* symtab.h (domain_enum): Split in two...
[deliverable/binutils-gdb.git] / gdb / symtab.c
1 /* Symbol table lookup for the GNU debugger, GDB.
2
3 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2007, 2008, 2009,
5 2010, 2011 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "symtab.h"
24 #include "gdbtypes.h"
25 #include "gdbcore.h"
26 #include "frame.h"
27 #include "target.h"
28 #include "value.h"
29 #include "symfile.h"
30 #include "objfiles.h"
31 #include "gdbcmd.h"
32 #include "call-cmds.h"
33 #include "gdb_regex.h"
34 #include "expression.h"
35 #include "language.h"
36 #include "demangle.h"
37 #include "inferior.h"
38 #include "linespec.h"
39 #include "source.h"
40 #include "filenames.h" /* for FILENAME_CMP */
41 #include "objc-lang.h"
42 #include "d-lang.h"
43 #include "ada-lang.h"
44 #include "p-lang.h"
45 #include "addrmap.h"
46
47 #include "hashtab.h"
48
49 #include "gdb_obstack.h"
50 #include "block.h"
51 #include "dictionary.h"
52
53 #include <sys/types.h>
54 #include <fcntl.h>
55 #include "gdb_string.h"
56 #include "gdb_stat.h"
57 #include <ctype.h>
58 #include "cp-abi.h"
59 #include "cp-support.h"
60 #include "observer.h"
61 #include "gdb_assert.h"
62 #include "solist.h"
63 #include "macrotab.h"
64 #include "macroscope.h"
65
66 #include "psymtab.h"
67
68 /* Prototypes for local functions */
69
70 static void completion_list_add_name (char *, char *, int, char *, char *);
71
72 static void rbreak_command (char *, int);
73
74 static void types_info (char *, int);
75
76 static void functions_info (char *, int);
77
78 static void variables_info (char *, int);
79
80 static void sources_info (char *, int);
81
82 static void output_source_filename (const char *, int *);
83
84 static int find_line_common (struct linetable *, int, int *);
85
86 /* This one is used by linespec.c */
87
88 char *operator_chars (char *p, char **end);
89
90 static struct symbol *lookup_symbol_aux (const char *name,
91 const struct block *block,
92 const domain_enum domain,
93 enum language language,
94 int *is_a_field_of_this);
95
96 static
97 struct symbol *lookup_symbol_aux_local (const char *name,
98 const struct block *block,
99 const domain_enum domain,
100 enum language language);
101
102 static
103 struct symbol *lookup_symbol_aux_symtabs (int block_index,
104 const char *name,
105 const domain_enum domain);
106
107 static
108 struct symbol *lookup_symbol_aux_quick (struct objfile *objfile,
109 int block_index,
110 const char *name,
111 const domain_enum domain);
112
113 static void print_msymbol_info (struct minimal_symbol *);
114
115 void _initialize_symtab (void);
116
117 /* */
118
119 /* Allow the user to configure the debugger behavior with respect
120 to multiple-choice menus when more than one symbol matches during
121 a symbol lookup. */
122
123 const char multiple_symbols_ask[] = "ask";
124 const char multiple_symbols_all[] = "all";
125 const char multiple_symbols_cancel[] = "cancel";
126 static const char *multiple_symbols_modes[] =
127 {
128 multiple_symbols_ask,
129 multiple_symbols_all,
130 multiple_symbols_cancel,
131 NULL
132 };
133 static const char *multiple_symbols_mode = multiple_symbols_all;
134
135 /* Read-only accessor to AUTO_SELECT_MODE. */
136
137 const char *
138 multiple_symbols_select_mode (void)
139 {
140 return multiple_symbols_mode;
141 }
142
143 /* Block in which the most recently searched-for symbol was found.
144 Might be better to make this a parameter to lookup_symbol and
145 value_of_this. */
146
147 const struct block *block_found;
148
149 /* Check for a symtab of a specific name; first in symtabs, then in
150 psymtabs. *If* there is no '/' in the name, a match after a '/'
151 in the symtab filename will also work. */
152
153 struct symtab *
154 lookup_symtab (const char *name)
155 {
156 int found;
157 struct symtab *s = NULL;
158 struct objfile *objfile;
159 char *real_path = NULL;
160 char *full_path = NULL;
161
162 /* Here we are interested in canonicalizing an absolute path, not
163 absolutizing a relative path. */
164 if (IS_ABSOLUTE_PATH (name))
165 {
166 full_path = xfullpath (name);
167 make_cleanup (xfree, full_path);
168 real_path = gdb_realpath (name);
169 make_cleanup (xfree, real_path);
170 }
171
172 got_symtab:
173
174 /* First, search for an exact match. */
175
176 ALL_SYMTABS (objfile, s)
177 {
178 if (FILENAME_CMP (name, s->filename) == 0)
179 {
180 return s;
181 }
182
183 /* If the user gave us an absolute path, try to find the file in
184 this symtab and use its absolute path. */
185
186 if (full_path != NULL)
187 {
188 const char *fp = symtab_to_fullname (s);
189
190 if (fp != NULL && FILENAME_CMP (full_path, fp) == 0)
191 {
192 return s;
193 }
194 }
195
196 if (real_path != NULL)
197 {
198 char *fullname = symtab_to_fullname (s);
199
200 if (fullname != NULL)
201 {
202 char *rp = gdb_realpath (fullname);
203
204 make_cleanup (xfree, rp);
205 if (FILENAME_CMP (real_path, rp) == 0)
206 {
207 return s;
208 }
209 }
210 }
211 }
212
213 /* Now, search for a matching tail (only if name doesn't have any dirs). */
214
215 if (lbasename (name) == name)
216 ALL_SYMTABS (objfile, s)
217 {
218 if (FILENAME_CMP (lbasename (s->filename), name) == 0)
219 return s;
220 }
221
222 /* Same search rules as above apply here, but now we look thru the
223 psymtabs. */
224
225 found = 0;
226 ALL_OBJFILES (objfile)
227 {
228 if (objfile->sf
229 && objfile->sf->qf->lookup_symtab (objfile, name, full_path, real_path,
230 &s))
231 {
232 found = 1;
233 break;
234 }
235 }
236
237 if (s != NULL)
238 return s;
239 if (!found)
240 return NULL;
241
242 /* At this point, we have located the psymtab for this file, but
243 the conversion to a symtab has failed. This usually happens
244 when we are looking up an include file. In this case,
245 PSYMTAB_TO_SYMTAB doesn't return a symtab, even though one has
246 been created. So, we need to run through the symtabs again in
247 order to find the file.
248 XXX - This is a crock, and should be fixed inside of the the
249 symbol parsing routines. */
250 goto got_symtab;
251 }
252 \f
253 /* Mangle a GDB method stub type. This actually reassembles the pieces of the
254 full method name, which consist of the class name (from T), the unadorned
255 method name from METHOD_ID, and the signature for the specific overload,
256 specified by SIGNATURE_ID. Note that this function is g++ specific. */
257
258 char *
259 gdb_mangle_name (struct type *type, int method_id, int signature_id)
260 {
261 int mangled_name_len;
262 char *mangled_name;
263 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
264 struct fn_field *method = &f[signature_id];
265 char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
266 char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
267 char *newname = type_name_no_tag (type);
268
269 /* Does the form of physname indicate that it is the full mangled name
270 of a constructor (not just the args)? */
271 int is_full_physname_constructor;
272
273 int is_constructor;
274 int is_destructor = is_destructor_name (physname);
275 /* Need a new type prefix. */
276 char *const_prefix = method->is_const ? "C" : "";
277 char *volatile_prefix = method->is_volatile ? "V" : "";
278 char buf[20];
279 int len = (newname == NULL ? 0 : strlen (newname));
280
281 /* Nothing to do if physname already contains a fully mangled v3 abi name
282 or an operator name. */
283 if ((physname[0] == '_' && physname[1] == 'Z')
284 || is_operator_name (field_name))
285 return xstrdup (physname);
286
287 is_full_physname_constructor = is_constructor_name (physname);
288
289 is_constructor = is_full_physname_constructor
290 || (newname && strcmp (field_name, newname) == 0);
291
292 if (!is_destructor)
293 is_destructor = (strncmp (physname, "__dt", 4) == 0);
294
295 if (is_destructor || is_full_physname_constructor)
296 {
297 mangled_name = (char *) xmalloc (strlen (physname) + 1);
298 strcpy (mangled_name, physname);
299 return mangled_name;
300 }
301
302 if (len == 0)
303 {
304 sprintf (buf, "__%s%s", const_prefix, volatile_prefix);
305 }
306 else if (physname[0] == 't' || physname[0] == 'Q')
307 {
308 /* The physname for template and qualified methods already includes
309 the class name. */
310 sprintf (buf, "__%s%s", const_prefix, volatile_prefix);
311 newname = NULL;
312 len = 0;
313 }
314 else
315 {
316 sprintf (buf, "__%s%s%d", const_prefix, volatile_prefix, len);
317 }
318 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
319 + strlen (buf) + len + strlen (physname) + 1);
320
321 mangled_name = (char *) xmalloc (mangled_name_len);
322 if (is_constructor)
323 mangled_name[0] = '\0';
324 else
325 strcpy (mangled_name, field_name);
326
327 strcat (mangled_name, buf);
328 /* If the class doesn't have a name, i.e. newname NULL, then we just
329 mangle it using 0 for the length of the class. Thus it gets mangled
330 as something starting with `::' rather than `classname::'. */
331 if (newname != NULL)
332 strcat (mangled_name, newname);
333
334 strcat (mangled_name, physname);
335 return (mangled_name);
336 }
337
338 /* Initialize the cplus_specific structure. 'cplus_specific' should
339 only be allocated for use with cplus symbols. */
340
341 static void
342 symbol_init_cplus_specific (struct general_symbol_info *gsymbol,
343 struct objfile *objfile)
344 {
345 /* A language_specific structure should not have been previously
346 initialized. */
347 gdb_assert (gsymbol->language_specific.cplus_specific == NULL);
348 gdb_assert (objfile != NULL);
349
350 gsymbol->language_specific.cplus_specific =
351 OBSTACK_ZALLOC (&objfile->objfile_obstack, struct cplus_specific);
352 }
353
354 /* Set the demangled name of GSYMBOL to NAME. NAME must be already
355 correctly allocated. For C++ symbols a cplus_specific struct is
356 allocated so OBJFILE must not be NULL. If this is a non C++ symbol
357 OBJFILE can be NULL. */
358 void
359 symbol_set_demangled_name (struct general_symbol_info *gsymbol,
360 char *name,
361 struct objfile *objfile)
362 {
363 if (gsymbol->language == language_cplus)
364 {
365 if (gsymbol->language_specific.cplus_specific == NULL)
366 symbol_init_cplus_specific (gsymbol, objfile);
367
368 gsymbol->language_specific.cplus_specific->demangled_name = name;
369 }
370 else
371 gsymbol->language_specific.mangled_lang.demangled_name = name;
372 }
373
374 /* Return the demangled name of GSYMBOL. */
375 char *
376 symbol_get_demangled_name (const struct general_symbol_info *gsymbol)
377 {
378 if (gsymbol->language == language_cplus)
379 {
380 if (gsymbol->language_specific.cplus_specific != NULL)
381 return gsymbol->language_specific.cplus_specific->demangled_name;
382 else
383 return NULL;
384 }
385 else
386 return gsymbol->language_specific.mangled_lang.demangled_name;
387 }
388
389 \f
390 /* Initialize the language dependent portion of a symbol
391 depending upon the language for the symbol. */
392 void
393 symbol_set_language (struct general_symbol_info *gsymbol,
394 enum language language)
395 {
396 gsymbol->language = language;
397 if (gsymbol->language == language_d
398 || gsymbol->language == language_java
399 || gsymbol->language == language_objc
400 || gsymbol->language == language_fortran)
401 {
402 symbol_set_demangled_name (gsymbol, NULL, NULL);
403 }
404 else if (gsymbol->language == language_cplus)
405 gsymbol->language_specific.cplus_specific = NULL;
406 else
407 {
408 memset (&gsymbol->language_specific, 0,
409 sizeof (gsymbol->language_specific));
410 }
411 }
412
413 /* Functions to initialize a symbol's mangled name. */
414
415 /* Objects of this type are stored in the demangled name hash table. */
416 struct demangled_name_entry
417 {
418 char *mangled;
419 char demangled[1];
420 };
421
422 /* Hash function for the demangled name hash. */
423 static hashval_t
424 hash_demangled_name_entry (const void *data)
425 {
426 const struct demangled_name_entry *e = data;
427
428 return htab_hash_string (e->mangled);
429 }
430
431 /* Equality function for the demangled name hash. */
432 static int
433 eq_demangled_name_entry (const void *a, const void *b)
434 {
435 const struct demangled_name_entry *da = a;
436 const struct demangled_name_entry *db = b;
437
438 return strcmp (da->mangled, db->mangled) == 0;
439 }
440
441 /* Create the hash table used for demangled names. Each hash entry is
442 a pair of strings; one for the mangled name and one for the demangled
443 name. The entry is hashed via just the mangled name. */
444
445 static void
446 create_demangled_names_hash (struct objfile *objfile)
447 {
448 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
449 The hash table code will round this up to the next prime number.
450 Choosing a much larger table size wastes memory, and saves only about
451 1% in symbol reading. */
452
453 objfile->demangled_names_hash = htab_create_alloc
454 (256, hash_demangled_name_entry, eq_demangled_name_entry,
455 NULL, xcalloc, xfree);
456 }
457
458 /* Try to determine the demangled name for a symbol, based on the
459 language of that symbol. If the language is set to language_auto,
460 it will attempt to find any demangling algorithm that works and
461 then set the language appropriately. The returned name is allocated
462 by the demangler and should be xfree'd. */
463
464 static char *
465 symbol_find_demangled_name (struct general_symbol_info *gsymbol,
466 const char *mangled)
467 {
468 char *demangled = NULL;
469
470 if (gsymbol->language == language_unknown)
471 gsymbol->language = language_auto;
472
473 if (gsymbol->language == language_objc
474 || gsymbol->language == language_auto)
475 {
476 demangled =
477 objc_demangle (mangled, 0);
478 if (demangled != NULL)
479 {
480 gsymbol->language = language_objc;
481 return demangled;
482 }
483 }
484 if (gsymbol->language == language_cplus
485 || gsymbol->language == language_auto)
486 {
487 demangled =
488 cplus_demangle (mangled, DMGL_PARAMS | DMGL_ANSI | DMGL_VERBOSE);
489 if (demangled != NULL)
490 {
491 gsymbol->language = language_cplus;
492 return demangled;
493 }
494 }
495 if (gsymbol->language == language_java)
496 {
497 demangled =
498 cplus_demangle (mangled,
499 DMGL_PARAMS | DMGL_ANSI | DMGL_JAVA);
500 if (demangled != NULL)
501 {
502 gsymbol->language = language_java;
503 return demangled;
504 }
505 }
506 if (gsymbol->language == language_d
507 || gsymbol->language == language_auto)
508 {
509 demangled = d_demangle(mangled, 0);
510 if (demangled != NULL)
511 {
512 gsymbol->language = language_d;
513 return demangled;
514 }
515 }
516 /* We could support `gsymbol->language == language_fortran' here to provide
517 module namespaces also for inferiors with only minimal symbol table (ELF
518 symbols). Just the mangling standard is not standardized across compilers
519 and there is no DW_AT_producer available for inferiors with only the ELF
520 symbols to check the mangling kind. */
521 return NULL;
522 }
523
524 /* Set both the mangled and demangled (if any) names for GSYMBOL based
525 on LINKAGE_NAME and LEN. Ordinarily, NAME is copied onto the
526 objfile's obstack; but if COPY_NAME is 0 and if NAME is
527 NUL-terminated, then this function assumes that NAME is already
528 correctly saved (either permanently or with a lifetime tied to the
529 objfile), and it will not be copied.
530
531 The hash table corresponding to OBJFILE is used, and the memory
532 comes from that objfile's objfile_obstack. LINKAGE_NAME is copied,
533 so the pointer can be discarded after calling this function. */
534
535 /* We have to be careful when dealing with Java names: when we run
536 into a Java minimal symbol, we don't know it's a Java symbol, so it
537 gets demangled as a C++ name. This is unfortunate, but there's not
538 much we can do about it: but when demangling partial symbols and
539 regular symbols, we'd better not reuse the wrong demangled name.
540 (See PR gdb/1039.) We solve this by putting a distinctive prefix
541 on Java names when storing them in the hash table. */
542
543 /* FIXME: carlton/2003-03-13: This is an unfortunate situation. I
544 don't mind the Java prefix so much: different languages have
545 different demangling requirements, so it's only natural that we
546 need to keep language data around in our demangling cache. But
547 it's not good that the minimal symbol has the wrong demangled name.
548 Unfortunately, I can't think of any easy solution to that
549 problem. */
550
551 #define JAVA_PREFIX "##JAVA$$"
552 #define JAVA_PREFIX_LEN 8
553
554 void
555 symbol_set_names (struct general_symbol_info *gsymbol,
556 const char *linkage_name, int len, int copy_name,
557 struct objfile *objfile)
558 {
559 struct demangled_name_entry **slot;
560 /* A 0-terminated copy of the linkage name. */
561 const char *linkage_name_copy;
562 /* A copy of the linkage name that might have a special Java prefix
563 added to it, for use when looking names up in the hash table. */
564 const char *lookup_name;
565 /* The length of lookup_name. */
566 int lookup_len;
567 struct demangled_name_entry entry;
568
569 if (gsymbol->language == language_ada)
570 {
571 /* In Ada, we do the symbol lookups using the mangled name, so
572 we can save some space by not storing the demangled name.
573
574 As a side note, we have also observed some overlap between
575 the C++ mangling and Ada mangling, similarly to what has
576 been observed with Java. Because we don't store the demangled
577 name with the symbol, we don't need to use the same trick
578 as Java. */
579 if (!copy_name)
580 gsymbol->name = (char *) linkage_name;
581 else
582 {
583 gsymbol->name = obstack_alloc (&objfile->objfile_obstack, len + 1);
584 memcpy (gsymbol->name, linkage_name, len);
585 gsymbol->name[len] = '\0';
586 }
587 symbol_set_demangled_name (gsymbol, NULL, NULL);
588
589 return;
590 }
591
592 if (objfile->demangled_names_hash == NULL)
593 create_demangled_names_hash (objfile);
594
595 /* The stabs reader generally provides names that are not
596 NUL-terminated; most of the other readers don't do this, so we
597 can just use the given copy, unless we're in the Java case. */
598 if (gsymbol->language == language_java)
599 {
600 char *alloc_name;
601
602 lookup_len = len + JAVA_PREFIX_LEN;
603 alloc_name = alloca (lookup_len + 1);
604 memcpy (alloc_name, JAVA_PREFIX, JAVA_PREFIX_LEN);
605 memcpy (alloc_name + JAVA_PREFIX_LEN, linkage_name, len);
606 alloc_name[lookup_len] = '\0';
607
608 lookup_name = alloc_name;
609 linkage_name_copy = alloc_name + JAVA_PREFIX_LEN;
610 }
611 else if (linkage_name[len] != '\0')
612 {
613 char *alloc_name;
614
615 lookup_len = len;
616 alloc_name = alloca (lookup_len + 1);
617 memcpy (alloc_name, linkage_name, len);
618 alloc_name[lookup_len] = '\0';
619
620 lookup_name = alloc_name;
621 linkage_name_copy = alloc_name;
622 }
623 else
624 {
625 lookup_len = len;
626 lookup_name = linkage_name;
627 linkage_name_copy = linkage_name;
628 }
629
630 entry.mangled = (char *) lookup_name;
631 slot = ((struct demangled_name_entry **)
632 htab_find_slot (objfile->demangled_names_hash,
633 &entry, INSERT));
634
635 /* If this name is not in the hash table, add it. */
636 if (*slot == NULL)
637 {
638 char *demangled_name = symbol_find_demangled_name (gsymbol,
639 linkage_name_copy);
640 int demangled_len = demangled_name ? strlen (demangled_name) : 0;
641
642 /* Suppose we have demangled_name==NULL, copy_name==0, and
643 lookup_name==linkage_name. In this case, we already have the
644 mangled name saved, and we don't have a demangled name. So,
645 you might think we could save a little space by not recording
646 this in the hash table at all.
