2013-01-31 Aleksandar Ristovski <aristovski@qnx.com>
[deliverable/binutils-gdb.git] / gdb / symtab.c
1 /* Symbol table lookup for the GNU debugger, GDB.
2
3 Copyright (C) 1986-2013 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "gdbcore.h"
24 #include "frame.h"
25 #include "target.h"
26 #include "value.h"
27 #include "symfile.h"
28 #include "objfiles.h"
29 #include "gdbcmd.h"
30 #include "gdb_regex.h"
31 #include "expression.h"
32 #include "language.h"
33 #include "demangle.h"
34 #include "inferior.h"
35 #include "source.h"
36 #include "filenames.h" /* for FILENAME_CMP */
37 #include "objc-lang.h"
38 #include "d-lang.h"
39 #include "ada-lang.h"
40 #include "go-lang.h"
41 #include "p-lang.h"
42 #include "addrmap.h"
43
44 #include "hashtab.h"
45
46 #include "gdb_obstack.h"
47 #include "block.h"
48 #include "dictionary.h"
49
50 #include <sys/types.h>
51 #include <fcntl.h>
52 #include "gdb_string.h"
53 #include "gdb_stat.h"
54 #include <ctype.h>
55 #include "cp-abi.h"
56 #include "cp-support.h"
57 #include "observer.h"
58 #include "gdb_assert.h"
59 #include "solist.h"
60 #include "macrotab.h"
61 #include "macroscope.h"
62
63 #include "psymtab.h"
64 #include "parser-defs.h"
65
66 /* Prototypes for local functions */
67
68 static void rbreak_command (char *, int);
69
70 static void types_info (char *, int);
71
72 static void functions_info (char *, int);
73
74 static void variables_info (char *, int);
75
76 static void sources_info (char *, int);
77
78 static int find_line_common (struct linetable *, int, int *, int);
79
80 static struct symbol *lookup_symbol_aux (const char *name,
81 const struct block *block,
82 const domain_enum domain,
83 enum language language,
84 struct field_of_this_result *is_a_field_of_this);
85
86 static
87 struct symbol *lookup_symbol_aux_local (const char *name,
88 const struct block *block,
89 const domain_enum domain,
90 enum language language);
91
92 static
93 struct symbol *lookup_symbol_aux_symtabs (int block_index,
94 const char *name,
95 const domain_enum domain);
96
97 static
98 struct symbol *lookup_symbol_aux_quick (struct objfile *objfile,
99 int block_index,
100 const char *name,
101 const domain_enum domain);
102
103 static void print_msymbol_info (struct minimal_symbol *);
104
105 void _initialize_symtab (void);
106
107 /* */
108
109 /* When non-zero, print debugging messages related to symtab creation. */
110 int symtab_create_debug = 0;
111
112 /* Non-zero if a file may be known by two different basenames.
113 This is the uncommon case, and significantly slows down gdb.
114 Default set to "off" to not slow down the common case. */
115 int basenames_may_differ = 0;
116
117 /* Allow the user to configure the debugger behavior with respect
118 to multiple-choice menus when more than one symbol matches during
119 a symbol lookup. */
120
121 const char multiple_symbols_ask[] = "ask";
122 const char multiple_symbols_all[] = "all";
123 const char multiple_symbols_cancel[] = "cancel";
124 static const char *const multiple_symbols_modes[] =
125 {
126 multiple_symbols_ask,
127 multiple_symbols_all,
128 multiple_symbols_cancel,
129 NULL
130 };
131 static const char *multiple_symbols_mode = multiple_symbols_all;
132
133 /* Read-only accessor to AUTO_SELECT_MODE. */
134
135 const char *
136 multiple_symbols_select_mode (void)
137 {
138 return multiple_symbols_mode;
139 }
140
141 /* Block in which the most recently searched-for symbol was found.
142 Might be better to make this a parameter to lookup_symbol and
143 value_of_this. */
144
145 const struct block *block_found;
146
147 /* See whether FILENAME matches SEARCH_NAME using the rule that we
148 advertise to the user. (The manual's description of linespecs
149 describes what we advertise). We assume that SEARCH_NAME is
150 a relative path. Returns true if they match, false otherwise. */
151
152 int
153 compare_filenames_for_search (const char *filename, const char *search_name)
154 {
155 int len = strlen (filename);
156 size_t search_len = strlen (search_name);
157
158 if (len < search_len)
159 return 0;
160
161 /* The tail of FILENAME must match. */
162 if (FILENAME_CMP (filename + len - search_len, search_name) != 0)
163 return 0;
164
165 /* Either the names must completely match, or the character
166 preceding the trailing SEARCH_NAME segment of FILENAME must be a
167 directory separator.
168
169 The HAS_DRIVE_SPEC purpose is to make FILENAME "c:file.c"
170 compatible with SEARCH_NAME "file.c". In such case a compiler had
171 to put the "c:file.c" name into debug info. Such compatibility
172 works only on GDB built for DOS host. */
173 return (len == search_len
174 || IS_DIR_SEPARATOR (filename[len - search_len - 1])
175 || (HAS_DRIVE_SPEC (filename)
176 && STRIP_DRIVE_SPEC (filename) == &filename[len - search_len]));
177 }
178
179 /* Check for a symtab of a specific name by searching some symtabs.
180 This is a helper function for callbacks of iterate_over_symtabs.
181
182 The return value, NAME, FULL_PATH, REAL_PATH, CALLBACK, and DATA
183 are identical to the `map_symtabs_matching_filename' method of
184 quick_symbol_functions.
185
186 FIRST and AFTER_LAST indicate the range of symtabs to search.
187 AFTER_LAST is one past the last symtab to search; NULL means to
188 search until the end of the list. */
189
190 int
191 iterate_over_some_symtabs (const char *name,
192 const char *full_path,
193 const char *real_path,
194 int (*callback) (struct symtab *symtab,
195 void *data),
196 void *data,
197 struct symtab *first,
198 struct symtab *after_last)
199 {
200 struct symtab *s = NULL;
201 const char* base_name = lbasename (name);
202 int is_abs = IS_ABSOLUTE_PATH (name);
203
204 for (s = first; s != NULL && s != after_last; s = s->next)
205 {
206 /* Exact match is always ok. */
207 if (FILENAME_CMP (name, s->filename) == 0)
208 {
209 if (callback (s, data))
210 return 1;
211 }
212
213 if (!is_abs && compare_filenames_for_search (s->filename, name))
214 {
215 if (callback (s, data))
216 return 1;
217 }
218
219 /* Before we invoke realpath, which can get expensive when many
220 files are involved, do a quick comparison of the basenames. */
221 if (! basenames_may_differ
222 && FILENAME_CMP (base_name, lbasename (s->filename)) != 0)
223 continue;
224
225 /* If the user gave us an absolute path, try to find the file in
226 this symtab and use its absolute path. */
227
228 if (full_path != NULL)
229 {
230 const char *fp = symtab_to_fullname (s);
231
232 if (FILENAME_CMP (full_path, fp) == 0)
233 {
234 if (callback (s, data))
235 return 1;
236 }
237
238 if (!is_abs && compare_filenames_for_search (fp, name))
239 {
240 if (callback (s, data))
241 return 1;
242 }
243 }
244
245 if (real_path != NULL)
246 {
247 const char *fullname = symtab_to_fullname (s);
248 char *rp = gdb_realpath (fullname);
249 struct cleanup *cleanups = make_cleanup (xfree, rp);
250
251 if (FILENAME_CMP (real_path, rp) == 0)
252 {
253 if (callback (s, data))
254 {
255 do_cleanups (cleanups);
256 return 1;
257 }
258 }
259
260 if (!is_abs && compare_filenames_for_search (rp, name))
261 {
262 if (callback (s, data))
263 {
264 do_cleanups (cleanups);
265 return 1;
266 }
267 }
268 do_cleanups (cleanups);
269 }
270 }
271
272 return 0;
273 }
274
275 /* Check for a symtab of a specific name; first in symtabs, then in
276 psymtabs. *If* there is no '/' in the name, a match after a '/'
277 in the symtab filename will also work.
278
279 Calls CALLBACK with each symtab that is found and with the supplied
280 DATA. If CALLBACK returns true, the search stops. */
281
282 void
283 iterate_over_symtabs (const char *name,
284 int (*callback) (struct symtab *symtab,
285 void *data),
286 void *data)
287 {
288 struct objfile *objfile;
289 char *real_path = NULL;
290 char *full_path = NULL;
291 struct cleanup *cleanups = make_cleanup (null_cleanup, NULL);
292
293 /* Here we are interested in canonicalizing an absolute path, not
294 absolutizing a relative path. */
295 if (IS_ABSOLUTE_PATH (name))
296 {
297 full_path = xfullpath (name);
298 make_cleanup (xfree, full_path);
299 real_path = gdb_realpath (name);
300 make_cleanup (xfree, real_path);
301 }
302
303 ALL_OBJFILES (objfile)
304 {
305 if (iterate_over_some_symtabs (name, full_path, real_path, callback, data,
306 objfile->symtabs, NULL))
307 {
308 do_cleanups (cleanups);
309 return;
310 }
311 }
312
313 /* Same search rules as above apply here, but now we look thru the
314 psymtabs. */
315
316 ALL_OBJFILES (objfile)
317 {
318 if (objfile->sf
319 && objfile->sf->qf->map_symtabs_matching_filename (objfile,
320 name,
321 full_path,
322 real_path,
323 callback,
324 data))
325 {
326 do_cleanups (cleanups);
327 return;
328 }
329 }
330
331 do_cleanups (cleanups);
332 }
333
334 /* The callback function used by lookup_symtab. */
335
336 static int
337 lookup_symtab_callback (struct symtab *symtab, void *data)
338 {
339 struct symtab **result_ptr = data;
340
341 *result_ptr = symtab;
342 return 1;
343 }
344
345 /* A wrapper for iterate_over_symtabs that returns the first matching
346 symtab, or NULL. */
347
348 struct symtab *
349 lookup_symtab (const char *name)
350 {
351 struct symtab *result = NULL;
352
353 iterate_over_symtabs (name, lookup_symtab_callback, &result);
354 return result;
355 }
356
357 \f
358 /* Mangle a GDB method stub type. This actually reassembles the pieces of the
359 full method name, which consist of the class name (from T), the unadorned
360 method name from METHOD_ID, and the signature for the specific overload,
361 specified by SIGNATURE_ID. Note that this function is g++ specific. */
362
363 char *
364 gdb_mangle_name (struct type *type, int method_id, int signature_id)
365 {
366 int mangled_name_len;
367 char *mangled_name;
368 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
369 struct fn_field *method = &f[signature_id];
370 const char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
371 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
372 const char *newname = type_name_no_tag (type);
373
374 /* Does the form of physname indicate that it is the full mangled name
375 of a constructor (not just the args)? */
376 int is_full_physname_constructor;
377
378 int is_constructor;
379 int is_destructor = is_destructor_name (physname);
380 /* Need a new type prefix. */
381 char *const_prefix = method->is_const ? "C" : "";
382 char *volatile_prefix = method->is_volatile ? "V" : "";
383 char buf[20];
384 int len = (newname == NULL ? 0 : strlen (newname));
385
386 /* Nothing to do if physname already contains a fully mangled v3 abi name
387 or an operator name. */
388 if ((physname[0] == '_' && physname[1] == 'Z')
389 || is_operator_name (field_name))
390 return xstrdup (physname);
391
392 is_full_physname_constructor = is_constructor_name (physname);
393
394 is_constructor = is_full_physname_constructor
395 || (newname && strcmp (field_name, newname) == 0);
396
397 if (!is_destructor)
398 is_destructor = (strncmp (physname, "__dt", 4) == 0);
399
400 if (is_destructor || is_full_physname_constructor)
401 {
402 mangled_name = (char *) xmalloc (strlen (physname) + 1);
403 strcpy (mangled_name, physname);
404 return mangled_name;
405 }
406
407 if (len == 0)
408 {
409 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
410 }
411 else if (physname[0] == 't' || physname[0] == 'Q')
412 {
413 /* The physname for template and qualified methods already includes
414 the class name. */
415 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
416 newname = NULL;
417 len = 0;
418 }
419 else
420 {
421 xsnprintf (buf, sizeof (buf), "__%s%s%d", const_prefix,
422 volatile_prefix, len);
423 }
424 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
425 + strlen (buf) + len + strlen (physname) + 1);
426
427 mangled_name = (char *) xmalloc (mangled_name_len);
428 if (is_constructor)
429 mangled_name[0] = '\0';
430 else
431 strcpy (mangled_name, field_name);
432
433 strcat (mangled_name, buf);
434 /* If the class doesn't have a name, i.e. newname NULL, then we just
435 mangle it using 0 for the length of the class. Thus it gets mangled
436 as something starting with `::' rather than `classname::'. */
437 if (newname != NULL)
438 strcat (mangled_name, newname);
439
440 strcat (mangled_name, physname);
441 return (mangled_name);
442 }
443
444 /* Initialize the cplus_specific structure. 'cplus_specific' should
445 only be allocated for use with cplus symbols. */
446
447 static void
448 symbol_init_cplus_specific (struct general_symbol_info *gsymbol,
449 struct objfile *objfile)
450 {
451 /* A language_specific structure should not have been previously
452 initialized. */
453 gdb_assert (gsymbol->language_specific.cplus_specific == NULL);
454 gdb_assert (objfile != NULL);
455
456 gsymbol->language_specific.cplus_specific =
457 OBSTACK_ZALLOC (&objfile->objfile_obstack, struct cplus_specific);
458 }
459
460 /* Set the demangled name of GSYMBOL to NAME. NAME must be already
461 correctly allocated. For C++ symbols a cplus_specific struct is
462 allocated so OBJFILE must not be NULL. If this is a non C++ symbol
463 OBJFILE can be NULL. */
464
465 void
466 symbol_set_demangled_name (struct general_symbol_info *gsymbol,
467 const char *name,
468 struct objfile *objfile)
469 {
470 if (gsymbol->language == language_cplus)
471 {
472 if (gsymbol->language_specific.cplus_specific == NULL)
473 symbol_init_cplus_specific (gsymbol, objfile);
474
475 gsymbol->language_specific.cplus_specific->demangled_name = name;
476 }
477 else
478 gsymbol->language_specific.mangled_lang.demangled_name = name;
479 }
480
481 /* Return the demangled name of GSYMBOL. */
482
483 const char *
484 symbol_get_demangled_name (const struct general_symbol_info *gsymbol)
485 {
486 if (gsymbol->language == language_cplus)
487 {
488 if (gsymbol->language_specific.cplus_specific != NULL)
489 return gsymbol->language_specific.cplus_specific->demangled_name;
490 else
491 return NULL;
492 }
493 else
494 return gsymbol->language_specific.mangled_lang.demangled_name;
495 }
496
497 \f
498 /* Initialize the language dependent portion of a symbol
499 depending upon the language for the symbol. */
500
501 void
502 symbol_set_language (struct general_symbol_info *gsymbol,
503 enum language language)
504 {
505 gsymbol->language = language;
506 if (gsymbol->language == language_d
507 || gsymbol->language == language_go
508 || gsymbol->language == language_java
509 || gsymbol->language == language_objc
510 || gsymbol->language == language_fortran)
511 {
512 symbol_set_demangled_name (gsymbol, NULL, NULL);
513 }
514 else if (gsymbol->language == language_cplus)
515 gsymbol->language_specific.cplus_specific = NULL;
516 else
517 {
518 memset (&gsymbol->language_specific, 0,
519 sizeof (gsymbol->language_specific));
520 }
521 }
522
523 /* Functions to initialize a symbol's mangled name. */
524
525 /* Objects of this type are stored in the demangled name hash table. */
526 struct demangled_name_entry
527 {
528 const char *mangled;
529 char demangled[1];
530 };
531
532 /* Hash function for the demangled name hash. */
533
534 static hashval_t
535 hash_demangled_name_entry (const void *data)
536 {
537 const struct demangled_name_entry *e = data;
538
539 return htab_hash_string (e->mangled);
540 }
541
542 /* Equality function for the demangled name hash. */
543
544 static int
545 eq_demangled_name_entry (const void *a, const void *b)
546 {
547 const struct demangled_name_entry *da = a;
548 const struct demangled_name_entry *db = b;
549
550 return strcmp (da->mangled, db->mangled) == 0;
551 }
552
553 /* Create the hash table used for demangled names. Each hash entry is
554 a pair of strings; one for the mangled name and one for the demangled
555 name. The entry is hashed via just the mangled name. */
556
557 static void
558 create_demangled_names_hash (struct objfile *objfile)
559 {
560 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
561 The hash table code will round this up to the next prime number.
562 Choosing a much larger table size wastes memory, and saves only about
563 1% in symbol reading. */
564
565 objfile->demangled_names_hash = htab_create_alloc
566 (256, hash_demangled_name_entry, eq_demangled_name_entry,
567 NULL, xcalloc, xfree);
568 }
569
570 /* Try to determine the demangled name for a symbol, based on the
571 language of that symbol. If the language is set to language_auto,
572 it will attempt to find any demangling algorithm that works and
573 then set the language appropriately. The returned name is allocated
574 by the demangler and should be xfree'd. */
575
576 static char *
577 symbol_find_demangled_name (struct general_symbol_info *gsymbol,
578 const char *mangled)
579 {
580 char *demangled = NULL;
581
582 if (gsymbol->language == language_unknown)
583 gsymbol->language = language_auto;
584
585 if (gsymbol->language == language_objc
586 || gsymbol->language == language_auto)
587 {
588 demangled =
589 objc_demangle (mangled, 0);
590 if (demangled != NULL)
591 {
592 gsymbol->language = language_objc;
593 return demangled;
594 }
595 }
596 if (gsymbol->language == language_cplus
597 || gsymbol->language == language_auto)
598 {
599 demangled =
600 cplus_demangle (mangled, DMGL_PARAMS | DMGL_ANSI);
601 if (demangled != NULL)
602 {
603 gsymbol->language = language_cplus;
604 return demangled;
605 }
606 }
607 if (gsymbol->language == language_java)
608 {
609 demangled =
610 cplus_demangle (mangled,
611 DMGL_PARAMS | DMGL_ANSI | DMGL_JAVA);
612 if (demangled != NULL)
613 {
614 gsymbol->language = language_java;
615 return demangled;
616 }
617 }
618 if (gsymbol->language == language_d
619 || gsymbol->language == language_auto)
620 {
621 demangled = d_demangle(mangled, 0);
622 if (demangled != NULL)
623 {
624 gsymbol->language = language_d;
625 return demangled;
626 }
627 }
628 /* FIXME(dje): Continually adding languages here is clumsy.
