* symtab.h (enum address_class): Remove LOC_BASEREG and
[deliverable/binutils-gdb.git] / gdb / symtab.c
1 /* Symbol table lookup for the GNU debugger, GDB.
2
3 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2007, 2008
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "symtab.h"
24 #include "gdbtypes.h"
25 #include "gdbcore.h"
26 #include "frame.h"
27 #include "target.h"
28 #include "value.h"
29 #include "symfile.h"
30 #include "objfiles.h"
31 #include "gdbcmd.h"
32 #include "call-cmds.h"
33 #include "gdb_regex.h"
34 #include "expression.h"
35 #include "language.h"
36 #include "demangle.h"
37 #include "inferior.h"
38 #include "linespec.h"
39 #include "source.h"
40 #include "filenames.h" /* for FILENAME_CMP */
41 #include "objc-lang.h"
42 #include "ada-lang.h"
43 #include "p-lang.h"
44 #include "addrmap.h"
45
46 #include "hashtab.h"
47
48 #include "gdb_obstack.h"
49 #include "block.h"
50 #include "dictionary.h"
51
52 #include <sys/types.h>
53 #include <fcntl.h>
54 #include "gdb_string.h"
55 #include "gdb_stat.h"
56 #include <ctype.h>
57 #include "cp-abi.h"
58 #include "observer.h"
59 #include "gdb_assert.h"
60 #include "solist.h"
61
62 /* Prototypes for local functions */
63
64 static void completion_list_add_name (char *, char *, int, char *, char *);
65
66 static void rbreak_command (char *, int);
67
68 static void types_info (char *, int);
69
70 static void functions_info (char *, int);
71
72 static void variables_info (char *, int);
73
74 static void sources_info (char *, int);
75
76 static void output_source_filename (const char *, int *);
77
78 static int find_line_common (struct linetable *, int, int *);
79
80 /* This one is used by linespec.c */
81
82 char *operator_chars (char *p, char **end);
83
84 static struct symbol *lookup_symbol_aux (const char *name,
85 const char *linkage_name,
86 const struct block *block,
87 const domain_enum domain,
88 enum language language,
89 int *is_a_field_of_this);
90
91 static
92 struct symbol *lookup_symbol_aux_local (const char *name,
93 const char *linkage_name,
94 const struct block *block,
95 const domain_enum domain);
96
97 static
98 struct symbol *lookup_symbol_aux_symtabs (int block_index,
99 const char *name,
100 const char *linkage_name,
101 const domain_enum domain);
102
103 static
104 struct symbol *lookup_symbol_aux_psymtabs (int block_index,
105 const char *name,
106 const char *linkage_name,
107 const domain_enum domain);
108
109 static int file_matches (char *, char **, int);
110
111 static void print_symbol_info (domain_enum,
112 struct symtab *, struct symbol *, int, char *);
113
114 static void print_msymbol_info (struct minimal_symbol *);
115
116 static void symtab_symbol_info (char *, domain_enum, int);
117
118 void _initialize_symtab (void);
119
120 /* */
121
122 /* Allow the user to configure the debugger behavior with respect
123 to multiple-choice menus when more than one symbol matches during
124 a symbol lookup. */
125
126 const char multiple_symbols_ask[] = "ask";
127 const char multiple_symbols_all[] = "all";
128 const char multiple_symbols_cancel[] = "cancel";
129 static const char *multiple_symbols_modes[] =
130 {
131 multiple_symbols_ask,
132 multiple_symbols_all,
133 multiple_symbols_cancel,
134 NULL
135 };
136 static const char *multiple_symbols_mode = multiple_symbols_all;
137
138 /* Read-only accessor to AUTO_SELECT_MODE. */
139
140 const char *
141 multiple_symbols_select_mode (void)
142 {
143 return multiple_symbols_mode;
144 }
145
146 /* The single non-language-specific builtin type */
147 struct type *builtin_type_error;
148
149 /* Block in which the most recently searched-for symbol was found.
150 Might be better to make this a parameter to lookup_symbol and
151 value_of_this. */
152
153 const struct block *block_found;
154
155 /* Check for a symtab of a specific name; first in symtabs, then in
156 psymtabs. *If* there is no '/' in the name, a match after a '/'
157 in the symtab filename will also work. */
158
159 struct symtab *
160 lookup_symtab (const char *name)
161 {
162 struct symtab *s;
163 struct partial_symtab *ps;
164 struct objfile *objfile;
165 char *real_path = NULL;
166 char *full_path = NULL;
167
168 /* Here we are interested in canonicalizing an absolute path, not
169 absolutizing a relative path. */
170 if (IS_ABSOLUTE_PATH (name))
171 {
172 full_path = xfullpath (name);
173 make_cleanup (xfree, full_path);
174 real_path = gdb_realpath (name);
175 make_cleanup (xfree, real_path);
176 }
177
178 got_symtab:
179
180 /* First, search for an exact match */
181
182 ALL_SYMTABS (objfile, s)
183 {
184 if (FILENAME_CMP (name, s->filename) == 0)
185 {
186 return s;
187 }
188
189 /* If the user gave us an absolute path, try to find the file in
190 this symtab and use its absolute path. */
191
192 if (full_path != NULL)
193 {
194 const char *fp = symtab_to_fullname (s);
195 if (fp != NULL && FILENAME_CMP (full_path, fp) == 0)
196 {
197 return s;
198 }
199 }
200
201 if (real_path != NULL)
202 {
203 char *fullname = symtab_to_fullname (s);
204 if (fullname != NULL)
205 {
206 char *rp = gdb_realpath (fullname);
207 make_cleanup (xfree, rp);
208 if (FILENAME_CMP (real_path, rp) == 0)
209 {
210 return s;
211 }
212 }
213 }
214 }
215
216 /* Now, search for a matching tail (only if name doesn't have any dirs) */
217
218 if (lbasename (name) == name)
219 ALL_SYMTABS (objfile, s)
220 {
221 if (FILENAME_CMP (lbasename (s->filename), name) == 0)
222 return s;
223 }
224
225 /* Same search rules as above apply here, but now we look thru the
226 psymtabs. */
227
228 ps = lookup_partial_symtab (name);
229 if (!ps)
230 return (NULL);
231
232 if (ps->readin)
233 error (_("Internal: readin %s pst for `%s' found when no symtab found."),
234 ps->filename, name);
235
236 s = PSYMTAB_TO_SYMTAB (ps);
237
238 if (s)
239 return s;
240
241 /* At this point, we have located the psymtab for this file, but
242 the conversion to a symtab has failed. This usually happens
243 when we are looking up an include file. In this case,
244 PSYMTAB_TO_SYMTAB doesn't return a symtab, even though one has
245 been created. So, we need to run through the symtabs again in
246 order to find the file.
247 XXX - This is a crock, and should be fixed inside of the the
248 symbol parsing routines. */
249 goto got_symtab;
250 }
251
252 /* Lookup the partial symbol table of a source file named NAME.
253 *If* there is no '/' in the name, a match after a '/'
254 in the psymtab filename will also work. */
255
256 struct partial_symtab *
257 lookup_partial_symtab (const char *name)
258 {
259 struct partial_symtab *pst;
260 struct objfile *objfile;
261 char *full_path = NULL;
262 char *real_path = NULL;
263
264 /* Here we are interested in canonicalizing an absolute path, not
265 absolutizing a relative path. */
266 if (IS_ABSOLUTE_PATH (name))
267 {
268 full_path = xfullpath (name);
269 make_cleanup (xfree, full_path);
270 real_path = gdb_realpath (name);
271 make_cleanup (xfree, real_path);
272 }
273
274 ALL_PSYMTABS (objfile, pst)
275 {
276 if (FILENAME_CMP (name, pst->filename) == 0)
277 {
278 return (pst);
279 }
280
281 /* If the user gave us an absolute path, try to find the file in
282 this symtab and use its absolute path. */
283 if (full_path != NULL)
284 {
285 psymtab_to_fullname (pst);
286 if (pst->fullname != NULL
287 && FILENAME_CMP (full_path, pst->fullname) == 0)
288 {
289 return pst;
290 }
291 }
292
293 if (real_path != NULL)
294 {
295 char *rp = NULL;
296 psymtab_to_fullname (pst);
297 if (pst->fullname != NULL)
298 {
299 rp = gdb_realpath (pst->fullname);
300 make_cleanup (xfree, rp);
301 }
302 if (rp != NULL && FILENAME_CMP (real_path, rp) == 0)
303 {
304 return pst;
305 }
306 }
307 }
308
309 /* Now, search for a matching tail (only if name doesn't have any dirs) */
310
311 if (lbasename (name) == name)
312 ALL_PSYMTABS (objfile, pst)
313 {
314 if (FILENAME_CMP (lbasename (pst->filename), name) == 0)
315 return (pst);
316 }
317
318 return (NULL);
319 }
320 \f
321 /* Mangle a GDB method stub type. This actually reassembles the pieces of the
322 full method name, which consist of the class name (from T), the unadorned
323 method name from METHOD_ID, and the signature for the specific overload,
324 specified by SIGNATURE_ID. Note that this function is g++ specific. */
325
326 char *
327 gdb_mangle_name (struct type *type, int method_id, int signature_id)
328 {
329 int mangled_name_len;
330 char *mangled_name;
331 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
332 struct fn_field *method = &f[signature_id];
333 char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
334 char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
335 char *newname = type_name_no_tag (type);
336
337 /* Does the form of physname indicate that it is the full mangled name
338 of a constructor (not just the args)? */
339 int is_full_physname_constructor;
340
341 int is_constructor;
342 int is_destructor = is_destructor_name (physname);
343 /* Need a new type prefix. */
344 char *const_prefix = method->is_const ? "C" : "";
345 char *volatile_prefix = method->is_volatile ? "V" : "";
346 char buf[20];
347 int len = (newname == NULL ? 0 : strlen (newname));
348
349 /* Nothing to do if physname already contains a fully mangled v3 abi name
350 or an operator name. */
351 if ((physname[0] == '_' && physname[1] == 'Z')
352 || is_operator_name (field_name))
353 return xstrdup (physname);
354
355 is_full_physname_constructor = is_constructor_name (physname);
356
357 is_constructor =
358 is_full_physname_constructor || (newname && strcmp (field_name, newname) == 0);
359
360 if (!is_destructor)
361 is_destructor = (strncmp (physname, "__dt", 4) == 0);
362
363 if (is_destructor || is_full_physname_constructor)
364 {
365 mangled_name = (char *) xmalloc (strlen (physname) + 1);
366 strcpy (mangled_name, physname);
367 return mangled_name;
368 }
369
370 if (len == 0)
371 {
372 sprintf (buf, "__%s%s", const_prefix, volatile_prefix);
373 }
374 else if (physname[0] == 't' || physname[0] == 'Q')
375 {
376 /* The physname for template and qualified methods already includes
377 the class name. */
378 sprintf (buf, "__%s%s", const_prefix, volatile_prefix);
379 newname = NULL;
380 len = 0;
381 }
382 else
383 {
384 sprintf (buf, "__%s%s%d", const_prefix, volatile_prefix, len);
385 }
386 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
387 + strlen (buf) + len + strlen (physname) + 1);
388
389 {
390 mangled_name = (char *) xmalloc (mangled_name_len);
391 if (is_constructor)
392 mangled_name[0] = '\0';
393 else
394 strcpy (mangled_name, field_name);
395 }
396 strcat (mangled_name, buf);
397 /* If the class doesn't have a name, i.e. newname NULL, then we just
398 mangle it using 0 for the length of the class. Thus it gets mangled
399 as something starting with `::' rather than `classname::'. */
400 if (newname != NULL)
401 strcat (mangled_name, newname);
402
403 strcat (mangled_name, physname);
404 return (mangled_name);
405 }
406
407 \f
408 /* Initialize the language dependent portion of a symbol
409 depending upon the language for the symbol. */
410 void
411 symbol_init_language_specific (struct general_symbol_info *gsymbol,
412 enum language language)
413 {
414 gsymbol->language = language;
415 if (gsymbol->language == language_cplus
416 || gsymbol->language == language_java
417 || gsymbol->language == language_objc)
418 {
419 gsymbol->language_specific.cplus_specific.demangled_name = NULL;
420 }
421 else
422 {
423 memset (&gsymbol->language_specific, 0,
424 sizeof (gsymbol->language_specific));
425 }
426 }
427
428 /* Functions to initialize a symbol's mangled name. */
429
430 /* Create the hash table used for demangled names. Each hash entry is
431 a pair of strings; one for the mangled name and one for the demangled
432 name. The entry is hashed via just the mangled name. */
433
434 static void
435 create_demangled_names_hash (struct objfile *objfile)
436 {
437 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
438 The hash table code will round this up to the next prime number.
439 Choosing a much larger table size wastes memory, and saves only about
440 1% in symbol reading. */
441
442 objfile->demangled_names_hash = htab_create_alloc
443 (256, htab_hash_string, (int (*) (const void *, const void *)) streq,
444 NULL, xcalloc, xfree);
445 }
446
447 /* Try to determine the demangled name for a symbol, based on the
448 language of that symbol. If the language is set to language_auto,
449 it will attempt to find any demangling algorithm that works and
450 then set the language appropriately. The returned name is allocated
451 by the demangler and should be xfree'd. */
452
453 static char *
454 symbol_find_demangled_name (struct general_symbol_info *gsymbol,
455 const char *mangled)
456 {
457 char *demangled = NULL;
458
459 if (gsymbol->language == language_unknown)
460 gsymbol->language = language_auto;
461
462 if (gsymbol->language == language_objc
463 || gsymbol->language == language_auto)
464 {
465 demangled =
466 objc_demangle (mangled, 0);
467 if (demangled != NULL)
468 {
469 gsymbol->language = language_objc;
470 return demangled;
471 }
472 }
473 if (gsymbol->language == language_cplus
474 || gsymbol->language == language_auto)
475 {
476 demangled =
477 cplus_demangle (mangled, DMGL_PARAMS | DMGL_ANSI);
478 if (demangled != NULL)
479 {
480 gsymbol->language = language_cplus;
481 return demangled;
482 }
483 }
484 if (gsymbol->language == language_java)
485 {
486 demangled =
487 cplus_demangle (mangled,
488 DMGL_PARAMS | DMGL_ANSI | DMGL_JAVA);
489 if (demangled != NULL)
490 {
491 gsymbol->language = language_java;
492 return demangled;
493 }
494 }
495 return NULL;
496 }
497
498 /* Set both the mangled and demangled (if any) names for GSYMBOL based
499 on LINKAGE_NAME and LEN. The hash table corresponding to OBJFILE
500 is used, and the memory comes from that objfile's objfile_obstack.
501 LINKAGE_NAME is copied, so the pointer can be discarded after
502 calling this function. */
503
504 /* We have to be careful when dealing with Java names: when we run
505 into a Java minimal symbol, we don't know it's a Java symbol, so it
506 gets demangled as a C++ name. This is unfortunate, but there's not
507 much we can do about it: but when demangling partial symbols and
508 regular symbols, we'd better not reuse the wrong demangled name.
509 (See PR gdb/1039.) We solve this by putting a distinctive prefix
510 on Java names when storing them in the hash table. */
511
512 /* FIXME: carlton/2003-03-13: This is an unfortunate situation. I
513 don't mind the Java prefix so much: different languages have
514 different demangling requirements, so it's only natural that we
515 need to keep language data around in our demangling cache. But
516 it's not good that the minimal symbol has the wrong demangled name.
517 Unfortunately, I can't think of any easy solution to that
518 problem. */
519
520 #define JAVA_PREFIX "##JAVA$$"
521 #define JAVA_PREFIX_LEN 8
522
523 void
524 symbol_set_names (struct general_symbol_info *gsymbol,
525 const char *linkage_name, int len, struct objfile *objfile)
526 {
527 char **slot;
528 /* A 0-terminated copy of the linkage name. */
529 const char *linkage_name_copy;
530 /* A copy of the linkage name that might have a special Java prefix
531 added to it, for use when looking names up in the hash table. */
532 const char *lookup_name;
533 /* The length of lookup_name. */
534 int lookup_len;
535
536 if (objfile->demangled_names_hash == NULL)
537 create_demangled_names_hash (objfile);
538
539 if (gsymbol->language == language_ada)
540 {
541 /* In Ada, we do the symbol lookups using the mangled name, so
542 we can save some space by not storing the demangled name.
543
544 As a side note, we have also observed some overlap between
545 the C++ mangling and Ada mangling, similarly to what has
546 been observed with Java. Because we don't store the demangled
547 name with the symbol, we don't need to use the same trick
548 as Java. */
549 gsymbol->name = obstack_alloc (&objfile->objfile_obstack, len + 1);
550 memcpy (gsymbol->name, linkage_name, len);
551 gsymbol->name[len] = '\0';
552 gsymbol->language_specific.cplus_specific.demangled_name = NULL;
553
554 return;
555 }
556
557 /* The stabs reader generally provides names that are not
558 NUL-terminated; most of the other readers don't do this, so we
559 can just use the given copy, unless we're in the Java case. */
560 if (gsymbol->language == language_java)
561 {
562 char *alloc_name;
563 lookup_len = len + JAVA_PREFIX_LEN;
564
565 alloc_name = alloca (lookup_len + 1);
566 memcpy (alloc_name, JAVA_PREFIX, JAVA_PREFIX_LEN);
567 memcpy (alloc_name + JAVA_PREFIX_LEN, linkage_name, len);
568 alloc_name[lookup_len] = '\0';
569
570 lookup_name = alloc_name;
571 linkage_name_copy = alloc_name + JAVA_PREFIX_LEN;
572 }
573 else if (linkage_name[len] != '\0')
574 {
575 char *alloc_name;
576 lookup_len = len;
577
578 alloc_name = alloca (lookup_len + 1);
579 memcpy (alloc_name, linkage_name, len);
580 alloc_name[lookup_len] = '\0';
581
582 lookup_name = alloc_name;
583 linkage_name_copy = alloc_name;
584 }
585 else
586 {
587 lookup_len = len;
588 lookup_name = linkage_name;
589 linkage_name_copy = linkage_name;
590 }
591
592 slot = (char **) htab_find_slot (objfile->demangled_names_hash,
593 lookup_name, INSERT);
594
595 /* If this name is not in the hash table, add it. */
596 if (*slot == NULL)
597 {
598 char *demangled_name = symbol_find_demangled_name (gsymbol,
599 linkage_name_copy);
600 int demangled_len = demangled_name ? strlen (demangled_name) : 0;
601
602 /* If there is a demangled name, place it right after the mangled name.
