2010-05-05 Michael Snyder <msnyder@vmware.com>
[deliverable/binutils-gdb.git] / gdb / symtab.c
1 /* Symbol table lookup for the GNU debugger, GDB.
2
3 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2007, 2008, 2009,
5 2010 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "symtab.h"
24 #include "gdbtypes.h"
25 #include "gdbcore.h"
26 #include "frame.h"
27 #include "target.h"
28 #include "value.h"
29 #include "symfile.h"
30 #include "objfiles.h"
31 #include "gdbcmd.h"
32 #include "call-cmds.h"
33 #include "gdb_regex.h"
34 #include "expression.h"
35 #include "language.h"
36 #include "demangle.h"
37 #include "inferior.h"
38 #include "linespec.h"
39 #include "source.h"
40 #include "filenames.h" /* for FILENAME_CMP */
41 #include "objc-lang.h"
42 #include "d-lang.h"
43 #include "ada-lang.h"
44 #include "p-lang.h"
45 #include "addrmap.h"
46
47 #include "hashtab.h"
48
49 #include "gdb_obstack.h"
50 #include "block.h"
51 #include "dictionary.h"
52
53 #include <sys/types.h>
54 #include <fcntl.h>
55 #include "gdb_string.h"
56 #include "gdb_stat.h"
57 #include <ctype.h>
58 #include "cp-abi.h"
59 #include "cp-support.h"
60 #include "observer.h"
61 #include "gdb_assert.h"
62 #include "solist.h"
63 #include "macrotab.h"
64 #include "macroscope.h"
65
66 #include "psymtab.h"
67
68 /* Prototypes for local functions */
69
70 static void completion_list_add_name (char *, char *, int, char *, char *);
71
72 static void rbreak_command (char *, int);
73
74 static void types_info (char *, int);
75
76 static void functions_info (char *, int);
77
78 static void variables_info (char *, int);
79
80 static void sources_info (char *, int);
81
82 static void output_source_filename (const char *, int *);
83
84 static int find_line_common (struct linetable *, int, int *);
85
86 /* This one is used by linespec.c */
87
88 char *operator_chars (char *p, char **end);
89
90 static struct symbol *lookup_symbol_aux (const char *name,
91 const struct block *block,
92 const domain_enum domain,
93 enum language language,
94 int *is_a_field_of_this);
95
96 static
97 struct symbol *lookup_symbol_aux_local (const char *name,
98 const struct block *block,
99 const domain_enum domain,
100 enum language language);
101
102 static
103 struct symbol *lookup_symbol_aux_symtabs (int block_index,
104 const char *name,
105 const domain_enum domain);
106
107 static
108 struct symbol *lookup_symbol_aux_quick (struct objfile *objfile,
109 int block_index,
110 const char *name,
111 const domain_enum domain);
112
113 static void print_symbol_info (domain_enum,
114 struct symtab *, struct symbol *, int, char *);
115
116 static void print_msymbol_info (struct minimal_symbol *);
117
118 static void symtab_symbol_info (char *, domain_enum, int);
119
120 void _initialize_symtab (void);
121
122 /* */
123
124 /* Allow the user to configure the debugger behavior with respect
125 to multiple-choice menus when more than one symbol matches during
126 a symbol lookup. */
127
128 const char multiple_symbols_ask[] = "ask";
129 const char multiple_symbols_all[] = "all";
130 const char multiple_symbols_cancel[] = "cancel";
131 static const char *multiple_symbols_modes[] =
132 {
133 multiple_symbols_ask,
134 multiple_symbols_all,
135 multiple_symbols_cancel,
136 NULL
137 };
138 static const char *multiple_symbols_mode = multiple_symbols_all;
139
140 /* Read-only accessor to AUTO_SELECT_MODE. */
141
142 const char *
143 multiple_symbols_select_mode (void)
144 {
145 return multiple_symbols_mode;
146 }
147
148 /* Block in which the most recently searched-for symbol was found.
149 Might be better to make this a parameter to lookup_symbol and
150 value_of_this. */
151
152 const struct block *block_found;
153
154 /* Check for a symtab of a specific name; first in symtabs, then in
155 psymtabs. *If* there is no '/' in the name, a match after a '/'
156 in the symtab filename will also work. */
157
158 struct symtab *
159 lookup_symtab (const char *name)
160 {
161 int found;
162 struct symtab *s = NULL;
163 struct objfile *objfile;
164 char *real_path = NULL;
165 char *full_path = NULL;
166
167 /* Here we are interested in canonicalizing an absolute path, not
168 absolutizing a relative path. */
169 if (IS_ABSOLUTE_PATH (name))
170 {
171 full_path = xfullpath (name);
172 make_cleanup (xfree, full_path);
173 real_path = gdb_realpath (name);
174 make_cleanup (xfree, real_path);
175 }
176
177 got_symtab:
178
179 /* First, search for an exact match */
180
181 ALL_SYMTABS (objfile, s)
182 {
183 if (FILENAME_CMP (name, s->filename) == 0)
184 {
185 return s;
186 }
187
188 /* If the user gave us an absolute path, try to find the file in
189 this symtab and use its absolute path. */
190
191 if (full_path != NULL)
192 {
193 const char *fp = symtab_to_fullname (s);
194 if (fp != NULL && FILENAME_CMP (full_path, fp) == 0)
195 {
196 return s;
197 }
198 }
199
200 if (real_path != NULL)
201 {
202 char *fullname = symtab_to_fullname (s);
203 if (fullname != NULL)
204 {
205 char *rp = gdb_realpath (fullname);
206 make_cleanup (xfree, rp);
207 if (FILENAME_CMP (real_path, rp) == 0)
208 {
209 return s;
210 }
211 }
212 }
213 }
214
215 /* Now, search for a matching tail (only if name doesn't have any dirs) */
216
217 if (lbasename (name) == name)
218 ALL_SYMTABS (objfile, s)
219 {
220 if (FILENAME_CMP (lbasename (s->filename), name) == 0)
221 return s;
222 }
223
224 /* Same search rules as above apply here, but now we look thru the
225 psymtabs. */
226
227 found = 0;
228 ALL_OBJFILES (objfile)
229 {
230 if (objfile->sf
231 && objfile->sf->qf->lookup_symtab (objfile, name, full_path, real_path,
232 &s))
233 {
234 found = 1;
235 break;
236 }
237 }
238
239 if (s != NULL)
240 return s;
241 if (!found)
242 return NULL;
243
244 /* At this point, we have located the psymtab for this file, but
245 the conversion to a symtab has failed. This usually happens
246 when we are looking up an include file. In this case,
247 PSYMTAB_TO_SYMTAB doesn't return a symtab, even though one has
248 been created. So, we need to run through the symtabs again in
249 order to find the file.
250 XXX - This is a crock, and should be fixed inside of the the
251 symbol parsing routines. */
252 goto got_symtab;
253 }
254 \f
255 /* Mangle a GDB method stub type. This actually reassembles the pieces of the
256 full method name, which consist of the class name (from T), the unadorned
257 method name from METHOD_ID, and the signature for the specific overload,
258 specified by SIGNATURE_ID. Note that this function is g++ specific. */
259
260 char *
261 gdb_mangle_name (struct type *type, int method_id, int signature_id)
262 {
263 int mangled_name_len;
264 char *mangled_name;
265 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
266 struct fn_field *method = &f[signature_id];
267 char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
268 char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
269 char *newname = type_name_no_tag (type);
270
271 /* Does the form of physname indicate that it is the full mangled name
272 of a constructor (not just the args)? */
273 int is_full_physname_constructor;
274
275 int is_constructor;
276 int is_destructor = is_destructor_name (physname);
277 /* Need a new type prefix. */
278 char *const_prefix = method->is_const ? "C" : "";
279 char *volatile_prefix = method->is_volatile ? "V" : "";
280 char buf[20];
281 int len = (newname == NULL ? 0 : strlen (newname));
282
283 /* Nothing to do if physname already contains a fully mangled v3 abi name
284 or an operator name. */
285 if ((physname[0] == '_' && physname[1] == 'Z')
286 || is_operator_name (field_name))
287 return xstrdup (physname);
288
289 is_full_physname_constructor = is_constructor_name (physname);
290
291 is_constructor =
292 is_full_physname_constructor || (newname && strcmp (field_name, newname) == 0);
293
294 if (!is_destructor)
295 is_destructor = (strncmp (physname, "__dt", 4) == 0);
296
297 if (is_destructor || is_full_physname_constructor)
298 {
299 mangled_name = (char *) xmalloc (strlen (physname) + 1);
300 strcpy (mangled_name, physname);
301 return mangled_name;
302 }
303
304 if (len == 0)
305 {
306 sprintf (buf, "__%s%s", const_prefix, volatile_prefix);
307 }
308 else if (physname[0] == 't' || physname[0] == 'Q')
309 {
310 /* The physname for template and qualified methods already includes
311 the class name. */
312 sprintf (buf, "__%s%s", const_prefix, volatile_prefix);
313 newname = NULL;
314 len = 0;
315 }
316 else
317 {
318 sprintf (buf, "__%s%s%d", const_prefix, volatile_prefix, len);
319 }
320 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
321 + strlen (buf) + len + strlen (physname) + 1);
322
323 {
324 mangled_name = (char *) xmalloc (mangled_name_len);
325 if (is_constructor)
326 mangled_name[0] = '\0';
327 else
328 strcpy (mangled_name, field_name);
329 }
330 strcat (mangled_name, buf);
331 /* If the class doesn't have a name, i.e. newname NULL, then we just
332 mangle it using 0 for the length of the class. Thus it gets mangled
333 as something starting with `::' rather than `classname::'. */
334 if (newname != NULL)
335 strcat (mangled_name, newname);
336
337 strcat (mangled_name, physname);
338 return (mangled_name);
339 }
340
341 \f
342 /* Initialize the language dependent portion of a symbol
343 depending upon the language for the symbol. */
344 void
345 symbol_init_language_specific (struct general_symbol_info *gsymbol,
346 enum language language)
347 {
348 gsymbol->language = language;
349 if (gsymbol->language == language_cplus
350 || gsymbol->language == language_d
351 || gsymbol->language == language_java
352 || gsymbol->language == language_objc)
353 {
354 gsymbol->language_specific.cplus_specific.demangled_name = NULL;
355 }
356 else
357 {
358 memset (&gsymbol->language_specific, 0,
359 sizeof (gsymbol->language_specific));
360 }
361 }
362
363 /* Functions to initialize a symbol's mangled name. */
364
365 /* Objects of this type are stored in the demangled name hash table. */
366 struct demangled_name_entry
367 {
368 char *mangled;
369 char demangled[1];
370 };
371
372 /* Hash function for the demangled name hash. */
373 static hashval_t
374 hash_demangled_name_entry (const void *data)
375 {
376 const struct demangled_name_entry *e = data;
377 return htab_hash_string (e->mangled);
378 }
379
380 /* Equality function for the demangled name hash. */
381 static int
382 eq_demangled_name_entry (const void *a, const void *b)
383 {
384 const struct demangled_name_entry *da = a;
385 const struct demangled_name_entry *db = b;
386 return strcmp (da->mangled, db->mangled) == 0;
387 }
388
389 /* Create the hash table used for demangled names. Each hash entry is
390 a pair of strings; one for the mangled name and one for the demangled
391 name. The entry is hashed via just the mangled name. */
392
393 static void
394 create_demangled_names_hash (struct objfile *objfile)
395 {
396 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
397 The hash table code will round this up to the next prime number.
398 Choosing a much larger table size wastes memory, and saves only about
399 1% in symbol reading. */
400
401 objfile->demangled_names_hash = htab_create_alloc
402 (256, hash_demangled_name_entry, eq_demangled_name_entry,
403 NULL, xcalloc, xfree);
404 }
405
406 /* Try to determine the demangled name for a symbol, based on the
407 language of that symbol. If the language is set to language_auto,
408 it will attempt to find any demangling algorithm that works and
409 then set the language appropriately. The returned name is allocated
410 by the demangler and should be xfree'd. */
411
412 static char *
413 symbol_find_demangled_name (struct general_symbol_info *gsymbol,
414 const char *mangled)
415 {
416 char *demangled = NULL;
417
418 if (gsymbol->language == language_unknown)
419 gsymbol->language = language_auto;
420
421 if (gsymbol->language == language_objc
422 || gsymbol->language == language_auto)
423 {
424 demangled =
425 objc_demangle (mangled, 0);
426 if (demangled != NULL)
427 {
428 gsymbol->language = language_objc;
429 return demangled;
430 }
431 }
432 if (gsymbol->language == language_cplus
433 || gsymbol->language == language_auto)
434 {
435 demangled =
436 cplus_demangle (mangled, DMGL_PARAMS | DMGL_ANSI | DMGL_VERBOSE);
437 if (demangled != NULL)
438 {
439 gsymbol->language = language_cplus;
440 return demangled;
441 }
442 }
443 if (gsymbol->language == language_java)
444 {
445 demangled =
446 cplus_demangle (mangled,
447 DMGL_PARAMS | DMGL_ANSI | DMGL_JAVA);
448 if (demangled != NULL)
449 {
450 gsymbol->language = language_java;
451 return demangled;
452 }
453 }
454 if (gsymbol->language == language_d
455 || gsymbol->language == language_auto)
456 {
457 demangled = d_demangle(mangled, 0);
458 if (demangled != NULL)
459 {
460 gsymbol->language = language_d;
461 return demangled;
462 }
463 }
464 return NULL;
465 }
466
467 /* Set both the mangled and demangled (if any) names for GSYMBOL based
468 on LINKAGE_NAME and LEN. Ordinarily, NAME is copied onto the
469 objfile's obstack; but if COPY_NAME is 0 and if NAME is
470 NUL-terminated, then this function assumes that NAME is already
471 correctly saved (either permanently or with a lifetime tied to the
472 objfile), and it will not be copied.
473
474 The hash table corresponding to OBJFILE is used, and the memory
475 comes from that objfile's objfile_obstack. LINKAGE_NAME is copied,
476 so the pointer can be discarded after calling this function. */
477
478 /* We have to be careful when dealing with Java names: when we run
479 into a Java minimal symbol, we don't know it's a Java symbol, so it
480 gets demangled as a C++ name. This is unfortunate, but there's not
481 much we can do about it: but when demangling partial symbols and
482 regular symbols, we'd better not reuse the wrong demangled name.
483 (See PR gdb/1039.) We solve this by putting a distinctive prefix
484 on Java names when storing them in the hash table. */
485
486 /* FIXME: carlton/2003-03-13: This is an unfortunate situation. I
487 don't mind the Java prefix so much: different languages have
488 different demangling requirements, so it's only natural that we
489 need to keep language data around in our demangling cache. But
490 it's not good that the minimal symbol has the wrong demangled name.
491 Unfortunately, I can't think of any easy solution to that
492 problem. */
493
494 #define JAVA_PREFIX "##JAVA$$"
495 #define JAVA_PREFIX_LEN 8
496
497 void
498 symbol_set_names (struct general_symbol_info *gsymbol,
499 const char *linkage_name, int len, int copy_name,
500 struct objfile *objfile)
501 {
502 struct demangled_name_entry **slot;
503 /* A 0-terminated copy of the linkage name. */
504 const char *linkage_name_copy;
505 /* A copy of the linkage name that might have a special Java prefix
506 added to it, for use when looking names up in the hash table. */
507 const char *lookup_name;
508 /* The length of lookup_name. */
509 int lookup_len;
510 struct demangled_name_entry entry;
511
512 if (gsymbol->language == language_ada)
513 {
514 /* In Ada, we do the symbol lookups using the mangled name, so
515 we can save some space by not storing the demangled name.
516
517 As a side note, we have also observed some overlap between
518 the C++ mangling and Ada mangling, similarly to what has
519 been observed with Java. Because we don't store the demangled
520 name with the symbol, we don't need to use the same trick
521 as Java. */
522 if (!copy_name)
523 gsymbol->name = (char *) linkage_name;
524 else
525 {
526 gsymbol->name = obstack_alloc (&objfile->objfile_obstack, len + 1);
527 memcpy (gsymbol->name, linkage_name, len);
528 gsymbol->name[len] = '\0';
529 }
530 gsymbol->language_specific.cplus_specific.demangled_name = NULL;
531
532 return;
533 }
534
535 if (objfile->demangled_names_hash == NULL)
536 create_demangled_names_hash (objfile);
537
538 /* The stabs reader generally provides names that are not
539 NUL-terminated; most of the other readers don't do this, so we
540 can just use the given copy, unless we're in the Java case. */
541 if (gsymbol->language == language_java)
542 {
543 char *alloc_name;
544 lookup_len = len + JAVA_PREFIX_LEN;
545
546 alloc_name = alloca (lookup_len + 1);
547 memcpy (alloc_name, JAVA_PREFIX, JAVA_PREFIX_LEN);
548 memcpy (alloc_name + JAVA_PREFIX_LEN, linkage_name, len);
549 alloc_name[lookup_len] = '\0';
550
551 lookup_name = alloc_name;
552 linkage_name_copy = alloc_name + JAVA_PREFIX_LEN;
553 }
554 else if (linkage_name[len] != '\0')
555 {
556 char *alloc_name;
557 lookup_len = len;
558
559 alloc_name = alloca (lookup_len + 1);
560 memcpy (alloc_name, linkage_name, len);
561 alloc_name[lookup_len] = '\0';
562
563 lookup_name = alloc_name;
564 linkage_name_copy = alloc_name;
565 }
566 else
567 {
568 lookup_len = len;
569 lookup_name = linkage_name;
570 linkage_name_copy = linkage_name;
571 }
572
573 entry.mangled = (char *) lookup_name;
574 slot = ((struct demangled_name_entry **)
575 htab_find_slot (objfile->demangled_names_hash,
576 &entry, INSERT));
577
578 /* If this name is not in the hash table, add it. */
579 if (*slot == NULL)
580 {
581 char *demangled_name = symbol_find_demangled_name (gsymbol,
582 linkage_name_copy);
583 int demangled_len = demangled_name ? strlen (demangled_name) : 0;
584
585 /* Suppose we have demangled_name==NULL, copy_name==0, and
586 lookup_name==linkage_name. In this case, we already have the
587 mangled name saved, and we don't have a demangled name. So,
588 you might think we could save a little space by not recording
589 this in the hash table at all.
