2010-05-16 Michael Snyder <msnyder@vmware.com>
[deliverable/binutils-gdb.git] / gdb / symtab.c
1 /* Symbol table lookup for the GNU debugger, GDB.
2
3 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2007, 2008, 2009,
5 2010 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "symtab.h"
24 #include "gdbtypes.h"
25 #include "gdbcore.h"
26 #include "frame.h"
27 #include "target.h"
28 #include "value.h"
29 #include "symfile.h"
30 #include "objfiles.h"
31 #include "gdbcmd.h"
32 #include "call-cmds.h"
33 #include "gdb_regex.h"
34 #include "expression.h"
35 #include "language.h"
36 #include "demangle.h"
37 #include "inferior.h"
38 #include "linespec.h"
39 #include "source.h"
40 #include "filenames.h" /* for FILENAME_CMP */
41 #include "objc-lang.h"
42 #include "d-lang.h"
43 #include "ada-lang.h"
44 #include "p-lang.h"
45 #include "addrmap.h"
46
47 #include "hashtab.h"
48
49 #include "gdb_obstack.h"
50 #include "block.h"
51 #include "dictionary.h"
52
53 #include <sys/types.h>
54 #include <fcntl.h>
55 #include "gdb_string.h"
56 #include "gdb_stat.h"
57 #include <ctype.h>
58 #include "cp-abi.h"
59 #include "cp-support.h"
60 #include "observer.h"
61 #include "gdb_assert.h"
62 #include "solist.h"
63 #include "macrotab.h"
64 #include "macroscope.h"
65
66 #include "psymtab.h"
67
68 /* Prototypes for local functions */
69
70 static void completion_list_add_name (char *, char *, int, char *, char *);
71
72 static void rbreak_command (char *, int);
73
74 static void types_info (char *, int);
75
76 static void functions_info (char *, int);
77
78 static void variables_info (char *, int);
79
80 static void sources_info (char *, int);
81
82 static void output_source_filename (const char *, int *);
83
84 static int find_line_common (struct linetable *, int, int *);
85
86 /* This one is used by linespec.c */
87
88 char *operator_chars (char *p, char **end);
89
90 static struct symbol *lookup_symbol_aux (const char *name,
91 const struct block *block,
92 const domain_enum domain,
93 enum language language,
94 int *is_a_field_of_this);
95
96 static
97 struct symbol *lookup_symbol_aux_local (const char *name,
98 const struct block *block,
99 const domain_enum domain,
100 enum language language);
101
102 static
103 struct symbol *lookup_symbol_aux_symtabs (int block_index,
104 const char *name,
105 const domain_enum domain);
106
107 static
108 struct symbol *lookup_symbol_aux_quick (struct objfile *objfile,
109 int block_index,
110 const char *name,
111 const domain_enum domain);
112
113 static void print_symbol_info (domain_enum,
114 struct symtab *, struct symbol *, int, char *);
115
116 static void print_msymbol_info (struct minimal_symbol *);
117
118 static void symtab_symbol_info (char *, domain_enum, int);
119
120 void _initialize_symtab (void);
121
122 /* */
123
124 /* Allow the user to configure the debugger behavior with respect
125 to multiple-choice menus when more than one symbol matches during
126 a symbol lookup. */
127
128 const char multiple_symbols_ask[] = "ask";
129 const char multiple_symbols_all[] = "all";
130 const char multiple_symbols_cancel[] = "cancel";
131 static const char *multiple_symbols_modes[] =
132 {
133 multiple_symbols_ask,
134 multiple_symbols_all,
135 multiple_symbols_cancel,
136 NULL
137 };
138 static const char *multiple_symbols_mode = multiple_symbols_all;
139
140 /* Read-only accessor to AUTO_SELECT_MODE. */
141
142 const char *
143 multiple_symbols_select_mode (void)
144 {
145 return multiple_symbols_mode;
146 }
147
148 /* Block in which the most recently searched-for symbol was found.
149 Might be better to make this a parameter to lookup_symbol and
150 value_of_this. */
151
152 const struct block *block_found;
153
154 /* Check for a symtab of a specific name; first in symtabs, then in
155 psymtabs. *If* there is no '/' in the name, a match after a '/'
156 in the symtab filename will also work. */
157
158 struct symtab *
159 lookup_symtab (const char *name)
160 {
161 int found;
162 struct symtab *s = NULL;
163 struct objfile *objfile;
164 char *real_path = NULL;
165 char *full_path = NULL;
166
167 /* Here we are interested in canonicalizing an absolute path, not
168 absolutizing a relative path. */
169 if (IS_ABSOLUTE_PATH (name))
170 {
171 full_path = xfullpath (name);
172 make_cleanup (xfree, full_path);
173 real_path = gdb_realpath (name);
174 make_cleanup (xfree, real_path);
175 }
176
177 got_symtab:
178
179 /* First, search for an exact match */
180
181 ALL_SYMTABS (objfile, s)
182 {
183 if (FILENAME_CMP (name, s->filename) == 0)
184 {
185 return s;
186 }
187
188 /* If the user gave us an absolute path, try to find the file in
189 this symtab and use its absolute path. */
190
191 if (full_path != NULL)
192 {
193 const char *fp = symtab_to_fullname (s);
194
195 if (fp != NULL && FILENAME_CMP (full_path, fp) == 0)
196 {
197 return s;
198 }
199 }
200
201 if (real_path != NULL)
202 {
203 char *fullname = symtab_to_fullname (s);
204
205 if (fullname != NULL)
206 {
207 char *rp = gdb_realpath (fullname);
208
209 make_cleanup (xfree, rp);
210 if (FILENAME_CMP (real_path, rp) == 0)
211 {
212 return s;
213 }
214 }
215 }
216 }
217
218 /* Now, search for a matching tail (only if name doesn't have any dirs) */
219
220 if (lbasename (name) == name)
221 ALL_SYMTABS (objfile, s)
222 {
223 if (FILENAME_CMP (lbasename (s->filename), name) == 0)
224 return s;
225 }
226
227 /* Same search rules as above apply here, but now we look thru the
228 psymtabs. */
229
230 found = 0;
231 ALL_OBJFILES (objfile)
232 {
233 if (objfile->sf
234 && objfile->sf->qf->lookup_symtab (objfile, name, full_path, real_path,
235 &s))
236 {
237 found = 1;
238 break;
239 }
240 }
241
242 if (s != NULL)
243 return s;
244 if (!found)
245 return NULL;
246
247 /* At this point, we have located the psymtab for this file, but
248 the conversion to a symtab has failed. This usually happens
249 when we are looking up an include file. In this case,
250 PSYMTAB_TO_SYMTAB doesn't return a symtab, even though one has
251 been created. So, we need to run through the symtabs again in
252 order to find the file.
253 XXX - This is a crock, and should be fixed inside of the the
254 symbol parsing routines. */
255 goto got_symtab;
256 }
257 \f
258 /* Mangle a GDB method stub type. This actually reassembles the pieces of the
259 full method name, which consist of the class name (from T), the unadorned
260 method name from METHOD_ID, and the signature for the specific overload,
261 specified by SIGNATURE_ID. Note that this function is g++ specific. */
262
263 char *
264 gdb_mangle_name (struct type *type, int method_id, int signature_id)
265 {
266 int mangled_name_len;
267 char *mangled_name;
268 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
269 struct fn_field *method = &f[signature_id];
270 char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
271 char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
272 char *newname = type_name_no_tag (type);
273
274 /* Does the form of physname indicate that it is the full mangled name
275 of a constructor (not just the args)? */
276 int is_full_physname_constructor;
277
278 int is_constructor;
279 int is_destructor = is_destructor_name (physname);
280 /* Need a new type prefix. */
281 char *const_prefix = method->is_const ? "C" : "";
282 char *volatile_prefix = method->is_volatile ? "V" : "";
283 char buf[20];
284 int len = (newname == NULL ? 0 : strlen (newname));
285
286 /* Nothing to do if physname already contains a fully mangled v3 abi name
287 or an operator name. */
288 if ((physname[0] == '_' && physname[1] == 'Z')
289 || is_operator_name (field_name))
290 return xstrdup (physname);
291
292 is_full_physname_constructor = is_constructor_name (physname);
293
294 is_constructor =
295 is_full_physname_constructor || (newname && strcmp (field_name, newname) == 0);
296
297 if (!is_destructor)
298 is_destructor = (strncmp (physname, "__dt", 4) == 0);
299
300 if (is_destructor || is_full_physname_constructor)
301 {
302 mangled_name = (char *) xmalloc (strlen (physname) + 1);
303 strcpy (mangled_name, physname);
304 return mangled_name;
305 }
306
307 if (len == 0)
308 {
309 sprintf (buf, "__%s%s", const_prefix, volatile_prefix);
310 }
311 else if (physname[0] == 't' || physname[0] == 'Q')
312 {
313 /* The physname for template and qualified methods already includes
314 the class name. */
315 sprintf (buf, "__%s%s", const_prefix, volatile_prefix);
316 newname = NULL;
317 len = 0;
318 }
319 else
320 {
321 sprintf (buf, "__%s%s%d", const_prefix, volatile_prefix, len);
322 }
323 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
324 + strlen (buf) + len + strlen (physname) + 1);
325
326 mangled_name = (char *) xmalloc (mangled_name_len);
327 if (is_constructor)
328 mangled_name[0] = '\0';
329 else
330 strcpy (mangled_name, field_name);
331
332 strcat (mangled_name, buf);
333 /* If the class doesn't have a name, i.e. newname NULL, then we just
334 mangle it using 0 for the length of the class. Thus it gets mangled
335 as something starting with `::' rather than `classname::'. */
336 if (newname != NULL)
337 strcat (mangled_name, newname);
338
339 strcat (mangled_name, physname);
340 return (mangled_name);
341 }
342
343 \f
344 /* Initialize the language dependent portion of a symbol
345 depending upon the language for the symbol. */
346 void
347 symbol_init_language_specific (struct general_symbol_info *gsymbol,
348 enum language language)
349 {
350 gsymbol->language = language;
351 if (gsymbol->language == language_cplus
352 || gsymbol->language == language_d
353 || gsymbol->language == language_java
354 || gsymbol->language == language_objc)
355 {
356 gsymbol->language_specific.cplus_specific.demangled_name = NULL;
357 }
358 else
359 {
360 memset (&gsymbol->language_specific, 0,
361 sizeof (gsymbol->language_specific));
362 }
363 }
364
365 /* Functions to initialize a symbol's mangled name. */
366
367 /* Objects of this type are stored in the demangled name hash table. */
368 struct demangled_name_entry
369 {
370 char *mangled;
371 char demangled[1];
372 };
373
374 /* Hash function for the demangled name hash. */
375 static hashval_t
376 hash_demangled_name_entry (const void *data)
377 {
378 const struct demangled_name_entry *e = data;
379
380 return htab_hash_string (e->mangled);
381 }
382
383 /* Equality function for the demangled name hash. */
384 static int
385 eq_demangled_name_entry (const void *a, const void *b)
386 {
387 const struct demangled_name_entry *da = a;
388 const struct demangled_name_entry *db = b;
389
390 return strcmp (da->mangled, db->mangled) == 0;
391 }
392
393 /* Create the hash table used for demangled names. Each hash entry is
394 a pair of strings; one for the mangled name and one for the demangled
395 name. The entry is hashed via just the mangled name. */
396
397 static void
398 create_demangled_names_hash (struct objfile *objfile)
399 {
400 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
401 The hash table code will round this up to the next prime number.
402 Choosing a much larger table size wastes memory, and saves only about
403 1% in symbol reading. */
404
405 objfile->demangled_names_hash = htab_create_alloc
406 (256, hash_demangled_name_entry, eq_demangled_name_entry,
407 NULL, xcalloc, xfree);
408 }
409
410 /* Try to determine the demangled name for a symbol, based on the
411 language of that symbol. If the language is set to language_auto,
412 it will attempt to find any demangling algorithm that works and
413 then set the language appropriately. The returned name is allocated
414 by the demangler and should be xfree'd. */
415
416 static char *
417 symbol_find_demangled_name (struct general_symbol_info *gsymbol,
418 const char *mangled)
419 {
420 char *demangled = NULL;
421
422 if (gsymbol->language == language_unknown)
423 gsymbol->language = language_auto;
424
425 if (gsymbol->language == language_objc
426 || gsymbol->language == language_auto)
427 {
428 demangled =
429 objc_demangle (mangled, 0);
430 if (demangled != NULL)
431 {
432 gsymbol->language = language_objc;
433 return demangled;
434 }
435 }
436 if (gsymbol->language == language_cplus
437 || gsymbol->language == language_auto)
438 {
439 demangled =
440 cplus_demangle (mangled, DMGL_PARAMS | DMGL_ANSI | DMGL_VERBOSE);
441 if (demangled != NULL)
442 {
443 gsymbol->language = language_cplus;
444 return demangled;
445 }
446 }
447 if (gsymbol->language == language_java)
448 {
449 demangled =
450 cplus_demangle (mangled,
451 DMGL_PARAMS | DMGL_ANSI | DMGL_JAVA);
452 if (demangled != NULL)
453 {
454 gsymbol->language = language_java;
455 return demangled;
456 }
457 }
458 if (gsymbol->language == language_d
459 || gsymbol->language == language_auto)
460 {
461 demangled = d_demangle(mangled, 0);
462 if (demangled != NULL)
463 {
464 gsymbol->language = language_d;
465 return demangled;
466 }
467 }
468 return NULL;
469 }
470
471 /* Set both the mangled and demangled (if any) names for GSYMBOL based
472 on LINKAGE_NAME and LEN. Ordinarily, NAME is copied onto the
473 objfile's obstack; but if COPY_NAME is 0 and if NAME is
474 NUL-terminated, then this function assumes that NAME is already
475 correctly saved (either permanently or with a lifetime tied to the
476 objfile), and it will not be copied.
477
478 The hash table corresponding to OBJFILE is used, and the memory
479 comes from that objfile's objfile_obstack. LINKAGE_NAME is copied,
480 so the pointer can be discarded after calling this function. */
481
482 /* We have to be careful when dealing with Java names: when we run
483 into a Java minimal symbol, we don't know it's a Java symbol, so it
484 gets demangled as a C++ name. This is unfortunate, but there's not
485 much we can do about it: but when demangling partial symbols and
486 regular symbols, we'd better not reuse the wrong demangled name.
487 (See PR gdb/1039.) We solve this by putting a distinctive prefix
488 on Java names when storing them in the hash table. */
489
490 /* FIXME: carlton/2003-03-13: This is an unfortunate situation. I
491 don't mind the Java prefix so much: different languages have
492 different demangling requirements, so it's only natural that we
493 need to keep language data around in our demangling cache. But
494 it's not good that the minimal symbol has the wrong demangled name.
495 Unfortunately, I can't think of any easy solution to that
496 problem. */
497
498 #define JAVA_PREFIX "##JAVA$$"
499 #define JAVA_PREFIX_LEN 8
500
501 void
502 symbol_set_names (struct general_symbol_info *gsymbol,
503 const char *linkage_name, int len, int copy_name,
504 struct objfile *objfile)
505 {
506 struct demangled_name_entry **slot;
507 /* A 0-terminated copy of the linkage name. */
508 const char *linkage_name_copy;
509 /* A copy of the linkage name that might have a special Java prefix
510 added to it, for use when looking names up in the hash table. */
511 const char *lookup_name;
512 /* The length of lookup_name. */
513 int lookup_len;
514 struct demangled_name_entry entry;
515
516 if (gsymbol->language == language_ada)
517 {
518 /* In Ada, we do the symbol lookups using the mangled name, so
519 we can save some space by not storing the demangled name.
520
521 As a side note, we have also observed some overlap between
522 the C++ mangling and Ada mangling, similarly to what has
523 been observed with Java. Because we don't store the demangled
524 name with the symbol, we don't need to use the same trick
525 as Java. */
526 if (!copy_name)
527 gsymbol->name = (char *) linkage_name;
528 else
529 {
530 gsymbol->name = obstack_alloc (&objfile->objfile_obstack, len + 1);
531 memcpy (gsymbol->name, linkage_name, len);
532 gsymbol->name[len] = '\0';
533 }
534 gsymbol->language_specific.cplus_specific.demangled_name = NULL;
535
536 return;
537 }
538
539 if (objfile->demangled_names_hash == NULL)
540 create_demangled_names_hash (objfile);
541
542 /* The stabs reader generally provides names that are not
543 NUL-terminated; most of the other readers don't do this, so we
544 can just use the given copy, unless we're in the Java case. */
545 if (gsymbol->language == language_java)
546 {
547 char *alloc_name;
548
549 lookup_len = len + JAVA_PREFIX_LEN;
550 alloc_name = alloca (lookup_len + 1);
551 memcpy (alloc_name, JAVA_PREFIX, JAVA_PREFIX_LEN);
552 memcpy (alloc_name + JAVA_PREFIX_LEN, linkage_name, len);
553 alloc_name[lookup_len] = '\0';
554
555 lookup_name = alloc_name;
556 linkage_name_copy = alloc_name + JAVA_PREFIX_LEN;
557 }
558 else if (linkage_name[len] != '\0')
559 {
560 char *alloc_name;
561
562 lookup_len = len;
563 alloc_name = alloca (lookup_len + 1);
564 memcpy (alloc_name, linkage_name, len);
565 alloc_name[lookup_len] = '\0';
566
567 lookup_name = alloc_name;
568 linkage_name_copy = alloc_name;
569 }
570 else
571 {
572 lookup_len = len;
573 lookup_name = linkage_name;
574 linkage_name_copy = linkage_name;
575 }
576
577 entry.mangled = (char *) lookup_name;
578 slot = ((struct demangled_name_entry **)
579 htab_find_slot (objfile->demangled_names_hash,
580 &entry, INSERT));
581
582 /* If this name is not in the hash table, add it. */
583 if (*slot == NULL)
584 {
585 char *demangled_name = symbol_find_demangled_name (gsymbol,
586 linkage_name_copy);
587 int demangled_len = demangled_name ? strlen (demangled_name) : 0;
588
589 /* Suppose we have demangled_name==NULL, copy_name==0, and
590 lookup_name==linkage_name. In this case, we already have the
591 mangled name saved, and we don't have a demangled name. So,
592 you might think we could save a little space by not recording
593 this in the hash table at all.
