (p->msymbol));
3943 }
3944 }
3945
3946 do_cleanups (old_chain);
3947 }
3948 \f
3949
3950 /* Evaluate if NAME matches SYM_TEXT and SYM_TEXT_LEN.
3951
3952 Either sym_text[sym_text_len] != '(' and then we search for any
3953 symbol starting with SYM_TEXT text.
3954
3955 Otherwise sym_text[sym_text_len] == '(' and then we require symbol name to
3956 be terminated at that point. Partial symbol tables do not have parameters
3957 information. */
3958
3959 static int
3960 compare_symbol_name (const char *name, const char *sym_text, int sym_text_len)
3961 {
3962 int (*ncmp) (const char *, const char *, size_t);
3963
3964 ncmp = (case_sensitivity == case_sensitive_on ? strncmp : strncasecmp);
3965
3966 if (ncmp (name, sym_text, sym_text_len) != 0)
3967 return 0;
3968
3969 if (sym_text[sym_text_len] == '(')
3970 {
3971 /* User searches for `name(someth...'. Require NAME to be terminated.
3972 Normally psymtabs and gdbindex have no parameter types so '\0' will be
3973 present but accept even parameters presence. In this case this
3974 function is in fact strcmp_iw but whitespace skipping is not supported
3975 for tab completion. */
3976
3977 if (name[sym_text_len] != '\0' && name[sym_text_len] != '(')
3978 return 0;
3979 }
3980
3981 return 1;
3982 }
3983
3984 /* Free any memory associated with a completion list. */
3985
3986 static void
3987 free_completion_list (VEC (char_ptr) **list_ptr)
3988 {
3989 int i;
3990 char *p;
3991
3992 for (i = 0; VEC_iterate (char_ptr, *list_ptr, i, p); ++i)
3993 xfree (p);
3994 VEC_free (char_ptr, *list_ptr);
3995 }
3996
3997 /* Callback for make_cleanup. */
3998
3999 static void
4000 do_free_completion_list (void *list)
4001 {
4002 free_completion_list (list);
4003 }
4004
4005 /* Helper routine for make_symbol_completion_list. */
4006
4007 static VEC (char_ptr) *return_val;
4008
4009 #define COMPLETION_LIST_ADD_SYMBOL(symbol, sym_text, len, text, word) \
4010 completion_list_add_name \
4011 (SYMBOL_NATURAL_NAME (symbol), (sym_text), (len), (text), (word))
4012
4013 /* Test to see if the symbol specified by SYMNAME (which is already
4014 demangled for C++ symbols) matches SYM_TEXT in the first SYM_TEXT_LEN
4015 characters. If so, add it to the current completion list. */
4016
4017 static void
4018 completion_list_add_name (const char *symname,
4019 const char *sym_text, int sym_text_len,
4020 const char *text, const char *word)
4021 {
4022 /* Clip symbols that cannot match. */
4023 if (!compare_symbol_name (symname, sym_text, sym_text_len))
4024 return;
4025
4026 /* We have a match for a completion, so add SYMNAME to the current list
4027 of matches. Note that the name is moved to freshly malloc'd space. */
4028
4029 {
4030 char *new;
4031
4032 if (word == sym_text)
4033 {
4034 new = xmalloc (strlen (symname) + 5);
4035 strcpy (new, symname);
4036 }
4037 else if (word > sym_text)
4038 {
4039 /* Return some portion of symname. */
4040 new = xmalloc (strlen (symname) + 5);
4041 strcpy (new, symname + (word - sym_text));
4042 }
4043 else
4044 {
4045 /* Return some of SYM_TEXT plus symname. */
4046 new = xmalloc (strlen (symname) + (sym_text - word) + 5);
4047 strncpy (new, word, sym_text - word);
4048 new[sym_text - word] = '\0';
4049 strcat (new, symname);
4050 }
4051
4052 VEC_safe_push (char_ptr, return_val, new);
4053 }
4054 }
4055
4056 /* ObjC: In case we are completing on a selector, look as the msymbol
4057 again and feed all the selectors into the mill. */
4058
4059 static void
4060 completion_list_objc_symbol (struct minimal_symbol *msymbol,
4061 const char *sym_text, int sym_text_len,
4062 const char *text, const char *word)
4063 {
4064 static char *tmp = NULL;
4065 static unsigned int tmplen = 0;
4066
4067 const char *method, *category, *selector;
4068 char *tmp2 = NULL;
4069
4070 method = SYMBOL_NATURAL_NAME (msymbol);
4071
4072 /* Is it a method? */
4073 if ((method[0] != '-') && (method[0] != '+'))
4074 return;
4075
4076 if (sym_text[0] == '[')
4077 /* Complete on shortened method method. */
4078 completion_list_add_name (method + 1, sym_text, sym_text_len, text, word);
4079
4080 while ((strlen (method) + 1) >= tmplen)
4081 {
4082 if (tmplen == 0)
4083 tmplen = 1024;
4084 else
4085 tmplen *= 2;
4086 tmp = xrealloc (tmp, tmplen);
4087 }
4088 selector = strchr (method, ' ');
4089 if (selector != NULL)
4090 selector++;
4091