629 Better to just call la_demangle if !auto, and if auto then call
630 a utility routine that tries successive languages in turn and reports
631 which one it finds. I realize the la_demangle options may be different
632 for different languages but there's already a FIXME for that. */
633 if (gsymbol->language == language_go
634 || gsymbol->language == language_auto)
635 {
636 demangled = go_demangle (mangled, 0);
637 if (demangled != NULL)
638 {
639 gsymbol->language = language_go;
640 return demangled;
641 }
642 }
643
644 /* We could support `gsymbol->language == language_fortran' here to provide
645 module namespaces also for inferiors with only minimal symbol table (ELF
646 symbols). Just the mangling standard is not standardized across compilers
647 and there is no DW_AT_producer available for inferiors with only the ELF
648 symbols to check the mangling kind. */
649 return NULL;
650 }
651
652 /* Set both the mangled and demangled (if any) names for GSYMBOL based
653 on LINKAGE_NAME and LEN. Ordinarily, NAME is copied onto the
654 objfile's obstack; but if COPY_NAME is 0 and if NAME is
655 NUL-terminated, then this function assumes that NAME is already
656 correctly saved (either permanently or with a lifetime tied to the
657 objfile), and it will not be copied.
658
659 The hash table corresponding to OBJFILE is used, and the memory
660 comes from that objfile's objfile_obstack. LINKAGE_NAME is copied,
661 so the pointer can be discarded after calling this function. */
662
663 /* We have to be careful when dealing with Java names: when we run
664 into a Java minimal symbol, we don't know it's a Java symbol, so it
665 gets demangled as a C++ name. This is unfortunate, but there's not
666 much we can do about it: but when demangling partial symbols and
667 regular symbols, we'd better not reuse the wrong demangled name.
668 (See PR gdb/1039.) We solve this by putting a distinctive prefix
669 on Java names when storing them in the hash table. */
670
671 /* FIXME: carlton/2003-03-13: This is an unfortunate situation. I
672 don't mind the Java prefix so much: different languages have
673 different demangling requirements, so it's only natural that we
674 need to keep language data around in our demangling cache. But
675 it's not good that the minimal symbol has the wrong demangled name.
676 Unfortunately, I can't think of any easy solution to that
677 problem. */
678
679 #define JAVA_PREFIX "##JAVA$$"
680 #define JAVA_PREFIX_LEN 8
681
682 void
683 symbol_set_names (struct general_symbol_info *gsymbol,
684 const char *linkage_name, int len, int copy_name,
685 struct objfile *objfile)
686 {
687 struct demangled_name_entry **slot;
688 /* A 0-terminated copy of the linkage name. */
689 const char *linkage_name_copy;
690 /* A copy of the linkage name that might have a special Java prefix
691 added to it, for use when looking names up in the hash table. */
692 const char *lookup_name;
693 /* The length of lookup_name. */
694 int lookup_len;
695 struct demangled_name_entry entry;
696
697 if (gsymbol->language == language_ada)
698 {
699 /* In Ada, we do the symbol lookups using the mangled name, so
700 we can save some space by not storing the demangled name.
701
702 As a side note, we have also observed some overlap between
703 the C++ mangling and Ada mangling, similarly to what has
704 been observed with Java. Because we don't store the demangled
705 name with the symbol, we don't need to use the same trick
706 as Java. */
707 if (!copy_name)
708 gsymbol->name = linkage_name;
709 else
710 {
711 char *name = obstack_alloc (&objfile->objfile_obstack, len + 1);
712
713 memcpy (name, linkage_name, len);
714 name[len] = '\0';
715 gsymbol->name = name;
716 }
717 symbol_set_demangled_name (gsymbol, NULL, NULL);
718
719 return;
720 }
721
722 if (objfile->demangled_names_hash == NULL)
723 create_demangled_names_hash (objfile);
724
725 /* The stabs reader generally provides names that are not
726 NUL-terminated; most of the other readers don't do this, so we
727 can just use the given copy, unless we're in the Java case. */
728 if (gsymbol->language == language_java)
729 {
730 char *alloc_name;
731
732 lookup_len = len + JAVA_PREFIX_LEN;
733 alloc_name = alloca (lookup_len + 1);
734 memcpy (alloc_name, JAVA_PREFIX, JAVA_PREFIX_LEN);
735 memcpy (alloc_name + JAVA_PREFIX_LEN, linkage_name, len);
736 alloc_name[lookup_len] = '\0';
737
738 lookup_name = alloc_name;
739 linkage_name_copy = alloc_name + JAVA_PREFIX_LEN;
740 }
741 else if (linkage_name[len] != '\0')
742 {
743 char *alloc_name;
744
745 lookup_len = len;
746 alloc_name = alloca (lookup_len + 1);
747 memcpy (alloc_name, linkage_name, len);
748 alloc_name[lookup_len] = '\0';
749
750 lookup_name = alloc_name;
751 linkage_name_copy = alloc_name;
752 }
753 else
754 {
755 lookup_len = len;
756 lookup_name = linkage_name;
757 linkage_name_copy = linkage_name;
758 }
759
760 entry.mangled = lookup_name;
761 slot = ((struct demangled_name_entry **)
762 htab_find_slot (objfile->demangled_names_hash,
763 &entry, INSERT));
764
765 /* If this name is not in the hash table, add it. */
766 if (*slot == NULL
767 /* A C version of the symbol may have already snuck into the table.
768 This happens to, e.g., main.init (__go_init_main). Cope. */
769 || (gsymbol->language == language_go
770 && (*slot)->demangled[0] == '\0'))
771 {
772 char *demangled_name = symbol_find_demangled_name (gsymbol,
773 linkage_name_copy);
774 int demangled_len = demangled_name ? strlen (demangled_name) : 0;
775
776 /* Suppose we have demangled_name==NULL, copy_name==0, and
777 lookup_name==linkage_name. In this case, we already have the
778 mangled name saved, and we don't have a demangled name. So,
779 you might think we could save a little space by not recording
780 this in the hash table at all.
781
782 It turns out that it is actually important to still save such
783 an entry in the hash table, because storing this name gives
784 us better bcache hit rates for partial symbols. */
785 if (!copy_name && lookup_name == linkage_name)
786 {
787 *slot = obstack_alloc (&objfile->objfile_obstack,
788 offsetof (struct demangled_name_entry,
789 demangled)
790 + demangled_len + 1);
791 (*slot)->mangled = lookup_name;
792 }
793 else
794 {
795 char *mangled_ptr;
796
797 /* If we must copy the mangled name, put it directly after
798 the demangled name so we can have a single
799 allocation. */
800 *slot = obstack_alloc (&objfile->objfile_obstack,
801 offsetof (struct demangled_name_entry,
802 demangled)
803 + lookup_len + demangled_len + 2);
804 mangled_ptr = &((*slot)->demangled[demangled_len + 1]);
805 strcpy (mangled_ptr, lookup_name);
806 (*slot)->mangled = mangled_ptr;
807 }
808
809 if (demangled_name != NULL)
810 {
811 strcpy ((*slot)->demangled, demangled_name);
812 xfree (demangled_name);
813 }
814 else
815 (*slot)->demangled[0] = '\0';
816 }
817
818 gsymbol->name = (*slot)->mangled + lookup_len - len;
819 if ((*slot)->demangled[0] != '\0')
820 symbol_set_demangled_name (gsymbol, (*slot)->demangled, objfile);
821 else
822 symbol_set_demangled_name (gsymbol, NULL, objfile);
823 }
824
825 /* Return the source code name of a symbol. In languages where
826 demangling is necessary, this is the demangled name. */
827
828 const char *
829 symbol_natural_name (const struct general_symbol_info *gsymbol)
830 {
831 switch (gsymbol->language)
832 {
833 case language_cplus:
834 case language_d:
835 case language_go:
836 case language_java:
837 case language_objc:
838 case language_fortran:
839 if (symbol_get_demangled_name (gsymbol) != NULL)
840 return symbol_get_demangled_name (gsymbol);
841 break;
842 case language_ada:
843 if (symbol_get_demangled_name (gsymbol) != NULL)
844 return symbol_get_demangled_name (gsymbol);
845 else
846 return ada_decode_symbol (gsymbol);
847 break;
848 default:
849 break;
850 }
851 return gsymbol->name;
852 }
853
854 /* Return the demangled name for a symbol based on the language for
855 that symbol. If no demangled name exists, return NULL. */
856
857 const char *
858 symbol_demangled_name (const struct general_symbol_info *gsymbol)
859 {
860 const char *dem_name = NULL;
861
862 switch (gsymbol->language)
863 {
864 case language_cplus:
865 case language_d:
866 case language_go:
867 case language_java:
868 case language_objc:
869 case language_fortran:
870 dem_name = symbol_get_demangled_name (gsymbol);
871 break;
872 case language_ada:
873 dem_name = symbol_get_demangled_name (gsymbol);
874 if (dem_name == NULL)
875 dem_name = ada_decode_symbol (gsymbol);
876 break;
877 default:
878 break;
879 }
880 return dem_name;
881 }
882
883 /* Return the search name of a symbol---generally the demangled or
884 linkage name of the symbol, depending on how it will be searched for.
885 If there is no distinct demangled name, then returns the same value
886 (same pointer) as SYMBOL_LINKAGE_NAME. */
887
888 const char *
889 symbol_search_name (const struct general_symbol_info *gsymbol)
890 {
891 if (gsymbol->language == language_ada)
892 return gsymbol->name;
893 else
894 return symbol_natural_name (gsymbol);
895 }
896
897 /* Initialize the structure fields to zero values. */
898
899 void
900 init_sal (struct symtab_and_line *sal)
901 {
902 sal->pspace = NULL;
903 sal->symtab = 0;
904 sal->section = 0;
905 sal->line = 0;
906 sal->pc = 0;
907 sal->end = 0;
908 sal->explicit_pc = 0;
909 sal->explicit_line = 0;
910 sal->probe = NULL;
911 }
912 \f
913
914 /* Return 1 if the two sections are the same, or if they could
915 plausibly be copies of each other, one in an original object
916 file and another in a separated debug file. */
917
918 int
919 matching_obj_sections (struct obj_section *obj_first,
920 struct obj_section *obj_second)
921 {
922 asection *first = obj_first? obj_first->the_bfd_section : NULL;
923 asection *second = obj_second? obj_second->the_bfd_section : NULL;
924 struct objfile *obj;
925
926 /* If they're the same section, then they match. */
927 if (first == second)
928 return 1;
929
930 /* If either is NULL, give up. */
931 if (first == NULL || second == NULL)
932 return 0;
933
934 /* This doesn't apply to absolute symbols. */
935 if (first->owner == NULL || second->owner == NULL)
936 return 0;
937
938 /* If they're in the same object file, they must be different sections. */
939 if (first->owner == second->owner)
940 return 0;
941
942 /* Check whether the two sections are potentially corresponding. They must
943 have the same size, address, and name. We can't compare section indexes,
944 which would be more reliable, because some sections may have been
945 stripped. */
946 if (bfd_get_section_size (first) != bfd_get_section_size (second))
947 return 0;
948
949 /* In-memory addresses may start at a different offset, relativize them. */
950 if (bfd_get_section_vma (first->owner, first)
951 - bfd_get_start_address (first->owner)
952 != bfd_get_section_vma (second->owner, second)
953 - bfd_get_start_address (second->owner))
954 return 0;
955
956 if (bfd_get_section_name (first->owner, first) == NULL
957 || bfd_get_section_name (second->owner, second) == NULL
958 || strcmp (bfd_get_section_name (first->owner, first),
959 bfd_get_section_name (second->owner, second)) != 0)
960 return 0;
961
962 /* Otherwise check that they are in corresponding objfiles. */
963
964 ALL_OBJFILES (obj)
965 if (obj->obfd == first->owner)
966 break;
967 gdb_assert (obj != NULL);
968
969 if (obj->separate_debug_objfile != NULL
970 && obj->separate_debug_objfile->obfd == second->owner)
971 return 1;
972 if (obj->separate_debug_objfile_backlink != NULL
973 && obj->separate_debug_objfile_backlink->obfd == second->owner)
974 return 1;
975
976 return 0;
977 }
978
979 struct symtab *
980 find_pc_sect_symtab_via_partial (CORE_ADDR pc, struct obj_section *section)
981 {
982 struct objfile *objfile;
983 struct minimal_symbol *msymbol;
984
985 /* If we know that this is not a text address, return failure. This is
986 necessary because we loop based on texthigh and textlow, which do
987 not include the data ranges. */
988 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
989 if (msymbol
990 && (MSYMBOL_TYPE (msymbol) == mst_data
991 || MSYMBOL_TYPE (msymbol) == mst_bss
992 || MSYMBOL_TYPE (msymbol) == mst_abs
993 || MSYMBOL_TYPE (msymbol) == mst_file_data
994 || MSYMBOL_TYPE (msymbol) == mst_file_bss))
995 return NULL;
996
997 ALL_OBJFILES (objfile)
998 {
999 struct symtab *result = NULL;
1000
1001 if (objfile->sf)
1002 result = objfile->sf->qf->find_pc_sect_symtab (objfile, msymbol,
1003 pc, section, 0);
1004 if (result)
1005 return result;
1006 }
1007
1008 return NULL;
1009 }
1010 \f
1011 /* Debug symbols usually don't have section information. We need to dig that
1012 out of the minimal symbols and stash that in the debug symbol. */
1013
1014 void
1015 fixup_section (struct general_symbol_info *ginfo,
1016 CORE_ADDR addr, struct objfile *objfile)
1017 {
1018 struct minimal_symbol *msym;
1019
1020 /* First, check whether a minimal symbol with the same name exists
1021 and points to the same address. The address check is required
1022 e.g. on PowerPC64, where the minimal symbol for a function will
1023 point to the function descriptor, while the debug symbol will
1024 point to the actual function code. */
1025 msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->name, objfile);
1026 if (msym)
1027 {
1028 ginfo->obj_section = SYMBOL_OBJ_SECTION (msym);
1029 ginfo->section = SYMBOL_SECTION (msym);
1030 }
1031 else
1032 {
1033 /* Static, function-local variables do appear in the linker
1034 (minimal) symbols, but are frequently given names that won't
1035 be found via lookup_minimal_symbol(). E.g., it has been
1036 observed in frv-uclinux (ELF) executables that a static,
1037 function-local variable named "foo" might appear in the
1038 linker symbols as "foo.6" or "foo.3". Thus, there is no
1039 point in attempting to extend the lookup-by-name mechanism to
1040 handle this case due to the fact that there can be multiple
1041 names.
1042
1043 So, instead, search the section table when lookup by name has
1044 failed. The ``addr'' and ``endaddr'' fields may have already
1045 been relocated. If so, the relocation offset (i.e. the
1046 ANOFFSET value) needs to be subtracted from these values when
1047 performing the comparison. We unconditionally subtract it,
1048 because, when no relocation has been performed, the ANOFFSET
1049 value will simply be zero.
1050
1051 The address of the symbol whose section we're fixing up HAS
1052 NOT BEEN adjusted (relocated) yet. It can't have been since
1053 the section isn't yet known and knowing the section is
1054 necessary in order to add the correct relocation value. In
1055 other words, we wouldn't even be in this function (attempting
1056 to compute the section) if it were already known.
1057
1058 Note that it is possible to search the minimal symbols
1059 (subtracting the relocation value if necessary) to find the
1060 matching minimal symbol, but this is overkill and much less
1061 efficient. It is not necessary to find the matching minimal
1062 symbol, only its section.
1063
1064 Note that this technique (of doing a section table search)
1065 can fail when unrelocated section addresses overlap. For
1066 this reason, we still attempt a lookup by name prior to doing
1067 a search of the section table. */
1068
1069 struct obj_section *s;
1070
1071 ALL_OBJFILE_OSECTIONS (objfile, s)
1072 {
1073 int idx = s->the_bfd_section->index;
1074 CORE_ADDR offset = ANOFFSET (objfile->section_offsets, idx);
1075
1076 if (obj_section_addr (s) - offset <= addr
1077 && addr < obj_section_endaddr (s) - offset)
1078 {
1079 ginfo->obj_section = s;
1080 ginfo->section = idx;
1081 return;
1082 }
1083 }
1084 }
1085 }
1086
1087 struct symbol *
1088 fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
1089 {
1090 CORE_ADDR addr;
1091
1092 if (!sym)
1093 return NULL;
1094
1095 if (SYMBOL_OBJ_SECTION (sym))
1096 return sym;
1097
1098 /* We either have an OBJFILE, or we can get at it from the sym's
1099 symtab. Anything else is a bug. */
1100 gdb_assert (objfile || SYMBOL_SYMTAB (sym));
1101
1102 if (objfile == NULL)
1103 objfile = SYMBOL_SYMTAB (sym)->objfile;
1104
1105 /* We should have an objfile by now. */
1106 gdb_assert (objfile);
1107
1108 switch (SYMBOL_CLASS (sym))
1109 {
1110 case LOC_STATIC:
1111 case LOC_LABEL:
1112 addr = SYMBOL_VALUE_ADDRESS (sym);
1113 break;
1114 case LOC_BLOCK:
1115 addr = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
1116 break;
1117
1118 default:
1119 /* Nothing else will be listed in the minsyms -- no use looking
1120 it up. */
1121 return sym;
1122 }
1123
1124 fixup_section (&sym->ginfo, addr, objfile);
1125
1126 return sym;
1127 }
1128
1129 /* Compute the demangled form of NAME as used by the various symbol
1130 lookup functions. The result is stored in *RESULT_NAME. Returns a
1131 cleanup which can be used to clean up the result.