594
595 It turns out that it is actually important to still save such
596 an entry in the hash table, because storing this name gives
597 us better bcache hit rates for partial symbols. */
598 if (!copy_name && lookup_name == linkage_name)
599 {
600 *slot = obstack_alloc (&objfile->objfile_obstack,
601 offsetof (struct demangled_name_entry,
602 demangled)
603 + demangled_len + 1);
604 (*slot)->mangled = (char *) lookup_name;
605 }
606 else
607 {
608 /* If we must copy the mangled name, put it directly after
609 the demangled name so we can have a single
610 allocation. */
611 *slot = obstack_alloc (&objfile->objfile_obstack,
612 offsetof (struct demangled_name_entry,
613 demangled)
614 + lookup_len + demangled_len + 2);
615 (*slot)->mangled = &((*slot)->demangled[demangled_len + 1]);
616 strcpy ((*slot)->mangled, lookup_name);
617 }
618
619 if (demangled_name != NULL)
620 {
621 strcpy ((*slot)->demangled, demangled_name);
622 xfree (demangled_name);
623 }
624 else
625 (*slot)->demangled[0] = '\0';
626 }
627
628 gsymbol->name = (*slot)->mangled + lookup_len - len;
629 if ((*slot)->demangled[0] != '\0')
630 gsymbol->language_specific.cplus_specific.demangled_name
631 = (*slot)->demangled;
632 else
633 gsymbol->language_specific.cplus_specific.demangled_name = NULL;
634 }
635
636 /* Return the source code name of a symbol. In languages where
637 demangling is necessary, this is the demangled name. */
638
639 char *
640 symbol_natural_name (const struct general_symbol_info *gsymbol)
641 {
642 switch (gsymbol->language)
643 {
644 case language_cplus:
645 case language_d:
646 case language_java:
647 case language_objc:
648 if (gsymbol->language_specific.cplus_specific.demangled_name != NULL)
649 return gsymbol->language_specific.cplus_specific.demangled_name;
650 break;
651 case language_ada:
652 if (gsymbol->language_specific.cplus_specific.demangled_name != NULL)
653 return gsymbol->language_specific.cplus_specific.demangled_name;
654 else
655 return ada_decode_symbol (gsymbol);
656 break;
657 default:
658 break;
659 }
660 return gsymbol->name;
661 }
662
663 /* Return the demangled name for a symbol based on the language for
664 that symbol. If no demangled name exists, return NULL. */
665 char *
666 symbol_demangled_name (const struct general_symbol_info *gsymbol)
667 {
668 switch (gsymbol->language)
669 {
670 case language_cplus:
671 case language_d:
672 case language_java:
673 case language_objc:
674 if (gsymbol->language_specific.cplus_specific.demangled_name != NULL)
675 return gsymbol->language_specific.cplus_specific.demangled_name;
676 break;
677 case language_ada:
678 if (gsymbol->language_specific.cplus_specific.demangled_name != NULL)
679 return gsymbol->language_specific.cplus_specific.demangled_name;
680 else
681 return ada_decode_symbol (gsymbol);
682 break;
683 default:
684 break;
685 }
686 return NULL;
687 }
688
689 /* Return the search name of a symbol---generally the demangled or
690 linkage name of the symbol, depending on how it will be searched for.
691 If there is no distinct demangled name, then returns the same value
692 (same pointer) as SYMBOL_LINKAGE_NAME. */
693 char *
694 symbol_search_name (const struct general_symbol_info *gsymbol)
695 {
696 if (gsymbol->language == language_ada)
697 return gsymbol->name;
698 else
699 return symbol_natural_name (gsymbol);
700 }
701
702 /* Initialize the structure fields to zero values. */
703 void
704 init_sal (struct symtab_and_line *sal)
705 {
706 sal->pspace = NULL;
707 sal->symtab = 0;
708 sal->section = 0;
709 sal->line = 0;
710 sal->pc = 0;
711 sal->end = 0;
712 sal->explicit_pc = 0;
713 sal->explicit_line = 0;
714 }
715 \f
716
717 /* Return 1 if the two sections are the same, or if they could
718 plausibly be copies of each other, one in an original object
719 file and another in a separated debug file. */
720
721 int
722 matching_obj_sections (struct obj_section *obj_first,
723 struct obj_section *obj_second)
724 {
725 asection *first = obj_first? obj_first->the_bfd_section : NULL;
726 asection *second = obj_second? obj_second->the_bfd_section : NULL;
727 struct objfile *obj;
728
729 /* If they're the same section, then they match. */
730 if (first == second)
731 return 1;
732
733 /* If either is NULL, give up. */
734 if (first == NULL || second == NULL)
735 return 0;
736
737 /* This doesn't apply to absolute symbols. */
738 if (first->owner == NULL || second->owner == NULL)
739 return 0;
740
741 /* If they're in the same object file, they must be different sections. */
742 if (first->owner == second->owner)
743 return 0;
744
745 /* Check whether the two sections are potentially corresponding. They must
746 have the same size, address, and name. We can't compare section indexes,
747 which would be more reliable, because some sections may have been
748 stripped. */
749 if (bfd_get_section_size (first) != bfd_get_section_size (second))
750 return 0;
751
752 /* In-memory addresses may start at a different offset, relativize them. */
753 if (bfd_get_section_vma (first->owner, first)
754 - bfd_get_start_address (first->owner)
755 != bfd_get_section_vma (second->owner, second)
756 - bfd_get_start_address (second->owner))
757 return 0;
758
759 if (bfd_get_section_name (first->owner, first) == NULL
760 || bfd_get_section_name (second->owner, second) == NULL
761 || strcmp (bfd_get_section_name (first->owner, first),
762 bfd_get_section_name (second->owner, second)) != 0)
763 return 0;
764
765 /* Otherwise check that they are in corresponding objfiles. */
766
767 ALL_OBJFILES (obj)
768 if (obj->obfd == first->owner)
769 break;
770 gdb_assert (obj != NULL);
771
772 if (obj->separate_debug_objfile != NULL
773 && obj->separate_debug_objfile->obfd == second->owner)
774 return 1;
775 if (obj->separate_debug_objfile_backlink != NULL
776 && obj->separate_debug_objfile_backlink->obfd == second->owner)
777 return 1;
778
779 return 0;
780 }
781
782 struct symtab *
783 find_pc_sect_symtab_via_partial (CORE_ADDR pc, struct obj_section *section)
784 {
785 struct objfile *objfile;
786 struct minimal_symbol *msymbol;
787
788 /* If we know that this is not a text address, return failure. This is
789 necessary because we loop based on texthigh and textlow, which do
790 not include the data ranges. */
791 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
792 if (msymbol
793 && (MSYMBOL_TYPE (msymbol) == mst_data
794 || MSYMBOL_TYPE (msymbol) == mst_bss
795 || MSYMBOL_TYPE (msymbol) == mst_abs
796 || MSYMBOL_TYPE (msymbol) == mst_file_data
797 || MSYMBOL_TYPE (msymbol) == mst_file_bss))
798 return NULL;
799
800 ALL_OBJFILES (objfile)
801 {
802 struct symtab *result = NULL;
803
804 if (objfile->sf)
805 result = objfile->sf->qf->find_pc_sect_symtab (objfile, msymbol,
806 pc, section, 0);
807 if (result)
808 return result;
809 }
810
811 return NULL;
812 }
813 \f
814 /* Debug symbols usually don't have section information. We need to dig that
815 out of the minimal symbols and stash that in the debug symbol. */
816
817 void
818 fixup_section (struct general_symbol_info *ginfo,
819 CORE_ADDR addr, struct objfile *objfile)
820 {
821 struct minimal_symbol *msym;
822
823 /* First, check whether a minimal symbol with the same name exists
824 and points to the same address. The address check is required
825 e.g. on PowerPC64, where the minimal symbol for a function will
826 point to the function descriptor, while the debug symbol will
827 point to the actual function code. */
828 msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->name, objfile);
829 if (msym)
830 {
831 ginfo->obj_section = SYMBOL_OBJ_SECTION (msym);
832 ginfo->section = SYMBOL_SECTION (msym);
833 }
834 else
835 {
836 /* Static, function-local variables do appear in the linker
837 (minimal) symbols, but are frequently given names that won't
838 be found via lookup_minimal_symbol(). E.g., it has been
839 observed in frv-uclinux (ELF) executables that a static,
840 function-local variable named "foo" might appear in the
841 linker symbols as "foo.6" or "foo.3". Thus, there is no
842 point in attempting to extend the lookup-by-name mechanism to
843 handle this case due to the fact that there can be multiple
844 names.
845
846 So, instead, search the section table when lookup by name has
847 failed. The ``addr'' and ``endaddr'' fields may have already
848 been relocated. If so, the relocation offset (i.e. the
849 ANOFFSET value) needs to be subtracted from these values when
850 performing the comparison. We unconditionally subtract it,
851 because, when no relocation has been performed, the ANOFFSET
852 value will simply be zero.
853
854 The address of the symbol whose section we're fixing up HAS
855 NOT BEEN adjusted (relocated) yet. It can't have been since
856 the section isn't yet known and knowing the section is
857 necessary in order to add the correct relocation value. In
858 other words, we wouldn't even be in this function (attempting
859 to compute the section) if it were already known.
860
861 Note that it is possible to search the minimal symbols
862 (subtracting the relocation value if necessary) to find the
863 matching minimal symbol, but this is overkill and much less
864 efficient. It is not necessary to find the matching minimal
865 symbol, only its section.
866
867 Note that this technique (of doing a section table search)
868 can fail when unrelocated section addresses overlap. For
869 this reason, we still attempt a lookup by name prior to doing
870 a search of the section table. */
871
872 struct obj_section *s;
873
874 ALL_OBJFILE_OSECTIONS (objfile, s)
875 {
876 int idx = s->the_bfd_section->index;
877 CORE_ADDR offset = ANOFFSET (objfile->section_offsets, idx);
878
879 if (obj_section_addr (s) - offset <= addr
880 && addr < obj_section_endaddr (s) - offset)
881 {
882 ginfo->obj_section = s;
883 ginfo->section = idx;
884 return;
885 }
886 }
887 }
888 }
889
890 struct symbol *
891 fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
892 {
893 CORE_ADDR addr;
894
895 if (!sym)
896 return NULL;
897
898 if (SYMBOL_OBJ_SECTION (sym))
899 return sym;
900
901 /* We either have an OBJFILE, or we can get at it from the sym's
902 symtab. Anything else is a bug. */
903 gdb_assert (objfile || SYMBOL_SYMTAB (sym));
904
905 if (objfile == NULL)
906 objfile = SYMBOL_SYMTAB (sym)->objfile;
907
908 /* We should have an objfile by now. */
909 gdb_assert (objfile);
910
911 switch (SYMBOL_CLASS (sym))
912 {
913 case LOC_STATIC:
914 case LOC_LABEL:
915 addr = SYMBOL_VALUE_ADDRESS (sym);
916 break;
917 case LOC_BLOCK:
918 addr = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
919 break;
920
921 default:
922 /* Nothing else will be listed in the minsyms -- no use looking
923 it up. */
924 return sym;
925 }
926
927 fixup_section (&sym->ginfo, addr, objfile);
928
929 return sym;
930 }
931
932 /* Find the definition for a specified symbol name NAME
933 in domain DOMAIN, visible from lexical block BLOCK.
934 Returns the struct symbol pointer, or zero if no symbol is found.
935 C++: if IS_A_FIELD_OF_THIS is nonzero on entry, check to see if
936 NAME is a field of the current implied argument `this'. If so set
937 *IS_A_FIELD_OF_THIS to 1, otherwise set it to zero.
938 BLOCK_FOUND is set to the block in which NAME is found (in the case of
939 a field of `this', value_of_this sets BLOCK_FOUND to the proper value.) */
940
941 /* This function has a bunch of loops in it and it would seem to be
942 attractive to put in some QUIT's (though I'm not really sure
943 whether it can run long enough to be really important). But there
944 are a few calls for which it would appear to be bad news to quit
945 out of here: find_proc_desc in alpha-tdep.c and mips-tdep.c. (Note
946 that there is C++ code below which can error(), but that probably
947 doesn't affect these calls since they are looking for a known
948 variable and thus can probably assume it will never hit the C++
949 code). */
950
951 struct symbol *
952 lookup_symbol_in_language (const char *name, const struct block *block,
953 const domain_enum domain, enum language lang,
954 int *is_a_field_of_this)
955 {
956 char *demangled_name = NULL;
957 const char *modified_name = NULL;
958 struct symbol *returnval;
959 struct cleanup *cleanup = make_cleanup (null_cleanup, 0);
960
961 modified_name = name;
962
963 /* If we are using C++, D, or Java, demangle the name before doing a
964 lookup, so we can always binary search. */
965 if (lang == language_cplus)
966 {
967 demangled_name = cplus_demangle (name, DMGL_ANSI | DMGL_PARAMS);
968 if (demangled_name)
969 {
970 modified_name = demangled_name;
971 make_cleanup (xfree, demangled_name);
972 }
973 else
974 {
975 /* If we were given a non-mangled name, canonicalize it
976 according to the language (so far only for C++). */
977 demangled_name = cp_canonicalize_string (name);
978 if (demangled_name)
979 {
980 modified_name = demangled_name;
981 make_cleanup (xfree, demangled_name);
982 }
983 }
984 }
985 else if (lang == language_java)
986 {
987 demangled_name = cplus_demangle (name,
988 DMGL_ANSI | DMGL_PARAMS | DMGL_JAVA);
989 if (demangled_name)
990 {
991 modified_name = demangled_name;
992 make_cleanup (xfree, demangled_name);
993 }
994 }
995 else if (lang == language_d)
996 {
997 demangled_name = d_demangle (name, 0);
998 if (demangled_name)
999 {
1000 modified_name = demangled_name;
1001 make_cleanup (xfree, demangled_name);
1002 }
1003 }
1004
1005 if (case_sensitivity == case_sensitive_off)
1006 {
1007 char *copy;
1008 int len, i;
1009
1010 len = strlen (name);
1011 copy = (char *) alloca (len + 1);
1012 for (i= 0; i < len; i++)
1013 copy[i] = tolower (name[i]);
1014 copy[len] = 0;
1015 modified_name = copy;
1016 }
1017
1018 returnval = lookup_symbol_aux (modified_name, block, domain, lang,
1019 is_a_field_of_this);
1020 do_cleanups (cleanup);
1021
1022 return returnval;
1023 }
1024
1025 /* Behave like lookup_symbol_in_language, but performed with the
1026 current language. */
1027
1028 struct symbol *
1029 lookup_symbol (const char *name, const struct block *block,
1030 domain_enum domain, int *is_a_field_of_this)
1031 {
1032 return lookup_symbol_in_language (name, block, domain,
1033 current_language->la_language,
1034 is_a_field_of_this);
1035 }
1036
1037 /* Behave like lookup_symbol except that NAME is the natural name
1038 of the symbol that we're looking for and, if LINKAGE_NAME is
1039 non-NULL, ensure that the symbol's linkage name matches as
1040 well. */
1041
1042 static struct symbol *
1043 lookup_symbol_aux (const char *name, const struct block *block,
1044 const domain_enum domain, enum language language,
1045 int *is_a_field_of_this)
1046 {
1047 struct symbol *sym;
1048 const struct language_defn *langdef;
1049 struct objfile *objfile;
1050
1051 /* Make sure we do something sensible with is_a_field_of_this, since
1052 the callers that set this parameter to some non-null value will
1053 certainly use it later and expect it to be either 0 or 1.
1054 If we don't set it, the contents of is_a_field_of_this are
1055 undefined. */
1056 if (is_a_field_of_this != NULL)
1057 *is_a_field_of_this = 0;
1058
1059 /* Search specified block and its superiors. Don't search
1060 STATIC_BLOCK or GLOBAL_BLOCK. */
1061
1062 sym = lookup_symbol_aux_local (name, block, domain, language);
1063 if (sym != NULL)
1064 return sym;
1065
1066 /* If requested to do so by the caller and if appropriate for LANGUAGE,
1067 check to see if NAME is a field of `this'. */
1068
1069 langdef = language_def (language);
1070
1071 if (langdef->la_name_of_this != NULL && is_a_field_of_this != NULL
1072 && block != NULL)
1073 {
1074 struct symbol *sym = NULL;
1075 const struct block *function_block = block;
1076
1077 /* 'this' is only defined in the function's block, so find the
1078 enclosing function block. */
1079 for (; function_block && !BLOCK_FUNCTION (function_block);
1080 function_block = BLOCK_SUPERBLOCK (function_block));
1081
1082 if (function_block && !dict_empty (BLOCK_DICT (function_block)))
1083 sym = lookup_block_symbol (function_block, langdef->la_name_of_this,
1084 VAR_DOMAIN);
1085 if (sym)
1086 {
1087 struct type *t = sym->type;
1088
1089 /* I'm not really sure that type of this can ever
1090 be typedefed; just be safe. */
1091 CHECK_TYPEDEF (t);
1092 if (TYPE_CODE (t) == TYPE_CODE_PTR
1093 || TYPE_CODE (t) == TYPE_CODE_REF)
1094 t = TYPE_TARGET_TYPE (t);
1095
1096 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
1097 && TYPE_CODE (t) != TYPE_CODE_UNION)
1098 error (_("Internal error: `%s' is not an aggregate"),
1099 langdef->la_name_of_this);
1100
1101 if (check_field (t, name))
1102 {
1103 *is_a_field_of_this = 1;
1104 return NULL;
1105 }
1106 }
1107 }
1108
1109 /* Now do whatever is appropriate for LANGUAGE to look
1110 up static and global variables. */
1111
1112 sym = langdef->la_lookup_symbol_nonlocal (name, block, domain);
1113 if (sym != NULL)
1114 return sym;
1115
1116 /* Now search all static file-level symbols. Not strictly correct,
1117 but more useful than an error. Do the symtabs first, then check
1118 the psymtabs. If a psymtab indicates the existence of the
1119 desired name as a file-level static, then do psymtab-to-symtab
1120 conversion on the fly and return the found symbol. */
1121
1122 sym = lookup_symbol_aux_symtabs (STATIC_BLOCK, name, domain);
1123 if (sym != NULL)
1124 return sym;
1125
1126 ALL_OBJFILES (objfile)
1127 {
1128 sym = lookup_symbol_aux_quick (objfile, STATIC_BLOCK, name, domain);
1129 if (sym != NULL)
1130 return sym;
1131 }
1132
1133 return NULL;
1134 }
1135
1136 /* Check to see if the symbol is defined in BLOCK or its superiors.
1137 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
1138
1139 static struct symbol *
1140 lookup_symbol_aux_local (const char *name, const struct block *block,
1141 const domain_enum domain,
1142 enum language language)
1143 {
1144 struct symbol *sym;
1145 const struct block *static_block = block_static_block (block);
1146 const char *scope = block_scope (block);
1147
1148 /* Check if either no block is specified or it's a global block. */
1149
1150 if (static_block == NULL)
1151 return NULL;
1152
1153 while (block != static_block)
1154 {
1155 sym = lookup_symbol_aux_block (name, block, domain);
1156 if (sym != NULL)
1157 return sym;
1158
1159 if (language == language_cplus)
1160 {
1161 sym = cp_lookup_symbol_imports (scope,
1162 name,
1163 block,
1164 domain,
1165 1,
1166 1);
1167 if (sym != NULL)
1168 return sym;
1169 }
1170
1171 if (BLOCK_FUNCTION (block) != NULL && block_inlined_p (block))
1172 break;
1173 block = BLOCK_SUPERBLOCK (block);
1174 }
1175
1176 /* We've reached the edge of the function without finding a result. */
1177
1178 return NULL;
1179 }
1180
1181 /* Look up OBJFILE to BLOCK. */
1182
1183 struct objfile *
1184 lookup_objfile_from_block (const struct block *block)
1185 {
1186 struct objfile *obj;
1187 struct symtab *s;
1188
1189 if (block == NULL)
1190 return NULL;
1191
1192 block = block_global_block (block);
1193 /* Go through SYMTABS. */
1194 ALL_SYMTABS (obj, s)
1195 if (block == BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK))
1196 {
1197 if (obj->separate_debug_objfile_backlink)
1198 obj = obj->separate_debug_objfile_backlink;
1199
1200 return obj;
1201 }
1202
1203 return NULL;
1204 }
1205
1206 /* Look up a symbol in a block; if found, fixup the symbol, and set
1207 block_found appropriately. */
1208
1209 struct symbol *
1210 lookup_symbol_aux_block (const char *name, const struct block *block,
1211 const domain_enum domain)
1212 {
1213 struct symbol *sym;
1214
1215 sym = lookup_block_symbol (block, name, domain);
1216 if (sym)
1217 {
1218 block_found = block;
1219 return fixup_symbol_section (sym, NULL);
1220 }
1221
1222 return NULL;
1223 }
1224
1225 /* Check all global symbols in OBJFILE in symtabs and
1226 psymtabs. */
1227
1228 struct symbol *
1229 lookup_global_symbol_from_objfile (const struct objfile *main_objfile,
1230 const char *name,
1231 const domain_enum domain)
1232 {
1233 const struct objfile *objfile;
1234 struct symbol *sym;
1235 struct blockvector *bv;
1236 const struct block *block;
1237 struct symtab *s;
1238
1239 for (objfile = main_objfile;
1240 objfile;
1241 objfile = objfile_separate_debug_iterate (main_objfile, objfile))
1242 {
1243 /* Go through symtabs. */
1244 ALL_OBJFILE_SYMTABS (objfile, s)
1245 {
1246 bv = BLOCKVECTOR (s);
1247 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1248 sym = lookup_block_symbol (block, name, domain);
1249 if (sym)
1250 {
1251 block_found = block;
1252 return fixup_symbol_section (sym, (struct objfile *)objfile);
1253 }
1254 }
1255
1256 sym = lookup_symbol_aux_quick ((struct objfile *) objfile, GLOBAL_BLOCK,
1257 name, domain);
1258 if (sym)
1259 return sym;
1260 }
1261
1262 return NULL;
1263 }
1264
1265 /* Check to see if the symbol is defined in one of the symtabs.
