1 /* Symbol table lookup for the GNU debugger, GDB.
3 Copyright (C) 1986-2017 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
30 #include "gdb_regex.h"
31 #include "expression.h"
36 #include "filenames.h" /* for FILENAME_CMP */
37 #include "objc-lang.h"
43 #include "cli/cli-utils.h"
47 #include "gdb_obstack.h"
49 #include "dictionary.h"
51 #include <sys/types.h>
56 #include "cp-support.h"
60 #include "macroscope.h"
62 #include "parser-defs.h"
63 #include "completer.h"
64 #include "progspace-and-thread.h"
65 #include "common/gdb_optional.h"
66 #include "filename-seen-cache.h"
67 #include "arch-utils.h"
70 /* Forward declarations for local functions. */
72 static void rbreak_command (const char *, int);
74 static int find_line_common (struct linetable
*, int, int *, int);
76 static struct block_symbol
77 lookup_symbol_aux (const char *name
,
78 const struct block
*block
,
79 const domain_enum domain
,
80 enum language language
,
81 struct field_of_this_result
*);
84 struct block_symbol
lookup_local_symbol (const char *name
,
85 const struct block
*block
,
86 const domain_enum domain
,
87 enum language language
);
89 static struct block_symbol
90 lookup_symbol_in_objfile (struct objfile
*objfile
, int block_index
,
91 const char *name
, const domain_enum domain
);
94 const struct block_symbol null_block_symbol
= { NULL
, NULL
};
96 /* Program space key for finding name and language of "main". */
98 static const struct program_space_data
*main_progspace_key
;
100 /* Type of the data stored on the program space. */
104 /* Name of "main". */
108 /* Language of "main". */
110 enum language language_of_main
;
113 /* Program space key for finding its symbol cache. */
115 static const struct program_space_data
*symbol_cache_key
;
117 /* The default symbol cache size.
118 There is no extra cpu cost for large N (except when flushing the cache,
119 which is rare). The value here is just a first attempt. A better default
120 value may be higher or lower. A prime number can make up for a bad hash
121 computation, so that's why the number is what it is. */
122 #define DEFAULT_SYMBOL_CACHE_SIZE 1021
124 /* The maximum symbol cache size.
125 There's no method to the decision of what value to use here, other than
126 there's no point in allowing a user typo to make gdb consume all memory. */
127 #define MAX_SYMBOL_CACHE_SIZE (1024*1024)
129 /* symbol_cache_lookup returns this if a previous lookup failed to find the
130 symbol in any objfile. */
131 #define SYMBOL_LOOKUP_FAILED \
132 ((struct block_symbol) {(struct symbol *) 1, NULL})
133 #define SYMBOL_LOOKUP_FAILED_P(SIB) (SIB.symbol == (struct symbol *) 1)
135 /* Recording lookups that don't find the symbol is just as important, if not
136 more so, than recording found symbols. */
138 enum symbol_cache_slot_state
141 SYMBOL_SLOT_NOT_FOUND
,
145 struct symbol_cache_slot
147 enum symbol_cache_slot_state state
;
149 /* The objfile that was current when the symbol was looked up.
150 This is only needed for global blocks, but for simplicity's sake
151 we allocate the space for both. If data shows the extra space used
152 for static blocks is a problem, we can split things up then.
154 Global blocks need cache lookup to include the objfile context because
155 we need to account for gdbarch_iterate_over_objfiles_in_search_order
156 which can traverse objfiles in, effectively, any order, depending on
157 the current objfile, thus affecting which symbol is found. Normally,
158 only the current objfile is searched first, and then the rest are
159 searched in recorded order; but putting cache lookup inside
160 gdbarch_iterate_over_objfiles_in_search_order would be awkward.
161 Instead we just make the current objfile part of the context of
162 cache lookup. This means we can record the same symbol multiple times,
163 each with a different "current objfile" that was in effect when the
164 lookup was saved in the cache, but cache space is pretty cheap. */
165 const struct objfile
*objfile_context
;
169 struct block_symbol found
;
178 /* Symbols don't specify global vs static block.
179 So keep them in separate caches. */
181 struct block_symbol_cache
185 unsigned int collisions
;
187 /* SYMBOLS is a variable length array of this size.
188 One can imagine that in general one cache (global/static) should be a
189 fraction of the size of the other, but there's no data at the moment
190 on which to decide. */
193 struct symbol_cache_slot symbols
[1];
198 Searching for symbols in the static and global blocks over multiple objfiles
199 again and again can be slow, as can searching very big objfiles. This is a
200 simple cache to improve symbol lookup performance, which is critical to
201 overall gdb performance.
203 Symbols are hashed on the name, its domain, and block.
204 They are also hashed on their objfile for objfile-specific lookups. */
208 struct block_symbol_cache
*global_symbols
;
209 struct block_symbol_cache
*static_symbols
;
212 /* When non-zero, print debugging messages related to symtab creation. */
213 unsigned int symtab_create_debug
= 0;
215 /* When non-zero, print debugging messages related to symbol lookup. */
216 unsigned int symbol_lookup_debug
= 0;
218 /* The size of the cache is staged here. */
219 static unsigned int new_symbol_cache_size
= DEFAULT_SYMBOL_CACHE_SIZE
;
221 /* The current value of the symbol cache size.
222 This is saved so that if the user enters a value too big we can restore
223 the original value from here. */
224 static unsigned int symbol_cache_size
= DEFAULT_SYMBOL_CACHE_SIZE
;
226 /* Non-zero if a file may be known by two different basenames.
227 This is the uncommon case, and significantly slows down gdb.
228 Default set to "off" to not slow down the common case. */
229 int basenames_may_differ
= 0;
231 /* Allow the user to configure the debugger behavior with respect
232 to multiple-choice menus when more than one symbol matches during
235 const char multiple_symbols_ask
[] = "ask";
236 const char multiple_symbols_all
[] = "all";
237 const char multiple_symbols_cancel
[] = "cancel";
238 static const char *const multiple_symbols_modes
[] =
240 multiple_symbols_ask
,
241 multiple_symbols_all
,
242 multiple_symbols_cancel
,
245 static const char *multiple_symbols_mode
= multiple_symbols_all
;
247 /* Read-only accessor to AUTO_SELECT_MODE. */
250 multiple_symbols_select_mode (void)
252 return multiple_symbols_mode
;
255 /* Return the name of a domain_enum. */
258 domain_name (domain_enum e
)
262 case UNDEF_DOMAIN
: return "UNDEF_DOMAIN";
263 case VAR_DOMAIN
: return "VAR_DOMAIN";
264 case STRUCT_DOMAIN
: return "STRUCT_DOMAIN";
265 case MODULE_DOMAIN
: return "MODULE_DOMAIN";
266 case LABEL_DOMAIN
: return "LABEL_DOMAIN";
267 case COMMON_BLOCK_DOMAIN
: return "COMMON_BLOCK_DOMAIN";
268 default: gdb_assert_not_reached ("bad domain_enum");
272 /* Return the name of a search_domain . */
275 search_domain_name (enum search_domain e
)
279 case VARIABLES_DOMAIN
: return "VARIABLES_DOMAIN";
280 case FUNCTIONS_DOMAIN
: return "FUNCTIONS_DOMAIN";
281 case TYPES_DOMAIN
: return "TYPES_DOMAIN";
282 case ALL_DOMAIN
: return "ALL_DOMAIN";
283 default: gdb_assert_not_reached ("bad search_domain");
290 compunit_primary_filetab (const struct compunit_symtab
*cust
)
292 gdb_assert (COMPUNIT_FILETABS (cust
) != NULL
);
294 /* The primary file symtab is the first one in the list. */
295 return COMPUNIT_FILETABS (cust
);
301 compunit_language (const struct compunit_symtab
*cust
)
303 struct symtab
*symtab
= compunit_primary_filetab (cust
);
305 /* The language of the compunit symtab is the language of its primary
307 return SYMTAB_LANGUAGE (symtab
);
310 /* See whether FILENAME matches SEARCH_NAME using the rule that we
311 advertise to the user. (The manual's description of linespecs
312 describes what we advertise). Returns true if they match, false
316 compare_filenames_for_search (const char *filename
, const char *search_name
)
318 int len
= strlen (filename
);
319 size_t search_len
= strlen (search_name
);
321 if (len
< search_len
)
324 /* The tail of FILENAME must match. */
325 if (FILENAME_CMP (filename
+ len
- search_len
, search_name
) != 0)
328 /* Either the names must completely match, or the character
329 preceding the trailing SEARCH_NAME segment of FILENAME must be a
332 The check !IS_ABSOLUTE_PATH ensures SEARCH_NAME "/dir/file.c"
333 cannot match FILENAME "/path//dir/file.c" - as user has requested
334 absolute path. The sama applies for "c:\file.c" possibly
335 incorrectly hypothetically matching "d:\dir\c:\file.c".
337 The HAS_DRIVE_SPEC purpose is to make FILENAME "c:file.c"
338 compatible with SEARCH_NAME "file.c". In such case a compiler had
339 to put the "c:file.c" name into debug info. Such compatibility
340 works only on GDB built for DOS host. */
341 return (len
== search_len
342 || (!IS_ABSOLUTE_PATH (search_name
)
343 && IS_DIR_SEPARATOR (filename
[len
- search_len
- 1]))
344 || (HAS_DRIVE_SPEC (filename
)
345 && STRIP_DRIVE_SPEC (filename
) == &filename
[len
- search_len
]));
348 /* Same as compare_filenames_for_search, but for glob-style patterns.
349 Heads up on the order of the arguments. They match the order of
350 compare_filenames_for_search, but it's the opposite of the order of
351 arguments to gdb_filename_fnmatch. */
354 compare_glob_filenames_for_search (const char *filename
,
355 const char *search_name
)
357 /* We rely on the property of glob-style patterns with FNM_FILE_NAME that
358 all /s have to be explicitly specified. */
359 int file_path_elements
= count_path_elements (filename
);
360 int search_path_elements
= count_path_elements (search_name
);
362 if (search_path_elements
> file_path_elements
)
365 if (IS_ABSOLUTE_PATH (search_name
))
367 return (search_path_elements
== file_path_elements
368 && gdb_filename_fnmatch (search_name
, filename
,
369 FNM_FILE_NAME
| FNM_NOESCAPE
) == 0);
373 const char *file_to_compare
374 = strip_leading_path_elements (filename
,
375 file_path_elements
- search_path_elements
);
377 return gdb_filename_fnmatch (search_name
, file_to_compare
,
378 FNM_FILE_NAME
| FNM_NOESCAPE
) == 0;
382 /* Check for a symtab of a specific name by searching some symtabs.
383 This is a helper function for callbacks of iterate_over_symtabs.
385 If NAME is not absolute, then REAL_PATH is NULL
386 If NAME is absolute, then REAL_PATH is the gdb_realpath form of NAME.
388 The return value, NAME, REAL_PATH and CALLBACK are identical to the
389 `map_symtabs_matching_filename' method of quick_symbol_functions.
391 FIRST and AFTER_LAST indicate the range of compunit symtabs to search.
392 Each symtab within the specified compunit symtab is also searched.
393 AFTER_LAST is one past the last compunit symtab to search; NULL means to
394 search until the end of the list. */
397 iterate_over_some_symtabs (const char *name
,
398 const char *real_path
,
399 struct compunit_symtab
*first
,
400 struct compunit_symtab
*after_last
,
401 gdb::function_view
<bool (symtab
*)> callback
)
403 struct compunit_symtab
*cust
;
405 const char* base_name
= lbasename (name
);
407 for (cust
= first
; cust
!= NULL
&& cust
!= after_last
; cust
= cust
->next
)
409 ALL_COMPUNIT_FILETABS (cust
, s
)
411 if (compare_filenames_for_search (s
->filename
, name
))
418 /* Before we invoke realpath, which can get expensive when many
419 files are involved, do a quick comparison of the basenames. */
420 if (! basenames_may_differ
421 && FILENAME_CMP (base_name
, lbasename (s
->filename
)) != 0)
424 if (compare_filenames_for_search (symtab_to_fullname (s
), name
))
431 /* If the user gave us an absolute path, try to find the file in
432 this symtab and use its absolute path. */
433 if (real_path
!= NULL
)
435 const char *fullname
= symtab_to_fullname (s
);
437 gdb_assert (IS_ABSOLUTE_PATH (real_path
));
438 gdb_assert (IS_ABSOLUTE_PATH (name
));
439 if (FILENAME_CMP (real_path
, fullname
) == 0)
452 /* Check for a symtab of a specific name; first in symtabs, then in
453 psymtabs. *If* there is no '/' in the name, a match after a '/'
454 in the symtab filename will also work.
456 Calls CALLBACK with each symtab that is found. If CALLBACK returns
457 true, the search stops. */
460 iterate_over_symtabs (const char *name
,
461 gdb::function_view
<bool (symtab
*)> callback
)
463 struct objfile
*objfile
;
464 gdb::unique_xmalloc_ptr
<char> real_path
;
466 /* Here we are interested in canonicalizing an absolute path, not
467 absolutizing a relative path. */
468 if (IS_ABSOLUTE_PATH (name
))
470 real_path
= gdb_realpath (name
);
471 gdb_assert (IS_ABSOLUTE_PATH (real_path
.get ()));
474 ALL_OBJFILES (objfile
)
476 if (iterate_over_some_symtabs (name
, real_path
.get (),
477 objfile
->compunit_symtabs
, NULL
,
482 /* Same search rules as above apply here, but now we look thru the
485 ALL_OBJFILES (objfile
)
488 && objfile
->sf
->qf
->map_symtabs_matching_filename (objfile
,
496 /* A wrapper for iterate_over_symtabs that returns the first matching
500 lookup_symtab (const char *name
)
502 struct symtab
*result
= NULL
;
504 iterate_over_symtabs (name
, [&] (symtab
*symtab
)
514 /* Mangle a GDB method stub type. This actually reassembles the pieces of the
515 full method name, which consist of the class name (from T), the unadorned
516 method name from METHOD_ID, and the signature for the specific overload,
517 specified by SIGNATURE_ID. Note that this function is g++ specific. */
520 gdb_mangle_name (struct type
*type
, int method_id
, int signature_id
)
522 int mangled_name_len
;
524 struct fn_field
*f
= TYPE_FN_FIELDLIST1 (type
, method_id
);
525 struct fn_field
*method
= &f
[signature_id
];
526 const char *field_name
= TYPE_FN_FIELDLIST_NAME (type
, method_id
);
527 const char *physname
= TYPE_FN_FIELD_PHYSNAME (f
, signature_id
);
528 const char *newname
= type_name_no_tag (type
);
530 /* Does the form of physname indicate that it is the full mangled name
531 of a constructor (not just the args)? */
532 int is_full_physname_constructor
;
535 int is_destructor
= is_destructor_name (physname
);
536 /* Need a new type prefix. */
537 const char *const_prefix
= method
->is_const
? "C" : "";
538 const char *volatile_prefix
= method
->is_volatile
? "V" : "";
540 int len
= (newname
== NULL
? 0 : strlen (newname
));
542 /* Nothing to do if physname already contains a fully mangled v3 abi name
543 or an operator name. */
544 if ((physname
[0] == '_' && physname
[1] == 'Z')
545 || is_operator_name (field_name
))
546 return xstrdup (physname
);
548 is_full_physname_constructor
= is_constructor_name (physname
);
550 is_constructor
= is_full_physname_constructor
551 || (newname
&& strcmp (field_name
, newname
) == 0);
554 is_destructor
= (startswith (physname
, "__dt"));
556 if (is_destructor
|| is_full_physname_constructor
)
558 mangled_name
= (char *) xmalloc (strlen (physname
) + 1);
559 strcpy (mangled_name
, physname
);
565 xsnprintf (buf
, sizeof (buf
), "__%s%s", const_prefix
, volatile_prefix
);
567 else if (physname
[0] == 't' || physname
[0] == 'Q')
569 /* The physname for template and qualified methods already includes
571 xsnprintf (buf
, sizeof (buf
), "__%s%s", const_prefix
, volatile_prefix
);
577 xsnprintf (buf
, sizeof (buf
), "__%s%s%d", const_prefix
,
578 volatile_prefix
, len
);
580 mangled_name_len
= ((is_constructor
? 0 : strlen (field_name
))
581 + strlen (buf
) + len
+ strlen (physname
) + 1);
583 mangled_name
= (char *) xmalloc (mangled_name_len
);
585 mangled_name
[0] = '\0';
587 strcpy (mangled_name
, field_name
);
589 strcat (mangled_name
, buf
);
590 /* If the class doesn't have a name, i.e. newname NULL, then we just
591 mangle it using 0 for the length of the class. Thus it gets mangled
592 as something starting with `::' rather than `classname::'. */
594 strcat (mangled_name
, newname
);
596 strcat (mangled_name
, physname
);
597 return (mangled_name
);
600 /* Set the demangled name of GSYMBOL to NAME. NAME must be already
601 correctly allocated. */
604 symbol_set_demangled_name (struct general_symbol_info
*gsymbol
,
606 struct obstack
*obstack
)
608 if (gsymbol
->language
== language_ada
)
612 gsymbol
->ada_mangled
= 0;
613 gsymbol
->language_specific
.obstack
= obstack
;
617 gsymbol
->ada_mangled
= 1;
618 gsymbol
->language_specific
.demangled_name
= name
;
622 gsymbol
->language_specific
.demangled_name
= name
;
625 /* Return the demangled name of GSYMBOL. */
628 symbol_get_demangled_name (const struct general_symbol_info
*gsymbol
)
630 if (gsymbol
->language
== language_ada
)
632 if (!gsymbol
->ada_mangled
)
637 return gsymbol
->language_specific
.demangled_name
;
641 /* Initialize the language dependent portion of a symbol
642 depending upon the language for the symbol. */
645 symbol_set_language (struct general_symbol_info
*gsymbol
,
646 enum language language
,
647 struct obstack
*obstack
)
649 gsymbol
->language
= language
;
650 if (gsymbol
->language
== language_cplus
651 || gsymbol
->language
== language_d
652 || gsymbol
->language
== language_go
653 || gsymbol
->language
== language_objc
654 || gsymbol
->language
== language_fortran
)
656 symbol_set_demangled_name (gsymbol
, NULL
, obstack
);
658 else if (gsymbol
->language
== language_ada
)
660 gdb_assert (gsymbol
->ada_mangled
== 0);
661 gsymbol
->language_specific
.obstack
= obstack
;
665 memset (&gsymbol
->language_specific
, 0,
666 sizeof (gsymbol
->language_specific
));
670 /* Functions to initialize a symbol's mangled name. */
672 /* Objects of this type are stored in the demangled name hash table. */
673 struct demangled_name_entry
679 /* Hash function for the demangled name hash. */
682 hash_demangled_name_entry (const void *data
)
684 const struct demangled_name_entry
*e
685 = (const struct demangled_name_entry
*) data
;
687 return htab_hash_string (e
->mangled
);
690 /* Equality function for the demangled name hash. */
693 eq_demangled_name_entry (const void *a
, const void *b
)
695 const struct demangled_name_entry
*da
696 = (const struct demangled_name_entry
*) a
;
697 const struct demangled_name_entry
*db
698 = (const struct demangled_name_entry
*) b
;
700 return strcmp (da
->mangled
, db
->mangled
) == 0;
703 /* Create the hash table used for demangled names. Each hash entry is
704 a pair of strings; one for the mangled name and one for the demangled
705 name. The entry is hashed via just the mangled name. */
708 create_demangled_names_hash (struct objfile
*objfile
)
710 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
711 The hash table code will round this up to the next prime number.
712 Choosing a much larger table size wastes memory, and saves only about
713 1% in symbol reading. */
715 objfile
->per_bfd
->demangled_names_hash
= htab_create_alloc
716 (256, hash_demangled_name_entry
, eq_demangled_name_entry
,
717 NULL
, xcalloc
, xfree
);
720 /* Try to determine the demangled name for a symbol, based on the
721 language of that symbol. If the language is set to language_auto,
722 it will attempt to find any demangling algorithm that works and
723 then set the language appropriately. The returned name is allocated
724 by the demangler and should be xfree'd. */
727 symbol_find_demangled_name (struct general_symbol_info
*gsymbol
,
730 char *demangled
= NULL
;
733 if (gsymbol
->language
== language_unknown
)
734 gsymbol
->language
= language_auto
;
736 if (gsymbol
->language
!= language_auto
)
738 const struct language_defn
*lang
= language_def (gsymbol
->language
);
740 language_sniff_from_mangled_name (lang
, mangled
, &demangled
);
744 for (i
= language_unknown
; i
< nr_languages
; ++i
)
746 enum language l
= (enum language
) i
;
747 const struct language_defn
*lang
= language_def (l
);
749 if (language_sniff_from_mangled_name (lang
, mangled
, &demangled
))
751 gsymbol
->language
= l
;
759 /* Set both the mangled and demangled (if any) names for GSYMBOL based
760 on LINKAGE_NAME and LEN. Ordinarily, NAME is copied onto the
761 objfile's obstack; but if COPY_NAME is 0 and if NAME is
762 NUL-terminated, then this function assumes that NAME is already
763 correctly saved (either permanently or with a lifetime tied to the
764 objfile), and it will not be copied.
766 The hash table corresponding to OBJFILE is used, and the memory
767 comes from the per-BFD storage_obstack. LINKAGE_NAME is copied,
768 so the pointer can be discarded after calling this function. */
771 symbol_set_names (struct general_symbol_info
*gsymbol
,
772 const char *linkage_name
, int len
, int copy_name
,
773 struct objfile
*objfile
)
775 struct demangled_name_entry
**slot
;
776 /* A 0-terminated copy of the linkage name. */
777 const char *linkage_name_copy
;
778 struct demangled_name_entry entry
;
779 struct objfile_per_bfd_storage
*per_bfd
= objfile
->per_bfd
;
781 if (gsymbol
->language
== language_ada
)
783 /* In Ada, we do the symbol lookups using the mangled name, so
784 we can save some space by not storing the demangled name. */
786 gsymbol
->name
= linkage_name
;
789 char *name
= (char *) obstack_alloc (&per_bfd
->storage_obstack
,
792 memcpy (name
, linkage_name
, len
);
794 gsymbol
->name
= name
;
796 symbol_set_demangled_name (gsymbol
, NULL
, &per_bfd
->storage_obstack
);
801 if (per_bfd
->demangled_names_hash
== NULL
)
802 create_demangled_names_hash (objfile
);
804 if (linkage_name
[len
] != '\0')
808 alloc_name
= (char *) alloca (len
+ 1);
809 memcpy (alloc_name
, linkage_name
, len
);
810 alloc_name
[len
] = '\0';
812 linkage_name_copy
= alloc_name
;
815 linkage_name_copy
= linkage_name
;
817 entry
.mangled
= linkage_name_copy
;
818 slot
= ((struct demangled_name_entry
**)
819 htab_find_slot (per_bfd
->demangled_names_hash
,
822 /* If this name is not in the hash table, add it. */
824 /* A C version of the symbol may have already snuck into the table.