590
591 It turns out that it is actually important to still save such
592 an entry in the hash table, because storing this name gives
593 us better bcache hit rates for partial symbols. */
594 if (!copy_name && lookup_name == linkage_name)
595 {
596 *slot = obstack_alloc (&objfile->objfile_obstack,
597 offsetof (struct demangled_name_entry,
598 demangled)
599 + demangled_len + 1);
600 (*slot)->mangled = (char *) lookup_name;
601 }
602 else
603 {
604 /* If we must copy the mangled name, put it directly after
605 the demangled name so we can have a single
606 allocation. */
607 *slot = obstack_alloc (&objfile->objfile_obstack,
608 offsetof (struct demangled_name_entry,
609 demangled)
610 + lookup_len + demangled_len + 2);
611 (*slot)->mangled = &((*slot)->demangled[demangled_len + 1]);
612 strcpy ((*slot)->mangled, lookup_name);
613 }
614
615 if (demangled_name != NULL)
616 {
617 strcpy ((*slot)->demangled, demangled_name);
618 xfree (demangled_name);
619 }
620 else
621 (*slot)->demangled[0] = '\0';
622 }
623
624 gsymbol->name = (*slot)->mangled + lookup_len - len;
625 if ((*slot)->demangled[0] != '\0')
626 gsymbol->language_specific.cplus_specific.demangled_name
627 = (*slot)->demangled;
628 else
629 gsymbol->language_specific.cplus_specific.demangled_name = NULL;
630 }
631
632 /* Return the source code name of a symbol. In languages where
633 demangling is necessary, this is the demangled name. */
634
635 char *
636 symbol_natural_name (const struct general_symbol_info *gsymbol)
637 {
638 switch (gsymbol->language)
639 {
640 case language_cplus:
641 case language_d:
642 case language_java:
643 case language_objc:
644 if (gsymbol->language_specific.cplus_specific.demangled_name != NULL)
645 return gsymbol->language_specific.cplus_specific.demangled_name;
646 break;
647 case language_ada:
648 if (gsymbol->language_specific.cplus_specific.demangled_name != NULL)
649 return gsymbol->language_specific.cplus_specific.demangled_name;
650 else
651 return ada_decode_symbol (gsymbol);
652 break;
653 default:
654 break;
655 }
656 return gsymbol->name;
657 }
658
659 /* Return the demangled name for a symbol based on the language for
660 that symbol. If no demangled name exists, return NULL. */
661 char *
662 symbol_demangled_name (const struct general_symbol_info *gsymbol)
663 {
664 switch (gsymbol->language)
665 {
666 case language_cplus:
667 case language_d:
668 case language_java:
669 case language_objc:
670 if (gsymbol->language_specific.cplus_specific.demangled_name != NULL)
671 return gsymbol->language_specific.cplus_specific.demangled_name;
672 break;
673 case language_ada:
674 if (gsymbol->language_specific.cplus_specific.demangled_name != NULL)
675 return gsymbol->language_specific.cplus_specific.demangled_name;
676 else
677 return ada_decode_symbol (gsymbol);
678 break;
679 default:
680 break;
681 }
682 return NULL;
683 }
684
685 /* Return the search name of a symbol---generally the demangled or
686 linkage name of the symbol, depending on how it will be searched for.
687 If there is no distinct demangled name, then returns the same value
688 (same pointer) as SYMBOL_LINKAGE_NAME. */
689 char *
690 symbol_search_name (const struct general_symbol_info *gsymbol)
691 {
692 if (gsymbol->language == language_ada)
693 return gsymbol->name;
694 else
695 return symbol_natural_name (gsymbol);
696 }
697
698 /* Initialize the structure fields to zero values. */
699 void
700 init_sal (struct symtab_and_line *sal)
701 {
702 sal->pspace = NULL;
703 sal->symtab = 0;
704 sal->section = 0;
705 sal->line = 0;
706 sal->pc = 0;
707 sal->end = 0;
708 sal->explicit_pc = 0;
709 sal->explicit_line = 0;
710 }
711 \f
712
713 /* Return 1 if the two sections are the same, or if they could
714 plausibly be copies of each other, one in an original object
715 file and another in a separated debug file. */
716
717 int
718 matching_obj_sections (struct obj_section *obj_first,
719 struct obj_section *obj_second)
720 {
721 asection *first = obj_first? obj_first->the_bfd_section : NULL;
722 asection *second = obj_second? obj_second->the_bfd_section : NULL;
723 struct objfile *obj;
724
725 /* If they're the same section, then they match. */
726 if (first == second)
727 return 1;
728
729 /* If either is NULL, give up. */
730 if (first == NULL || second == NULL)
731 return 0;
732
733 /* This doesn't apply to absolute symbols. */
734 if (first->owner == NULL || second->owner == NULL)
735 return 0;
736
737 /* If they're in the same object file, they must be different sections. */
738 if (first->owner == second->owner)
739 return 0;
740
741 /* Check whether the two sections are potentially corresponding. They must
742 have the same size, address, and name. We can't compare section indexes,
743 which would be more reliable, because some sections may have been
744 stripped. */
745 if (bfd_get_section_size (first) != bfd_get_section_size (second))
746 return 0;
747
748 /* In-memory addresses may start at a different offset, relativize them. */
749 if (bfd_get_section_vma (first->owner, first)
750 - bfd_get_start_address (first->owner)
751 != bfd_get_section_vma (second->owner, second)
752 - bfd_get_start_address (second->owner))
753 return 0;
754
755 if (bfd_get_section_name (first->owner, first) == NULL
756 || bfd_get_section_name (second->owner, second) == NULL
757 || strcmp (bfd_get_section_name (first->owner, first),
758 bfd_get_section_name (second->owner, second)) != 0)
759 return 0;
760
761 /* Otherwise check that they are in corresponding objfiles. */
762
763 ALL_OBJFILES (obj)
764 if (obj->obfd == first->owner)
765 break;
766 gdb_assert (obj != NULL);
767
768 if (obj->separate_debug_objfile != NULL
769 && obj->separate_debug_objfile->obfd == second->owner)
770 return 1;
771 if (obj->separate_debug_objfile_backlink != NULL
772 && obj->separate_debug_objfile_backlink->obfd == second->owner)
773 return 1;
774
775 return 0;
776 }
777
778 struct symtab *
779 find_pc_sect_symtab_via_partial (CORE_ADDR pc, struct obj_section *section)
780 {
781 struct objfile *objfile;
782 struct minimal_symbol *msymbol;
783
784 /* If we know that this is not a text address, return failure. This is
785 necessary because we loop based on texthigh and textlow, which do
786 not include the data ranges. */
787 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
788 if (msymbol
789 && (MSYMBOL_TYPE (msymbol) == mst_data
790 || MSYMBOL_TYPE (msymbol) == mst_bss
791 || MSYMBOL_TYPE (msymbol) == mst_abs
792 || MSYMBOL_TYPE (msymbol) == mst_file_data
793 || MSYMBOL_TYPE (msymbol) == mst_file_bss))
794 return NULL;
795
796 ALL_OBJFILES (objfile)
797 {
798 struct symtab *result = NULL;
799 if (objfile->sf)
800 result = objfile->sf->qf->find_pc_sect_symtab (objfile, msymbol,
801 pc, section, 0);
802 if (result)
803 return result;
804 }
805
806 return NULL;
807 }
808 \f
809 /* Debug symbols usually don't have section information. We need to dig that
810 out of the minimal symbols and stash that in the debug symbol. */
811
812 void
813 fixup_section (struct general_symbol_info *ginfo,
814 CORE_ADDR addr, struct objfile *objfile)
815 {
816 struct minimal_symbol *msym;
817
818 /* First, check whether a minimal symbol with the same name exists
819 and points to the same address. The address check is required
820 e.g. on PowerPC64, where the minimal symbol for a function will
821 point to the function descriptor, while the debug symbol will
822 point to the actual function code. */
823 msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->name, objfile);
824 if (msym)
825 {
826 ginfo->obj_section = SYMBOL_OBJ_SECTION (msym);
827 ginfo->section = SYMBOL_SECTION (msym);
828 }
829 else
830 {
831 /* Static, function-local variables do appear in the linker
832 (minimal) symbols, but are frequently given names that won't
833 be found via lookup_minimal_symbol(). E.g., it has been
834 observed in frv-uclinux (ELF) executables that a static,
835 function-local variable named "foo" might appear in the
836 linker symbols as "foo.6" or "foo.3". Thus, there is no
837 point in attempting to extend the lookup-by-name mechanism to
838 handle this case due to the fact that there can be multiple
839 names.
840
841 So, instead, search the section table when lookup by name has
842 failed. The ``addr'' and ``endaddr'' fields may have already
843 been relocated. If so, the relocation offset (i.e. the
844 ANOFFSET value) needs to be subtracted from these values when
845 performing the comparison. We unconditionally subtract it,
846 because, when no relocation has been performed, the ANOFFSET
847 value will simply be zero.
848
849 The address of the symbol whose section we're fixing up HAS
850 NOT BEEN adjusted (relocated) yet. It can't have been since
851 the section isn't yet known and knowing the section is
852 necessary in order to add the correct relocation value. In
853 other words, we wouldn't even be in this function (attempting
854 to compute the section) if it were already known.
855
856 Note that it is possible to search the minimal symbols
857 (subtracting the relocation value if necessary) to find the
858 matching minimal symbol, but this is overkill and much less
859 efficient. It is not necessary to find the matching minimal
860 symbol, only its section.
861
862 Note that this technique (of doing a section table search)
863 can fail when unrelocated section addresses overlap. For
864 this reason, we still attempt a lookup by name prior to doing
865 a search of the section table. */
866
867 struct obj_section *s;
868 ALL_OBJFILE_OSECTIONS (objfile, s)
869 {
870 int idx = s->the_bfd_section->index;
871 CORE_ADDR offset = ANOFFSET (objfile->section_offsets, idx);
872
873 if (obj_section_addr (s) - offset <= addr
874 && addr < obj_section_endaddr (s) - offset)
875 {
876 ginfo->obj_section = s;
877 ginfo->section = idx;
878 return;
879 }
880 }
881 }
882 }
883
884 struct symbol *
885 fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
886 {
887 CORE_ADDR addr;
888
889 if (!sym)
890 return NULL;
891
892 if (SYMBOL_OBJ_SECTION (sym))
893 return sym;
894
895 /* We either have an OBJFILE, or we can get at it from the sym's
896 symtab. Anything else is a bug. */
897 gdb_assert (objfile || SYMBOL_SYMTAB (sym));
898
899 if (objfile == NULL)
900 objfile = SYMBOL_SYMTAB (sym)->objfile;
901
902 /* We should have an objfile by now. */
903 gdb_assert (objfile);
904
905 switch (SYMBOL_CLASS (sym))
906 {
907 case LOC_STATIC:
908 case LOC_LABEL:
909 addr = SYMBOL_VALUE_ADDRESS (sym);
910 break;
911 case LOC_BLOCK:
912 addr = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
913 break;
914
915 default:
916 /* Nothing else will be listed in the minsyms -- no use looking
917 it up. */
918 return sym;
919 }
920
921 fixup_section (&sym->ginfo, addr, objfile);
922
923 return sym;
924 }
925
926 /* Find the definition for a specified symbol name NAME
927 in domain DOMAIN, visible from lexical block BLOCK.
928 Returns the struct symbol pointer, or zero if no symbol is found.
929 C++: if IS_A_FIELD_OF_THIS is nonzero on entry, check to see if
930 NAME is a field of the current implied argument `this'. If so set
931 *IS_A_FIELD_OF_THIS to 1, otherwise set it to zero.
932 BLOCK_FOUND is set to the block in which NAME is found (in the case of
933 a field of `this', value_of_this sets BLOCK_FOUND to the proper value.) */
934
935 /* This function has a bunch of loops in it and it would seem to be
936 attractive to put in some QUIT's (though I'm not really sure
937 whether it can run long enough to be really important). But there
938 are a few calls for which it would appear to be bad news to quit
939 out of here: find_proc_desc in alpha-tdep.c and mips-tdep.c. (Note
940 that there is C++ code below which can error(), but that probably
941 doesn't affect these calls since they are looking for a known
942 variable and thus can probably assume it will never hit the C++
943 code). */
944
945 struct symbol *
946 lookup_symbol_in_language (const char *name, const struct block *block,
947 const domain_enum domain, enum language lang,
948 int *is_a_field_of_this)
949 {
950 char *demangled_name = NULL;
951 const char *modified_name = NULL;
952 struct symbol *returnval;
953 struct cleanup *cleanup = make_cleanup (null_cleanup, 0);
954
955 modified_name = name;
956
957 /* If we are using C++, D, or Java, demangle the name before doing a lookup, so
958 we can always binary search. */
959 if (lang == language_cplus)
960 {
961 demangled_name = cplus_demangle (name, DMGL_ANSI | DMGL_PARAMS);
962 if (demangled_name)
963 {
964 modified_name = demangled_name;
965 make_cleanup (xfree, demangled_name);
966 }
967 else
968 {
969 /* If we were given a non-mangled name, canonicalize it
970 according to the language (so far only for C++). */
971 demangled_name = cp_canonicalize_string (name);
972 if (demangled_name)
973 {
974 modified_name = demangled_name;
975 make_cleanup (xfree, demangled_name);
976 }
977 }
978 }
979 else if (lang == language_java)
980 {
981 demangled_name = cplus_demangle (name,
982 DMGL_ANSI | DMGL_PARAMS | DMGL_JAVA);
983 if (demangled_name)
984 {
985 modified_name = demangled_name;
986 make_cleanup (xfree, demangled_name);
987 }
988 }
989 else if (lang == language_d)
990 {
991 demangled_name = d_demangle (name, 0);
992 if (demangled_name)
993 {
994 modified_name = demangled_name;
995 make_cleanup (xfree, demangled_name);
996 }
997 }
998
999 if (case_sensitivity == case_sensitive_off)
1000 {
1001 char *copy;
1002 int len, i;
1003
1004 len = strlen (name);
1005 copy = (char *) alloca (len + 1);
1006 for (i= 0; i < len; i++)
1007 copy[i] = tolower (name[i]);
1008 copy[len] = 0;
1009 modified_name = copy;
1010 }
1011
1012 returnval = lookup_symbol_aux (modified_name, block, domain, lang,
1013 is_a_field_of_this);
1014 do_cleanups (cleanup);
1015
1016 return returnval;
1017 }
1018
1019 /* Behave like lookup_symbol_in_language, but performed with the
1020 current language. */
1021
1022 struct symbol *
1023 lookup_symbol (const char *name, const struct block *block,
1024 domain_enum domain, int *is_a_field_of_this)
1025 {
1026 return lookup_symbol_in_language (name, block, domain,
1027 current_language->la_language,
1028 is_a_field_of_this);
1029 }
1030
1031 /* Behave like lookup_symbol except that NAME is the natural name
1032 of the symbol that we're looking for and, if LINKAGE_NAME is
1033 non-NULL, ensure that the symbol's linkage name matches as
1034 well. */
1035
1036 static struct symbol *
1037 lookup_symbol_aux (const char *name, const struct block *block,
1038 const domain_enum domain, enum language language,
1039 int *is_a_field_of_this)
1040 {
1041 struct symbol *sym;
1042 const struct language_defn *langdef;
1043 struct objfile *objfile;
1044
1045 /* Make sure we do something sensible with is_a_field_of_this, since
1046 the callers that set this parameter to some non-null value will
1047 certainly use it later and expect it to be either 0 or 1.
1048 If we don't set it, the contents of is_a_field_of_this are
1049 undefined. */
1050 if (is_a_field_of_this != NULL)
1051 *is_a_field_of_this = 0;
1052
1053 /* Search specified block and its superiors. Don't search
1054 STATIC_BLOCK or GLOBAL_BLOCK. */
1055
1056 sym = lookup_symbol_aux_local (name, block, domain, language);
1057 if (sym != NULL)
1058 return sym;
1059
1060 /* If requested to do so by the caller and if appropriate for LANGUAGE,
1061 check to see if NAME is a field of `this'. */
1062
1063 langdef = language_def (language);
1064
1065 if (langdef->la_name_of_this != NULL && is_a_field_of_this != NULL
1066 && block != NULL)
1067 {
1068 struct symbol *sym = NULL;
1069 const struct block *function_block = block;
1070 /* 'this' is only defined in the function's block, so find the
1071 enclosing function block. */
1072 for (; function_block && !BLOCK_FUNCTION (function_block);
1073 function_block = BLOCK_SUPERBLOCK (function_block));
1074
1075 if (function_block && !dict_empty (BLOCK_DICT (function_block)))
1076 sym = lookup_block_symbol (function_block, langdef->la_name_of_this,
1077 VAR_DOMAIN);
1078 if (sym)
1079 {
1080 struct type *t = sym->type;
1081
1082 /* I'm not really sure that type of this can ever
1083 be typedefed; just be safe. */
1084 CHECK_TYPEDEF (t);
1085 if (TYPE_CODE (t) == TYPE_CODE_PTR
1086 || TYPE_CODE (t) == TYPE_CODE_REF)
1087 t = TYPE_TARGET_TYPE (t);
1088
1089 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
1090 && TYPE_CODE (t) != TYPE_CODE_UNION)
1091 error (_("Internal error: `%s' is not an aggregate"),
1092 langdef->la_name_of_this);
1093
1094 if (check_field (t, name))
1095 {
1096 *is_a_field_of_this = 1;
1097 return NULL;
1098 }
1099 }
1100 }
1101
1102 /* Now do whatever is appropriate for LANGUAGE to look
1103 up static and global variables. */
1104
1105 sym = langdef->la_lookup_symbol_nonlocal (name, block, domain);
1106 if (sym != NULL)
1107 return sym;
1108
1109 /* Now search all static file-level symbols. Not strictly correct,
1110 but more useful than an error. Do the symtabs first, then check
1111 the psymtabs. If a psymtab indicates the existence of the
1112 desired name as a file-level static, then do psymtab-to-symtab
1113 conversion on the fly and return the found symbol. */
1114
1115 sym = lookup_symbol_aux_symtabs (STATIC_BLOCK, name, domain);
1116 if (sym != NULL)
1117 return sym;
1118
1119 ALL_OBJFILES (objfile)
1120 {
1121 sym = lookup_symbol_aux_quick (objfile, STATIC_BLOCK, name, domain);
1122 if (sym != NULL)
1123 return sym;
1124 }
1125
1126 return NULL;
1127 }
1128
1129 /* Check to see if the symbol is defined in BLOCK or its superiors.
1130 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
1131
1132 static struct symbol *
1133 lookup_symbol_aux_local (const char *name, const struct block *block,
1134 const domain_enum domain,
1135 enum language language)
1136 {
1137 struct symbol *sym;
1138 const struct block *static_block = block_static_block (block);
1139 const char *scope = block_scope (block);
1140
1141 /* Check if either no block is specified or it's a global block. */
1142
1143 if (static_block == NULL)
1144 return NULL;
1145
1146 while (block != static_block)
1147 {
1148 sym = lookup_symbol_aux_block (name, block, domain);
1149 if (sym != NULL)
1150 return sym;
1151
1152 if (language == language_cplus)
1153 {
1154 sym = cp_lookup_symbol_imports (scope,
1155 name,
1156 block,
1157 domain,
1158 1,
1159 1);
1160 if (sym != NULL)
1161 return sym;
1162 }
1163
1164 if (BLOCK_FUNCTION (block) != NULL && block_inlined_p (block))
1165 break;
1166 block = BLOCK_SUPERBLOCK (block);
1167 }
1168
1169 /* We've reached the edge of the function without finding a result. */
1170
1171 return NULL;
1172 }
1173
1174 /* Look up OBJFILE to BLOCK. */
1175
1176 struct objfile *
1177 lookup_objfile_from_block (const struct block *block)
1178 {
1179 struct objfile *obj;
1180 struct symtab *s;
1181
1182 if (block == NULL)
1183 return NULL;
1184
1185 block = block_global_block (block);
1186 /* Go through SYMTABS. */
1187 ALL_SYMTABS (obj, s)
1188 if (block == BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK))
1189 {
1190 if (obj->separate_debug_objfile_backlink)
1191 obj = obj->separate_debug_objfile_backlink;
1192
1193 return obj;
1194 }
1195
1196 return NULL;
1197 }
1198
1199 /* Look up a symbol in a block; if found, fixup the symbol, and set
1200 block_found appropriately. */
1201
1202 struct symbol *
1203 lookup_symbol_aux_block (const char *name, const struct block *block,
1204 const domain_enum domain)
1205 {
1206 struct symbol *sym;
1207
1208 sym = lookup_block_symbol (block, name, domain);
1209 if (sym)
1210 {
1211 block_found = block;
1212 return fixup_symbol_section (sym, NULL);
1213 }
1214
1215 return NULL;
1216 }
1217
1218 /* Check all global symbols in OBJFILE in symtabs and
1219 psymtabs. */
1220
1221 struct symbol *
1222 lookup_global_symbol_from_objfile (const struct objfile *main_objfile,
1223 const char *name,
1224 const domain_enum domain)
1225 {
1226 const struct objfile *objfile;
1227 struct symbol *sym;
1228 struct blockvector *bv;
1229 const struct block *block;
1230 struct symtab *s;
1231
1232 for (objfile = main_objfile;
1233 objfile;
1234 objfile = objfile_separate_debug_iterate (main_objfile, objfile))
1235 {
1236 /* Go through symtabs. */
1237 ALL_OBJFILE_SYMTABS (objfile, s)
1238 {
1239 bv = BLOCKVECTOR (s);
1240 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1241 sym = lookup_block_symbol (block, name, domain);
1242 if (sym)
1243 {
1244 block_found = block;
1245 return fixup_symbol_section (sym, (struct objfile *)objfile);
1246 }
1247 }
1248
1249 sym = lookup_symbol_aux_quick ((struct objfile *) objfile, GLOBAL_BLOCK,
1250 name, domain);
1251 if (sym)
1252 return sym;
1253 }
1254
1255 return NULL;
1256 }
1257
1258 /* Check to see if the symbol is defined in one of the symtabs.
