Fix ARC TLS support.
[deliverable/binutils-gdb.git] / gdb / symtab.c
1 /* Symbol table lookup for the GNU debugger, GDB.
2
3 Copyright (C) 1986-2016 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "gdbcore.h"
24 #include "frame.h"
25 #include "target.h"
26 #include "value.h"
27 #include "symfile.h"
28 #include "objfiles.h"
29 #include "gdbcmd.h"
30 #include "gdb_regex.h"
31 #include "expression.h"
32 #include "language.h"
33 #include "demangle.h"
34 #include "inferior.h"
35 #include "source.h"
36 #include "filenames.h" /* for FILENAME_CMP */
37 #include "objc-lang.h"
38 #include "d-lang.h"
39 #include "ada-lang.h"
40 #include "go-lang.h"
41 #include "p-lang.h"
42 #include "addrmap.h"
43 #include "cli/cli-utils.h"
44
45 #include "hashtab.h"
46
47 #include "gdb_obstack.h"
48 #include "block.h"
49 #include "dictionary.h"
50
51 #include <sys/types.h>
52 #include <fcntl.h>
53 #include <sys/stat.h>
54 #include <ctype.h>
55 #include "cp-abi.h"
56 #include "cp-support.h"
57 #include "observer.h"
58 #include "solist.h"
59 #include "macrotab.h"
60 #include "macroscope.h"
61
62 #include "parser-defs.h"
63 #include "completer.h"
64
65 /* Forward declarations for local functions. */
66
67 static void rbreak_command (char *, int);
68
69 static int find_line_common (struct linetable *, int, int *, int);
70
71 static struct block_symbol
72 lookup_symbol_aux (const char *name,
73 const struct block *block,
74 const domain_enum domain,
75 enum language language,
76 struct field_of_this_result *);
77
78 static
79 struct block_symbol lookup_local_symbol (const char *name,
80 const struct block *block,
81 const domain_enum domain,
82 enum language language);
83
84 static struct block_symbol
85 lookup_symbol_in_objfile (struct objfile *objfile, int block_index,
86 const char *name, const domain_enum domain);
87
88 /* See symtab.h. */
89 const struct block_symbol null_block_symbol = { NULL, NULL };
90
91 extern initialize_file_ftype _initialize_symtab;
92
93 /* Program space key for finding name and language of "main". */
94
95 static const struct program_space_data *main_progspace_key;
96
97 /* Type of the data stored on the program space. */
98
99 struct main_info
100 {
101 /* Name of "main". */
102
103 char *name_of_main;
104
105 /* Language of "main". */
106
107 enum language language_of_main;
108 };
109
110 /* Program space key for finding its symbol cache. */
111
112 static const struct program_space_data *symbol_cache_key;
113
114 /* The default symbol cache size.
115 There is no extra cpu cost for large N (except when flushing the cache,
116 which is rare). The value here is just a first attempt. A better default
117 value may be higher or lower. A prime number can make up for a bad hash
118 computation, so that's why the number is what it is. */
119 #define DEFAULT_SYMBOL_CACHE_SIZE 1021
120
121 /* The maximum symbol cache size.
122 There's no method to the decision of what value to use here, other than
123 there's no point in allowing a user typo to make gdb consume all memory. */
124 #define MAX_SYMBOL_CACHE_SIZE (1024*1024)
125
126 /* symbol_cache_lookup returns this if a previous lookup failed to find the
127 symbol in any objfile. */
128 #define SYMBOL_LOOKUP_FAILED \
129 ((struct block_symbol) {(struct symbol *) 1, NULL})
130 #define SYMBOL_LOOKUP_FAILED_P(SIB) (SIB.symbol == (struct symbol *) 1)
131
132 /* Recording lookups that don't find the symbol is just as important, if not
133 more so, than recording found symbols. */
134
135 enum symbol_cache_slot_state
136 {
137 SYMBOL_SLOT_UNUSED,
138 SYMBOL_SLOT_NOT_FOUND,
139 SYMBOL_SLOT_FOUND
140 };
141
142 struct symbol_cache_slot
143 {
144 enum symbol_cache_slot_state state;
145
146 /* The objfile that was current when the symbol was looked up.
147 This is only needed for global blocks, but for simplicity's sake
148 we allocate the space for both. If data shows the extra space used
149 for static blocks is a problem, we can split things up then.
150
151 Global blocks need cache lookup to include the objfile context because
152 we need to account for gdbarch_iterate_over_objfiles_in_search_order
153 which can traverse objfiles in, effectively, any order, depending on
154 the current objfile, thus affecting which symbol is found. Normally,
155 only the current objfile is searched first, and then the rest are
156 searched in recorded order; but putting cache lookup inside
157 gdbarch_iterate_over_objfiles_in_search_order would be awkward.
158 Instead we just make the current objfile part of the context of
159 cache lookup. This means we can record the same symbol multiple times,
160 each with a different "current objfile" that was in effect when the
161 lookup was saved in the cache, but cache space is pretty cheap. */
162 const struct objfile *objfile_context;
163
164 union
165 {
166 struct block_symbol found;
167 struct
168 {
169 char *name;
170 domain_enum domain;
171 } not_found;
172 } value;
173 };
174
175 /* Symbols don't specify global vs static block.
176 So keep them in separate caches. */
177
178 struct block_symbol_cache
179 {
180 unsigned int hits;
181 unsigned int misses;
182 unsigned int collisions;
183
184 /* SYMBOLS is a variable length array of this size.
185 One can imagine that in general one cache (global/static) should be a
186 fraction of the size of the other, but there's no data at the moment
187 on which to decide. */
188 unsigned int size;
189
190 struct symbol_cache_slot symbols[1];
191 };
192
193 /* The symbol cache.
194
195 Searching for symbols in the static and global blocks over multiple objfiles
196 again and again can be slow, as can searching very big objfiles. This is a
197 simple cache to improve symbol lookup performance, which is critical to
198 overall gdb performance.
199
200 Symbols are hashed on the name, its domain, and block.
201 They are also hashed on their objfile for objfile-specific lookups. */
202
203 struct symbol_cache
204 {
205 struct block_symbol_cache *global_symbols;
206 struct block_symbol_cache *static_symbols;
207 };
208
209 /* When non-zero, print debugging messages related to symtab creation. */
210 unsigned int symtab_create_debug = 0;
211
212 /* When non-zero, print debugging messages related to symbol lookup. */
213 unsigned int symbol_lookup_debug = 0;
214
215 /* The size of the cache is staged here. */
216 static unsigned int new_symbol_cache_size = DEFAULT_SYMBOL_CACHE_SIZE;
217
218 /* The current value of the symbol cache size.
219 This is saved so that if the user enters a value too big we can restore
220 the original value from here. */
221 static unsigned int symbol_cache_size = DEFAULT_SYMBOL_CACHE_SIZE;
222
223 /* Non-zero if a file may be known by two different basenames.
224 This is the uncommon case, and significantly slows down gdb.
225 Default set to "off" to not slow down the common case. */
226 int basenames_may_differ = 0;
227
228 /* Allow the user to configure the debugger behavior with respect
229 to multiple-choice menus when more than one symbol matches during
230 a symbol lookup. */
231
232 const char multiple_symbols_ask[] = "ask";
233 const char multiple_symbols_all[] = "all";
234 const char multiple_symbols_cancel[] = "cancel";
235 static const char *const multiple_symbols_modes[] =
236 {
237 multiple_symbols_ask,
238 multiple_symbols_all,
239 multiple_symbols_cancel,
240 NULL
241 };
242 static const char *multiple_symbols_mode = multiple_symbols_all;
243
244 /* Read-only accessor to AUTO_SELECT_MODE. */
245
246 const char *
247 multiple_symbols_select_mode (void)
248 {
249 return multiple_symbols_mode;
250 }
251
252 /* Return the name of a domain_enum. */
253
254 const char *
255 domain_name (domain_enum e)
256 {
257 switch (e)
258 {
259 case UNDEF_DOMAIN: return "UNDEF_DOMAIN";
260 case VAR_DOMAIN: return "VAR_DOMAIN";
261 case STRUCT_DOMAIN: return "STRUCT_DOMAIN";
262 case MODULE_DOMAIN: return "MODULE_DOMAIN";
263 case LABEL_DOMAIN: return "LABEL_DOMAIN";
264 case COMMON_BLOCK_DOMAIN: return "COMMON_BLOCK_DOMAIN";
265 default: gdb_assert_not_reached ("bad domain_enum");
266 }
267 }
268
269 /* Return the name of a search_domain . */
270
271 const char *
272 search_domain_name (enum search_domain e)
273 {
274 switch (e)
275 {
276 case VARIABLES_DOMAIN: return "VARIABLES_DOMAIN";
277 case FUNCTIONS_DOMAIN: return "FUNCTIONS_DOMAIN";
278 case TYPES_DOMAIN: return "TYPES_DOMAIN";
279 case ALL_DOMAIN: return "ALL_DOMAIN";
280 default: gdb_assert_not_reached ("bad search_domain");
281 }
282 }
283
284 /* See symtab.h. */
285
286 struct symtab *
287 compunit_primary_filetab (const struct compunit_symtab *cust)
288 {
289 gdb_assert (COMPUNIT_FILETABS (cust) != NULL);
290
291 /* The primary file symtab is the first one in the list. */
292 return COMPUNIT_FILETABS (cust);
293 }
294
295 /* See symtab.h. */
296
297 enum language
298 compunit_language (const struct compunit_symtab *cust)
299 {
300 struct symtab *symtab = compunit_primary_filetab (cust);
301
302 /* The language of the compunit symtab is the language of its primary
303 source file. */
304 return SYMTAB_LANGUAGE (symtab);
305 }
306
307 /* See whether FILENAME matches SEARCH_NAME using the rule that we
308 advertise to the user. (The manual's description of linespecs
309 describes what we advertise). Returns true if they match, false
310 otherwise. */
311
312 int
313 compare_filenames_for_search (const char *filename, const char *search_name)
314 {
315 int len = strlen (filename);
316 size_t search_len = strlen (search_name);
317
318 if (len < search_len)
319 return 0;
320
321 /* The tail of FILENAME must match. */
322 if (FILENAME_CMP (filename + len - search_len, search_name) != 0)
323 return 0;
324
325 /* Either the names must completely match, or the character
326 preceding the trailing SEARCH_NAME segment of FILENAME must be a
327 directory separator.
328
329 The check !IS_ABSOLUTE_PATH ensures SEARCH_NAME "/dir/file.c"
330 cannot match FILENAME "/path//dir/file.c" - as user has requested
331 absolute path. The sama applies for "c:\file.c" possibly
332 incorrectly hypothetically matching "d:\dir\c:\file.c".
333
334 The HAS_DRIVE_SPEC purpose is to make FILENAME "c:file.c"
335 compatible with SEARCH_NAME "file.c". In such case a compiler had
336 to put the "c:file.c" name into debug info. Such compatibility
337 works only on GDB built for DOS host. */
338 return (len == search_len
339 || (!IS_ABSOLUTE_PATH (search_name)
340 && IS_DIR_SEPARATOR (filename[len - search_len - 1]))
341 || (HAS_DRIVE_SPEC (filename)
342 && STRIP_DRIVE_SPEC (filename) == &filename[len - search_len]));
343 }
344
345 /* Check for a symtab of a specific name by searching some symtabs.
346 This is a helper function for callbacks of iterate_over_symtabs.
347
348 If NAME is not absolute, then REAL_PATH is NULL
349 If NAME is absolute, then REAL_PATH is the gdb_realpath form of NAME.
350
351 The return value, NAME, REAL_PATH, CALLBACK, and DATA
352 are identical to the `map_symtabs_matching_filename' method of
353 quick_symbol_functions.
354
355 FIRST and AFTER_LAST indicate the range of compunit symtabs to search.
356 Each symtab within the specified compunit symtab is also searched.
357 AFTER_LAST is one past the last compunit symtab to search; NULL means to
358 search until the end of the list. */
359
360 int
361 iterate_over_some_symtabs (const char *name,
362 const char *real_path,
363 int (*callback) (struct symtab *symtab,
364 void *data),
365 void *data,
366 struct compunit_symtab *first,
367 struct compunit_symtab *after_last)
368 {
369 struct compunit_symtab *cust;
370 struct symtab *s;
371 const char* base_name = lbasename (name);
372
373 for (cust = first; cust != NULL && cust != after_last; cust = cust->next)
374 {
375 ALL_COMPUNIT_FILETABS (cust, s)
376 {
377 if (compare_filenames_for_search (s->filename, name))
378 {
379 if (callback (s, data))
380 return 1;
381 continue;
382 }
383
384 /* Before we invoke realpath, which can get expensive when many
385 files are involved, do a quick comparison of the basenames. */
386 if (! basenames_may_differ
387 && FILENAME_CMP (base_name, lbasename (s->filename)) != 0)
388 continue;
389
390 if (compare_filenames_for_search (symtab_to_fullname (s), name))
391 {
392 if (callback (s, data))
393 return 1;
394 continue;
395 }
396
397 /* If the user gave us an absolute path, try to find the file in
398 this symtab and use its absolute path. */
399 if (real_path != NULL)
400 {
401 const char *fullname = symtab_to_fullname (s);
402
403 gdb_assert (IS_ABSOLUTE_PATH (real_path));
404 gdb_assert (IS_ABSOLUTE_PATH (name));
405 if (FILENAME_CMP (real_path, fullname) == 0)
406 {
407 if (callback (s, data))
408 return 1;
409 continue;
410 }
411 }
412 }
413 }
414
415 return 0;
416 }
417
418 /* Check for a symtab of a specific name; first in symtabs, then in
419 psymtabs. *If* there is no '/' in the name, a match after a '/'
420 in the symtab filename will also work.
421
422 Calls CALLBACK with each symtab that is found and with the supplied
423 DATA. If CALLBACK returns true, the search stops. */
424
425 void
426 iterate_over_symtabs (const char *name,
427 int (*callback) (struct symtab *symtab,
428 void *data),
429 void *data)
430 {
431 struct objfile *objfile;
432 char *real_path = NULL;
433 struct cleanup *cleanups = make_cleanup (null_cleanup, NULL);
434
435 /* Here we are interested in canonicalizing an absolute path, not
436 absolutizing a relative path. */
437 if (IS_ABSOLUTE_PATH (name))
438 {
439 real_path = gdb_realpath (name);
440 make_cleanup (xfree, real_path);
441 gdb_assert (IS_ABSOLUTE_PATH (real_path));
442 }
443
444 ALL_OBJFILES (objfile)
445 {
446 if (iterate_over_some_symtabs (name, real_path, callback, data,
447 objfile->compunit_symtabs, NULL))
448 {
449 do_cleanups (cleanups);
450 return;
451 }
452 }
453
454 /* Same search rules as above apply here, but now we look thru the
455 psymtabs. */
456
457 ALL_OBJFILES (objfile)
458 {
459 if (objfile->sf
460 && objfile->sf->qf->map_symtabs_matching_filename (objfile,
461 name,
462 real_path,
463 callback,
464 data))
465 {
466 do_cleanups (cleanups);
467 return;
468 }
469 }
470
471 do_cleanups (cleanups);
472 }
473
474 /* The callback function used by lookup_symtab. */
475
476 static int
477 lookup_symtab_callback (struct symtab *symtab, void *data)
478 {
479 struct symtab **result_ptr = (struct symtab **) data;
480
481 *result_ptr = symtab;
482 return 1;
483 }
484
485 /* A wrapper for iterate_over_symtabs that returns the first matching
486 symtab, or NULL. */
487
488 struct symtab *
489 lookup_symtab (const char *name)
490 {
491 struct symtab *result = NULL;
492
493 iterate_over_symtabs (name, lookup_symtab_callback, &result);
494 return result;
495 }
496
497 \f
498 /* Mangle a GDB method stub type. This actually reassembles the pieces of the
499 full method name, which consist of the class name (from T), the unadorned
500 method name from METHOD_ID, and the signature for the specific overload,
501 specified by SIGNATURE_ID. Note that this function is g++ specific. */
502
503 char *
504 gdb_mangle_name (struct type *type, int method_id, int signature_id)
505 {
506 int mangled_name_len;
507 char *mangled_name;
508 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
509 struct fn_field *method = &f[signature_id];
510 const char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
511 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
512 const char *newname = type_name_no_tag (type);
513
514 /* Does the form of physname indicate that it is the full mangled name
515 of a constructor (not just the args)? */
516 int is_full_physname_constructor;
517
518 int is_constructor;
519 int is_destructor = is_destructor_name (physname);
520 /* Need a new type prefix. */
521 const char *const_prefix = method->is_const ? "C" : "";
522 const char *volatile_prefix = method->is_volatile ? "V" : "";
523 char buf[20];
524 int len = (newname == NULL ? 0 : strlen (newname));
525
526 /* Nothing to do if physname already contains a fully mangled v3 abi name
527 or an operator name. */
528 if ((physname[0] == '_' && physname[1] == 'Z')
529 || is_operator_name (field_name))
530 return xstrdup (physname);
531
532 is_full_physname_constructor = is_constructor_name (physname);
533
534 is_constructor = is_full_physname_constructor
535 || (newname && strcmp (field_name, newname) == 0);
536
537 if (!is_destructor)
538 is_destructor = (startswith (physname, "__dt"));
539
540 if (is_destructor || is_full_physname_constructor)
541 {
542 mangled_name = (char *) xmalloc (strlen (physname) + 1);
543 strcpy (mangled_name, physname);
544 return mangled_name;
545 }
546
547 if (len == 0)
548 {
549 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
550 }
551 else if (physname[0] == 't' || physname[0] == 'Q')
552 {
553 /* The physname for template and qualified methods already includes
554 the class name. */
555 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
556 newname = NULL;
557 len = 0;
558 }
559 else
560 {
561 xsnprintf (buf, sizeof (buf), "__%s%s%d", const_prefix,
562 volatile_prefix, len);
563 }
564 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
565 + strlen (buf) + len + strlen (physname) + 1);
566
567 mangled_name = (char *) xmalloc (mangled_name_len);
568 if (is_constructor)
569 mangled_name[0] = '\0';
570 else
571 strcpy (mangled_name, field_name);
572
573 strcat (mangled_name, buf);
574 /* If the class doesn't have a name, i.e. newname NULL, then we just
575 mangle it using 0 for the length of the class. Thus it gets mangled
576 as something starting with `::' rather than `classname::'. */
577 if (newname != NULL)
578 strcat (mangled_name, newname);
579
580 strcat (mangled_name, physname);
581 return (mangled_name);
582 }
583
584 /* Set the demangled name of GSYMBOL to NAME. NAME must be already
585 correctly allocated. */
586
587 void
588 symbol_set_demangled_name (struct general_symbol_info *gsymbol,
589 const char *name,
590 struct obstack *obstack)
591 {
592 if (gsymbol->language == language_ada)
593 {
594 if (name == NULL)
595 {
596 gsymbol->ada_mangled = 0;
597 gsymbol->language_specific.obstack = obstack;
598 }
599 else
600 {
601 gsymbol->ada_mangled = 1;
602 gsymbol->language_specific.demangled_name = name;
603 }
604 }
605 else
606 gsymbol->language_specific.demangled_name = name;
607 }
608
609 /* Return the demangled name of GSYMBOL. */
610
611 const char *
612 symbol_get_demangled_name (const struct general_symbol_info *gsymbol)
613 {
614 if (gsymbol->language == language_ada)
615 {
616 if (!gsymbol->ada_mangled)
617 return NULL;
618 /* Fall through. */
619 }
620
621 return gsymbol->language_specific.demangled_name;
622 }
623
624 \f
625 /* Initialize the language dependent portion of a symbol
626 depending upon the language for the symbol. */
627
628 void
629 symbol_set_language (struct general_symbol_info *gsymbol,
630 enum language language,
631 struct obstack *obstack)
632 {
633 gsymbol->language = language;
634 if (gsymbol->language == language_cplus
635 || gsymbol->language == language_d
636 || gsymbol->language == language_go
637 || gsymbol->language == language_java
638 || gsymbol->language == language_objc
639 || gsymbol->language == language_fortran)
640 {
641 symbol_set_demangled_name (gsymbol, NULL, obstack);
642 }
643 else if (gsymbol->language == language_ada)
644 {
645 gdb_assert (gsymbol->ada_mangled == 0);
646 gsymbol->language_specific.obstack = obstack;
647 }
648 else
649 {
650 memset (&gsymbol->language_specific, 0,
651 sizeof (gsymbol->language_specific));
652 }
653 }
654
655 /* Functions to initialize a symbol's mangled name. */
656
657 /* Objects of this type are stored in the demangled name hash table. */
658 struct demangled_name_entry
659 {
660 const char *mangled;
661 char demangled[1];
662 };
663
664 /* Hash function for the demangled name hash. */
665
666 static hashval_t
667 hash_demangled_name_entry (const void *data)
668 {
669 const struct demangled_name_entry *e
670 = (const struct demangled_name_entry *) data;
671
672 return htab_hash_string (e->mangled);
673 }
674
675 /* Equality function for the demangled name hash. */
676
677 static int
678 eq_demangled_name_entry (const void *a, const void *b)
679 {
680 const struct demangled_name_entry *da
681 = (const struct demangled_name_entry *) a;
682 const struct demangled_name_entry *db
683 = (const struct demangled_name_entry *) b;
684
685 return strcmp (da->mangled, db->mangled) == 0;
686 }
687
688 /* Create the hash table used for demangled names. Each hash entry is
689 a pair of strings; one for the mangled name and one for the demangled
690 name. The entry is hashed via just the mangled name. */
691
692 static void
693 create_demangled_names_hash (struct objfile *objfile)
694 {
695 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
696 The hash table code will round this up to the next prime number.
697 Choosing a much larger table size wastes memory, and saves only about
698 1% in symbol reading. */
699
700 objfile->per_bfd->demangled_names_hash = htab_create_alloc
701 (256, hash_demangled_name_entry, eq_demangled_name_entry,
702 NULL, xcalloc, xfree);
703 }
704
705 /* Try to determine the demangled name for a symbol, based on the
706 language of that symbol. If the language is set to language_auto,
707 it will attempt to find any demangling algorithm that works and
708 then set the language appropriately. The returned name is allocated
709 by the demangler and should be xfree'd. */
710
711 static char *
712 symbol_find_demangled_name (struct general_symbol_info *gsymbol,
713 const char *mangled)
714 {
715 char *demangled = NULL;
716
717 if (gsymbol->language == language_unknown)
718 gsymbol->language = language_auto;
719
720 if (gsymbol->language == language_objc
721 || gsymbol->language == language_auto)
722 {
723 demangled =
724 objc_demangle (mangled, 0);
725 if (demangled != NULL)
726 {
727 gsymbol->language = language_objc;
728 return demangled;
729 }
730 }
731 if (gsymbol->language == language_cplus
732 || gsymbol->language == language_auto)
733 {
734 demangled =
735 gdb_demangle (mangled, DMGL_PARAMS | DMGL_ANSI);
736 if (demangled != NULL)
737 {
738 gsymbol->language = language_cplus;
739 return demangled;
740 }
741 }
742 if (gsymbol->language == language_java)
743 {
744 demangled =
745 gdb_demangle (mangled,
746 DMGL_PARAMS | DMGL_ANSI | DMGL_JAVA);
747 if (demangled != NULL)
748 {
749 gsymbol->language = language_java;
750 return demangled;
751 }
752 }
753 if (gsymbol->language == language_d
754 || gsymbol->language == language_auto)
755 {
756 demangled = d_demangle(mangled, 0);
757 if (demangled != NULL)
758 {
759 gsymbol->language = language_d;
760 return demangled;
761 }
762 }
763 /* FIXME(dje): Continually adding languages here is clumsy.
764 Better to just call la_demangle if !auto, and if auto then call
765 a utility routine that tries successive languages in turn and reports
766 which one it finds. I realize the la_demangle options may be different
767 for different languages but there's already a FIXME for that. */
768 if (gsymbol->language == language_go
769 || gsymbol->language == language_auto)
770 {
771 demangled = go_demangle (mangled, 0);
772 if (demangled != NULL)
773 {
774 gsymbol->language = language_go;
775 return demangled;
776 }
777 }
778
779 /* We could support `gsymbol->language == language_fortran' here to provide
780 module namespaces also for inferiors with only minimal symbol table (ELF
781 symbols). Just the mangling standard is not standardized across compilers
782 and there is no DW_AT_producer available for inferiors with only the ELF
783 symbols to check the mangling kind. */
784
785 /* Check for Ada symbols last. See comment below explaining why. */
786
787 if (gsymbol->language == language_auto)
788 {
789 const char *demangled = ada_decode (mangled);
790
791 if (demangled != mangled && demangled != NULL && demangled[0] != '<')
792 {
793 /* Set the gsymbol language to Ada, but still return NULL.
794 Two reasons for that:
795
796 1. For Ada, we prefer computing the symbol's decoded name
797 on the fly rather than pre-compute it, in order to save
798 memory (Ada projects are typically very large).
799
800 2. There are some areas in the definition of the GNAT
801 encoding where, with a bit of bad luck, we might be able
802 to decode a non-Ada symbol, generating an incorrect
803 demangled name (Eg: names ending with "TB" for instance
804 are identified as task bodies and so stripped from
805 the decoded name returned).
806
807 Returning NULL, here, helps us get a little bit of
808 the best of both worlds. Because we're last, we should
809 not affect any of the other languages that were able to
810 demangle the symbol before us; we get to correctly tag
811 Ada symbols as such; and even if we incorrectly tagged
812 a non-Ada symbol, which should be rare, any routing
813 through the Ada language should be transparent (Ada
814 tries to behave much like C/C++ with non-Ada symbols). */
815 gsymbol->language = language_ada;
816 return NULL;
817 }
818 }
819
820 return NULL;
821 }
822
823 /* Set both the mangled and demangled (if any) names for GSYMBOL based
824 on LINKAGE_NAME and LEN. Ordinarily, NAME is copied onto the
825 objfile's obstack; but if COPY_NAME is 0 and if NAME is
826 NUL-terminated, then this function assumes that NAME is already
827 correctly saved (either permanently or with a lifetime tied to the
828 objfile), and it will not be copied.
829
830 The hash table corresponding to OBJFILE is used, and the memory
831 comes from the per-BFD storage_obstack. LINKAGE_NAME is copied,
832 so the pointer can be discarded after calling this function. */
833
834 /* We have to be careful when dealing with Java names: when we run
835 into a Java minimal symbol, we don't know it's a Java symbol, so it
836 gets demangled as a C++ name. This is unfortunate, but there's not
837 much we can do about it: but when demangling partial symbols and
838 regular symbols, we'd better not reuse the wrong demangled name.
839 (See PR gdb/1039.) We solve this by putting a distinctive prefix
840 on Java names when storing them in the hash table. */
841
842 /* FIXME: carlton/2003-03-13: This is an unfortunate situation. I
843 don't mind the Java prefix so much: different languages have
844 different demangling requirements, so it's only natural that we
845 need to keep language data around in our demangling cache. But
846 it's not good that the minimal symbol has the wrong demangled name.