4092 category = strchr (method, '(');
4093
4094 if ((category != NULL) && (selector != NULL))
4095 {
4096 memcpy (tmp, method, (category - method));
4097 tmp[category - method] = ' ';
4098 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
4099 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
4100 if (sym_text[0] == '[')
4101 completion_list_add_name (tmp + 1, sym_text, sym_text_len, text, word);
4102 }
4103
4104 if (selector != NULL)
4105 {
4106 /* Complete on selector only. */
4107 strcpy (tmp, selector);
4108 tmp2 = strchr (tmp, ']');
4109 if (tmp2 != NULL)
4110 *tmp2 = '\0';
4111
4112 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
4113 }
4114 }
4115
4116 /* Break the non-quoted text based on the characters which are in
4117 symbols. FIXME: This should probably be language-specific. */
4118
4119 static char *
4120 language_search_unquoted_string (char *text, char *p)
4121 {
4122 for (; p > text; --p)
4123 {
4124 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
4125 continue;
4126 else
4127 {
4128 if ((current_language->la_language == language_objc))
4129 {
4130 if (p[-1] == ':') /* Might be part of a method name. */
4131 continue;
4132 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
4133 p -= 2; /* Beginning of a method name. */
4134 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
4135 { /* Might be part of a method name. */
4136 char *t = p;
4137
4138 /* Seeing a ' ' or a '(' is not conclusive evidence
4139 that we are in the middle of a method name. However,
4140 finding "-[" or "+[" should be pretty un-ambiguous.
4141 Unfortunately we have to find it now to decide. */
4142
4143 while (t > text)
4144 if (isalnum (t[-1]) || t[-1] == '_' ||
4145 t[-1] == ' ' || t[-1] == ':' ||
4146 t[-1] == '(' || t[-1] == ')')
4147 --t;
4148 else
4149 break;
4150
4151 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
4152 p = t - 2; /* Method name detected. */
4153 /* Else we leave with p unchanged. */
4154 }
4155 }
4156 break;
4157 }
4158 }
4159 return p;
4160 }
4161
4162 static void
4163 completion_list_add_fields (struct symbol *sym, char *sym_text,
4164 int sym_text_len, char *text, char *word)
4165 {
4166 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4167 {
4168 struct type *t = SYMBOL_TYPE (sym);
4169 enum type_code c = TYPE_CODE (t);
4170 int j;
4171
4172 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
4173 for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++)
4174 if (TYPE_FIELD_NAME (t, j))
4175 completion_list_add_name (TYPE_FIELD_NAME (t, j),
4176 sym_text, sym_text_len, text, word);
4177 }
4178 }
4179
4180 /* Type of the user_data argument passed to add_macro_name or
4181 expand_partial_symbol_name. The contents are simply whatever is
4182 needed by completion_list_add_name. */
4183 struct add_name_data
4184 {
4185 char *sym_text;
4186 int sym_text_len;
4187 char *text;
4188 char *word;
4189 };
4190
4191 /* A callback used with macro_for_each and macro_for_each_in_scope.
4192 This adds a macro's name to the current completion list. */
4193
4194 static void
4195 add_macro_name (const char *name, const struct macro_definition *ignore,
4196 struct macro_source_file *ignore2, int ignore3,
4197 void *user_data)
4198 {
4199 struct add_name_data *datum = (struct add_name_data *) user_data;
4200
4201 completion_list_add_name ((char *) name,
4202 datum->sym_text, datum->sym_text_len,
4203 datum->text, datum->word);
4204 }
4205
4206 /* A callback for expand_partial_symbol_names. */
4207
4208 static int
4209 expand_partial_symbol_name (const char *name, void *user_data)
4210 {
4211 struct add_name_data *datum = (struct add_name_data *) user_data;
4212
4213 return compare_symbol_name (name, datum->sym_text, datum->sym_text_len);
4214 }
4215
4216 VEC (char_ptr) *
4217 default_make_symbol_completion_list_break_on (char *text, char *word,
4218 const char *break_on,
4219 enum type_code code)
4220 {
4221 /* Problem: All of the symbols have to be copied because readline
4222 frees them. I'm not going to worry about this; hopefully there
4223 won't be that many. */
4224
4225 struct symbol *sym;
4226 struct symtab *s;
4227 struct minimal_symbol *msymbol;
4228 struct objfile *objfile;
4229 struct block *b;
4230 const struct block *surrounding_static_block, *surrounding_global_block;
4231 struct block_iterator iter;