1259 BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
1260 depending on whether or not we want to search global symbols or
1261 static symbols. */
1262
1263 static struct symbol *
1264 lookup_symbol_aux_symtabs (int block_index, const char *name,
1265 const domain_enum domain)
1266 {
1267 struct symbol *sym;
1268 struct objfile *objfile;
1269 struct blockvector *bv;
1270 const struct block *block;
1271 struct symtab *s;
1272
1273 ALL_PRIMARY_SYMTABS (objfile, s)
1274 {
1275 bv = BLOCKVECTOR (s);
1276 block = BLOCKVECTOR_BLOCK (bv, block_index);
1277 sym = lookup_block_symbol (block, name, domain);
1278 if (sym)
1279 {
1280 block_found = block;
1281 return fixup_symbol_section (sym, objfile);
1282 }
1283 }
1284
1285 return NULL;
1286 }
1287
1288 /* A helper function for lookup_symbol_aux that interfaces with the
1289 "quick" symbol table functions. */
1290
1291 static struct symbol *
1292 lookup_symbol_aux_quick (struct objfile *objfile, int kind,
1293 const char *name, const domain_enum domain)
1294 {
1295 struct symtab *symtab;
1296 struct blockvector *bv;
1297 const struct block *block;
1298 struct symbol *sym;
1299
1300 if (!objfile->sf)
1301 return NULL;
1302 symtab = objfile->sf->qf->lookup_symbol (objfile, kind, name, domain);
1303 if (!symtab)
1304 return NULL;
1305
1306 bv = BLOCKVECTOR (symtab);
1307 block = BLOCKVECTOR_BLOCK (bv, kind);
1308 sym = lookup_block_symbol (block, name, domain);
1309 if (!sym)
1310 {
1311 /* This shouldn't be necessary, but as a last resort try
1312 looking in the statics even though the psymtab claimed
1313 the symbol was global, or vice-versa. It's possible
1314 that the psymtab gets it wrong in some cases. */
1315
1316 /* FIXME: carlton/2002-09-30: Should we really do that?
1317 If that happens, isn't it likely to be a GDB error, in
1318 which case we should fix the GDB error rather than
1319 silently dealing with it here? So I'd vote for
1320 removing the check for the symbol in the other
1321 block. */
1322 block = BLOCKVECTOR_BLOCK (bv,
1323 kind == GLOBAL_BLOCK ?
1324 STATIC_BLOCK : GLOBAL_BLOCK);
1325 sym = lookup_block_symbol (block, name, domain);
1326 if (!sym)
1327 error (_("Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n%s may be an inlined function, or may be a template function\n(if a template, try specifying an instantiation: %s<type>)."),
1328 kind == GLOBAL_BLOCK ? "global" : "static",
1329 name, symtab->filename, name, name);
1330 }
1331 return fixup_symbol_section (sym, objfile);
1332 }
1333
1334 /* A default version of lookup_symbol_nonlocal for use by languages
1335 that can't think of anything better to do. This implements the C
1336 lookup rules. */
1337
1338 struct symbol *
1339 basic_lookup_symbol_nonlocal (const char *name,
1340 const struct block *block,
1341 const domain_enum domain)
1342 {
1343 struct symbol *sym;
1344
1345 /* NOTE: carlton/2003-05-19: The comments below were written when
1346 this (or what turned into this) was part of lookup_symbol_aux;
1347 I'm much less worried about these questions now, since these
1348 decisions have turned out well, but I leave these comments here
1349 for posterity. */
1350
1351 /* NOTE: carlton/2002-12-05: There is a question as to whether or
1352 not it would be appropriate to search the current global block
1353 here as well. (That's what this code used to do before the
1354 is_a_field_of_this check was moved up.) On the one hand, it's
1355 redundant with the lookup_symbol_aux_symtabs search that happens
1356 next. On the other hand, if decode_line_1 is passed an argument
1357 like filename:var, then the user presumably wants 'var' to be
1358 searched for in filename. On the third hand, there shouldn't be
1359 multiple global variables all of which are named 'var', and it's
1360 not like decode_line_1 has ever restricted its search to only
1361 global variables in a single filename. All in all, only
1362 searching the static block here seems best: it's correct and it's
1363 cleanest. */
1364
1365 /* NOTE: carlton/2002-12-05: There's also a possible performance
1366 issue here: if you usually search for global symbols in the
1367 current file, then it would be slightly better to search the
1368 current global block before searching all the symtabs. But there
1369 are other factors that have a much greater effect on performance
1370 than that one, so I don't think we should worry about that for
1371 now. */
1372
1373 sym = lookup_symbol_static (name, block, domain);
1374 if (sym != NULL)
1375 return sym;
1376
1377 return lookup_symbol_global (name, block, domain);
1378 }
1379
1380 /* Lookup a symbol in the static block associated to BLOCK, if there
1381 is one; do nothing if BLOCK is NULL or a global block. */
1382
1383 struct symbol *
1384 lookup_symbol_static (const char *name,
1385 const struct block *block,
1386 const domain_enum domain)
1387 {
1388 const struct block *static_block = block_static_block (block);
1389
1390 if (static_block != NULL)
1391 return lookup_symbol_aux_block (name, static_block, domain);
1392 else
1393 return NULL;
1394 }
1395
1396 /* Lookup a symbol in all files' global blocks (searching psymtabs if
1397 necessary). */
1398
1399 struct symbol *
1400 lookup_symbol_global (const char *name,
1401 const struct block *block,
1402 const domain_enum domain)
1403 {
1404 struct symbol *sym = NULL;
1405 struct objfile *objfile = NULL;
1406
1407 /* Call library-specific lookup procedure. */
1408 objfile = lookup_objfile_from_block (block);
1409 if (objfile != NULL)
1410 sym = solib_global_lookup (objfile, name, domain);
1411 if (sym != NULL)
1412 return sym;
1413
1414 sym = lookup_symbol_aux_symtabs (GLOBAL_BLOCK, name, domain);
1415 if (sym != NULL)
1416 return sym;
1417
1418 ALL_OBJFILES (objfile)
1419 {
1420 sym = lookup_symbol_aux_quick (objfile, GLOBAL_BLOCK, name, domain);
1421 if (sym)
1422 return sym;
1423 }
1424
1425 return NULL;
1426 }
1427
1428 int
1429 symbol_matches_domain (enum language symbol_language,
1430 domain_enum symbol_domain,
1431 domain_enum domain)
1432 {
1433 /* For C++ "struct foo { ... }" also defines a typedef for "foo".
1434 A Java class declaration also defines a typedef for the class.
1435 Similarly, any Ada type declaration implicitly defines a typedef. */
1436 if (symbol_language == language_cplus
1437 || symbol_language == language_d
1438 || symbol_language == language_java
1439 || symbol_language == language_ada)
1440 {
1441 if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN)
1442 && symbol_domain == STRUCT_DOMAIN)
1443 return 1;
1444 }
1445 /* For all other languages, strict match is required. */
1446 return (symbol_domain == domain);
1447 }
1448
1449 /* Look up a type named NAME in the struct_domain. The type returned
1450 must not be opaque -- i.e., must have at least one field
1451 defined. */
1452
1453 struct type *
1454 lookup_transparent_type (const char *name)
1455 {
1456 return current_language->la_lookup_transparent_type (name);
1457 }
1458
1459 /* A helper for basic_lookup_transparent_type that interfaces with the
1460 "quick" symbol table functions. */
1461
1462 static struct type *
1463 basic_lookup_transparent_type_quick (struct objfile *objfile, int kind,
1464 const char *name)
1465 {
1466 struct symtab *symtab;
1467 struct blockvector *bv;
1468 struct block *block;
1469 struct symbol *sym;
1470
1471 if (!objfile->sf)
1472 return NULL;
1473 symtab = objfile->sf->qf->lookup_symbol (objfile, kind, name, STRUCT_DOMAIN);
1474 if (!symtab)
1475 return NULL;
1476
1477 bv = BLOCKVECTOR (symtab);
1478 block = BLOCKVECTOR_BLOCK (bv, kind);
1479 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1480 if (!sym)
1481 {
1482 int other_kind = kind == GLOBAL_BLOCK ? STATIC_BLOCK : GLOBAL_BLOCK;
1483
1484 /* This shouldn't be necessary, but as a last resort
1485 * try looking in the 'other kind' even though the psymtab
1486 * claimed the symbol was one thing. It's possible that
1487 * the psymtab gets it wrong in some cases.
1488 */
1489 block = BLOCKVECTOR_BLOCK (bv, other_kind);
1490 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1491 if (!sym)
1492 /* FIXME; error is wrong in one case */
1493 error (_("Internal: global symbol `%s' found in %s psymtab but not in symtab.\n\
1494 %s may be an inlined function, or may be a template function\n\
1495 (if a template, try specifying an instantiation: %s<type>)."),
1496 name, symtab->filename, name, name);
1497 }
1498 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1499 return SYMBOL_TYPE (sym);
1500
1501 return NULL;
1502 }
1503
1504 /* The standard implementation of lookup_transparent_type. This code
1505 was modeled on lookup_symbol -- the parts not relevant to looking
1506 up types were just left out. In particular it's assumed here that
1507 types are available in struct_domain and only at file-static or
1508 global blocks. */
1509
1510 struct type *
1511 basic_lookup_transparent_type (const char *name)
1512 {
1513 struct symbol *sym;
1514 struct symtab *s = NULL;
1515 struct blockvector *bv;
1516 struct objfile *objfile;
1517 struct block *block;
1518 struct type *t;
1519
1520 /* Now search all the global symbols. Do the symtab's first, then
1521 check the psymtab's. If a psymtab indicates the existence
1522 of the desired name as a global, then do psymtab-to-symtab
1523 conversion on the fly and return the found symbol. */
1524
1525 ALL_PRIMARY_SYMTABS (objfile, s)
1526 {
1527 bv = BLOCKVECTOR (s);
1528 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1529 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1530 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1531 {
1532 return SYMBOL_TYPE (sym);
1533 }
1534 }
1535
1536 ALL_OBJFILES (objfile)
1537 {
1538 t = basic_lookup_transparent_type_quick (objfile, GLOBAL_BLOCK, name);
1539 if (t)
1540 return t;
1541 }
1542
1543 /* Now search the static file-level symbols.
1544 Not strictly correct, but more useful than an error.
1545 Do the symtab's first, then
1546 check the psymtab's. If a psymtab indicates the existence
1547 of the desired name as a file-level static, then do psymtab-to-symtab
1548 conversion on the fly and return the found symbol.
1549 */
1550
1551 ALL_PRIMARY_SYMTABS (objfile, s)
1552 {
1553 bv = BLOCKVECTOR (s);
1554 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
1555 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1556 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1557 {
1558 return SYMBOL_TYPE (sym);
1559 }
1560 }
1561
1562 ALL_OBJFILES (objfile)
1563 {
1564 t = basic_lookup_transparent_type_quick (objfile, STATIC_BLOCK, name);
1565 if (t)
1566 return t;
1567 }
1568
1569 return (struct type *) 0;
1570 }
1571
1572
1573 /* Find the name of the file containing main(). */
1574 /* FIXME: What about languages without main() or specially linked
1575 executables that have no main() ? */
1576
1577 char *
1578 find_main_filename (void)
1579 {
1580 struct objfile *objfile;
1581 char *result, *name = main_name ();
1582
1583 ALL_OBJFILES (objfile)
1584 {
1585 if (!objfile->sf)
1586 continue;
1587 result = objfile->sf->qf->find_symbol_file (objfile, name);
1588 if (result)
1589 return result;
1590 }
1591 return (NULL);
1592 }
1593
1594 /* Search BLOCK for symbol NAME in DOMAIN.
1595
1596 Note that if NAME is the demangled form of a C++ symbol, we will fail
1597 to find a match during the binary search of the non-encoded names, but
1598 for now we don't worry about the slight inefficiency of looking for
1599 a match we'll never find, since it will go pretty quick. Once the
1600 binary search terminates, we drop through and do a straight linear
1601 search on the symbols. Each symbol which is marked as being a ObjC/C++
1602 symbol (language_cplus or language_objc set) has both the encoded and
1603 non-encoded names tested for a match.
1604 */
1605
1606 struct symbol *
1607 lookup_block_symbol (const struct block *block, const char *name,
1608 const domain_enum domain)
1609 {
1610 struct dict_iterator iter;
1611 struct symbol *sym;
1612
1613 if (!BLOCK_FUNCTION (block))
1614 {
1615 for (sym = dict_iter_name_first (BLOCK_DICT (block), name, &iter);
1616 sym != NULL;
1617 sym = dict_iter_name_next (name, &iter))
1618 {
1619 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
1620 SYMBOL_DOMAIN (sym), domain))
1621 return sym;
1622 }
1623 return NULL;
1624 }
1625 else
1626 {
1627 /* Note that parameter symbols do not always show up last in the
1628 list; this loop makes sure to take anything else other than
1629 parameter symbols first; it only uses parameter symbols as a
1630 last resort. Note that this only takes up extra computation
1631 time on a match. */
1632
1633 struct symbol *sym_found = NULL;
1634
1635 for (sym = dict_iter_name_first (BLOCK_DICT (block), name, &iter);
1636 sym != NULL;
1637 sym = dict_iter_name_next (name, &iter))
1638 {
1639 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
1640 SYMBOL_DOMAIN (sym), domain))
1641 {
1642 sym_found = sym;
1643 if (!SYMBOL_IS_ARGUMENT (sym))
1644 {
1645 break;
1646 }
1647 }
1648 }
1649 return (sym_found); /* Will be NULL if not found. */
1650 }
1651 }
1652
1653 /* Find the symtab associated with PC and SECTION. Look through the
1654 psymtabs and read in another symtab if necessary. */
1655
1656 struct symtab *
1657 find_pc_sect_symtab (CORE_ADDR pc, struct obj_section *section)
1658 {
1659 struct block *b;
1660 struct blockvector *bv;
1661 struct symtab *s = NULL;
1662 struct symtab *best_s = NULL;
1663 struct objfile *objfile;
1664 struct program_space *pspace;
1665 CORE_ADDR distance = 0;
1666 struct minimal_symbol *msymbol;
1667
1668 pspace = current_program_space;
1669
1670 /* If we know that this is not a text address, return failure. This is
1671 necessary because we loop based on the block's high and low code
1672 addresses, which do not include the data ranges, and because
1673 we call find_pc_sect_psymtab which has a similar restriction based
1674 on the partial_symtab's texthigh and textlow. */
1675 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
1676 if (msymbol
1677 && (MSYMBOL_TYPE (msymbol) == mst_data
1678 || MSYMBOL_TYPE (msymbol) == mst_bss
1679 || MSYMBOL_TYPE (msymbol) == mst_abs
1680 || MSYMBOL_TYPE (msymbol) == mst_file_data
1681 || MSYMBOL_TYPE (msymbol) == mst_file_bss))
1682 return NULL;
1683
1684 /* Search all symtabs for the one whose file contains our address, and which
1685 is the smallest of all the ones containing the address. This is designed
1686 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
1687 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
1688 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
1689
1690 This happens for native ecoff format, where code from included files
1691 gets its own symtab. The symtab for the included file should have
1692 been read in already via the dependency mechanism.
1693 It might be swifter to create several symtabs with the same name
1694 like xcoff does (I'm not sure).
1695
1696 It also happens for objfiles that have their functions reordered.
1697 For these, the symtab we are looking for is not necessarily read in. */
1698
1699 ALL_PRIMARY_SYMTABS (objfile, s)
1700 {
1701 bv = BLOCKVECTOR (s);
1702 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1703
1704 if (BLOCK_START (b) <= pc
1705 && BLOCK_END (b) > pc
1706 && (distance == 0
1707 || BLOCK_END (b) - BLOCK_START (b) < distance))
1708 {
1709 /* For an objfile that has its functions reordered,
1710 find_pc_psymtab will find the proper partial symbol table
1711 and we simply return its corresponding symtab. */
1712 /* In order to better support objfiles that contain both
1713 stabs and coff debugging info, we continue on if a psymtab
1714 can't be found. */
1715 if ((objfile->flags & OBJF_REORDERED) && objfile->sf)
1716 {
1717 struct symtab *result;
1718 result
1719 = objfile->sf->qf->find_pc_sect_symtab (objfile,
1720 msymbol,
1721 pc, section,
1722 0);
1723 if (result)
1724 return result;
1725 }
1726 if (section != 0)
1727 {
1728 struct dict_iterator iter;
1729 struct symbol *sym = NULL;
1730
1731 ALL_BLOCK_SYMBOLS (b, iter, sym)
1732 {
1733 fixup_symbol_section (sym, objfile);
1734 if (matching_obj_sections (SYMBOL_OBJ_SECTION (sym), section))
1735 break;
1736 }
1737 if (sym == NULL)
1738 continue; /* no symbol in this symtab matches section */
1739 }
1740 distance = BLOCK_END (b) - BLOCK_START (b);
1741 best_s = s;
1742 }
1743 }
1744
1745 if (best_s != NULL)
1746 return (best_s);
1747
1748 ALL_OBJFILES (objfile)
1749 {
1750 struct symtab *result;
1751 if (!objfile->sf)
1752 continue;
1753 result = objfile->sf->qf->find_pc_sect_symtab (objfile,
1754 msymbol,
1755 pc, section,
1756 1);
1757 if (result)
1758 return result;
1759 }
1760
1761 return NULL;
1762 }
1763
1764 /* Find the symtab associated with PC. Look through the psymtabs and
1765 read in another symtab if necessary. Backward compatibility, no section */
1766
1767 struct symtab *
1768 find_pc_symtab (CORE_ADDR pc)
1769 {
1770 return find_pc_sect_symtab (pc, find_pc_mapped_section (pc));
1771 }
1772 \f
1773
1774 /* Find the source file and line number for a given PC value and SECTION.