825 This happens to, e.g., main.init (__go_init_main). Cope. */
826 || (gsymbol
->language
== language_go
827 && (*slot
)->demangled
[0] == '\0'))
829 char *demangled_name
= symbol_find_demangled_name (gsymbol
,
831 int demangled_len
= demangled_name
? strlen (demangled_name
) : 0;
833 /* Suppose we have demangled_name==NULL, copy_name==0, and
834 linkage_name_copy==linkage_name. In this case, we already have the
835 mangled name saved, and we don't have a demangled name. So,
836 you might think we could save a little space by not recording
837 this in the hash table at all.
839 It turns out that it is actually important to still save such
840 an entry in the hash table, because storing this name gives
841 us better bcache hit rates for partial symbols. */
842 if (!copy_name
&& linkage_name_copy
== linkage_name
)
845 = ((struct demangled_name_entry
*)
846 obstack_alloc (&per_bfd
->storage_obstack
,
847 offsetof (struct demangled_name_entry
, demangled
)
848 + demangled_len
+ 1));
849 (*slot
)->mangled
= linkage_name
;
855 /* If we must copy the mangled name, put it directly after
856 the demangled name so we can have a single
859 = ((struct demangled_name_entry
*)
860 obstack_alloc (&per_bfd
->storage_obstack
,
861 offsetof (struct demangled_name_entry
, demangled
)
862 + len
+ demangled_len
+ 2));
863 mangled_ptr
= &((*slot
)->demangled
[demangled_len
+ 1]);
864 strcpy (mangled_ptr
, linkage_name_copy
);
865 (*slot
)->mangled
= mangled_ptr
;
868 if (demangled_name
!= NULL
)
870 strcpy ((*slot
)->demangled
, demangled_name
);
871 xfree (demangled_name
);
874 (*slot
)->demangled
[0] = '\0';
877 gsymbol
->name
= (*slot
)->mangled
;
878 if ((*slot
)->demangled
[0] != '\0')
879 symbol_set_demangled_name (gsymbol
, (*slot
)->demangled
,
880 &per_bfd
->storage_obstack
);
882 symbol_set_demangled_name (gsymbol
, NULL
, &per_bfd
->storage_obstack
);
885 /* Return the source code name of a symbol. In languages where
886 demangling is necessary, this is the demangled name. */
889 symbol_natural_name (const struct general_symbol_info
*gsymbol
)
891 switch (gsymbol
->language
)
897 case language_fortran
:
898 if (symbol_get_demangled_name (gsymbol
) != NULL
)
899 return symbol_get_demangled_name (gsymbol
);
902 return ada_decode_symbol (gsymbol
);
906 return gsymbol
->name
;
909 /* Return the demangled name for a symbol based on the language for
910 that symbol. If no demangled name exists, return NULL. */
913 symbol_demangled_name (const struct general_symbol_info
*gsymbol
)
915 const char *dem_name
= NULL
;
917 switch (gsymbol
->language
)
923 case language_fortran
:
924 dem_name
= symbol_get_demangled_name (gsymbol
);
927 dem_name
= ada_decode_symbol (gsymbol
);
935 /* Return the search name of a symbol---generally the demangled or
936 linkage name of the symbol, depending on how it will be searched for.
937 If there is no distinct demangled name, then returns the same value
938 (same pointer) as SYMBOL_LINKAGE_NAME. */
941 symbol_search_name (const struct general_symbol_info
*gsymbol
)
943 if (gsymbol
->language
== language_ada
)
944 return gsymbol
->name
;
946 return symbol_natural_name (gsymbol
);
952 symbol_matches_search_name (const struct general_symbol_info
*gsymbol
,
953 const lookup_name_info
&name
)
955 symbol_name_matcher_ftype
*name_match
956 = language_get_symbol_name_matcher (language_def (gsymbol
->language
),
958 return name_match (symbol_search_name (gsymbol
), name
, NULL
);
963 /* Return 1 if the two sections are the same, or if they could
964 plausibly be copies of each other, one in an original object
965 file and another in a separated debug file. */
968 matching_obj_sections (struct obj_section
*obj_first
,
969 struct obj_section
*obj_second
)
971 asection
*first
= obj_first
? obj_first
->the_bfd_section
: NULL
;
972 asection
*second
= obj_second
? obj_second
->the_bfd_section
: NULL
;
975 /* If they're the same section, then they match. */
979 /* If either is NULL, give up. */
980 if (first
== NULL
|| second
== NULL
)
983 /* This doesn't apply to absolute symbols. */
984 if (first
->owner
== NULL
|| second
->owner
== NULL
)
987 /* If they're in the same object file, they must be different sections. */
988 if (first
->owner
== second
->owner
)
991 /* Check whether the two sections are potentially corresponding. They must
992 have the same size, address, and name. We can't compare section indexes,
993 which would be more reliable, because some sections may have been
995 if (bfd_get_section_size (first
) != bfd_get_section_size (second
))
998 /* In-memory addresses may start at a different offset, relativize them. */
999 if (bfd_get_section_vma (first
->owner
, first
)
1000 - bfd_get_start_address (first
->owner
)
1001 != bfd_get_section_vma (second
->owner
, second
)
1002 - bfd_get_start_address (second
->owner
))
1005 if (bfd_get_section_name (first
->owner
, first
) == NULL
1006 || bfd_get_section_name (second
->owner
, second
) == NULL
1007 || strcmp (bfd_get_section_name (first
->owner
, first
),
1008 bfd_get_section_name (second
->owner
, second
)) != 0)
1011 /* Otherwise check that they are in corresponding objfiles. */
1014 if (obj
->obfd
== first
->owner
)
1016 gdb_assert (obj
!= NULL
);
1018 if (obj
->separate_debug_objfile
!= NULL
1019 && obj
->separate_debug_objfile
->obfd
== second
->owner
)
1021 if (obj
->separate_debug_objfile_backlink
!= NULL
1022 && obj
->separate_debug_objfile_backlink
->obfd
== second
->owner
)
1031 expand_symtab_containing_pc (CORE_ADDR pc
, struct obj_section
*section
)
1033 struct objfile
*objfile
;
1034 struct bound_minimal_symbol msymbol
;
1036 /* If we know that this is not a text address, return failure. This is
1037 necessary because we loop based on texthigh and textlow, which do
1038 not include the data ranges. */
1039 msymbol
= lookup_minimal_symbol_by_pc_section (pc
, section
);
1041 && (MSYMBOL_TYPE (msymbol
.minsym
) == mst_data
1042 || MSYMBOL_TYPE (msymbol
.minsym
) == mst_bss
1043 || MSYMBOL_TYPE (msymbol
.minsym
) == mst_abs
1044 || MSYMBOL_TYPE (msymbol
.minsym
) == mst_file_data
1045 || MSYMBOL_TYPE (msymbol
.minsym
) == mst_file_bss
))
1048 ALL_OBJFILES (objfile
)
1050 struct compunit_symtab
*cust
= NULL
;
1053 cust
= objfile
->sf
->qf
->find_pc_sect_compunit_symtab (objfile
, msymbol
,
1060 /* Hash function for the symbol cache. */
1063 hash_symbol_entry (const struct objfile
*objfile_context
,
1064 const char *name
, domain_enum domain
)
1066 unsigned int hash
= (uintptr_t) objfile_context
;
1069 hash
+= htab_hash_string (name
);
1071 /* Because of symbol_matches_domain we need VAR_DOMAIN and STRUCT_DOMAIN
1072 to map to the same slot. */
1073 if (domain
== STRUCT_DOMAIN
)
1074 hash
+= VAR_DOMAIN
* 7;
1081 /* Equality function for the symbol cache. */
1084 eq_symbol_entry (const struct symbol_cache_slot
*slot
,
1085 const struct objfile
*objfile_context
,
1086 const char *name
, domain_enum domain
)
1088 const char *slot_name
;
1089 domain_enum slot_domain
;
1091 if (slot
->state
== SYMBOL_SLOT_UNUSED
)
1094 if (slot
->objfile_context
!= objfile_context
)
1097 if (slot
->state
== SYMBOL_SLOT_NOT_FOUND
)
1099 slot_name
= slot
->value
.not_found
.name
;
1100 slot_domain
= slot
->value
.not_found
.domain
;
1104 slot_name
= SYMBOL_SEARCH_NAME (slot
->value
.found
.symbol
);
1105 slot_domain
= SYMBOL_DOMAIN (slot
->value
.found
.symbol
);
1108 /* NULL names match. */
1109 if (slot_name
== NULL
&& name
== NULL
)
1111 /* But there's no point in calling symbol_matches_domain in the
1112 SYMBOL_SLOT_FOUND case. */
1113 if (slot_domain
!= domain
)
1116 else if (slot_name
!= NULL
&& name
!= NULL
)
1118 /* It's important that we use the same comparison that was done
1119 the first time through. If the slot records a found symbol,
1120 then this means using the symbol name comparison function of
1121 the symbol's language with SYMBOL_SEARCH_NAME. See
1122 dictionary.c. It also means using symbol_matches_domain for
1123 found symbols. See block.c.
1125 If the slot records a not-found symbol, then require a precise match.
1126 We could still be lax with whitespace like strcmp_iw though. */
1128 if (slot
->state
== SYMBOL_SLOT_NOT_FOUND
)
1130 if (strcmp (slot_name
, name
) != 0)
1132 if (slot_domain
!= domain
)
1137 struct symbol
*sym
= slot
->value
.found
.symbol
;
1138 lookup_name_info
lookup_name (name
, symbol_name_match_type::FULL
);
1140 if (!SYMBOL_MATCHES_SEARCH_NAME (sym
, lookup_name
))
1143 if (!symbol_matches_domain (SYMBOL_LANGUAGE (sym
),
1144 slot_domain
, domain
))
1150 /* Only one name is NULL. */
1157 /* Given a cache of size SIZE, return the size of the struct (with variable
1158 length array) in bytes. */
1161 symbol_cache_byte_size (unsigned int size
)
1163 return (sizeof (struct block_symbol_cache
)
1164 + ((size
- 1) * sizeof (struct symbol_cache_slot
)));
1170 resize_symbol_cache (struct symbol_cache
*cache
, unsigned int new_size
)
1172 /* If there's no change in size, don't do anything.
1173 All caches have the same size, so we can just compare with the size
1174 of the global symbols cache. */
1175 if ((cache
->global_symbols
!= NULL
1176 && cache
->global_symbols
->size
== new_size
)
1177 || (cache
->global_symbols
== NULL
1181 xfree (cache
->global_symbols
);
1182 xfree (cache
->static_symbols
);
1186 cache
->global_symbols
= NULL
;
1187 cache
->static_symbols
= NULL
;
1191 size_t total_size
= symbol_cache_byte_size (new_size
);
1193 cache
->global_symbols
1194 = (struct block_symbol_cache
*) xcalloc (1, total_size
);
1195 cache
->static_symbols
1196 = (struct block_symbol_cache
*) xcalloc (1, total_size
);
1197 cache
->global_symbols
->size
= new_size
;
1198 cache
->static_symbols
->size
= new_size
;
1202 /* Make a symbol cache of size SIZE. */
1204 static struct symbol_cache
*
1205 make_symbol_cache (unsigned int size
)
1207 struct symbol_cache
*cache
;
1209 cache
= XCNEW (struct symbol_cache
);
1210 resize_symbol_cache (cache
, symbol_cache_size
);
1214 /* Free the space used by CACHE. */
1217 free_symbol_cache (struct symbol_cache
*cache
)
1219 xfree (cache
->global_symbols
);
1220 xfree (cache
->static_symbols
);
1224 /* Return the symbol cache of PSPACE.
1225 Create one if it doesn't exist yet. */
1227 static struct symbol_cache
*
1228 get_symbol_cache (struct program_space
*pspace
)
1230 struct symbol_cache
*cache
1231 = (struct symbol_cache
*) program_space_data (pspace
, symbol_cache_key
);
1235 cache
= make_symbol_cache (symbol_cache_size
);
1236 set_program_space_data (pspace
, symbol_cache_key
, cache
);
1242 /* Delete the symbol cache of PSPACE.
1243 Called when PSPACE is destroyed. */
1246 symbol_cache_cleanup (struct program_space
*pspace
, void *data
)
1248 struct symbol_cache
*cache
= (struct symbol_cache
*) data
;
1250 free_symbol_cache (cache
);
1253 /* Set the size of the symbol cache in all program spaces. */
1256 set_symbol_cache_size (unsigned int new_size
)
1258 struct program_space
*pspace
;
1260 ALL_PSPACES (pspace
)
1262 struct symbol_cache
*cache
1263 = (struct symbol_cache
*) program_space_data (pspace
, symbol_cache_key
);
1265 /* The pspace could have been created but not have a cache yet. */
1267 resize_symbol_cache (cache
, new_size
);
1271 /* Called when symbol-cache-size is set. */
1274 set_symbol_cache_size_handler (const char *args
, int from_tty
,
1275 struct cmd_list_element
*c
)
1277 if (new_symbol_cache_size
> MAX_SYMBOL_CACHE_SIZE
)
1279 /* Restore the previous value.
1280 This is the value the "show" command prints. */
1281 new_symbol_cache_size
= symbol_cache_size
;
1283 error (_("Symbol cache size is too large, max is %u."),
1284 MAX_SYMBOL_CACHE_SIZE
);
1286 symbol_cache_size
= new_symbol_cache_size
;
1288 set_symbol_cache_size (symbol_cache_size
);
1291 /* Lookup symbol NAME,DOMAIN in BLOCK in the symbol cache of PSPACE.
1292 OBJFILE_CONTEXT is the current objfile, which may be NULL.
1293 The result is the symbol if found, SYMBOL_LOOKUP_FAILED if a previous lookup
1294 failed (and thus this one will too), or NULL if the symbol is not present
1296 If the symbol is not present in the cache, then *BSC_PTR and *SLOT_PTR are
1297 set to the cache and slot of the symbol to save the result of a full lookup
1300 static struct block_symbol
1301 symbol_cache_lookup (struct symbol_cache
*cache
,
1302 struct objfile
*objfile_context
, int block
,
1303 const char *name
, domain_enum domain
,
1304 struct block_symbol_cache
**bsc_ptr
,
1305 struct symbol_cache_slot
**slot_ptr
)
1307 struct block_symbol_cache
*bsc
;
1309 struct symbol_cache_slot
*slot
;
1311 if (block
== GLOBAL_BLOCK
)
1312 bsc
= cache
->global_symbols
;
1314 bsc
= cache
->static_symbols
;
1319 return (struct block_symbol
) {NULL
, NULL
};
1322 hash
= hash_symbol_entry (objfile_context
, name
, domain
);
1323 slot
= bsc
->symbols
+ hash
% bsc
->size
;
1325 if (eq_symbol_entry (slot
, objfile_context
, name
, domain
))
1327 if (symbol_lookup_debug
)
1328 fprintf_unfiltered (gdb_stdlog
,
1329 "%s block symbol cache hit%s for %s, %s\n",
1330 block
== GLOBAL_BLOCK
? "Global" : "Static",
1331 slot
->state
== SYMBOL_SLOT_NOT_FOUND
1332 ? " (not found)" : "",
1333 name
, domain_name (domain
));
1335 if (slot
->state
== SYMBOL_SLOT_NOT_FOUND
)
1336 return SYMBOL_LOOKUP_FAILED
;
1337 return slot
->value
.found
;
1340 /* Symbol is not present in the cache. */
1345 if (symbol_lookup_debug
)
1347 fprintf_unfiltered (gdb_stdlog
,
1348 "%s block symbol cache miss for %s, %s\n",
1349 block
== GLOBAL_BLOCK
? "Global" : "Static",
1350 name
, domain_name (domain
));
1353 return (struct block_symbol
) {NULL
, NULL
};
1356 /* Clear out SLOT. */
1359 symbol_cache_clear_slot (struct symbol_cache_slot
*slot
)
1361 if (slot
->state
== SYMBOL_SLOT_NOT_FOUND
)
1362 xfree (slot
->value
.not_found
.name
);
1363 slot
->state
= SYMBOL_SLOT_UNUSED
;
1366 /* Mark SYMBOL as found in SLOT.
1367 OBJFILE_CONTEXT is the current objfile when the lookup was done, or NULL
1368 if it's not needed to distinguish lookups (STATIC_BLOCK). It is *not*
1369 necessarily the objfile the symbol was found in. */
1372 symbol_cache_mark_found (struct block_symbol_cache
*bsc
,
1373 struct symbol_cache_slot
*slot
,
1374 struct objfile
*objfile_context
,
1375 struct symbol
*symbol
,
1376 const struct block
*block
)
1380 if (slot
->state
!= SYMBOL_SLOT_UNUSED
)
1383 symbol_cache_clear_slot (slot
);
1385 slot
->state
= SYMBOL_SLOT_FOUND
;
1386 slot
->objfile_context
= objfile_context
;
1387 slot
->value
.found
.symbol
= symbol
;
1388 slot
->value
.found
.block
= block
;
1391 /* Mark symbol NAME, DOMAIN as not found in SLOT.
1392 OBJFILE_CONTEXT is the current objfile when the lookup was done, or NULL
1393 if it's not needed to distinguish lookups (STATIC_BLOCK). */
1396 symbol_cache_mark_not_found (struct block_symbol_cache
*bsc
,
1397 struct symbol_cache_slot
*slot
,
1398 struct objfile
*objfile_context
,
1399 const char *name
, domain_enum domain
)
1403 if (slot
->state
!= SYMBOL_SLOT_UNUSED
)
1406 symbol_cache_clear_slot (slot
);
1408 slot
->state
= SYMBOL_SLOT_NOT_FOUND
;
1409 slot
->objfile_context
= objfile_context
;
1410 slot
->value
.not_found
.name
= xstrdup (name
);
1411 slot
->value
.not_found
.domain
= domain
;
1414 /* Flush the symbol cache of PSPACE. */
1417 symbol_cache_flush (struct program_space
*pspace
)
1419 struct symbol_cache
*cache
1420 = (struct symbol_cache
*) program_space_data (pspace
, symbol_cache_key
);
1425 if (cache
->global_symbols
== NULL
)
1427 gdb_assert (symbol_cache_size
== 0);
1428 gdb_assert (cache
->static_symbols
== NULL
);
1432 /* If the cache is untouched since the last flush, early exit.
