2011-08-17 Tristan Gingold <gingold@adacore.com>
[deliverable/binutils-gdb.git] / gdb / symtab.c
1 /* Symbol table lookup for the GNU debugger, GDB.
2
3 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2007, 2008, 2009,
5 2010, 2011 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "symtab.h"
24 #include "gdbtypes.h"
25 #include "gdbcore.h"
26 #include "frame.h"
27 #include "target.h"
28 #include "value.h"
29 #include "symfile.h"
30 #include "objfiles.h"
31 #include "gdbcmd.h"
32 #include "call-cmds.h"
33 #include "gdb_regex.h"
34 #include "expression.h"
35 #include "language.h"
36 #include "demangle.h"
37 #include "inferior.h"
38 #include "linespec.h"
39 #include "source.h"
40 #include "filenames.h" /* for FILENAME_CMP */
41 #include "objc-lang.h"
42 #include "d-lang.h"
43 #include "ada-lang.h"
44 #include "p-lang.h"
45 #include "addrmap.h"
46
47 #include "hashtab.h"
48
49 #include "gdb_obstack.h"
50 #include "block.h"
51 #include "dictionary.h"
52
53 #include <sys/types.h>
54 #include <fcntl.h>
55 #include "gdb_string.h"
56 #include "gdb_stat.h"
57 #include <ctype.h>
58 #include "cp-abi.h"
59 #include "cp-support.h"
60 #include "observer.h"
61 #include "gdb_assert.h"
62 #include "solist.h"
63 #include "macrotab.h"
64 #include "macroscope.h"
65
66 #include "psymtab.h"
67
68 /* Prototypes for local functions */
69
70 static void completion_list_add_name (char *, char *, int, char *, char *);
71
72 static void rbreak_command (char *, int);
73
74 static void types_info (char *, int);
75
76 static void functions_info (char *, int);
77
78 static void variables_info (char *, int);
79
80 static void sources_info (char *, int);
81
82 static void output_source_filename (const char *, int *);
83
84 static int find_line_common (struct linetable *, int, int *);
85
86 static struct symbol *lookup_symbol_aux (const char *name,
87 const struct block *block,
88 const domain_enum domain,
89 enum language language,
90 int *is_a_field_of_this);
91
92 static
93 struct symbol *lookup_symbol_aux_local (const char *name,
94 const struct block *block,
95 const domain_enum domain,
96 enum language language);
97
98 static
99 struct symbol *lookup_symbol_aux_symtabs (int block_index,
100 const char *name,
101 const domain_enum domain);
102
103 static
104 struct symbol *lookup_symbol_aux_quick (struct objfile *objfile,
105 int block_index,
106 const char *name,
107 const domain_enum domain);
108
109 static void print_msymbol_info (struct minimal_symbol *);
110
111 void _initialize_symtab (void);
112
113 /* */
114
115 /* Allow the user to configure the debugger behavior with respect
116 to multiple-choice menus when more than one symbol matches during
117 a symbol lookup. */
118
119 const char multiple_symbols_ask[] = "ask";
120 const char multiple_symbols_all[] = "all";
121 const char multiple_symbols_cancel[] = "cancel";
122 static const char *multiple_symbols_modes[] =
123 {
124 multiple_symbols_ask,
125 multiple_symbols_all,
126 multiple_symbols_cancel,
127 NULL
128 };
129 static const char *multiple_symbols_mode = multiple_symbols_all;
130
131 /* Read-only accessor to AUTO_SELECT_MODE. */
132
133 const char *
134 multiple_symbols_select_mode (void)
135 {
136 return multiple_symbols_mode;
137 }
138
139 /* Block in which the most recently searched-for symbol was found.
140 Might be better to make this a parameter to lookup_symbol and
141 value_of_this. */
142
143 const struct block *block_found;
144
145 /* Check for a symtab of a specific name; first in symtabs, then in
146 psymtabs. *If* there is no '/' in the name, a match after a '/'
147 in the symtab filename will also work. */
148
149 struct symtab *
150 lookup_symtab (const char *name)
151 {
152 int found;
153 struct symtab *s = NULL;
154 struct objfile *objfile;
155 char *real_path = NULL;
156 char *full_path = NULL;
157 struct cleanup *cleanup;
158
159 cleanup = make_cleanup (null_cleanup, NULL);
160
161 /* Here we are interested in canonicalizing an absolute path, not
162 absolutizing a relative path. */
163 if (IS_ABSOLUTE_PATH (name))
164 {
165 full_path = xfullpath (name);
166 make_cleanup (xfree, full_path);
167 real_path = gdb_realpath (name);
168 make_cleanup (xfree, real_path);
169 }
170
171 got_symtab:
172
173 /* First, search for an exact match. */
174
175 ALL_SYMTABS (objfile, s)
176 {
177 if (FILENAME_CMP (name, s->filename) == 0)
178 {
179 do_cleanups (cleanup);
180 return s;
181 }
182
183 /* If the user gave us an absolute path, try to find the file in
184 this symtab and use its absolute path. */
185
186 if (full_path != NULL)
187 {
188 const char *fp = symtab_to_fullname (s);
189
190 if (fp != NULL && FILENAME_CMP (full_path, fp) == 0)
191 {
192 do_cleanups (cleanup);
193 return s;
194 }
195 }
196
197 if (real_path != NULL)
198 {
199 char *fullname = symtab_to_fullname (s);
200
201 if (fullname != NULL)
202 {
203 char *rp = gdb_realpath (fullname);
204
205 make_cleanup (xfree, rp);
206 if (FILENAME_CMP (real_path, rp) == 0)
207 {
208 do_cleanups (cleanup);
209 return s;
210 }
211 }
212 }
213 }
214
215 /* Now, search for a matching tail (only if name doesn't have any dirs). */
216
217 if (lbasename (name) == name)
218 ALL_SYMTABS (objfile, s)
219 {
220 if (FILENAME_CMP (lbasename (s->filename), name) == 0)
221 {
222 do_cleanups (cleanup);
223 return s;
224 }
225 }
226
227 /* Same search rules as above apply here, but now we look thru the
228 psymtabs. */
229
230 found = 0;
231 ALL_OBJFILES (objfile)
232 {
233 if (objfile->sf
234 && objfile->sf->qf->lookup_symtab (objfile, name, full_path, real_path,
235 &s))
236 {
237 found = 1;
238 break;
239 }
240 }
241
242 if (s != NULL)
243 {
244 do_cleanups (cleanup);
245 return s;
246 }
247 if (!found)
248 {
249 do_cleanups (cleanup);
250 return NULL;
251 }
252
253 /* At this point, we have located the psymtab for this file, but
254 the conversion to a symtab has failed. This usually happens
255 when we are looking up an include file. In this case,
256 PSYMTAB_TO_SYMTAB doesn't return a symtab, even though one has
257 been created. So, we need to run through the symtabs again in
258 order to find the file.
259 XXX - This is a crock, and should be fixed inside of the
260 symbol parsing routines. */
261 goto got_symtab;
262 }
263 \f
264 /* Mangle a GDB method stub type. This actually reassembles the pieces of the
265 full method name, which consist of the class name (from T), the unadorned
266 method name from METHOD_ID, and the signature for the specific overload,
267 specified by SIGNATURE_ID. Note that this function is g++ specific. */
268
269 char *
270 gdb_mangle_name (struct type *type, int method_id, int signature_id)
271 {
272 int mangled_name_len;
273 char *mangled_name;
274 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
275 struct fn_field *method = &f[signature_id];
276 char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
277 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
278 char *newname = type_name_no_tag (type);
279
280 /* Does the form of physname indicate that it is the full mangled name
281 of a constructor (not just the args)? */
282 int is_full_physname_constructor;
283
284 int is_constructor;
285 int is_destructor = is_destructor_name (physname);
286 /* Need a new type prefix. */
287 char *const_prefix = method->is_const ? "C" : "";
288 char *volatile_prefix = method->is_volatile ? "V" : "";
289 char buf[20];
290 int len = (newname == NULL ? 0 : strlen (newname));
291
292 /* Nothing to do if physname already contains a fully mangled v3 abi name
293 or an operator name. */
294 if ((physname[0] == '_' && physname[1] == 'Z')
295 || is_operator_name (field_name))
296 return xstrdup (physname);
297
298 is_full_physname_constructor = is_constructor_name (physname);
299
300 is_constructor = is_full_physname_constructor
301 || (newname && strcmp (field_name, newname) == 0);
302
303 if (!is_destructor)
304 is_destructor = (strncmp (physname, "__dt", 4) == 0);
305
306 if (is_destructor || is_full_physname_constructor)
307 {
308 mangled_name = (char *) xmalloc (strlen (physname) + 1);
309 strcpy (mangled_name, physname);
310 return mangled_name;
311 }
312
313 if (len == 0)
314 {
315 sprintf (buf, "__%s%s", const_prefix, volatile_prefix);
316 }
317 else if (physname[0] == 't' || physname[0] == 'Q')
318 {
319 /* The physname for template and qualified methods already includes
320 the class name. */
321 sprintf (buf, "__%s%s", const_prefix, volatile_prefix);
322 newname = NULL;
323 len = 0;
324 }
325 else
326 {
327 sprintf (buf, "__%s%s%d", const_prefix, volatile_prefix, len);
328 }
329 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
330 + strlen (buf) + len + strlen (physname) + 1);
331
332 mangled_name = (char *) xmalloc (mangled_name_len);
333 if (is_constructor)
334 mangled_name[0] = '\0';
335 else
336 strcpy (mangled_name, field_name);
337
338 strcat (mangled_name, buf);
339 /* If the class doesn't have a name, i.e. newname NULL, then we just
340 mangle it using 0 for the length of the class. Thus it gets mangled
341 as something starting with `::' rather than `classname::'. */
342 if (newname != NULL)
343 strcat (mangled_name, newname);
344
345 strcat (mangled_name, physname);
346 return (mangled_name);
347 }
348
349 /* Initialize the cplus_specific structure. 'cplus_specific' should
350 only be allocated for use with cplus symbols. */
351
352 static void
353 symbol_init_cplus_specific (struct general_symbol_info *gsymbol,
354 struct objfile *objfile)
355 {
356 /* A language_specific structure should not have been previously
357 initialized. */
358 gdb_assert (gsymbol->language_specific.cplus_specific == NULL);
359 gdb_assert (objfile != NULL);
360
361 gsymbol->language_specific.cplus_specific =
362 OBSTACK_ZALLOC (&objfile->objfile_obstack, struct cplus_specific);
363 }
364
365 /* Set the demangled name of GSYMBOL to NAME. NAME must be already
366 correctly allocated. For C++ symbols a cplus_specific struct is
367 allocated so OBJFILE must not be NULL. If this is a non C++ symbol
368 OBJFILE can be NULL. */
369 void
370 symbol_set_demangled_name (struct general_symbol_info *gsymbol,
371 char *name,
372 struct objfile *objfile)
373 {
374 if (gsymbol->language == language_cplus)
375 {
376 if (gsymbol->language_specific.cplus_specific == NULL)
377 symbol_init_cplus_specific (gsymbol, objfile);
378
379 gsymbol->language_specific.cplus_specific->demangled_name = name;
380 }
381 else
382 gsymbol->language_specific.mangled_lang.demangled_name = name;
383 }
384
385 /* Return the demangled name of GSYMBOL. */
386 char *
387 symbol_get_demangled_name (const struct general_symbol_info *gsymbol)
388 {
389 if (gsymbol->language == language_cplus)
390 {
391 if (gsymbol->language_specific.cplus_specific != NULL)
392 return gsymbol->language_specific.cplus_specific->demangled_name;
393 else
394 return NULL;
395 }
396 else
397 return gsymbol->language_specific.mangled_lang.demangled_name;
398 }
399
400 \f
401 /* Initialize the language dependent portion of a symbol
402 depending upon the language for the symbol. */
403 void
404 symbol_set_language (struct general_symbol_info *gsymbol,
405 enum language language)
406 {
407 gsymbol->language = language;
408 if (gsymbol->language == language_d
409 || gsymbol->language == language_java
410 || gsymbol->language == language_objc
411 || gsymbol->language == language_fortran)
412 {
413 symbol_set_demangled_name (gsymbol, NULL, NULL);
414 }
415 else if (gsymbol->language == language_cplus)
416 gsymbol->language_specific.cplus_specific = NULL;
417 else
418 {
419 memset (&gsymbol->language_specific, 0,
420 sizeof (gsymbol->language_specific));
421 }
422 }
423
424 /* Functions to initialize a symbol's mangled name. */
425
426 /* Objects of this type are stored in the demangled name hash table. */
427 struct demangled_name_entry
428 {
429 char *mangled;
430 char demangled[1];
431 };
432
433 /* Hash function for the demangled name hash. */
434 static hashval_t
435 hash_demangled_name_entry (const void *data)
436 {
437 const struct demangled_name_entry *e = data;
438
439 return htab_hash_string (e->mangled);
440 }
441
442 /* Equality function for the demangled name hash. */
443 static int
444 eq_demangled_name_entry (const void *a, const void *b)
445 {
446 const struct demangled_name_entry *da = a;
447 const struct demangled_name_entry *db = b;
448
449 return strcmp (da->mangled, db->mangled) == 0;
450 }
451
452 /* Create the hash table used for demangled names. Each hash entry is
453 a pair of strings; one for the mangled name and one for the demangled
454 name. The entry is hashed via just the mangled name. */
455
456 static void
457 create_demangled_names_hash (struct objfile *objfile)
458 {
459 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
460 The hash table code will round this up to the next prime number.
461 Choosing a much larger table size wastes memory, and saves only about
462 1% in symbol reading. */
463
464 objfile->demangled_names_hash = htab_create_alloc
465 (256, hash_demangled_name_entry, eq_demangled_name_entry,
466 NULL, xcalloc, xfree);
467 }
468
469 /* Try to determine the demangled name for a symbol, based on the
470 language of that symbol. If the language is set to language_auto,
471 it will attempt to find any demangling algorithm that works and
472 then set the language appropriately. The returned name is allocated
473 by the demangler and should be xfree'd. */
474
475 static char *
476 symbol_find_demangled_name (struct general_symbol_info *gsymbol,
477 const char *mangled)
478 {
479 char *demangled = NULL;
480
481 if (gsymbol->language == language_unknown)
482 gsymbol->language = language_auto;
483
484 if (gsymbol->language == language_objc
485 || gsymbol->language == language_auto)
486 {
487 demangled =
488 objc_demangle (mangled, 0);
489 if (demangled != NULL)
490 {
491 gsymbol->language = language_objc;
492 return demangled;
493 }
494 }
495 if (gsymbol->language == language_cplus
496 || gsymbol->language == language_auto)
497 {
498 demangled =
499 cplus_demangle (mangled, DMGL_PARAMS | DMGL_ANSI);
500 if (demangled != NULL)
501 {
502 gsymbol->language = language_cplus;
503 return demangled;
504 }
505 }
506 if (gsymbol->language == language_java)
507 {
508 demangled =
509 cplus_demangle (mangled,
510 DMGL_PARAMS | DMGL_ANSI | DMGL_JAVA);
511 if (demangled != NULL)
512 {
513 gsymbol->language = language_java;
514 return demangled;
515 }
516 }
517 if (gsymbol->language == language_d
518 || gsymbol->language == language_auto)
519 {
520 demangled = d_demangle(mangled, 0);
521 if (demangled != NULL)
522 {
523 gsymbol->language = language_d;
524 return demangled;
525 }
526 }
527 /* We could support `gsymbol->language == language_fortran' here to provide
528 module namespaces also for inferiors with only minimal symbol table (ELF
529 symbols). Just the mangling standard is not standardized across compilers
530 and there is no DW_AT_producer available for inferiors with only the ELF
531 symbols to check the mangling kind. */
532 return NULL;
533 }
534
535 /* Set both the mangled and demangled (if any) names for GSYMBOL based
536 on LINKAGE_NAME and LEN. Ordinarily, NAME is copied onto the
537 objfile's obstack; but if COPY_NAME is 0 and if NAME is
538 NUL-terminated, then this function assumes that NAME is already
539 correctly saved (either permanently or with a lifetime tied to the
540 objfile), and it will not be copied.
541
542 The hash table corresponding to OBJFILE is used, and the memory
543 comes from that objfile's objfile_obstack. LINKAGE_NAME is copied,
544 so the pointer can be discarded after calling this function. */
545
546 /* We have to be careful when dealing with Java names: when we run
547 into a Java minimal symbol, we don't know it's a Java symbol, so it
548 gets demangled as a C++ name. This is unfortunate, but there's not
549 much we can do about it: but when demangling partial symbols and
550 regular symbols, we'd better not reuse the wrong demangled name.
551 (See PR gdb/1039.) We solve this by putting a distinctive prefix
552 on Java names when storing them in the hash table. */
553
554 /* FIXME: carlton/2003-03-13: This is an unfortunate situation. I
555 don't mind the Java prefix so much: different languages have
556 different demangling requirements, so it's only natural that we
557 need to keep language data around in our demangling cache. But
558 it's not good that the minimal symbol has the wrong demangled name.
559 Unfortunately, I can't think of any easy solution to that
560 problem. */
561
562 #define JAVA_PREFIX "##JAVA$$"
563 #define JAVA_PREFIX_LEN 8
564
565 void
566 symbol_set_names (struct general_symbol_info *gsymbol,
567 const char *linkage_name, int len, int copy_name,
568 struct objfile *objfile)
569 {
570 struct demangled_name_entry **slot;
571 /* A 0-terminated copy of the linkage name. */
572 const char *linkage_name_copy;
573 /* A copy of the linkage name that might have a special Java prefix
574 added to it, for use when looking names up in the hash table. */
575 const char *lookup_name;
576 /* The length of lookup_name. */
577 int lookup_len;
578 struct demangled_name_entry entry;
579
580 if (gsymbol->language == language_ada)
581 {
582 /* In Ada, we do the symbol lookups using the mangled name, so
583 we can save some space by not storing the demangled name.
584
585 As a side note, we have also observed some overlap between
586 the C++ mangling and Ada mangling, similarly to what has
587 been observed with Java. Because we don't store the demangled
588 name with the symbol, we don't need to use the same trick
589 as Java. */
590 if (!copy_name)
591 gsymbol->name = (char *) linkage_name;
592 else
593 {
594 gsymbol->name = obstack_alloc (&objfile->objfile_obstack, len + 1);
595 memcpy (gsymbol->name, linkage_name, len);
596 gsymbol->name[len] = '\0';
597 }
598 symbol_set_demangled_name (gsymbol, NULL, NULL);
599
600 return;
601 }
602
603 if (objfile->demangled_names_hash == NULL)
604 create_demangled_names_hash (objfile);
605
606 /* The stabs reader generally provides names that are not
607 NUL-terminated; most of the other readers don't do this, so we
608 can just use the given copy, unless we're in the Java case. */
609 if (gsymbol->language == language_java)
610 {
611 char *alloc_name;
612
613 lookup_len = len + JAVA_PREFIX_LEN;
614 alloc_name = alloca (lookup_len + 1);
615 memcpy (alloc_name, JAVA_PREFIX, JAVA_PREFIX_LEN);
616 memcpy (alloc_name + JAVA_PREFIX_LEN, linkage_name, len);
617 alloc_name[lookup_len] = '\0';
618
619 lookup_name = alloc_name;
620 linkage_name_copy = alloc_name + JAVA_PREFIX_LEN;
621 }
622 else if (linkage_name[len] != '\0')
623 {
624 char *alloc_name;
625
626 lookup_len = len;
627 alloc_name = alloca (lookup_len + 1);
628 memcpy (alloc_name, linkage_name, len);
629 alloc_name[lookup_len] = '\0';
630
631 lookup_name = alloc_name;
632 linkage_name_copy = alloc_name;
633 }
634 else
635 {
636 lookup_len = len;
637 lookup_name = linkage_name;
638 linkage_name_copy = linkage_name;
639 }
640
641 entry.mangled = (char *) lookup_name;
642 slot = ((struct demangled_name_entry **)
643 htab_find_slot (objfile->demangled_names_hash,
644 &entry, INSERT));
645
646 /* If this name is not in the hash table, add it. */
647 if (*slot == NULL)
648 {
649 char *demangled_name = symbol_find_demangled_name (gsymbol,
650 linkage_name_copy);
651 int demangled_len = demangled_name ? strlen (demangled_name) : 0;
652
653 /* Suppose we have demangled_name==NULL, copy_name==0, and
654 lookup_name==linkage_name. In this case, we already have the
655 mangled name saved, and we don't have a demangled name. So,
656 you might think we could save a little space by not recording
657 this in the hash table at all.