1775 Return a structure containing a symtab pointer, a line number,
1776 and a pc range for the entire source line.
1777 The value's .pc field is NOT the specified pc.
1778 NOTCURRENT nonzero means, if specified pc is on a line boundary,
1779 use the line that ends there. Otherwise, in that case, the line
1780 that begins there is used. */
1781
1782 /* The big complication here is that a line may start in one file, and end just
1783 before the start of another file. This usually occurs when you #include
1784 code in the middle of a subroutine. To properly find the end of a line's PC
1785 range, we must search all symtabs associated with this compilation unit, and
1786 find the one whose first PC is closer than that of the next line in this
1787 symtab. */
1788
1789 /* If it's worth the effort, we could be using a binary search. */
1790
1791 struct symtab_and_line
1792 find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent)
1793 {
1794 struct symtab *s;
1795 struct linetable *l;
1796 int len;
1797 int i;
1798 struct linetable_entry *item;
1799 struct symtab_and_line val;
1800 struct blockvector *bv;
1801 struct minimal_symbol *msymbol;
1802 struct minimal_symbol *mfunsym;
1803
1804 /* Info on best line seen so far, and where it starts, and its file. */
1805
1806 struct linetable_entry *best = NULL;
1807 CORE_ADDR best_end = 0;
1808 struct symtab *best_symtab = 0;
1809
1810 /* Store here the first line number
1811 of a file which contains the line at the smallest pc after PC.
1812 If we don't find a line whose range contains PC,
1813 we will use a line one less than this,
1814 with a range from the start of that file to the first line's pc. */
1815 struct linetable_entry *alt = NULL;
1816 struct symtab *alt_symtab = 0;
1817
1818 /* Info on best line seen in this file. */
1819
1820 struct linetable_entry *prev;
1821
1822 /* If this pc is not from the current frame,
1823 it is the address of the end of a call instruction.
1824 Quite likely that is the start of the following statement.
1825 But what we want is the statement containing the instruction.
1826 Fudge the pc to make sure we get that. */
1827
1828 init_sal (&val); /* initialize to zeroes */
1829
1830 val.pspace = current_program_space;
1831
1832 /* It's tempting to assume that, if we can't find debugging info for
1833 any function enclosing PC, that we shouldn't search for line
1834 number info, either. However, GAS can emit line number info for
1835 assembly files --- very helpful when debugging hand-written
1836 assembly code. In such a case, we'd have no debug info for the
1837 function, but we would have line info. */
1838
1839 if (notcurrent)
1840 pc -= 1;
1841
1842 /* elz: added this because this function returned the wrong
1843 information if the pc belongs to a stub (import/export)
1844 to call a shlib function. This stub would be anywhere between
1845 two functions in the target, and the line info was erroneously
1846 taken to be the one of the line before the pc.
1847 */
1848 /* RT: Further explanation:
1849
1850 * We have stubs (trampolines) inserted between procedures.
1851 *
1852 * Example: "shr1" exists in a shared library, and a "shr1" stub also
1853 * exists in the main image.
1854 *
1855 * In the minimal symbol table, we have a bunch of symbols
1856 * sorted by start address. The stubs are marked as "trampoline",
1857 * the others appear as text. E.g.:
1858 *
1859 * Minimal symbol table for main image
1860 * main: code for main (text symbol)
1861 * shr1: stub (trampoline symbol)
1862 * foo: code for foo (text symbol)
1863 * ...
1864 * Minimal symbol table for "shr1" image:
1865 * ...
1866 * shr1: code for shr1 (text symbol)
1867 * ...
1868 *
1869 * So the code below is trying to detect if we are in the stub
1870 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
1871 * and if found, do the symbolization from the real-code address
1872 * rather than the stub address.
1873 *
1874 * Assumptions being made about the minimal symbol table:
1875 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
1876 * if we're really in the trampoline. If we're beyond it (say
1877 * we're in "foo" in the above example), it'll have a closer
1878 * symbol (the "foo" text symbol for example) and will not
1879 * return the trampoline.
1880 * 2. lookup_minimal_symbol_text() will find a real text symbol
1881 * corresponding to the trampoline, and whose address will
1882 * be different than the trampoline address. I put in a sanity
1883 * check for the address being the same, to avoid an
1884 * infinite recursion.
1885 */
1886 msymbol = lookup_minimal_symbol_by_pc (pc);
1887 if (msymbol != NULL)
1888 if (MSYMBOL_TYPE (msymbol) == mst_solib_trampoline)
1889 {
1890 mfunsym = lookup_minimal_symbol_text (SYMBOL_LINKAGE_NAME (msymbol),
1891 NULL);
1892 if (mfunsym == NULL)
1893 /* I eliminated this warning since it is coming out
1894 * in the following situation:
1895 * gdb shmain // test program with shared libraries
1896 * (gdb) break shr1 // function in shared lib
1897 * Warning: In stub for ...
1898 * In the above situation, the shared lib is not loaded yet,
1899 * so of course we can't find the real func/line info,
1900 * but the "break" still works, and the warning is annoying.
1901 * So I commented out the warning. RT */
1902 /* warning ("In stub for %s; unable to find real function/line info", SYMBOL_LINKAGE_NAME (msymbol)) */ ;
1903 /* fall through */
1904 else if (SYMBOL_VALUE_ADDRESS (mfunsym) == SYMBOL_VALUE_ADDRESS (msymbol))
1905 /* Avoid infinite recursion */
1906 /* See above comment about why warning is commented out */
1907 /* warning ("In stub for %s; unable to find real function/line info", SYMBOL_LINKAGE_NAME (msymbol)) */ ;
1908 /* fall through */
1909 else
1910 return find_pc_line (SYMBOL_VALUE_ADDRESS (mfunsym), 0);
1911 }
1912
1913
1914 s = find_pc_sect_symtab (pc, section);
1915 if (!s)
1916 {
1917 /* if no symbol information, return previous pc */
1918 if (notcurrent)
1919 pc++;
1920 val.pc = pc;
1921 return val;
1922 }
1923
1924 bv = BLOCKVECTOR (s);
1925
1926 /* Look at all the symtabs that share this blockvector.
1927 They all have the same apriori range, that we found was right;
1928 but they have different line tables. */
1929
1930 for (; s && BLOCKVECTOR (s) == bv; s = s->next)
1931 {
1932 /* Find the best line in this symtab. */
1933 l = LINETABLE (s);
1934 if (!l)
1935 continue;
1936 len = l->nitems;
1937 if (len <= 0)
1938 {
1939 /* I think len can be zero if the symtab lacks line numbers
1940 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
1941 I'm not sure which, and maybe it depends on the symbol
1942 reader). */
1943 continue;
1944 }
1945
1946 prev = NULL;
1947 item = l->item; /* Get first line info */
1948
1949 /* Is this file's first line closer than the first lines of other files?
1950 If so, record this file, and its first line, as best alternate. */
1951 if (item->pc > pc && (!alt || item->pc < alt->pc))
1952 {
1953 alt = item;
1954 alt_symtab = s;
1955 }
1956
1957 for (i = 0; i < len; i++, item++)
1958 {
1959 /* Leave prev pointing to the linetable entry for the last line
1960 that started at or before PC. */
1961 if (item->pc > pc)
1962 break;
1963
1964 prev = item;
1965 }
1966
1967 /* At this point, prev points at the line whose start addr is <= pc, and
1968 item points at the next line. If we ran off the end of the linetable
1969 (pc >= start of the last line), then prev == item. If pc < start of
1970 the first line, prev will not be set. */
1971
1972 /* Is this file's best line closer than the best in the other files?
1973 If so, record this file, and its best line, as best so far. Don't
1974 save prev if it represents the end of a function (i.e. line number
1975 0) instead of a real line. */
1976
1977 if (prev && prev->line && (!best || prev->pc > best->pc))
1978 {
1979 best = prev;
1980 best_symtab = s;
1981
1982 /* Discard BEST_END if it's before the PC of the current BEST. */
1983 if (best_end <= best->pc)
1984 best_end = 0;
1985 }
1986
1987 /* If another line (denoted by ITEM) is in the linetable and its
1988 PC is after BEST's PC, but before the current BEST_END, then
1989 use ITEM's PC as the new best_end. */
1990 if (best && i < len && item->pc > best->pc
1991 && (best_end == 0 || best_end > item->pc))
1992 best_end = item->pc;
1993 }
1994
1995 if (!best_symtab)
1996 {
1997 /* If we didn't find any line number info, just return zeros.
1998 We used to return alt->line - 1 here, but that could be
1999 anywhere; if we don't have line number info for this PC,
2000 don't make some up. */
2001 val.pc = pc;
2002 }
2003 else if (best->line == 0)
2004 {
2005 /* If our best fit is in a range of PC's for which no line
2006 number info is available (line number is zero) then we didn't
2007 find any valid line information. */
2008 val.pc = pc;
2009 }
2010 else
2011 {
2012 val.symtab = best_symtab;
2013 val.line = best->line;
2014 val.pc = best->pc;
2015 if (best_end && (!alt || best_end < alt->pc))
2016 val.end = best_end;
2017 else if (alt)
2018 val.end = alt->pc;
2019 else
2020 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
2021 }
2022 val.section = section;
2023 return val;
2024 }
2025
2026 /* Backward compatibility (no section) */
2027
2028 struct symtab_and_line
2029 find_pc_line (CORE_ADDR pc, int notcurrent)
2030 {
2031 struct obj_section *section;
2032
2033 section = find_pc_overlay (pc);
2034 if (pc_in_unmapped_range (pc, section))
2035 pc = overlay_mapped_address (pc, section);
2036 return find_pc_sect_line (pc, section, notcurrent);
2037 }
2038 \f
2039 /* Find line number LINE in any symtab whose name is the same as
2040 SYMTAB.
2041
2042 If found, return the symtab that contains the linetable in which it was
2043 found, set *INDEX to the index in the linetable of the best entry
2044 found, and set *EXACT_MATCH nonzero if the value returned is an
2045 exact match.
2046
2047 If not found, return NULL. */
2048
2049 struct symtab *
2050 find_line_symtab (struct symtab *symtab, int line, int *index, int *exact_match)
2051 {
2052 int exact = 0; /* Initialized here to avoid a compiler warning. */
2053
2054 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
2055 so far seen. */
2056
2057 int best_index;
2058 struct linetable *best_linetable;
2059 struct symtab *best_symtab;
2060
2061 /* First try looking it up in the given symtab. */
2062 best_linetable = LINETABLE (symtab);
2063 best_symtab = symtab;
2064 best_index = find_line_common (best_linetable, line, &exact);
2065 if (best_index < 0 || !exact)
2066 {
2067 /* Didn't find an exact match. So we better keep looking for
2068 another symtab with the same name. In the case of xcoff,
2069 multiple csects for one source file (produced by IBM's FORTRAN
2070 compiler) produce multiple symtabs (this is unavoidable
2071 assuming csects can be at arbitrary places in memory and that
2072 the GLOBAL_BLOCK of a symtab has a begin and end address). */
2073
2074 /* BEST is the smallest linenumber > LINE so far seen,
2075 or 0 if none has been seen so far.
2076 BEST_INDEX and BEST_LINETABLE identify the item for it. */
2077 int best;
2078
2079 struct objfile *objfile;
2080 struct symtab *s;
2081
2082 if (best_index >= 0)
2083 best = best_linetable->item[best_index].line;
2084 else
2085 best = 0;
2086
2087 ALL_OBJFILES (objfile)
2088 {
2089 if (objfile->sf)
2090 objfile->sf->qf->expand_symtabs_with_filename (objfile,
2091 symtab->filename);
2092 }
2093
2094 /* Get symbol full file name if possible. */
2095 symtab_to_fullname (symtab);
2096
2097 ALL_SYMTABS (objfile, s)
2098 {
2099 struct linetable *l;
2100 int ind;
2101
2102 if (FILENAME_CMP (symtab->filename, s->filename) != 0)
2103 continue;
2104 if (symtab->fullname != NULL
2105 && symtab_to_fullname (s) != NULL
2106 && FILENAME_CMP (symtab->fullname, s->fullname) != 0)
2107 continue;
2108 l = LINETABLE (s);
2109 ind = find_line_common (l, line, &exact);
2110 if (ind >= 0)
2111 {
2112 if (exact)
2113 {
2114 best_index = ind;
2115 best_linetable = l;
2116 best_symtab = s;
2117 goto done;
2118 }
2119 if (best == 0 || l->item[ind].line < best)
2120 {
2121 best = l->item[ind].line;
2122 best_index = ind;
2123 best_linetable = l;
2124 best_symtab = s;
2125 }
2126 }
2127 }
2128 }
2129 done:
2130 if (best_index < 0)
2131 return NULL;
2132
2133 if (index)
2134 *index = best_index;
2135 if (exact_match)
2136 *exact_match = exact;
2137
2138 return best_symtab;
2139 }
2140 \f
2141 /* Set the PC value for a given source file and line number and return true.
2142 Returns zero for invalid line number (and sets the PC to 0).
2143 The source file is specified with a struct symtab. */
2144
2145 int
2146 find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
2147 {
2148 struct linetable *l;
2149 int ind;
2150
2151 *pc = 0;
2152 if (symtab == 0)
2153 return 0;
2154
2155 symtab = find_line_symtab (symtab, line, &ind, NULL);
2156 if (symtab != NULL)
2157 {
2158 l = LINETABLE (symtab);
2159 *pc = l->item[ind].pc;
2160 return 1;
2161 }
2162 else
2163 return 0;
2164 }
2165
2166 /* Find the range of pc values in a line.
2167 Store the starting pc of the line into *STARTPTR
2168 and the ending pc (start of next line) into *ENDPTR.
2169 Returns 1 to indicate success.
2170 Returns 0 if could not find the specified line. */
2171
2172 int
2173 find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
2174 CORE_ADDR *endptr)
2175 {
2176 CORE_ADDR startaddr;
2177 struct symtab_and_line found_sal;
2178
2179 startaddr = sal.pc;
2180 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
2181 return 0;
2182
2183 /* This whole function is based on address. For example, if line 10 has
2184 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
2185 "info line *0x123" should say the line goes from 0x100 to 0x200
2186 and "info line *0x355" should say the line goes from 0x300 to 0x400.
2187 This also insures that we never give a range like "starts at 0x134
2188 and ends at 0x12c". */
2189
2190 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
2191 if (found_sal.line != sal.line)
2192 {
2193 /* The specified line (sal) has zero bytes. */
2194 *startptr = found_sal.pc;
2195 *endptr = found_sal.pc;
2196 }
2197 else
2198 {
2199 *startptr = found_sal.pc;
2200 *endptr = found_sal.end;
2201 }
2202 return 1;
2203 }
2204
2205 /* Given a line table and a line number, return the index into the line
2206 table for the pc of the nearest line whose number is >= the specified one.
2207 Return -1 if none is found. The value is >= 0 if it is an index.
2208
2209 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
2210
2211 static int
2212 find_line_common (struct linetable *l, int lineno,
2213 int *exact_match)
2214 {
2215 int i;
2216 int len;
2217
2218 /* BEST is the smallest linenumber > LINENO so far seen,
2219 or 0 if none has been seen so far.
2220 BEST_INDEX identifies the item for it. */
2221
2222 int best_index = -1;
2223 int best = 0;
2224
2225 *exact_match = 0;
2226
2227 if (lineno <= 0)
2228 return -1;
2229 if (l == 0)
2230 return -1;
2231
2232 len = l->nitems;
2233 for (i = 0; i < len; i++)
2234 {
2235 struct linetable_entry *item = &(l->item[i]);
2236
2237 if (item->line == lineno)
2238 {
2239 /* Return the first (lowest address) entry which matches. */
2240 *exact_match = 1;
2241 return i;
2242 }
2243
2244 if (item->line > lineno && (best == 0 || item->line < best))
2245 {
2246 best = item->line;
2247 best_index = i;
2248 }
2249 }
2250
2251 /* If we got here, we didn't get an exact match. */
2252 return best_index;
2253 }
2254
2255 int
2256 find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
2257 {
2258 struct symtab_and_line sal;
2259 sal = find_pc_line (pc, 0);
2260 *startptr = sal.pc;
2261 *endptr = sal.end;
2262 return sal.symtab != 0;
2263 }
2264
2265 /* Given a function start address FUNC_ADDR and SYMTAB, find the first
2266 address for that function that has an entry in SYMTAB's line info
2267 table. If such an entry cannot be found, return FUNC_ADDR
2268 unaltered. */
2269 CORE_ADDR
2270 skip_prologue_using_lineinfo (CORE_ADDR func_addr, struct symtab *symtab)
2271 {
2272 CORE_ADDR func_start, func_end;
2273 struct linetable *l;
2274 int i;
2275
2276 /* Give up if this symbol has no lineinfo table. */
2277 l = LINETABLE (symtab);
2278 if (l == NULL)
2279 return func_addr;
2280
2281 /* Get the range for the function's PC values, or give up if we
2282 cannot, for some reason. */
2283 if (!find_pc_partial_function (func_addr, NULL, &func_start, &func_end))
2284 return func_addr;
2285
2286 /* Linetable entries are ordered by PC values, see the commentary in
2287 symtab.h where `struct linetable' is defined. Thus, the first
2288 entry whose PC is in the range [FUNC_START..FUNC_END[ is the
2289 address we are looking for. */
2290 for (i = 0; i < l->nitems; i++)
2291 {
2292 struct linetable_entry *item = &(l->item[i]);
2293
2294 /* Don't use line numbers of zero, they mark special entries in
2295 the table. See the commentary on symtab.h before the
2296 definition of struct linetable. */
2297 if (item->line > 0 && func_start <= item->pc && item->pc < func_end)
2298 return item->pc;
2299 }
2300
2301 return func_addr;
2302 }
2303
2304 /* Given a function symbol SYM, find the symtab and line for the start
2305 of the function.
2306 If the argument FUNFIRSTLINE is nonzero, we want the first line
2307 of real code inside the function. */
2308
2309 struct symtab_and_line
2310 find_function_start_sal (struct symbol *sym, int funfirstline)
2311 {
2312 struct symtab_and_line sal;
2313
2314 fixup_symbol_section (sym, NULL);
2315 sal = find_pc_sect_line (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)),
2316 SYMBOL_OBJ_SECTION (sym), 0);
2317
2318 /* We always should have a line for the function start address.
2319 If we don't, something is odd. Create a plain SAL refering
2320 just the PC and hope that skip_prologue_sal (if requested)
2321 can find a line number for after the prologue. */
2322 if (sal.pc < BLOCK_START (SYMBOL_BLOCK_VALUE (sym)))
2323 {
2324 init_sal (&sal);
2325 sal.pspace = current_program_space;
2326 sal.pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
2327 sal.section = SYMBOL_OBJ_SECTION (sym);
2328 }
2329
2330 if (funfirstline)
2331 skip_prologue_sal (&sal);
2332
2333 return sal;
2334 }
2335
2336 /* Adjust SAL to the first instruction past the function prologue.