1266 BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
1267 depending on whether or not we want to search global symbols or
1268 static symbols. */
1269
1270 static struct symbol *
1271 lookup_symbol_aux_symtabs (int block_index, const char *name,
1272 const domain_enum domain)
1273 {
1274 struct symbol *sym;
1275 struct objfile *objfile;
1276 struct blockvector *bv;
1277 const struct block *block;
1278 struct symtab *s;
1279
1280 ALL_PRIMARY_SYMTABS (objfile, s)
1281 {
1282 bv = BLOCKVECTOR (s);
1283 block = BLOCKVECTOR_BLOCK (bv, block_index);
1284 sym = lookup_block_symbol (block, name, domain);
1285 if (sym)
1286 {
1287 block_found = block;
1288 return fixup_symbol_section (sym, objfile);
1289 }
1290 }
1291
1292 return NULL;
1293 }
1294
1295 /* A helper function for lookup_symbol_aux that interfaces with the
1296 "quick" symbol table functions. */
1297
1298 static struct symbol *
1299 lookup_symbol_aux_quick (struct objfile *objfile, int kind,
1300 const char *name, const domain_enum domain)
1301 {
1302 struct symtab *symtab;
1303 struct blockvector *bv;
1304 const struct block *block;
1305 struct symbol *sym;
1306
1307 if (!objfile->sf)
1308 return NULL;
1309 symtab = objfile->sf->qf->lookup_symbol (objfile, kind, name, domain);
1310 if (!symtab)
1311 return NULL;
1312
1313 bv = BLOCKVECTOR (symtab);
1314 block = BLOCKVECTOR_BLOCK (bv, kind);
1315 sym = lookup_block_symbol (block, name, domain);
1316 if (!sym)
1317 {
1318 /* This shouldn't be necessary, but as a last resort try
1319 looking in the statics even though the psymtab claimed
1320 the symbol was global, or vice-versa. It's possible
1321 that the psymtab gets it wrong in some cases. */
1322
1323 /* FIXME: carlton/2002-09-30: Should we really do that?
1324 If that happens, isn't it likely to be a GDB error, in
1325 which case we should fix the GDB error rather than
1326 silently dealing with it here? So I'd vote for
1327 removing the check for the symbol in the other
1328 block. */
1329 block = BLOCKVECTOR_BLOCK (bv,
1330 kind == GLOBAL_BLOCK ?
1331 STATIC_BLOCK : GLOBAL_BLOCK);
1332 sym = lookup_block_symbol (block, name, domain);
1333 if (!sym)
1334 error (_("Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n%s may be an inlined function, or may be a template function\n(if a template, try specifying an instantiation: %s<type>)."),
1335 kind == GLOBAL_BLOCK ? "global" : "static",
1336 name, symtab->filename, name, name);
1337 }
1338 return fixup_symbol_section (sym, objfile);
1339 }
1340
1341 /* A default version of lookup_symbol_nonlocal for use by languages
1342 that can't think of anything better to do. This implements the C
1343 lookup rules. */
1344
1345 struct symbol *
1346 basic_lookup_symbol_nonlocal (const char *name,
1347 const struct block *block,
1348 const domain_enum domain)
1349 {
1350 struct symbol *sym;
1351
1352 /* NOTE: carlton/2003-05-19: The comments below were written when
1353 this (or what turned into this) was part of lookup_symbol_aux;
1354 I'm much less worried about these questions now, since these
1355 decisions have turned out well, but I leave these comments here
1356 for posterity. */
1357
1358 /* NOTE: carlton/2002-12-05: There is a question as to whether or
1359 not it would be appropriate to search the current global block
1360 here as well. (That's what this code used to do before the
1361 is_a_field_of_this check was moved up.) On the one hand, it's
1362 redundant with the lookup_symbol_aux_symtabs search that happens
1363 next. On the other hand, if decode_line_1 is passed an argument
1364 like filename:var, then the user presumably wants 'var' to be
1365 searched for in filename. On the third hand, there shouldn't be
1366 multiple global variables all of which are named 'var', and it's
1367 not like decode_line_1 has ever restricted its search to only
1368 global variables in a single filename. All in all, only
1369 searching the static block here seems best: it's correct and it's
1370 cleanest. */
1371
1372 /* NOTE: carlton/2002-12-05: There's also a possible performance
1373 issue here: if you usually search for global symbols in the
1374 current file, then it would be slightly better to search the
1375 current global block before searching all the symtabs. But there
1376 are other factors that have a much greater effect on performance
1377 than that one, so I don't think we should worry about that for
1378 now. */
1379
1380 sym = lookup_symbol_static (name, block, domain);
1381 if (sym != NULL)
1382 return sym;
1383
1384 return lookup_symbol_global (name, block, domain);
1385 }
1386
1387 /* Lookup a symbol in the static block associated to BLOCK, if there
1388 is one; do nothing if BLOCK is NULL or a global block. */
1389
1390 struct symbol *
1391 lookup_symbol_static (const char *name,
1392 const struct block *block,
1393 const domain_enum domain)
1394 {
1395 const struct block *static_block = block_static_block (block);
1396
1397 if (static_block != NULL)
1398 return lookup_symbol_aux_block (name, static_block, domain);
1399 else
1400 return NULL;
1401 }
1402
1403 /* Lookup a symbol in all files' global blocks (searching psymtabs if
1404 necessary). */
1405
1406 struct symbol *
1407 lookup_symbol_global (const char *name,
1408 const struct block *block,
1409 const domain_enum domain)
1410 {
1411 struct symbol *sym = NULL;
1412 struct objfile *objfile = NULL;
1413
1414 /* Call library-specific lookup procedure. */
1415 objfile = lookup_objfile_from_block (block);
1416 if (objfile != NULL)
1417 sym = solib_global_lookup (objfile, name, domain);
1418 if (sym != NULL)
1419 return sym;
1420
1421 sym = lookup_symbol_aux_symtabs (GLOBAL_BLOCK, name, domain);
1422 if (sym != NULL)
1423 return sym;
1424
1425 ALL_OBJFILES (objfile)
1426 {
1427 sym = lookup_symbol_aux_quick (objfile, GLOBAL_BLOCK, name, domain);
1428 if (sym)
1429 return sym;
1430 }
1431
1432 return NULL;
1433 }
1434
1435 int
1436 symbol_matches_domain (enum language symbol_language,
1437 domain_enum symbol_domain,
1438 domain_enum domain)
1439 {
1440 /* For C++ "struct foo { ... }" also defines a typedef for "foo".
1441 A Java class declaration also defines a typedef for the class.
1442 Similarly, any Ada type declaration implicitly defines a typedef. */
1443 if (symbol_language == language_cplus
1444 || symbol_language == language_d
1445 || symbol_language == language_java
1446 || symbol_language == language_ada)
1447 {
1448 if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN)
1449 && symbol_domain == STRUCT_DOMAIN)
1450 return 1;
1451 }
1452 /* For all other languages, strict match is required. */
1453 return (symbol_domain == domain);
1454 }
1455
1456 /* Look up a type named NAME in the struct_domain. The type returned
1457 must not be opaque -- i.e., must have at least one field
1458 defined. */
1459
1460 struct type *
1461 lookup_transparent_type (const char *name)
1462 {
1463 return current_language->la_lookup_transparent_type (name);
1464 }
1465
1466 /* A helper for basic_lookup_transparent_type that interfaces with the
1467 "quick" symbol table functions. */
1468
1469 static struct type *
1470 basic_lookup_transparent_type_quick (struct objfile *objfile, int kind,
1471 const char *name)
1472 {
1473 struct symtab *symtab;
1474 struct blockvector *bv;
1475 struct block *block;
1476 struct symbol *sym;
1477
1478 if (!objfile->sf)
1479 return NULL;
1480 symtab = objfile->sf->qf->lookup_symbol (objfile, kind, name, STRUCT_DOMAIN);
1481 if (!symtab)
1482 return NULL;
1483
1484 bv = BLOCKVECTOR (symtab);
1485 block = BLOCKVECTOR_BLOCK (bv, kind);
1486 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1487 if (!sym)
1488 {
1489 int other_kind = kind == GLOBAL_BLOCK ? STATIC_BLOCK : GLOBAL_BLOCK;
1490
1491 /* This shouldn't be necessary, but as a last resort
1492 * try looking in the 'other kind' even though the psymtab
1493 * claimed the symbol was one thing. It's possible that
1494 * the psymtab gets it wrong in some cases.
1495 */
1496 block = BLOCKVECTOR_BLOCK (bv, other_kind);
1497 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1498 if (!sym)
1499 /* FIXME; error is wrong in one case */
1500 error (_("Internal: global symbol `%s' found in %s psymtab but not in symtab.\n\
1501 %s may be an inlined function, or may be a template function\n\
1502 (if a template, try specifying an instantiation: %s<type>)."),
1503 name, symtab->filename, name, name);
1504 }
1505 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1506 return SYMBOL_TYPE (sym);
1507
1508 return NULL;
1509 }
1510
1511 /* The standard implementation of lookup_transparent_type. This code
1512 was modeled on lookup_symbol -- the parts not relevant to looking
1513 up types were just left out. In particular it's assumed here that
1514 types are available in struct_domain and only at file-static or
1515 global blocks. */
1516
1517 struct type *
1518 basic_lookup_transparent_type (const char *name)
1519 {
1520 struct symbol *sym;
1521 struct symtab *s = NULL;
1522 struct blockvector *bv;
1523 struct objfile *objfile;
1524 struct block *block;
1525 struct type *t;
1526
1527 /* Now search all the global symbols. Do the symtab's first, then
1528 check the psymtab's. If a psymtab indicates the existence
1529 of the desired name as a global, then do psymtab-to-symtab
1530 conversion on the fly and return the found symbol. */
1531
1532 ALL_PRIMARY_SYMTABS (objfile, s)
1533 {
1534 bv = BLOCKVECTOR (s);
1535 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1536 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1537 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1538 {
1539 return SYMBOL_TYPE (sym);
1540 }
1541 }
1542
1543 ALL_OBJFILES (objfile)
1544 {
1545 t = basic_lookup_transparent_type_quick (objfile, GLOBAL_BLOCK, name);
1546 if (t)
1547 return t;
1548 }
1549
1550 /* Now search the static file-level symbols.
1551 Not strictly correct, but more useful than an error.
1552 Do the symtab's first, then
1553 check the psymtab's. If a psymtab indicates the existence
1554 of the desired name as a file-level static, then do psymtab-to-symtab
1555 conversion on the fly and return the found symbol.
1556 */
1557
1558 ALL_PRIMARY_SYMTABS (objfile, s)
1559 {
1560 bv = BLOCKVECTOR (s);
1561 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
1562 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1563 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1564 {
1565 return SYMBOL_TYPE (sym);
1566 }
1567 }
1568
1569 ALL_OBJFILES (objfile)
1570 {
1571 t = basic_lookup_transparent_type_quick (objfile, STATIC_BLOCK, name);
1572 if (t)
1573 return t;
1574 }
1575
1576 return (struct type *) 0;
1577 }
1578
1579
1580 /* Find the name of the file containing main(). */
1581 /* FIXME: What about languages without main() or specially linked
1582 executables that have no main() ? */
1583
1584 char *
1585 find_main_filename (void)
1586 {
1587 struct objfile *objfile;
1588 char *result, *name = main_name ();
1589
1590 ALL_OBJFILES (objfile)
1591 {
1592 if (!objfile->sf)
1593 continue;
1594 result = objfile->sf->qf->find_symbol_file (objfile, name);
1595 if (result)
1596 return result;
1597 }
1598 return (NULL);
1599 }
1600
1601 /* Search BLOCK for symbol NAME in DOMAIN.
1602
1603 Note that if NAME is the demangled form of a C++ symbol, we will fail
1604 to find a match during the binary search of the non-encoded names, but
1605 for now we don't worry about the slight inefficiency of looking for
1606 a match we'll never find, since it will go pretty quick. Once the
1607 binary search terminates, we drop through and do a straight linear
1608 search on the symbols. Each symbol which is marked as being a ObjC/C++
1609 symbol (language_cplus or language_objc set) has both the encoded and
1610 non-encoded names tested for a match.
1611 */
1612
1613 struct symbol *
1614 lookup_block_symbol (const struct block *block, const char *name,
1615 const domain_enum domain)
1616 {
1617 struct dict_iterator iter;
1618 struct symbol *sym;
1619
1620 if (!BLOCK_FUNCTION (block))
1621 {
1622 for (sym = dict_iter_name_first (BLOCK_DICT (block), name, &iter);
1623 sym != NULL;
1624 sym = dict_iter_name_next (name, &iter))
1625 {
1626 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
1627 SYMBOL_DOMAIN (sym), domain))
1628 return sym;
1629 }
1630 return NULL;
1631 }
1632 else
1633 {
1634 /* Note that parameter symbols do not always show up last in the
1635 list; this loop makes sure to take anything else other than
1636 parameter symbols first; it only uses parameter symbols as a
1637 last resort. Note that this only takes up extra computation
1638 time on a match. */
1639
1640 struct symbol *sym_found = NULL;
1641
1642 for (sym = dict_iter_name_first (BLOCK_DICT (block), name, &iter);
1643 sym != NULL;
1644 sym = dict_iter_name_next (name, &iter))
1645 {
1646 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
1647 SYMBOL_DOMAIN (sym), domain))
1648 {
1649 sym_found = sym;
1650 if (!SYMBOL_IS_ARGUMENT (sym))
1651 {
1652 break;
1653 }
1654 }
1655 }
1656 return (sym_found); /* Will be NULL if not found. */
1657 }
1658 }
1659
1660 /* Find the symtab associated with PC and SECTION. Look through the
1661 psymtabs and read in another symtab if necessary. */
1662
1663 struct symtab *
1664 find_pc_sect_symtab (CORE_ADDR pc, struct obj_section *section)
1665 {
1666 struct block *b;
1667 struct blockvector *bv;
1668 struct symtab *s = NULL;
1669 struct symtab *best_s = NULL;
1670 struct objfile *objfile;
1671 struct program_space *pspace;
1672 CORE_ADDR distance = 0;
1673 struct minimal_symbol *msymbol;
1674
1675 pspace = current_program_space;
1676
1677 /* If we know that this is not a text address, return failure. This is
1678 necessary because we loop based on the block's high and low code
1679 addresses, which do not include the data ranges, and because
1680 we call find_pc_sect_psymtab which has a similar restriction based
1681 on the partial_symtab's texthigh and textlow. */
1682 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
1683 if (msymbol
1684 && (MSYMBOL_TYPE (msymbol) == mst_data
1685 || MSYMBOL_TYPE (msymbol) == mst_bss
1686 || MSYMBOL_TYPE (msymbol) == mst_abs
1687 || MSYMBOL_TYPE (msymbol) == mst_file_data
1688 || MSYMBOL_TYPE (msymbol) == mst_file_bss))
1689 return NULL;
1690
1691 /* Search all symtabs for the one whose file contains our address, and which
1692 is the smallest of all the ones containing the address. This is designed
1693 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
1694 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
1695 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
1696
1697 This happens for native ecoff format, where code from included files
1698 gets its own symtab. The symtab for the included file should have
1699 been read in already via the dependency mechanism.
1700 It might be swifter to create several symtabs with the same name
1701 like xcoff does (I'm not sure).
1702
1703 It also happens for objfiles that have their functions reordered.
1704 For these, the symtab we are looking for is not necessarily read in. */
1705
1706 ALL_PRIMARY_SYMTABS (objfile, s)
1707 {
1708 bv = BLOCKVECTOR (s);
1709 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1710
1711 if (BLOCK_START (b) <= pc
1712 && BLOCK_END (b) > pc
1713 && (distance == 0
1714 || BLOCK_END (b) - BLOCK_START (b) < distance))
1715 {
1716 /* For an objfile that has its functions reordered,
1717 find_pc_psymtab will find the proper partial symbol table
1718 and we simply return its corresponding symtab. */
1719 /* In order to better support objfiles that contain both
1720 stabs and coff debugging info, we continue on if a psymtab
1721 can't be found. */
1722 if ((objfile->flags & OBJF_REORDERED) && objfile->sf)
1723 {
1724 struct symtab *result;
1725
1726 result
1727 = objfile->sf->qf->find_pc_sect_symtab (objfile,
1728 msymbol,
1729 pc, section,
1730 0);
1731 if (result)
1732 return result;
1733 }
1734 if (section != 0)
1735 {
1736 struct dict_iterator iter;
1737 struct symbol *sym = NULL;
1738
1739 ALL_BLOCK_SYMBOLS (b, iter, sym)
1740 {
1741 fixup_symbol_section (sym, objfile);
1742 if (matching_obj_sections (SYMBOL_OBJ_SECTION (sym), section))
1743 break;
1744 }
1745 if (sym == NULL)
1746 continue; /* no symbol in this symtab matches section */
1747 }
1748 distance = BLOCK_END (b) - BLOCK_START (b);
1749 best_s = s;
1750 }
1751 }
1752
1753 if (best_s != NULL)
1754 return (best_s);
1755
1756 ALL_OBJFILES (objfile)
1757 {
1758 struct symtab *result;
1759
1760 if (!objfile->sf)
1761 continue;
1762 result = objfile->sf->qf->find_pc_sect_symtab (objfile,
1763 msymbol,
1764 pc, section,
1765 1);
1766 if (result)
1767 return result;
1768 }
1769
1770 return NULL;
1771 }
1772
1773 /* Find the symtab associated with PC. Look through the psymtabs and
1774 read in another symtab if necessary. Backward compatibility, no section */
1775
1776 struct symtab *
1777 find_pc_symtab (CORE_ADDR pc)
1778 {
1779 return find_pc_sect_symtab (pc, find_pc_mapped_section (pc));
1780 }
1781 \f
1782
1783 /* Find the source file and line number for a given PC value and SECTION.