658
659 It turns out that it is actually important to still save such
660 an entry in the hash table, because storing this name gives
661 us better bcache hit rates for partial symbols. */
662 if (!copy_name && lookup_name == linkage_name)
663 {
664 *slot = obstack_alloc (&objfile->objfile_obstack,
665 offsetof (struct demangled_name_entry,
666 demangled)
667 + demangled_len + 1);
668 (*slot)->mangled = (char *) lookup_name;
669 }
670 else
671 {
672 /* If we must copy the mangled name, put it directly after
673 the demangled name so we can have a single
674 allocation. */
675 *slot = obstack_alloc (&objfile->objfile_obstack,
676 offsetof (struct demangled_name_entry,
677 demangled)
678 + lookup_len + demangled_len + 2);
679 (*slot)->mangled = &((*slot)->demangled[demangled_len + 1]);
680 strcpy ((*slot)->mangled, lookup_name);
681 }
682
683 if (demangled_name != NULL)
684 {
685 strcpy ((*slot)->demangled, demangled_name);
686 xfree (demangled_name);
687 }
688 else
689 (*slot)->demangled[0] = '\0';
690 }
691
692 gsymbol->name = (*slot)->mangled + lookup_len - len;
693 if ((*slot)->demangled[0] != '\0')
694 symbol_set_demangled_name (gsymbol, (*slot)->demangled, objfile);
695 else
696 symbol_set_demangled_name (gsymbol, NULL, objfile);
697 }
698
699 /* Return the source code name of a symbol. In languages where
700 demangling is necessary, this is the demangled name. */
701
702 char *
703 symbol_natural_name (const struct general_symbol_info *gsymbol)
704 {
705 switch (gsymbol->language)
706 {
707 case language_cplus:
708 case language_d:
709 case language_java:
710 case language_objc:
711 case language_fortran:
712 if (symbol_get_demangled_name (gsymbol) != NULL)
713 return symbol_get_demangled_name (gsymbol);
714 break;
715 case language_ada:
716 if (symbol_get_demangled_name (gsymbol) != NULL)
717 return symbol_get_demangled_name (gsymbol);
718 else
719 return ada_decode_symbol (gsymbol);
720 break;
721 default:
722 break;
723 }
724 return gsymbol->name;
725 }
726
727 /* Return the demangled name for a symbol based on the language for
728 that symbol. If no demangled name exists, return NULL. */
729 char *
730 symbol_demangled_name (const struct general_symbol_info *gsymbol)
731 {
732 switch (gsymbol->language)
733 {
734 case language_cplus:
735 case language_d:
736 case language_java:
737 case language_objc:
738 case language_fortran:
739 if (symbol_get_demangled_name (gsymbol) != NULL)
740 return symbol_get_demangled_name (gsymbol);
741 break;
742 case language_ada:
743 if (symbol_get_demangled_name (gsymbol) != NULL)
744 return symbol_get_demangled_name (gsymbol);
745 else
746 return ada_decode_symbol (gsymbol);
747 break;
748 default:
749 break;
750 }
751 return NULL;
752 }
753
754 /* Return the search name of a symbol---generally the demangled or
755 linkage name of the symbol, depending on how it will be searched for.
756 If there is no distinct demangled name, then returns the same value
757 (same pointer) as SYMBOL_LINKAGE_NAME. */
758 char *
759 symbol_search_name (const struct general_symbol_info *gsymbol)
760 {
761 if (gsymbol->language == language_ada)
762 return gsymbol->name;
763 else
764 return symbol_natural_name (gsymbol);
765 }
766
767 /* Initialize the structure fields to zero values. */
768 void
769 init_sal (struct symtab_and_line *sal)
770 {
771 sal->pspace = NULL;
772 sal->symtab = 0;
773 sal->section = 0;
774 sal->line = 0;
775 sal->pc = 0;
776 sal->end = 0;
777 sal->explicit_pc = 0;
778 sal->explicit_line = 0;
779 }
780 \f
781
782 /* Return 1 if the two sections are the same, or if they could
783 plausibly be copies of each other, one in an original object
784 file and another in a separated debug file. */
785
786 int
787 matching_obj_sections (struct obj_section *obj_first,
788 struct obj_section *obj_second)
789 {
790 asection *first = obj_first? obj_first->the_bfd_section : NULL;
791 asection *second = obj_second? obj_second->the_bfd_section : NULL;
792 struct objfile *obj;
793
794 /* If they're the same section, then they match. */
795 if (first == second)
796 return 1;
797
798 /* If either is NULL, give up. */
799 if (first == NULL || second == NULL)
800 return 0;
801
802 /* This doesn't apply to absolute symbols. */
803 if (first->owner == NULL || second->owner == NULL)
804 return 0;
805
806 /* If they're in the same object file, they must be different sections. */
807 if (first->owner == second->owner)
808 return 0;
809
810 /* Check whether the two sections are potentially corresponding. They must
811 have the same size, address, and name. We can't compare section indexes,
812 which would be more reliable, because some sections may have been
813 stripped. */
814 if (bfd_get_section_size (first) != bfd_get_section_size (second))
815 return 0;
816
817 /* In-memory addresses may start at a different offset, relativize them. */
818 if (bfd_get_section_vma (first->owner, first)
819 - bfd_get_start_address (first->owner)
820 != bfd_get_section_vma (second->owner, second)
821 - bfd_get_start_address (second->owner))
822 return 0;
823
824 if (bfd_get_section_name (first->owner, first) == NULL
825 || bfd_get_section_name (second->owner, second) == NULL
826 || strcmp (bfd_get_section_name (first->owner, first),
827 bfd_get_section_name (second->owner, second)) != 0)
828 return 0;
829
830 /* Otherwise check that they are in corresponding objfiles. */
831
832 ALL_OBJFILES (obj)
833 if (obj->obfd == first->owner)
834 break;
835 gdb_assert (obj != NULL);
836
837 if (obj->separate_debug_objfile != NULL
838 && obj->separate_debug_objfile->obfd == second->owner)
839 return 1;
840 if (obj->separate_debug_objfile_backlink != NULL
841 && obj->separate_debug_objfile_backlink->obfd == second->owner)
842 return 1;
843
844 return 0;
845 }
846
847 struct symtab *
848 find_pc_sect_symtab_via_partial (CORE_ADDR pc, struct obj_section *section)
849 {
850 struct objfile *objfile;
851 struct minimal_symbol *msymbol;
852
853 /* If we know that this is not a text address, return failure. This is
854 necessary because we loop based on texthigh and textlow, which do
855 not include the data ranges. */
856 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
857 if (msymbol
858 && (MSYMBOL_TYPE (msymbol) == mst_data
859 || MSYMBOL_TYPE (msymbol) == mst_bss
860 || MSYMBOL_TYPE (msymbol) == mst_abs
861 || MSYMBOL_TYPE (msymbol) == mst_file_data
862 || MSYMBOL_TYPE (msymbol) == mst_file_bss))
863 return NULL;
864
865 ALL_OBJFILES (objfile)
866 {
867 struct symtab *result = NULL;
868
869 if (objfile->sf)
870 result = objfile->sf->qf->find_pc_sect_symtab (objfile, msymbol,
871 pc, section, 0);
872 if (result)
873 return result;
874 }
875
876 return NULL;
877 }
878 \f
879 /* Debug symbols usually don't have section information. We need to dig that
880 out of the minimal symbols and stash that in the debug symbol. */
881
882 void
883 fixup_section (struct general_symbol_info *ginfo,
884 CORE_ADDR addr, struct objfile *objfile)
885 {
886 struct minimal_symbol *msym;
887
888 /* First, check whether a minimal symbol with the same name exists
889 and points to the same address. The address check is required
890 e.g. on PowerPC64, where the minimal symbol for a function will
891 point to the function descriptor, while the debug symbol will
892 point to the actual function code. */
893 msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->name, objfile);
894 if (msym)
895 {
896 ginfo->obj_section = SYMBOL_OBJ_SECTION (msym);
897 ginfo->section = SYMBOL_SECTION (msym);
898 }
899 else
900 {
901 /* Static, function-local variables do appear in the linker
902 (minimal) symbols, but are frequently given names that won't
903 be found via lookup_minimal_symbol(). E.g., it has been
904 observed in frv-uclinux (ELF) executables that a static,
905 function-local variable named "foo" might appear in the
906 linker symbols as "foo.6" or "foo.3". Thus, there is no
907 point in attempting to extend the lookup-by-name mechanism to
908 handle this case due to the fact that there can be multiple
909 names.
910
911 So, instead, search the section table when lookup by name has
912 failed. The ``addr'' and ``endaddr'' fields may have already
913 been relocated. If so, the relocation offset (i.e. the
914 ANOFFSET value) needs to be subtracted from these values when
915 performing the comparison. We unconditionally subtract it,
916 because, when no relocation has been performed, the ANOFFSET
917 value will simply be zero.
918
919 The address of the symbol whose section we're fixing up HAS
920 NOT BEEN adjusted (relocated) yet. It can't have been since
921 the section isn't yet known and knowing the section is
922 necessary in order to add the correct relocation value. In
923 other words, we wouldn't even be in this function (attempting
924 to compute the section) if it were already known.
925
926 Note that it is possible to search the minimal symbols
927 (subtracting the relocation value if necessary) to find the
928 matching minimal symbol, but this is overkill and much less
929 efficient. It is not necessary to find the matching minimal
930 symbol, only its section.
931
932 Note that this technique (of doing a section table search)
933 can fail when unrelocated section addresses overlap. For
934 this reason, we still attempt a lookup by name prior to doing
935 a search of the section table. */
936
937 struct obj_section *s;
938
939 ALL_OBJFILE_OSECTIONS (objfile, s)
940 {
941 int idx = s->the_bfd_section->index;
942 CORE_ADDR offset = ANOFFSET (objfile->section_offsets, idx);
943
944 if (obj_section_addr (s) - offset <= addr
945 && addr < obj_section_endaddr (s) - offset)
946 {
947 ginfo->obj_section = s;
948 ginfo->section = idx;
949 return;
950 }
951 }
952 }
953 }
954
955 struct symbol *
956 fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
957 {
958 CORE_ADDR addr;
959
960 if (!sym)
961 return NULL;
962
963 if (SYMBOL_OBJ_SECTION (sym))
964 return sym;
965
966 /* We either have an OBJFILE, or we can get at it from the sym's
967 symtab. Anything else is a bug. */
968 gdb_assert (objfile || SYMBOL_SYMTAB (sym));
969
970 if (objfile == NULL)
971 objfile = SYMBOL_SYMTAB (sym)->objfile;
972
973 /* We should have an objfile by now. */
974 gdb_assert (objfile);
975
976 switch (SYMBOL_CLASS (sym))
977 {
978 case LOC_STATIC:
979 case LOC_LABEL:
980 addr = SYMBOL_VALUE_ADDRESS (sym);
981 break;
982 case LOC_BLOCK:
983 addr = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
984 break;
985
986 default:
987 /* Nothing else will be listed in the minsyms -- no use looking
988 it up. */
989 return sym;
990 }
991
992 fixup_section (&sym->ginfo, addr, objfile);
993
994 return sym;
995 }
996
997 /* Find the definition for a specified symbol name NAME
998 in domain DOMAIN, visible from lexical block BLOCK.
999 Returns the struct symbol pointer, or zero if no symbol is found.
1000 C++: if IS_A_FIELD_OF_THIS is nonzero on entry, check to see if
1001 NAME is a field of the current implied argument `this'. If so set
1002 *IS_A_FIELD_OF_THIS to 1, otherwise set it to zero.
1003 BLOCK_FOUND is set to the block in which NAME is found (in the case of
1004 a field of `this', value_of_this sets BLOCK_FOUND to the proper value.) */
1005
1006 /* This function has a bunch of loops in it and it would seem to be
1007 attractive to put in some QUIT's (though I'm not really sure
1008 whether it can run long enough to be really important). But there
1009 are a few calls for which it would appear to be bad news to quit
1010 out of here: find_proc_desc in alpha-tdep.c and mips-tdep.c. (Note
1011 that there is C++ code below which can error(), but that probably
1012 doesn't affect these calls since they are looking for a known
1013 variable and thus can probably assume it will never hit the C++
1014 code). */
1015
1016 struct symbol *
1017 lookup_symbol_in_language (const char *name, const struct block *block,
1018 const domain_enum domain, enum language lang,
1019 int *is_a_field_of_this)
1020 {
1021 char *demangled_name = NULL;
1022 const char *modified_name = NULL;
1023 struct symbol *returnval;
1024 struct cleanup *cleanup = make_cleanup (null_cleanup, 0);
1025
1026 modified_name = name;
1027
1028 /* If we are using C++, D, or Java, demangle the name before doing a
1029 lookup, so we can always binary search. */
1030 if (lang == language_cplus)
1031 {
1032 demangled_name = cplus_demangle (name, DMGL_ANSI | DMGL_PARAMS);
1033 if (demangled_name)
1034 {
1035 modified_name = demangled_name;
1036 make_cleanup (xfree, demangled_name);
1037 }
1038 else
1039 {
1040 /* If we were given a non-mangled name, canonicalize it
1041 according to the language (so far only for C++). */
1042 demangled_name = cp_canonicalize_string (name);
1043 if (demangled_name)
1044 {
1045 modified_name = demangled_name;
1046 make_cleanup (xfree, demangled_name);
1047 }
1048 }
1049 }
1050 else if (lang == language_java)
1051 {
1052 demangled_name = cplus_demangle (name,
1053 DMGL_ANSI | DMGL_PARAMS | DMGL_JAVA);
1054 if (demangled_name)
1055 {
1056 modified_name = demangled_name;
1057 make_cleanup (xfree, demangled_name);
1058 }
1059 }
1060 else if (lang == language_d)
1061 {
1062 demangled_name = d_demangle (name, 0);
1063 if (demangled_name)
1064 {
1065 modified_name = demangled_name;
1066 make_cleanup (xfree, demangled_name);
1067 }
1068 }
1069
1070 returnval = lookup_symbol_aux (modified_name, block, domain, lang,
1071 is_a_field_of_this);
1072 do_cleanups (cleanup);
1073
1074 return returnval;
1075 }
1076
1077 /* Behave like lookup_symbol_in_language, but performed with the
1078 current language. */
1079
1080 struct symbol *
1081 lookup_symbol (const char *name, const struct block *block,
1082 domain_enum domain, int *is_a_field_of_this)
1083 {
1084 return lookup_symbol_in_language (name, block, domain,
1085 current_language->la_language,
1086 is_a_field_of_this);
1087 }
1088
1089 /* Look up the `this' symbol for LANG in BLOCK. Return the symbol if
1090 found, or NULL if not found. */
1091
1092 struct symbol *
1093 lookup_language_this (const struct language_defn *lang,
1094 const struct block *block)
1095 {
1096 if (lang->la_name_of_this == NULL || block == NULL)
1097 return NULL;
1098
1099 while (block)
1100 {
1101 struct symbol *sym;
1102
1103 sym = lookup_block_symbol (block, lang->la_name_of_this, VAR_DOMAIN);
1104 if (sym != NULL)
1105 return sym;
1106 if (BLOCK_FUNCTION (block))
1107 break;
1108 block = BLOCK_SUPERBLOCK (block);
1109 }
1110
1111 return NULL;
1112 }
1113
1114 /* Behave like lookup_symbol except that NAME is the natural name
1115 of the symbol that we're looking for and, if LINKAGE_NAME is
1116 non-NULL, ensure that the symbol's linkage name matches as
1117 well. */
1118
1119 static struct symbol *
1120 lookup_symbol_aux (const char *name, const struct block *block,
1121 const domain_enum domain, enum language language,
1122 int *is_a_field_of_this)
1123 {
1124 struct symbol *sym;
1125 const struct language_defn *langdef;
1126
1127 /* Make sure we do something sensible with is_a_field_of_this, since
1128 the callers that set this parameter to some non-null value will
1129 certainly use it later and expect it to be either 0 or 1.
1130 If we don't set it, the contents of is_a_field_of_this are
1131 undefined. */
1132 if (is_a_field_of_this != NULL)
1133 *is_a_field_of_this = 0;
1134
1135 /* Search specified block and its superiors. Don't search
1136 STATIC_BLOCK or GLOBAL_BLOCK. */
1137
1138 sym = lookup_symbol_aux_local (name, block, domain, language);
1139 if (sym != NULL)
1140 return sym;
1141
1142 /* If requested to do so by the caller and if appropriate for LANGUAGE,
1143 check to see if NAME is a field of `this'. */
1144
1145 langdef = language_def (language);
1146
1147 if (is_a_field_of_this != NULL)
1148 {
1149 struct symbol *sym = lookup_language_this (langdef, block);
1150
1151 if (sym)
1152 {
1153 struct type *t = sym->type;
1154
1155 /* I'm not really sure that type of this can ever
1156 be typedefed; just be safe. */
1157 CHECK_TYPEDEF (t);
1158 if (TYPE_CODE (t) == TYPE_CODE_PTR
1159 || TYPE_CODE (t) == TYPE_CODE_REF)
1160 t = TYPE_TARGET_TYPE (t);
1161
1162 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
1163 && TYPE_CODE (t) != TYPE_CODE_UNION)
1164 error (_("Internal error: `%s' is not an aggregate"),
1165 langdef->la_name_of_this);
1166
1167 if (check_field (t, name))
1168 {
1169 *is_a_field_of_this = 1;
1170 return NULL;
1171 }
1172 }
1173 }
1174
1175 /* Now do whatever is appropriate for LANGUAGE to look
1176 up static and global variables. */
1177
1178 sym = langdef->la_lookup_symbol_nonlocal (name, block, domain);
1179 if (sym != NULL)
1180 return sym;
1181
1182 /* Now search all static file-level symbols. Not strictly correct,
1183 but more useful than an error. */
1184
1185 return lookup_static_symbol_aux (name, domain);
1186 }
1187
1188 /* Search all static file-level symbols for NAME from DOMAIN. Do the symtabs
1189 first, then check the psymtabs. If a psymtab indicates the existence of the
1190 desired name as a file-level static, then do psymtab-to-symtab conversion on
1191 the fly and return the found symbol. */
1192
1193 struct symbol *
1194 lookup_static_symbol_aux (const char *name, const domain_enum domain)
1195 {
1196 struct objfile *objfile;
1197 struct symbol *sym;
1198
1199 sym = lookup_symbol_aux_symtabs (STATIC_BLOCK, name, domain);
1200 if (sym != NULL)
1201 return sym;
1202
1203 ALL_OBJFILES (objfile)
1204 {
1205 sym = lookup_symbol_aux_quick (objfile, STATIC_BLOCK, name, domain);
1206 if (sym != NULL)
1207 return sym;
1208 }
1209
1210 return NULL;
1211 }
1212
1213 /* Check to see if the symbol is defined in BLOCK or its superiors.