847 Unfortunately, I can't think of any easy solution to that
848 problem. */
849
850 #define JAVA_PREFIX "##JAVA$$"
851 #define JAVA_PREFIX_LEN 8
852
853 void
854 symbol_set_names (struct general_symbol_info *gsymbol,
855 const char *linkage_name, int len, int copy_name,
856 struct objfile *objfile)
857 {
858 struct demangled_name_entry **slot;
859 /* A 0-terminated copy of the linkage name. */
860 const char *linkage_name_copy;
861 /* A copy of the linkage name that might have a special Java prefix
862 added to it, for use when looking names up in the hash table. */
863 const char *lookup_name;
864 /* The length of lookup_name. */
865 int lookup_len;
866 struct demangled_name_entry entry;
867 struct objfile_per_bfd_storage *per_bfd = objfile->per_bfd;
868
869 if (gsymbol->language == language_ada)
870 {
871 /* In Ada, we do the symbol lookups using the mangled name, so
872 we can save some space by not storing the demangled name.
873
874 As a side note, we have also observed some overlap between
875 the C++ mangling and Ada mangling, similarly to what has
876 been observed with Java. Because we don't store the demangled
877 name with the symbol, we don't need to use the same trick
878 as Java. */
879 if (!copy_name)
880 gsymbol->name = linkage_name;
881 else
882 {
883 char *name = (char *) obstack_alloc (&per_bfd->storage_obstack,
884 len + 1);
885
886 memcpy (name, linkage_name, len);
887 name[len] = '\0';
888 gsymbol->name = name;
889 }
890 symbol_set_demangled_name (gsymbol, NULL, &per_bfd->storage_obstack);
891
892 return;
893 }
894
895 if (per_bfd->demangled_names_hash == NULL)
896 create_demangled_names_hash (objfile);
897
898 /* The stabs reader generally provides names that are not
899 NUL-terminated; most of the other readers don't do this, so we
900 can just use the given copy, unless we're in the Java case. */
901 if (gsymbol->language == language_java)
902 {
903 char *alloc_name;
904
905 lookup_len = len + JAVA_PREFIX_LEN;
906 alloc_name = (char *) alloca (lookup_len + 1);
907 memcpy (alloc_name, JAVA_PREFIX, JAVA_PREFIX_LEN);
908 memcpy (alloc_name + JAVA_PREFIX_LEN, linkage_name, len);
909 alloc_name[lookup_len] = '\0';
910
911 lookup_name = alloc_name;
912 linkage_name_copy = alloc_name + JAVA_PREFIX_LEN;
913 }
914 else if (linkage_name[len] != '\0')
915 {
916 char *alloc_name;
917
918 lookup_len = len;
919 alloc_name = (char *) alloca (lookup_len + 1);
920 memcpy (alloc_name, linkage_name, len);
921 alloc_name[lookup_len] = '\0';
922
923 lookup_name = alloc_name;
924 linkage_name_copy = alloc_name;
925 }
926 else
927 {
928 lookup_len = len;
929 lookup_name = linkage_name;
930 linkage_name_copy = linkage_name;
931 }
932
933 entry.mangled = lookup_name;
934 slot = ((struct demangled_name_entry **)
935 htab_find_slot (per_bfd->demangled_names_hash,
936 &entry, INSERT));
937
938 /* If this name is not in the hash table, add it. */
939 if (*slot == NULL
940 /* A C version of the symbol may have already snuck into the table.
941 This happens to, e.g., main.init (__go_init_main). Cope. */
942 || (gsymbol->language == language_go
943 && (*slot)->demangled[0] == '\0'))
944 {
945 char *demangled_name = symbol_find_demangled_name (gsymbol,
946 linkage_name_copy);
947 int demangled_len = demangled_name ? strlen (demangled_name) : 0;
948
949 /* Suppose we have demangled_name==NULL, copy_name==0, and
950 lookup_name==linkage_name. In this case, we already have the
951 mangled name saved, and we don't have a demangled name. So,
952 you might think we could save a little space by not recording
953 this in the hash table at all.
954
955 It turns out that it is actually important to still save such
956 an entry in the hash table, because storing this name gives
957 us better bcache hit rates for partial symbols. */
958 if (!copy_name && lookup_name == linkage_name)
959 {
960 *slot
961 = ((struct demangled_name_entry *)
962 obstack_alloc (&per_bfd->storage_obstack,
963 offsetof (struct demangled_name_entry, demangled)
964 + demangled_len + 1));
965 (*slot)->mangled = lookup_name;
966 }
967 else
968 {
969 char *mangled_ptr;
970
971 /* If we must copy the mangled name, put it directly after
972 the demangled name so we can have a single
973 allocation. */
974 *slot
975 = ((struct demangled_name_entry *)
976 obstack_alloc (&per_bfd->storage_obstack,
977 offsetof (struct demangled_name_entry, demangled)
978 + lookup_len + demangled_len + 2));
979 mangled_ptr = &((*slot)->demangled[demangled_len + 1]);
980 strcpy (mangled_ptr, lookup_name);
981 (*slot)->mangled = mangled_ptr;
982 }
983
984 if (demangled_name != NULL)
985 {
986 strcpy ((*slot)->demangled, demangled_name);
987 xfree (demangled_name);
988 }
989 else
990 (*slot)->demangled[0] = '\0';
991 }
992
993 gsymbol->name = (*slot)->mangled + lookup_len - len;
994 if ((*slot)->demangled[0] != '\0')
995 symbol_set_demangled_name (gsymbol, (*slot)->demangled,
996 &per_bfd->storage_obstack);
997 else
998 symbol_set_demangled_name (gsymbol, NULL, &per_bfd->storage_obstack);
999 }
1000
1001 /* Return the source code name of a symbol. In languages where
1002 demangling is necessary, this is the demangled name. */
1003
1004 const char *
1005 symbol_natural_name (const struct general_symbol_info *gsymbol)
1006 {
1007 switch (gsymbol->language)
1008 {
1009 case language_cplus:
1010 case language_d:
1011 case language_go:
1012 case language_java:
1013 case language_objc:
1014 case language_fortran:
1015 if (symbol_get_demangled_name (gsymbol) != NULL)
1016 return symbol_get_demangled_name (gsymbol);
1017 break;
1018 case language_ada:
1019 return ada_decode_symbol (gsymbol);
1020 default:
1021 break;
1022 }
1023 return gsymbol->name;
1024 }
1025
1026 /* Return the demangled name for a symbol based on the language for
1027 that symbol. If no demangled name exists, return NULL. */
1028
1029 const char *
1030 symbol_demangled_name (const struct general_symbol_info *gsymbol)
1031 {
1032 const char *dem_name = NULL;
1033
1034 switch (gsymbol->language)
1035 {
1036 case language_cplus:
1037 case language_d:
1038 case language_go:
1039 case language_java:
1040 case language_objc:
1041 case language_fortran:
1042 dem_name = symbol_get_demangled_name (gsymbol);
1043 break;
1044 case language_ada:
1045 dem_name = ada_decode_symbol (gsymbol);
1046 break;
1047 default:
1048 break;
1049 }
1050 return dem_name;
1051 }
1052
1053 /* Return the search name of a symbol---generally the demangled or
1054 linkage name of the symbol, depending on how it will be searched for.
1055 If there is no distinct demangled name, then returns the same value
1056 (same pointer) as SYMBOL_LINKAGE_NAME. */
1057
1058 const char *
1059 symbol_search_name (const struct general_symbol_info *gsymbol)
1060 {
1061 if (gsymbol->language == language_ada)
1062 return gsymbol->name;
1063 else
1064 return symbol_natural_name (gsymbol);
1065 }
1066
1067 /* Initialize the structure fields to zero values. */
1068
1069 void
1070 init_sal (struct symtab_and_line *sal)
1071 {
1072 memset (sal, 0, sizeof (*sal));
1073 }
1074 \f
1075
1076 /* Return 1 if the two sections are the same, or if they could
1077 plausibly be copies of each other, one in an original object
1078 file and another in a separated debug file. */
1079
1080 int
1081 matching_obj_sections (struct obj_section *obj_first,
1082 struct obj_section *obj_second)
1083 {
1084 asection *first = obj_first? obj_first->the_bfd_section : NULL;
1085 asection *second = obj_second? obj_second->the_bfd_section : NULL;
1086 struct objfile *obj;
1087
1088 /* If they're the same section, then they match. */
1089 if (first == second)
1090 return 1;
1091
1092 /* If either is NULL, give up. */
1093 if (first == NULL || second == NULL)
1094 return 0;
1095
1096 /* This doesn't apply to absolute symbols. */
1097 if (first->owner == NULL || second->owner == NULL)
1098 return 0;
1099
1100 /* If they're in the same object file, they must be different sections. */
1101 if (first->owner == second->owner)
1102 return 0;
1103
1104 /* Check whether the two sections are potentially corresponding. They must
1105 have the same size, address, and name. We can't compare section indexes,
1106 which would be more reliable, because some sections may have been
1107 stripped. */
1108 if (bfd_get_section_size (first) != bfd_get_section_size (second))
1109 return 0;
1110
1111 /* In-memory addresses may start at a different offset, relativize them. */
1112 if (bfd_get_section_vma (first->owner, first)
1113 - bfd_get_start_address (first->owner)
1114 != bfd_get_section_vma (second->owner, second)
1115 - bfd_get_start_address (second->owner))
1116 return 0;
1117
1118 if (bfd_get_section_name (first->owner, first) == NULL
1119 || bfd_get_section_name (second->owner, second) == NULL
1120 || strcmp (bfd_get_section_name (first->owner, first),
1121 bfd_get_section_name (second->owner, second)) != 0)
1122 return 0;
1123
1124 /* Otherwise check that they are in corresponding objfiles. */
1125
1126 ALL_OBJFILES (obj)
1127 if (obj->obfd == first->owner)
1128 break;
1129 gdb_assert (obj != NULL);
1130
1131 if (obj->separate_debug_objfile != NULL
1132 && obj->separate_debug_objfile->obfd == second->owner)
1133 return 1;
1134 if (obj->separate_debug_objfile_backlink != NULL
1135 && obj->separate_debug_objfile_backlink->obfd == second->owner)
1136 return 1;
1137
1138 return 0;
1139 }
1140
1141 /* See symtab.h. */
1142
1143 void
1144 expand_symtab_containing_pc (CORE_ADDR pc, struct obj_section *section)
1145 {
1146 struct objfile *objfile;
1147 struct bound_minimal_symbol msymbol;
1148
1149 /* If we know that this is not a text address, return failure. This is
1150 necessary because we loop based on texthigh and textlow, which do
1151 not include the data ranges. */
1152 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
1153 if (msymbol.minsym
1154 && (MSYMBOL_TYPE (msymbol.minsym) == mst_data
1155 || MSYMBOL_TYPE (msymbol.minsym) == mst_bss
1156 || MSYMBOL_TYPE (msymbol.minsym) == mst_abs
1157 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_data
1158 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_bss))
1159 return;
1160
1161 ALL_OBJFILES (objfile)
1162 {
1163 struct compunit_symtab *cust = NULL;
1164
1165 if (objfile->sf)
1166 cust = objfile->sf->qf->find_pc_sect_compunit_symtab (objfile, msymbol,
1167 pc, section, 0);
1168 if (cust)
1169 return;
1170 }
1171 }
1172 \f
1173 /* Hash function for the symbol cache. */
1174
1175 static unsigned int
1176 hash_symbol_entry (const struct objfile *objfile_context,
1177 const char *name, domain_enum domain)
1178 {
1179 unsigned int hash = (uintptr_t) objfile_context;
1180
1181 if (name != NULL)
1182 hash += htab_hash_string (name);
1183
1184 /* Because of symbol_matches_domain we need VAR_DOMAIN and STRUCT_DOMAIN
1185 to map to the same slot. */
1186 if (domain == STRUCT_DOMAIN)
1187 hash += VAR_DOMAIN * 7;
1188 else
1189 hash += domain * 7;
1190
1191 return hash;
1192 }
1193
1194 /* Equality function for the symbol cache. */
1195
1196 static int
1197 eq_symbol_entry (const struct symbol_cache_slot *slot,
1198 const struct objfile *objfile_context,
1199 const char *name, domain_enum domain)
1200 {
1201 const char *slot_name;
1202 domain_enum slot_domain;
1203
1204 if (slot->state == SYMBOL_SLOT_UNUSED)
1205 return 0;
1206
1207 if (slot->objfile_context != objfile_context)
1208 return 0;
1209
1210 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1211 {
1212 slot_name = slot->value.not_found.name;
1213 slot_domain = slot->value.not_found.domain;
1214 }
1215 else
1216 {
1217 slot_name = SYMBOL_SEARCH_NAME (slot->value.found.symbol);
1218 slot_domain = SYMBOL_DOMAIN (slot->value.found.symbol);
1219 }
1220
1221 /* NULL names match. */
1222 if (slot_name == NULL && name == NULL)
1223 {
1224 /* But there's no point in calling symbol_matches_domain in the
1225 SYMBOL_SLOT_FOUND case. */
1226 if (slot_domain != domain)
1227 return 0;
1228 }
1229 else if (slot_name != NULL && name != NULL)
1230 {
1231 /* It's important that we use the same comparison that was done the
1232 first time through. If the slot records a found symbol, then this
1233 means using strcmp_iw on SYMBOL_SEARCH_NAME. See dictionary.c.
1234 It also means using symbol_matches_domain for found symbols.
1235 See block.c.
1236
1237 If the slot records a not-found symbol, then require a precise match.
1238 We could still be lax with whitespace like strcmp_iw though. */
1239
1240 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1241 {
1242 if (strcmp (slot_name, name) != 0)
1243 return 0;
1244 if (slot_domain != domain)
1245 return 0;
1246 }
1247 else
1248 {
1249 struct symbol *sym = slot->value.found.symbol;
1250
1251 if (strcmp_iw (slot_name, name) != 0)
1252 return 0;
1253 if (!symbol_matches_domain (SYMBOL_LANGUAGE (sym),
1254 slot_domain, domain))
1255 return 0;
1256 }
1257 }
1258 else
1259 {
1260 /* Only one name is NULL. */
1261 return 0;
1262 }
1263
1264 return 1;
1265 }
1266
1267 /* Given a cache of size SIZE, return the size of the struct (with variable
1268 length array) in bytes. */
1269
1270 static size_t
1271 symbol_cache_byte_size (unsigned int size)
1272 {
1273 return (sizeof (struct block_symbol_cache)
1274 + ((size - 1) * sizeof (struct symbol_cache_slot)));
1275 }
1276
1277 /* Resize CACHE. */
1278
1279 static void
1280 resize_symbol_cache (struct symbol_cache *cache, unsigned int new_size)
1281 {
1282 /* If there's no change in size, don't do anything.
1283 All caches have the same size, so we can just compare with the size
1284 of the global symbols cache. */
1285 if ((cache->global_symbols != NULL
1286 && cache->global_symbols->size == new_size)
1287 || (cache->global_symbols == NULL
1288 && new_size == 0))
1289 return;
1290
1291 xfree (cache->global_symbols);
1292 xfree (cache->static_symbols);
1293
1294 if (new_size == 0)
1295 {
1296 cache->global_symbols = NULL;
1297 cache->static_symbols = NULL;
1298 }
1299 else
1300 {
1301 size_t total_size = symbol_cache_byte_size (new_size);
1302
1303 cache->global_symbols
1304 = (struct block_symbol_cache *) xcalloc (1, total_size);
1305 cache->static_symbols
1306 = (struct block_symbol_cache *) xcalloc (1, total_size);
1307 cache->global_symbols->size = new_size;
1308 cache->static_symbols->size = new_size;
1309 }
1310 }
1311
1312 /* Make a symbol cache of size SIZE. */
1313
1314 static struct symbol_cache *
1315 make_symbol_cache (unsigned int size)
1316 {
1317 struct symbol_cache *cache;
1318
1319 cache = XCNEW (struct symbol_cache);
1320 resize_symbol_cache (cache, symbol_cache_size);
1321 return cache;
1322 }
1323
1324 /* Free the space used by CACHE. */
1325
1326 static void
1327 free_symbol_cache (struct symbol_cache *cache)
1328 {
1329 xfree (cache->global_symbols);
1330 xfree (cache->static_symbols);
1331 xfree (cache);
1332 }
1333
1334 /* Return the symbol cache of PSPACE.
1335 Create one if it doesn't exist yet. */
1336
1337 static struct symbol_cache *
1338 get_symbol_cache (struct program_space *pspace)
1339 {
1340 struct symbol_cache *cache
1341 = (struct symbol_cache *) program_space_data (pspace, symbol_cache_key);
1342
1343 if (cache == NULL)
1344 {
1345 cache = make_symbol_cache (symbol_cache_size);
1346 set_program_space_data (pspace, symbol_cache_key, cache);
1347 }
1348
1349 return cache;
1350 }
1351
1352 /* Delete the symbol cache of PSPACE.
1353 Called when PSPACE is destroyed. */
1354
1355 static void
1356 symbol_cache_cleanup (struct program_space *pspace, void *data)
1357 {
1358 struct symbol_cache *cache = (struct symbol_cache *) data;
1359
1360 free_symbol_cache (cache);
1361 }
1362
1363 /* Set the size of the symbol cache in all program spaces. */
1364
1365 static void
1366 set_symbol_cache_size (unsigned int new_size)
1367 {
1368 struct program_space *pspace;
1369
1370 ALL_PSPACES (pspace)
1371 {
1372 struct symbol_cache *cache
1373 = (struct symbol_cache *) program_space_data (pspace, symbol_cache_key);
1374
1375 /* The pspace could have been created but not have a cache yet. */
1376 if (cache != NULL)
1377 resize_symbol_cache (cache, new_size);
1378 }
1379 }
1380
1381 /* Called when symbol-cache-size is set. */
1382
1383 static void
1384 set_symbol_cache_size_handler (char *args, int from_tty,
1385 struct cmd_list_element *c)
1386 {
1387 if (new_symbol_cache_size > MAX_SYMBOL_CACHE_SIZE)
1388 {
1389 /* Restore the previous value.
1390 This is the value the "show" command prints. */
1391 new_symbol_cache_size = symbol_cache_size;
1392
1393 error (_("Symbol cache size is too large, max is %u."),
1394 MAX_SYMBOL_CACHE_SIZE);
1395 }
1396 symbol_cache_size = new_symbol_cache_size;
1397
1398 set_symbol_cache_size (symbol_cache_size);
1399 }
1400
1401 /* Lookup symbol NAME,DOMAIN in BLOCK in the symbol cache of PSPACE.
1402 OBJFILE_CONTEXT is the current objfile, which may be NULL.
1403 The result is the symbol if found, SYMBOL_LOOKUP_FAILED if a previous lookup
1404 failed (and thus this one will too), or NULL if the symbol is not present
1405 in the cache.
1406 If the symbol is not present in the cache, then *BSC_PTR and *SLOT_PTR are
1407 set to the cache and slot of the symbol to save the result of a full lookup
1408 attempt. */
1409
1410 static struct block_symbol
1411 symbol_cache_lookup (struct symbol_cache *cache,
1412 struct objfile *objfile_context, int block,
1413 const char *name, domain_enum domain,
1414 struct block_symbol_cache **bsc_ptr,
1415 struct symbol_cache_slot **slot_ptr)
1416 {
1417 struct block_symbol_cache *bsc;
1418 unsigned int hash;
1419 struct symbol_cache_slot *slot;
1420
1421 if (block == GLOBAL_BLOCK)
1422 bsc = cache->global_symbols;
1423 else
1424 bsc = cache->static_symbols;
1425 if (bsc == NULL)
1426 {
1427 *bsc_ptr = NULL;
1428 *slot_ptr = NULL;
1429 return (struct block_symbol) {NULL, NULL};
1430 }
1431
1432 hash = hash_symbol_entry (objfile_context, name, domain);
1433 slot = bsc->symbols + hash % bsc->size;
1434
1435 if (eq_symbol_entry (slot, objfile_context, name, domain))
1436 {
1437 if (symbol_lookup_debug)
1438 fprintf_unfiltered (gdb_stdlog,
1439 "%s block symbol cache hit%s for %s, %s\n",
1440 block == GLOBAL_BLOCK ? "Global" : "Static",
1441 slot->state == SYMBOL_SLOT_NOT_FOUND
1442 ? " (not found)" : "",
1443 name, domain_name (domain));
1444 ++bsc->hits;
1445 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1446 return SYMBOL_LOOKUP_FAILED;
1447 return slot->value.found;
1448 }
1449
1450 /* Symbol is not present in the cache. */
1451
1452 *bsc_ptr = bsc;
1453 *slot_ptr = slot;
1454
1455 if (symbol_lookup_debug)
1456 {
1457 fprintf_unfiltered (gdb_stdlog,
1458 "%s block symbol cache miss for %s, %s\n",
1459 block == GLOBAL_BLOCK ? "Global" : "Static",
1460 name, domain_name (domain));
1461 }
1462 ++bsc->misses;
1463 return (struct block_symbol) {NULL, NULL};
1464 }
1465
1466 /* Clear out SLOT. */
1467
1468 static void
1469 symbol_cache_clear_slot (struct symbol_cache_slot *slot)
1470 {
1471 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1472 xfree (slot->value.not_found.name);
1473 slot->state = SYMBOL_SLOT_UNUSED;
1474 }
1475
1476 /* Mark SYMBOL as found in SLOT.
1477 OBJFILE_CONTEXT is the current objfile when the lookup was done, or NULL
1478 if it's not needed to distinguish lookups (STATIC_BLOCK). It is *not*
1479 necessarily the objfile the symbol was found in. */
1480
1481 static void
1482 symbol_cache_mark_found (struct block_symbol_cache *bsc,
1483 struct symbol_cache_slot *slot,
1484 struct objfile *objfile_context,
1485 struct symbol *symbol,
1486 const struct block *block)
1487 {
1488 if (bsc == NULL)
1489 return;
1490 if (slot->state != SYMBOL_SLOT_UNUSED)
1491 {
1492 ++bsc->collisions;
1493 symbol_cache_clear_slot (slot);
1494 }
1495 slot->state = SYMBOL_SLOT_FOUND;
1496 slot->objfile_context = objfile_context;
1497 slot->value.found.symbol = symbol;
1498 slot->value.found.block = block;
1499 }
1500
1501 /* Mark symbol NAME, DOMAIN as not found in SLOT.
1502 OBJFILE_CONTEXT is the current objfile when the lookup was done, or NULL
1503 if it's not needed to distinguish lookups (STATIC_BLOCK). */
1504
1505 static void
1506 symbol_cache_mark_not_found (struct block_symbol_cache *bsc,
1507 struct symbol_cache_slot *slot,
1508 struct objfile *objfile_context,
1509 const char *name, domain_enum domain)
1510 {
1511 if (bsc == NULL)
1512 return;
1513 if (slot->state != SYMBOL_SLOT_UNUSED)
1514 {
1515 ++bsc->collisions;
1516 symbol_cache_clear_slot (slot);
1517 }
1518 slot->state = SYMBOL_SLOT_NOT_FOUND;
1519 slot->objfile_context = objfile_context;
1520 slot->value.not_found.name = xstrdup (name);
1521 slot->value.not_found.domain = domain;
1522 }
1523
1524 /* Flush the symbol cache of PSPACE. */
1525
1526 static void
1527 symbol_cache_flush (struct program_space *pspace)
1528 {
1529 struct symbol_cache *cache
1530 = (struct symbol_cache *) program_space_data (pspace, symbol_cache_key);
1531 int pass;
1532 size_t total_size;
1533
1534 if (cache == NULL)
1535 return;
1536 if (cache->global_symbols == NULL)
1537 {
1538 gdb_assert (symbol_cache_size == 0);
1539 gdb_assert (cache->static_symbols == NULL);
1540 return;
1541 }
1542
1543 /* If the cache is untouched since the last flush, early exit.