2337 If the PC was explicitly specified, the SAL is not changed.
2338 If the line number was explicitly specified, at most the SAL's PC
2339 is updated. If SAL is already past the prologue, then do nothing. */
2340 void
2341 skip_prologue_sal (struct symtab_and_line *sal)
2342 {
2343 struct symbol *sym;
2344 struct symtab_and_line start_sal;
2345 struct cleanup *old_chain;
2346 CORE_ADDR pc;
2347 struct obj_section *section;
2348 const char *name;
2349 struct objfile *objfile;
2350 struct gdbarch *gdbarch;
2351 struct block *b, *function_block;
2352
2353 /* Do not change the SAL is PC was specified explicitly. */
2354 if (sal->explicit_pc)
2355 return;
2356
2357 old_chain = save_current_space_and_thread ();
2358 switch_to_program_space_and_thread (sal->pspace);
2359
2360 sym = find_pc_sect_function (sal->pc, sal->section);
2361 if (sym != NULL)
2362 {
2363 fixup_symbol_section (sym, NULL);
2364
2365 pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
2366 section = SYMBOL_OBJ_SECTION (sym);
2367 name = SYMBOL_LINKAGE_NAME (sym);
2368 objfile = SYMBOL_SYMTAB (sym)->objfile;
2369 }
2370 else
2371 {
2372 struct minimal_symbol *msymbol
2373 = lookup_minimal_symbol_by_pc_section (sal->pc, sal->section);
2374 if (msymbol == NULL)
2375 {
2376 do_cleanups (old_chain);
2377 return;
2378 }
2379
2380 pc = SYMBOL_VALUE_ADDRESS (msymbol);
2381 section = SYMBOL_OBJ_SECTION (msymbol);
2382 name = SYMBOL_LINKAGE_NAME (msymbol);
2383 objfile = msymbol_objfile (msymbol);
2384 }
2385
2386 gdbarch = get_objfile_arch (objfile);
2387
2388 /* If the function is in an unmapped overlay, use its unmapped LMA address,
2389 so that gdbarch_skip_prologue has something unique to work on. */
2390 if (section_is_overlay (section) && !section_is_mapped (section))
2391 pc = overlay_unmapped_address (pc, section);
2392
2393 /* Skip "first line" of function (which is actually its prologue). */
2394 pc += gdbarch_deprecated_function_start_offset (gdbarch);
2395 pc = gdbarch_skip_prologue (gdbarch, pc);
2396
2397 /* For overlays, map pc back into its mapped VMA range. */
2398 pc = overlay_mapped_address (pc, section);
2399
2400 /* Calculate line number. */
2401 start_sal = find_pc_sect_line (pc, section, 0);
2402
2403 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
2404 line is still part of the same function. */
2405 if (start_sal.pc != pc
2406 && (sym? (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) <= start_sal.end
2407 && start_sal.end < BLOCK_END (SYMBOL_BLOCK_VALUE (sym)))
2408 : (lookup_minimal_symbol_by_pc_section (start_sal.end, section)
2409 == lookup_minimal_symbol_by_pc_section (pc, section))))
2410 {
2411 /* First pc of next line */
2412 pc = start_sal.end;
2413 /* Recalculate the line number (might not be N+1). */
2414 start_sal = find_pc_sect_line (pc, section, 0);
2415 }
2416
2417 /* On targets with executable formats that don't have a concept of
2418 constructors (ELF with .init has, PE doesn't), gcc emits a call
2419 to `__main' in `main' between the prologue and before user
2420 code. */
2421 if (gdbarch_skip_main_prologue_p (gdbarch)
2422 && name && strcmp (name, "main") == 0)
2423 {
2424 pc = gdbarch_skip_main_prologue (gdbarch, pc);
2425 /* Recalculate the line number (might not be N+1). */
2426 start_sal = find_pc_sect_line (pc, section, 0);
2427 }
2428
2429 /* If we still don't have a valid source line, try to find the first
2430 PC in the lineinfo table that belongs to the same function. This
2431 happens with COFF debug info, which does not seem to have an
2432 entry in lineinfo table for the code after the prologue which has
2433 no direct relation to source. For example, this was found to be
2434 the case with the DJGPP target using "gcc -gcoff" when the
2435 compiler inserted code after the prologue to make sure the stack
2436 is aligned. */
2437 if (sym && start_sal.symtab == NULL)
2438 {
2439 pc = skip_prologue_using_lineinfo (pc, SYMBOL_SYMTAB (sym));
2440 /* Recalculate the line number. */
2441 start_sal = find_pc_sect_line (pc, section, 0);
2442 }
2443
2444 do_cleanups (old_chain);
2445
2446 /* If we're already past the prologue, leave SAL unchanged. Otherwise
2447 forward SAL to the end of the prologue. */
2448 if (sal->pc >= pc)
2449 return;
2450
2451 sal->pc = pc;
2452 sal->section = section;
2453
2454 /* Unless the explicit_line flag was set, update the SAL line
2455 and symtab to correspond to the modified PC location. */
2456 if (sal->explicit_line)
2457 return;
2458
2459 sal->symtab = start_sal.symtab;
2460 sal->line = start_sal.line;
2461 sal->end = start_sal.end;
2462
2463 /* Check if we are now inside an inlined function. If we can,
2464 use the call site of the function instead. */
2465 b = block_for_pc_sect (sal->pc, sal->section);
2466 function_block = NULL;
2467 while (b != NULL)
2468 {
2469 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
2470 function_block = b;
2471 else if (BLOCK_FUNCTION (b) != NULL)
2472 break;
2473 b = BLOCK_SUPERBLOCK (b);
2474 }
2475 if (function_block != NULL
2476 && SYMBOL_LINE (BLOCK_FUNCTION (function_block)) != 0)
2477 {
2478 sal->line = SYMBOL_LINE (BLOCK_FUNCTION (function_block));
2479 sal->symtab = SYMBOL_SYMTAB (BLOCK_FUNCTION (function_block));
2480 }
2481 }
2482
2483 /* If P is of the form "operator[ \t]+..." where `...' is
2484 some legitimate operator text, return a pointer to the
2485 beginning of the substring of the operator text.
2486 Otherwise, return "". */
2487 char *
2488 operator_chars (char *p, char **end)
2489 {
2490 *end = "";
2491 if (strncmp (p, "operator", 8))
2492 return *end;
2493 p += 8;
2494
2495 /* Don't get faked out by `operator' being part of a longer
2496 identifier. */
2497 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
2498 return *end;
2499
2500 /* Allow some whitespace between `operator' and the operator symbol. */
2501 while (*p == ' ' || *p == '\t')
2502 p++;
2503
2504 /* Recognize 'operator TYPENAME'. */
2505
2506 if (isalpha (*p) || *p == '_' || *p == '$')
2507 {
2508 char *q = p + 1;
2509 while (isalnum (*q) || *q == '_' || *q == '$')
2510 q++;
2511 *end = q;
2512 return p;
2513 }
2514
2515 while (*p)
2516 switch (*p)
2517 {
2518 case '\\': /* regexp quoting */
2519 if (p[1] == '*')
2520 {
2521 if (p[2] == '=') /* 'operator\*=' */
2522 *end = p + 3;
2523 else /* 'operator\*' */
2524 *end = p + 2;
2525 return p;
2526 }
2527 else if (p[1] == '[')
2528 {
2529 if (p[2] == ']')
2530 error (_("mismatched quoting on brackets, try 'operator\\[\\]'"));
2531 else if (p[2] == '\\' && p[3] == ']')
2532 {
2533 *end = p + 4; /* 'operator\[\]' */
2534 return p;
2535 }
2536 else
2537 error (_("nothing is allowed between '[' and ']'"));
2538 }
2539 else
2540 {
2541 /* Gratuitous qoute: skip it and move on. */
2542 p++;
2543 continue;
2544 }
2545 break;
2546 case '!':
2547 case '=':
2548 case '*':
2549 case '/':
2550 case '%':
2551 case '^':
2552 if (p[1] == '=')
2553 *end = p + 2;
2554 else
2555 *end = p + 1;
2556 return p;
2557 case '<':
2558 case '>':
2559 case '+':
2560 case '-':
2561 case '&':
2562 case '|':
2563 if (p[0] == '-' && p[1] == '>')
2564 {
2565 /* Struct pointer member operator 'operator->'. */
2566 if (p[2] == '*')
2567 {
2568 *end = p + 3; /* 'operator->*' */
2569 return p;
2570 }
2571 else if (p[2] == '\\')
2572 {
2573 *end = p + 4; /* Hopefully 'operator->\*' */
2574 return p;
2575 }
2576 else
2577 {
2578 *end = p + 2; /* 'operator->' */
2579 return p;
2580 }
2581 }
2582 if (p[1] == '=' || p[1] == p[0])
2583 *end = p + 2;
2584 else
2585 *end = p + 1;
2586 return p;
2587 case '~':
2588 case ',':
2589 *end = p + 1;
2590 return p;
2591 case '(':
2592 if (p[1] != ')')
2593 error (_("`operator ()' must be specified without whitespace in `()'"));
2594 *end = p + 2;
2595 return p;
2596 case '?':
2597 if (p[1] != ':')
2598 error (_("`operator ?:' must be specified without whitespace in `?:'"));
2599 *end = p + 2;
2600 return p;
2601 case '[':
2602 if (p[1] != ']')
2603 error (_("`operator []' must be specified without whitespace in `[]'"));
2604 *end = p + 2;
2605 return p;
2606 default:
2607 error (_("`operator %s' not supported"), p);
2608 break;
2609 }
2610
2611 *end = "";
2612 return *end;
2613 }
2614 \f
2615
2616 /* If FILE is not already in the table of files, return zero;
2617 otherwise return non-zero. Optionally add FILE to the table if ADD
2618 is non-zero. If *FIRST is non-zero, forget the old table
2619 contents. */
2620 static int
2621 filename_seen (const char *file, int add, int *first)
2622 {
2623 /* Table of files seen so far. */
2624 static const char **tab = NULL;
2625 /* Allocated size of tab in elements.
2626 Start with one 256-byte block (when using GNU malloc.c).
2627 24 is the malloc overhead when range checking is in effect. */
2628 static int tab_alloc_size = (256 - 24) / sizeof (char *);
2629 /* Current size of tab in elements. */
2630 static int tab_cur_size;
2631 const char **p;
2632
2633 if (*first)
2634 {
2635 if (tab == NULL)
2636 tab = (const char **) xmalloc (tab_alloc_size * sizeof (*tab));
2637 tab_cur_size = 0;
2638 }
2639
2640 /* Is FILE in tab? */
2641 for (p = tab; p < tab + tab_cur_size; p++)
2642 if (strcmp (*p, file) == 0)
2643 return 1;
2644
2645 /* No; maybe add it to tab. */
2646 if (add)
2647 {
2648 if (tab_cur_size == tab_alloc_size)
2649 {
2650 tab_alloc_size *= 2;
2651 tab = (const char **) xrealloc ((char *) tab,
2652 tab_alloc_size * sizeof (*tab));
2653 }
2654 tab[tab_cur_size++] = file;
2655 }
2656
2657 return 0;
2658 }
2659
2660 /* Slave routine for sources_info. Force line breaks at ,'s.
2661 NAME is the name to print and *FIRST is nonzero if this is the first
2662 name printed. Set *FIRST to zero. */
2663 static void
2664 output_source_filename (const char *name, int *first)
2665 {
2666 /* Since a single source file can result in several partial symbol
2667 tables, we need to avoid printing it more than once. Note: if
2668 some of the psymtabs are read in and some are not, it gets
2669 printed both under "Source files for which symbols have been
2670 read" and "Source files for which symbols will be read in on
2671 demand". I consider this a reasonable way to deal with the
2672 situation. I'm not sure whether this can also happen for
2673 symtabs; it doesn't hurt to check. */
2674
2675 /* Was NAME already seen? */
2676 if (filename_seen (name, 1, first))
2677 {
2678 /* Yes; don't print it again. */
2679 return;
2680 }
2681 /* No; print it and reset *FIRST. */
2682 if (*first)
2683 {
2684 *first = 0;
2685 }
2686 else
2687 {
2688 printf_filtered (", ");
2689 }
2690
2691 wrap_here ("");
2692 fputs_filtered (name, gdb_stdout);
2693 }
2694
2695 /* A callback for map_partial_symbol_filenames. */
2696 static void
2697 output_partial_symbol_filename (const char *fullname, const char *filename,
2698 void *data)
2699 {
2700 output_source_filename (fullname ? fullname : filename, data);
2701 }
2702
2703 static void
2704 sources_info (char *ignore, int from_tty)
2705 {
2706 struct symtab *s;
2707 struct objfile *objfile;
2708 int first;
2709
2710 if (!have_full_symbols () && !have_partial_symbols ())
2711 {
2712 error (_("No symbol table is loaded. Use the \"file\" command."));
2713 }
2714
2715 printf_filtered ("Source files for which symbols have been read in:\n\n");
2716
2717 first = 1;
2718 ALL_SYMTABS (objfile, s)
2719 {
2720 const char *fullname = symtab_to_fullname (s);
2721 output_source_filename (fullname ? fullname : s->filename, &first);
2722 }
2723 printf_filtered ("\n\n");
2724
2725 printf_filtered ("Source files for which symbols will be read in on demand:\n\n");
2726
2727 first = 1;
2728 map_partial_symbol_filenames (output_partial_symbol_filename, &first);
2729 printf_filtered ("\n");
2730 }
2731
2732 static int
2733 file_matches (const char *file, char *files[], int nfiles)
2734 {
2735 int i;
2736
2737 if (file != NULL && nfiles != 0)
2738 {
2739 for (i = 0; i < nfiles; i++)
2740 {
2741 if (strcmp (files[i], lbasename (file)) == 0)
2742 return 1;
2743 }
2744 }
2745 else if (nfiles == 0)
2746 return 1;
2747 return 0;
2748 }
2749
2750 /* Free any memory associated with a search. */
2751 void
2752 free_search_symbols (struct symbol_search *symbols)
2753 {
2754 struct symbol_search *p;
2755 struct symbol_search *next;
2756
2757 for (p = symbols; p != NULL; p = next)
2758 {
2759 next = p->next;
2760 xfree (p);
2761 }
2762 }
2763
2764 static void
2765 do_free_search_symbols_cleanup (void *symbols)
2766 {
2767 free_search_symbols (symbols);
2768 }
2769
2770 struct cleanup *
2771 make_cleanup_free_search_symbols (struct symbol_search *symbols)
2772 {
2773 return make_cleanup (do_free_search_symbols_cleanup, symbols);
2774 }
2775
2776 /* Helper function for sort_search_symbols and qsort. Can only
2777 sort symbols, not minimal symbols. */
2778 static int
2779 compare_search_syms (const void *sa, const void *sb)
2780 {
2781 struct symbol_search **sym_a = (struct symbol_search **) sa;
2782 struct symbol_search **sym_b = (struct symbol_search **) sb;
2783
2784 return strcmp (SYMBOL_PRINT_NAME ((*sym_a)->symbol),
2785 SYMBOL_PRINT_NAME ((*sym_b)->symbol));
2786 }
2787
2788 /* Sort the ``nfound'' symbols in the list after prevtail. Leave
2789 prevtail where it is, but update its next pointer to point to
2790 the first of the sorted symbols. */
2791 static struct symbol_search *
2792 sort_search_symbols (struct symbol_search *prevtail, int nfound)
2793 {
2794 struct symbol_search **symbols, *symp, *old_next;
2795 int i;
2796
2797 symbols = (struct symbol_search **) xmalloc (sizeof (struct symbol_search *)
2798 * nfound);
2799 symp = prevtail->next;
2800 for (i = 0; i < nfound; i++)
2801 {
2802 symbols[i] = symp;
2803 symp = symp->next;
2804 }
2805 /* Generally NULL. */
2806 old_next = symp;
2807
2808 qsort (symbols, nfound, sizeof (struct symbol_search *),
2809 compare_search_syms);
2810
2811 symp = prevtail;
2812 for (i = 0; i < nfound; i++)
2813 {
2814 symp->next = symbols[i];
2815 symp = symp->next;
2816 }
2817 symp->next = old_next;
2818
2819 xfree (symbols);
2820 return symp;
2821 }
2822
2823 /* An object of this type is passed as the user_data to the
2824 expand_symtabs_matching method. */
2825 struct search_symbols_data
2826 {
2827 int nfiles;
2828 char **files;
2829 char *regexp;
2830 };
2831
2832 /* A callback for expand_symtabs_matching. */
2833 static int
2834 search_symbols_file_matches (const char *filename, void *user_data)
2835 {
2836 struct search_symbols_data *data = user_data;
2837 return file_matches (filename, data->files, data->nfiles);
2838 }
2839
2840 /* A callback for expand_symtabs_matching. */
2841 static int
2842 search_symbols_name_matches (const char *symname, void *user_data)
2843 {
2844 struct search_symbols_data *data = user_data;
2845 return data->regexp == NULL || re_exec (symname);
2846 }
2847
2848 /* Search the symbol table for matches to the regular expression REGEXP,
2849 returning the results in *MATCHES.
2850
2851 Only symbols of KIND are searched:
2852 FUNCTIONS_DOMAIN - search all functions
2853 TYPES_DOMAIN - search all type names
2854 VARIABLES_DOMAIN - search all symbols, excluding functions, type names,
2855 and constants (enums)
2856
2857 free_search_symbols should be called when *MATCHES is no longer needed.
2858
2859 The results are sorted locally; each symtab's global and static blocks are
2860 separately alphabetized.
2861 */
2862 void
2863 search_symbols (char *regexp, domain_enum kind, int nfiles, char *files[],
2864 struct symbol_search **matches)
2865 {
2866 struct symtab *s;
2867 struct blockvector *bv;
2868 struct block *b;
2869 int i = 0;
2870 struct dict_iterator iter;
2871 struct symbol *sym;
2872 struct objfile *objfile;
2873 struct minimal_symbol *msymbol;
2874 char *val;
2875 int found_misc = 0;
2876 static enum minimal_symbol_type types[]
2877 =
2878 {mst_data, mst_text, mst_abs, mst_unknown};
2879 static enum minimal_symbol_type types2[]
2880 =
2881 {mst_bss, mst_file_text, mst_abs, mst_unknown};
2882 static enum minimal_symbol_type types3[]
2883 =
2884 {mst_file_data, mst_solib_trampoline, mst_abs, mst_unknown};
2885 static enum minimal_symbol_type types4[]
2886 =
2887 {mst_file_bss, mst_text, mst_abs, mst_unknown};
2888 enum minimal_symbol_type ourtype;
2889 enum minimal_symbol_type ourtype2;
2890 enum minimal_symbol_type ourtype3;
2891 enum minimal_symbol_type ourtype4;
2892 struct symbol_search *sr;
2893 struct symbol_search *psr;
2894 struct symbol_search *tail;
2895 struct cleanup *old_chain = NULL;
2896 struct search_symbols_data datum;
2897
2898 if (kind < VARIABLES_DOMAIN)
2899 error (_("must search on specific domain"));
2900
2901 ourtype = types[(int) (kind - VARIABLES_DOMAIN)];
2902 ourtype2 = types2[(int) (kind - VARIABLES_DOMAIN)];
2903 ourtype3 = types3[(int) (kind - VARIABLES_DOMAIN)];
2904 ourtype4 = types4[(int) (kind - VARIABLES_DOMAIN)];
2905
2906 sr = *matches = NULL;
2907 tail = NULL;
2908
2909 if (regexp != NULL)
2910 {
2911 /* Make sure spacing is right for C++ operators.