1214 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
1215
1216 static struct symbol *
1217 lookup_symbol_aux_local (const char *name, const struct block *block,
1218 const domain_enum domain,
1219 enum language language)
1220 {
1221 struct symbol *sym;
1222 const struct block *static_block = block_static_block (block);
1223 const char *scope = block_scope (block);
1224
1225 /* Check if either no block is specified or it's a global block. */
1226
1227 if (static_block == NULL)
1228 return NULL;
1229
1230 while (block != static_block)
1231 {
1232 sym = lookup_symbol_aux_block (name, block, domain);
1233 if (sym != NULL)
1234 return sym;
1235
1236 if (language == language_cplus || language == language_fortran)
1237 {
1238 sym = cp_lookup_symbol_imports_or_template (scope, name, block,
1239 domain);
1240 if (sym != NULL)
1241 return sym;
1242 }
1243
1244 if (BLOCK_FUNCTION (block) != NULL && block_inlined_p (block))
1245 break;
1246 block = BLOCK_SUPERBLOCK (block);
1247 }
1248
1249 /* We've reached the edge of the function without finding a result. */
1250
1251 return NULL;
1252 }
1253
1254 /* Look up OBJFILE to BLOCK. */
1255
1256 struct objfile *
1257 lookup_objfile_from_block (const struct block *block)
1258 {
1259 struct objfile *obj;
1260 struct symtab *s;
1261
1262 if (block == NULL)
1263 return NULL;
1264
1265 block = block_global_block (block);
1266 /* Go through SYMTABS. */
1267 ALL_SYMTABS (obj, s)
1268 if (block == BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK))
1269 {
1270 if (obj->separate_debug_objfile_backlink)
1271 obj = obj->separate_debug_objfile_backlink;
1272
1273 return obj;
1274 }
1275
1276 return NULL;
1277 }
1278
1279 /* Look up a symbol in a block; if found, fixup the symbol, and set
1280 block_found appropriately. */
1281
1282 struct symbol *
1283 lookup_symbol_aux_block (const char *name, const struct block *block,
1284 const domain_enum domain)
1285 {
1286 struct symbol *sym;
1287
1288 sym = lookup_block_symbol (block, name, domain);
1289 if (sym)
1290 {
1291 block_found = block;
1292 return fixup_symbol_section (sym, NULL);
1293 }
1294
1295 return NULL;
1296 }
1297
1298 /* Check all global symbols in OBJFILE in symtabs and
1299 psymtabs. */
1300
1301 struct symbol *
1302 lookup_global_symbol_from_objfile (const struct objfile *main_objfile,
1303 const char *name,
1304 const domain_enum domain)
1305 {
1306 const struct objfile *objfile;
1307 struct symbol *sym;
1308 struct blockvector *bv;
1309 const struct block *block;
1310 struct symtab *s;
1311
1312 for (objfile = main_objfile;
1313 objfile;
1314 objfile = objfile_separate_debug_iterate (main_objfile, objfile))
1315 {
1316 /* Go through symtabs. */
1317 ALL_OBJFILE_SYMTABS (objfile, s)
1318 {
1319 bv = BLOCKVECTOR (s);
1320 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1321 sym = lookup_block_symbol (block, name, domain);
1322 if (sym)
1323 {
1324 block_found = block;
1325 return fixup_symbol_section (sym, (struct objfile *)objfile);
1326 }
1327 }
1328
1329 sym = lookup_symbol_aux_quick ((struct objfile *) objfile, GLOBAL_BLOCK,
1330 name, domain);
1331 if (sym)
1332 return sym;
1333 }
1334
1335 return NULL;
1336 }
1337
1338 /* Check to see if the symbol is defined in one of the symtabs.
1339 BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
1340 depending on whether or not we want to search global symbols or
1341 static symbols. */
1342
1343 static struct symbol *
1344 lookup_symbol_aux_symtabs (int block_index, const char *name,
1345 const domain_enum domain)
1346 {
1347 struct symbol *sym;
1348 struct objfile *objfile;
1349 struct blockvector *bv;
1350 const struct block *block;
1351 struct symtab *s;
1352
1353 ALL_OBJFILES (objfile)
1354 {
1355 if (objfile->sf)
1356 objfile->sf->qf->pre_expand_symtabs_matching (objfile,
1357 block_index,
1358 name, domain);
1359
1360 ALL_OBJFILE_SYMTABS (objfile, s)
1361 if (s->primary)
1362 {
1363 bv = BLOCKVECTOR (s);
1364 block = BLOCKVECTOR_BLOCK (bv, block_index);
1365 sym = lookup_block_symbol (block, name, domain);
1366 if (sym)
1367 {
1368 block_found = block;
1369 return fixup_symbol_section (sym, objfile);
1370 }
1371 }
1372 }
1373
1374 return NULL;
1375 }
1376
1377 /* A helper function for lookup_symbol_aux that interfaces with the
1378 "quick" symbol table functions. */
1379
1380 static struct symbol *
1381 lookup_symbol_aux_quick (struct objfile *objfile, int kind,
1382 const char *name, const domain_enum domain)
1383 {
1384 struct symtab *symtab;
1385 struct blockvector *bv;
1386 const struct block *block;
1387 struct symbol *sym;
1388
1389 if (!objfile->sf)
1390 return NULL;
1391 symtab = objfile->sf->qf->lookup_symbol (objfile, kind, name, domain);
1392 if (!symtab)
1393 return NULL;
1394
1395 bv = BLOCKVECTOR (symtab);
1396 block = BLOCKVECTOR_BLOCK (bv, kind);
1397 sym = lookup_block_symbol (block, name, domain);
1398 if (!sym)
1399 {
1400 /* This shouldn't be necessary, but as a last resort try
1401 looking in the statics even though the psymtab claimed
1402 the symbol was global, or vice-versa. It's possible
1403 that the psymtab gets it wrong in some cases. */
1404
1405 /* FIXME: carlton/2002-09-30: Should we really do that?
1406 If that happens, isn't it likely to be a GDB error, in
1407 which case we should fix the GDB error rather than
1408 silently dealing with it here? So I'd vote for
1409 removing the check for the symbol in the other
1410 block. */
1411 block = BLOCKVECTOR_BLOCK (bv,
1412 kind == GLOBAL_BLOCK ?
1413 STATIC_BLOCK : GLOBAL_BLOCK);
1414 sym = lookup_block_symbol (block, name, domain);
1415 if (!sym)
1416 error (_("\
1417 Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n\
1418 %s may be an inlined function, or may be a template function\n\
1419 (if a template, try specifying an instantiation: %s<type>)."),
1420 kind == GLOBAL_BLOCK ? "global" : "static",
1421 name, symtab->filename, name, name);
1422 }
1423 return fixup_symbol_section (sym, objfile);
1424 }
1425
1426 /* A default version of lookup_symbol_nonlocal for use by languages
1427 that can't think of anything better to do. This implements the C
1428 lookup rules. */
1429
1430 struct symbol *
1431 basic_lookup_symbol_nonlocal (const char *name,
1432 const struct block *block,
1433 const domain_enum domain)
1434 {
1435 struct symbol *sym;
1436
1437 /* NOTE: carlton/2003-05-19: The comments below were written when
1438 this (or what turned into this) was part of lookup_symbol_aux;
1439 I'm much less worried about these questions now, since these
1440 decisions have turned out well, but I leave these comments here
1441 for posterity. */
1442
1443 /* NOTE: carlton/2002-12-05: There is a question as to whether or
1444 not it would be appropriate to search the current global block
1445 here as well. (That's what this code used to do before the
1446 is_a_field_of_this check was moved up.) On the one hand, it's
1447 redundant with the lookup_symbol_aux_symtabs search that happens
1448 next. On the other hand, if decode_line_1 is passed an argument
1449 like filename:var, then the user presumably wants 'var' to be
1450 searched for in filename. On the third hand, there shouldn't be
1451 multiple global variables all of which are named 'var', and it's
1452 not like decode_line_1 has ever restricted its search to only
1453 global variables in a single filename. All in all, only
1454 searching the static block here seems best: it's correct and it's
1455 cleanest. */
1456
1457 /* NOTE: carlton/2002-12-05: There's also a possible performance
1458 issue here: if you usually search for global symbols in the
1459 current file, then it would be slightly better to search the
1460 current global block before searching all the symtabs. But there
1461 are other factors that have a much greater effect on performance
1462 than that one, so I don't think we should worry about that for
1463 now. */
1464
1465 sym = lookup_symbol_static (name, block, domain);
1466 if (sym != NULL)
1467 return sym;
1468
1469 return lookup_symbol_global (name, block, domain);
1470 }
1471
1472 /* Lookup a symbol in the static block associated to BLOCK, if there
1473 is one; do nothing if BLOCK is NULL or a global block. */
1474
1475 struct symbol *
1476 lookup_symbol_static (const char *name,
1477 const struct block *block,
1478 const domain_enum domain)
1479 {
1480 const struct block *static_block = block_static_block (block);
1481
1482 if (static_block != NULL)
1483 return lookup_symbol_aux_block (name, static_block, domain);
1484 else
1485 return NULL;
1486 }
1487
1488 /* Lookup a symbol in all files' global blocks (searching psymtabs if
1489 necessary). */
1490
1491 struct symbol *
1492 lookup_symbol_global (const char *name,
1493 const struct block *block,
1494 const domain_enum domain)
1495 {
1496 struct symbol *sym = NULL;
1497 struct objfile *objfile = NULL;
1498
1499 /* Call library-specific lookup procedure. */
1500 objfile = lookup_objfile_from_block (block);
1501 if (objfile != NULL)
1502 sym = solib_global_lookup (objfile, name, domain);
1503 if (sym != NULL)
1504 return sym;
1505
1506 sym = lookup_symbol_aux_symtabs (GLOBAL_BLOCK, name, domain);
1507 if (sym != NULL)
1508 return sym;
1509
1510 ALL_OBJFILES (objfile)
1511 {
1512 sym = lookup_symbol_aux_quick (objfile, GLOBAL_BLOCK, name, domain);
1513 if (sym)
1514 return sym;
1515 }
1516
1517 return NULL;
1518 }
1519
1520 int
1521 symbol_matches_domain (enum language symbol_language,
1522 domain_enum symbol_domain,
1523 domain_enum domain)
1524 {
1525 /* For C++ "struct foo { ... }" also defines a typedef for "foo".
1526 A Java class declaration also defines a typedef for the class.
1527 Similarly, any Ada type declaration implicitly defines a typedef. */
1528 if (symbol_language == language_cplus
1529 || symbol_language == language_d
1530 || symbol_language == language_java
1531 || symbol_language == language_ada)
1532 {
1533 if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN)
1534 && symbol_domain == STRUCT_DOMAIN)
1535 return 1;
1536 }
1537 /* For all other languages, strict match is required. */
1538 return (symbol_domain == domain);
1539 }
1540
1541 /* Look up a type named NAME in the struct_domain. The type returned
1542 must not be opaque -- i.e., must have at least one field
1543 defined. */
1544
1545 struct type *
1546 lookup_transparent_type (const char *name)
1547 {
1548 return current_language->la_lookup_transparent_type (name);
1549 }
1550
1551 /* A helper for basic_lookup_transparent_type that interfaces with the
1552 "quick" symbol table functions. */
1553
1554 static struct type *
1555 basic_lookup_transparent_type_quick (struct objfile *objfile, int kind,
1556 const char *name)
1557 {
1558 struct symtab *symtab;
1559 struct blockvector *bv;
1560 struct block *block;
1561 struct symbol *sym;
1562
1563 if (!objfile->sf)
1564 return NULL;
1565 symtab = objfile->sf->qf->lookup_symbol (objfile, kind, name, STRUCT_DOMAIN);
1566 if (!symtab)
1567 return NULL;
1568
1569 bv = BLOCKVECTOR (symtab);
1570 block = BLOCKVECTOR_BLOCK (bv, kind);
1571 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1572 if (!sym)
1573 {
1574 int other_kind = kind == GLOBAL_BLOCK ? STATIC_BLOCK : GLOBAL_BLOCK;
1575
1576 /* This shouldn't be necessary, but as a last resort
1577 * try looking in the 'other kind' even though the psymtab
1578 * claimed the symbol was one thing. It's possible that
1579 * the psymtab gets it wrong in some cases.
1580 */
1581 block = BLOCKVECTOR_BLOCK (bv, other_kind);
1582 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1583 if (!sym)
1584 /* FIXME; error is wrong in one case. */
1585 error (_("\
1586 Internal: global symbol `%s' found in %s psymtab but not in symtab.\n\
1587 %s may be an inlined function, or may be a template function\n\
1588 (if a template, try specifying an instantiation: %s<type>)."),
1589 name, symtab->filename, name, name);
1590 }
1591 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1592 return SYMBOL_TYPE (sym);
1593
1594 return NULL;
1595 }
1596
1597 /* The standard implementation of lookup_transparent_type. This code
1598 was modeled on lookup_symbol -- the parts not relevant to looking
1599 up types were just left out. In particular it's assumed here that
1600 types are available in struct_domain and only at file-static or
1601 global blocks. */
1602
1603 struct type *
1604 basic_lookup_transparent_type (const char *name)
1605 {
1606 struct symbol *sym;
1607 struct symtab *s = NULL;
1608 struct blockvector *bv;
1609 struct objfile *objfile;
1610 struct block *block;
1611 struct type *t;
1612
1613 /* Now search all the global symbols. Do the symtab's first, then
1614 check the psymtab's. If a psymtab indicates the existence
1615 of the desired name as a global, then do psymtab-to-symtab
1616 conversion on the fly and return the found symbol. */
1617
1618 ALL_OBJFILES (objfile)
1619 {
1620 if (objfile->sf)
1621 objfile->sf->qf->pre_expand_symtabs_matching (objfile,
1622 GLOBAL_BLOCK,
1623 name, STRUCT_DOMAIN);
1624
1625 ALL_OBJFILE_SYMTABS (objfile, s)
1626 if (s->primary)
1627 {
1628 bv = BLOCKVECTOR (s);
1629 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1630 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1631 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1632 {
1633 return SYMBOL_TYPE (sym);
1634 }
1635 }
1636 }
1637
1638 ALL_OBJFILES (objfile)
1639 {
1640 t = basic_lookup_transparent_type_quick (objfile, GLOBAL_BLOCK, name);
1641 if (t)
1642 return t;
1643 }
1644
1645 /* Now search the static file-level symbols.
1646 Not strictly correct, but more useful than an error.
1647 Do the symtab's first, then
1648 check the psymtab's. If a psymtab indicates the existence
1649 of the desired name as a file-level static, then do psymtab-to-symtab
1650 conversion on the fly and return the found symbol. */
1651
1652 ALL_OBJFILES (objfile)
1653 {
1654 if (objfile->sf)
1655 objfile->sf->qf->pre_expand_symtabs_matching (objfile, STATIC_BLOCK,
1656 name, STRUCT_DOMAIN);
1657
1658 ALL_OBJFILE_SYMTABS (objfile, s)
1659 {
1660 bv = BLOCKVECTOR (s);
1661 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
1662 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1663 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1664 {
1665 return SYMBOL_TYPE (sym);
1666 }
1667 }
1668 }
1669
1670 ALL_OBJFILES (objfile)
1671 {
1672 t = basic_lookup_transparent_type_quick (objfile, STATIC_BLOCK, name);
1673 if (t)
1674 return t;
1675 }
1676
1677 return (struct type *) 0;
1678 }
1679
1680
1681 /* Find the name of the file containing main(). */
1682 /* FIXME: What about languages without main() or specially linked
1683 executables that have no main() ? */
1684
1685 const char *
1686 find_main_filename (void)
1687 {
1688 struct objfile *objfile;
1689 char *name = main_name ();
1690
1691 ALL_OBJFILES (objfile)
1692 {
1693 const char *result;
1694
1695 if (!objfile->sf)
1696 continue;
1697 result = objfile->sf->qf->find_symbol_file (objfile, name);
1698 if (result)
1699 return result;
1700 }
1701 return (NULL);
1702 }
1703
1704 /* Search BLOCK for symbol NAME in DOMAIN.
1705
1706 Note that if NAME is the demangled form of a C++ symbol, we will fail
1707 to find a match during the binary search of the non-encoded names, but
1708 for now we don't worry about the slight inefficiency of looking for
1709 a match we'll never find, since it will go pretty quick. Once the
1710 binary search terminates, we drop through and do a straight linear
1711 search on the symbols. Each symbol which is marked as being a ObjC/C++
1712 symbol (language_cplus or language_objc set) has both the encoded and
1713 non-encoded names tested for a match. */
1714
1715 struct symbol *
1716 lookup_block_symbol (const struct block *block, const char *name,
1717 const domain_enum domain)
1718 {
1719 struct dict_iterator iter;
1720 struct symbol *sym;
1721
1722 if (!BLOCK_FUNCTION (block))
1723 {
1724 for (sym = dict_iter_name_first (BLOCK_DICT (block), name, &iter);
1725 sym != NULL;
1726 sym = dict_iter_name_next (name, &iter))
1727 {
1728 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
1729 SYMBOL_DOMAIN (sym), domain))
1730 return sym;
1731 }
1732 return NULL;
1733 }
1734 else
1735 {
1736 /* Note that parameter symbols do not always show up last in the
1737 list; this loop makes sure to take anything else other than
1738 parameter symbols first; it only uses parameter symbols as a
1739 last resort. Note that this only takes up extra computation
1740 time on a match. */
1741
1742 struct symbol *sym_found = NULL;
1743
1744 for (sym = dict_iter_name_first (BLOCK_DICT (block), name, &iter);
1745 sym != NULL;
1746 sym = dict_iter_name_next (name, &iter))
1747 {
1748 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
1749 SYMBOL_DOMAIN (sym), domain))
1750 {
1751 sym_found = sym;
1752 if (!SYMBOL_IS_ARGUMENT (sym))
1753 {
1754 break;
1755 }
1756 }
1757 }
1758 return (sym_found); /* Will be NULL if not found. */
1759 }
1760 }
1761
1762 /* Find the symtab associated with PC and SECTION. Look through the
1763 psymtabs and read in another symtab if necessary. */
1764
1765 struct symtab *
1766 find_pc_sect_symtab (CORE_ADDR pc, struct obj_section *section)
1767 {
1768 struct block *b;
1769 struct blockvector *bv;
1770 struct symtab *s = NULL;
1771 struct symtab *best_s = NULL;
1772 struct objfile *objfile;
1773 struct program_space *pspace;
1774 CORE_ADDR distance = 0;
1775 struct minimal_symbol *msymbol;
1776
1777 pspace = current_program_space;
1778
1779 /* If we know that this is not a text address, return failure. This is
1780 necessary because we loop based on the block's high and low code
1781 addresses, which do not include the data ranges, and because
1782 we call find_pc_sect_psymtab which has a similar restriction based
1783 on the partial_symtab's texthigh and textlow. */
1784 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
1785 if (msymbol
1786 && (MSYMBOL_TYPE (msymbol) == mst_data
1787 || MSYMBOL_TYPE (msymbol) == mst_bss
1788 || MSYMBOL_TYPE (msymbol) == mst_abs
1789 || MSYMBOL_TYPE (msymbol) == mst_file_data
1790 || MSYMBOL_TYPE (msymbol) == mst_file_bss))
1791 return NULL;
1792
1793 /* Search all symtabs for the one whose file contains our address, and which
1794 is the smallest of all the ones containing the address. This is designed
1795 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
1796 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
1797 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
1798
1799 This happens for native ecoff format, where code from included files
1800 gets its own symtab. The symtab for the included file should have
1801 been read in already via the dependency mechanism.
1802 It might be swifter to create several symtabs with the same name
1803 like xcoff does (I'm not sure).
1804
1805 It also happens for objfiles that have their functions reordered.
1806 For these, the symtab we are looking for is not necessarily read in. */
1807
1808 ALL_PRIMARY_SYMTABS (objfile, s)
1809 {
1810 bv = BLOCKVECTOR (s);
1811 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1812
1813 if (BLOCK_START (b) <= pc
1814 && BLOCK_END (b) > pc
1815 && (distance == 0
1816 || BLOCK_END (b) - BLOCK_START (b) < distance))
1817 {
1818 /* For an objfile that has its functions reordered,
1819 find_pc_psymtab will find the proper partial symbol table
1820 and we simply return its corresponding symtab. */
1821 /* In order to better support objfiles that contain both
1822 stabs and coff debugging info, we continue on if a psymtab
1823 can't be found. */
1824 if ((objfile->flags & OBJF_REORDERED) && objfile->sf)
1825 {
1826 struct symtab *result;
1827
1828 result
1829 = objfile->sf->qf->find_pc_sect_symtab (objfile,
1830 msymbol,
1831 pc, section,
1832 0);
1833 if (result)
1834 return result;
1835 }
1836 if (section != 0)
1837 {
1838 struct dict_iterator iter;
1839 struct symbol *sym = NULL;
1840
1841 ALL_BLOCK_SYMBOLS (b, iter, sym)
1842 {
1843 fixup_symbol_section (sym, objfile);
1844 if (matching_obj_sections (SYMBOL_OBJ_SECTION (sym), section))
1845 break;
1846 }
1847 if (sym == NULL)
1848 continue; /* No symbol in this symtab matches
1849 section. */
1850 }
1851 distance = BLOCK_END (b) - BLOCK_START (b);
1852 best_s = s;
1853 }
1854 }
1855
1856 if (best_s != NULL)
1857 return (best_s);
1858
1859 ALL_OBJFILES (objfile)
1860 {
1861 struct symtab *result;
1862
1863 if (!objfile->sf)
1864 continue;
1865 result = objfile->sf->qf->find_pc_sect_symtab (objfile,
1866 msymbol,
1867 pc, section,
1868 1);
1869 if (result)
1870 return result;
1871 }
1872
1873 return NULL;
1874 }
1875
1876 /* Find the symtab associated with PC. Look through the psymtabs and read
1877 in another symtab if necessary. Backward compatibility, no section. */
1878
1879 struct symtab *
1880 find_pc_symtab (CORE_ADDR pc)
1881 {
1882 return find_pc_sect_symtab (pc, find_pc_mapped_section (pc));
1883 }
1884 \f
1885
1886 /* Find the source file and line number for a given PC value and SECTION.