1544 This is important for performance during the startup of a program linked
1545 with 100s (or 1000s) of shared libraries. */
1546 if (cache->global_symbols->misses == 0
1547 && cache->static_symbols->misses == 0)
1548 return;
1549
1550 gdb_assert (cache->global_symbols->size == symbol_cache_size);
1551 gdb_assert (cache->static_symbols->size == symbol_cache_size);
1552
1553 for (pass = 0; pass < 2; ++pass)
1554 {
1555 struct block_symbol_cache *bsc
1556 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1557 unsigned int i;
1558
1559 for (i = 0; i < bsc->size; ++i)
1560 symbol_cache_clear_slot (&bsc->symbols[i]);
1561 }
1562
1563 cache->global_symbols->hits = 0;
1564 cache->global_symbols->misses = 0;
1565 cache->global_symbols->collisions = 0;
1566 cache->static_symbols->hits = 0;
1567 cache->static_symbols->misses = 0;
1568 cache->static_symbols->collisions = 0;
1569 }
1570
1571 /* Dump CACHE. */
1572
1573 static void
1574 symbol_cache_dump (const struct symbol_cache *cache)
1575 {
1576 int pass;
1577
1578 if (cache->global_symbols == NULL)
1579 {
1580 printf_filtered (" <disabled>\n");
1581 return;
1582 }
1583
1584 for (pass = 0; pass < 2; ++pass)
1585 {
1586 const struct block_symbol_cache *bsc
1587 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1588 unsigned int i;
1589
1590 if (pass == 0)
1591 printf_filtered ("Global symbols:\n");
1592 else
1593 printf_filtered ("Static symbols:\n");
1594
1595 for (i = 0; i < bsc->size; ++i)
1596 {
1597 const struct symbol_cache_slot *slot = &bsc->symbols[i];
1598
1599 QUIT;
1600
1601 switch (slot->state)
1602 {
1603 case SYMBOL_SLOT_UNUSED:
1604 break;
1605 case SYMBOL_SLOT_NOT_FOUND:
1606 printf_filtered (" [%4u] = %s, %s %s (not found)\n", i,
1607 host_address_to_string (slot->objfile_context),
1608 slot->value.not_found.name,
1609 domain_name (slot->value.not_found.domain));
1610 break;
1611 case SYMBOL_SLOT_FOUND:
1612 {
1613 struct symbol *found = slot->value.found.symbol;
1614 const struct objfile *context = slot->objfile_context;
1615
1616 printf_filtered (" [%4u] = %s, %s %s\n", i,
1617 host_address_to_string (context),
1618 SYMBOL_PRINT_NAME (found),
1619 domain_name (SYMBOL_DOMAIN (found)));
1620 break;
1621 }
1622 }
1623 }
1624 }
1625 }
1626
1627 /* The "mt print symbol-cache" command. */
1628
1629 static void
1630 maintenance_print_symbol_cache (char *args, int from_tty)
1631 {
1632 struct program_space *pspace;
1633
1634 ALL_PSPACES (pspace)
1635 {
1636 struct symbol_cache *cache;
1637
1638 printf_filtered (_("Symbol cache for pspace %d\n%s:\n"),
1639 pspace->num,
1640 pspace->symfile_object_file != NULL
1641 ? objfile_name (pspace->symfile_object_file)
1642 : "(no object file)");
1643
1644 /* If the cache hasn't been created yet, avoid creating one. */
1645 cache
1646 = (struct symbol_cache *) program_space_data (pspace, symbol_cache_key);
1647 if (cache == NULL)
1648 printf_filtered (" <empty>\n");
1649 else
1650 symbol_cache_dump (cache);
1651 }
1652 }
1653
1654 /* The "mt flush-symbol-cache" command. */
1655
1656 static void
1657 maintenance_flush_symbol_cache (char *args, int from_tty)
1658 {
1659 struct program_space *pspace;
1660
1661 ALL_PSPACES (pspace)
1662 {
1663 symbol_cache_flush (pspace);
1664 }
1665 }
1666
1667 /* Print usage statistics of CACHE. */
1668
1669 static void
1670 symbol_cache_stats (struct symbol_cache *cache)
1671 {
1672 int pass;
1673
1674 if (cache->global_symbols == NULL)
1675 {
1676 printf_filtered (" <disabled>\n");
1677 return;
1678 }
1679
1680 for (pass = 0; pass < 2; ++pass)
1681 {
1682 const struct block_symbol_cache *bsc
1683 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1684
1685 QUIT;
1686
1687 if (pass == 0)
1688 printf_filtered ("Global block cache stats:\n");
1689 else
1690 printf_filtered ("Static block cache stats:\n");
1691
1692 printf_filtered (" size: %u\n", bsc->size);
1693 printf_filtered (" hits: %u\n", bsc->hits);
1694 printf_filtered (" misses: %u\n", bsc->misses);
1695 printf_filtered (" collisions: %u\n", bsc->collisions);
1696 }
1697 }
1698
1699 /* The "mt print symbol-cache-statistics" command. */
1700
1701 static void
1702 maintenance_print_symbol_cache_statistics (char *args, int from_tty)
1703 {
1704 struct program_space *pspace;
1705
1706 ALL_PSPACES (pspace)
1707 {
1708 struct symbol_cache *cache;
1709
1710 printf_filtered (_("Symbol cache statistics for pspace %d\n%s:\n"),
1711 pspace->num,
1712 pspace->symfile_object_file != NULL
1713 ? objfile_name (pspace->symfile_object_file)
1714 : "(no object file)");
1715
1716 /* If the cache hasn't been created yet, avoid creating one. */
1717 cache
1718 = (struct symbol_cache *) program_space_data (pspace, symbol_cache_key);
1719 if (cache == NULL)
1720 printf_filtered (" empty, no stats available\n");
1721 else
1722 symbol_cache_stats (cache);
1723 }
1724 }
1725
1726 /* This module's 'new_objfile' observer. */
1727
1728 static void
1729 symtab_new_objfile_observer (struct objfile *objfile)
1730 {
1731 /* Ideally we'd use OBJFILE->pspace, but OBJFILE may be NULL. */
1732 symbol_cache_flush (current_program_space);
1733 }
1734
1735 /* This module's 'free_objfile' observer. */
1736
1737 static void
1738 symtab_free_objfile_observer (struct objfile *objfile)
1739 {
1740 symbol_cache_flush (objfile->pspace);
1741 }
1742 \f
1743 /* Debug symbols usually don't have section information. We need to dig that
1744 out of the minimal symbols and stash that in the debug symbol. */
1745
1746 void
1747 fixup_section (struct general_symbol_info *ginfo,
1748 CORE_ADDR addr, struct objfile *objfile)
1749 {
1750 struct minimal_symbol *msym;
1751
1752 /* First, check whether a minimal symbol with the same name exists
1753 and points to the same address. The address check is required
1754 e.g. on PowerPC64, where the minimal symbol for a function will
1755 point to the function descriptor, while the debug symbol will
1756 point to the actual function code. */
1757 msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->name, objfile);
1758 if (msym)
1759 ginfo->section = MSYMBOL_SECTION (msym);
1760 else
1761 {
1762 /* Static, function-local variables do appear in the linker
1763 (minimal) symbols, but are frequently given names that won't
1764 be found via lookup_minimal_symbol(). E.g., it has been
1765 observed in frv-uclinux (ELF) executables that a static,
1766 function-local variable named "foo" might appear in the
1767 linker symbols as "foo.6" or "foo.3". Thus, there is no
1768 point in attempting to extend the lookup-by-name mechanism to
1769 handle this case due to the fact that there can be multiple
1770 names.
1771
1772 So, instead, search the section table when lookup by name has
1773 failed. The ``addr'' and ``endaddr'' fields may have already
1774 been relocated. If so, the relocation offset (i.e. the
1775 ANOFFSET value) needs to be subtracted from these values when
1776 performing the comparison. We unconditionally subtract it,
1777 because, when no relocation has been performed, the ANOFFSET
1778 value will simply be zero.
1779
1780 The address of the symbol whose section we're fixing up HAS
1781 NOT BEEN adjusted (relocated) yet. It can't have been since
1782 the section isn't yet known and knowing the section is
1783 necessary in order to add the correct relocation value. In
1784 other words, we wouldn't even be in this function (attempting
1785 to compute the section) if it were already known.
1786
1787 Note that it is possible to search the minimal symbols
1788 (subtracting the relocation value if necessary) to find the
1789 matching minimal symbol, but this is overkill and much less
1790 efficient. It is not necessary to find the matching minimal
1791 symbol, only its section.
1792
1793 Note that this technique (of doing a section table search)
1794 can fail when unrelocated section addresses overlap. For
1795 this reason, we still attempt a lookup by name prior to doing
1796 a search of the section table. */
1797
1798 struct obj_section *s;
1799 int fallback = -1;
1800
1801 ALL_OBJFILE_OSECTIONS (objfile, s)
1802 {
1803 int idx = s - objfile->sections;
1804 CORE_ADDR offset = ANOFFSET (objfile->section_offsets, idx);
1805
1806 if (fallback == -1)
1807 fallback = idx;
1808
1809 if (obj_section_addr (s) - offset <= addr
1810 && addr < obj_section_endaddr (s) - offset)
1811 {
1812 ginfo->section = idx;
1813 return;
1814 }
1815 }
1816
1817 /* If we didn't find the section, assume it is in the first
1818 section. If there is no allocated section, then it hardly
1819 matters what we pick, so just pick zero. */
1820 if (fallback == -1)
1821 ginfo->section = 0;
1822 else
1823 ginfo->section = fallback;
1824 }
1825 }
1826
1827 struct symbol *
1828 fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
1829 {
1830 CORE_ADDR addr;
1831
1832 if (!sym)
1833 return NULL;
1834
1835 if (!SYMBOL_OBJFILE_OWNED (sym))
1836 return sym;
1837
1838 /* We either have an OBJFILE, or we can get at it from the sym's
1839 symtab. Anything else is a bug. */
1840 gdb_assert (objfile || symbol_symtab (sym));
1841
1842 if (objfile == NULL)
1843 objfile = symbol_objfile (sym);
1844
1845 if (SYMBOL_OBJ_SECTION (objfile, sym))
1846 return sym;
1847
1848 /* We should have an objfile by now. */
1849 gdb_assert (objfile);
1850
1851 switch (SYMBOL_CLASS (sym))
1852 {
1853 case LOC_STATIC:
1854 case LOC_LABEL:
1855 addr = SYMBOL_VALUE_ADDRESS (sym);
1856 break;
1857 case LOC_BLOCK:
1858 addr = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
1859 break;
1860
1861 default:
1862 /* Nothing else will be listed in the minsyms -- no use looking
1863 it up. */
1864 return sym;
1865 }
1866
1867 fixup_section (&sym->ginfo, addr, objfile);
1868
1869 return sym;
1870 }
1871
1872 /* Compute the demangled form of NAME as used by the various symbol
1873 lookup functions. The result is stored in *RESULT_NAME. Returns a
1874 cleanup which can be used to clean up the result.
1875
1876 For Ada, this function just sets *RESULT_NAME to NAME, unmodified.
1877 Normally, Ada symbol lookups are performed using the encoded name
1878 rather than the demangled name, and so it might seem to make sense
1879 for this function to return an encoded version of NAME.
1880 Unfortunately, we cannot do this, because this function is used in
1881 circumstances where it is not appropriate to try to encode NAME.
1882 For instance, when displaying the frame info, we demangle the name
1883 of each parameter, and then perform a symbol lookup inside our
1884 function using that demangled name. In Ada, certain functions
1885 have internally-generated parameters whose name contain uppercase
1886 characters. Encoding those name would result in those uppercase
1887 characters to become lowercase, and thus cause the symbol lookup
1888 to fail. */
1889
1890 struct cleanup *
1891 demangle_for_lookup (const char *name, enum language lang,
1892 const char **result_name)
1893 {
1894 char *demangled_name = NULL;
1895 const char *modified_name = NULL;
1896 struct cleanup *cleanup = make_cleanup (null_cleanup, 0);
1897
1898 modified_name = name;
1899
1900 /* If we are using C++, D, Go, or Java, demangle the name before doing a
1901 lookup, so we can always binary search. */
1902 if (lang == language_cplus)
1903 {
1904 demangled_name = gdb_demangle (name, DMGL_ANSI | DMGL_PARAMS);
1905 if (demangled_name)
1906 {
1907 modified_name = demangled_name;
1908 make_cleanup (xfree, demangled_name);
1909 }
1910 else
1911 {
1912 /* If we were given a non-mangled name, canonicalize it
1913 according to the language (so far only for C++). */
1914 demangled_name = cp_canonicalize_string (name);
1915 if (demangled_name)
1916 {
1917 modified_name = demangled_name;
1918 make_cleanup (xfree, demangled_name);
1919 }
1920 }
1921 }
1922 else if (lang == language_java)
1923 {
1924 demangled_name = gdb_demangle (name,
1925 DMGL_ANSI | DMGL_PARAMS | DMGL_JAVA);
1926 if (demangled_name)
1927 {
1928 modified_name = demangled_name;
1929 make_cleanup (xfree, demangled_name);
1930 }
1931 }
1932 else if (lang == language_d)
1933 {
1934 demangled_name = d_demangle (name, 0);
1935 if (demangled_name)
1936 {
1937 modified_name = demangled_name;
1938 make_cleanup (xfree, demangled_name);
1939 }
1940 }
1941 else if (lang == language_go)
1942 {
1943 demangled_name = go_demangle (name, 0);
1944 if (demangled_name)
1945 {
1946 modified_name = demangled_name;
1947 make_cleanup (xfree, demangled_name);
1948 }
1949 }
1950
1951 *result_name = modified_name;
1952 return cleanup;
1953 }
1954
1955 /* See symtab.h.
1956
1957 This function (or rather its subordinates) have a bunch of loops and
1958 it would seem to be attractive to put in some QUIT's (though I'm not really
1959 sure whether it can run long enough to be really important). But there
1960 are a few calls for which it would appear to be bad news to quit
1961 out of here: e.g., find_proc_desc in alpha-mdebug-tdep.c. (Note
1962 that there is C++ code below which can error(), but that probably
1963 doesn't affect these calls since they are looking for a known
1964 variable and thus can probably assume it will never hit the C++
1965 code). */
1966
1967 struct block_symbol
1968 lookup_symbol_in_language (const char *name, const struct block *block,
1969 const domain_enum domain, enum language lang,
1970 struct field_of_this_result *is_a_field_of_this)
1971 {
1972 const char *modified_name;
1973 struct block_symbol returnval;
1974 struct cleanup *cleanup = demangle_for_lookup (name, lang, &modified_name);
1975
1976 returnval = lookup_symbol_aux (modified_name, block, domain, lang,
1977 is_a_field_of_this);
1978 do_cleanups (cleanup);
1979
1980 return returnval;
1981 }
1982
1983 /* See symtab.h. */
1984
1985 struct block_symbol
1986 lookup_symbol (const char *name, const struct block *block,
1987 domain_enum domain,
1988 struct field_of_this_result *is_a_field_of_this)
1989 {
1990 return lookup_symbol_in_language (name, block, domain,
1991 current_language->la_language,
1992 is_a_field_of_this);
1993 }
1994
1995 /* See symtab.h. */
1996
1997 struct block_symbol
1998 lookup_language_this (const struct language_defn *lang,
1999 const struct block *block)
2000 {
2001 if (lang->la_name_of_this == NULL || block == NULL)
2002 return (struct block_symbol) {NULL, NULL};
2003
2004 if (symbol_lookup_debug > 1)
2005 {
2006 struct objfile *objfile = lookup_objfile_from_block (block);
2007
2008 fprintf_unfiltered (gdb_stdlog,
2009 "lookup_language_this (%s, %s (objfile %s))",
2010 lang->la_name, host_address_to_string (block),
2011 objfile_debug_name (objfile));
2012 }
2013
2014 while (block)
2015 {
2016 struct symbol *sym;
2017
2018 sym = block_lookup_symbol (block, lang->la_name_of_this, VAR_DOMAIN);
2019 if (sym != NULL)
2020 {
2021 if (symbol_lookup_debug > 1)
2022 {
2023 fprintf_unfiltered (gdb_stdlog, " = %s (%s, block %s)\n",
2024 SYMBOL_PRINT_NAME (sym),
2025 host_address_to_string (sym),
2026 host_address_to_string (block));
2027 }
2028 return (struct block_symbol) {sym, block};
2029 }
2030 if (BLOCK_FUNCTION (block))
2031 break;
2032 block = BLOCK_SUPERBLOCK (block);
2033 }
2034
2035 if (symbol_lookup_debug > 1)
2036 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
2037 return (struct block_symbol) {NULL, NULL};
2038 }
2039
2040 /* Given TYPE, a structure/union,
2041 return 1 if the component named NAME from the ultimate target
2042 structure/union is defined, otherwise, return 0. */
2043
2044 static int
2045 check_field (struct type *type, const char *name,
2046 struct field_of_this_result *is_a_field_of_this)
2047 {
2048 int i;
2049
2050 /* The type may be a stub. */
2051 type = check_typedef (type);
2052
2053 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
2054 {
2055 const char *t_field_name = TYPE_FIELD_NAME (type, i);
2056
2057 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2058 {
2059 is_a_field_of_this->type = type;
2060 is_a_field_of_this->field = &TYPE_FIELD (type, i);
2061 return 1;
2062 }
2063 }
2064
2065 /* C++: If it was not found as a data field, then try to return it
2066 as a pointer to a method. */
2067
2068 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
2069 {
2070 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
2071 {
2072 is_a_field_of_this->type = type;
2073 is_a_field_of_this->fn_field = &TYPE_FN_FIELDLIST (type, i);
2074 return 1;
2075 }
2076 }
2077
2078 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2079 if (check_field (TYPE_BASECLASS (type, i), name, is_a_field_of_this))
2080 return 1;
2081
2082 return 0;
2083 }
2084
2085 /* Behave like lookup_symbol except that NAME is the natural name
2086 (e.g., demangled name) of the symbol that we're looking for. */
2087
2088 static struct block_symbol
2089 lookup_symbol_aux (const char *name, const struct block *block,
2090 const domain_enum domain, enum language language,
2091 struct field_of_this_result *is_a_field_of_this)
2092 {
2093 struct block_symbol result;
2094 const struct language_defn *langdef;
2095
2096 if (symbol_lookup_debug)
2097 {
2098 struct objfile *objfile = lookup_objfile_from_block (block);
2099
2100 fprintf_unfiltered (gdb_stdlog,
2101 "lookup_symbol_aux (%s, %s (objfile %s), %s, %s)\n",
2102 name, host_address_to_string (block),
2103 objfile != NULL
2104 ? objfile_debug_name (objfile) : "NULL",
2105 domain_name (domain), language_str (language));
2106 }
2107
2108 /* Make sure we do something sensible with is_a_field_of_this, since
2109 the callers that set this parameter to some non-null value will
2110 certainly use it later. If we don't set it, the contents of
2111 is_a_field_of_this are undefined. */
2112 if (is_a_field_of_this != NULL)
2113 memset (is_a_field_of_this, 0, sizeof (*is_a_field_of_this));
2114
2115 /* Search specified block and its superiors. Don't search
2116 STATIC_BLOCK or GLOBAL_BLOCK. */
2117
2118 result = lookup_local_symbol (name, block, domain, language);
2119 if (result.symbol != NULL)
2120 {
2121 if (symbol_lookup_debug)
2122 {
2123 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2124 host_address_to_string (result.symbol));
2125 }
2126 return result;
2127 }
2128
2129 /* If requested to do so by the caller and if appropriate for LANGUAGE,
2130 check to see if NAME is a field of `this'. */
2131
2132 langdef = language_def (language);
2133
2134 /* Don't do this check if we are searching for a struct. It will
2135 not be found by check_field, but will be found by other
2136 means. */
2137 if (is_a_field_of_this != NULL && domain != STRUCT_DOMAIN)
2138 {
2139 result = lookup_language_this (langdef, block);
2140
2141 if (result.symbol)
2142 {
2143 struct type *t = result.symbol->type;
2144
2145 /* I'm not really sure that type of this can ever
2146 be typedefed; just be safe. */
2147 t = check_typedef (t);
2148 if (TYPE_CODE (t) == TYPE_CODE_PTR
2149 || TYPE_CODE (t) == TYPE_CODE_REF)
2150 t = TYPE_TARGET_TYPE (t);
2151
2152 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2153 && TYPE_CODE (t) != TYPE_CODE_UNION)
2154 error (_("Internal error: `%s' is not an aggregate"),
2155 langdef->la_name_of_this);
2156
2157 if (check_field (t, name, is_a_field_of_this))
2158 {
2159 if (symbol_lookup_debug)
2160 {
2161 fprintf_unfiltered (gdb_stdlog,
2162 "lookup_symbol_aux (...) = NULL\n");
2163 }
2164 return (struct block_symbol) {NULL, NULL};
2165 }
2166 }
2167 }
2168
2169 /* Now do whatever is appropriate for LANGUAGE to look
2170 up static and global variables. */
2171
2172 result = langdef->la_lookup_symbol_nonlocal (langdef, name, block, domain);
2173 if (result.symbol != NULL)
2174 {
2175 if (symbol_lookup_debug)
2176 {
2177 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2178 host_address_to_string (result.symbol));
2179 }
2180 return result;
2181 }
2182
2183 /* Now search all static file-level symbols. Not strictly correct,
2184 but more useful than an error. */
2185
2186 result = lookup_static_symbol (name, domain);
2187 if (symbol_lookup_debug)
2188 {
2189 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2190 result.symbol != NULL
2191 ? host_address_to_string (result.symbol)
2192 : "NULL");
2193 }
2194 return result;
2195 }
2196
2197 /* Check to see if the symbol is defined in BLOCK or its superiors.
2198 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
2199
2200 static struct block_symbol
2201 lookup_local_symbol (const char *name, const struct block *block,
2202 const domain_enum domain,
2203 enum language language)
2204 {
2205 struct symbol *sym;
2206 const struct block *static_block = block_static_block (block);
2207 const char *scope = block_scope (block);
2208
2209 /* Check if either no block is specified or it's a global block. */
2210
2211 if (static_block == NULL)
2212 return (struct block_symbol) {NULL, NULL};
2213
2214 while (block != static_block)
2215 {
2216 sym = lookup_symbol_in_block (name, block, domain);
2217 if (sym != NULL)
2218 return (struct block_symbol) {sym, block};
2219
2220 if (language == language_cplus || language == language_fortran)
2221 {
2222 struct block_symbol sym
2223 = cp_lookup_symbol_imports_or_template (scope, name, block,
2224 domain);
2225
2226 if (sym.symbol != NULL)
2227 return sym;
2228 }
2229
2230 if (BLOCK_FUNCTION (block) != NULL && block_inlined_p (block))
2231 break;
2232 block = BLOCK_SUPERBLOCK (block);
2233 }
2234
2235 /* We've reached the end of the function without finding a result. */
2236
2237 return (struct block_symbol) {NULL, NULL};
2238 }
2239
2240 /* See symtab.h. */
2241
2242 struct objfile *
2243 lookup_objfile_from_block (const struct block *block)
2244 {
2245 struct objfile *obj;
2246 struct compunit_symtab *cust;
2247
2248 if (block == NULL)
2249 return NULL;
2250
2251 block = block_global_block (block);
2252 /* Look through all blockvectors. */
2253 ALL_COMPUNITS (obj, cust)
2254 if (block == BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust),
2255 GLOBAL_BLOCK))
2256 {
2257 if (obj->separate_debug_objfile_backlink)
2258 obj = obj->separate_debug_objfile_backlink;
2259
2260 return obj;
2261 }
2262
2263 return NULL;
2264 }
2265
2266 /* See symtab.h. */
2267
2268 struct symbol *
2269 lookup_symbol_in_block (const char *name, const struct block *block,
2270 const domain_enum domain)
2271 {
2272 struct symbol *sym;
2273
2274 if (symbol_lookup_debug > 1)
2275 {
2276 struct objfile *objfile = lookup_objfile_from_block (block);
2277
2278 fprintf_unfiltered (gdb_stdlog,
2279 "lookup_symbol_in_block (%s, %s (objfile %s), %s)",
2280 name, host_address_to_string (block),
2281 objfile_debug_name (objfile),
2282 domain_name (domain));
2283 }
2284
2285 sym = block_lookup_symbol (block, name, domain);
2286 if (sym)
2287 {
2288 if (symbol_lookup_debug > 1)
2289 {
2290 fprintf_unfiltered (gdb_stdlog, " = %s\n",
2291 host_address_to_string (sym));
2292 }
2293 return fixup_symbol_section (sym, NULL);
2294 }
2295
2296 if (symbol_lookup_debug > 1)
2297 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
2298 return NULL;
2299 }
2300
2301 /* See symtab.h. */
2302
2303 struct block_symbol
2304 lookup_global_symbol_from_objfile (struct objfile *main_objfile,
2305 const char *name,
2306 const domain_enum domain)
2307 {
2308 struct objfile *objfile;
2309
2310 for (objfile = main_objfile;
2311 objfile;
2312 objfile = objfile_separate_debug_iterate (main_objfile, objfile))
2313 {
2314 struct block_symbol result
2315 = lookup_symbol_in_objfile (objfile, GLOBAL_BLOCK, name, domain);
2316
2317 if (result.symbol != NULL)
2318 return result;
2319 }
2320
2321 return (struct block_symbol) {NULL, NULL};
2322 }
2323
2324 /* Check to see if the symbol is defined in one of the OBJFILE's
2325 symtabs. BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
2326 depending on whether or not we want to search global symbols or
2327 static symbols. */
2328
2329 static struct block_symbol
2330 lookup_symbol_in_objfile_symtabs (struct objfile *objfile, int block_index,
2331 const char *name, const domain_enum domain)
2332 {
2333 struct compunit_symtab *cust;
2334
2335 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2336
2337 if (symbol_lookup_debug > 1)
2338 {
2339 fprintf_unfiltered (gdb_stdlog,
2340 "lookup_symbol_in_objfile_symtabs (%s, %s, %s, %s)",
2341 objfile_debug_name (objfile),
2342 block_index == GLOBAL_BLOCK
2343 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2344 name, domain_name (domain));
2345 }
2346
2347 ALL_OBJFILE_COMPUNITS (objfile, cust)
2348 {
2349 const struct blockvector *bv;
2350 const struct block *block;
2351 struct block_symbol result;
2352
2353 bv = COMPUNIT_BLOCKVECTOR (cust);
2354 block = BLOCKVECTOR_BLOCK (bv, block_index);
2355 result.symbol = block_lookup_symbol_primary (block, name, domain);
2356 result.block = block;
2357 if (result.symbol != NULL)
2358 {
2359 if (symbol_lookup_debug > 1)
2360 {
2361 fprintf_unfiltered (gdb_stdlog, " = %s (block %s)\n",
2362 host_address_to_string (result.symbol),
2363 host_address_to_string (block));
2364 }
2365 result.symbol = fixup_symbol_section (result.symbol, objfile);
2366 return result;
2367
2368 }
2369 }
2370
2371 if (symbol_lookup_debug > 1)
2372 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
2373 return (struct block_symbol) {NULL, NULL};
2374 }
2375
2376 /* Wrapper around lookup_symbol_in_objfile_symtabs for search_symbols.
2377 Look up LINKAGE_NAME in DOMAIN in the global and static blocks of OBJFILE
2378 and all associated separate debug objfiles.