2912 This is just a courtesy to make the matching less sensitive
2913 to how many spaces the user leaves between 'operator'
2914 and <TYPENAME> or <OPERATOR>. */
2915 char *opend;
2916 char *opname = operator_chars (regexp, &opend);
2917 if (*opname)
2918 {
2919 int fix = -1; /* -1 means ok; otherwise number of spaces needed. */
2920 if (isalpha (*opname) || *opname == '_' || *opname == '$')
2921 {
2922 /* There should 1 space between 'operator' and 'TYPENAME'. */
2923 if (opname[-1] != ' ' || opname[-2] == ' ')
2924 fix = 1;
2925 }
2926 else
2927 {
2928 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
2929 if (opname[-1] == ' ')
2930 fix = 0;
2931 }
2932 /* If wrong number of spaces, fix it. */
2933 if (fix >= 0)
2934 {
2935 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
2936 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
2937 regexp = tmp;
2938 }
2939 }
2940
2941 if (0 != (val = re_comp (regexp)))
2942 error (_("Invalid regexp (%s): %s"), val, regexp);
2943 }
2944
2945 /* Search through the partial symtabs *first* for all symbols
2946 matching the regexp. That way we don't have to reproduce all of
2947 the machinery below. */
2948
2949 datum.nfiles = nfiles;
2950 datum.files = files;
2951 datum.regexp = regexp;
2952 ALL_OBJFILES (objfile)
2953 {
2954 if (objfile->sf)
2955 objfile->sf->qf->expand_symtabs_matching (objfile,
2956 search_symbols_file_matches,
2957 search_symbols_name_matches,
2958 kind,
2959 &datum);
2960 }
2961
2962 /* Here, we search through the minimal symbol tables for functions
2963 and variables that match, and force their symbols to be read.
2964 This is in particular necessary for demangled variable names,
2965 which are no longer put into the partial symbol tables.
2966 The symbol will then be found during the scan of symtabs below.
2967
2968 For functions, find_pc_symtab should succeed if we have debug info
2969 for the function, for variables we have to call lookup_symbol
2970 to determine if the variable has debug info.
2971 If the lookup fails, set found_misc so that we will rescan to print
2972 any matching symbols without debug info.
2973 */
2974
2975 if (nfiles == 0 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
2976 {
2977 ALL_MSYMBOLS (objfile, msymbol)
2978 {
2979 QUIT;
2980
2981 if (MSYMBOL_TYPE (msymbol) == ourtype ||
2982 MSYMBOL_TYPE (msymbol) == ourtype2 ||
2983 MSYMBOL_TYPE (msymbol) == ourtype3 ||
2984 MSYMBOL_TYPE (msymbol) == ourtype4)
2985 {
2986 if (regexp == NULL
2987 || re_exec (SYMBOL_NATURAL_NAME (msymbol)) != 0)
2988 {
2989 if (0 == find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol)))
2990 {
2991 /* FIXME: carlton/2003-02-04: Given that the
2992 semantics of lookup_symbol keeps on changing
2993 slightly, it would be a nice idea if we had a
2994 function lookup_symbol_minsym that found the
2995 symbol associated to a given minimal symbol (if
2996 any). */
2997 if (kind == FUNCTIONS_DOMAIN
2998 || lookup_symbol (SYMBOL_LINKAGE_NAME (msymbol),
2999 (struct block *) NULL,
3000 VAR_DOMAIN, 0)
3001 == NULL)
3002 found_misc = 1;
3003 }
3004 }
3005 }
3006 }
3007 }
3008
3009 ALL_PRIMARY_SYMTABS (objfile, s)
3010 {
3011 bv = BLOCKVECTOR (s);
3012 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
3013 {
3014 struct symbol_search *prevtail = tail;
3015 int nfound = 0;
3016 b = BLOCKVECTOR_BLOCK (bv, i);
3017 ALL_BLOCK_SYMBOLS (b, iter, sym)
3018 {
3019 struct symtab *real_symtab = SYMBOL_SYMTAB (sym);
3020 QUIT;
3021
3022 if (file_matches (real_symtab->filename, files, nfiles)
3023 && ((regexp == NULL
3024 || re_exec (SYMBOL_NATURAL_NAME (sym)) != 0)
3025 && ((kind == VARIABLES_DOMAIN && SYMBOL_CLASS (sym) != LOC_TYPEDEF
3026 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
3027 && SYMBOL_CLASS (sym) != LOC_BLOCK
3028 && SYMBOL_CLASS (sym) != LOC_CONST)
3029 || (kind == FUNCTIONS_DOMAIN && SYMBOL_CLASS (sym) == LOC_BLOCK)
3030 || (kind == TYPES_DOMAIN && SYMBOL_CLASS (sym) == LOC_TYPEDEF))))
3031 {
3032 /* match */
3033 psr = (struct symbol_search *) xmalloc (sizeof (struct symbol_search));
3034 psr->block = i;
3035 psr->symtab = real_symtab;
3036 psr->symbol = sym;
3037 psr->msymbol = NULL;
3038 psr->next = NULL;
3039 if (tail == NULL)
3040 sr = psr;
3041 else
3042 tail->next = psr;
3043 tail = psr;
3044 nfound ++;
3045 }
3046 }
3047 if (nfound > 0)
3048 {
3049 if (prevtail == NULL)
3050 {
3051 struct symbol_search dummy;
3052
3053 dummy.next = sr;
3054 tail = sort_search_symbols (&dummy, nfound);
3055 sr = dummy.next;
3056
3057 old_chain = make_cleanup_free_search_symbols (sr);
3058 }
3059 else
3060 tail = sort_search_symbols (prevtail, nfound);
3061 }
3062 }
3063 }
3064
3065 /* If there are no eyes, avoid all contact. I mean, if there are
3066 no debug symbols, then print directly from the msymbol_vector. */
3067
3068 if (found_misc || kind != FUNCTIONS_DOMAIN)
3069 {
3070 ALL_MSYMBOLS (objfile, msymbol)
3071 {
3072 QUIT;
3073
3074 if (MSYMBOL_TYPE (msymbol) == ourtype ||
3075 MSYMBOL_TYPE (msymbol) == ourtype2 ||
3076 MSYMBOL_TYPE (msymbol) == ourtype3 ||
3077 MSYMBOL_TYPE (msymbol) == ourtype4)
3078 {
3079 if (regexp == NULL
3080 || re_exec (SYMBOL_NATURAL_NAME (msymbol)) != 0)
3081 {
3082 /* Functions: Look up by address. */
3083 if (kind != FUNCTIONS_DOMAIN ||
3084 (0 == find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol))))
3085 {
3086 /* Variables/Absolutes: Look up by name */
3087 if (lookup_symbol (SYMBOL_LINKAGE_NAME (msymbol),
3088 (struct block *) NULL, VAR_DOMAIN, 0)
3089 == NULL)
3090 {
3091 /* match */
3092 psr = (struct symbol_search *) xmalloc (sizeof (struct symbol_search));
3093 psr->block = i;
3094 psr->msymbol = msymbol;
3095 psr->symtab = NULL;
3096 psr->symbol = NULL;
3097 psr->next = NULL;
3098 if (tail == NULL)
3099 {
3100 sr = psr;
3101 old_chain = make_cleanup_free_search_symbols (sr);
3102 }
3103 else
3104 tail->next = psr;
3105 tail = psr;
3106 }
3107 }
3108 }
3109 }
3110 }
3111 }
3112
3113 *matches = sr;
3114 if (sr != NULL)
3115 discard_cleanups (old_chain);
3116 }
3117
3118 /* Helper function for symtab_symbol_info, this function uses
3119 the data returned from search_symbols() to print information
3120 regarding the match to gdb_stdout.
3121 */
3122 static void
3123 print_symbol_info (domain_enum kind, struct symtab *s, struct symbol *sym,
3124 int block, char *last)
3125 {
3126 if (last == NULL || strcmp (last, s->filename) != 0)
3127 {
3128 fputs_filtered ("\nFile ", gdb_stdout);
3129 fputs_filtered (s->filename, gdb_stdout);
3130 fputs_filtered (":\n", gdb_stdout);
3131 }
3132
3133 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
3134 printf_filtered ("static ");
3135
3136 /* Typedef that is not a C++ class */
3137 if (kind == TYPES_DOMAIN
3138 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
3139 typedef_print (SYMBOL_TYPE (sym), sym, gdb_stdout);
3140 /* variable, func, or typedef-that-is-c++-class */
3141 else if (kind < TYPES_DOMAIN ||
3142 (kind == TYPES_DOMAIN &&
3143 SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
3144 {
3145 type_print (SYMBOL_TYPE (sym),
3146 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
3147 ? "" : SYMBOL_PRINT_NAME (sym)),
3148 gdb_stdout, 0);
3149
3150 printf_filtered (";\n");
3151 }
3152 }
3153
3154 /* This help function for symtab_symbol_info() prints information
3155 for non-debugging symbols to gdb_stdout.
3156 */
3157 static void
3158 print_msymbol_info (struct minimal_symbol *msymbol)
3159 {
3160 struct gdbarch *gdbarch = get_objfile_arch (msymbol_objfile (msymbol));
3161 char *tmp;
3162
3163 if (gdbarch_addr_bit (gdbarch) <= 32)
3164 tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol)
3165 & (CORE_ADDR) 0xffffffff,
3166 8);
3167 else
3168 tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol),
3169 16);
3170 printf_filtered ("%s %s\n",
3171 tmp, SYMBOL_PRINT_NAME (msymbol));
3172 }
3173
3174 /* This is the guts of the commands "info functions", "info types", and
3175 "info variables". It calls search_symbols to find all matches and then
3176 print_[m]symbol_info to print out some useful information about the
3177 matches.
3178 */
3179 static void
3180 symtab_symbol_info (char *regexp, domain_enum kind, int from_tty)
3181 {
3182 static char *classnames[]
3183 =
3184 {"variable", "function", "type", "method"};
3185 struct symbol_search *symbols;
3186 struct symbol_search *p;
3187 struct cleanup *old_chain;
3188 char *last_filename = NULL;
3189 int first = 1;
3190
3191 /* must make sure that if we're interrupted, symbols gets freed */
3192 search_symbols (regexp, kind, 0, (char **) NULL, &symbols);
3193 old_chain = make_cleanup_free_search_symbols (symbols);
3194
3195 printf_filtered (regexp
3196 ? "All %ss matching regular expression \"%s\":\n"
3197 : "All defined %ss:\n",
3198 classnames[(int) (kind - VARIABLES_DOMAIN)], regexp);
3199
3200 for (p = symbols; p != NULL; p = p->next)
3201 {
3202 QUIT;
3203
3204 if (p->msymbol != NULL)
3205 {
3206 if (first)
3207 {
3208 printf_filtered ("\nNon-debugging symbols:\n");
3209 first = 0;
3210 }
3211 print_msymbol_info (p->msymbol);
3212 }
3213 else
3214 {
3215 print_symbol_info (kind,
3216 p->symtab,
3217 p->symbol,
3218 p->block,
3219 last_filename);
3220 last_filename = p->symtab->filename;
3221 }
3222 }
3223
3224 do_cleanups (old_chain);
3225 }
3226
3227 static void
3228 variables_info (char *regexp, int from_tty)
3229 {
3230 symtab_symbol_info (regexp, VARIABLES_DOMAIN, from_tty);
3231 }
3232
3233 static void
3234 functions_info (char *regexp, int from_tty)
3235 {
3236 symtab_symbol_info (regexp, FUNCTIONS_DOMAIN, from_tty);
3237 }
3238
3239
3240 static void
3241 types_info (char *regexp, int from_tty)
3242 {
3243 symtab_symbol_info (regexp, TYPES_DOMAIN, from_tty);
3244 }
3245
3246 /* Breakpoint all functions matching regular expression. */
3247
3248 void
3249 rbreak_command_wrapper (char *regexp, int from_tty)
3250 {
3251 rbreak_command (regexp, from_tty);
3252 }
3253
3254 /* A cleanup function that calls end_rbreak_breakpoints. */
3255
3256 static void
3257 do_end_rbreak_breakpoints (void *ignore)
3258 {
3259 end_rbreak_breakpoints ();
3260 }
3261
3262 static void
3263 rbreak_command (char *regexp, int from_tty)
3264 {
3265 struct symbol_search *ss;
3266 struct symbol_search *p;
3267 struct cleanup *old_chain;
3268 char *string = NULL;
3269 int len = 0;
3270 char **files = NULL;
3271 int nfiles = 0;
3272
3273 if (regexp)
3274 {
3275 char *colon = strchr (regexp, ':');
3276 if (colon && *(colon + 1) != ':')
3277 {
3278 int colon_index;
3279 char * file_name;
3280
3281 colon_index = colon - regexp;
3282 file_name = alloca (colon_index + 1);
3283 memcpy (file_name, regexp, colon_index);
3284 file_name[colon_index--] = 0;
3285 while (isspace (file_name[colon_index]))
3286 file_name[colon_index--] = 0;
3287 files = &file_name;
3288 nfiles = 1;
3289 regexp = colon + 1;
3290 while (isspace (*regexp)) regexp++;
3291 }
3292 }
3293
3294 search_symbols (regexp, FUNCTIONS_DOMAIN, nfiles, files, &ss);
3295 old_chain = make_cleanup_free_search_symbols (ss);
3296 make_cleanup (free_current_contents, &string);
3297
3298 start_rbreak_breakpoints ();
3299 make_cleanup (do_end_rbreak_breakpoints, NULL);
3300 for (p = ss; p != NULL; p = p->next)
3301 {
3302 if (p->msymbol == NULL)
3303 {
3304 int newlen = (strlen (p->symtab->filename)
3305 + strlen (SYMBOL_LINKAGE_NAME (p->symbol))
3306 + 4);
3307 if (newlen > len)
3308 {
3309 string = xrealloc (string, newlen);
3310 len = newlen;
3311 }
3312 strcpy (string, p->symtab->filename);
3313 strcat (string, ":'");
3314 strcat (string, SYMBOL_LINKAGE_NAME (p->symbol));
3315 strcat (string, "'");
3316 break_command (string, from_tty);
3317 print_symbol_info (FUNCTIONS_DOMAIN,
3318 p->symtab,
3319 p->symbol,
3320 p->block,
3321 p->symtab->filename);
3322 }
3323 else
3324 {
3325 int newlen = (strlen (SYMBOL_LINKAGE_NAME (p->msymbol))
3326 + 3);
3327 if (newlen > len)
3328 {
3329 string = xrealloc (string, newlen);
3330 len = newlen;
3331 }
3332 strcpy (string, "'");
3333 strcat (string, SYMBOL_LINKAGE_NAME (p->msymbol));
3334 strcat (string, "'");
3335
3336 break_command (string, from_tty);
3337 printf_filtered ("<function, no debug info> %s;\n",
3338 SYMBOL_PRINT_NAME (p->msymbol));
3339 }
3340 }
3341
3342 do_cleanups (old_chain);
3343 }
3344 \f
3345
3346 /* Helper routine for make_symbol_completion_list. */
3347
3348 static int return_val_size;
3349 static int return_val_index;
3350 static char **return_val;
3351
3352 #define COMPLETION_LIST_ADD_SYMBOL(symbol, sym_text, len, text, word) \
3353 completion_list_add_name \
3354 (SYMBOL_NATURAL_NAME (symbol), (sym_text), (len), (text), (word))
3355
3356 /* Test to see if the symbol specified by SYMNAME (which is already
3357 demangled for C++ symbols) matches SYM_TEXT in the first SYM_TEXT_LEN
3358 characters. If so, add it to the current completion list. */
3359
3360 static void
3361 completion_list_add_name (char *symname, char *sym_text, int sym_text_len,
3362 char *text, char *word)
3363 {
3364 int newsize;
3365
3366 /* clip symbols that cannot match */
3367
3368 if (strncmp (symname, sym_text, sym_text_len) != 0)
3369 {
3370 return;
3371 }
3372
3373 /* We have a match for a completion, so add SYMNAME to the current list
3374 of matches. Note that the name is moved to freshly malloc'd space. */
3375
3376 {
3377 char *new;
3378 if (word == sym_text)
3379 {
3380 new = xmalloc (strlen (symname) + 5);
3381 strcpy (new, symname);
3382 }
3383 else if (word > sym_text)
3384 {
3385 /* Return some portion of symname. */
3386 new = xmalloc (strlen (symname) + 5);
3387 strcpy (new, symname + (word - sym_text));
3388 }
3389 else
3390 {
3391 /* Return some of SYM_TEXT plus symname. */
3392 new = xmalloc (strlen (symname) + (sym_text - word) + 5);
3393 strncpy (new, word, sym_text - word);
3394 new[sym_text - word] = '\0';
3395 strcat (new, symname);
3396 }
3397
3398 if (return_val_index + 3 > return_val_size)
3399 {
3400 newsize = (return_val_size *= 2) * sizeof (char *);
3401 return_val = (char **) xrealloc ((char *) return_val, newsize);
3402 }
3403 return_val[return_val_index++] = new;
3404 return_val[return_val_index] = NULL;
3405 }
3406 }
3407
3408 /* ObjC: In case we are completing on a selector, look as the msymbol
3409 again and feed all the selectors into the mill. */
3410
3411 static void
3412 completion_list_objc_symbol (struct minimal_symbol *msymbol, char *sym_text,
3413 int sym_text_len, char *text, char *word)
3414 {
3415 static char *tmp = NULL;
3416 static unsigned int tmplen = 0;
3417
3418 char *method, *category, *selector;
3419 char *tmp2 = NULL;
3420
3421 method = SYMBOL_NATURAL_NAME (msymbol);
3422
3423 /* Is it a method? */
3424 if ((method[0] != '-') && (method[0] != '+'))
3425 return;
3426
3427 if (sym_text[0] == '[')
3428 /* Complete on shortened method method. */
3429 completion_list_add_name (method + 1, sym_text, sym_text_len, text, word);
3430
3431 while ((strlen (method) + 1) >= tmplen)
3432 {
3433 if (tmplen == 0)
3434 tmplen = 1024;
3435 else
3436 tmplen *= 2;
3437 tmp = xrealloc (tmp, tmplen);
3438 }
3439 selector = strchr (method, ' ');
3440 if (selector != NULL)
3441 selector++;
3442
3443 category = strchr (method, '(');
3444
3445 if ((category != NULL) && (selector != NULL))
3446 {
3447 memcpy (tmp, method, (category - method));
3448 tmp[category - method] = ' ';
3449 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
3450 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
3451 if (sym_text[0] == '[')
3452 completion_list_add_name (tmp + 1, sym_text, sym_text_len, text, word);
3453 }
3454
3455 if (selector != NULL)
3456 {
3457 /* Complete on selector only. */
3458 strcpy (tmp, selector);
3459 tmp2 = strchr (tmp, ']');
3460 if (tmp2 != NULL)
3461 *tmp2 = '\0';
3462
3463 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
3464 }
3465 }
3466
3467 /* Break the non-quoted text based on the characters which are in
3468 symbols. FIXME: This should probably be language-specific. */
3469
3470 static char *
3471 language_search_unquoted_string (char *text, char *p)
3472 {
3473 for (; p > text; --p)
3474 {
3475 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
3476 continue;
3477 else
3478 {
3479 if ((current_language->la_language == language_objc))
3480 {
3481 if (p[-1] == ':') /* might be part of a method name */
3482 continue;
3483 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
3484 p -= 2; /* beginning of a method name */
3485 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
3486 { /* might be part of a method name */
3487 char *t = p;
3488
3489 /* Seeing a ' ' or a '(' is not conclusive evidence
3490 that we are in the middle of a method name. However,
3491 finding "-[" or "+[" should be pretty un-ambiguous.