603 Otherwise, just place a second zero byte after the end of the mangled
604 name. */
605 *slot = obstack_alloc (&objfile->objfile_obstack,
606 lookup_len + demangled_len + 2);
607 memcpy (*slot, lookup_name, lookup_len + 1);
608 if (demangled_name != NULL)
609 {
610 memcpy (*slot + lookup_len + 1, demangled_name, demangled_len + 1);
611 xfree (demangled_name);
612 }
613 else
614 (*slot)[lookup_len + 1] = '\0';
615 }
616
617 gsymbol->name = *slot + lookup_len - len;
618 if ((*slot)[lookup_len + 1] != '\0')
619 gsymbol->language_specific.cplus_specific.demangled_name
620 = &(*slot)[lookup_len + 1];
621 else
622 gsymbol->language_specific.cplus_specific.demangled_name = NULL;
623 }
624
625 /* Return the source code name of a symbol. In languages where
626 demangling is necessary, this is the demangled name. */
627
628 char *
629 symbol_natural_name (const struct general_symbol_info *gsymbol)
630 {
631 switch (gsymbol->language)
632 {
633 case language_cplus:
634 case language_java:
635 case language_objc:
636 if (gsymbol->language_specific.cplus_specific.demangled_name != NULL)
637 return gsymbol->language_specific.cplus_specific.demangled_name;
638 break;
639 case language_ada:
640 if (gsymbol->language_specific.cplus_specific.demangled_name != NULL)
641 return gsymbol->language_specific.cplus_specific.demangled_name;
642 else
643 return ada_decode_symbol (gsymbol);
644 break;
645 default:
646 break;
647 }
648 return gsymbol->name;
649 }
650
651 /* Return the demangled name for a symbol based on the language for
652 that symbol. If no demangled name exists, return NULL. */
653 char *
654 symbol_demangled_name (struct general_symbol_info *gsymbol)
655 {
656 switch (gsymbol->language)
657 {
658 case language_cplus:
659 case language_java:
660 case language_objc:
661 if (gsymbol->language_specific.cplus_specific.demangled_name != NULL)
662 return gsymbol->language_specific.cplus_specific.demangled_name;
663 break;
664 case language_ada:
665 if (gsymbol->language_specific.cplus_specific.demangled_name != NULL)
666 return gsymbol->language_specific.cplus_specific.demangled_name;
667 else
668 return ada_decode_symbol (gsymbol);
669 break;
670 default:
671 break;
672 }
673 return NULL;
674 }
675
676 /* Return the search name of a symbol---generally the demangled or
677 linkage name of the symbol, depending on how it will be searched for.
678 If there is no distinct demangled name, then returns the same value
679 (same pointer) as SYMBOL_LINKAGE_NAME. */
680 char *
681 symbol_search_name (const struct general_symbol_info *gsymbol)
682 {
683 if (gsymbol->language == language_ada)
684 return gsymbol->name;
685 else
686 return symbol_natural_name (gsymbol);
687 }
688
689 /* Initialize the structure fields to zero values. */
690 void
691 init_sal (struct symtab_and_line *sal)
692 {
693 sal->symtab = 0;
694 sal->section = 0;
695 sal->line = 0;
696 sal->pc = 0;
697 sal->end = 0;
698 sal->explicit_pc = 0;
699 sal->explicit_line = 0;
700 }
701 \f
702
703 /* Return 1 if the two sections are the same, or if they could
704 plausibly be copies of each other, one in an original object
705 file and another in a separated debug file. */
706
707 int
708 matching_bfd_sections (asection *first, asection *second)
709 {
710 struct objfile *obj;
711
712 /* If they're the same section, then they match. */
713 if (first == second)
714 return 1;
715
716 /* If either is NULL, give up. */
717 if (first == NULL || second == NULL)
718 return 0;
719
720 /* This doesn't apply to absolute symbols. */
721 if (first->owner == NULL || second->owner == NULL)
722 return 0;
723
724 /* If they're in the same object file, they must be different sections. */
725 if (first->owner == second->owner)
726 return 0;
727
728 /* Check whether the two sections are potentially corresponding. They must
729 have the same size, address, and name. We can't compare section indexes,
730 which would be more reliable, because some sections may have been
731 stripped. */
732 if (bfd_get_section_size (first) != bfd_get_section_size (second))
733 return 0;
734
735 /* In-memory addresses may start at a different offset, relativize them. */
736 if (bfd_get_section_vma (first->owner, first)
737 - bfd_get_start_address (first->owner)
738 != bfd_get_section_vma (second->owner, second)
739 - bfd_get_start_address (second->owner))
740 return 0;
741
742 if (bfd_get_section_name (first->owner, first) == NULL
743 || bfd_get_section_name (second->owner, second) == NULL
744 || strcmp (bfd_get_section_name (first->owner, first),
745 bfd_get_section_name (second->owner, second)) != 0)
746 return 0;
747
748 /* Otherwise check that they are in corresponding objfiles. */
749
750 ALL_OBJFILES (obj)
751 if (obj->obfd == first->owner)
752 break;
753 gdb_assert (obj != NULL);
754
755 if (obj->separate_debug_objfile != NULL
756 && obj->separate_debug_objfile->obfd == second->owner)
757 return 1;
758 if (obj->separate_debug_objfile_backlink != NULL
759 && obj->separate_debug_objfile_backlink->obfd == second->owner)
760 return 1;
761
762 return 0;
763 }
764
765 /* Find which partial symtab contains PC and SECTION starting at psymtab PST.
766 We may find a different psymtab than PST. See FIND_PC_SECT_PSYMTAB. */
767
768 struct partial_symtab *
769 find_pc_sect_psymtab_closer (CORE_ADDR pc, asection *section,
770 struct partial_symtab *pst,
771 struct minimal_symbol *msymbol)
772 {
773 struct objfile *objfile = pst->objfile;
774 struct partial_symtab *tpst;
775 struct partial_symtab *best_pst = pst;
776 CORE_ADDR best_addr = pst->textlow;
777
778 /* An objfile that has its functions reordered might have
779 many partial symbol tables containing the PC, but
780 we want the partial symbol table that contains the
781 function containing the PC. */
782 if (!(objfile->flags & OBJF_REORDERED) &&
783 section == 0) /* can't validate section this way */
784 return pst;
785
786 if (msymbol == NULL)
787 return (pst);
788
789 /* The code range of partial symtabs sometimes overlap, so, in
790 the loop below, we need to check all partial symtabs and
791 find the one that fits better for the given PC address. We
792 select the partial symtab that contains a symbol whose
793 address is closest to the PC address. By closest we mean
794 that find_pc_sect_symbol returns the symbol with address
795 that is closest and still less than the given PC. */
796 for (tpst = pst; tpst != NULL; tpst = tpst->next)
797 {
798 if (pc >= tpst->textlow && pc < tpst->texthigh)
799 {
800 struct partial_symbol *p;
801 CORE_ADDR this_addr;
802
803 /* NOTE: This assumes that every psymbol has a
804 corresponding msymbol, which is not necessarily
805 true; the debug info might be much richer than the
806 object's symbol table. */
807 p = find_pc_sect_psymbol (tpst, pc, section);
808 if (p != NULL
809 && SYMBOL_VALUE_ADDRESS (p)
810 == SYMBOL_VALUE_ADDRESS (msymbol))
811 return tpst;
812
813 /* Also accept the textlow value of a psymtab as a
814 "symbol", to provide some support for partial
815 symbol tables with line information but no debug
816 symbols (e.g. those produced by an assembler). */
817 if (p != NULL)
818 this_addr = SYMBOL_VALUE_ADDRESS (p);
819 else
820 this_addr = tpst->textlow;
821
822 /* Check whether it is closer than our current
823 BEST_ADDR. Since this symbol address is
824 necessarily lower or equal to PC, the symbol closer
825 to PC is the symbol which address is the highest.
826 This way we return the psymtab which contains such
827 best match symbol. This can help in cases where the
828 symbol information/debuginfo is not complete, like
829 for instance on IRIX6 with gcc, where no debug info
830 is emitted for statics. (See also the nodebug.exp
831 testcase.) */
832 if (this_addr > best_addr)
833 {
834 best_addr = this_addr;
835 best_pst = tpst;
836 }
837 }
838 }
839 return best_pst;
840 }
841
842 /* Find which partial symtab contains PC and SECTION. Return 0 if
843 none. We return the psymtab that contains a symbol whose address
844 exactly matches PC, or, if we cannot find an exact match, the
845 psymtab that contains a symbol whose address is closest to PC. */
846 struct partial_symtab *
847 find_pc_sect_psymtab (CORE_ADDR pc, asection *section)
848 {
849 struct objfile *objfile;
850 struct minimal_symbol *msymbol;
851
852 /* If we know that this is not a text address, return failure. This is
853 necessary because we loop based on texthigh and textlow, which do
854 not include the data ranges. */
855 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
856 if (msymbol
857 && (msymbol->type == mst_data
858 || msymbol->type == mst_bss
859 || msymbol->type == mst_abs
860 || msymbol->type == mst_file_data
861 || msymbol->type == mst_file_bss))
862 return NULL;
863
864 /* Try just the PSYMTABS_ADDRMAP mapping first as it has better granularity
865 than the later used TEXTLOW/TEXTHIGH one. */
866
867 ALL_OBJFILES (objfile)
868 if (objfile->psymtabs_addrmap != NULL)
869 {
870 struct partial_symtab *pst;
871
872 pst = addrmap_find (objfile->psymtabs_addrmap, pc);
873 if (pst != NULL)
874 {
875 /* FIXME: addrmaps currently do not handle overlayed sections,
876 so fall back to the non-addrmap case if we're debugging
877 overlays and the addrmap returned the wrong section. */
878 if (overlay_debugging && msymbol && section)
879 {
880 struct partial_symbol *p;
881 /* NOTE: This assumes that every psymbol has a
882 corresponding msymbol, which is not necessarily
883 true; the debug info might be much richer than the
884 object's symbol table. */
885 p = find_pc_sect_psymbol (pst, pc, section);
886 if (!p
887 || SYMBOL_VALUE_ADDRESS (p)
888 != SYMBOL_VALUE_ADDRESS (msymbol))
889 continue;
890 }
891
892 /* We do not try to call FIND_PC_SECT_PSYMTAB_CLOSER as
893 PSYMTABS_ADDRMAP we used has already the best 1-byte
894 granularity and FIND_PC_SECT_PSYMTAB_CLOSER may mislead us into
895 a worse chosen section due to the TEXTLOW/TEXTHIGH ranges
896 overlap. */
897
898 return pst;
899 }
900 }
901
902 /* Existing PSYMTABS_ADDRMAP mapping is present even for PARTIAL_SYMTABs
903 which still have no corresponding full SYMTABs read. But it is not
904 present for non-DWARF2 debug infos not supporting PSYMTABS_ADDRMAP in GDB
905 so far. */
906
907 ALL_OBJFILES (objfile)
908 {
909 struct partial_symtab *pst;
910
911 /* Check even OBJFILE with non-zero PSYMTABS_ADDRMAP as only several of
912 its CUs may be missing in PSYMTABS_ADDRMAP as they may be varying
913 debug info type in single OBJFILE. */
914
915 ALL_OBJFILE_PSYMTABS (objfile, pst)
916 if (pc >= pst->textlow && pc < pst->texthigh)
917 {
918 struct partial_symtab *best_pst;
919
920 best_pst = find_pc_sect_psymtab_closer (pc, section, pst,
921 msymbol);
922 if (best_pst != NULL)
923 return best_pst;
924 }
925 }
926
927 return NULL;
928 }
929
930 /* Find which partial symtab contains PC. Return 0 if none.
931 Backward compatibility, no section */
932
933 struct partial_symtab *
934 find_pc_psymtab (CORE_ADDR pc)
935 {
936 return find_pc_sect_psymtab (pc, find_pc_mapped_section (pc));
937 }
938
939 /* Find which partial symbol within a psymtab matches PC and SECTION.
940 Return 0 if none. Check all psymtabs if PSYMTAB is 0. */
941
942 struct partial_symbol *
943 find_pc_sect_psymbol (struct partial_symtab *psymtab, CORE_ADDR pc,
944 asection *section)
945 {
946 struct partial_symbol *best = NULL, *p, **pp;
947 CORE_ADDR best_pc;
948
949 if (!psymtab)
950 psymtab = find_pc_sect_psymtab (pc, section);
951 if (!psymtab)
952 return 0;
953
954 /* Cope with programs that start at address 0 */
955 best_pc = (psymtab->textlow != 0) ? psymtab->textlow - 1 : 0;
956
957 /* Search the global symbols as well as the static symbols, so that
958 find_pc_partial_function doesn't use a minimal symbol and thus
959 cache a bad endaddr. */
960 for (pp = psymtab->objfile->global_psymbols.list + psymtab->globals_offset;
961 (pp - (psymtab->objfile->global_psymbols.list + psymtab->globals_offset)
962 < psymtab->n_global_syms);
963 pp++)
964 {
965 p = *pp;
966 if (SYMBOL_DOMAIN (p) == VAR_DOMAIN
967 && SYMBOL_CLASS (p) == LOC_BLOCK
968 && pc >= SYMBOL_VALUE_ADDRESS (p)
969 && (SYMBOL_VALUE_ADDRESS (p) > best_pc
970 || (psymtab->textlow == 0
971 && best_pc == 0 && SYMBOL_VALUE_ADDRESS (p) == 0)))
972 {
973 if (section) /* match on a specific section */
974 {
975 fixup_psymbol_section (p, psymtab->objfile);
976 if (!matching_bfd_sections (SYMBOL_BFD_SECTION (p), section))
977 continue;
978 }
979 best_pc = SYMBOL_VALUE_ADDRESS (p);
980 best = p;
981 }
982 }
983
984 for (pp = psymtab->objfile->static_psymbols.list + psymtab->statics_offset;
985 (pp - (psymtab->objfile->static_psymbols.list + psymtab->statics_offset)
986 < psymtab->n_static_syms);
987 pp++)
988 {
989 p = *pp;
990 if (SYMBOL_DOMAIN (p) == VAR_DOMAIN
991 && SYMBOL_CLASS (p) == LOC_BLOCK
992 && pc >= SYMBOL_VALUE_ADDRESS (p)
993 && (SYMBOL_VALUE_ADDRESS (p) > best_pc
994 || (psymtab->textlow == 0
995 && best_pc == 0 && SYMBOL_VALUE_ADDRESS (p) == 0)))
996 {
997 if (section) /* match on a specific section */
998 {
999 fixup_psymbol_section (p, psymtab->objfile);
1000 if (!matching_bfd_sections (SYMBOL_BFD_SECTION (p), section))
1001 continue;
1002 }
1003 best_pc = SYMBOL_VALUE_ADDRESS (p);
1004 best = p;
1005 }
1006 }
1007
1008 return best;
1009 }
1010
1011 /* Find which partial symbol within a psymtab matches PC. Return 0 if none.
1012 Check all psymtabs if PSYMTAB is 0. Backwards compatibility, no section. */
1013
1014 struct partial_symbol *
1015 find_pc_psymbol (struct partial_symtab *psymtab, CORE_ADDR pc)
1016 {
1017 return find_pc_sect_psymbol (psymtab, pc, find_pc_mapped_section (pc));
1018 }
1019 \f
1020 /* Debug symbols usually don't have section information. We need to dig that
1021 out of the minimal symbols and stash that in the debug symbol. */
1022
1023 static void
1024 fixup_section (struct general_symbol_info *ginfo,
1025 CORE_ADDR addr, struct objfile *objfile)
1026 {
1027 struct minimal_symbol *msym;
1028
1029 /* First, check whether a minimal symbol with the same name exists
1030 and points to the same address. The address check is required
1031 e.g. on PowerPC64, where the minimal symbol for a function will
1032 point to the function descriptor, while the debug symbol will
1033 point to the actual function code. */
1034 msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->name, objfile);
1035 if (msym)
1036 {
1037 ginfo->bfd_section = SYMBOL_BFD_SECTION (msym);
1038 ginfo->section = SYMBOL_SECTION (msym);
1039 }
1040 else
1041 {
1042 /* Static, function-local variables do appear in the linker
1043 (minimal) symbols, but are frequently given names that won't
1044 be found via lookup_minimal_symbol(). E.g., it has been
1045 observed in frv-uclinux (ELF) executables that a static,
1046 function-local variable named "foo" might appear in the
1047 linker symbols as "foo.6" or "foo.3". Thus, there is no
1048 point in attempting to extend the lookup-by-name mechanism to
1049 handle this case due to the fact that there can be multiple
1050 names.
1051
1052 So, instead, search the section table when lookup by name has
1053 failed. The ``addr'' and ``endaddr'' fields may have already
1054 been relocated. If so, the relocation offset (i.e. the
1055 ANOFFSET value) needs to be subtracted from these values when
1056 performing the comparison. We unconditionally subtract it,
1057 because, when no relocation has been performed, the ANOFFSET
1058 value will simply be zero.
1059
1060 The address of the symbol whose section we're fixing up HAS
1061 NOT BEEN adjusted (relocated) yet. It can't have been since
1062 the section isn't yet known and knowing the section is
1063 necessary in order to add the correct relocation value. In
1064 other words, we wouldn't even be in this function (attempting
1065 to compute the section) if it were already known.
1066
1067 Note that it is possible to search the minimal symbols
1068 (subtracting the relocation value if necessary) to find the
1069 matching minimal symbol, but this is overkill and much less
1070 efficient. It is not necessary to find the matching minimal
1071 symbol, only its section.
1072
1073 Note that this technique (of doing a section table search)
1074 can fail when unrelocated section addresses overlap. For
1075 this reason, we still attempt a lookup by name prior to doing
1076 a search of the section table. */
1077
1078 struct obj_section *s;
1079 ALL_OBJFILE_OSECTIONS (objfile, s)
1080 {
1081 int idx = s->the_bfd_section->index;
1082 CORE_ADDR offset = ANOFFSET (objfile->section_offsets, idx);
1083
1084 if (s->addr - offset <= addr && addr < s->endaddr - offset)
1085 {
1086 ginfo->bfd_section = s->the_bfd_section;
1087 ginfo->section = idx;
1088 return;
1089 }
1090 }
1091 }
1092 }
1093
1094 struct symbol *
1095 fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
1096 {
1097 CORE_ADDR addr;
1098
1099 if (!sym)
1100 return NULL;
1101
1102 if (SYMBOL_BFD_SECTION (sym))
1103 return sym;
1104
1105 /* We either have an OBJFILE, or we can get at it from the sym's
1106 symtab. Anything else is a bug. */
1107 gdb_assert (objfile || SYMBOL_SYMTAB (sym));
1108
1109 if (objfile == NULL)
1110 objfile = SYMBOL_SYMTAB (sym)->objfile;
1111
1112 /* We should have an objfile by now. */
1113 gdb_assert (objfile);
1114
1115 switch (SYMBOL_CLASS (sym))
1116 {
1117 case LOC_STATIC:
1118 case LOC_LABEL:
1119 addr = SYMBOL_VALUE_ADDRESS (sym);
1120 break;
1121 case LOC_BLOCK:
1122 addr = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
1123 break;
1124
1125 default:
1126 /* Nothing else will be listed in the minsyms -- no use looking
1127 it up. */
1128 return sym;
1129 }
1130
1131 fixup_section (&sym->ginfo, addr, objfile);
1132
1133 return sym;
1134 }
1135
1136 struct partial_symbol *
1137 fixup_psymbol_section (struct partial_symbol *psym, struct objfile *objfile)
1138 {
1139 CORE_ADDR addr;
1140
1141 if (!psym)
1142 return NULL;
1143
1144 if (SYMBOL_BFD_SECTION (psym))
1145 return psym;
1146
1147 gdb_assert (objfile);
1148
1149 switch (SYMBOL_CLASS (psym))
1150 {
1151 case LOC_STATIC:
1152 case LOC_LABEL:
1153 case LOC_BLOCK:
1154 addr = SYMBOL_VALUE_ADDRESS (psym);
1155 break;
1156 default:
1157 /* Nothing else will be listed in the minsyms -- no use looking
1158 it up. */
1159 return psym;
1160 }
1161
1162 fixup_section (&psym->ginfo, addr, objfile);
1163
1164 return psym;
1165 }
1166
1167 /* Find the definition for a specified symbol name NAME
1168 in domain DOMAIN, visible from lexical block BLOCK.