1433 This is important for performance during the startup of a program linked
1434 with 100s (or 1000s) of shared libraries. */
1435 if (cache
->global_symbols
->misses
== 0
1436 && cache
->static_symbols
->misses
== 0)
1439 gdb_assert (cache
->global_symbols
->size
== symbol_cache_size
);
1440 gdb_assert (cache
->static_symbols
->size
== symbol_cache_size
);
1442 for (pass
= 0; pass
< 2; ++pass
)
1444 struct block_symbol_cache
*bsc
1445 = pass
== 0 ? cache
->global_symbols
: cache
->static_symbols
;
1448 for (i
= 0; i
< bsc
->size
; ++i
)
1449 symbol_cache_clear_slot (&bsc
->symbols
[i
]);
1452 cache
->global_symbols
->hits
= 0;
1453 cache
->global_symbols
->misses
= 0;
1454 cache
->global_symbols
->collisions
= 0;
1455 cache
->static_symbols
->hits
= 0;
1456 cache
->static_symbols
->misses
= 0;
1457 cache
->static_symbols
->collisions
= 0;
1463 symbol_cache_dump (const struct symbol_cache
*cache
)
1467 if (cache
->global_symbols
== NULL
)
1469 printf_filtered (" <disabled>\n");
1473 for (pass
= 0; pass
< 2; ++pass
)
1475 const struct block_symbol_cache
*bsc
1476 = pass
== 0 ? cache
->global_symbols
: cache
->static_symbols
;
1480 printf_filtered ("Global symbols:\n");
1482 printf_filtered ("Static symbols:\n");
1484 for (i
= 0; i
< bsc
->size
; ++i
)
1486 const struct symbol_cache_slot
*slot
= &bsc
->symbols
[i
];
1490 switch (slot
->state
)
1492 case SYMBOL_SLOT_UNUSED
:
1494 case SYMBOL_SLOT_NOT_FOUND
:
1495 printf_filtered (" [%4u] = %s, %s %s (not found)\n", i
,
1496 host_address_to_string (slot
->objfile_context
),
1497 slot
->value
.not_found
.name
,
1498 domain_name (slot
->value
.not_found
.domain
));
1500 case SYMBOL_SLOT_FOUND
:
1502 struct symbol
*found
= slot
->value
.found
.symbol
;
1503 const struct objfile
*context
= slot
->objfile_context
;
1505 printf_filtered (" [%4u] = %s, %s %s\n", i
,
1506 host_address_to_string (context
),
1507 SYMBOL_PRINT_NAME (found
),
1508 domain_name (SYMBOL_DOMAIN (found
)));
1516 /* The "mt print symbol-cache" command. */
1519 maintenance_print_symbol_cache (const char *args
, int from_tty
)
1521 struct program_space
*pspace
;
1523 ALL_PSPACES (pspace
)
1525 struct symbol_cache
*cache
;
1527 printf_filtered (_("Symbol cache for pspace %d\n%s:\n"),
1529 pspace
->symfile_object_file
!= NULL
1530 ? objfile_name (pspace
->symfile_object_file
)
1531 : "(no object file)");
1533 /* If the cache hasn't been created yet, avoid creating one. */
1535 = (struct symbol_cache
*) program_space_data (pspace
, symbol_cache_key
);
1537 printf_filtered (" <empty>\n");
1539 symbol_cache_dump (cache
);
1543 /* The "mt flush-symbol-cache" command. */
1546 maintenance_flush_symbol_cache (const char *args
, int from_tty
)
1548 struct program_space
*pspace
;
1550 ALL_PSPACES (pspace
)
1552 symbol_cache_flush (pspace
);
1556 /* Print usage statistics of CACHE. */
1559 symbol_cache_stats (struct symbol_cache
*cache
)
1563 if (cache
->global_symbols
== NULL
)
1565 printf_filtered (" <disabled>\n");
1569 for (pass
= 0; pass
< 2; ++pass
)
1571 const struct block_symbol_cache
*bsc
1572 = pass
== 0 ? cache
->global_symbols
: cache
->static_symbols
;
1577 printf_filtered ("Global block cache stats:\n");
1579 printf_filtered ("Static block cache stats:\n");
1581 printf_filtered (" size: %u\n", bsc
->size
);
1582 printf_filtered (" hits: %u\n", bsc
->hits
);
1583 printf_filtered (" misses: %u\n", bsc
->misses
);
1584 printf_filtered (" collisions: %u\n", bsc
->collisions
);
1588 /* The "mt print symbol-cache-statistics" command. */
1591 maintenance_print_symbol_cache_statistics (const char *args
, int from_tty
)
1593 struct program_space
*pspace
;
1595 ALL_PSPACES (pspace
)
1597 struct symbol_cache
*cache
;
1599 printf_filtered (_("Symbol cache statistics for pspace %d\n%s:\n"),
1601 pspace
->symfile_object_file
!= NULL
1602 ? objfile_name (pspace
->symfile_object_file
)
1603 : "(no object file)");
1605 /* If the cache hasn't been created yet, avoid creating one. */
1607 = (struct symbol_cache
*) program_space_data (pspace
, symbol_cache_key
);
1609 printf_filtered (" empty, no stats available\n");
1611 symbol_cache_stats (cache
);
1615 /* This module's 'new_objfile' observer. */
1618 symtab_new_objfile_observer (struct objfile
*objfile
)
1620 /* Ideally we'd use OBJFILE->pspace, but OBJFILE may be NULL. */
1621 symbol_cache_flush (current_program_space
);
1624 /* This module's 'free_objfile' observer. */
1627 symtab_free_objfile_observer (struct objfile
*objfile
)
1629 symbol_cache_flush (objfile
->pspace
);
1632 /* Debug symbols usually don't have section information. We need to dig that
1633 out of the minimal symbols and stash that in the debug symbol. */
1636 fixup_section (struct general_symbol_info
*ginfo
,
1637 CORE_ADDR addr
, struct objfile
*objfile
)
1639 struct minimal_symbol
*msym
;
1641 /* First, check whether a minimal symbol with the same name exists
1642 and points to the same address. The address check is required
1643 e.g. on PowerPC64, where the minimal symbol for a function will
1644 point to the function descriptor, while the debug symbol will
1645 point to the actual function code. */
1646 msym
= lookup_minimal_symbol_by_pc_name (addr
, ginfo
->name
, objfile
);
1648 ginfo
->section
= MSYMBOL_SECTION (msym
);
1651 /* Static, function-local variables do appear in the linker
1652 (minimal) symbols, but are frequently given names that won't
1653 be found via lookup_minimal_symbol(). E.g., it has been
1654 observed in frv-uclinux (ELF) executables that a static,
1655 function-local variable named "foo" might appear in the
1656 linker symbols as "foo.6" or "foo.3". Thus, there is no
1657 point in attempting to extend the lookup-by-name mechanism to
1658 handle this case due to the fact that there can be multiple
1661 So, instead, search the section table when lookup by name has
1662 failed. The ``addr'' and ``endaddr'' fields may have already
1663 been relocated. If so, the relocation offset (i.e. the
1664 ANOFFSET value) needs to be subtracted from these values when
1665 performing the comparison. We unconditionally subtract it,
1666 because, when no relocation has been performed, the ANOFFSET
1667 value will simply be zero.
1669 The address of the symbol whose section we're fixing up HAS
1670 NOT BEEN adjusted (relocated) yet. It can't have been since
1671 the section isn't yet known and knowing the section is
1672 necessary in order to add the correct relocation value. In
1673 other words, we wouldn't even be in this function (attempting
1674 to compute the section) if it were already known.
1676 Note that it is possible to search the minimal symbols
1677 (subtracting the relocation value if necessary) to find the
1678 matching minimal symbol, but this is overkill and much less
1679 efficient. It is not necessary to find the matching minimal
1680 symbol, only its section.
1682 Note that this technique (of doing a section table search)
1683 can fail when unrelocated section addresses overlap. For
1684 this reason, we still attempt a lookup by name prior to doing
1685 a search of the section table. */
1687 struct obj_section
*s
;
1690 ALL_OBJFILE_OSECTIONS (objfile
, s
)
1692 int idx
= s
- objfile
->sections
;
1693 CORE_ADDR offset
= ANOFFSET (objfile
->section_offsets
, idx
);
1698 if (obj_section_addr (s
) - offset
<= addr
1699 && addr
< obj_section_endaddr (s
) - offset
)
1701 ginfo
->section
= idx
;
1706 /* If we didn't find the section, assume it is in the first
1707 section. If there is no allocated section, then it hardly
1708 matters what we pick, so just pick zero. */
1712 ginfo
->section
= fallback
;
1717 fixup_symbol_section (struct symbol
*sym
, struct objfile
*objfile
)
1724 if (!SYMBOL_OBJFILE_OWNED (sym
))
1727 /* We either have an OBJFILE, or we can get at it from the sym's
1728 symtab. Anything else is a bug. */
1729 gdb_assert (objfile
|| symbol_symtab (sym
));
1731 if (objfile
== NULL
)
1732 objfile
= symbol_objfile (sym
);
1734 if (SYMBOL_OBJ_SECTION (objfile
, sym
))
1737 /* We should have an objfile by now. */
1738 gdb_assert (objfile
);
1740 switch (SYMBOL_CLASS (sym
))
1744 addr
= SYMBOL_VALUE_ADDRESS (sym
);
1747 addr
= BLOCK_START (SYMBOL_BLOCK_VALUE (sym
));
1751 /* Nothing else will be listed in the minsyms -- no use looking
1756 fixup_section (&sym
->ginfo
, addr
, objfile
);
1763 demangle_for_lookup_info::demangle_for_lookup_info
1764 (const lookup_name_info
&lookup_name
, language lang
)
1766 demangle_result_storage storage
;
1768 if (lookup_name
.ignore_parameters () && lang
== language_cplus
)
1770 gdb::unique_xmalloc_ptr
<char> without_params
1771 = cp_remove_params_if_any (lookup_name
.name ().c_str (),
1772 lookup_name
.completion_mode ());
1774 if (without_params
!= NULL
)
1776 m_demangled_name
= demangle_for_lookup (without_params
.get (),
1782 m_demangled_name
= demangle_for_lookup (lookup_name
.name ().c_str (),
1788 const lookup_name_info
&
1789 lookup_name_info::match_any ()
1791 /* Lookup any symbol that "" would complete. I.e., this matches all
1793 static const lookup_name_info
lookup_name ({}, symbol_name_match_type::FULL
,
1799 /* Compute the demangled form of NAME as used by the various symbol
1800 lookup functions. The result can either be the input NAME
1801 directly, or a pointer to a buffer owned by the STORAGE object.
1803 For Ada, this function just returns NAME, unmodified.
1804 Normally, Ada symbol lookups are performed using the encoded name
1805 rather than the demangled name, and so it might seem to make sense
1806 for this function to return an encoded version of NAME.
1807 Unfortunately, we cannot do this, because this function is used in
1808 circumstances where it is not appropriate to try to encode NAME.
1809 For instance, when displaying the frame info, we demangle the name
1810 of each parameter, and then perform a symbol lookup inside our
1811 function using that demangled name. In Ada, certain functions
1812 have internally-generated parameters whose name contain uppercase
1813 characters. Encoding those name would result in those uppercase
1814 characters to become lowercase, and thus cause the symbol lookup
1818 demangle_for_lookup (const char *name
, enum language lang
,
1819 demangle_result_storage
&storage
)
1821 /* If we are using C++, D, or Go, demangle the name before doing a
1822 lookup, so we can always binary search. */
1823 if (lang
== language_cplus
)
1825 char *demangled_name
= gdb_demangle (name
, DMGL_ANSI
| DMGL_PARAMS
);
1826 if (demangled_name
!= NULL
)
1827 return storage
.set_malloc_ptr (demangled_name
);
1829 /* If we were given a non-mangled name, canonicalize it
1830 according to the language (so far only for C++). */
1831 std::string canon
= cp_canonicalize_string (name
);
1832 if (!canon
.empty ())
1833 return storage
.swap_string (canon
);
1835 else if (lang
== language_d
)
1837 char *demangled_name
= d_demangle (name
, 0);
1838 if (demangled_name
!= NULL
)
1839 return storage
.set_malloc_ptr (demangled_name
);
1841 else if (lang
== language_go
)
1843 char *demangled_name
= go_demangle (name
, 0);
1844 if (demangled_name
!= NULL
)
1845 return storage
.set_malloc_ptr (demangled_name
);
1854 search_name_hash (enum language language
, const char *search_name
)
1856 return language_def (language
)->la_search_name_hash (search_name
);
1861 This function (or rather its subordinates) have a bunch of loops and
1862 it would seem to be attractive to put in some QUIT's (though I'm not really
1863 sure whether it can run long enough to be really important). But there
1864 are a few calls for which it would appear to be bad news to quit
1865 out of here: e.g., find_proc_desc in alpha-mdebug-tdep.c. (Note
1866 that there is C++ code below which can error(), but that probably
1867 doesn't affect these calls since they are looking for a known
1868 variable and thus can probably assume it will never hit the C++
1872 lookup_symbol_in_language (const char *name
, const struct block
*block
,
1873 const domain_enum domain
, enum language lang
,
1874 struct field_of_this_result
*is_a_field_of_this
)
1876 demangle_result_storage storage
;
1877 const char *modified_name
= demangle_for_lookup (name
, lang
, storage
);
1879 return lookup_symbol_aux (modified_name
, block
, domain
, lang
,
1880 is_a_field_of_this
);
1886 lookup_symbol (const char *name
, const struct block
*block
,
1888 struct field_of_this_result
*is_a_field_of_this
)
1890 return lookup_symbol_in_language (name
, block
, domain
,
1891 current_language
->la_language
,
1892 is_a_field_of_this
);
1898 lookup_language_this (const struct language_defn
*lang
,
1899 const struct block
*block
)
1901 if (lang
->la_name_of_this
== NULL
|| block
== NULL
)
1902 return (struct block_symbol
) {NULL
, NULL
};
1904 if (symbol_lookup_debug
> 1)
1906 struct objfile
*objfile
= lookup_objfile_from_block (block
);
1908 fprintf_unfiltered (gdb_stdlog
,
1909 "lookup_language_this (%s, %s (objfile %s))",
1910 lang
->la_name
, host_address_to_string (block
),
1911 objfile_debug_name (objfile
));
1918 sym
= block_lookup_symbol (block
, lang
->la_name_of_this
, VAR_DOMAIN
);
1921 if (symbol_lookup_debug
> 1)
1923 fprintf_unfiltered (gdb_stdlog
, " = %s (%s, block %s)\n",
1924 SYMBOL_PRINT_NAME (sym
),
1925 host_address_to_string (sym
),
1926 host_address_to_string (block
));
1928 return (struct block_symbol
) {sym
, block
};
1930 if (BLOCK_FUNCTION (block
))
1932 block
= BLOCK_SUPERBLOCK (block
);
1935 if (symbol_lookup_debug
> 1)
1936 fprintf_unfiltered (gdb_stdlog
, " = NULL\n");
1937 return (struct block_symbol
) {NULL
, NULL
};
1940 /* Given TYPE, a structure/union,
1941 return 1 if the component named NAME from the ultimate target
1942 structure/union is defined, otherwise, return 0. */
1945 check_field (struct type
*type
, const char *name
,
1946 struct field_of_this_result
*is_a_field_of_this
)
1950 /* The type may be a stub. */
1951 type
= check_typedef (type
);
1953 for (i
= TYPE_NFIELDS (type
) - 1; i
>= TYPE_N_BASECLASSES (type
); i
--)
1955 const char *t_field_name
= TYPE_FIELD_NAME (type
, i
);
1957 if (t_field_name
&& (strcmp_iw (t_field_name
, name
) == 0))
1959 is_a_field_of_this
->type
= type
;
1960 is_a_field_of_this
->field
= &TYPE_FIELD (type
, i
);
1965 /* C++: If it was not found as a data field, then try to return it
1966 as a pointer to a method. */
1968 for (i
= TYPE_NFN_FIELDS (type
) - 1; i
>= 0; --i
)
1970 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type
, i
), name
) == 0)
1972 is_a_field_of_this
->type
= type
;
1973 is_a_field_of_this
->fn_field
= &TYPE_FN_FIELDLIST (type
, i
);
1978 for (i
= TYPE_N_BASECLASSES (type
) - 1; i
>= 0; i
--)
1979 if (check_field (TYPE_BASECLASS (type
, i
), name
, is_a_field_of_this
))
1985 /* Behave like lookup_symbol except that NAME is the natural name
1986 (e.g., demangled name) of the symbol that we're looking for. */
1988 static struct block_symbol
1989 lookup_symbol_aux (const char *name
, const struct block
*block
,
1990 const domain_enum domain
, enum language language
,
1991 struct field_of_this_result
*is_a_field_of_this
)
1993 struct block_symbol result
;
1994 const struct language_defn
*langdef
;
1996 if (symbol_lookup_debug
)
1998 struct objfile
*objfile
= lookup_objfile_from_block (block
);
2000 fprintf_unfiltered (gdb_stdlog
,
2001 "lookup_symbol_aux (%s, %s (objfile %s), %s, %s)\n",
2002 name
, host_address_to_string (block
),
2004 ? objfile_debug_name (objfile
) : "NULL",
2005 domain_name (domain
), language_str (language
));
2008 /* Make sure we do something sensible with is_a_field_of_this, since
2009 the callers that set this parameter to some non-null value will
2010 certainly use it later. If we don't set it, the contents of
2011 is_a_field_of_this are undefined. */
2012 if (is_a_field_of_this
!= NULL
)
2013 memset (is_a_field_of_this
, 0, sizeof (*is_a_field_of_this
));
2015 /* Search specified block and its superiors. Don't search
2016 STATIC_BLOCK or GLOBAL_BLOCK. */
2018 result
= lookup_local_symbol (name
, block
, domain
, language
);
2019 if (result
.symbol
!= NULL
)
2021 if (symbol_lookup_debug
)
2023 fprintf_unfiltered (gdb_stdlog
, "lookup_symbol_aux (...) = %s\n",
2024 host_address_to_string (result
.symbol
));
2029 /* If requested to do so by the caller and if appropriate for LANGUAGE,
2030 check to see if NAME is a field of `this'. */
2032 langdef
= language_def (language
);
2034 /* Don't do this check if we are searching for a struct. It will
2035 not be found by check_field, but will be found by other
2037 if (is_a_field_of_this
!= NULL
&& domain
!= STRUCT_DOMAIN
)
2039 result
= lookup_language_this (langdef
, block
);
2043 struct type
*t
= result
.symbol
->type
;
2045 /* I'm not really sure that type of this can ever
2046 be typedefed; just be safe. */
2047 t
= check_typedef (t
);
2048 if (TYPE_CODE (t
) == TYPE_CODE_PTR
|| TYPE_IS_REFERENCE (t
))
2049 t
= TYPE_TARGET_TYPE (t
);
2051 if (TYPE_CODE (t
) != TYPE_CODE_STRUCT
2052 && TYPE_CODE (t
) != TYPE_CODE_UNION
)
2053 error (_("Internal error: `%s' is not an aggregate"),
2054 langdef
->la_name_of_this
);
2056 if (check_field (t
, name
, is_a_field_of_this
))
2058 if (symbol_lookup_debug
)
2060 fprintf_unfiltered (gdb_stdlog
,
2061 "lookup_symbol_aux (...) = NULL\n");
2063 return (struct block_symbol
) {NULL
, NULL
};
2068 /* Now do whatever is appropriate for LANGUAGE to look
2069 up static and global variables. */
2071 result
= langdef
->la_lookup_symbol_nonlocal (langdef
, name
, block
, domain
);
2072 if (result
.symbol
!= NULL
)
2074 if (symbol_lookup_debug
)
2076 fprintf_unfiltered (gdb_stdlog
, "lookup_symbol_aux (...) = %s\n",
2077 host_address_to_string (result
.symbol
));
2082 /* Now search all static file-level symbols. Not strictly correct,
2083 but more useful than an error. */
2085 result
= lookup_static_symbol (name
, domain
);
2086 if (symbol_lookup_debug
)
2088 fprintf_unfiltered (gdb_stdlog
, "lookup_symbol_aux (...) = %s\n",
2089 result
.symbol
!= NULL
2090 ? host_address_to_string (result
.symbol
)
2096 /* Check to see if the symbol is defined in BLOCK or its superiors.
2097 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
2099 static struct block_symbol
2100 lookup_local_symbol (const char *name
, const struct block
*block
,
2101 const domain_enum domain
,
2102 enum language language
)
2105 const struct block
*static_block
= block_static_block (block
);
2106 const char *scope
= block_scope (block
);
2108 /* Check if either no block is specified or it's a global block. */
2110 if (static_block
== NULL
)
2111 return (struct block_symbol
) {NULL
, NULL
};
2113 while (block
!= static_block
)
2115 sym
= lookup_symbol_in_block (name
, block
, domain
);
2117 return (struct block_symbol
) {sym
, block
};
2119 if (language
== language_cplus
|| language
== language_fortran
)
2121 struct block_symbol sym
2122 = cp_lookup_symbol_imports_or_template (scope
, name
, block
,
2125 if (sym
.symbol
!= NULL
)
2129 if (BLOCK_FUNCTION (block
) != NULL
&& block_inlined_p (block
))
2131 block
= BLOCK_SUPERBLOCK (block
);
2134 /* We've reached the end of the function without finding a result. */
2136 return (struct block_symbol
) {NULL
, NULL
};
2142 lookup_objfile_from_block (const struct block
*block
)
2144 struct objfile
*obj
;
2145 struct compunit_symtab
*cust
;
2150 block
= block_global_block (block
);
2151 /* Look through all blockvectors. */
2152 ALL_COMPUNITS (obj
, cust
)
2153 if (block
== BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust
),
2156 if (obj
->separate_debug_objfile_backlink
)
2157 obj
= obj
->separate_debug_objfile_backlink
;
2168 lookup_symbol_in_block (const char *name
, const struct block
*block
,
2169 const domain_enum domain
)
2173 if (symbol_lookup_debug
> 1)
2175 struct objfile
*objfile
= lookup_objfile_from_block (block
);
2177 fprintf_unfiltered (gdb_stdlog
,
2178 "lookup_symbol_in_block (%s, %s (objfile %s), %s)",
2179 name
, host_address_to_string (block
),
2180 objfile_debug_name (objfile
),
2181 domain_name (domain
));
2184 sym
= block_lookup_symbol (block
, name
, domain
);
2187 if (symbol_lookup_debug
> 1)
2189 fprintf_unfiltered (gdb_stdlog
, " = %s\n",
2190 host_address_to_string (sym
));
2192 return fixup_symbol_section (sym
, NULL
);
2195 if (symbol_lookup_debug
> 1)
2196 fprintf_unfiltered (gdb_stdlog
, " = NULL\n");
2203 lookup_global_symbol_from_objfile (struct objfile
*main_objfile
,
2205 const domain_enum domain
)
2207 struct objfile
*objfile
;
2209 for (objfile
= main_objfile
;
2211 objfile
= objfile_separate_debug_iterate (main_objfile
, objfile
))
2213 struct block_symbol result
2214 = lookup_symbol_in_objfile (objfile
, GLOBAL_BLOCK
, name
, domain
);
2216 if (result
.symbol
!= NULL
)
2220 return (struct block_symbol
) {NULL
, NULL
};
2223 /* Check to see if the symbol is defined in one of the OBJFILE's
2224 symtabs. BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
2225 depending on whether or not we want to search global symbols or
2228 static struct block_symbol
2229 lookup_symbol_in_objfile_symtabs (struct objfile
*objfile
, int block_index
,
2230 const char *name
, const domain_enum domain
)
2232 struct compunit_symtab
*cust
;
2234 gdb_assert (block_index
== GLOBAL_BLOCK
|| block_index
== STATIC_BLOCK
);
2236 if (symbol_lookup_debug
> 1)
2238 fprintf_unfiltered (gdb_stdlog
,
2239 "lookup_symbol_in_objfile_symtabs (%s, %s, %s, %s)",
2240 objfile_debug_name (objfile
),
2241 block_index
== GLOBAL_BLOCK
2242 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2243 name
, domain_name (domain
));
2246 ALL_OBJFILE_COMPUNITS (objfile
, cust
)
2248 const struct blockvector
*bv
;
2249 const struct block
*block
;
2250 struct block_symbol result
;
2252 bv
= COMPUNIT_BLOCKVECTOR (cust
);
2253 block
= BLOCKVECTOR_BLOCK (bv
, block_index
);
2254 result
.symbol
= block_lookup_symbol_primary (block
, name
, domain
);
2255 result
.block
= block
;
2256 if (result
.symbol
!= NULL
)
2258 if (symbol_lookup_debug
> 1)
2260 fprintf_unfiltered (gdb_stdlog
, " = %s (block %s)\n",
2261 host_address_to_string (result
.symbol
),
2262 host_address_to_string (block
));
2264 result
.symbol
= fixup_symbol_section (result
.symbol
, objfile
);
2270 if (symbol_lookup_debug
> 1)
2271 fprintf_unfiltered (gdb_stdlog
, " = NULL\n");
2272 return (struct block_symbol
) {NULL
, NULL
};
2275 /* Wrapper around lookup_symbol_in_objfile_symtabs for search_symbols.
2276 Look up LINKAGE_NAME in DOMAIN in the global and static blocks of OBJFILE
2277 and all associated separate debug objfiles.