1784 Return a structure containing a symtab pointer, a line number,
1785 and a pc range for the entire source line.
1786 The value's .pc field is NOT the specified pc.
1787 NOTCURRENT nonzero means, if specified pc is on a line boundary,
1788 use the line that ends there. Otherwise, in that case, the line
1789 that begins there is used. */
1790
1791 /* The big complication here is that a line may start in one file, and end just
1792 before the start of another file. This usually occurs when you #include
1793 code in the middle of a subroutine. To properly find the end of a line's PC
1794 range, we must search all symtabs associated with this compilation unit, and
1795 find the one whose first PC is closer than that of the next line in this
1796 symtab. */
1797
1798 /* If it's worth the effort, we could be using a binary search. */
1799
1800 struct symtab_and_line
1801 find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent)
1802 {
1803 struct symtab *s;
1804 struct linetable *l;
1805 int len;
1806 int i;
1807 struct linetable_entry *item;
1808 struct symtab_and_line val;
1809 struct blockvector *bv;
1810 struct minimal_symbol *msymbol;
1811 struct minimal_symbol *mfunsym;
1812
1813 /* Info on best line seen so far, and where it starts, and its file. */
1814
1815 struct linetable_entry *best = NULL;
1816 CORE_ADDR best_end = 0;
1817 struct symtab *best_symtab = 0;
1818
1819 /* Store here the first line number
1820 of a file which contains the line at the smallest pc after PC.
1821 If we don't find a line whose range contains PC,
1822 we will use a line one less than this,
1823 with a range from the start of that file to the first line's pc. */
1824 struct linetable_entry *alt = NULL;
1825 struct symtab *alt_symtab = 0;
1826
1827 /* Info on best line seen in this file. */
1828
1829 struct linetable_entry *prev;
1830
1831 /* If this pc is not from the current frame,
1832 it is the address of the end of a call instruction.
1833 Quite likely that is the start of the following statement.
1834 But what we want is the statement containing the instruction.
1835 Fudge the pc to make sure we get that. */
1836
1837 init_sal (&val); /* initialize to zeroes */
1838
1839 val.pspace = current_program_space;
1840
1841 /* It's tempting to assume that, if we can't find debugging info for
1842 any function enclosing PC, that we shouldn't search for line
1843 number info, either. However, GAS can emit line number info for
1844 assembly files --- very helpful when debugging hand-written
1845 assembly code. In such a case, we'd have no debug info for the
1846 function, but we would have line info. */
1847
1848 if (notcurrent)
1849 pc -= 1;
1850
1851 /* elz: added this because this function returned the wrong
1852 information if the pc belongs to a stub (import/export)
1853 to call a shlib function. This stub would be anywhere between
1854 two functions in the target, and the line info was erroneously
1855 taken to be the one of the line before the pc.
1856 */
1857 /* RT: Further explanation:
1858
1859 * We have stubs (trampolines) inserted between procedures.
1860 *
1861 * Example: "shr1" exists in a shared library, and a "shr1" stub also
1862 * exists in the main image.
1863 *
1864 * In the minimal symbol table, we have a bunch of symbols
1865 * sorted by start address. The stubs are marked as "trampoline",
1866 * the others appear as text. E.g.:
1867 *
1868 * Minimal symbol table for main image
1869 * main: code for main (text symbol)
1870 * shr1: stub (trampoline symbol)
1871 * foo: code for foo (text symbol)
1872 * ...
1873 * Minimal symbol table for "shr1" image:
1874 * ...
1875 * shr1: code for shr1 (text symbol)
1876 * ...
1877 *
1878 * So the code below is trying to detect if we are in the stub
1879 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
1880 * and if found, do the symbolization from the real-code address
1881 * rather than the stub address.
1882 *
1883 * Assumptions being made about the minimal symbol table:
1884 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
1885 * if we're really in the trampoline. If we're beyond it (say
1886 * we're in "foo" in the above example), it'll have a closer
1887 * symbol (the "foo" text symbol for example) and will not
1888 * return the trampoline.
1889 * 2. lookup_minimal_symbol_text() will find a real text symbol
1890 * corresponding to the trampoline, and whose address will
1891 * be different than the trampoline address. I put in a sanity
1892 * check for the address being the same, to avoid an
1893 * infinite recursion.
1894 */
1895 msymbol = lookup_minimal_symbol_by_pc (pc);
1896 if (msymbol != NULL)
1897 if (MSYMBOL_TYPE (msymbol) == mst_solib_trampoline)
1898 {
1899 mfunsym = lookup_minimal_symbol_text (SYMBOL_LINKAGE_NAME (msymbol),
1900 NULL);
1901 if (mfunsym == NULL)
1902 /* I eliminated this warning since it is coming out
1903 * in the following situation:
1904 * gdb shmain // test program with shared libraries
1905 * (gdb) break shr1 // function in shared lib
1906 * Warning: In stub for ...
1907 * In the above situation, the shared lib is not loaded yet,
1908 * so of course we can't find the real func/line info,
1909 * but the "break" still works, and the warning is annoying.
1910 * So I commented out the warning. RT */
1911 /* warning ("In stub for %s; unable to find real function/line info", SYMBOL_LINKAGE_NAME (msymbol)) */ ;
1912 /* fall through */
1913 else if (SYMBOL_VALUE_ADDRESS (mfunsym) == SYMBOL_VALUE_ADDRESS (msymbol))
1914 /* Avoid infinite recursion */
1915 /* See above comment about why warning is commented out */
1916 /* warning ("In stub for %s; unable to find real function/line info", SYMBOL_LINKAGE_NAME (msymbol)) */ ;
1917 /* fall through */
1918 else
1919 return find_pc_line (SYMBOL_VALUE_ADDRESS (mfunsym), 0);
1920 }
1921
1922
1923 s = find_pc_sect_symtab (pc, section);
1924 if (!s)
1925 {
1926 /* if no symbol information, return previous pc */
1927 if (notcurrent)
1928 pc++;
1929 val.pc = pc;
1930 return val;
1931 }
1932
1933 bv = BLOCKVECTOR (s);
1934
1935 /* Look at all the symtabs that share this blockvector.
1936 They all have the same apriori range, that we found was right;
1937 but they have different line tables. */
1938
1939 for (; s && BLOCKVECTOR (s) == bv; s = s->next)
1940 {
1941 /* Find the best line in this symtab. */
1942 l = LINETABLE (s);
1943 if (!l)
1944 continue;
1945 len = l->nitems;
1946 if (len <= 0)
1947 {
1948 /* I think len can be zero if the symtab lacks line numbers
1949 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
1950 I'm not sure which, and maybe it depends on the symbol
1951 reader). */
1952 continue;
1953 }
1954
1955 prev = NULL;
1956 item = l->item; /* Get first line info */
1957
1958 /* Is this file's first line closer than the first lines of other files?
1959 If so, record this file, and its first line, as best alternate. */
1960 if (item->pc > pc && (!alt || item->pc < alt->pc))
1961 {
1962 alt = item;
1963 alt_symtab = s;
1964 }
1965
1966 for (i = 0; i < len; i++, item++)
1967 {
1968 /* Leave prev pointing to the linetable entry for the last line
1969 that started at or before PC. */
1970 if (item->pc > pc)
1971 break;
1972
1973 prev = item;
1974 }
1975
1976 /* At this point, prev points at the line whose start addr is <= pc, and
1977 item points at the next line. If we ran off the end of the linetable
1978 (pc >= start of the last line), then prev == item. If pc < start of
1979 the first line, prev will not be set. */
1980
1981 /* Is this file's best line closer than the best in the other files?
1982 If so, record this file, and its best line, as best so far. Don't
1983 save prev if it represents the end of a function (i.e. line number
1984 0) instead of a real line. */
1985
1986 if (prev && prev->line && (!best || prev->pc > best->pc))
1987 {
1988 best = prev;
1989 best_symtab = s;
1990
1991 /* Discard BEST_END if it's before the PC of the current BEST. */
1992 if (best_end <= best->pc)
1993 best_end = 0;
1994 }
1995
1996 /* If another line (denoted by ITEM) is in the linetable and its
1997 PC is after BEST's PC, but before the current BEST_END, then
1998 use ITEM's PC as the new best_end. */
1999 if (best && i < len && item->pc > best->pc
2000 && (best_end == 0 || best_end > item->pc))
2001 best_end = item->pc;
2002 }
2003
2004 if (!best_symtab)
2005 {
2006 /* If we didn't find any line number info, just return zeros.
2007 We used to return alt->line - 1 here, but that could be
2008 anywhere; if we don't have line number info for this PC,
2009 don't make some up. */
2010 val.pc = pc;
2011 }
2012 else if (best->line == 0)
2013 {
2014 /* If our best fit is in a range of PC's for which no line
2015 number info is available (line number is zero) then we didn't
2016 find any valid line information. */
2017 val.pc = pc;
2018 }
2019 else
2020 {
2021 val.symtab = best_symtab;
2022 val.line = best->line;
2023 val.pc = best->pc;
2024 if (best_end && (!alt || best_end < alt->pc))
2025 val.end = best_end;
2026 else if (alt)
2027 val.end = alt->pc;
2028 else
2029 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
2030 }
2031 val.section = section;
2032 return val;
2033 }
2034
2035 /* Backward compatibility (no section) */
2036
2037 struct symtab_and_line
2038 find_pc_line (CORE_ADDR pc, int notcurrent)
2039 {
2040 struct obj_section *section;
2041
2042 section = find_pc_overlay (pc);
2043 if (pc_in_unmapped_range (pc, section))
2044 pc = overlay_mapped_address (pc, section);
2045 return find_pc_sect_line (pc, section, notcurrent);
2046 }
2047 \f
2048 /* Find line number LINE in any symtab whose name is the same as
2049 SYMTAB.
2050
2051 If found, return the symtab that contains the linetable in which it was
2052 found, set *INDEX to the index in the linetable of the best entry
2053 found, and set *EXACT_MATCH nonzero if the value returned is an
2054 exact match.
2055
2056 If not found, return NULL. */
2057
2058 struct symtab *
2059 find_line_symtab (struct symtab *symtab, int line,
2060 int *index, int *exact_match)
2061 {
2062 int exact = 0; /* Initialized here to avoid a compiler warning. */
2063
2064 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
2065 so far seen. */
2066
2067 int best_index;
2068 struct linetable *best_linetable;
2069 struct symtab *best_symtab;
2070
2071 /* First try looking it up in the given symtab. */
2072 best_linetable = LINETABLE (symtab);
2073 best_symtab = symtab;
2074 best_index = find_line_common (best_linetable, line, &exact);
2075 if (best_index < 0 || !exact)
2076 {
2077 /* Didn't find an exact match. So we better keep looking for
2078 another symtab with the same name. In the case of xcoff,
2079 multiple csects for one source file (produced by IBM's FORTRAN
2080 compiler) produce multiple symtabs (this is unavoidable
2081 assuming csects can be at arbitrary places in memory and that
2082 the GLOBAL_BLOCK of a symtab has a begin and end address). */
2083
2084 /* BEST is the smallest linenumber > LINE so far seen,
2085 or 0 if none has been seen so far.
2086 BEST_INDEX and BEST_LINETABLE identify the item for it. */
2087 int best;
2088
2089 struct objfile *objfile;
2090 struct symtab *s;
2091
2092 if (best_index >= 0)
2093 best = best_linetable->item[best_index].line;
2094 else
2095 best = 0;
2096
2097 ALL_OBJFILES (objfile)
2098 {
2099 if (objfile->sf)
2100 objfile->sf->qf->expand_symtabs_with_filename (objfile,
2101 symtab->filename);
2102 }
2103
2104 /* Get symbol full file name if possible. */
2105 symtab_to_fullname (symtab);
2106
2107 ALL_SYMTABS (objfile, s)
2108 {
2109 struct linetable *l;
2110 int ind;
2111
2112 if (FILENAME_CMP (symtab->filename, s->filename) != 0)
2113 continue;
2114 if (symtab->fullname != NULL
2115 && symtab_to_fullname (s) != NULL
2116 && FILENAME_CMP (symtab->fullname, s->fullname) != 0)
2117 continue;
2118 l = LINETABLE (s);
2119 ind = find_line_common (l, line, &exact);
2120 if (ind >= 0)
2121 {
2122 if (exact)
2123 {
2124 best_index = ind;
2125 best_linetable = l;
2126 best_symtab = s;
2127 goto done;
2128 }
2129 if (best == 0 || l->item[ind].line < best)
2130 {
2131 best = l->item[ind].line;
2132 best_index = ind;
2133 best_linetable = l;
2134 best_symtab = s;
2135 }
2136 }
2137 }
2138 }
2139 done:
2140 if (best_index < 0)
2141 return NULL;
2142
2143 if (index)
2144 *index = best_index;
2145 if (exact_match)
2146 *exact_match = exact;
2147
2148 return best_symtab;
2149 }
2150 \f
2151 /* Set the PC value for a given source file and line number and return true.
2152 Returns zero for invalid line number (and sets the PC to 0).
2153 The source file is specified with a struct symtab. */
2154
2155 int
2156 find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
2157 {
2158 struct linetable *l;
2159 int ind;
2160
2161 *pc = 0;
2162 if (symtab == 0)
2163 return 0;
2164
2165 symtab = find_line_symtab (symtab, line, &ind, NULL);
2166 if (symtab != NULL)
2167 {
2168 l = LINETABLE (symtab);
2169 *pc = l->item[ind].pc;
2170 return 1;
2171 }
2172 else
2173 return 0;
2174 }
2175
2176 /* Find the range of pc values in a line.
2177 Store the starting pc of the line into *STARTPTR
2178 and the ending pc (start of next line) into *ENDPTR.
2179 Returns 1 to indicate success.
2180 Returns 0 if could not find the specified line. */
2181
2182 int
2183 find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
2184 CORE_ADDR *endptr)
2185 {
2186 CORE_ADDR startaddr;
2187 struct symtab_and_line found_sal;
2188
2189 startaddr = sal.pc;
2190 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
2191 return 0;
2192
2193 /* This whole function is based on address. For example, if line 10 has
2194 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
2195 "info line *0x123" should say the line goes from 0x100 to 0x200
2196 and "info line *0x355" should say the line goes from 0x300 to 0x400.
2197 This also insures that we never give a range like "starts at 0x134
2198 and ends at 0x12c". */
2199
2200 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
2201 if (found_sal.line != sal.line)
2202 {
2203 /* The specified line (sal) has zero bytes. */
2204 *startptr = found_sal.pc;
2205 *endptr = found_sal.pc;
2206 }
2207 else
2208 {
2209 *startptr = found_sal.pc;
2210 *endptr = found_sal.end;
2211 }
2212 return 1;
2213 }
2214
2215 /* Given a line table and a line number, return the index into the line
2216 table for the pc of the nearest line whose number is >= the specified one.
2217 Return -1 if none is found. The value is >= 0 if it is an index.
2218
2219 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
2220
2221 static int
2222 find_line_common (struct linetable *l, int lineno,
2223 int *exact_match)
2224 {
2225 int i;
2226 int len;
2227
2228 /* BEST is the smallest linenumber > LINENO so far seen,
2229 or 0 if none has been seen so far.
2230 BEST_INDEX identifies the item for it. */
2231
2232 int best_index = -1;
2233 int best = 0;
2234
2235 *exact_match = 0;
2236
2237 if (lineno <= 0)
2238 return -1;
2239 if (l == 0)
2240 return -1;
2241
2242 len = l->nitems;
2243 for (i = 0; i < len; i++)
2244 {
2245 struct linetable_entry *item = &(l->item[i]);
2246
2247 if (item->line == lineno)
2248 {
2249 /* Return the first (lowest address) entry which matches. */
2250 *exact_match = 1;
2251 return i;
2252 }
2253
2254 if (item->line > lineno && (best == 0 || item->line < best))
2255 {
2256 best = item->line;
2257 best_index = i;
2258 }
2259 }
2260
2261 /* If we got here, we didn't get an exact match. */
2262 return best_index;
2263 }
2264
2265 int
2266 find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
2267 {
2268 struct symtab_and_line sal;
2269
2270 sal = find_pc_line (pc, 0);
2271 *startptr = sal.pc;
2272 *endptr = sal.end;
2273 return sal.symtab != 0;
2274 }
2275
2276 /* Given a function start address FUNC_ADDR and SYMTAB, find the first
2277 address for that function that has an entry in SYMTAB's line info
2278 table. If such an entry cannot be found, return FUNC_ADDR
2279 unaltered. */
2280 CORE_ADDR
2281 skip_prologue_using_lineinfo (CORE_ADDR func_addr, struct symtab *symtab)
2282 {
2283 CORE_ADDR func_start, func_end;
2284 struct linetable *l;
2285 int i;
2286
2287 /* Give up if this symbol has no lineinfo table. */
2288 l = LINETABLE (symtab);
2289 if (l == NULL)
2290 return func_addr;
2291
2292 /* Get the range for the function's PC values, or give up if we
2293 cannot, for some reason. */
2294 if (!find_pc_partial_function (func_addr, NULL, &func_start, &func_end))
2295 return func_addr;
2296
2297 /* Linetable entries are ordered by PC values, see the commentary in
2298 symtab.h where `struct linetable' is defined. Thus, the first
2299 entry whose PC is in the range [FUNC_START..FUNC_END[ is the
2300 address we are looking for. */
2301 for (i = 0; i < l->nitems; i++)
2302 {
2303 struct linetable_entry *item = &(l->item[i]);
2304
2305 /* Don't use line numbers of zero, they mark special entries in
2306 the table. See the commentary on symtab.h before the
2307 definition of struct linetable. */
2308 if (item->line > 0 && func_start <= item->pc && item->pc < func_end)
2309 return item->pc;
2310 }
2311
2312 return func_addr;
2313 }
2314
2315 /* Given a function symbol SYM, find the symtab and line for the start
2316 of the function.
2317 If the argument FUNFIRSTLINE is nonzero, we want the first line
2318 of real code inside the function. */
2319
2320 struct symtab_and_line
2321 find_function_start_sal (struct symbol *sym, int funfirstline)
2322 {
2323 struct symtab_and_line sal;
2324
2325 fixup_symbol_section (sym, NULL);
2326 sal = find_pc_sect_line (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)),
2327 SYMBOL_OBJ_SECTION (sym), 0);
2328
2329 /* We always should have a line for the function start address.
2330 If we don't, something is odd. Create a plain SAL refering
2331 just the PC and hope that skip_prologue_sal (if requested)
2332 can find a line number for after the prologue. */
2333 if (sal.pc < BLOCK_START (SYMBOL_BLOCK_VALUE (sym)))
2334 {
2335 init_sal (&sal);
2336 sal.pspace = current_program_space;
2337 sal.pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
2338 sal.section = SYMBOL_OBJ_SECTION (sym);
2339 }
2340
2341 if (funfirstline)
2342 skip_prologue_sal (&sal);
2343
2344 return sal;
2345 }
2346
2347 /* Adjust SAL to the first instruction past the function prologue.