1132
1133 For Ada, this function just sets *RESULT_NAME to NAME, unmodified.
1134 Normally, Ada symbol lookups are performed using the encoded name
1135 rather than the demangled name, and so it might seem to make sense
1136 for this function to return an encoded version of NAME.
1137 Unfortunately, we cannot do this, because this function is used in
1138 circumstances where it is not appropriate to try to encode NAME.
1139 For instance, when displaying the frame info, we demangle the name
1140 of each parameter, and then perform a symbol lookup inside our
1141 function using that demangled name. In Ada, certain functions
1142 have internally-generated parameters whose name contain uppercase
1143 characters. Encoding those name would result in those uppercase
1144 characters to become lowercase, and thus cause the symbol lookup
1145 to fail. */
1146
1147 struct cleanup *
1148 demangle_for_lookup (const char *name, enum language lang,
1149 const char **result_name)
1150 {
1151 char *demangled_name = NULL;
1152 const char *modified_name = NULL;
1153 struct cleanup *cleanup = make_cleanup (null_cleanup, 0);
1154
1155 modified_name = name;
1156
1157 /* If we are using C++, D, Go, or Java, demangle the name before doing a
1158 lookup, so we can always binary search. */
1159 if (lang == language_cplus)
1160 {
1161 demangled_name = cplus_demangle (name, DMGL_ANSI | DMGL_PARAMS);
1162 if (demangled_name)
1163 {
1164 modified_name = demangled_name;
1165 make_cleanup (xfree, demangled_name);
1166 }
1167 else
1168 {
1169 /* If we were given a non-mangled name, canonicalize it
1170 according to the language (so far only for C++). */
1171 demangled_name = cp_canonicalize_string (name);
1172 if (demangled_name)
1173 {
1174 modified_name = demangled_name;
1175 make_cleanup (xfree, demangled_name);
1176 }
1177 }
1178 }
1179 else if (lang == language_java)
1180 {
1181 demangled_name = cplus_demangle (name,
1182 DMGL_ANSI | DMGL_PARAMS | DMGL_JAVA);
1183 if (demangled_name)
1184 {
1185 modified_name = demangled_name;
1186 make_cleanup (xfree, demangled_name);
1187 }
1188 }
1189 else if (lang == language_d)
1190 {
1191 demangled_name = d_demangle (name, 0);
1192 if (demangled_name)
1193 {
1194 modified_name = demangled_name;
1195 make_cleanup (xfree, demangled_name);
1196 }
1197 }
1198 else if (lang == language_go)
1199 {
1200 demangled_name = go_demangle (name, 0);
1201 if (demangled_name)
1202 {
1203 modified_name = demangled_name;
1204 make_cleanup (xfree, demangled_name);
1205 }
1206 }
1207
1208 *result_name = modified_name;
1209 return cleanup;
1210 }
1211
1212 /* Find the definition for a specified symbol name NAME
1213 in domain DOMAIN, visible from lexical block BLOCK.
1214 Returns the struct symbol pointer, or zero if no symbol is found.
1215 C++: if IS_A_FIELD_OF_THIS is nonzero on entry, check to see if
1216 NAME is a field of the current implied argument `this'. If so set
1217 *IS_A_FIELD_OF_THIS to 1, otherwise set it to zero.
1218 BLOCK_FOUND is set to the block in which NAME is found (in the case of
1219 a field of `this', value_of_this sets BLOCK_FOUND to the proper value.) */
1220
1221 /* This function (or rather its subordinates) have a bunch of loops and
1222 it would seem to be attractive to put in some QUIT's (though I'm not really
1223 sure whether it can run long enough to be really important). But there
1224 are a few calls for which it would appear to be bad news to quit
1225 out of here: e.g., find_proc_desc in alpha-mdebug-tdep.c. (Note
1226 that there is C++ code below which can error(), but that probably
1227 doesn't affect these calls since they are looking for a known
1228 variable and thus can probably assume it will never hit the C++
1229 code). */
1230
1231 struct symbol *
1232 lookup_symbol_in_language (const char *name, const struct block *block,
1233 const domain_enum domain, enum language lang,
1234 struct field_of_this_result *is_a_field_of_this)
1235 {
1236 const char *modified_name;
1237 struct symbol *returnval;
1238 struct cleanup *cleanup = demangle_for_lookup (name, lang, &modified_name);
1239
1240 returnval = lookup_symbol_aux (modified_name, block, domain, lang,
1241 is_a_field_of_this);
1242 do_cleanups (cleanup);
1243
1244 return returnval;
1245 }
1246
1247 /* Behave like lookup_symbol_in_language, but performed with the
1248 current language. */
1249
1250 struct symbol *
1251 lookup_symbol (const char *name, const struct block *block,
1252 domain_enum domain,
1253 struct field_of_this_result *is_a_field_of_this)
1254 {
1255 return lookup_symbol_in_language (name, block, domain,
1256 current_language->la_language,
1257 is_a_field_of_this);
1258 }
1259
1260 /* Look up the `this' symbol for LANG in BLOCK. Return the symbol if
1261 found, or NULL if not found. */
1262
1263 struct symbol *
1264 lookup_language_this (const struct language_defn *lang,
1265 const struct block *block)
1266 {
1267 if (lang->la_name_of_this == NULL || block == NULL)
1268 return NULL;
1269
1270 while (block)
1271 {
1272 struct symbol *sym;
1273
1274 sym = lookup_block_symbol (block, lang->la_name_of_this, VAR_DOMAIN);
1275 if (sym != NULL)
1276 {
1277 block_found = block;
1278 return sym;
1279 }
1280 if (BLOCK_FUNCTION (block))
1281 break;
1282 block = BLOCK_SUPERBLOCK (block);
1283 }
1284
1285 return NULL;
1286 }
1287
1288 /* Given TYPE, a structure/union,
1289 return 1 if the component named NAME from the ultimate target
1290 structure/union is defined, otherwise, return 0. */
1291
1292 static int
1293 check_field (struct type *type, const char *name,
1294 struct field_of_this_result *is_a_field_of_this)
1295 {
1296 int i;
1297
1298 /* The type may be a stub. */
1299 CHECK_TYPEDEF (type);
1300
1301 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1302 {
1303 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1304
1305 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1306 {
1307 is_a_field_of_this->type = type;
1308 is_a_field_of_this->field = &TYPE_FIELD (type, i);
1309 return 1;
1310 }
1311 }
1312
1313 /* C++: If it was not found as a data field, then try to return it
1314 as a pointer to a method. */
1315
1316 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
1317 {
1318 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
1319 {
1320 is_a_field_of_this->type = type;
1321 is_a_field_of_this->fn_field = &TYPE_FN_FIELDLIST (type, i);
1322 return 1;
1323 }
1324 }
1325
1326 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1327 if (check_field (TYPE_BASECLASS (type, i), name, is_a_field_of_this))
1328 return 1;
1329
1330 return 0;
1331 }
1332
1333 /* Behave like lookup_symbol except that NAME is the natural name
1334 (e.g., demangled name) of the symbol that we're looking for. */
1335
1336 static struct symbol *
1337 lookup_symbol_aux (const char *name, const struct block *block,
1338 const domain_enum domain, enum language language,
1339 struct field_of_this_result *is_a_field_of_this)
1340 {
1341 struct symbol *sym;
1342 const struct language_defn *langdef;
1343
1344 /* Make sure we do something sensible with is_a_field_of_this, since
1345 the callers that set this parameter to some non-null value will
1346 certainly use it later. If we don't set it, the contents of
1347 is_a_field_of_this are undefined. */
1348 if (is_a_field_of_this != NULL)
1349 memset (is_a_field_of_this, 0, sizeof (*is_a_field_of_this));
1350
1351 /* Search specified block and its superiors. Don't search
1352 STATIC_BLOCK or GLOBAL_BLOCK. */
1353
1354 sym = lookup_symbol_aux_local (name, block, domain, language);
1355 if (sym != NULL)
1356 return sym;
1357
1358 /* If requested to do so by the caller and if appropriate for LANGUAGE,
1359 check to see if NAME is a field of `this'. */
1360
1361 langdef = language_def (language);
1362
1363 /* Don't do this check if we are searching for a struct. It will
1364 not be found by check_field, but will be found by other
1365 means. */
1366 if (is_a_field_of_this != NULL && domain != STRUCT_DOMAIN)
1367 {
1368 struct symbol *sym = lookup_language_this (langdef, block);
1369
1370 if (sym)
1371 {
1372 struct type *t = sym->type;
1373
1374 /* I'm not really sure that type of this can ever
1375 be typedefed; just be safe. */
1376 CHECK_TYPEDEF (t);
1377 if (TYPE_CODE (t) == TYPE_CODE_PTR
1378 || TYPE_CODE (t) == TYPE_CODE_REF)
1379 t = TYPE_TARGET_TYPE (t);
1380
1381 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
1382 && TYPE_CODE (t) != TYPE_CODE_UNION)
1383 error (_("Internal error: `%s' is not an aggregate"),
1384 langdef->la_name_of_this);
1385
1386 if (check_field (t, name, is_a_field_of_this))
1387 return NULL;
1388 }
1389 }
1390
1391 /* Now do whatever is appropriate for LANGUAGE to look
1392 up static and global variables. */
1393
1394 sym = langdef->la_lookup_symbol_nonlocal (name, block, domain);
1395 if (sym != NULL)
1396 return sym;
1397
1398 /* Now search all static file-level symbols. Not strictly correct,
1399 but more useful than an error. */
1400
1401 return lookup_static_symbol_aux (name, domain);
1402 }
1403
1404 /* Search all static file-level symbols for NAME from DOMAIN. Do the symtabs
1405 first, then check the psymtabs. If a psymtab indicates the existence of the
1406 desired name as a file-level static, then do psymtab-to-symtab conversion on
1407 the fly and return the found symbol. */
1408
1409 struct symbol *
1410 lookup_static_symbol_aux (const char *name, const domain_enum domain)
1411 {
1412 struct objfile *objfile;
1413 struct symbol *sym;
1414
1415 sym = lookup_symbol_aux_symtabs (STATIC_BLOCK, name, domain);
1416 if (sym != NULL)
1417 return sym;
1418
1419 ALL_OBJFILES (objfile)
1420 {
1421 sym = lookup_symbol_aux_quick (objfile, STATIC_BLOCK, name, domain);
1422 if (sym != NULL)
1423 return sym;
1424 }
1425
1426 return NULL;
1427 }
1428
1429 /* Check to see if the symbol is defined in BLOCK or its superiors.
1430 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
1431
1432 static struct symbol *
1433 lookup_symbol_aux_local (const char *name, const struct block *block,
1434 const domain_enum domain,
1435 enum language language)
1436 {
1437 struct symbol *sym;
1438 const struct block *static_block = block_static_block (block);
1439 const char *scope = block_scope (block);
1440
1441 /* Check if either no block is specified or it's a global block. */
1442
1443 if (static_block == NULL)
1444 return NULL;
1445
1446 while (block != static_block)
1447 {
1448 sym = lookup_symbol_aux_block (name, block, domain);
1449 if (sym != NULL)
1450 return sym;
1451
1452 if (language == language_cplus || language == language_fortran)
1453 {
1454 sym = cp_lookup_symbol_imports_or_template (scope, name, block,
1455 domain);
1456 if (sym != NULL)
1457 return sym;
1458 }
1459
1460 if (BLOCK_FUNCTION (block) != NULL && block_inlined_p (block))
1461 break;
1462 block = BLOCK_SUPERBLOCK (block);
1463 }
1464
1465 /* We've reached the edge of the function without finding a result. */
1466
1467 return NULL;
1468 }
1469
1470 /* Look up OBJFILE to BLOCK. */
1471
1472 struct objfile *
1473 lookup_objfile_from_block (const struct block *block)
1474 {
1475 struct objfile *obj;
1476 struct symtab *s;
1477
1478 if (block == NULL)
1479 return NULL;
1480
1481 block = block_global_block (block);
1482 /* Go through SYMTABS. */
1483 ALL_SYMTABS (obj, s)
1484 if (block == BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK))
1485 {
1486 if (obj->separate_debug_objfile_backlink)
1487 obj = obj->separate_debug_objfile_backlink;
1488
1489 return obj;
1490 }
1491
1492 return NULL;
1493 }
1494
1495 /* Look up a symbol in a block; if found, fixup the symbol, and set
1496 block_found appropriately. */
1497
1498 struct symbol *
1499 lookup_symbol_aux_block (const char *name, const struct block *block,
1500 const domain_enum domain)
1501 {
1502 struct symbol *sym;
1503
1504 sym = lookup_block_symbol (block, name, domain);
1505 if (sym)
1506 {
1507 block_found = block;
1508 return fixup_symbol_section (sym, NULL);
1509 }
1510
1511 return NULL;
1512 }
1513
1514 /* Check all global symbols in OBJFILE in symtabs and
1515 psymtabs. */
1516
1517 struct symbol *
1518 lookup_global_symbol_from_objfile (const struct objfile *main_objfile,
1519 const char *name,
1520 const domain_enum domain)
1521 {
1522 const struct objfile *objfile;
1523 struct symbol *sym;
1524 struct blockvector *bv;
1525 const struct block *block;
1526 struct symtab *s;
1527
1528 for (objfile = main_objfile;
1529 objfile;
1530 objfile = objfile_separate_debug_iterate (main_objfile, objfile))
1531 {
1532 /* Go through symtabs. */
1533 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
1534 {
1535 bv = BLOCKVECTOR (s);
1536 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1537 sym = lookup_block_symbol (block, name, domain);
1538 if (sym)
1539 {
1540 block_found = block;
1541 return fixup_symbol_section (sym, (struct objfile *)objfile);
1542 }
1543 }
1544
1545 sym = lookup_symbol_aux_quick ((struct objfile *) objfile, GLOBAL_BLOCK,
1546 name, domain);
1547 if (sym)
1548 return sym;
1549 }
1550
1551 return NULL;
1552 }
1553
1554 /* Check to see if the symbol is defined in one of the OBJFILE's
1555 symtabs. BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
1556 depending on whether or not we want to search global symbols or
1557 static symbols. */
1558
1559 static struct symbol *
1560 lookup_symbol_aux_objfile (struct objfile *objfile, int block_index,
1561 const char *name, const domain_enum domain)
1562 {
1563 struct symbol *sym = NULL;
1564 struct blockvector *bv;
1565 const struct block *block;
1566 struct symtab *s;
1567
1568 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
1569 {
1570 bv = BLOCKVECTOR (s);
1571 block = BLOCKVECTOR_BLOCK (bv, block_index);
1572 sym = lookup_block_symbol (block, name, domain);
1573 if (sym)
1574 {
1575 block_found = block;
1576 return fixup_symbol_section (sym, objfile);
1577 }
1578 }
1579
1580 return NULL;
1581 }
1582
1583 /* Same as lookup_symbol_aux_objfile, except that it searches all
1584 objfiles. Return the first match found. */
1585
1586 static struct symbol *
1587 lookup_symbol_aux_symtabs (int block_index, const char *name,
1588 const domain_enum domain)
1589 {
1590 struct symbol *sym;
1591 struct objfile *objfile;
1592
1593 ALL_OBJFILES (objfile)
1594 {
1595 sym = lookup_symbol_aux_objfile (objfile, block_index, name, domain);
1596 if (sym)
1597 return sym;
1598 }
1599
1600 return NULL;
1601 }
1602
1603 /* Wrapper around lookup_symbol_aux_objfile for search_symbols.
1604 Look up LINKAGE_NAME in DOMAIN in the global and static blocks of OBJFILE
1605 and all related objfiles. */
1606
1607 static struct symbol *
1608 lookup_symbol_in_objfile_from_linkage_name (struct objfile *objfile,
1609 const char *linkage_name,
1610 domain_enum domain)
1611 {
1612 enum language lang = current_language->la_language;
1613 const char *modified_name;
1614 struct cleanup *cleanup = demangle_for_lookup (linkage_name, lang,
1615 &modified_name);
1616 struct objfile *main_objfile, *cur_objfile;
1617
1618 if (objfile->separate_debug_objfile_backlink)
1619 main_objfile = objfile->separate_debug_objfile_backlink;
1620 else
1621 main_objfile = objfile;
1622
1623 for (cur_objfile = main_objfile;
1624 cur_objfile;
1625 cur_objfile = objfile_separate_debug_iterate (main_objfile, cur_objfile))
1626 {
1627 struct symbol *sym;
1628
1629 sym = lookup_symbol_aux_objfile (cur_objfile, GLOBAL_BLOCK,
1630 modified_name, domain);
1631 if (sym == NULL)
1632 sym = lookup_symbol_aux_objfile (cur_objfile, STATIC_BLOCK,
1633 modified_name, domain);
1634 if (sym != NULL)
1635 {
1636 do_cleanups (cleanup);
1637 return sym;
1638 }
1639 }
1640
1641 do_cleanups (cleanup);
1642 return NULL;
1643 }
1644
1645 /* A helper function for lookup_symbol_aux that interfaces with the
1646 "quick" symbol table functions. */
1647
1648 static struct symbol *
1649 lookup_symbol_aux_quick (struct objfile *objfile, int kind,
1650 const char *name, const domain_enum domain)
1651 {
1652 struct symtab *symtab;
1653 struct blockvector *bv;
1654 const struct block *block;
1655 struct symbol *sym;
1656
1657 if (!objfile->sf)
1658 return NULL;
1659 symtab = objfile->sf->qf->lookup_symbol (objfile, kind, name, domain);
1660 if (!symtab)
1661 return NULL;
1662
1663 bv = BLOCKVECTOR (symtab);
1664 block = BLOCKVECTOR_BLOCK (bv, kind);
1665 sym = lookup_block_symbol (block, name, domain);
1666 if (!sym)
1667 {
1668 /* This shouldn't be necessary, but as a last resort try
1669 looking in the statics even though the psymtab claimed
1670 the symbol was global, or vice-versa. It's possible
1671 that the psymtab gets it wrong in some cases. */
1672
1673 /* FIXME: carlton/2002-09-30: Should we really do that?
1674 If that happens, isn't it likely to be a GDB error, in
1675 which case we should fix the GDB error rather than
1676 silently dealing with it here? So I'd vote for
1677 removing the check for the symbol in the other
1678 block. */
1679 block = BLOCKVECTOR_BLOCK (bv,
1680 kind == GLOBAL_BLOCK ?