2379
2380 Normally we only look in OBJFILE, and not any separate debug objfiles
2381 because the outer loop will cause them to be searched too. This case is
2382 different. Here we're called from search_symbols where it will only
2383 call us for the the objfile that contains a matching minsym. */
2384
2385 static struct block_symbol
2386 lookup_symbol_in_objfile_from_linkage_name (struct objfile *objfile,
2387 const char *linkage_name,
2388 domain_enum domain)
2389 {
2390 enum language lang = current_language->la_language;
2391 const char *modified_name;
2392 struct cleanup *cleanup = demangle_for_lookup (linkage_name, lang,
2393 &modified_name);
2394 struct objfile *main_objfile, *cur_objfile;
2395
2396 if (objfile->separate_debug_objfile_backlink)
2397 main_objfile = objfile->separate_debug_objfile_backlink;
2398 else
2399 main_objfile = objfile;
2400
2401 for (cur_objfile = main_objfile;
2402 cur_objfile;
2403 cur_objfile = objfile_separate_debug_iterate (main_objfile, cur_objfile))
2404 {
2405 struct block_symbol result;
2406
2407 result = lookup_symbol_in_objfile_symtabs (cur_objfile, GLOBAL_BLOCK,
2408 modified_name, domain);
2409 if (result.symbol == NULL)
2410 result = lookup_symbol_in_objfile_symtabs (cur_objfile, STATIC_BLOCK,
2411 modified_name, domain);
2412 if (result.symbol != NULL)
2413 {
2414 do_cleanups (cleanup);
2415 return result;
2416 }
2417 }
2418
2419 do_cleanups (cleanup);
2420 return (struct block_symbol) {NULL, NULL};
2421 }
2422
2423 /* A helper function that throws an exception when a symbol was found
2424 in a psymtab but not in a symtab. */
2425
2426 static void ATTRIBUTE_NORETURN
2427 error_in_psymtab_expansion (int block_index, const char *name,
2428 struct compunit_symtab *cust)
2429 {
2430 error (_("\
2431 Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n\
2432 %s may be an inlined function, or may be a template function\n \
2433 (if a template, try specifying an instantiation: %s<type>)."),
2434 block_index == GLOBAL_BLOCK ? "global" : "static",
2435 name,
2436 symtab_to_filename_for_display (compunit_primary_filetab (cust)),
2437 name, name);
2438 }
2439
2440 /* A helper function for various lookup routines that interfaces with
2441 the "quick" symbol table functions. */
2442
2443 static struct block_symbol
2444 lookup_symbol_via_quick_fns (struct objfile *objfile, int block_index,
2445 const char *name, const domain_enum domain)
2446 {
2447 struct compunit_symtab *cust;
2448 const struct blockvector *bv;
2449 const struct block *block;
2450 struct block_symbol result;
2451
2452 if (!objfile->sf)
2453 return (struct block_symbol) {NULL, NULL};
2454
2455 if (symbol_lookup_debug > 1)
2456 {
2457 fprintf_unfiltered (gdb_stdlog,
2458 "lookup_symbol_via_quick_fns (%s, %s, %s, %s)\n",
2459 objfile_debug_name (objfile),
2460 block_index == GLOBAL_BLOCK
2461 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2462 name, domain_name (domain));
2463 }
2464
2465 cust = objfile->sf->qf->lookup_symbol (objfile, block_index, name, domain);
2466 if (cust == NULL)
2467 {
2468 if (symbol_lookup_debug > 1)
2469 {
2470 fprintf_unfiltered (gdb_stdlog,
2471 "lookup_symbol_via_quick_fns (...) = NULL\n");
2472 }
2473 return (struct block_symbol) {NULL, NULL};
2474 }
2475
2476 bv = COMPUNIT_BLOCKVECTOR (cust);
2477 block = BLOCKVECTOR_BLOCK (bv, block_index);
2478 result.symbol = block_lookup_symbol (block, name, domain);
2479 if (result.symbol == NULL)
2480 error_in_psymtab_expansion (block_index, name, cust);
2481
2482 if (symbol_lookup_debug > 1)
2483 {
2484 fprintf_unfiltered (gdb_stdlog,
2485 "lookup_symbol_via_quick_fns (...) = %s (block %s)\n",
2486 host_address_to_string (result.symbol),
2487 host_address_to_string (block));
2488 }
2489
2490 result.symbol = fixup_symbol_section (result.symbol, objfile);
2491 result.block = block;
2492 return result;
2493 }
2494
2495 /* See symtab.h. */
2496
2497 struct block_symbol
2498 basic_lookup_symbol_nonlocal (const struct language_defn *langdef,
2499 const char *name,
2500 const struct block *block,
2501 const domain_enum domain)
2502 {
2503 struct block_symbol result;
2504
2505 /* NOTE: carlton/2003-05-19: The comments below were written when
2506 this (or what turned into this) was part of lookup_symbol_aux;
2507 I'm much less worried about these questions now, since these
2508 decisions have turned out well, but I leave these comments here
2509 for posterity. */
2510
2511 /* NOTE: carlton/2002-12-05: There is a question as to whether or
2512 not it would be appropriate to search the current global block
2513 here as well. (That's what this code used to do before the
2514 is_a_field_of_this check was moved up.) On the one hand, it's
2515 redundant with the lookup in all objfiles search that happens
2516 next. On the other hand, if decode_line_1 is passed an argument
2517 like filename:var, then the user presumably wants 'var' to be
2518 searched for in filename. On the third hand, there shouldn't be
2519 multiple global variables all of which are named 'var', and it's
2520 not like decode_line_1 has ever restricted its search to only
2521 global variables in a single filename. All in all, only
2522 searching the static block here seems best: it's correct and it's
2523 cleanest. */
2524
2525 /* NOTE: carlton/2002-12-05: There's also a possible performance
2526 issue here: if you usually search for global symbols in the
2527 current file, then it would be slightly better to search the
2528 current global block before searching all the symtabs. But there
2529 are other factors that have a much greater effect on performance
2530 than that one, so I don't think we should worry about that for
2531 now. */
2532
2533 /* NOTE: dje/2014-10-26: The lookup in all objfiles search could skip
2534 the current objfile. Searching the current objfile first is useful
2535 for both matching user expectations as well as performance. */
2536
2537 result = lookup_symbol_in_static_block (name, block, domain);
2538 if (result.symbol != NULL)
2539 return result;
2540
2541 /* If we didn't find a definition for a builtin type in the static block,
2542 search for it now. This is actually the right thing to do and can be
2543 a massive performance win. E.g., when debugging a program with lots of
2544 shared libraries we could search all of them only to find out the
2545 builtin type isn't defined in any of them. This is common for types
2546 like "void". */
2547 if (domain == VAR_DOMAIN)
2548 {
2549 struct gdbarch *gdbarch;
2550
2551 if (block == NULL)
2552 gdbarch = target_gdbarch ();
2553 else
2554 gdbarch = block_gdbarch (block);
2555 result.symbol = language_lookup_primitive_type_as_symbol (langdef,
2556 gdbarch, name);
2557 result.block = NULL;
2558 if (result.symbol != NULL)
2559 return result;
2560 }
2561
2562 return lookup_global_symbol (name, block, domain);
2563 }
2564
2565 /* See symtab.h. */
2566
2567 struct block_symbol
2568 lookup_symbol_in_static_block (const char *name,
2569 const struct block *block,
2570 const domain_enum domain)
2571 {
2572 const struct block *static_block = block_static_block (block);
2573 struct symbol *sym;
2574
2575 if (static_block == NULL)
2576 return (struct block_symbol) {NULL, NULL};
2577
2578 if (symbol_lookup_debug)
2579 {
2580 struct objfile *objfile = lookup_objfile_from_block (static_block);
2581
2582 fprintf_unfiltered (gdb_stdlog,
2583 "lookup_symbol_in_static_block (%s, %s (objfile %s),"
2584 " %s)\n",
2585 name,
2586 host_address_to_string (block),
2587 objfile_debug_name (objfile),
2588 domain_name (domain));
2589 }
2590
2591 sym = lookup_symbol_in_block (name, static_block, domain);
2592 if (symbol_lookup_debug)
2593 {
2594 fprintf_unfiltered (gdb_stdlog,
2595 "lookup_symbol_in_static_block (...) = %s\n",
2596 sym != NULL ? host_address_to_string (sym) : "NULL");
2597 }
2598 return (struct block_symbol) {sym, static_block};
2599 }
2600
2601 /* Perform the standard symbol lookup of NAME in OBJFILE:
2602 1) First search expanded symtabs, and if not found
2603 2) Search the "quick" symtabs (partial or .gdb_index).
2604 BLOCK_INDEX is one of GLOBAL_BLOCK or STATIC_BLOCK. */
2605
2606 static struct block_symbol
2607 lookup_symbol_in_objfile (struct objfile *objfile, int block_index,
2608 const char *name, const domain_enum domain)
2609 {
2610 struct block_symbol result;
2611
2612 if (symbol_lookup_debug)
2613 {
2614 fprintf_unfiltered (gdb_stdlog,
2615 "lookup_symbol_in_objfile (%s, %s, %s, %s)\n",
2616 objfile_debug_name (objfile),
2617 block_index == GLOBAL_BLOCK
2618 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2619 name, domain_name (domain));
2620 }
2621
2622 result = lookup_symbol_in_objfile_symtabs (objfile, block_index,
2623 name, domain);
2624 if (result.symbol != NULL)
2625 {
2626 if (symbol_lookup_debug)
2627 {
2628 fprintf_unfiltered (gdb_stdlog,
2629 "lookup_symbol_in_objfile (...) = %s"
2630 " (in symtabs)\n",
2631 host_address_to_string (result.symbol));
2632 }
2633 return result;
2634 }
2635
2636 result = lookup_symbol_via_quick_fns (objfile, block_index,
2637 name, domain);
2638 if (symbol_lookup_debug)
2639 {
2640 fprintf_unfiltered (gdb_stdlog,
2641 "lookup_symbol_in_objfile (...) = %s%s\n",
2642 result.symbol != NULL
2643 ? host_address_to_string (result.symbol)
2644 : "NULL",
2645 result.symbol != NULL ? " (via quick fns)" : "");
2646 }
2647 return result;
2648 }
2649
2650 /* See symtab.h. */
2651
2652 struct block_symbol
2653 lookup_static_symbol (const char *name, const domain_enum domain)
2654 {
2655 struct symbol_cache *cache = get_symbol_cache (current_program_space);
2656 struct objfile *objfile;
2657 struct block_symbol result;
2658 struct block_symbol_cache *bsc;
2659 struct symbol_cache_slot *slot;
2660
2661 /* Lookup in STATIC_BLOCK is not current-objfile-dependent, so just pass
2662 NULL for OBJFILE_CONTEXT. */
2663 result = symbol_cache_lookup (cache, NULL, STATIC_BLOCK, name, domain,
2664 &bsc, &slot);
2665 if (result.symbol != NULL)
2666 {
2667 if (SYMBOL_LOOKUP_FAILED_P (result))
2668 return (struct block_symbol) {NULL, NULL};
2669 return result;
2670 }
2671
2672 ALL_OBJFILES (objfile)
2673 {
2674 result = lookup_symbol_in_objfile (objfile, STATIC_BLOCK, name, domain);
2675 if (result.symbol != NULL)
2676 {
2677 /* Still pass NULL for OBJFILE_CONTEXT here. */
2678 symbol_cache_mark_found (bsc, slot, NULL, result.symbol,
2679 result.block);
2680 return result;
2681 }
2682 }
2683
2684 /* Still pass NULL for OBJFILE_CONTEXT here. */
2685 symbol_cache_mark_not_found (bsc, slot, NULL, name, domain);
2686 return (struct block_symbol) {NULL, NULL};
2687 }
2688
2689 /* Private data to be used with lookup_symbol_global_iterator_cb. */
2690
2691 struct global_sym_lookup_data
2692 {
2693 /* The name of the symbol we are searching for. */
2694 const char *name;
2695
2696 /* The domain to use for our search. */
2697 domain_enum domain;
2698
2699 /* The field where the callback should store the symbol if found.
2700 It should be initialized to {NULL, NULL} before the search is started. */
2701 struct block_symbol result;
2702 };
2703
2704 /* A callback function for gdbarch_iterate_over_objfiles_in_search_order.
2705 It searches by name for a symbol in the GLOBAL_BLOCK of the given
2706 OBJFILE. The arguments for the search are passed via CB_DATA,
2707 which in reality is a pointer to struct global_sym_lookup_data. */
2708
2709 static int
2710 lookup_symbol_global_iterator_cb (struct objfile *objfile,
2711 void *cb_data)
2712 {
2713 struct global_sym_lookup_data *data =
2714 (struct global_sym_lookup_data *) cb_data;
2715
2716 gdb_assert (data->result.symbol == NULL
2717 && data->result.block == NULL);
2718
2719 data->result = lookup_symbol_in_objfile (objfile, GLOBAL_BLOCK,
2720 data->name, data->domain);
2721
2722 /* If we found a match, tell the iterator to stop. Otherwise,
2723 keep going. */
2724 return (data->result.symbol != NULL);
2725 }
2726
2727 /* See symtab.h. */
2728
2729 struct block_symbol
2730 lookup_global_symbol (const char *name,
2731 const struct block *block,
2732 const domain_enum domain)
2733 {
2734 struct symbol_cache *cache = get_symbol_cache (current_program_space);
2735 struct block_symbol result;
2736 struct objfile *objfile;
2737 struct global_sym_lookup_data lookup_data;
2738 struct block_symbol_cache *bsc;
2739 struct symbol_cache_slot *slot;
2740
2741 objfile = lookup_objfile_from_block (block);
2742
2743 /* First see if we can find the symbol in the cache.
2744 This works because we use the current objfile to qualify the lookup. */
2745 result = symbol_cache_lookup (cache, objfile, GLOBAL_BLOCK, name, domain,
2746 &bsc, &slot);
2747 if (result.symbol != NULL)
2748 {
2749 if (SYMBOL_LOOKUP_FAILED_P (result))
2750 return (struct block_symbol) {NULL, NULL};
2751 return result;
2752 }
2753
2754 /* Call library-specific lookup procedure. */
2755 if (objfile != NULL)
2756 result = solib_global_lookup (objfile, name, domain);
2757
2758 /* If that didn't work go a global search (of global blocks, heh). */
2759 if (result.symbol == NULL)
2760 {
2761 memset (&lookup_data, 0, sizeof (lookup_data));
2762 lookup_data.name = name;
2763 lookup_data.domain = domain;
2764 gdbarch_iterate_over_objfiles_in_search_order
2765 (objfile != NULL ? get_objfile_arch (objfile) : target_gdbarch (),
2766 lookup_symbol_global_iterator_cb, &lookup_data, objfile);
2767 result = lookup_data.result;
2768 }
2769
2770 if (result.symbol != NULL)
2771 symbol_cache_mark_found (bsc, slot, objfile, result.symbol, result.block);
2772 else
2773 symbol_cache_mark_not_found (bsc, slot, objfile, name, domain);
2774
2775 return result;
2776 }
2777
2778 int
2779 symbol_matches_domain (enum language symbol_language,
2780 domain_enum symbol_domain,
2781 domain_enum domain)
2782 {
2783 /* For C++ "struct foo { ... }" also defines a typedef for "foo".
2784 A Java class declaration also defines a typedef for the class.
2785 Similarly, any Ada type declaration implicitly defines a typedef. */
2786 if (symbol_language == language_cplus
2787 || symbol_language == language_d
2788 || symbol_language == language_java
2789 || symbol_language == language_ada)
2790 {
2791 if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN)
2792 && symbol_domain == STRUCT_DOMAIN)
2793 return 1;
2794 }
2795 /* For all other languages, strict match is required. */
2796 return (symbol_domain == domain);
2797 }
2798
2799 /* See symtab.h. */
2800
2801 struct type *
2802 lookup_transparent_type (const char *name)
2803 {
2804 return current_language->la_lookup_transparent_type (name);
2805 }
2806
2807 /* A helper for basic_lookup_transparent_type that interfaces with the
2808 "quick" symbol table functions. */
2809
2810 static struct type *
2811 basic_lookup_transparent_type_quick (struct objfile *objfile, int block_index,
2812 const char *name)
2813 {
2814 struct compunit_symtab *cust;
2815 const struct blockvector *bv;
2816 struct block *block;
2817 struct symbol *sym;
2818
2819 if (!objfile->sf)
2820 return NULL;
2821 cust = objfile->sf->qf->lookup_symbol (objfile, block_index, name,
2822 STRUCT_DOMAIN);
2823 if (cust == NULL)
2824 return NULL;
2825
2826 bv = COMPUNIT_BLOCKVECTOR (cust);
2827 block = BLOCKVECTOR_BLOCK (bv, block_index);
2828 sym = block_find_symbol (block, name, STRUCT_DOMAIN,
2829 block_find_non_opaque_type, NULL);
2830 if (sym == NULL)
2831 error_in_psymtab_expansion (block_index, name, cust);
2832 gdb_assert (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)));
2833 return SYMBOL_TYPE (sym);
2834 }
2835
2836 /* Subroutine of basic_lookup_transparent_type to simplify it.
2837 Look up the non-opaque definition of NAME in BLOCK_INDEX of OBJFILE.
2838 BLOCK_INDEX is either GLOBAL_BLOCK or STATIC_BLOCK. */
2839
2840 static struct type *
2841 basic_lookup_transparent_type_1 (struct objfile *objfile, int block_index,
2842 const char *name)
2843 {
2844 const struct compunit_symtab *cust;
2845 const struct blockvector *bv;
2846 const struct block *block;
2847 const struct symbol *sym;
2848
2849 ALL_OBJFILE_COMPUNITS (objfile, cust)
2850 {
2851 bv = COMPUNIT_BLOCKVECTOR (cust);
2852 block = BLOCKVECTOR_BLOCK (bv, block_index);
2853 sym = block_find_symbol (block, name, STRUCT_DOMAIN,
2854 block_find_non_opaque_type, NULL);
2855 if (sym != NULL)
2856 {
2857 gdb_assert (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)));
2858 return SYMBOL_TYPE (sym);
2859 }
2860 }
2861
2862 return NULL;
2863 }
2864
2865 /* The standard implementation of lookup_transparent_type. This code
2866 was modeled on lookup_symbol -- the parts not relevant to looking
2867 up types were just left out. In particular it's assumed here that
2868 types are available in STRUCT_DOMAIN and only in file-static or
2869 global blocks. */
2870
2871 struct type *
2872 basic_lookup_transparent_type (const char *name)
2873 {
2874 struct symbol *sym;
2875 struct compunit_symtab *cust;
2876 const struct blockvector *bv;
2877 struct objfile *objfile;
2878 struct block *block;
2879 struct type *t;
2880
2881 /* Now search all the global symbols. Do the symtab's first, then
2882 check the psymtab's. If a psymtab indicates the existence
2883 of the desired name as a global, then do psymtab-to-symtab
2884 conversion on the fly and return the found symbol. */
2885
2886 ALL_OBJFILES (objfile)
2887 {
2888 t = basic_lookup_transparent_type_1 (objfile, GLOBAL_BLOCK, name);
2889 if (t)
2890 return t;
2891 }
2892
2893 ALL_OBJFILES (objfile)
2894 {
2895 t = basic_lookup_transparent_type_quick (objfile, GLOBAL_BLOCK, name);
2896 if (t)
2897 return t;
2898 }
2899
2900 /* Now search the static file-level symbols.
2901 Not strictly correct, but more useful than an error.
2902 Do the symtab's first, then
2903 check the psymtab's. If a psymtab indicates the existence
2904 of the desired name as a file-level static, then do psymtab-to-symtab
2905 conversion on the fly and return the found symbol. */
2906
2907 ALL_OBJFILES (objfile)
2908 {
2909 t = basic_lookup_transparent_type_1 (objfile, STATIC_BLOCK, name);
2910 if (t)
2911 return t;
2912 }
2913
2914 ALL_OBJFILES (objfile)
2915 {
2916 t = basic_lookup_transparent_type_quick (objfile, STATIC_BLOCK, name);
2917 if (t)
2918 return t;
2919 }
2920
2921 return (struct type *) 0;
2922 }
2923
2924 /* Iterate over the symbols named NAME, matching DOMAIN, in BLOCK.
2925
2926 For each symbol that matches, CALLBACK is called. The symbol and
2927 DATA are passed to the callback.
2928
2929 If CALLBACK returns zero, the iteration ends. Otherwise, the
2930 search continues. */
2931
2932 void
2933 iterate_over_symbols (const struct block *block, const char *name,
2934 const domain_enum domain,
2935 symbol_found_callback_ftype *callback,
2936 void *data)
2937 {
2938 struct block_iterator iter;
2939 struct symbol *sym;
2940
2941 ALL_BLOCK_SYMBOLS_WITH_NAME (block, name, iter, sym)
2942 {
2943 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
2944 SYMBOL_DOMAIN (sym), domain))
2945 {
2946 if (!callback (sym, data))
2947 return;
2948 }
2949 }
2950 }
2951
2952 /* Find the compunit symtab associated with PC and SECTION.
2953 This will read in debug info as necessary. */
2954
2955 struct compunit_symtab *
2956 find_pc_sect_compunit_symtab (CORE_ADDR pc, struct obj_section *section)
2957 {
2958 struct compunit_symtab *cust;
2959 struct compunit_symtab *best_cust = NULL;
2960 struct objfile *objfile;
2961 CORE_ADDR distance = 0;
2962 struct bound_minimal_symbol msymbol;
2963
2964 /* If we know that this is not a text address, return failure. This is
2965 necessary because we loop based on the block's high and low code
2966 addresses, which do not include the data ranges, and because
2967 we call find_pc_sect_psymtab which has a similar restriction based
2968 on the partial_symtab's texthigh and textlow. */
2969 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
2970 if (msymbol.minsym
2971 && (MSYMBOL_TYPE (msymbol.minsym) == mst_data
2972 || MSYMBOL_TYPE (msymbol.minsym) == mst_bss
2973 || MSYMBOL_TYPE (msymbol.minsym) == mst_abs
2974 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_data
2975 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_bss))
2976 return NULL;
2977
2978 /* Search all symtabs for the one whose file contains our address, and which
2979 is the smallest of all the ones containing the address. This is designed
2980 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
2981 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
2982 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
2983
2984 This happens for native ecoff format, where code from included files
2985 gets its own symtab. The symtab for the included file should have
2986 been read in already via the dependency mechanism.
2987 It might be swifter to create several symtabs with the same name
2988 like xcoff does (I'm not sure).
2989
2990 It also happens for objfiles that have their functions reordered.
2991 For these, the symtab we are looking for is not necessarily read in. */
2992
2993 ALL_COMPUNITS (objfile, cust)
2994 {
2995 struct block *b;
2996 const struct blockvector *bv;
2997
2998 bv = COMPUNIT_BLOCKVECTOR (cust);
2999 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
3000
3001 if (BLOCK_START (b) <= pc
3002 && BLOCK_END (b) > pc
3003 && (distance == 0
3004 || BLOCK_END (b) - BLOCK_START (b) < distance))
3005 {
3006 /* For an objfile that has its functions reordered,
3007 find_pc_psymtab will find the proper partial symbol table
3008 and we simply return its corresponding symtab. */
3009 /* In order to better support objfiles that contain both
3010 stabs and coff debugging info, we continue on if a psymtab
3011 can't be found. */
3012 if ((objfile->flags & OBJF_REORDERED) && objfile->sf)
3013 {
3014 struct compunit_symtab *result;
3015
3016 result
3017 = objfile->sf->qf->find_pc_sect_compunit_symtab (objfile,
3018 msymbol,
3019 pc, section,
3020 0);
3021 if (result != NULL)
3022 return result;
3023 }
3024 if (section != 0)
3025 {
3026 struct block_iterator iter;
3027 struct symbol *sym = NULL;
3028
3029 ALL_BLOCK_SYMBOLS (b, iter, sym)
3030 {
3031 fixup_symbol_section (sym, objfile);
3032 if (matching_obj_sections (SYMBOL_OBJ_SECTION (objfile, sym),
3033 section))
3034 break;
3035 }
3036 if (sym == NULL)
3037 continue; /* No symbol in this symtab matches
3038 section. */
3039 }
3040 distance = BLOCK_END (b) - BLOCK_START (b);
3041 best_cust = cust;
3042 }
3043 }
3044
3045 if (best_cust != NULL)
3046 return best_cust;
3047
3048 /* Not found in symtabs, search the "quick" symtabs (e.g. psymtabs). */
3049
3050 ALL_OBJFILES (objfile)
3051 {
3052 struct compunit_symtab *result;
3053
3054 if (!objfile->sf)
3055 continue;
3056 result = objfile->sf->qf->find_pc_sect_compunit_symtab (objfile,
3057 msymbol,
3058 pc, section,
3059 1);
3060 if (result != NULL)
3061 return result;
3062 }
3063
3064 return NULL;
3065 }
3066
3067 /* Find the compunit symtab associated with PC.
3068 This will read in debug info as necessary.
3069 Backward compatibility, no section. */
3070
3071 struct compunit_symtab *
3072 find_pc_compunit_symtab (CORE_ADDR pc)
3073 {
3074 return find_pc_sect_compunit_symtab (pc, find_pc_mapped_section (pc));
3075 }
3076 \f
3077
3078 /* Find the source file and line number for a given PC value and SECTION.
3079 Return a structure containing a symtab pointer, a line number,
3080 and a pc range for the entire source line.
3081 The value's .pc field is NOT the specified pc.
3082 NOTCURRENT nonzero means, if specified pc is on a line boundary,
3083 use the line that ends there. Otherwise, in that case, the line
3084 that begins there is used. */
3085
3086 /* The big complication here is that a line may start in one file, and end just
3087 before the start of another file. This usually occurs when you #include
3088 code in the middle of a subroutine. To properly find the end of a line's PC
3089 range, we must search all symtabs associated with this compilation unit, and
3090 find the one whose first PC is closer than that of the next line in this
3091 symtab. */
3092
3093 /* If it's worth the effort, we could be using a binary search. */
3094
3095 struct symtab_and_line
3096 find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent)
3097 {
3098 struct compunit_symtab *cust;
3099 struct symtab *iter_s;
3100 struct linetable *l;
3101 int len;
3102 int i;
3103 struct linetable_entry *item;
3104 struct symtab_and_line val;
3105 const struct blockvector *bv;
3106 struct bound_minimal_symbol msymbol;
3107
3108 /* Info on best line seen so far, and where it starts, and its file. */
3109
3110 struct linetable_entry *best = NULL;
3111 CORE_ADDR best_end = 0;
3112 struct symtab *best_symtab = 0;
3113
3114 /* Store here the first line number
3115 of a file which contains the line at the smallest pc after PC.
3116 If we don't find a line whose range contains PC,
3117 we will use a line one less than this,
3118 with a range from the start of that file to the first line's pc. */
3119 struct linetable_entry *alt = NULL;
3120
3121 /* Info on best line seen in this file. */
3122
3123 struct linetable_entry *prev;
3124
3125 /* If this pc is not from the current frame,
3126 it is the address of the end of a call instruction.
3127 Quite likely that is the start of the following statement.
3128 But what we want is the statement containing the instruction.
3129 Fudge the pc to make sure we get that. */
3130
3131 init_sal (&val); /* initialize to zeroes */
3132
3133 val.pspace = current_program_space;
3134
3135 /* It's tempting to assume that, if we can't find debugging info for
3136 any function enclosing PC, that we shouldn't search for line
3137 number info, either. However, GAS can emit line number info for
3138 assembly files --- very helpful when debugging hand-written
3139 assembly code. In such a case, we'd have no debug info for the
3140 function, but we would have line info. */
3141
3142 if (notcurrent)
3143 pc -= 1;
3144
3145 /* elz: added this because this function returned the wrong
3146 information if the pc belongs to a stub (import/export)
3147 to call a shlib function. This stub would be anywhere between
3148 two functions in the target, and the line info was erroneously
3149 taken to be the one of the line before the pc. */
3150
3151 /* RT: Further explanation:
3152
3153 * We have stubs (trampolines) inserted between procedures.
3154 *
3155 * Example: "shr1" exists in a shared library, and a "shr1" stub also
3156 * exists in the main image.
3157 *
3158 * In the minimal symbol table, we have a bunch of symbols
3159 * sorted by start address. The stubs are marked as "trampoline",
3160 * the others appear as text. E.g.:
3161 *
3162 * Minimal symbol table for main image
3163 * main: code for main (text symbol)
3164 * shr1: stub (trampoline symbol)
3165 * foo: code for foo (text symbol)
3166 * ...
3167 * Minimal symbol table for "shr1" image:
3168 * ...
3169 * shr1: code for shr1 (text symbol)
3170 * ...
3171 *
3172 * So the code below is trying to detect if we are in the stub
3173 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
3174 * and if found, do the symbolization from the real-code address
3175 * rather than the stub address.
3176 *
3177 * Assumptions being made about the minimal symbol table:
3178 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
3179 * if we're really in the trampoline.s If we're beyond it (say
3180 * we're in "foo" in the above example), it'll have a closer
3181 * symbol (the "foo" text symbol for example) and will not
3182 * return the trampoline.
3183 * 2. lookup_minimal_symbol_text() will find a real text symbol
3184 * corresponding to the trampoline, and whose address will
3185 * be different than the trampoline address. I put in a sanity
3186 * check for the address being the same, to avoid an
3187 * infinite recursion.
3188 */
3189 msymbol = lookup_minimal_symbol_by_pc (pc);
3190 if (msymbol.minsym != NULL)
3191 if (MSYMBOL_TYPE (msymbol.minsym) == mst_solib_trampoline)
3192 {
3193 struct bound_minimal_symbol mfunsym
3194 = lookup_minimal_symbol_text (MSYMBOL_LINKAGE_NAME (msymbol.minsym),
3195 NULL);
3196
3197 if (mfunsym.minsym == NULL)
3198 /* I eliminated this warning since it is coming out
3199 * in the following situation:
3200 * gdb shmain // test program with shared libraries
3201 * (gdb) break shr1 // function in shared lib
3202 * Warning: In stub for ...
3203 * In the above situation, the shared lib is not loaded yet,
3204 * so of course we can't find the real func/line info,
3205 * but the "break" still works, and the warning is annoying.