1887 Return a structure containing a symtab pointer, a line number,
1888 and a pc range for the entire source line.
1889 The value's .pc field is NOT the specified pc.
1890 NOTCURRENT nonzero means, if specified pc is on a line boundary,
1891 use the line that ends there. Otherwise, in that case, the line
1892 that begins there is used. */
1893
1894 /* The big complication here is that a line may start in one file, and end just
1895 before the start of another file. This usually occurs when you #include
1896 code in the middle of a subroutine. To properly find the end of a line's PC
1897 range, we must search all symtabs associated with this compilation unit, and
1898 find the one whose first PC is closer than that of the next line in this
1899 symtab. */
1900
1901 /* If it's worth the effort, we could be using a binary search. */
1902
1903 struct symtab_and_line
1904 find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent)
1905 {
1906 struct symtab *s;
1907 struct linetable *l;
1908 int len;
1909 int i;
1910 struct linetable_entry *item;
1911 struct symtab_and_line val;
1912 struct blockvector *bv;
1913 struct minimal_symbol *msymbol;
1914 struct minimal_symbol *mfunsym;
1915 struct objfile *objfile;
1916
1917 /* Info on best line seen so far, and where it starts, and its file. */
1918
1919 struct linetable_entry *best = NULL;
1920 CORE_ADDR best_end = 0;
1921 struct symtab *best_symtab = 0;
1922
1923 /* Store here the first line number
1924 of a file which contains the line at the smallest pc after PC.
1925 If we don't find a line whose range contains PC,
1926 we will use a line one less than this,
1927 with a range from the start of that file to the first line's pc. */
1928 struct linetable_entry *alt = NULL;
1929 struct symtab *alt_symtab = 0;
1930
1931 /* Info on best line seen in this file. */
1932
1933 struct linetable_entry *prev;
1934
1935 /* If this pc is not from the current frame,
1936 it is the address of the end of a call instruction.
1937 Quite likely that is the start of the following statement.
1938 But what we want is the statement containing the instruction.
1939 Fudge the pc to make sure we get that. */
1940
1941 init_sal (&val); /* initialize to zeroes */
1942
1943 val.pspace = current_program_space;
1944
1945 /* It's tempting to assume that, if we can't find debugging info for
1946 any function enclosing PC, that we shouldn't search for line
1947 number info, either. However, GAS can emit line number info for
1948 assembly files --- very helpful when debugging hand-written
1949 assembly code. In such a case, we'd have no debug info for the
1950 function, but we would have line info. */
1951
1952 if (notcurrent)
1953 pc -= 1;
1954
1955 /* elz: added this because this function returned the wrong
1956 information if the pc belongs to a stub (import/export)
1957 to call a shlib function. This stub would be anywhere between
1958 two functions in the target, and the line info was erroneously
1959 taken to be the one of the line before the pc. */
1960
1961 /* RT: Further explanation:
1962
1963 * We have stubs (trampolines) inserted between procedures.
1964 *
1965 * Example: "shr1" exists in a shared library, and a "shr1" stub also
1966 * exists in the main image.
1967 *
1968 * In the minimal symbol table, we have a bunch of symbols
1969 * sorted by start address. The stubs are marked as "trampoline",
1970 * the others appear as text. E.g.:
1971 *
1972 * Minimal symbol table for main image
1973 * main: code for main (text symbol)
1974 * shr1: stub (trampoline symbol)
1975 * foo: code for foo (text symbol)
1976 * ...
1977 * Minimal symbol table for "shr1" image:
1978 * ...
1979 * shr1: code for shr1 (text symbol)
1980 * ...
1981 *
1982 * So the code below is trying to detect if we are in the stub
1983 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
1984 * and if found, do the symbolization from the real-code address
1985 * rather than the stub address.
1986 *
1987 * Assumptions being made about the minimal symbol table:
1988 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
1989 * if we're really in the trampoline.s If we're beyond it (say
1990 * we're in "foo" in the above example), it'll have a closer
1991 * symbol (the "foo" text symbol for example) and will not
1992 * return the trampoline.
1993 * 2. lookup_minimal_symbol_text() will find a real text symbol
1994 * corresponding to the trampoline, and whose address will
1995 * be different than the trampoline address. I put in a sanity
1996 * check for the address being the same, to avoid an
1997 * infinite recursion.
1998 */
1999 msymbol = lookup_minimal_symbol_by_pc (pc);
2000 if (msymbol != NULL)
2001 if (MSYMBOL_TYPE (msymbol) == mst_solib_trampoline)
2002 {
2003 mfunsym = lookup_minimal_symbol_text (SYMBOL_LINKAGE_NAME (msymbol),
2004 NULL);
2005 if (mfunsym == NULL)
2006 /* I eliminated this warning since it is coming out
2007 * in the following situation:
2008 * gdb shmain // test program with shared libraries
2009 * (gdb) break shr1 // function in shared lib
2010 * Warning: In stub for ...
2011 * In the above situation, the shared lib is not loaded yet,
2012 * so of course we can't find the real func/line info,
2013 * but the "break" still works, and the warning is annoying.
2014 * So I commented out the warning. RT */
2015 /* warning ("In stub for %s; unable to find real function/line info",
2016 SYMBOL_LINKAGE_NAME (msymbol)); */
2017 ;
2018 /* fall through */
2019 else if (SYMBOL_VALUE_ADDRESS (mfunsym)
2020 == SYMBOL_VALUE_ADDRESS (msymbol))
2021 /* Avoid infinite recursion */
2022 /* See above comment about why warning is commented out. */
2023 /* warning ("In stub for %s; unable to find real function/line info",
2024 SYMBOL_LINKAGE_NAME (msymbol)); */
2025 ;
2026 /* fall through */
2027 else
2028 return find_pc_line (SYMBOL_VALUE_ADDRESS (mfunsym), 0);
2029 }
2030
2031
2032 s = find_pc_sect_symtab (pc, section);
2033 if (!s)
2034 {
2035 /* If no symbol information, return previous pc. */
2036 if (notcurrent)
2037 pc++;
2038 val.pc = pc;
2039 return val;
2040 }
2041
2042 bv = BLOCKVECTOR (s);
2043 objfile = s->objfile;
2044
2045 /* Look at all the symtabs that share this blockvector.
2046 They all have the same apriori range, that we found was right;
2047 but they have different line tables. */
2048
2049 ALL_OBJFILE_SYMTABS (objfile, s)
2050 {
2051 if (BLOCKVECTOR (s) != bv)
2052 continue;
2053
2054 /* Find the best line in this symtab. */
2055 l = LINETABLE (s);
2056 if (!l)
2057 continue;
2058 len = l->nitems;
2059 if (len <= 0)
2060 {
2061 /* I think len can be zero if the symtab lacks line numbers
2062 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
2063 I'm not sure which, and maybe it depends on the symbol
2064 reader). */
2065 continue;
2066 }
2067
2068 prev = NULL;
2069 item = l->item; /* Get first line info. */
2070
2071 /* Is this file's first line closer than the first lines of other files?
2072 If so, record this file, and its first line, as best alternate. */
2073 if (item->pc > pc && (!alt || item->pc < alt->pc))
2074 {
2075 alt = item;
2076 alt_symtab = s;
2077 }
2078
2079 for (i = 0; i < len; i++, item++)
2080 {
2081 /* Leave prev pointing to the linetable entry for the last line
2082 that started at or before PC. */
2083 if (item->pc > pc)
2084 break;
2085
2086 prev = item;
2087 }
2088
2089 /* At this point, prev points at the line whose start addr is <= pc, and
2090 item points at the next line. If we ran off the end of the linetable
2091 (pc >= start of the last line), then prev == item. If pc < start of
2092 the first line, prev will not be set. */
2093
2094 /* Is this file's best line closer than the best in the other files?
2095 If so, record this file, and its best line, as best so far. Don't
2096 save prev if it represents the end of a function (i.e. line number
2097 0) instead of a real line. */
2098
2099 if (prev && prev->line && (!best || prev->pc > best->pc))
2100 {
2101 best = prev;
2102 best_symtab = s;
2103
2104 /* Discard BEST_END if it's before the PC of the current BEST. */
2105 if (best_end <= best->pc)
2106 best_end = 0;
2107 }
2108
2109 /* If another line (denoted by ITEM) is in the linetable and its
2110 PC is after BEST's PC, but before the current BEST_END, then
2111 use ITEM's PC as the new best_end. */
2112 if (best && i < len && item->pc > best->pc
2113 && (best_end == 0 || best_end > item->pc))
2114 best_end = item->pc;
2115 }
2116
2117 if (!best_symtab)
2118 {
2119 /* If we didn't find any line number info, just return zeros.
2120 We used to return alt->line - 1 here, but that could be
2121 anywhere; if we don't have line number info for this PC,
2122 don't make some up. */
2123 val.pc = pc;
2124 }
2125 else if (best->line == 0)
2126 {
2127 /* If our best fit is in a range of PC's for which no line
2128 number info is available (line number is zero) then we didn't
2129 find any valid line information. */
2130 val.pc = pc;
2131 }
2132 else
2133 {
2134 val.symtab = best_symtab;
2135 val.line = best->line;
2136 val.pc = best->pc;
2137 if (best_end && (!alt || best_end < alt->pc))
2138 val.end = best_end;
2139 else if (alt)
2140 val.end = alt->pc;
2141 else
2142 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
2143 }
2144 val.section = section;
2145 return val;
2146 }
2147
2148 /* Backward compatibility (no section). */
2149
2150 struct symtab_and_line
2151 find_pc_line (CORE_ADDR pc, int notcurrent)
2152 {
2153 struct obj_section *section;
2154
2155 section = find_pc_overlay (pc);
2156 if (pc_in_unmapped_range (pc, section))
2157 pc = overlay_mapped_address (pc, section);
2158 return find_pc_sect_line (pc, section, notcurrent);
2159 }
2160 \f
2161 /* Find line number LINE in any symtab whose name is the same as
2162 SYMTAB.
2163
2164 If found, return the symtab that contains the linetable in which it was
2165 found, set *INDEX to the index in the linetable of the best entry
2166 found, and set *EXACT_MATCH nonzero if the value returned is an
2167 exact match.
2168
2169 If not found, return NULL. */
2170
2171 struct symtab *
2172 find_line_symtab (struct symtab *symtab, int line,
2173 int *index, int *exact_match)
2174 {
2175 int exact = 0; /* Initialized here to avoid a compiler warning. */
2176
2177 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
2178 so far seen. */
2179
2180 int best_index;
2181 struct linetable *best_linetable;
2182 struct symtab *best_symtab;
2183
2184 /* First try looking it up in the given symtab. */
2185 best_linetable = LINETABLE (symtab);
2186 best_symtab = symtab;
2187 best_index = find_line_common (best_linetable, line, &exact);
2188 if (best_index < 0 || !exact)
2189 {
2190 /* Didn't find an exact match. So we better keep looking for
2191 another symtab with the same name. In the case of xcoff,
2192 multiple csects for one source file (produced by IBM's FORTRAN
2193 compiler) produce multiple symtabs (this is unavoidable
2194 assuming csects can be at arbitrary places in memory and that
2195 the GLOBAL_BLOCK of a symtab has a begin and end address). */
2196
2197 /* BEST is the smallest linenumber > LINE so far seen,
2198 or 0 if none has been seen so far.
2199 BEST_INDEX and BEST_LINETABLE identify the item for it. */
2200 int best;
2201
2202 struct objfile *objfile;
2203 struct symtab *s;
2204
2205 if (best_index >= 0)
2206 best = best_linetable->item[best_index].line;
2207 else
2208 best = 0;
2209
2210 ALL_OBJFILES (objfile)
2211 {
2212 if (objfile->sf)
2213 objfile->sf->qf->expand_symtabs_with_filename (objfile,
2214 symtab->filename);
2215 }
2216
2217 /* Get symbol full file name if possible. */
2218 symtab_to_fullname (symtab);
2219
2220 ALL_SYMTABS (objfile, s)
2221 {
2222 struct linetable *l;
2223 int ind;
2224
2225 if (FILENAME_CMP (symtab->filename, s->filename) != 0)
2226 continue;
2227 if (symtab->fullname != NULL
2228 && symtab_to_fullname (s) != NULL
2229 && FILENAME_CMP (symtab->fullname, s->fullname) != 0)
2230 continue;
2231 l = LINETABLE (s);
2232 ind = find_line_common (l, line, &exact);
2233 if (ind >= 0)
2234 {
2235 if (exact)
2236 {
2237 best_index = ind;
2238 best_linetable = l;
2239 best_symtab = s;
2240 goto done;
2241 }
2242 if (best == 0 || l->item[ind].line < best)
2243 {
2244 best = l->item[ind].line;
2245 best_index = ind;
2246 best_linetable = l;
2247 best_symtab = s;
2248 }
2249 }
2250 }
2251 }
2252 done:
2253 if (best_index < 0)
2254 return NULL;
2255
2256 if (index)
2257 *index = best_index;
2258 if (exact_match)
2259 *exact_match = exact;
2260
2261 return best_symtab;
2262 }
2263 \f
2264 /* Set the PC value for a given source file and line number and return true.
2265 Returns zero for invalid line number (and sets the PC to 0).
2266 The source file is specified with a struct symtab. */
2267
2268 int
2269 find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
2270 {
2271 struct linetable *l;
2272 int ind;
2273
2274 *pc = 0;
2275 if (symtab == 0)
2276 return 0;
2277
2278 symtab = find_line_symtab (symtab, line, &ind, NULL);
2279 if (symtab != NULL)
2280 {
2281 l = LINETABLE (symtab);
2282 *pc = l->item[ind].pc;
2283 return 1;
2284 }
2285 else
2286 return 0;
2287 }
2288
2289 /* Find the range of pc values in a line.
2290 Store the starting pc of the line into *STARTPTR
2291 and the ending pc (start of next line) into *ENDPTR.
2292 Returns 1 to indicate success.
2293 Returns 0 if could not find the specified line. */
2294
2295 int
2296 find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
2297 CORE_ADDR *endptr)
2298 {
2299 CORE_ADDR startaddr;
2300 struct symtab_and_line found_sal;
2301
2302 startaddr = sal.pc;
2303 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
2304 return 0;
2305
2306 /* This whole function is based on address. For example, if line 10 has
2307 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
2308 "info line *0x123" should say the line goes from 0x100 to 0x200
2309 and "info line *0x355" should say the line goes from 0x300 to 0x400.
2310 This also insures that we never give a range like "starts at 0x134
2311 and ends at 0x12c". */
2312
2313 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
2314 if (found_sal.line != sal.line)
2315 {
2316 /* The specified line (sal) has zero bytes. */
2317 *startptr = found_sal.pc;
2318 *endptr = found_sal.pc;
2319 }
2320 else
2321 {
2322 *startptr = found_sal.pc;
2323 *endptr = found_sal.end;
2324 }
2325 return 1;
2326 }
2327
2328 /* Given a line table and a line number, return the index into the line
2329 table for the pc of the nearest line whose number is >= the specified one.
2330 Return -1 if none is found. The value is >= 0 if it is an index.
2331
2332 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
2333
2334 static int
2335 find_line_common (struct linetable *l, int lineno,
2336 int *exact_match)
2337 {
2338 int i;
2339 int len;
2340
2341 /* BEST is the smallest linenumber > LINENO so far seen,
2342 or 0 if none has been seen so far.
2343 BEST_INDEX identifies the item for it. */
2344
2345 int best_index = -1;
2346 int best = 0;
2347
2348 *exact_match = 0;
2349
2350 if (lineno <= 0)
2351 return -1;
2352 if (l == 0)
2353 return -1;
2354
2355 len = l->nitems;
2356 for (i = 0; i < len; i++)
2357 {
2358 struct linetable_entry *item = &(l->item[i]);
2359
2360 if (item->line == lineno)
2361 {
2362 /* Return the first (lowest address) entry which matches. */
2363 *exact_match = 1;
2364 return i;
2365 }
2366
2367 if (item->line > lineno && (best == 0 || item->line < best))
2368 {
2369 best = item->line;
2370 best_index = i;
2371 }
2372 }
2373
2374 /* If we got here, we didn't get an exact match. */
2375 return best_index;
2376 }
2377
2378 int
2379 find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
2380 {
2381 struct symtab_and_line sal;
2382
2383 sal = find_pc_line (pc, 0);
2384 *startptr = sal.pc;
2385 *endptr = sal.end;
2386 return sal.symtab != 0;
2387 }
2388
2389 /* Given a function start address FUNC_ADDR and SYMTAB, find the first
2390 address for that function that has an entry in SYMTAB's line info
2391 table. If such an entry cannot be found, return FUNC_ADDR
2392 unaltered. */
2393 CORE_ADDR
2394 skip_prologue_using_lineinfo (CORE_ADDR func_addr, struct symtab *symtab)
2395 {
2396 CORE_ADDR func_start, func_end;
2397 struct linetable *l;
2398 int i;
2399
2400 /* Give up if this symbol has no lineinfo table. */
2401 l = LINETABLE (symtab);
2402 if (l == NULL)
2403 return func_addr;
2404
2405 /* Get the range for the function's PC values, or give up if we
2406 cannot, for some reason. */
2407 if (!find_pc_partial_function (func_addr, NULL, &func_start, &func_end))
2408 return func_addr;
2409
2410 /* Linetable entries are ordered by PC values, see the commentary in
2411 symtab.h where `struct linetable' is defined. Thus, the first
2412 entry whose PC is in the range [FUNC_START..FUNC_END[ is the
2413 address we are looking for. */
2414 for (i = 0; i < l->nitems; i++)
2415 {
2416 struct linetable_entry *item = &(l->item[i]);
2417
2418 /* Don't use line numbers of zero, they mark special entries in
2419 the table. See the commentary on symtab.h before the
2420 definition of struct linetable. */
2421 if (item->line > 0 && func_start <= item->pc && item->pc < func_end)
2422 return item->pc;
2423 }
2424
2425 return func_addr;
2426 }
2427
2428 /* Given a function symbol SYM, find the symtab and line for the start
2429 of the function.
2430 If the argument FUNFIRSTLINE is nonzero, we want the first line
2431 of real code inside the function. */
2432
2433 struct symtab_and_line
2434 find_function_start_sal (struct symbol *sym, int funfirstline)
2435 {
2436 struct symtab_and_line sal;
2437
2438 fixup_symbol_section (sym, NULL);
2439 sal = find_pc_sect_line (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)),
2440 SYMBOL_OBJ_SECTION (sym), 0);
2441
2442 /* We always should have a line for the function start address.
2443 If we don't, something is odd. Create a plain SAL refering
2444 just the PC and hope that skip_prologue_sal (if requested)
2445 can find a line number for after the prologue. */
2446 if (sal.pc < BLOCK_START (SYMBOL_BLOCK_VALUE (sym)))
2447 {
2448 init_sal (&sal);
2449 sal.pspace = current_program_space;
2450 sal.pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
2451 sal.section = SYMBOL_OBJ_SECTION (sym);
2452 }
2453
2454 if (funfirstline)
2455 skip_prologue_sal (&sal);
2456
2457 return sal;
2458 }
2459
2460 /* Adjust SAL to the first instruction past the function prologue.