647
648 It turns out that it is actually important to still save such
649 an entry in the hash table, because storing this name gives
650 us better bcache hit rates for partial symbols. */
651 if (!copy_name && lookup_name == linkage_name)
652 {
653 *slot = obstack_alloc (&objfile->objfile_obstack,
654 offsetof (struct demangled_name_entry,
655 demangled)
656 + demangled_len + 1);
657 (*slot)->mangled = (char *) lookup_name;
658 }
659 else
660 {
661 /* If we must copy the mangled name, put it directly after
662 the demangled name so we can have a single
663 allocation. */
664 *slot = obstack_alloc (&objfile->objfile_obstack,
665 offsetof (struct demangled_name_entry,
666 demangled)
667 + lookup_len + demangled_len + 2);
668 (*slot)->mangled = &((*slot)->demangled[demangled_len + 1]);
669 strcpy ((*slot)->mangled, lookup_name);
670 }
671
672 if (demangled_name != NULL)
673 {
674 strcpy ((*slot)->demangled, demangled_name);
675 xfree (demangled_name);
676 }
677 else
678 (*slot)->demangled[0] = '\0';
679 }
680
681 gsymbol->name = (*slot)->mangled + lookup_len - len;
682 if ((*slot)->demangled[0] != '\0')
683 symbol_set_demangled_name (gsymbol, (*slot)->demangled, objfile);
684 else
685 symbol_set_demangled_name (gsymbol, NULL, objfile);
686 }
687
688 /* Return the source code name of a symbol. In languages where
689 demangling is necessary, this is the demangled name. */
690
691 char *
692 symbol_natural_name (const struct general_symbol_info *gsymbol)
693 {
694 switch (gsymbol->language)
695 {
696 case language_cplus:
697 case language_d:
698 case language_java:
699 case language_objc:
700 case language_fortran:
701 if (symbol_get_demangled_name (gsymbol) != NULL)
702 return symbol_get_demangled_name (gsymbol);
703 break;
704 case language_ada:
705 if (symbol_get_demangled_name (gsymbol) != NULL)
706 return symbol_get_demangled_name (gsymbol);
707 else
708 return ada_decode_symbol (gsymbol);
709 break;
710 default:
711 break;
712 }
713 return gsymbol->name;
714 }
715
716 /* Return the demangled name for a symbol based on the language for
717 that symbol. If no demangled name exists, return NULL. */
718 char *
719 symbol_demangled_name (const struct general_symbol_info *gsymbol)
720 {
721 switch (gsymbol->language)
722 {
723 case language_cplus:
724 case language_d:
725 case language_java:
726 case language_objc:
727 case language_fortran:
728 if (symbol_get_demangled_name (gsymbol) != NULL)
729 return symbol_get_demangled_name (gsymbol);
730 break;
731 case language_ada:
732 if (symbol_get_demangled_name (gsymbol) != NULL)
733 return symbol_get_demangled_name (gsymbol);
734 else
735 return ada_decode_symbol (gsymbol);
736 break;
737 default:
738 break;
739 }
740 return NULL;
741 }
742
743 /* Return the search name of a symbol---generally the demangled or
744 linkage name of the symbol, depending on how it will be searched for.
745 If there is no distinct demangled name, then returns the same value
746 (same pointer) as SYMBOL_LINKAGE_NAME. */
747 char *
748 symbol_search_name (const struct general_symbol_info *gsymbol)
749 {
750 if (gsymbol->language == language_ada)
751 return gsymbol->name;
752 else
753 return symbol_natural_name (gsymbol);
754 }
755
756 /* Initialize the structure fields to zero values. */
757 void
758 init_sal (struct symtab_and_line *sal)
759 {
760 sal->pspace = NULL;
761 sal->symtab = 0;
762 sal->section = 0;
763 sal->line = 0;
764 sal->pc = 0;
765 sal->end = 0;
766 sal->explicit_pc = 0;
767 sal->explicit_line = 0;
768 }
769 \f
770
771 /* Return 1 if the two sections are the same, or if they could
772 plausibly be copies of each other, one in an original object
773 file and another in a separated debug file. */
774
775 int
776 matching_obj_sections (struct obj_section *obj_first,
777 struct obj_section *obj_second)
778 {
779 asection *first = obj_first? obj_first->the_bfd_section : NULL;
780 asection *second = obj_second? obj_second->the_bfd_section : NULL;
781 struct objfile *obj;
782
783 /* If they're the same section, then they match. */
784 if (first == second)
785 return 1;
786
787 /* If either is NULL, give up. */
788 if (first == NULL || second == NULL)
789 return 0;
790
791 /* This doesn't apply to absolute symbols. */
792 if (first->owner == NULL || second->owner == NULL)
793 return 0;
794
795 /* If they're in the same object file, they must be different sections. */
796 if (first->owner == second->owner)
797 return 0;
798
799 /* Check whether the two sections are potentially corresponding. They must
800 have the same size, address, and name. We can't compare section indexes,
801 which would be more reliable, because some sections may have been
802 stripped. */
803 if (bfd_get_section_size (first) != bfd_get_section_size (second))
804 return 0;
805
806 /* In-memory addresses may start at a different offset, relativize them. */
807 if (bfd_get_section_vma (first->owner, first)
808 - bfd_get_start_address (first->owner)
809 != bfd_get_section_vma (second->owner, second)
810 - bfd_get_start_address (second->owner))
811 return 0;
812
813 if (bfd_get_section_name (first->owner, first) == NULL
814 || bfd_get_section_name (second->owner, second) == NULL
815 || strcmp (bfd_get_section_name (first->owner, first),
816 bfd_get_section_name (second->owner, second)) != 0)
817 return 0;
818
819 /* Otherwise check that they are in corresponding objfiles. */
820
821 ALL_OBJFILES (obj)
822 if (obj->obfd == first->owner)
823 break;
824 gdb_assert (obj != NULL);
825
826 if (obj->separate_debug_objfile != NULL
827 && obj->separate_debug_objfile->obfd == second->owner)
828 return 1;
829 if (obj->separate_debug_objfile_backlink != NULL
830 && obj->separate_debug_objfile_backlink->obfd == second->owner)
831 return 1;
832
833 return 0;
834 }
835
836 struct symtab *
837 find_pc_sect_symtab_via_partial (CORE_ADDR pc, struct obj_section *section)
838 {
839 struct objfile *objfile;
840 struct minimal_symbol *msymbol;
841
842 /* If we know that this is not a text address, return failure. This is
843 necessary because we loop based on texthigh and textlow, which do
844 not include the data ranges. */
845 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
846 if (msymbol
847 && (MSYMBOL_TYPE (msymbol) == mst_data
848 || MSYMBOL_TYPE (msymbol) == mst_bss
849 || MSYMBOL_TYPE (msymbol) == mst_abs
850 || MSYMBOL_TYPE (msymbol) == mst_file_data
851 || MSYMBOL_TYPE (msymbol) == mst_file_bss))
852 return NULL;
853
854 ALL_OBJFILES (objfile)
855 {
856 struct symtab *result = NULL;
857
858 if (objfile->sf)
859 result = objfile->sf->qf->find_pc_sect_symtab (objfile, msymbol,
860 pc, section, 0);
861 if (result)
862 return result;
863 }
864
865 return NULL;
866 }
867 \f
868 /* Debug symbols usually don't have section information. We need to dig that
869 out of the minimal symbols and stash that in the debug symbol. */
870
871 void
872 fixup_section (struct general_symbol_info *ginfo,
873 CORE_ADDR addr, struct objfile *objfile)
874 {
875 struct minimal_symbol *msym;
876
877 /* First, check whether a minimal symbol with the same name exists
878 and points to the same address. The address check is required
879 e.g. on PowerPC64, where the minimal symbol for a function will
880 point to the function descriptor, while the debug symbol will
881 point to the actual function code. */
882 msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->name, objfile);
883 if (msym)
884 {
885 ginfo->obj_section = SYMBOL_OBJ_SECTION (msym);
886 ginfo->section = SYMBOL_SECTION (msym);
887 }
888 else
889 {
890 /* Static, function-local variables do appear in the linker
891 (minimal) symbols, but are frequently given names that won't
892 be found via lookup_minimal_symbol(). E.g., it has been
893 observed in frv-uclinux (ELF) executables that a static,
894 function-local variable named "foo" might appear in the
895 linker symbols as "foo.6" or "foo.3". Thus, there is no
896 point in attempting to extend the lookup-by-name mechanism to
897 handle this case due to the fact that there can be multiple
898 names.
899
900 So, instead, search the section table when lookup by name has
901 failed. The ``addr'' and ``endaddr'' fields may have already
902 been relocated. If so, the relocation offset (i.e. the
903 ANOFFSET value) needs to be subtracted from these values when
904 performing the comparison. We unconditionally subtract it,
905 because, when no relocation has been performed, the ANOFFSET
906 value will simply be zero.
907
908 The address of the symbol whose section we're fixing up HAS
909 NOT BEEN adjusted (relocated) yet. It can't have been since
910 the section isn't yet known and knowing the section is
911 necessary in order to add the correct relocation value. In
912 other words, we wouldn't even be in this function (attempting
913 to compute the section) if it were already known.
914
915 Note that it is possible to search the minimal symbols
916 (subtracting the relocation value if necessary) to find the
917 matching minimal symbol, but this is overkill and much less
918 efficient. It is not necessary to find the matching minimal
919 symbol, only its section.
920
921 Note that this technique (of doing a section table search)
922 can fail when unrelocated section addresses overlap. For
923 this reason, we still attempt a lookup by name prior to doing
924 a search of the section table. */
925
926 struct obj_section *s;
927
928 ALL_OBJFILE_OSECTIONS (objfile, s)
929 {
930 int idx = s->the_bfd_section->index;
931 CORE_ADDR offset = ANOFFSET (objfile->section_offsets, idx);
932
933 if (obj_section_addr (s) - offset <= addr
934 && addr < obj_section_endaddr (s) - offset)
935 {
936 ginfo->obj_section = s;
937 ginfo->section = idx;
938 return;
939 }
940 }
941 }
942 }
943
944 struct symbol *
945 fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
946 {
947 CORE_ADDR addr;
948
949 if (!sym)
950 return NULL;
951
952 if (SYMBOL_OBJ_SECTION (sym))
953 return sym;
954
955 /* We either have an OBJFILE, or we can get at it from the sym's
956 symtab. Anything else is a bug. */
957 gdb_assert (objfile || SYMBOL_SYMTAB (sym));
958
959 if (objfile == NULL)
960 objfile = SYMBOL_SYMTAB (sym)->objfile;
961
962 /* We should have an objfile by now. */
963 gdb_assert (objfile);
964
965 switch (SYMBOL_CLASS (sym))
966 {
967 case LOC_STATIC:
968 case LOC_LABEL:
969 addr = SYMBOL_VALUE_ADDRESS (sym);
970 break;
971 case LOC_BLOCK:
972 addr = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
973 break;
974
975 default:
976 /* Nothing else will be listed in the minsyms -- no use looking
977 it up. */
978 return sym;
979 }
980
981 fixup_section (&sym->ginfo, addr, objfile);
982
983 return sym;
984 }
985
986 /* Find the definition for a specified symbol name NAME
987 in domain DOMAIN, visible from lexical block BLOCK.
988 Returns the struct symbol pointer, or zero if no symbol is found.
989 C++: if IS_A_FIELD_OF_THIS is nonzero on entry, check to see if
990 NAME is a field of the current implied argument `this'. If so set
991 *IS_A_FIELD_OF_THIS to 1, otherwise set it to zero.
992 BLOCK_FOUND is set to the block in which NAME is found (in the case of
993 a field of `this', value_of_this sets BLOCK_FOUND to the proper value.) */
994
995 /* This function has a bunch of loops in it and it would seem to be
996 attractive to put in some QUIT's (though I'm not really sure
997 whether it can run long enough to be really important). But there
998 are a few calls for which it would appear to be bad news to quit
999 out of here: find_proc_desc in alpha-tdep.c and mips-tdep.c. (Note
1000 that there is C++ code below which can error(), but that probably
1001 doesn't affect these calls since they are looking for a known
1002 variable and thus can probably assume it will never hit the C++
1003 code). */
1004
1005 struct symbol *
1006 lookup_symbol_in_language (const char *name, const struct block *block,
1007 const domain_enum domain, enum language lang,
1008 int *is_a_field_of_this)
1009 {
1010 char *demangled_name = NULL;
1011 const char *modified_name = NULL;
1012 struct symbol *returnval;
1013 struct cleanup *cleanup = make_cleanup (null_cleanup, 0);
1014
1015 modified_name = name;
1016
1017 /* If we are using C++, D, or Java, demangle the name before doing a
1018 lookup, so we can always binary search. */
1019 if (lang == language_cplus)
1020 {
1021 demangled_name = cplus_demangle (name, DMGL_ANSI | DMGL_PARAMS);
1022 if (demangled_name)
1023 {
1024 modified_name = demangled_name;
1025 make_cleanup (xfree, demangled_name);
1026 }
1027 else
1028 {
1029 /* If we were given a non-mangled name, canonicalize it
1030 according to the language (so far only for C++). */
1031 demangled_name = cp_canonicalize_string (name);
1032 if (demangled_name)
1033 {
1034 modified_name = demangled_name;
1035 make_cleanup (xfree, demangled_name);
1036 }
1037 }
1038 }
1039 else if (lang == language_java)
1040 {
1041 demangled_name = cplus_demangle (name,
1042 DMGL_ANSI | DMGL_PARAMS | DMGL_JAVA);
1043 if (demangled_name)
1044 {
1045 modified_name = demangled_name;
1046 make_cleanup (xfree, demangled_name);
1047 }
1048 }
1049 else if (lang == language_d)
1050 {
1051 demangled_name = d_demangle (name, 0);
1052 if (demangled_name)
1053 {
1054 modified_name = demangled_name;
1055 make_cleanup (xfree, demangled_name);
1056 }
1057 }
1058
1059 if (case_sensitivity == case_sensitive_off)
1060 {
1061 char *copy;
1062 int len, i;
1063
1064 len = strlen (name);
1065 copy = (char *) alloca (len + 1);
1066 for (i= 0; i < len; i++)
1067 copy[i] = tolower (name[i]);
1068 copy[len] = 0;
1069 modified_name = copy;
1070 }
1071
1072 returnval = lookup_symbol_aux (modified_name, block, domain, lang,
1073 is_a_field_of_this);
1074 do_cleanups (cleanup);
1075
1076 return returnval;
1077 }
1078
1079 /* Behave like lookup_symbol_in_language, but performed with the
1080 current language. */
1081
1082 struct symbol *
1083 lookup_symbol (const char *name, const struct block *block,
1084 domain_enum domain, int *is_a_field_of_this)
1085 {
1086 return lookup_symbol_in_language (name, block, domain,
1087 current_language->la_language,
1088 is_a_field_of_this);
1089 }
1090
1091 /* Behave like lookup_symbol except that NAME is the natural name
1092 of the symbol that we're looking for and, if LINKAGE_NAME is
1093 non-NULL, ensure that the symbol's linkage name matches as
1094 well. */
1095
1096 static struct symbol *
1097 lookup_symbol_aux (const char *name, const struct block *block,
1098 const domain_enum domain, enum language language,
1099 int *is_a_field_of_this)
1100 {
1101 struct symbol *sym;
1102 const struct language_defn *langdef;
1103
1104 /* Make sure we do something sensible with is_a_field_of_this, since
1105 the callers that set this parameter to some non-null value will
1106 certainly use it later and expect it to be either 0 or 1.
1107 If we don't set it, the contents of is_a_field_of_this are
1108 undefined. */
1109 if (is_a_field_of_this != NULL)
1110 *is_a_field_of_this = 0;
1111
1112 /* Search specified block and its superiors. Don't search
1113 STATIC_BLOCK or GLOBAL_BLOCK. */
1114
1115 sym = lookup_symbol_aux_local (name, block, domain, language);
1116 if (sym != NULL)
1117 return sym;
1118
1119 /* If requested to do so by the caller and if appropriate for LANGUAGE,
1120 check to see if NAME is a field of `this'. */
1121
1122 langdef = language_def (language);
1123
1124 if (langdef->la_name_of_this != NULL && is_a_field_of_this != NULL
1125 && block != NULL)
1126 {
1127 struct symbol *sym = NULL;
1128 const struct block *function_block = block;
1129
1130 /* 'this' is only defined in the function's block, so find the
1131 enclosing function block. */
1132 for (; function_block && !BLOCK_FUNCTION (function_block);
1133 function_block = BLOCK_SUPERBLOCK (function_block));
1134
1135 if (function_block && !dict_empty (BLOCK_DICT (function_block)))
1136 sym = lookup_block_symbol (function_block, langdef->la_name_of_this,
1137 VAR_DOMAIN);
1138 if (sym)
1139 {
1140 struct type *t = sym->type;
1141
1142 /* I'm not really sure that type of this can ever
1143 be typedefed; just be safe. */
1144 CHECK_TYPEDEF (t);
1145 if (TYPE_CODE (t) == TYPE_CODE_PTR
1146 || TYPE_CODE (t) == TYPE_CODE_REF)
1147 t = TYPE_TARGET_TYPE (t);
1148
1149 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
1150 && TYPE_CODE (t) != TYPE_CODE_UNION)
1151 error (_("Internal error: `%s' is not an aggregate"),
1152 langdef->la_name_of_this);
1153
1154 if (check_field (t, name))
1155 {
1156 *is_a_field_of_this = 1;
1157 return NULL;
1158 }
1159 }
1160 }
1161
1162 /* Now do whatever is appropriate for LANGUAGE to look
1163 up static and global variables. */
1164
1165 sym = langdef->la_lookup_symbol_nonlocal (name, block, domain);
1166 if (sym != NULL)
1167 return sym;
1168
1169 /* Now search all static file-level symbols. Not strictly correct,
1170 but more useful than an error. */
1171
1172 return lookup_static_symbol_aux (name, domain);
1173 }
1174
1175 /* Search all static file-level symbols for NAME from DOMAIN. Do the symtabs
1176 first, then check the psymtabs. If a psymtab indicates the existence of the
1177 desired name as a file-level static, then do psymtab-to-symtab conversion on
1178 the fly and return the found symbol. */
1179
1180 struct symbol *
1181 lookup_static_symbol_aux (const char *name, const domain_enum domain)
1182 {
1183 struct objfile *objfile;
1184 struct symbol *sym;
1185
1186 sym = lookup_symbol_aux_symtabs (STATIC_BLOCK, name, domain);
1187 if (sym != NULL)
1188 return sym;
1189
1190 ALL_OBJFILES (objfile)
1191 {
1192 sym = lookup_symbol_aux_quick (objfile, STATIC_BLOCK, name, domain);
1193 if (sym != NULL)
1194 return sym;
1195 }
1196
1197 return NULL;
1198 }
1199
1200 /* Check to see if the symbol is defined in BLOCK or its superiors.