3206 * So I commented out the warning. RT */
3207 /* warning ("In stub for %s; unable to find real function/line info",
3208 SYMBOL_LINKAGE_NAME (msymbol)); */
3209 ;
3210 /* fall through */
3211 else if (BMSYMBOL_VALUE_ADDRESS (mfunsym)
3212 == BMSYMBOL_VALUE_ADDRESS (msymbol))
3213 /* Avoid infinite recursion */
3214 /* See above comment about why warning is commented out. */
3215 /* warning ("In stub for %s; unable to find real function/line info",
3216 SYMBOL_LINKAGE_NAME (msymbol)); */
3217 ;
3218 /* fall through */
3219 else
3220 return find_pc_line (BMSYMBOL_VALUE_ADDRESS (mfunsym), 0);
3221 }
3222
3223
3224 cust = find_pc_sect_compunit_symtab (pc, section);
3225 if (cust == NULL)
3226 {
3227 /* If no symbol information, return previous pc. */
3228 if (notcurrent)
3229 pc++;
3230 val.pc = pc;
3231 return val;
3232 }
3233
3234 bv = COMPUNIT_BLOCKVECTOR (cust);
3235
3236 /* Look at all the symtabs that share this blockvector.
3237 They all have the same apriori range, that we found was right;
3238 but they have different line tables. */
3239
3240 ALL_COMPUNIT_FILETABS (cust, iter_s)
3241 {
3242 /* Find the best line in this symtab. */
3243 l = SYMTAB_LINETABLE (iter_s);
3244 if (!l)
3245 continue;
3246 len = l->nitems;
3247 if (len <= 0)
3248 {
3249 /* I think len can be zero if the symtab lacks line numbers
3250 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
3251 I'm not sure which, and maybe it depends on the symbol
3252 reader). */
3253 continue;
3254 }
3255
3256 prev = NULL;
3257 item = l->item; /* Get first line info. */
3258
3259 /* Is this file's first line closer than the first lines of other files?
3260 If so, record this file, and its first line, as best alternate. */
3261 if (item->pc > pc && (!alt || item->pc < alt->pc))
3262 alt = item;
3263
3264 for (i = 0; i < len; i++, item++)
3265 {
3266 /* Leave prev pointing to the linetable entry for the last line
3267 that started at or before PC. */
3268 if (item->pc > pc)
3269 break;
3270
3271 prev = item;
3272 }
3273
3274 /* At this point, prev points at the line whose start addr is <= pc, and
3275 item points at the next line. If we ran off the end of the linetable
3276 (pc >= start of the last line), then prev == item. If pc < start of
3277 the first line, prev will not be set. */
3278
3279 /* Is this file's best line closer than the best in the other files?
3280 If so, record this file, and its best line, as best so far. Don't
3281 save prev if it represents the end of a function (i.e. line number
3282 0) instead of a real line. */
3283
3284 if (prev && prev->line && (!best || prev->pc > best->pc))
3285 {
3286 best = prev;
3287 best_symtab = iter_s;
3288
3289 /* Discard BEST_END if it's before the PC of the current BEST. */
3290 if (best_end <= best->pc)
3291 best_end = 0;
3292 }
3293
3294 /* If another line (denoted by ITEM) is in the linetable and its
3295 PC is after BEST's PC, but before the current BEST_END, then
3296 use ITEM's PC as the new best_end. */
3297 if (best && i < len && item->pc > best->pc
3298 && (best_end == 0 || best_end > item->pc))
3299 best_end = item->pc;
3300 }
3301
3302 if (!best_symtab)
3303 {
3304 /* If we didn't find any line number info, just return zeros.
3305 We used to return alt->line - 1 here, but that could be
3306 anywhere; if we don't have line number info for this PC,
3307 don't make some up. */
3308 val.pc = pc;
3309 }
3310 else if (best->line == 0)
3311 {
3312 /* If our best fit is in a range of PC's for which no line
3313 number info is available (line number is zero) then we didn't
3314 find any valid line information. */
3315 val.pc = pc;
3316 }
3317 else
3318 {
3319 val.symtab = best_symtab;
3320 val.line = best->line;
3321 val.pc = best->pc;
3322 if (best_end && (!alt || best_end < alt->pc))
3323 val.end = best_end;
3324 else if (alt)
3325 val.end = alt->pc;
3326 else
3327 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
3328 }
3329 val.section = section;
3330 return val;
3331 }
3332
3333 /* Backward compatibility (no section). */
3334
3335 struct symtab_and_line
3336 find_pc_line (CORE_ADDR pc, int notcurrent)
3337 {
3338 struct obj_section *section;
3339
3340 section = find_pc_overlay (pc);
3341 if (pc_in_unmapped_range (pc, section))
3342 pc = overlay_mapped_address (pc, section);
3343 return find_pc_sect_line (pc, section, notcurrent);
3344 }
3345
3346 /* See symtab.h. */
3347
3348 struct symtab *
3349 find_pc_line_symtab (CORE_ADDR pc)
3350 {
3351 struct symtab_and_line sal;
3352
3353 /* This always passes zero for NOTCURRENT to find_pc_line.
3354 There are currently no callers that ever pass non-zero. */
3355 sal = find_pc_line (pc, 0);
3356 return sal.symtab;
3357 }
3358 \f
3359 /* Find line number LINE in any symtab whose name is the same as
3360 SYMTAB.
3361
3362 If found, return the symtab that contains the linetable in which it was
3363 found, set *INDEX to the index in the linetable of the best entry
3364 found, and set *EXACT_MATCH nonzero if the value returned is an
3365 exact match.
3366
3367 If not found, return NULL. */
3368
3369 struct symtab *
3370 find_line_symtab (struct symtab *symtab, int line,
3371 int *index, int *exact_match)
3372 {
3373 int exact = 0; /* Initialized here to avoid a compiler warning. */
3374
3375 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
3376 so far seen. */
3377
3378 int best_index;
3379 struct linetable *best_linetable;
3380 struct symtab *best_symtab;
3381
3382 /* First try looking it up in the given symtab. */
3383 best_linetable = SYMTAB_LINETABLE (symtab);
3384 best_symtab = symtab;
3385 best_index = find_line_common (best_linetable, line, &exact, 0);
3386 if (best_index < 0 || !exact)
3387 {
3388 /* Didn't find an exact match. So we better keep looking for
3389 another symtab with the same name. In the case of xcoff,
3390 multiple csects for one source file (produced by IBM's FORTRAN
3391 compiler) produce multiple symtabs (this is unavoidable
3392 assuming csects can be at arbitrary places in memory and that
3393 the GLOBAL_BLOCK of a symtab has a begin and end address). */
3394
3395 /* BEST is the smallest linenumber > LINE so far seen,
3396 or 0 if none has been seen so far.
3397 BEST_INDEX and BEST_LINETABLE identify the item for it. */
3398 int best;
3399
3400 struct objfile *objfile;
3401 struct compunit_symtab *cu;
3402 struct symtab *s;
3403
3404 if (best_index >= 0)
3405 best = best_linetable->item[best_index].line;
3406 else
3407 best = 0;
3408
3409 ALL_OBJFILES (objfile)
3410 {
3411 if (objfile->sf)
3412 objfile->sf->qf->expand_symtabs_with_fullname (objfile,
3413 symtab_to_fullname (symtab));
3414 }
3415
3416 ALL_FILETABS (objfile, cu, s)
3417 {
3418 struct linetable *l;
3419 int ind;
3420
3421 if (FILENAME_CMP (symtab->filename, s->filename) != 0)
3422 continue;
3423 if (FILENAME_CMP (symtab_to_fullname (symtab),
3424 symtab_to_fullname (s)) != 0)
3425 continue;
3426 l = SYMTAB_LINETABLE (s);
3427 ind = find_line_common (l, line, &exact, 0);
3428 if (ind >= 0)
3429 {
3430 if (exact)
3431 {
3432 best_index = ind;
3433 best_linetable = l;
3434 best_symtab = s;
3435 goto done;
3436 }
3437 if (best == 0 || l->item[ind].line < best)
3438 {
3439 best = l->item[ind].line;
3440 best_index = ind;
3441 best_linetable = l;
3442 best_symtab = s;
3443 }
3444 }
3445 }
3446 }
3447 done:
3448 if (best_index < 0)
3449 return NULL;
3450
3451 if (index)
3452 *index = best_index;
3453 if (exact_match)
3454 *exact_match = exact;
3455
3456 return best_symtab;
3457 }
3458
3459 /* Given SYMTAB, returns all the PCs function in the symtab that
3460 exactly match LINE. Returns NULL if there are no exact matches,
3461 but updates BEST_ITEM in this case. */
3462
3463 VEC (CORE_ADDR) *
3464 find_pcs_for_symtab_line (struct symtab *symtab, int line,
3465 struct linetable_entry **best_item)
3466 {
3467 int start = 0;
3468 VEC (CORE_ADDR) *result = NULL;
3469
3470 /* First, collect all the PCs that are at this line. */
3471 while (1)
3472 {
3473 int was_exact;
3474 int idx;
3475
3476 idx = find_line_common (SYMTAB_LINETABLE (symtab), line, &was_exact,
3477 start);
3478 if (idx < 0)
3479 break;
3480
3481 if (!was_exact)
3482 {
3483 struct linetable_entry *item = &SYMTAB_LINETABLE (symtab)->item[idx];
3484
3485 if (*best_item == NULL || item->line < (*best_item)->line)
3486 *best_item = item;
3487
3488 break;
3489 }
3490
3491 VEC_safe_push (CORE_ADDR, result,
3492 SYMTAB_LINETABLE (symtab)->item[idx].pc);
3493 start = idx + 1;
3494 }
3495
3496 return result;
3497 }
3498
3499 \f
3500 /* Set the PC value for a given source file and line number and return true.
3501 Returns zero for invalid line number (and sets the PC to 0).
3502 The source file is specified with a struct symtab. */
3503
3504 int
3505 find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
3506 {
3507 struct linetable *l;
3508 int ind;
3509
3510 *pc = 0;
3511 if (symtab == 0)
3512 return 0;
3513
3514 symtab = find_line_symtab (symtab, line, &ind, NULL);
3515 if (symtab != NULL)
3516 {
3517 l = SYMTAB_LINETABLE (symtab);
3518 *pc = l->item[ind].pc;
3519 return 1;
3520 }
3521 else
3522 return 0;
3523 }
3524
3525 /* Find the range of pc values in a line.
3526 Store the starting pc of the line into *STARTPTR
3527 and the ending pc (start of next line) into *ENDPTR.
3528 Returns 1 to indicate success.
3529 Returns 0 if could not find the specified line. */
3530
3531 int
3532 find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
3533 CORE_ADDR *endptr)
3534 {
3535 CORE_ADDR startaddr;
3536 struct symtab_and_line found_sal;
3537
3538 startaddr = sal.pc;
3539 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
3540 return 0;
3541
3542 /* This whole function is based on address. For example, if line 10 has
3543 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
3544 "info line *0x123" should say the line goes from 0x100 to 0x200
3545 and "info line *0x355" should say the line goes from 0x300 to 0x400.
3546 This also insures that we never give a range like "starts at 0x134
3547 and ends at 0x12c". */
3548
3549 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
3550 if (found_sal.line != sal.line)
3551 {
3552 /* The specified line (sal) has zero bytes. */
3553 *startptr = found_sal.pc;
3554 *endptr = found_sal.pc;
3555 }
3556 else
3557 {
3558 *startptr = found_sal.pc;
3559 *endptr = found_sal.end;
3560 }
3561 return 1;
3562 }
3563
3564 /* Given a line table and a line number, return the index into the line
3565 table for the pc of the nearest line whose number is >= the specified one.
3566 Return -1 if none is found. The value is >= 0 if it is an index.
3567 START is the index at which to start searching the line table.
3568
3569 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
3570
3571 static int
3572 find_line_common (struct linetable *l, int lineno,
3573 int *exact_match, int start)
3574 {
3575 int i;
3576 int len;
3577
3578 /* BEST is the smallest linenumber > LINENO so far seen,
3579 or 0 if none has been seen so far.
3580 BEST_INDEX identifies the item for it. */
3581
3582 int best_index = -1;
3583 int best = 0;
3584
3585 *exact_match = 0;
3586
3587 if (lineno <= 0)
3588 return -1;
3589 if (l == 0)
3590 return -1;
3591
3592 len = l->nitems;
3593 for (i = start; i < len; i++)
3594 {
3595 struct linetable_entry *item = &(l->item[i]);
3596
3597 if (item->line == lineno)
3598 {
3599 /* Return the first (lowest address) entry which matches. */
3600 *exact_match = 1;
3601 return i;
3602 }
3603
3604 if (item->line > lineno && (best == 0 || item->line < best))
3605 {
3606 best = item->line;
3607 best_index = i;
3608 }
3609 }
3610
3611 /* If we got here, we didn't get an exact match. */
3612 return best_index;
3613 }
3614
3615 int
3616 find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
3617 {
3618 struct symtab_and_line sal;
3619
3620 sal = find_pc_line (pc, 0);
3621 *startptr = sal.pc;
3622 *endptr = sal.end;
3623 return sal.symtab != 0;
3624 }
3625
3626 /* Given a function symbol SYM, find the symtab and line for the start
3627 of the function.
3628 If the argument FUNFIRSTLINE is nonzero, we want the first line
3629 of real code inside the function.
3630 This function should return SALs matching those from minsym_found,
3631 otherwise false multiple-locations breakpoints could be placed. */
3632
3633 struct symtab_and_line
3634 find_function_start_sal (struct symbol *sym, int funfirstline)
3635 {
3636 struct symtab_and_line sal;
3637 struct obj_section *section;
3638
3639 fixup_symbol_section (sym, NULL);
3640 section = SYMBOL_OBJ_SECTION (symbol_objfile (sym), sym);
3641 sal = find_pc_sect_line (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)), section, 0);
3642
3643 if (funfirstline && sal.symtab != NULL
3644 && (COMPUNIT_LOCATIONS_VALID (SYMTAB_COMPUNIT (sal.symtab))
3645 || SYMTAB_LANGUAGE (sal.symtab) == language_asm))
3646 {
3647 struct gdbarch *gdbarch = symbol_arch (sym);
3648
3649 sal.pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
3650 if (gdbarch_skip_entrypoint_p (gdbarch))
3651 sal.pc = gdbarch_skip_entrypoint (gdbarch, sal.pc);
3652 return sal;
3653 }
3654
3655 /* We always should have a line for the function start address.
3656 If we don't, something is odd. Create a plain SAL refering
3657 just the PC and hope that skip_prologue_sal (if requested)
3658 can find a line number for after the prologue. */
3659 if (sal.pc < BLOCK_START (SYMBOL_BLOCK_VALUE (sym)))
3660 {
3661 init_sal (&sal);
3662 sal.pspace = current_program_space;
3663 sal.pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
3664 sal.section = section;
3665 }
3666
3667 if (funfirstline)
3668 skip_prologue_sal (&sal);
3669
3670 return sal;
3671 }
3672
3673 /* Given a function start address FUNC_ADDR and SYMTAB, find the first
3674 address for that function that has an entry in SYMTAB's line info
3675 table. If such an entry cannot be found, return FUNC_ADDR
3676 unaltered. */
3677
3678 static CORE_ADDR
3679 skip_prologue_using_lineinfo (CORE_ADDR func_addr, struct symtab *symtab)
3680 {
3681 CORE_ADDR func_start, func_end;
3682 struct linetable *l;
3683 int i;
3684
3685 /* Give up if this symbol has no lineinfo table. */
3686 l = SYMTAB_LINETABLE (symtab);
3687 if (l == NULL)
3688 return func_addr;
3689
3690 /* Get the range for the function's PC values, or give up if we
3691 cannot, for some reason. */
3692 if (!find_pc_partial_function (func_addr, NULL, &func_start, &func_end))
3693 return func_addr;
3694
3695 /* Linetable entries are ordered by PC values, see the commentary in
3696 symtab.h where `struct linetable' is defined. Thus, the first
3697 entry whose PC is in the range [FUNC_START..FUNC_END[ is the
3698 address we are looking for. */
3699 for (i = 0; i < l->nitems; i++)
3700 {
3701 struct linetable_entry *item = &(l->item[i]);
3702
3703 /* Don't use line numbers of zero, they mark special entries in
3704 the table. See the commentary on symtab.h before the
3705 definition of struct linetable. */
3706 if (item->line > 0 && func_start <= item->pc && item->pc < func_end)
3707 return item->pc;
3708 }
3709
3710 return func_addr;
3711 }
3712
3713 /* Adjust SAL to the first instruction past the function prologue.
3714 If the PC was explicitly specified, the SAL is not changed.
3715 If the line number was explicitly specified, at most the SAL's PC
3716 is updated. If SAL is already past the prologue, then do nothing. */
3717
3718 void
3719 skip_prologue_sal (struct symtab_and_line *sal)
3720 {
3721 struct symbol *sym;
3722 struct symtab_and_line start_sal;
3723 struct cleanup *old_chain;
3724 CORE_ADDR pc, saved_pc;
3725 struct obj_section *section;
3726 const char *name;
3727 struct objfile *objfile;
3728 struct gdbarch *gdbarch;
3729 const struct block *b, *function_block;
3730 int force_skip, skip;
3731
3732 /* Do not change the SAL if PC was specified explicitly. */
3733 if (sal->explicit_pc)
3734 return;
3735
3736 old_chain = save_current_space_and_thread ();
3737 switch_to_program_space_and_thread (sal->pspace);
3738
3739 sym = find_pc_sect_function (sal->pc, sal->section);
3740 if (sym != NULL)
3741 {
3742 fixup_symbol_section (sym, NULL);
3743
3744 objfile = symbol_objfile (sym);
3745 pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
3746 section = SYMBOL_OBJ_SECTION (objfile, sym);
3747 name = SYMBOL_LINKAGE_NAME (sym);
3748 }
3749 else
3750 {
3751 struct bound_minimal_symbol msymbol
3752 = lookup_minimal_symbol_by_pc_section (sal->pc, sal->section);
3753
3754 if (msymbol.minsym == NULL)
3755 {
3756 do_cleanups (old_chain);
3757 return;
3758 }
3759
3760 objfile = msymbol.objfile;
3761 pc = BMSYMBOL_VALUE_ADDRESS (msymbol);
3762 section = MSYMBOL_OBJ_SECTION (objfile, msymbol.minsym);
3763 name = MSYMBOL_LINKAGE_NAME (msymbol.minsym);
3764 }
3765
3766 gdbarch = get_objfile_arch (objfile);
3767
3768 /* Process the prologue in two passes. In the first pass try to skip the
3769 prologue (SKIP is true) and verify there is a real need for it (indicated
3770 by FORCE_SKIP). If no such reason was found run a second pass where the
3771 prologue is not skipped (SKIP is false). */
3772
3773 skip = 1;
3774 force_skip = 1;
3775
3776 /* Be conservative - allow direct PC (without skipping prologue) only if we
3777 have proven the CU (Compilation Unit) supports it. sal->SYMTAB does not
3778 have to be set by the caller so we use SYM instead. */
3779 if (sym != NULL
3780 && COMPUNIT_LOCATIONS_VALID (SYMTAB_COMPUNIT (symbol_symtab (sym))))
3781 force_skip = 0;
3782
3783 saved_pc = pc;
3784 do
3785 {
3786 pc = saved_pc;
3787
3788 /* If the function is in an unmapped overlay, use its unmapped LMA address,
3789 so that gdbarch_skip_prologue has something unique to work on. */
3790 if (section_is_overlay (section) && !section_is_mapped (section))
3791 pc = overlay_unmapped_address (pc, section);
3792
3793 /* Skip "first line" of function (which is actually its prologue). */
3794 pc += gdbarch_deprecated_function_start_offset (gdbarch);
3795 if (gdbarch_skip_entrypoint_p (gdbarch))
3796 pc = gdbarch_skip_entrypoint (gdbarch, pc);
3797 if (skip)
3798 pc = gdbarch_skip_prologue (gdbarch, pc);
3799
3800 /* For overlays, map pc back into its mapped VMA range. */
3801 pc = overlay_mapped_address (pc, section);
3802
3803 /* Calculate line number. */
3804 start_sal = find_pc_sect_line (pc, section, 0);
3805
3806 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
3807 line is still part of the same function. */
3808 if (skip && start_sal.pc != pc
3809 && (sym ? (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) <= start_sal.end
3810 && start_sal.end < BLOCK_END (SYMBOL_BLOCK_VALUE (sym)))
3811 : (lookup_minimal_symbol_by_pc_section (start_sal.end, section).minsym
3812 == lookup_minimal_symbol_by_pc_section (pc, section).minsym)))
3813 {
3814 /* First pc of next line */
3815 pc = start_sal.end;
3816 /* Recalculate the line number (might not be N+1). */
3817 start_sal = find_pc_sect_line (pc, section, 0);
3818 }
3819
3820 /* On targets with executable formats that don't have a concept of
3821 constructors (ELF with .init has, PE doesn't), gcc emits a call
3822 to `__main' in `main' between the prologue and before user
3823 code. */
3824 if (gdbarch_skip_main_prologue_p (gdbarch)
3825 && name && strcmp_iw (name, "main") == 0)
3826 {
3827 pc = gdbarch_skip_main_prologue (gdbarch, pc);
3828 /* Recalculate the line number (might not be N+1). */
3829 start_sal = find_pc_sect_line (pc, section, 0);
3830 force_skip = 1;
3831 }
3832 }
3833 while (!force_skip && skip--);
3834
3835 /* If we still don't have a valid source line, try to find the first
3836 PC in the lineinfo table that belongs to the same function. This
3837 happens with COFF debug info, which does not seem to have an
3838 entry in lineinfo table for the code after the prologue which has
3839 no direct relation to source. For example, this was found to be
3840 the case with the DJGPP target using "gcc -gcoff" when the
3841 compiler inserted code after the prologue to make sure the stack
3842 is aligned. */
3843 if (!force_skip && sym && start_sal.symtab == NULL)
3844 {
3845 pc = skip_prologue_using_lineinfo (pc, symbol_symtab (sym));
3846 /* Recalculate the line number. */
3847 start_sal = find_pc_sect_line (pc, section, 0);
3848 }
3849
3850 do_cleanups (old_chain);
3851
3852 /* If we're already past the prologue, leave SAL unchanged. Otherwise
3853 forward SAL to the end of the prologue. */
3854 if (sal->pc >= pc)
3855 return;
3856
3857 sal->pc = pc;
3858 sal->section = section;
3859
3860 /* Unless the explicit_line flag was set, update the SAL line
3861 and symtab to correspond to the modified PC location. */
3862 if (sal->explicit_line)
3863 return;
3864
3865 sal->symtab = start_sal.symtab;
3866 sal->line = start_sal.line;
3867 sal->end = start_sal.end;
3868
3869 /* Check if we are now inside an inlined function. If we can,
3870 use the call site of the function instead. */
3871 b = block_for_pc_sect (sal->pc, sal->section);
3872 function_block = NULL;
3873 while (b != NULL)
3874 {
3875 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
3876 function_block = b;
3877 else if (BLOCK_FUNCTION (b) != NULL)
3878 break;
3879 b = BLOCK_SUPERBLOCK (b);
3880 }
3881 if (function_block != NULL
3882 && SYMBOL_LINE (BLOCK_FUNCTION (function_block)) != 0)
3883 {
3884 sal->line = SYMBOL_LINE (BLOCK_FUNCTION (function_block));
3885 sal->symtab = symbol_symtab (BLOCK_FUNCTION (function_block));
3886 }
3887 }
3888
3889 /* Given PC at the function's start address, attempt to find the
3890 prologue end using SAL information. Return zero if the skip fails.
3891
3892 A non-optimized prologue traditionally has one SAL for the function
3893 and a second for the function body. A single line function has
3894 them both pointing at the same line.
3895
3896 An optimized prologue is similar but the prologue may contain
3897 instructions (SALs) from the instruction body. Need to skip those
3898 while not getting into the function body.
3899
3900 The functions end point and an increasing SAL line are used as
3901 indicators of the prologue's endpoint.
3902
3903 This code is based on the function refine_prologue_limit
3904 (found in ia64). */
3905
3906 CORE_ADDR
3907 skip_prologue_using_sal (struct gdbarch *gdbarch, CORE_ADDR func_addr)
3908 {
3909 struct symtab_and_line prologue_sal;
3910 CORE_ADDR start_pc;
3911 CORE_ADDR end_pc;
3912 const struct block *bl;
3913
3914 /* Get an initial range for the function. */
3915 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
3916 start_pc += gdbarch_deprecated_function_start_offset (gdbarch);
3917
3918 prologue_sal = find_pc_line (start_pc, 0);
3919 if (prologue_sal.line != 0)
3920 {
3921 /* For languages other than assembly, treat two consecutive line
3922 entries at the same address as a zero-instruction prologue.
3923 The GNU assembler emits separate line notes for each instruction
3924 in a multi-instruction macro, but compilers generally will not
3925 do this. */
3926 if (prologue_sal.symtab->language != language_asm)
3927 {
3928 struct linetable *linetable = SYMTAB_LINETABLE (prologue_sal.symtab);
3929 int idx = 0;
3930
3931 /* Skip any earlier lines, and any end-of-sequence marker
3932 from a previous function. */
3933 while (linetable->item[idx].pc != prologue_sal.pc
3934 || linetable->item[idx].line == 0)
3935 idx++;
3936
3937 if (idx+1 < linetable->nitems
3938 && linetable->item[idx+1].line != 0
3939 && linetable->item[idx+1].pc == start_pc)
3940 return start_pc;
3941 }
3942
3943 /* If there is only one sal that covers the entire function,
3944 then it is probably a single line function, like
3945 "foo(){}". */
3946 if (prologue_sal.end >= end_pc)
3947 return 0;
3948
3949 while (prologue_sal.end < end_pc)
3950 {
3951 struct symtab_and_line sal;
3952
3953 sal = find_pc_line (prologue_sal.end, 0);
3954 if (sal.line == 0)
3955 break;
3956 /* Assume that a consecutive SAL for the same (or larger)
3957 line mark the prologue -> body transition. */
3958 if (sal.line >= prologue_sal.line)
3959 break;
3960 /* Likewise if we are in a different symtab altogether
3961 (e.g. within a file included via #include).  */
3962 if (sal.symtab != prologue_sal.symtab)
3963 break;
3964
3965 /* The line number is smaller. Check that it's from the
3966 same function, not something inlined. If it's inlined,
3967 then there is no point comparing the line numbers. */
3968 bl = block_for_pc (prologue_sal.end);
3969 while (bl)
3970 {
3971 if (block_inlined_p (bl))
3972 break;
3973 if (BLOCK_FUNCTION (bl))
3974 {
3975 bl = NULL;
3976 break;
3977 }
3978 bl = BLOCK_SUPERBLOCK (bl);
3979 }
3980 if (bl != NULL)
3981 break;
3982
3983 /* The case in which compiler's optimizer/scheduler has
3984 moved instructions into the prologue. We look ahead in
3985 the function looking for address ranges whose
3986 corresponding line number is less the first one that we
3987 found for the function. This is more conservative then
3988 refine_prologue_limit which scans a large number of SALs
3989 looking for any in the prologue. */
3990 prologue_sal = sal;
3991 }
3992 }
3993
3994 if (prologue_sal.end < end_pc)
3995 /* Return the end of this line, or zero if we could not find a
3996 line. */
3997 return prologue_sal.end;
3998 else
3999 /* Don't return END_PC, which is past the end of the function. */
4000 return prologue_sal.pc;
4001 }
4002 \f
4003 /* If P is of the form "operator[ \t]+..." where `...' is
4004 some legitimate operator text, return a pointer to the
4005 beginning of the substring of the operator text.