2348 If the PC was explicitly specified, the SAL is not changed.
2349 If the line number was explicitly specified, at most the SAL's PC
2350 is updated. If SAL is already past the prologue, then do nothing. */
2351 void
2352 skip_prologue_sal (struct symtab_and_line *sal)
2353 {
2354 struct symbol *sym;
2355 struct symtab_and_line start_sal;
2356 struct cleanup *old_chain;
2357 CORE_ADDR pc;
2358 struct obj_section *section;
2359 const char *name;
2360 struct objfile *objfile;
2361 struct gdbarch *gdbarch;
2362 struct block *b, *function_block;
2363
2364 /* Do not change the SAL is PC was specified explicitly. */
2365 if (sal->explicit_pc)
2366 return;
2367
2368 old_chain = save_current_space_and_thread ();
2369 switch_to_program_space_and_thread (sal->pspace);
2370
2371 sym = find_pc_sect_function (sal->pc, sal->section);
2372 if (sym != NULL)
2373 {
2374 fixup_symbol_section (sym, NULL);
2375
2376 pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
2377 section = SYMBOL_OBJ_SECTION (sym);
2378 name = SYMBOL_LINKAGE_NAME (sym);
2379 objfile = SYMBOL_SYMTAB (sym)->objfile;
2380 }
2381 else
2382 {
2383 struct minimal_symbol *msymbol
2384 = lookup_minimal_symbol_by_pc_section (sal->pc, sal->section);
2385
2386 if (msymbol == NULL)
2387 {
2388 do_cleanups (old_chain);
2389 return;
2390 }
2391
2392 pc = SYMBOL_VALUE_ADDRESS (msymbol);
2393 section = SYMBOL_OBJ_SECTION (msymbol);
2394 name = SYMBOL_LINKAGE_NAME (msymbol);
2395 objfile = msymbol_objfile (msymbol);
2396 }
2397
2398 gdbarch = get_objfile_arch (objfile);
2399
2400 /* If the function is in an unmapped overlay, use its unmapped LMA address,
2401 so that gdbarch_skip_prologue has something unique to work on. */
2402 if (section_is_overlay (section) && !section_is_mapped (section))
2403 pc = overlay_unmapped_address (pc, section);
2404
2405 /* Skip "first line" of function (which is actually its prologue). */
2406 pc += gdbarch_deprecated_function_start_offset (gdbarch);
2407 pc = gdbarch_skip_prologue (gdbarch, pc);
2408
2409 /* For overlays, map pc back into its mapped VMA range. */
2410 pc = overlay_mapped_address (pc, section);
2411
2412 /* Calculate line number. */
2413 start_sal = find_pc_sect_line (pc, section, 0);
2414
2415 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
2416 line is still part of the same function. */
2417 if (start_sal.pc != pc
2418 && (sym? (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) <= start_sal.end
2419 && start_sal.end < BLOCK_END (SYMBOL_BLOCK_VALUE (sym)))
2420 : (lookup_minimal_symbol_by_pc_section (start_sal.end, section)
2421 == lookup_minimal_symbol_by_pc_section (pc, section))))
2422 {
2423 /* First pc of next line */
2424 pc = start_sal.end;
2425 /* Recalculate the line number (might not be N+1). */
2426 start_sal = find_pc_sect_line (pc, section, 0);
2427 }
2428
2429 /* On targets with executable formats that don't have a concept of
2430 constructors (ELF with .init has, PE doesn't), gcc emits a call
2431 to `__main' in `main' between the prologue and before user
2432 code. */
2433 if (gdbarch_skip_main_prologue_p (gdbarch)
2434 && name && strcmp (name, "main") == 0)
2435 {
2436 pc = gdbarch_skip_main_prologue (gdbarch, pc);
2437 /* Recalculate the line number (might not be N+1). */
2438 start_sal = find_pc_sect_line (pc, section, 0);
2439 }
2440
2441 /* If we still don't have a valid source line, try to find the first
2442 PC in the lineinfo table that belongs to the same function. This
2443 happens with COFF debug info, which does not seem to have an
2444 entry in lineinfo table for the code after the prologue which has
2445 no direct relation to source. For example, this was found to be
2446 the case with the DJGPP target using "gcc -gcoff" when the
2447 compiler inserted code after the prologue to make sure the stack
2448 is aligned. */
2449 if (sym && start_sal.symtab == NULL)
2450 {
2451 pc = skip_prologue_using_lineinfo (pc, SYMBOL_SYMTAB (sym));
2452 /* Recalculate the line number. */
2453 start_sal = find_pc_sect_line (pc, section, 0);
2454 }
2455
2456 do_cleanups (old_chain);
2457
2458 /* If we're already past the prologue, leave SAL unchanged. Otherwise
2459 forward SAL to the end of the prologue. */
2460 if (sal->pc >= pc)
2461 return;
2462
2463 sal->pc = pc;
2464 sal->section = section;
2465
2466 /* Unless the explicit_line flag was set, update the SAL line
2467 and symtab to correspond to the modified PC location. */
2468 if (sal->explicit_line)
2469 return;
2470
2471 sal->symtab = start_sal.symtab;
2472 sal->line = start_sal.line;
2473 sal->end = start_sal.end;
2474
2475 /* Check if we are now inside an inlined function. If we can,
2476 use the call site of the function instead. */
2477 b = block_for_pc_sect (sal->pc, sal->section);
2478 function_block = NULL;
2479 while (b != NULL)
2480 {
2481 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
2482 function_block = b;
2483 else if (BLOCK_FUNCTION (b) != NULL)
2484 break;
2485 b = BLOCK_SUPERBLOCK (b);
2486 }
2487 if (function_block != NULL
2488 && SYMBOL_LINE (BLOCK_FUNCTION (function_block)) != 0)
2489 {
2490 sal->line = SYMBOL_LINE (BLOCK_FUNCTION (function_block));
2491 sal->symtab = SYMBOL_SYMTAB (BLOCK_FUNCTION (function_block));
2492 }
2493 }
2494
2495 /* If P is of the form "operator[ \t]+..." where `...' is
2496 some legitimate operator text, return a pointer to the
2497 beginning of the substring of the operator text.
2498 Otherwise, return "". */
2499 char *
2500 operator_chars (char *p, char **end)
2501 {
2502 *end = "";
2503 if (strncmp (p, "operator", 8))
2504 return *end;
2505 p += 8;
2506
2507 /* Don't get faked out by `operator' being part of a longer
2508 identifier. */
2509 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
2510 return *end;
2511
2512 /* Allow some whitespace between `operator' and the operator symbol. */
2513 while (*p == ' ' || *p == '\t')
2514 p++;
2515
2516 /* Recognize 'operator TYPENAME'. */
2517
2518 if (isalpha (*p) || *p == '_' || *p == '$')
2519 {
2520 char *q = p + 1;
2521
2522 while (isalnum (*q) || *q == '_' || *q == '$')
2523 q++;
2524 *end = q;
2525 return p;
2526 }
2527
2528 while (*p)
2529 switch (*p)
2530 {
2531 case '\\': /* regexp quoting */
2532 if (p[1] == '*')
2533 {
2534 if (p[2] == '=') /* 'operator\*=' */
2535 *end = p + 3;
2536 else /* 'operator\*' */
2537 *end = p + 2;
2538 return p;
2539 }
2540 else if (p[1] == '[')
2541 {
2542 if (p[2] == ']')
2543 error (_("mismatched quoting on brackets, try 'operator\\[\\]'"));
2544 else if (p[2] == '\\' && p[3] == ']')
2545 {
2546 *end = p + 4; /* 'operator\[\]' */
2547 return p;
2548 }
2549 else
2550 error (_("nothing is allowed between '[' and ']'"));
2551 }
2552 else
2553 {
2554 /* Gratuitous qoute: skip it and move on. */
2555 p++;
2556 continue;
2557 }
2558 break;
2559 case '!':
2560 case '=':
2561 case '*':
2562 case '/':
2563 case '%':
2564 case '^':
2565 if (p[1] == '=')
2566 *end = p + 2;
2567 else
2568 *end = p + 1;
2569 return p;
2570 case '<':
2571 case '>':
2572 case '+':
2573 case '-':
2574 case '&':
2575 case '|':
2576 if (p[0] == '-' && p[1] == '>')
2577 {
2578 /* Struct pointer member operator 'operator->'. */
2579 if (p[2] == '*')
2580 {
2581 *end = p + 3; /* 'operator->*' */
2582 return p;
2583 }
2584 else if (p[2] == '\\')
2585 {
2586 *end = p + 4; /* Hopefully 'operator->\*' */
2587 return p;
2588 }
2589 else
2590 {
2591 *end = p + 2; /* 'operator->' */
2592 return p;
2593 }
2594 }
2595 if (p[1] == '=' || p[1] == p[0])
2596 *end = p + 2;
2597 else
2598 *end = p + 1;
2599 return p;
2600 case '~':
2601 case ',':
2602 *end = p + 1;
2603 return p;
2604 case '(':
2605 if (p[1] != ')')
2606 error (_("`operator ()' must be specified without whitespace in `()'"));
2607 *end = p + 2;
2608 return p;
2609 case '?':
2610 if (p[1] != ':')
2611 error (_("`operator ?:' must be specified without whitespace in `?:'"));
2612 *end = p + 2;
2613 return p;
2614 case '[':
2615 if (p[1] != ']')
2616 error (_("`operator []' must be specified without whitespace in `[]'"));
2617 *end = p + 2;
2618 return p;
2619 default:
2620 error (_("`operator %s' not supported"), p);
2621 break;
2622 }
2623
2624 *end = "";
2625 return *end;
2626 }
2627 \f
2628
2629 /* If FILE is not already in the table of files, return zero;
2630 otherwise return non-zero. Optionally add FILE to the table if ADD
2631 is non-zero. If *FIRST is non-zero, forget the old table
2632 contents. */
2633 static int
2634 filename_seen (const char *file, int add, int *first)
2635 {
2636 /* Table of files seen so far. */
2637 static const char **tab = NULL;
2638 /* Allocated size of tab in elements.
2639 Start with one 256-byte block (when using GNU malloc.c).
2640 24 is the malloc overhead when range checking is in effect. */
2641 static int tab_alloc_size = (256 - 24) / sizeof (char *);
2642 /* Current size of tab in elements. */
2643 static int tab_cur_size;
2644 const char **p;
2645
2646 if (*first)
2647 {
2648 if (tab == NULL)
2649 tab = (const char **) xmalloc (tab_alloc_size * sizeof (*tab));
2650 tab_cur_size = 0;
2651 }
2652
2653 /* Is FILE in tab? */
2654 for (p = tab; p < tab + tab_cur_size; p++)
2655 if (strcmp (*p, file) == 0)
2656 return 1;
2657
2658 /* No; maybe add it to tab. */
2659 if (add)
2660 {
2661 if (tab_cur_size == tab_alloc_size)
2662 {
2663 tab_alloc_size *= 2;
2664 tab = (const char **) xrealloc ((char *) tab,
2665 tab_alloc_size * sizeof (*tab));
2666 }
2667 tab[tab_cur_size++] = file;
2668 }
2669
2670 return 0;
2671 }
2672
2673 /* Slave routine for sources_info. Force line breaks at ,'s.
2674 NAME is the name to print and *FIRST is nonzero if this is the first
2675 name printed. Set *FIRST to zero. */
2676 static void
2677 output_source_filename (const char *name, int *first)
2678 {
2679 /* Since a single source file can result in several partial symbol
2680 tables, we need to avoid printing it more than once. Note: if
2681 some of the psymtabs are read in and some are not, it gets
2682 printed both under "Source files for which symbols have been
2683 read" and "Source files for which symbols will be read in on
2684 demand". I consider this a reasonable way to deal with the
2685 situation. I'm not sure whether this can also happen for
2686 symtabs; it doesn't hurt to check. */
2687
2688 /* Was NAME already seen? */
2689 if (filename_seen (name, 1, first))
2690 {
2691 /* Yes; don't print it again. */
2692 return;
2693 }
2694 /* No; print it and reset *FIRST. */
2695 if (*first)
2696 {
2697 *first = 0;
2698 }
2699 else
2700 {
2701 printf_filtered (", ");
2702 }
2703
2704 wrap_here ("");
2705 fputs_filtered (name, gdb_stdout);
2706 }
2707
2708 /* A callback for map_partial_symbol_filenames. */
2709 static void
2710 output_partial_symbol_filename (const char *fullname, const char *filename,
2711 void *data)
2712 {
2713 output_source_filename (fullname ? fullname : filename, data);
2714 }
2715
2716 static void
2717 sources_info (char *ignore, int from_tty)
2718 {
2719 struct symtab *s;
2720 struct objfile *objfile;
2721 int first;
2722
2723 if (!have_full_symbols () && !have_partial_symbols ())
2724 {
2725 error (_("No symbol table is loaded. Use the \"file\" command."));
2726 }
2727
2728 printf_filtered ("Source files for which symbols have been read in:\n\n");
2729
2730 first = 1;
2731 ALL_SYMTABS (objfile, s)
2732 {
2733 const char *fullname = symtab_to_fullname (s);
2734
2735 output_source_filename (fullname ? fullname : s->filename, &first);
2736 }
2737 printf_filtered ("\n\n");
2738
2739 printf_filtered ("Source files for which symbols will be read in on demand:\n\n");
2740
2741 first = 1;
2742 map_partial_symbol_filenames (output_partial_symbol_filename, &first);
2743 printf_filtered ("\n");
2744 }
2745
2746 static int
2747 file_matches (const char *file, char *files[], int nfiles)
2748 {
2749 int i;
2750
2751 if (file != NULL && nfiles != 0)
2752 {
2753 for (i = 0; i < nfiles; i++)
2754 {
2755 if (strcmp (files[i], lbasename (file)) == 0)
2756 return 1;
2757 }
2758 }
2759 else if (nfiles == 0)
2760 return 1;
2761 return 0;
2762 }
2763
2764 /* Free any memory associated with a search. */
2765 void
2766 free_search_symbols (struct symbol_search *symbols)
2767 {
2768 struct symbol_search *p;
2769 struct symbol_search *next;
2770
2771 for (p = symbols; p != NULL; p = next)
2772 {
2773 next = p->next;
2774 xfree (p);
2775 }
2776 }
2777
2778 static void
2779 do_free_search_symbols_cleanup (void *symbols)
2780 {
2781 free_search_symbols (symbols);
2782 }
2783
2784 struct cleanup *
2785 make_cleanup_free_search_symbols (struct symbol_search *symbols)
2786 {
2787 return make_cleanup (do_free_search_symbols_cleanup, symbols);
2788 }
2789
2790 /* Helper function for sort_search_symbols and qsort. Can only
2791 sort symbols, not minimal symbols. */
2792 static int
2793 compare_search_syms (const void *sa, const void *sb)
2794 {
2795 struct symbol_search **sym_a = (struct symbol_search **) sa;
2796 struct symbol_search **sym_b = (struct symbol_search **) sb;
2797
2798 return strcmp (SYMBOL_PRINT_NAME ((*sym_a)->symbol),
2799 SYMBOL_PRINT_NAME ((*sym_b)->symbol));
2800 }
2801
2802 /* Sort the ``nfound'' symbols in the list after prevtail. Leave
2803 prevtail where it is, but update its next pointer to point to
2804 the first of the sorted symbols. */
2805 static struct symbol_search *
2806 sort_search_symbols (struct symbol_search *prevtail, int nfound)
2807 {
2808 struct symbol_search **symbols, *symp, *old_next;
2809 int i;
2810
2811 symbols = (struct symbol_search **) xmalloc (sizeof (struct symbol_search *)
2812 * nfound);
2813 symp = prevtail->next;
2814 for (i = 0; i < nfound; i++)
2815 {
2816 symbols[i] = symp;
2817 symp = symp->next;
2818 }
2819 /* Generally NULL. */
2820 old_next = symp;
2821
2822 qsort (symbols, nfound, sizeof (struct symbol_search *),
2823 compare_search_syms);
2824
2825 symp = prevtail;
2826 for (i = 0; i < nfound; i++)
2827 {
2828 symp->next = symbols[i];
2829 symp = symp->next;
2830 }
2831 symp->next = old_next;
2832
2833 xfree (symbols);
2834 return symp;
2835 }
2836
2837 /* An object of this type is passed as the user_data to the
2838 expand_symtabs_matching method. */
2839 struct search_symbols_data
2840 {
2841 int nfiles;
2842 char **files;
2843 char *regexp;
2844 };
2845
2846 /* A callback for expand_symtabs_matching. */
2847 static int
2848 search_symbols_file_matches (const char *filename, void *user_data)
2849 {
2850 struct search_symbols_data *data = user_data;
2851
2852 return file_matches (filename, data->files, data->nfiles);
2853 }
2854
2855 /* A callback for expand_symtabs_matching. */
2856 static int
2857 search_symbols_name_matches (const char *symname, void *user_data)
2858 {
2859 struct search_symbols_data *data = user_data;
2860
2861 return data->regexp == NULL || re_exec (symname);
2862 }
2863
2864 /* Search the symbol table for matches to the regular expression REGEXP,
2865 returning the results in *MATCHES.
2866
2867 Only symbols of KIND are searched:
2868 FUNCTIONS_DOMAIN - search all functions
2869 TYPES_DOMAIN - search all type names
2870 VARIABLES_DOMAIN - search all symbols, excluding functions, type names,
2871 and constants (enums)
2872
2873 free_search_symbols should be called when *MATCHES is no longer needed.
2874
2875 The results are sorted locally; each symtab's global and static blocks are
2876 separately alphabetized.
2877 */
2878 void
2879 search_symbols (char *regexp, domain_enum kind, int nfiles, char *files[],
2880 struct symbol_search **matches)
2881 {
2882 struct symtab *s;
2883 struct blockvector *bv;
2884 struct block *b;
2885 int i = 0;
2886 struct dict_iterator iter;
2887 struct symbol *sym;
2888 struct objfile *objfile;
2889 struct minimal_symbol *msymbol;
2890 char *val;
2891 int found_misc = 0;
2892 static enum minimal_symbol_type types[]
2893 = {mst_data, mst_text, mst_abs, mst_unknown};
2894 static enum minimal_symbol_type types2[]
2895 = {mst_bss, mst_file_text, mst_abs, mst_unknown};
2896 static enum minimal_symbol_type types3[]
2897 = {mst_file_data, mst_solib_trampoline, mst_abs, mst_unknown};
2898 static enum minimal_symbol_type types4[]
2899 = {mst_file_bss, mst_text, mst_abs, mst_unknown};
2900 enum minimal_symbol_type ourtype;
2901 enum minimal_symbol_type ourtype2;
2902 enum minimal_symbol_type ourtype3;
2903 enum minimal_symbol_type ourtype4;
2904 struct symbol_search *sr;
2905 struct symbol_search *psr;
2906 struct symbol_search *tail;
2907 struct cleanup *old_chain = NULL;
2908 struct search_symbols_data datum;
2909
2910 if (kind < VARIABLES_DOMAIN)
2911 error (_("must search on specific domain"));
2912
2913 ourtype = types[(int) (kind - VARIABLES_DOMAIN)];
2914 ourtype2 = types2[(int) (kind - VARIABLES_DOMAIN)];
2915 ourtype3 = types3[(int) (kind - VARIABLES_DOMAIN)];
2916 ourtype4 = types4[(int) (kind - VARIABLES_DOMAIN)];
2917
2918 sr = *matches = NULL;
2919 tail = NULL;
2920
2921 if (regexp != NULL)
2922 {
2923 /* Make sure spacing is right for C++ operators.