1169 Returns the struct symbol pointer, or zero if no symbol is found.
1170 C++: if IS_A_FIELD_OF_THIS is nonzero on entry, check to see if
1171 NAME is a field of the current implied argument `this'. If so set
1172 *IS_A_FIELD_OF_THIS to 1, otherwise set it to zero.
1173 BLOCK_FOUND is set to the block in which NAME is found (in the case of
1174 a field of `this', value_of_this sets BLOCK_FOUND to the proper value.) */
1175
1176 /* This function has a bunch of loops in it and it would seem to be
1177 attractive to put in some QUIT's (though I'm not really sure
1178 whether it can run long enough to be really important). But there
1179 are a few calls for which it would appear to be bad news to quit
1180 out of here: find_proc_desc in alpha-tdep.c and mips-tdep.c. (Note
1181 that there is C++ code below which can error(), but that probably
1182 doesn't affect these calls since they are looking for a known
1183 variable and thus can probably assume it will never hit the C++
1184 code). */
1185
1186 struct symbol *
1187 lookup_symbol_in_language (const char *name, const struct block *block,
1188 const domain_enum domain, enum language lang,
1189 int *is_a_field_of_this)
1190 {
1191 char *demangled_name = NULL;
1192 const char *modified_name = NULL;
1193 const char *mangled_name = NULL;
1194 int needtofreename = 0;
1195 struct symbol *returnval;
1196
1197 modified_name = name;
1198
1199 /* If we are using C++ or Java, demangle the name before doing a lookup, so
1200 we can always binary search. */
1201 if (lang == language_cplus)
1202 {
1203 demangled_name = cplus_demangle (name, DMGL_ANSI | DMGL_PARAMS);
1204 if (demangled_name)
1205 {
1206 mangled_name = name;
1207 modified_name = demangled_name;
1208 needtofreename = 1;
1209 }
1210 }
1211 else if (lang == language_java)
1212 {
1213 demangled_name = cplus_demangle (name,
1214 DMGL_ANSI | DMGL_PARAMS | DMGL_JAVA);
1215 if (demangled_name)
1216 {
1217 mangled_name = name;
1218 modified_name = demangled_name;
1219 needtofreename = 1;
1220 }
1221 }
1222
1223 if (case_sensitivity == case_sensitive_off)
1224 {
1225 char *copy;
1226 int len, i;
1227
1228 len = strlen (name);
1229 copy = (char *) alloca (len + 1);
1230 for (i= 0; i < len; i++)
1231 copy[i] = tolower (name[i]);
1232 copy[len] = 0;
1233 modified_name = copy;
1234 }
1235
1236 returnval = lookup_symbol_aux (modified_name, mangled_name, block,
1237 domain, lang, is_a_field_of_this);
1238 if (needtofreename)
1239 xfree (demangled_name);
1240
1241 return returnval;
1242 }
1243
1244 /* Behave like lookup_symbol_in_language, but performed with the
1245 current language. */
1246
1247 struct symbol *
1248 lookup_symbol (const char *name, const struct block *block,
1249 domain_enum domain, int *is_a_field_of_this)
1250 {
1251 return lookup_symbol_in_language (name, block, domain,
1252 current_language->la_language,
1253 is_a_field_of_this);
1254 }
1255
1256 /* Behave like lookup_symbol except that NAME is the natural name
1257 of the symbol that we're looking for and, if LINKAGE_NAME is
1258 non-NULL, ensure that the symbol's linkage name matches as
1259 well. */
1260
1261 static struct symbol *
1262 lookup_symbol_aux (const char *name, const char *linkage_name,
1263 const struct block *block, const domain_enum domain,
1264 enum language language, int *is_a_field_of_this)
1265 {
1266 struct symbol *sym;
1267 const struct language_defn *langdef;
1268
1269 /* Make sure we do something sensible with is_a_field_of_this, since
1270 the callers that set this parameter to some non-null value will
1271 certainly use it later and expect it to be either 0 or 1.
1272 If we don't set it, the contents of is_a_field_of_this are
1273 undefined. */
1274 if (is_a_field_of_this != NULL)
1275 *is_a_field_of_this = 0;
1276
1277 /* Search specified block and its superiors. Don't search
1278 STATIC_BLOCK or GLOBAL_BLOCK. */
1279
1280 sym = lookup_symbol_aux_local (name, linkage_name, block, domain);
1281 if (sym != NULL)
1282 return sym;
1283
1284 /* If requested to do so by the caller and if appropriate for LANGUAGE,
1285 check to see if NAME is a field of `this'. */
1286
1287 langdef = language_def (language);
1288
1289 if (langdef->la_name_of_this != NULL && is_a_field_of_this != NULL
1290 && block != NULL)
1291 {
1292 struct symbol *sym = NULL;
1293 /* 'this' is only defined in the function's block, so find the
1294 enclosing function block. */
1295 for (; block && !BLOCK_FUNCTION (block);
1296 block = BLOCK_SUPERBLOCK (block));
1297
1298 if (block && !dict_empty (BLOCK_DICT (block)))
1299 sym = lookup_block_symbol (block, langdef->la_name_of_this,
1300 NULL, VAR_DOMAIN);
1301 if (sym)
1302 {
1303 struct type *t = sym->type;
1304
1305 /* I'm not really sure that type of this can ever
1306 be typedefed; just be safe. */
1307 CHECK_TYPEDEF (t);
1308 if (TYPE_CODE (t) == TYPE_CODE_PTR
1309 || TYPE_CODE (t) == TYPE_CODE_REF)
1310 t = TYPE_TARGET_TYPE (t);
1311
1312 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
1313 && TYPE_CODE (t) != TYPE_CODE_UNION)
1314 error (_("Internal error: `%s' is not an aggregate"),
1315 langdef->la_name_of_this);
1316
1317 if (check_field (t, name))
1318 {
1319 *is_a_field_of_this = 1;
1320 return NULL;
1321 }
1322 }
1323 }
1324
1325 /* Now do whatever is appropriate for LANGUAGE to look
1326 up static and global variables. */
1327
1328 sym = langdef->la_lookup_symbol_nonlocal (name, linkage_name, block, domain);
1329 if (sym != NULL)
1330 return sym;
1331
1332 /* Now search all static file-level symbols. Not strictly correct,
1333 but more useful than an error. Do the symtabs first, then check
1334 the psymtabs. If a psymtab indicates the existence of the
1335 desired name as a file-level static, then do psymtab-to-symtab
1336 conversion on the fly and return the found symbol. */
1337
1338 sym = lookup_symbol_aux_symtabs (STATIC_BLOCK, name, linkage_name, domain);
1339 if (sym != NULL)
1340 return sym;
1341
1342 sym = lookup_symbol_aux_psymtabs (STATIC_BLOCK, name, linkage_name, domain);
1343 if (sym != NULL)
1344 return sym;
1345
1346 return NULL;
1347 }
1348
1349 /* Check to see if the symbol is defined in BLOCK or its superiors.
1350 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
1351
1352 static struct symbol *
1353 lookup_symbol_aux_local (const char *name, const char *linkage_name,
1354 const struct block *block,
1355 const domain_enum domain)
1356 {
1357 struct symbol *sym;
1358 const struct block *static_block = block_static_block (block);
1359
1360 /* Check if either no block is specified or it's a global block. */
1361
1362 if (static_block == NULL)
1363 return NULL;
1364
1365 while (block != static_block)
1366 {
1367 sym = lookup_symbol_aux_block (name, linkage_name, block, domain);
1368 if (sym != NULL)
1369 return sym;
1370 block = BLOCK_SUPERBLOCK (block);
1371 }
1372
1373 /* We've reached the static block without finding a result. */
1374
1375 return NULL;
1376 }
1377
1378 /* Look up OBJFILE to BLOCK. */
1379
1380 static struct objfile *
1381 lookup_objfile_from_block (const struct block *block)
1382 {
1383 struct objfile *obj;
1384 struct symtab *s;
1385
1386 if (block == NULL)
1387 return NULL;
1388
1389 block = block_global_block (block);
1390 /* Go through SYMTABS. */
1391 ALL_SYMTABS (obj, s)
1392 if (block == BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK))
1393 return obj;
1394
1395 return NULL;
1396 }
1397
1398 /* Look up a symbol in a block; if found, fixup the symbol, and set
1399 block_found appropriately. */
1400
1401 struct symbol *
1402 lookup_symbol_aux_block (const char *name, const char *linkage_name,
1403 const struct block *block,
1404 const domain_enum domain)
1405 {
1406 struct symbol *sym;
1407
1408 sym = lookup_block_symbol (block, name, linkage_name, domain);
1409 if (sym)
1410 {
1411 block_found = block;
1412 return fixup_symbol_section (sym, NULL);
1413 }
1414
1415 return NULL;
1416 }
1417
1418 /* Check all global symbols in OBJFILE in symtabs and
1419 psymtabs. */
1420
1421 struct symbol *
1422 lookup_global_symbol_from_objfile (const struct objfile *objfile,
1423 const char *name,
1424 const char *linkage_name,
1425 const domain_enum domain)
1426 {
1427 struct symbol *sym;
1428 struct blockvector *bv;
1429 const struct block *block;
1430 struct symtab *s;
1431 struct partial_symtab *ps;
1432
1433 /* Go through symtabs. */
1434 ALL_OBJFILE_SYMTABS (objfile, s)
1435 {
1436 bv = BLOCKVECTOR (s);
1437 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1438 sym = lookup_block_symbol (block, name, linkage_name, domain);
1439 if (sym)
1440 {
1441 block_found = block;
1442 return fixup_symbol_section (sym, (struct objfile *)objfile);
1443 }
1444 }
1445
1446 /* Now go through psymtabs. */
1447 ALL_OBJFILE_PSYMTABS (objfile, ps)
1448 {
1449 if (!ps->readin
1450 && lookup_partial_symbol (ps, name, linkage_name,
1451 1, domain))
1452 {
1453 s = PSYMTAB_TO_SYMTAB (ps);
1454 bv = BLOCKVECTOR (s);
1455 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1456 sym = lookup_block_symbol (block, name, linkage_name, domain);
1457 return fixup_symbol_section (sym, (struct objfile *)objfile);
1458 }
1459 }
1460
1461 if (objfile->separate_debug_objfile)
1462 return lookup_global_symbol_from_objfile (objfile->separate_debug_objfile,
1463 name, linkage_name, domain);
1464
1465 return NULL;
1466 }
1467
1468 /* Check to see if the symbol is defined in one of the symtabs.
1469 BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
1470 depending on whether or not we want to search global symbols or
1471 static symbols. */
1472
1473 static struct symbol *
1474 lookup_symbol_aux_symtabs (int block_index,
1475 const char *name, const char *linkage_name,
1476 const domain_enum domain)
1477 {
1478 struct symbol *sym;
1479 struct objfile *objfile;
1480 struct blockvector *bv;
1481 const struct block *block;
1482 struct symtab *s;
1483
1484 ALL_PRIMARY_SYMTABS (objfile, s)
1485 {
1486 bv = BLOCKVECTOR (s);
1487 block = BLOCKVECTOR_BLOCK (bv, block_index);
1488 sym = lookup_block_symbol (block, name, linkage_name, domain);
1489 if (sym)
1490 {
1491 block_found = block;
1492 return fixup_symbol_section (sym, objfile);
1493 }
1494 }
1495
1496 return NULL;
1497 }
1498
1499 /* Check to see if the symbol is defined in one of the partial
1500 symtabs. BLOCK_INDEX should be either GLOBAL_BLOCK or
1501 STATIC_BLOCK, depending on whether or not we want to search global
1502 symbols or static symbols. */
1503
1504 static struct symbol *
1505 lookup_symbol_aux_psymtabs (int block_index, const char *name,
1506 const char *linkage_name,
1507 const domain_enum domain)
1508 {
1509 struct symbol *sym;
1510 struct objfile *objfile;
1511 struct blockvector *bv;
1512 const struct block *block;
1513 struct partial_symtab *ps;
1514 struct symtab *s;
1515 const int psymtab_index = (block_index == GLOBAL_BLOCK ? 1 : 0);
1516
1517 ALL_PSYMTABS (objfile, ps)
1518 {
1519 if (!ps->readin
1520 && lookup_partial_symbol (ps, name, linkage_name,
1521 psymtab_index, domain))
1522 {
1523 s = PSYMTAB_TO_SYMTAB (ps);
1524 bv = BLOCKVECTOR (s);
1525 block = BLOCKVECTOR_BLOCK (bv, block_index);
1526 sym = lookup_block_symbol (block, name, linkage_name, domain);
1527 if (!sym)
1528 {
1529 /* This shouldn't be necessary, but as a last resort try
1530 looking in the statics even though the psymtab claimed
1531 the symbol was global, or vice-versa. It's possible
1532 that the psymtab gets it wrong in some cases. */
1533
1534 /* FIXME: carlton/2002-09-30: Should we really do that?
1535 If that happens, isn't it likely to be a GDB error, in
1536 which case we should fix the GDB error rather than
1537 silently dealing with it here? So I'd vote for
1538 removing the check for the symbol in the other
1539 block. */
1540 block = BLOCKVECTOR_BLOCK (bv,
1541 block_index == GLOBAL_BLOCK ?
1542 STATIC_BLOCK : GLOBAL_BLOCK);
1543 sym = lookup_block_symbol (block, name, linkage_name, domain);
1544 if (!sym)
1545 error (_("Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n%s may be an inlined function, or may be a template function\n(if a template, try specifying an instantiation: %s<type>)."),
1546 block_index == GLOBAL_BLOCK ? "global" : "static",
1547 name, ps->filename, name, name);
1548 }
1549 return fixup_symbol_section (sym, objfile);
1550 }
1551 }
1552
1553 return NULL;
1554 }
1555
1556 /* A default version of lookup_symbol_nonlocal for use by languages
1557 that can't think of anything better to do. This implements the C
1558 lookup rules. */
1559
1560 struct symbol *
1561 basic_lookup_symbol_nonlocal (const char *name,
1562 const char *linkage_name,
1563 const struct block *block,
1564 const domain_enum domain)
1565 {
1566 struct symbol *sym;
1567
1568 /* NOTE: carlton/2003-05-19: The comments below were written when
1569 this (or what turned into this) was part of lookup_symbol_aux;
1570 I'm much less worried about these questions now, since these
1571 decisions have turned out well, but I leave these comments here
1572 for posterity. */
1573
1574 /* NOTE: carlton/2002-12-05: There is a question as to whether or
1575 not it would be appropriate to search the current global block
1576 here as well. (That's what this code used to do before the
1577 is_a_field_of_this check was moved up.) On the one hand, it's
1578 redundant with the lookup_symbol_aux_symtabs search that happens
1579 next. On the other hand, if decode_line_1 is passed an argument
1580 like filename:var, then the user presumably wants 'var' to be
1581 searched for in filename. On the third hand, there shouldn't be
1582 multiple global variables all of which are named 'var', and it's
1583 not like decode_line_1 has ever restricted its search to only
1584 global variables in a single filename. All in all, only
1585 searching the static block here seems best: it's correct and it's
1586 cleanest. */
1587
1588 /* NOTE: carlton/2002-12-05: There's also a possible performance
1589 issue here: if you usually search for global symbols in the
1590 current file, then it would be slightly better to search the
1591 current global block before searching all the symtabs. But there
1592 are other factors that have a much greater effect on performance
1593 than that one, so I don't think we should worry about that for
1594 now. */
1595
1596 sym = lookup_symbol_static (name, linkage_name, block, domain);
1597 if (sym != NULL)
1598 return sym;
1599
1600 return lookup_symbol_global (name, linkage_name, block, domain);
1601 }
1602
1603 /* Lookup a symbol in the static block associated to BLOCK, if there
1604 is one; do nothing if BLOCK is NULL or a global block. */
1605
1606 struct symbol *
1607 lookup_symbol_static (const char *name,
1608 const char *linkage_name,
1609 const struct block *block,
1610 const domain_enum domain)
1611 {
1612 const struct block *static_block = block_static_block (block);
1613
1614 if (static_block != NULL)
1615 return lookup_symbol_aux_block (name, linkage_name, static_block, domain);
1616 else
1617 return NULL;
1618 }
1619
1620 /* Lookup a symbol in all files' global blocks (searching psymtabs if
1621 necessary). */
1622
1623 struct symbol *
1624 lookup_symbol_global (const char *name,
1625 const char *linkage_name,
1626 const struct block *block,
1627 const domain_enum domain)
1628 {
1629 struct symbol *sym = NULL;
1630 struct objfile *objfile = NULL;
1631
1632 /* Call library-specific lookup procedure. */
1633 objfile = lookup_objfile_from_block (block);
1634 if (objfile != NULL)
1635 sym = solib_global_lookup (objfile, name, linkage_name, domain);
1636 if (sym != NULL)
1637 return sym;
1638
1639 sym = lookup_symbol_aux_symtabs (GLOBAL_BLOCK, name, linkage_name, domain);
1640 if (sym != NULL)
1641 return sym;
1642
1643 return lookup_symbol_aux_psymtabs (GLOBAL_BLOCK, name, linkage_name, domain);
1644 }
1645
1646 int
1647 symbol_matches_domain (enum language symbol_language,
1648 domain_enum symbol_domain,
1649 domain_enum domain)
1650 {
1651 /* For C++ "struct foo { ... }" also defines a typedef for "foo".
1652 A Java class declaration also defines a typedef for the class.
1653 Similarly, any Ada type declaration implicitly defines a typedef. */
1654 if (symbol_language == language_cplus
1655 || symbol_language == language_java
1656 || symbol_language == language_ada)
1657 {
1658 if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN)
1659 && symbol_domain == STRUCT_DOMAIN)
1660 return 1;
1661 }
1662 /* For all other languages, strict match is required. */
1663 return (symbol_domain == domain);
1664 }
1665
1666 /* Look, in partial_symtab PST, for symbol whose natural name is NAME.
1667 If LINKAGE_NAME is non-NULL, check in addition that the symbol's
1668 linkage name matches it. Check the global symbols if GLOBAL, the
1669 static symbols if not */
1670
1671 struct partial_symbol *
1672 lookup_partial_symbol (struct partial_symtab *pst, const char *name,
1673 const char *linkage_name, int global,
1674 domain_enum domain)
1675 {
1676 struct partial_symbol *temp;
1677 struct partial_symbol **start, **psym;
1678 struct partial_symbol **top, **real_top, **bottom, **center;
1679 int length = (global ? pst->n_global_syms : pst->n_static_syms);
1680 int do_linear_search = 1;
1681
1682 if (length == 0)
1683 {
1684 return (NULL);
1685 }
1686 start = (global ?