1201 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
1202
1203 static struct symbol *
1204 lookup_symbol_aux_local (const char *name, const struct block *block,
1205 const domain_enum domain,
1206 enum language language)
1207 {
1208 struct symbol *sym;
1209 const struct block *static_block = block_static_block (block);
1210 const char *scope = block_scope (block);
1211
1212 /* Check if either no block is specified or it's a global block. */
1213
1214 if (static_block == NULL)
1215 return NULL;
1216
1217 while (block != static_block)
1218 {
1219 sym = lookup_symbol_aux_block (name, block, domain);
1220 if (sym != NULL)
1221 return sym;
1222
1223 if (language == language_cplus || language == language_fortran)
1224 {
1225 sym = cp_lookup_symbol_imports_or_template (scope, name, block,
1226 domain);
1227 if (sym != NULL)
1228 return sym;
1229 }
1230
1231 if (BLOCK_FUNCTION (block) != NULL && block_inlined_p (block))
1232 break;
1233 block = BLOCK_SUPERBLOCK (block);
1234 }
1235
1236 /* We've reached the edge of the function without finding a result. */
1237
1238 return NULL;
1239 }
1240
1241 /* Look up OBJFILE to BLOCK. */
1242
1243 struct objfile *
1244 lookup_objfile_from_block (const struct block *block)
1245 {
1246 struct objfile *obj;
1247 struct symtab *s;
1248
1249 if (block == NULL)
1250 return NULL;
1251
1252 block = block_global_block (block);
1253 /* Go through SYMTABS. */
1254 ALL_SYMTABS (obj, s)
1255 if (block == BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK))
1256 {
1257 if (obj->separate_debug_objfile_backlink)
1258 obj = obj->separate_debug_objfile_backlink;
1259
1260 return obj;
1261 }
1262
1263 return NULL;
1264 }
1265
1266 /* Look up a symbol in a block; if found, fixup the symbol, and set
1267 block_found appropriately. */
1268
1269 struct symbol *
1270 lookup_symbol_aux_block (const char *name, const struct block *block,
1271 const domain_enum domain)
1272 {
1273 struct symbol *sym;
1274
1275 sym = lookup_block_symbol (block, name, domain);
1276 if (sym)
1277 {
1278 block_found = block;
1279 return fixup_symbol_section (sym, NULL);
1280 }
1281
1282 return NULL;
1283 }
1284
1285 /* Check all global symbols in OBJFILE in symtabs and
1286 psymtabs. */
1287
1288 struct symbol *
1289 lookup_global_symbol_from_objfile (const struct objfile *main_objfile,
1290 const char *name,
1291 const domain_enum domain)
1292 {
1293 const struct objfile *objfile;
1294 struct symbol *sym;
1295 struct blockvector *bv;
1296 const struct block *block;
1297 struct symtab *s;
1298
1299 for (objfile = main_objfile;
1300 objfile;
1301 objfile = objfile_separate_debug_iterate (main_objfile, objfile))
1302 {
1303 /* Go through symtabs. */
1304 ALL_OBJFILE_SYMTABS (objfile, s)
1305 {
1306 bv = BLOCKVECTOR (s);
1307 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1308 sym = lookup_block_symbol (block, name, domain);
1309 if (sym)
1310 {
1311 block_found = block;
1312 return fixup_symbol_section (sym, (struct objfile *)objfile);
1313 }
1314 }
1315
1316 sym = lookup_symbol_aux_quick ((struct objfile *) objfile, GLOBAL_BLOCK,
1317 name, domain);
1318 if (sym)
1319 return sym;
1320 }
1321
1322 return NULL;
1323 }
1324
1325 /* Check to see if the symbol is defined in one of the symtabs.
1326 BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
1327 depending on whether or not we want to search global symbols or
1328 static symbols. */
1329
1330 static struct symbol *
1331 lookup_symbol_aux_symtabs (int block_index, const char *name,
1332 const domain_enum domain)
1333 {
1334 struct symbol *sym;
1335 struct objfile *objfile;
1336 struct blockvector *bv;
1337 const struct block *block;
1338 struct symtab *s;
1339
1340 ALL_OBJFILES (objfile)
1341 {
1342 if (objfile->sf)
1343 objfile->sf->qf->pre_expand_symtabs_matching (objfile,
1344 block_index,
1345 name, domain);
1346
1347 ALL_OBJFILE_SYMTABS (objfile, s)
1348 if (s->primary)
1349 {
1350 bv = BLOCKVECTOR (s);
1351 block = BLOCKVECTOR_BLOCK (bv, block_index);
1352 sym = lookup_block_symbol (block, name, domain);
1353 if (sym)
1354 {
1355 block_found = block;
1356 return fixup_symbol_section (sym, objfile);
1357 }
1358 }
1359 }
1360
1361 return NULL;
1362 }
1363
1364 /* A helper function for lookup_symbol_aux that interfaces with the
1365 "quick" symbol table functions. */
1366
1367 static struct symbol *
1368 lookup_symbol_aux_quick (struct objfile *objfile, int kind,
1369 const char *name, const domain_enum domain)
1370 {
1371 struct symtab *symtab;
1372 struct blockvector *bv;
1373 const struct block *block;
1374 struct symbol *sym;
1375
1376 if (!objfile->sf)
1377 return NULL;
1378 symtab = objfile->sf->qf->lookup_symbol (objfile, kind, name, domain);
1379 if (!symtab)
1380 return NULL;
1381
1382 bv = BLOCKVECTOR (symtab);
1383 block = BLOCKVECTOR_BLOCK (bv, kind);
1384 sym = lookup_block_symbol (block, name, domain);
1385 if (!sym)
1386 {
1387 /* This shouldn't be necessary, but as a last resort try
1388 looking in the statics even though the psymtab claimed
1389 the symbol was global, or vice-versa. It's possible
1390 that the psymtab gets it wrong in some cases. */
1391
1392 /* FIXME: carlton/2002-09-30: Should we really do that?
1393 If that happens, isn't it likely to be a GDB error, in
1394 which case we should fix the GDB error rather than
1395 silently dealing with it here? So I'd vote for
1396 removing the check for the symbol in the other
1397 block. */
1398 block = BLOCKVECTOR_BLOCK (bv,
1399 kind == GLOBAL_BLOCK ?
1400 STATIC_BLOCK : GLOBAL_BLOCK);
1401 sym = lookup_block_symbol (block, name, domain);
1402 if (!sym)
1403 error (_("\
1404 Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n\
1405 %s may be an inlined function, or may be a template function\n\
1406 (if a template, try specifying an instantiation: %s<type>)."),
1407 kind == GLOBAL_BLOCK ? "global" : "static",
1408 name, symtab->filename, name, name);
1409 }
1410 return fixup_symbol_section (sym, objfile);
1411 }
1412
1413 /* A default version of lookup_symbol_nonlocal for use by languages
1414 that can't think of anything better to do. This implements the C
1415 lookup rules. */
1416
1417 struct symbol *
1418 basic_lookup_symbol_nonlocal (const char *name,
1419 const struct block *block,
1420 const domain_enum domain)
1421 {
1422 struct symbol *sym;
1423
1424 /* NOTE: carlton/2003-05-19: The comments below were written when
1425 this (or what turned into this) was part of lookup_symbol_aux;
1426 I'm much less worried about these questions now, since these
1427 decisions have turned out well, but I leave these comments here
1428 for posterity. */
1429
1430 /* NOTE: carlton/2002-12-05: There is a question as to whether or
1431 not it would be appropriate to search the current global block
1432 here as well. (That's what this code used to do before the
1433 is_a_field_of_this check was moved up.) On the one hand, it's
1434 redundant with the lookup_symbol_aux_symtabs search that happens
1435 next. On the other hand, if decode_line_1 is passed an argument
1436 like filename:var, then the user presumably wants 'var' to be
1437 searched for in filename. On the third hand, there shouldn't be
1438 multiple global variables all of which are named 'var', and it's
1439 not like decode_line_1 has ever restricted its search to only
1440 global variables in a single filename. All in all, only
1441 searching the static block here seems best: it's correct and it's
1442 cleanest. */
1443
1444 /* NOTE: carlton/2002-12-05: There's also a possible performance
1445 issue here: if you usually search for global symbols in the
1446 current file, then it would be slightly better to search the
1447 current global block before searching all the symtabs. But there
1448 are other factors that have a much greater effect on performance
1449 than that one, so I don't think we should worry about that for
1450 now. */
1451
1452 sym = lookup_symbol_static (name, block, domain);
1453 if (sym != NULL)
1454 return sym;
1455
1456 return lookup_symbol_global (name, block, domain);
1457 }
1458
1459 /* Lookup a symbol in the static block associated to BLOCK, if there
1460 is one; do nothing if BLOCK is NULL or a global block. */
1461
1462 struct symbol *
1463 lookup_symbol_static (const char *name,
1464 const struct block *block,
1465 const domain_enum domain)
1466 {
1467 const struct block *static_block = block_static_block (block);
1468
1469 if (static_block != NULL)
1470 return lookup_symbol_aux_block (name, static_block, domain);
1471 else
1472 return NULL;
1473 }
1474
1475 /* Lookup a symbol in all files' global blocks (searching psymtabs if
1476 necessary). */
1477
1478 struct symbol *
1479 lookup_symbol_global (const char *name,
1480 const struct block *block,
1481 const domain_enum domain)
1482 {
1483 struct symbol *sym = NULL;
1484 struct objfile *objfile = NULL;
1485
1486 /* Call library-specific lookup procedure. */
1487 objfile = lookup_objfile_from_block (block);
1488 if (objfile != NULL)
1489 sym = solib_global_lookup (objfile, name, domain);
1490 if (sym != NULL)
1491 return sym;
1492
1493 sym = lookup_symbol_aux_symtabs (GLOBAL_BLOCK, name, domain);
1494 if (sym != NULL)
1495 return sym;
1496
1497 ALL_OBJFILES (objfile)
1498 {
1499 sym = lookup_symbol_aux_quick (objfile, GLOBAL_BLOCK, name, domain);
1500 if (sym)
1501 return sym;
1502 }
1503
1504 return NULL;
1505 }
1506
1507 int
1508 symbol_matches_domain (enum language symbol_language,
1509 domain_enum symbol_domain,
1510 domain_enum domain)
1511 {
1512 /* For C++ "struct foo { ... }" also defines a typedef for "foo".
1513 A Java class declaration also defines a typedef for the class.
1514 Similarly, any Ada type declaration implicitly defines a typedef. */
1515 if (symbol_language == language_cplus
1516 || symbol_language == language_d
1517 || symbol_language == language_java
1518 || symbol_language == language_ada)
1519 {
1520 if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN)
1521 && symbol_domain == STRUCT_DOMAIN)
1522 return 1;
1523 }
1524 /* For all other languages, strict match is required. */
1525 return (symbol_domain == domain);
1526 }
1527
1528 /* Look up a type named NAME in the struct_domain. The type returned
1529 must not be opaque -- i.e., must have at least one field
1530 defined. */
1531
1532 struct type *
1533 lookup_transparent_type (const char *name)
1534 {
1535 return current_language->la_lookup_transparent_type (name);
1536 }
1537
1538 /* A helper for basic_lookup_transparent_type that interfaces with the
1539 "quick" symbol table functions. */
1540
1541 static struct type *
1542 basic_lookup_transparent_type_quick (struct objfile *objfile, int kind,
1543 const char *name)
1544 {
1545 struct symtab *symtab;
1546 struct blockvector *bv;
1547 struct block *block;
1548 struct symbol *sym;
1549
1550 if (!objfile->sf)
1551 return NULL;
1552 symtab = objfile->sf->qf->lookup_symbol (objfile, kind, name, STRUCT_DOMAIN);
1553 if (!symtab)
1554 return NULL;
1555
1556 bv = BLOCKVECTOR (symtab);
1557 block = BLOCKVECTOR_BLOCK (bv, kind);
1558 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1559 if (!sym)
1560 {
1561 int other_kind = kind == GLOBAL_BLOCK ? STATIC_BLOCK : GLOBAL_BLOCK;
1562
1563 /* This shouldn't be necessary, but as a last resort
1564 * try looking in the 'other kind' even though the psymtab
1565 * claimed the symbol was one thing. It's possible that
1566 * the psymtab gets it wrong in some cases.
1567 */
1568 block = BLOCKVECTOR_BLOCK (bv, other_kind);
1569 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1570 if (!sym)
1571 /* FIXME; error is wrong in one case. */
1572 error (_("\
1573 Internal: global symbol `%s' found in %s psymtab but not in symtab.\n\
1574 %s may be an inlined function, or may be a template function\n\
1575 (if a template, try specifying an instantiation: %s<type>)."),
1576 name, symtab->filename, name, name);
1577 }
1578 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1579 return SYMBOL_TYPE (sym);
1580
1581 return NULL;
1582 }
1583
1584 /* The standard implementation of lookup_transparent_type. This code
1585 was modeled on lookup_symbol -- the parts not relevant to looking
1586 up types were just left out. In particular it's assumed here that
1587 types are available in struct_domain and only at file-static or
1588 global blocks. */
1589
1590 struct type *
1591 basic_lookup_transparent_type (const char *name)
1592 {
1593 struct symbol *sym;
1594 struct symtab *s = NULL;
1595 struct blockvector *bv;
1596 struct objfile *objfile;
1597 struct block *block;
1598 struct type *t;
1599
1600 /* Now search all the global symbols. Do the symtab's first, then
1601 check the psymtab's. If a psymtab indicates the existence
1602 of the desired name as a global, then do psymtab-to-symtab
1603 conversion on the fly and return the found symbol. */
1604
1605 ALL_OBJFILES (objfile)
1606 {
1607 if (objfile->sf)
1608 objfile->sf->qf->pre_expand_symtabs_matching (objfile,
1609 GLOBAL_BLOCK,
1610 name, STRUCT_DOMAIN);
1611
1612 ALL_OBJFILE_SYMTABS (objfile, s)
1613 if (s->primary)
1614 {
1615 bv = BLOCKVECTOR (s);
1616 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1617 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1618 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1619 {
1620 return SYMBOL_TYPE (sym);
1621 }
1622 }
1623 }
1624
1625 ALL_OBJFILES (objfile)
1626 {
1627 t = basic_lookup_transparent_type_quick (objfile, GLOBAL_BLOCK, name);
1628 if (t)
1629 return t;
1630 }
1631
1632 /* Now search the static file-level symbols.
1633 Not strictly correct, but more useful than an error.
1634 Do the symtab's first, then
1635 check the psymtab's. If a psymtab indicates the existence
1636 of the desired name as a file-level static, then do psymtab-to-symtab
1637 conversion on the fly and return the found symbol. */
1638
1639 ALL_OBJFILES (objfile)
1640 {
1641 if (objfile->sf)
1642 objfile->sf->qf->pre_expand_symtabs_matching (objfile, STATIC_BLOCK,
1643 name, STRUCT_DOMAIN);
1644
1645 ALL_OBJFILE_SYMTABS (objfile, s)
1646 {
1647 bv = BLOCKVECTOR (s);
1648 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
1649 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1650 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1651 {
1652 return SYMBOL_TYPE (sym);
1653 }
1654 }
1655 }
1656
1657 ALL_OBJFILES (objfile)
1658 {
1659 t = basic_lookup_transparent_type_quick (objfile, STATIC_BLOCK, name);
1660 if (t)
1661 return t;
1662 }
1663
1664 return (struct type *) 0;
1665 }
1666
1667
1668 /* Find the name of the file containing main(). */
1669 /* FIXME: What about languages without main() or specially linked
1670 executables that have no main() ? */
1671
1672 const char *
1673 find_main_filename (void)
1674 {
1675 struct objfile *objfile;
1676 char *name = main_name ();
1677
1678 ALL_OBJFILES (objfile)
1679 {
1680 const char *result;
1681
1682 if (!objfile->sf)
1683 continue;
1684 result = objfile->sf->qf->find_symbol_file (objfile, name);
1685 if (result)
1686 return result;
1687 }
1688 return (NULL);
1689 }
1690
1691 /* Search BLOCK for symbol NAME in DOMAIN.
1692
1693 Note that if NAME is the demangled form of a C++ symbol, we will fail
1694 to find a match during the binary search of the non-encoded names, but
1695 for now we don't worry about the slight inefficiency of looking for
1696 a match we'll never find, since it will go pretty quick. Once the
1697 binary search terminates, we drop through and do a straight linear
1698 search on the symbols. Each symbol which is marked as being a ObjC/C++
1699 symbol (language_cplus or language_objc set) has both the encoded and
1700 non-encoded names tested for a match. */
1701
1702 struct symbol *
1703 lookup_block_symbol (const struct block *block, const char *name,
1704 const domain_enum domain)
1705 {
1706 struct dict_iterator iter;
1707 struct symbol *sym;
1708
1709 if (!BLOCK_FUNCTION (block))
1710 {
1711 for (sym = dict_iter_name_first (BLOCK_DICT (block), name, &iter);
1712 sym != NULL;
1713 sym = dict_iter_name_next (name, &iter))
1714 {
1715 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
1716 SYMBOL_DOMAIN (sym), domain))
1717 return sym;
1718 }
1719 return NULL;
1720 }
1721 else
1722 {
1723 /* Note that parameter symbols do not always show up last in the
1724 list; this loop makes sure to take anything else other than
1725 parameter symbols first; it only uses parameter symbols as a
1726 last resort. Note that this only takes up extra computation
1727 time on a match. */
1728
1729 struct symbol *sym_found = NULL;
1730
1731 for (sym = dict_iter_name_first (BLOCK_DICT (block), name, &iter);
1732 sym != NULL;
1733 sym = dict_iter_name_next (name, &iter))
1734 {
1735 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
1736 SYMBOL_DOMAIN (sym), domain))
1737 {
1738 sym_found = sym;
1739 if (!SYMBOL_IS_ARGUMENT (sym))
1740 {
1741 break;
1742 }
1743 }
1744 }
1745 return (sym_found); /* Will be NULL if not found. */
1746 }
1747 }
1748
1749 /* Find the symtab associated with PC and SECTION. Look through the
1750 psymtabs and read in another symtab if necessary. */
1751
1752 struct symtab *
1753 find_pc_sect_symtab (CORE_ADDR pc, struct obj_section *section)
1754 {
1755 struct block *b;
1756 struct blockvector *bv;
1757 struct symtab *s = NULL;
1758 struct symtab *best_s = NULL;
1759 struct objfile *objfile;
1760 struct program_space *pspace;
1761 CORE_ADDR distance = 0;
1762 struct minimal_symbol *msymbol;
1763
1764 pspace = current_program_space;
1765
1766 /* If we know that this is not a text address, return failure. This is
1767 necessary because we loop based on the block's high and low code
1768 addresses, which do not include the data ranges, and because
1769 we call find_pc_sect_psymtab which has a similar restriction based
1770 on the partial_symtab's texthigh and textlow. */
1771 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
1772 if (msymbol
1773 && (MSYMBOL_TYPE (msymbol) == mst_data
1774 || MSYMBOL_TYPE (msymbol) == mst_bss
1775 || MSYMBOL_TYPE (msymbol) == mst_abs
1776 || MSYMBOL_TYPE (msymbol) == mst_file_data
1777 || MSYMBOL_TYPE (msymbol) == mst_file_bss))
1778 return NULL;
1779
1780 /* Search all symtabs for the one whose file contains our address, and which
1781 is the smallest of all the ones containing the address. This is designed
1782 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
1783 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
1784 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
1785
1786 This happens for native ecoff format, where code from included files
1787 gets its own symtab. The symtab for the included file should have
1788 been read in already via the dependency mechanism.
1789 It might be swifter to create several symtabs with the same name
1790 like xcoff does (I'm not sure).