3492 Unfortunately we have to find it now to decide. */
3493
3494 while (t > text)
3495 if (isalnum (t[-1]) || t[-1] == '_' ||
3496 t[-1] == ' ' || t[-1] == ':' ||
3497 t[-1] == '(' || t[-1] == ')')
3498 --t;
3499 else
3500 break;
3501
3502 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
3503 p = t - 2; /* method name detected */
3504 /* else we leave with p unchanged */
3505 }
3506 }
3507 break;
3508 }
3509 }
3510 return p;
3511 }
3512
3513 static void
3514 completion_list_add_fields (struct symbol *sym, char *sym_text,
3515 int sym_text_len, char *text, char *word)
3516 {
3517 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
3518 {
3519 struct type *t = SYMBOL_TYPE (sym);
3520 enum type_code c = TYPE_CODE (t);
3521 int j;
3522
3523 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
3524 for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++)
3525 if (TYPE_FIELD_NAME (t, j))
3526 completion_list_add_name (TYPE_FIELD_NAME (t, j),
3527 sym_text, sym_text_len, text, word);
3528 }
3529 }
3530
3531 /* Type of the user_data argument passed to add_macro_name or
3532 add_partial_symbol_name. The contents are simply whatever is
3533 needed by completion_list_add_name. */
3534 struct add_name_data
3535 {
3536 char *sym_text;
3537 int sym_text_len;
3538 char *text;
3539 char *word;
3540 };
3541
3542 /* A callback used with macro_for_each and macro_for_each_in_scope.
3543 This adds a macro's name to the current completion list. */
3544 static void
3545 add_macro_name (const char *name, const struct macro_definition *ignore,
3546 void *user_data)
3547 {
3548 struct add_name_data *datum = (struct add_name_data *) user_data;
3549 completion_list_add_name ((char *) name,
3550 datum->sym_text, datum->sym_text_len,
3551 datum->text, datum->word);
3552 }
3553
3554 /* A callback for map_partial_symbol_names. */
3555 static void
3556 add_partial_symbol_name (const char *name, void *user_data)
3557 {
3558 struct add_name_data *datum = (struct add_name_data *) user_data;
3559 completion_list_add_name ((char *) name,
3560 datum->sym_text, datum->sym_text_len,
3561 datum->text, datum->word);
3562 }
3563
3564 char **
3565 default_make_symbol_completion_list (char *text, char *word)
3566 {
3567 /* Problem: All of the symbols have to be copied because readline
3568 frees them. I'm not going to worry about this; hopefully there
3569 won't be that many. */
3570
3571 struct symbol *sym;
3572 struct symtab *s;
3573 struct minimal_symbol *msymbol;
3574 struct objfile *objfile;
3575 struct block *b;
3576 const struct block *surrounding_static_block, *surrounding_global_block;
3577 struct dict_iterator iter;
3578 /* The symbol we are completing on. Points in same buffer as text. */
3579 char *sym_text;
3580 /* Length of sym_text. */
3581 int sym_text_len;
3582 struct add_name_data datum;
3583
3584 /* Now look for the symbol we are supposed to complete on. */
3585 {
3586 char *p;
3587 char quote_found;
3588 char *quote_pos = NULL;
3589
3590 /* First see if this is a quoted string. */
3591 quote_found = '\0';
3592 for (p = text; *p != '\0'; ++p)
3593 {
3594 if (quote_found != '\0')
3595 {
3596 if (*p == quote_found)
3597 /* Found close quote. */
3598 quote_found = '\0';
3599 else if (*p == '\\' && p[1] == quote_found)
3600 /* A backslash followed by the quote character
3601 doesn't end the string. */
3602 ++p;
3603 }
3604 else if (*p == '\'' || *p == '"')
3605 {
3606 quote_found = *p;
3607 quote_pos = p;
3608 }
3609 }
3610 if (quote_found == '\'')
3611 /* A string within single quotes can be a symbol, so complete on it. */
3612 sym_text = quote_pos + 1;
3613 else if (quote_found == '"')
3614 /* A double-quoted string is never a symbol, nor does it make sense
3615 to complete it any other way. */
3616 {
3617 return_val = (char **) xmalloc (sizeof (char *));
3618 return_val[0] = NULL;
3619 return return_val;
3620 }
3621 else
3622 {
3623 /* It is not a quoted string. Break it based on the characters
3624 which are in symbols. */
3625 while (p > text)
3626 {
3627 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0'
3628 || p[-1] == ':')
3629 --p;
3630 else
3631 break;
3632 }
3633 sym_text = p;
3634 }
3635 }
3636
3637 sym_text_len = strlen (sym_text);
3638
3639 return_val_size = 100;
3640 return_val_index = 0;
3641 return_val = (char **) xmalloc ((return_val_size + 1) * sizeof (char *));
3642 return_val[0] = NULL;
3643
3644 datum.sym_text = sym_text;
3645 datum.sym_text_len = sym_text_len;
3646 datum.text = text;
3647 datum.word = word;
3648
3649 /* Look through the partial symtabs for all symbols which begin
3650 by matching SYM_TEXT. Add each one that you find to the list. */
3651 map_partial_symbol_names (add_partial_symbol_name, &datum);
3652
3653 /* At this point scan through the misc symbol vectors and add each
3654 symbol you find to the list. Eventually we want to ignore
3655 anything that isn't a text symbol (everything else will be
3656 handled by the psymtab code above). */
3657
3658 ALL_MSYMBOLS (objfile, msymbol)
3659 {
3660 QUIT;
3661 COMPLETION_LIST_ADD_SYMBOL (msymbol, sym_text, sym_text_len, text, word);
3662
3663 completion_list_objc_symbol (msymbol, sym_text, sym_text_len, text, word);
3664 }
3665
3666 /* Search upwards from currently selected frame (so that we can
3667 complete on local vars). Also catch fields of types defined in
3668 this places which match our text string. Only complete on types
3669 visible from current context. */
3670
3671 b = get_selected_block (0);
3672 surrounding_static_block = block_static_block (b);
3673 surrounding_global_block = block_global_block (b);
3674 if (surrounding_static_block != NULL)
3675 while (b != surrounding_static_block)
3676 {
3677 QUIT;
3678
3679 ALL_BLOCK_SYMBOLS (b, iter, sym)
3680 {
3681 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text,
3682 word);
3683 completion_list_add_fields (sym, sym_text, sym_text_len, text,
3684 word);
3685 }
3686
3687 /* Stop when we encounter an enclosing function. Do not stop for
3688 non-inlined functions - the locals of the enclosing function
3689 are in scope for a nested function. */
3690 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
3691 break;
3692 b = BLOCK_SUPERBLOCK (b);
3693 }
3694
3695 /* Add fields from the file's types; symbols will be added below. */
3696
3697 if (surrounding_static_block != NULL)
3698 ALL_BLOCK_SYMBOLS (surrounding_static_block, iter, sym)
3699 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
3700
3701 if (surrounding_global_block != NULL)
3702 ALL_BLOCK_SYMBOLS (surrounding_global_block, iter, sym)
3703 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
3704
3705 /* Go through the symtabs and check the externs and statics for
3706 symbols which match. */
3707
3708 ALL_PRIMARY_SYMTABS (objfile, s)
3709 {
3710 QUIT;
3711 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
3712 ALL_BLOCK_SYMBOLS (b, iter, sym)
3713 {
3714 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
3715 }
3716 }
3717
3718 ALL_PRIMARY_SYMTABS (objfile, s)
3719 {
3720 QUIT;
3721 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
3722 ALL_BLOCK_SYMBOLS (b, iter, sym)
3723 {
3724 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
3725 }
3726 }
3727
3728 if (current_language->la_macro_expansion == macro_expansion_c)
3729 {
3730 struct macro_scope *scope;
3731
3732 /* Add any macros visible in the default scope. Note that this
3733 may yield the occasional wrong result, because an expression
3734 might be evaluated in a scope other than the default. For
3735 example, if the user types "break file:line if <TAB>", the
3736 resulting expression will be evaluated at "file:line" -- but
3737 at there does not seem to be a way to detect this at
3738 completion time. */
3739 scope = default_macro_scope ();
3740 if (scope)
3741 {
3742 macro_for_each_in_scope (scope->file, scope->line,
3743 add_macro_name, &datum);
3744 xfree (scope);
3745 }
3746
3747 /* User-defined macros are always visible. */
3748 macro_for_each (macro_user_macros, add_macro_name, &datum);
3749 }
3750
3751 return (return_val);
3752 }
3753
3754 /* Return a NULL terminated array of all symbols (regardless of class)
3755 which begin by matching TEXT. If the answer is no symbols, then
3756 the return value is an array which contains only a NULL pointer. */
3757
3758 char **
3759 make_symbol_completion_list (char *text, char *word)
3760 {
3761 return current_language->la_make_symbol_completion_list (text, word);
3762 }
3763
3764 /* Like make_symbol_completion_list, but suitable for use as a
3765 completion function. */
3766
3767 char **
3768 make_symbol_completion_list_fn (struct cmd_list_element *ignore,
3769 char *text, char *word)
3770 {
3771 return make_symbol_completion_list (text, word);
3772 }
3773
3774 /* Like make_symbol_completion_list, but returns a list of symbols
3775 defined in a source file FILE. */
3776
3777 char **
3778 make_file_symbol_completion_list (char *text, char *word, char *srcfile)
3779 {
3780 struct symbol *sym;
3781 struct symtab *s;
3782 struct block *b;
3783 struct dict_iterator iter;
3784 /* The symbol we are completing on. Points in same buffer as text. */
3785 char *sym_text;
3786 /* Length of sym_text. */
3787 int sym_text_len;
3788
3789 /* Now look for the symbol we are supposed to complete on.
3790 FIXME: This should be language-specific. */
3791 {
3792 char *p;
3793 char quote_found;
3794 char *quote_pos = NULL;
3795
3796 /* First see if this is a quoted string. */
3797 quote_found = '\0';
3798 for (p = text; *p != '\0'; ++p)
3799 {
3800 if (quote_found != '\0')
3801 {
3802 if (*p == quote_found)
3803 /* Found close quote. */
3804 quote_found = '\0';
3805 else if (*p == '\\' && p[1] == quote_found)
3806 /* A backslash followed by the quote character
3807 doesn't end the string. */
3808 ++p;
3809 }
3810 else if (*p == '\'' || *p == '"')
3811 {
3812 quote_found = *p;
3813 quote_pos = p;
3814 }
3815 }
3816 if (quote_found == '\'')
3817 /* A string within single quotes can be a symbol, so complete on it. */
3818 sym_text = quote_pos + 1;
3819 else if (quote_found == '"')
3820 /* A double-quoted string is never a symbol, nor does it make sense
3821 to complete it any other way. */
3822 {
3823 return_val = (char **) xmalloc (sizeof (char *));
3824 return_val[0] = NULL;
3825 return return_val;
3826 }
3827 else
3828 {
3829 /* Not a quoted string. */
3830 sym_text = language_search_unquoted_string (text, p);
3831 }
3832 }
3833
3834 sym_text_len = strlen (sym_text);
3835
3836 return_val_size = 10;
3837 return_val_index = 0;
3838 return_val = (char **) xmalloc ((return_val_size + 1) * sizeof (char *));
3839 return_val[0] = NULL;
3840
3841 /* Find the symtab for SRCFILE (this loads it if it was not yet read
3842 in). */
3843 s = lookup_symtab (srcfile);
3844 if (s == NULL)
3845 {
3846 /* Maybe they typed the file with leading directories, while the
3847 symbol tables record only its basename. */
3848 const char *tail = lbasename (srcfile);
3849
3850 if (tail > srcfile)
3851 s = lookup_symtab (tail);
3852 }
3853
3854 /* If we have no symtab for that file, return an empty list. */
3855 if (s == NULL)
3856 return (return_val);
3857
3858 /* Go through this symtab and check the externs and statics for
3859 symbols which match. */
3860
3861 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
3862 ALL_BLOCK_SYMBOLS (b, iter, sym)
3863 {
3864 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
3865 }
3866
3867 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
3868 ALL_BLOCK_SYMBOLS (b, iter, sym)
3869 {
3870 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
3871 }
3872
3873 return (return_val);
3874 }
3875
3876 /* A helper function for make_source_files_completion_list. It adds
3877 another file name to a list of possible completions, growing the
3878 list as necessary. */
3879
3880 static void
3881 add_filename_to_list (const char *fname, char *text, char *word,
3882 char ***list, int *list_used, int *list_alloced)
3883 {
3884 char *new;
3885 size_t fnlen = strlen (fname);
3886
3887 if (*list_used + 1 >= *list_alloced)
3888 {
3889 *list_alloced *= 2;
3890 *list = (char **) xrealloc ((char *) *list,
3891 *list_alloced * sizeof (char *));
3892 }
3893
3894 if (word == text)
3895 {
3896 /* Return exactly fname. */
3897 new = xmalloc (fnlen + 5);
3898 strcpy (new, fname);
3899 }
3900 else if (word > text)
3901 {
3902 /* Return some portion of fname. */
3903 new = xmalloc (fnlen + 5);
3904 strcpy (new, fname + (word - text));
3905 }
3906 else
3907 {
3908 /* Return some of TEXT plus fname. */
3909 new = xmalloc (fnlen + (text - word) + 5);
3910 strncpy (new, word, text - word);
3911 new[text - word] = '\0';
3912 strcat (new, fname);
3913 }
3914 (*list)[*list_used] = new;
3915 (*list)[++*list_used] = NULL;
3916 }
3917
3918 static int
3919 not_interesting_fname (const char *fname)
3920 {
3921 static const char *illegal_aliens[] = {
3922 "_globals_", /* inserted by coff_symtab_read */
3923 NULL
3924 };
3925 int i;
3926
3927 for (i = 0; illegal_aliens[i]; i++)
3928 {
3929 if (strcmp (fname, illegal_aliens[i]) == 0)
3930 return 1;
3931 }
3932 return 0;
3933 }
3934
3935 /* An object of this type is passed as the user_data argument to
3936 map_partial_symbol_filenames. */
3937 struct add_partial_filename_data
3938 {
3939 int *first;
3940 char *text;
3941 char *word;
3942 int text_len;
3943 char ***list;
3944 int *list_used;
3945 int *list_alloced;
3946 };
3947
3948 /* A callback for map_partial_symbol_filenames. */
3949 static void
3950 maybe_add_partial_symtab_filename (const char *fullname, const char *filename,
3951 void *user_data)
3952 {
3953 struct add_partial_filename_data *data = user_data;
3954
3955 if (not_interesting_fname (filename))
3956 return;
3957 if (!filename_seen (filename, 1, data->first)
3958 #if HAVE_DOS_BASED_FILE_SYSTEM
3959 && strncasecmp (filename, data->text, data->text_len) == 0
3960 #else
3961 && strncmp (filename, data->text, data->text_len) == 0
3962 #endif
3963 )
3964 {
3965 /* This file matches for a completion; add it to the
3966 current list of matches. */
3967 add_filename_to_list (filename, data->text, data->word,
3968 data->list, data->list_used, data->list_alloced);
3969 }
3970 else
3971 {
3972 const char *base_name = lbasename (filename);
3973 if (base_name != filename
3974 && !filename_seen (base_name, 1, data->first)
3975 #if HAVE_DOS_BASED_FILE_SYSTEM
3976 && strncasecmp (base_name, data->text, data->text_len) == 0
3977 #else
3978 && strncmp (base_name, data->text, data->text_len) == 0
3979 #endif
3980 )
3981 add_filename_to_list (base_name, data->text, data->word,
3982 data->list, data->list_used, data->list_alloced);
3983 }
3984 }
3985
3986 /* Return a NULL terminated array of all source files whose names
3987 begin with matching TEXT. The file names are looked up in the
3988 symbol tables of this program. If the answer is no matchess, then
3989 the return value is an array which contains only a NULL pointer. */
3990
3991 char **
3992 make_source_files_completion_list (char *text, char *word)
3993 {
3994 struct symtab *s;
3995 struct objfile *objfile;
3996 int first = 1;
3997 int list_alloced = 1;
3998 int list_used = 0;
3999 size_t text_len = strlen (text);
4000 char **list = (char **) xmalloc (list_alloced * sizeof (char *));
4001 const char *base_name;
4002 struct add_partial_filename_data datum;
4003
4004 list[0] = NULL;
4005
4006 if (!have_full_symbols () && !have_partial_symbols ())
4007 return list;
4008
4009 ALL_SYMTABS (objfile, s)
4010 {
4011 if (not_interesting_fname (s->filename))
4012 continue;
4013 if (!filename_seen (s->filename, 1, &first)
4014 #if HAVE_DOS_BASED_FILE_SYSTEM
4015 && strncasecmp (s->filename, text, text_len) == 0
4016 #else
4017 && strncmp (s->filename, text, text_len) == 0
4018 #endif
4019 )
4020 {
4021 /* This file matches for a completion; add it to the current
4022 list of matches. */
4023 add_filename_to_list (s->filename, text, word,
4024 &list, &list_used, &list_alloced);
4025 }
4026 else
4027 {
4028 /* NOTE: We allow the user to type a base name when the
4029 debug info records leading directories, but not the other
4030 way around. This is what subroutines of breakpoint
4031 command do when they parse file names. */
4032 base_name = lbasename (s->filename);
4033 if (base_name != s->filename
4034 && !filename_seen (base_name, 1, &first)
4035 #if HAVE_DOS_BASED_FILE_SYSTEM
4036 && strncasecmp (base_name, text, text_len) == 0
4037 #else
4038 && strncmp (base_name, text, text_len) == 0
4039 #endif
4040 )
4041 add_filename_to_list (base_name, text, word,
4042 &list, &list_used, &list_alloced);
4043 }
4044 }
4045
4046 datum.first = &first;
4047 datum.text = text;
4048 datum.word = word;
4049 datum.text_len = text_len;
4050 datum.list = &list;
4051 datum.list_used = &list_used;
4052 datum.list_alloced = &list_alloced;
4053 map_partial_symbol_filenames (maybe_add_partial_symtab_filename, &datum);
4054
4055 return list;
4056 }
4057
4058 /* Determine if PC is in the prologue of a function. The prologue is the area
4059 between the first instruction of a function, and the first executable line.
4060 Returns 1 if PC *might* be in prologue, 0 if definately *not* in prologue.
4061
4062 If non-zero, func_start is where we think the prologue starts, possibly
4063 by previous examination of symbol table information.
4064 */
4065
4066 int
4067 in_prologue (struct gdbarch *gdbarch, CORE_ADDR pc, CORE_ADDR func_start)
4068 {
4069 struct symtab_and_line sal;
4070 CORE_ADDR func_addr, func_end;
4071
4072 /* We have several sources of information we can consult to figure
4073 this out.
4074 - Compilers usually emit line number info that marks the prologue
4075 as its own "source line". So the ending address of that "line"
4076 is the end of the prologue. If available, this is the most
4077 reliable method.