1687 pst->objfile->global_psymbols.list + pst->globals_offset :
1688 pst->objfile->static_psymbols.list + pst->statics_offset);
1689
1690 if (global) /* This means we can use a binary search. */
1691 {
1692 do_linear_search = 0;
1693
1694 /* Binary search. This search is guaranteed to end with center
1695 pointing at the earliest partial symbol whose name might be
1696 correct. At that point *all* partial symbols with an
1697 appropriate name will be checked against the correct
1698 domain. */
1699
1700 bottom = start;
1701 top = start + length - 1;
1702 real_top = top;
1703 while (top > bottom)
1704 {
1705 center = bottom + (top - bottom) / 2;
1706 if (!(center < top))
1707 internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
1708 if (!do_linear_search
1709 && (SYMBOL_LANGUAGE (*center) == language_java))
1710 {
1711 do_linear_search = 1;
1712 }
1713 if (strcmp_iw_ordered (SYMBOL_SEARCH_NAME (*center), name) >= 0)
1714 {
1715 top = center;
1716 }
1717 else
1718 {
1719 bottom = center + 1;
1720 }
1721 }
1722 if (!(top == bottom))
1723 internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
1724
1725 while (top <= real_top
1726 && (linkage_name != NULL
1727 ? strcmp (SYMBOL_LINKAGE_NAME (*top), linkage_name) == 0
1728 : SYMBOL_MATCHES_SEARCH_NAME (*top,name)))
1729 {
1730 if (symbol_matches_domain (SYMBOL_LANGUAGE (*top),
1731 SYMBOL_DOMAIN (*top), domain))
1732 return (*top);
1733 top++;
1734 }
1735 }
1736
1737 /* Can't use a binary search or else we found during the binary search that
1738 we should also do a linear search. */
1739
1740 if (do_linear_search)
1741 {
1742 for (psym = start; psym < start + length; psym++)
1743 {
1744 if (symbol_matches_domain (SYMBOL_LANGUAGE (*psym),
1745 SYMBOL_DOMAIN (*psym), domain))
1746 {
1747 if (linkage_name != NULL
1748 ? strcmp (SYMBOL_LINKAGE_NAME (*psym), linkage_name) == 0
1749 : SYMBOL_MATCHES_SEARCH_NAME (*psym, name))
1750 {
1751 return (*psym);
1752 }
1753 }
1754 }
1755 }
1756
1757 return (NULL);
1758 }
1759
1760 /* Look up a type named NAME in the struct_domain. The type returned
1761 must not be opaque -- i.e., must have at least one field
1762 defined. */
1763
1764 struct type *
1765 lookup_transparent_type (const char *name)
1766 {
1767 return current_language->la_lookup_transparent_type (name);
1768 }
1769
1770 /* The standard implementation of lookup_transparent_type. This code
1771 was modeled on lookup_symbol -- the parts not relevant to looking
1772 up types were just left out. In particular it's assumed here that
1773 types are available in struct_domain and only at file-static or
1774 global blocks. */
1775
1776 struct type *
1777 basic_lookup_transparent_type (const char *name)
1778 {
1779 struct symbol *sym;
1780 struct symtab *s = NULL;
1781 struct partial_symtab *ps;
1782 struct blockvector *bv;
1783 struct objfile *objfile;
1784 struct block *block;
1785
1786 /* Now search all the global symbols. Do the symtab's first, then
1787 check the psymtab's. If a psymtab indicates the existence
1788 of the desired name as a global, then do psymtab-to-symtab
1789 conversion on the fly and return the found symbol. */
1790
1791 ALL_PRIMARY_SYMTABS (objfile, s)
1792 {
1793 bv = BLOCKVECTOR (s);
1794 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1795 sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN);
1796 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1797 {
1798 return SYMBOL_TYPE (sym);
1799 }
1800 }
1801
1802 ALL_PSYMTABS (objfile, ps)
1803 {
1804 if (!ps->readin && lookup_partial_symbol (ps, name, NULL,
1805 1, STRUCT_DOMAIN))
1806 {
1807 s = PSYMTAB_TO_SYMTAB (ps);
1808 bv = BLOCKVECTOR (s);
1809 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1810 sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN);
1811 if (!sym)
1812 {
1813 /* This shouldn't be necessary, but as a last resort
1814 * try looking in the statics even though the psymtab
1815 * claimed the symbol was global. It's possible that
1816 * the psymtab gets it wrong in some cases.
1817 */
1818 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
1819 sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN);
1820 if (!sym)
1821 error (_("Internal: global symbol `%s' found in %s psymtab but not in symtab.\n\
1822 %s may be an inlined function, or may be a template function\n\
1823 (if a template, try specifying an instantiation: %s<type>)."),
1824 name, ps->filename, name, name);
1825 }
1826 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1827 return SYMBOL_TYPE (sym);
1828 }
1829 }
1830
1831 /* Now search the static file-level symbols.
1832 Not strictly correct, but more useful than an error.
1833 Do the symtab's first, then
1834 check the psymtab's. If a psymtab indicates the existence
1835 of the desired name as a file-level static, then do psymtab-to-symtab
1836 conversion on the fly and return the found symbol.
1837 */
1838
1839 ALL_PRIMARY_SYMTABS (objfile, s)
1840 {
1841 bv = BLOCKVECTOR (s);
1842 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
1843 sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN);
1844 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1845 {
1846 return SYMBOL_TYPE (sym);
1847 }
1848 }
1849
1850 ALL_PSYMTABS (objfile, ps)
1851 {
1852 if (!ps->readin && lookup_partial_symbol (ps, name, NULL, 0, STRUCT_DOMAIN))
1853 {
1854 s = PSYMTAB_TO_SYMTAB (ps);
1855 bv = BLOCKVECTOR (s);
1856 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
1857 sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN);
1858 if (!sym)
1859 {
1860 /* This shouldn't be necessary, but as a last resort
1861 * try looking in the globals even though the psymtab
1862 * claimed the symbol was static. It's possible that
1863 * the psymtab gets it wrong in some cases.
1864 */
1865 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1866 sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN);
1867 if (!sym)
1868 error (_("Internal: static symbol `%s' found in %s psymtab but not in symtab.\n\
1869 %s may be an inlined function, or may be a template function\n\
1870 (if a template, try specifying an instantiation: %s<type>)."),
1871 name, ps->filename, name, name);
1872 }
1873 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1874 return SYMBOL_TYPE (sym);
1875 }
1876 }
1877 return (struct type *) 0;
1878 }
1879
1880
1881 /* Find the psymtab containing main(). */
1882 /* FIXME: What about languages without main() or specially linked
1883 executables that have no main() ? */
1884
1885 struct partial_symtab *
1886 find_main_psymtab (void)
1887 {
1888 struct partial_symtab *pst;
1889 struct objfile *objfile;
1890
1891 ALL_PSYMTABS (objfile, pst)
1892 {
1893 if (lookup_partial_symbol (pst, main_name (), NULL, 1, VAR_DOMAIN))
1894 {
1895 return (pst);
1896 }
1897 }
1898 return (NULL);
1899 }
1900
1901 /* Search BLOCK for symbol NAME in DOMAIN.
1902
1903 Note that if NAME is the demangled form of a C++ symbol, we will fail
1904 to find a match during the binary search of the non-encoded names, but
1905 for now we don't worry about the slight inefficiency of looking for
1906 a match we'll never find, since it will go pretty quick. Once the
1907 binary search terminates, we drop through and do a straight linear
1908 search on the symbols. Each symbol which is marked as being a ObjC/C++
1909 symbol (language_cplus or language_objc set) has both the encoded and
1910 non-encoded names tested for a match.
1911
1912 If LINKAGE_NAME is non-NULL, verify that any symbol we find has this
1913 particular mangled name.
1914 */
1915
1916 struct symbol *
1917 lookup_block_symbol (const struct block *block, const char *name,
1918 const char *linkage_name,
1919 const domain_enum domain)
1920 {
1921 struct dict_iterator iter;
1922 struct symbol *sym;
1923
1924 if (!BLOCK_FUNCTION (block))
1925 {
1926 for (sym = dict_iter_name_first (BLOCK_DICT (block), name, &iter);
1927 sym != NULL;
1928 sym = dict_iter_name_next (name, &iter))
1929 {
1930 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
1931 SYMBOL_DOMAIN (sym), domain)
1932 && (linkage_name != NULL
1933 ? strcmp (SYMBOL_LINKAGE_NAME (sym), linkage_name) == 0 : 1))
1934 return sym;
1935 }
1936 return NULL;
1937 }
1938 else
1939 {
1940 /* Note that parameter symbols do not always show up last in the
1941 list; this loop makes sure to take anything else other than
1942 parameter symbols first; it only uses parameter symbols as a
1943 last resort. Note that this only takes up extra computation
1944 time on a match. */
1945
1946 struct symbol *sym_found = NULL;
1947
1948 for (sym = dict_iter_name_first (BLOCK_DICT (block), name, &iter);
1949 sym != NULL;
1950 sym = dict_iter_name_next (name, &iter))
1951 {
1952 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
1953 SYMBOL_DOMAIN (sym), domain)
1954 && (linkage_name != NULL
1955 ? strcmp (SYMBOL_LINKAGE_NAME (sym), linkage_name) == 0 : 1))
1956 {
1957 sym_found = sym;
1958 if (SYMBOL_CLASS (sym) != LOC_ARG &&
1959 SYMBOL_CLASS (sym) != LOC_REF_ARG &&
1960 SYMBOL_CLASS (sym) != LOC_REGPARM &&
1961 SYMBOL_CLASS (sym) != LOC_REGPARM_ADDR &&
1962 SYMBOL_CLASS (sym) != LOC_COMPUTED_ARG)
1963 {
1964 break;
1965 }
1966 }
1967 }
1968 return (sym_found); /* Will be NULL if not found. */
1969 }
1970 }
1971
1972 /* Find the symtab associated with PC and SECTION. Look through the
1973 psymtabs and read in another symtab if necessary. */
1974
1975 struct symtab *
1976 find_pc_sect_symtab (CORE_ADDR pc, asection *section)
1977 {
1978 struct block *b;
1979 struct blockvector *bv;
1980 struct symtab *s = NULL;
1981 struct symtab *best_s = NULL;
1982 struct partial_symtab *ps;
1983 struct objfile *objfile;
1984 CORE_ADDR distance = 0;
1985 struct minimal_symbol *msymbol;
1986
1987 /* If we know that this is not a text address, return failure. This is
1988 necessary because we loop based on the block's high and low code
1989 addresses, which do not include the data ranges, and because
1990 we call find_pc_sect_psymtab which has a similar restriction based
1991 on the partial_symtab's texthigh and textlow. */
1992 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
1993 if (msymbol
1994 && (msymbol->type == mst_data
1995 || msymbol->type == mst_bss
1996 || msymbol->type == mst_abs
1997 || msymbol->type == mst_file_data
1998 || msymbol->type == mst_file_bss))
1999 return NULL;
2000
2001 /* Search all symtabs for the one whose file contains our address, and which
2002 is the smallest of all the ones containing the address. This is designed
2003 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
2004 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
2005 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
2006
2007 This happens for native ecoff format, where code from included files
2008 gets its own symtab. The symtab for the included file should have
2009 been read in already via the dependency mechanism.
2010 It might be swifter to create several symtabs with the same name
2011 like xcoff does (I'm not sure).
2012
2013 It also happens for objfiles that have their functions reordered.
2014 For these, the symtab we are looking for is not necessarily read in. */
2015
2016 ALL_PRIMARY_SYMTABS (objfile, s)
2017 {
2018 bv = BLOCKVECTOR (s);
2019 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
2020
2021 if (BLOCK_START (b) <= pc
2022 && BLOCK_END (b) > pc
2023 && (distance == 0
2024 || BLOCK_END (b) - BLOCK_START (b) < distance))
2025 {
2026 /* For an objfile that has its functions reordered,
2027 find_pc_psymtab will find the proper partial symbol table
2028 and we simply return its corresponding symtab. */
2029 /* In order to better support objfiles that contain both
2030 stabs and coff debugging info, we continue on if a psymtab
2031 can't be found. */
2032 if ((objfile->flags & OBJF_REORDERED) && objfile->psymtabs)
2033 {
2034 ps = find_pc_sect_psymtab (pc, section);
2035 if (ps)
2036 return PSYMTAB_TO_SYMTAB (ps);
2037 }
2038 if (section != 0)
2039 {
2040 struct dict_iterator iter;
2041 struct symbol *sym = NULL;
2042
2043 ALL_BLOCK_SYMBOLS (b, iter, sym)
2044 {
2045 fixup_symbol_section (sym, objfile);
2046 if (matching_bfd_sections (SYMBOL_BFD_SECTION (sym), section))
2047 break;
2048 }
2049 if (sym == NULL)
2050 continue; /* no symbol in this symtab matches section */
2051 }
2052 distance = BLOCK_END (b) - BLOCK_START (b);
2053 best_s = s;
2054 }
2055 }
2056
2057 if (best_s != NULL)
2058 return (best_s);
2059
2060 s = NULL;
2061 ps = find_pc_sect_psymtab (pc, section);
2062 if (ps)
2063 {
2064 if (ps->readin)
2065 /* Might want to error() here (in case symtab is corrupt and
2066 will cause a core dump), but maybe we can successfully
2067 continue, so let's not. */
2068 warning (_("\
2069 (Internal error: pc 0x%s in read in psymtab, but not in symtab.)\n"),
2070 paddr_nz (pc));
2071 s = PSYMTAB_TO_SYMTAB (ps);
2072 }
2073 return (s);
2074 }
2075
2076 /* Find the symtab associated with PC. Look through the psymtabs and
2077 read in another symtab if necessary. Backward compatibility, no section */
2078
2079 struct symtab *
2080 find_pc_symtab (CORE_ADDR pc)
2081 {
2082 return find_pc_sect_symtab (pc, find_pc_mapped_section (pc));
2083 }
2084 \f
2085
2086 /* Find the source file and line number for a given PC value and SECTION.
2087 Return a structure containing a symtab pointer, a line number,
2088 and a pc range for the entire source line.
2089 The value's .pc field is NOT the specified pc.
2090 NOTCURRENT nonzero means, if specified pc is on a line boundary,
2091 use the line that ends there. Otherwise, in that case, the line
2092 that begins there is used. */
2093
2094 /* The big complication here is that a line may start in one file, and end just
2095 before the start of another file. This usually occurs when you #include
2096 code in the middle of a subroutine. To properly find the end of a line's PC
2097 range, we must search all symtabs associated with this compilation unit, and
2098 find the one whose first PC is closer than that of the next line in this
2099 symtab. */
2100
2101 /* If it's worth the effort, we could be using a binary search. */
2102
2103 struct symtab_and_line
2104 find_pc_sect_line (CORE_ADDR pc, struct bfd_section *section, int notcurrent)
2105 {
2106 struct symtab *s;
2107 struct linetable *l;
2108 int len;
2109 int i;
2110 struct linetable_entry *item;
2111 struct symtab_and_line val;
2112 struct blockvector *bv;
2113 struct minimal_symbol *msymbol;
2114 struct minimal_symbol *mfunsym;
2115
2116 /* Info on best line seen so far, and where it starts, and its file. */
2117
2118 struct linetable_entry *best = NULL;
2119 CORE_ADDR best_end = 0;
2120 struct symtab *best_symtab = 0;
2121
2122 /* Store here the first line number
2123 of a file which contains the line at the smallest pc after PC.
2124 If we don't find a line whose range contains PC,
2125 we will use a line one less than this,
2126 with a range from the start of that file to the first line's pc. */
2127 struct linetable_entry *alt = NULL;
2128 struct symtab *alt_symtab = 0;
2129
2130 /* Info on best line seen in this file. */
2131
2132 struct linetable_entry *prev;
2133
2134 /* If this pc is not from the current frame,
2135 it is the address of the end of a call instruction.
2136 Quite likely that is the start of the following statement.
2137 But what we want is the statement containing the instruction.
2138 Fudge the pc to make sure we get that. */
2139
2140 init_sal (&val); /* initialize to zeroes */
2141
2142 /* It's tempting to assume that, if we can't find debugging info for
2143 any function enclosing PC, that we shouldn't search for line
2144 number info, either. However, GAS can emit line number info for
2145 assembly files --- very helpful when debugging hand-written
2146 assembly code. In such a case, we'd have no debug info for the
2147 function, but we would have line info. */
2148
2149 if (notcurrent)
2150 pc -= 1;
2151
2152 /* elz: added this because this function returned the wrong
2153 information if the pc belongs to a stub (import/export)
2154 to call a shlib function. This stub would be anywhere between
2155 two functions in the target, and the line info was erroneously
2156 taken to be the one of the line before the pc.
2157 */
2158 /* RT: Further explanation:
2159
2160 * We have stubs (trampolines) inserted between procedures.
2161 *
2162 * Example: "shr1" exists in a shared library, and a "shr1" stub also
2163 * exists in the main image.
2164 *
2165 * In the minimal symbol table, we have a bunch of symbols
2166 * sorted by start address. The stubs are marked as "trampoline",
2167 * the others appear as text. E.g.:
2168 *
2169 * Minimal symbol table for main image
2170 * main: code for main (text symbol)
2171 * shr1: stub (trampoline symbol)
2172 * foo: code for foo (text symbol)
2173 * ...
2174 * Minimal symbol table for "shr1" image:
2175 * ...
2176 * shr1: code for shr1 (text symbol)
2177 * ...
2178 *
2179 * So the code below is trying to detect if we are in the stub
2180 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
2181 * and if found, do the symbolization from the real-code address
2182 * rather than the stub address.
2183 *
2184 * Assumptions being made about the minimal symbol table:
2185 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
2186 * if we're really in the trampoline. If we're beyond it (say
2187 * we're in "foo" in the above example), it'll have a closer
2188 * symbol (the "foo" text symbol for example) and will not
2189 * return the trampoline.
2190 * 2. lookup_minimal_symbol_text() will find a real text symbol
2191 * corresponding to the trampoline, and whose address will
2192 * be different than the trampoline address. I put in a sanity
2193 * check for the address being the same, to avoid an
2194 * infinite recursion.
2195 */
2196 msymbol = lookup_minimal_symbol_by_pc (pc);
2197 if (msymbol != NULL)
2198 if (MSYMBOL_TYPE (msymbol) == mst_solib_trampoline)
2199 {
2200 mfunsym = lookup_minimal_symbol_text (SYMBOL_LINKAGE_NAME (msymbol),
2201 NULL);
2202 if (mfunsym == NULL)
2203 /* I eliminated this warning since it is coming out
2204 * in the following situation:
2205 * gdb shmain // test program with shared libraries
2206 * (gdb) break shr1 // function in shared lib
2207 * Warning: In stub for ...
2208 * In the above situation, the shared lib is not loaded yet,
2209 * so of course we can't find the real func/line info,
2210 * but the "break" still works, and the warning is annoying.