2279 Normally we only look in OBJFILE, and not any separate debug objfiles
2280 because the outer loop will cause them to be searched too. This case is
2281 different. Here we're called from search_symbols where it will only
2282 call us for the the objfile that contains a matching minsym. */
2284 static struct block_symbol
2285 lookup_symbol_in_objfile_from_linkage_name (struct objfile
*objfile
,
2286 const char *linkage_name
,
2289 enum language lang
= current_language
->la_language
;
2290 struct objfile
*main_objfile
, *cur_objfile
;
2292 demangle_result_storage storage
;
2293 const char *modified_name
= demangle_for_lookup (linkage_name
, lang
, storage
);
2295 if (objfile
->separate_debug_objfile_backlink
)
2296 main_objfile
= objfile
->separate_debug_objfile_backlink
;
2298 main_objfile
= objfile
;
2300 for (cur_objfile
= main_objfile
;
2302 cur_objfile
= objfile_separate_debug_iterate (main_objfile
, cur_objfile
))
2304 struct block_symbol result
;
2306 result
= lookup_symbol_in_objfile_symtabs (cur_objfile
, GLOBAL_BLOCK
,
2307 modified_name
, domain
);
2308 if (result
.symbol
== NULL
)
2309 result
= lookup_symbol_in_objfile_symtabs (cur_objfile
, STATIC_BLOCK
,
2310 modified_name
, domain
);
2311 if (result
.symbol
!= NULL
)
2315 return (struct block_symbol
) {NULL
, NULL
};
2318 /* A helper function that throws an exception when a symbol was found
2319 in a psymtab but not in a symtab. */
2321 static void ATTRIBUTE_NORETURN
2322 error_in_psymtab_expansion (int block_index
, const char *name
,
2323 struct compunit_symtab
*cust
)
2326 Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n\
2327 %s may be an inlined function, or may be a template function\n \
2328 (if a template, try specifying an instantiation: %s<type>)."),
2329 block_index
== GLOBAL_BLOCK
? "global" : "static",
2331 symtab_to_filename_for_display (compunit_primary_filetab (cust
)),
2335 /* A helper function for various lookup routines that interfaces with
2336 the "quick" symbol table functions. */
2338 static struct block_symbol
2339 lookup_symbol_via_quick_fns (struct objfile
*objfile
, int block_index
,
2340 const char *name
, const domain_enum domain
)
2342 struct compunit_symtab
*cust
;
2343 const struct blockvector
*bv
;
2344 const struct block
*block
;
2345 struct block_symbol result
;
2348 return (struct block_symbol
) {NULL
, NULL
};
2350 if (symbol_lookup_debug
> 1)
2352 fprintf_unfiltered (gdb_stdlog
,
2353 "lookup_symbol_via_quick_fns (%s, %s, %s, %s)\n",
2354 objfile_debug_name (objfile
),
2355 block_index
== GLOBAL_BLOCK
2356 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2357 name
, domain_name (domain
));
2360 cust
= objfile
->sf
->qf
->lookup_symbol (objfile
, block_index
, name
, domain
);
2363 if (symbol_lookup_debug
> 1)
2365 fprintf_unfiltered (gdb_stdlog
,
2366 "lookup_symbol_via_quick_fns (...) = NULL\n");
2368 return (struct block_symbol
) {NULL
, NULL
};
2371 bv
= COMPUNIT_BLOCKVECTOR (cust
);
2372 block
= BLOCKVECTOR_BLOCK (bv
, block_index
);
2373 result
.symbol
= block_lookup_symbol (block
, name
, domain
);
2374 if (result
.symbol
== NULL
)
2375 error_in_psymtab_expansion (block_index
, name
, cust
);
2377 if (symbol_lookup_debug
> 1)
2379 fprintf_unfiltered (gdb_stdlog
,
2380 "lookup_symbol_via_quick_fns (...) = %s (block %s)\n",
2381 host_address_to_string (result
.symbol
),
2382 host_address_to_string (block
));
2385 result
.symbol
= fixup_symbol_section (result
.symbol
, objfile
);
2386 result
.block
= block
;
2393 basic_lookup_symbol_nonlocal (const struct language_defn
*langdef
,
2395 const struct block
*block
,
2396 const domain_enum domain
)
2398 struct block_symbol result
;
2400 /* NOTE: carlton/2003-05-19: The comments below were written when
2401 this (or what turned into this) was part of lookup_symbol_aux;
2402 I'm much less worried about these questions now, since these
2403 decisions have turned out well, but I leave these comments here
2406 /* NOTE: carlton/2002-12-05: There is a question as to whether or
2407 not it would be appropriate to search the current global block
2408 here as well. (That's what this code used to do before the
2409 is_a_field_of_this check was moved up.) On the one hand, it's
2410 redundant with the lookup in all objfiles search that happens
2411 next. On the other hand, if decode_line_1 is passed an argument
2412 like filename:var, then the user presumably wants 'var' to be
2413 searched for in filename. On the third hand, there shouldn't be
2414 multiple global variables all of which are named 'var', and it's
2415 not like decode_line_1 has ever restricted its search to only
2416 global variables in a single filename. All in all, only
2417 searching the static block here seems best: it's correct and it's
2420 /* NOTE: carlton/2002-12-05: There's also a possible performance
2421 issue here: if you usually search for global symbols in the
2422 current file, then it would be slightly better to search the
2423 current global block before searching all the symtabs. But there
2424 are other factors that have a much greater effect on performance
2425 than that one, so I don't think we should worry about that for
2428 /* NOTE: dje/2014-10-26: The lookup in all objfiles search could skip
2429 the current objfile. Searching the current objfile first is useful
2430 for both matching user expectations as well as performance. */
2432 result
= lookup_symbol_in_static_block (name
, block
, domain
);
2433 if (result
.symbol
!= NULL
)
2436 /* If we didn't find a definition for a builtin type in the static block,
2437 search for it now. This is actually the right thing to do and can be
2438 a massive performance win. E.g., when debugging a program with lots of
2439 shared libraries we could search all of them only to find out the
2440 builtin type isn't defined in any of them. This is common for types
2442 if (domain
== VAR_DOMAIN
)
2444 struct gdbarch
*gdbarch
;
2447 gdbarch
= target_gdbarch ();
2449 gdbarch
= block_gdbarch (block
);
2450 result
.symbol
= language_lookup_primitive_type_as_symbol (langdef
,
2452 result
.block
= NULL
;
2453 if (result
.symbol
!= NULL
)
2457 return lookup_global_symbol (name
, block
, domain
);
2463 lookup_symbol_in_static_block (const char *name
,
2464 const struct block
*block
,
2465 const domain_enum domain
)
2467 const struct block
*static_block
= block_static_block (block
);
2470 if (static_block
== NULL
)
2471 return (struct block_symbol
) {NULL
, NULL
};
2473 if (symbol_lookup_debug
)
2475 struct objfile
*objfile
= lookup_objfile_from_block (static_block
);
2477 fprintf_unfiltered (gdb_stdlog
,
2478 "lookup_symbol_in_static_block (%s, %s (objfile %s),"
2481 host_address_to_string (block
),
2482 objfile_debug_name (objfile
),
2483 domain_name (domain
));
2486 sym
= lookup_symbol_in_block (name
, static_block
, domain
);
2487 if (symbol_lookup_debug
)
2489 fprintf_unfiltered (gdb_stdlog
,
2490 "lookup_symbol_in_static_block (...) = %s\n",
2491 sym
!= NULL
? host_address_to_string (sym
) : "NULL");
2493 return (struct block_symbol
) {sym
, static_block
};
2496 /* Perform the standard symbol lookup of NAME in OBJFILE:
2497 1) First search expanded symtabs, and if not found
2498 2) Search the "quick" symtabs (partial or .gdb_index).
2499 BLOCK_INDEX is one of GLOBAL_BLOCK or STATIC_BLOCK. */
2501 static struct block_symbol
2502 lookup_symbol_in_objfile (struct objfile
*objfile
, int block_index
,
2503 const char *name
, const domain_enum domain
)
2505 struct block_symbol result
;
2507 if (symbol_lookup_debug
)
2509 fprintf_unfiltered (gdb_stdlog
,
2510 "lookup_symbol_in_objfile (%s, %s, %s, %s)\n",
2511 objfile_debug_name (objfile
),
2512 block_index
== GLOBAL_BLOCK
2513 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2514 name
, domain_name (domain
));
2517 result
= lookup_symbol_in_objfile_symtabs (objfile
, block_index
,
2519 if (result
.symbol
!= NULL
)
2521 if (symbol_lookup_debug
)
2523 fprintf_unfiltered (gdb_stdlog
,
2524 "lookup_symbol_in_objfile (...) = %s"
2526 host_address_to_string (result
.symbol
));
2531 result
= lookup_symbol_via_quick_fns (objfile
, block_index
,
2533 if (symbol_lookup_debug
)
2535 fprintf_unfiltered (gdb_stdlog
,
2536 "lookup_symbol_in_objfile (...) = %s%s\n",
2537 result
.symbol
!= NULL
2538 ? host_address_to_string (result
.symbol
)
2540 result
.symbol
!= NULL
? " (via quick fns)" : "");
2548 lookup_static_symbol (const char *name
, const domain_enum domain
)
2550 struct symbol_cache
*cache
= get_symbol_cache (current_program_space
);
2551 struct objfile
*objfile
;
2552 struct block_symbol result
;
2553 struct block_symbol_cache
*bsc
;
2554 struct symbol_cache_slot
*slot
;
2556 /* Lookup in STATIC_BLOCK is not current-objfile-dependent, so just pass
2557 NULL for OBJFILE_CONTEXT. */
2558 result
= symbol_cache_lookup (cache
, NULL
, STATIC_BLOCK
, name
, domain
,
2560 if (result
.symbol
!= NULL
)
2562 if (SYMBOL_LOOKUP_FAILED_P (result
))
2563 return (struct block_symbol
) {NULL
, NULL
};
2567 ALL_OBJFILES (objfile
)
2569 result
= lookup_symbol_in_objfile (objfile
, STATIC_BLOCK
, name
, domain
);
2570 if (result
.symbol
!= NULL
)
2572 /* Still pass NULL for OBJFILE_CONTEXT here. */
2573 symbol_cache_mark_found (bsc
, slot
, NULL
, result
.symbol
,
2579 /* Still pass NULL for OBJFILE_CONTEXT here. */
2580 symbol_cache_mark_not_found (bsc
, slot
, NULL
, name
, domain
);
2581 return (struct block_symbol
) {NULL
, NULL
};
2584 /* Private data to be used with lookup_symbol_global_iterator_cb. */
2586 struct global_sym_lookup_data
2588 /* The name of the symbol we are searching for. */
2591 /* The domain to use for our search. */
2594 /* The field where the callback should store the symbol if found.
2595 It should be initialized to {NULL, NULL} before the search is started. */
2596 struct block_symbol result
;
2599 /* A callback function for gdbarch_iterate_over_objfiles_in_search_order.
2600 It searches by name for a symbol in the GLOBAL_BLOCK of the given
2601 OBJFILE. The arguments for the search are passed via CB_DATA,
2602 which in reality is a pointer to struct global_sym_lookup_data. */
2605 lookup_symbol_global_iterator_cb (struct objfile
*objfile
,
2608 struct global_sym_lookup_data
*data
=
2609 (struct global_sym_lookup_data
*) cb_data
;
2611 gdb_assert (data
->result
.symbol
== NULL
2612 && data
->result
.block
== NULL
);
2614 data
->result
= lookup_symbol_in_objfile (objfile
, GLOBAL_BLOCK
,
2615 data
->name
, data
->domain
);
2617 /* If we found a match, tell the iterator to stop. Otherwise,
2619 return (data
->result
.symbol
!= NULL
);
2625 lookup_global_symbol (const char *name
,
2626 const struct block
*block
,
2627 const domain_enum domain
)
2629 struct symbol_cache
*cache
= get_symbol_cache (current_program_space
);
2630 struct block_symbol result
;
2631 struct objfile
*objfile
;
2632 struct global_sym_lookup_data lookup_data
;
2633 struct block_symbol_cache
*bsc
;
2634 struct symbol_cache_slot
*slot
;
2636 objfile
= lookup_objfile_from_block (block
);
2638 /* First see if we can find the symbol in the cache.
2639 This works because we use the current objfile to qualify the lookup. */
2640 result
= symbol_cache_lookup (cache
, objfile
, GLOBAL_BLOCK
, name
, domain
,
2642 if (result
.symbol
!= NULL
)
2644 if (SYMBOL_LOOKUP_FAILED_P (result
))
2645 return (struct block_symbol
) {NULL
, NULL
};
2649 /* Call library-specific lookup procedure. */
2650 if (objfile
!= NULL
)
2651 result
= solib_global_lookup (objfile
, name
, domain
);
2653 /* If that didn't work go a global search (of global blocks, heh). */
2654 if (result
.symbol
== NULL
)
2656 memset (&lookup_data
, 0, sizeof (lookup_data
));
2657 lookup_data
.name
= name
;
2658 lookup_data
.domain
= domain
;
2659 gdbarch_iterate_over_objfiles_in_search_order
2660 (objfile
!= NULL
? get_objfile_arch (objfile
) : target_gdbarch (),
2661 lookup_symbol_global_iterator_cb
, &lookup_data
, objfile
);
2662 result
= lookup_data
.result
;
2665 if (result
.symbol
!= NULL
)
2666 symbol_cache_mark_found (bsc
, slot
, objfile
, result
.symbol
, result
.block
);
2668 symbol_cache_mark_not_found (bsc
, slot
, objfile
, name
, domain
);
2674 symbol_matches_domain (enum language symbol_language
,
2675 domain_enum symbol_domain
,
2678 /* For C++ "struct foo { ... }" also defines a typedef for "foo".
2679 Similarly, any Ada type declaration implicitly defines a typedef. */
2680 if (symbol_language
== language_cplus
2681 || symbol_language
== language_d
2682 || symbol_language
== language_ada
2683 || symbol_language
== language_rust
)
2685 if ((domain
== VAR_DOMAIN
|| domain
== STRUCT_DOMAIN
)
2686 && symbol_domain
== STRUCT_DOMAIN
)
2689 /* For all other languages, strict match is required. */
2690 return (symbol_domain
== domain
);
2696 lookup_transparent_type (const char *name
)
2698 return current_language
->la_lookup_transparent_type (name
);
2701 /* A helper for basic_lookup_transparent_type that interfaces with the
2702 "quick" symbol table functions. */
2704 static struct type
*
2705 basic_lookup_transparent_type_quick (struct objfile
*objfile
, int block_index
,
2708 struct compunit_symtab
*cust
;
2709 const struct blockvector
*bv
;
2710 struct block
*block
;
2715 cust
= objfile
->sf
->qf
->lookup_symbol (objfile
, block_index
, name
,
2720 bv
= COMPUNIT_BLOCKVECTOR (cust
);
2721 block
= BLOCKVECTOR_BLOCK (bv
, block_index
);
2722 sym
= block_find_symbol (block
, name
, STRUCT_DOMAIN
,
2723 block_find_non_opaque_type
, NULL
);
2725 error_in_psymtab_expansion (block_index
, name
, cust
);
2726 gdb_assert (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym
)));
2727 return SYMBOL_TYPE (sym
);
2730 /* Subroutine of basic_lookup_transparent_type to simplify it.
2731 Look up the non-opaque definition of NAME in BLOCK_INDEX of OBJFILE.
2732 BLOCK_INDEX is either GLOBAL_BLOCK or STATIC_BLOCK. */
2734 static struct type
*
2735 basic_lookup_transparent_type_1 (struct objfile
*objfile
, int block_index
,
2738 const struct compunit_symtab
*cust
;
2739 const struct blockvector
*bv
;
2740 const struct block
*block
;
2741 const struct symbol
*sym
;
2743 ALL_OBJFILE_COMPUNITS (objfile
, cust
)
2745 bv
= COMPUNIT_BLOCKVECTOR (cust
);
2746 block
= BLOCKVECTOR_BLOCK (bv
, block_index
);
2747 sym
= block_find_symbol (block
, name
, STRUCT_DOMAIN
,
2748 block_find_non_opaque_type
, NULL
);
2751 gdb_assert (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym
)));
2752 return SYMBOL_TYPE (sym
);
2759 /* The standard implementation of lookup_transparent_type. This code
2760 was modeled on lookup_symbol -- the parts not relevant to looking
2761 up types were just left out. In particular it's assumed here that
2762 types are available in STRUCT_DOMAIN and only in file-static or
2766 basic_lookup_transparent_type (const char *name
)
2768 struct objfile
*objfile
;
2771 /* Now search all the global symbols. Do the symtab's first, then
2772 check the psymtab's. If a psymtab indicates the existence
2773 of the desired name as a global, then do psymtab-to-symtab
2774 conversion on the fly and return the found symbol. */
2776 ALL_OBJFILES (objfile
)
2778 t
= basic_lookup_transparent_type_1 (objfile
, GLOBAL_BLOCK
, name
);
2783 ALL_OBJFILES (objfile
)
2785 t
= basic_lookup_transparent_type_quick (objfile
, GLOBAL_BLOCK
, name
);
2790 /* Now search the static file-level symbols.
2791 Not strictly correct, but more useful than an error.
2792 Do the symtab's first, then
2793 check the psymtab's. If a psymtab indicates the existence
2794 of the desired name as a file-level static, then do psymtab-to-symtab
2795 conversion on the fly and return the found symbol. */
2797 ALL_OBJFILES (objfile
)
2799 t
= basic_lookup_transparent_type_1 (objfile
, STATIC_BLOCK
, name
);
2804 ALL_OBJFILES (objfile
)
2806 t
= basic_lookup_transparent_type_quick (objfile
, STATIC_BLOCK
, name
);
2811 return (struct type
*) 0;
2814 /* Iterate over the symbols named NAME, matching DOMAIN, in BLOCK.
2816 For each symbol that matches, CALLBACK is called. The symbol is
2817 passed to the callback.
2819 If CALLBACK returns false, the iteration ends. Otherwise, the
2820 search continues. */
2823 iterate_over_symbols (const struct block
*block
,
2824 const lookup_name_info
&name
,
2825 const domain_enum domain
,
2826 gdb::function_view
<symbol_found_callback_ftype
> callback
)
2828 struct block_iterator iter
;
2831 ALL_BLOCK_SYMBOLS_WITH_NAME (block
, name
, iter
, sym
)
2833 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym
),
2834 SYMBOL_DOMAIN (sym
), domain
))
2836 if (!callback (sym
))
2842 /* Find the compunit symtab associated with PC and SECTION.
2843 This will read in debug info as necessary. */
2845 struct compunit_symtab
*
2846 find_pc_sect_compunit_symtab (CORE_ADDR pc
, struct obj_section
*section
)
2848 struct compunit_symtab
*cust
;
2849 struct compunit_symtab
*best_cust
= NULL
;
2850 struct objfile
*objfile
;
2851 CORE_ADDR distance
= 0;
2852 struct bound_minimal_symbol msymbol
;
2854 /* If we know that this is not a text address, return failure. This is
2855 necessary because we loop based on the block's high and low code
2856 addresses, which do not include the data ranges, and because
2857 we call find_pc_sect_psymtab which has a similar restriction based
2858 on the partial_symtab's texthigh and textlow. */
2859 msymbol
= lookup_minimal_symbol_by_pc_section (pc
, section
);
2861 && (MSYMBOL_TYPE (msymbol
.minsym
) == mst_data
2862 || MSYMBOL_TYPE (msymbol
.minsym
) == mst_bss
2863 || MSYMBOL_TYPE (msymbol
.minsym
) == mst_abs
2864 || MSYMBOL_TYPE (msymbol
.minsym
) == mst_file_data
2865 || MSYMBOL_TYPE (msymbol
.minsym
) == mst_file_bss
))
2868 /* Search all symtabs for the one whose file contains our address, and which
2869 is the smallest of all the ones containing the address. This is designed
2870 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
2871 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
2872 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
2874 This happens for native ecoff format, where code from included files
2875 gets its own symtab. The symtab for the included file should have
2876 been read in already via the dependency mechanism.
2877 It might be swifter to create several symtabs with the same name
2878 like xcoff does (I'm not sure).
2880 It also happens for objfiles that have their functions reordered.
2881 For these, the symtab we are looking for is not necessarily read in. */
2883 ALL_COMPUNITS (objfile
, cust
)
2886 const struct blockvector
*bv
;
2888 bv
= COMPUNIT_BLOCKVECTOR (cust
);
2889 b
= BLOCKVECTOR_BLOCK (bv
, GLOBAL_BLOCK
);
2891 if (BLOCK_START (b
) <= pc
2892 && BLOCK_END (b
) > pc
2894 || BLOCK_END (b
) - BLOCK_START (b
) < distance
))
2896 /* For an objfile that has its functions reordered,
2897 find_pc_psymtab will find the proper partial symbol table
2898 and we simply return its corresponding symtab. */
2899 /* In order to better support objfiles that contain both
2900 stabs and coff debugging info, we continue on if a psymtab
2902 if ((objfile
->flags
& OBJF_REORDERED
) && objfile
->sf
)
2904 struct compunit_symtab
*result
;
2907 = objfile
->sf
->qf
->find_pc_sect_compunit_symtab (objfile
,
2916 struct block_iterator iter
;
2917 struct symbol
*sym
= NULL
;
2919 ALL_BLOCK_SYMBOLS (b
, iter
, sym
)
2921 fixup_symbol_section (sym
, objfile
);
2922 if (matching_obj_sections (SYMBOL_OBJ_SECTION (objfile
, sym
),
2927 continue; /* No symbol in this symtab matches
2930 distance
= BLOCK_END (b
) - BLOCK_START (b
);
2935 if (best_cust
!= NULL
)
2938 /* Not found in symtabs, search the "quick" symtabs (e.g. psymtabs). */
2940 ALL_OBJFILES (objfile
)
2942 struct compunit_symtab
*result
;
2946 result
= objfile
->sf
->qf
->find_pc_sect_compunit_symtab (objfile
,
2957 /* Find the compunit symtab associated with PC.