1681 STATIC_BLOCK : GLOBAL_BLOCK);
1682 sym = lookup_block_symbol (block, name, domain);
1683 if (!sym)
1684 error (_("\
1685 Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n\
1686 %s may be an inlined function, or may be a template function\n\
1687 (if a template, try specifying an instantiation: %s<type>)."),
1688 kind == GLOBAL_BLOCK ? "global" : "static",
1689 name, symtab->filename, name, name);
1690 }
1691 return fixup_symbol_section (sym, objfile);
1692 }
1693
1694 /* A default version of lookup_symbol_nonlocal for use by languages
1695 that can't think of anything better to do. This implements the C
1696 lookup rules. */
1697
1698 struct symbol *
1699 basic_lookup_symbol_nonlocal (const char *name,
1700 const struct block *block,
1701 const domain_enum domain)
1702 {
1703 struct symbol *sym;
1704
1705 /* NOTE: carlton/2003-05-19: The comments below were written when
1706 this (or what turned into this) was part of lookup_symbol_aux;
1707 I'm much less worried about these questions now, since these
1708 decisions have turned out well, but I leave these comments here
1709 for posterity. */
1710
1711 /* NOTE: carlton/2002-12-05: There is a question as to whether or
1712 not it would be appropriate to search the current global block
1713 here as well. (That's what this code used to do before the
1714 is_a_field_of_this check was moved up.) On the one hand, it's
1715 redundant with the lookup_symbol_aux_symtabs search that happens
1716 next. On the other hand, if decode_line_1 is passed an argument
1717 like filename:var, then the user presumably wants 'var' to be
1718 searched for in filename. On the third hand, there shouldn't be
1719 multiple global variables all of which are named 'var', and it's
1720 not like decode_line_1 has ever restricted its search to only
1721 global variables in a single filename. All in all, only
1722 searching the static block here seems best: it's correct and it's
1723 cleanest. */
1724
1725 /* NOTE: carlton/2002-12-05: There's also a possible performance
1726 issue here: if you usually search for global symbols in the
1727 current file, then it would be slightly better to search the
1728 current global block before searching all the symtabs. But there
1729 are other factors that have a much greater effect on performance
1730 than that one, so I don't think we should worry about that for
1731 now. */
1732
1733 sym = lookup_symbol_static (name, block, domain);
1734 if (sym != NULL)
1735 return sym;
1736
1737 return lookup_symbol_global (name, block, domain);
1738 }
1739
1740 /* Lookup a symbol in the static block associated to BLOCK, if there
1741 is one; do nothing if BLOCK is NULL or a global block. */
1742
1743 struct symbol *
1744 lookup_symbol_static (const char *name,
1745 const struct block *block,
1746 const domain_enum domain)
1747 {
1748 const struct block *static_block = block_static_block (block);
1749
1750 if (static_block != NULL)
1751 return lookup_symbol_aux_block (name, static_block, domain);
1752 else
1753 return NULL;
1754 }
1755
1756 /* Private data to be used with lookup_symbol_global_iterator_cb. */
1757
1758 struct global_sym_lookup_data
1759 {
1760 /* The name of the symbol we are searching for. */
1761 const char *name;
1762
1763 /* The domain to use for our search. */
1764 domain_enum domain;
1765
1766 /* The field where the callback should store the symbol if found.
1767 It should be initialized to NULL before the search is started. */
1768 struct symbol *result;
1769 };
1770
1771 /* A callback function for gdbarch_iterate_over_objfiles_in_search_order.
1772 It searches by name for a symbol in the GLOBAL_BLOCK of the given
1773 OBJFILE. The arguments for the search are passed via CB_DATA,
1774 which in reality is a pointer to struct global_sym_lookup_data. */
1775
1776 static int
1777 lookup_symbol_global_iterator_cb (struct objfile *objfile,
1778 void *cb_data)
1779 {
1780 struct global_sym_lookup_data *data =
1781 (struct global_sym_lookup_data *) cb_data;
1782
1783 gdb_assert (data->result == NULL);
1784
1785 data->result = lookup_symbol_aux_objfile (objfile, GLOBAL_BLOCK,
1786 data->name, data->domain);
1787 if (data->result == NULL)
1788 data->result = lookup_symbol_aux_quick (objfile, GLOBAL_BLOCK,
1789 data->name, data->domain);
1790
1791 /* If we found a match, tell the iterator to stop. Otherwise,
1792 keep going. */
1793 return (data->result != NULL);
1794 }
1795
1796 /* Lookup a symbol in all files' global blocks (searching psymtabs if
1797 necessary). */
1798
1799 struct symbol *
1800 lookup_symbol_global (const char *name,
1801 const struct block *block,
1802 const domain_enum domain)
1803 {
1804 struct symbol *sym = NULL;
1805 struct objfile *objfile = NULL;
1806 struct global_sym_lookup_data lookup_data;
1807
1808 /* Call library-specific lookup procedure. */
1809 objfile = lookup_objfile_from_block (block);
1810 if (objfile != NULL)
1811 sym = solib_global_lookup (objfile, name, domain);
1812 if (sym != NULL)
1813 return sym;
1814
1815 memset (&lookup_data, 0, sizeof (lookup_data));
1816 lookup_data.name = name;
1817 lookup_data.domain = domain;
1818 gdbarch_iterate_over_objfiles_in_search_order
1819 (objfile != NULL ? get_objfile_arch (objfile) : target_gdbarch (),
1820 lookup_symbol_global_iterator_cb, &lookup_data, objfile);
1821
1822 return lookup_data.result;
1823 }
1824
1825 int
1826 symbol_matches_domain (enum language symbol_language,
1827 domain_enum symbol_domain,
1828 domain_enum domain)
1829 {
1830 /* For C++ "struct foo { ... }" also defines a typedef for "foo".
1831 A Java class declaration also defines a typedef for the class.
1832 Similarly, any Ada type declaration implicitly defines a typedef. */
1833 if (symbol_language == language_cplus
1834 || symbol_language == language_d
1835 || symbol_language == language_java
1836 || symbol_language == language_ada)
1837 {
1838 if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN)
1839 && symbol_domain == STRUCT_DOMAIN)
1840 return 1;
1841 }
1842 /* For all other languages, strict match is required. */
1843 return (symbol_domain == domain);
1844 }
1845
1846 /* Look up a type named NAME in the struct_domain. The type returned
1847 must not be opaque -- i.e., must have at least one field
1848 defined. */
1849
1850 struct type *
1851 lookup_transparent_type (const char *name)
1852 {
1853 return current_language->la_lookup_transparent_type (name);
1854 }
1855
1856 /* A helper for basic_lookup_transparent_type that interfaces with the
1857 "quick" symbol table functions. */
1858
1859 static struct type *
1860 basic_lookup_transparent_type_quick (struct objfile *objfile, int kind,
1861 const char *name)
1862 {
1863 struct symtab *symtab;
1864 struct blockvector *bv;
1865 struct block *block;
1866 struct symbol *sym;
1867
1868 if (!objfile->sf)
1869 return NULL;
1870 symtab = objfile->sf->qf->lookup_symbol (objfile, kind, name, STRUCT_DOMAIN);
1871 if (!symtab)
1872 return NULL;
1873
1874 bv = BLOCKVECTOR (symtab);
1875 block = BLOCKVECTOR_BLOCK (bv, kind);
1876 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1877 if (!sym)
1878 {
1879 int other_kind = kind == GLOBAL_BLOCK ? STATIC_BLOCK : GLOBAL_BLOCK;
1880
1881 /* This shouldn't be necessary, but as a last resort
1882 * try looking in the 'other kind' even though the psymtab
1883 * claimed the symbol was one thing. It's possible that
1884 * the psymtab gets it wrong in some cases.
1885 */
1886 block = BLOCKVECTOR_BLOCK (bv, other_kind);
1887 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1888 if (!sym)
1889 /* FIXME; error is wrong in one case. */
1890 error (_("\
1891 Internal: global symbol `%s' found in %s psymtab but not in symtab.\n\
1892 %s may be an inlined function, or may be a template function\n\
1893 (if a template, try specifying an instantiation: %s<type>)."),
1894 name, symtab->filename, name, name);
1895 }
1896 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1897 return SYMBOL_TYPE (sym);
1898
1899 return NULL;
1900 }
1901
1902 /* The standard implementation of lookup_transparent_type. This code
1903 was modeled on lookup_symbol -- the parts not relevant to looking
1904 up types were just left out. In particular it's assumed here that
1905 types are available in struct_domain and only at file-static or
1906 global blocks. */
1907
1908 struct type *
1909 basic_lookup_transparent_type (const char *name)
1910 {
1911 struct symbol *sym;
1912 struct symtab *s = NULL;
1913 struct blockvector *bv;
1914 struct objfile *objfile;
1915 struct block *block;
1916 struct type *t;
1917
1918 /* Now search all the global symbols. Do the symtab's first, then
1919 check the psymtab's. If a psymtab indicates the existence
1920 of the desired name as a global, then do psymtab-to-symtab
1921 conversion on the fly and return the found symbol. */
1922
1923 ALL_OBJFILES (objfile)
1924 {
1925 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
1926 {
1927 bv = BLOCKVECTOR (s);
1928 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1929 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1930 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1931 {
1932 return SYMBOL_TYPE (sym);
1933 }
1934 }
1935 }
1936
1937 ALL_OBJFILES (objfile)
1938 {
1939 t = basic_lookup_transparent_type_quick (objfile, GLOBAL_BLOCK, name);
1940 if (t)
1941 return t;
1942 }
1943
1944 /* Now search the static file-level symbols.
1945 Not strictly correct, but more useful than an error.
1946 Do the symtab's first, then
1947 check the psymtab's. If a psymtab indicates the existence
1948 of the desired name as a file-level static, then do psymtab-to-symtab
1949 conversion on the fly and return the found symbol. */
1950
1951 ALL_OBJFILES (objfile)
1952 {
1953 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
1954 {
1955 bv = BLOCKVECTOR (s);
1956 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
1957 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1958 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1959 {
1960 return SYMBOL_TYPE (sym);
1961 }
1962 }
1963 }
1964
1965 ALL_OBJFILES (objfile)
1966 {
1967 t = basic_lookup_transparent_type_quick (objfile, STATIC_BLOCK, name);
1968 if (t)
1969 return t;
1970 }
1971
1972 return (struct type *) 0;
1973 }
1974
1975 /* Find the name of the file containing main(). */
1976 /* FIXME: What about languages without main() or specially linked
1977 executables that have no main() ? */
1978
1979 const char *
1980 find_main_filename (void)
1981 {
1982 struct objfile *objfile;
1983 char *name = main_name ();
1984
1985 ALL_OBJFILES (objfile)
1986 {
1987 const char *result;
1988
1989 if (!objfile->sf)
1990 continue;
1991 result = objfile->sf->qf->find_symbol_file (objfile, name);
1992 if (result)
1993 return result;
1994 }
1995 return (NULL);
1996 }
1997
1998 /* Search BLOCK for symbol NAME in DOMAIN.
1999
2000 Note that if NAME is the demangled form of a C++ symbol, we will fail
2001 to find a match during the binary search of the non-encoded names, but
2002 for now we don't worry about the slight inefficiency of looking for
2003 a match we'll never find, since it will go pretty quick. Once the
2004 binary search terminates, we drop through and do a straight linear
2005 search on the symbols. Each symbol which is marked as being a ObjC/C++
2006 symbol (language_cplus or language_objc set) has both the encoded and
2007 non-encoded names tested for a match. */
2008
2009 struct symbol *
2010 lookup_block_symbol (const struct block *block, const char *name,
2011 const domain_enum domain)
2012 {
2013 struct block_iterator iter;
2014 struct symbol *sym;
2015
2016 if (!BLOCK_FUNCTION (block))
2017 {
2018 for (sym = block_iter_name_first (block, name, &iter);
2019 sym != NULL;
2020 sym = block_iter_name_next (name, &iter))
2021 {
2022 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
2023 SYMBOL_DOMAIN (sym), domain))
2024 return sym;
2025 }
2026 return NULL;
2027 }
2028 else
2029 {
2030 /* Note that parameter symbols do not always show up last in the
2031 list; this loop makes sure to take anything else other than
2032 parameter symbols first; it only uses parameter symbols as a
2033 last resort. Note that this only takes up extra computation
2034 time on a match. */
2035
2036 struct symbol *sym_found = NULL;
2037
2038 for (sym = block_iter_name_first (block, name, &iter);
2039 sym != NULL;
2040 sym = block_iter_name_next (name, &iter))
2041 {
2042 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
2043 SYMBOL_DOMAIN (sym), domain))
2044 {
2045 sym_found = sym;
2046 if (!SYMBOL_IS_ARGUMENT (sym))
2047 {
2048 break;
2049 }
2050 }
2051 }
2052 return (sym_found); /* Will be NULL if not found. */
2053 }
2054 }
2055
2056 /* Iterate over the symbols named NAME, matching DOMAIN, starting with
2057 BLOCK.
2058
2059 For each symbol that matches, CALLBACK is called. The symbol and
2060 DATA are passed to the callback.
2061
2062 If CALLBACK returns zero, the iteration ends. Otherwise, the
2063 search continues. This function iterates upward through blocks.
2064 When the outermost block has been finished, the function
2065 returns. */
2066
2067 void
2068 iterate_over_symbols (const struct block *block, const char *name,
2069 const domain_enum domain,
2070 symbol_found_callback_ftype *callback,
2071 void *data)
2072 {
2073 while (block)
2074 {
2075 struct block_iterator iter;
2076 struct symbol *sym;
2077
2078 for (sym = block_iter_name_first (block, name, &iter);
2079 sym != NULL;
2080 sym = block_iter_name_next (name, &iter))
2081 {
2082 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
2083 SYMBOL_DOMAIN (sym), domain))
2084 {
2085 if (!callback (sym, data))
2086 return;
2087 }
2088 }
2089
2090 block = BLOCK_SUPERBLOCK (block);
2091 }
2092 }
2093
2094 /* Find the symtab associated with PC and SECTION. Look through the
2095 psymtabs and read in another symtab if necessary. */
2096
2097 struct symtab *
2098 find_pc_sect_symtab (CORE_ADDR pc, struct obj_section *section)
2099 {
2100 struct block *b;
2101 struct blockvector *bv;
2102 struct symtab *s = NULL;
2103 struct symtab *best_s = NULL;
2104 struct objfile *objfile;
2105 CORE_ADDR distance = 0;
2106 struct minimal_symbol *msymbol;
2107
2108 /* If we know that this is not a text address, return failure. This is
2109 necessary because we loop based on the block's high and low code
2110 addresses, which do not include the data ranges, and because
2111 we call find_pc_sect_psymtab which has a similar restriction based
2112 on the partial_symtab's texthigh and textlow. */
2113 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
2114 if (msymbol
2115 && (MSYMBOL_TYPE (msymbol) == mst_data
2116 || MSYMBOL_TYPE (msymbol) == mst_bss
2117 || MSYMBOL_TYPE (msymbol) == mst_abs
2118 || MSYMBOL_TYPE (msymbol) == mst_file_data
2119 || MSYMBOL_TYPE (msymbol) == mst_file_bss))
2120 return NULL;
2121
2122 /* Search all symtabs for the one whose file contains our address, and which
2123 is the smallest of all the ones containing the address. This is designed
2124 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
2125 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
2126 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
2127
2128 This happens for native ecoff format, where code from included files
2129 gets its own symtab. The symtab for the included file should have
2130 been read in already via the dependency mechanism.
2131 It might be swifter to create several symtabs with the same name
2132 like xcoff does (I'm not sure).
2133
2134 It also happens for objfiles that have their functions reordered.
2135 For these, the symtab we are looking for is not necessarily read in. */
2136
2137 ALL_PRIMARY_SYMTABS (objfile, s)
2138 {
2139 bv = BLOCKVECTOR (s);
2140 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
2141
2142 if (BLOCK_START (b) <= pc
2143 && BLOCK_END (b) > pc
2144 && (distance == 0
2145 || BLOCK_END (b) - BLOCK_START (b) < distance))
2146 {
2147 /* For an objfile that has its functions reordered,
2148 find_pc_psymtab will find the proper partial symbol table
2149 and we simply return its corresponding symtab. */
2150 /* In order to better support objfiles that contain both
2151 stabs and coff debugging info, we continue on if a psymtab
2152 can't be found. */
2153 if ((objfile->flags & OBJF_REORDERED) && objfile->sf)
2154 {
2155 struct symtab *result;
2156
2157 result
2158 = objfile->sf->qf->find_pc_sect_symtab (objfile,
2159 msymbol,
2160 pc, section,
2161 0);
2162 if (result)
2163 return result;
2164 }
2165 if (section != 0)
2166 {
2167 struct block_iterator iter;
2168 struct symbol *sym = NULL;
2169
2170 ALL_BLOCK_SYMBOLS (b, iter, sym)
2171 {
2172 fixup_symbol_section (sym, objfile);
2173 if (matching_obj_sections (SYMBOL_OBJ_SECTION (sym), section))
2174 break;
2175 }
2176 if (sym == NULL)
2177 continue; /* No symbol in this symtab matches
2178 section. */
2179 }
2180 distance = BLOCK_END (b) - BLOCK_START (b);
2181 best_s = s;
2182 }
2183 }
2184
2185 if (best_s != NULL)
2186 return (best_s);
2187
2188 /* Not found in symtabs, search the "quick" symtabs (e.g. psymtabs). */
2189
2190 ALL_OBJFILES (objfile)
2191 {
2192 struct symtab *result;
2193
2194 if (!objfile->sf)
2195 continue;
2196 result = objfile->sf->qf->find_pc_sect_symtab (objfile,
2197 msymbol,
2198 pc, section,
2199 1);
2200 if (result)
2201 return result;
2202 }
2203
2204 return NULL;
2205 }
2206
2207 /* Find the symtab associated with PC. Look through the psymtabs and read
2208 in another symtab if necessary. Backward compatibility, no section. */
2209
2210 struct symtab *
2211 find_pc_symtab (CORE_ADDR pc)
2212 {
2213 return find_pc_sect_symtab (pc, find_pc_mapped_section (pc));
2214 }
2215 \f
2216
2217 /* Find the source file and line number for a given PC value and SECTION.