2211 * So I commented out the warning. RT */
2212 /* warning ("In stub for %s; unable to find real function/line info", SYMBOL_LINKAGE_NAME (msymbol)) */ ;
2213 /* fall through */
2214 else if (SYMBOL_VALUE_ADDRESS (mfunsym) == SYMBOL_VALUE_ADDRESS (msymbol))
2215 /* Avoid infinite recursion */
2216 /* See above comment about why warning is commented out */
2217 /* warning ("In stub for %s; unable to find real function/line info", SYMBOL_LINKAGE_NAME (msymbol)) */ ;
2218 /* fall through */
2219 else
2220 return find_pc_line (SYMBOL_VALUE_ADDRESS (mfunsym), 0);
2221 }
2222
2223
2224 s = find_pc_sect_symtab (pc, section);
2225 if (!s)
2226 {
2227 /* if no symbol information, return previous pc */
2228 if (notcurrent)
2229 pc++;
2230 val.pc = pc;
2231 return val;
2232 }
2233
2234 bv = BLOCKVECTOR (s);
2235
2236 /* Look at all the symtabs that share this blockvector.
2237 They all have the same apriori range, that we found was right;
2238 but they have different line tables. */
2239
2240 for (; s && BLOCKVECTOR (s) == bv; s = s->next)
2241 {
2242 /* Find the best line in this symtab. */
2243 l = LINETABLE (s);
2244 if (!l)
2245 continue;
2246 len = l->nitems;
2247 if (len <= 0)
2248 {
2249 /* I think len can be zero if the symtab lacks line numbers
2250 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
2251 I'm not sure which, and maybe it depends on the symbol
2252 reader). */
2253 continue;
2254 }
2255
2256 prev = NULL;
2257 item = l->item; /* Get first line info */
2258
2259 /* Is this file's first line closer than the first lines of other files?
2260 If so, record this file, and its first line, as best alternate. */
2261 if (item->pc > pc && (!alt || item->pc < alt->pc))
2262 {
2263 alt = item;
2264 alt_symtab = s;
2265 }
2266
2267 for (i = 0; i < len; i++, item++)
2268 {
2269 /* Leave prev pointing to the linetable entry for the last line
2270 that started at or before PC. */
2271 if (item->pc > pc)
2272 break;
2273
2274 prev = item;
2275 }
2276
2277 /* At this point, prev points at the line whose start addr is <= pc, and
2278 item points at the next line. If we ran off the end of the linetable
2279 (pc >= start of the last line), then prev == item. If pc < start of
2280 the first line, prev will not be set. */
2281
2282 /* Is this file's best line closer than the best in the other files?
2283 If so, record this file, and its best line, as best so far. Don't
2284 save prev if it represents the end of a function (i.e. line number
2285 0) instead of a real line. */
2286
2287 if (prev && prev->line && (!best || prev->pc > best->pc))
2288 {
2289 best = prev;
2290 best_symtab = s;
2291
2292 /* Discard BEST_END if it's before the PC of the current BEST. */
2293 if (best_end <= best->pc)
2294 best_end = 0;
2295 }
2296
2297 /* If another line (denoted by ITEM) is in the linetable and its
2298 PC is after BEST's PC, but before the current BEST_END, then
2299 use ITEM's PC as the new best_end. */
2300 if (best && i < len && item->pc > best->pc
2301 && (best_end == 0 || best_end > item->pc))
2302 best_end = item->pc;
2303 }
2304
2305 if (!best_symtab)
2306 {
2307 /* If we didn't find any line number info, just return zeros.
2308 We used to return alt->line - 1 here, but that could be
2309 anywhere; if we don't have line number info for this PC,
2310 don't make some up. */
2311 val.pc = pc;
2312 }
2313 else if (best->line == 0)
2314 {
2315 /* If our best fit is in a range of PC's for which no line
2316 number info is available (line number is zero) then we didn't
2317 find any valid line information. */
2318 val.pc = pc;
2319 }
2320 else
2321 {
2322 val.symtab = best_symtab;
2323 val.line = best->line;
2324 val.pc = best->pc;
2325 if (best_end && (!alt || best_end < alt->pc))
2326 val.end = best_end;
2327 else if (alt)
2328 val.end = alt->pc;
2329 else
2330 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
2331 }
2332 val.section = section;
2333 return val;
2334 }
2335
2336 /* Backward compatibility (no section) */
2337
2338 struct symtab_and_line
2339 find_pc_line (CORE_ADDR pc, int notcurrent)
2340 {
2341 asection *section;
2342
2343 section = find_pc_overlay (pc);
2344 if (pc_in_unmapped_range (pc, section))
2345 pc = overlay_mapped_address (pc, section);
2346 return find_pc_sect_line (pc, section, notcurrent);
2347 }
2348 \f
2349 /* Find line number LINE in any symtab whose name is the same as
2350 SYMTAB.
2351
2352 If found, return the symtab that contains the linetable in which it was
2353 found, set *INDEX to the index in the linetable of the best entry
2354 found, and set *EXACT_MATCH nonzero if the value returned is an
2355 exact match.
2356
2357 If not found, return NULL. */
2358
2359 struct symtab *
2360 find_line_symtab (struct symtab *symtab, int line, int *index, int *exact_match)
2361 {
2362 int exact;
2363
2364 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
2365 so far seen. */
2366
2367 int best_index;
2368 struct linetable *best_linetable;
2369 struct symtab *best_symtab;
2370
2371 /* First try looking it up in the given symtab. */
2372 best_linetable = LINETABLE (symtab);
2373 best_symtab = symtab;
2374 best_index = find_line_common (best_linetable, line, &exact);
2375 if (best_index < 0 || !exact)
2376 {
2377 /* Didn't find an exact match. So we better keep looking for
2378 another symtab with the same name. In the case of xcoff,
2379 multiple csects for one source file (produced by IBM's FORTRAN
2380 compiler) produce multiple symtabs (this is unavoidable
2381 assuming csects can be at arbitrary places in memory and that
2382 the GLOBAL_BLOCK of a symtab has a begin and end address). */
2383
2384 /* BEST is the smallest linenumber > LINE so far seen,
2385 or 0 if none has been seen so far.
2386 BEST_INDEX and BEST_LINETABLE identify the item for it. */
2387 int best;
2388
2389 struct objfile *objfile;
2390 struct symtab *s;
2391 struct partial_symtab *p;
2392
2393 if (best_index >= 0)
2394 best = best_linetable->item[best_index].line;
2395 else
2396 best = 0;
2397
2398 ALL_PSYMTABS (objfile, p)
2399 {
2400 if (strcmp (symtab->filename, p->filename) != 0)
2401 continue;
2402 PSYMTAB_TO_SYMTAB (p);
2403 }
2404
2405 ALL_SYMTABS (objfile, s)
2406 {
2407 struct linetable *l;
2408 int ind;
2409
2410 if (strcmp (symtab->filename, s->filename) != 0)
2411 continue;
2412 l = LINETABLE (s);
2413 ind = find_line_common (l, line, &exact);
2414 if (ind >= 0)
2415 {
2416 if (exact)
2417 {
2418 best_index = ind;
2419 best_linetable = l;
2420 best_symtab = s;
2421 goto done;
2422 }
2423 if (best == 0 || l->item[ind].line < best)
2424 {
2425 best = l->item[ind].line;
2426 best_index = ind;
2427 best_linetable = l;
2428 best_symtab = s;
2429 }
2430 }
2431 }
2432 }
2433 done:
2434 if (best_index < 0)
2435 return NULL;
2436
2437 if (index)
2438 *index = best_index;
2439 if (exact_match)
2440 *exact_match = exact;
2441
2442 return best_symtab;
2443 }
2444 \f
2445 /* Set the PC value for a given source file and line number and return true.
2446 Returns zero for invalid line number (and sets the PC to 0).
2447 The source file is specified with a struct symtab. */
2448
2449 int
2450 find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
2451 {
2452 struct linetable *l;
2453 int ind;
2454
2455 *pc = 0;
2456 if (symtab == 0)
2457 return 0;
2458
2459 symtab = find_line_symtab (symtab, line, &ind, NULL);
2460 if (symtab != NULL)
2461 {
2462 l = LINETABLE (symtab);
2463 *pc = l->item[ind].pc;
2464 return 1;
2465 }
2466 else
2467 return 0;
2468 }
2469
2470 /* Find the range of pc values in a line.
2471 Store the starting pc of the line into *STARTPTR
2472 and the ending pc (start of next line) into *ENDPTR.
2473 Returns 1 to indicate success.
2474 Returns 0 if could not find the specified line. */
2475
2476 int
2477 find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
2478 CORE_ADDR *endptr)
2479 {
2480 CORE_ADDR startaddr;
2481 struct symtab_and_line found_sal;
2482
2483 startaddr = sal.pc;
2484 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
2485 return 0;
2486
2487 /* This whole function is based on address. For example, if line 10 has
2488 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
2489 "info line *0x123" should say the line goes from 0x100 to 0x200
2490 and "info line *0x355" should say the line goes from 0x300 to 0x400.
2491 This also insures that we never give a range like "starts at 0x134
2492 and ends at 0x12c". */
2493
2494 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
2495 if (found_sal.line != sal.line)
2496 {
2497 /* The specified line (sal) has zero bytes. */
2498 *startptr = found_sal.pc;
2499 *endptr = found_sal.pc;
2500 }
2501 else
2502 {
2503 *startptr = found_sal.pc;
2504 *endptr = found_sal.end;
2505 }
2506 return 1;
2507 }
2508
2509 /* Given a line table and a line number, return the index into the line
2510 table for the pc of the nearest line whose number is >= the specified one.
2511 Return -1 if none is found. The value is >= 0 if it is an index.
2512
2513 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
2514
2515 static int
2516 find_line_common (struct linetable *l, int lineno,
2517 int *exact_match)
2518 {
2519 int i;
2520 int len;
2521
2522 /* BEST is the smallest linenumber > LINENO so far seen,
2523 or 0 if none has been seen so far.
2524 BEST_INDEX identifies the item for it. */
2525
2526 int best_index = -1;
2527 int best = 0;
2528
2529 *exact_match = 0;
2530
2531 if (lineno <= 0)
2532 return -1;
2533 if (l == 0)
2534 return -1;
2535
2536 len = l->nitems;
2537 for (i = 0; i < len; i++)
2538 {
2539 struct linetable_entry *item = &(l->item[i]);
2540
2541 if (item->line == lineno)
2542 {
2543 /* Return the first (lowest address) entry which matches. */
2544 *exact_match = 1;
2545 return i;
2546 }
2547
2548 if (item->line > lineno && (best == 0 || item->line < best))
2549 {
2550 best = item->line;
2551 best_index = i;
2552 }
2553 }
2554
2555 /* If we got here, we didn't get an exact match. */
2556 return best_index;
2557 }
2558
2559 int
2560 find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
2561 {
2562 struct symtab_and_line sal;
2563 sal = find_pc_line (pc, 0);
2564 *startptr = sal.pc;
2565 *endptr = sal.end;
2566 return sal.symtab != 0;
2567 }
2568
2569 /* Given a function start address PC and SECTION, find the first
2570 address after the function prologue. */
2571 CORE_ADDR
2572 find_function_start_pc (struct gdbarch *gdbarch,
2573 CORE_ADDR pc, asection *section)
2574 {
2575 /* If the function is in an unmapped overlay, use its unmapped LMA address,
2576 so that gdbarch_skip_prologue has something unique to work on. */
2577 if (section_is_overlay (section) && !section_is_mapped (section))
2578 pc = overlay_unmapped_address (pc, section);
2579
2580 pc += gdbarch_deprecated_function_start_offset (gdbarch);
2581 pc = gdbarch_skip_prologue (gdbarch, pc);
2582
2583 /* For overlays, map pc back into its mapped VMA range. */
2584 pc = overlay_mapped_address (pc, section);
2585
2586 return pc;
2587 }
2588
2589 /* Given a function symbol SYM, find the symtab and line for the start
2590 of the function.
2591 If the argument FUNFIRSTLINE is nonzero, we want the first line
2592 of real code inside the function. */
2593
2594 struct symtab_and_line
2595 find_function_start_sal (struct symbol *sym, int funfirstline)
2596 {
2597 struct block *block = SYMBOL_BLOCK_VALUE (sym);
2598 struct objfile *objfile = lookup_objfile_from_block (block);
2599 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2600
2601 CORE_ADDR pc;
2602 struct symtab_and_line sal;
2603
2604 pc = BLOCK_START (block);
2605 fixup_symbol_section (sym, objfile);
2606 if (funfirstline)
2607 {
2608 /* Skip "first line" of function (which is actually its prologue). */
2609 pc = find_function_start_pc (gdbarch, pc, SYMBOL_BFD_SECTION (sym));
2610 }
2611 sal = find_pc_sect_line (pc, SYMBOL_BFD_SECTION (sym), 0);
2612
2613 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
2614 line is still part of the same function. */
2615 if (sal.pc != pc
2616 && BLOCK_START (block) <= sal.end
2617 && sal.end < BLOCK_END (block))
2618 {
2619 /* First pc of next line */
2620 pc = sal.end;
2621 /* Recalculate the line number (might not be N+1). */
2622 sal = find_pc_sect_line (pc, SYMBOL_BFD_SECTION (sym), 0);
2623 }
2624 sal.pc = pc;
2625
2626 return sal;
2627 }
2628
2629 /* If P is of the form "operator[ \t]+..." where `...' is
2630 some legitimate operator text, return a pointer to the
2631 beginning of the substring of the operator text.
2632 Otherwise, return "". */
2633 char *
2634 operator_chars (char *p, char **end)
2635 {
2636 *end = "";
2637 if (strncmp (p, "operator", 8))
2638 return *end;
2639 p += 8;
2640
2641 /* Don't get faked out by `operator' being part of a longer
2642 identifier. */
2643 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
2644 return *end;
2645
2646 /* Allow some whitespace between `operator' and the operator symbol. */
2647 while (*p == ' ' || *p == '\t')
2648 p++;
2649
2650 /* Recognize 'operator TYPENAME'. */
2651
2652 if (isalpha (*p) || *p == '_' || *p == '$')
2653 {
2654 char *q = p + 1;
2655 while (isalnum (*q) || *q == '_' || *q == '$')
2656 q++;
2657 *end = q;
2658 return p;
2659 }
2660
2661 while (*p)
2662 switch (*p)
2663 {
2664 case '\\': /* regexp quoting */
2665 if (p[1] == '*')
2666 {
2667 if (p[2] == '=') /* 'operator\*=' */
2668 *end = p + 3;
2669 else /* 'operator\*' */
2670 *end = p + 2;
2671 return p;
2672 }
2673 else if (p[1] == '[')
2674 {
2675 if (p[2] == ']')
2676 error (_("mismatched quoting on brackets, try 'operator\\[\\]'"));
2677 else if (p[2] == '\\' && p[3] == ']')
2678 {
2679 *end = p + 4; /* 'operator\[\]' */
2680 return p;
2681 }
2682 else
2683 error (_("nothing is allowed between '[' and ']'"));
2684 }
2685 else
2686 {
2687 /* Gratuitous qoute: skip it and move on. */
2688 p++;
2689 continue;
2690 }
2691 break;
2692 case '!':
2693 case '=':
2694 case '*':
2695 case '/':
2696 case '%':
2697 case '^':
2698 if (p[1] == '=')
2699 *end = p + 2;
2700 else
2701 *end = p + 1;
2702 return p;
2703 case '<':
2704 case '>':
2705 case '+':
2706 case '-':
2707 case '&':
2708 case '|':
2709 if (p[0] == '-' && p[1] == '>')
2710 {
2711 /* Struct pointer member operator 'operator->'. */
2712 if (p[2] == '*')
2713 {
2714 *end = p + 3; /* 'operator->*' */
2715 return p;
2716 }
2717 else if (p[2] == '\\')
2718 {
2719 *end = p + 4; /* Hopefully 'operator->\*' */
2720 return p;
2721 }
2722 else
2723 {
2724 *end = p + 2; /* 'operator->' */
2725 return p;
2726 }
2727 }
2728 if (p[1] == '=' || p[1] == p[0])
2729 *end = p + 2;
2730 else
2731 *end = p + 1;
2732 return p;
2733 case '~':
2734 case ',':
2735 *end = p + 1;
2736 return p;
2737 case '(':
2738 if (p[1] != ')')
2739 error (_("`operator ()' must be specified without whitespace in `()'"));
2740 *end = p + 2;
2741 return p;
2742 case '?':
2743 if (p[1] != ':')
2744 error (_("`operator ?:' must be specified without whitespace in `?:'"));
2745 *end = p + 2;
2746 return p;
2747 case '[':
2748 if (p[1] != ']')
2749 error (_("`operator []' must be specified without whitespace in `[]'"));
2750 *end = p + 2;
2751 return p;
2752 default:
2753 error (_("`operator %s' not supported"), p);
2754 break;
2755 }
2756
2757 *end = "";
2758 return *end;
2759 }
2760 \f
2761
2762 /* If FILE is not already in the table of files, return zero;
2763 otherwise return non-zero. Optionally add FILE to the table if ADD
2764 is non-zero. If *FIRST is non-zero, forget the old table
2765 contents. */
2766 static int
2767 filename_seen (const char *file, int add, int *first)
2768 {
2769 /* Table of files seen so far. */
2770 static const char **tab = NULL;
2771 /* Allocated size of tab in elements.
2772 Start with one 256-byte block (when using GNU malloc.c).
2773 24 is the malloc overhead when range checking is in effect. */
2774 static int tab_alloc_size = (256 - 24) / sizeof (char *);
2775 /* Current size of tab in elements. */
2776 static int tab_cur_size;
2777 const char **p;
2778
2779 if (*first)
2780 {
2781 if (tab == NULL)
2782 tab = (const char **) xmalloc (tab_alloc_size * sizeof (*tab));
2783 tab_cur_size = 0;
2784 }
2785
2786 /* Is FILE in tab? */
2787 for (p = tab; p < tab + tab_cur_size; p++)
2788 if (strcmp (*p, file) == 0)
2789 return 1;
2790
2791 /* No; maybe add it to tab. */
2792 if (add)
2793 {
2794 if (tab_cur_size == tab_alloc_size)
2795 {
2796 tab_alloc_size *= 2;
2797 tab = (const char **) xrealloc ((char *) tab,
2798 tab_alloc_size * sizeof (*tab));
2799 }
2800 tab[tab_cur_size++] = file;
2801 }
2802
2803 return 0;
2804 }
2805
2806 /* Slave routine for sources_info. Force line breaks at ,'s.