4006 Otherwise, return "". */
4007
4008 static const char *
4009 operator_chars (const char *p, const char **end)
4010 {
4011 *end = "";
4012 if (!startswith (p, "operator"))
4013 return *end;
4014 p += 8;
4015
4016 /* Don't get faked out by `operator' being part of a longer
4017 identifier. */
4018 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
4019 return *end;
4020
4021 /* Allow some whitespace between `operator' and the operator symbol. */
4022 while (*p == ' ' || *p == '\t')
4023 p++;
4024
4025 /* Recognize 'operator TYPENAME'. */
4026
4027 if (isalpha (*p) || *p == '_' || *p == '$')
4028 {
4029 const char *q = p + 1;
4030
4031 while (isalnum (*q) || *q == '_' || *q == '$')
4032 q++;
4033 *end = q;
4034 return p;
4035 }
4036
4037 while (*p)
4038 switch (*p)
4039 {
4040 case '\\': /* regexp quoting */
4041 if (p[1] == '*')
4042 {
4043 if (p[2] == '=') /* 'operator\*=' */
4044 *end = p + 3;
4045 else /* 'operator\*' */
4046 *end = p + 2;
4047 return p;
4048 }
4049 else if (p[1] == '[')
4050 {
4051 if (p[2] == ']')
4052 error (_("mismatched quoting on brackets, "
4053 "try 'operator\\[\\]'"));
4054 else if (p[2] == '\\' && p[3] == ']')
4055 {
4056 *end = p + 4; /* 'operator\[\]' */
4057 return p;
4058 }
4059 else
4060 error (_("nothing is allowed between '[' and ']'"));
4061 }
4062 else
4063 {
4064 /* Gratuitous qoute: skip it and move on. */
4065 p++;
4066 continue;
4067 }
4068 break;
4069 case '!':
4070 case '=':
4071 case '*':
4072 case '/':
4073 case '%':
4074 case '^':
4075 if (p[1] == '=')
4076 *end = p + 2;
4077 else
4078 *end = p + 1;
4079 return p;
4080 case '<':
4081 case '>':
4082 case '+':
4083 case '-':
4084 case '&':
4085 case '|':
4086 if (p[0] == '-' && p[1] == '>')
4087 {
4088 /* Struct pointer member operator 'operator->'. */
4089 if (p[2] == '*')
4090 {
4091 *end = p + 3; /* 'operator->*' */
4092 return p;
4093 }
4094 else if (p[2] == '\\')
4095 {
4096 *end = p + 4; /* Hopefully 'operator->\*' */
4097 return p;
4098 }
4099 else
4100 {
4101 *end = p + 2; /* 'operator->' */
4102 return p;
4103 }
4104 }
4105 if (p[1] == '=' || p[1] == p[0])
4106 *end = p + 2;
4107 else
4108 *end = p + 1;
4109 return p;
4110 case '~':
4111 case ',':
4112 *end = p + 1;
4113 return p;
4114 case '(':
4115 if (p[1] != ')')
4116 error (_("`operator ()' must be specified "
4117 "without whitespace in `()'"));
4118 *end = p + 2;
4119 return p;
4120 case '?':
4121 if (p[1] != ':')
4122 error (_("`operator ?:' must be specified "
4123 "without whitespace in `?:'"));
4124 *end = p + 2;
4125 return p;
4126 case '[':
4127 if (p[1] != ']')
4128 error (_("`operator []' must be specified "
4129 "without whitespace in `[]'"));
4130 *end = p + 2;
4131 return p;
4132 default:
4133 error (_("`operator %s' not supported"), p);
4134 break;
4135 }
4136
4137 *end = "";
4138 return *end;
4139 }
4140 \f
4141
4142 /* Cache to watch for file names already seen by filename_seen. */
4143
4144 struct filename_seen_cache
4145 {
4146 /* Table of files seen so far. */
4147 htab_t tab;
4148 /* Initial size of the table. It automagically grows from here. */
4149 #define INITIAL_FILENAME_SEEN_CACHE_SIZE 100
4150 };
4151
4152 /* filename_seen_cache constructor. */
4153
4154 static struct filename_seen_cache *
4155 create_filename_seen_cache (void)
4156 {
4157 struct filename_seen_cache *cache = XNEW (struct filename_seen_cache);
4158
4159 cache->tab = htab_create_alloc (INITIAL_FILENAME_SEEN_CACHE_SIZE,
4160 filename_hash, filename_eq,
4161 NULL, xcalloc, xfree);
4162
4163 return cache;
4164 }
4165
4166 /* Empty the cache, but do not delete it. */
4167
4168 static void
4169 clear_filename_seen_cache (struct filename_seen_cache *cache)
4170 {
4171 htab_empty (cache->tab);
4172 }
4173
4174 /* filename_seen_cache destructor.
4175 This takes a void * argument as it is generally used as a cleanup. */
4176
4177 static void
4178 delete_filename_seen_cache (void *ptr)
4179 {
4180 struct filename_seen_cache *cache = (struct filename_seen_cache *) ptr;
4181
4182 htab_delete (cache->tab);
4183 xfree (cache);
4184 }
4185
4186 /* If FILE is not already in the table of files in CACHE, return zero;
4187 otherwise return non-zero. Optionally add FILE to the table if ADD
4188 is non-zero.
4189
4190 NOTE: We don't manage space for FILE, we assume FILE lives as long
4191 as the caller needs. */
4192
4193 static int
4194 filename_seen (struct filename_seen_cache *cache, const char *file, int add)
4195 {
4196 void **slot;
4197
4198 /* Is FILE in tab? */
4199 slot = htab_find_slot (cache->tab, file, add ? INSERT : NO_INSERT);
4200 if (*slot != NULL)
4201 return 1;
4202
4203 /* No; maybe add it to tab. */
4204 if (add)
4205 *slot = (char *) file;
4206
4207 return 0;
4208 }
4209
4210 /* Data structure to maintain printing state for output_source_filename. */
4211
4212 struct output_source_filename_data
4213 {
4214 /* Cache of what we've seen so far. */
4215 struct filename_seen_cache *filename_seen_cache;
4216
4217 /* Flag of whether we're printing the first one. */
4218 int first;
4219 };
4220
4221 /* Slave routine for sources_info. Force line breaks at ,'s.
4222 NAME is the name to print.
4223 DATA contains the state for printing and watching for duplicates. */
4224
4225 static void
4226 output_source_filename (const char *name,
4227 struct output_source_filename_data *data)
4228 {
4229 /* Since a single source file can result in several partial symbol
4230 tables, we need to avoid printing it more than once. Note: if
4231 some of the psymtabs are read in and some are not, it gets
4232 printed both under "Source files for which symbols have been
4233 read" and "Source files for which symbols will be read in on
4234 demand". I consider this a reasonable way to deal with the
4235 situation. I'm not sure whether this can also happen for
4236 symtabs; it doesn't hurt to check. */
4237
4238 /* Was NAME already seen? */
4239 if (filename_seen (data->filename_seen_cache, name, 1))
4240 {
4241 /* Yes; don't print it again. */
4242 return;
4243 }
4244
4245 /* No; print it and reset *FIRST. */
4246 if (! data->first)
4247 printf_filtered (", ");
4248 data->first = 0;
4249
4250 wrap_here ("");
4251 fputs_filtered (name, gdb_stdout);
4252 }
4253
4254 /* A callback for map_partial_symbol_filenames. */
4255
4256 static void
4257 output_partial_symbol_filename (const char *filename, const char *fullname,
4258 void *data)
4259 {
4260 output_source_filename (fullname ? fullname : filename,
4261 (struct output_source_filename_data *) data);
4262 }
4263
4264 static void
4265 sources_info (char *ignore, int from_tty)
4266 {
4267 struct compunit_symtab *cu;
4268 struct symtab *s;
4269 struct objfile *objfile;
4270 struct output_source_filename_data data;
4271 struct cleanup *cleanups;
4272
4273 if (!have_full_symbols () && !have_partial_symbols ())
4274 {
4275 error (_("No symbol table is loaded. Use the \"file\" command."));
4276 }
4277
4278 data.filename_seen_cache = create_filename_seen_cache ();
4279 cleanups = make_cleanup (delete_filename_seen_cache,
4280 data.filename_seen_cache);
4281
4282 printf_filtered ("Source files for which symbols have been read in:\n\n");
4283
4284 data.first = 1;
4285 ALL_FILETABS (objfile, cu, s)
4286 {
4287 const char *fullname = symtab_to_fullname (s);
4288
4289 output_source_filename (fullname, &data);
4290 }
4291 printf_filtered ("\n\n");
4292
4293 printf_filtered ("Source files for which symbols "
4294 "will be read in on demand:\n\n");
4295
4296 clear_filename_seen_cache (data.filename_seen_cache);
4297 data.first = 1;
4298 map_symbol_filenames (output_partial_symbol_filename, &data,
4299 1 /*need_fullname*/);
4300 printf_filtered ("\n");
4301
4302 do_cleanups (cleanups);
4303 }
4304
4305 /* Compare FILE against all the NFILES entries of FILES. If BASENAMES is
4306 non-zero compare only lbasename of FILES. */
4307
4308 static int
4309 file_matches (const char *file, const char *files[], int nfiles, int basenames)
4310 {
4311 int i;
4312
4313 if (file != NULL && nfiles != 0)
4314 {
4315 for (i = 0; i < nfiles; i++)
4316 {
4317 if (compare_filenames_for_search (file, (basenames
4318 ? lbasename (files[i])
4319 : files[i])))
4320 return 1;
4321 }
4322 }
4323 else if (nfiles == 0)
4324 return 1;
4325 return 0;
4326 }
4327
4328 /* Free any memory associated with a search. */
4329
4330 void
4331 free_search_symbols (struct symbol_search *symbols)
4332 {
4333 struct symbol_search *p;
4334 struct symbol_search *next;
4335
4336 for (p = symbols; p != NULL; p = next)
4337 {
4338 next = p->next;
4339 xfree (p);
4340 }
4341 }
4342
4343 static void
4344 do_free_search_symbols_cleanup (void *symbolsp)
4345 {
4346 struct symbol_search *symbols = *(struct symbol_search **) symbolsp;
4347
4348 free_search_symbols (symbols);
4349 }
4350
4351 struct cleanup *
4352 make_cleanup_free_search_symbols (struct symbol_search **symbolsp)
4353 {
4354 return make_cleanup (do_free_search_symbols_cleanup, symbolsp);
4355 }
4356
4357 /* Helper function for sort_search_symbols_remove_dups and qsort. Can only
4358 sort symbols, not minimal symbols. */
4359
4360 static int
4361 compare_search_syms (const void *sa, const void *sb)
4362 {
4363 struct symbol_search *sym_a = *(struct symbol_search **) sa;
4364 struct symbol_search *sym_b = *(struct symbol_search **) sb;
4365 int c;
4366
4367 c = FILENAME_CMP (symbol_symtab (sym_a->symbol)->filename,
4368 symbol_symtab (sym_b->symbol)->filename);
4369 if (c != 0)
4370 return c;
4371
4372 if (sym_a->block != sym_b->block)
4373 return sym_a->block - sym_b->block;
4374
4375 return strcmp (SYMBOL_PRINT_NAME (sym_a->symbol),
4376 SYMBOL_PRINT_NAME (sym_b->symbol));
4377 }
4378
4379 /* Sort the NFOUND symbols in list FOUND and remove duplicates.
4380 The duplicates are freed, and the new list is returned in
4381 *NEW_HEAD, *NEW_TAIL. */
4382
4383 static void
4384 sort_search_symbols_remove_dups (struct symbol_search *found, int nfound,
4385 struct symbol_search **new_head,
4386 struct symbol_search **new_tail)
4387 {
4388 struct symbol_search **symbols, *symp, *old_next;
4389 int i, j, nunique;
4390
4391 gdb_assert (found != NULL && nfound > 0);
4392
4393 /* Build an array out of the list so we can easily sort them. */
4394 symbols = XNEWVEC (struct symbol_search *, nfound);
4395
4396 symp = found;
4397 for (i = 0; i < nfound; i++)
4398 {
4399 gdb_assert (symp != NULL);
4400 gdb_assert (symp->block >= 0 && symp->block <= 1);
4401 symbols[i] = symp;
4402 symp = symp->next;
4403 }
4404 gdb_assert (symp == NULL);
4405
4406 qsort (symbols, nfound, sizeof (struct symbol_search *),
4407 compare_search_syms);
4408
4409 /* Collapse out the dups. */
4410 for (i = 1, j = 1; i < nfound; ++i)
4411 {
4412 if (compare_search_syms (&symbols[j - 1], &symbols[i]) != 0)
4413 symbols[j++] = symbols[i];
4414 else
4415 xfree (symbols[i]);
4416 }
4417 nunique = j;
4418 symbols[j - 1]->next = NULL;
4419
4420 /* Rebuild the linked list. */
4421 for (i = 0; i < nunique - 1; i++)
4422 symbols[i]->next = symbols[i + 1];
4423 symbols[nunique - 1]->next = NULL;
4424
4425 *new_head = symbols[0];
4426 *new_tail = symbols[nunique - 1];
4427 xfree (symbols);
4428 }
4429
4430 /* An object of this type is passed as the user_data to the
4431 expand_symtabs_matching method. */
4432 struct search_symbols_data
4433 {
4434 int nfiles;
4435 const char **files;
4436
4437 /* It is true if PREG contains valid data, false otherwise. */
4438 unsigned preg_p : 1;
4439 regex_t preg;
4440 };
4441
4442 /* A callback for expand_symtabs_matching. */
4443
4444 static int
4445 search_symbols_file_matches (const char *filename, void *user_data,
4446 int basenames)
4447 {
4448 struct search_symbols_data *data = (struct search_symbols_data *) user_data;
4449
4450 return file_matches (filename, data->files, data->nfiles, basenames);
4451 }
4452
4453 /* A callback for expand_symtabs_matching. */
4454
4455 static int
4456 search_symbols_name_matches (const char *symname, void *user_data)
4457 {
4458 struct search_symbols_data *data = (struct search_symbols_data *) user_data;
4459
4460 return !data->preg_p || regexec (&data->preg, symname, 0, NULL, 0) == 0;
4461 }
4462
4463 /* Search the symbol table for matches to the regular expression REGEXP,
4464 returning the results in *MATCHES.
4465
4466 Only symbols of KIND are searched:
4467 VARIABLES_DOMAIN - search all symbols, excluding functions, type names,
4468 and constants (enums)
4469 FUNCTIONS_DOMAIN - search all functions
4470 TYPES_DOMAIN - search all type names
4471 ALL_DOMAIN - an internal error for this function
4472
4473 free_search_symbols should be called when *MATCHES is no longer needed.
4474
4475 Within each file the results are sorted locally; each symtab's global and
4476 static blocks are separately alphabetized.
4477 Duplicate entries are removed. */
4478
4479 void
4480 search_symbols (const char *regexp, enum search_domain kind,
4481 int nfiles, const char *files[],
4482 struct symbol_search **matches)
4483 {
4484 struct compunit_symtab *cust;
4485 const struct blockvector *bv;
4486 struct block *b;
4487 int i = 0;
4488 struct block_iterator iter;
4489 struct symbol *sym;
4490 struct objfile *objfile;
4491 struct minimal_symbol *msymbol;
4492 int found_misc = 0;
4493 static const enum minimal_symbol_type types[]
4494 = {mst_data, mst_text, mst_abs};
4495 static const enum minimal_symbol_type types2[]
4496 = {mst_bss, mst_file_text, mst_abs};
4497 static const enum minimal_symbol_type types3[]
4498 = {mst_file_data, mst_solib_trampoline, mst_abs};
4499 static const enum minimal_symbol_type types4[]
4500 = {mst_file_bss, mst_text_gnu_ifunc, mst_abs};
4501 enum minimal_symbol_type ourtype;
4502 enum minimal_symbol_type ourtype2;
4503 enum minimal_symbol_type ourtype3;
4504 enum minimal_symbol_type ourtype4;
4505 struct symbol_search *found;
4506 struct symbol_search *tail;
4507 struct search_symbols_data datum;
4508 int nfound;
4509
4510 /* OLD_CHAIN .. RETVAL_CHAIN is always freed, RETVAL_CHAIN .. current
4511 CLEANUP_CHAIN is freed only in the case of an error. */
4512 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
4513 struct cleanup *retval_chain;
4514
4515 gdb_assert (kind <= TYPES_DOMAIN);
4516
4517 ourtype = types[kind];
4518 ourtype2 = types2[kind];
4519 ourtype3 = types3[kind];
4520 ourtype4 = types4[kind];
4521
4522 *matches = NULL;
4523 datum.preg_p = 0;
4524
4525 if (regexp != NULL)
4526 {
4527 /* Make sure spacing is right for C++ operators.
4528 This is just a courtesy to make the matching less sensitive
4529 to how many spaces the user leaves between 'operator'
4530 and <TYPENAME> or <OPERATOR>. */
4531 const char *opend;
4532 const char *opname = operator_chars (regexp, &opend);
4533 int errcode;
4534
4535 if (*opname)
4536 {
4537 int fix = -1; /* -1 means ok; otherwise number of
4538 spaces needed. */
4539
4540 if (isalpha (*opname) || *opname == '_' || *opname == '$')
4541 {
4542 /* There should 1 space between 'operator' and 'TYPENAME'. */
4543 if (opname[-1] != ' ' || opname[-2] == ' ')
4544 fix = 1;
4545 }
4546 else
4547 {
4548 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
4549 if (opname[-1] == ' ')
4550 fix = 0;
4551 }
4552 /* If wrong number of spaces, fix it. */
4553 if (fix >= 0)
4554 {
4555 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
4556
4557 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
4558 regexp = tmp;
4559 }
4560 }
4561
4562 errcode = regcomp (&datum.preg, regexp,
4563 REG_NOSUB | (case_sensitivity == case_sensitive_off
4564 ? REG_ICASE : 0));
4565 if (errcode != 0)
4566 {
4567 char *err = get_regcomp_error (errcode, &datum.preg);
4568
4569 make_cleanup (xfree, err);
4570 error (_("Invalid regexp (%s): %s"), err, regexp);
4571 }
4572 datum.preg_p = 1;
4573 make_regfree_cleanup (&datum.preg);
4574 }
4575
4576 /* Search through the partial symtabs *first* for all symbols
4577 matching the regexp. That way we don't have to reproduce all of
4578 the machinery below. */
4579
4580 datum.nfiles = nfiles;
4581 datum.files = files;
4582 expand_symtabs_matching ((nfiles == 0
4583 ? NULL
4584 : search_symbols_file_matches),
4585 search_symbols_name_matches,
4586 NULL, kind, &datum);
4587
4588 /* Here, we search through the minimal symbol tables for functions
4589 and variables that match, and force their symbols to be read.
4590 This is in particular necessary for demangled variable names,
4591 which are no longer put into the partial symbol tables.
4592 The symbol will then be found during the scan of symtabs below.
4593
4594 For functions, find_pc_symtab should succeed if we have debug info
4595 for the function, for variables we have to call
4596 lookup_symbol_in_objfile_from_linkage_name to determine if the variable
4597 has debug info.
4598 If the lookup fails, set found_misc so that we will rescan to print
4599 any matching symbols without debug info.
4600 We only search the objfile the msymbol came from, we no longer search
4601 all objfiles. In large programs (1000s of shared libs) searching all
4602 objfiles is not worth the pain. */
4603
4604 if (nfiles == 0 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
4605 {
4606 ALL_MSYMBOLS (objfile, msymbol)
4607 {
4608 QUIT;
4609
4610 if (msymbol->created_by_gdb)
4611 continue;
4612
4613 if (MSYMBOL_TYPE (msymbol) == ourtype
4614 || MSYMBOL_TYPE (msymbol) == ourtype2
4615 || MSYMBOL_TYPE (msymbol) == ourtype3
4616 || MSYMBOL_TYPE (msymbol) == ourtype4)
4617 {
4618 if (!datum.preg_p
4619 || regexec (&datum.preg, MSYMBOL_NATURAL_NAME (msymbol), 0,
4620 NULL, 0) == 0)
4621 {
4622 /* Note: An important side-effect of these lookup functions
4623 is to expand the symbol table if msymbol is found, for the
4624 benefit of the next loop on ALL_COMPUNITS. */
4625 if (kind == FUNCTIONS_DOMAIN
4626 ? (find_pc_compunit_symtab
4627 (MSYMBOL_VALUE_ADDRESS (objfile, msymbol)) == NULL)
4628 : (lookup_symbol_in_objfile_from_linkage_name
4629 (objfile, MSYMBOL_LINKAGE_NAME (msymbol), VAR_DOMAIN)
4630 .symbol == NULL))
4631 found_misc = 1;
4632 }
4633 }
4634 }
4635 }
4636
4637 found = NULL;
4638 tail = NULL;
4639 nfound = 0;
4640 retval_chain = make_cleanup_free_search_symbols (&found);
4641
4642 ALL_COMPUNITS (objfile, cust)
4643 {
4644 bv = COMPUNIT_BLOCKVECTOR (cust);
4645 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
4646 {
4647 b = BLOCKVECTOR_BLOCK (bv, i);
4648 ALL_BLOCK_SYMBOLS (b, iter, sym)
4649 {
4650 struct symtab *real_symtab = symbol_symtab (sym);
4651
4652 QUIT;
4653
4654 /* Check first sole REAL_SYMTAB->FILENAME. It does not need to be
4655 a substring of symtab_to_fullname as it may contain "./" etc. */
4656 if ((file_matches (real_symtab->filename, files, nfiles, 0)
4657 || ((basenames_may_differ
4658 || file_matches (lbasename (real_symtab->filename),
4659 files, nfiles, 1))
4660 && file_matches (symtab_to_fullname (real_symtab),
4661 files, nfiles, 0)))
4662 && ((!datum.preg_p
4663 || regexec (&datum.preg, SYMBOL_NATURAL_NAME (sym), 0,
4664 NULL, 0) == 0)
4665 && ((kind == VARIABLES_DOMAIN
4666 && SYMBOL_CLASS (sym) != LOC_TYPEDEF
4667 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
4668 && SYMBOL_CLASS (sym) != LOC_BLOCK
4669 /* LOC_CONST can be used for more than just enums,
4670 e.g., c++ static const members.