2218 Return a structure containing a symtab pointer, a line number,
2219 and a pc range for the entire source line.
2220 The value's .pc field is NOT the specified pc.
2221 NOTCURRENT nonzero means, if specified pc is on a line boundary,
2222 use the line that ends there. Otherwise, in that case, the line
2223 that begins there is used. */
2224
2225 /* The big complication here is that a line may start in one file, and end just
2226 before the start of another file. This usually occurs when you #include
2227 code in the middle of a subroutine. To properly find the end of a line's PC
2228 range, we must search all symtabs associated with this compilation unit, and
2229 find the one whose first PC is closer than that of the next line in this
2230 symtab. */
2231
2232 /* If it's worth the effort, we could be using a binary search. */
2233
2234 struct symtab_and_line
2235 find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent)
2236 {
2237 struct symtab *s;
2238 struct linetable *l;
2239 int len;
2240 int i;
2241 struct linetable_entry *item;
2242 struct symtab_and_line val;
2243 struct blockvector *bv;
2244 struct minimal_symbol *msymbol;
2245 struct minimal_symbol *mfunsym;
2246 struct objfile *objfile;
2247
2248 /* Info on best line seen so far, and where it starts, and its file. */
2249
2250 struct linetable_entry *best = NULL;
2251 CORE_ADDR best_end = 0;
2252 struct symtab *best_symtab = 0;
2253
2254 /* Store here the first line number
2255 of a file which contains the line at the smallest pc after PC.
2256 If we don't find a line whose range contains PC,
2257 we will use a line one less than this,
2258 with a range from the start of that file to the first line's pc. */
2259 struct linetable_entry *alt = NULL;
2260
2261 /* Info on best line seen in this file. */
2262
2263 struct linetable_entry *prev;
2264
2265 /* If this pc is not from the current frame,
2266 it is the address of the end of a call instruction.
2267 Quite likely that is the start of the following statement.
2268 But what we want is the statement containing the instruction.
2269 Fudge the pc to make sure we get that. */
2270
2271 init_sal (&val); /* initialize to zeroes */
2272
2273 val.pspace = current_program_space;
2274
2275 /* It's tempting to assume that, if we can't find debugging info for
2276 any function enclosing PC, that we shouldn't search for line
2277 number info, either. However, GAS can emit line number info for
2278 assembly files --- very helpful when debugging hand-written
2279 assembly code. In such a case, we'd have no debug info for the
2280 function, but we would have line info. */
2281
2282 if (notcurrent)
2283 pc -= 1;
2284
2285 /* elz: added this because this function returned the wrong
2286 information if the pc belongs to a stub (import/export)
2287 to call a shlib function. This stub would be anywhere between
2288 two functions in the target, and the line info was erroneously
2289 taken to be the one of the line before the pc. */
2290
2291 /* RT: Further explanation:
2292
2293 * We have stubs (trampolines) inserted between procedures.
2294 *
2295 * Example: "shr1" exists in a shared library, and a "shr1" stub also
2296 * exists in the main image.
2297 *
2298 * In the minimal symbol table, we have a bunch of symbols
2299 * sorted by start address. The stubs are marked as "trampoline",
2300 * the others appear as text. E.g.:
2301 *
2302 * Minimal symbol table for main image
2303 * main: code for main (text symbol)
2304 * shr1: stub (trampoline symbol)
2305 * foo: code for foo (text symbol)
2306 * ...
2307 * Minimal symbol table for "shr1" image:
2308 * ...
2309 * shr1: code for shr1 (text symbol)
2310 * ...
2311 *
2312 * So the code below is trying to detect if we are in the stub
2313 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
2314 * and if found, do the symbolization from the real-code address
2315 * rather than the stub address.
2316 *
2317 * Assumptions being made about the minimal symbol table:
2318 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
2319 * if we're really in the trampoline.s If we're beyond it (say
2320 * we're in "foo" in the above example), it'll have a closer
2321 * symbol (the "foo" text symbol for example) and will not
2322 * return the trampoline.
2323 * 2. lookup_minimal_symbol_text() will find a real text symbol
2324 * corresponding to the trampoline, and whose address will
2325 * be different than the trampoline address. I put in a sanity
2326 * check for the address being the same, to avoid an
2327 * infinite recursion.
2328 */
2329 msymbol = lookup_minimal_symbol_by_pc (pc);
2330 if (msymbol != NULL)
2331 if (MSYMBOL_TYPE (msymbol) == mst_solib_trampoline)
2332 {
2333 mfunsym = lookup_minimal_symbol_text (SYMBOL_LINKAGE_NAME (msymbol),
2334 NULL);
2335 if (mfunsym == NULL)
2336 /* I eliminated this warning since it is coming out
2337 * in the following situation:
2338 * gdb shmain // test program with shared libraries
2339 * (gdb) break shr1 // function in shared lib
2340 * Warning: In stub for ...
2341 * In the above situation, the shared lib is not loaded yet,
2342 * so of course we can't find the real func/line info,
2343 * but the "break" still works, and the warning is annoying.
2344 * So I commented out the warning. RT */
2345 /* warning ("In stub for %s; unable to find real function/line info",
2346 SYMBOL_LINKAGE_NAME (msymbol)); */
2347 ;
2348 /* fall through */
2349 else if (SYMBOL_VALUE_ADDRESS (mfunsym)
2350 == SYMBOL_VALUE_ADDRESS (msymbol))
2351 /* Avoid infinite recursion */
2352 /* See above comment about why warning is commented out. */
2353 /* warning ("In stub for %s; unable to find real function/line info",
2354 SYMBOL_LINKAGE_NAME (msymbol)); */
2355 ;
2356 /* fall through */
2357 else
2358 return find_pc_line (SYMBOL_VALUE_ADDRESS (mfunsym), 0);
2359 }
2360
2361
2362 s = find_pc_sect_symtab (pc, section);
2363 if (!s)
2364 {
2365 /* If no symbol information, return previous pc. */
2366 if (notcurrent)
2367 pc++;
2368 val.pc = pc;
2369 return val;
2370 }
2371
2372 bv = BLOCKVECTOR (s);
2373 objfile = s->objfile;
2374
2375 /* Look at all the symtabs that share this blockvector.
2376 They all have the same apriori range, that we found was right;
2377 but they have different line tables. */
2378
2379 ALL_OBJFILE_SYMTABS (objfile, s)
2380 {
2381 if (BLOCKVECTOR (s) != bv)
2382 continue;
2383
2384 /* Find the best line in this symtab. */
2385 l = LINETABLE (s);
2386 if (!l)
2387 continue;
2388 len = l->nitems;
2389 if (len <= 0)
2390 {
2391 /* I think len can be zero if the symtab lacks line numbers
2392 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
2393 I'm not sure which, and maybe it depends on the symbol
2394 reader). */
2395 continue;
2396 }
2397
2398 prev = NULL;
2399 item = l->item; /* Get first line info. */
2400
2401 /* Is this file's first line closer than the first lines of other files?
2402 If so, record this file, and its first line, as best alternate. */
2403 if (item->pc > pc && (!alt || item->pc < alt->pc))
2404 alt = item;
2405
2406 for (i = 0; i < len; i++, item++)
2407 {
2408 /* Leave prev pointing to the linetable entry for the last line
2409 that started at or before PC. */
2410 if (item->pc > pc)
2411 break;
2412
2413 prev = item;
2414 }
2415
2416 /* At this point, prev points at the line whose start addr is <= pc, and
2417 item points at the next line. If we ran off the end of the linetable
2418 (pc >= start of the last line), then prev == item. If pc < start of
2419 the first line, prev will not be set. */
2420
2421 /* Is this file's best line closer than the best in the other files?
2422 If so, record this file, and its best line, as best so far. Don't
2423 save prev if it represents the end of a function (i.e. line number
2424 0) instead of a real line. */
2425
2426 if (prev && prev->line && (!best || prev->pc > best->pc))
2427 {
2428 best = prev;
2429 best_symtab = s;
2430
2431 /* Discard BEST_END if it's before the PC of the current BEST. */
2432 if (best_end <= best->pc)
2433 best_end = 0;
2434 }
2435
2436 /* If another line (denoted by ITEM) is in the linetable and its
2437 PC is after BEST's PC, but before the current BEST_END, then
2438 use ITEM's PC as the new best_end. */
2439 if (best && i < len && item->pc > best->pc
2440 && (best_end == 0 || best_end > item->pc))
2441 best_end = item->pc;
2442 }
2443
2444 if (!best_symtab)
2445 {
2446 /* If we didn't find any line number info, just return zeros.
2447 We used to return alt->line - 1 here, but that could be
2448 anywhere; if we don't have line number info for this PC,
2449 don't make some up. */
2450 val.pc = pc;
2451 }
2452 else if (best->line == 0)
2453 {
2454 /* If our best fit is in a range of PC's for which no line
2455 number info is available (line number is zero) then we didn't
2456 find any valid line information. */
2457 val.pc = pc;
2458 }
2459 else
2460 {
2461 val.symtab = best_symtab;
2462 val.line = best->line;
2463 val.pc = best->pc;
2464 if (best_end && (!alt || best_end < alt->pc))
2465 val.end = best_end;
2466 else if (alt)
2467 val.end = alt->pc;
2468 else
2469 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
2470 }
2471 val.section = section;
2472 return val;
2473 }
2474
2475 /* Backward compatibility (no section). */
2476
2477 struct symtab_and_line
2478 find_pc_line (CORE_ADDR pc, int notcurrent)
2479 {
2480 struct obj_section *section;
2481
2482 section = find_pc_overlay (pc);
2483 if (pc_in_unmapped_range (pc, section))
2484 pc = overlay_mapped_address (pc, section);
2485 return find_pc_sect_line (pc, section, notcurrent);
2486 }
2487 \f
2488 /* Find line number LINE in any symtab whose name is the same as
2489 SYMTAB.
2490
2491 If found, return the symtab that contains the linetable in which it was
2492 found, set *INDEX to the index in the linetable of the best entry
2493 found, and set *EXACT_MATCH nonzero if the value returned is an
2494 exact match.
2495
2496 If not found, return NULL. */
2497
2498 struct symtab *
2499 find_line_symtab (struct symtab *symtab, int line,
2500 int *index, int *exact_match)
2501 {
2502 int exact = 0; /* Initialized here to avoid a compiler warning. */
2503
2504 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
2505 so far seen. */
2506
2507 int best_index;
2508 struct linetable *best_linetable;
2509 struct symtab *best_symtab;
2510
2511 /* First try looking it up in the given symtab. */
2512 best_linetable = LINETABLE (symtab);
2513 best_symtab = symtab;
2514 best_index = find_line_common (best_linetable, line, &exact, 0);
2515 if (best_index < 0 || !exact)
2516 {
2517 /* Didn't find an exact match. So we better keep looking for
2518 another symtab with the same name. In the case of xcoff,
2519 multiple csects for one source file (produced by IBM's FORTRAN
2520 compiler) produce multiple symtabs (this is unavoidable
2521 assuming csects can be at arbitrary places in memory and that
2522 the GLOBAL_BLOCK of a symtab has a begin and end address). */
2523
2524 /* BEST is the smallest linenumber > LINE so far seen,
2525 or 0 if none has been seen so far.
2526 BEST_INDEX and BEST_LINETABLE identify the item for it. */
2527 int best;
2528
2529 struct objfile *objfile;
2530 struct symtab *s;
2531
2532 if (best_index >= 0)
2533 best = best_linetable->item[best_index].line;
2534 else
2535 best = 0;
2536
2537 ALL_OBJFILES (objfile)
2538 {
2539 if (objfile->sf)
2540 objfile->sf->qf->expand_symtabs_with_filename (objfile,
2541 symtab->filename);
2542 }
2543
2544 ALL_SYMTABS (objfile, s)
2545 {
2546 struct linetable *l;
2547 int ind;
2548
2549 if (FILENAME_CMP (symtab->filename, s->filename) != 0)
2550 continue;
2551 if (FILENAME_CMP (symtab_to_fullname (symtab),
2552 symtab_to_fullname (s)) != 0)
2553 continue;
2554 l = LINETABLE (s);
2555 ind = find_line_common (l, line, &exact, 0);
2556 if (ind >= 0)
2557 {
2558 if (exact)
2559 {
2560 best_index = ind;
2561 best_linetable = l;
2562 best_symtab = s;
2563 goto done;
2564 }
2565 if (best == 0 || l->item[ind].line < best)
2566 {
2567 best = l->item[ind].line;
2568 best_index = ind;
2569 best_linetable = l;
2570 best_symtab = s;
2571 }
2572 }
2573 }
2574 }
2575 done:
2576 if (best_index < 0)
2577 return NULL;
2578
2579 if (index)
2580 *index = best_index;
2581 if (exact_match)
2582 *exact_match = exact;
2583
2584 return best_symtab;
2585 }
2586
2587 /* Given SYMTAB, returns all the PCs function in the symtab that
2588 exactly match LINE. Returns NULL if there are no exact matches,
2589 but updates BEST_ITEM in this case. */
2590
2591 VEC (CORE_ADDR) *
2592 find_pcs_for_symtab_line (struct symtab *symtab, int line,
2593 struct linetable_entry **best_item)
2594 {
2595 int start = 0;
2596 VEC (CORE_ADDR) *result = NULL;
2597
2598 /* First, collect all the PCs that are at this line. */
2599 while (1)
2600 {
2601 int was_exact;
2602 int idx;
2603
2604 idx = find_line_common (LINETABLE (symtab), line, &was_exact, start);
2605 if (idx < 0)
2606 break;
2607
2608 if (!was_exact)
2609 {
2610 struct linetable_entry *item = &LINETABLE (symtab)->item[idx];
2611
2612 if (*best_item == NULL || item->line < (*best_item)->line)
2613 *best_item = item;
2614
2615 break;
2616 }
2617
2618 VEC_safe_push (CORE_ADDR, result, LINETABLE (symtab)->item[idx].pc);
2619 start = idx + 1;
2620 }
2621
2622 return result;
2623 }
2624
2625 \f
2626 /* Set the PC value for a given source file and line number and return true.
2627 Returns zero for invalid line number (and sets the PC to 0).
2628 The source file is specified with a struct symtab. */
2629
2630 int
2631 find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
2632 {
2633 struct linetable *l;
2634 int ind;
2635
2636 *pc = 0;
2637 if (symtab == 0)
2638 return 0;
2639
2640 symtab = find_line_symtab (symtab, line, &ind, NULL);
2641 if (symtab != NULL)
2642 {
2643 l = LINETABLE (symtab);
2644 *pc = l->item[ind].pc;
2645 return 1;
2646 }
2647 else
2648 return 0;
2649 }
2650
2651 /* Find the range of pc values in a line.
2652 Store the starting pc of the line into *STARTPTR
2653 and the ending pc (start of next line) into *ENDPTR.
2654 Returns 1 to indicate success.
2655 Returns 0 if could not find the specified line. */
2656
2657 int
2658 find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
2659 CORE_ADDR *endptr)
2660 {
2661 CORE_ADDR startaddr;
2662 struct symtab_and_line found_sal;
2663
2664 startaddr = sal.pc;
2665 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
2666 return 0;
2667
2668 /* This whole function is based on address. For example, if line 10 has
2669 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
2670 "info line *0x123" should say the line goes from 0x100 to 0x200
2671 and "info line *0x355" should say the line goes from 0x300 to 0x400.
2672 This also insures that we never give a range like "starts at 0x134
2673 and ends at 0x12c". */
2674
2675 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
2676 if (found_sal.line != sal.line)
2677 {
2678 /* The specified line (sal) has zero bytes. */
2679 *startptr = found_sal.pc;
2680 *endptr = found_sal.pc;
2681 }
2682 else
2683 {
2684 *startptr = found_sal.pc;
2685 *endptr = found_sal.end;
2686 }
2687 return 1;
2688 }
2689
2690 /* Given a line table and a line number, return the index into the line
2691 table for the pc of the nearest line whose number is >= the specified one.
2692 Return -1 if none is found. The value is >= 0 if it is an index.
2693 START is the index at which to start searching the line table.
2694
2695 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
2696
2697 static int
2698 find_line_common (struct linetable *l, int lineno,
2699 int *exact_match, int start)
2700 {
2701 int i;
2702 int len;
2703
2704 /* BEST is the smallest linenumber > LINENO so far seen,
2705 or 0 if none has been seen so far.
2706 BEST_INDEX identifies the item for it. */
2707
2708 int best_index = -1;
2709 int best = 0;
2710
2711 *exact_match = 0;
2712
2713 if (lineno <= 0)
2714 return -1;
2715 if (l == 0)
2716 return -1;
2717
2718 len = l->nitems;
2719 for (i = start; i < len; i++)
2720 {
2721 struct linetable_entry *item = &(l->item[i]);
2722
2723 if (item->line == lineno)
2724 {
2725 /* Return the first (lowest address) entry which matches. */
2726 *exact_match = 1;
2727 return i;
2728 }
2729
2730 if (item->line > lineno && (best == 0 || item->line < best))
2731 {
2732 best = item->line;
2733 best_index = i;
2734 }
2735 }
2736
2737 /* If we got here, we didn't get an exact match. */
2738 return best_index;
2739 }
2740
2741 int
2742 find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
2743 {
2744 struct symtab_and_line sal;
2745
2746 sal = find_pc_line (pc, 0);
2747 *startptr = sal.pc;
2748 *endptr = sal.end;
2749 return sal.symtab != 0;
2750 }
2751
2752 /* Given a function start address FUNC_ADDR and SYMTAB, find the first
2753 address for that function that has an entry in SYMTAB's line info
2754 table. If such an entry cannot be found, return FUNC_ADDR
2755 unaltered. */
2756
2757 static CORE_ADDR
2758 skip_prologue_using_lineinfo (CORE_ADDR func_addr, struct symtab *symtab)
2759 {
2760 CORE_ADDR func_start, func_end;
2761 struct linetable *l;
2762 int i;
2763
2764 /* Give up if this symbol has no lineinfo table. */
2765 l = LINETABLE (symtab);
2766 if (l == NULL)
2767 return func_addr;
2768
2769 /* Get the range for the function's PC values, or give up if we
2770 cannot, for some reason. */
2771 if (!find_pc_partial_function (func_addr, NULL, &func_start, &func_end))
2772 return func_addr;
2773
2774 /* Linetable entries are ordered by PC values, see the commentary in
2775 symtab.h where `struct linetable' is defined. Thus, the first
2776 entry whose PC is in the range [FUNC_START..FUNC_END[ is the
2777 address we are looking for. */
2778 for (i = 0; i < l->nitems; i++)
2779 {
2780 struct linetable_entry *item = &(l->item[i]);
2781
2782 /* Don't use line numbers of zero, they mark special entries in
2783 the table. See the commentary on symtab.h before the
2784 definition of struct linetable. */
2785 if (item->line > 0 && func_start <= item->pc && item->pc < func_end)
2786 return item->pc;
2787 }
2788
2789 return func_addr;
2790 }
2791
2792 /* Given a function symbol SYM, find the symtab and line for the start
2793 of the function.