2958 This will read in debug info as necessary.
2959 Backward compatibility, no section. */
2961 struct compunit_symtab
*
2962 find_pc_compunit_symtab (CORE_ADDR pc
)
2964 return find_pc_sect_compunit_symtab (pc
, find_pc_mapped_section (pc
));
2970 find_symbol_at_address (CORE_ADDR address
)
2972 struct objfile
*objfile
;
2974 ALL_OBJFILES (objfile
)
2976 if (objfile
->sf
== NULL
2977 || objfile
->sf
->qf
->find_compunit_symtab_by_address
== NULL
)
2980 struct compunit_symtab
*symtab
2981 = objfile
->sf
->qf
->find_compunit_symtab_by_address (objfile
, address
);
2984 const struct blockvector
*bv
= COMPUNIT_BLOCKVECTOR (symtab
);
2986 for (int i
= GLOBAL_BLOCK
; i
<= STATIC_BLOCK
; ++i
)
2988 struct block
*b
= BLOCKVECTOR_BLOCK (bv
, i
);
2989 struct block_iterator iter
;
2992 ALL_BLOCK_SYMBOLS (b
, iter
, sym
)
2994 if (SYMBOL_CLASS (sym
) == LOC_STATIC
2995 && SYMBOL_VALUE_ADDRESS (sym
) == address
)
3007 /* Find the source file and line number for a given PC value and SECTION.
3008 Return a structure containing a symtab pointer, a line number,
3009 and a pc range for the entire source line.
3010 The value's .pc field is NOT the specified pc.
3011 NOTCURRENT nonzero means, if specified pc is on a line boundary,
3012 use the line that ends there. Otherwise, in that case, the line
3013 that begins there is used. */
3015 /* The big complication here is that a line may start in one file, and end just
3016 before the start of another file. This usually occurs when you #include
3017 code in the middle of a subroutine. To properly find the end of a line's PC
3018 range, we must search all symtabs associated with this compilation unit, and
3019 find the one whose first PC is closer than that of the next line in this
3022 /* If it's worth the effort, we could be using a binary search. */
3024 struct symtab_and_line
3025 find_pc_sect_line (CORE_ADDR pc
, struct obj_section
*section
, int notcurrent
)
3027 struct compunit_symtab
*cust
;
3028 struct symtab
*iter_s
;
3029 struct linetable
*l
;
3032 struct linetable_entry
*item
;
3033 const struct blockvector
*bv
;
3034 struct bound_minimal_symbol msymbol
;
3036 /* Info on best line seen so far, and where it starts, and its file. */
3038 struct linetable_entry
*best
= NULL
;
3039 CORE_ADDR best_end
= 0;
3040 struct symtab
*best_symtab
= 0;
3042 /* Store here the first line number
3043 of a file which contains the line at the smallest pc after PC.
3044 If we don't find a line whose range contains PC,
3045 we will use a line one less than this,
3046 with a range from the start of that file to the first line's pc. */
3047 struct linetable_entry
*alt
= NULL
;
3049 /* Info on best line seen in this file. */
3051 struct linetable_entry
*prev
;
3053 /* If this pc is not from the current frame,
3054 it is the address of the end of a call instruction.
3055 Quite likely that is the start of the following statement.
3056 But what we want is the statement containing the instruction.
3057 Fudge the pc to make sure we get that. */
3059 /* It's tempting to assume that, if we can't find debugging info for
3060 any function enclosing PC, that we shouldn't search for line
3061 number info, either. However, GAS can emit line number info for
3062 assembly files --- very helpful when debugging hand-written
3063 assembly code. In such a case, we'd have no debug info for the
3064 function, but we would have line info. */
3069 /* elz: added this because this function returned the wrong
3070 information if the pc belongs to a stub (import/export)
3071 to call a shlib function. This stub would be anywhere between
3072 two functions in the target, and the line info was erroneously
3073 taken to be the one of the line before the pc. */
3075 /* RT: Further explanation:
3077 * We have stubs (trampolines) inserted between procedures.
3079 * Example: "shr1" exists in a shared library, and a "shr1" stub also
3080 * exists in the main image.
3082 * In the minimal symbol table, we have a bunch of symbols
3083 * sorted by start address. The stubs are marked as "trampoline",
3084 * the others appear as text. E.g.:
3086 * Minimal symbol table for main image
3087 * main: code for main (text symbol)
3088 * shr1: stub (trampoline symbol)
3089 * foo: code for foo (text symbol)
3091 * Minimal symbol table for "shr1" image:
3093 * shr1: code for shr1 (text symbol)
3096 * So the code below is trying to detect if we are in the stub
3097 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
3098 * and if found, do the symbolization from the real-code address
3099 * rather than the stub address.
3101 * Assumptions being made about the minimal symbol table:
3102 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
3103 * if we're really in the trampoline.s If we're beyond it (say
3104 * we're in "foo" in the above example), it'll have a closer
3105 * symbol (the "foo" text symbol for example) and will not
3106 * return the trampoline.
3107 * 2. lookup_minimal_symbol_text() will find a real text symbol
3108 * corresponding to the trampoline, and whose address will
3109 * be different than the trampoline address. I put in a sanity
3110 * check for the address being the same, to avoid an
3111 * infinite recursion.
3113 msymbol
= lookup_minimal_symbol_by_pc (pc
);
3114 if (msymbol
.minsym
!= NULL
)
3115 if (MSYMBOL_TYPE (msymbol
.minsym
) == mst_solib_trampoline
)
3117 struct bound_minimal_symbol mfunsym
3118 = lookup_minimal_symbol_text (MSYMBOL_LINKAGE_NAME (msymbol
.minsym
),
3121 if (mfunsym
.minsym
== NULL
)
3122 /* I eliminated this warning since it is coming out
3123 * in the following situation:
3124 * gdb shmain // test program with shared libraries
3125 * (gdb) break shr1 // function in shared lib
3126 * Warning: In stub for ...
3127 * In the above situation, the shared lib is not loaded yet,
3128 * so of course we can't find the real func/line info,
3129 * but the "break" still works, and the warning is annoying.
3130 * So I commented out the warning. RT */
3131 /* warning ("In stub for %s; unable to find real function/line info",
3132 SYMBOL_LINKAGE_NAME (msymbol)); */
3135 else if (BMSYMBOL_VALUE_ADDRESS (mfunsym
)
3136 == BMSYMBOL_VALUE_ADDRESS (msymbol
))
3137 /* Avoid infinite recursion */
3138 /* See above comment about why warning is commented out. */
3139 /* warning ("In stub for %s; unable to find real function/line info",
3140 SYMBOL_LINKAGE_NAME (msymbol)); */
3144 return find_pc_line (BMSYMBOL_VALUE_ADDRESS (mfunsym
), 0);
3147 symtab_and_line val
;
3148 val
.pspace
= current_program_space
;
3150 cust
= find_pc_sect_compunit_symtab (pc
, section
);
3153 /* If no symbol information, return previous pc. */
3160 bv
= COMPUNIT_BLOCKVECTOR (cust
);
3162 /* Look at all the symtabs that share this blockvector.
3163 They all have the same apriori range, that we found was right;
3164 but they have different line tables. */
3166 ALL_COMPUNIT_FILETABS (cust
, iter_s
)
3168 /* Find the best line in this symtab. */
3169 l
= SYMTAB_LINETABLE (iter_s
);
3175 /* I think len can be zero if the symtab lacks line numbers
3176 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
3177 I'm not sure which, and maybe it depends on the symbol
3183 item
= l
->item
; /* Get first line info. */
3185 /* Is this file's first line closer than the first lines of other files?
3186 If so, record this file, and its first line, as best alternate. */
3187 if (item
->pc
> pc
&& (!alt
|| item
->pc
< alt
->pc
))
3190 for (i
= 0; i
< len
; i
++, item
++)
3192 /* Leave prev pointing to the linetable entry for the last line
3193 that started at or before PC. */
3200 /* At this point, prev points at the line whose start addr is <= pc, and
3201 item points at the next line. If we ran off the end of the linetable
3202 (pc >= start of the last line), then prev == item. If pc < start of
3203 the first line, prev will not be set. */
3205 /* Is this file's best line closer than the best in the other files?
3206 If so, record this file, and its best line, as best so far. Don't
3207 save prev if it represents the end of a function (i.e. line number
3208 0) instead of a real line. */
3210 if (prev
&& prev
->line
&& (!best
|| prev
->pc
> best
->pc
))
3213 best_symtab
= iter_s
;
3215 /* Discard BEST_END if it's before the PC of the current BEST. */
3216 if (best_end
<= best
->pc
)
3220 /* If another line (denoted by ITEM) is in the linetable and its
3221 PC is after BEST's PC, but before the current BEST_END, then
3222 use ITEM's PC as the new best_end. */
3223 if (best
&& i
< len
&& item
->pc
> best
->pc
3224 && (best_end
== 0 || best_end
> item
->pc
))
3225 best_end
= item
->pc
;
3230 /* If we didn't find any line number info, just return zeros.
3231 We used to return alt->line - 1 here, but that could be
3232 anywhere; if we don't have line number info for this PC,
3233 don't make some up. */
3236 else if (best
->line
== 0)
3238 /* If our best fit is in a range of PC's for which no line
3239 number info is available (line number is zero) then we didn't
3240 find any valid line information. */
3245 val
.symtab
= best_symtab
;
3246 val
.line
= best
->line
;
3248 if (best_end
&& (!alt
|| best_end
< alt
->pc
))
3253 val
.end
= BLOCK_END (BLOCKVECTOR_BLOCK (bv
, GLOBAL_BLOCK
));
3255 val
.section
= section
;
3259 /* Backward compatibility (no section). */
3261 struct symtab_and_line
3262 find_pc_line (CORE_ADDR pc
, int notcurrent
)
3264 struct obj_section
*section
;
3266 section
= find_pc_overlay (pc
);
3267 if (pc_in_unmapped_range (pc
, section
))
3268 pc
= overlay_mapped_address (pc
, section
);
3269 return find_pc_sect_line (pc
, section
, notcurrent
);
3275 find_pc_line_symtab (CORE_ADDR pc
)
3277 struct symtab_and_line sal
;
3279 /* This always passes zero for NOTCURRENT to find_pc_line.
3280 There are currently no callers that ever pass non-zero. */
3281 sal
= find_pc_line (pc
, 0);
3285 /* Find line number LINE in any symtab whose name is the same as
3288 If found, return the symtab that contains the linetable in which it was
3289 found, set *INDEX to the index in the linetable of the best entry
3290 found, and set *EXACT_MATCH nonzero if the value returned is an
3293 If not found, return NULL. */
3296 find_line_symtab (struct symtab
*symtab
, int line
,
3297 int *index
, int *exact_match
)
3299 int exact
= 0; /* Initialized here to avoid a compiler warning. */
3301 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
3305 struct linetable
*best_linetable
;
3306 struct symtab
*best_symtab
;
3308 /* First try looking it up in the given symtab. */
3309 best_linetable
= SYMTAB_LINETABLE (symtab
);
3310 best_symtab
= symtab
;
3311 best_index
= find_line_common (best_linetable
, line
, &exact
, 0);
3312 if (best_index
< 0 || !exact
)
3314 /* Didn't find an exact match. So we better keep looking for
3315 another symtab with the same name. In the case of xcoff,
3316 multiple csects for one source file (produced by IBM's FORTRAN
3317 compiler) produce multiple symtabs (this is unavoidable
3318 assuming csects can be at arbitrary places in memory and that
3319 the GLOBAL_BLOCK of a symtab has a begin and end address). */
3321 /* BEST is the smallest linenumber > LINE so far seen,
3322 or 0 if none has been seen so far.
3323 BEST_INDEX and BEST_LINETABLE identify the item for it. */
3326 struct objfile
*objfile
;
3327 struct compunit_symtab
*cu
;
3330 if (best_index
>= 0)
3331 best
= best_linetable
->item
[best_index
].line
;
3335 ALL_OBJFILES (objfile
)
3338 objfile
->sf
->qf
->expand_symtabs_with_fullname (objfile
,
3339 symtab_to_fullname (symtab
));
3342 ALL_FILETABS (objfile
, cu
, s
)
3344 struct linetable
*l
;
3347 if (FILENAME_CMP (symtab
->filename
, s
->filename
) != 0)
3349 if (FILENAME_CMP (symtab_to_fullname (symtab
),
3350 symtab_to_fullname (s
)) != 0)
3352 l
= SYMTAB_LINETABLE (s
);
3353 ind
= find_line_common (l
, line
, &exact
, 0);
3363 if (best
== 0 || l
->item
[ind
].line
< best
)
3365 best
= l
->item
[ind
].line
;
3378 *index
= best_index
;
3380 *exact_match
= exact
;
3385 /* Given SYMTAB, returns all the PCs function in the symtab that
3386 exactly match LINE. Returns an empty vector if there are no exact
3387 matches, but updates BEST_ITEM in this case. */
3389 std::vector
<CORE_ADDR
>
3390 find_pcs_for_symtab_line (struct symtab
*symtab
, int line
,
3391 struct linetable_entry
**best_item
)
3394 std::vector
<CORE_ADDR
> result
;
3396 /* First, collect all the PCs that are at this line. */
3402 idx
= find_line_common (SYMTAB_LINETABLE (symtab
), line
, &was_exact
,
3409 struct linetable_entry
*item
= &SYMTAB_LINETABLE (symtab
)->item
[idx
];
3411 if (*best_item
== NULL
|| item
->line
< (*best_item
)->line
)
3417 result
.push_back (SYMTAB_LINETABLE (symtab
)->item
[idx
].pc
);
3425 /* Set the PC value for a given source file and line number and return true.
3426 Returns zero for invalid line number (and sets the PC to 0).
3427 The source file is specified with a struct symtab. */
3430 find_line_pc (struct symtab
*symtab
, int line
, CORE_ADDR
*pc
)
3432 struct linetable
*l
;
3439 symtab
= find_line_symtab (symtab
, line
, &ind
, NULL
);
3442 l
= SYMTAB_LINETABLE (symtab
);
3443 *pc
= l
->item
[ind
].pc
;
3450 /* Find the range of pc values in a line.
3451 Store the starting pc of the line into *STARTPTR
3452 and the ending pc (start of next line) into *ENDPTR.
3453 Returns 1 to indicate success.
3454 Returns 0 if could not find the specified line. */
3457 find_line_pc_range (struct symtab_and_line sal
, CORE_ADDR
*startptr
,
3460 CORE_ADDR startaddr
;
3461 struct symtab_and_line found_sal
;
3464 if (startaddr
== 0 && !find_line_pc (sal
.symtab
, sal
.line
, &startaddr
))
3467 /* This whole function is based on address. For example, if line 10 has
3468 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
3469 "info line *0x123" should say the line goes from 0x100 to 0x200
3470 and "info line *0x355" should say the line goes from 0x300 to 0x400.
3471 This also insures that we never give a range like "starts at 0x134
3472 and ends at 0x12c". */
3474 found_sal
= find_pc_sect_line (startaddr
, sal
.section
, 0);
3475 if (found_sal
.line
!= sal
.line
)
3477 /* The specified line (sal) has zero bytes. */
3478 *startptr
= found_sal
.pc
;
3479 *endptr
= found_sal
.pc
;
3483 *startptr
= found_sal
.pc
;
3484 *endptr
= found_sal
.end
;
3489 /* Given a line table and a line number, return the index into the line
3490 table for the pc of the nearest line whose number is >= the specified one.
3491 Return -1 if none is found. The value is >= 0 if it is an index.
3492 START is the index at which to start searching the line table.
3494 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
3497 find_line_common (struct linetable
*l
, int lineno
,
3498 int *exact_match
, int start
)
3503 /* BEST is the smallest linenumber > LINENO so far seen,
3504 or 0 if none has been seen so far.
3505 BEST_INDEX identifies the item for it. */
3507 int best_index
= -1;
3518 for (i
= start
; i
< len
; i
++)
3520 struct linetable_entry
*item
= &(l
->item
[i
]);
3522 if (item
->line
== lineno
)
3524 /* Return the first (lowest address) entry which matches. */
3529 if (item
->line
> lineno
&& (best
== 0 || item
->line
< best
))
3536 /* If we got here, we didn't get an exact match. */
3541 find_pc_line_pc_range (CORE_ADDR pc
, CORE_ADDR
*startptr
, CORE_ADDR
*endptr
)
3543 struct symtab_and_line sal
;
3545 sal
= find_pc_line (pc
, 0);
3548 return sal
.symtab
!= 0;
3551 /* Given a function symbol SYM, find the symtab and line for the start
3553 If the argument FUNFIRSTLINE is nonzero, we want the first line
3554 of real code inside the function.
3555 This function should return SALs matching those from minsym_found,
3556 otherwise false multiple-locations breakpoints could be placed. */
3558 struct symtab_and_line
3559 find_function_start_sal (struct symbol
*sym
, int funfirstline
)
3561 fixup_symbol_section (sym
, NULL
);
3563 obj_section
*section
= SYMBOL_OBJ_SECTION (symbol_objfile (sym
), sym
);
3565 = find_pc_sect_line (BLOCK_START (SYMBOL_BLOCK_VALUE (sym
)), section
, 0);
3568 if (funfirstline
&& sal
.symtab
!= NULL
3569 && (COMPUNIT_LOCATIONS_VALID (SYMTAB_COMPUNIT (sal
.symtab
))
3570 || SYMTAB_LANGUAGE (sal
.symtab
) == language_asm
))
3572 struct gdbarch
*gdbarch
= symbol_arch (sym
);
3574 sal
.pc
= BLOCK_START (SYMBOL_BLOCK_VALUE (sym
));
3575 if (gdbarch_skip_entrypoint_p (gdbarch
))
3576 sal
.pc
= gdbarch_skip_entrypoint (gdbarch
, sal
.pc
);
3580 /* We always should have a line for the function start address.
3581 If we don't, something is odd. Create a plain SAL refering
3582 just the PC and hope that skip_prologue_sal (if requested)
3583 can find a line number for after the prologue. */
3584 if (sal
.pc
< BLOCK_START (SYMBOL_BLOCK_VALUE (sym
)))
3587 sal
.pspace
= current_program_space
;
3588 sal
.pc
= BLOCK_START (SYMBOL_BLOCK_VALUE (sym
));
3589 sal
.section
= section
;
3594 skip_prologue_sal (&sal
);
3599 /* Given a function start address FUNC_ADDR and SYMTAB, find the first
3600 address for that function that has an entry in SYMTAB's line info
3601 table. If such an entry cannot be found, return FUNC_ADDR
3605 skip_prologue_using_lineinfo (CORE_ADDR func_addr
, struct symtab
*symtab
)
3607 CORE_ADDR func_start
, func_end
;
3608 struct linetable
*l
;
3611 /* Give up if this symbol has no lineinfo table. */
3612 l
= SYMTAB_LINETABLE (symtab
);
3616 /* Get the range for the function's PC values, or give up if we
3617 cannot, for some reason. */
3618 if (!find_pc_partial_function (func_addr
, NULL
, &func_start
, &func_end
))
3621 /* Linetable entries are ordered by PC values, see the commentary in
3622 symtab.h where `struct linetable' is defined. Thus, the first
3623 entry whose PC is in the range [FUNC_START..FUNC_END[ is the
3624 address we are looking for. */
3625 for (i
= 0; i
< l
->nitems
; i
++)
3627 struct linetable_entry
*item
= &(l
->item
[i
]);
3629 /* Don't use line numbers of zero, they mark special entries in
3630 the table. See the commentary on symtab.h before the
3631 definition of struct linetable. */
3632 if (item
->line
> 0 && func_start
<= item
->pc
&& item
->pc
< func_end
)
3639 /* Adjust SAL to the first instruction past the function prologue.