4078 - The minimal symbols and partial symbols, which can usually tell
4079 us the starting and ending addresses of a function.
4080 - If we know the function's start address, we can call the
4081 architecture-defined gdbarch_skip_prologue function to analyze the
4082 instruction stream and guess where the prologue ends.
4083 - Our `func_start' argument; if non-zero, this is the caller's
4084 best guess as to the function's entry point. At the time of
4085 this writing, handle_inferior_event doesn't get this right, so
4086 it should be our last resort. */
4087
4088 /* Consult the partial symbol table, to find which function
4089 the PC is in. */
4090 if (! find_pc_partial_function (pc, NULL, &func_addr, &func_end))
4091 {
4092 CORE_ADDR prologue_end;
4093
4094 /* We don't even have minsym information, so fall back to using
4095 func_start, if given. */
4096 if (! func_start)
4097 return 1; /* We *might* be in a prologue. */
4098
4099 prologue_end = gdbarch_skip_prologue (gdbarch, func_start);
4100
4101 return func_start <= pc && pc < prologue_end;
4102 }
4103
4104 /* If we have line number information for the function, that's
4105 usually pretty reliable. */
4106 sal = find_pc_line (func_addr, 0);
4107
4108 /* Now sal describes the source line at the function's entry point,
4109 which (by convention) is the prologue. The end of that "line",
4110 sal.end, is the end of the prologue.
4111
4112 Note that, for functions whose source code is all on a single
4113 line, the line number information doesn't always end up this way.
4114 So we must verify that our purported end-of-prologue address is
4115 *within* the function, not at its start or end. */
4116 if (sal.line == 0
4117 || sal.end <= func_addr
4118 || func_end <= sal.end)
4119 {
4120 /* We don't have any good line number info, so use the minsym
4121 information, together with the architecture-specific prologue
4122 scanning code. */
4123 CORE_ADDR prologue_end = gdbarch_skip_prologue (gdbarch, func_addr);
4124
4125 return func_addr <= pc && pc < prologue_end;
4126 }
4127
4128 /* We have line number info, and it looks good. */
4129 return func_addr <= pc && pc < sal.end;
4130 }
4131
4132 /* Given PC at the function's start address, attempt to find the
4133 prologue end using SAL information. Return zero if the skip fails.
4134
4135 A non-optimized prologue traditionally has one SAL for the function
4136 and a second for the function body. A single line function has
4137 them both pointing at the same line.
4138
4139 An optimized prologue is similar but the prologue may contain
4140 instructions (SALs) from the instruction body. Need to skip those
4141 while not getting into the function body.
4142
4143 The functions end point and an increasing SAL line are used as
4144 indicators of the prologue's endpoint.
4145
4146 This code is based on the function refine_prologue_limit (versions
4147 found in both ia64 and ppc). */
4148
4149 CORE_ADDR
4150 skip_prologue_using_sal (struct gdbarch *gdbarch, CORE_ADDR func_addr)
4151 {
4152 struct symtab_and_line prologue_sal;
4153 CORE_ADDR start_pc;
4154 CORE_ADDR end_pc;
4155 struct block *bl;
4156
4157 /* Get an initial range for the function. */
4158 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
4159 start_pc += gdbarch_deprecated_function_start_offset (gdbarch);
4160
4161 prologue_sal = find_pc_line (start_pc, 0);
4162 if (prologue_sal.line != 0)
4163 {
4164 /* For langauges other than assembly, treat two consecutive line
4165 entries at the same address as a zero-instruction prologue.
4166 The GNU assembler emits separate line notes for each instruction
4167 in a multi-instruction macro, but compilers generally will not
4168 do this. */
4169 if (prologue_sal.symtab->language != language_asm)
4170 {
4171 struct linetable *linetable = LINETABLE (prologue_sal.symtab);
4172 int idx = 0;
4173
4174 /* Skip any earlier lines, and any end-of-sequence marker
4175 from a previous function. */
4176 while (linetable->item[idx].pc != prologue_sal.pc
4177 || linetable->item[idx].line == 0)
4178 idx++;
4179
4180 if (idx+1 < linetable->nitems
4181 && linetable->item[idx+1].line != 0
4182 && linetable->item[idx+1].pc == start_pc)
4183 return start_pc;
4184 }
4185
4186 /* If there is only one sal that covers the entire function,
4187 then it is probably a single line function, like
4188 "foo(){}". */
4189 if (prologue_sal.end >= end_pc)
4190 return 0;
4191
4192 while (prologue_sal.end < end_pc)
4193 {
4194 struct symtab_and_line sal;
4195
4196 sal = find_pc_line (prologue_sal.end, 0);
4197 if (sal.line == 0)
4198 break;
4199 /* Assume that a consecutive SAL for the same (or larger)
4200 line mark the prologue -> body transition. */
4201 if (sal.line >= prologue_sal.line)
4202 break;
4203
4204 /* The line number is smaller. Check that it's from the
4205 same function, not something inlined. If it's inlined,
4206 then there is no point comparing the line numbers. */
4207 bl = block_for_pc (prologue_sal.end);
4208 while (bl)
4209 {
4210 if (block_inlined_p (bl))
4211 break;
4212 if (BLOCK_FUNCTION (bl))
4213 {
4214 bl = NULL;
4215 break;
4216 }
4217 bl = BLOCK_SUPERBLOCK (bl);
4218 }
4219 if (bl != NULL)
4220 break;
4221
4222 /* The case in which compiler's optimizer/scheduler has
4223 moved instructions into the prologue. We look ahead in
4224 the function looking for address ranges whose
4225 corresponding line number is less the first one that we
4226 found for the function. This is more conservative then
4227 refine_prologue_limit which scans a large number of SALs
4228 looking for any in the prologue */
4229 prologue_sal = sal;
4230 }
4231 }
4232
4233 if (prologue_sal.end < end_pc)
4234 /* Return the end of this line, or zero if we could not find a
4235 line. */
4236 return prologue_sal.end;
4237 else
4238 /* Don't return END_PC, which is past the end of the function. */
4239 return prologue_sal.pc;
4240 }
4241 \f
4242 struct symtabs_and_lines
4243 decode_line_spec (char *string, int funfirstline)
4244 {
4245 struct symtabs_and_lines sals;
4246 struct symtab_and_line cursal;
4247
4248 if (string == 0)
4249 error (_("Empty line specification."));
4250
4251 /* We use whatever is set as the current source line. We do not try
4252 and get a default or it will recursively call us! */
4253 cursal = get_current_source_symtab_and_line ();
4254
4255 sals = decode_line_1 (&string, funfirstline,
4256 cursal.symtab, cursal.line,
4257 (char ***) NULL, NULL);
4258
4259 if (*string)
4260 error (_("Junk at end of line specification: %s"), string);
4261 return sals;
4262 }
4263
4264 /* Track MAIN */
4265 static char *name_of_main;
4266
4267 void
4268 set_main_name (const char *name)
4269 {
4270 if (name_of_main != NULL)
4271 {
4272 xfree (name_of_main);
4273 name_of_main = NULL;
4274 }
4275 if (name != NULL)
4276 {
4277 name_of_main = xstrdup (name);
4278 }
4279 }
4280
4281 /* Deduce the name of the main procedure, and set NAME_OF_MAIN
4282 accordingly. */
4283
4284 static void
4285 find_main_name (void)
4286 {
4287 const char *new_main_name;
4288
4289 /* Try to see if the main procedure is in Ada. */
4290 /* FIXME: brobecker/2005-03-07: Another way of doing this would
4291 be to add a new method in the language vector, and call this
4292 method for each language until one of them returns a non-empty
4293 name. This would allow us to remove this hard-coded call to
4294 an Ada function. It is not clear that this is a better approach
4295 at this point, because all methods need to be written in a way
4296 such that false positives never be returned. For instance, it is
4297 important that a method does not return a wrong name for the main
4298 procedure if the main procedure is actually written in a different
4299 language. It is easy to guaranty this with Ada, since we use a
4300 special symbol generated only when the main in Ada to find the name
4301 of the main procedure. It is difficult however to see how this can
4302 be guarantied for languages such as C, for instance. This suggests
4303 that order of call for these methods becomes important, which means
4304 a more complicated approach. */
4305 new_main_name = ada_main_name ();
4306 if (new_main_name != NULL)
4307 {
4308 set_main_name (new_main_name);
4309 return;
4310 }
4311
4312 new_main_name = pascal_main_name ();
4313 if (new_main_name != NULL)
4314 {
4315 set_main_name (new_main_name);
4316 return;
4317 }
4318
4319 /* The languages above didn't identify the name of the main procedure.
4320 Fallback to "main". */
4321 set_main_name ("main");
4322 }
4323
4324 char *
4325 main_name (void)
4326 {
4327 if (name_of_main == NULL)
4328 find_main_name ();
4329
4330 return name_of_main;
4331 }
4332
4333 /* Handle ``executable_changed'' events for the symtab module. */
4334
4335 static void
4336 symtab_observer_executable_changed (void)
4337 {
4338 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
4339 set_main_name (NULL);
4340 }
4341
4342 /* Helper to expand_line_sal below. Appends new sal to SAL,
4343 initializing it from SYMTAB, LINENO and PC. */
4344 static void
4345 append_expanded_sal (struct symtabs_and_lines *sal,
4346 struct program_space *pspace,
4347 struct symtab *symtab,
4348 int lineno, CORE_ADDR pc)
4349 {
4350 sal->sals = xrealloc (sal->sals,
4351 sizeof (sal->sals[0])
4352 * (sal->nelts + 1));
4353 init_sal (sal->sals + sal->nelts);
4354 sal->sals[sal->nelts].pspace = pspace;
4355 sal->sals[sal->nelts].symtab = symtab;
4356 sal->sals[sal->nelts].section = NULL;
4357 sal->sals[sal->nelts].end = 0;
4358 sal->sals[sal->nelts].line = lineno;
4359 sal->sals[sal->nelts].pc = pc;
4360 ++sal->nelts;
4361 }
4362
4363 /* Helper to expand_line_sal below. Search in the symtabs for any
4364 linetable entry that exactly matches FULLNAME and LINENO and append
4365 them to RET. If FULLNAME is NULL or if a symtab has no full name,
4366 use FILENAME and LINENO instead. If there is at least one match,
4367 return 1; otherwise, return 0, and return the best choice in BEST_ITEM
4368 and BEST_SYMTAB. */
4369
4370 static int
4371 append_exact_match_to_sals (char *filename, char *fullname, int lineno,
4372 struct symtabs_and_lines *ret,
4373 struct linetable_entry **best_item,
4374 struct symtab **best_symtab)
4375 {
4376 struct program_space *pspace;
4377 struct objfile *objfile;
4378 struct symtab *symtab;
4379 int exact = 0;
4380 int j;
4381 *best_item = 0;
4382 *best_symtab = 0;
4383
4384 ALL_PSPACES (pspace)
4385 ALL_PSPACE_SYMTABS (pspace, objfile, symtab)
4386 {
4387 if (FILENAME_CMP (filename, symtab->filename) == 0)
4388 {
4389 struct linetable *l;
4390 int len;
4391 if (fullname != NULL
4392 && symtab_to_fullname (symtab) != NULL
4393 && FILENAME_CMP (fullname, symtab->fullname) != 0)
4394 continue;
4395 l = LINETABLE (symtab);
4396 if (!l)
4397 continue;
4398 len = l->nitems;
4399
4400 for (j = 0; j < len; j++)
4401 {
4402 struct linetable_entry *item = &(l->item[j]);
4403
4404 if (item->line == lineno)
4405 {
4406 exact = 1;
4407 append_expanded_sal (ret, objfile->pspace,
4408 symtab, lineno, item->pc);
4409 }
4410 else if (!exact && item->line > lineno
4411 && (*best_item == NULL
4412 || item->line < (*best_item)->line))
4413 {
4414 *best_item = item;
4415 *best_symtab = symtab;
4416 }
4417 }
4418 }
4419 }
4420 return exact;
4421 }
4422
4423 /* Compute a set of all sals in all program spaces that correspond to
4424 same file and line as SAL and return those. If there are several
4425 sals that belong to the same block, only one sal for the block is
4426 included in results. */
4427
4428 struct symtabs_and_lines
4429 expand_line_sal (struct symtab_and_line sal)
4430 {
4431 struct symtabs_and_lines ret;
4432 int i, j;
4433 struct objfile *objfile;
4434 int lineno;
4435 int deleted = 0;
4436 struct block **blocks = NULL;
4437 int *filter;
4438 struct cleanup *old_chain;
4439
4440 ret.nelts = 0;
4441 ret.sals = NULL;
4442
4443 /* Only expand sals that represent file.c:line. */
4444 if (sal.symtab == NULL || sal.line == 0 || sal.pc != 0)
4445 {
4446 ret.sals = xmalloc (sizeof (struct symtab_and_line));
4447 ret.sals[0] = sal;
4448 ret.nelts = 1;
4449 return ret;
4450 }
4451 else
4452 {
4453 struct program_space *pspace;
4454 struct linetable_entry *best_item = 0;
4455 struct symtab *best_symtab = 0;
4456 int exact = 0;
4457 char *match_filename;
4458
4459 lineno = sal.line;
4460 match_filename = sal.symtab->filename;
4461
4462 /* We need to find all symtabs for a file which name
4463 is described by sal. We cannot just directly
4464 iterate over symtabs, since a symtab might not be
4465 yet created. We also cannot iterate over psymtabs,
4466 calling PSYMTAB_TO_SYMTAB and working on that symtab,
4467 since PSYMTAB_TO_SYMTAB will return NULL for psymtab
4468 corresponding to an included file. Therefore, we do
4469 first pass over psymtabs, reading in those with
4470 the right name. Then, we iterate over symtabs, knowing
4471 that all symtabs we're interested in are loaded. */
4472
4473 old_chain = save_current_program_space ();
4474 ALL_PSPACES (pspace)
4475 {
4476 set_current_program_space (pspace);
4477 ALL_PSPACE_OBJFILES (pspace, objfile)
4478 {
4479 if (objfile->sf)
4480 objfile->sf->qf->expand_symtabs_with_filename (objfile,
4481 sal.symtab->filename);
4482 }
4483 }
4484 do_cleanups (old_chain);
4485
4486 /* Now search the symtab for exact matches and append them. If
4487 none is found, append the best_item and all its exact
4488 matches. */
4489 symtab_to_fullname (sal.symtab);
4490 exact = append_exact_match_to_sals (sal.symtab->filename,
4491 sal.symtab->fullname, lineno,
4492 &ret, &best_item, &best_symtab);
4493 if (!exact && best_item)
4494 append_exact_match_to_sals (best_symtab->filename,
4495 best_symtab->fullname, best_item->line,
4496 &ret, &best_item, &best_symtab);
4497 }
4498
4499 /* For optimized code, compiler can scatter one source line accross
4500 disjoint ranges of PC values, even when no duplicate functions
4501 or inline functions are involved. For example, 'for (;;)' inside
4502 non-template non-inline non-ctor-or-dtor function can result
4503 in two PC ranges. In this case, we don't want to set breakpoint
4504 on first PC of each range. To filter such cases, we use containing
4505 blocks -- for each PC found above we see if there are other PCs
4506 that are in the same block. If yes, the other PCs are filtered out. */
4507
4508 old_chain = save_current_program_space ();
4509 filter = alloca (ret.nelts * sizeof (int));
4510 blocks = alloca (ret.nelts * sizeof (struct block *));
4511 for (i = 0; i < ret.nelts; ++i)
4512 {
4513 set_current_program_space (ret.sals[i].pspace);
4514
4515 filter[i] = 1;
4516 blocks[i] = block_for_pc_sect (ret.sals[i].pc, ret.sals[i].section);
4517
4518 }
4519 do_cleanups (old_chain);
4520
4521 for (i = 0; i < ret.nelts; ++i)
4522 if (blocks[i] != NULL)
4523 for (j = i+1; j < ret.nelts; ++j)
4524 if (blocks[j] == blocks[i])
4525 {
4526 filter[j] = 0;
4527 ++deleted;
4528 break;
4529 }
4530
4531 {
4532 struct symtab_and_line *final =
4533 xmalloc (sizeof (struct symtab_and_line) * (ret.nelts-deleted));
4534
4535 for (i = 0, j = 0; i < ret.nelts; ++i)
4536 if (filter[i])
4537 final[j++] = ret.sals[i];
4538
4539 ret.nelts -= deleted;
4540 xfree (ret.sals);
4541 ret.sals = final;
4542 }
4543
4544 return ret;
4545 }
4546
4547 /* Return 1 if the supplied producer string matches the ARM RealView
4548 compiler (armcc). */
4549
4550 int
4551 producer_is_realview (const char *producer)
4552 {
4553 static const char *const arm_idents[] = {
4554 "ARM C Compiler, ADS",
4555 "Thumb C Compiler, ADS",
4556 "ARM C++ Compiler, ADS",
4557 "Thumb C++ Compiler, ADS",
4558 "ARM/Thumb C/C++ Compiler, RVCT",
4559 "ARM C/C++ Compiler, RVCT"
4560 };
4561 int i;
4562
4563 if (producer == NULL)
4564 return 0;
4565
4566 for (i = 0; i < ARRAY_SIZE (arm_idents); i++)
4567 if (strncmp (producer, arm_idents[i], strlen (arm_idents[i])) == 0)
4568 return 1;
4569
4570 return 0;
4571 }
4572
4573 void
4574 _initialize_symtab (void)
4575 {
4576 add_info ("variables", variables_info, _("\
4577 All global and static variable names, or those matching REGEXP."));
4578 if (dbx_commands)
4579 add_com ("whereis", class_info, variables_info, _("\
4580 All global and static variable names, or those matching REGEXP."));
4581
4582 add_info ("functions", functions_info,
4583 _("All function names, or those matching REGEXP."));
4584
4585 /* FIXME: This command has at least the following problems:
4586 1. It prints builtin types (in a very strange and confusing fashion).
4587 2. It doesn't print right, e.g. with
4588 typedef struct foo *FOO
4589 type_print prints "FOO" when we want to make it (in this situation)
4590 print "struct foo *".
4591 I also think "ptype" or "whatis" is more likely to be useful (but if
4592 there is much disagreement "info types" can be fixed). */
4593 add_info ("types", types_info,
4594 _("All type names, or those matching REGEXP."));
4595
4596 add_info ("sources", sources_info,
4597 _("Source files in the program."));
4598
4599 add_com ("rbreak", class_breakpoint, rbreak_command,
4600 _("Set a breakpoint for all functions matching REGEXP."));
4601
4602 if (xdb_commands)
4603 {
4604 add_com ("lf", class_info, sources_info,
4605 _("Source files in the program"));
4606 add_com ("lg", class_info, variables_info, _("\
4607 All global and static variable names, or those matching REGEXP."));
4608 }
4609
4610 add_setshow_enum_cmd ("multiple-symbols", no_class,
4611 multiple_symbols_modes, &multiple_symbols_mode,
4612 _("\
4613 Set the debugger behavior when more than one symbol are possible matches\n\
4614 in an expression."), _("\
4615 Show how the debugger handles ambiguities in expressions."), _("\
4616 Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
4617 NULL, NULL, &setlist, &showlist);
4618
4619 observer_attach_executable_changed (symtab_observer_executable_changed);
4620 }
This page took 0.129699 seconds and 4 git commands to generate.