2794 If the argument FUNFIRSTLINE is nonzero, we want the first line
2795 of real code inside the function. */
2796
2797 struct symtab_and_line
2798 find_function_start_sal (struct symbol *sym, int funfirstline)
2799 {
2800 struct symtab_and_line sal;
2801
2802 fixup_symbol_section (sym, NULL);
2803 sal = find_pc_sect_line (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)),
2804 SYMBOL_OBJ_SECTION (sym), 0);
2805
2806 /* We always should have a line for the function start address.
2807 If we don't, something is odd. Create a plain SAL refering
2808 just the PC and hope that skip_prologue_sal (if requested)
2809 can find a line number for after the prologue. */
2810 if (sal.pc < BLOCK_START (SYMBOL_BLOCK_VALUE (sym)))
2811 {
2812 init_sal (&sal);
2813 sal.pspace = current_program_space;
2814 sal.pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
2815 sal.section = SYMBOL_OBJ_SECTION (sym);
2816 }
2817
2818 if (funfirstline)
2819 skip_prologue_sal (&sal);
2820
2821 return sal;
2822 }
2823
2824 /* Adjust SAL to the first instruction past the function prologue.
2825 If the PC was explicitly specified, the SAL is not changed.
2826 If the line number was explicitly specified, at most the SAL's PC
2827 is updated. If SAL is already past the prologue, then do nothing. */
2828
2829 void
2830 skip_prologue_sal (struct symtab_and_line *sal)
2831 {
2832 struct symbol *sym;
2833 struct symtab_and_line start_sal;
2834 struct cleanup *old_chain;
2835 CORE_ADDR pc, saved_pc;
2836 struct obj_section *section;
2837 const char *name;
2838 struct objfile *objfile;
2839 struct gdbarch *gdbarch;
2840 struct block *b, *function_block;
2841 int force_skip, skip;
2842
2843 /* Do not change the SAL if PC was specified explicitly. */
2844 if (sal->explicit_pc)
2845 return;
2846
2847 old_chain = save_current_space_and_thread ();
2848 switch_to_program_space_and_thread (sal->pspace);
2849
2850 sym = find_pc_sect_function (sal->pc, sal->section);
2851 if (sym != NULL)
2852 {
2853 fixup_symbol_section (sym, NULL);
2854
2855 pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
2856 section = SYMBOL_OBJ_SECTION (sym);
2857 name = SYMBOL_LINKAGE_NAME (sym);
2858 objfile = SYMBOL_SYMTAB (sym)->objfile;
2859 }
2860 else
2861 {
2862 struct minimal_symbol *msymbol
2863 = lookup_minimal_symbol_by_pc_section (sal->pc, sal->section);
2864
2865 if (msymbol == NULL)
2866 {
2867 do_cleanups (old_chain);
2868 return;
2869 }
2870
2871 pc = SYMBOL_VALUE_ADDRESS (msymbol);
2872 section = SYMBOL_OBJ_SECTION (msymbol);
2873 name = SYMBOL_LINKAGE_NAME (msymbol);
2874 objfile = msymbol_objfile (msymbol);
2875 }
2876
2877 gdbarch = get_objfile_arch (objfile);
2878
2879 /* Process the prologue in two passes. In the first pass try to skip the
2880 prologue (SKIP is true) and verify there is a real need for it (indicated
2881 by FORCE_SKIP). If no such reason was found run a second pass where the
2882 prologue is not skipped (SKIP is false). */
2883
2884 skip = 1;
2885 force_skip = 1;
2886
2887 /* Be conservative - allow direct PC (without skipping prologue) only if we
2888 have proven the CU (Compilation Unit) supports it. sal->SYMTAB does not
2889 have to be set by the caller so we use SYM instead. */
2890 if (sym && SYMBOL_SYMTAB (sym)->locations_valid)
2891 force_skip = 0;
2892
2893 saved_pc = pc;
2894 do
2895 {
2896 pc = saved_pc;
2897
2898 /* If the function is in an unmapped overlay, use its unmapped LMA address,
2899 so that gdbarch_skip_prologue has something unique to work on. */
2900 if (section_is_overlay (section) && !section_is_mapped (section))
2901 pc = overlay_unmapped_address (pc, section);
2902
2903 /* Skip "first line" of function (which is actually its prologue). */
2904 pc += gdbarch_deprecated_function_start_offset (gdbarch);
2905 if (skip)
2906 pc = gdbarch_skip_prologue (gdbarch, pc);
2907
2908 /* For overlays, map pc back into its mapped VMA range. */
2909 pc = overlay_mapped_address (pc, section);
2910
2911 /* Calculate line number. */
2912 start_sal = find_pc_sect_line (pc, section, 0);
2913
2914 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
2915 line is still part of the same function. */
2916 if (skip && start_sal.pc != pc
2917 && (sym ? (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) <= start_sal.end
2918 && start_sal.end < BLOCK_END (SYMBOL_BLOCK_VALUE (sym)))
2919 : (lookup_minimal_symbol_by_pc_section (start_sal.end, section)
2920 == lookup_minimal_symbol_by_pc_section (pc, section))))
2921 {
2922 /* First pc of next line */
2923 pc = start_sal.end;
2924 /* Recalculate the line number (might not be N+1). */
2925 start_sal = find_pc_sect_line (pc, section, 0);
2926 }
2927
2928 /* On targets with executable formats that don't have a concept of
2929 constructors (ELF with .init has, PE doesn't), gcc emits a call
2930 to `__main' in `main' between the prologue and before user
2931 code. */
2932 if (gdbarch_skip_main_prologue_p (gdbarch)
2933 && name && strcmp_iw (name, "main") == 0)
2934 {
2935 pc = gdbarch_skip_main_prologue (gdbarch, pc);
2936 /* Recalculate the line number (might not be N+1). */
2937 start_sal = find_pc_sect_line (pc, section, 0);
2938 force_skip = 1;
2939 }
2940 }
2941 while (!force_skip && skip--);
2942
2943 /* If we still don't have a valid source line, try to find the first
2944 PC in the lineinfo table that belongs to the same function. This
2945 happens with COFF debug info, which does not seem to have an
2946 entry in lineinfo table for the code after the prologue which has
2947 no direct relation to source. For example, this was found to be
2948 the case with the DJGPP target using "gcc -gcoff" when the
2949 compiler inserted code after the prologue to make sure the stack
2950 is aligned. */
2951 if (!force_skip && sym && start_sal.symtab == NULL)
2952 {
2953 pc = skip_prologue_using_lineinfo (pc, SYMBOL_SYMTAB (sym));
2954 /* Recalculate the line number. */
2955 start_sal = find_pc_sect_line (pc, section, 0);
2956 }
2957
2958 do_cleanups (old_chain);
2959
2960 /* If we're already past the prologue, leave SAL unchanged. Otherwise
2961 forward SAL to the end of the prologue. */
2962 if (sal->pc >= pc)
2963 return;
2964
2965 sal->pc = pc;
2966 sal->section = section;
2967
2968 /* Unless the explicit_line flag was set, update the SAL line
2969 and symtab to correspond to the modified PC location. */
2970 if (sal->explicit_line)
2971 return;
2972
2973 sal->symtab = start_sal.symtab;
2974 sal->line = start_sal.line;
2975 sal->end = start_sal.end;
2976
2977 /* Check if we are now inside an inlined function. If we can,
2978 use the call site of the function instead. */
2979 b = block_for_pc_sect (sal->pc, sal->section);
2980 function_block = NULL;
2981 while (b != NULL)
2982 {
2983 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
2984 function_block = b;
2985 else if (BLOCK_FUNCTION (b) != NULL)
2986 break;
2987 b = BLOCK_SUPERBLOCK (b);
2988 }
2989 if (function_block != NULL
2990 && SYMBOL_LINE (BLOCK_FUNCTION (function_block)) != 0)
2991 {
2992 sal->line = SYMBOL_LINE (BLOCK_FUNCTION (function_block));
2993 sal->symtab = SYMBOL_SYMTAB (BLOCK_FUNCTION (function_block));
2994 }
2995 }
2996
2997 /* If P is of the form "operator[ \t]+..." where `...' is
2998 some legitimate operator text, return a pointer to the
2999 beginning of the substring of the operator text.
3000 Otherwise, return "". */
3001
3002 static char *
3003 operator_chars (char *p, char **end)
3004 {
3005 *end = "";
3006 if (strncmp (p, "operator", 8))
3007 return *end;
3008 p += 8;
3009
3010 /* Don't get faked out by `operator' being part of a longer
3011 identifier. */
3012 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
3013 return *end;
3014
3015 /* Allow some whitespace between `operator' and the operator symbol. */
3016 while (*p == ' ' || *p == '\t')
3017 p++;
3018
3019 /* Recognize 'operator TYPENAME'. */
3020
3021 if (isalpha (*p) || *p == '_' || *p == '$')
3022 {
3023 char *q = p + 1;
3024
3025 while (isalnum (*q) || *q == '_' || *q == '$')
3026 q++;
3027 *end = q;
3028 return p;
3029 }
3030
3031 while (*p)
3032 switch (*p)
3033 {
3034 case '\\': /* regexp quoting */
3035 if (p[1] == '*')
3036 {
3037 if (p[2] == '=') /* 'operator\*=' */
3038 *end = p + 3;
3039 else /* 'operator\*' */
3040 *end = p + 2;
3041 return p;
3042 }
3043 else if (p[1] == '[')
3044 {
3045 if (p[2] == ']')
3046 error (_("mismatched quoting on brackets, "
3047 "try 'operator\\[\\]'"));
3048 else if (p[2] == '\\' && p[3] == ']')
3049 {
3050 *end = p + 4; /* 'operator\[\]' */
3051 return p;
3052 }
3053 else
3054 error (_("nothing is allowed between '[' and ']'"));
3055 }
3056 else
3057 {
3058 /* Gratuitous qoute: skip it and move on. */
3059 p++;
3060 continue;
3061 }
3062 break;
3063 case '!':
3064 case '=':
3065 case '*':
3066 case '/':
3067 case '%':
3068 case '^':
3069 if (p[1] == '=')
3070 *end = p + 2;
3071 else
3072 *end = p + 1;
3073 return p;
3074 case '<':
3075 case '>':
3076 case '+':
3077 case '-':
3078 case '&':
3079 case '|':
3080 if (p[0] == '-' && p[1] == '>')
3081 {
3082 /* Struct pointer member operator 'operator->'. */
3083 if (p[2] == '*')
3084 {
3085 *end = p + 3; /* 'operator->*' */
3086 return p;
3087 }
3088 else if (p[2] == '\\')
3089 {
3090 *end = p + 4; /* Hopefully 'operator->\*' */
3091 return p;
3092 }
3093 else
3094 {
3095 *end = p + 2; /* 'operator->' */
3096 return p;
3097 }
3098 }
3099 if (p[1] == '=' || p[1] == p[0])
3100 *end = p + 2;
3101 else
3102 *end = p + 1;
3103 return p;
3104 case '~':
3105 case ',':
3106 *end = p + 1;
3107 return p;
3108 case '(':
3109 if (p[1] != ')')
3110 error (_("`operator ()' must be specified "
3111 "without whitespace in `()'"));
3112 *end = p + 2;
3113 return p;
3114 case '?':
3115 if (p[1] != ':')
3116 error (_("`operator ?:' must be specified "
3117 "without whitespace in `?:'"));
3118 *end = p + 2;
3119 return p;
3120 case '[':
3121 if (p[1] != ']')
3122 error (_("`operator []' must be specified "
3123 "without whitespace in `[]'"));
3124 *end = p + 2;
3125 return p;
3126 default:
3127 error (_("`operator %s' not supported"), p);
3128 break;
3129 }
3130
3131 *end = "";
3132 return *end;
3133 }
3134 \f
3135
3136 /* Cache to watch for file names already seen by filename_seen. */
3137
3138 struct filename_seen_cache
3139 {
3140 /* Table of files seen so far. */
3141 htab_t tab;
3142 /* Initial size of the table. It automagically grows from here. */
3143 #define INITIAL_FILENAME_SEEN_CACHE_SIZE 100
3144 };
3145
3146 /* filename_seen_cache constructor. */
3147
3148 static struct filename_seen_cache *
3149 create_filename_seen_cache (void)
3150 {
3151 struct filename_seen_cache *cache;
3152
3153 cache = XNEW (struct filename_seen_cache);
3154 cache->tab = htab_create_alloc (INITIAL_FILENAME_SEEN_CACHE_SIZE,
3155 filename_hash, filename_eq,
3156 NULL, xcalloc, xfree);
3157
3158 return cache;
3159 }
3160
3161 /* Empty the cache, but do not delete it. */
3162
3163 static void
3164 clear_filename_seen_cache (struct filename_seen_cache *cache)
3165 {
3166 htab_empty (cache->tab);
3167 }
3168
3169 /* filename_seen_cache destructor.
3170 This takes a void * argument as it is generally used as a cleanup. */
3171
3172 static void
3173 delete_filename_seen_cache (void *ptr)
3174 {
3175 struct filename_seen_cache *cache = ptr;
3176
3177 htab_delete (cache->tab);
3178 xfree (cache);
3179 }
3180
3181 /* If FILE is not already in the table of files in CACHE, return zero;
3182 otherwise return non-zero. Optionally add FILE to the table if ADD
3183 is non-zero.
3184
3185 NOTE: We don't manage space for FILE, we assume FILE lives as long
3186 as the caller needs. */
3187
3188 static int
3189 filename_seen (struct filename_seen_cache *cache, const char *file, int add)
3190 {
3191 void **slot;
3192
3193 /* Is FILE in tab? */
3194 slot = htab_find_slot (cache->tab, file, add ? INSERT : NO_INSERT);
3195 if (*slot != NULL)
3196 return 1;
3197
3198 /* No; maybe add it to tab. */
3199 if (add)
3200 *slot = (char *) file;
3201
3202 return 0;
3203 }
3204
3205 /* Data structure to maintain printing state for output_source_filename. */
3206
3207 struct output_source_filename_data
3208 {
3209 /* Cache of what we've seen so far. */
3210 struct filename_seen_cache *filename_seen_cache;
3211
3212 /* Flag of whether we're printing the first one. */
3213 int first;
3214 };
3215
3216 /* Slave routine for sources_info. Force line breaks at ,'s.