2461 If the PC was explicitly specified, the SAL is not changed.
2462 If the line number was explicitly specified, at most the SAL's PC
2463 is updated. If SAL is already past the prologue, then do nothing. */
2464 void
2465 skip_prologue_sal (struct symtab_and_line *sal)
2466 {
2467 struct symbol *sym;
2468 struct symtab_and_line start_sal;
2469 struct cleanup *old_chain;
2470 CORE_ADDR pc, saved_pc;
2471 struct obj_section *section;
2472 const char *name;
2473 struct objfile *objfile;
2474 struct gdbarch *gdbarch;
2475 struct block *b, *function_block;
2476 int force_skip, skip;
2477
2478 /* Do not change the SAL is PC was specified explicitly. */
2479 if (sal->explicit_pc)
2480 return;
2481
2482 old_chain = save_current_space_and_thread ();
2483 switch_to_program_space_and_thread (sal->pspace);
2484
2485 sym = find_pc_sect_function (sal->pc, sal->section);
2486 if (sym != NULL)
2487 {
2488 fixup_symbol_section (sym, NULL);
2489
2490 pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
2491 section = SYMBOL_OBJ_SECTION (sym);
2492 name = SYMBOL_LINKAGE_NAME (sym);
2493 objfile = SYMBOL_SYMTAB (sym)->objfile;
2494 }
2495 else
2496 {
2497 struct minimal_symbol *msymbol
2498 = lookup_minimal_symbol_by_pc_section (sal->pc, sal->section);
2499
2500 if (msymbol == NULL)
2501 {
2502 do_cleanups (old_chain);
2503 return;
2504 }
2505
2506 pc = SYMBOL_VALUE_ADDRESS (msymbol);
2507 section = SYMBOL_OBJ_SECTION (msymbol);
2508 name = SYMBOL_LINKAGE_NAME (msymbol);
2509 objfile = msymbol_objfile (msymbol);
2510 }
2511
2512 gdbarch = get_objfile_arch (objfile);
2513
2514 /* Process the prologue in two passes. In the first pass try to skip the
2515 prologue (SKIP is true) and verify there is a real need for it (indicated
2516 by FORCE_SKIP). If no such reason was found run a second pass where the
2517 prologue is not skipped (SKIP is false). */
2518
2519 skip = 1;
2520 force_skip = 1;
2521
2522 /* Be conservative - allow direct PC (without skipping prologue) only if we
2523 have proven the CU (Compilation Unit) supports it. sal->SYMTAB does not
2524 have to be set by the caller so we use SYM instead. */
2525 if (sym && SYMBOL_SYMTAB (sym)->locations_valid)
2526 force_skip = 0;
2527
2528 saved_pc = pc;
2529 do
2530 {
2531 pc = saved_pc;
2532
2533 /* If the function is in an unmapped overlay, use its unmapped LMA address,
2534 so that gdbarch_skip_prologue has something unique to work on. */
2535 if (section_is_overlay (section) && !section_is_mapped (section))
2536 pc = overlay_unmapped_address (pc, section);
2537
2538 /* Skip "first line" of function (which is actually its prologue). */
2539 pc += gdbarch_deprecated_function_start_offset (gdbarch);
2540 if (skip)
2541 pc = gdbarch_skip_prologue (gdbarch, pc);
2542
2543 /* For overlays, map pc back into its mapped VMA range. */
2544 pc = overlay_mapped_address (pc, section);
2545
2546 /* Calculate line number. */
2547 start_sal = find_pc_sect_line (pc, section, 0);
2548
2549 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
2550 line is still part of the same function. */
2551 if (skip && start_sal.pc != pc
2552 && (sym? (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) <= start_sal.end
2553 && start_sal.end < BLOCK_END (SYMBOL_BLOCK_VALUE (sym)))
2554 : (lookup_minimal_symbol_by_pc_section (start_sal.end, section)
2555 == lookup_minimal_symbol_by_pc_section (pc, section))))
2556 {
2557 /* First pc of next line */
2558 pc = start_sal.end;
2559 /* Recalculate the line number (might not be N+1). */
2560 start_sal = find_pc_sect_line (pc, section, 0);
2561 }
2562
2563 /* On targets with executable formats that don't have a concept of
2564 constructors (ELF with .init has, PE doesn't), gcc emits a call
2565 to `__main' in `main' between the prologue and before user
2566 code. */
2567 if (gdbarch_skip_main_prologue_p (gdbarch)
2568 && name && strcmp (name, "main") == 0)
2569 {
2570 pc = gdbarch_skip_main_prologue (gdbarch, pc);
2571 /* Recalculate the line number (might not be N+1). */
2572 start_sal = find_pc_sect_line (pc, section, 0);
2573 force_skip = 1;
2574 }
2575 }
2576 while (!force_skip && skip--);
2577
2578 /* If we still don't have a valid source line, try to find the first
2579 PC in the lineinfo table that belongs to the same function. This
2580 happens with COFF debug info, which does not seem to have an
2581 entry in lineinfo table for the code after the prologue which has
2582 no direct relation to source. For example, this was found to be
2583 the case with the DJGPP target using "gcc -gcoff" when the
2584 compiler inserted code after the prologue to make sure the stack
2585 is aligned. */
2586 if (!force_skip && sym && start_sal.symtab == NULL)
2587 {
2588 pc = skip_prologue_using_lineinfo (pc, SYMBOL_SYMTAB (sym));
2589 /* Recalculate the line number. */
2590 start_sal = find_pc_sect_line (pc, section, 0);
2591 }
2592
2593 do_cleanups (old_chain);
2594
2595 /* If we're already past the prologue, leave SAL unchanged. Otherwise
2596 forward SAL to the end of the prologue. */
2597 if (sal->pc >= pc)
2598 return;
2599
2600 sal->pc = pc;
2601 sal->section = section;
2602
2603 /* Unless the explicit_line flag was set, update the SAL line
2604 and symtab to correspond to the modified PC location. */
2605 if (sal->explicit_line)
2606 return;
2607
2608 sal->symtab = start_sal.symtab;
2609 sal->line = start_sal.line;
2610 sal->end = start_sal.end;
2611
2612 /* Check if we are now inside an inlined function. If we can,
2613 use the call site of the function instead. */
2614 b = block_for_pc_sect (sal->pc, sal->section);
2615 function_block = NULL;
2616 while (b != NULL)
2617 {
2618 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
2619 function_block = b;
2620 else if (BLOCK_FUNCTION (b) != NULL)
2621 break;
2622 b = BLOCK_SUPERBLOCK (b);
2623 }
2624 if (function_block != NULL
2625 && SYMBOL_LINE (BLOCK_FUNCTION (function_block)) != 0)
2626 {
2627 sal->line = SYMBOL_LINE (BLOCK_FUNCTION (function_block));
2628 sal->symtab = SYMBOL_SYMTAB (BLOCK_FUNCTION (function_block));
2629 }
2630 }
2631
2632 /* If P is of the form "operator[ \t]+..." where `...' is
2633 some legitimate operator text, return a pointer to the
2634 beginning of the substring of the operator text.
2635 Otherwise, return "". */
2636 static char *
2637 operator_chars (char *p, char **end)
2638 {
2639 *end = "";
2640 if (strncmp (p, "operator", 8))
2641 return *end;
2642 p += 8;
2643
2644 /* Don't get faked out by `operator' being part of a longer
2645 identifier. */
2646 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
2647 return *end;
2648
2649 /* Allow some whitespace between `operator' and the operator symbol. */
2650 while (*p == ' ' || *p == '\t')
2651 p++;
2652
2653 /* Recognize 'operator TYPENAME'. */
2654
2655 if (isalpha (*p) || *p == '_' || *p == '$')
2656 {
2657 char *q = p + 1;
2658
2659 while (isalnum (*q) || *q == '_' || *q == '$')
2660 q++;
2661 *end = q;
2662 return p;
2663 }
2664
2665 while (*p)
2666 switch (*p)
2667 {
2668 case '\\': /* regexp quoting */
2669 if (p[1] == '*')
2670 {
2671 if (p[2] == '=') /* 'operator\*=' */
2672 *end = p + 3;
2673 else /* 'operator\*' */
2674 *end = p + 2;
2675 return p;
2676 }
2677 else if (p[1] == '[')
2678 {
2679 if (p[2] == ']')
2680 error (_("mismatched quoting on brackets, "
2681 "try 'operator\\[\\]'"));
2682 else if (p[2] == '\\' && p[3] == ']')
2683 {
2684 *end = p + 4; /* 'operator\[\]' */
2685 return p;
2686 }
2687 else
2688 error (_("nothing is allowed between '[' and ']'"));
2689 }
2690 else
2691 {
2692 /* Gratuitous qoute: skip it and move on. */
2693 p++;
2694 continue;
2695 }
2696 break;
2697 case '!':
2698 case '=':
2699 case '*':
2700 case '/':
2701 case '%':
2702 case '^':
2703 if (p[1] == '=')
2704 *end = p + 2;
2705 else
2706 *end = p + 1;
2707 return p;
2708 case '<':
2709 case '>':
2710 case '+':
2711 case '-':
2712 case '&':
2713 case '|':
2714 if (p[0] == '-' && p[1] == '>')
2715 {
2716 /* Struct pointer member operator 'operator->'. */
2717 if (p[2] == '*')
2718 {
2719 *end = p + 3; /* 'operator->*' */
2720 return p;
2721 }
2722 else if (p[2] == '\\')
2723 {
2724 *end = p + 4; /* Hopefully 'operator->\*' */
2725 return p;
2726 }
2727 else
2728 {
2729 *end = p + 2; /* 'operator->' */
2730 return p;
2731 }
2732 }
2733 if (p[1] == '=' || p[1] == p[0])
2734 *end = p + 2;
2735 else
2736 *end = p + 1;
2737 return p;
2738 case '~':
2739 case ',':
2740 *end = p + 1;
2741 return p;
2742 case '(':
2743 if (p[1] != ')')
2744 error (_("`operator ()' must be specified "
2745 "without whitespace in `()'"));
2746 *end = p + 2;
2747 return p;
2748 case '?':
2749 if (p[1] != ':')
2750 error (_("`operator ?:' must be specified "
2751 "without whitespace in `?:'"));
2752 *end = p + 2;
2753 return p;
2754 case '[':
2755 if (p[1] != ']')
2756 error (_("`operator []' must be specified "
2757 "without whitespace in `[]'"));
2758 *end = p + 2;
2759 return p;
2760 default:
2761 error (_("`operator %s' not supported"), p);
2762 break;
2763 }
2764
2765 *end = "";
2766 return *end;
2767 }
2768 \f
2769
2770 /* If FILE is not already in the table of files, return zero;
2771 otherwise return non-zero. Optionally add FILE to the table if ADD
2772 is non-zero. If *FIRST is non-zero, forget the old table
2773 contents. */
2774 static int
2775 filename_seen (const char *file, int add, int *first)
2776 {
2777 /* Table of files seen so far. */
2778 static const char **tab = NULL;
2779 /* Allocated size of tab in elements.
2780 Start with one 256-byte block (when using GNU malloc.c).
2781 24 is the malloc overhead when range checking is in effect. */
2782 static int tab_alloc_size = (256 - 24) / sizeof (char *);
2783 /* Current size of tab in elements. */
2784 static int tab_cur_size;
2785 const char **p;
2786
2787 if (*first)
2788 {
2789 if (tab == NULL)
2790 tab = (const char **) xmalloc (tab_alloc_size * sizeof (*tab));
2791 tab_cur_size = 0;
2792 }
2793
2794 /* Is FILE in tab? */
2795 for (p = tab; p < tab + tab_cur_size; p++)
2796 if (filename_cmp (*p, file) == 0)
2797 return 1;
2798
2799 /* No; maybe add it to tab. */
2800 if (add)
2801 {
2802 if (tab_cur_size == tab_alloc_size)
2803 {
2804 tab_alloc_size *= 2;
2805 tab = (const char **) xrealloc ((char *) tab,
2806 tab_alloc_size * sizeof (*tab));
2807 }
2808 tab[tab_cur_size++] = file;
2809 }
2810
2811 return 0;
2812 }
2813
2814 /* Slave routine for sources_info. Force line breaks at ,'s.
2815 NAME is the name to print and *FIRST is nonzero if this is the first
2816 name printed. Set *FIRST to zero. */
2817 static void
2818 output_source_filename (const char *name, int *first)
2819 {
2820 /* Since a single source file can result in several partial symbol
2821 tables, we need to avoid printing it more than once. Note: if
2822 some of the psymtabs are read in and some are not, it gets
2823 printed both under "Source files for which symbols have been
2824 read" and "Source files for which symbols will be read in on
2825 demand". I consider this a reasonable way to deal with the
2826 situation. I'm not sure whether this can also happen for
2827 symtabs; it doesn't hurt to check. */
2828
2829 /* Was NAME already seen? */
2830 if (filename_seen (name, 1, first))
2831 {
2832 /* Yes; don't print it again. */
2833 return;
2834 }
2835 /* No; print it and reset *FIRST. */
2836 if (*first)
2837 {
2838 *first = 0;
2839 }
2840 else
2841 {
2842 printf_filtered (", ");
2843 }
2844
2845 wrap_here ("");
2846 fputs_filtered (name, gdb_stdout);
2847 }
2848
2849 /* A callback for map_partial_symbol_filenames. */
2850 static void
2851 output_partial_symbol_filename (const char *filename, const char *fullname,
2852 void *data)
2853 {
2854 output_source_filename (fullname ? fullname : filename, data);
2855 }
2856
2857 static void
2858 sources_info (char *ignore, int from_tty)
2859 {
2860 struct symtab *s;
2861 struct objfile *objfile;
2862 int first;
2863
2864 if (!have_full_symbols () && !have_partial_symbols ())
2865 {
2866 error (_("No symbol table is loaded. Use the \"file\" command."));
2867 }
2868
2869 printf_filtered ("Source files for which symbols have been read in:\n\n");
2870
2871 first = 1;
2872 ALL_SYMTABS (objfile, s)
2873 {
2874 const char *fullname = symtab_to_fullname (s);
2875
2876 output_source_filename (fullname ? fullname : s->filename, &first);
2877 }
2878 printf_filtered ("\n\n");
2879
2880 printf_filtered ("Source files for which symbols "
2881 "will be read in on demand:\n\n");
2882
2883 first = 1;
2884 map_partial_symbol_filenames (output_partial_symbol_filename, &first);
2885 printf_filtered ("\n");
2886 }
2887
2888 static int
2889 file_matches (const char *file, char *files[], int nfiles)
2890 {
2891 int i;
2892
2893 if (file != NULL && nfiles != 0)
2894 {
2895 for (i = 0; i < nfiles; i++)
2896 {
2897 if (filename_cmp (files[i], lbasename (file)) == 0)
2898 return 1;
2899 }
2900 }
2901 else if (nfiles == 0)
2902 return 1;
2903 return 0;
2904 }
2905
2906 /* Free any memory associated with a search. */
2907 void
2908 free_search_symbols (struct symbol_search *symbols)
2909 {
2910 struct symbol_search *p;
2911 struct symbol_search *next;
2912
2913 for (p = symbols; p != NULL; p = next)
2914 {
2915 next = p->next;
2916 xfree (p);
2917 }
2918 }
2919
2920 static void
2921 do_free_search_symbols_cleanup (void *symbols)
2922 {
2923 free_search_symbols (symbols);
2924 }
2925
2926 struct cleanup *
2927 make_cleanup_free_search_symbols (struct symbol_search *symbols)
2928 {
2929 return make_cleanup (do_free_search_symbols_cleanup, symbols);
2930 }
2931
2932 /* Helper function for sort_search_symbols and qsort. Can only
2933 sort symbols, not minimal symbols. */
2934 static int
2935 compare_search_syms (const void *sa, const void *sb)
2936 {
2937 struct symbol_search **sym_a = (struct symbol_search **) sa;
2938 struct symbol_search **sym_b = (struct symbol_search **) sb;
2939
2940 return strcmp (SYMBOL_PRINT_NAME ((*sym_a)->symbol),
2941 SYMBOL_PRINT_NAME ((*sym_b)->symbol));
2942 }
2943
2944 /* Sort the ``nfound'' symbols in the list after prevtail. Leave
2945 prevtail where it is, but update its next pointer to point to
2946 the first of the sorted symbols. */
2947 static struct symbol_search *
2948 sort_search_symbols (struct symbol_search *prevtail, int nfound)
2949 {
2950 struct symbol_search **symbols, *symp, *old_next;
2951 int i;
2952
2953 symbols = (struct symbol_search **) xmalloc (sizeof (struct symbol_search *)
2954 * nfound);
2955 symp = prevtail->next;
2956 for (i = 0; i < nfound; i++)
2957 {
2958 symbols[i] = symp;
2959 symp = symp->next;
2960 }
2961 /* Generally NULL. */
2962 old_next = symp;
2963
2964 qsort (symbols, nfound, sizeof (struct symbol_search *),
2965 compare_search_syms);
2966
2967 symp = prevtail;
2968 for (i = 0; i < nfound; i++)
2969 {
2970 symp->next = symbols[i];
2971 symp = symp->next;
2972 }
2973 symp->next = old_next;
2974
2975 xfree (symbols);
2976 return symp;
2977 }
2978
2979 /* An object of this type is passed as the user_data to the
2980 expand_symtabs_matching method. */
2981 struct search_symbols_data
2982 {
2983 int nfiles;
2984 char **files;
2985
2986 /* It is true if PREG contains valid data, false otherwise. */
2987 unsigned preg_p : 1;
2988 regex_t preg;
2989 };
2990
2991 /* A callback for expand_symtabs_matching. */
2992 static int
2993 search_symbols_file_matches (const char *filename, void *user_data)
2994 {
2995 struct search_symbols_data *data = user_data;
2996
2997 return file_matches (filename, data->files, data->nfiles);
2998 }
2999
3000 /* A callback for expand_symtabs_matching. */
3001 static int
3002 search_symbols_name_matches (const char *symname, void *user_data)
3003 {
3004 struct search_symbols_data *data = user_data;
3005
3006 return !data->preg_p || regexec (&data->preg, symname, 0, NULL, 0) == 0;
3007 }
3008
3009 /* Search the symbol table for matches to the regular expression REGEXP,
3010 returning the results in *MATCHES.
3011
3012 Only symbols of KIND are searched:
3013 VARIABLES_DOMAIN - search all symbols, excluding functions, type names,
3014 and constants (enums)
3015 FUNCTIONS_DOMAIN - search all functions
3016 TYPES_DOMAIN - search all type names
3017 ALL_DOMAIN - an internal error for this function
3018
3019 free_search_symbols should be called when *MATCHES is no longer needed.
3020
3021 The results are sorted locally; each symtab's global and static blocks are
3022 separately alphabetized. */
3023
3024 void
3025 search_symbols (char *regexp, enum search_domain kind,
3026 int nfiles, char *files[],
3027 struct symbol_search **matches)
3028 {
3029 struct symtab *s;
3030 struct blockvector *bv;
3031 struct block *b;
3032 int i = 0;
3033 struct dict_iterator iter;
3034 struct symbol *sym;
3035 struct objfile *objfile;
3036 struct minimal_symbol *msymbol;
3037 char *val;
3038 int found_misc = 0;
3039 static const enum minimal_symbol_type types[]
3040 = {mst_data, mst_text, mst_abs};
3041 static const enum minimal_symbol_type types2[]
3042 = {mst_bss, mst_file_text, mst_abs};
3043 static const enum minimal_symbol_type types3[]
3044 = {mst_file_data, mst_solib_trampoline, mst_abs};
3045 static const enum minimal_symbol_type types4[]
3046 = {mst_file_bss, mst_text_gnu_ifunc, mst_abs};
3047 enum minimal_symbol_type ourtype;
3048 enum minimal_symbol_type ourtype2;
3049 enum minimal_symbol_type ourtype3;
3050 enum minimal_symbol_type ourtype4;
3051 struct symbol_search *sr;
3052 struct symbol_search *psr;
3053 struct symbol_search *tail;
3054 struct search_symbols_data datum;
3055
3056 /* OLD_CHAIN .. RETVAL_CHAIN is always freed, RETVAL_CHAIN .. current
3057 CLEANUP_CHAIN is freed only in the case of an error. */
3058 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
3059 struct cleanup *retval_chain;
3060
3061 gdb_assert (kind <= TYPES_DOMAIN);
3062
3063 ourtype = types[kind];
3064 ourtype2 = types2[kind];
3065 ourtype3 = types3[kind];
3066 ourtype4 = types4[kind];
3067
3068 sr = *matches = NULL;
3069 tail = NULL;
3070 datum.preg_p = 0;
3071
3072 if (regexp != NULL)
3073 {
3074 /* Make sure spacing is right for C++ operators.