4232 /* The symbol we are completing on. Points in same buffer as text. */
4233 char *sym_text;
4234 /* Length of sym_text. */
4235 int sym_text_len;
4236 struct add_name_data datum;
4237 struct cleanup *back_to;
4238
4239 /* Now look for the symbol we are supposed to complete on. */
4240 {
4241 char *p;
4242 char quote_found;
4243 char *quote_pos = NULL;
4244
4245 /* First see if this is a quoted string. */
4246 quote_found = '\0';
4247 for (p = text; *p != '\0'; ++p)
4248 {
4249 if (quote_found != '\0')
4250 {
4251 if (*p == quote_found)
4252 /* Found close quote. */
4253 quote_found = '\0';
4254 else if (*p == '\\' && p[1] == quote_found)
4255 /* A backslash followed by the quote character
4256 doesn't end the string. */
4257 ++p;
4258 }
4259 else if (*p == '\'' || *p == '"')
4260 {
4261 quote_found = *p;
4262 quote_pos = p;
4263 }
4264 }
4265 if (quote_found == '\'')
4266 /* A string within single quotes can be a symbol, so complete on it. */
4267 sym_text = quote_pos + 1;
4268 else if (quote_found == '"')
4269 /* A double-quoted string is never a symbol, nor does it make sense
4270 to complete it any other way. */
4271 {
4272 return NULL;
4273 }
4274 else
4275 {
4276 /* It is not a quoted string. Break it based on the characters
4277 which are in symbols. */
4278 while (p > text)
4279 {
4280 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0'
4281 || p[-1] == ':' || strchr (break_on, p[-1]) != NULL)
4282 --p;
4283 else
4284 break;
4285 }
4286 sym_text = p;
4287 }
4288 }
4289
4290 sym_text_len = strlen (sym_text);
4291
4292 /* Prepare SYM_TEXT_LEN for compare_symbol_name. */
4293
4294 if (current_language->la_language == language_cplus
4295 || current_language->la_language == language_java
4296 || current_language->la_language == language_fortran)
4297 {
4298 /* These languages may have parameters entered by user but they are never
4299 present in the partial symbol tables. */
4300
4301 const char *cs = memchr (sym_text, '(', sym_text_len);
4302
4303 if (cs)
4304 sym_text_len = cs - sym_text;
4305 }
4306 gdb_assert (sym_text[sym_text_len] == '\0' || sym_text[sym_text_len] == '(');
4307
4308 return_val = NULL;
4309 back_to = make_cleanup (do_free_completion_list, &return_val);
4310
4311 datum.sym_text = sym_text;
4312 datum.sym_text_len = sym_text_len;
4313 datum.text = text;
4314 datum.word = word;
4315
4316 /* Look through the partial symtabs for all symbols which begin
4317 by matching SYM_TEXT. Expand all CUs that you find to the list.
4318 The real names will get added by COMPLETION_LIST_ADD_SYMBOL below. */
4319 expand_partial_symbol_names (expand_partial_symbol_name, &datum);
4320
4321 /* At this point scan through the misc symbol vectors and add each
4322 symbol you find to the list. Eventually we want to ignore
4323 anything that isn't a text symbol (everything else will be
4324 handled by the psymtab code above). */
4325
4326 if (code == TYPE_CODE_UNDEF)
4327 {
4328 ALL_MSYMBOLS (objfile, msymbol)
4329 {
4330 QUIT;
4331 COMPLETION_LIST_ADD_SYMBOL (msymbol, sym_text, sym_text_len, text,
4332 word);
4333
4334 completion_list_objc_symbol (msymbol, sym_text, sym_text_len, text,
4335 word);
4336 }
4337 }
4338
4339 /* Search upwards from currently selected frame (so that we can
4340 complete on local vars). Also catch fields of types defined in
4341 this places which match our text string. Only complete on types
4342 visible from current context. */
4343
4344 b = get_selected_block (0);
4345 surrounding_static_block = block_static_block (b);
4346 surrounding_global_block = block_global_block (b);
4347 if (surrounding_static_block != NULL)
4348 while (b != surrounding_static_block)
4349 {
4350 QUIT;
4351
4352 ALL_BLOCK_SYMBOLS (b, iter, sym)
4353 {
4354 if (code == TYPE_CODE_UNDEF)
4355 {
4356 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text,
4357 word);
4358 completion_list_add_fields (sym, sym_text, sym_text_len, text,
4359 word);
4360 }
4361 else if (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4362 && TYPE_CODE (SYMBOL_TYPE (sym)) == code)
4363 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text,
4364 word);
4365 }
4366
4367 /* Stop when we encounter an enclosing function. Do not stop for
4368 non-inlined functions - the locals of the enclosing function
4369 are in scope for a nested function. */