2807 NAME is the name to print and *FIRST is nonzero if this is the first
2808 name printed. Set *FIRST to zero. */
2809 static void
2810 output_source_filename (const char *name, int *first)
2811 {
2812 /* Since a single source file can result in several partial symbol
2813 tables, we need to avoid printing it more than once. Note: if
2814 some of the psymtabs are read in and some are not, it gets
2815 printed both under "Source files for which symbols have been
2816 read" and "Source files for which symbols will be read in on
2817 demand". I consider this a reasonable way to deal with the
2818 situation. I'm not sure whether this can also happen for
2819 symtabs; it doesn't hurt to check. */
2820
2821 /* Was NAME already seen? */
2822 if (filename_seen (name, 1, first))
2823 {
2824 /* Yes; don't print it again. */
2825 return;
2826 }
2827 /* No; print it and reset *FIRST. */
2828 if (*first)
2829 {
2830 *first = 0;
2831 }
2832 else
2833 {
2834 printf_filtered (", ");
2835 }
2836
2837 wrap_here ("");
2838 fputs_filtered (name, gdb_stdout);
2839 }
2840
2841 static void
2842 sources_info (char *ignore, int from_tty)
2843 {
2844 struct symtab *s;
2845 struct partial_symtab *ps;
2846 struct objfile *objfile;
2847 int first;
2848
2849 if (!have_full_symbols () && !have_partial_symbols ())
2850 {
2851 error (_("No symbol table is loaded. Use the \"file\" command."));
2852 }
2853
2854 printf_filtered ("Source files for which symbols have been read in:\n\n");
2855
2856 first = 1;
2857 ALL_SYMTABS (objfile, s)
2858 {
2859 const char *fullname = symtab_to_fullname (s);
2860 output_source_filename (fullname ? fullname : s->filename, &first);
2861 }
2862 printf_filtered ("\n\n");
2863
2864 printf_filtered ("Source files for which symbols will be read in on demand:\n\n");
2865
2866 first = 1;
2867 ALL_PSYMTABS (objfile, ps)
2868 {
2869 if (!ps->readin)
2870 {
2871 const char *fullname = psymtab_to_fullname (ps);
2872 output_source_filename (fullname ? fullname : ps->filename, &first);
2873 }
2874 }
2875 printf_filtered ("\n");
2876 }
2877
2878 static int
2879 file_matches (char *file, char *files[], int nfiles)
2880 {
2881 int i;
2882
2883 if (file != NULL && nfiles != 0)
2884 {
2885 for (i = 0; i < nfiles; i++)
2886 {
2887 if (strcmp (files[i], lbasename (file)) == 0)
2888 return 1;
2889 }
2890 }
2891 else if (nfiles == 0)
2892 return 1;
2893 return 0;
2894 }
2895
2896 /* Free any memory associated with a search. */
2897 void
2898 free_search_symbols (struct symbol_search *symbols)
2899 {
2900 struct symbol_search *p;
2901 struct symbol_search *next;
2902
2903 for (p = symbols; p != NULL; p = next)
2904 {
2905 next = p->next;
2906 xfree (p);
2907 }
2908 }
2909
2910 static void
2911 do_free_search_symbols_cleanup (void *symbols)
2912 {
2913 free_search_symbols (symbols);
2914 }
2915
2916 struct cleanup *
2917 make_cleanup_free_search_symbols (struct symbol_search *symbols)
2918 {
2919 return make_cleanup (do_free_search_symbols_cleanup, symbols);
2920 }
2921
2922 /* Helper function for sort_search_symbols and qsort. Can only
2923 sort symbols, not minimal symbols. */
2924 static int
2925 compare_search_syms (const void *sa, const void *sb)
2926 {
2927 struct symbol_search **sym_a = (struct symbol_search **) sa;
2928 struct symbol_search **sym_b = (struct symbol_search **) sb;
2929
2930 return strcmp (SYMBOL_PRINT_NAME ((*sym_a)->symbol),
2931 SYMBOL_PRINT_NAME ((*sym_b)->symbol));
2932 }
2933
2934 /* Sort the ``nfound'' symbols in the list after prevtail. Leave
2935 prevtail where it is, but update its next pointer to point to
2936 the first of the sorted symbols. */
2937 static struct symbol_search *
2938 sort_search_symbols (struct symbol_search *prevtail, int nfound)
2939 {
2940 struct symbol_search **symbols, *symp, *old_next;
2941 int i;
2942
2943 symbols = (struct symbol_search **) xmalloc (sizeof (struct symbol_search *)
2944 * nfound);
2945 symp = prevtail->next;
2946 for (i = 0; i < nfound; i++)
2947 {
2948 symbols[i] = symp;
2949 symp = symp->next;
2950 }
2951 /* Generally NULL. */
2952 old_next = symp;
2953
2954 qsort (symbols, nfound, sizeof (struct symbol_search *),
2955 compare_search_syms);
2956
2957 symp = prevtail;
2958 for (i = 0; i < nfound; i++)
2959 {
2960 symp->next = symbols[i];
2961 symp = symp->next;
2962 }
2963 symp->next = old_next;
2964
2965 xfree (symbols);
2966 return symp;
2967 }
2968
2969 /* Search the symbol table for matches to the regular expression REGEXP,
2970 returning the results in *MATCHES.
2971
2972 Only symbols of KIND are searched:
2973 FUNCTIONS_DOMAIN - search all functions
2974 TYPES_DOMAIN - search all type names
2975 METHODS_DOMAIN - search all methods NOT IMPLEMENTED
2976 VARIABLES_DOMAIN - search all symbols, excluding functions, type names,
2977 and constants (enums)
2978
2979 free_search_symbols should be called when *MATCHES is no longer needed.
2980
2981 The results are sorted locally; each symtab's global and static blocks are
2982 separately alphabetized.
2983 */
2984 void
2985 search_symbols (char *regexp, domain_enum kind, int nfiles, char *files[],
2986 struct symbol_search **matches)
2987 {
2988 struct symtab *s;
2989 struct partial_symtab *ps;
2990 struct blockvector *bv;
2991 struct block *b;
2992 int i = 0;
2993 struct dict_iterator iter;
2994 struct symbol *sym;
2995 struct partial_symbol **psym;
2996 struct objfile *objfile;
2997 struct minimal_symbol *msymbol;
2998 char *val;
2999 int found_misc = 0;
3000 static enum minimal_symbol_type types[]
3001 =
3002 {mst_data, mst_text, mst_abs, mst_unknown};
3003 static enum minimal_symbol_type types2[]
3004 =
3005 {mst_bss, mst_file_text, mst_abs, mst_unknown};
3006 static enum minimal_symbol_type types3[]
3007 =
3008 {mst_file_data, mst_solib_trampoline, mst_abs, mst_unknown};
3009 static enum minimal_symbol_type types4[]
3010 =
3011 {mst_file_bss, mst_text, mst_abs, mst_unknown};
3012 enum minimal_symbol_type ourtype;
3013 enum minimal_symbol_type ourtype2;
3014 enum minimal_symbol_type ourtype3;
3015 enum minimal_symbol_type ourtype4;
3016 struct symbol_search *sr;
3017 struct symbol_search *psr;
3018 struct symbol_search *tail;
3019 struct cleanup *old_chain = NULL;
3020
3021 if (kind < VARIABLES_DOMAIN)
3022 error (_("must search on specific domain"));
3023
3024 ourtype = types[(int) (kind - VARIABLES_DOMAIN)];
3025 ourtype2 = types2[(int) (kind - VARIABLES_DOMAIN)];
3026 ourtype3 = types3[(int) (kind - VARIABLES_DOMAIN)];
3027 ourtype4 = types4[(int) (kind - VARIABLES_DOMAIN)];
3028
3029 sr = *matches = NULL;
3030 tail = NULL;
3031
3032 if (regexp != NULL)
3033 {
3034 /* Make sure spacing is right for C++ operators.
3035 This is just a courtesy to make the matching less sensitive
3036 to how many spaces the user leaves between 'operator'
3037 and <TYPENAME> or <OPERATOR>. */
3038 char *opend;
3039 char *opname = operator_chars (regexp, &opend);
3040 if (*opname)
3041 {
3042 int fix = -1; /* -1 means ok; otherwise number of spaces needed. */
3043 if (isalpha (*opname) || *opname == '_' || *opname == '$')
3044 {
3045 /* There should 1 space between 'operator' and 'TYPENAME'. */
3046 if (opname[-1] != ' ' || opname[-2] == ' ')
3047 fix = 1;
3048 }
3049 else
3050 {
3051 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
3052 if (opname[-1] == ' ')
3053 fix = 0;
3054 }
3055 /* If wrong number of spaces, fix it. */
3056 if (fix >= 0)
3057 {
3058 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
3059 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
3060 regexp = tmp;
3061 }
3062 }
3063
3064 if (0 != (val = re_comp (regexp)))
3065 error (_("Invalid regexp (%s): %s"), val, regexp);
3066 }
3067
3068 /* Search through the partial symtabs *first* for all symbols
3069 matching the regexp. That way we don't have to reproduce all of
3070 the machinery below. */
3071
3072 ALL_PSYMTABS (objfile, ps)
3073 {
3074 struct partial_symbol **bound, **gbound, **sbound;
3075 int keep_going = 1;
3076
3077 if (ps->readin)
3078 continue;
3079
3080 gbound = objfile->global_psymbols.list + ps->globals_offset + ps->n_global_syms;
3081 sbound = objfile->static_psymbols.list + ps->statics_offset + ps->n_static_syms;
3082 bound = gbound;
3083
3084 /* Go through all of the symbols stored in a partial
3085 symtab in one loop. */
3086 psym = objfile->global_psymbols.list + ps->globals_offset;
3087 while (keep_going)
3088 {
3089 if (psym >= bound)
3090 {
3091 if (bound == gbound && ps->n_static_syms != 0)
3092 {
3093 psym = objfile->static_psymbols.list + ps->statics_offset;
3094 bound = sbound;
3095 }
3096 else
3097 keep_going = 0;
3098 continue;
3099 }
3100 else
3101 {
3102 QUIT;
3103
3104 /* If it would match (logic taken from loop below)
3105 load the file and go on to the next one. We check the
3106 filename here, but that's a bit bogus: we don't know
3107 what file it really comes from until we have full
3108 symtabs. The symbol might be in a header file included by
3109 this psymtab. This only affects Insight. */
3110 if (file_matches (ps->filename, files, nfiles)
3111 && ((regexp == NULL
3112 || re_exec (SYMBOL_NATURAL_NAME (*psym)) != 0)
3113 && ((kind == VARIABLES_DOMAIN && SYMBOL_CLASS (*psym) != LOC_TYPEDEF
3114 && SYMBOL_CLASS (*psym) != LOC_BLOCK)
3115 || (kind == FUNCTIONS_DOMAIN && SYMBOL_CLASS (*psym) == LOC_BLOCK)
3116 || (kind == TYPES_DOMAIN && SYMBOL_CLASS (*psym) == LOC_TYPEDEF)
3117 || (kind == METHODS_DOMAIN && SYMBOL_CLASS (*psym) == LOC_BLOCK))))
3118 {
3119 PSYMTAB_TO_SYMTAB (ps);
3120 keep_going = 0;
3121 }
3122 }
3123 psym++;
3124 }
3125 }
3126
3127 /* Here, we search through the minimal symbol tables for functions
3128 and variables that match, and force their symbols to be read.
3129 This is in particular necessary for demangled variable names,
3130 which are no longer put into the partial symbol tables.
3131 The symbol will then be found during the scan of symtabs below.
3132
3133 For functions, find_pc_symtab should succeed if we have debug info
3134 for the function, for variables we have to call lookup_symbol
3135 to determine if the variable has debug info.
3136 If the lookup fails, set found_misc so that we will rescan to print
3137 any matching symbols without debug info.
3138 */
3139
3140 if (nfiles == 0 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
3141 {
3142 ALL_MSYMBOLS (objfile, msymbol)
3143 {
3144 if (MSYMBOL_TYPE (msymbol) == ourtype ||
3145 MSYMBOL_TYPE (msymbol) == ourtype2 ||
3146 MSYMBOL_TYPE (msymbol) == ourtype3 ||
3147 MSYMBOL_TYPE (msymbol) == ourtype4)
3148 {
3149 if (regexp == NULL
3150 || re_exec (SYMBOL_NATURAL_NAME (msymbol)) != 0)
3151 {
3152 if (0 == find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol)))
3153 {
3154 /* FIXME: carlton/2003-02-04: Given that the
3155 semantics of lookup_symbol keeps on changing
3156 slightly, it would be a nice idea if we had a
3157 function lookup_symbol_minsym that found the
3158 symbol associated to a given minimal symbol (if
3159 any). */
3160 if (kind == FUNCTIONS_DOMAIN
3161 || lookup_symbol (SYMBOL_LINKAGE_NAME (msymbol),
3162 (struct block *) NULL,
3163 VAR_DOMAIN, 0)
3164 == NULL)
3165 found_misc = 1;
3166 }
3167 }
3168 }
3169 }
3170 }
3171
3172 ALL_PRIMARY_SYMTABS (objfile, s)
3173 {
3174 bv = BLOCKVECTOR (s);
3175 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
3176 {
3177 struct symbol_search *prevtail = tail;
3178 int nfound = 0;
3179 b = BLOCKVECTOR_BLOCK (bv, i);
3180 ALL_BLOCK_SYMBOLS (b, iter, sym)
3181 {
3182 struct symtab *real_symtab = SYMBOL_SYMTAB (sym);
3183 QUIT;
3184
3185 if (file_matches (real_symtab->filename, files, nfiles)
3186 && ((regexp == NULL
3187 || re_exec (SYMBOL_NATURAL_NAME (sym)) != 0)
3188 && ((kind == VARIABLES_DOMAIN && SYMBOL_CLASS (sym) != LOC_TYPEDEF
3189 && SYMBOL_CLASS (sym) != LOC_BLOCK
3190 && SYMBOL_CLASS (sym) != LOC_CONST)
3191 || (kind == FUNCTIONS_DOMAIN && SYMBOL_CLASS (sym) == LOC_BLOCK)
3192 || (kind == TYPES_DOMAIN && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
3193 || (kind == METHODS_DOMAIN && SYMBOL_CLASS (sym) == LOC_BLOCK))))
3194 {
3195 /* match */
3196 psr = (struct symbol_search *) xmalloc (sizeof (struct symbol_search));
3197 psr->block = i;
3198 psr->symtab = real_symtab;
3199 psr->symbol = sym;
3200 psr->msymbol = NULL;
3201 psr->next = NULL;
3202 if (tail == NULL)
3203 sr = psr;
3204 else
3205 tail->next = psr;
3206 tail = psr;
3207 nfound ++;
3208 }
3209 }
3210 if (nfound > 0)
3211 {
3212 if (prevtail == NULL)
3213 {
3214 struct symbol_search dummy;
3215
3216 dummy.next = sr;
3217 tail = sort_search_symbols (&dummy, nfound);
3218 sr = dummy.next;
3219
3220 old_chain = make_cleanup_free_search_symbols (sr);
3221 }
3222 else
3223 tail = sort_search_symbols (prevtail, nfound);
3224 }
3225 }
3226 }
3227
3228 /* If there are no eyes, avoid all contact. I mean, if there are
3229 no debug symbols, then print directly from the msymbol_vector. */
3230
3231 if (found_misc || kind != FUNCTIONS_DOMAIN)
3232 {
3233 ALL_MSYMBOLS (objfile, msymbol)
3234 {
3235 if (MSYMBOL_TYPE (msymbol) == ourtype ||
3236 MSYMBOL_TYPE (msymbol) == ourtype2 ||
3237 MSYMBOL_TYPE (msymbol) == ourtype3 ||
3238 MSYMBOL_TYPE (msymbol) == ourtype4)
3239 {
3240 if (regexp == NULL
3241 || re_exec (SYMBOL_NATURAL_NAME (msymbol)) != 0)
3242 {
3243 /* Functions: Look up by address. */
3244 if (kind != FUNCTIONS_DOMAIN ||
3245 (0 == find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol))))
3246 {
3247 /* Variables/Absolutes: Look up by name */
3248 if (lookup_symbol (SYMBOL_LINKAGE_NAME (msymbol),
3249 (struct block *) NULL, VAR_DOMAIN, 0)
3250 == NULL)
3251 {
3252 /* match */
3253 psr = (struct symbol_search *) xmalloc (sizeof (struct symbol_search));
3254 psr->block = i;
3255 psr->msymbol = msymbol;
3256 psr->symtab = NULL;
3257 psr->symbol = NULL;
3258 psr->next = NULL;
3259 if (tail == NULL)
3260 {
3261 sr = psr;
3262 old_chain = make_cleanup_free_search_symbols (sr);
3263 }
3264 else
3265 tail->next = psr;
3266 tail = psr;
3267 }
3268 }
3269 }
3270 }
3271 }
3272 }
3273
3274 *matches = sr;
3275 if (sr != NULL)
3276 discard_cleanups (old_chain);
3277 }
3278
3279 /* Helper function for symtab_symbol_info, this function uses
3280 the data returned from search_symbols() to print information
3281 regarding the match to gdb_stdout.
3282 */
3283 static void
3284 print_symbol_info (domain_enum kind, struct symtab *s, struct symbol *sym,
3285 int block, char *last)
3286 {
3287 if (last == NULL || strcmp (last, s->filename) != 0)
3288 {
3289 fputs_filtered ("\nFile ", gdb_stdout);
3290 fputs_filtered (s->filename, gdb_stdout);
3291 fputs_filtered (":\n", gdb_stdout);
3292 }
3293
3294 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
3295 printf_filtered ("static ");
3296
3297 /* Typedef that is not a C++ class */
3298 if (kind == TYPES_DOMAIN
3299 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
3300 typedef_print (SYMBOL_TYPE (sym), sym, gdb_stdout);
3301 /* variable, func, or typedef-that-is-c++-class */
3302 else if (kind < TYPES_DOMAIN ||
3303 (kind == TYPES_DOMAIN &&
3304 SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
3305 {
3306 type_print (SYMBOL_TYPE (sym),
3307 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
3308 ? "" : SYMBOL_PRINT_NAME (sym)),
3309 gdb_stdout, 0);
3310
3311 printf_filtered (";\n");
3312 }
3313 }
3314
3315 /* This help function for symtab_symbol_info() prints information
3316 for non-debugging symbols to gdb_stdout.
3317 */
3318 static void
3319 print_msymbol_info (struct minimal_symbol *msymbol)
3320 {
3321 char *tmp;
3322
3323 if (gdbarch_addr_bit (current_gdbarch) <= 32)
3324 tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol)
3325 & (CORE_ADDR) 0xffffffff,
3326 8);
3327 else
3328 tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol),
3329 16);
3330 printf_filtered ("%s %s\n",
3331 tmp, SYMBOL_PRINT_NAME (msymbol));
3332 }
3333
3334 /* This is the guts of the commands "info functions", "info types", and
3335 "info variables". It calls search_symbols to find all matches and then
3336 print_[m]symbol_info to print out some useful information about the
3337 matches.