3075 This is just a courtesy to make the matching less sensitive
3076 to how many spaces the user leaves between 'operator'
3077 and <TYPENAME> or <OPERATOR>. */
3078 char *opend;
3079 char *opname = operator_chars (regexp, &opend);
3080 int errcode;
3081
3082 if (*opname)
3083 {
3084 int fix = -1; /* -1 means ok; otherwise number of
3085 spaces needed. */
3086
3087 if (isalpha (*opname) || *opname == '_' || *opname == '$')
3088 {
3089 /* There should 1 space between 'operator' and 'TYPENAME'. */
3090 if (opname[-1] != ' ' || opname[-2] == ' ')
3091 fix = 1;
3092 }
3093 else
3094 {
3095 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
3096 if (opname[-1] == ' ')
3097 fix = 0;
3098 }
3099 /* If wrong number of spaces, fix it. */
3100 if (fix >= 0)
3101 {
3102 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
3103
3104 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
3105 regexp = tmp;
3106 }
3107 }
3108
3109 errcode = regcomp (&datum.preg, regexp,
3110 REG_NOSUB | (case_sensitivity == case_sensitive_off
3111 ? REG_ICASE : 0));
3112 if (errcode != 0)
3113 {
3114 char *err = get_regcomp_error (errcode, &datum.preg);
3115
3116 make_cleanup (xfree, err);
3117 error (_("Invalid regexp (%s): %s"), err, regexp);
3118 }
3119 datum.preg_p = 1;
3120 make_regfree_cleanup (&datum.preg);
3121 }
3122
3123 /* Search through the partial symtabs *first* for all symbols
3124 matching the regexp. That way we don't have to reproduce all of
3125 the machinery below. */
3126
3127 datum.nfiles = nfiles;
3128 datum.files = files;
3129 ALL_OBJFILES (objfile)
3130 {
3131 if (objfile->sf)
3132 objfile->sf->qf->expand_symtabs_matching (objfile,
3133 search_symbols_file_matches,
3134 search_symbols_name_matches,
3135 kind,
3136 &datum);
3137 }
3138
3139 retval_chain = old_chain;
3140
3141 /* Here, we search through the minimal symbol tables for functions
3142 and variables that match, and force their symbols to be read.
3143 This is in particular necessary for demangled variable names,
3144 which are no longer put into the partial symbol tables.
3145 The symbol will then be found during the scan of symtabs below.
3146
3147 For functions, find_pc_symtab should succeed if we have debug info
3148 for the function, for variables we have to call lookup_symbol
3149 to determine if the variable has debug info.
3150 If the lookup fails, set found_misc so that we will rescan to print
3151 any matching symbols without debug info. */
3152
3153 if (nfiles == 0 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
3154 {
3155 ALL_MSYMBOLS (objfile, msymbol)
3156 {
3157 QUIT;
3158
3159 if (MSYMBOL_TYPE (msymbol) == ourtype ||
3160 MSYMBOL_TYPE (msymbol) == ourtype2 ||
3161 MSYMBOL_TYPE (msymbol) == ourtype3 ||
3162 MSYMBOL_TYPE (msymbol) == ourtype4)
3163 {
3164 if (!datum.preg_p
3165 || regexec (&datum.preg, SYMBOL_NATURAL_NAME (msymbol), 0,
3166 NULL, 0) == 0)
3167 {
3168 if (0 == find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol)))
3169 {
3170 /* FIXME: carlton/2003-02-04: Given that the
3171 semantics of lookup_symbol keeps on changing
3172 slightly, it would be a nice idea if we had a
3173 function lookup_symbol_minsym that found the
3174 symbol associated to a given minimal symbol (if
3175 any). */
3176 if (kind == FUNCTIONS_DOMAIN
3177 || lookup_symbol (SYMBOL_LINKAGE_NAME (msymbol),
3178 (struct block *) NULL,
3179 VAR_DOMAIN, 0)
3180 == NULL)
3181 found_misc = 1;
3182 }
3183 }
3184 }
3185 }
3186 }
3187
3188 ALL_PRIMARY_SYMTABS (objfile, s)
3189 {
3190 bv = BLOCKVECTOR (s);
3191 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
3192 {
3193 struct symbol_search *prevtail = tail;
3194 int nfound = 0;
3195
3196 b = BLOCKVECTOR_BLOCK (bv, i);
3197 ALL_BLOCK_SYMBOLS (b, iter, sym)
3198 {
3199 struct symtab *real_symtab = SYMBOL_SYMTAB (sym);
3200
3201 QUIT;
3202
3203 if (file_matches (real_symtab->filename, files, nfiles)
3204 && ((!datum.preg_p
3205 || regexec (&datum.preg, SYMBOL_NATURAL_NAME (sym), 0,
3206 NULL, 0) == 0)
3207 && ((kind == VARIABLES_DOMAIN
3208 && SYMBOL_CLASS (sym) != LOC_TYPEDEF
3209 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
3210 && SYMBOL_CLASS (sym) != LOC_BLOCK
3211 /* LOC_CONST can be used for more than just enums,
3212 e.g., c++ static const members.
3213 We only want to skip enums here. */
3214 && !(SYMBOL_CLASS (sym) == LOC_CONST
3215 && TYPE_CODE (SYMBOL_TYPE (sym))
3216 == TYPE_CODE_ENUM))
3217 || (kind == FUNCTIONS_DOMAIN
3218 && SYMBOL_CLASS (sym) == LOC_BLOCK)
3219 || (kind == TYPES_DOMAIN
3220 && SYMBOL_CLASS (sym) == LOC_TYPEDEF))))
3221 {
3222 /* match */
3223 psr = (struct symbol_search *)
3224 xmalloc (sizeof (struct symbol_search));
3225 psr->block = i;
3226 psr->symtab = real_symtab;
3227 psr->symbol = sym;
3228 psr->msymbol = NULL;
3229 psr->next = NULL;
3230 if (tail == NULL)
3231 sr = psr;
3232 else
3233 tail->next = psr;
3234 tail = psr;
3235 nfound ++;
3236 }
3237 }
3238 if (nfound > 0)
3239 {
3240 if (prevtail == NULL)
3241 {
3242 struct symbol_search dummy;
3243
3244 dummy.next = sr;
3245 tail = sort_search_symbols (&dummy, nfound);
3246 sr = dummy.next;
3247
3248 make_cleanup_free_search_symbols (sr);
3249 }
3250 else
3251 tail = sort_search_symbols (prevtail, nfound);
3252 }
3253 }
3254 }
3255
3256 /* If there are no eyes, avoid all contact. I mean, if there are
3257 no debug symbols, then print directly from the msymbol_vector. */
3258
3259 if (found_misc || kind != FUNCTIONS_DOMAIN)
3260 {
3261 ALL_MSYMBOLS (objfile, msymbol)
3262 {
3263 QUIT;
3264
3265 if (MSYMBOL_TYPE (msymbol) == ourtype ||
3266 MSYMBOL_TYPE (msymbol) == ourtype2 ||
3267 MSYMBOL_TYPE (msymbol) == ourtype3 ||
3268 MSYMBOL_TYPE (msymbol) == ourtype4)
3269 {
3270 if (!datum.preg_p
3271 || regexec (&datum.preg, SYMBOL_NATURAL_NAME (msymbol), 0,
3272 NULL, 0) == 0)
3273 {
3274 /* Functions: Look up by address. */
3275 if (kind != FUNCTIONS_DOMAIN ||
3276 (0 == find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol))))
3277 {
3278 /* Variables/Absolutes: Look up by name. */
3279 if (lookup_symbol (SYMBOL_LINKAGE_NAME (msymbol),
3280 (struct block *) NULL, VAR_DOMAIN, 0)
3281 == NULL)
3282 {
3283 /* match */
3284 psr = (struct symbol_search *)
3285 xmalloc (sizeof (struct symbol_search));
3286 psr->block = i;
3287 psr->msymbol = msymbol;
3288 psr->symtab = NULL;
3289 psr->symbol = NULL;
3290 psr->next = NULL;
3291 if (tail == NULL)
3292 {
3293 sr = psr;
3294 make_cleanup_free_search_symbols (sr);
3295 }
3296 else
3297 tail->next = psr;
3298 tail = psr;
3299 }
3300 }
3301 }
3302 }
3303 }
3304 }
3305
3306 discard_cleanups (retval_chain);
3307 do_cleanups (old_chain);
3308 *matches = sr;
3309 }
3310
3311 /* Helper function for symtab_symbol_info, this function uses
3312 the data returned from search_symbols() to print information
3313 regarding the match to gdb_stdout. */
3314
3315 static void
3316 print_symbol_info (enum search_domain kind,
3317 struct symtab *s, struct symbol *sym,
3318 int block, char *last)
3319 {
3320 if (last == NULL || filename_cmp (last, s->filename) != 0)
3321 {
3322 fputs_filtered ("\nFile ", gdb_stdout);
3323 fputs_filtered (s->filename, gdb_stdout);
3324 fputs_filtered (":\n", gdb_stdout);
3325 }
3326
3327 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
3328 printf_filtered ("static ");
3329
3330 /* Typedef that is not a C++ class. */
3331 if (kind == TYPES_DOMAIN
3332 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
3333 typedef_print (SYMBOL_TYPE (sym), sym, gdb_stdout);
3334 /* variable, func, or typedef-that-is-c++-class. */
3335 else if (kind < TYPES_DOMAIN ||
3336 (kind == TYPES_DOMAIN &&
3337 SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
3338 {
3339 type_print (SYMBOL_TYPE (sym),
3340 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
3341 ? "" : SYMBOL_PRINT_NAME (sym)),
3342 gdb_stdout, 0);
3343
3344 printf_filtered (";\n");
3345 }
3346 }
3347
3348 /* This help function for symtab_symbol_info() prints information
3349 for non-debugging symbols to gdb_stdout. */
3350
3351 static void
3352 print_msymbol_info (struct minimal_symbol *msymbol)
3353 {
3354 struct gdbarch *gdbarch = get_objfile_arch (msymbol_objfile (msymbol));
3355 char *tmp;
3356
3357 if (gdbarch_addr_bit (gdbarch) <= 32)
3358 tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol)
3359 & (CORE_ADDR) 0xffffffff,
3360 8);
3361 else
3362 tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol),
3363 16);
3364 printf_filtered ("%s %s\n",
3365 tmp, SYMBOL_PRINT_NAME (msymbol));
3366 }
3367
3368 /* This is the guts of the commands "info functions", "info types", and
3369 "info variables". It calls search_symbols to find all matches and then
3370 print_[m]symbol_info to print out some useful information about the
3371 matches. */
3372
3373 static void
3374 symtab_symbol_info (char *regexp, enum search_domain kind, int from_tty)
3375 {
3376 static const char * const classnames[] =
3377 {"variable", "function", "type"};
3378 struct symbol_search *symbols;
3379 struct symbol_search *p;
3380 struct cleanup *old_chain;
3381 char *last_filename = NULL;
3382 int first = 1;
3383
3384 gdb_assert (kind <= TYPES_DOMAIN);
3385
3386 /* Must make sure that if we're interrupted, symbols gets freed. */
3387 search_symbols (regexp, kind, 0, (char **) NULL, &symbols);
3388 old_chain = make_cleanup_free_search_symbols (symbols);
3389
3390 printf_filtered (regexp
3391 ? "All %ss matching regular expression \"%s\":\n"
3392 : "All defined %ss:\n",
3393 classnames[kind], regexp);
3394
3395 for (p = symbols; p != NULL; p = p->next)
3396 {
3397 QUIT;
3398
3399 if (p->msymbol != NULL)
3400 {
3401 if (first)
3402 {
3403 printf_filtered ("\nNon-debugging symbols:\n");
3404 first = 0;
3405 }
3406 print_msymbol_info (p->msymbol);
3407 }
3408 else
3409 {
3410 print_symbol_info (kind,
3411 p->symtab,
3412 p->symbol,
3413 p->block,
3414 last_filename);
3415 last_filename = p->symtab->filename;
3416 }
3417 }
3418
3419 do_cleanups (old_chain);
3420 }
3421
3422 static void
3423 variables_info (char *regexp, int from_tty)
3424 {
3425 symtab_symbol_info (regexp, VARIABLES_DOMAIN, from_tty);
3426 }
3427
3428 static void
3429 functions_info (char *regexp, int from_tty)
3430 {
3431 symtab_symbol_info (regexp, FUNCTIONS_DOMAIN, from_tty);
3432 }
3433
3434
3435 static void
3436 types_info (char *regexp, int from_tty)
3437 {
3438 symtab_symbol_info (regexp, TYPES_DOMAIN, from_tty);
3439 }
3440
3441 /* Breakpoint all functions matching regular expression. */
3442
3443 void
3444 rbreak_command_wrapper (char *regexp, int from_tty)
3445 {
3446 rbreak_command (regexp, from_tty);
3447 }
3448
3449 /* A cleanup function that calls end_rbreak_breakpoints. */
3450
3451 static void
3452 do_end_rbreak_breakpoints (void *ignore)
3453 {
3454 end_rbreak_breakpoints ();
3455 }
3456
3457 static void
3458 rbreak_command (char *regexp, int from_tty)
3459 {
3460 struct symbol_search *ss;
3461 struct symbol_search *p;
3462 struct cleanup *old_chain;
3463 char *string = NULL;
3464 int len = 0;
3465 char **files = NULL, *file_name;
3466 int nfiles = 0;
3467
3468 if (regexp)
3469 {
3470 char *colon = strchr (regexp, ':');
3471
3472 if (colon && *(colon + 1) != ':')
3473 {
3474 int colon_index;
3475
3476 colon_index = colon - regexp;
3477 file_name = alloca (colon_index + 1);
3478 memcpy (file_name, regexp, colon_index);
3479 file_name[colon_index--] = 0;
3480 while (isspace (file_name[colon_index]))
3481 file_name[colon_index--] = 0;
3482 files = &file_name;
3483 nfiles = 1;
3484 regexp = colon + 1;
3485 while (isspace (*regexp)) regexp++;
3486 }
3487 }
3488
3489 search_symbols (regexp, FUNCTIONS_DOMAIN, nfiles, files, &ss);
3490 old_chain = make_cleanup_free_search_symbols (ss);
3491 make_cleanup (free_current_contents, &string);
3492
3493 start_rbreak_breakpoints ();
3494 make_cleanup (do_end_rbreak_breakpoints, NULL);
3495 for (p = ss; p != NULL; p = p->next)
3496 {
3497 if (p->msymbol == NULL)
3498 {
3499 int newlen = (strlen (p->symtab->filename)
3500 + strlen (SYMBOL_LINKAGE_NAME (p->symbol))
3501 + 4);
3502
3503 if (newlen > len)
3504 {
3505 string = xrealloc (string, newlen);
3506 len = newlen;
3507 }
3508 strcpy (string, p->symtab->filename);
3509 strcat (string, ":'");
3510 strcat (string, SYMBOL_LINKAGE_NAME (p->symbol));
3511 strcat (string, "'");
3512 break_command (string, from_tty);
3513 print_symbol_info (FUNCTIONS_DOMAIN,
3514 p->symtab,
3515 p->symbol,
3516 p->block,
3517 p->symtab->filename);
3518 }
3519 else
3520 {
3521 int newlen = (strlen (SYMBOL_LINKAGE_NAME (p->msymbol)) + 3);
3522
3523 if (newlen > len)
3524 {
3525 string = xrealloc (string, newlen);
3526 len = newlen;
3527 }
3528 strcpy (string, "'");
3529 strcat (string, SYMBOL_LINKAGE_NAME (p->msymbol));
3530 strcat (string, "'");
3531
3532 break_command (string, from_tty);
3533 printf_filtered ("<function, no debug info> %s;\n",
3534 SYMBOL_PRINT_NAME (p->msymbol));
3535 }
3536 }
3537
3538 do_cleanups (old_chain);
3539 }
3540 \f
3541
3542 /* Evaluate if NAME matches SYM_TEXT and SYM_TEXT_LEN.
3543
3544 Either sym_text[sym_text_len] != '(' and then we search for any
3545 symbol starting with SYM_TEXT text.
3546
3547 Otherwise sym_text[sym_text_len] == '(' and then we require symbol name to
3548 be terminated at that point. Partial symbol tables do not have parameters
3549 information. */
3550
3551 static int
3552 compare_symbol_name (const char *name, const char *sym_text, int sym_text_len)
3553 {
3554 int (*ncmp) (const char *, const char *, size_t);
3555
3556 ncmp = (case_sensitivity == case_sensitive_on ? strncmp : strncasecmp);
3557
3558 if (ncmp (name, sym_text, sym_text_len) != 0)
3559 return 0;
3560
3561 if (sym_text[sym_text_len] == '(')
3562 {
3563 /* User searches for `name(someth...'. Require NAME to be terminated.
3564 Normally psymtabs and gdbindex have no parameter types so '\0' will be
3565 present but accept even parameters presence. In this case this
3566 function is in fact strcmp_iw but whitespace skipping is not supported
3567 for tab completion. */
3568
3569 if (name[sym_text_len] != '\0' && name[sym_text_len] != '(')
3570 return 0;
3571 }
3572
3573 return 1;
3574 }
3575
3576 /* Helper routine for make_symbol_completion_list. */
3577
3578 static int return_val_size;
3579 static int return_val_index;
3580 static char **return_val;
3581
3582 #define COMPLETION_LIST_ADD_SYMBOL(symbol, sym_text, len, text, word) \
3583 completion_list_add_name \
3584 (SYMBOL_NATURAL_NAME (symbol), (sym_text), (len), (text), (word))
3585
3586 /* Test to see if the symbol specified by SYMNAME (which is already
3587 demangled for C++ symbols) matches SYM_TEXT in the first SYM_TEXT_LEN
3588 characters. If so, add it to the current completion list. */
3589
3590 static void
3591 completion_list_add_name (char *symname, char *sym_text, int sym_text_len,
3592 char *text, char *word)
3593 {
3594 int newsize;
3595
3596 /* Clip symbols that cannot match. */
3597 if (!compare_symbol_name (symname, sym_text, sym_text_len))
3598 return;
3599
3600 /* We have a match for a completion, so add SYMNAME to the current list
3601 of matches. Note that the name is moved to freshly malloc'd space. */
3602
3603 {
3604 char *new;
3605
3606 if (word == sym_text)
3607 {
3608 new = xmalloc (strlen (symname) + 5);
3609 strcpy (new, symname);
3610 }
3611 else if (word > sym_text)
3612 {
3613 /* Return some portion of symname. */
3614 new = xmalloc (strlen (symname) + 5);
3615 strcpy (new, symname + (word - sym_text));
3616 }
3617 else
3618 {
3619 /* Return some of SYM_TEXT plus symname. */
3620 new = xmalloc (strlen (symname) + (sym_text - word) + 5);
3621 strncpy (new, word, sym_text - word);
3622 new[sym_text - word] = '\0';
3623 strcat (new, symname);
3624 }
3625
3626 if (return_val_index + 3 > return_val_size)
3627 {
3628 newsize = (return_val_size *= 2) * sizeof (char *);
3629 return_val = (char **) xrealloc ((char *) return_val, newsize);
3630 }
3631 return_val[return_val_index++] = new;
3632 return_val[return_val_index] = NULL;
3633 }
3634 }
3635
3636 /* ObjC: In case we are completing on a selector, look as the msymbol
3637 again and feed all the selectors into the mill. */
3638
3639 static void
3640 completion_list_objc_symbol (struct minimal_symbol *msymbol, char *sym_text,
3641 int sym_text_len, char *text, char *word)
3642 {
3643 static char *tmp = NULL;
3644 static unsigned int tmplen = 0;
3645
3646 char *method, *category, *selector;
3647 char *tmp2 = NULL;
3648
3649 method = SYMBOL_NATURAL_NAME (msymbol);
3650
3651 /* Is it a method? */
3652 if ((method[0] != '-') && (method[0] != '+'))
3653 return;
3654
3655 if (sym_text[0] == '[')
3656 /* Complete on shortened method method. */
3657 completion_list_add_name (method + 1, sym_text, sym_text_len, text, word);
3658
3659 while ((strlen (method) + 1) >= tmplen)
3660 {
3661 if (tmplen == 0)
3662 tmplen = 1024;
3663 else
3664 tmplen *= 2;
3665 tmp = xrealloc (tmp, tmplen);
3666 }
3667 selector = strchr (method, ' ');
3668 if (selector != NULL)
3669 selector++;
3670
3671 category = strchr (method, '(');
3672
3673 if ((category != NULL) && (selector != NULL))
3674 {
3675 memcpy (tmp, method, (category - method));
3676 tmp[category - method] = ' ';
3677 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
3678 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
3679 if (sym_text[0] == '[')
3680 completion_list_add_name (tmp + 1, sym_text, sym_text_len, text, word);
3681 }
3682
3683 if (selector != NULL)
3684 {
3685 /* Complete on selector only. */
3686 strcpy (tmp, selector);
3687 tmp2 = strchr (tmp, ']');
3688 if (tmp2 != NULL)
3689 *tmp2 = '\0';
3690
3691 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
3692 }
3693 }
3694
3695 /* Break the non-quoted text based on the characters which are in
3696 symbols. FIXME: This should probably be language-specific. */
3697
3698 static char *
3699 language_search_unquoted_string (char *text, char *p)
3700 {
3701 for (; p > text; --p)
3702 {
3703 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
3704 continue;
3705 else
3706 {
3707 if ((current_language->la_language == language_objc))
3708 {
3709 if (p[-1] == ':') /* Might be part of a method name. */
3710 continue;
3711 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
3712 p -= 2; /* Beginning of a method name. */
3713 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
3714 { /* Might be part of a method name. */
3715 char *t = p;
3716
3717 /* Seeing a ' ' or a '(' is not conclusive evidence
3718 that we are in the middle of a method name. However,
3719 finding "-[" or "+[" should be pretty un-ambiguous.