4370 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
4371 break;
4372 b = BLOCK_SUPERBLOCK (b);
4373 }
4374
4375 /* Add fields from the file's types; symbols will be added below. */
4376
4377 if (code == TYPE_CODE_UNDEF)
4378 {
4379 if (surrounding_static_block != NULL)
4380 ALL_BLOCK_SYMBOLS (surrounding_static_block, iter, sym)
4381 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
4382
4383 if (surrounding_global_block != NULL)
4384 ALL_BLOCK_SYMBOLS (surrounding_global_block, iter, sym)
4385 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
4386 }
4387
4388 /* Go through the symtabs and check the externs and statics for
4389 symbols which match. */
4390
4391 ALL_PRIMARY_SYMTABS (objfile, s)
4392 {
4393 QUIT;
4394 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
4395 ALL_BLOCK_SYMBOLS (b, iter, sym)
4396 {
4397 if (code == TYPE_CODE_UNDEF
4398 || (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4399 && TYPE_CODE (SYMBOL_TYPE (sym)) == code))
4400 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4401 }
4402 }
4403
4404 ALL_PRIMARY_SYMTABS (objfile, s)
4405 {
4406 QUIT;
4407 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
4408 ALL_BLOCK_SYMBOLS (b, iter, sym)
4409 {
4410 if (code == TYPE_CODE_UNDEF
4411 || (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4412 && TYPE_CODE (SYMBOL_TYPE (sym)) == code))
4413 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4414 }
4415 }
4416
4417 /* Skip macros if we are completing a struct tag -- arguable but
4418 usually what is expected. */
4419 if (current_language->la_macro_expansion == macro_expansion_c
4420 && code == TYPE_CODE_UNDEF)
4421 {
4422 struct macro_scope *scope;
4423
4424 /* Add any macros visible in the default scope. Note that this
4425 may yield the occasional wrong result, because an expression
4426 might be evaluated in a scope other than the default. For
4427 example, if the user types "break file:line if <TAB>", the
4428 resulting expression will be evaluated at "file:line" -- but
4429 at there does not seem to be a way to detect this at
4430 completion time. */
4431 scope = default_macro_scope ();
4432 if (scope)
4433 {
4434 macro_for_each_in_scope (scope->file, scope->line,
4435 add_macro_name, &datum);
4436 xfree (scope);
4437 }
4438
4439 /* User-defined macros are always visible. */
4440 macro_for_each (macro_user_macros, add_macro_name, &datum);
4441 }
4442
4443 discard_cleanups (back_to);
4444 return (return_val);
4445 }
4446
4447 VEC (char_ptr) *
4448 default_make_symbol_completion_list (char *text, char *word,
4449 enum type_code code)
4450 {
4451 return default_make_symbol_completion_list_break_on (text, word, "", code);
4452 }
4453
4454 /* Return a vector of all symbols (regardless of class) which begin by
4455 matching TEXT. If the answer is no symbols, then the return value
4456 is NULL. */
4457
4458 VEC (char_ptr) *
4459 make_symbol_completion_list (char *text, char *word)
4460 {
4461 return current_language->la_make_symbol_completion_list (text, word,
4462 TYPE_CODE_UNDEF);
4463 }
4464
4465 /* Like make_symbol_completion_list, but only return STRUCT_DOMAIN
4466 symbols whose type code is CODE. */
4467
4468 VEC (char_ptr) *
4469 make_symbol_completion_type (char *text, char *word, enum type_code code)
4470 {
4471 gdb_assert (code == TYPE_CODE_UNION
4472 || code == TYPE_CODE_STRUCT
4473 || code == TYPE_CODE_CLASS
4474 || code == TYPE_CODE_ENUM);
4475 return current_language->la_make_symbol_completion_list (text, word, code);
4476 }
4477
4478 /* Like make_symbol_completion_list, but suitable for use as a
4479 completion function. */
4480
4481 VEC (char_ptr) *
4482 make_symbol_completion_list_fn (struct cmd_list_element *ignore,
4483 char *text, char *word)
4484 {
4485 return make_symbol_completion_list (text, word);
4486 }
4487
4488 /* Like make_symbol_completion_list, but returns a list of symbols
4489 defined in a source file FILE. */
4490
4491 VEC (char_ptr) *
4492 make_file_symbol_completion_list (char *text, char *word, char *srcfile)
4493 {
4494 struct symbol *sym;
4495 struct symtab *s;
4496 struct block *b;
4497 struct block_iterator iter;
4498 /* The symbol we are completing on. Points in same buffer as text. */
4499 char *sym_text;
4500 /* Length of sym_text. */
4501 int sym_text_len;
4502
4503 /* Now look for the symbol we are supposed to complete on.