3217 NAME is the name to print.
3218 DATA contains the state for printing and watching for duplicates. */
3219
3220 static void
3221 output_source_filename (const char *name,
3222 struct output_source_filename_data *data)
3223 {
3224 /* Since a single source file can result in several partial symbol
3225 tables, we need to avoid printing it more than once. Note: if
3226 some of the psymtabs are read in and some are not, it gets
3227 printed both under "Source files for which symbols have been
3228 read" and "Source files for which symbols will be read in on
3229 demand". I consider this a reasonable way to deal with the
3230 situation. I'm not sure whether this can also happen for
3231 symtabs; it doesn't hurt to check. */
3232
3233 /* Was NAME already seen? */
3234 if (filename_seen (data->filename_seen_cache, name, 1))
3235 {
3236 /* Yes; don't print it again. */
3237 return;
3238 }
3239
3240 /* No; print it and reset *FIRST. */
3241 if (! data->first)
3242 printf_filtered (", ");
3243 data->first = 0;
3244
3245 wrap_here ("");
3246 fputs_filtered (name, gdb_stdout);
3247 }
3248
3249 /* A callback for map_partial_symbol_filenames. */
3250
3251 static void
3252 output_partial_symbol_filename (const char *filename, const char *fullname,
3253 void *data)
3254 {
3255 output_source_filename (fullname ? fullname : filename, data);
3256 }
3257
3258 static void
3259 sources_info (char *ignore, int from_tty)
3260 {
3261 struct symtab *s;
3262 struct objfile *objfile;
3263 struct output_source_filename_data data;
3264 struct cleanup *cleanups;
3265
3266 if (!have_full_symbols () && !have_partial_symbols ())
3267 {
3268 error (_("No symbol table is loaded. Use the \"file\" command."));
3269 }
3270
3271 data.filename_seen_cache = create_filename_seen_cache ();
3272 cleanups = make_cleanup (delete_filename_seen_cache,
3273 data.filename_seen_cache);
3274
3275 printf_filtered ("Source files for which symbols have been read in:\n\n");
3276
3277 data.first = 1;
3278 ALL_SYMTABS (objfile, s)
3279 {
3280 const char *fullname = symtab_to_fullname (s);
3281
3282 output_source_filename (fullname, &data);
3283 }
3284 printf_filtered ("\n\n");
3285
3286 printf_filtered ("Source files for which symbols "
3287 "will be read in on demand:\n\n");
3288
3289 clear_filename_seen_cache (data.filename_seen_cache);
3290 data.first = 1;
3291 map_partial_symbol_filenames (output_partial_symbol_filename, &data,
3292 1 /*need_fullname*/);
3293 printf_filtered ("\n");
3294
3295 do_cleanups (cleanups);
3296 }
3297
3298 static int
3299 file_matches (const char *file, char *files[], int nfiles)
3300 {
3301 int i;
3302
3303 if (file != NULL && nfiles != 0)
3304 {
3305 for (i = 0; i < nfiles; i++)
3306 {
3307 if (filename_cmp (files[i], lbasename (file)) == 0)
3308 return 1;
3309 }
3310 }
3311 else if (nfiles == 0)
3312 return 1;
3313 return 0;
3314 }
3315
3316 /* Free any memory associated with a search. */
3317
3318 void
3319 free_search_symbols (struct symbol_search *symbols)
3320 {
3321 struct symbol_search *p;
3322 struct symbol_search *next;
3323
3324 for (p = symbols; p != NULL; p = next)
3325 {
3326 next = p->next;
3327 xfree (p);
3328 }
3329 }
3330
3331 static void
3332 do_free_search_symbols_cleanup (void *symbols)
3333 {
3334 free_search_symbols (symbols);
3335 }
3336
3337 struct cleanup *
3338 make_cleanup_free_search_symbols (struct symbol_search *symbols)
3339 {
3340 return make_cleanup (do_free_search_symbols_cleanup, symbols);
3341 }
3342
3343 /* Helper function for sort_search_symbols and qsort. Can only
3344 sort symbols, not minimal symbols. */
3345
3346 static int
3347 compare_search_syms (const void *sa, const void *sb)
3348 {
3349 struct symbol_search **sym_a = (struct symbol_search **) sa;
3350 struct symbol_search **sym_b = (struct symbol_search **) sb;
3351
3352 return strcmp (SYMBOL_PRINT_NAME ((*sym_a)->symbol),
3353 SYMBOL_PRINT_NAME ((*sym_b)->symbol));
3354 }
3355
3356 /* Sort the ``nfound'' symbols in the list after prevtail. Leave
3357 prevtail where it is, but update its next pointer to point to
3358 the first of the sorted symbols. */
3359
3360 static struct symbol_search *
3361 sort_search_symbols (struct symbol_search *prevtail, int nfound)
3362 {
3363 struct symbol_search **symbols, *symp, *old_next;
3364 int i;
3365
3366 symbols = (struct symbol_search **) xmalloc (sizeof (struct symbol_search *)
3367 * nfound);
3368 symp = prevtail->next;
3369 for (i = 0; i < nfound; i++)
3370 {
3371 symbols[i] = symp;
3372 symp = symp->next;
3373 }
3374 /* Generally NULL. */
3375 old_next = symp;
3376
3377 qsort (symbols, nfound, sizeof (struct symbol_search *),
3378 compare_search_syms);
3379
3380 symp = prevtail;
3381 for (i = 0; i < nfound; i++)
3382 {
3383 symp->next = symbols[i];
3384 symp = symp->next;
3385 }
3386 symp->next = old_next;
3387
3388 xfree (symbols);
3389 return symp;
3390 }
3391
3392 /* An object of this type is passed as the user_data to the
3393 expand_symtabs_matching method. */
3394 struct search_symbols_data
3395 {
3396 int nfiles;
3397 char **files;
3398
3399 /* It is true if PREG contains valid data, false otherwise. */
3400 unsigned preg_p : 1;
3401 regex_t preg;
3402 };
3403
3404 /* A callback for expand_symtabs_matching. */
3405
3406 static int
3407 search_symbols_file_matches (const char *filename, void *user_data)
3408 {
3409 struct search_symbols_data *data = user_data;
3410
3411 return file_matches (filename, data->files, data->nfiles);
3412 }
3413
3414 /* A callback for expand_symtabs_matching. */
3415
3416 static int
3417 search_symbols_name_matches (const char *symname, void *user_data)
3418 {
3419 struct search_symbols_data *data = user_data;
3420
3421 return !data->preg_p || regexec (&data->preg, symname, 0, NULL, 0) == 0;
3422 }
3423
3424 /* Search the symbol table for matches to the regular expression REGEXP,
3425 returning the results in *MATCHES.
3426
3427 Only symbols of KIND are searched:
3428 VARIABLES_DOMAIN - search all symbols, excluding functions, type names,
3429 and constants (enums)
3430 FUNCTIONS_DOMAIN - search all functions
3431 TYPES_DOMAIN - search all type names
3432 ALL_DOMAIN - an internal error for this function
3433
3434 free_search_symbols should be called when *MATCHES is no longer needed.
3435
3436 The results are sorted locally; each symtab's global and static blocks are
3437 separately alphabetized. */
3438
3439 void
3440 search_symbols (char *regexp, enum search_domain kind,
3441 int nfiles, char *files[],
3442 struct symbol_search **matches)
3443 {
3444 struct symtab *s;
3445 struct blockvector *bv;
3446 struct block *b;
3447 int i = 0;
3448 struct block_iterator iter;
3449 struct symbol *sym;
3450 struct objfile *objfile;
3451 struct minimal_symbol *msymbol;
3452 int found_misc = 0;
3453 static const enum minimal_symbol_type types[]
3454 = {mst_data, mst_text, mst_abs};
3455 static const enum minimal_symbol_type types2[]
3456 = {mst_bss, mst_file_text, mst_abs};
3457 static const enum minimal_symbol_type types3[]
3458 = {mst_file_data, mst_solib_trampoline, mst_abs};
3459 static const enum minimal_symbol_type types4[]
3460 = {mst_file_bss, mst_text_gnu_ifunc, mst_abs};
3461 enum minimal_symbol_type ourtype;
3462 enum minimal_symbol_type ourtype2;
3463 enum minimal_symbol_type ourtype3;
3464 enum minimal_symbol_type ourtype4;
3465 struct symbol_search *sr;
3466 struct symbol_search *psr;
3467 struct symbol_search *tail;
3468 struct search_symbols_data datum;
3469
3470 /* OLD_CHAIN .. RETVAL_CHAIN is always freed, RETVAL_CHAIN .. current
3471 CLEANUP_CHAIN is freed only in the case of an error. */
3472 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
3473 struct cleanup *retval_chain;
3474
3475 gdb_assert (kind <= TYPES_DOMAIN);
3476
3477 ourtype = types[kind];
3478 ourtype2 = types2[kind];
3479 ourtype3 = types3[kind];
3480 ourtype4 = types4[kind];
3481
3482 sr = *matches = NULL;
3483 tail = NULL;
3484 datum.preg_p = 0;
3485
3486 if (regexp != NULL)
3487 {
3488 /* Make sure spacing is right for C++ operators.
3489 This is just a courtesy to make the matching less sensitive
3490 to how many spaces the user leaves between 'operator'
3491 and <TYPENAME> or <OPERATOR>. */
3492 char *opend;
3493 char *opname = operator_chars (regexp, &opend);
3494 int errcode;
3495
3496 if (*opname)
3497 {
3498 int fix = -1; /* -1 means ok; otherwise number of
3499 spaces needed. */
3500
3501 if (isalpha (*opname) || *opname == '_' || *opname == '$')
3502 {
3503 /* There should 1 space between 'operator' and 'TYPENAME'. */
3504 if (opname[-1] != ' ' || opname[-2] == ' ')
3505 fix = 1;
3506 }
3507 else
3508 {
3509 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
3510 if (opname[-1] == ' ')
3511 fix = 0;
3512 }
3513 /* If wrong number of spaces, fix it. */
3514 if (fix >= 0)
3515 {
3516 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
3517
3518 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
3519 regexp = tmp;
3520 }
3521 }
3522
3523 errcode = regcomp (&datum.preg, regexp,
3524 REG_NOSUB | (case_sensitivity == case_sensitive_off
3525 ? REG_ICASE : 0));
3526 if (errcode != 0)
3527 {
3528 char *err = get_regcomp_error (errcode, &datum.preg);
3529
3530 make_cleanup (xfree, err);
3531 error (_("Invalid regexp (%s): %s"), err, regexp);
3532 }
3533 datum.preg_p = 1;
3534 make_regfree_cleanup (&datum.preg);
3535 }
3536
3537 /* Search through the partial symtabs *first* for all symbols
3538 matching the regexp. That way we don't have to reproduce all of
3539 the machinery below. */
3540
3541 datum.nfiles = nfiles;
3542 datum.files = files;
3543 ALL_OBJFILES (objfile)
3544 {
3545 if (objfile->sf)
3546 objfile->sf->qf->expand_symtabs_matching (objfile,
3547 (nfiles == 0
3548 ? NULL
3549 : search_symbols_file_matches),
3550 search_symbols_name_matches,
3551 kind,
3552 &datum);
3553 }
3554
3555 retval_chain = old_chain;
3556
3557 /* Here, we search through the minimal symbol tables for functions
3558 and variables that match, and force their symbols to be read.
3559 This is in particular necessary for demangled variable names,
3560 which are no longer put into the partial symbol tables.
3561 The symbol will then be found during the scan of symtabs below.
3562
3563 For functions, find_pc_symtab should succeed if we have debug info
3564 for the function, for variables we have to call
3565 lookup_symbol_in_objfile_from_linkage_name to determine if the variable
3566 has debug info.
3567 If the lookup fails, set found_misc so that we will rescan to print
3568 any matching symbols without debug info.
3569 We only search the objfile the msymbol came from, we no longer search
3570 all objfiles. In large programs (1000s of shared libs) searching all
3571 objfiles is not worth the pain. */
3572
3573 if (nfiles == 0 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
3574 {
3575 ALL_MSYMBOLS (objfile, msymbol)
3576 {
3577 QUIT;
3578
3579 if (msymbol->created_by_gdb)
3580 continue;
3581
3582 if (MSYMBOL_TYPE (msymbol) == ourtype
3583 || MSYMBOL_TYPE (msymbol) == ourtype2
3584 || MSYMBOL_TYPE (msymbol) == ourtype3
3585 || MSYMBOL_TYPE (msymbol) == ourtype4)
3586 {
3587 if (!datum.preg_p
3588 || regexec (&datum.preg, SYMBOL_NATURAL_NAME (msymbol), 0,
3589 NULL, 0) == 0)
3590 {
3591 /* Note: An important side-effect of these lookup functions
3592 is to expand the symbol table if msymbol is found, for the
3593 benefit of the next loop on ALL_PRIMARY_SYMTABS. */
3594 if (kind == FUNCTIONS_DOMAIN
3595 ? find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol)) == NULL
3596 : (lookup_symbol_in_objfile_from_linkage_name
3597 (objfile, SYMBOL_LINKAGE_NAME (msymbol), VAR_DOMAIN)
3598 == NULL))
3599 found_misc = 1;
3600 }
3601 }
3602 }
3603 }
3604
3605 ALL_PRIMARY_SYMTABS (objfile, s)
3606 {
3607 bv = BLOCKVECTOR (s);
3608 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
3609 {
3610 struct symbol_search *prevtail = tail;
3611 int nfound = 0;
3612
3613 b = BLOCKVECTOR_BLOCK (bv, i);
3614 ALL_BLOCK_SYMBOLS (b, iter, sym)
3615 {
3616 struct symtab *real_symtab = SYMBOL_SYMTAB (sym);
3617
3618 QUIT;
3619
3620 if (file_matches (real_symtab->filename, files, nfiles)
3621 && ((!datum.preg_p
3622 || regexec (&datum.preg, SYMBOL_NATURAL_NAME (sym), 0,
3623 NULL, 0) == 0)
3624 && ((kind == VARIABLES_DOMAIN
3625 && SYMBOL_CLASS (sym) != LOC_TYPEDEF
3626 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
3627 && SYMBOL_CLASS (sym) != LOC_BLOCK
3628 /* LOC_CONST can be used for more than just enums,
3629 e.g., c++ static const members.
3630 We only want to skip enums here. */
3631 && !(SYMBOL_CLASS (sym) == LOC_CONST
3632 && TYPE_CODE (SYMBOL_TYPE (sym))
3633 == TYPE_CODE_ENUM))
3634 || (kind == FUNCTIONS_DOMAIN
3635 && SYMBOL_CLASS (sym) == LOC_BLOCK)
3636 || (kind == TYPES_DOMAIN
3637 && SYMBOL_CLASS (sym) == LOC_TYPEDEF))))
3638 {
3639 /* match */
3640 psr = (struct symbol_search *)
3641 xmalloc (sizeof (struct symbol_search));
3642 psr->block = i;
3643 psr->symtab = real_symtab;
3644 psr->symbol = sym;
3645 psr->msymbol = NULL;
3646 psr->next = NULL;
3647 if (tail == NULL)
3648 sr = psr;
3649 else
3650 tail->next = psr;
3651 tail = psr;
3652 nfound ++;
3653 }
3654 }
3655 if (nfound > 0)
3656 {
3657 if (prevtail == NULL)
3658 {
3659 struct symbol_search dummy;
3660
3661 dummy.next = sr;
3662 tail = sort_search_symbols (&dummy, nfound);
3663 sr = dummy.next;
3664
3665 make_cleanup_free_search_symbols (sr);
3666 }
3667 else
3668 tail = sort_search_symbols (prevtail, nfound);
3669 }
3670 }
3671 }
3672
3673 /* If there are no eyes, avoid all contact. I mean, if there are
3674 no debug symbols, then print directly from the msymbol_vector. */
3675
3676 if (found_misc || (nfiles == 0 && kind != FUNCTIONS_DOMAIN))
3677 {
3678 ALL_MSYMBOLS (objfile, msymbol)
3679 {
3680 QUIT;
3681
3682 if (msymbol->created_by_gdb)
3683 continue;
3684
3685 if (MSYMBOL_TYPE (msymbol) == ourtype
3686 || MSYMBOL_TYPE (msymbol) == ourtype2
3687 || MSYMBOL_TYPE (msymbol) == ourtype3
3688 || MSYMBOL_TYPE (msymbol) == ourtype4)
3689 {
3690 if (!datum.preg_p
3691 || regexec (&datum.preg, SYMBOL_NATURAL_NAME (msymbol), 0,
3692 NULL, 0) == 0)
3693 {
3694 /* For functions we can do a quick check of whether the
3695 symbol might be found via find_pc_symtab. */
3696 if (kind != FUNCTIONS_DOMAIN
3697 || find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol)) == NULL)
3698 {
3699 if (lookup_symbol_in_objfile_from_linkage_name
3700 (objfile, SYMBOL_LINKAGE_NAME (msymbol), VAR_DOMAIN)
3701 == NULL)
3702 {
3703 /* match */
3704 psr = (struct symbol_search *)
3705 xmalloc (sizeof (struct symbol_search));
3706 psr->block = i;
3707 psr->msymbol = msymbol;
3708 psr->symtab = NULL;
3709 psr->symbol = NULL;
3710 psr->next = NULL;
3711 if (tail == NULL)
3712 {
3713 sr = psr;
3714 make_cleanup_free_search_symbols (sr);
3715 }
3716 else
3717 tail->next = psr;
3718 tail = psr;
3719 }
3720 }
3721 }
3722 }
3723 }
3724 }
3725
3726 discard_cleanups (retval_chain);
3727 do_cleanups (old_chain);
3728 *matches = sr;
3729 }
3730
3731 /* Helper function for symtab_symbol_info, this function uses
3732 the data returned from search_symbols() to print information
3733 regarding the match to gdb_stdout. */
3734
3735 static void
3736 print_symbol_info (enum search_domain kind,
3737 struct symtab *s, struct symbol *sym,
3738 int block, char *last)
3739 {
3740 if (last == NULL || filename_cmp (last, s->filename) != 0)
3741 {
3742 fputs_filtered ("\nFile ", gdb_stdout);
3743 fputs_filtered (s->filename, gdb_stdout);
3744 fputs_filtered (":\n", gdb_stdout);
3745 }
3746
3747 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
3748 printf_filtered ("static ");
3749
3750 /* Typedef that is not a C++ class. */
3751 if (kind == TYPES_DOMAIN
3752 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
3753 typedef_print (SYMBOL_TYPE (sym), sym, gdb_stdout);
3754 /* variable, func, or typedef-that-is-c++-class. */
3755 else if (kind < TYPES_DOMAIN
3756 || (kind == TYPES_DOMAIN
3757 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
3758 {
3759 type_print (SYMBOL_TYPE (sym),
3760 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
3761 ? "" : SYMBOL_PRINT_NAME (sym)),
3762 gdb_stdout, 0);
3763
3764 printf_filtered (";\n");
3765 }
3766 }
3767
3768 /* This help function for symtab_symbol_info() prints information
3769 for non-debugging symbols to gdb_stdout. */
3770
3771 static void
3772 print_msymbol_info (struct minimal_symbol *msymbol)
3773 {
3774 struct gdbarch *gdbarch = get_objfile_arch (msymbol_objfile (msymbol));
3775 char *tmp;
3776
3777 if (gdbarch_addr_bit (gdbarch) <= 32)
3778 tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol)
3779 & (CORE_ADDR) 0xffffffff,
3780 8);
3781 else
3782 tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol),
3783 16);
3784 printf_filtered ("%s %s\n",
3785 tmp, SYMBOL_PRINT_NAME (msymbol));
3786 }
3787
3788 /* This is the guts of the commands "info functions", "info types", and
3789 "info variables". It calls search_symbols to find all matches and then
3790 print_[m]symbol_info to print out some useful information about the
3791 matches. */
3792
3793 static void
3794 symtab_symbol_info (char *regexp, enum search_domain kind, int from_tty)
3795 {
3796 static const char * const classnames[] =
3797 {"variable", "function", "type"};
3798 struct symbol_search *symbols;
3799 struct symbol_search *p;
3800 struct cleanup *old_chain;
3801 char *last_filename = NULL;
3802 int first = 1;
3803
3804 gdb_assert (kind <= TYPES_DOMAIN);
3805
3806 /* Must make sure that if we're interrupted, symbols gets freed. */
3807 search_symbols (regexp, kind, 0, (char **) NULL, &symbols);
3808 old_chain = make_cleanup_free_search_symbols (symbols);
3809
3810 if (regexp != NULL)
3811 printf_filtered (_("All %ss matching regular expression \"%s\":\n"),
3812 classnames[kind], regexp);
3813 else
3814 printf_filtered (_("All defined %ss:\n"), classnames[kind]);
3815
3816 for (p = symbols; p != NULL; p = p->next)
3817 {
3818 QUIT;
3819
3820 if (p->msymbol != NULL)
3821 {
3822 if (first)
3823 {
3824 printf_filtered (_("\nNon-debugging symbols:\n"));
3825 first = 0;
3826 }
3827 print_msymbol_info (p->msymbol);
3828 }
3829 else
3830 {
3831 print_symbol_info (kind,
3832 p->symtab,
3833 p->symbol,
3834 p->block,
3835 last_filename);
3836 last_filename = p->symtab->filename;
3837 }
3838 }
3839
3840 do_cleanups (old_chain);
3841 }
3842
3843 static void
3844 variables_info (char *regexp, int from_tty)
3845 {
3846 symtab_symbol_info (regexp, VARIABLES_DOMAIN, from_tty);
3847 }
3848
3849 static void
3850 functions_info (char *regexp, int from_tty)
3851 {
3852 symtab_symbol_info (regexp, FUNCTIONS_DOMAIN, from_tty);
3853 }
3854
3855
3856 static void
3857 types_info (char *regexp, int from_tty)
3858 {
3859 symtab_symbol_info (regexp, TYPES_DOMAIN, from_tty);
3860 }
3861
3862 /* Breakpoint all functions matching regular expression. */
3863
3864 void
3865 rbreak_command_wrapper (char *regexp, int from_tty)
3866 {
3867 rbreak_command (regexp, from_tty);
3868 }
3869
3870 /* A cleanup function that calls end_rbreak_breakpoints. */
3871
3872 static void
3873 do_end_rbreak_breakpoints (void *ignore)
3874 {
3875 end_rbreak_breakpoints ();
3876 }
3877
3878 static void
3879 rbreak_command (char *regexp, int from_tty)
3880 {
3881 struct symbol_search *ss;
3882 struct symbol_search *p;
3883 struct cleanup *old_chain;
3884 char *string = NULL;
3885 int len = 0;
3886 char **files = NULL, *file_name;
3887 int nfiles = 0;
3888
3889 if (regexp)
3890 {
3891 char *colon = strchr (regexp, ':');
3892
3893 if (colon && *(colon + 1) != ':')
3894 {
3895 int colon_index;
3896
3897 colon_index = colon - regexp;
3898 file_name = alloca (colon_index + 1);
3899 memcpy (file_name, regexp, colon_index);
3900 file_name[colon_index--] = 0;
3901 while (isspace (file_name[colon_index]))
3902 file_name[colon_index--] = 0;
3903 files = &file_name;
3904 nfiles = 1;
3905 regexp = colon + 1;
3906 while (isspace (*regexp)) regexp++;
3907 }
3908 }
3909
3910 search_symbols (regexp, FUNCTIONS_DOMAIN, nfiles, files, &ss);
3911 old_chain = make_cleanup_free_search_symbols (ss);
3912 make_cleanup (free_current_contents, &string);
3913
3914 start_rbreak_breakpoints ();
3915 make_cleanup (do_end_rbreak_breakpoints, NULL);
3916 for (p = ss; p != NULL; p = p->next)
3917 {
3918 if (p->msymbol == NULL)
3919 {
3920 int newlen = (strlen (p->symtab->filename)
3921 + strlen (SYMBOL_LINKAGE_NAME (p->symbol))
3922 + 4);
3923
3924 if (newlen > len)
3925 {
3926 string = xrealloc (string, newlen);
3927 len = newlen;
3928 }
3929 strcpy (string, p->symtab->filename);
3930 strcat (string, ":'");
3931 strcat (string, SYMBOL_LINKAGE_NAME (p->symbol));
3932 strcat (string, "'");
3933 break_command (string, from_tty);
3934 print_symbol_info (FUNCTIONS_DOMAIN,
3935 p->symtab,
3936 p->symbol,
3937 p->block,
3938 p->symtab->filename);
3939 }
3940 else
3941 {
3942 int newlen = (strlen (SYMBOL_LINKAGE_NAME (p->msymbol)) + 3);
3943
3944 if (newlen > len)
3945 {
3946 string = xrealloc (string, newlen);
3947 len = newlen;
3948 }
3949 strcpy (string, "'");
3950 strcat (string, SYMBOL_LINKAGE_NAME (p->msymbol));
3951 strcat (string, "'");
3952
3953 break_command (string, from_tty);
3954 printf_filtered ("<function, no debug info> %s;\n",
3955 SYMBOL_PRINT_NAME (p->msymbol));
3956 }
3957 }
3958
3959 do_cleanups (old_chain);
3960 }
3961 \f
3962
3963 /* Evaluate if NAME matches SYM_TEXT and SYM_TEXT_LEN.