1791
1792 It also happens for objfiles that have their functions reordered.
1793 For these, the symtab we are looking for is not necessarily read in. */
1794
1795 ALL_PRIMARY_SYMTABS (objfile, s)
1796 {
1797 bv = BLOCKVECTOR (s);
1798 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1799
1800 if (BLOCK_START (b) <= pc
1801 && BLOCK_END (b) > pc
1802 && (distance == 0
1803 || BLOCK_END (b) - BLOCK_START (b) < distance))
1804 {
1805 /* For an objfile that has its functions reordered,
1806 find_pc_psymtab will find the proper partial symbol table
1807 and we simply return its corresponding symtab. */
1808 /* In order to better support objfiles that contain both
1809 stabs and coff debugging info, we continue on if a psymtab
1810 can't be found. */
1811 if ((objfile->flags & OBJF_REORDERED) && objfile->sf)
1812 {
1813 struct symtab *result;
1814
1815 result
1816 = objfile->sf->qf->find_pc_sect_symtab (objfile,
1817 msymbol,
1818 pc, section,
1819 0);
1820 if (result)
1821 return result;
1822 }
1823 if (section != 0)
1824 {
1825 struct dict_iterator iter;
1826 struct symbol *sym = NULL;
1827
1828 ALL_BLOCK_SYMBOLS (b, iter, sym)
1829 {
1830 fixup_symbol_section (sym, objfile);
1831 if (matching_obj_sections (SYMBOL_OBJ_SECTION (sym), section))
1832 break;
1833 }
1834 if (sym == NULL)
1835 continue; /* No symbol in this symtab matches
1836 section. */
1837 }
1838 distance = BLOCK_END (b) - BLOCK_START (b);
1839 best_s = s;
1840 }
1841 }
1842
1843 if (best_s != NULL)
1844 return (best_s);
1845
1846 ALL_OBJFILES (objfile)
1847 {
1848 struct symtab *result;
1849
1850 if (!objfile->sf)
1851 continue;
1852 result = objfile->sf->qf->find_pc_sect_symtab (objfile,
1853 msymbol,
1854 pc, section,
1855 1);
1856 if (result)
1857 return result;
1858 }
1859
1860 return NULL;
1861 }
1862
1863 /* Find the symtab associated with PC. Look through the psymtabs and read
1864 in another symtab if necessary. Backward compatibility, no section. */
1865
1866 struct symtab *
1867 find_pc_symtab (CORE_ADDR pc)
1868 {
1869 return find_pc_sect_symtab (pc, find_pc_mapped_section (pc));
1870 }
1871 \f
1872
1873 /* Find the source file and line number for a given PC value and SECTION.
1874 Return a structure containing a symtab pointer, a line number,
1875 and a pc range for the entire source line.
1876 The value's .pc field is NOT the specified pc.
1877 NOTCURRENT nonzero means, if specified pc is on a line boundary,
1878 use the line that ends there. Otherwise, in that case, the line
1879 that begins there is used. */
1880
1881 /* The big complication here is that a line may start in one file, and end just
1882 before the start of another file. This usually occurs when you #include
1883 code in the middle of a subroutine. To properly find the end of a line's PC
1884 range, we must search all symtabs associated with this compilation unit, and
1885 find the one whose first PC is closer than that of the next line in this
1886 symtab. */
1887
1888 /* If it's worth the effort, we could be using a binary search. */
1889
1890 struct symtab_and_line
1891 find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent)
1892 {
1893 struct symtab *s;
1894 struct linetable *l;
1895 int len;
1896 int i;
1897 struct linetable_entry *item;
1898 struct symtab_and_line val;
1899 struct blockvector *bv;
1900 struct minimal_symbol *msymbol;
1901 struct minimal_symbol *mfunsym;
1902 struct objfile *objfile;
1903
1904 /* Info on best line seen so far, and where it starts, and its file. */
1905
1906 struct linetable_entry *best = NULL;
1907 CORE_ADDR best_end = 0;
1908 struct symtab *best_symtab = 0;
1909
1910 /* Store here the first line number
1911 of a file which contains the line at the smallest pc after PC.
1912 If we don't find a line whose range contains PC,
1913 we will use a line one less than this,
1914 with a range from the start of that file to the first line's pc. */
1915 struct linetable_entry *alt = NULL;
1916 struct symtab *alt_symtab = 0;
1917
1918 /* Info on best line seen in this file. */
1919
1920 struct linetable_entry *prev;
1921
1922 /* If this pc is not from the current frame,
1923 it is the address of the end of a call instruction.
1924 Quite likely that is the start of the following statement.
1925 But what we want is the statement containing the instruction.
1926 Fudge the pc to make sure we get that. */
1927
1928 init_sal (&val); /* initialize to zeroes */
1929
1930 val.pspace = current_program_space;
1931
1932 /* It's tempting to assume that, if we can't find debugging info for
1933 any function enclosing PC, that we shouldn't search for line
1934 number info, either. However, GAS can emit line number info for
1935 assembly files --- very helpful when debugging hand-written
1936 assembly code. In such a case, we'd have no debug info for the
1937 function, but we would have line info. */
1938
1939 if (notcurrent)
1940 pc -= 1;
1941
1942 /* elz: added this because this function returned the wrong
1943 information if the pc belongs to a stub (import/export)
1944 to call a shlib function. This stub would be anywhere between
1945 two functions in the target, and the line info was erroneously
1946 taken to be the one of the line before the pc. */
1947
1948 /* RT: Further explanation:
1949
1950 * We have stubs (trampolines) inserted between procedures.
1951 *
1952 * Example: "shr1" exists in a shared library, and a "shr1" stub also
1953 * exists in the main image.
1954 *
1955 * In the minimal symbol table, we have a bunch of symbols
1956 * sorted by start address. The stubs are marked as "trampoline",
1957 * the others appear as text. E.g.:
1958 *
1959 * Minimal symbol table for main image
1960 * main: code for main (text symbol)
1961 * shr1: stub (trampoline symbol)
1962 * foo: code for foo (text symbol)
1963 * ...
1964 * Minimal symbol table for "shr1" image:
1965 * ...
1966 * shr1: code for shr1 (text symbol)
1967 * ...
1968 *
1969 * So the code below is trying to detect if we are in the stub
1970 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
1971 * and if found, do the symbolization from the real-code address
1972 * rather than the stub address.
1973 *
1974 * Assumptions being made about the minimal symbol table:
1975 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
1976 * if we're really in the trampoline.s If we're beyond it (say
1977 * we're in "foo" in the above example), it'll have a closer
1978 * symbol (the "foo" text symbol for example) and will not
1979 * return the trampoline.
1980 * 2. lookup_minimal_symbol_text() will find a real text symbol
1981 * corresponding to the trampoline, and whose address will
1982 * be different than the trampoline address. I put in a sanity
1983 * check for the address being the same, to avoid an
1984 * infinite recursion.
1985 */
1986 msymbol = lookup_minimal_symbol_by_pc (pc);
1987 if (msymbol != NULL)
1988 if (MSYMBOL_TYPE (msymbol) == mst_solib_trampoline)
1989 {
1990 mfunsym = lookup_minimal_symbol_text (SYMBOL_LINKAGE_NAME (msymbol),
1991 NULL);
1992 if (mfunsym == NULL)
1993 /* I eliminated this warning since it is coming out
1994 * in the following situation:
1995 * gdb shmain // test program with shared libraries
1996 * (gdb) break shr1 // function in shared lib
1997 * Warning: In stub for ...
1998 * In the above situation, the shared lib is not loaded yet,
1999 * so of course we can't find the real func/line info,
2000 * but the "break" still works, and the warning is annoying.
2001 * So I commented out the warning. RT */
2002 /* warning ("In stub for %s; unable to find real function/line info",
2003 SYMBOL_LINKAGE_NAME (msymbol)); */
2004 ;
2005 /* fall through */
2006 else if (SYMBOL_VALUE_ADDRESS (mfunsym)
2007 == SYMBOL_VALUE_ADDRESS (msymbol))
2008 /* Avoid infinite recursion */
2009 /* See above comment about why warning is commented out. */
2010 /* warning ("In stub for %s; unable to find real function/line info",
2011 SYMBOL_LINKAGE_NAME (msymbol)); */
2012 ;
2013 /* fall through */
2014 else
2015 return find_pc_line (SYMBOL_VALUE_ADDRESS (mfunsym), 0);
2016 }
2017
2018
2019 s = find_pc_sect_symtab (pc, section);
2020 if (!s)
2021 {
2022 /* If no symbol information, return previous pc. */
2023 if (notcurrent)
2024 pc++;
2025 val.pc = pc;
2026 return val;
2027 }
2028
2029 bv = BLOCKVECTOR (s);
2030 objfile = s->objfile;
2031
2032 /* Look at all the symtabs that share this blockvector.
2033 They all have the same apriori range, that we found was right;
2034 but they have different line tables. */
2035
2036 ALL_OBJFILE_SYMTABS (objfile, s)
2037 {
2038 if (BLOCKVECTOR (s) != bv)
2039 continue;
2040
2041 /* Find the best line in this symtab. */
2042 l = LINETABLE (s);
2043 if (!l)
2044 continue;
2045 len = l->nitems;
2046 if (len <= 0)
2047 {
2048 /* I think len can be zero if the symtab lacks line numbers
2049 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
2050 I'm not sure which, and maybe it depends on the symbol
2051 reader). */
2052 continue;
2053 }
2054
2055 prev = NULL;
2056 item = l->item; /* Get first line info. */
2057
2058 /* Is this file's first line closer than the first lines of other files?
2059 If so, record this file, and its first line, as best alternate. */
2060 if (item->pc > pc && (!alt || item->pc < alt->pc))
2061 {
2062 alt = item;
2063 alt_symtab = s;
2064 }
2065
2066 for (i = 0; i < len; i++, item++)
2067 {
2068 /* Leave prev pointing to the linetable entry for the last line
2069 that started at or before PC. */
2070 if (item->pc > pc)
2071 break;
2072
2073 prev = item;
2074 }
2075
2076 /* At this point, prev points at the line whose start addr is <= pc, and
2077 item points at the next line. If we ran off the end of the linetable
2078 (pc >= start of the last line), then prev == item. If pc < start of
2079 the first line, prev will not be set. */
2080
2081 /* Is this file's best line closer than the best in the other files?
2082 If so, record this file, and its best line, as best so far. Don't
2083 save prev if it represents the end of a function (i.e. line number
2084 0) instead of a real line. */
2085
2086 if (prev && prev->line && (!best || prev->pc > best->pc))
2087 {
2088 best = prev;
2089 best_symtab = s;
2090
2091 /* Discard BEST_END if it's before the PC of the current BEST. */
2092 if (best_end <= best->pc)
2093 best_end = 0;
2094 }
2095
2096 /* If another line (denoted by ITEM) is in the linetable and its
2097 PC is after BEST's PC, but before the current BEST_END, then
2098 use ITEM's PC as the new best_end. */
2099 if (best && i < len && item->pc > best->pc
2100 && (best_end == 0 || best_end > item->pc))
2101 best_end = item->pc;
2102 }
2103
2104 if (!best_symtab)
2105 {
2106 /* If we didn't find any line number info, just return zeros.
2107 We used to return alt->line - 1 here, but that could be
2108 anywhere; if we don't have line number info for this PC,
2109 don't make some up. */
2110 val.pc = pc;
2111 }
2112 else if (best->line == 0)
2113 {
2114 /* If our best fit is in a range of PC's for which no line
2115 number info is available (line number is zero) then we didn't
2116 find any valid line information. */
2117 val.pc = pc;
2118 }
2119 else
2120 {
2121 val.symtab = best_symtab;
2122 val.line = best->line;
2123 val.pc = best->pc;
2124 if (best_end && (!alt || best_end < alt->pc))
2125 val.end = best_end;
2126 else if (alt)
2127 val.end = alt->pc;
2128 else
2129 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
2130 }
2131 val.section = section;
2132 return val;
2133 }
2134
2135 /* Backward compatibility (no section). */
2136
2137 struct symtab_and_line
2138 find_pc_line (CORE_ADDR pc, int notcurrent)
2139 {
2140 struct obj_section *section;
2141
2142 section = find_pc_overlay (pc);
2143 if (pc_in_unmapped_range (pc, section))
2144 pc = overlay_mapped_address (pc, section);
2145 return find_pc_sect_line (pc, section, notcurrent);
2146 }
2147 \f
2148 /* Find line number LINE in any symtab whose name is the same as
2149 SYMTAB.
2150
2151 If found, return the symtab that contains the linetable in which it was
2152 found, set *INDEX to the index in the linetable of the best entry
2153 found, and set *EXACT_MATCH nonzero if the value returned is an
2154 exact match.
2155
2156 If not found, return NULL. */
2157
2158 struct symtab *
2159 find_line_symtab (struct symtab *symtab, int line,
2160 int *index, int *exact_match)
2161 {
2162 int exact = 0; /* Initialized here to avoid a compiler warning. */
2163
2164 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
2165 so far seen. */
2166
2167 int best_index;
2168 struct linetable *best_linetable;
2169 struct symtab *best_symtab;
2170
2171 /* First try looking it up in the given symtab. */
2172 best_linetable = LINETABLE (symtab);
2173 best_symtab = symtab;
2174 best_index = find_line_common (best_linetable, line, &exact);
2175 if (best_index < 0 || !exact)
2176 {
2177 /* Didn't find an exact match. So we better keep looking for
2178 another symtab with the same name. In the case of xcoff,
2179 multiple csects for one source file (produced by IBM's FORTRAN
2180 compiler) produce multiple symtabs (this is unavoidable
2181 assuming csects can be at arbitrary places in memory and that
2182 the GLOBAL_BLOCK of a symtab has a begin and end address). */
2183
2184 /* BEST is the smallest linenumber > LINE so far seen,
2185 or 0 if none has been seen so far.
2186 BEST_INDEX and BEST_LINETABLE identify the item for it. */
2187 int best;
2188
2189 struct objfile *objfile;
2190 struct symtab *s;
2191
2192 if (best_index >= 0)
2193 best = best_linetable->item[best_index].line;
2194 else
2195 best = 0;
2196
2197 ALL_OBJFILES (objfile)
2198 {
2199 if (objfile->sf)
2200 objfile->sf->qf->expand_symtabs_with_filename (objfile,
2201 symtab->filename);
2202 }
2203
2204 /* Get symbol full file name if possible. */
2205 symtab_to_fullname (symtab);
2206
2207 ALL_SYMTABS (objfile, s)
2208 {
2209 struct linetable *l;
2210 int ind;
2211
2212 if (FILENAME_CMP (symtab->filename, s->filename) != 0)
2213 continue;
2214 if (symtab->fullname != NULL
2215 && symtab_to_fullname (s) != NULL
2216 && FILENAME_CMP (symtab->fullname, s->fullname) != 0)
2217 continue;
2218 l = LINETABLE (s);
2219 ind = find_line_common (l, line, &exact);
2220 if (ind >= 0)
2221 {
2222 if (exact)
2223 {
2224 best_index = ind;
2225 best_linetable = l;
2226 best_symtab = s;
2227 goto done;
2228 }
2229 if (best == 0 || l->item[ind].line < best)
2230 {
2231 best = l->item[ind].line;
2232 best_index = ind;
2233 best_linetable = l;
2234 best_symtab = s;
2235 }
2236 }
2237 }
2238 }
2239 done:
2240 if (best_index < 0)
2241 return NULL;
2242
2243 if (index)
2244 *index = best_index;
2245 if (exact_match)
2246 *exact_match = exact;
2247
2248 return best_symtab;
2249 }
2250 \f
2251 /* Set the PC value for a given source file and line number and return true.
2252 Returns zero for invalid line number (and sets the PC to 0).
2253 The source file is specified with a struct symtab. */
2254
2255 int
2256 find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
2257 {
2258 struct linetable *l;
2259 int ind;
2260
2261 *pc = 0;
2262 if (symtab == 0)
2263 return 0;
2264
2265 symtab = find_line_symtab (symtab, line, &ind, NULL);
2266 if (symtab != NULL)
2267 {
2268 l = LINETABLE (symtab);
2269 *pc = l->item[ind].pc;
2270 return 1;
2271 }
2272 else
2273 return 0;
2274 }
2275
2276 /* Find the range of pc values in a line.
2277 Store the starting pc of the line into *STARTPTR
2278 and the ending pc (start of next line) into *ENDPTR.
2279 Returns 1 to indicate success.
2280 Returns 0 if could not find the specified line. */
2281
2282 int
2283 find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
2284 CORE_ADDR *endptr)
2285 {
2286 CORE_ADDR startaddr;
2287 struct symtab_and_line found_sal;
2288
2289 startaddr = sal.pc;
2290 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
2291 return 0;
2292
2293 /* This whole function is based on address. For example, if line 10 has
2294 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
2295 "info line *0x123" should say the line goes from 0x100 to 0x200
2296 and "info line *0x355" should say the line goes from 0x300 to 0x400.
2297 This also insures that we never give a range like "starts at 0x134
2298 and ends at 0x12c". */
2299
2300 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
2301 if (found_sal.line != sal.line)
2302 {
2303 /* The specified line (sal) has zero bytes. */
2304 *startptr = found_sal.pc;
2305 *endptr = found_sal.pc;
2306 }
2307 else
2308 {
2309 *startptr = found_sal.pc;
2310 *endptr = found_sal.end;
2311 }
2312 return 1;
2313 }
2314
2315 /* Given a line table and a line number, return the index into the line
2316 table for the pc of the nearest line whose number is >= the specified one.
2317 Return -1 if none is found. The value is >= 0 if it is an index.
2318
2319 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
2320
2321 static int
2322 find_line_common (struct linetable *l, int lineno,
2323 int *exact_match)
2324 {
2325 int i;
2326 int len;
2327
2328 /* BEST is the smallest linenumber > LINENO so far seen,
2329 or 0 if none has been seen so far.
2330 BEST_INDEX identifies the item for it. */
2331
2332 int best_index = -1;
2333 int best = 0;
2334
2335 *exact_match = 0;
2336
2337 if (lineno <= 0)
2338 return -1;
2339 if (l == 0)
2340 return -1;
2341
2342 len = l->nitems;
2343 for (i = 0; i < len; i++)
2344 {
2345 struct linetable_entry *item = &(l->item[i]);
2346
2347 if (item->line == lineno)
2348 {
2349 /* Return the first (lowest address) entry which matches. */
2350 *exact_match = 1;
2351 return i;
2352 }
2353
2354 if (item->line > lineno && (best == 0 || item->line < best))
2355 {
2356 best = item->line;
2357 best_index = i;
2358 }
2359 }
2360
2361 /* If we got here, we didn't get an exact match. */
2362 return best_index;
2363 }
2364
2365 int
2366 find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
2367 {
2368 struct symtab_and_line sal;
2369
2370 sal = find_pc_line (pc, 0);
2371 *startptr = sal.pc;
2372 *endptr = sal.end;
2373 return sal.symtab != 0;
2374 }
2375
2376 /* Given a function start address FUNC_ADDR and SYMTAB, find the first
2377 address for that function that has an entry in SYMTAB's line info
2378 table. If such an entry cannot be found, return FUNC_ADDR
2379 unaltered. */
2380 CORE_ADDR
2381 skip_prologue_using_lineinfo (CORE_ADDR func_addr, struct symtab *symtab)
2382 {
2383 CORE_ADDR func_start, func_end;
2384 struct linetable *l;
2385 int i;
2386
2387 /* Give up if this symbol has no lineinfo table. */
2388 l = LINETABLE (symtab);
2389 if (l == NULL)
2390 return func_addr;
2391
2392 /* Get the range for the function's PC values, or give up if we
2393 cannot, for some reason. */
2394 if (!find_pc_partial_function (func_addr, NULL, &func_start, &func_end))
2395 return func_addr;
2396
2397 /* Linetable entries are ordered by PC values, see the commentary in
2398 symtab.h where `struct linetable' is defined. Thus, the first
2399 entry whose PC is in the range [FUNC_START..FUNC_END[ is the
2400 address we are looking for. */
2401 for (i = 0; i < l->nitems; i++)
2402 {
2403 struct linetable_entry *item = &(l->item[i]);
2404
2405 /* Don't use line numbers of zero, they mark special entries in
2406 the table. See the commentary on symtab.h before the
2407 definition of struct linetable. */
2408 if (item->line > 0 && func_start <= item->pc && item->pc < func_end)
2409 return item->pc;
2410 }
2411
2412 return func_addr;
2413 }
2414
2415 /* Given a function symbol SYM, find the symtab and line for the start
2416 of the function.