4504 FIXME: This should be language-specific. */
4505 {
4506 char *p;
4507 char quote_found;
4508 char *quote_pos = NULL;
4509
4510 /* First see if this is a quoted string. */
4511 quote_found = '\0';
4512 for (p = text; *p != '\0'; ++p)
4513 {
4514 if (quote_found != '\0')
4515 {
4516 if (*p == quote_found)
4517 /* Found close quote. */
4518 quote_found = '\0';
4519 else if (*p == '\\' && p[1] == quote_found)
4520 /* A backslash followed by the quote character
4521 doesn't end the string. */
4522 ++p;
4523 }
4524 else if (*p == '\'' || *p == '"')
4525 {
4526 quote_found = *p;
4527 quote_pos = p;
4528 }
4529 }
4530 if (quote_found == '\'')
4531 /* A string within single quotes can be a symbol, so complete on it. */
4532 sym_text = quote_pos + 1;
4533 else if (quote_found == '"')
4534 /* A double-quoted string is never a symbol, nor does it make sense
4535 to complete it any other way. */
4536 {
4537 return NULL;
4538 }
4539 else
4540 {
4541 /* Not a quoted string. */
4542 sym_text = language_search_unquoted_string (text, p);
4543 }
4544 }
4545
4546 sym_text_len = strlen (sym_text);
4547
4548 return_val = NULL;
4549
4550 /* Find the symtab for SRCFILE (this loads it if it was not yet read
4551 in). */
4552 s = lookup_symtab (srcfile);
4553 if (s == NULL)
4554 {
4555 /* Maybe they typed the file with leading directories, while the
4556 symbol tables record only its basename. */
4557 const char *tail = lbasename (srcfile);
4558
4559 if (tail > srcfile)
4560 s = lookup_symtab (tail);
4561 }
4562
4563 /* If we have no symtab for that file, return an empty list. */
4564 if (s == NULL)
4565 return (return_val);
4566
4567 /* Go through this symtab and check the externs and statics for
4568 symbols which match. */
4569
4570 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
4571 ALL_BLOCK_SYMBOLS (b, iter, sym)
4572 {
4573 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4574 }
4575
4576 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
4577 ALL_BLOCK_SYMBOLS (b, iter, sym)
4578 {
4579 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4580 }
4581
4582 return (return_val);
4583 }
4584
4585 /* A helper function for make_source_files_completion_list. It adds
4586 another file name to a list of possible completions, growing the
4587 list as necessary. */
4588
4589 static void
4590 add_filename_to_list (const char *fname, char *text, char *word,
4591 VEC (char_ptr) **list)
4592 {
4593 char *new;
4594 size_t fnlen = strlen (fname);
4595
4596 if (word == text)
4597 {
4598 /* Return exactly fname. */
4599 new = xmalloc (fnlen + 5);
4600 strcpy (new, fname);
4601 }
4602 else if (word > text)
4603 {
4604 /* Return some portion of fname. */
4605 new = xmalloc (fnlen + 5);
4606 strcpy (new, fname + (word - text));
4607 }
4608 else
4609 {
4610 /* Return some of TEXT plus fname. */
4611 new = xmalloc (fnlen + (text - word) + 5);
4612 strncpy (new, word, text - word);
4613 new[text - word] = '\0';
4614 strcat (new, fname);
4615 }
4616 VEC_safe_push (char_ptr, *list, new);
4617 }
4618
4619 static int
4620 not_interesting_fname (const char *fname)
4621 {
4622 static const char *illegal_aliens[] = {
4623 "_globals_", /* inserted by coff_symtab_read */
4624 NULL
4625 };
4626 int i;
4627
4628 for (i = 0; illegal_aliens[i]; i++)
4629 {
4630 if (filename_cmp (fname, illegal_aliens[i]) == 0)
4631 return 1;
4632 }
4633 return 0;
4634 }
4635
4636 /* An object of this type is passed as the user_data argument to
4637 map_partial_symbol_filenames. */
4638 struct add_partial_filename_data
4639 {
4640 struct filename_seen_cache *filename_seen_cache;
4641 char *text;
4642 char *word;
4643 int text_len;
4644 VEC (char_ptr) **list;
4645 };
4646
4647 /* A callback for map_partial_symbol_filenames. */
4648
4649 static void
4650 maybe_add_partial_symtab_filename (const char *filename, const char *fullname,
4651 void *user_data)
4652 {
4653 struct add_partial_filename_data *data = user_data;
4654
4655 if (not_interesting_fname (filename))
4656 return;
4657 if (!filename_seen (data->filename_seen_cache, filename, 1)
4658 && filename_ncmp (filename, data->text, data->text_len) == 0)
4659 {
4660 /* This file matches for a completion; add it to the
4661 current list of matches. */
4662 add_filename_to_list (filename, data->text, data->word, data->list);
4663 }
4664 else
4665 {
4666 const char *base_name = lbasename (filename);
4667
4668 if (base_name != filename
4669 && !filename_seen (data->filename_seen_cache, base_name, 1)
4670 && filename_ncmp (base_name, data->text, data->text_len) == 0)
4671 add_filename_to_list (base_name, data->text, data->word, data->list);
4672 }
4673 }
4674
4675 /* Return a vector of all source files whose names begin with matching
4676 TEXT. The file names are looked up in the symbol tables of this
4677 program. If the answer is no matchess, then the return value is
4678 NULL. */
4679
4680 VEC (char_ptr) *
4681 make_source_files_completion_list (char *text, char *word)
4682 {
4683 struct symtab *s;
4684 struct objfile *objfile;
4685 size_t text_len = strlen (text);
4686 VEC (char_ptr) *list = NULL;
4687 const char *base_name;
4688 struct add_partial_filename_data datum;
4689 struct filename_seen_cache *filename_seen_cache;
4690 struct cleanup *back_to, *cache_cleanup;
4691
4692 if (!have_full_symbols () && !have_partial_symbols ())
4693 return list;
4694
4695 back_to = make_cleanup (do_free_completion_list, &list);
4696
4697 filename_seen_cache = create_filename_seen_cache ();
4698 cache_cleanup = make_cleanup (delete_filename_seen_cache,
4699 filename_seen_cache);
4700
4701 ALL_SYMTABS (objfile, s)
4702 {
4703 if (not_interesting_fname (s->filename))
4704 continue;
4705 if (!filename_seen (filename_seen_cache, s->filename, 1)
4706 && filename_ncmp (s->filename, text, text_len) == 0)
4707 {
4708 /* This file matches for a completion; add it to the current
4709 list of matches. */
4710 add_filename_to_list (s->filename, text, word, &list);
4711 }
4712 else
4713 {
4714 /* NOTE: We allow the user to type a base name when the
4715 debug info records leading directories, but not the other
4716 way around. This is what subroutines of breakpoint
4717 command do when they parse file names. */
4718 base_name = lbasename (s->filename);
4719 if (base_name != s->filename
4720 && !filename_seen (filename_seen_cache, base_name, 1)
4721 && filename_ncmp (base_name, text, text_len) == 0)
4722 add_filename_to_list (base_name, text, word, &list);
4723 }
4724 }
4725
4726 datum.filename_seen_cache = filename_seen_cache;
4727 datum.text = text;
4728 datum.word = word;
4729 datum.text_len = text_len;
4730 datum.list = &list;
4731 map_partial_symbol_filenames (maybe_add_partial_symtab_filename, &datum,
4732 0 /*need_fullname*/);
4733
4734 do_cleanups (cache_cleanup);
4735 discard_cleanups (back_to);
4736
4737 return list;
4738 }
4739
4740 /* Determine if PC is in the prologue of a function. The prologue is the area
4741 between the first instruction of a function, and the first executable line.