3338 */
3339 static void
3340 symtab_symbol_info (char *regexp, domain_enum kind, int from_tty)
3341 {
3342 static char *classnames[]
3343 =
3344 {"variable", "function", "type", "method"};
3345 struct symbol_search *symbols;
3346 struct symbol_search *p;
3347 struct cleanup *old_chain;
3348 char *last_filename = NULL;
3349 int first = 1;
3350
3351 /* must make sure that if we're interrupted, symbols gets freed */
3352 search_symbols (regexp, kind, 0, (char **) NULL, &symbols);
3353 old_chain = make_cleanup_free_search_symbols (symbols);
3354
3355 printf_filtered (regexp
3356 ? "All %ss matching regular expression \"%s\":\n"
3357 : "All defined %ss:\n",
3358 classnames[(int) (kind - VARIABLES_DOMAIN)], regexp);
3359
3360 for (p = symbols; p != NULL; p = p->next)
3361 {
3362 QUIT;
3363
3364 if (p->msymbol != NULL)
3365 {
3366 if (first)
3367 {
3368 printf_filtered ("\nNon-debugging symbols:\n");
3369 first = 0;
3370 }
3371 print_msymbol_info (p->msymbol);
3372 }
3373 else
3374 {
3375 print_symbol_info (kind,
3376 p->symtab,
3377 p->symbol,
3378 p->block,
3379 last_filename);
3380 last_filename = p->symtab->filename;
3381 }
3382 }
3383
3384 do_cleanups (old_chain);
3385 }
3386
3387 static void
3388 variables_info (char *regexp, int from_tty)
3389 {
3390 symtab_symbol_info (regexp, VARIABLES_DOMAIN, from_tty);
3391 }
3392
3393 static void
3394 functions_info (char *regexp, int from_tty)
3395 {
3396 symtab_symbol_info (regexp, FUNCTIONS_DOMAIN, from_tty);
3397 }
3398
3399
3400 static void
3401 types_info (char *regexp, int from_tty)
3402 {
3403 symtab_symbol_info (regexp, TYPES_DOMAIN, from_tty);
3404 }
3405
3406 /* Breakpoint all functions matching regular expression. */
3407
3408 void
3409 rbreak_command_wrapper (char *regexp, int from_tty)
3410 {
3411 rbreak_command (regexp, from_tty);
3412 }
3413
3414 static void
3415 rbreak_command (char *regexp, int from_tty)
3416 {
3417 struct symbol_search *ss;
3418 struct symbol_search *p;
3419 struct cleanup *old_chain;
3420
3421 search_symbols (regexp, FUNCTIONS_DOMAIN, 0, (char **) NULL, &ss);
3422 old_chain = make_cleanup_free_search_symbols (ss);
3423
3424 for (p = ss; p != NULL; p = p->next)
3425 {
3426 if (p->msymbol == NULL)
3427 {
3428 char *string = alloca (strlen (p->symtab->filename)
3429 + strlen (SYMBOL_LINKAGE_NAME (p->symbol))
3430 + 4);
3431 strcpy (string, p->symtab->filename);
3432 strcat (string, ":'");
3433 strcat (string, SYMBOL_LINKAGE_NAME (p->symbol));
3434 strcat (string, "'");
3435 break_command (string, from_tty);
3436 print_symbol_info (FUNCTIONS_DOMAIN,
3437 p->symtab,
3438 p->symbol,
3439 p->block,
3440 p->symtab->filename);
3441 }
3442 else
3443 {
3444 char *string = alloca (strlen (SYMBOL_LINKAGE_NAME (p->msymbol))
3445 + 3);
3446 strcpy (string, "'");
3447 strcat (string, SYMBOL_LINKAGE_NAME (p->msymbol));
3448 strcat (string, "'");
3449
3450 break_command (string, from_tty);
3451 printf_filtered ("<function, no debug info> %s;\n",
3452 SYMBOL_PRINT_NAME (p->msymbol));
3453 }
3454 }
3455
3456 do_cleanups (old_chain);
3457 }
3458 \f
3459
3460 /* Helper routine for make_symbol_completion_list. */
3461
3462 static int return_val_size;
3463 static int return_val_index;
3464 static char **return_val;
3465
3466 #define COMPLETION_LIST_ADD_SYMBOL(symbol, sym_text, len, text, word) \
3467 completion_list_add_name \
3468 (SYMBOL_NATURAL_NAME (symbol), (sym_text), (len), (text), (word))
3469
3470 /* Test to see if the symbol specified by SYMNAME (which is already
3471 demangled for C++ symbols) matches SYM_TEXT in the first SYM_TEXT_LEN
3472 characters. If so, add it to the current completion list. */
3473
3474 static void
3475 completion_list_add_name (char *symname, char *sym_text, int sym_text_len,
3476 char *text, char *word)
3477 {
3478 int newsize;
3479 int i;
3480
3481 /* clip symbols that cannot match */
3482
3483 if (strncmp (symname, sym_text, sym_text_len) != 0)
3484 {
3485 return;
3486 }
3487
3488 /* We have a match for a completion, so add SYMNAME to the current list
3489 of matches. Note that the name is moved to freshly malloc'd space. */
3490
3491 {
3492 char *new;
3493 if (word == sym_text)
3494 {
3495 new = xmalloc (strlen (symname) + 5);
3496 strcpy (new, symname);
3497 }
3498 else if (word > sym_text)
3499 {
3500 /* Return some portion of symname. */
3501 new = xmalloc (strlen (symname) + 5);
3502 strcpy (new, symname + (word - sym_text));
3503 }
3504 else
3505 {
3506 /* Return some of SYM_TEXT plus symname. */
3507 new = xmalloc (strlen (symname) + (sym_text - word) + 5);
3508 strncpy (new, word, sym_text - word);
3509 new[sym_text - word] = '\0';
3510 strcat (new, symname);
3511 }
3512
3513 if (return_val_index + 3 > return_val_size)
3514 {
3515 newsize = (return_val_size *= 2) * sizeof (char *);
3516 return_val = (char **) xrealloc ((char *) return_val, newsize);
3517 }
3518 return_val[return_val_index++] = new;
3519 return_val[return_val_index] = NULL;
3520 }
3521 }
3522
3523 /* ObjC: In case we are completing on a selector, look as the msymbol
3524 again and feed all the selectors into the mill. */
3525
3526 static void
3527 completion_list_objc_symbol (struct minimal_symbol *msymbol, char *sym_text,
3528 int sym_text_len, char *text, char *word)
3529 {
3530 static char *tmp = NULL;
3531 static unsigned int tmplen = 0;
3532
3533 char *method, *category, *selector;
3534 char *tmp2 = NULL;
3535
3536 method = SYMBOL_NATURAL_NAME (msymbol);
3537
3538 /* Is it a method? */
3539 if ((method[0] != '-') && (method[0] != '+'))
3540 return;
3541
3542 if (sym_text[0] == '[')
3543 /* Complete on shortened method method. */
3544 completion_list_add_name (method + 1, sym_text, sym_text_len, text, word);
3545
3546 while ((strlen (method) + 1) >= tmplen)
3547 {
3548 if (tmplen == 0)
3549 tmplen = 1024;
3550 else
3551 tmplen *= 2;
3552 tmp = xrealloc (tmp, tmplen);
3553 }
3554 selector = strchr (method, ' ');
3555 if (selector != NULL)
3556 selector++;
3557
3558 category = strchr (method, '(');
3559
3560 if ((category != NULL) && (selector != NULL))
3561 {
3562 memcpy (tmp, method, (category - method));
3563 tmp[category - method] = ' ';
3564 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
3565 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
3566 if (sym_text[0] == '[')
3567 completion_list_add_name (tmp + 1, sym_text, sym_text_len, text, word);
3568 }
3569
3570 if (selector != NULL)
3571 {
3572 /* Complete on selector only. */
3573 strcpy (tmp, selector);
3574 tmp2 = strchr (tmp, ']');
3575 if (tmp2 != NULL)
3576 *tmp2 = '\0';
3577
3578 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
3579 }
3580 }
3581
3582 /* Break the non-quoted text based on the characters which are in
3583 symbols. FIXME: This should probably be language-specific. */
3584
3585 static char *
3586 language_search_unquoted_string (char *text, char *p)
3587 {
3588 for (; p > text; --p)
3589 {
3590 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
3591 continue;
3592 else
3593 {
3594 if ((current_language->la_language == language_objc))
3595 {
3596 if (p[-1] == ':') /* might be part of a method name */
3597 continue;
3598 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
3599 p -= 2; /* beginning of a method name */
3600 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
3601 { /* might be part of a method name */
3602 char *t = p;
3603
3604 /* Seeing a ' ' or a '(' is not conclusive evidence
3605 that we are in the middle of a method name. However,
3606 finding "-[" or "+[" should be pretty un-ambiguous.
3607 Unfortunately we have to find it now to decide. */
3608
3609 while (t > text)
3610 if (isalnum (t[-1]) || t[-1] == '_' ||
3611 t[-1] == ' ' || t[-1] == ':' ||
3612 t[-1] == '(' || t[-1] == ')')
3613 --t;
3614 else
3615 break;
3616
3617 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
3618 p = t - 2; /* method name detected */
3619 /* else we leave with p unchanged */
3620 }
3621 }
3622 break;
3623 }
3624 }
3625 return p;
3626 }
3627
3628 char **
3629 default_make_symbol_completion_list (char *text, char *word)
3630 {
3631 /* Problem: All of the symbols have to be copied because readline
3632 frees them. I'm not going to worry about this; hopefully there
3633 won't be that many. */
3634
3635 struct symbol *sym;
3636 struct symtab *s;
3637 struct partial_symtab *ps;
3638 struct minimal_symbol *msymbol;
3639 struct objfile *objfile;
3640 struct block *b, *surrounding_static_block = 0;
3641 struct dict_iterator iter;
3642 int j;
3643 struct partial_symbol **psym;
3644 /* The symbol we are completing on. Points in same buffer as text. */
3645 char *sym_text;
3646 /* Length of sym_text. */
3647 int sym_text_len;
3648
3649 /* Now look for the symbol we are supposed to complete on. */
3650 {
3651 char *p;
3652 char quote_found;
3653 char *quote_pos = NULL;
3654
3655 /* First see if this is a quoted string. */
3656 quote_found = '\0';
3657 for (p = text; *p != '\0'; ++p)
3658 {
3659 if (quote_found != '\0')
3660 {
3661 if (*p == quote_found)
3662 /* Found close quote. */
3663 quote_found = '\0';
3664 else if (*p == '\\' && p[1] == quote_found)
3665 /* A backslash followed by the quote character
3666 doesn't end the string. */
3667 ++p;
3668 }
3669 else if (*p == '\'' || *p == '"')
3670 {
3671 quote_found = *p;
3672 quote_pos = p;
3673 }
3674 }
3675 if (quote_found == '\'')
3676 /* A string within single quotes can be a symbol, so complete on it. */
3677 sym_text = quote_pos + 1;
3678 else if (quote_found == '"')
3679 /* A double-quoted string is never a symbol, nor does it make sense
3680 to complete it any other way. */
3681 {
3682 return_val = (char **) xmalloc (sizeof (char *));
3683 return_val[0] = NULL;
3684 return return_val;
3685 }
3686 else
3687 {
3688 /* It is not a quoted string. Break it based on the characters
3689 which are in symbols. */
3690 while (p > text)
3691 {
3692 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
3693 --p;
3694 else
3695 break;
3696 }
3697 sym_text = p;
3698 }
3699 }
3700
3701 sym_text_len = strlen (sym_text);
3702
3703 return_val_size = 100;
3704 return_val_index = 0;
3705 return_val = (char **) xmalloc ((return_val_size + 1) * sizeof (char *));
3706 return_val[0] = NULL;
3707
3708 /* Look through the partial symtabs for all symbols which begin
3709 by matching SYM_TEXT. Add each one that you find to the list. */
3710
3711 ALL_PSYMTABS (objfile, ps)
3712 {
3713 /* If the psymtab's been read in we'll get it when we search
3714 through the blockvector. */
3715 if (ps->readin)
3716 continue;
3717
3718 for (psym = objfile->global_psymbols.list + ps->globals_offset;
3719 psym < (objfile->global_psymbols.list + ps->globals_offset
3720 + ps->n_global_syms);
3721 psym++)
3722 {
3723 /* If interrupted, then quit. */
3724 QUIT;
3725 COMPLETION_LIST_ADD_SYMBOL (*psym, sym_text, sym_text_len, text, word);
3726 }
3727
3728 for (psym = objfile->static_psymbols.list + ps->statics_offset;
3729 psym < (objfile->static_psymbols.list + ps->statics_offset
3730 + ps->n_static_syms);
3731 psym++)
3732 {
3733 QUIT;
3734 COMPLETION_LIST_ADD_SYMBOL (*psym, sym_text, sym_text_len, text, word);
3735 }
3736 }
3737
3738 /* At this point scan through the misc symbol vectors and add each
3739 symbol you find to the list. Eventually we want to ignore
3740 anything that isn't a text symbol (everything else will be
3741 handled by the psymtab code above). */
3742
3743 ALL_MSYMBOLS (objfile, msymbol)
3744 {
3745 QUIT;
3746 COMPLETION_LIST_ADD_SYMBOL (msymbol, sym_text, sym_text_len, text, word);
3747
3748 completion_list_objc_symbol (msymbol, sym_text, sym_text_len, text, word);
3749 }
3750
3751 /* Search upwards from currently selected frame (so that we can
3752 complete on local vars. */
3753
3754 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
3755 {
3756 if (!BLOCK_SUPERBLOCK (b))
3757 {
3758 surrounding_static_block = b; /* For elmin of dups */
3759 }
3760
3761 /* Also catch fields of types defined in this places which match our
3762 text string. Only complete on types visible from current context. */
3763
3764 ALL_BLOCK_SYMBOLS (b, iter, sym)
3765 {
3766 QUIT;
3767 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
3768 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
3769 {
3770 struct type *t = SYMBOL_TYPE (sym);
3771 enum type_code c = TYPE_CODE (t);
3772
3773 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
3774 {
3775 for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++)
3776 {
3777 if (TYPE_FIELD_NAME (t, j))
3778 {
3779 completion_list_add_name (TYPE_FIELD_NAME (t, j),
3780 sym_text, sym_text_len, text, word);
3781 }
3782 }
3783 }
3784 }
3785 }
3786 }
3787
3788 /* Go through the symtabs and check the externs and statics for
3789 symbols which match. */
3790
3791 ALL_PRIMARY_SYMTABS (objfile, s)
3792 {
3793 QUIT;
3794 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
3795 ALL_BLOCK_SYMBOLS (b, iter, sym)
3796 {
3797 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
3798 }
3799 }
3800
3801 ALL_PRIMARY_SYMTABS (objfile, s)
3802 {
3803 QUIT;
3804 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
3805 /* Don't do this block twice. */
3806 if (b == surrounding_static_block)
3807 continue;
3808 ALL_BLOCK_SYMBOLS (b, iter, sym)
3809 {
3810 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
3811 }
3812 }
3813
3814 return (return_val);
3815 }
3816
3817 /* Return a NULL terminated array of all symbols (regardless of class)
3818 which begin by matching TEXT. If the answer is no symbols, then
3819 the return value is an array which contains only a NULL pointer. */
3820
3821 char **
3822 make_symbol_completion_list (char *text, char *word)
3823 {
3824 return current_language->la_make_symbol_completion_list (text, word);
3825 }
3826
3827 /* Like make_symbol_completion_list, but returns a list of symbols
3828 defined in a source file FILE. */
3829
3830 char **
3831 make_file_symbol_completion_list (char *text, char *word, char *srcfile)
3832 {
3833 struct symbol *sym;
3834 struct symtab *s;
3835 struct block *b;
3836 struct dict_iterator iter;
3837 /* The symbol we are completing on. Points in same buffer as text. */
3838 char *sym_text;
3839 /* Length of sym_text. */
3840 int sym_text_len;
3841
3842 /* Now look for the symbol we are supposed to complete on.
3843 FIXME: This should be language-specific. */
3844 {
3845 char *p;
3846 char quote_found;
3847 char *quote_pos = NULL;
3848
3849 /* First see if this is a quoted string. */
3850 quote_found = '\0';
3851 for (p = text; *p != '\0'; ++p)
3852 {
3853 if (quote_found != '\0')
3854 {
3855 if (*p == quote_found)
3856 /* Found close quote. */
3857 quote_found = '\0';
3858 else if (*p == '\\' && p[1] == quote_found)
3859 /* A backslash followed by the quote character
3860 doesn't end the string. */
3861 ++p;
3862 }
3863 else if (*p == '\'' || *p == '"')
3864 {
3865 quote_found = *p;
3866 quote_pos = p;
3867 }
3868 }
3869 if (quote_found == '\'')
3870 /* A string within single quotes can be a symbol, so complete on it. */
3871 sym_text = quote_pos + 1;
3872 else if (quote_found == '"')
3873 /* A double-quoted string is never a symbol, nor does it make sense
3874 to complete it any other way. */
3875 {
3876 return_val = (char **) xmalloc (sizeof (char *));
3877 return_val[0] = NULL;
3878 return return_val;
3879 }
3880 else
3881 {
3882 /* Not a quoted string. */
3883 sym_text = language_search_unquoted_string (text, p);
3884 }
3885 }
3886
3887 sym_text_len = strlen (sym_text);
3888
3889 return_val_size = 10;
3890 return_val_index = 0;
3891 return_val = (char **) xmalloc ((return_val_size + 1) * sizeof (char *));
3892 return_val[0] = NULL;
3893
3894 /* Find the symtab for SRCFILE (this loads it if it was not yet read
3895 in). */
3896 s = lookup_symtab (srcfile);
3897 if (s == NULL)
3898 {
3899 /* Maybe they typed the file with leading directories, while the
3900 symbol tables record only its basename. */
3901 const char *tail = lbasename (srcfile);
3902
3903 if (tail > srcfile)
3904 s = lookup_symtab (tail);
3905 }
3906
3907 /* If we have no symtab for that file, return an empty list. */
3908 if (s == NULL)
3909 return (return_val);
3910
3911 /* Go through this symtab and check the externs and statics for
3912 symbols which match. */
3913
3914 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
3915 ALL_BLOCK_SYMBOLS (b, iter, sym)
3916 {
3917 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
3918 }
3919
3920 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
3921 ALL_BLOCK_SYMBOLS (b, iter, sym)
3922 {
3923 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
3924 }
3925
3926 return (return_val);
3927 }
3928
3929 /* A helper function for make_source_files_completion_list. It adds
3930 another file name to a list of possible completions, growing the
3931 list as necessary. */
3932
3933 static void
3934 add_filename_to_list (const char *fname, char *text, char *word,
3935 char ***list, int *list_used, int *list_alloced)
3936 {
3937 char *new;
3938 size_t fnlen = strlen (fname);
3939
3940 if (*list_used + 1 >= *list_alloced)
3941 {
3942 *list_alloced *= 2;
3943 *list = (char **) xrealloc ((char *) *list,
3944 *list_alloced * sizeof (char *));
3945 }
3946
3947 if (word == text)
3948 {
3949 /* Return exactly fname. */
3950 new = xmalloc (fnlen + 5);
3951 strcpy (new, fname);
3952 }
3953 else if (word > text)
3954 {
3955 /* Return some portion of fname. */
3956 new = xmalloc (fnlen + 5);
3957 strcpy (new, fname + (word - text));
3958 }
3959 else
3960 {
3961 /* Return some of TEXT plus fname. */
3962 new = xmalloc (fnlen + (text - word) + 5);
3963 strncpy (new, word, text - word);
3964 new[text - word] = '\0';
3965 strcat (new, fname);
3966 }
3967 (*list)[*list_used] = new;
3968 (*list)[++*list_used] = NULL;
3969 }
3970
3971 static int
3972 not_interesting_fname (const char *fname)
3973 {
3974 static const char *illegal_aliens[] = {
3975 "_globals_", /* inserted by coff_symtab_read */
3976 NULL
3977 };
3978 int i;
3979
3980 for (i = 0; illegal_aliens[i]; i++)
3981 {
3982 if (strcmp (fname, illegal_aliens[i]) == 0)
3983 return 1;
3984 }
3985 return 0;
3986 }
3987
3988 /* Return a NULL terminated array of all source files whose names
3989 begin with matching TEXT. The file names are looked up in the
3990 symbol tables of this program. If the answer is no matchess, then
3991 the return value is an array which contains only a NULL pointer. */
3992
3993 char **
3994 make_source_files_completion_list (char *text, char *word)
3995 {
3996 struct symtab *s;
3997 struct partial_symtab *ps;
3998 struct objfile *objfile;
3999 int first = 1;
4000 int list_alloced = 1;
4001 int list_used = 0;
4002 size_t text_len = strlen (text);
4003 char **list = (char **) xmalloc (list_alloced * sizeof (char *));
4004 const char *base_name;
4005
4006 list[0] = NULL;
4007
4008 if (!have_full_symbols () && !have_partial_symbols ())
4009 return list;
4010
4011 ALL_SYMTABS (objfile, s)
4012 {
4013 if (not_interesting_fname (s->filename))
4014 continue;
4015 if (!filename_seen (s->filename, 1, &first)
4016 #if HAVE_DOS_BASED_FILE_SYSTEM
4017 && strncasecmp (s->filename, text, text_len) == 0
4018 #else
4019 && strncmp (s->filename, text, text_len) == 0
4020 #endif
4021 )
4022 {
4023 /* This file matches for a completion; add it to the current
4024 list of matches. */
4025 add_filename_to_list (s->filename, text, word,
4026 &list, &list_used, &list_alloced);
4027 }
4028 else
4029 {
4030 /* NOTE: We allow the user to type a base name when the
4031 debug info records leading directories, but not the other
4032 way around. This is what subroutines of breakpoint
4033 command do when they parse file names. */
4034 base_name = lbasename (s->filename);
4035 if (base_name != s->filename
4036 && !filename_seen (base_name, 1, &first)
4037 #if HAVE_DOS_BASED_FILE_SYSTEM
4038 && strncasecmp (base_name, text, text_len) == 0
4039 #else
4040 && strncmp (base_name, text, text_len) == 0
4041 #endif
4042 )
4043 add_filename_to_list (base_name, text, word,
4044 &list, &list_used, &list_alloced);
4045 }
4046 }
4047
4048 ALL_PSYMTABS (objfile, ps)
4049 {
4050 if (not_interesting_fname (ps->filename))
4051 continue;
4052 if (!ps->readin)
4053 {
4054 if (!filename_seen (ps->filename, 1, &first)
4055 #if HAVE_DOS_BASED_FILE_SYSTEM
4056 && strncasecmp (ps->filename, text, text_len) == 0
4057 #else
4058 && strncmp (ps->filename, text, text_len) == 0
4059 #endif
4060 )
4061 {
4062 /* This file matches for a completion; add it to the
4063 current list of matches. */
4064 add_filename_to_list (ps->filename, text, word,
4065 &list, &list_used, &list_alloced);
4066
4067 }
4068 else
4069 {
4070 base_name = lbasename (ps->filename);
4071 if (base_name != ps->filename
4072 && !filename_seen (base_name, 1, &first)
4073 #if HAVE_DOS_BASED_FILE_SYSTEM
4074 && strncasecmp (base_name, text, text_len) == 0
4075 #else
4076 && strncmp (base_name, text, text_len) == 0
4077 #endif
4078 )
4079 add_filename_to_list (base_name, text, word,
4080 &list, &list_used, &list_alloced);
4081 }
4082 }
4083 }
4084
4085 return list;
4086 }
4087
4088 /* Determine if PC is in the prologue of a function. The prologue is the area
4089 between the first instruction of a function, and the first executable line.