2417 If the argument FUNFIRSTLINE is nonzero, we want the first line
2418 of real code inside the function. */
2419
2420 struct symtab_and_line
2421 find_function_start_sal (struct symbol *sym, int funfirstline)
2422 {
2423 struct symtab_and_line sal;
2424
2425 fixup_symbol_section (sym, NULL);
2426 sal = find_pc_sect_line (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)),
2427 SYMBOL_OBJ_SECTION (sym), 0);
2428
2429 /* We always should have a line for the function start address.
2430 If we don't, something is odd. Create a plain SAL refering
2431 just the PC and hope that skip_prologue_sal (if requested)
2432 can find a line number for after the prologue. */
2433 if (sal.pc < BLOCK_START (SYMBOL_BLOCK_VALUE (sym)))
2434 {
2435 init_sal (&sal);
2436 sal.pspace = current_program_space;
2437 sal.pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
2438 sal.section = SYMBOL_OBJ_SECTION (sym);
2439 }
2440
2441 if (funfirstline)
2442 skip_prologue_sal (&sal);
2443
2444 return sal;
2445 }
2446
2447 /* Adjust SAL to the first instruction past the function prologue.
2448 If the PC was explicitly specified, the SAL is not changed.
2449 If the line number was explicitly specified, at most the SAL's PC
2450 is updated. If SAL is already past the prologue, then do nothing. */
2451 void
2452 skip_prologue_sal (struct symtab_and_line *sal)
2453 {
2454 struct symbol *sym;
2455 struct symtab_and_line start_sal;
2456 struct cleanup *old_chain;
2457 CORE_ADDR pc;
2458 struct obj_section *section;
2459 const char *name;
2460 struct objfile *objfile;
2461 struct gdbarch *gdbarch;
2462 struct block *b, *function_block;
2463
2464 /* Do not change the SAL is PC was specified explicitly. */
2465 if (sal->explicit_pc)
2466 return;
2467
2468 old_chain = save_current_space_and_thread ();
2469 switch_to_program_space_and_thread (sal->pspace);
2470
2471 sym = find_pc_sect_function (sal->pc, sal->section);
2472 if (sym != NULL)
2473 {
2474 fixup_symbol_section (sym, NULL);
2475
2476 pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
2477 section = SYMBOL_OBJ_SECTION (sym);
2478 name = SYMBOL_LINKAGE_NAME (sym);
2479 objfile = SYMBOL_SYMTAB (sym)->objfile;
2480 }
2481 else
2482 {
2483 struct minimal_symbol *msymbol
2484 = lookup_minimal_symbol_by_pc_section (sal->pc, sal->section);
2485
2486 if (msymbol == NULL)
2487 {
2488 do_cleanups (old_chain);
2489 return;
2490 }
2491
2492 pc = SYMBOL_VALUE_ADDRESS (msymbol);
2493 section = SYMBOL_OBJ_SECTION (msymbol);
2494 name = SYMBOL_LINKAGE_NAME (msymbol);
2495 objfile = msymbol_objfile (msymbol);
2496 }
2497
2498 gdbarch = get_objfile_arch (objfile);
2499
2500 /* If the function is in an unmapped overlay, use its unmapped LMA address,
2501 so that gdbarch_skip_prologue has something unique to work on. */
2502 if (section_is_overlay (section) && !section_is_mapped (section))
2503 pc = overlay_unmapped_address (pc, section);
2504
2505 /* Skip "first line" of function (which is actually its prologue). */
2506 pc += gdbarch_deprecated_function_start_offset (gdbarch);
2507 pc = gdbarch_skip_prologue (gdbarch, pc);
2508
2509 /* For overlays, map pc back into its mapped VMA range. */
2510 pc = overlay_mapped_address (pc, section);
2511
2512 /* Calculate line number. */
2513 start_sal = find_pc_sect_line (pc, section, 0);
2514
2515 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
2516 line is still part of the same function. */
2517 if (start_sal.pc != pc
2518 && (sym? (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) <= start_sal.end
2519 && start_sal.end < BLOCK_END (SYMBOL_BLOCK_VALUE (sym)))
2520 : (lookup_minimal_symbol_by_pc_section (start_sal.end, section)
2521 == lookup_minimal_symbol_by_pc_section (pc, section))))
2522 {
2523 /* First pc of next line */
2524 pc = start_sal.end;
2525 /* Recalculate the line number (might not be N+1). */
2526 start_sal = find_pc_sect_line (pc, section, 0);
2527 }
2528
2529 /* On targets with executable formats that don't have a concept of
2530 constructors (ELF with .init has, PE doesn't), gcc emits a call
2531 to `__main' in `main' between the prologue and before user
2532 code. */
2533 if (gdbarch_skip_main_prologue_p (gdbarch)
2534 && name && strcmp (name, "main") == 0)
2535 {
2536 pc = gdbarch_skip_main_prologue (gdbarch, pc);
2537 /* Recalculate the line number (might not be N+1). */
2538 start_sal = find_pc_sect_line (pc, section, 0);
2539 }
2540
2541 /* If we still don't have a valid source line, try to find the first
2542 PC in the lineinfo table that belongs to the same function. This
2543 happens with COFF debug info, which does not seem to have an
2544 entry in lineinfo table for the code after the prologue which has
2545 no direct relation to source. For example, this was found to be
2546 the case with the DJGPP target using "gcc -gcoff" when the
2547 compiler inserted code after the prologue to make sure the stack
2548 is aligned. */
2549 if (sym && start_sal.symtab == NULL)
2550 {
2551 pc = skip_prologue_using_lineinfo (pc, SYMBOL_SYMTAB (sym));
2552 /* Recalculate the line number. */
2553 start_sal = find_pc_sect_line (pc, section, 0);
2554 }
2555
2556 do_cleanups (old_chain);
2557
2558 /* If we're already past the prologue, leave SAL unchanged. Otherwise
2559 forward SAL to the end of the prologue. */
2560 if (sal->pc >= pc)
2561 return;
2562
2563 sal->pc = pc;
2564 sal->section = section;
2565
2566 /* Unless the explicit_line flag was set, update the SAL line
2567 and symtab to correspond to the modified PC location. */
2568 if (sal->explicit_line)
2569 return;
2570
2571 sal->symtab = start_sal.symtab;
2572 sal->line = start_sal.line;
2573 sal->end = start_sal.end;
2574
2575 /* Check if we are now inside an inlined function. If we can,
2576 use the call site of the function instead. */
2577 b = block_for_pc_sect (sal->pc, sal->section);
2578 function_block = NULL;
2579 while (b != NULL)
2580 {
2581 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
2582 function_block = b;
2583 else if (BLOCK_FUNCTION (b) != NULL)
2584 break;
2585 b = BLOCK_SUPERBLOCK (b);
2586 }
2587 if (function_block != NULL
2588 && SYMBOL_LINE (BLOCK_FUNCTION (function_block)) != 0)
2589 {
2590 sal->line = SYMBOL_LINE (BLOCK_FUNCTION (function_block));
2591 sal->symtab = SYMBOL_SYMTAB (BLOCK_FUNCTION (function_block));
2592 }
2593 }
2594
2595 /* If P is of the form "operator[ \t]+..." where `...' is
2596 some legitimate operator text, return a pointer to the
2597 beginning of the substring of the operator text.
2598 Otherwise, return "". */
2599 char *
2600 operator_chars (char *p, char **end)
2601 {
2602 *end = "";
2603 if (strncmp (p, "operator", 8))
2604 return *end;
2605 p += 8;
2606
2607 /* Don't get faked out by `operator' being part of a longer
2608 identifier. */
2609 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
2610 return *end;
2611
2612 /* Allow some whitespace between `operator' and the operator symbol. */
2613 while (*p == ' ' || *p == '\t')
2614 p++;
2615
2616 /* Recognize 'operator TYPENAME'. */
2617
2618 if (isalpha (*p) || *p == '_' || *p == '$')
2619 {
2620 char *q = p + 1;
2621
2622 while (isalnum (*q) || *q == '_' || *q == '$')
2623 q++;
2624 *end = q;
2625 return p;
2626 }
2627
2628 while (*p)
2629 switch (*p)
2630 {
2631 case '\\': /* regexp quoting */
2632 if (p[1] == '*')
2633 {
2634 if (p[2] == '=') /* 'operator\*=' */
2635 *end = p + 3;
2636 else /* 'operator\*' */
2637 *end = p + 2;
2638 return p;
2639 }
2640 else if (p[1] == '[')
2641 {
2642 if (p[2] == ']')
2643 error (_("mismatched quoting on brackets, "
2644 "try 'operator\\[\\]'"));
2645 else if (p[2] == '\\' && p[3] == ']')
2646 {
2647 *end = p + 4; /* 'operator\[\]' */
2648 return p;
2649 }
2650 else
2651 error (_("nothing is allowed between '[' and ']'"));
2652 }
2653 else
2654 {
2655 /* Gratuitous qoute: skip it and move on. */
2656 p++;
2657 continue;
2658 }
2659 break;
2660 case '!':
2661 case '=':
2662 case '*':
2663 case '/':
2664 case '%':
2665 case '^':
2666 if (p[1] == '=')
2667 *end = p + 2;
2668 else
2669 *end = p + 1;
2670 return p;
2671 case '<':
2672 case '>':
2673 case '+':
2674 case '-':
2675 case '&':
2676 case '|':
2677 if (p[0] == '-' && p[1] == '>')
2678 {
2679 /* Struct pointer member operator 'operator->'. */
2680 if (p[2] == '*')
2681 {
2682 *end = p + 3; /* 'operator->*' */
2683 return p;
2684 }
2685 else if (p[2] == '\\')
2686 {
2687 *end = p + 4; /* Hopefully 'operator->\*' */
2688 return p;
2689 }
2690 else
2691 {
2692 *end = p + 2; /* 'operator->' */
2693 return p;
2694 }
2695 }
2696 if (p[1] == '=' || p[1] == p[0])
2697 *end = p + 2;
2698 else
2699 *end = p + 1;
2700 return p;
2701 case '~':
2702 case ',':
2703 *end = p + 1;
2704 return p;
2705 case '(':
2706 if (p[1] != ')')
2707 error (_("`operator ()' must be specified "
2708 "without whitespace in `()'"));
2709 *end = p + 2;
2710 return p;
2711 case '?':
2712 if (p[1] != ':')
2713 error (_("`operator ?:' must be specified "
2714 "without whitespace in `?:'"));
2715 *end = p + 2;
2716 return p;
2717 case '[':
2718 if (p[1] != ']')
2719 error (_("`operator []' must be specified "
2720 "without whitespace in `[]'"));
2721 *end = p + 2;
2722 return p;
2723 default:
2724 error (_("`operator %s' not supported"), p);
2725 break;
2726 }
2727
2728 *end = "";
2729 return *end;
2730 }
2731 \f
2732
2733 /* If FILE is not already in the table of files, return zero;
2734 otherwise return non-zero. Optionally add FILE to the table if ADD
2735 is non-zero. If *FIRST is non-zero, forget the old table
2736 contents. */
2737 static int
2738 filename_seen (const char *file, int add, int *first)
2739 {
2740 /* Table of files seen so far. */
2741 static const char **tab = NULL;
2742 /* Allocated size of tab in elements.
2743 Start with one 256-byte block (when using GNU malloc.c).
2744 24 is the malloc overhead when range checking is in effect. */
2745 static int tab_alloc_size = (256 - 24) / sizeof (char *);
2746 /* Current size of tab in elements. */
2747 static int tab_cur_size;
2748 const char **p;
2749
2750 if (*first)
2751 {
2752 if (tab == NULL)
2753 tab = (const char **) xmalloc (tab_alloc_size * sizeof (*tab));
2754 tab_cur_size = 0;
2755 }
2756
2757 /* Is FILE in tab? */
2758 for (p = tab; p < tab + tab_cur_size; p++)
2759 if (filename_cmp (*p, file) == 0)
2760 return 1;
2761
2762 /* No; maybe add it to tab. */
2763 if (add)
2764 {
2765 if (tab_cur_size == tab_alloc_size)
2766 {
2767 tab_alloc_size *= 2;
2768 tab = (const char **) xrealloc ((char *) tab,
2769 tab_alloc_size * sizeof (*tab));
2770 }
2771 tab[tab_cur_size++] = file;
2772 }
2773
2774 return 0;
2775 }
2776
2777 /* Slave routine for sources_info. Force line breaks at ,'s.
2778 NAME is the name to print and *FIRST is nonzero if this is the first
2779 name printed. Set *FIRST to zero. */
2780 static void
2781 output_source_filename (const char *name, int *first)
2782 {
2783 /* Since a single source file can result in several partial symbol
2784 tables, we need to avoid printing it more than once. Note: if
2785 some of the psymtabs are read in and some are not, it gets
2786 printed both under "Source files for which symbols have been
2787 read" and "Source files for which symbols will be read in on
2788 demand". I consider this a reasonable way to deal with the
2789 situation. I'm not sure whether this can also happen for
2790 symtabs; it doesn't hurt to check. */
2791
2792 /* Was NAME already seen? */
2793 if (filename_seen (name, 1, first))
2794 {
2795 /* Yes; don't print it again. */
2796 return;
2797 }
2798 /* No; print it and reset *FIRST. */
2799 if (*first)
2800 {
2801 *first = 0;
2802 }
2803 else
2804 {
2805 printf_filtered (", ");
2806 }
2807
2808 wrap_here ("");
2809 fputs_filtered (name, gdb_stdout);
2810 }
2811
2812 /* A callback for map_partial_symbol_filenames. */
2813 static void
2814 output_partial_symbol_filename (const char *fullname, const char *filename,
2815 void *data)
2816 {
2817 output_source_filename (fullname ? fullname : filename, data);
2818 }
2819
2820 static void
2821 sources_info (char *ignore, int from_tty)
2822 {
2823 struct symtab *s;
2824 struct objfile *objfile;
2825 int first;
2826
2827 if (!have_full_symbols () && !have_partial_symbols ())
2828 {
2829 error (_("No symbol table is loaded. Use the \"file\" command."));
2830 }
2831
2832 printf_filtered ("Source files for which symbols have been read in:\n\n");
2833
2834 first = 1;
2835 ALL_SYMTABS (objfile, s)
2836 {
2837 const char *fullname = symtab_to_fullname (s);
2838
2839 output_source_filename (fullname ? fullname : s->filename, &first);
2840 }
2841 printf_filtered ("\n\n");
2842
2843 printf_filtered ("Source files for which symbols "
2844 "will be read in on demand:\n\n");
2845
2846 first = 1;
2847 map_partial_symbol_filenames (output_partial_symbol_filename, &first);
2848 printf_filtered ("\n");
2849 }
2850
2851 static int
2852 file_matches (const char *file, char *files[], int nfiles)
2853 {
2854 int i;
2855
2856 if (file != NULL && nfiles != 0)
2857 {
2858 for (i = 0; i < nfiles; i++)
2859 {
2860 if (filename_cmp (files[i], lbasename (file)) == 0)
2861 return 1;
2862 }
2863 }
2864 else if (nfiles == 0)
2865 return 1;
2866 return 0;
2867 }
2868
2869 /* Free any memory associated with a search. */
2870 void
2871 free_search_symbols (struct symbol_search *symbols)
2872 {
2873 struct symbol_search *p;
2874 struct symbol_search *next;
2875
2876 for (p = symbols; p != NULL; p = next)
2877 {
2878 next = p->next;
2879 xfree (p);
2880 }
2881 }
2882
2883 static void
2884 do_free_search_symbols_cleanup (void *symbols)
2885 {
2886 free_search_symbols (symbols);
2887 }
2888
2889 struct cleanup *
2890 make_cleanup_free_search_symbols (struct symbol_search *symbols)
2891 {
2892 return make_cleanup (do_free_search_symbols_cleanup, symbols);
2893 }
2894
2895 /* Helper function for sort_search_symbols and qsort. Can only
2896 sort symbols, not minimal symbols. */
2897 static int
2898 compare_search_syms (const void *sa, const void *sb)
2899 {
2900 struct symbol_search **sym_a = (struct symbol_search **) sa;
2901 struct symbol_search **sym_b = (struct symbol_search **) sb;
2902
2903 return strcmp (SYMBOL_PRINT_NAME ((*sym_a)->symbol),
2904 SYMBOL_PRINT_NAME ((*sym_b)->symbol));
2905 }
2906
2907 /* Sort the ``nfound'' symbols in the list after prevtail. Leave
2908 prevtail where it is, but update its next pointer to point to
2909 the first of the sorted symbols. */
2910 static struct symbol_search *
2911 sort_search_symbols (struct symbol_search *prevtail, int nfound)
2912 {
2913 struct symbol_search **symbols, *symp, *old_next;
2914 int i;
2915
2916 symbols = (struct symbol_search **) xmalloc (sizeof (struct symbol_search *)
2917 * nfound);
2918 symp = prevtail->next;
2919 for (i = 0; i < nfound; i++)
2920 {
2921 symbols[i] = symp;
2922 symp = symp->next;
2923 }
2924 /* Generally NULL. */
2925 old_next = symp;
2926
2927 qsort (symbols, nfound, sizeof (struct symbol_search *),
2928 compare_search_syms);
2929
2930 symp = prevtail;
2931 for (i = 0; i < nfound; i++)
2932 {
2933 symp->next = symbols[i];
2934 symp = symp->next;
2935 }
2936 symp->next = old_next;
2937
2938 xfree (symbols);
2939 return symp;
2940 }
2941
2942 /* An object of this type is passed as the user_data to the
2943 expand_symtabs_matching method. */
2944 struct search_symbols_data
2945 {
2946 int nfiles;
2947 char **files;
2948 char *regexp;
2949 };
2950
2951 /* A callback for expand_symtabs_matching. */
2952 static int
2953 search_symbols_file_matches (const char *filename, void *user_data)
2954 {
2955 struct search_symbols_data *data = user_data;
2956
2957 return file_matches (filename, data->files, data->nfiles);
2958 }
2959
2960 /* A callback for expand_symtabs_matching. */
2961 static int
2962 search_symbols_name_matches (const char *symname, void *user_data)
2963 {
2964 struct search_symbols_data *data = user_data;
2965
2966 return data->regexp == NULL || re_exec (symname);
2967 }
2968
2969 /* Search the symbol table for matches to the regular expression REGEXP,
2970 returning the results in *MATCHES.
2971
2972 Only symbols of KIND are searched:
2973 FUNCTIONS_DOMAIN - search all functions
2974 TYPES_DOMAIN - search all type names
2975 VARIABLES_DOMAIN - search all symbols, excluding functions, type names,
2976 and constants (enums)
2977
2978 free_search_symbols should be called when *MATCHES is no longer needed.