3640 If the PC was explicitly specified, the SAL is not changed.
3641 If the line number was explicitly specified, at most the SAL's PC
3642 is updated. If SAL is already past the prologue, then do nothing. */
3645 skip_prologue_sal (struct symtab_and_line
*sal
)
3648 struct symtab_and_line start_sal
;
3649 CORE_ADDR pc
, saved_pc
;
3650 struct obj_section
*section
;
3652 struct objfile
*objfile
;
3653 struct gdbarch
*gdbarch
;
3654 const struct block
*b
, *function_block
;
3655 int force_skip
, skip
;
3657 /* Do not change the SAL if PC was specified explicitly. */
3658 if (sal
->explicit_pc
)
3661 scoped_restore_current_pspace_and_thread restore_pspace_thread
;
3663 switch_to_program_space_and_thread (sal
->pspace
);
3665 sym
= find_pc_sect_function (sal
->pc
, sal
->section
);
3668 fixup_symbol_section (sym
, NULL
);
3670 objfile
= symbol_objfile (sym
);
3671 pc
= BLOCK_START (SYMBOL_BLOCK_VALUE (sym
));
3672 section
= SYMBOL_OBJ_SECTION (objfile
, sym
);
3673 name
= SYMBOL_LINKAGE_NAME (sym
);
3677 struct bound_minimal_symbol msymbol
3678 = lookup_minimal_symbol_by_pc_section (sal
->pc
, sal
->section
);
3680 if (msymbol
.minsym
== NULL
)
3683 objfile
= msymbol
.objfile
;
3684 pc
= BMSYMBOL_VALUE_ADDRESS (msymbol
);
3685 section
= MSYMBOL_OBJ_SECTION (objfile
, msymbol
.minsym
);
3686 name
= MSYMBOL_LINKAGE_NAME (msymbol
.minsym
);
3689 gdbarch
= get_objfile_arch (objfile
);
3691 /* Process the prologue in two passes. In the first pass try to skip the
3692 prologue (SKIP is true) and verify there is a real need for it (indicated
3693 by FORCE_SKIP). If no such reason was found run a second pass where the
3694 prologue is not skipped (SKIP is false). */
3699 /* Be conservative - allow direct PC (without skipping prologue) only if we
3700 have proven the CU (Compilation Unit) supports it. sal->SYMTAB does not
3701 have to be set by the caller so we use SYM instead. */
3703 && COMPUNIT_LOCATIONS_VALID (SYMTAB_COMPUNIT (symbol_symtab (sym
))))
3711 /* If the function is in an unmapped overlay, use its unmapped LMA address,
3712 so that gdbarch_skip_prologue has something unique to work on. */
3713 if (section_is_overlay (section
) && !section_is_mapped (section
))
3714 pc
= overlay_unmapped_address (pc
, section
);
3716 /* Skip "first line" of function (which is actually its prologue). */
3717 pc
+= gdbarch_deprecated_function_start_offset (gdbarch
);
3718 if (gdbarch_skip_entrypoint_p (gdbarch
))
3719 pc
= gdbarch_skip_entrypoint (gdbarch
, pc
);
3721 pc
= gdbarch_skip_prologue_noexcept (gdbarch
, pc
);
3723 /* For overlays, map pc back into its mapped VMA range. */
3724 pc
= overlay_mapped_address (pc
, section
);
3726 /* Calculate line number. */
3727 start_sal
= find_pc_sect_line (pc
, section
, 0);
3729 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
3730 line is still part of the same function. */
3731 if (skip
&& start_sal
.pc
!= pc
3732 && (sym
? (BLOCK_START (SYMBOL_BLOCK_VALUE (sym
)) <= start_sal
.end
3733 && start_sal
.end
< BLOCK_END (SYMBOL_BLOCK_VALUE (sym
)))
3734 : (lookup_minimal_symbol_by_pc_section (start_sal
.end
, section
).minsym
3735 == lookup_minimal_symbol_by_pc_section (pc
, section
).minsym
)))
3737 /* First pc of next line */
3739 /* Recalculate the line number (might not be N+1). */
3740 start_sal
= find_pc_sect_line (pc
, section
, 0);
3743 /* On targets with executable formats that don't have a concept of
3744 constructors (ELF with .init has, PE doesn't), gcc emits a call
3745 to `__main' in `main' between the prologue and before user
3747 if (gdbarch_skip_main_prologue_p (gdbarch
)
3748 && name
&& strcmp_iw (name
, "main") == 0)
3750 pc
= gdbarch_skip_main_prologue (gdbarch
, pc
);
3751 /* Recalculate the line number (might not be N+1). */
3752 start_sal
= find_pc_sect_line (pc
, section
, 0);
3756 while (!force_skip
&& skip
--);
3758 /* If we still don't have a valid source line, try to find the first
3759 PC in the lineinfo table that belongs to the same function. This
3760 happens with COFF debug info, which does not seem to have an
3761 entry in lineinfo table for the code after the prologue which has
3762 no direct relation to source. For example, this was found to be
3763 the case with the DJGPP target using "gcc -gcoff" when the
3764 compiler inserted code after the prologue to make sure the stack
3766 if (!force_skip
&& sym
&& start_sal
.symtab
== NULL
)
3768 pc
= skip_prologue_using_lineinfo (pc
, symbol_symtab (sym
));
3769 /* Recalculate the line number. */
3770 start_sal
= find_pc_sect_line (pc
, section
, 0);
3773 /* If we're already past the prologue, leave SAL unchanged. Otherwise
3774 forward SAL to the end of the prologue. */
3779 sal
->section
= section
;
3781 /* Unless the explicit_line flag was set, update the SAL line
3782 and symtab to correspond to the modified PC location. */
3783 if (sal
->explicit_line
)
3786 sal
->symtab
= start_sal
.symtab
;
3787 sal
->line
= start_sal
.line
;
3788 sal
->end
= start_sal
.end
;
3790 /* Check if we are now inside an inlined function. If we can,
3791 use the call site of the function instead. */
3792 b
= block_for_pc_sect (sal
->pc
, sal
->section
);
3793 function_block
= NULL
;
3796 if (BLOCK_FUNCTION (b
) != NULL
&& block_inlined_p (b
))
3798 else if (BLOCK_FUNCTION (b
) != NULL
)
3800 b
= BLOCK_SUPERBLOCK (b
);
3802 if (function_block
!= NULL
3803 && SYMBOL_LINE (BLOCK_FUNCTION (function_block
)) != 0)
3805 sal
->line
= SYMBOL_LINE (BLOCK_FUNCTION (function_block
));
3806 sal
->symtab
= symbol_symtab (BLOCK_FUNCTION (function_block
));
3810 /* Given PC at the function's start address, attempt to find the
3811 prologue end using SAL information. Return zero if the skip fails.
3813 A non-optimized prologue traditionally has one SAL for the function
3814 and a second for the function body. A single line function has
3815 them both pointing at the same line.
3817 An optimized prologue is similar but the prologue may contain
3818 instructions (SALs) from the instruction body. Need to skip those
3819 while not getting into the function body.
3821 The functions end point and an increasing SAL line are used as
3822 indicators of the prologue's endpoint.
3824 This code is based on the function refine_prologue_limit
3828 skip_prologue_using_sal (struct gdbarch
*gdbarch
, CORE_ADDR func_addr
)
3830 struct symtab_and_line prologue_sal
;
3833 const struct block
*bl
;
3835 /* Get an initial range for the function. */
3836 find_pc_partial_function (func_addr
, NULL
, &start_pc
, &end_pc
);
3837 start_pc
+= gdbarch_deprecated_function_start_offset (gdbarch
);
3839 prologue_sal
= find_pc_line (start_pc
, 0);
3840 if (prologue_sal
.line
!= 0)
3842 /* For languages other than assembly, treat two consecutive line
3843 entries at the same address as a zero-instruction prologue.
3844 The GNU assembler emits separate line notes for each instruction
3845 in a multi-instruction macro, but compilers generally will not
3847 if (prologue_sal
.symtab
->language
!= language_asm
)
3849 struct linetable
*linetable
= SYMTAB_LINETABLE (prologue_sal
.symtab
);
3852 /* Skip any earlier lines, and any end-of-sequence marker
3853 from a previous function. */
3854 while (linetable
->item
[idx
].pc
!= prologue_sal
.pc
3855 || linetable
->item
[idx
].line
== 0)
3858 if (idx
+1 < linetable
->nitems
3859 && linetable
->item
[idx
+1].line
!= 0
3860 && linetable
->item
[idx
+1].pc
== start_pc
)
3864 /* If there is only one sal that covers the entire function,
3865 then it is probably a single line function, like
3867 if (prologue_sal
.end
>= end_pc
)
3870 while (prologue_sal
.end
< end_pc
)
3872 struct symtab_and_line sal
;
3874 sal
= find_pc_line (prologue_sal
.end
, 0);
3877 /* Assume that a consecutive SAL for the same (or larger)
3878 line mark the prologue -> body transition. */
3879 if (sal
.line
>= prologue_sal
.line
)
3881 /* Likewise if we are in a different symtab altogether
3882 (e.g. within a file included via #include). */
3883 if (sal
.symtab
!= prologue_sal
.symtab
)
3886 /* The line number is smaller. Check that it's from the
3887 same function, not something inlined. If it's inlined,
3888 then there is no point comparing the line numbers. */
3889 bl
= block_for_pc (prologue_sal
.end
);
3892 if (block_inlined_p (bl
))
3894 if (BLOCK_FUNCTION (bl
))
3899 bl
= BLOCK_SUPERBLOCK (bl
);
3904 /* The case in which compiler's optimizer/scheduler has
3905 moved instructions into the prologue. We look ahead in
3906 the function looking for address ranges whose
3907 corresponding line number is less the first one that we
3908 found for the function. This is more conservative then
3909 refine_prologue_limit which scans a large number of SALs
3910 looking for any in the prologue. */
3915 if (prologue_sal
.end
< end_pc
)
3916 /* Return the end of this line, or zero if we could not find a
3918 return prologue_sal
.end
;
3920 /* Don't return END_PC, which is past the end of the function. */
3921 return prologue_sal
.pc
;
3927 find_function_alias_target (bound_minimal_symbol msymbol
)
3929 CORE_ADDR func_addr
;
3930 if (!msymbol_is_function (msymbol
.objfile
, msymbol
.minsym
, &func_addr
))
3933 symbol
*sym
= find_pc_function (func_addr
);
3935 && SYMBOL_CLASS (sym
) == LOC_BLOCK
3936 && BLOCK_START (SYMBOL_BLOCK_VALUE (sym
)) == func_addr
)
3943 /* If P is of the form "operator[ \t]+..." where `...' is
3944 some legitimate operator text, return a pointer to the
3945 beginning of the substring of the operator text.
3946 Otherwise, return "". */
3949 operator_chars (const char *p
, const char **end
)
3952 if (!startswith (p
, CP_OPERATOR_STR
))
3954 p
+= CP_OPERATOR_LEN
;
3956 /* Don't get faked out by `operator' being part of a longer
3958 if (isalpha (*p
) || *p
== '_' || *p
== '$' || *p
== '\0')
3961 /* Allow some whitespace between `operator' and the operator symbol. */
3962 while (*p
== ' ' || *p
== '\t')
3965 /* Recognize 'operator TYPENAME'. */
3967 if (isalpha (*p
) || *p
== '_' || *p
== '$')
3969 const char *q
= p
+ 1;
3971 while (isalnum (*q
) || *q
== '_' || *q
== '$')
3980 case '\\': /* regexp quoting */
3983 if (p
[2] == '=') /* 'operator\*=' */
3985 else /* 'operator\*' */
3989 else if (p
[1] == '[')
3992 error (_("mismatched quoting on brackets, "
3993 "try 'operator\\[\\]'"));
3994 else if (p
[2] == '\\' && p
[3] == ']')
3996 *end
= p
+ 4; /* 'operator\[\]' */
4000 error (_("nothing is allowed between '[' and ']'"));
4004 /* Gratuitous qoute: skip it and move on. */
4026 if (p
[0] == '-' && p
[1] == '>')
4028 /* Struct pointer member operator 'operator->'. */
4031 *end
= p
+ 3; /* 'operator->*' */
4034 else if (p
[2] == '\\')
4036 *end
= p
+ 4; /* Hopefully 'operator->\*' */
4041 *end
= p
+ 2; /* 'operator->' */
4045 if (p
[1] == '=' || p
[1] == p
[0])
4056 error (_("`operator ()' must be specified "
4057 "without whitespace in `()'"));
4062 error (_("`operator ?:' must be specified "
4063 "without whitespace in `?:'"));
4068 error (_("`operator []' must be specified "
4069 "without whitespace in `[]'"));
4073 error (_("`operator %s' not supported"), p
);
4082 /* Data structure to maintain printing state for output_source_filename. */
4084 struct output_source_filename_data
4086 /* Cache of what we've seen so far. */
4087 struct filename_seen_cache
*filename_seen_cache
;
4089 /* Flag of whether we're printing the first one. */
4093 /* Slave routine for sources_info. Force line breaks at ,'s.
4094 NAME is the name to print.
4095 DATA contains the state for printing and watching for duplicates. */
4098 output_source_filename (const char *name
,
4099 struct output_source_filename_data
*data
)
4101 /* Since a single source file can result in several partial symbol
4102 tables, we need to avoid printing it more than once. Note: if
4103 some of the psymtabs are read in and some are not, it gets
4104 printed both under "Source files for which symbols have been
4105 read" and "Source files for which symbols will be read in on
4106 demand". I consider this a reasonable way to deal with the
4107 situation. I'm not sure whether this can also happen for
4108 symtabs; it doesn't hurt to check. */
4110 /* Was NAME already seen? */
4111 if (data
->filename_seen_cache
->seen (name
))
4113 /* Yes; don't print it again. */
4117 /* No; print it and reset *FIRST. */
4119 printf_filtered (", ");
4123 fputs_filtered (name
, gdb_stdout
);
4126 /* A callback for map_partial_symbol_filenames. */
4129 output_partial_symbol_filename (const char *filename
, const char *fullname
,
4132 output_source_filename (fullname
? fullname
: filename
,
4133 (struct output_source_filename_data
*) data
);
4137 info_sources_command (const char *ignore
, int from_tty
)
4139 struct compunit_symtab
*cu
;
4141 struct objfile
*objfile
;
4142 struct output_source_filename_data data
;
4144 if (!have_full_symbols () && !have_partial_symbols ())
4146 error (_("No symbol table is loaded. Use the \"file\" command."));
4149 filename_seen_cache filenames_seen
;
4151 data
.filename_seen_cache
= &filenames_seen
;
4153 printf_filtered ("Source files for which symbols have been read in:\n\n");
4156 ALL_FILETABS (objfile
, cu
, s
)
4158 const char *fullname
= symtab_to_fullname (s
);
4160 output_source_filename (fullname
, &data
);
4162 printf_filtered ("\n\n");
4164 printf_filtered ("Source files for which symbols "
4165 "will be read in on demand:\n\n");
4167 filenames_seen
.clear ();
4169 map_symbol_filenames (output_partial_symbol_filename
, &data
,
4170 1 /*need_fullname*/);
4171 printf_filtered ("\n");
4174 /* Compare FILE against all the NFILES entries of FILES. If BASENAMES is
4175 non-zero compare only lbasename of FILES. */
4178 file_matches (const char *file
, const char *files
[], int nfiles
, int basenames
)
4182 if (file
!= NULL
&& nfiles
!= 0)
4184 for (i
= 0; i
< nfiles
; i
++)
4186 if (compare_filenames_for_search (file
, (basenames
4187 ? lbasename (files
[i
])
4192 else if (nfiles
== 0)
4197 /* Helper function for sort_search_symbols_remove_dups and qsort. Can only
4198 sort symbols, not minimal symbols. */
4201 symbol_search::compare_search_syms (const symbol_search
&sym_a
,
4202 const symbol_search
&sym_b
)
4206 c
= FILENAME_CMP (symbol_symtab (sym_a
.symbol
)->filename
,
4207 symbol_symtab (sym_b
.symbol
)->filename
);
4211 if (sym_a
.block
!= sym_b
.block
)
4212 return sym_a
.block
- sym_b
.block
;
4214 return strcmp (SYMBOL_PRINT_NAME (sym_a
.symbol
),
4215 SYMBOL_PRINT_NAME (sym_b
.symbol
));
4218 /* Sort the symbols in RESULT and remove duplicates. */
4221 sort_search_symbols_remove_dups (std::vector
<symbol_search
> *result
)
4223 std::sort (result
->begin (), result
->end ());
4224 result
->erase (std::unique (result
->begin (), result
->end ()),
4228 /* Search the symbol table for matches to the regular expression REGEXP,
4229 returning the results.
4231 Only symbols of KIND are searched:
4232 VARIABLES_DOMAIN - search all symbols, excluding functions, type names,
4233 and constants (enums)
4234 FUNCTIONS_DOMAIN - search all functions
4235 TYPES_DOMAIN - search all type names
4236 ALL_DOMAIN - an internal error for this function
4238 Within each file the results are sorted locally; each symtab's global and
4239 static blocks are separately alphabetized.
4240 Duplicate entries are removed. */
4242 std::vector
<symbol_search
>
4243 search_symbols (const char *regexp
, enum search_domain kind
,
4244 int nfiles
, const char *files
[])
4246 struct compunit_symtab
*cust
;
4247 const struct blockvector
*bv
;
4250 struct block_iterator iter
;
4252 struct objfile
*objfile
;
4253 struct minimal_symbol
*msymbol
;
4255 static const enum minimal_symbol_type types
[]
4256 = {mst_data
, mst_text
, mst_abs
};
4257 static const enum minimal_symbol_type types2
[]
4258 = {mst_bss
, mst_file_text
, mst_abs
};
4259 static const enum minimal_symbol_type types3
[]
4260 = {mst_file_data
, mst_solib_trampoline
, mst_abs
};
4261 static const enum minimal_symbol_type types4
[]
4262 = {mst_file_bss
, mst_text_gnu_ifunc
, mst_abs
};
4263 enum minimal_symbol_type ourtype
;
4264 enum minimal_symbol_type ourtype2
;
4265 enum minimal_symbol_type ourtype3
;
4266 enum minimal_symbol_type ourtype4
;
4267 std::vector
<symbol_search
> result
;
4268 gdb::optional
<compiled_regex
> preg
;
4270 gdb_assert (kind
<= TYPES_DOMAIN
);
4272 ourtype
= types
[kind
];
4273 ourtype2
= types2
[kind
];
4274 ourtype3
= types3
[kind
];
4275 ourtype4
= types4
[kind
];
4279 /* Make sure spacing is right for C++ operators.
4280 This is just a courtesy to make the matching less sensitive
4281 to how many spaces the user leaves between 'operator'
4282 and <TYPENAME> or <OPERATOR>. */
4284 const char *opname
= operator_chars (regexp
, &opend
);
4288 int fix
= -1; /* -1 means ok; otherwise number of
4291 if (isalpha (*opname
) || *opname
== '_' || *opname
== '$')
4293 /* There should 1 space between 'operator' and 'TYPENAME'. */
4294 if (opname
[-1] != ' ' || opname
[-2] == ' ')
4299 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
4300 if (opname
[-1] == ' ')
4303 /* If wrong number of spaces, fix it. */
4306 char *tmp
= (char *) alloca (8 + fix
+ strlen (opname
) + 1);
4308 sprintf (tmp
, "operator%.*s%s", fix
, " ", opname
);
4313 int cflags
= REG_NOSUB
| (case_sensitivity
== case_sensitive_off
4315 preg
.emplace (regexp
, cflags
, _("Invalid regexp"));
4318 /* Search through the partial symtabs *first* for all symbols
4319 matching the regexp. That way we don't have to reproduce all of
4320 the machinery below. */
4321 expand_symtabs_matching ([&] (const char *filename
, bool basenames
)
4323 return file_matches (filename
, files
, nfiles
,
4326 lookup_name_info::match_any (),
4327 [&] (const char *symname
)
4329 return (!preg
|| preg
->exec (symname
,
4335 /* Here, we search through the minimal symbol tables for functions
4336 and variables that match, and force their symbols to be read.
4337 This is in particular necessary for demangled variable names,
4338 which are no longer put into the partial symbol tables.
4339 The symbol will then be found during the scan of symtabs below.
4341 For functions, find_pc_symtab should succeed if we have debug info
4342 for the function, for variables we have to call
4343 lookup_symbol_in_objfile_from_linkage_name to determine if the variable
4345 If the lookup fails, set found_misc so that we will rescan to print
4346 any matching symbols without debug info.
4347 We only search the objfile the msymbol came from, we no longer search
4348 all objfiles. In large programs (1000s of shared libs) searching all
4349 objfiles is not worth the pain. */
4351 if (nfiles
== 0 && (kind
== VARIABLES_DOMAIN
|| kind
== FUNCTIONS_DOMAIN
))
4353 ALL_MSYMBOLS (objfile
, msymbol
)
4357 if (msymbol
->created_by_gdb
)
4360 if (MSYMBOL_TYPE (msymbol
) == ourtype
4361 || MSYMBOL_TYPE (msymbol
) == ourtype2
4362 || MSYMBOL_TYPE (msymbol
) == ourtype3
4363 || MSYMBOL_TYPE (msymbol
) == ourtype4
)
4366 || preg
->exec (MSYMBOL_NATURAL_NAME (msymbol
), 0,
4369 /* Note: An important side-effect of these lookup functions
4370 is to expand the symbol table if msymbol is found, for the
4371 benefit of the next loop on ALL_COMPUNITS. */
4372 if (kind
== FUNCTIONS_DOMAIN
4373 ? (find_pc_compunit_symtab
4374 (MSYMBOL_VALUE_ADDRESS (objfile
, msymbol
)) == NULL
)
4375 : (lookup_symbol_in_objfile_from_linkage_name
4376 (objfile
, MSYMBOL_LINKAGE_NAME (msymbol
), VAR_DOMAIN
)
4384 ALL_COMPUNITS (objfile
, cust
)
4386 bv
= COMPUNIT_BLOCKVECTOR (cust
);
4387 for (i
= GLOBAL_BLOCK
; i
<= STATIC_BLOCK
; i
++)
4389 b
= BLOCKVECTOR_BLOCK (bv
, i
);
4390 ALL_BLOCK_SYMBOLS (b
, iter
, sym
)
4392 struct symtab
*real_symtab
= symbol_symtab (sym
);
4396 /* Check first sole REAL_SYMTAB->FILENAME. It does not need to be
4397 a substring of symtab_to_fullname as it may contain "./" etc. */
4398 if ((file_matches (real_symtab
->filename
, files
, nfiles
, 0)
4399 || ((basenames_may_differ
4400 || file_matches (lbasename (real_symtab
->filename
),
4402 && file_matches (symtab_to_fullname (real_symtab
),
4405 || preg
->exec (SYMBOL_NATURAL_NAME (sym
), 0,
4407 && ((kind
== VARIABLES_DOMAIN
4408 && SYMBOL_CLASS (sym
) != LOC_TYPEDEF
4409 && SYMBOL_CLASS (sym
) != LOC_UNRESOLVED
4410 && SYMBOL_CLASS (sym
) != LOC_BLOCK
4411 /* LOC_CONST can be used for more than just enums,
4412 e.g., c++ static const members.