4742 Returns 1 if PC *might* be in prologue, 0 if definately *not* in prologue.
4743
4744 If non-zero, func_start is where we think the prologue starts, possibly
4745 by previous examination of symbol table information. */
4746
4747 int
4748 in_prologue (struct gdbarch *gdbarch, CORE_ADDR pc, CORE_ADDR func_start)
4749 {
4750 struct symtab_and_line sal;
4751 CORE_ADDR func_addr, func_end;
4752
4753 /* We have several sources of information we can consult to figure
4754 this out.
4755 - Compilers usually emit line number info that marks the prologue
4756 as its own "source line". So the ending address of that "line"
4757 is the end of the prologue. If available, this is the most
4758 reliable method.
4759 - The minimal symbols and partial symbols, which can usually tell
4760 us the starting and ending addresses of a function.
4761 - If we know the function's start address, we can call the
4762 architecture-defined gdbarch_skip_prologue function to analyze the
4763 instruction stream and guess where the prologue ends.
4764 - Our `func_start' argument; if non-zero, this is the caller's
4765 best guess as to the function's entry point. At the time of
4766 this writing, handle_inferior_event doesn't get this right, so
4767 it should be our last resort. */
4768
4769 /* Consult the partial symbol table, to find which function
4770 the PC is in. */
4771 if (! find_pc_partial_function (pc, NULL, &func_addr, &func_end))
4772 {
4773 CORE_ADDR prologue_end;
4774
4775 /* We don't even have minsym information, so fall back to using
4776 func_start, if given. */
4777 if (! func_start)
4778 return 1; /* We *might* be in a prologue. */
4779
4780 prologue_end = gdbarch_skip_prologue (gdbarch, func_start);
4781
4782 return func_start <= pc && pc < prologue_end;
4783 }
4784
4785 /* If we have line number information for the function, that's
4786 usually pretty reliable. */
4787 sal = find_pc_line (func_addr, 0);
4788
4789 /* Now sal describes the source line at the function's entry point,
4790 which (by convention) is the prologue. The end of that "line",
4791 sal.end, is the end of the prologue.
4792
4793 Note that, for functions whose source code is all on a single
4794 line, the line number information doesn't always end up this way.
4795 So we must verify that our purported end-of-prologue address is
4796 *within* the function, not at its start or end. */
4797 if (sal.line == 0
4798 || sal.end <= func_addr
4799 || func_end <= sal.end)
4800 {
4801 /* We don't have any good line number info, so use the minsym
4802 information, together with the architecture-specific prologue
4803 scanning code. */
4804 CORE_ADDR prologue_end = gdbarch_skip_prologue (gdbarch, func_addr);
4805
4806 return func_addr <= pc && pc < prologue_end;
4807 }
4808
4809 /* We have line number info, and it looks good. */
4810 return func_addr <= pc && pc < sal.end;
4811 }
4812
4813 /* Given PC at the function's start address, attempt to find the
4814 prologue end using SAL information. Return zero if the skip fails.
4815
4816 A non-optimized prologue traditionally has one SAL for the function
4817 and a second for the function body. A single line function has
4818 them both pointing at the same line.
4819
4820 An optimized prologue is similar but the prologue may contain
4821 instructions (SALs) from the instruction body. Need to skip those
4822 while not getting into the function body.
4823
4824 The functions end point and an increasing SAL line are used as
4825 indicators of the prologue's endpoint.