2979
2980 The results are sorted locally; each symtab's global and static blocks are
2981 separately alphabetized. */
2982
2983 void
2984 search_symbols (char *regexp, enum search_domain kind,
2985 int nfiles, char *files[],
2986 struct symbol_search **matches)
2987 {
2988 struct symtab *s;
2989 struct blockvector *bv;
2990 struct block *b;
2991 int i = 0;
2992 struct dict_iterator iter;
2993 struct symbol *sym;
2994 struct objfile *objfile;
2995 struct minimal_symbol *msymbol;
2996 char *val;
2997 int found_misc = 0;
2998 static const enum minimal_symbol_type types[]
2999 = {mst_data, mst_text, mst_abs, mst_unknown};
3000 static const enum minimal_symbol_type types2[]
3001 = {mst_bss, mst_file_text, mst_abs, mst_unknown};
3002 static const enum minimal_symbol_type types3[]
3003 = {mst_file_data, mst_solib_trampoline, mst_abs, mst_unknown};
3004 static const enum minimal_symbol_type types4[]
3005 = {mst_file_bss, mst_text_gnu_ifunc, mst_abs, mst_unknown};
3006 enum minimal_symbol_type ourtype;
3007 enum minimal_symbol_type ourtype2;
3008 enum minimal_symbol_type ourtype3;
3009 enum minimal_symbol_type ourtype4;
3010 struct symbol_search *sr;
3011 struct symbol_search *psr;
3012 struct symbol_search *tail;
3013 struct cleanup *old_chain = NULL;
3014 struct search_symbols_data datum;
3015
3016 ourtype = types[kind];
3017 ourtype2 = types2[kind];
3018 ourtype3 = types3[kind];
3019 ourtype4 = types4[kind];
3020
3021 sr = *matches = NULL;
3022 tail = NULL;
3023
3024 if (regexp != NULL)
3025 {
3026 /* Make sure spacing is right for C++ operators.
3027 This is just a courtesy to make the matching less sensitive
3028 to how many spaces the user leaves between 'operator'
3029 and <TYPENAME> or <OPERATOR>. */
3030 char *opend;
3031 char *opname = operator_chars (regexp, &opend);
3032
3033 if (*opname)
3034 {
3035 int fix = -1; /* -1 means ok; otherwise number of
3036 spaces needed. */
3037
3038 if (isalpha (*opname) || *opname == '_' || *opname == '$')
3039 {
3040 /* There should 1 space between 'operator' and 'TYPENAME'. */
3041 if (opname[-1] != ' ' || opname[-2] == ' ')
3042 fix = 1;
3043 }
3044 else
3045 {
3046 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
3047 if (opname[-1] == ' ')
3048 fix = 0;
3049 }
3050 /* If wrong number of spaces, fix it. */
3051 if (fix >= 0)
3052 {
3053 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
3054
3055 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
3056 regexp = tmp;
3057 }
3058 }
3059
3060 if (0 != (val = re_comp (regexp)))
3061 error (_("Invalid regexp (%s): %s"), val, regexp);
3062 }
3063
3064 /* Search through the partial symtabs *first* for all symbols
3065 matching the regexp. That way we don't have to reproduce all of
3066 the machinery below. */
3067
3068 datum.nfiles = nfiles;
3069 datum.files = files;
3070 datum.regexp = regexp;
3071 ALL_OBJFILES (objfile)
3072 {
3073 if (objfile->sf)
3074 objfile->sf->qf->expand_symtabs_matching (objfile,
3075 search_symbols_file_matches,
3076 search_symbols_name_matches,
3077 kind,
3078 &datum);
3079 }
3080
3081 /* Here, we search through the minimal symbol tables for functions
3082 and variables that match, and force their symbols to be read.
3083 This is in particular necessary for demangled variable names,
3084 which are no longer put into the partial symbol tables.
3085 The symbol will then be found during the scan of symtabs below.
3086
3087 For functions, find_pc_symtab should succeed if we have debug info
3088 for the function, for variables we have to call lookup_symbol
3089 to determine if the variable has debug info.
3090 If the lookup fails, set found_misc so that we will rescan to print
3091 any matching symbols without debug info. */
3092
3093 if (nfiles == 0 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
3094 {
3095 ALL_MSYMBOLS (objfile, msymbol)
3096 {
3097 QUIT;
3098
3099 if (MSYMBOL_TYPE (msymbol) == ourtype ||
3100 MSYMBOL_TYPE (msymbol) == ourtype2 ||
3101 MSYMBOL_TYPE (msymbol) == ourtype3 ||
3102 MSYMBOL_TYPE (msymbol) == ourtype4)
3103 {
3104 if (regexp == NULL
3105 || re_exec (SYMBOL_NATURAL_NAME (msymbol)) != 0)
3106 {
3107 if (0 == find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol)))
3108 {
3109 /* FIXME: carlton/2003-02-04: Given that the
3110 semantics of lookup_symbol keeps on changing
3111 slightly, it would be a nice idea if we had a
3112 function lookup_symbol_minsym that found the
3113 symbol associated to a given minimal symbol (if
3114 any). */
3115 if (kind == FUNCTIONS_DOMAIN
3116 || lookup_symbol (SYMBOL_LINKAGE_NAME (msymbol),
3117 (struct block *) NULL,
3118 VAR_DOMAIN, 0)
3119 == NULL)
3120 found_misc = 1;
3121 }
3122 }
3123 }
3124 }
3125 }
3126
3127 ALL_PRIMARY_SYMTABS (objfile, s)
3128 {
3129 bv = BLOCKVECTOR (s);
3130 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
3131 {
3132 struct symbol_search *prevtail = tail;
3133 int nfound = 0;
3134
3135 b = BLOCKVECTOR_BLOCK (bv, i);
3136 ALL_BLOCK_SYMBOLS (b, iter, sym)
3137 {
3138 struct symtab *real_symtab = SYMBOL_SYMTAB (sym);
3139
3140 QUIT;
3141
3142 if (file_matches (real_symtab->filename, files, nfiles)
3143 && ((regexp == NULL
3144 || re_exec (SYMBOL_NATURAL_NAME (sym)) != 0)
3145 && ((kind == VARIABLES_DOMAIN
3146 && SYMBOL_CLASS (sym) != LOC_TYPEDEF
3147 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
3148 && SYMBOL_CLASS (sym) != LOC_BLOCK
3149 /* LOC_CONST can be used for more than just enums,
3150 e.g., c++ static const members.
3151 We only want to skip enums here. */
3152 && !(SYMBOL_CLASS (sym) == LOC_CONST
3153 && TYPE_CODE (SYMBOL_TYPE (sym))
3154 == TYPE_CODE_ENUM))
3155 || (kind == FUNCTIONS_DOMAIN
3156 && SYMBOL_CLASS (sym) == LOC_BLOCK)
3157 || (kind == TYPES_DOMAIN
3158 && SYMBOL_CLASS (sym) == LOC_TYPEDEF))))
3159 {
3160 /* match */
3161 psr = (struct symbol_search *)
3162 xmalloc (sizeof (struct symbol_search));
3163 psr->block = i;
3164 psr->symtab = real_symtab;
3165 psr->symbol = sym;
3166 psr->msymbol = NULL;
3167 psr->next = NULL;
3168 if (tail == NULL)
3169 sr = psr;
3170 else
3171 tail->next = psr;
3172 tail = psr;
3173 nfound ++;
3174 }
3175 }
3176 if (nfound > 0)
3177 {
3178 if (prevtail == NULL)
3179 {
3180 struct symbol_search dummy;
3181
3182 dummy.next = sr;
3183 tail = sort_search_symbols (&dummy, nfound);
3184 sr = dummy.next;
3185
3186 old_chain = make_cleanup_free_search_symbols (sr);
3187 }
3188 else
3189 tail = sort_search_symbols (prevtail, nfound);
3190 }
3191 }
3192 }
3193
3194 /* If there are no eyes, avoid all contact. I mean, if there are
3195 no debug symbols, then print directly from the msymbol_vector. */
3196
3197 if (found_misc || kind != FUNCTIONS_DOMAIN)
3198 {
3199 ALL_MSYMBOLS (objfile, msymbol)
3200 {
3201 QUIT;
3202
3203 if (MSYMBOL_TYPE (msymbol) == ourtype ||
3204 MSYMBOL_TYPE (msymbol) == ourtype2 ||
3205 MSYMBOL_TYPE (msymbol) == ourtype3 ||
3206 MSYMBOL_TYPE (msymbol) == ourtype4)
3207 {
3208 if (regexp == NULL
3209 || re_exec (SYMBOL_NATURAL_NAME (msymbol)) != 0)
3210 {
3211 /* Functions: Look up by address. */
3212 if (kind != FUNCTIONS_DOMAIN ||
3213 (0 == find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol))))
3214 {
3215 /* Variables/Absolutes: Look up by name. */
3216 if (lookup_symbol (SYMBOL_LINKAGE_NAME (msymbol),
3217 (struct block *) NULL, VAR_DOMAIN, 0)
3218 == NULL)
3219 {
3220 /* match */
3221 psr = (struct symbol_search *)
3222 xmalloc (sizeof (struct symbol_search));
3223 psr->block = i;
3224 psr->msymbol = msymbol;
3225 psr->symtab = NULL;
3226 psr->symbol = NULL;
3227 psr->next = NULL;
3228 if (tail == NULL)
3229 {
3230 sr = psr;
3231 old_chain = make_cleanup_free_search_symbols (sr);
3232 }
3233 else
3234 tail->next = psr;
3235 tail = psr;
3236 }
3237 }
3238 }
3239 }
3240 }
3241 }
3242
3243 *matches = sr;
3244 if (sr != NULL)
3245 discard_cleanups (old_chain);
3246 }
3247
3248 /* Helper function for symtab_symbol_info, this function uses
3249 the data returned from search_symbols() to print information
3250 regarding the match to gdb_stdout. */
3251
3252 static void
3253 print_symbol_info (enum search_domain kind,
3254 struct symtab *s, struct symbol *sym,
3255 int block, char *last)
3256 {
3257 if (last == NULL || filename_cmp (last, s->filename) != 0)
3258 {
3259 fputs_filtered ("\nFile ", gdb_stdout);
3260 fputs_filtered (s->filename, gdb_stdout);
3261 fputs_filtered (":\n", gdb_stdout);
3262 }
3263
3264 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
3265 printf_filtered ("static ");
3266
3267 /* Typedef that is not a C++ class. */
3268 if (kind == TYPES_DOMAIN
3269 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
3270 typedef_print (SYMBOL_TYPE (sym), sym, gdb_stdout);
3271 /* variable, func, or typedef-that-is-c++-class. */
3272 else if (kind < TYPES_DOMAIN ||
3273 (kind == TYPES_DOMAIN &&
3274 SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
3275 {
3276 type_print (SYMBOL_TYPE (sym),
3277 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
3278 ? "" : SYMBOL_PRINT_NAME (sym)),
3279 gdb_stdout, 0);
3280
3281 printf_filtered (";\n");
3282 }
3283 }
3284
3285 /* This help function for symtab_symbol_info() prints information
3286 for non-debugging symbols to gdb_stdout. */
3287
3288 static void
3289 print_msymbol_info (struct minimal_symbol *msymbol)
3290 {
3291 struct gdbarch *gdbarch = get_objfile_arch (msymbol_objfile (msymbol));
3292 char *tmp;
3293
3294 if (gdbarch_addr_bit (gdbarch) <= 32)
3295 tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol)
3296 & (CORE_ADDR) 0xffffffff,
3297 8);
3298 else
3299 tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol),
3300 16);
3301 printf_filtered ("%s %s\n",
3302 tmp, SYMBOL_PRINT_NAME (msymbol));
3303 }
3304
3305 /* This is the guts of the commands "info functions", "info types", and
3306 "info variables". It calls search_symbols to find all matches and then
3307 print_[m]symbol_info to print out some useful information about the
3308 matches. */
3309
3310 static void
3311 symtab_symbol_info (char *regexp, enum search_domain kind, int from_tty)
3312 {
3313 static const char * const classnames[] =
3314 {"variable", "function", "type", "method"};
3315 struct symbol_search *symbols;
3316 struct symbol_search *p;
3317 struct cleanup *old_chain;
3318 char *last_filename = NULL;
3319 int first = 1;
3320
3321 /* Must make sure that if we're interrupted, symbols gets freed. */
3322 search_symbols (regexp, kind, 0, (char **) NULL, &symbols);
3323 old_chain = make_cleanup_free_search_symbols (symbols);
3324
3325 printf_filtered (regexp
3326 ? "All %ss matching regular expression \"%s\":\n"
3327 : "All defined %ss:\n",
3328 classnames[kind], regexp);
3329
3330 for (p = symbols; p != NULL; p = p->next)
3331 {
3332 QUIT;
3333
3334 if (p->msymbol != NULL)
3335 {
3336 if (first)
3337 {
3338 printf_filtered ("\nNon-debugging symbols:\n");
3339 first = 0;
3340 }
3341 print_msymbol_info (p->msymbol);
3342 }
3343 else
3344 {
3345 print_symbol_info (kind,
3346 p->symtab,
3347 p->symbol,
3348 p->block,
3349 last_filename);
3350 last_filename = p->symtab->filename;
3351 }
3352 }
3353
3354 do_cleanups (old_chain);
3355 }
3356
3357 static void
3358 variables_info (char *regexp, int from_tty)
3359 {
3360 symtab_symbol_info (regexp, VARIABLES_DOMAIN, from_tty);
3361 }
3362
3363 static void
3364 functions_info (char *regexp, int from_tty)
3365 {
3366 symtab_symbol_info (regexp, FUNCTIONS_DOMAIN, from_tty);
3367 }
3368
3369
3370 static void
3371 types_info (char *regexp, int from_tty)
3372 {
3373 symtab_symbol_info (regexp, TYPES_DOMAIN, from_tty);
3374 }
3375
3376 /* Breakpoint all functions matching regular expression. */
3377
3378 void
3379 rbreak_command_wrapper (char *regexp, int from_tty)
3380 {
3381 rbreak_command (regexp, from_tty);
3382 }
3383
3384 /* A cleanup function that calls end_rbreak_breakpoints. */
3385
3386 static void
3387 do_end_rbreak_breakpoints (void *ignore)
3388 {
3389 end_rbreak_breakpoints ();
3390 }
3391
3392 static void
3393 rbreak_command (char *regexp, int from_tty)
3394 {
3395 struct symbol_search *ss;
3396 struct symbol_search *p;
3397 struct cleanup *old_chain;
3398 char *string = NULL;
3399 int len = 0;
3400 char **files = NULL, *file_name;
3401 int nfiles = 0;
3402
3403 if (regexp)
3404 {
3405 char *colon = strchr (regexp, ':');
3406
3407 if (colon && *(colon + 1) != ':')
3408 {
3409 int colon_index;
3410
3411 colon_index = colon - regexp;
3412 file_name = alloca (colon_index + 1);
3413 memcpy (file_name, regexp, colon_index);
3414 file_name[colon_index--] = 0;
3415 while (isspace (file_name[colon_index]))
3416 file_name[colon_index--] = 0;
3417 files = &file_name;
3418 nfiles = 1;
3419 regexp = colon + 1;
3420 while (isspace (*regexp)) regexp++;
3421 }
3422 }
3423
3424 search_symbols (regexp, FUNCTIONS_DOMAIN, nfiles, files, &ss);
3425 old_chain = make_cleanup_free_search_symbols (ss);
3426 make_cleanup (free_current_contents, &string);
3427
3428 start_rbreak_breakpoints ();
3429 make_cleanup (do_end_rbreak_breakpoints, NULL);
3430 for (p = ss; p != NULL; p = p->next)
3431 {
3432 if (p->msymbol == NULL)
3433 {
3434 int newlen = (strlen (p->symtab->filename)
3435 + strlen (SYMBOL_LINKAGE_NAME (p->symbol))
3436 + 4);
3437
3438 if (newlen > len)
3439 {
3440 string = xrealloc (string, newlen);
3441 len = newlen;
3442 }
3443 strcpy (string, p->symtab->filename);
3444 strcat (string, ":'");
3445 strcat (string, SYMBOL_LINKAGE_NAME (p->symbol));
3446 strcat (string, "'");
3447 break_command (string, from_tty);
3448 print_symbol_info (FUNCTIONS_DOMAIN,
3449 p->symtab,
3450 p->symbol,
3451 p->block,
3452 p->symtab->filename);
3453 }
3454 else
3455 {
3456 int newlen = (strlen (SYMBOL_LINKAGE_NAME (p->msymbol)) + 3);
3457
3458 if (newlen > len)
3459 {
3460 string = xrealloc (string, newlen);
3461 len = newlen;
3462 }
3463 strcpy (string, "'");
3464 strcat (string, SYMBOL_LINKAGE_NAME (p->msymbol));
3465 strcat (string, "'");
3466
3467 break_command (string, from_tty);
3468 printf_filtered ("<function, no debug info> %s;\n",
3469 SYMBOL_PRINT_NAME (p->msymbol));
3470 }
3471 }
3472
3473 do_cleanups (old_chain);
3474 }
3475 \f
3476
3477 /* Helper routine for make_symbol_completion_list. */
3478
3479 static int return_val_size;
3480 static int return_val_index;
3481 static char **return_val;
3482
3483 #define COMPLETION_LIST_ADD_SYMBOL(symbol, sym_text, len, text, word) \
3484 completion_list_add_name \
3485 (SYMBOL_NATURAL_NAME (symbol), (sym_text), (len), (text), (word))
3486
3487 /* Test to see if the symbol specified by SYMNAME (which is already
3488 demangled for C++ symbols) matches SYM_TEXT in the first SYM_TEXT_LEN
3489 characters. If so, add it to the current completion list. */
3490
3491 static void
3492 completion_list_add_name (char *symname, char *sym_text, int sym_text_len,
3493 char *text, char *word)
3494 {
3495 int newsize;
3496
3497 /* Clip symbols that cannot match. */
3498
3499 if (strncmp (symname, sym_text, sym_text_len) != 0)
3500 {
3501 return;
3502 }
3503
3504 /* We have a match for a completion, so add SYMNAME to the current list
3505 of matches. Note that the name is moved to freshly malloc'd space. */
3506
3507 {
3508 char *new;
3509
3510 if (word == sym_text)
3511 {
3512 new = xmalloc (strlen (symname) + 5);
3513 strcpy (new, symname);
3514 }
3515 else if (word > sym_text)
3516 {
3517 /* Return some portion of symname. */
3518 new = xmalloc (strlen (symname) + 5);
3519 strcpy (new, symname + (word - sym_text));
3520 }
3521 else
3522 {
3523 /* Return some of SYM_TEXT plus symname. */
3524 new = xmalloc (strlen (symname) + (sym_text - word) + 5);
3525 strncpy (new, word, sym_text - word);
3526 new[sym_text - word] = '\0';
3527 strcat (new, symname);
3528 }
3529
3530 if (return_val_index + 3 > return_val_size)
3531 {
3532 newsize = (return_val_size *= 2) * sizeof (char *);
3533 return_val = (char **) xrealloc ((char *) return_val, newsize);
3534 }
3535 return_val[return_val_index++] = new;
3536 return_val[return_val_index] = NULL;
3537 }
3538 }
3539
3540 /* ObjC: In case we are completing on a selector, look as the msymbol
3541 again and feed all the selectors into the mill. */
3542
3543 static void
3544 completion_list_objc_symbol (struct minimal_symbol *msymbol, char *sym_text,
3545 int sym_text_len, char *text, char *word)
3546 {
3547 static char *tmp = NULL;
3548 static unsigned int tmplen = 0;
3549
3550 char *method, *category, *selector;
3551 char *tmp2 = NULL;
3552
3553 method = SYMBOL_NATURAL_NAME (msymbol);
3554
3555 /* Is it a method? */
3556 if ((method[0] != '-') && (method[0] != '+'))
3557 return;
3558
3559 if (sym_text[0] == '[')
3560 /* Complete on shortened method method. */
3561 completion_list_add_name (method + 1, sym_text, sym_text_len, text, word);
3562
3563 while ((strlen (method) + 1) >= tmplen)
3564 {
3565 if (tmplen == 0)
3566 tmplen = 1024;
3567 else
3568 tmplen *= 2;
3569 tmp = xrealloc (tmp, tmplen);
3570 }
3571 selector = strchr (method, ' ');
3572 if (selector != NULL)
3573 selector++;
3574
3575 category = strchr (method, '(');
3576
3577 if ((category != NULL) && (selector != NULL))
3578 {
3579 memcpy (tmp, method, (category - method));
3580 tmp[category - method] = ' ';
3581 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
3582 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
3583 if (sym_text[0] == '[')
3584 completion_list_add_name (tmp + 1, sym_text, sym_text_len, text, word);
3585 }
3586
3587 if (selector != NULL)
3588 {
3589 /* Complete on selector only. */
3590 strcpy (tmp, selector);
3591 tmp2 = strchr (tmp, ']');
3592 if (tmp2 != NULL)
3593 *tmp2 = '\0';
3594
3595 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
3596 }
3597 }
3598
3599 /* Break the non-quoted text based on the characters which are in
3600 symbols. FIXME: This should probably be language-specific. */
3601
3602 static char *
3603 language_search_unquoted_string (char *text, char *p)
3604 {
3605 for (; p > text; --p)
3606 {
3607 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
3608 continue;
3609 else
3610 {
3611 if ((current_language->la_language == language_objc))
3612 {
3613 if (p[-1] == ':') /* Might be part of a method name. */
3614 continue;
3615 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
3616 p -= 2; /* Beginning of a method name. */
3617 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
3618 { /* Might be part of a method name. */
3619 char *t = p;
3620
3621 /* Seeing a ' ' or a '(' is not conclusive evidence
3622 that we are in the middle of a method name. However,
3623 finding "-[" or "+[" should be pretty un-ambiguous.