4413 We only want to skip enums here. */
4414 && !(SYMBOL_CLASS (sym
) == LOC_CONST
4415 && (TYPE_CODE (SYMBOL_TYPE (sym
))
4416 == TYPE_CODE_ENUM
)))
4417 || (kind
== FUNCTIONS_DOMAIN
4418 && SYMBOL_CLASS (sym
) == LOC_BLOCK
)
4419 || (kind
== TYPES_DOMAIN
4420 && SYMBOL_CLASS (sym
) == LOC_TYPEDEF
))))
4423 result
.emplace_back (i
, sym
);
4429 if (!result
.empty ())
4430 sort_search_symbols_remove_dups (&result
);
4432 /* If there are no eyes, avoid all contact. I mean, if there are
4433 no debug symbols, then add matching minsyms. */
4435 if (found_misc
|| (nfiles
== 0 && kind
!= FUNCTIONS_DOMAIN
))
4437 ALL_MSYMBOLS (objfile
, msymbol
)
4441 if (msymbol
->created_by_gdb
)
4444 if (MSYMBOL_TYPE (msymbol
) == ourtype
4445 || MSYMBOL_TYPE (msymbol
) == ourtype2
4446 || MSYMBOL_TYPE (msymbol
) == ourtype3
4447 || MSYMBOL_TYPE (msymbol
) == ourtype4
)
4449 if (!preg
|| preg
->exec (MSYMBOL_NATURAL_NAME (msymbol
), 0,
4452 /* For functions we can do a quick check of whether the
4453 symbol might be found via find_pc_symtab. */
4454 if (kind
!= FUNCTIONS_DOMAIN
4455 || (find_pc_compunit_symtab
4456 (MSYMBOL_VALUE_ADDRESS (objfile
, msymbol
)) == NULL
))
4458 if (lookup_symbol_in_objfile_from_linkage_name
4459 (objfile
, MSYMBOL_LINKAGE_NAME (msymbol
), VAR_DOMAIN
)
4463 result
.emplace_back (i
, msymbol
, objfile
);
4474 /* Helper function for symtab_symbol_info, this function uses
4475 the data returned from search_symbols() to print information
4476 regarding the match to gdb_stdout. */
4479 print_symbol_info (enum search_domain kind
,
4481 int block
, const char *last
)
4483 struct symtab
*s
= symbol_symtab (sym
);
4484 const char *s_filename
= symtab_to_filename_for_display (s
);
4486 if (last
== NULL
|| filename_cmp (last
, s_filename
) != 0)
4488 fputs_filtered ("\nFile ", gdb_stdout
);
4489 fputs_filtered (s_filename
, gdb_stdout
);
4490 fputs_filtered (":\n", gdb_stdout
);
4493 if (kind
!= TYPES_DOMAIN
&& block
== STATIC_BLOCK
)
4494 printf_filtered ("static ");
4496 /* Typedef that is not a C++ class. */
4497 if (kind
== TYPES_DOMAIN
4498 && SYMBOL_DOMAIN (sym
) != STRUCT_DOMAIN
)
4499 typedef_print (SYMBOL_TYPE (sym
), sym
, gdb_stdout
);
4500 /* variable, func, or typedef-that-is-c++-class. */
4501 else if (kind
< TYPES_DOMAIN
4502 || (kind
== TYPES_DOMAIN
4503 && SYMBOL_DOMAIN (sym
) == STRUCT_DOMAIN
))
4505 type_print (SYMBOL_TYPE (sym
),
4506 (SYMBOL_CLASS (sym
) == LOC_TYPEDEF
4507 ? "" : SYMBOL_PRINT_NAME (sym
)),
4510 printf_filtered (";\n");
4514 /* This help function for symtab_symbol_info() prints information
4515 for non-debugging symbols to gdb_stdout. */
4518 print_msymbol_info (struct bound_minimal_symbol msymbol
)
4520 struct gdbarch
*gdbarch
= get_objfile_arch (msymbol
.objfile
);
4523 if (gdbarch_addr_bit (gdbarch
) <= 32)
4524 tmp
= hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol
)
4525 & (CORE_ADDR
) 0xffffffff,
4528 tmp
= hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol
),
4530 printf_filtered ("%s %s\n",
4531 tmp
, MSYMBOL_PRINT_NAME (msymbol
.minsym
));
4534 /* This is the guts of the commands "info functions", "info types", and
4535 "info variables". It calls search_symbols to find all matches and then
4536 print_[m]symbol_info to print out some useful information about the
4540 symtab_symbol_info (const char *regexp
, enum search_domain kind
, int from_tty
)
4542 static const char * const classnames
[] =
4543 {"variable", "function", "type"};
4544 const char *last_filename
= NULL
;
4547 gdb_assert (kind
<= TYPES_DOMAIN
);
4549 /* Must make sure that if we're interrupted, symbols gets freed. */
4550 std::vector
<symbol_search
> symbols
= search_symbols (regexp
, kind
, 0, NULL
);
4553 printf_filtered (_("All %ss matching regular expression \"%s\":\n"),
4554 classnames
[kind
], regexp
);
4556 printf_filtered (_("All defined %ss:\n"), classnames
[kind
]);
4558 for (const symbol_search
&p
: symbols
)
4562 if (p
.msymbol
.minsym
!= NULL
)
4566 printf_filtered (_("\nNon-debugging symbols:\n"));
4569 print_msymbol_info (p
.msymbol
);
4573 print_symbol_info (kind
,
4578 = symtab_to_filename_for_display (symbol_symtab (p
.symbol
));
4584 info_variables_command (const char *regexp
, int from_tty
)
4586 symtab_symbol_info (regexp
, VARIABLES_DOMAIN
, from_tty
);
4590 info_functions_command (const char *regexp
, int from_tty
)
4592 symtab_symbol_info (regexp
, FUNCTIONS_DOMAIN
, from_tty
);
4597 info_types_command (const char *regexp
, int from_tty
)
4599 symtab_symbol_info (regexp
, TYPES_DOMAIN
, from_tty
);
4602 /* Breakpoint all functions matching regular expression. */
4605 rbreak_command_wrapper (char *regexp
, int from_tty
)
4607 rbreak_command (regexp
, from_tty
);
4611 rbreak_command (const char *regexp
, int from_tty
)
4614 const char **files
= NULL
;
4615 const char *file_name
;
4620 const char *colon
= strchr (regexp
, ':');
4622 if (colon
&& *(colon
+ 1) != ':')
4627 colon_index
= colon
- regexp
;
4628 local_name
= (char *) alloca (colon_index
+ 1);
4629 memcpy (local_name
, regexp
, colon_index
);
4630 local_name
[colon_index
--] = 0;
4631 while (isspace (local_name
[colon_index
]))
4632 local_name
[colon_index
--] = 0;
4633 file_name
= local_name
;
4636 regexp
= skip_spaces (colon
+ 1);
4640 std::vector
<symbol_search
> symbols
= search_symbols (regexp
,
4644 scoped_rbreak_breakpoints finalize
;
4645 for (const symbol_search
&p
: symbols
)
4647 if (p
.msymbol
.minsym
== NULL
)
4649 struct symtab
*symtab
= symbol_symtab (p
.symbol
);
4650 const char *fullname
= symtab_to_fullname (symtab
);
4652 string
= string_printf ("%s:'%s'", fullname
,
4653 SYMBOL_LINKAGE_NAME (p
.symbol
));
4654 break_command (&string
[0], from_tty
);
4655 print_symbol_info (FUNCTIONS_DOMAIN
,
4658 symtab_to_filename_for_display (symtab
));
4662 string
= string_printf ("'%s'",
4663 MSYMBOL_LINKAGE_NAME (p
.msymbol
.minsym
));
4665 break_command (&string
[0], from_tty
);
4666 printf_filtered ("<function, no debug info> %s;\n",
4667 MSYMBOL_PRINT_NAME (p
.msymbol
.minsym
));
4673 /* Evaluate if SYMNAME matches LOOKUP_NAME. */
4676 compare_symbol_name (const char *symbol_name
, language symbol_language
,
4677 const lookup_name_info
&lookup_name
,
4678 completion_match_result
&match_res
)
4680 const language_defn
*lang
;
4682 /* If we're completing for an expression and the symbol doesn't have
4683 an explicit language set, fallback to the current language. Ada
4684 minimal symbols won't have their language set to Ada, for
4685 example, and if we compared using the default/C-like matcher,
4686 then when completing e.g., symbols in a package named "pck", we'd
4687 match internal Ada symbols like "pckS", which are invalid in an
4688 Ada expression, unless you wrap them in '<' '>' to request a
4690 if (symbol_language
== language_auto
4691 && lookup_name
.match_type () == symbol_name_match_type::EXPRESSION
)
4692 lang
= current_language
;
4694 lang
= language_def (symbol_language
);
4696 symbol_name_matcher_ftype
*name_match
4697 = language_get_symbol_name_matcher (lang
, lookup_name
);
4699 return name_match (symbol_name
, lookup_name
, &match_res
);
4705 completion_list_add_name (completion_tracker
&tracker
,
4706 language symbol_language
,
4707 const char *symname
,
4708 const lookup_name_info
&lookup_name
,
4709 const char *text
, const char *word
)
4711 completion_match_result
&match_res
4712 = tracker
.reset_completion_match_result ();
4714 /* Clip symbols that cannot match. */
4715 if (!compare_symbol_name (symname
, symbol_language
, lookup_name
, match_res
))
4718 /* Refresh SYMNAME from the match string. It's potentially
4719 different depending on language. (E.g., on Ada, the match may be
4720 the encoded symbol name wrapped in "<>"). */
4721 symname
= match_res
.match
.match ();
4722 gdb_assert (symname
!= NULL
);
4724 /* We have a match for a completion, so add SYMNAME to the current list
4725 of matches. Note that the name is moved to freshly malloc'd space. */
4732 newobj
= (char *) xmalloc (strlen (symname
) + 5);
4733 strcpy (newobj
, symname
);
4735 else if (word
> text
)
4737 /* Return some portion of symname. */
4738 newobj
= (char *) xmalloc (strlen (symname
) + 5);
4739 strcpy (newobj
, symname
+ (word
- text
));
4743 /* Return some of SYM_TEXT plus symname. */
4744 newobj
= (char *) xmalloc (strlen (symname
) + (text
- word
) + 5);
4745 strncpy (newobj
, word
, text
- word
);
4746 newobj
[text
- word
] = '\0';
4747 strcat (newobj
, symname
);
4750 gdb::unique_xmalloc_ptr
<char> completion (newobj
);
4752 /* Here we pass the match-for-lcd object to add_completion. Some
4753 languages match the user text against substrings of symbol
4754 names in some cases. E.g., in C++, "b push_ba" completes to
4755 "std::vector::push_back", "std::string::push_back", etc., and
4756 in this case we want the completion lowest common denominator
4757 to be "push_back" instead of "std::". */
4758 tracker
.add_completion (std::move (completion
),
4759 &match_res
.match_for_lcd
);
4763 /* completion_list_add_name wrapper for struct symbol. */
4766 completion_list_add_symbol (completion_tracker
&tracker
,
4768 const lookup_name_info
&lookup_name
,
4769 const char *text
, const char *word
)
4771 completion_list_add_name (tracker
, SYMBOL_LANGUAGE (sym
),
4772 SYMBOL_NATURAL_NAME (sym
),
4773 lookup_name
, text
, word
);
4776 /* completion_list_add_name wrapper for struct minimal_symbol. */
4779 completion_list_add_msymbol (completion_tracker
&tracker
,
4780 minimal_symbol
*sym
,
4781 const lookup_name_info
&lookup_name
,
4782 const char *text
, const char *word
)
4784 completion_list_add_name (tracker
, MSYMBOL_LANGUAGE (sym
),
4785 MSYMBOL_NATURAL_NAME (sym
),
4786 lookup_name
, text
, word
);
4790 /* ObjC: In case we are completing on a selector, look as the msymbol
4791 again and feed all the selectors into the mill. */
4794 completion_list_objc_symbol (completion_tracker
&tracker
,
4795 struct minimal_symbol
*msymbol
,
4796 const lookup_name_info
&lookup_name
,
4797 const char *text
, const char *word
)
4799 static char *tmp
= NULL
;
4800 static unsigned int tmplen
= 0;
4802 const char *method
, *category
, *selector
;
4805 method
= MSYMBOL_NATURAL_NAME (msymbol
);
4807 /* Is it a method? */
4808 if ((method
[0] != '-') && (method
[0] != '+'))
4812 /* Complete on shortened method method. */
4813 completion_list_add_name (tracker
, language_objc
,
4818 while ((strlen (method
) + 1) >= tmplen
)
4824 tmp
= (char *) xrealloc (tmp
, tmplen
);
4826 selector
= strchr (method
, ' ');
4827 if (selector
!= NULL
)
4830 category
= strchr (method
, '(');
4832 if ((category
!= NULL
) && (selector
!= NULL
))
4834 memcpy (tmp
, method
, (category
- method
));
4835 tmp
[category
- method
] = ' ';
4836 memcpy (tmp
+ (category
- method
) + 1, selector
, strlen (selector
) + 1);
4837 completion_list_add_name (tracker
, language_objc
, tmp
,
4838 lookup_name
, text
, word
);
4840 completion_list_add_name (tracker
, language_objc
, tmp
+ 1,
4841 lookup_name
, text
, word
);
4844 if (selector
!= NULL
)
4846 /* Complete on selector only. */
4847 strcpy (tmp
, selector
);
4848 tmp2
= strchr (tmp
, ']');
4852 completion_list_add_name (tracker
, language_objc
, tmp
,
4853 lookup_name
, text
, word
);
4857 /* Break the non-quoted text based on the characters which are in
4858 symbols. FIXME: This should probably be language-specific. */
4861 language_search_unquoted_string (const char *text
, const char *p
)
4863 for (; p
> text
; --p
)
4865 if (isalnum (p
[-1]) || p
[-1] == '_' || p
[-1] == '\0')
4869 if ((current_language
->la_language
== language_objc
))
4871 if (p
[-1] == ':') /* Might be part of a method name. */
4873 else if (p
[-1] == '[' && (p
[-2] == '-' || p
[-2] == '+'))
4874 p
-= 2; /* Beginning of a method name. */
4875 else if (p
[-1] == ' ' || p
[-1] == '(' || p
[-1] == ')')
4876 { /* Might be part of a method name. */
4879 /* Seeing a ' ' or a '(' is not conclusive evidence
4880 that we are in the middle of a method name. However,
4881 finding "-[" or "+[" should be pretty un-ambiguous.
4882 Unfortunately we have to find it now to decide. */
4885 if (isalnum (t
[-1]) || t
[-1] == '_' ||
4886 t
[-1] == ' ' || t
[-1] == ':' ||
4887 t
[-1] == '(' || t
[-1] == ')')
4892 if (t
[-1] == '[' && (t
[-2] == '-' || t
[-2] == '+'))
4893 p
= t
- 2; /* Method name detected. */
4894 /* Else we leave with p unchanged. */
4904 completion_list_add_fields (completion_tracker
&tracker
,
4906 const lookup_name_info
&lookup_name
,
4907 const char *text
, const char *word
)
4909 if (SYMBOL_CLASS (sym
) == LOC_TYPEDEF
)
4911 struct type
*t
= SYMBOL_TYPE (sym
);
4912 enum type_code c
= TYPE_CODE (t
);
4915 if (c
== TYPE_CODE_UNION
|| c
== TYPE_CODE_STRUCT
)
4916 for (j
= TYPE_N_BASECLASSES (t
); j
< TYPE_NFIELDS (t
); j
++)
4917 if (TYPE_FIELD_NAME (t
, j
))
4918 completion_list_add_name (tracker
, SYMBOL_LANGUAGE (sym
),
4919 TYPE_FIELD_NAME (t
, j
),
4920 lookup_name
, text
, word
);
4927 symbol_is_function_or_method (symbol
*sym
)
4929 switch (TYPE_CODE (SYMBOL_TYPE (sym
)))
4931 case TYPE_CODE_FUNC
:
4932 case TYPE_CODE_METHOD
:
4942 symbol_is_function_or_method (minimal_symbol
*msymbol
)
4944 switch (MSYMBOL_TYPE (msymbol
))
4947 case mst_text_gnu_ifunc
:
4948 case mst_solib_trampoline
:
4956 /* Add matching symbols from SYMTAB to the current completion list. */
4959 add_symtab_completions (struct compunit_symtab
*cust
,
4960 completion_tracker
&tracker
,
4961 complete_symbol_mode mode
,
4962 const lookup_name_info
&lookup_name
,
4963 const char *text
, const char *word
,
4964 enum type_code code
)
4967 const struct block
*b
;
4968 struct block_iterator iter
;
4974 for (i
= GLOBAL_BLOCK
; i
<= STATIC_BLOCK
; i
++)
4977 b
= BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust
), i
);
4978 ALL_BLOCK_SYMBOLS (b
, iter
, sym
)
4980 if (completion_skip_symbol (mode
, sym
))
4983 if (code
== TYPE_CODE_UNDEF
4984 || (SYMBOL_DOMAIN (sym
) == STRUCT_DOMAIN
4985 && TYPE_CODE (SYMBOL_TYPE (sym
)) == code
))
4986 completion_list_add_symbol (tracker
, sym
,
4994 default_collect_symbol_completion_matches_break_on
4995 (completion_tracker
&tracker
, complete_symbol_mode mode
,
4996 symbol_name_match_type name_match_type
,
4997 const char *text
, const char *word
,
4998 const char *break_on
, enum type_code code
)
5000 /* Problem: All of the symbols have to be copied because readline
5001 frees them. I'm not going to worry about this; hopefully there
5002 won't be that many. */
5005 struct compunit_symtab
*cust
;
5006 struct minimal_symbol
*msymbol
;
5007 struct objfile
*objfile
;
5008 const struct block
*b
;
5009 const struct block
*surrounding_static_block
, *surrounding_global_block
;
5010 struct block_iterator iter
;
5011 /* The symbol we are completing on. Points in same buffer as text. */
5012 const char *sym_text
;
5014 /* Now look for the symbol we are supposed to complete on. */
5015 if (mode
== complete_symbol_mode::LINESPEC
)
5021 const char *quote_pos
= NULL
;
5023 /* First see if this is a quoted string. */
5025 for (p
= text
; *p
!= '\0'; ++p
)
5027 if (quote_found
!= '\0')
5029 if (*p
== quote_found
)
5030 /* Found close quote. */
5032 else if (*p
== '\\' && p
[1] == quote_found
)
5033 /* A backslash followed by the quote character
5034 doesn't end the string. */
5037 else if (*p
== '\'' || *p
== '"')
5043 if (quote_found
== '\'')
5044 /* A string within single quotes can be a symbol, so complete on it. */
5045 sym_text
= quote_pos
+ 1;
5046 else if (quote_found
== '"')
5047 /* A double-quoted string is never a symbol, nor does it make sense
5048 to complete it any other way. */
5054 /* It is not a quoted string. Break it based on the characters
5055 which are in symbols. */
5058 if (isalnum (p
[-1]) || p
[-1] == '_' || p
[-1] == '\0'
5059 || p
[-1] == ':' || strchr (break_on
, p
[-1]) != NULL
)
5068 lookup_name_info
lookup_name (sym_text
, name_match_type
, true);
5070 /* At this point scan through the misc symbol vectors and add each
5071 symbol you find to the list. Eventually we want to ignore
5072 anything that isn't a text symbol (everything else will be
5073 handled by the psymtab code below). */
5075 if (code
== TYPE_CODE_UNDEF
)
5077 ALL_MSYMBOLS (objfile
, msymbol
)
5081 if (completion_skip_symbol (mode
, msymbol
))
5084 completion_list_add_msymbol (tracker
, msymbol
, lookup_name
,
5087 completion_list_objc_symbol (tracker
, msymbol
, lookup_name
,
5092 /* Add completions for all currently loaded symbol tables. */
5093 ALL_COMPUNITS (objfile
, cust
)
5094 add_symtab_completions (cust
, tracker
, mode
, lookup_name
,
5095 sym_text
, word
, code
);
5097 /* Look through the partial symtabs for all symbols which begin by
5098 matching SYM_TEXT. Expand all CUs that you find to the list. */
5099 expand_symtabs_matching (NULL
,
5102 [&] (compunit_symtab
*symtab
) /* expansion notify */
5104 add_symtab_completions (symtab
,
5105 tracker
, mode
, lookup_name
,
5106 sym_text
, word
, code
);
5110 /* Search upwards from currently selected frame (so that we can
5111 complete on local vars). Also catch fields of types defined in
5112 this places which match our text string. Only complete on types
5113 visible from current context. */
5115 b
= get_selected_block (0);
5116 surrounding_static_block
= block_static_block (b
);
5117 surrounding_global_block
= block_global_block (b
);
5118 if (surrounding_static_block
!= NULL
)
5119 while (b
!= surrounding_static_block
)
5123 ALL_BLOCK_SYMBOLS (b
, iter
, sym
)
5125 if (code
== TYPE_CODE_UNDEF
)
5127 completion_list_add_symbol (tracker
, sym
, lookup_name
,
5129 completion_list_add_fields (tracker
, sym
, lookup_name
,
5132 else if (SYMBOL_DOMAIN (sym
) == STRUCT_DOMAIN
5133 && TYPE_CODE (SYMBOL_TYPE (sym
)) == code
)
5134 completion_list_add_symbol (tracker
, sym
, lookup_name
,
5138 /* Stop when we encounter an enclosing function. Do not stop for
5139 non-inlined functions - the locals of the enclosing function
5140 are in scope for a nested function. */
5141 if (BLOCK_FUNCTION (b
) != NULL
&& block_inlined_p (b
))
5143 b
= BLOCK_SUPERBLOCK (b
);
5146 /* Add fields from the file's types; symbols will be added below. */
5148 if (code
== TYPE_CODE_UNDEF
)
5150 if (surrounding_static_block
!= NULL
)
5151 ALL_BLOCK_SYMBOLS (surrounding_static_block
, iter
, sym
)
5152 completion_list_add_fields (tracker
, sym
, lookup_name
,
5155 if (surrounding_global_block
!= NULL
)
5156 ALL_BLOCK_SYMBOLS (surrounding_global_block
, iter
, sym
)
5157 completion_list_add_fields (tracker
, sym
, lookup_name
,
5161 /* Skip macros if we are completing a struct tag -- arguable but
5162 usually what is expected. */
5163 if (current_language
->la_macro_expansion
== macro_expansion_c
5164 && code
== TYPE_CODE_UNDEF
)
5166 struct macro_scope
*scope
;
5168 /* This adds a macro's name to the current completion list. */
5169 auto add_macro_name
= [&] (const char *macro_name
,
5170 const macro_definition
*,
5171 macro_source_file
*,
5174 completion_list_add_name (tracker
, language_c
, macro_name
,
5175 lookup_name
, sym_text
, word
);
5178 /* Add any macros visible in the default scope. Note that this
5179 may yield the occasional wrong result, because an expression
5180 might be evaluated in a scope other than the default. For
5181 example, if the user types "break file:line if <TAB>", the
5182 resulting expression will be evaluated at "file:line" -- but
5183 at there does not seem to be a way to detect this at
5185 scope
= default_macro_scope ();
5188 macro_for_each_in_scope (scope
->file
, scope
->line
,
5193 /* User-defined macros are always visible. */
5194 macro_for_each (macro_user_macros
, add_macro_name
);
5199 default_collect_symbol_completion_matches (completion_tracker
&tracker
,
5200 complete_symbol_mode mode
,
5201 symbol_name_match_type name_match_type
,
5202 const char *text
, const char *word
,
5203 enum type_code code
)
5205 return default_collect_symbol_completion_matches_break_on (tracker
, mode
,
5211 /* Collect all symbols (regardless of class) which begin by matching
5215 collect_symbol_completion_matches (completion_tracker
&tracker
,
5216 complete_symbol_mode mode
,
5217 symbol_name_match_type name_match_type
,
5218 const char *text
, const char *word
)
5220 current_language
->la_collect_symbol_completion_matches (tracker
, mode
,
5226 /* Like collect_symbol_completion_matches, but only collect
5227 STRUCT_DOMAIN symbols whose type code is CODE. */
5230 collect_symbol_completion_matches_type (completion_tracker
&tracker
,
5231 const char *text
, const char *word
,
5232 enum type_code code
)
5234 complete_symbol_mode mode
= complete_symbol_mode::EXPRESSION
;
5235 symbol_name_match_type name_match_type
= symbol_name_match_type::EXPRESSION
;
5237 gdb_assert (code
== TYPE_CODE_UNION
5238 || code
== TYPE_CODE_STRUCT
5239 || code
== TYPE_CODE_ENUM
);
5240 current_language
->la_collect_symbol_completion_matches (tracker
, mode
,
5245 /* Like collect_symbol_completion_matches, but collects a list of
5246 symbols defined in all source files named SRCFILE. */
5249 collect_file_symbol_completion_matches (completion_tracker
&tracker
,
5250 complete_symbol_mode mode
,
5251 symbol_name_match_type name_match_type
,
5252 const char *text
, const char *word
,
5253 const char *srcfile
)
5255 /* The symbol we are completing on. Points in same buffer as text. */
5256 const char *sym_text
;
5258 /* Now look for the symbol we are supposed to complete on.