4826
4827 This code is based on the function refine_prologue_limit
4828 (found in ia64). */
4829
4830 CORE_ADDR
4831 skip_prologue_using_sal (struct gdbarch *gdbarch, CORE_ADDR func_addr)
4832 {
4833 struct symtab_and_line prologue_sal;
4834 CORE_ADDR start_pc;
4835 CORE_ADDR end_pc;
4836 struct block *bl;
4837
4838 /* Get an initial range for the function. */
4839 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
4840 start_pc += gdbarch_deprecated_function_start_offset (gdbarch);
4841
4842 prologue_sal = find_pc_line (start_pc, 0);
4843 if (prologue_sal.line != 0)
4844 {
4845 /* For languages other than assembly, treat two consecutive line
4846 entries at the same address as a zero-instruction prologue.
4847 The GNU assembler emits separate line notes for each instruction
4848 in a multi-instruction macro, but compilers generally will not
4849 do this. */
4850 if (prologue_sal.symtab->language != language_asm)
4851 {
4852 struct linetable *linetable = LINETABLE (prologue_sal.symtab);
4853 int idx = 0;
4854
4855 /* Skip any earlier lines, and any end-of-sequence marker
4856 from a previous function. */
4857 while (linetable->item[idx].pc != prologue_sal.pc
4858 || linetable->item[idx].line == 0)
4859 idx++;
4860
4861 if (idx+1 < linetable->nitems
4862 && linetable->item[idx+1].line != 0
4863 && linetable->item[idx+1].pc == start_pc)
4864 return start_pc;
4865 }
4866
4867 /* If there is only one sal that covers the entire function,
4868 then it is probably a single line function, like
4869 "foo(){}". */
4870 if (prologue_sal.end >= end_pc)
4871 return 0;
4872
4873 while (prologue_sal.end < end_pc)
4874 {
4875 struct symtab_and_line sal;
4876
4877 sal = find_pc_line (prologue_sal.end, 0);
4878 if (sal.line == 0)
4879 break;
4880 /* Assume that a consecutive SAL for the same (or larger)
4881 line mark the prologue -> body transition. */
4882 if (sal.line >= prologue_sal.line)
4883 break;
4884 /* Likewise if we are in a different symtab altogether
4885 (e.g. within a file included via #include).  */
4886 if (sal.symtab != prologue_sal.symtab)
4887 break;
4888
4889 /* The line number is smaller. Check that it's from the
4890 same function, not something inlined. If it's inlined,
4891 then there is no point comparing the line numbers. */
4892 bl = block_for_pc (prologue_sal.end);
4893 while (bl)
4894 {
4895 if (block_inlined_p (bl))
4896 break;
4897 if (BLOCK_FUNCTION (bl))
4898 {
4899 bl = NULL;
4900 break;
4901 }
4902 bl = BLOCK_SUPERBLOCK (bl);
4903 }
4904 if (bl != NULL)
4905 break;
4906
4907 /* The case in which compiler's optimizer/scheduler has
4908 moved instructions into the prologue. We look ahead in
4909 the function looking for address ranges whose
4910 corresponding line number is less the first one that we
4911 found for the function. This is more conservative then
4912 refine_prologue_limit which scans a large number of SALs
4913 looking for any in the prologue. */
4914 prologue_sal = sal;
4915 }
4916 }
4917
4918 if (prologue_sal.end < end_pc)
4919 /* Return the end of this line, or zero if we could not find a
4920 line. */
4921 return prologue_sal.end;
4922 else
4923 /* Don't return END_PC, which is past the end of the function. */
4924 return prologue_sal.pc;
4925 }
4926 \f
4927 /* Track MAIN */
4928 static char *name_of_main;
4929 enum language language_of_main = language_unknown;
4930
4931 void
4932 set_main_name (const char *name)
4933 {
4934 if (name_of_main != NULL)
4935 {
4936 xfree (name_of_main);
4937 name_of_main = NULL;
4938 language_of_main = language_unknown;
4939 }
4940 if (name != NULL)
4941 {
4942 name_of_main = xstrdup (name);
4943 language_of_main = language_unknown;
4944 }
4945 }
4946
4947 /* Deduce the name of the main procedure, and set NAME_OF_MAIN
4948 accordingly. */
4949
4950 static void
4951 find_main_name (void)
4952 {
4953 const char *new_main_name;
4954
4955 /* Try to see if the main procedure is in Ada. */
4956 /* FIXME: brobecker/2005-03-07: Another way of doing this would
4957 be to add a new method in the language vector, and call this
4958 method for each language until one of them returns a non-empty
4959 name. This would allow us to remove this hard-coded call to
4960 an Ada function. It is not clear that this is a better approach
4961 at this point, because all methods need to be written in a way
4962 such that false positives never be returned. For instance, it is
4963 important that a method does not return a wrong name for the main
4964 procedure if the main procedure is actually written in a different
4965 language. It is easy to guaranty this with Ada, since we use a
4966 special symbol generated only when the main in Ada to find the name
4967 of the main procedure. It is difficult however to see how this can
4968 be guarantied for languages such as C, for instance. This suggests
4969 that order of call for these methods becomes important, which means
4970 a more complicated approach. */
4971 new_main_name = ada_main_name ();
4972 if (new_main_name != NULL)
4973 {
4974 set_main_name (new_main_name);
4975 return;
4976 }
4977
4978 new_main_name = go_main_name ();
4979 if (new_main_name != NULL)
4980 {
4981 set_main_name (new_main_name);
4982 return;
4983 }
4984
4985 new_main_name = pascal_main_name ();
4986 if (new_main_name != NULL)
4987 {
4988 set_main_name (new_main_name);
4989 return;
4990 }
4991
4992 /* The languages above didn't identify the name of the main procedure.