3624 Unfortunately we have to find it now to decide. */
3625
3626 while (t > text)
3627 if (isalnum (t[-1]) || t[-1] == '_' ||
3628 t[-1] == ' ' || t[-1] == ':' ||
3629 t[-1] == '(' || t[-1] == ')')
3630 --t;
3631 else
3632 break;
3633
3634 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
3635 p = t - 2; /* Method name detected. */
3636 /* Else we leave with p unchanged. */
3637 }
3638 }
3639 break;
3640 }
3641 }
3642 return p;
3643 }
3644
3645 static void
3646 completion_list_add_fields (struct symbol *sym, char *sym_text,
3647 int sym_text_len, char *text, char *word)
3648 {
3649 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
3650 {
3651 struct type *t = SYMBOL_TYPE (sym);
3652 enum type_code c = TYPE_CODE (t);
3653 int j;
3654
3655 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
3656 for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++)
3657 if (TYPE_FIELD_NAME (t, j))
3658 completion_list_add_name (TYPE_FIELD_NAME (t, j),
3659 sym_text, sym_text_len, text, word);
3660 }
3661 }
3662
3663 /* Type of the user_data argument passed to add_macro_name or
3664 add_partial_symbol_name. The contents are simply whatever is
3665 needed by completion_list_add_name. */
3666 struct add_name_data
3667 {
3668 char *sym_text;
3669 int sym_text_len;
3670 char *text;
3671 char *word;
3672 };
3673
3674 /* A callback used with macro_for_each and macro_for_each_in_scope.
3675 This adds a macro's name to the current completion list. */
3676 static void
3677 add_macro_name (const char *name, const struct macro_definition *ignore,
3678 void *user_data)
3679 {
3680 struct add_name_data *datum = (struct add_name_data *) user_data;
3681
3682 completion_list_add_name ((char *) name,
3683 datum->sym_text, datum->sym_text_len,
3684 datum->text, datum->word);
3685 }
3686
3687 /* A callback for map_partial_symbol_names. */
3688 static void
3689 add_partial_symbol_name (const char *name, void *user_data)
3690 {
3691 struct add_name_data *datum = (struct add_name_data *) user_data;
3692
3693 completion_list_add_name ((char *) name,
3694 datum->sym_text, datum->sym_text_len,
3695 datum->text, datum->word);
3696 }
3697
3698 char **
3699 default_make_symbol_completion_list_break_on (char *text, char *word,
3700 const char *break_on)
3701 {
3702 /* Problem: All of the symbols have to be copied because readline
3703 frees them. I'm not going to worry about this; hopefully there
3704 won't be that many. */
3705
3706 struct symbol *sym;
3707 struct symtab *s;
3708 struct minimal_symbol *msymbol;
3709 struct objfile *objfile;
3710 struct block *b;
3711 const struct block *surrounding_static_block, *surrounding_global_block;
3712 struct dict_iterator iter;
3713 /* The symbol we are completing on. Points in same buffer as text. */
3714 char *sym_text;
3715 /* Length of sym_text. */
3716 int sym_text_len;
3717 struct add_name_data datum;
3718
3719 /* Now look for the symbol we are supposed to complete on. */
3720 {
3721 char *p;
3722 char quote_found;
3723 char *quote_pos = NULL;
3724
3725 /* First see if this is a quoted string. */
3726 quote_found = '\0';
3727 for (p = text; *p != '\0'; ++p)
3728 {
3729 if (quote_found != '\0')
3730 {
3731 if (*p == quote_found)
3732 /* Found close quote. */
3733 quote_found = '\0';
3734 else if (*p == '\\' && p[1] == quote_found)
3735 /* A backslash followed by the quote character
3736 doesn't end the string. */
3737 ++p;
3738 }
3739 else if (*p == '\'' || *p == '"')
3740 {
3741 quote_found = *p;
3742 quote_pos = p;
3743 }
3744 }
3745 if (quote_found == '\'')
3746 /* A string within single quotes can be a symbol, so complete on it. */
3747 sym_text = quote_pos + 1;
3748 else if (quote_found == '"')
3749 /* A double-quoted string is never a symbol, nor does it make sense
3750 to complete it any other way. */
3751 {
3752 return_val = (char **) xmalloc (sizeof (char *));
3753 return_val[0] = NULL;
3754 return return_val;
3755 }
3756 else
3757 {
3758 /* It is not a quoted string. Break it based on the characters
3759 which are in symbols. */
3760 while (p > text)
3761 {
3762 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0'
3763 || p[-1] == ':' || strchr (break_on, p[-1]) != NULL)
3764 --p;
3765 else
3766 break;
3767 }
3768 sym_text = p;
3769 }
3770 }
3771
3772 sym_text_len = strlen (sym_text);
3773
3774 return_val_size = 100;
3775 return_val_index = 0;
3776 return_val = (char **) xmalloc ((return_val_size + 1) * sizeof (char *));
3777 return_val[0] = NULL;
3778
3779 datum.sym_text = sym_text;
3780 datum.sym_text_len = sym_text_len;
3781 datum.text = text;
3782 datum.word = word;
3783
3784 /* Look through the partial symtabs for all symbols which begin
3785 by matching SYM_TEXT. Add each one that you find to the list. */
3786 map_partial_symbol_names (add_partial_symbol_name, &datum);
3787
3788 /* At this point scan through the misc symbol vectors and add each
3789 symbol you find to the list. Eventually we want to ignore
3790 anything that isn't a text symbol (everything else will be
3791 handled by the psymtab code above). */
3792
3793 ALL_MSYMBOLS (objfile, msymbol)
3794 {
3795 QUIT;
3796 COMPLETION_LIST_ADD_SYMBOL (msymbol, sym_text, sym_text_len, text, word);
3797
3798 completion_list_objc_symbol (msymbol, sym_text, sym_text_len, text, word);
3799 }
3800
3801 /* Search upwards from currently selected frame (so that we can
3802 complete on local vars). Also catch fields of types defined in
3803 this places which match our text string. Only complete on types
3804 visible from current context. */
3805
3806 b = get_selected_block (0);
3807 surrounding_static_block = block_static_block (b);
3808 surrounding_global_block = block_global_block (b);
3809 if (surrounding_static_block != NULL)
3810 while (b != surrounding_static_block)
3811 {
3812 QUIT;
3813
3814 ALL_BLOCK_SYMBOLS (b, iter, sym)
3815 {
3816 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text,
3817 word);
3818 completion_list_add_fields (sym, sym_text, sym_text_len, text,
3819 word);
3820 }
3821
3822 /* Stop when we encounter an enclosing function. Do not stop for
3823 non-inlined functions - the locals of the enclosing function
3824 are in scope for a nested function. */
3825 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
3826 break;
3827 b = BLOCK_SUPERBLOCK (b);
3828 }
3829
3830 /* Add fields from the file's types; symbols will be added below. */
3831
3832 if (surrounding_static_block != NULL)
3833 ALL_BLOCK_SYMBOLS (surrounding_static_block, iter, sym)
3834 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
3835
3836 if (surrounding_global_block != NULL)
3837 ALL_BLOCK_SYMBOLS (surrounding_global_block, iter, sym)
3838 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
3839
3840 /* Go through the symtabs and check the externs and statics for
3841 symbols which match. */
3842
3843 ALL_PRIMARY_SYMTABS (objfile, s)
3844 {
3845 QUIT;
3846 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
3847 ALL_BLOCK_SYMBOLS (b, iter, sym)
3848 {
3849 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
3850 }
3851 }
3852
3853 ALL_PRIMARY_SYMTABS (objfile, s)
3854 {
3855 QUIT;
3856 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
3857 ALL_BLOCK_SYMBOLS (b, iter, sym)
3858 {
3859 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
3860 }
3861 }
3862
3863 if (current_language->la_macro_expansion == macro_expansion_c)
3864 {
3865 struct macro_scope *scope;
3866
3867 /* Add any macros visible in the default scope. Note that this
3868 may yield the occasional wrong result, because an expression
3869 might be evaluated in a scope other than the default. For
3870 example, if the user types "break file:line if <TAB>", the
3871 resulting expression will be evaluated at "file:line" -- but
3872 at there does not seem to be a way to detect this at
3873 completion time. */
3874 scope = default_macro_scope ();
3875 if (scope)
3876 {
3877 macro_for_each_in_scope (scope->file, scope->line,
3878 add_macro_name, &datum);
3879 xfree (scope);
3880 }
3881
3882 /* User-defined macros are always visible. */
3883 macro_for_each (macro_user_macros, add_macro_name, &datum);
3884 }
3885
3886 return (return_val);
3887 }
3888
3889 char **
3890 default_make_symbol_completion_list (char *text, char *word)
3891 {
3892 return default_make_symbol_completion_list_break_on (text, word, "");
3893 }
3894
3895 /* Return a NULL terminated array of all symbols (regardless of class)
3896 which begin by matching TEXT. If the answer is no symbols, then
3897 the return value is an array which contains only a NULL pointer. */
3898
3899 char **
3900 make_symbol_completion_list (char *text, char *word)
3901 {
3902 return current_language->la_make_symbol_completion_list (text, word);
3903 }
3904
3905 /* Like make_symbol_completion_list, but suitable for use as a
3906 completion function. */
3907
3908 char **
3909 make_symbol_completion_list_fn (struct cmd_list_element *ignore,
3910 char *text, char *word)
3911 {
3912 return make_symbol_completion_list (text, word);
3913 }
3914
3915 /* Like make_symbol_completion_list, but returns a list of symbols
3916 defined in a source file FILE. */
3917
3918 char **
3919 make_file_symbol_completion_list (char *text, char *word, char *srcfile)
3920 {
3921 struct symbol *sym;
3922 struct symtab *s;
3923 struct block *b;
3924 struct dict_iterator iter;
3925 /* The symbol we are completing on. Points in same buffer as text. */
3926 char *sym_text;
3927 /* Length of sym_text. */
3928 int sym_text_len;
3929
3930 /* Now look for the symbol we are supposed to complete on.
3931 FIXME: This should be language-specific. */
3932 {
3933 char *p;
3934 char quote_found;
3935 char *quote_pos = NULL;
3936
3937 /* First see if this is a quoted string. */
3938 quote_found = '\0';
3939 for (p = text; *p != '\0'; ++p)
3940 {
3941 if (quote_found != '\0')
3942 {
3943 if (*p == quote_found)
3944 /* Found close quote. */
3945 quote_found = '\0';
3946 else if (*p == '\\' && p[1] == quote_found)
3947 /* A backslash followed by the quote character
3948 doesn't end the string. */
3949 ++p;
3950 }
3951 else if (*p == '\'' || *p == '"')
3952 {
3953 quote_found = *p;
3954 quote_pos = p;
3955 }
3956 }
3957 if (quote_found == '\'')
3958 /* A string within single quotes can be a symbol, so complete on it. */
3959 sym_text = quote_pos + 1;
3960 else if (quote_found == '"')
3961 /* A double-quoted string is never a symbol, nor does it make sense
3962 to complete it any other way. */
3963 {
3964 return_val = (char **) xmalloc (sizeof (char *));
3965 return_val[0] = NULL;
3966 return return_val;
3967 }
3968 else
3969 {
3970 /* Not a quoted string. */
3971 sym_text = language_search_unquoted_string (text, p);
3972 }
3973 }
3974
3975 sym_text_len = strlen (sym_text);
3976
3977 return_val_size = 10;
3978 return_val_index = 0;
3979 return_val = (char **) xmalloc ((return_val_size + 1) * sizeof (char *));
3980 return_val[0] = NULL;
3981
3982 /* Find the symtab for SRCFILE (this loads it if it was not yet read
3983 in). */
3984 s = lookup_symtab (srcfile);
3985 if (s == NULL)
3986 {
3987 /* Maybe they typed the file with leading directories, while the
3988 symbol tables record only its basename. */
3989 const char *tail = lbasename (srcfile);
3990
3991 if (tail > srcfile)
3992 s = lookup_symtab (tail);
3993 }
3994
3995 /* If we have no symtab for that file, return an empty list. */
3996 if (s == NULL)
3997 return (return_val);
3998
3999 /* Go through this symtab and check the externs and statics for
4000 symbols which match. */
4001
4002 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
4003 ALL_BLOCK_SYMBOLS (b, iter, sym)
4004 {
4005 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4006 }
4007
4008 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
4009 ALL_BLOCK_SYMBOLS (b, iter, sym)
4010 {
4011 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4012 }
4013
4014 return (return_val);
4015 }
4016
4017 /* A helper function for make_source_files_completion_list. It adds
4018 another file name to a list of possible completions, growing the
4019 list as necessary. */
4020
4021 static void
4022 add_filename_to_list (const char *fname, char *text, char *word,
4023 char ***list, int *list_used, int *list_alloced)
4024 {
4025 char *new;
4026 size_t fnlen = strlen (fname);
4027
4028 if (*list_used + 1 >= *list_alloced)
4029 {
4030 *list_alloced *= 2;
4031 *list = (char **) xrealloc ((char *) *list,
4032 *list_alloced * sizeof (char *));
4033 }
4034
4035 if (word == text)
4036 {
4037 /* Return exactly fname. */
4038 new = xmalloc (fnlen + 5);
4039 strcpy (new, fname);
4040 }
4041 else if (word > text)
4042 {
4043 /* Return some portion of fname. */
4044 new = xmalloc (fnlen + 5);
4045 strcpy (new, fname + (word - text));
4046 }
4047 else
4048 {
4049 /* Return some of TEXT plus fname. */
4050 new = xmalloc (fnlen + (text - word) + 5);
4051 strncpy (new, word, text - word);
4052 new[text - word] = '\0';
4053 strcat (new, fname);
4054 }
4055 (*list)[*list_used] = new;
4056 (*list)[++*list_used] = NULL;
4057 }
4058
4059 static int
4060 not_interesting_fname (const char *fname)
4061 {
4062 static const char *illegal_aliens[] = {
4063 "_globals_", /* inserted by coff_symtab_read */
4064 NULL
4065 };
4066 int i;
4067
4068 for (i = 0; illegal_aliens[i]; i++)
4069 {
4070 if (filename_cmp (fname, illegal_aliens[i]) == 0)
4071 return 1;
4072 }
4073 return 0;
4074 }
4075
4076 /* An object of this type is passed as the user_data argument to
4077 map_partial_symbol_filenames. */
4078 struct add_partial_filename_data
4079 {
4080 int *first;
4081 char *text;
4082 char *word;
4083 int text_len;
4084 char ***list;
4085 int *list_used;
4086 int *list_alloced;
4087 };
4088
4089 /* A callback for map_partial_symbol_filenames. */
4090 static void
4091 maybe_add_partial_symtab_filename (const char *filename, const char *fullname,
4092 void *user_data)
4093 {
4094 struct add_partial_filename_data *data = user_data;
4095
4096 if (not_interesting_fname (filename))
4097 return;
4098 if (!filename_seen (filename, 1, data->first)
4099 && filename_ncmp (filename, data->text, data->text_len) == 0)
4100 {
4101 /* This file matches for a completion; add it to the
4102 current list of matches. */
4103 add_filename_to_list (filename, data->text, data->word,
4104 data->list, data->list_used, data->list_alloced);
4105 }
4106 else
4107 {
4108 const char *base_name = lbasename (filename);
4109
4110 if (base_name != filename
4111 && !filename_seen (base_name, 1, data->first)
4112 && filename_ncmp (base_name, data->text, data->text_len) == 0)
4113 add_filename_to_list (base_name, data->text, data->word,
4114 data->list, data->list_used, data->list_alloced);
4115 }
4116 }
4117
4118 /* Return a NULL terminated array of all source files whose names
4119 begin with matching TEXT. The file names are looked up in the
4120 symbol tables of this program. If the answer is no matchess, then
4121 the return value is an array which contains only a NULL pointer. */
4122
4123 char **
4124 make_source_files_completion_list (char *text, char *word)
4125 {
4126 struct symtab *s;
4127 struct objfile *objfile;
4128 int first = 1;
4129 int list_alloced = 1;
4130 int list_used = 0;
4131 size_t text_len = strlen (text);
4132 char **list = (char **) xmalloc (list_alloced * sizeof (char *));
4133 const char *base_name;
4134 struct add_partial_filename_data datum;
4135
4136 list[0] = NULL;
4137
4138 if (!have_full_symbols () && !have_partial_symbols ())
4139 return list;
4140
4141 ALL_SYMTABS (objfile, s)
4142 {
4143 if (not_interesting_fname (s->filename))
4144 continue;
4145 if (!filename_seen (s->filename, 1, &first)
4146 && filename_ncmp (s->filename, text, text_len) == 0)
4147 {
4148 /* This file matches for a completion; add it to the current
4149 list of matches. */
4150 add_filename_to_list (s->filename, text, word,
4151 &list, &list_used, &list_alloced);
4152 }
4153 else
4154 {
4155 /* NOTE: We allow the user to type a base name when the
4156 debug info records leading directories, but not the other
4157 way around. This is what subroutines of breakpoint
4158 command do when they parse file names. */
4159 base_name = lbasename (s->filename);
4160 if (base_name != s->filename
4161 && !filename_seen (base_name, 1, &first)
4162 && filename_ncmp (base_name, text, text_len) == 0)
4163 add_filename_to_list (base_name, text, word,
4164 &list, &list_used, &list_alloced);
4165 }
4166 }
4167
4168 datum.first = &first;
4169 datum.text = text;
4170 datum.word = word;
4171 datum.text_len = text_len;
4172 datum.list = &list;
4173 datum.list_used = &list_used;
4174 datum.list_alloced = &list_alloced;
4175 map_partial_symbol_filenames (maybe_add_partial_symtab_filename, &datum);
4176
4177 return list;
4178 }
4179
4180 /* Determine if PC is in the prologue of a function. The prologue is the area
4181 between the first instruction of a function, and the first executable line.
4182 Returns 1 if PC *might* be in prologue, 0 if definately *not* in prologue.
4183
4184 If non-zero, func_start is where we think the prologue starts, possibly
4185 by previous examination of symbol table information. */
4186
4187 int
4188 in_prologue (struct gdbarch *gdbarch, CORE_ADDR pc, CORE_ADDR func_start)
4189 {
4190 struct symtab_and_line sal;
4191 CORE_ADDR func_addr, func_end;
4192
4193 /* We have several sources of information we can consult to figure
4194 this out.