3720 Unfortunately we have to find it now to decide. */
3721
3722 while (t > text)
3723 if (isalnum (t[-1]) || t[-1] == '_' ||
3724 t[-1] == ' ' || t[-1] == ':' ||
3725 t[-1] == '(' || t[-1] == ')')
3726 --t;
3727 else
3728 break;
3729
3730 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
3731 p = t - 2; /* Method name detected. */
3732 /* Else we leave with p unchanged. */
3733 }
3734 }
3735 break;
3736 }
3737 }
3738 return p;
3739 }
3740
3741 static void
3742 completion_list_add_fields (struct symbol *sym, char *sym_text,
3743 int sym_text_len, char *text, char *word)
3744 {
3745 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
3746 {
3747 struct type *t = SYMBOL_TYPE (sym);
3748 enum type_code c = TYPE_CODE (t);
3749 int j;
3750
3751 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
3752 for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++)
3753 if (TYPE_FIELD_NAME (t, j))
3754 completion_list_add_name (TYPE_FIELD_NAME (t, j),
3755 sym_text, sym_text_len, text, word);
3756 }
3757 }
3758
3759 /* Type of the user_data argument passed to add_macro_name or
3760 expand_partial_symbol_name. The contents are simply whatever is
3761 needed by completion_list_add_name. */
3762 struct add_name_data
3763 {
3764 char *sym_text;
3765 int sym_text_len;
3766 char *text;
3767 char *word;
3768 };
3769
3770 /* A callback used with macro_for_each and macro_for_each_in_scope.
3771 This adds a macro's name to the current completion list. */
3772 static void
3773 add_macro_name (const char *name, const struct macro_definition *ignore,
3774 struct macro_source_file *ignore2, int ignore3,
3775 void *user_data)
3776 {
3777 struct add_name_data *datum = (struct add_name_data *) user_data;
3778
3779 completion_list_add_name ((char *) name,
3780 datum->sym_text, datum->sym_text_len,
3781 datum->text, datum->word);
3782 }
3783
3784 /* A callback for expand_partial_symbol_names. */
3785 static int
3786 expand_partial_symbol_name (const char *name, void *user_data)
3787 {
3788 struct add_name_data *datum = (struct add_name_data *) user_data;
3789
3790 return compare_symbol_name (name, datum->sym_text, datum->sym_text_len);
3791 }
3792
3793 char **
3794 default_make_symbol_completion_list_break_on (char *text, char *word,
3795 const char *break_on)
3796 {
3797 /* Problem: All of the symbols have to be copied because readline
3798 frees them. I'm not going to worry about this; hopefully there
3799 won't be that many. */
3800
3801 struct symbol *sym;
3802 struct symtab *s;
3803 struct minimal_symbol *msymbol;
3804 struct objfile *objfile;
3805 struct block *b;
3806 const struct block *surrounding_static_block, *surrounding_global_block;
3807 struct dict_iterator iter;
3808 /* The symbol we are completing on. Points in same buffer as text. */
3809 char *sym_text;
3810 /* Length of sym_text. */
3811 int sym_text_len;
3812 struct add_name_data datum;
3813
3814 /* Now look for the symbol we are supposed to complete on. */
3815 {
3816 char *p;
3817 char quote_found;
3818 char *quote_pos = NULL;
3819
3820 /* First see if this is a quoted string. */
3821 quote_found = '\0';
3822 for (p = text; *p != '\0'; ++p)
3823 {
3824 if (quote_found != '\0')
3825 {
3826 if (*p == quote_found)
3827 /* Found close quote. */
3828 quote_found = '\0';
3829 else if (*p == '\\' && p[1] == quote_found)
3830 /* A backslash followed by the quote character
3831 doesn't end the string. */
3832 ++p;
3833 }
3834 else if (*p == '\'' || *p == '"')
3835 {
3836 quote_found = *p;
3837 quote_pos = p;
3838 }
3839 }
3840 if (quote_found == '\'')
3841 /* A string within single quotes can be a symbol, so complete on it. */
3842 sym_text = quote_pos + 1;
3843 else if (quote_found == '"')
3844 /* A double-quoted string is never a symbol, nor does it make sense
3845 to complete it any other way. */
3846 {
3847 return_val = (char **) xmalloc (sizeof (char *));
3848 return_val[0] = NULL;
3849 return return_val;
3850 }
3851 else
3852 {
3853 /* It is not a quoted string. Break it based on the characters
3854 which are in symbols. */
3855 while (p > text)
3856 {
3857 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0'
3858 || p[-1] == ':' || strchr (break_on, p[-1]) != NULL)
3859 --p;
3860 else
3861 break;
3862 }
3863 sym_text = p;
3864 }
3865 }
3866
3867 sym_text_len = strlen (sym_text);
3868
3869 /* Prepare SYM_TEXT_LEN for compare_symbol_name. */
3870
3871 if (current_language->la_language == language_cplus
3872 || current_language->la_language == language_java
3873 || current_language->la_language == language_fortran)
3874 {
3875 /* These languages may have parameters entered by user but they are never
3876 present in the partial symbol tables. */
3877
3878 const char *cs = memchr (sym_text, '(', sym_text_len);
3879
3880 if (cs)
3881 sym_text_len = cs - sym_text;
3882 }
3883 gdb_assert (sym_text[sym_text_len] == '\0' || sym_text[sym_text_len] == '(');
3884
3885 return_val_size = 100;
3886 return_val_index = 0;
3887 return_val = (char **) xmalloc ((return_val_size + 1) * sizeof (char *));
3888 return_val[0] = NULL;
3889
3890 datum.sym_text = sym_text;
3891 datum.sym_text_len = sym_text_len;
3892 datum.text = text;
3893 datum.word = word;
3894
3895 /* Look through the partial symtabs for all symbols which begin
3896 by matching SYM_TEXT. Expand all CUs that you find to the list.
3897 The real names will get added by COMPLETION_LIST_ADD_SYMBOL below. */
3898 expand_partial_symbol_names (expand_partial_symbol_name, &datum);
3899
3900 /* At this point scan through the misc symbol vectors and add each
3901 symbol you find to the list. Eventually we want to ignore
3902 anything that isn't a text symbol (everything else will be
3903 handled by the psymtab code above). */
3904
3905 ALL_MSYMBOLS (objfile, msymbol)
3906 {
3907 QUIT;
3908 COMPLETION_LIST_ADD_SYMBOL (msymbol, sym_text, sym_text_len, text, word);
3909
3910 completion_list_objc_symbol (msymbol, sym_text, sym_text_len, text, word);
3911 }
3912
3913 /* Search upwards from currently selected frame (so that we can
3914 complete on local vars). Also catch fields of types defined in
3915 this places which match our text string. Only complete on types
3916 visible from current context. */
3917
3918 b = get_selected_block (0);
3919 surrounding_static_block = block_static_block (b);
3920 surrounding_global_block = block_global_block (b);
3921 if (surrounding_static_block != NULL)
3922 while (b != surrounding_static_block)
3923 {
3924 QUIT;
3925
3926 ALL_BLOCK_SYMBOLS (b, iter, sym)
3927 {
3928 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text,
3929 word);
3930 completion_list_add_fields (sym, sym_text, sym_text_len, text,
3931 word);
3932 }
3933
3934 /* Stop when we encounter an enclosing function. Do not stop for
3935 non-inlined functions - the locals of the enclosing function
3936 are in scope for a nested function. */
3937 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
3938 break;
3939 b = BLOCK_SUPERBLOCK (b);
3940 }
3941
3942 /* Add fields from the file's types; symbols will be added below. */
3943
3944 if (surrounding_static_block != NULL)
3945 ALL_BLOCK_SYMBOLS (surrounding_static_block, iter, sym)
3946 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
3947
3948 if (surrounding_global_block != NULL)
3949 ALL_BLOCK_SYMBOLS (surrounding_global_block, iter, sym)
3950 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
3951
3952 /* Go through the symtabs and check the externs and statics for
3953 symbols which match. */
3954
3955 ALL_PRIMARY_SYMTABS (objfile, s)
3956 {
3957 QUIT;
3958 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
3959 ALL_BLOCK_SYMBOLS (b, iter, sym)
3960 {
3961 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
3962 }
3963 }
3964
3965 ALL_PRIMARY_SYMTABS (objfile, s)
3966 {
3967 QUIT;
3968 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
3969 ALL_BLOCK_SYMBOLS (b, iter, sym)
3970 {
3971 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
3972 }
3973 }
3974
3975 if (current_language->la_macro_expansion == macro_expansion_c)
3976 {
3977 struct macro_scope *scope;
3978
3979 /* Add any macros visible in the default scope. Note that this
3980 may yield the occasional wrong result, because an expression
3981 might be evaluated in a scope other than the default. For
3982 example, if the user types "break file:line if <TAB>", the
3983 resulting expression will be evaluated at "file:line" -- but
3984 at there does not seem to be a way to detect this at
3985 completion time. */
3986 scope = default_macro_scope ();
3987 if (scope)
3988 {
3989 macro_for_each_in_scope (scope->file, scope->line,
3990 add_macro_name, &datum);
3991 xfree (scope);
3992 }
3993
3994 /* User-defined macros are always visible. */
3995 macro_for_each (macro_user_macros, add_macro_name, &datum);
3996 }
3997
3998 return (return_val);
3999 }
4000
4001 char **
4002 default_make_symbol_completion_list (char *text, char *word)
4003 {
4004 return default_make_symbol_completion_list_break_on (text, word, "");
4005 }
4006
4007 /* Return a NULL terminated array of all symbols (regardless of class)
4008 which begin by matching TEXT. If the answer is no symbols, then
4009 the return value is an array which contains only a NULL pointer. */
4010
4011 char **
4012 make_symbol_completion_list (char *text, char *word)
4013 {
4014 return current_language->la_make_symbol_completion_list (text, word);
4015 }
4016
4017 /* Like make_symbol_completion_list, but suitable for use as a
4018 completion function. */
4019
4020 char **
4021 make_symbol_completion_list_fn (struct cmd_list_element *ignore,
4022 char *text, char *word)
4023 {
4024 return make_symbol_completion_list (text, word);
4025 }
4026
4027 /* Like make_symbol_completion_list, but returns a list of symbols
4028 defined in a source file FILE. */
4029
4030 char **
4031 make_file_symbol_completion_list (char *text, char *word, char *srcfile)
4032 {
4033 struct symbol *sym;
4034 struct symtab *s;
4035 struct block *b;
4036 struct dict_iterator iter;
4037 /* The symbol we are completing on. Points in same buffer as text. */
4038 char *sym_text;
4039 /* Length of sym_text. */
4040 int sym_text_len;
4041
4042 /* Now look for the symbol we are supposed to complete on.
4043 FIXME: This should be language-specific. */
4044 {
4045 char *p;
4046 char quote_found;
4047 char *quote_pos = NULL;
4048
4049 /* First see if this is a quoted string. */
4050 quote_found = '\0';
4051 for (p = text; *p != '\0'; ++p)
4052 {
4053 if (quote_found != '\0')
4054 {
4055 if (*p == quote_found)
4056 /* Found close quote. */
4057 quote_found = '\0';
4058 else if (*p == '\\' && p[1] == quote_found)
4059 /* A backslash followed by the quote character
4060 doesn't end the string. */
4061 ++p;
4062 }
4063 else if (*p == '\'' || *p == '"')
4064 {
4065 quote_found = *p;
4066 quote_pos = p;
4067 }
4068 }
4069 if (quote_found == '\'')
4070 /* A string within single quotes can be a symbol, so complete on it. */
4071 sym_text = quote_pos + 1;
4072 else if (quote_found == '"')
4073 /* A double-quoted string is never a symbol, nor does it make sense
4074 to complete it any other way. */
4075 {
4076 return_val = (char **) xmalloc (sizeof (char *));
4077 return_val[0] = NULL;
4078 return return_val;
4079 }
4080 else
4081 {
4082 /* Not a quoted string. */
4083 sym_text = language_search_unquoted_string (text, p);
4084 }
4085 }
4086
4087 sym_text_len = strlen (sym_text);
4088
4089 return_val_size = 10;
4090 return_val_index = 0;
4091 return_val = (char **) xmalloc ((return_val_size + 1) * sizeof (char *));
4092 return_val[0] = NULL;
4093
4094 /* Find the symtab for SRCFILE (this loads it if it was not yet read
4095 in). */
4096 s = lookup_symtab (srcfile);
4097 if (s == NULL)
4098 {
4099 /* Maybe they typed the file with leading directories, while the
4100 symbol tables record only its basename. */
4101 const char *tail = lbasename (srcfile);
4102
4103 if (tail > srcfile)
4104 s = lookup_symtab (tail);
4105 }
4106
4107 /* If we have no symtab for that file, return an empty list. */
4108 if (s == NULL)
4109 return (return_val);
4110
4111 /* Go through this symtab and check the externs and statics for
4112 symbols which match. */
4113
4114 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
4115 ALL_BLOCK_SYMBOLS (b, iter, sym)
4116 {
4117 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4118 }
4119
4120 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
4121 ALL_BLOCK_SYMBOLS (b, iter, sym)
4122 {
4123 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4124 }
4125
4126 return (return_val);
4127 }
4128
4129 /* A helper function for make_source_files_completion_list. It adds
4130 another file name to a list of possible completions, growing the
4131 list as necessary. */
4132
4133 static void
4134 add_filename_to_list (const char *fname, char *text, char *word,
4135 char ***list, int *list_used, int *list_alloced)
4136 {
4137 char *new;
4138 size_t fnlen = strlen (fname);
4139
4140 if (*list_used + 1 >= *list_alloced)
4141 {
4142 *list_alloced *= 2;
4143 *list = (char **) xrealloc ((char *) *list,
4144 *list_alloced * sizeof (char *));
4145 }
4146
4147 if (word == text)
4148 {
4149 /* Return exactly fname. */
4150 new = xmalloc (fnlen + 5);
4151 strcpy (new, fname);
4152 }
4153 else if (word > text)
4154 {
4155 /* Return some portion of fname. */
4156 new = xmalloc (fnlen + 5);
4157 strcpy (new, fname + (word - text));
4158 }
4159 else
4160 {
4161 /* Return some of TEXT plus fname. */
4162 new = xmalloc (fnlen + (text - word) + 5);
4163 strncpy (new, word, text - word);
4164 new[text - word] = '\0';
4165 strcat (new, fname);
4166 }
4167 (*list)[*list_used] = new;
4168 (*list)[++*list_used] = NULL;
4169 }
4170
4171 static int
4172 not_interesting_fname (const char *fname)
4173 {
4174 static const char *illegal_aliens[] = {
4175 "_globals_", /* inserted by coff_symtab_read */
4176 NULL
4177 };
4178 int i;
4179
4180 for (i = 0; illegal_aliens[i]; i++)
4181 {
4182 if (filename_cmp (fname, illegal_aliens[i]) == 0)
4183 return 1;
4184 }
4185 return 0;
4186 }
4187
4188 /* An object of this type is passed as the user_data argument to
4189 map_partial_symbol_filenames. */
4190 struct add_partial_filename_data
4191 {
4192 int *first;
4193 char *text;
4194 char *word;
4195 int text_len;
4196 char ***list;
4197 int *list_used;
4198 int *list_alloced;
4199 };
4200
4201 /* A callback for map_partial_symbol_filenames. */
4202 static void
4203 maybe_add_partial_symtab_filename (const char *filename, const char *fullname,
4204 void *user_data)
4205 {
4206 struct add_partial_filename_data *data = user_data;
4207
4208 if (not_interesting_fname (filename))
4209 return;
4210 if (!filename_seen (filename, 1, data->first)
4211 && filename_ncmp (filename, data->text, data->text_len) == 0)
4212 {
4213 /* This file matches for a completion; add it to the
4214 current list of matches. */
4215 add_filename_to_list (filename, data->text, data->word,
4216 data->list, data->list_used, data->list_alloced);
4217 }
4218 else
4219 {
4220 const char *base_name = lbasename (filename);
4221
4222 if (base_name != filename
4223 && !filename_seen (base_name, 1, data->first)
4224 && filename_ncmp (base_name, data->text, data->text_len) == 0)
4225 add_filename_to_list (base_name, data->text, data->word,
4226 data->list, data->list_used, data->list_alloced);
4227 }
4228 }
4229
4230 /* Return a NULL terminated array of all source files whose names
4231 begin with matching TEXT. The file names are looked up in the
4232 symbol tables of this program. If the answer is no matchess, then
4233 the return value is an array which contains only a NULL pointer. */
4234
4235 char **
4236 make_source_files_completion_list (char *text, char *word)
4237 {
4238 struct symtab *s;
4239 struct objfile *objfile;
4240 int first = 1;
4241 int list_alloced = 1;
4242 int list_used = 0;
4243 size_t text_len = strlen (text);
4244 char **list = (char **) xmalloc (list_alloced * sizeof (char *));
4245 const char *base_name;
4246 struct add_partial_filename_data datum;
4247
4248 list[0] = NULL;
4249
4250 if (!have_full_symbols () && !have_partial_symbols ())
4251 return list;
4252
4253 ALL_SYMTABS (objfile, s)
4254 {
4255 if (not_interesting_fname (s->filename))
4256 continue;
4257 if (!filename_seen (s->filename, 1, &first)
4258 && filename_ncmp (s->filename, text, text_len) == 0)
4259 {
4260 /* This file matches for a completion; add it to the current
4261 list of matches. */
4262 add_filename_to_list (s->filename, text, word,
4263 &list, &list_used, &list_alloced);
4264 }
4265 else
4266 {
4267 /* NOTE: We allow the user to type a base name when the
4268 debug info records leading directories, but not the other
4269 way around. This is what subroutines of breakpoint
4270 command do when they parse file names. */
4271 base_name = lbasename (s->filename);
4272 if (base_name != s->filename
4273 && !filename_seen (base_name, 1, &first)
4274 && filename_ncmp (base_name, text, text_len) == 0)
4275 add_filename_to_list (base_name, text, word,
4276 &list, &list_used, &list_alloced);
4277 }
4278 }
4279
4280 datum.first = &first;
4281 datum.text = text;
4282 datum.word = word;
4283 datum.text_len = text_len;
4284 datum.list = &list;
4285 datum.list_used = &list_used;
4286 datum.list_alloced = &list_alloced;
4287 map_partial_symbol_filenames (maybe_add_partial_symtab_filename, &datum);
4288
4289 return list;
4290 }
4291
4292 /* Determine if PC is in the prologue of a function. The prologue is the area
4293 between the first instruction of a function, and the first executable line.