4671 We only want to skip enums here. */
4672 && !(SYMBOL_CLASS (sym) == LOC_CONST
4673 && (TYPE_CODE (SYMBOL_TYPE (sym))
4674 == TYPE_CODE_ENUM)))
4675 || (kind == FUNCTIONS_DOMAIN
4676 && SYMBOL_CLASS (sym) == LOC_BLOCK)
4677 || (kind == TYPES_DOMAIN
4678 && SYMBOL_CLASS (sym) == LOC_TYPEDEF))))
4679 {
4680 /* match */
4681 struct symbol_search *psr = XCNEW (struct symbol_search);
4682
4683 psr->block = i;
4684 psr->symbol = sym;
4685 psr->next = NULL;
4686 if (tail == NULL)
4687 found = psr;
4688 else
4689 tail->next = psr;
4690 tail = psr;
4691 nfound ++;
4692 }
4693 }
4694 }
4695 }
4696
4697 if (found != NULL)
4698 {
4699 sort_search_symbols_remove_dups (found, nfound, &found, &tail);
4700 /* Note: nfound is no longer useful beyond this point. */
4701 }
4702
4703 /* If there are no eyes, avoid all contact. I mean, if there are
4704 no debug symbols, then add matching minsyms. */
4705
4706 if (found_misc || (nfiles == 0 && kind != FUNCTIONS_DOMAIN))
4707 {
4708 ALL_MSYMBOLS (objfile, msymbol)
4709 {
4710 QUIT;
4711
4712 if (msymbol->created_by_gdb)
4713 continue;
4714
4715 if (MSYMBOL_TYPE (msymbol) == ourtype
4716 || MSYMBOL_TYPE (msymbol) == ourtype2
4717 || MSYMBOL_TYPE (msymbol) == ourtype3
4718 || MSYMBOL_TYPE (msymbol) == ourtype4)
4719 {
4720 if (!datum.preg_p
4721 || regexec (&datum.preg, MSYMBOL_NATURAL_NAME (msymbol), 0,
4722 NULL, 0) == 0)
4723 {
4724 /* For functions we can do a quick check of whether the
4725 symbol might be found via find_pc_symtab. */
4726 if (kind != FUNCTIONS_DOMAIN
4727 || (find_pc_compunit_symtab
4728 (MSYMBOL_VALUE_ADDRESS (objfile, msymbol)) == NULL))
4729 {
4730 if (lookup_symbol_in_objfile_from_linkage_name
4731 (objfile, MSYMBOL_LINKAGE_NAME (msymbol), VAR_DOMAIN)
4732 .symbol == NULL)
4733 {
4734 /* match */
4735 struct symbol_search *psr = XNEW (struct symbol_search);
4736 psr->block = i;
4737 psr->msymbol.minsym = msymbol;
4738 psr->msymbol.objfile = objfile;
4739 psr->symbol = NULL;
4740 psr->next = NULL;
4741 if (tail == NULL)
4742 found = psr;
4743 else
4744 tail->next = psr;
4745 tail = psr;
4746 }
4747 }
4748 }
4749 }
4750 }
4751 }
4752
4753 discard_cleanups (retval_chain);
4754 do_cleanups (old_chain);
4755 *matches = found;
4756 }
4757
4758 /* Helper function for symtab_symbol_info, this function uses
4759 the data returned from search_symbols() to print information
4760 regarding the match to gdb_stdout. */
4761
4762 static void
4763 print_symbol_info (enum search_domain kind,
4764 struct symbol *sym,
4765 int block, const char *last)
4766 {
4767 struct symtab *s = symbol_symtab (sym);
4768 const char *s_filename = symtab_to_filename_for_display (s);
4769
4770 if (last == NULL || filename_cmp (last, s_filename) != 0)
4771 {
4772 fputs_filtered ("\nFile ", gdb_stdout);
4773 fputs_filtered (s_filename, gdb_stdout);
4774 fputs_filtered (":\n", gdb_stdout);
4775 }
4776
4777 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
4778 printf_filtered ("static ");
4779
4780 /* Typedef that is not a C++ class. */
4781 if (kind == TYPES_DOMAIN
4782 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
4783 typedef_print (SYMBOL_TYPE (sym), sym, gdb_stdout);
4784 /* variable, func, or typedef-that-is-c++-class. */
4785 else if (kind < TYPES_DOMAIN
4786 || (kind == TYPES_DOMAIN
4787 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
4788 {
4789 type_print (SYMBOL_TYPE (sym),
4790 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
4791 ? "" : SYMBOL_PRINT_NAME (sym)),
4792 gdb_stdout, 0);
4793
4794 printf_filtered (";\n");
4795 }
4796 }
4797
4798 /* This help function for symtab_symbol_info() prints information
4799 for non-debugging symbols to gdb_stdout. */
4800
4801 static void
4802 print_msymbol_info (struct bound_minimal_symbol msymbol)
4803 {
4804 struct gdbarch *gdbarch = get_objfile_arch (msymbol.objfile);
4805 char *tmp;
4806
4807 if (gdbarch_addr_bit (gdbarch) <= 32)
4808 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol)
4809 & (CORE_ADDR) 0xffffffff,
4810 8);
4811 else
4812 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol),
4813 16);
4814 printf_filtered ("%s %s\n",
4815 tmp, MSYMBOL_PRINT_NAME (msymbol.minsym));
4816 }
4817
4818 /* This is the guts of the commands "info functions", "info types", and
4819 "info variables". It calls search_symbols to find all matches and then
4820 print_[m]symbol_info to print out some useful information about the
4821 matches. */
4822
4823 static void
4824 symtab_symbol_info (char *regexp, enum search_domain kind, int from_tty)
4825 {
4826 static const char * const classnames[] =
4827 {"variable", "function", "type"};
4828 struct symbol_search *symbols;
4829 struct symbol_search *p;
4830 struct cleanup *old_chain;
4831 const char *last_filename = NULL;
4832 int first = 1;
4833
4834 gdb_assert (kind <= TYPES_DOMAIN);
4835
4836 /* Must make sure that if we're interrupted, symbols gets freed. */
4837 search_symbols (regexp, kind, 0, NULL, &symbols);
4838 old_chain = make_cleanup_free_search_symbols (&symbols);
4839
4840 if (regexp != NULL)
4841 printf_filtered (_("All %ss matching regular expression \"%s\":\n"),
4842 classnames[kind], regexp);
4843 else
4844 printf_filtered (_("All defined %ss:\n"), classnames[kind]);
4845
4846 for (p = symbols; p != NULL; p = p->next)
4847 {
4848 QUIT;
4849
4850 if (p->msymbol.minsym != NULL)
4851 {
4852 if (first)
4853 {
4854 printf_filtered (_("\nNon-debugging symbols:\n"));
4855 first = 0;
4856 }
4857 print_msymbol_info (p->msymbol);
4858 }
4859 else
4860 {
4861 print_symbol_info (kind,
4862 p->symbol,
4863 p->block,
4864 last_filename);
4865 last_filename
4866 = symtab_to_filename_for_display (symbol_symtab (p->symbol));
4867 }
4868 }
4869
4870 do_cleanups (old_chain);
4871 }
4872
4873 static void
4874 variables_info (char *regexp, int from_tty)
4875 {
4876 symtab_symbol_info (regexp, VARIABLES_DOMAIN, from_tty);
4877 }
4878
4879 static void
4880 functions_info (char *regexp, int from_tty)
4881 {
4882 symtab_symbol_info (regexp, FUNCTIONS_DOMAIN, from_tty);
4883 }
4884
4885
4886 static void
4887 types_info (char *regexp, int from_tty)
4888 {
4889 symtab_symbol_info (regexp, TYPES_DOMAIN, from_tty);
4890 }
4891
4892 /* Breakpoint all functions matching regular expression. */
4893
4894 void
4895 rbreak_command_wrapper (char *regexp, int from_tty)
4896 {
4897 rbreak_command (regexp, from_tty);
4898 }
4899
4900 /* A cleanup function that calls end_rbreak_breakpoints. */
4901
4902 static void
4903 do_end_rbreak_breakpoints (void *ignore)
4904 {
4905 end_rbreak_breakpoints ();
4906 }
4907
4908 static void
4909 rbreak_command (char *regexp, int from_tty)
4910 {
4911 struct symbol_search *ss;
4912 struct symbol_search *p;
4913 struct cleanup *old_chain;
4914 char *string = NULL;
4915 int len = 0;
4916 const char **files = NULL;
4917 const char *file_name;
4918 int nfiles = 0;
4919
4920 if (regexp)
4921 {
4922 char *colon = strchr (regexp, ':');
4923
4924 if (colon && *(colon + 1) != ':')
4925 {
4926 int colon_index;
4927 char *local_name;
4928
4929 colon_index = colon - regexp;
4930 local_name = (char *) alloca (colon_index + 1);
4931 memcpy (local_name, regexp, colon_index);
4932 local_name[colon_index--] = 0;
4933 while (isspace (local_name[colon_index]))
4934 local_name[colon_index--] = 0;
4935 file_name = local_name;
4936 files = &file_name;
4937 nfiles = 1;
4938 regexp = skip_spaces (colon + 1);
4939 }
4940 }
4941
4942 search_symbols (regexp, FUNCTIONS_DOMAIN, nfiles, files, &ss);
4943 old_chain = make_cleanup_free_search_symbols (&ss);
4944 make_cleanup (free_current_contents, &string);
4945
4946 start_rbreak_breakpoints ();
4947 make_cleanup (do_end_rbreak_breakpoints, NULL);
4948 for (p = ss; p != NULL; p = p->next)
4949 {
4950 if (p->msymbol.minsym == NULL)
4951 {
4952 struct symtab *symtab = symbol_symtab (p->symbol);
4953 const char *fullname = symtab_to_fullname (symtab);
4954
4955 int newlen = (strlen (fullname)
4956 + strlen (SYMBOL_LINKAGE_NAME (p->symbol))
4957 + 4);
4958
4959 if (newlen > len)
4960 {
4961 string = (char *) xrealloc (string, newlen);
4962 len = newlen;
4963 }
4964 strcpy (string, fullname);
4965 strcat (string, ":'");
4966 strcat (string, SYMBOL_LINKAGE_NAME (p->symbol));
4967 strcat (string, "'");
4968 break_command (string, from_tty);
4969 print_symbol_info (FUNCTIONS_DOMAIN,
4970 p->symbol,
4971 p->block,
4972 symtab_to_filename_for_display (symtab));
4973 }
4974 else
4975 {
4976 int newlen = (strlen (MSYMBOL_LINKAGE_NAME (p->msymbol.minsym)) + 3);
4977
4978 if (newlen > len)
4979 {
4980 string = (char *) xrealloc (string, newlen);
4981 len = newlen;
4982 }
4983 strcpy (string, "'");
4984 strcat (string, MSYMBOL_LINKAGE_NAME (p->msymbol.minsym));
4985 strcat (string, "'");
4986
4987 break_command (string, from_tty);
4988 printf_filtered ("<function, no debug info> %s;\n",
4989 MSYMBOL_PRINT_NAME (p->msymbol.minsym));
4990 }
4991 }
4992
4993 do_cleanups (old_chain);
4994 }
4995 \f
4996
4997 /* Evaluate if NAME matches SYM_TEXT and SYM_TEXT_LEN.
4998
4999 Either sym_text[sym_text_len] != '(' and then we search for any
5000 symbol starting with SYM_TEXT text.
5001
5002 Otherwise sym_text[sym_text_len] == '(' and then we require symbol name to
5003 be terminated at that point. Partial symbol tables do not have parameters
5004 information. */
5005
5006 static int
5007 compare_symbol_name (const char *name, const char *sym_text, int sym_text_len)
5008 {
5009 int (*ncmp) (const char *, const char *, size_t);
5010
5011 ncmp = (case_sensitivity == case_sensitive_on ? strncmp : strncasecmp);
5012
5013 if (ncmp (name, sym_text, sym_text_len) != 0)
5014 return 0;
5015
5016 if (sym_text[sym_text_len] == '(')
5017 {
5018 /* User searches for `name(someth...'. Require NAME to be terminated.
5019 Normally psymtabs and gdbindex have no parameter types so '\0' will be
5020 present but accept even parameters presence. In this case this
5021 function is in fact strcmp_iw but whitespace skipping is not supported
5022 for tab completion. */
5023
5024 if (name[sym_text_len] != '\0' && name[sym_text_len] != '(')
5025 return 0;
5026 }
5027
5028 return 1;
5029 }
5030
5031 /* Free any memory associated with a completion list. */
5032
5033 static void
5034 free_completion_list (VEC (char_ptr) **list_ptr)
5035 {
5036 int i;
5037 char *p;
5038
5039 for (i = 0; VEC_iterate (char_ptr, *list_ptr, i, p); ++i)
5040 xfree (p);
5041 VEC_free (char_ptr, *list_ptr);
5042 }
5043
5044 /* Callback for make_cleanup. */
5045
5046 static void
5047 do_free_completion_list (void *list)
5048 {
5049 free_completion_list ((VEC (char_ptr) **) list);
5050 }
5051
5052 /* Helper routine for make_symbol_completion_list. */
5053
5054 static VEC (char_ptr) *return_val;
5055
5056 #define COMPLETION_LIST_ADD_SYMBOL(symbol, sym_text, len, text, word) \
5057 completion_list_add_name \
5058 (SYMBOL_NATURAL_NAME (symbol), (sym_text), (len), (text), (word))
5059
5060 #define MCOMPLETION_LIST_ADD_SYMBOL(symbol, sym_text, len, text, word) \
5061 completion_list_add_name \
5062 (MSYMBOL_NATURAL_NAME (symbol), (sym_text), (len), (text), (word))
5063
5064 /* Tracker for how many unique completions have been generated. Used
5065 to terminate completion list generation early if the list has grown
5066 to a size so large as to be useless. This helps avoid GDB seeming
5067 to lock up in the event the user requests to complete on something
5068 vague that necessitates the time consuming expansion of many symbol
5069 tables. */
5070
5071 static completion_tracker_t completion_tracker;
5072
5073 /* Test to see if the symbol specified by SYMNAME (which is already
5074 demangled for C++ symbols) matches SYM_TEXT in the first SYM_TEXT_LEN
5075 characters. If so, add it to the current completion list. */
5076
5077 static void
5078 completion_list_add_name (const char *symname,
5079 const char *sym_text, int sym_text_len,
5080 const char *text, const char *word)
5081 {
5082 /* Clip symbols that cannot match. */
5083 if (!compare_symbol_name (symname, sym_text, sym_text_len))
5084 return;
5085
5086 /* We have a match for a completion, so add SYMNAME to the current list
5087 of matches. Note that the name is moved to freshly malloc'd space. */
5088
5089 {
5090 char *newobj;
5091 enum maybe_add_completion_enum add_status;
5092
5093 if (word == sym_text)
5094 {
5095 newobj = (char *) xmalloc (strlen (symname) + 5);
5096 strcpy (newobj, symname);
5097 }
5098 else if (word > sym_text)
5099 {
5100 /* Return some portion of symname. */
5101 newobj = (char *) xmalloc (strlen (symname) + 5);
5102 strcpy (newobj, symname + (word - sym_text));
5103 }
5104 else
5105 {
5106 /* Return some of SYM_TEXT plus symname. */
5107 newobj = (char *) xmalloc (strlen (symname) + (sym_text - word) + 5);
5108 strncpy (newobj, word, sym_text - word);
5109 newobj[sym_text - word] = '\0';
5110 strcat (newobj, symname);
5111 }
5112
5113 add_status = maybe_add_completion (completion_tracker, newobj);
5114
5115 switch (add_status)
5116 {
5117 case MAYBE_ADD_COMPLETION_OK:
5118 VEC_safe_push (char_ptr, return_val, newobj);
5119 break;
5120 case MAYBE_ADD_COMPLETION_OK_MAX_REACHED:
5121 VEC_safe_push (char_ptr, return_val, newobj);
5122 throw_max_completions_reached_error ();
5123 case MAYBE_ADD_COMPLETION_MAX_REACHED:
5124 xfree (newobj);
5125 throw_max_completions_reached_error ();
5126 case MAYBE_ADD_COMPLETION_DUPLICATE:
5127 xfree (newobj);
5128 break;
5129 }
5130 }
5131 }
5132
5133 /* ObjC: In case we are completing on a selector, look as the msymbol
5134 again and feed all the selectors into the mill. */
5135
5136 static void
5137 completion_list_objc_symbol (struct minimal_symbol *msymbol,
5138 const char *sym_text, int sym_text_len,
5139 const char *text, const char *word)
5140 {
5141 static char *tmp = NULL;
5142 static unsigned int tmplen = 0;
5143
5144 const char *method, *category, *selector;
5145 char *tmp2 = NULL;
5146
5147 method = MSYMBOL_NATURAL_NAME (msymbol);
5148
5149 /* Is it a method? */
5150 if ((method[0] != '-') && (method[0] != '+'))
5151 return;
5152
5153 if (sym_text[0] == '[')
5154 /* Complete on shortened method method. */
5155 completion_list_add_name (method + 1, sym_text, sym_text_len, text, word);
5156
5157 while ((strlen (method) + 1) >= tmplen)
5158 {
5159 if (tmplen == 0)
5160 tmplen = 1024;
5161 else
5162 tmplen *= 2;
5163 tmp = (char *) xrealloc (tmp, tmplen);
5164 }
5165 selector = strchr (method, ' ');
5166 if (selector != NULL)
5167 selector++;
5168
5169 category = strchr (method, '(');
5170
5171 if ((category != NULL) && (selector != NULL))
5172 {
5173 memcpy (tmp, method, (category - method));
5174 tmp[category - method] = ' ';
5175 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
5176 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
5177 if (sym_text[0] == '[')
5178 completion_list_add_name (tmp + 1, sym_text, sym_text_len, text, word);
5179 }
5180
5181 if (selector != NULL)
5182 {
5183 /* Complete on selector only. */
5184 strcpy (tmp, selector);
5185 tmp2 = strchr (tmp, ']');
5186 if (tmp2 != NULL)
5187 *tmp2 = '\0';
5188
5189 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
5190 }
5191 }
5192
5193 /* Break the non-quoted text based on the characters which are in
5194 symbols. FIXME: This should probably be language-specific. */
5195
5196 static const char *
5197 language_search_unquoted_string (const char *text, const char *p)
5198 {
5199 for (; p > text; --p)
5200 {
5201 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
5202 continue;
5203 else
5204 {
5205 if ((current_language->la_language == language_objc))
5206 {
5207 if (p[-1] == ':') /* Might be part of a method name. */
5208 continue;
5209 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
5210 p -= 2; /* Beginning of a method name. */
5211 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
5212 { /* Might be part of a method name. */
5213 const char *t = p;
5214
5215 /* Seeing a ' ' or a '(' is not conclusive evidence
5216 that we are in the middle of a method name. However,
5217 finding "-[" or "+[" should be pretty un-ambiguous.
5218 Unfortunately we have to find it now to decide. */
5219
5220 while (t > text)
5221 if (isalnum (t[-1]) || t[-1] == '_' ||
5222 t[-1] == ' ' || t[-1] == ':' ||
5223 t[-1] == '(' || t[-1] == ')')
5224 --t;
5225 else
5226 break;
5227
5228 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
5229 p = t - 2; /* Method name detected. */
5230 /* Else we leave with p unchanged. */
5231 }
5232 }
5233 break;
5234 }
5235 }
5236 return p;
5237 }
5238
5239 static void
5240 completion_list_add_fields (struct symbol *sym, const char *sym_text,
5241 int sym_text_len, const char *text,
5242 const char *word)
5243 {
5244 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5245 {
5246 struct type *t = SYMBOL_TYPE (sym);
5247 enum type_code c = TYPE_CODE (t);
5248 int j;
5249
5250 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
5251 for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++)
5252 if (TYPE_FIELD_NAME (t, j))
5253 completion_list_add_name (TYPE_FIELD_NAME (t, j),
5254 sym_text, sym_text_len, text, word);
5255 }
5256 }
5257
5258 /* Type of the user_data argument passed to add_macro_name,
5259 symbol_completion_matcher and symtab_expansion_callback. */
5260
5261 struct add_name_data
5262 {
5263 /* Arguments required by completion_list_add_name. */
5264 const char *sym_text;
5265 int sym_text_len;
5266 const char *text;
5267 const char *word;
5268
5269 /* Extra argument required for add_symtab_completions. */
5270 enum type_code code;
5271 };
5272
5273 /* A callback used with macro_for_each and macro_for_each_in_scope.
5274 This adds a macro's name to the current completion list. */
5275
5276 static void
5277 add_macro_name (const char *name, const struct macro_definition *ignore,
5278 struct macro_source_file *ignore2, int ignore3,
5279 void *user_data)
5280 {
5281 struct add_name_data *datum = (struct add_name_data *) user_data;
5282
5283 completion_list_add_name (name,
5284 datum->sym_text, datum->sym_text_len,
5285 datum->text, datum->word);
5286 }
5287
5288 /* A callback for expand_symtabs_matching. */
5289
5290 static int
5291 symbol_completion_matcher (const char *name, void *user_data)
5292 {
5293 struct add_name_data *datum = (struct add_name_data *) user_data;
5294
5295 return compare_symbol_name (name, datum->sym_text, datum->sym_text_len);
5296 }
5297
5298 /* Add matching symbols from SYMTAB to the current completion list. */
5299
5300 static void
5301 add_symtab_completions (struct compunit_symtab *cust,
5302 const char *sym_text, int sym_text_len,
5303 const char *text, const char *word,
5304 enum type_code code)
5305 {
5306 struct symbol *sym;
5307 const struct block *b;
5308 struct block_iterator iter;
5309 int i;
5310
5311 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
5312 {
5313 QUIT;
5314 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust), i);
5315 ALL_BLOCK_SYMBOLS (b, iter, sym)
5316 {
5317 if (code == TYPE_CODE_UNDEF
5318 || (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
5319 && TYPE_CODE (SYMBOL_TYPE (sym)) == code))
5320 COMPLETION_LIST_ADD_SYMBOL (sym,
5321 sym_text, sym_text_len,
5322 text, word);
5323 }
5324 }
5325 }
5326
5327 /* Callback to add completions to the current list when symbol tables
5328 are expanded during completion list generation. */
5329
5330 static void
5331 symtab_expansion_callback (struct compunit_symtab *symtab,
5332 void *user_data)
5333 {
5334 struct add_name_data *datum = (struct add_name_data *) user_data;
5335
5336 add_symtab_completions (symtab,
5337 datum->sym_text, datum->sym_text_len,
5338 datum->text, datum->word,
5339 datum->code);
5340 }
5341
5342 static void
5343 default_make_symbol_completion_list_break_on_1 (const char *text,
5344 const char *word,
5345 const char *break_on,
5346 enum type_code code)
5347 {
5348 /* Problem: All of the symbols have to be copied because readline
5349 frees them. I'm not going to worry about this; hopefully there
5350 won't be that many. */
5351
5352 struct symbol *sym;
5353 struct compunit_symtab *cust;
5354 struct minimal_symbol *msymbol;
5355 struct objfile *objfile;
5356 const struct block *b;
5357 const struct block *surrounding_static_block, *surrounding_global_block;
5358 struct block_iterator iter;
5359 /* The symbol we are completing on. Points in same buffer as text. */
5360 const char *sym_text;
5361 /* Length of sym_text. */
5362 int sym_text_len;
5363 struct add_name_data datum;
5364 struct cleanup *cleanups;
5365
5366 /* Now look for the symbol we are supposed to complete on. */
5367 {
5368 const char *p;
5369 char quote_found;
5370 const char *quote_pos = NULL;
5371
5372 /* First see if this is a quoted string. */
5373 quote_found = '\0';
5374 for (p = text; *p != '\0'; ++p)
5375 {
5376 if (quote_found != '\0')
5377 {
5378 if (*p == quote_found)
5379 /* Found close quote. */
5380 quote_found = '\0';
5381 else if (*p == '\\' && p[1] == quote_found)
5382 /* A backslash followed by the quote character
5383 doesn't end the string. */
5384 ++p;
5385 }
5386 else if (*p == '\'' || *p == '"')
5387 {
5388 quote_found = *p;
5389 quote_pos = p;
5390 }
5391 }
5392 if (quote_found == '\'')
5393 /* A string within single quotes can be a symbol, so complete on it. */
5394 sym_text = quote_pos + 1;
5395 else if (quote_found == '"')
5396 /* A double-quoted string is never a symbol, nor does it make sense
5397 to complete it any other way. */
5398 {
5399 return;
5400 }
5401 else
5402 {
5403 /* It is not a quoted string. Break it based on the characters
5404 which are in symbols. */
5405 while (p > text)
5406 {
5407 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0'
5408 || p[-1] == ':' || strchr (break_on, p[-1]) != NULL)
5409 --p;
5410 else
5411 break;
5412 }
5413 sym_text = p;
5414 }
5415 }
5416
5417 sym_text_len = strlen (sym_text);
5418
5419 /* Prepare SYM_TEXT_LEN for compare_symbol_name. */
5420
5421 if (current_language->la_language == language_cplus
5422 || current_language->la_language == language_java
5423 || current_language->la_language == language_fortran)
5424 {
5425 /* These languages may have parameters entered by user but they are never
5426 present in the partial symbol tables. */
5427
5428 const char *cs = (const char *) memchr (sym_text, '(', sym_text_len);
5429
5430 if (cs)
5431 sym_text_len = cs - sym_text;
5432 }
5433 gdb_assert (sym_text[sym_text_len] == '\0' || sym_text[sym_text_len] == '(');
5434
5435 completion_tracker = new_completion_tracker ();
5436 cleanups = make_cleanup_free_completion_tracker (&completion_tracker);
5437
5438 datum.sym_text = sym_text;
5439 datum.sym_text_len = sym_text_len;
5440 datum.text = text;
5441 datum.word = word;
5442 datum.code = code;
5443
5444 /* At this point scan through the misc symbol vectors and add each
5445 symbol you find to the list. Eventually we want to ignore
5446 anything that isn't a text symbol (everything else will be
5447 handled by the psymtab code below). */
5448
5449 if (code == TYPE_CODE_UNDEF)
5450 {
5451 ALL_MSYMBOLS (objfile, msymbol)
5452 {
5453 QUIT;
5454 MCOMPLETION_LIST_ADD_SYMBOL (msymbol, sym_text, sym_text_len, text,
5455 word);
5456
5457 completion_list_objc_symbol (msymbol, sym_text, sym_text_len, text,
5458 word);
5459 }
5460 }
5461
5462 /* Add completions for all currently loaded symbol tables. */
5463 ALL_COMPUNITS (objfile, cust)
5464 add_symtab_completions (cust, sym_text, sym_text_len, text, word,
5465 code);
5466
5467 /* Look through the partial symtabs for all symbols which begin
5468 by matching SYM_TEXT. Expand all CUs that you find to the list.
5469 symtab_expansion_callback is called for each expanded symtab,
5470 causing those symtab's completions to be added to the list too. */
5471 expand_symtabs_matching (NULL, symbol_completion_matcher,
5472 symtab_expansion_callback, ALL_DOMAIN,
5473 &datum);
5474
5475 /* Search upwards from currently selected frame (so that we can
5476 complete on local vars). Also catch fields of types defined in
5477 this places which match our text string. Only complete on types
5478 visible from current context. */
5479
5480 b = get_selected_block (0);
5481 surrounding_static_block = block_static_block (b);
5482 surrounding_global_block = block_global_block (b);
5483 if (surrounding_static_block != NULL)
5484 while (b != surrounding_static_block)
5485 {
5486 QUIT;
5487
5488 ALL_BLOCK_SYMBOLS (b, iter, sym)
5489 {
5490 if (code == TYPE_CODE_UNDEF)
5491 {
5492 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text,
5493 word);
5494 completion_list_add_fields (sym, sym_text, sym_text_len, text,
5495 word);
5496 }
5497 else if (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
5498 && TYPE_CODE (SYMBOL_TYPE (sym)) == code)
5499 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text,
5500 word);
5501 }
5502
5503 /* Stop when we encounter an enclosing function. Do not stop for
5504 non-inlined functions - the locals of the enclosing function
5505 are in scope for a nested function. */
5506 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
5507 break;
5508 b = BLOCK_SUPERBLOCK (b);
5509 }
5510
5511 /* Add fields from the file's types; symbols will be added below. */
5512
5513 if (code == TYPE_CODE_UNDEF)
5514 {
5515 if (surrounding_static_block != NULL)
5516 ALL_BLOCK_SYMBOLS (surrounding_static_block, iter, sym)
5517 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
5518
5519 if (surrounding_global_block != NULL)
5520 ALL_BLOCK_SYMBOLS (surrounding_global_block, iter, sym)
5521 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
5522 }
5523
5524 /* Skip macros if we are completing a struct tag -- arguable but
5525 usually what is expected. */
5526 if (current_language->la_macro_expansion == macro_expansion_c
5527 && code == TYPE_CODE_UNDEF)
5528 {
5529 struct macro_scope *scope;
5530
5531 /* Add any macros visible in the default scope. Note that this
5532 may yield the occasional wrong result, because an expression
5533 might be evaluated in a scope other than the default. For
5534 example, if the user types "break file:line if <TAB>", the
5535 resulting expression will be evaluated at "file:line" -- but
5536 at there does not seem to be a way to detect this at
5537 completion time. */
5538 scope = default_macro_scope ();
5539 if (scope)
5540 {
5541 macro_for_each_in_scope (scope->file, scope->line,
5542 add_macro_name, &datum);
5543 xfree (scope);
5544 }
5545
5546 /* User-defined macros are always visible. */
5547 macro_for_each (macro_user_macros, add_macro_name, &datum);
5548 }
5549
5550 do_cleanups (cleanups);
5551 }
5552
5553 VEC (char_ptr) *
5554 default_make_symbol_completion_list_break_on (const char *text,
5555 const char *word,
5556 const char *break_on,
5557 enum type_code code)
5558 {
5559 struct cleanup *back_to;
5560
5561 return_val = NULL;
5562 back_to = make_cleanup (do_free_completion_list, &return_val);
5563
5564 TRY
5565 {
5566 default_make_symbol_completion_list_break_on_1 (text, word,
5567 break_on, code);
5568 }
5569 CATCH (except, RETURN_MASK_ERROR)
5570 {
5571 if (except.error != MAX_COMPLETIONS_REACHED_ERROR)
5572 throw_exception (except);
5573 }
5574 END_CATCH
5575
5576 discard_cleanups (back_to);
5577 return return_val;
5578 }
5579
5580 VEC (char_ptr) *
5581 default_make_symbol_completion_list (const char *text, const char *word,
5582 enum type_code code)
5583 {
5584 return default_make_symbol_completion_list_break_on (text, word, "", code);
5585 }
5586
5587 /* Return a vector of all symbols (regardless of class) which begin by
5588 matching TEXT. If the answer is no symbols, then the return value
5589 is NULL. */
5590
5591 VEC (char_ptr) *
5592 make_symbol_completion_list (const char *text, const char *word)
5593 {
5594 return current_language->la_make_symbol_completion_list (text, word,
5595 TYPE_CODE_UNDEF);
5596 }
5597
5598 /* Like make_symbol_completion_list, but only return STRUCT_DOMAIN
5599 symbols whose type code is CODE. */
5600
5601 VEC (char_ptr) *
5602 make_symbol_completion_type (const char *text, const char *word,
5603 enum type_code code)
5604 {
5605 gdb_assert (code == TYPE_CODE_UNION
5606 || code == TYPE_CODE_STRUCT
5607 || code == TYPE_CODE_ENUM);
5608 return current_language->la_make_symbol_completion_list (text, word, code);
5609 }
5610
5611 /* Like make_symbol_completion_list, but suitable for use as a
5612 completion function. */
5613
5614 VEC (char_ptr) *
5615 make_symbol_completion_list_fn (struct cmd_list_element *ignore,
5616 const char *text, const char *word)
5617 {
5618 return make_symbol_completion_list (text, word);
5619 }
5620
5621 /* Like make_symbol_completion_list, but returns a list of symbols
5622 defined in a source file FILE. */
5623
5624 static VEC (char_ptr) *
5625 make_file_symbol_completion_list_1 (const char *text, const char *word,
5626 const char *srcfile)
5627 {
5628 struct symbol *sym;
5629 struct symtab *s;
5630 struct block *b;
5631 struct block_iterator iter;
5632 /* The symbol we are completing on. Points in same buffer as text. */
5633 const char *sym_text;
5634 /* Length of sym_text. */
5635 int sym_text_len;
5636
5637 /* Now look for the symbol we are supposed to complete on.