4195 - Compilers usually emit line number info that marks the prologue
4196 as its own "source line". So the ending address of that "line"
4197 is the end of the prologue. If available, this is the most
4198 reliable method.
4199 - The minimal symbols and partial symbols, which can usually tell
4200 us the starting and ending addresses of a function.
4201 - If we know the function's start address, we can call the
4202 architecture-defined gdbarch_skip_prologue function to analyze the
4203 instruction stream and guess where the prologue ends.
4204 - Our `func_start' argument; if non-zero, this is the caller's
4205 best guess as to the function's entry point. At the time of
4206 this writing, handle_inferior_event doesn't get this right, so
4207 it should be our last resort. */
4208
4209 /* Consult the partial symbol table, to find which function
4210 the PC is in. */
4211 if (! find_pc_partial_function (pc, NULL, &func_addr, &func_end))
4212 {
4213 CORE_ADDR prologue_end;
4214
4215 /* We don't even have minsym information, so fall back to using
4216 func_start, if given. */
4217 if (! func_start)
4218 return 1; /* We *might* be in a prologue. */
4219
4220 prologue_end = gdbarch_skip_prologue (gdbarch, func_start);
4221
4222 return func_start <= pc && pc < prologue_end;
4223 }
4224
4225 /* If we have line number information for the function, that's
4226 usually pretty reliable. */
4227 sal = find_pc_line (func_addr, 0);
4228
4229 /* Now sal describes the source line at the function's entry point,
4230 which (by convention) is the prologue. The end of that "line",
4231 sal.end, is the end of the prologue.
4232
4233 Note that, for functions whose source code is all on a single
4234 line, the line number information doesn't always end up this way.
4235 So we must verify that our purported end-of-prologue address is
4236 *within* the function, not at its start or end. */
4237 if (sal.line == 0
4238 || sal.end <= func_addr
4239 || func_end <= sal.end)
4240 {
4241 /* We don't have any good line number info, so use the minsym
4242 information, together with the architecture-specific prologue
4243 scanning code. */
4244 CORE_ADDR prologue_end = gdbarch_skip_prologue (gdbarch, func_addr);
4245
4246 return func_addr <= pc && pc < prologue_end;
4247 }
4248
4249 /* We have line number info, and it looks good. */
4250 return func_addr <= pc && pc < sal.end;
4251 }
4252
4253 /* Given PC at the function's start address, attempt to find the
4254 prologue end using SAL information. Return zero if the skip fails.
4255
4256 A non-optimized prologue traditionally has one SAL for the function
4257 and a second for the function body. A single line function has
4258 them both pointing at the same line.
4259
4260 An optimized prologue is similar but the prologue may contain
4261 instructions (SALs) from the instruction body. Need to skip those
4262 while not getting into the function body.
4263
4264 The functions end point and an increasing SAL line are used as
4265 indicators of the prologue's endpoint.
4266
4267 This code is based on the function refine_prologue_limit (versions
4268 found in both ia64 and ppc). */
4269
4270 CORE_ADDR
4271 skip_prologue_using_sal (struct gdbarch *gdbarch, CORE_ADDR func_addr)
4272 {
4273 struct symtab_and_line prologue_sal;
4274 CORE_ADDR start_pc;
4275 CORE_ADDR end_pc;
4276 struct block *bl;
4277
4278 /* Get an initial range for the function. */
4279 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
4280 start_pc += gdbarch_deprecated_function_start_offset (gdbarch);
4281
4282 prologue_sal = find_pc_line (start_pc, 0);
4283 if (prologue_sal.line != 0)
4284 {
4285 /* For langauges other than assembly, treat two consecutive line
4286 entries at the same address as a zero-instruction prologue.
4287 The GNU assembler emits separate line notes for each instruction
4288 in a multi-instruction macro, but compilers generally will not
4289 do this. */
4290 if (prologue_sal.symtab->language != language_asm)
4291 {
4292 struct linetable *linetable = LINETABLE (prologue_sal.symtab);
4293 int idx = 0;
4294
4295 /* Skip any earlier lines, and any end-of-sequence marker
4296 from a previous function. */
4297 while (linetable->item[idx].pc != prologue_sal.pc
4298 || linetable->item[idx].line == 0)
4299 idx++;
4300
4301 if (idx+1 < linetable->nitems
4302 && linetable->item[idx+1].line != 0
4303 && linetable->item[idx+1].pc == start_pc)
4304 return start_pc;
4305 }
4306
4307 /* If there is only one sal that covers the entire function,
4308 then it is probably a single line function, like
4309 "foo(){}". */
4310 if (prologue_sal.end >= end_pc)
4311 return 0;
4312
4313 while (prologue_sal.end < end_pc)
4314 {
4315 struct symtab_and_line sal;
4316
4317 sal = find_pc_line (prologue_sal.end, 0);
4318 if (sal.line == 0)
4319 break;
4320 /* Assume that a consecutive SAL for the same (or larger)
4321 line mark the prologue -> body transition. */
4322 if (sal.line >= prologue_sal.line)
4323 break;
4324
4325 /* The line number is smaller. Check that it's from the
4326 same function, not something inlined. If it's inlined,
4327 then there is no point comparing the line numbers. */
4328 bl = block_for_pc (prologue_sal.end);
4329 while (bl)
4330 {
4331 if (block_inlined_p (bl))
4332 break;
4333 if (BLOCK_FUNCTION (bl))
4334 {
4335 bl = NULL;
4336 break;
4337 }
4338 bl = BLOCK_SUPERBLOCK (bl);
4339 }
4340 if (bl != NULL)
4341 break;
4342
4343 /* The case in which compiler's optimizer/scheduler has
4344 moved instructions into the prologue. We look ahead in
4345 the function looking for address ranges whose
4346 corresponding line number is less the first one that we
4347 found for the function. This is more conservative then
4348 refine_prologue_limit which scans a large number of SALs
4349 looking for any in the prologue. */
4350 prologue_sal = sal;
4351 }
4352 }
4353
4354 if (prologue_sal.end < end_pc)
4355 /* Return the end of this line, or zero if we could not find a
4356 line. */
4357 return prologue_sal.end;
4358 else
4359 /* Don't return END_PC, which is past the end of the function. */
4360 return prologue_sal.pc;
4361 }
4362 \f
4363 struct symtabs_and_lines
4364 decode_line_spec (char *string, int funfirstline)
4365 {
4366 struct symtabs_and_lines sals;
4367 struct symtab_and_line cursal;
4368
4369 if (string == 0)
4370 error (_("Empty line specification."));
4371
4372 /* We use whatever is set as the current source line. We do not try
4373 and get a default or it will recursively call us! */
4374 cursal = get_current_source_symtab_and_line ();
4375
4376 sals = decode_line_1 (&string, funfirstline,
4377 cursal.symtab, cursal.line,
4378 NULL, NULL);
4379
4380 if (*string)
4381 error (_("Junk at end of line specification: %s"), string);
4382 return sals;
4383 }
4384
4385 /* Track MAIN */
4386 static char *name_of_main;
4387 enum language language_of_main = language_unknown;
4388
4389 void
4390 set_main_name (const char *name)
4391 {
4392 if (name_of_main != NULL)
4393 {
4394 xfree (name_of_main);
4395 name_of_main = NULL;
4396 language_of_main = language_unknown;
4397 }
4398 if (name != NULL)
4399 {
4400 name_of_main = xstrdup (name);
4401 language_of_main = language_unknown;
4402 }
4403 }
4404
4405 /* Deduce the name of the main procedure, and set NAME_OF_MAIN
4406 accordingly. */
4407
4408 static void
4409 find_main_name (void)
4410 {
4411 const char *new_main_name;
4412
4413 /* Try to see if the main procedure is in Ada. */
4414 /* FIXME: brobecker/2005-03-07: Another way of doing this would
4415 be to add a new method in the language vector, and call this
4416 method for each language until one of them returns a non-empty
4417 name. This would allow us to remove this hard-coded call to
4418 an Ada function. It is not clear that this is a better approach
4419 at this point, because all methods need to be written in a way
4420 such that false positives never be returned. For instance, it is
4421 important that a method does not return a wrong name for the main
4422 procedure if the main procedure is actually written in a different
4423 language. It is easy to guaranty this with Ada, since we use a
4424 special symbol generated only when the main in Ada to find the name
4425 of the main procedure. It is difficult however to see how this can
4426 be guarantied for languages such as C, for instance. This suggests
4427 that order of call for these methods becomes important, which means
4428 a more complicated approach. */
4429 new_main_name = ada_main_name ();
4430 if (new_main_name != NULL)
4431 {
4432 set_main_name (new_main_name);
4433 return;
4434 }
4435
4436 new_main_name = pascal_main_name ();
4437 if (new_main_name != NULL)
4438 {
4439 set_main_name (new_main_name);
4440 return;
4441 }
4442
4443 /* The languages above didn't identify the name of the main procedure.
4444 Fallback to "main". */
4445 set_main_name ("main");
4446 }
4447
4448 char *
4449 main_name (void)
4450 {
4451 if (name_of_main == NULL)
4452 find_main_name ();
4453
4454 return name_of_main;
4455 }
4456
4457 /* Handle ``executable_changed'' events for the symtab module. */
4458
4459 static void
4460 symtab_observer_executable_changed (void)
4461 {
4462 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
4463 set_main_name (NULL);
4464 }
4465
4466 /* Helper to expand_line_sal below. Appends new sal to SAL,
4467 initializing it from SYMTAB, LINENO and PC. */
4468 static void
4469 append_expanded_sal (struct symtabs_and_lines *sal,
4470 struct program_space *pspace,
4471 struct symtab *symtab,
4472 int lineno, CORE_ADDR pc)
4473 {
4474 sal->sals = xrealloc (sal->sals,
4475 sizeof (sal->sals[0])
4476 * (sal->nelts + 1));
4477 init_sal (sal->sals + sal->nelts);
4478 sal->sals[sal->nelts].pspace = pspace;
4479 sal->sals[sal->nelts].symtab = symtab;
4480 sal->sals[sal->nelts].section = NULL;
4481 sal->sals[sal->nelts].end = 0;
4482 sal->sals[sal->nelts].line = lineno;
4483 sal->sals[sal->nelts].pc = pc;
4484 ++sal->nelts;
4485 }
4486
4487 /* Helper to expand_line_sal below. Search in the symtabs for any
4488 linetable entry that exactly matches FULLNAME and LINENO and append
4489 them to RET. If FULLNAME is NULL or if a symtab has no full name,
4490 use FILENAME and LINENO instead. If there is at least one match,
4491 return 1; otherwise, return 0, and return the best choice in BEST_ITEM
4492 and BEST_SYMTAB. */
4493
4494 static int
4495 append_exact_match_to_sals (char *filename, char *fullname, int lineno,
4496 struct symtabs_and_lines *ret,
4497 struct linetable_entry **best_item,
4498 struct symtab **best_symtab)
4499 {
4500 struct program_space *pspace;
4501 struct objfile *objfile;
4502 struct symtab *symtab;
4503 int exact = 0;
4504 int j;
4505 *best_item = 0;
4506 *best_symtab = 0;
4507
4508 ALL_PSPACES (pspace)
4509 ALL_PSPACE_SYMTABS (pspace, objfile, symtab)
4510 {
4511 if (FILENAME_CMP (filename, symtab->filename) == 0)
4512 {
4513 struct linetable *l;
4514 int len;
4515
4516 if (fullname != NULL
4517 && symtab_to_fullname (symtab) != NULL
4518 && FILENAME_CMP (fullname, symtab->fullname) != 0)
4519 continue;
4520 l = LINETABLE (symtab);
4521 if (!l)
4522 continue;
4523 len = l->nitems;
4524
4525 for (j = 0; j < len; j++)
4526 {
4527 struct linetable_entry *item = &(l->item[j]);
4528
4529 if (item->line == lineno)
4530 {
4531 exact = 1;
4532 append_expanded_sal (ret, objfile->pspace,
4533 symtab, lineno, item->pc);
4534 }
4535 else if (!exact && item->line > lineno
4536 && (*best_item == NULL
4537 || item->line < (*best_item)->line))
4538 {
4539 *best_item = item;
4540 *best_symtab = symtab;
4541 }
4542 }
4543 }
4544 }
4545 return exact;
4546 }
4547
4548 /* Compute a set of all sals in all program spaces that correspond to
4549 same file and line as SAL and return those. If there are several
4550 sals that belong to the same block, only one sal for the block is
4551 included in results. */
4552
4553 struct symtabs_and_lines
4554 expand_line_sal (struct symtab_and_line sal)
4555 {
4556 struct symtabs_and_lines ret;
4557 int i, j;
4558 struct objfile *objfile;
4559 int lineno;
4560 int deleted = 0;
4561 struct block **blocks = NULL;
4562 int *filter;
4563 struct cleanup *old_chain;
4564
4565 ret.nelts = 0;
4566 ret.sals = NULL;
4567
4568 /* Only expand sals that represent file.c:line. */
4569 if (sal.symtab == NULL || sal.line == 0 || sal.pc != 0)
4570 {
4571 ret.sals = xmalloc (sizeof (struct symtab_and_line));
4572 ret.sals[0] = sal;
4573 ret.nelts = 1;
4574 return ret;
4575 }
4576 else
4577 {
4578 struct program_space *pspace;
4579 struct linetable_entry *best_item = 0;
4580 struct symtab *best_symtab = 0;
4581 int exact = 0;
4582 char *match_filename;
4583
4584 lineno = sal.line;
4585 match_filename = sal.symtab->filename;
4586
4587 /* We need to find all symtabs for a file which name
4588 is described by sal. We cannot just directly
4589 iterate over symtabs, since a symtab might not be
4590 yet created. We also cannot iterate over psymtabs,
4591 calling PSYMTAB_TO_SYMTAB and working on that symtab,
4592 since PSYMTAB_TO_SYMTAB will return NULL for psymtab
4593 corresponding to an included file. Therefore, we do
4594 first pass over psymtabs, reading in those with
4595 the right name. Then, we iterate over symtabs, knowing
4596 that all symtabs we're interested in are loaded. */
4597
4598 old_chain = save_current_program_space ();
4599 ALL_PSPACES (pspace)
4600 {
4601 set_current_program_space (pspace);
4602 ALL_PSPACE_OBJFILES (pspace, objfile)
4603 {
4604 if (objfile->sf)
4605 objfile->sf->qf->expand_symtabs_with_filename (objfile,
4606 sal.symtab->filename);
4607 }
4608 }
4609 do_cleanups (old_chain);
4610
4611 /* Now search the symtab for exact matches and append them. If
4612 none is found, append the best_item and all its exact
4613 matches. */
4614 symtab_to_fullname (sal.symtab);
4615 exact = append_exact_match_to_sals (sal.symtab->filename,
4616 sal.symtab->fullname, lineno,
4617 &ret, &best_item, &best_symtab);
4618 if (!exact && best_item)
4619 append_exact_match_to_sals (best_symtab->filename,
4620 best_symtab->fullname, best_item->line,
4621 &ret, &best_item, &best_symtab);
4622 }
4623
4624 /* For optimized code, compiler can scatter one source line accross
4625 disjoint ranges of PC values, even when no duplicate functions
4626 or inline functions are involved. For example, 'for (;;)' inside
4627 non-template non-inline non-ctor-or-dtor function can result
4628 in two PC ranges. In this case, we don't want to set breakpoint
4629 on first PC of each range. To filter such cases, we use containing
4630 blocks -- for each PC found above we see if there are other PCs
4631 that are in the same block. If yes, the other PCs are filtered out. */
4632
4633 old_chain = save_current_program_space ();
4634 filter = alloca (ret.nelts * sizeof (int));
4635 blocks = alloca (ret.nelts * sizeof (struct block *));
4636 for (i = 0; i < ret.nelts; ++i)
4637 {
4638 set_current_program_space (ret.sals[i].pspace);
4639
4640 filter[i] = 1;
4641 blocks[i] = block_for_pc_sect (ret.sals[i].pc, ret.sals[i].section);
4642
4643 }
4644 do_cleanups (old_chain);
4645
4646 for (i = 0; i < ret.nelts; ++i)
4647 if (blocks[i] != NULL)
4648 for (j = i+1; j < ret.nelts; ++j)
4649 if (blocks[j] == blocks[i])
4650 {
4651 filter[j] = 0;
4652 ++deleted;
4653 break;
4654 }
4655
4656 {
4657 struct symtab_and_line *final =
4658 xmalloc (sizeof (struct symtab_and_line) * (ret.nelts-deleted));
4659
4660 for (i = 0, j = 0; i < ret.nelts; ++i)
4661 if (filter[i])
4662 final[j++] = ret.sals[i];
4663
4664 ret.nelts -= deleted;
4665 xfree (ret.sals);
4666 ret.sals = final;
4667 }
4668
4669 return ret;
4670 }
4671
4672 /* Return 1 if the supplied producer string matches the ARM RealView
4673 compiler (armcc). */
4674
4675 int
4676 producer_is_realview (const char *producer)
4677 {
4678 static const char *const arm_idents[] = {
4679 "ARM C Compiler, ADS",
4680 "Thumb C Compiler, ADS",
4681 "ARM C++ Compiler, ADS",
4682 "Thumb C++ Compiler, ADS",
4683 "ARM/Thumb C/C++ Compiler, RVCT",
4684 "ARM C/C++ Compiler, RVCT"
4685 };
4686 int i;
4687
4688 if (producer == NULL)
4689 return 0;
4690
4691 for (i = 0; i < ARRAY_SIZE (arm_idents); i++)
4692 if (strncmp (producer, arm_idents[i], strlen (arm_idents[i])) == 0)
4693 return 1;
4694
4695 return 0;
4696 }
4697
4698 void
4699 _initialize_symtab (void)
4700 {
4701 add_info ("variables", variables_info, _("\
4702 All global and static variable names, or those matching REGEXP."));
4703 if (dbx_commands)
4704 add_com ("whereis", class_info, variables_info, _("\
4705 All global and static variable names, or those matching REGEXP."));
4706
4707 add_info ("functions", functions_info,
4708 _("All function names, or those matching REGEXP."));
4709
4710 /* FIXME: This command has at least the following problems:
4711 1. It prints builtin types (in a very strange and confusing fashion).
4712 2. It doesn't print right, e.g. with
4713 typedef struct foo *FOO
4714 type_print prints "FOO" when we want to make it (in this situation)
4715 print "struct foo *".
4716 I also think "ptype" or "whatis" is more likely to be useful (but if
4717 there is much disagreement "info types" can be fixed). */
4718 add_info ("types", types_info,
4719 _("All type names, or those matching REGEXP."));
4720
4721 add_info ("sources", sources_info,
4722 _("Source files in the program."));
4723
4724 add_com ("rbreak", class_breakpoint, rbreak_command,
4725 _("Set a breakpoint for all functions matching REGEXP."));
4726
4727 if (xdb_commands)
4728 {
4729 add_com ("lf", class_info, sources_info,
4730 _("Source files in the program"));
4731 add_com ("lg", class_info, variables_info, _("\
4732 All global and static variable names, or those matching REGEXP."));
4733 }
4734
4735 add_setshow_enum_cmd ("multiple-symbols", no_class,
4736 multiple_symbols_modes, &multiple_symbols_mode,
4737 _("\
4738 Set the debugger behavior when more than one symbol are possible matches\n\
4739 in an expression."), _("\
4740 Show how the debugger handles ambiguities in expressions."), _("\
4741 Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
4742 NULL, NULL, &setlist, &showlist);
4743
4744 observer_attach_executable_changed (symtab_observer_executable_changed);
4745 }
This page took 0.151394 seconds and 4 git commands to generate.