2924 This is just a courtesy to make the matching less sensitive
2925 to how many spaces the user leaves between 'operator'
2926 and <TYPENAME> or <OPERATOR>. */
2927 char *opend;
2928 char *opname = operator_chars (regexp, &opend);
2929
2930 if (*opname)
2931 {
2932 int fix = -1; /* -1 means ok; otherwise number of spaces needed. */
2933
2934 if (isalpha (*opname) || *opname == '_' || *opname == '$')
2935 {
2936 /* There should 1 space between 'operator' and 'TYPENAME'. */
2937 if (opname[-1] != ' ' || opname[-2] == ' ')
2938 fix = 1;
2939 }
2940 else
2941 {
2942 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
2943 if (opname[-1] == ' ')
2944 fix = 0;
2945 }
2946 /* If wrong number of spaces, fix it. */
2947 if (fix >= 0)
2948 {
2949 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
2950
2951 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
2952 regexp = tmp;
2953 }
2954 }
2955
2956 if (0 != (val = re_comp (regexp)))
2957 error (_("Invalid regexp (%s): %s"), val, regexp);
2958 }
2959
2960 /* Search through the partial symtabs *first* for all symbols
2961 matching the regexp. That way we don't have to reproduce all of
2962 the machinery below. */
2963
2964 datum.nfiles = nfiles;
2965 datum.files = files;
2966 datum.regexp = regexp;
2967 ALL_OBJFILES (objfile)
2968 {
2969 if (objfile->sf)
2970 objfile->sf->qf->expand_symtabs_matching (objfile,
2971 search_symbols_file_matches,
2972 search_symbols_name_matches,
2973 kind,
2974 &datum);
2975 }
2976
2977 /* Here, we search through the minimal symbol tables for functions
2978 and variables that match, and force their symbols to be read.
2979 This is in particular necessary for demangled variable names,
2980 which are no longer put into the partial symbol tables.
2981 The symbol will then be found during the scan of symtabs below.
2982
2983 For functions, find_pc_symtab should succeed if we have debug info
2984 for the function, for variables we have to call lookup_symbol
2985 to determine if the variable has debug info.
2986 If the lookup fails, set found_misc so that we will rescan to print
2987 any matching symbols without debug info.
2988 */
2989
2990 if (nfiles == 0 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
2991 {
2992 ALL_MSYMBOLS (objfile, msymbol)
2993 {
2994 QUIT;
2995
2996 if (MSYMBOL_TYPE (msymbol) == ourtype ||
2997 MSYMBOL_TYPE (msymbol) == ourtype2 ||
2998 MSYMBOL_TYPE (msymbol) == ourtype3 ||
2999 MSYMBOL_TYPE (msymbol) == ourtype4)
3000 {
3001 if (regexp == NULL
3002 || re_exec (SYMBOL_NATURAL_NAME (msymbol)) != 0)
3003 {
3004 if (0 == find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol)))
3005 {
3006 /* FIXME: carlton/2003-02-04: Given that the
3007 semantics of lookup_symbol keeps on changing
3008 slightly, it would be a nice idea if we had a
3009 function lookup_symbol_minsym that found the
3010 symbol associated to a given minimal symbol (if
3011 any). */
3012 if (kind == FUNCTIONS_DOMAIN
3013 || lookup_symbol (SYMBOL_LINKAGE_NAME (msymbol),
3014 (struct block *) NULL,
3015 VAR_DOMAIN, 0)
3016 == NULL)
3017 found_misc = 1;
3018 }
3019 }
3020 }
3021 }
3022 }
3023
3024 ALL_PRIMARY_SYMTABS (objfile, s)
3025 {
3026 bv = BLOCKVECTOR (s);
3027 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
3028 {
3029 struct symbol_search *prevtail = tail;
3030 int nfound = 0;
3031
3032 b = BLOCKVECTOR_BLOCK (bv, i);
3033 ALL_BLOCK_SYMBOLS (b, iter, sym)
3034 {
3035 struct symtab *real_symtab = SYMBOL_SYMTAB (sym);
3036
3037 QUIT;
3038
3039 if (file_matches (real_symtab->filename, files, nfiles)
3040 && ((regexp == NULL
3041 || re_exec (SYMBOL_NATURAL_NAME (sym)) != 0)
3042 && ((kind == VARIABLES_DOMAIN && SYMBOL_CLASS (sym) != LOC_TYPEDEF
3043 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
3044 && SYMBOL_CLASS (sym) != LOC_BLOCK
3045 && SYMBOL_CLASS (sym) != LOC_CONST)
3046 || (kind == FUNCTIONS_DOMAIN && SYMBOL_CLASS (sym) == LOC_BLOCK)
3047 || (kind == TYPES_DOMAIN && SYMBOL_CLASS (sym) == LOC_TYPEDEF))))
3048 {
3049 /* match */
3050 psr = (struct symbol_search *) xmalloc (sizeof (struct symbol_search));
3051 psr->block = i;
3052 psr->symtab = real_symtab;
3053 psr->symbol = sym;
3054 psr->msymbol = NULL;
3055 psr->next = NULL;
3056 if (tail == NULL)
3057 sr = psr;
3058 else
3059 tail->next = psr;
3060 tail = psr;
3061 nfound ++;
3062 }
3063 }
3064 if (nfound > 0)
3065 {
3066 if (prevtail == NULL)
3067 {
3068 struct symbol_search dummy;
3069
3070 dummy.next = sr;
3071 tail = sort_search_symbols (&dummy, nfound);
3072 sr = dummy.next;
3073
3074 old_chain = make_cleanup_free_search_symbols (sr);
3075 }
3076 else
3077 tail = sort_search_symbols (prevtail, nfound);
3078 }
3079 }
3080 }
3081
3082 /* If there are no eyes, avoid all contact. I mean, if there are
3083 no debug symbols, then print directly from the msymbol_vector. */
3084
3085 if (found_misc || kind != FUNCTIONS_DOMAIN)
3086 {
3087 ALL_MSYMBOLS (objfile, msymbol)
3088 {
3089 QUIT;
3090
3091 if (MSYMBOL_TYPE (msymbol) == ourtype ||
3092 MSYMBOL_TYPE (msymbol) == ourtype2 ||
3093 MSYMBOL_TYPE (msymbol) == ourtype3 ||
3094 MSYMBOL_TYPE (msymbol) == ourtype4)
3095 {
3096 if (regexp == NULL
3097 || re_exec (SYMBOL_NATURAL_NAME (msymbol)) != 0)
3098 {
3099 /* Functions: Look up by address. */
3100 if (kind != FUNCTIONS_DOMAIN ||
3101 (0 == find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol))))
3102 {
3103 /* Variables/Absolutes: Look up by name */
3104 if (lookup_symbol (SYMBOL_LINKAGE_NAME (msymbol),
3105 (struct block *) NULL, VAR_DOMAIN, 0)
3106 == NULL)
3107 {
3108 /* match */
3109 psr = (struct symbol_search *) xmalloc (sizeof (struct symbol_search));
3110 psr->block = i;
3111 psr->msymbol = msymbol;
3112 psr->symtab = NULL;
3113 psr->symbol = NULL;
3114 psr->next = NULL;
3115 if (tail == NULL)
3116 {
3117 sr = psr;
3118 old_chain = make_cleanup_free_search_symbols (sr);
3119 }
3120 else
3121 tail->next = psr;
3122 tail = psr;
3123 }
3124 }
3125 }
3126 }
3127 }
3128 }
3129
3130 *matches = sr;
3131 if (sr != NULL)
3132 discard_cleanups (old_chain);
3133 }
3134
3135 /* Helper function for symtab_symbol_info, this function uses
3136 the data returned from search_symbols() to print information
3137 regarding the match to gdb_stdout.
3138 */
3139 static void
3140 print_symbol_info (domain_enum kind, struct symtab *s, struct symbol *sym,
3141 int block, char *last)
3142 {
3143 if (last == NULL || strcmp (last, s->filename) != 0)
3144 {
3145 fputs_filtered ("\nFile ", gdb_stdout);
3146 fputs_filtered (s->filename, gdb_stdout);
3147 fputs_filtered (":\n", gdb_stdout);
3148 }
3149
3150 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
3151 printf_filtered ("static ");
3152
3153 /* Typedef that is not a C++ class */
3154 if (kind == TYPES_DOMAIN
3155 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
3156 typedef_print (SYMBOL_TYPE (sym), sym, gdb_stdout);
3157 /* variable, func, or typedef-that-is-c++-class */
3158 else if (kind < TYPES_DOMAIN ||
3159 (kind == TYPES_DOMAIN &&
3160 SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
3161 {
3162 type_print (SYMBOL_TYPE (sym),
3163 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
3164 ? "" : SYMBOL_PRINT_NAME (sym)),
3165 gdb_stdout, 0);
3166
3167 printf_filtered (";\n");
3168 }
3169 }
3170
3171 /* This help function for symtab_symbol_info() prints information
3172 for non-debugging symbols to gdb_stdout.
3173 */
3174 static void
3175 print_msymbol_info (struct minimal_symbol *msymbol)
3176 {
3177 struct gdbarch *gdbarch = get_objfile_arch (msymbol_objfile (msymbol));
3178 char *tmp;
3179
3180 if (gdbarch_addr_bit (gdbarch) <= 32)
3181 tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol)
3182 & (CORE_ADDR) 0xffffffff,
3183 8);
3184 else
3185 tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol),
3186 16);
3187 printf_filtered ("%s %s\n",
3188 tmp, SYMBOL_PRINT_NAME (msymbol));
3189 }
3190
3191 /* This is the guts of the commands "info functions", "info types", and
3192 "info variables". It calls search_symbols to find all matches and then
3193 print_[m]symbol_info to print out some useful information about the
3194 matches.
3195 */
3196 static void
3197 symtab_symbol_info (char *regexp, domain_enum kind, int from_tty)
3198 {
3199 static char *classnames[] = {"variable", "function", "type", "method"};
3200 struct symbol_search *symbols;
3201 struct symbol_search *p;
3202 struct cleanup *old_chain;
3203 char *last_filename = NULL;
3204 int first = 1;
3205
3206 /* must make sure that if we're interrupted, symbols gets freed */
3207 search_symbols (regexp, kind, 0, (char **) NULL, &symbols);
3208 old_chain = make_cleanup_free_search_symbols (symbols);
3209
3210 printf_filtered (regexp
3211 ? "All %ss matching regular expression \"%s\":\n"
3212 : "All defined %ss:\n",
3213 classnames[(int) (kind - VARIABLES_DOMAIN)], regexp);
3214
3215 for (p = symbols; p != NULL; p = p->next)
3216 {
3217 QUIT;
3218
3219 if (p->msymbol != NULL)
3220 {
3221 if (first)
3222 {
3223 printf_filtered ("\nNon-debugging symbols:\n");
3224 first = 0;
3225 }
3226 print_msymbol_info (p->msymbol);
3227 }
3228 else
3229 {
3230 print_symbol_info (kind,
3231 p->symtab,
3232 p->symbol,
3233 p->block,
3234 last_filename);
3235 last_filename = p->symtab->filename;
3236 }
3237 }
3238
3239 do_cleanups (old_chain);
3240 }
3241
3242 static void
3243 variables_info (char *regexp, int from_tty)
3244 {
3245 symtab_symbol_info (regexp, VARIABLES_DOMAIN, from_tty);
3246 }
3247
3248 static void
3249 functions_info (char *regexp, int from_tty)
3250 {
3251 symtab_symbol_info (regexp, FUNCTIONS_DOMAIN, from_tty);
3252 }
3253
3254
3255 static void
3256 types_info (char *regexp, int from_tty)
3257 {
3258 symtab_symbol_info (regexp, TYPES_DOMAIN, from_tty);
3259 }
3260
3261 /* Breakpoint all functions matching regular expression. */
3262
3263 void
3264 rbreak_command_wrapper (char *regexp, int from_tty)
3265 {
3266 rbreak_command (regexp, from_tty);
3267 }
3268
3269 /* A cleanup function that calls end_rbreak_breakpoints. */
3270
3271 static void
3272 do_end_rbreak_breakpoints (void *ignore)
3273 {
3274 end_rbreak_breakpoints ();
3275 }
3276
3277 static void
3278 rbreak_command (char *regexp, int from_tty)
3279 {
3280 struct symbol_search *ss;
3281 struct symbol_search *p;
3282 struct cleanup *old_chain;
3283 char *string = NULL;
3284 int len = 0;
3285 char **files = NULL;
3286 int nfiles = 0;
3287
3288 if (regexp)
3289 {
3290 char *colon = strchr (regexp, ':');
3291
3292 if (colon && *(colon + 1) != ':')
3293 {
3294 int colon_index;
3295 char * file_name;
3296
3297 colon_index = colon - regexp;
3298 file_name = alloca (colon_index + 1);
3299 memcpy (file_name, regexp, colon_index);
3300 file_name[colon_index--] = 0;
3301 while (isspace (file_name[colon_index]))
3302 file_name[colon_index--] = 0;
3303 files = &file_name;
3304 nfiles = 1;
3305 regexp = colon + 1;
3306 while (isspace (*regexp)) regexp++;
3307 }
3308 }
3309
3310 search_symbols (regexp, FUNCTIONS_DOMAIN, nfiles, files, &ss);
3311 old_chain = make_cleanup_free_search_symbols (ss);
3312 make_cleanup (free_current_contents, &string);
3313
3314 start_rbreak_breakpoints ();
3315 make_cleanup (do_end_rbreak_breakpoints, NULL);
3316 for (p = ss; p != NULL; p = p->next)
3317 {
3318 if (p->msymbol == NULL)
3319 {
3320 int newlen = (strlen (p->symtab->filename)
3321 + strlen (SYMBOL_LINKAGE_NAME (p->symbol))
3322 + 4);
3323
3324 if (newlen > len)
3325 {
3326 string = xrealloc (string, newlen);
3327 len = newlen;
3328 }
3329 strcpy (string, p->symtab->filename);
3330 strcat (string, ":'");
3331 strcat (string, SYMBOL_LINKAGE_NAME (p->symbol));
3332 strcat (string, "'");
3333 break_command (string, from_tty);
3334 print_symbol_info (FUNCTIONS_DOMAIN,
3335 p->symtab,
3336 p->symbol,
3337 p->block,
3338 p->symtab->filename);
3339 }
3340 else
3341 {
3342 int newlen = (strlen (SYMBOL_LINKAGE_NAME (p->msymbol)) + 3);
3343
3344 if (newlen > len)
3345 {
3346 string = xrealloc (string, newlen);
3347 len = newlen;
3348 }
3349 strcpy (string, "'");
3350 strcat (string, SYMBOL_LINKAGE_NAME (p->msymbol));
3351 strcat (string, "'");
3352
3353 break_command (string, from_tty);
3354 printf_filtered ("<function, no debug info> %s;\n",
3355 SYMBOL_PRINT_NAME (p->msymbol));
3356 }
3357 }
3358
3359 do_cleanups (old_chain);
3360 }
3361 \f
3362
3363 /* Helper routine for make_symbol_completion_list. */
3364
3365 static int return_val_size;
3366 static int return_val_index;
3367 static char **return_val;
3368
3369 #define COMPLETION_LIST_ADD_SYMBOL(symbol, sym_text, len, text, word) \
3370 completion_list_add_name \
3371 (SYMBOL_NATURAL_NAME (symbol), (sym_text), (len), (text), (word))
3372
3373 /* Test to see if the symbol specified by SYMNAME (which is already
3374 demangled for C++ symbols) matches SYM_TEXT in the first SYM_TEXT_LEN
3375 characters. If so, add it to the current completion list. */
3376
3377 static void
3378 completion_list_add_name (char *symname, char *sym_text, int sym_text_len,
3379 char *text, char *word)
3380 {
3381 int newsize;
3382
3383 /* clip symbols that cannot match */
3384
3385 if (strncmp (symname, sym_text, sym_text_len) != 0)
3386 {
3387 return;
3388 }
3389
3390 /* We have a match for a completion, so add SYMNAME to the current list
3391 of matches. Note that the name is moved to freshly malloc'd space. */
3392
3393 {
3394 char *new;
3395
3396 if (word == sym_text)
3397 {
3398 new = xmalloc (strlen (symname) + 5);
3399 strcpy (new, symname);
3400 }
3401 else if (word > sym_text)
3402 {
3403 /* Return some portion of symname. */
3404 new = xmalloc (strlen (symname) + 5);
3405 strcpy (new, symname + (word - sym_text));
3406 }
3407 else
3408 {
3409 /* Return some of SYM_TEXT plus symname. */
3410 new = xmalloc (strlen (symname) + (sym_text - word) + 5);
3411 strncpy (new, word, sym_text - word);
3412 new[sym_text - word] = '\0';
3413 strcat (new, symname);
3414 }
3415
3416 if (return_val_index + 3 > return_val_size)
3417 {
3418 newsize = (return_val_size *= 2) * sizeof (char *);
3419 return_val = (char **) xrealloc ((char *) return_val, newsize);
3420 }
3421 return_val[return_val_index++] = new;
3422 return_val[return_val_index] = NULL;
3423 }
3424 }
3425
3426 /* ObjC: In case we are completing on a selector, look as the msymbol
3427 again and feed all the selectors into the mill. */
3428
3429 static void
3430 completion_list_objc_symbol (struct minimal_symbol *msymbol, char *sym_text,
3431 int sym_text_len, char *text, char *word)
3432 {
3433 static char *tmp = NULL;
3434 static unsigned int tmplen = 0;
3435
3436 char *method, *category, *selector;
3437 char *tmp2 = NULL;
3438
3439 method = SYMBOL_NATURAL_NAME (msymbol);
3440
3441 /* Is it a method? */
3442 if ((method[0] != '-') && (method[0] != '+'))
3443 return;
3444
3445 if (sym_text[0] == '[')
3446 /* Complete on shortened method method. */
3447 completion_list_add_name (method + 1, sym_text, sym_text_len, text, word);
3448
3449 while ((strlen (method) + 1) >= tmplen)
3450 {
3451 if (tmplen == 0)
3452 tmplen = 1024;
3453 else
3454 tmplen *= 2;
3455 tmp = xrealloc (tmp, tmplen);
3456 }
3457 selector = strchr (method, ' ');
3458 if (selector != NULL)
3459 selector++;
3460
3461 category = strchr (method, '(');
3462
3463 if ((category != NULL) && (selector != NULL))
3464 {
3465 memcpy (tmp, method, (category - method));
3466 tmp[category - method] = ' ';
3467 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
3468 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
3469 if (sym_text[0] == '[')
3470 completion_list_add_name (tmp + 1, sym_text, sym_text_len, text, word);
3471 }
3472
3473 if (selector != NULL)
3474 {
3475 /* Complete on selector only. */
3476 strcpy (tmp, selector);
3477 tmp2 = strchr (tmp, ']');
3478 if (tmp2 != NULL)
3479 *tmp2 = '\0';
3480
3481 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
3482 }
3483 }
3484
3485 /* Break the non-quoted text based on the characters which are in
3486 symbols. FIXME: This should probably be language-specific. */
3487
3488 static char *
3489 language_search_unquoted_string (char *text, char *p)
3490 {
3491 for (; p > text; --p)
3492 {
3493 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
3494 continue;
3495 else
3496 {
3497 if ((current_language->la_language == language_objc))
3498 {
3499 if (p[-1] == ':') /* might be part of a method name */
3500 continue;
3501 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
3502 p -= 2; /* beginning of a method name */
3503 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
3504 { /* might be part of a method name */
3505 char *t = p;
3506
3507 /* Seeing a ' ' or a '(' is not conclusive evidence
3508 that we are in the middle of a method name. However,
3509 finding "-[" or "+[" should be pretty un-ambiguous.