4993 Fallback to "main". */
4994 set_main_name ("main");
4995 }
4996
4997 char *
4998 main_name (void)
4999 {
5000 if (name_of_main == NULL)
5001 find_main_name ();
5002
5003 return name_of_main;
5004 }
5005
5006 /* Handle ``executable_changed'' events for the symtab module. */
5007
5008 static void
5009 symtab_observer_executable_changed (void)
5010 {
5011 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
5012 set_main_name (NULL);
5013 }
5014
5015 /* Return 1 if the supplied producer string matches the ARM RealView
5016 compiler (armcc). */
5017
5018 int
5019 producer_is_realview (const char *producer)
5020 {
5021 static const char *const arm_idents[] = {
5022 "ARM C Compiler, ADS",
5023 "Thumb C Compiler, ADS",
5024 "ARM C++ Compiler, ADS",
5025 "Thumb C++ Compiler, ADS",
5026 "ARM/Thumb C/C++ Compiler, RVCT",
5027 "ARM C/C++ Compiler, RVCT"
5028 };
5029 int i;
5030
5031 if (producer == NULL)
5032 return 0;
5033
5034 for (i = 0; i < ARRAY_SIZE (arm_idents); i++)
5035 if (strncmp (producer, arm_idents[i], strlen (arm_idents[i])) == 0)
5036 return 1;
5037
5038 return 0;
5039 }
5040
5041 void
5042 _initialize_symtab (void)
5043 {
5044 add_info ("variables", variables_info, _("\
5045 All global and static variable names, or those matching REGEXP."));
5046 if (dbx_commands)
5047 add_com ("whereis", class_info, variables_info, _("\
5048 All global and static variable names, or those matching REGEXP."));
5049
5050 add_info ("functions", functions_info,
5051 _("All function names, or those matching REGEXP."));
5052
5053 /* FIXME: This command has at least the following problems:
5054 1. It prints builtin types (in a very strange and confusing fashion).
5055 2. It doesn't print right, e.g. with
5056 typedef struct foo *FOO
5057 type_print prints "FOO" when we want to make it (in this situation)
5058 print "struct foo *".
5059 I also think "ptype" or "whatis" is more likely to be useful (but if
5060 there is much disagreement "info types" can be fixed). */
5061 add_info ("types", types_info,
5062 _("All type names, or those matching REGEXP."));
5063
5064 add_info ("sources", sources_info,
5065 _("Source files in the program."));
5066
5067 add_com ("rbreak", class_breakpoint, rbreak_command,
5068 _("Set a breakpoint for all functions matching REGEXP."));
5069
5070 if (xdb_commands)
5071 {
5072 add_com ("lf", class_info, sources_info,
5073 _("Source files in the program"));
5074 add_com ("lg", class_info, variables_info, _("\
5075 All global and static variable names, or those matching REGEXP."));
5076 }
5077
5078 add_setshow_enum_cmd ("multiple-symbols", no_class,
5079 multiple_symbols_modes, &multiple_symbols_mode,
5080 _("\
5081 Set the debugger behavior when more than one symbol are possible matches\n\
5082 in an expression."), _("\
5083 Show how the debugger handles ambiguities in expressions."), _("\
5084 Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
5085 NULL, NULL, &setlist, &showlist);
5086
5087 add_setshow_boolean_cmd ("basenames-may-differ", class_obscure,
5088 &basenames_may_differ, _("\
5089 Set whether a source file may have multiple base names."), _("\
5090 Show whether a source file may have multiple base names."), _("\
5091 (A \"base name\" is the name of a file with the directory part removed.\n\
5092 Example: The base name of \"/home/user/hello.c\" is \"hello.c\".)\n\
5093 If set, GDB will canonicalize file names (e.g., expand symlinks)\n\
5094 before comparing them. Canonicalization is an expensive operation,\n\
5095 but it allows the same file be known by more than one base name.\n\
5096 If not set (the default), all source files are assumed to have just\n\
5097 one base name, and gdb will do file name comparisons more efficiently."),
5098 NULL, NULL,
5099 &setlist, &showlist);
5100
5101 add_setshow_boolean_cmd ("symtab-create", no_class, &symtab_create_debug,
5102 _("Set debugging of symbol table creation."),
5103 _("Show debugging of symbol table creation."), _("\
5104 When enabled, debugging messages are printed when building symbol tables."),
5105 NULL,
5106 NULL,
5107 &setdebuglist, &showdebuglist);
5108
5109 observer_attach_executable_changed (symtab_observer_executable_changed);
5110 }
This page took 0.142642 seconds and 4 git commands to generate.