5638 FIXME: This should be language-specific. */
5639 {
5640 const char *p;
5641 char quote_found;
5642 const char *quote_pos = NULL;
5643
5644 /* First see if this is a quoted string. */
5645 quote_found = '\0';
5646 for (p = text; *p != '\0'; ++p)
5647 {
5648 if (quote_found != '\0')
5649 {
5650 if (*p == quote_found)
5651 /* Found close quote. */
5652 quote_found = '\0';
5653 else if (*p == '\\' && p[1] == quote_found)
5654 /* A backslash followed by the quote character
5655 doesn't end the string. */
5656 ++p;
5657 }
5658 else if (*p == '\'' || *p == '"')
5659 {
5660 quote_found = *p;
5661 quote_pos = p;
5662 }
5663 }
5664 if (quote_found == '\'')
5665 /* A string within single quotes can be a symbol, so complete on it. */
5666 sym_text = quote_pos + 1;
5667 else if (quote_found == '"')
5668 /* A double-quoted string is never a symbol, nor does it make sense
5669 to complete it any other way. */
5670 {
5671 return NULL;
5672 }
5673 else
5674 {
5675 /* Not a quoted string. */
5676 sym_text = language_search_unquoted_string (text, p);
5677 }
5678 }
5679
5680 sym_text_len = strlen (sym_text);
5681
5682 /* Find the symtab for SRCFILE (this loads it if it was not yet read
5683 in). */
5684 s = lookup_symtab (srcfile);
5685 if (s == NULL)
5686 {
5687 /* Maybe they typed the file with leading directories, while the
5688 symbol tables record only its basename. */
5689 const char *tail = lbasename (srcfile);
5690
5691 if (tail > srcfile)
5692 s = lookup_symtab (tail);
5693 }
5694
5695 /* If we have no symtab for that file, return an empty list. */
5696 if (s == NULL)
5697 return (return_val);
5698
5699 /* Go through this symtab and check the externs and statics for
5700 symbols which match. */
5701
5702 b = BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (s), GLOBAL_BLOCK);
5703 ALL_BLOCK_SYMBOLS (b, iter, sym)
5704 {
5705 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
5706 }
5707
5708 b = BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (s), STATIC_BLOCK);
5709 ALL_BLOCK_SYMBOLS (b, iter, sym)
5710 {
5711 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
5712 }
5713
5714 return (return_val);
5715 }
5716
5717 /* Wrapper around make_file_symbol_completion_list_1
5718 to handle MAX_COMPLETIONS_REACHED_ERROR. */
5719
5720 VEC (char_ptr) *
5721 make_file_symbol_completion_list (const char *text, const char *word,
5722 const char *srcfile)
5723 {
5724 struct cleanup *back_to, *cleanups;
5725
5726 completion_tracker = new_completion_tracker ();
5727 cleanups = make_cleanup_free_completion_tracker (&completion_tracker);
5728 return_val = NULL;
5729 back_to = make_cleanup (do_free_completion_list, &return_val);
5730
5731 TRY
5732 {
5733 make_file_symbol_completion_list_1 (text, word, srcfile);
5734 }
5735 CATCH (except, RETURN_MASK_ERROR)
5736 {
5737 if (except.error != MAX_COMPLETIONS_REACHED_ERROR)
5738 throw_exception (except);
5739 }
5740 END_CATCH
5741
5742 discard_cleanups (back_to);
5743 do_cleanups (cleanups);
5744 return return_val;
5745 }
5746
5747 /* A helper function for make_source_files_completion_list. It adds
5748 another file name to a list of possible completions, growing the
5749 list as necessary. */
5750
5751 static void
5752 add_filename_to_list (const char *fname, const char *text, const char *word,
5753 VEC (char_ptr) **list)
5754 {
5755 char *newobj;
5756 size_t fnlen = strlen (fname);
5757
5758 if (word == text)
5759 {
5760 /* Return exactly fname. */
5761 newobj = (char *) xmalloc (fnlen + 5);
5762 strcpy (newobj, fname);
5763 }
5764 else if (word > text)
5765 {
5766 /* Return some portion of fname. */
5767 newobj = (char *) xmalloc (fnlen + 5);
5768 strcpy (newobj, fname + (word - text));
5769 }
5770 else
5771 {
5772 /* Return some of TEXT plus fname. */
5773 newobj = (char *) xmalloc (fnlen + (text - word) + 5);
5774 strncpy (newobj, word, text - word);
5775 newobj[text - word] = '\0';
5776 strcat (newobj, fname);
5777 }
5778 VEC_safe_push (char_ptr, *list, newobj);
5779 }
5780
5781 static int
5782 not_interesting_fname (const char *fname)
5783 {
5784 static const char *illegal_aliens[] = {
5785 "_globals_", /* inserted by coff_symtab_read */
5786 NULL
5787 };
5788 int i;
5789
5790 for (i = 0; illegal_aliens[i]; i++)
5791 {
5792 if (filename_cmp (fname, illegal_aliens[i]) == 0)
5793 return 1;
5794 }
5795 return 0;
5796 }
5797
5798 /* An object of this type is passed as the user_data argument to
5799 map_partial_symbol_filenames. */
5800 struct add_partial_filename_data
5801 {
5802 struct filename_seen_cache *filename_seen_cache;
5803 const char *text;
5804 const char *word;
5805 int text_len;
5806 VEC (char_ptr) **list;
5807 };
5808
5809 /* A callback for map_partial_symbol_filenames. */
5810
5811 static void
5812 maybe_add_partial_symtab_filename (const char *filename, const char *fullname,
5813 void *user_data)
5814 {
5815 struct add_partial_filename_data *data
5816 = (struct add_partial_filename_data *) user_data;
5817
5818 if (not_interesting_fname (filename))
5819 return;
5820 if (!filename_seen (data->filename_seen_cache, filename, 1)
5821 && filename_ncmp (filename, data->text, data->text_len) == 0)
5822 {
5823 /* This file matches for a completion; add it to the
5824 current list of matches. */
5825 add_filename_to_list (filename, data->text, data->word, data->list);
5826 }
5827 else
5828 {
5829 const char *base_name = lbasename (filename);
5830
5831 if (base_name != filename
5832 && !filename_seen (data->filename_seen_cache, base_name, 1)
5833 && filename_ncmp (base_name, data->text, data->text_len) == 0)
5834 add_filename_to_list (base_name, data->text, data->word, data->list);
5835 }
5836 }
5837
5838 /* Return a vector of all source files whose names begin with matching
5839 TEXT. The file names are looked up in the symbol tables of this
5840 program. If the answer is no matchess, then the return value is
5841 NULL. */
5842
5843 VEC (char_ptr) *
5844 make_source_files_completion_list (const char *text, const char *word)
5845 {
5846 struct compunit_symtab *cu;
5847 struct symtab *s;
5848 struct objfile *objfile;
5849 size_t text_len = strlen (text);
5850 VEC (char_ptr) *list = NULL;
5851 const char *base_name;
5852 struct add_partial_filename_data datum;
5853 struct filename_seen_cache *filename_seen_cache;
5854 struct cleanup *back_to, *cache_cleanup;
5855
5856 if (!have_full_symbols () && !have_partial_symbols ())
5857 return list;
5858
5859 back_to = make_cleanup (do_free_completion_list, &list);
5860
5861 filename_seen_cache = create_filename_seen_cache ();
5862 cache_cleanup = make_cleanup (delete_filename_seen_cache,
5863 filename_seen_cache);
5864
5865 ALL_FILETABS (objfile, cu, s)
5866 {
5867 if (not_interesting_fname (s->filename))
5868 continue;
5869 if (!filename_seen (filename_seen_cache, s->filename, 1)
5870 && filename_ncmp (s->filename, text, text_len) == 0)
5871 {
5872 /* This file matches for a completion; add it to the current
5873 list of matches. */
5874 add_filename_to_list (s->filename, text, word, &list);
5875 }
5876 else
5877 {
5878 /* NOTE: We allow the user to type a base name when the
5879 debug info records leading directories, but not the other
5880 way around. This is what subroutines of breakpoint
5881 command do when they parse file names. */
5882 base_name = lbasename (s->filename);
5883 if (base_name != s->filename
5884 && !filename_seen (filename_seen_cache, base_name, 1)
5885 && filename_ncmp (base_name, text, text_len) == 0)
5886 add_filename_to_list (base_name, text, word, &list);
5887 }
5888 }
5889
5890 datum.filename_seen_cache = filename_seen_cache;
5891 datum.text = text;
5892 datum.word = word;
5893 datum.text_len = text_len;
5894 datum.list = &list;
5895 map_symbol_filenames (maybe_add_partial_symtab_filename, &datum,
5896 0 /*need_fullname*/);
5897
5898 do_cleanups (cache_cleanup);
5899 discard_cleanups (back_to);
5900
5901 return list;
5902 }
5903 \f
5904 /* Track MAIN */
5905
5906 /* Return the "main_info" object for the current program space. If
5907 the object has not yet been created, create it and fill in some
5908 default values. */
5909
5910 static struct main_info *
5911 get_main_info (void)
5912 {
5913 struct main_info *info
5914 = (struct main_info *) program_space_data (current_program_space,
5915 main_progspace_key);
5916
5917 if (info == NULL)
5918 {
5919 /* It may seem strange to store the main name in the progspace
5920 and also in whatever objfile happens to see a main name in
5921 its debug info. The reason for this is mainly historical:
5922 gdb returned "main" as the name even if no function named
5923 "main" was defined the program; and this approach lets us
5924 keep compatibility. */
5925 info = XCNEW (struct main_info);
5926 info->language_of_main = language_unknown;
5927 set_program_space_data (current_program_space, main_progspace_key,
5928 info);
5929 }
5930
5931 return info;
5932 }
5933
5934 /* A cleanup to destroy a struct main_info when a progspace is
5935 destroyed. */
5936
5937 static void
5938 main_info_cleanup (struct program_space *pspace, void *data)
5939 {
5940 struct main_info *info = (struct main_info *) data;
5941
5942 if (info != NULL)
5943 xfree (info->name_of_main);
5944 xfree (info);
5945 }
5946
5947 static void
5948 set_main_name (const char *name, enum language lang)
5949 {
5950 struct main_info *info = get_main_info ();
5951
5952 if (info->name_of_main != NULL)
5953 {
5954 xfree (info->name_of_main);
5955 info->name_of_main = NULL;
5956 info->language_of_main = language_unknown;
5957 }
5958 if (name != NULL)
5959 {
5960 info->name_of_main = xstrdup (name);
5961 info->language_of_main = lang;
5962 }
5963 }
5964
5965 /* Deduce the name of the main procedure, and set NAME_OF_MAIN
5966 accordingly. */
5967
5968 static void
5969 find_main_name (void)
5970 {
5971 const char *new_main_name;
5972 struct objfile *objfile;
5973
5974 /* First check the objfiles to see whether a debuginfo reader has
5975 picked up the appropriate main name. Historically the main name
5976 was found in a more or less random way; this approach instead
5977 relies on the order of objfile creation -- which still isn't
5978 guaranteed to get the correct answer, but is just probably more
5979 accurate. */
5980 ALL_OBJFILES (objfile)
5981 {
5982 if (objfile->per_bfd->name_of_main != NULL)
5983 {
5984 set_main_name (objfile->per_bfd->name_of_main,
5985 objfile->per_bfd->language_of_main);
5986 return;
5987 }
5988 }
5989
5990 /* Try to see if the main procedure is in Ada. */
5991 /* FIXME: brobecker/2005-03-07: Another way of doing this would
5992 be to add a new method in the language vector, and call this
5993 method for each language until one of them returns a non-empty
5994 name. This would allow us to remove this hard-coded call to
5995 an Ada function. It is not clear that this is a better approach
5996 at this point, because all methods need to be written in a way
5997 such that false positives never be returned. For instance, it is
5998 important that a method does not return a wrong name for the main
5999 procedure if the main procedure is actually written in a different
6000 language. It is easy to guaranty this with Ada, since we use a
6001 special symbol generated only when the main in Ada to find the name
6002 of the main procedure. It is difficult however to see how this can
6003 be guarantied for languages such as C, for instance. This suggests
6004 that order of call for these methods becomes important, which means
6005 a more complicated approach. */
6006 new_main_name = ada_main_name ();
6007 if (new_main_name != NULL)
6008 {
6009 set_main_name (new_main_name, language_ada);
6010 return;
6011 }
6012
6013 new_main_name = d_main_name ();
6014 if (new_main_name != NULL)
6015 {
6016 set_main_name (new_main_name, language_d);
6017 return;
6018 }
6019
6020 new_main_name = go_main_name ();
6021 if (new_main_name != NULL)
6022 {
6023 set_main_name (new_main_name, language_go);
6024 return;
6025 }
6026
6027 new_main_name = pascal_main_name ();
6028 if (new_main_name != NULL)
6029 {
6030 set_main_name (new_main_name, language_pascal);
6031 return;
6032 }
6033
6034 /* The languages above didn't identify the name of the main procedure.
6035 Fallback to "main". */
6036 set_main_name ("main", language_unknown);
6037 }
6038
6039 char *
6040 main_name (void)
6041 {
6042 struct main_info *info = get_main_info ();
6043
6044 if (info->name_of_main == NULL)
6045 find_main_name ();
6046
6047 return info->name_of_main;
6048 }
6049
6050 /* Return the language of the main function. If it is not known,
6051 return language_unknown. */
6052
6053 enum language
6054 main_language (void)
6055 {
6056 struct main_info *info = get_main_info ();
6057
6058 if (info->name_of_main == NULL)
6059 find_main_name ();
6060
6061 return info->language_of_main;
6062 }
6063
6064 /* Handle ``executable_changed'' events for the symtab module. */
6065
6066 static void
6067 symtab_observer_executable_changed (void)
6068 {
6069 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
6070 set_main_name (NULL, language_unknown);
6071 }
6072
6073 /* Return 1 if the supplied producer string matches the ARM RealView
6074 compiler (armcc). */
6075
6076 int
6077 producer_is_realview (const char *producer)
6078 {
6079 static const char *const arm_idents[] = {
6080 "ARM C Compiler, ADS",
6081 "Thumb C Compiler, ADS",
6082 "ARM C++ Compiler, ADS",
6083 "Thumb C++ Compiler, ADS",
6084 "ARM/Thumb C/C++ Compiler, RVCT",
6085 "ARM C/C++ Compiler, RVCT"
6086 };
6087 int i;
6088
6089 if (producer == NULL)
6090 return 0;
6091
6092 for (i = 0; i < ARRAY_SIZE (arm_idents); i++)
6093 if (startswith (producer, arm_idents[i]))
6094 return 1;
6095
6096 return 0;
6097 }
6098
6099 \f
6100
6101 /* The next index to hand out in response to a registration request. */
6102
6103 static int next_aclass_value = LOC_FINAL_VALUE;
6104
6105 /* The maximum number of "aclass" registrations we support. This is
6106 constant for convenience. */
6107 #define MAX_SYMBOL_IMPLS (LOC_FINAL_VALUE + 10)
6108
6109 /* The objects representing the various "aclass" values. The elements
6110 from 0 up to LOC_FINAL_VALUE-1 represent themselves, and subsequent
6111 elements are those registered at gdb initialization time. */
6112
6113 static struct symbol_impl symbol_impl[MAX_SYMBOL_IMPLS];
6114
6115 /* The globally visible pointer. This is separate from 'symbol_impl'
6116 so that it can be const. */
6117
6118 const struct symbol_impl *symbol_impls = &symbol_impl[0];
6119
6120 /* Make sure we saved enough room in struct symbol. */
6121
6122 gdb_static_assert (MAX_SYMBOL_IMPLS <= (1 << SYMBOL_ACLASS_BITS));
6123
6124 /* Register a computed symbol type. ACLASS must be LOC_COMPUTED. OPS
6125 is the ops vector associated with this index. This returns the new
6126 index, which should be used as the aclass_index field for symbols
6127 of this type. */
6128
6129 int
6130 register_symbol_computed_impl (enum address_class aclass,
6131 const struct symbol_computed_ops *ops)
6132 {
6133 int result = next_aclass_value++;
6134
6135 gdb_assert (aclass == LOC_COMPUTED);
6136 gdb_assert (result < MAX_SYMBOL_IMPLS);
6137 symbol_impl[result].aclass = aclass;
6138 symbol_impl[result].ops_computed = ops;
6139
6140 /* Sanity check OPS. */
6141 gdb_assert (ops != NULL);
6142 gdb_assert (ops->tracepoint_var_ref != NULL);
6143 gdb_assert (ops->describe_location != NULL);
6144 gdb_assert (ops->read_needs_frame != NULL);
6145 gdb_assert (ops->read_variable != NULL);
6146
6147 return result;
6148 }
6149
6150 /* Register a function with frame base type. ACLASS must be LOC_BLOCK.
6151 OPS is the ops vector associated with this index. This returns the
6152 new index, which should be used as the aclass_index field for symbols
6153 of this type. */
6154
6155 int
6156 register_symbol_block_impl (enum address_class aclass,
6157 const struct symbol_block_ops *ops)
6158 {
6159 int result = next_aclass_value++;
6160
6161 gdb_assert (aclass == LOC_BLOCK);
6162 gdb_assert (result < MAX_SYMBOL_IMPLS);
6163 symbol_impl[result].aclass = aclass;
6164 symbol_impl[result].ops_block = ops;
6165
6166 /* Sanity check OPS. */
6167 gdb_assert (ops != NULL);
6168 gdb_assert (ops->find_frame_base_location != NULL);
6169
6170 return result;
6171 }
6172
6173 /* Register a register symbol type. ACLASS must be LOC_REGISTER or
6174 LOC_REGPARM_ADDR. OPS is the register ops vector associated with
6175 this index. This returns the new index, which should be used as
6176 the aclass_index field for symbols of this type. */
6177
6178 int
6179 register_symbol_register_impl (enum address_class aclass,
6180 const struct symbol_register_ops *ops)
6181 {
6182 int result = next_aclass_value++;
6183
6184 gdb_assert (aclass == LOC_REGISTER || aclass == LOC_REGPARM_ADDR);
6185 gdb_assert (result < MAX_SYMBOL_IMPLS);
6186 symbol_impl[result].aclass = aclass;
6187 symbol_impl[result].ops_register = ops;
6188
6189 return result;
6190 }
6191
6192 /* Initialize elements of 'symbol_impl' for the constants in enum
6193 address_class. */
6194
6195 static void
6196 initialize_ordinary_address_classes (void)
6197 {
6198 int i;
6199
6200 for (i = 0; i < LOC_FINAL_VALUE; ++i)
6201 symbol_impl[i].aclass = (enum address_class) i;
6202 }
6203
6204 \f
6205
6206 /* Helper function to initialize the fields of an objfile-owned symbol.
6207 It assumed that *SYM is already all zeroes. */
6208
6209 static void
6210 initialize_objfile_symbol_1 (struct symbol *sym)
6211 {
6212 SYMBOL_OBJFILE_OWNED (sym) = 1;
6213 SYMBOL_SECTION (sym) = -1;
6214 }
6215
6216 /* Initialize the symbol SYM, and mark it as being owned by an objfile. */
6217
6218 void
6219 initialize_objfile_symbol (struct symbol *sym)
6220 {
6221 memset (sym, 0, sizeof (*sym));
6222 initialize_objfile_symbol_1 (sym);
6223 }
6224
6225 /* Allocate and initialize a new 'struct symbol' on OBJFILE's
6226 obstack. */
6227
6228 struct symbol *
6229 allocate_symbol (struct objfile *objfile)
6230 {
6231 struct symbol *result;
6232
6233 result = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symbol);
6234 initialize_objfile_symbol_1 (result);
6235
6236 return result;
6237 }
6238
6239 /* Allocate and initialize a new 'struct template_symbol' on OBJFILE's
6240 obstack. */
6241
6242 struct template_symbol *
6243 allocate_template_symbol (struct objfile *objfile)
6244 {
6245 struct template_symbol *result;
6246
6247 result = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct template_symbol);
6248 initialize_objfile_symbol_1 (&result->base);
6249
6250 return result;
6251 }
6252
6253 /* See symtab.h. */
6254
6255 struct objfile *
6256 symbol_objfile (const struct symbol *symbol)
6257 {
6258 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
6259 return SYMTAB_OBJFILE (symbol->owner.symtab);
6260 }
6261
6262 /* See symtab.h. */
6263
6264 struct gdbarch *
6265 symbol_arch (const struct symbol *symbol)
6266 {
6267 if (!SYMBOL_OBJFILE_OWNED (symbol))
6268 return symbol->owner.arch;
6269 return get_objfile_arch (SYMTAB_OBJFILE (symbol->owner.symtab));
6270 }
6271
6272 /* See symtab.h. */
6273
6274 struct symtab *
6275 symbol_symtab (const struct symbol *symbol)
6276 {
6277 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
6278 return symbol->owner.symtab;
6279 }
6280
6281 /* See symtab.h. */
6282
6283 void
6284 symbol_set_symtab (struct symbol *symbol, struct symtab *symtab)
6285 {
6286 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
6287 symbol->owner.symtab = symtab;
6288 }
6289
6290 \f
6291
6292 void
6293 _initialize_symtab (void)
6294 {
6295 initialize_ordinary_address_classes ();
6296
6297 main_progspace_key
6298 = register_program_space_data_with_cleanup (NULL, main_info_cleanup);
6299
6300 symbol_cache_key
6301 = register_program_space_data_with_cleanup (NULL, symbol_cache_cleanup);
6302
6303 add_info ("variables", variables_info, _("\
6304 All global and static variable names, or those matching REGEXP."));
6305 if (dbx_commands)
6306 add_com ("whereis", class_info, variables_info, _("\
6307 All global and static variable names, or those matching REGEXP."));
6308
6309 add_info ("functions", functions_info,
6310 _("All function names, or those matching REGEXP."));
6311
6312 /* FIXME: This command has at least the following problems:
6313 1. It prints builtin types (in a very strange and confusing fashion).
6314 2. It doesn't print right, e.g. with
6315 typedef struct foo *FOO
6316 type_print prints "FOO" when we want to make it (in this situation)
6317 print "struct foo *".
6318 I also think "ptype" or "whatis" is more likely to be useful (but if
6319 there is much disagreement "info types" can be fixed). */
6320 add_info ("types", types_info,
6321 _("All type names, or those matching REGEXP."));
6322
6323 add_info ("sources", sources_info,
6324 _("Source files in the program."));
6325
6326 add_com ("rbreak", class_breakpoint, rbreak_command,
6327 _("Set a breakpoint for all functions matching REGEXP."));
6328
6329 add_setshow_enum_cmd ("multiple-symbols", no_class,
6330 multiple_symbols_modes, &multiple_symbols_mode,
6331 _("\
6332 Set the debugger behavior when more than one symbol are possible matches\n\
6333 in an expression."), _("\
6334 Show how the debugger handles ambiguities in expressions."), _("\
6335 Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
6336 NULL, NULL, &setlist, &showlist);
6337
6338 add_setshow_boolean_cmd ("basenames-may-differ", class_obscure,
6339 &basenames_may_differ, _("\
6340 Set whether a source file may have multiple base names."), _("\
6341 Show whether a source file may have multiple base names."), _("\
6342 (A \"base name\" is the name of a file with the directory part removed.\n\
6343 Example: The base name of \"/home/user/hello.c\" is \"hello.c\".)\n\
6344 If set, GDB will canonicalize file names (e.g., expand symlinks)\n\
6345 before comparing them. Canonicalization is an expensive operation,\n\
6346 but it allows the same file be known by more than one base name.\n\
6347 If not set (the default), all source files are assumed to have just\n\
6348 one base name, and gdb will do file name comparisons more efficiently."),
6349 NULL, NULL,
6350 &setlist, &showlist);
6351
6352 add_setshow_zuinteger_cmd ("symtab-create", no_class, &symtab_create_debug,
6353 _("Set debugging of symbol table creation."),
6354 _("Show debugging of symbol table creation."), _("\
6355 When enabled (non-zero), debugging messages are printed when building\n\
6356 symbol tables. A value of 1 (one) normally provides enough information.\n\
6357 A value greater than 1 provides more verbose information."),
6358 NULL,
6359 NULL,
6360 &setdebuglist, &showdebuglist);
6361
6362 add_setshow_zuinteger_cmd ("symbol-lookup", no_class, &symbol_lookup_debug,
6363 _("\
6364 Set debugging of symbol lookup."), _("\
6365 Show debugging of symbol lookup."), _("\
6366 When enabled (non-zero), symbol lookups are logged."),
6367 NULL, NULL,
6368 &setdebuglist, &showdebuglist);
6369
6370 add_setshow_zuinteger_cmd ("symbol-cache-size", no_class,
6371 &new_symbol_cache_size,
6372 _("Set the size of the symbol cache."),
6373 _("Show the size of the symbol cache."), _("\
6374 The size of the symbol cache.\n\
6375 If zero then the symbol cache is disabled."),
6376 set_symbol_cache_size_handler, NULL,
6377 &maintenance_set_cmdlist,
6378 &maintenance_show_cmdlist);
6379
6380 add_cmd ("symbol-cache", class_maintenance, maintenance_print_symbol_cache,
6381 _("Dump the symbol cache for each program space."),
6382 &maintenanceprintlist);
6383
6384 add_cmd ("symbol-cache-statistics", class_maintenance,
6385 maintenance_print_symbol_cache_statistics,
6386 _("Print symbol cache statistics for each program space."),
6387 &maintenanceprintlist);
6388
6389 add_cmd ("flush-symbol-cache", class_maintenance,
6390 maintenance_flush_symbol_cache,
6391 _("Flush the symbol cache for each program space."),
6392 &maintenancelist);
6393
6394 observer_attach_executable_changed (symtab_observer_executable_changed);
6395 observer_attach_new_objfile (symtab_new_objfile_observer);
6396 observer_attach_free_objfile (symtab_free_objfile_observer);
6397 }
This page took 0.162522 seconds and 4 git commands to generate.