3510 Unfortunately we have to find it now to decide. */
3511
3512 while (t > text)
3513 if (isalnum (t[-1]) || t[-1] == '_' ||
3514 t[-1] == ' ' || t[-1] == ':' ||
3515 t[-1] == '(' || t[-1] == ')')
3516 --t;
3517 else
3518 break;
3519
3520 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
3521 p = t - 2; /* method name detected */
3522 /* else we leave with p unchanged */
3523 }
3524 }
3525 break;
3526 }
3527 }
3528 return p;
3529 }
3530
3531 static void
3532 completion_list_add_fields (struct symbol *sym, char *sym_text,
3533 int sym_text_len, char *text, char *word)
3534 {
3535 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
3536 {
3537 struct type *t = SYMBOL_TYPE (sym);
3538 enum type_code c = TYPE_CODE (t);
3539 int j;
3540
3541 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
3542 for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++)
3543 if (TYPE_FIELD_NAME (t, j))
3544 completion_list_add_name (TYPE_FIELD_NAME (t, j),
3545 sym_text, sym_text_len, text, word);
3546 }
3547 }
3548
3549 /* Type of the user_data argument passed to add_macro_name or
3550 add_partial_symbol_name. The contents are simply whatever is
3551 needed by completion_list_add_name. */
3552 struct add_name_data
3553 {
3554 char *sym_text;
3555 int sym_text_len;
3556 char *text;
3557 char *word;
3558 };
3559
3560 /* A callback used with macro_for_each and macro_for_each_in_scope.
3561 This adds a macro's name to the current completion list. */
3562 static void
3563 add_macro_name (const char *name, const struct macro_definition *ignore,
3564 void *user_data)
3565 {
3566 struct add_name_data *datum = (struct add_name_data *) user_data;
3567
3568 completion_list_add_name ((char *) name,
3569 datum->sym_text, datum->sym_text_len,
3570 datum->text, datum->word);
3571 }
3572
3573 /* A callback for map_partial_symbol_names. */
3574 static void
3575 add_partial_symbol_name (const char *name, void *user_data)
3576 {
3577 struct add_name_data *datum = (struct add_name_data *) user_data;
3578
3579 completion_list_add_name ((char *) name,
3580 datum->sym_text, datum->sym_text_len,
3581 datum->text, datum->word);
3582 }
3583
3584 char **
3585 default_make_symbol_completion_list (char *text, char *word)
3586 {
3587 /* Problem: All of the symbols have to be copied because readline
3588 frees them. I'm not going to worry about this; hopefully there
3589 won't be that many. */
3590
3591 struct symbol *sym;
3592 struct symtab *s;
3593 struct minimal_symbol *msymbol;
3594 struct objfile *objfile;
3595 struct block *b;
3596 const struct block *surrounding_static_block, *surrounding_global_block;
3597 struct dict_iterator iter;
3598 /* The symbol we are completing on. Points in same buffer as text. */
3599 char *sym_text;
3600 /* Length of sym_text. */
3601 int sym_text_len;
3602 struct add_name_data datum;
3603
3604 /* Now look for the symbol we are supposed to complete on. */
3605 {
3606 char *p;
3607 char quote_found;
3608 char *quote_pos = NULL;
3609
3610 /* First see if this is a quoted string. */
3611 quote_found = '\0';
3612 for (p = text; *p != '\0'; ++p)
3613 {
3614 if (quote_found != '\0')
3615 {
3616 if (*p == quote_found)
3617 /* Found close quote. */
3618 quote_found = '\0';
3619 else if (*p == '\\' && p[1] == quote_found)
3620 /* A backslash followed by the quote character
3621 doesn't end the string. */
3622 ++p;
3623 }
3624 else if (*p == '\'' || *p == '"')
3625 {
3626 quote_found = *p;
3627 quote_pos = p;
3628 }
3629 }
3630 if (quote_found == '\'')
3631 /* A string within single quotes can be a symbol, so complete on it. */
3632 sym_text = quote_pos + 1;
3633 else if (quote_found == '"')
3634 /* A double-quoted string is never a symbol, nor does it make sense
3635 to complete it any other way. */
3636 {
3637 return_val = (char **) xmalloc (sizeof (char *));
3638 return_val[0] = NULL;
3639 return return_val;
3640 }
3641 else
3642 {
3643 /* It is not a quoted string. Break it based on the characters
3644 which are in symbols. */
3645 while (p > text)
3646 {
3647 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0'
3648 || p[-1] == ':')
3649 --p;
3650 else
3651 break;
3652 }
3653 sym_text = p;
3654 }
3655 }
3656
3657 sym_text_len = strlen (sym_text);
3658
3659 return_val_size = 100;
3660 return_val_index = 0;
3661 return_val = (char **) xmalloc ((return_val_size + 1) * sizeof (char *));
3662 return_val[0] = NULL;
3663
3664 datum.sym_text = sym_text;
3665 datum.sym_text_len = sym_text_len;
3666 datum.text = text;
3667 datum.word = word;
3668
3669 /* Look through the partial symtabs for all symbols which begin
3670 by matching SYM_TEXT. Add each one that you find to the list. */
3671 map_partial_symbol_names (add_partial_symbol_name, &datum);
3672
3673 /* At this point scan through the misc symbol vectors and add each
3674 symbol you find to the list. Eventually we want to ignore
3675 anything that isn't a text symbol (everything else will be
3676 handled by the psymtab code above). */
3677
3678 ALL_MSYMBOLS (objfile, msymbol)
3679 {
3680 QUIT;
3681 COMPLETION_LIST_ADD_SYMBOL (msymbol, sym_text, sym_text_len, text, word);
3682
3683 completion_list_objc_symbol (msymbol, sym_text, sym_text_len, text, word);
3684 }
3685
3686 /* Search upwards from currently selected frame (so that we can
3687 complete on local vars). Also catch fields of types defined in
3688 this places which match our text string. Only complete on types
3689 visible from current context. */
3690
3691 b = get_selected_block (0);
3692 surrounding_static_block = block_static_block (b);
3693 surrounding_global_block = block_global_block (b);
3694 if (surrounding_static_block != NULL)
3695 while (b != surrounding_static_block)
3696 {
3697 QUIT;
3698
3699 ALL_BLOCK_SYMBOLS (b, iter, sym)
3700 {
3701 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text,
3702 word);
3703 completion_list_add_fields (sym, sym_text, sym_text_len, text,
3704 word);
3705 }
3706
3707 /* Stop when we encounter an enclosing function. Do not stop for
3708 non-inlined functions - the locals of the enclosing function
3709 are in scope for a nested function. */
3710 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
3711 break;
3712 b = BLOCK_SUPERBLOCK (b);
3713 }
3714
3715 /* Add fields from the file's types; symbols will be added below. */
3716
3717 if (surrounding_static_block != NULL)
3718 ALL_BLOCK_SYMBOLS (surrounding_static_block, iter, sym)
3719 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
3720
3721 if (surrounding_global_block != NULL)
3722 ALL_BLOCK_SYMBOLS (surrounding_global_block, iter, sym)
3723 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
3724
3725 /* Go through the symtabs and check the externs and statics for
3726 symbols which match. */
3727
3728 ALL_PRIMARY_SYMTABS (objfile, s)
3729 {
3730 QUIT;
3731 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
3732 ALL_BLOCK_SYMBOLS (b, iter, sym)
3733 {
3734 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
3735 }
3736 }
3737
3738 ALL_PRIMARY_SYMTABS (objfile, s)
3739 {
3740 QUIT;
3741 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
3742 ALL_BLOCK_SYMBOLS (b, iter, sym)
3743 {
3744 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
3745 }
3746 }
3747
3748 if (current_language->la_macro_expansion == macro_expansion_c)
3749 {
3750 struct macro_scope *scope;
3751
3752 /* Add any macros visible in the default scope. Note that this
3753 may yield the occasional wrong result, because an expression
3754 might be evaluated in a scope other than the default. For
3755 example, if the user types "break file:line if <TAB>", the
3756 resulting expression will be evaluated at "file:line" -- but
3757 at there does not seem to be a way to detect this at
3758 completion time. */
3759 scope = default_macro_scope ();
3760 if (scope)
3761 {
3762 macro_for_each_in_scope (scope->file, scope->line,
3763 add_macro_name, &datum);
3764 xfree (scope);
3765 }
3766
3767 /* User-defined macros are always visible. */
3768 macro_for_each (macro_user_macros, add_macro_name, &datum);
3769 }
3770
3771 return (return_val);
3772 }
3773
3774 /* Return a NULL terminated array of all symbols (regardless of class)
3775 which begin by matching TEXT. If the answer is no symbols, then
3776 the return value is an array which contains only a NULL pointer. */
3777
3778 char **
3779 make_symbol_completion_list (char *text, char *word)
3780 {
3781 return current_language->la_make_symbol_completion_list (text, word);
3782 }
3783
3784 /* Like make_symbol_completion_list, but suitable for use as a
3785 completion function. */
3786
3787 char **
3788 make_symbol_completion_list_fn (struct cmd_list_element *ignore,
3789 char *text, char *word)
3790 {
3791 return make_symbol_completion_list (text, word);
3792 }
3793
3794 /* Like make_symbol_completion_list, but returns a list of symbols
3795 defined in a source file FILE. */
3796
3797 char **
3798 make_file_symbol_completion_list (char *text, char *word, char *srcfile)
3799 {
3800 struct symbol *sym;
3801 struct symtab *s;
3802 struct block *b;
3803 struct dict_iterator iter;
3804 /* The symbol we are completing on. Points in same buffer as text. */
3805 char *sym_text;
3806 /* Length of sym_text. */
3807 int sym_text_len;
3808
3809 /* Now look for the symbol we are supposed to complete on.
3810 FIXME: This should be language-specific. */
3811 {
3812 char *p;
3813 char quote_found;
3814 char *quote_pos = NULL;
3815
3816 /* First see if this is a quoted string. */
3817 quote_found = '\0';
3818 for (p = text; *p != '\0'; ++p)
3819 {
3820 if (quote_found != '\0')
3821 {
3822 if (*p == quote_found)
3823 /* Found close quote. */
3824 quote_found = '\0';
3825 else if (*p == '\\' && p[1] == quote_found)
3826 /* A backslash followed by the quote character
3827 doesn't end the string. */
3828 ++p;
3829 }
3830 else if (*p == '\'' || *p == '"')
3831 {
3832 quote_found = *p;
3833 quote_pos = p;
3834 }
3835 }
3836 if (quote_found == '\'')
3837 /* A string within single quotes can be a symbol, so complete on it. */
3838 sym_text = quote_pos + 1;
3839 else if (quote_found == '"')
3840 /* A double-quoted string is never a symbol, nor does it make sense
3841 to complete it any other way. */
3842 {
3843 return_val = (char **) xmalloc (sizeof (char *));
3844 return_val[0] = NULL;
3845 return return_val;
3846 }
3847 else
3848 {
3849 /* Not a quoted string. */
3850 sym_text = language_search_unquoted_string (text, p);
3851 }
3852 }
3853
3854 sym_text_len = strlen (sym_text);
3855
3856 return_val_size = 10;
3857 return_val_index = 0;
3858 return_val = (char **) xmalloc ((return_val_size + 1) * sizeof (char *));
3859 return_val[0] = NULL;
3860
3861 /* Find the symtab for SRCFILE (this loads it if it was not yet read
3862 in). */
3863 s = lookup_symtab (srcfile);
3864 if (s == NULL)
3865 {
3866 /* Maybe they typed the file with leading directories, while the
3867 symbol tables record only its basename. */
3868 const char *tail = lbasename (srcfile);
3869
3870 if (tail > srcfile)
3871 s = lookup_symtab (tail);
3872 }
3873
3874 /* If we have no symtab for that file, return an empty list. */
3875 if (s == NULL)
3876 return (return_val);
3877
3878 /* Go through this symtab and check the externs and statics for
3879 symbols which match. */
3880
3881 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
3882 ALL_BLOCK_SYMBOLS (b, iter, sym)
3883 {
3884 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
3885 }
3886
3887 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
3888 ALL_BLOCK_SYMBOLS (b, iter, sym)
3889 {
3890 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
3891 }
3892
3893 return (return_val);
3894 }
3895
3896 /* A helper function for make_source_files_completion_list. It adds
3897 another file name to a list of possible completions, growing the
3898 list as necessary. */
3899
3900 static void
3901 add_filename_to_list (const char *fname, char *text, char *word,
3902 char ***list, int *list_used, int *list_alloced)
3903 {
3904 char *new;
3905 size_t fnlen = strlen (fname);
3906
3907 if (*list_used + 1 >= *list_alloced)
3908 {
3909 *list_alloced *= 2;
3910 *list = (char **) xrealloc ((char *) *list,
3911 *list_alloced * sizeof (char *));
3912 }
3913
3914 if (word == text)
3915 {
3916 /* Return exactly fname. */
3917 new = xmalloc (fnlen + 5);
3918 strcpy (new, fname);
3919 }
3920 else if (word > text)
3921 {
3922 /* Return some portion of fname. */
3923 new = xmalloc (fnlen + 5);
3924 strcpy (new, fname + (word - text));
3925 }
3926 else
3927 {
3928 /* Return some of TEXT plus fname. */
3929 new = xmalloc (fnlen + (text - word) + 5);
3930 strncpy (new, word, text - word);
3931 new[text - word] = '\0';
3932 strcat (new, fname);
3933 }
3934 (*list)[*list_used] = new;
3935 (*list)[++*list_used] = NULL;
3936 }
3937
3938 static int
3939 not_interesting_fname (const char *fname)
3940 {
3941 static const char *illegal_aliens[] = {
3942 "_globals_", /* inserted by coff_symtab_read */
3943 NULL
3944 };
3945 int i;
3946
3947 for (i = 0; illegal_aliens[i]; i++)
3948 {
3949 if (strcmp (fname, illegal_aliens[i]) == 0)
3950 return 1;
3951 }
3952 return 0;
3953 }
3954
3955 /* An object of this type is passed as the user_data argument to
3956 map_partial_symbol_filenames. */
3957 struct add_partial_filename_data
3958 {
3959 int *first;
3960 char *text;
3961 char *word;
3962 int text_len;
3963 char ***list;
3964 int *list_used;
3965 int *list_alloced;
3966 };
3967
3968 /* A callback for map_partial_symbol_filenames. */
3969 static void
3970 maybe_add_partial_symtab_filename (const char *fullname, const char *filename,
3971 void *user_data)
3972 {
3973 struct add_partial_filename_data *data = user_data;
3974
3975 if (not_interesting_fname (filename))
3976 return;
3977 if (!filename_seen (filename, 1, data->first)
3978 #if HAVE_DOS_BASED_FILE_SYSTEM
3979 && strncasecmp (filename, data->text, data->text_len) == 0
3980 #else
3981 && strncmp (filename, data->text, data->text_len) == 0
3982 #endif
3983 )
3984 {
3985 /* This file matches for a completion; add it to the
3986 current list of matches. */
3987 add_filename_to_list (filename, data->text, data->word,
3988 data->list, data->list_used, data->list_alloced);
3989 }
3990 else
3991 {
3992 const char *base_name = lbasename (filename);
3993
3994 if (base_name != filename
3995 && !filename_seen (base_name, 1, data->first)
3996 #if HAVE_DOS_BASED_FILE_SYSTEM
3997 && strncasecmp (base_name, data->text, data->text_len) == 0
3998 #else
3999 && strncmp (base_name, data->text, data->text_len) == 0
4000 #endif
4001 )
4002 add_filename_to_list (base_name, data->text, data->word,
4003 data->list, data->list_used, data->list_alloced);
4004 }
4005 }
4006
4007 /* Return a NULL terminated array of all source files whose names
4008 begin with matching TEXT. The file names are looked up in the
4009 symbol tables of this program. If the answer is no matchess, then
4010 the return value is an array which contains only a NULL pointer. */
4011
4012 char **
4013 make_source_files_completion_list (char *text, char *word)
4014 {
4015 struct symtab *s;
4016 struct objfile *objfile;
4017 int first = 1;
4018 int list_alloced = 1;
4019 int list_used = 0;
4020 size_t text_len = strlen (text);
4021 char **list = (char **) xmalloc (list_alloced * sizeof (char *));
4022 const char *base_name;
4023 struct add_partial_filename_data datum;
4024
4025 list[0] = NULL;
4026
4027 if (!have_full_symbols () && !have_partial_symbols ())
4028 return list;
4029
4030 ALL_SYMTABS (objfile, s)
4031 {
4032 if (not_interesting_fname (s->filename))
4033 continue;
4034 if (!filename_seen (s->filename, 1, &first)
4035 #if HAVE_DOS_BASED_FILE_SYSTEM
4036 && strncasecmp (s->filename, text, text_len) == 0
4037 #else
4038 && strncmp (s->filename, text, text_len) == 0
4039 #endif
4040 )
4041 {
4042 /* This file matches for a completion; add it to the current
4043 list of matches. */
4044 add_filename_to_list (s->filename, text, word,
4045 &list, &list_used, &list_alloced);
4046 }
4047 else
4048 {
4049 /* NOTE: We allow the user to type a base name when the
4050 debug info records leading directories, but not the other
4051 way around. This is what subroutines of breakpoint
4052 command do when they parse file names. */
4053 base_name = lbasename (s->filename);
4054 if (base_name != s->filename
4055 && !filename_seen (base_name, 1, &first)
4056 #if HAVE_DOS_BASED_FILE_SYSTEM
4057 && strncasecmp (base_name, text, text_len) == 0
4058 #else
4059 && strncmp (base_name, text, text_len) == 0
4060 #endif
4061 )
4062 add_filename_to_list (base_name, text, word,
4063 &list, &list_used, &list_alloced);
4064 }
4065 }
4066
4067 datum.first = &first;
4068 datum.text = text;
4069 datum.word = word;
4070 datum.text_len = text_len;
4071 datum.list = &list;
4072 datum.list_used = &list_used;
4073 datum.list_alloced = &list_alloced;
4074 map_partial_symbol_filenames (maybe_add_partial_symtab_filename, &datum);
4075
4076 return list;
4077 }
4078
4079 /* Determine if PC is in the prologue of a function. The prologue is the area
4080 between the first instruction of a function, and the first executable line.
4081 Returns 1 if PC *might* be in prologue, 0 if definately *not* in prologue.
4082
4083 If non-zero, func_start is where we think the prologue starts, possibly
4084 by previous examination of symbol table information.
4085 */
4086
4087 int
4088 in_prologue (struct gdbarch *gdbarch, CORE_ADDR pc, CORE_ADDR func_start)
4089 {
4090 struct symtab_and_line sal;
4091 CORE_ADDR func_addr, func_end;
4092
4093 /* We have several sources of information we can consult to figure
4094 this out.
4095 - Compilers usually emit line number info that marks the prologue
4096 as its own "source line". So the ending address of that "line"
4097 is the end of the prologue. If available, this is the most
4098 reliable method.