4294 Returns 1 if PC *might* be in prologue, 0 if definately *not* in prologue.
4295
4296 If non-zero, func_start is where we think the prologue starts, possibly
4297 by previous examination of symbol table information. */
4298
4299 int
4300 in_prologue (struct gdbarch *gdbarch, CORE_ADDR pc, CORE_ADDR func_start)
4301 {
4302 struct symtab_and_line sal;
4303 CORE_ADDR func_addr, func_end;
4304
4305 /* We have several sources of information we can consult to figure
4306 this out.
4307 - Compilers usually emit line number info that marks the prologue
4308 as its own "source line". So the ending address of that "line"
4309 is the end of the prologue. If available, this is the most
4310 reliable method.
4311 - The minimal symbols and partial symbols, which can usually tell
4312 us the starting and ending addresses of a function.
4313 - If we know the function's start address, we can call the
4314 architecture-defined gdbarch_skip_prologue function to analyze the
4315 instruction stream and guess where the prologue ends.
4316 - Our `func_start' argument; if non-zero, this is the caller's
4317 best guess as to the function's entry point. At the time of
4318 this writing, handle_inferior_event doesn't get this right, so
4319 it should be our last resort. */
4320
4321 /* Consult the partial symbol table, to find which function
4322 the PC is in. */
4323 if (! find_pc_partial_function (pc, NULL, &func_addr, &func_end))
4324 {
4325 CORE_ADDR prologue_end;
4326
4327 /* We don't even have minsym information, so fall back to using
4328 func_start, if given. */
4329 if (! func_start)
4330 return 1; /* We *might* be in a prologue. */
4331
4332 prologue_end = gdbarch_skip_prologue (gdbarch, func_start);
4333
4334 return func_start <= pc && pc < prologue_end;
4335 }
4336
4337 /* If we have line number information for the function, that's
4338 usually pretty reliable. */
4339 sal = find_pc_line (func_addr, 0);
4340
4341 /* Now sal describes the source line at the function's entry point,
4342 which (by convention) is the prologue. The end of that "line",
4343 sal.end, is the end of the prologue.
4344
4345 Note that, for functions whose source code is all on a single
4346 line, the line number information doesn't always end up this way.
4347 So we must verify that our purported end-of-prologue address is
4348 *within* the function, not at its start or end. */
4349 if (sal.line == 0
4350 || sal.end <= func_addr
4351 || func_end <= sal.end)
4352 {
4353 /* We don't have any good line number info, so use the minsym
4354 information, together with the architecture-specific prologue
4355 scanning code. */
4356 CORE_ADDR prologue_end = gdbarch_skip_prologue (gdbarch, func_addr);
4357
4358 return func_addr <= pc && pc < prologue_end;
4359 }
4360
4361 /* We have line number info, and it looks good. */
4362 return func_addr <= pc && pc < sal.end;
4363 }
4364
4365 /* Given PC at the function's start address, attempt to find the
4366 prologue end using SAL information. Return zero if the skip fails.
4367
4368 A non-optimized prologue traditionally has one SAL for the function
4369 and a second for the function body. A single line function has
4370 them both pointing at the same line.
4371
4372 An optimized prologue is similar but the prologue may contain
4373 instructions (SALs) from the instruction body. Need to skip those
4374 while not getting into the function body.
4375
4376 The functions end point and an increasing SAL line are used as
4377 indicators of the prologue's endpoint.
4378
4379 This code is based on the function refine_prologue_limit
4380 (found in ia64). */
4381
4382 CORE_ADDR
4383 skip_prologue_using_sal (struct gdbarch *gdbarch, CORE_ADDR func_addr)
4384 {
4385 struct symtab_and_line prologue_sal;
4386 CORE_ADDR start_pc;
4387 CORE_ADDR end_pc;
4388 struct block *bl;
4389
4390 /* Get an initial range for the function. */
4391 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
4392 start_pc += gdbarch_deprecated_function_start_offset (gdbarch);
4393
4394 prologue_sal = find_pc_line (start_pc, 0);
4395 if (prologue_sal.line != 0)
4396 {
4397 /* For languages other than assembly, treat two consecutive line
4398 entries at the same address as a zero-instruction prologue.
4399 The GNU assembler emits separate line notes for each instruction
4400 in a multi-instruction macro, but compilers generally will not
4401 do this. */
4402 if (prologue_sal.symtab->language != language_asm)
4403 {
4404 struct linetable *linetable = LINETABLE (prologue_sal.symtab);
4405 int idx = 0;
4406
4407 /* Skip any earlier lines, and any end-of-sequence marker
4408 from a previous function. */
4409 while (linetable->item[idx].pc != prologue_sal.pc
4410 || linetable->item[idx].line == 0)
4411 idx++;
4412
4413 if (idx+1 < linetable->nitems
4414 && linetable->item[idx+1].line != 0
4415 && linetable->item[idx+1].pc == start_pc)
4416 return start_pc;
4417 }
4418
4419 /* If there is only one sal that covers the entire function,
4420 then it is probably a single line function, like
4421 "foo(){}". */
4422 if (prologue_sal.end >= end_pc)
4423 return 0;
4424
4425 while (prologue_sal.end < end_pc)
4426 {
4427 struct symtab_and_line sal;
4428
4429 sal = find_pc_line (prologue_sal.end, 0);
4430 if (sal.line == 0)
4431 break;
4432 /* Assume that a consecutive SAL for the same (or larger)
4433 line mark the prologue -> body transition. */
4434 if (sal.line >= prologue_sal.line)
4435 break;
4436
4437 /* The line number is smaller. Check that it's from the
4438 same function, not something inlined. If it's inlined,
4439 then there is no point comparing the line numbers. */
4440 bl = block_for_pc (prologue_sal.end);
4441 while (bl)
4442 {
4443 if (block_inlined_p (bl))
4444 break;
4445 if (BLOCK_FUNCTION (bl))
4446 {
4447 bl = NULL;
4448 break;
4449 }
4450 bl = BLOCK_SUPERBLOCK (bl);
4451 }
4452 if (bl != NULL)
4453 break;
4454
4455 /* The case in which compiler's optimizer/scheduler has
4456 moved instructions into the prologue. We look ahead in
4457 the function looking for address ranges whose
4458 corresponding line number is less the first one that we
4459 found for the function. This is more conservative then
4460 refine_prologue_limit which scans a large number of SALs
4461 looking for any in the prologue. */
4462 prologue_sal = sal;
4463 }
4464 }
4465
4466 if (prologue_sal.end < end_pc)
4467 /* Return the end of this line, or zero if we could not find a
4468 line. */
4469 return prologue_sal.end;
4470 else
4471 /* Don't return END_PC, which is past the end of the function. */
4472 return prologue_sal.pc;
4473 }
4474 \f
4475 struct symtabs_and_lines
4476 decode_line_spec (char *string, int funfirstline)
4477 {
4478 struct symtabs_and_lines sals;
4479 struct symtab_and_line cursal;
4480
4481 if (string == 0)
4482 error (_("Empty line specification."));
4483
4484 /* We use whatever is set as the current source line. We do not try
4485 and get a default or it will recursively call us! */
4486 cursal = get_current_source_symtab_and_line ();
4487
4488 sals = decode_line_1 (&string, funfirstline,
4489 cursal.symtab, cursal.line,
4490 NULL);
4491
4492 if (*string)
4493 error (_("Junk at end of line specification: %s"), string);
4494 return sals;
4495 }
4496
4497 /* Track MAIN */
4498 static char *name_of_main;
4499 enum language language_of_main = language_unknown;
4500
4501 void
4502 set_main_name (const char *name)
4503 {
4504 if (name_of_main != NULL)
4505 {
4506 xfree (name_of_main);
4507 name_of_main = NULL;
4508 language_of_main = language_unknown;
4509 }
4510 if (name != NULL)
4511 {
4512 name_of_main = xstrdup (name);
4513 language_of_main = language_unknown;
4514 }
4515 }
4516
4517 /* Deduce the name of the main procedure, and set NAME_OF_MAIN
4518 accordingly. */
4519
4520 static void
4521 find_main_name (void)
4522 {
4523 const char *new_main_name;
4524
4525 /* Try to see if the main procedure is in Ada. */
4526 /* FIXME: brobecker/2005-03-07: Another way of doing this would
4527 be to add a new method in the language vector, and call this
4528 method for each language until one of them returns a non-empty
4529 name. This would allow us to remove this hard-coded call to
4530 an Ada function. It is not clear that this is a better approach
4531 at this point, because all methods need to be written in a way
4532 such that false positives never be returned. For instance, it is
4533 important that a method does not return a wrong name for the main
4534 procedure if the main procedure is actually written in a different
4535 language. It is easy to guaranty this with Ada, since we use a
4536 special symbol generated only when the main in Ada to find the name
4537 of the main procedure. It is difficult however to see how this can
4538 be guarantied for languages such as C, for instance. This suggests
4539 that order of call for these methods becomes important, which means
4540 a more complicated approach. */
4541 new_main_name = ada_main_name ();
4542 if (new_main_name != NULL)
4543 {
4544 set_main_name (new_main_name);
4545 return;
4546 }
4547
4548 new_main_name = pascal_main_name ();
4549 if (new_main_name != NULL)
4550 {
4551 set_main_name (new_main_name);
4552 return;
4553 }
4554
4555 /* The languages above didn't identify the name of the main procedure.
4556 Fallback to "main". */
4557 set_main_name ("main");
4558 }
4559
4560 char *
4561 main_name (void)
4562 {
4563 if (name_of_main == NULL)
4564 find_main_name ();
4565
4566 return name_of_main;
4567 }
4568
4569 /* Handle ``executable_changed'' events for the symtab module. */
4570
4571 static void
4572 symtab_observer_executable_changed (void)
4573 {
4574 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
4575 set_main_name (NULL);
4576 }
4577
4578 /* Helper to expand_line_sal below. Appends new sal to SAL,
4579 initializing it from SYMTAB, LINENO and PC. */
4580 static void
4581 append_expanded_sal (struct symtabs_and_lines *sal,
4582 struct program_space *pspace,
4583 struct symtab *symtab,
4584 int lineno, CORE_ADDR pc)
4585 {
4586 sal->sals = xrealloc (sal->sals,
4587 sizeof (sal->sals[0])
4588 * (sal->nelts + 1));
4589 init_sal (sal->sals + sal->nelts);
4590 sal->sals[sal->nelts].pspace = pspace;
4591 sal->sals[sal->nelts].symtab = symtab;
4592 sal->sals[sal->nelts].section = NULL;
4593 sal->sals[sal->nelts].end = 0;
4594 sal->sals[sal->nelts].line = lineno;
4595 sal->sals[sal->nelts].pc = pc;
4596 ++sal->nelts;
4597 }
4598
4599 /* Helper to expand_line_sal below. Search in the symtabs for any
4600 linetable entry that exactly matches FULLNAME and LINENO and append
4601 them to RET. If FULLNAME is NULL or if a symtab has no full name,
4602 use FILENAME and LINENO instead. If there is at least one match,
4603 return 1; otherwise, return 0, and return the best choice in BEST_ITEM
4604 and BEST_SYMTAB. */
4605
4606 static int
4607 append_exact_match_to_sals (char *filename, char *fullname, int lineno,
4608 struct symtabs_and_lines *ret,
4609 struct linetable_entry **best_item,
4610 struct symtab **best_symtab)
4611 {
4612 struct program_space *pspace;
4613 struct objfile *objfile;
4614 struct symtab *symtab;
4615 int exact = 0;
4616 int j;
4617 *best_item = 0;
4618 *best_symtab = 0;
4619
4620 ALL_PSPACES (pspace)
4621 ALL_PSPACE_SYMTABS (pspace, objfile, symtab)
4622 {
4623 if (FILENAME_CMP (filename, symtab->filename) == 0)
4624 {
4625 struct linetable *l;
4626 int len;
4627
4628 if (fullname != NULL
4629 && symtab_to_fullname (symtab) != NULL
4630 && FILENAME_CMP (fullname, symtab->fullname) != 0)
4631 continue;
4632 l = LINETABLE (symtab);
4633 if (!l)
4634 continue;
4635 len = l->nitems;
4636
4637 for (j = 0; j < len; j++)
4638 {
4639 struct linetable_entry *item = &(l->item[j]);
4640
4641 if (item->line == lineno)
4642 {
4643 exact = 1;
4644 append_expanded_sal (ret, objfile->pspace,
4645 symtab, lineno, item->pc);
4646 }
4647 else if (!exact && item->line > lineno
4648 && (*best_item == NULL
4649 || item->line < (*best_item)->line))
4650 {
4651 *best_item = item;
4652 *best_symtab = symtab;
4653 }
4654 }
4655 }
4656 }
4657 return exact;
4658 }
4659
4660 /* Compute a set of all sals in all program spaces that correspond to
4661 same file and line as SAL and return those. If there are several
4662 sals that belong to the same block, only one sal for the block is
4663 included in results. */
4664
4665 struct symtabs_and_lines
4666 expand_line_sal (struct symtab_and_line sal)
4667 {
4668 struct symtabs_and_lines ret;
4669 int i, j;
4670 struct objfile *objfile;
4671 int lineno;
4672 int deleted = 0;
4673 struct block **blocks = NULL;
4674 int *filter;
4675 struct cleanup *old_chain;
4676
4677 ret.nelts = 0;
4678 ret.sals = NULL;
4679
4680 /* Only expand sals that represent file.c:line. */
4681 if (sal.symtab == NULL || sal.line == 0 || sal.pc != 0)
4682 {
4683 ret.sals = xmalloc (sizeof (struct symtab_and_line));
4684 ret.sals[0] = sal;
4685 ret.nelts = 1;
4686 return ret;
4687 }
4688 else
4689 {
4690 struct program_space *pspace;
4691 struct linetable_entry *best_item = 0;
4692 struct symtab *best_symtab = 0;
4693 int exact = 0;
4694 char *match_filename;
4695
4696 lineno = sal.line;
4697 match_filename = sal.symtab->filename;
4698
4699 /* We need to find all symtabs for a file which name
4700 is described by sal. We cannot just directly
4701 iterate over symtabs, since a symtab might not be
4702 yet created. We also cannot iterate over psymtabs,
4703 calling PSYMTAB_TO_SYMTAB and working on that symtab,
4704 since PSYMTAB_TO_SYMTAB will return NULL for psymtab
4705 corresponding to an included file. Therefore, we do
4706 first pass over psymtabs, reading in those with
4707 the right name. Then, we iterate over symtabs, knowing
4708 that all symtabs we're interested in are loaded. */
4709
4710 old_chain = save_current_program_space ();
4711 ALL_PSPACES (pspace)
4712 {
4713 set_current_program_space (pspace);
4714 ALL_PSPACE_OBJFILES (pspace, objfile)
4715 {
4716 if (objfile->sf)
4717 objfile->sf->qf->expand_symtabs_with_filename (objfile,
4718 sal.symtab->filename);
4719 }
4720 }
4721 do_cleanups (old_chain);
4722
4723 /* Now search the symtab for exact matches and append them. If
4724 none is found, append the best_item and all its exact
4725 matches. */
4726 symtab_to_fullname (sal.symtab);
4727 exact = append_exact_match_to_sals (sal.symtab->filename,
4728 sal.symtab->fullname, lineno,
4729 &ret, &best_item, &best_symtab);
4730 if (!exact && best_item)
4731 append_exact_match_to_sals (best_symtab->filename,
4732 best_symtab->fullname, best_item->line,
4733 &ret, &best_item, &best_symtab);
4734 }
4735
4736 /* For optimized code, compiler can scatter one source line accross
4737 disjoint ranges of PC values, even when no duplicate functions
4738 or inline functions are involved. For example, 'for (;;)' inside
4739 non-template non-inline non-ctor-or-dtor function can result
4740 in two PC ranges. In this case, we don't want to set breakpoint
4741 on first PC of each range. To filter such cases, we use containing
4742 blocks -- for each PC found above we see if there are other PCs
4743 that are in the same block. If yes, the other PCs are filtered out. */
4744
4745 old_chain = save_current_program_space ();
4746 filter = alloca (ret.nelts * sizeof (int));
4747 blocks = alloca (ret.nelts * sizeof (struct block *));
4748 for (i = 0; i < ret.nelts; ++i)
4749 {
4750 set_current_program_space (ret.sals[i].pspace);
4751
4752 filter[i] = 1;
4753 blocks[i] = block_for_pc_sect (ret.sals[i].pc, ret.sals[i].section);
4754 }
4755 do_cleanups (old_chain);
4756
4757 for (i = 0; i < ret.nelts; ++i)
4758 if (blocks[i] != NULL)
4759 for (j = i+1; j < ret.nelts; ++j)
4760 if (blocks[j] == blocks[i])
4761 {
4762 filter[j] = 0;
4763 ++deleted;
4764 break;
4765 }
4766
4767 {
4768 struct symtab_and_line *final =
4769 xmalloc (sizeof (struct symtab_and_line) * (ret.nelts-deleted));
4770
4771 for (i = 0, j = 0; i < ret.nelts; ++i)
4772 if (filter[i])
4773 final[j++] = ret.sals[i];
4774
4775 ret.nelts -= deleted;
4776 xfree (ret.sals);
4777 ret.sals = final;
4778 }
4779
4780 return ret;
4781 }
4782
4783 /* Return 1 if the supplied producer string matches the ARM RealView
4784 compiler (armcc). */
4785
4786 int
4787 producer_is_realview (const char *producer)
4788 {
4789 static const char *const arm_idents[] = {
4790 "ARM C Compiler, ADS",
4791 "Thumb C Compiler, ADS",
4792 "ARM C++ Compiler, ADS",
4793 "Thumb C++ Compiler, ADS",
4794 "ARM/Thumb C/C++ Compiler, RVCT",
4795 "ARM C/C++ Compiler, RVCT"
4796 };
4797 int i;
4798
4799 if (producer == NULL)
4800 return 0;
4801
4802 for (i = 0; i < ARRAY_SIZE (arm_idents); i++)
4803 if (strncmp (producer, arm_idents[i], strlen (arm_idents[i])) == 0)
4804 return 1;
4805
4806 return 0;
4807 }
4808
4809 void
4810 _initialize_symtab (void)
4811 {
4812 add_info ("variables", variables_info, _("\
4813 All global and static variable names, or those matching REGEXP."));
4814 if (dbx_commands)
4815 add_com ("whereis", class_info, variables_info, _("\
4816 All global and static variable names, or those matching REGEXP."));
4817
4818 add_info ("functions", functions_info,
4819 _("All function names, or those matching REGEXP."));
4820
4821 /* FIXME: This command has at least the following problems:
4822 1. It prints builtin types (in a very strange and confusing fashion).
4823 2. It doesn't print right, e.g. with
4824 typedef struct foo *FOO
4825 type_print prints "FOO" when we want to make it (in this situation)
4826 print "struct foo *".
4827 I also think "ptype" or "whatis" is more likely to be useful (but if
4828 there is much disagreement "info types" can be fixed). */
4829 add_info ("types", types_info,
4830 _("All type names, or those matching REGEXP."));
4831
4832 add_info ("sources", sources_info,
4833 _("Source files in the program."));
4834
4835 add_com ("rbreak", class_breakpoint, rbreak_command,
4836 _("Set a breakpoint for all functions matching REGEXP."));
4837
4838 if (xdb_commands)
4839 {
4840 add_com ("lf", class_info, sources_info,
4841 _("Source files in the program"));
4842 add_com ("lg", class_info, variables_info, _("\
4843 All global and static variable names, or those matching REGEXP."));
4844 }
4845
4846 add_setshow_enum_cmd ("multiple-symbols", no_class,
4847 multiple_symbols_modes, &multiple_symbols_mode,
4848 _("\
4849 Set the debugger behavior when more than one symbol are possible matches\n\
4850 in an expression."), _("\
4851 Show how the debugger handles ambiguities in expressions."), _("\
4852 Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
4853 NULL, NULL, &setlist, &showlist);
4854
4855 observer_attach_executable_changed (symtab_observer_executable_changed);
4856 }
This page took 0.132991 seconds and 4 git commands to generate.