5259 FIXME: This should be language-specific. */
5260 if (mode
== complete_symbol_mode::LINESPEC
)
5266 const char *quote_pos
= NULL
;
5268 /* First see if this is a quoted string. */
5270 for (p
= text
; *p
!= '\0'; ++p
)
5272 if (quote_found
!= '\0')
5274 if (*p
== quote_found
)
5275 /* Found close quote. */
5277 else if (*p
== '\\' && p
[1] == quote_found
)
5278 /* A backslash followed by the quote character
5279 doesn't end the string. */
5282 else if (*p
== '\'' || *p
== '"')
5288 if (quote_found
== '\'')
5289 /* A string within single quotes can be a symbol, so complete on it. */
5290 sym_text
= quote_pos
+ 1;
5291 else if (quote_found
== '"')
5292 /* A double-quoted string is never a symbol, nor does it make sense
5293 to complete it any other way. */
5299 /* Not a quoted string. */
5300 sym_text
= language_search_unquoted_string (text
, p
);
5304 lookup_name_info
lookup_name (sym_text
, name_match_type
, true);
5306 /* Go through symtabs for SRCFILE and check the externs and statics
5307 for symbols which match. */
5308 iterate_over_symtabs (srcfile
, [&] (symtab
*s
)
5310 add_symtab_completions (SYMTAB_COMPUNIT (s
),
5311 tracker
, mode
, lookup_name
,
5312 sym_text
, word
, TYPE_CODE_UNDEF
);
5317 /* A helper function for make_source_files_completion_list. It adds
5318 another file name to a list of possible completions, growing the
5319 list as necessary. */
5322 add_filename_to_list (const char *fname
, const char *text
, const char *word
,
5323 completion_list
*list
)
5326 size_t fnlen
= strlen (fname
);
5330 /* Return exactly fname. */
5331 newobj
= (char *) xmalloc (fnlen
+ 5);
5332 strcpy (newobj
, fname
);
5334 else if (word
> text
)
5336 /* Return some portion of fname. */
5337 newobj
= (char *) xmalloc (fnlen
+ 5);
5338 strcpy (newobj
, fname
+ (word
- text
));
5342 /* Return some of TEXT plus fname. */
5343 newobj
= (char *) xmalloc (fnlen
+ (text
- word
) + 5);
5344 strncpy (newobj
, word
, text
- word
);
5345 newobj
[text
- word
] = '\0';
5346 strcat (newobj
, fname
);
5348 list
->emplace_back (newobj
);
5352 not_interesting_fname (const char *fname
)
5354 static const char *illegal_aliens
[] = {
5355 "_globals_", /* inserted by coff_symtab_read */
5360 for (i
= 0; illegal_aliens
[i
]; i
++)
5362 if (filename_cmp (fname
, illegal_aliens
[i
]) == 0)
5368 /* An object of this type is passed as the user_data argument to
5369 map_partial_symbol_filenames. */
5370 struct add_partial_filename_data
5372 struct filename_seen_cache
*filename_seen_cache
;
5376 completion_list
*list
;
5379 /* A callback for map_partial_symbol_filenames. */
5382 maybe_add_partial_symtab_filename (const char *filename
, const char *fullname
,
5385 struct add_partial_filename_data
*data
5386 = (struct add_partial_filename_data
*) user_data
;
5388 if (not_interesting_fname (filename
))
5390 if (!data
->filename_seen_cache
->seen (filename
)
5391 && filename_ncmp (filename
, data
->text
, data
->text_len
) == 0)
5393 /* This file matches for a completion; add it to the
5394 current list of matches. */
5395 add_filename_to_list (filename
, data
->text
, data
->word
, data
->list
);
5399 const char *base_name
= lbasename (filename
);
5401 if (base_name
!= filename
5402 && !data
->filename_seen_cache
->seen (base_name
)
5403 && filename_ncmp (base_name
, data
->text
, data
->text_len
) == 0)
5404 add_filename_to_list (base_name
, data
->text
, data
->word
, data
->list
);
5408 /* Return a list of all source files whose names begin with matching
5409 TEXT. The file names are looked up in the symbol tables of this
5413 make_source_files_completion_list (const char *text
, const char *word
)
5415 struct compunit_symtab
*cu
;
5417 struct objfile
*objfile
;
5418 size_t text_len
= strlen (text
);
5419 completion_list list
;
5420 const char *base_name
;
5421 struct add_partial_filename_data datum
;
5423 if (!have_full_symbols () && !have_partial_symbols ())
5426 filename_seen_cache filenames_seen
;
5428 ALL_FILETABS (objfile
, cu
, s
)
5430 if (not_interesting_fname (s
->filename
))
5432 if (!filenames_seen
.seen (s
->filename
)
5433 && filename_ncmp (s
->filename
, text
, text_len
) == 0)
5435 /* This file matches for a completion; add it to the current
5437 add_filename_to_list (s
->filename
, text
, word
, &list
);
5441 /* NOTE: We allow the user to type a base name when the
5442 debug info records leading directories, but not the other
5443 way around. This is what subroutines of breakpoint
5444 command do when they parse file names. */
5445 base_name
= lbasename (s
->filename
);
5446 if (base_name
!= s
->filename
5447 && !filenames_seen
.seen (base_name
)
5448 && filename_ncmp (base_name
, text
, text_len
) == 0)
5449 add_filename_to_list (base_name
, text
, word
, &list
);
5453 datum
.filename_seen_cache
= &filenames_seen
;
5456 datum
.text_len
= text_len
;
5458 map_symbol_filenames (maybe_add_partial_symtab_filename
, &datum
,
5459 0 /*need_fullname*/);
5466 /* Return the "main_info" object for the current program space. If
5467 the object has not yet been created, create it and fill in some
5470 static struct main_info
*
5471 get_main_info (void)
5473 struct main_info
*info
5474 = (struct main_info
*) program_space_data (current_program_space
,
5475 main_progspace_key
);
5479 /* It may seem strange to store the main name in the progspace
5480 and also in whatever objfile happens to see a main name in
5481 its debug info. The reason for this is mainly historical:
5482 gdb returned "main" as the name even if no function named
5483 "main" was defined the program; and this approach lets us
5484 keep compatibility. */
5485 info
= XCNEW (struct main_info
);
5486 info
->language_of_main
= language_unknown
;
5487 set_program_space_data (current_program_space
, main_progspace_key
,
5494 /* A cleanup to destroy a struct main_info when a progspace is
5498 main_info_cleanup (struct program_space
*pspace
, void *data
)
5500 struct main_info
*info
= (struct main_info
*) data
;
5503 xfree (info
->name_of_main
);
5508 set_main_name (const char *name
, enum language lang
)
5510 struct main_info
*info
= get_main_info ();
5512 if (info
->name_of_main
!= NULL
)
5514 xfree (info
->name_of_main
);
5515 info
->name_of_main
= NULL
;
5516 info
->language_of_main
= language_unknown
;
5520 info
->name_of_main
= xstrdup (name
);
5521 info
->language_of_main
= lang
;
5525 /* Deduce the name of the main procedure, and set NAME_OF_MAIN
5529 find_main_name (void)
5531 const char *new_main_name
;
5532 struct objfile
*objfile
;
5534 /* First check the objfiles to see whether a debuginfo reader has
5535 picked up the appropriate main name. Historically the main name
5536 was found in a more or less random way; this approach instead
5537 relies on the order of objfile creation -- which still isn't
5538 guaranteed to get the correct answer, but is just probably more
5540 ALL_OBJFILES (objfile
)
5542 if (objfile
->per_bfd
->name_of_main
!= NULL
)
5544 set_main_name (objfile
->per_bfd
->name_of_main
,
5545 objfile
->per_bfd
->language_of_main
);
5550 /* Try to see if the main procedure is in Ada. */
5551 /* FIXME: brobecker/2005-03-07: Another way of doing this would
5552 be to add a new method in the language vector, and call this
5553 method for each language until one of them returns a non-empty
5554 name. This would allow us to remove this hard-coded call to
5555 an Ada function. It is not clear that this is a better approach
5556 at this point, because all methods need to be written in a way
5557 such that false positives never be returned. For instance, it is
5558 important that a method does not return a wrong name for the main
5559 procedure if the main procedure is actually written in a different
5560 language. It is easy to guaranty this with Ada, since we use a
5561 special symbol generated only when the main in Ada to find the name
5562 of the main procedure. It is difficult however to see how this can
5563 be guarantied for languages such as C, for instance. This suggests
5564 that order of call for these methods becomes important, which means
5565 a more complicated approach. */
5566 new_main_name
= ada_main_name ();
5567 if (new_main_name
!= NULL
)
5569 set_main_name (new_main_name
, language_ada
);
5573 new_main_name
= d_main_name ();
5574 if (new_main_name
!= NULL
)
5576 set_main_name (new_main_name
, language_d
);
5580 new_main_name
= go_main_name ();
5581 if (new_main_name
!= NULL
)
5583 set_main_name (new_main_name
, language_go
);
5587 new_main_name
= pascal_main_name ();
5588 if (new_main_name
!= NULL
)
5590 set_main_name (new_main_name
, language_pascal
);
5594 /* The languages above didn't identify the name of the main procedure.
5595 Fallback to "main". */
5596 set_main_name ("main", language_unknown
);
5602 struct main_info
*info
= get_main_info ();
5604 if (info
->name_of_main
== NULL
)
5607 return info
->name_of_main
;
5610 /* Return the language of the main function. If it is not known,
5611 return language_unknown. */
5614 main_language (void)
5616 struct main_info
*info
= get_main_info ();
5618 if (info
->name_of_main
== NULL
)
5621 return info
->language_of_main
;
5624 /* Handle ``executable_changed'' events for the symtab module. */
5627 symtab_observer_executable_changed (void)
5629 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
5630 set_main_name (NULL
, language_unknown
);
5633 /* Return 1 if the supplied producer string matches the ARM RealView
5634 compiler (armcc). */
5637 producer_is_realview (const char *producer
)
5639 static const char *const arm_idents
[] = {
5640 "ARM C Compiler, ADS",
5641 "Thumb C Compiler, ADS",
5642 "ARM C++ Compiler, ADS",
5643 "Thumb C++ Compiler, ADS",
5644 "ARM/Thumb C/C++ Compiler, RVCT",
5645 "ARM C/C++ Compiler, RVCT"
5649 if (producer
== NULL
)
5652 for (i
= 0; i
< ARRAY_SIZE (arm_idents
); i
++)
5653 if (startswith (producer
, arm_idents
[i
]))
5661 /* The next index to hand out in response to a registration request. */
5663 static int next_aclass_value
= LOC_FINAL_VALUE
;
5665 /* The maximum number of "aclass" registrations we support. This is
5666 constant for convenience. */
5667 #define MAX_SYMBOL_IMPLS (LOC_FINAL_VALUE + 10)
5669 /* The objects representing the various "aclass" values. The elements
5670 from 0 up to LOC_FINAL_VALUE-1 represent themselves, and subsequent
5671 elements are those registered at gdb initialization time. */
5673 static struct symbol_impl symbol_impl
[MAX_SYMBOL_IMPLS
];
5675 /* The globally visible pointer. This is separate from 'symbol_impl'
5676 so that it can be const. */
5678 const struct symbol_impl
*symbol_impls
= &symbol_impl
[0];
5680 /* Make sure we saved enough room in struct symbol. */
5682 gdb_static_assert (MAX_SYMBOL_IMPLS
<= (1 << SYMBOL_ACLASS_BITS
));
5684 /* Register a computed symbol type. ACLASS must be LOC_COMPUTED. OPS
5685 is the ops vector associated with this index. This returns the new
5686 index, which should be used as the aclass_index field for symbols
5690 register_symbol_computed_impl (enum address_class aclass
,
5691 const struct symbol_computed_ops
*ops
)
5693 int result
= next_aclass_value
++;
5695 gdb_assert (aclass
== LOC_COMPUTED
);
5696 gdb_assert (result
< MAX_SYMBOL_IMPLS
);
5697 symbol_impl
[result
].aclass
= aclass
;
5698 symbol_impl
[result
].ops_computed
= ops
;
5700 /* Sanity check OPS. */
5701 gdb_assert (ops
!= NULL
);
5702 gdb_assert (ops
->tracepoint_var_ref
!= NULL
);
5703 gdb_assert (ops
->describe_location
!= NULL
);
5704 gdb_assert (ops
->get_symbol_read_needs
!= NULL
);
5705 gdb_assert (ops
->read_variable
!= NULL
);
5710 /* Register a function with frame base type. ACLASS must be LOC_BLOCK.
5711 OPS is the ops vector associated with this index. This returns the
5712 new index, which should be used as the aclass_index field for symbols
5716 register_symbol_block_impl (enum address_class aclass
,
5717 const struct symbol_block_ops
*ops
)
5719 int result
= next_aclass_value
++;
5721 gdb_assert (aclass
== LOC_BLOCK
);
5722 gdb_assert (result
< MAX_SYMBOL_IMPLS
);
5723 symbol_impl
[result
].aclass
= aclass
;
5724 symbol_impl
[result
].ops_block
= ops
;
5726 /* Sanity check OPS. */
5727 gdb_assert (ops
!= NULL
);
5728 gdb_assert (ops
->find_frame_base_location
!= NULL
);
5733 /* Register a register symbol type. ACLASS must be LOC_REGISTER or
5734 LOC_REGPARM_ADDR. OPS is the register ops vector associated with
5735 this index. This returns the new index, which should be used as
5736 the aclass_index field for symbols of this type. */
5739 register_symbol_register_impl (enum address_class aclass
,
5740 const struct symbol_register_ops
*ops
)
5742 int result
= next_aclass_value
++;
5744 gdb_assert (aclass
== LOC_REGISTER
|| aclass
== LOC_REGPARM_ADDR
);
5745 gdb_assert (result
< MAX_SYMBOL_IMPLS
);
5746 symbol_impl
[result
].aclass
= aclass
;
5747 symbol_impl
[result
].ops_register
= ops
;
5752 /* Initialize elements of 'symbol_impl' for the constants in enum
5756 initialize_ordinary_address_classes (void)
5760 for (i
= 0; i
< LOC_FINAL_VALUE
; ++i
)
5761 symbol_impl
[i
].aclass
= (enum address_class
) i
;
5766 /* Helper function to initialize the fields of an objfile-owned symbol.
5767 It assumed that *SYM is already all zeroes. */
5770 initialize_objfile_symbol_1 (struct symbol
*sym
)
5772 SYMBOL_OBJFILE_OWNED (sym
) = 1;
5773 SYMBOL_SECTION (sym
) = -1;
5776 /* Initialize the symbol SYM, and mark it as being owned by an objfile. */
5779 initialize_objfile_symbol (struct symbol
*sym
)
5781 memset (sym
, 0, sizeof (*sym
));
5782 initialize_objfile_symbol_1 (sym
);
5785 /* Allocate and initialize a new 'struct symbol' on OBJFILE's
5789 allocate_symbol (struct objfile
*objfile
)
5791 struct symbol
*result
;
5793 result
= OBSTACK_ZALLOC (&objfile
->objfile_obstack
, struct symbol
);
5794 initialize_objfile_symbol_1 (result
);
5799 /* Allocate and initialize a new 'struct template_symbol' on OBJFILE's
5802 struct template_symbol
*
5803 allocate_template_symbol (struct objfile
*objfile
)
5805 struct template_symbol
*result
;
5807 result
= OBSTACK_ZALLOC (&objfile
->objfile_obstack
, struct template_symbol
);
5808 initialize_objfile_symbol_1 (result
);
5816 symbol_objfile (const struct symbol
*symbol
)
5818 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol
));
5819 return SYMTAB_OBJFILE (symbol
->owner
.symtab
);
5825 symbol_arch (const struct symbol
*symbol
)
5827 if (!SYMBOL_OBJFILE_OWNED (symbol
))
5828 return symbol
->owner
.arch
;
5829 return get_objfile_arch (SYMTAB_OBJFILE (symbol
->owner
.symtab
));
5835 symbol_symtab (const struct symbol
*symbol
)
5837 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol
));
5838 return symbol
->owner
.symtab
;
5844 symbol_set_symtab (struct symbol
*symbol
, struct symtab
*symtab
)
5846 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol
));
5847 symbol
->owner
.symtab
= symtab
;
5853 _initialize_symtab (void)
5855 initialize_ordinary_address_classes ();
5858 = register_program_space_data_with_cleanup (NULL
, main_info_cleanup
);
5861 = register_program_space_data_with_cleanup (NULL
, symbol_cache_cleanup
);
5863 add_info ("variables", info_variables_command
, _("\
5864 All global and static variable names, or those matching REGEXP."));
5866 add_com ("whereis", class_info
, info_variables_command
, _("\
5867 All global and static variable names, or those matching REGEXP."));
5869 add_info ("functions", info_functions_command
,
5870 _("All function names, or those matching REGEXP."));
5872 /* FIXME: This command has at least the following problems:
5873 1. It prints builtin types (in a very strange and confusing fashion).
5874 2. It doesn't print right, e.g. with
5875 typedef struct foo *FOO
5876 type_print prints "FOO" when we want to make it (in this situation)
5877 print "struct foo *".
5878 I also think "ptype" or "whatis" is more likely to be useful (but if
5879 there is much disagreement "info types" can be fixed). */
5880 add_info ("types", info_types_command
,
5881 _("All type names, or those matching REGEXP."));
5883 add_info ("sources", info_sources_command
,
5884 _("Source files in the program."));
5886 add_com ("rbreak", class_breakpoint
, rbreak_command
,
5887 _("Set a breakpoint for all functions matching REGEXP."));
5889 add_setshow_enum_cmd ("multiple-symbols", no_class
,
5890 multiple_symbols_modes
, &multiple_symbols_mode
,
5892 Set the debugger behavior when more than one symbol are possible matches\n\
5893 in an expression."), _("\
5894 Show how the debugger handles ambiguities in expressions."), _("\
5895 Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
5896 NULL
, NULL
, &setlist
, &showlist
);
5898 add_setshow_boolean_cmd ("basenames-may-differ", class_obscure
,
5899 &basenames_may_differ
, _("\
5900 Set whether a source file may have multiple base names."), _("\
5901 Show whether a source file may have multiple base names."), _("\
5902 (A \"base name\" is the name of a file with the directory part removed.\n\
5903 Example: The base name of \"/home/user/hello.c\" is \"hello.c\".)\n\
5904 If set, GDB will canonicalize file names (e.g., expand symlinks)\n\
5905 before comparing them. Canonicalization is an expensive operation,\n\
5906 but it allows the same file be known by more than one base name.\n\
5907 If not set (the default), all source files are assumed to have just\n\
5908 one base name, and gdb will do file name comparisons more efficiently."),
5910 &setlist
, &showlist
);
5912 add_setshow_zuinteger_cmd ("symtab-create", no_class
, &symtab_create_debug
,
5913 _("Set debugging of symbol table creation."),
5914 _("Show debugging of symbol table creation."), _("\
5915 When enabled (non-zero), debugging messages are printed when building\n\
5916 symbol tables. A value of 1 (one) normally provides enough information.\n\
5917 A value greater than 1 provides more verbose information."),
5920 &setdebuglist
, &showdebuglist
);
5922 add_setshow_zuinteger_cmd ("symbol-lookup", no_class
, &symbol_lookup_debug
,
5924 Set debugging of symbol lookup."), _("\
5925 Show debugging of symbol lookup."), _("\
5926 When enabled (non-zero), symbol lookups are logged."),
5928 &setdebuglist
, &showdebuglist
);
5930 add_setshow_zuinteger_cmd ("symbol-cache-size", no_class
,
5931 &new_symbol_cache_size
,
5932 _("Set the size of the symbol cache."),
5933 _("Show the size of the symbol cache."), _("\
5934 The size of the symbol cache.\n\
5935 If zero then the symbol cache is disabled."),
5936 set_symbol_cache_size_handler
, NULL
,
5937 &maintenance_set_cmdlist
,
5938 &maintenance_show_cmdlist
);
5940 add_cmd ("symbol-cache", class_maintenance
, maintenance_print_symbol_cache
,
5941 _("Dump the symbol cache for each program space."),
5942 &maintenanceprintlist
);
5944 add_cmd ("symbol-cache-statistics", class_maintenance
,
5945 maintenance_print_symbol_cache_statistics
,
5946 _("Print symbol cache statistics for each program space."),
5947 &maintenanceprintlist
);
5949 add_cmd ("flush-symbol-cache", class_maintenance
,
5950 maintenance_flush_symbol_cache
,
5951 _("Flush the symbol cache for each program space."),
5954 observer_attach_executable_changed (symtab_observer_executable_changed
);
5955 observer_attach_new_objfile (symtab_new_objfile_observer
);
5956 observer_attach_free_objfile (symtab_free_objfile_observer
);