4099 - The minimal symbols and partial symbols, which can usually tell
4100 us the starting and ending addresses of a function.
4101 - If we know the function's start address, we can call the
4102 architecture-defined gdbarch_skip_prologue function to analyze the
4103 instruction stream and guess where the prologue ends.
4104 - Our `func_start' argument; if non-zero, this is the caller's
4105 best guess as to the function's entry point. At the time of
4106 this writing, handle_inferior_event doesn't get this right, so
4107 it should be our last resort. */
4108
4109 /* Consult the partial symbol table, to find which function
4110 the PC is in. */
4111 if (! find_pc_partial_function (pc, NULL, &func_addr, &func_end))
4112 {
4113 CORE_ADDR prologue_end;
4114
4115 /* We don't even have minsym information, so fall back to using
4116 func_start, if given. */
4117 if (! func_start)
4118 return 1; /* We *might* be in a prologue. */
4119
4120 prologue_end = gdbarch_skip_prologue (gdbarch, func_start);
4121
4122 return func_start <= pc && pc < prologue_end;
4123 }
4124
4125 /* If we have line number information for the function, that's
4126 usually pretty reliable. */
4127 sal = find_pc_line (func_addr, 0);
4128
4129 /* Now sal describes the source line at the function's entry point,
4130 which (by convention) is the prologue. The end of that "line",
4131 sal.end, is the end of the prologue.
4132
4133 Note that, for functions whose source code is all on a single
4134 line, the line number information doesn't always end up this way.
4135 So we must verify that our purported end-of-prologue address is
4136 *within* the function, not at its start or end. */
4137 if (sal.line == 0
4138 || sal.end <= func_addr
4139 || func_end <= sal.end)
4140 {
4141 /* We don't have any good line number info, so use the minsym
4142 information, together with the architecture-specific prologue
4143 scanning code. */
4144 CORE_ADDR prologue_end = gdbarch_skip_prologue (gdbarch, func_addr);
4145
4146 return func_addr <= pc && pc < prologue_end;
4147 }
4148
4149 /* We have line number info, and it looks good. */
4150 return func_addr <= pc && pc < sal.end;
4151 }
4152
4153 /* Given PC at the function's start address, attempt to find the
4154 prologue end using SAL information. Return zero if the skip fails.
4155
4156 A non-optimized prologue traditionally has one SAL for the function
4157 and a second for the function body. A single line function has
4158 them both pointing at the same line.
4159
4160 An optimized prologue is similar but the prologue may contain
4161 instructions (SALs) from the instruction body. Need to skip those
4162 while not getting into the function body.
4163
4164 The functions end point and an increasing SAL line are used as
4165 indicators of the prologue's endpoint.
4166
4167 This code is based on the function refine_prologue_limit (versions
4168 found in both ia64 and ppc). */
4169
4170 CORE_ADDR
4171 skip_prologue_using_sal (struct gdbarch *gdbarch, CORE_ADDR func_addr)
4172 {
4173 struct symtab_and_line prologue_sal;
4174 CORE_ADDR start_pc;
4175 CORE_ADDR end_pc;
4176 struct block *bl;
4177
4178 /* Get an initial range for the function. */
4179 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
4180 start_pc += gdbarch_deprecated_function_start_offset (gdbarch);
4181
4182 prologue_sal = find_pc_line (start_pc, 0);
4183 if (prologue_sal.line != 0)
4184 {
4185 /* For langauges other than assembly, treat two consecutive line
4186 entries at the same address as a zero-instruction prologue.
4187 The GNU assembler emits separate line notes for each instruction
4188 in a multi-instruction macro, but compilers generally will not
4189 do this. */
4190 if (prologue_sal.symtab->language != language_asm)
4191 {
4192 struct linetable *linetable = LINETABLE (prologue_sal.symtab);
4193 int idx = 0;
4194
4195 /* Skip any earlier lines, and any end-of-sequence marker
4196 from a previous function. */
4197 while (linetable->item[idx].pc != prologue_sal.pc
4198 || linetable->item[idx].line == 0)
4199 idx++;
4200
4201 if (idx+1 < linetable->nitems
4202 && linetable->item[idx+1].line != 0
4203 && linetable->item[idx+1].pc == start_pc)
4204 return start_pc;
4205 }
4206
4207 /* If there is only one sal that covers the entire function,
4208 then it is probably a single line function, like
4209 "foo(){}". */
4210 if (prologue_sal.end >= end_pc)
4211 return 0;
4212
4213 while (prologue_sal.end < end_pc)
4214 {
4215 struct symtab_and_line sal;
4216
4217 sal = find_pc_line (prologue_sal.end, 0);
4218 if (sal.line == 0)
4219 break;
4220 /* Assume that a consecutive SAL for the same (or larger)
4221 line mark the prologue -> body transition. */
4222 if (sal.line >= prologue_sal.line)
4223 break;
4224
4225 /* The line number is smaller. Check that it's from the
4226 same function, not something inlined. If it's inlined,
4227 then there is no point comparing the line numbers. */
4228 bl = block_for_pc (prologue_sal.end);
4229 while (bl)
4230 {
4231 if (block_inlined_p (bl))
4232 break;
4233 if (BLOCK_FUNCTION (bl))
4234 {
4235 bl = NULL;
4236 break;
4237 }
4238 bl = BLOCK_SUPERBLOCK (bl);
4239 }
4240 if (bl != NULL)
4241 break;
4242
4243 /* The case in which compiler's optimizer/scheduler has
4244 moved instructions into the prologue. We look ahead in
4245 the function looking for address ranges whose
4246 corresponding line number is less the first one that we
4247 found for the function. This is more conservative then
4248 refine_prologue_limit which scans a large number of SALs
4249 looking for any in the prologue */
4250 prologue_sal = sal;
4251 }
4252 }
4253
4254 if (prologue_sal.end < end_pc)
4255 /* Return the end of this line, or zero if we could not find a
4256 line. */
4257 return prologue_sal.end;
4258 else
4259 /* Don't return END_PC, which is past the end of the function. */
4260 return prologue_sal.pc;
4261 }
4262 \f
4263 struct symtabs_and_lines
4264 decode_line_spec (char *string, int funfirstline)
4265 {
4266 struct symtabs_and_lines sals;
4267 struct symtab_and_line cursal;
4268
4269 if (string == 0)
4270 error (_("Empty line specification."));
4271
4272 /* We use whatever is set as the current source line. We do not try
4273 and get a default or it will recursively call us! */
4274 cursal = get_current_source_symtab_and_line ();
4275
4276 sals = decode_line_1 (&string, funfirstline,
4277 cursal.symtab, cursal.line,
4278 (char ***) NULL, NULL);
4279
4280 if (*string)
4281 error (_("Junk at end of line specification: %s"), string);
4282 return sals;
4283 }
4284
4285 /* Track MAIN */
4286 static char *name_of_main;
4287
4288 void
4289 set_main_name (const char *name)
4290 {
4291 if (name_of_main != NULL)
4292 {
4293 xfree (name_of_main);
4294 name_of_main = NULL;
4295 }
4296 if (name != NULL)
4297 {
4298 name_of_main = xstrdup (name);
4299 }
4300 }
4301
4302 /* Deduce the name of the main procedure, and set NAME_OF_MAIN
4303 accordingly. */
4304
4305 static void
4306 find_main_name (void)
4307 {
4308 const char *new_main_name;
4309
4310 /* Try to see if the main procedure is in Ada. */
4311 /* FIXME: brobecker/2005-03-07: Another way of doing this would
4312 be to add a new method in the language vector, and call this
4313 method for each language until one of them returns a non-empty
4314 name. This would allow us to remove this hard-coded call to
4315 an Ada function. It is not clear that this is a better approach
4316 at this point, because all methods need to be written in a way
4317 such that false positives never be returned. For instance, it is
4318 important that a method does not return a wrong name for the main
4319 procedure if the main procedure is actually written in a different
4320 language. It is easy to guaranty this with Ada, since we use a
4321 special symbol generated only when the main in Ada to find the name
4322 of the main procedure. It is difficult however to see how this can
4323 be guarantied for languages such as C, for instance. This suggests
4324 that order of call for these methods becomes important, which means
4325 a more complicated approach. */
4326 new_main_name = ada_main_name ();
4327 if (new_main_name != NULL)
4328 {
4329 set_main_name (new_main_name);
4330 return;
4331 }
4332
4333 new_main_name = pascal_main_name ();
4334 if (new_main_name != NULL)
4335 {
4336 set_main_name (new_main_name);
4337 return;
4338 }
4339
4340 /* The languages above didn't identify the name of the main procedure.
4341 Fallback to "main". */
4342 set_main_name ("main");
4343 }
4344
4345 char *
4346 main_name (void)
4347 {
4348 if (name_of_main == NULL)
4349 find_main_name ();
4350
4351 return name_of_main;
4352 }
4353
4354 /* Handle ``executable_changed'' events for the symtab module. */
4355
4356 static void
4357 symtab_observer_executable_changed (void)
4358 {
4359 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
4360 set_main_name (NULL);
4361 }
4362
4363 /* Helper to expand_line_sal below. Appends new sal to SAL,
4364 initializing it from SYMTAB, LINENO and PC. */
4365 static void
4366 append_expanded_sal (struct symtabs_and_lines *sal,
4367 struct program_space *pspace,
4368 struct symtab *symtab,
4369 int lineno, CORE_ADDR pc)
4370 {
4371 sal->sals = xrealloc (sal->sals,
4372 sizeof (sal->sals[0])
4373 * (sal->nelts + 1));
4374 init_sal (sal->sals + sal->nelts);
4375 sal->sals[sal->nelts].pspace = pspace;
4376 sal->sals[sal->nelts].symtab = symtab;
4377 sal->sals[sal->nelts].section = NULL;
4378 sal->sals[sal->nelts].end = 0;
4379 sal->sals[sal->nelts].line = lineno;
4380 sal->sals[sal->nelts].pc = pc;
4381 ++sal->nelts;
4382 }
4383
4384 /* Helper to expand_line_sal below. Search in the symtabs for any
4385 linetable entry that exactly matches FULLNAME and LINENO and append
4386 them to RET. If FULLNAME is NULL or if a symtab has no full name,
4387 use FILENAME and LINENO instead. If there is at least one match,
4388 return 1; otherwise, return 0, and return the best choice in BEST_ITEM
4389 and BEST_SYMTAB. */
4390
4391 static int
4392 append_exact_match_to_sals (char *filename, char *fullname, int lineno,
4393 struct symtabs_and_lines *ret,
4394 struct linetable_entry **best_item,
4395 struct symtab **best_symtab)
4396 {
4397 struct program_space *pspace;
4398 struct objfile *objfile;
4399 struct symtab *symtab;
4400 int exact = 0;
4401 int j;
4402 *best_item = 0;
4403 *best_symtab = 0;
4404
4405 ALL_PSPACES (pspace)
4406 ALL_PSPACE_SYMTABS (pspace, objfile, symtab)
4407 {
4408 if (FILENAME_CMP (filename, symtab->filename) == 0)
4409 {
4410 struct linetable *l;
4411 int len;
4412
4413 if (fullname != NULL
4414 && symtab_to_fullname (symtab) != NULL
4415 && FILENAME_CMP (fullname, symtab->fullname) != 0)
4416 continue;
4417 l = LINETABLE (symtab);
4418 if (!l)
4419 continue;
4420 len = l->nitems;
4421
4422 for (j = 0; j < len; j++)
4423 {
4424 struct linetable_entry *item = &(l->item[j]);
4425
4426 if (item->line == lineno)
4427 {
4428 exact = 1;
4429 append_expanded_sal (ret, objfile->pspace,
4430 symtab, lineno, item->pc);
4431 }
4432 else if (!exact && item->line > lineno
4433 && (*best_item == NULL
4434 || item->line < (*best_item)->line))
4435 {
4436 *best_item = item;
4437 *best_symtab = symtab;
4438 }
4439 }
4440 }
4441 }
4442 return exact;
4443 }
4444
4445 /* Compute a set of all sals in all program spaces that correspond to
4446 same file and line as SAL and return those. If there are several
4447 sals that belong to the same block, only one sal for the block is
4448 included in results. */
4449
4450 struct symtabs_and_lines
4451 expand_line_sal (struct symtab_and_line sal)
4452 {
4453 struct symtabs_and_lines ret;
4454 int i, j;
4455 struct objfile *objfile;
4456 int lineno;
4457 int deleted = 0;
4458 struct block **blocks = NULL;
4459 int *filter;
4460 struct cleanup *old_chain;
4461
4462 ret.nelts = 0;
4463 ret.sals = NULL;
4464
4465 /* Only expand sals that represent file.c:line. */
4466 if (sal.symtab == NULL || sal.line == 0 || sal.pc != 0)
4467 {
4468 ret.sals = xmalloc (sizeof (struct symtab_and_line));
4469 ret.sals[0] = sal;
4470 ret.nelts = 1;
4471 return ret;
4472 }
4473 else
4474 {
4475 struct program_space *pspace;
4476 struct linetable_entry *best_item = 0;
4477 struct symtab *best_symtab = 0;
4478 int exact = 0;
4479 char *match_filename;
4480
4481 lineno = sal.line;
4482 match_filename = sal.symtab->filename;
4483
4484 /* We need to find all symtabs for a file which name
4485 is described by sal. We cannot just directly
4486 iterate over symtabs, since a symtab might not be
4487 yet created. We also cannot iterate over psymtabs,
4488 calling PSYMTAB_TO_SYMTAB and working on that symtab,
4489 since PSYMTAB_TO_SYMTAB will return NULL for psymtab
4490 corresponding to an included file. Therefore, we do
4491 first pass over psymtabs, reading in those with
4492 the right name. Then, we iterate over symtabs, knowing
4493 that all symtabs we're interested in are loaded. */
4494
4495 old_chain = save_current_program_space ();
4496 ALL_PSPACES (pspace)
4497 {
4498 set_current_program_space (pspace);
4499 ALL_PSPACE_OBJFILES (pspace, objfile)
4500 {
4501 if (objfile->sf)
4502 objfile->sf->qf->expand_symtabs_with_filename (objfile,
4503 sal.symtab->filename);
4504 }
4505 }
4506 do_cleanups (old_chain);
4507
4508 /* Now search the symtab for exact matches and append them. If
4509 none is found, append the best_item and all its exact
4510 matches. */
4511 symtab_to_fullname (sal.symtab);
4512 exact = append_exact_match_to_sals (sal.symtab->filename,
4513 sal.symtab->fullname, lineno,
4514 &ret, &best_item, &best_symtab);
4515 if (!exact && best_item)
4516 append_exact_match_to_sals (best_symtab->filename,
4517 best_symtab->fullname, best_item->line,
4518 &ret, &best_item, &best_symtab);
4519 }
4520
4521 /* For optimized code, compiler can scatter one source line accross
4522 disjoint ranges of PC values, even when no duplicate functions
4523 or inline functions are involved. For example, 'for (;;)' inside
4524 non-template non-inline non-ctor-or-dtor function can result
4525 in two PC ranges. In this case, we don't want to set breakpoint
4526 on first PC of each range. To filter such cases, we use containing
4527 blocks -- for each PC found above we see if there are other PCs
4528 that are in the same block. If yes, the other PCs are filtered out. */
4529
4530 old_chain = save_current_program_space ();
4531 filter = alloca (ret.nelts * sizeof (int));
4532 blocks = alloca (ret.nelts * sizeof (struct block *));
4533 for (i = 0; i < ret.nelts; ++i)
4534 {
4535 set_current_program_space (ret.sals[i].pspace);
4536
4537 filter[i] = 1;
4538 blocks[i] = block_for_pc_sect (ret.sals[i].pc, ret.sals[i].section);
4539
4540 }
4541 do_cleanups (old_chain);
4542
4543 for (i = 0; i < ret.nelts; ++i)
4544 if (blocks[i] != NULL)
4545 for (j = i+1; j < ret.nelts; ++j)
4546 if (blocks[j] == blocks[i])
4547 {
4548 filter[j] = 0;
4549 ++deleted;
4550 break;
4551 }
4552
4553 {
4554 struct symtab_and_line *final =
4555 xmalloc (sizeof (struct symtab_and_line) * (ret.nelts-deleted));
4556
4557 for (i = 0, j = 0; i < ret.nelts; ++i)
4558 if (filter[i])
4559 final[j++] = ret.sals[i];
4560
4561 ret.nelts -= deleted;
4562 xfree (ret.sals);
4563 ret.sals = final;
4564 }
4565
4566 return ret;
4567 }
4568
4569 /* Return 1 if the supplied producer string matches the ARM RealView
4570 compiler (armcc). */
4571
4572 int
4573 producer_is_realview (const char *producer)
4574 {
4575 static const char *const arm_idents[] = {
4576 "ARM C Compiler, ADS",
4577 "Thumb C Compiler, ADS",
4578 "ARM C++ Compiler, ADS",
4579 "Thumb C++ Compiler, ADS",
4580 "ARM/Thumb C/C++ Compiler, RVCT",
4581 "ARM C/C++ Compiler, RVCT"
4582 };
4583 int i;
4584
4585 if (producer == NULL)
4586 return 0;
4587
4588 for (i = 0; i < ARRAY_SIZE (arm_idents); i++)
4589 if (strncmp (producer, arm_idents[i], strlen (arm_idents[i])) == 0)
4590 return 1;
4591
4592 return 0;
4593 }
4594
4595 void
4596 _initialize_symtab (void)
4597 {
4598 add_info ("variables", variables_info, _("\
4599 All global and static variable names, or those matching REGEXP."));
4600 if (dbx_commands)
4601 add_com ("whereis", class_info, variables_info, _("\
4602 All global and static variable names, or those matching REGEXP."));
4603
4604 add_info ("functions", functions_info,
4605 _("All function names, or those matching REGEXP."));
4606
4607 /* FIXME: This command has at least the following problems:
4608 1. It prints builtin types (in a very strange and confusing fashion).
4609 2. It doesn't print right, e.g. with
4610 typedef struct foo *FOO
4611 type_print prints "FOO" when we want to make it (in this situation)
4612 print "struct foo *".
4613 I also think "ptype" or "whatis" is more likely to be useful (but if
4614 there is much disagreement "info types" can be fixed). */
4615 add_info ("types", types_info,
4616 _("All type names, or those matching REGEXP."));
4617
4618 add_info ("sources", sources_info,
4619 _("Source files in the program."));
4620
4621 add_com ("rbreak", class_breakpoint, rbreak_command,
4622 _("Set a breakpoint for all functions matching REGEXP."));
4623
4624 if (xdb_commands)
4625 {
4626 add_com ("lf", class_info, sources_info,
4627 _("Source files in the program"));
4628 add_com ("lg", class_info, variables_info, _("\
4629 All global and static variable names, or those matching REGEXP."));
4630 }
4631
4632 add_setshow_enum_cmd ("multiple-symbols", no_class,
4633 multiple_symbols_modes, &multiple_symbols_mode,
4634 _("\
4635 Set the debugger behavior when more than one symbol are possible matches\n\
4636 in an expression."), _("\
4637 Show how the debugger handles ambiguities in expressions."), _("\
4638 Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
4639 NULL, NULL, &setlist, &showlist);
4640
4641 observer_attach_executable_changed (symtab_observer_executable_changed);
4642 }
This page took 0.127876 seconds and 4 git commands to generate.