4090 Returns 1 if PC *might* be in prologue, 0 if definately *not* in prologue.
4091
4092 If non-zero, func_start is where we think the prologue starts, possibly
4093 by previous examination of symbol table information.
4094 */
4095
4096 int
4097 in_prologue (CORE_ADDR pc, CORE_ADDR func_start)
4098 {
4099 struct symtab_and_line sal;
4100 CORE_ADDR func_addr, func_end;
4101
4102 /* We have several sources of information we can consult to figure
4103 this out.
4104 - Compilers usually emit line number info that marks the prologue
4105 as its own "source line". So the ending address of that "line"
4106 is the end of the prologue. If available, this is the most
4107 reliable method.
4108 - The minimal symbols and partial symbols, which can usually tell
4109 us the starting and ending addresses of a function.
4110 - If we know the function's start address, we can call the
4111 architecture-defined gdbarch_skip_prologue function to analyze the
4112 instruction stream and guess where the prologue ends.
4113 - Our `func_start' argument; if non-zero, this is the caller's
4114 best guess as to the function's entry point. At the time of
4115 this writing, handle_inferior_event doesn't get this right, so
4116 it should be our last resort. */
4117
4118 /* Consult the partial symbol table, to find which function
4119 the PC is in. */
4120 if (! find_pc_partial_function (pc, NULL, &func_addr, &func_end))
4121 {
4122 CORE_ADDR prologue_end;
4123
4124 /* We don't even have minsym information, so fall back to using
4125 func_start, if given. */
4126 if (! func_start)
4127 return 1; /* We *might* be in a prologue. */
4128
4129 prologue_end = gdbarch_skip_prologue (current_gdbarch, func_start);
4130
4131 return func_start <= pc && pc < prologue_end;
4132 }
4133
4134 /* If we have line number information for the function, that's
4135 usually pretty reliable. */
4136 sal = find_pc_line (func_addr, 0);
4137
4138 /* Now sal describes the source line at the function's entry point,
4139 which (by convention) is the prologue. The end of that "line",
4140 sal.end, is the end of the prologue.
4141
4142 Note that, for functions whose source code is all on a single
4143 line, the line number information doesn't always end up this way.
4144 So we must verify that our purported end-of-prologue address is
4145 *within* the function, not at its start or end. */
4146 if (sal.line == 0
4147 || sal.end <= func_addr
4148 || func_end <= sal.end)
4149 {
4150 /* We don't have any good line number info, so use the minsym
4151 information, together with the architecture-specific prologue
4152 scanning code. */
4153 CORE_ADDR prologue_end = gdbarch_skip_prologue
4154 (current_gdbarch, func_addr);
4155
4156 return func_addr <= pc && pc < prologue_end;
4157 }
4158
4159 /* We have line number info, and it looks good. */
4160 return func_addr <= pc && pc < sal.end;
4161 }
4162
4163 /* Given PC at the function's start address, attempt to find the
4164 prologue end using SAL information. Return zero if the skip fails.
4165
4166 A non-optimized prologue traditionally has one SAL for the function
4167 and a second for the function body. A single line function has
4168 them both pointing at the same line.
4169
4170 An optimized prologue is similar but the prologue may contain
4171 instructions (SALs) from the instruction body. Need to skip those
4172 while not getting into the function body.
4173
4174 The functions end point and an increasing SAL line are used as
4175 indicators of the prologue's endpoint.
4176
4177 This code is based on the function refine_prologue_limit (versions
4178 found in both ia64 and ppc). */
4179
4180 CORE_ADDR
4181 skip_prologue_using_sal (CORE_ADDR func_addr)
4182 {
4183 struct symtab_and_line prologue_sal;
4184 CORE_ADDR start_pc;
4185 CORE_ADDR end_pc;
4186
4187 /* Get an initial range for the function. */
4188 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
4189 start_pc += gdbarch_deprecated_function_start_offset (current_gdbarch);
4190
4191 prologue_sal = find_pc_line (start_pc, 0);
4192 if (prologue_sal.line != 0)
4193 {
4194 /* If there is only one sal that covers the entire function,
4195 then it is probably a single line function, like
4196 "foo(){}". */
4197 if (prologue_sal.end >= end_pc)
4198 return 0;
4199 while (prologue_sal.end < end_pc)
4200 {
4201 struct symtab_and_line sal;
4202
4203 sal = find_pc_line (prologue_sal.end, 0);
4204 if (sal.line == 0)
4205 break;
4206 /* Assume that a consecutive SAL for the same (or larger)
4207 line mark the prologue -> body transition. */
4208 if (sal.line >= prologue_sal.line)
4209 break;
4210 /* The case in which compiler's optimizer/scheduler has
4211 moved instructions into the prologue. We look ahead in
4212 the function looking for address ranges whose
4213 corresponding line number is less the first one that we
4214 found for the function. This is more conservative then
4215 refine_prologue_limit which scans a large number of SALs
4216 looking for any in the prologue */
4217 prologue_sal = sal;
4218 }
4219 }
4220 return prologue_sal.end;
4221 }
4222 \f
4223 struct symtabs_and_lines
4224 decode_line_spec (char *string, int funfirstline)
4225 {
4226 struct symtabs_and_lines sals;
4227 struct symtab_and_line cursal;
4228
4229 if (string == 0)
4230 error (_("Empty line specification."));
4231
4232 /* We use whatever is set as the current source line. We do not try
4233 and get a default or it will recursively call us! */
4234 cursal = get_current_source_symtab_and_line ();
4235
4236 sals = decode_line_1 (&string, funfirstline,
4237 cursal.symtab, cursal.line,
4238 (char ***) NULL, NULL);
4239
4240 if (*string)
4241 error (_("Junk at end of line specification: %s"), string);
4242 return sals;
4243 }
4244
4245 /* Track MAIN */
4246 static char *name_of_main;
4247
4248 void
4249 set_main_name (const char *name)
4250 {
4251 if (name_of_main != NULL)
4252 {
4253 xfree (name_of_main);
4254 name_of_main = NULL;
4255 }
4256 if (name != NULL)
4257 {
4258 name_of_main = xstrdup (name);
4259 }
4260 }
4261
4262 /* Deduce the name of the main procedure, and set NAME_OF_MAIN
4263 accordingly. */
4264
4265 static void
4266 find_main_name (void)
4267 {
4268 const char *new_main_name;
4269
4270 /* Try to see if the main procedure is in Ada. */
4271 /* FIXME: brobecker/2005-03-07: Another way of doing this would
4272 be to add a new method in the language vector, and call this
4273 method for each language until one of them returns a non-empty
4274 name. This would allow us to remove this hard-coded call to
4275 an Ada function. It is not clear that this is a better approach
4276 at this point, because all methods need to be written in a way
4277 such that false positives never be returned. For instance, it is
4278 important that a method does not return a wrong name for the main
4279 procedure if the main procedure is actually written in a different
4280 language. It is easy to guaranty this with Ada, since we use a
4281 special symbol generated only when the main in Ada to find the name
4282 of the main procedure. It is difficult however to see how this can
4283 be guarantied for languages such as C, for instance. This suggests
4284 that order of call for these methods becomes important, which means
4285 a more complicated approach. */
4286 new_main_name = ada_main_name ();
4287 if (new_main_name != NULL)
4288 {
4289 set_main_name (new_main_name);
4290 return;
4291 }
4292
4293 new_main_name = pascal_main_name ();
4294 if (new_main_name != NULL)
4295 {
4296 set_main_name (new_main_name);
4297 return;
4298 }
4299
4300 /* The languages above didn't identify the name of the main procedure.
4301 Fallback to "main". */
4302 set_main_name ("main");
4303 }
4304
4305 char *
4306 main_name (void)
4307 {
4308 if (name_of_main == NULL)
4309 find_main_name ();
4310
4311 return name_of_main;
4312 }
4313
4314 /* Handle ``executable_changed'' events for the symtab module. */
4315
4316 static void
4317 symtab_observer_executable_changed (void *unused)
4318 {
4319 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
4320 set_main_name (NULL);
4321 }
4322
4323 /* Helper to expand_line_sal below. Appends new sal to SAL,
4324 initializing it from SYMTAB, LINENO and PC. */
4325 static void
4326 append_expanded_sal (struct symtabs_and_lines *sal,
4327 struct symtab *symtab,
4328 int lineno, CORE_ADDR pc)
4329 {
4330 CORE_ADDR func_addr, func_end;
4331
4332 sal->sals = xrealloc (sal->sals,
4333 sizeof (sal->sals[0])
4334 * (sal->nelts + 1));
4335 init_sal (sal->sals + sal->nelts);
4336 sal->sals[sal->nelts].symtab = symtab;
4337 sal->sals[sal->nelts].section = NULL;
4338 sal->sals[sal->nelts].end = 0;
4339 sal->sals[sal->nelts].line = lineno;
4340 sal->sals[sal->nelts].pc = pc;
4341 ++sal->nelts;
4342 }
4343
4344 /* Compute a set of all sals in
4345 the entire program that correspond to same file
4346 and line as SAL and return those. If there
4347 are several sals that belong to the same block,
4348 only one sal for the block is included in results. */
4349
4350 struct symtabs_and_lines
4351 expand_line_sal (struct symtab_and_line sal)
4352 {
4353 struct symtabs_and_lines ret, this_line;
4354 int i, j;
4355 struct objfile *objfile;
4356 struct partial_symtab *psymtab;
4357 struct symtab *symtab;
4358 int lineno;
4359 int deleted = 0;
4360 struct block **blocks = NULL;
4361 int *filter;
4362
4363 ret.nelts = 0;
4364 ret.sals = NULL;
4365
4366 if (sal.symtab == NULL || sal.line == 0 || sal.pc != 0)
4367 {
4368 ret.sals = xmalloc (sizeof (struct symtab_and_line));
4369 ret.sals[0] = sal;
4370 ret.nelts = 1;
4371 return ret;
4372 }
4373 else
4374 {
4375 struct linetable_entry *best_item = 0;
4376 struct symtab *best_symtab = 0;
4377 int exact = 0;
4378
4379 lineno = sal.line;
4380
4381 /* We meed to find all symtabs for a file which name
4382 is described by sal. We cannot just directly
4383 iterate over symtabs, since a symtab might not be
4384 yet created. We also cannot iterate over psymtabs,
4385 calling PSYMTAB_TO_SYMTAB and working on that symtab,
4386 since PSYMTAB_TO_SYMTAB will return NULL for psymtab
4387 corresponding to an included file. Therefore, we do
4388 first pass over psymtabs, reading in those with
4389 the right name. Then, we iterate over symtabs, knowing
4390 that all symtabs we're interested in are loaded. */
4391
4392 ALL_PSYMTABS (objfile, psymtab)
4393 {
4394 if (strcmp (sal.symtab->filename,
4395 psymtab->filename) == 0)
4396 PSYMTAB_TO_SYMTAB (psymtab);
4397 }
4398
4399
4400 /* For each symtab, we add all pcs to ret.sals. I'm actually
4401 not sure what to do if we have exact match in one symtab,
4402 and non-exact match on another symtab.
4403 */
4404 ALL_SYMTABS (objfile, symtab)
4405 {
4406 if (strcmp (sal.symtab->filename,
4407 symtab->filename) == 0)
4408 {
4409 struct linetable *l;
4410 int len;
4411 l = LINETABLE (symtab);
4412 if (!l)
4413 continue;
4414 len = l->nitems;
4415
4416 for (j = 0; j < len; j++)
4417 {
4418 struct linetable_entry *item = &(l->item[j]);
4419
4420 if (item->line == lineno)
4421 {
4422 exact = 1;
4423 append_expanded_sal (&ret, symtab, lineno, item->pc);
4424 }
4425 else if (!exact && item->line > lineno
4426 && (best_item == NULL || item->line < best_item->line))
4427
4428 {
4429 best_item = item;
4430 best_symtab = symtab;
4431 }
4432 }
4433 }
4434 }
4435 if (!exact && best_item)
4436 append_expanded_sal (&ret, best_symtab, lineno, best_item->pc);
4437 }
4438
4439 /* For optimized code, compiler can scatter one source line accross
4440 disjoint ranges of PC values, even when no duplicate functions
4441 or inline functions are involved. For example, 'for (;;)' inside
4442 non-template non-inline non-ctor-or-dtor function can result
4443 in two PC ranges. In this case, we don't want to set breakpoint
4444 on first PC of each range. To filter such cases, we use containing
4445 blocks -- for each PC found above we see if there are other PCs
4446 that are in the same block. If yes, the other PCs are filtered out. */
4447
4448 filter = xmalloc (ret.nelts * sizeof (int));
4449 blocks = xmalloc (ret.nelts * sizeof (struct block *));
4450 for (i = 0; i < ret.nelts; ++i)
4451 {
4452 filter[i] = 1;
4453 blocks[i] = block_for_pc (ret.sals[i].pc);
4454 }
4455
4456 for (i = 0; i < ret.nelts; ++i)
4457 if (blocks[i] != NULL)
4458 for (j = i+1; j < ret.nelts; ++j)
4459 if (blocks[j] == blocks[i])
4460 {
4461 filter[j] = 0;
4462 ++deleted;
4463 break;
4464 }
4465
4466 {
4467 struct symtab_and_line *final =
4468 xmalloc (sizeof (struct symtab_and_line) * (ret.nelts-deleted));
4469
4470 for (i = 0, j = 0; i < ret.nelts; ++i)
4471 if (filter[i])
4472 final[j++] = ret.sals[i];
4473
4474 ret.nelts -= deleted;
4475 xfree (ret.sals);
4476 ret.sals = final;
4477 }
4478
4479 return ret;
4480 }
4481
4482
4483 void
4484 _initialize_symtab (void)
4485 {
4486 add_info ("variables", variables_info, _("\
4487 All global and static variable names, or those matching REGEXP."));
4488 if (dbx_commands)
4489 add_com ("whereis", class_info, variables_info, _("\
4490 All global and static variable names, or those matching REGEXP."));
4491
4492 add_info ("functions", functions_info,
4493 _("All function names, or those matching REGEXP."));
4494
4495
4496 /* FIXME: This command has at least the following problems:
4497 1. It prints builtin types (in a very strange and confusing fashion).
4498 2. It doesn't print right, e.g. with
4499 typedef struct foo *FOO
4500 type_print prints "FOO" when we want to make it (in this situation)
4501 print "struct foo *".
4502 I also think "ptype" or "whatis" is more likely to be useful (but if
4503 there is much disagreement "info types" can be fixed). */
4504 add_info ("types", types_info,
4505 _("All type names, or those matching REGEXP."));
4506
4507 add_info ("sources", sources_info,
4508 _("Source files in the program."));
4509
4510 add_com ("rbreak", class_breakpoint, rbreak_command,
4511 _("Set a breakpoint for all functions matching REGEXP."));
4512
4513 if (xdb_commands)
4514 {
4515 add_com ("lf", class_info, sources_info,
4516 _("Source files in the program"));
4517 add_com ("lg", class_info, variables_info, _("\
4518 All global and static variable names, or those matching REGEXP."));
4519 }
4520
4521 add_setshow_enum_cmd ("multiple-symbols", no_class,
4522 multiple_symbols_modes, &multiple_symbols_mode,
4523 _("\
4524 Set the debugger behavior when more than one symbol are possible matches\n\
4525 in an expression."), _("\
4526 Show how the debugger handles ambiguities in expressions."), _("\
4527 Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
4528 NULL, NULL, &setlist, &showlist);
4529
4530 /* Initialize the one built-in type that isn't language dependent... */
4531 builtin_type_error = init_type (TYPE_CODE_ERROR, 0, 0,
4532 "<unknown type>", (struct objfile *) NULL);
4533
4534 observer_attach_executable_changed (symtab_observer_executable_changed);
4535 }
This page took 0.126327 seconds and 4 git commands to generate.