3964
3965 Either sym_text[sym_text_len] != '(' and then we search for any
3966 symbol starting with SYM_TEXT text.
3967
3968 Otherwise sym_text[sym_text_len] == '(' and then we require symbol name to
3969 be terminated at that point. Partial symbol tables do not have parameters
3970 information. */
3971
3972 static int
3973 compare_symbol_name (const char *name, const char *sym_text, int sym_text_len)
3974 {
3975 int (*ncmp) (const char *, const char *, size_t);
3976
3977 ncmp = (case_sensitivity == case_sensitive_on ? strncmp : strncasecmp);
3978
3979 if (ncmp (name, sym_text, sym_text_len) != 0)
3980 return 0;
3981
3982 if (sym_text[sym_text_len] == '(')
3983 {
3984 /* User searches for `name(someth...'. Require NAME to be terminated.
3985 Normally psymtabs and gdbindex have no parameter types so '\0' will be
3986 present but accept even parameters presence. In this case this
3987 function is in fact strcmp_iw but whitespace skipping is not supported
3988 for tab completion. */
3989
3990 if (name[sym_text_len] != '\0' && name[sym_text_len] != '(')
3991 return 0;
3992 }
3993
3994 return 1;
3995 }
3996
3997 /* Free any memory associated with a completion list. */
3998
3999 static void
4000 free_completion_list (VEC (char_ptr) **list_ptr)
4001 {
4002 int i;
4003 char *p;
4004
4005 for (i = 0; VEC_iterate (char_ptr, *list_ptr, i, p); ++i)
4006 xfree (p);
4007 VEC_free (char_ptr, *list_ptr);
4008 }
4009
4010 /* Callback for make_cleanup. */
4011
4012 static void
4013 do_free_completion_list (void *list)
4014 {
4015 free_completion_list (list);
4016 }
4017
4018 /* Helper routine for make_symbol_completion_list. */
4019
4020 static VEC (char_ptr) *return_val;
4021
4022 #define COMPLETION_LIST_ADD_SYMBOL(symbol, sym_text, len, text, word) \
4023 completion_list_add_name \
4024 (SYMBOL_NATURAL_NAME (symbol), (sym_text), (len), (text), (word))
4025
4026 /* Test to see if the symbol specified by SYMNAME (which is already
4027 demangled for C++ symbols) matches SYM_TEXT in the first SYM_TEXT_LEN
4028 characters. If so, add it to the current completion list. */
4029
4030 static void
4031 completion_list_add_name (const char *symname,
4032 const char *sym_text, int sym_text_len,
4033 const char *text, const char *word)
4034 {
4035 /* Clip symbols that cannot match. */
4036 if (!compare_symbol_name (symname, sym_text, sym_text_len))
4037 return;
4038
4039 /* We have a match for a completion, so add SYMNAME to the current list
4040 of matches. Note that the name is moved to freshly malloc'd space. */
4041
4042 {
4043 char *new;
4044
4045 if (word == sym_text)
4046 {
4047 new = xmalloc (strlen (symname) + 5);
4048 strcpy (new, symname);
4049 }
4050 else if (word > sym_text)
4051 {
4052 /* Return some portion of symname. */
4053 new = xmalloc (strlen (symname) + 5);
4054 strcpy (new, symname + (word - sym_text));
4055 }
4056 else
4057 {
4058 /* Return some of SYM_TEXT plus symname. */
4059 new = xmalloc (strlen (symname) + (sym_text - word) + 5);
4060 strncpy (new, word, sym_text - word);
4061 new[sym_text - word] = '\0';
4062 strcat (new, symname);
4063 }
4064
4065 VEC_safe_push (char_ptr, return_val, new);
4066 }
4067 }
4068
4069 /* ObjC: In case we are completing on a selector, look as the msymbol
4070 again and feed all the selectors into the mill. */
4071
4072 static void
4073 completion_list_objc_symbol (struct minimal_symbol *msymbol,
4074 const char *sym_text, int sym_text_len,
4075 const char *text, const char *word)
4076 {
4077 static char *tmp = NULL;
4078 static unsigned int tmplen = 0;
4079
4080 const char *method, *category, *selector;
4081 char *tmp2 = NULL;
4082
4083 method = SYMBOL_NATURAL_NAME (msymbol);
4084
4085 /* Is it a method? */
4086 if ((method[0] != '-') && (method[0] != '+'))
4087 return;
4088
4089 if (sym_text[0] == '[')
4090 /* Complete on shortened method method. */
4091 completion_list_add_name (method + 1, sym_text, sym_text_len, text, word);
4092
4093 while ((strlen (method) + 1) >= tmplen)
4094 {
4095 if (tmplen == 0)
4096 tmplen = 1024;
4097 else
4098 tmplen *= 2;
4099 tmp = xrealloc (tmp, tmplen);
4100 }
4101 selector = strchr (method, ' ');
4102 if (selector != NULL)
4103 selector++;
4104
4105 category = strchr (method, '(');
4106
4107 if ((category != NULL) && (selector != NULL))
4108 {
4109 memcpy (tmp, method, (category - method));
4110 tmp[category - method] = ' ';
4111 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
4112 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
4113 if (sym_text[0] == '[')
4114 completion_list_add_name (tmp + 1, sym_text, sym_text_len, text, word);
4115 }
4116
4117 if (selector != NULL)
4118 {
4119 /* Complete on selector only. */
4120 strcpy (tmp, selector);
4121 tmp2 = strchr (tmp, ']');
4122 if (tmp2 != NULL)
4123 *tmp2 = '\0';
4124
4125 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
4126 }
4127 }
4128
4129 /* Break the non-quoted text based on the characters which are in
4130 symbols. FIXME: This should probably be language-specific. */
4131
4132 static char *
4133 language_search_unquoted_string (char *text, char *p)
4134 {
4135 for (; p > text; --p)
4136 {
4137 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
4138 continue;
4139 else
4140 {
4141 if ((current_language->la_language == language_objc))
4142 {
4143 if (p[-1] == ':') /* Might be part of a method name. */
4144 continue;
4145 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
4146 p -= 2; /* Beginning of a method name. */
4147 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
4148 { /* Might be part of a method name. */
4149 char *t = p;
4150
4151 /* Seeing a ' ' or a '(' is not conclusive evidence
4152 that we are in the middle of a method name. However,
4153 finding "-[" or "+[" should be pretty un-ambiguous.
4154 Unfortunately we have to find it now to decide. */
4155
4156 while (t > text)
4157 if (isalnum (t[-1]) || t[-1] == '_' ||
4158 t[-1] == ' ' || t[-1] == ':' ||
4159 t[-1] == '(' || t[-1] == ')')
4160 --t;
4161 else
4162 break;
4163
4164 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
4165 p = t - 2; /* Method name detected. */
4166 /* Else we leave with p unchanged. */
4167 }
4168 }
4169 break;
4170 }
4171 }
4172 return p;
4173 }
4174
4175 static void
4176 completion_list_add_fields (struct symbol *sym, char *sym_text,
4177 int sym_text_len, char *text, char *word)
4178 {
4179 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4180 {
4181 struct type *t = SYMBOL_TYPE (sym);
4182 enum type_code c = TYPE_CODE (t);
4183 int j;
4184
4185 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
4186 for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++)
4187 if (TYPE_FIELD_NAME (t, j))
4188 completion_list_add_name (TYPE_FIELD_NAME (t, j),
4189 sym_text, sym_text_len, text, word);
4190 }
4191 }
4192
4193 /* Type of the user_data argument passed to add_macro_name or
4194 expand_partial_symbol_name. The contents are simply whatever is
4195 needed by completion_list_add_name. */
4196 struct add_name_data
4197 {
4198 char *sym_text;
4199 int sym_text_len;
4200 char *text;
4201 char *word;
4202 };
4203
4204 /* A callback used with macro_for_each and macro_for_each_in_scope.
4205 This adds a macro's name to the current completion list. */
4206
4207 static void
4208 add_macro_name (const char *name, const struct macro_definition *ignore,
4209 struct macro_source_file *ignore2, int ignore3,
4210 void *user_data)
4211 {
4212 struct add_name_data *datum = (struct add_name_data *) user_data;
4213
4214 completion_list_add_name ((char *) name,
4215 datum->sym_text, datum->sym_text_len,
4216 datum->text, datum->word);
4217 }
4218
4219 /* A callback for expand_partial_symbol_names. */
4220
4221 static int
4222 expand_partial_symbol_name (const char *name, void *user_data)
4223 {
4224 struct add_name_data *datum = (struct add_name_data *) user_data;
4225
4226 return compare_symbol_name (name, datum->sym_text, datum->sym_text_len);
4227 }
4228
4229 VEC (char_ptr) *
4230 default_make_symbol_completion_list_break_on (char *text, char *word,
4231 const char *break_on,
4232 enum type_code code)
4233 {
4234 /* Problem: All of the symbols have to be copied because readline
4235 frees them. I'm not going to worry about this; hopefully there
4236 won't be that many. */
4237
4238 struct symbol *sym;
4239 struct symtab *s;
4240 struct minimal_symbol *msymbol;
4241 struct objfile *objfile;
4242 struct block *b;
4243 const struct block *surrounding_static_block, *surrounding_global_block;
4244 struct block_iterator iter;
4245 /* The symbol we are completing on. Points in same buffer as text. */
4246 char *sym_text;
4247 /* Length of sym_text. */
4248 int sym_text_len;
4249 struct add_name_data datum;
4250 struct cleanup *back_to;
4251
4252 /* Now look for the symbol we are supposed to complete on. */
4253 {
4254 char *p;
4255 char quote_found;
4256 char *quote_pos = NULL;
4257
4258 /* First see if this is a quoted string. */
4259 quote_found = '\0';
4260 for (p = text; *p != '\0'; ++p)
4261 {
4262 if (quote_found != '\0')
4263 {
4264 if (*p == quote_found)
4265 /* Found close quote. */
4266 quote_found = '\0';
4267 else if (*p == '\\' && p[1] == quote_found)
4268 /* A backslash followed by the quote character
4269 doesn't end the string. */
4270 ++p;
4271 }
4272 else if (*p == '\'' || *p == '"')
4273 {
4274 quote_found = *p;
4275 quote_pos = p;
4276 }
4277 }
4278 if (quote_found == '\'')
4279 /* A string within single quotes can be a symbol, so complete on it. */
4280 sym_text = quote_pos + 1;
4281 else if (quote_found == '"')
4282 /* A double-quoted string is never a symbol, nor does it make sense
4283 to complete it any other way. */
4284 {
4285 return NULL;
4286 }
4287 else
4288 {
4289 /* It is not a quoted string. Break it based on the characters
4290 which are in symbols. */
4291 while (p > text)
4292 {
4293 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0'
4294 || p[-1] == ':' || strchr (break_on, p[-1]) != NULL)
4295 --p;
4296 else
4297 break;
4298 }
4299 sym_text = p;
4300 }
4301 }
4302
4303 sym_text_len = strlen (sym_text);
4304
4305 /* Prepare SYM_TEXT_LEN for compare_symbol_name. */
4306
4307 if (current_language->la_language == language_cplus
4308 || current_language->la_language == language_java
4309 || current_language->la_language == language_fortran)
4310 {
4311 /* These languages may have parameters entered by user but they are never
4312 present in the partial symbol tables. */
4313
4314 const char *cs = memchr (sym_text, '(', sym_text_len);
4315
4316 if (cs)
4317 sym_text_len = cs - sym_text;
4318 }
4319 gdb_assert (sym_text[sym_text_len] == '\0' || sym_text[sym_text_len] == '(');
4320
4321 return_val = NULL;
4322 back_to = make_cleanup (do_free_completion_list, &return_val);
4323
4324 datum.sym_text = sym_text;
4325 datum.sym_text_len = sym_text_len;
4326 datum.text = text;
4327 datum.word = word;
4328
4329 /* Look through the partial symtabs for all symbols which begin
4330 by matching SYM_TEXT. Expand all CUs that you find to the list.
4331 The real names will get added by COMPLETION_LIST_ADD_SYMBOL below. */
4332 expand_partial_symbol_names (expand_partial_symbol_name, &datum);
4333
4334 /* At this point scan through the misc symbol vectors and add each
4335 symbol you find to the list. Eventually we want to ignore
4336 anything that isn't a text symbol (everything else will be
4337 handled by the psymtab code above). */
4338
4339 if (code == TYPE_CODE_UNDEF)
4340 {
4341 ALL_MSYMBOLS (objfile, msymbol)
4342 {
4343 QUIT;
4344 COMPLETION_LIST_ADD_SYMBOL (msymbol, sym_text, sym_text_len, text,
4345 word);
4346
4347 completion_list_objc_symbol (msymbol, sym_text, sym_text_len, text,
4348 word);
4349 }
4350 }
4351
4352 /* Search upwards from currently selected frame (so that we can
4353 complete on local vars). Also catch fields of types defined in
4354 this places which match our text string. Only complete on types
4355 visible from current context. */
4356
4357 b = get_selected_block (0);
4358 surrounding_static_block = block_static_block (b);
4359 surrounding_global_block = block_global_block (b);
4360 if (surrounding_static_block != NULL)
4361 while (b != surrounding_static_block)
4362 {
4363 QUIT;
4364
4365 ALL_BLOCK_SYMBOLS (b, iter, sym)
4366 {
4367 if (code == TYPE_CODE_UNDEF)
4368 {
4369 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text,
4370 word);
4371 completion_list_add_fields (sym, sym_text, sym_text_len, text,
4372 word);
4373 }
4374 else if (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4375 && TYPE_CODE (SYMBOL_TYPE (sym)) == code)
4376 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text,
4377 word);
4378 }
4379
4380 /* Stop when we encounter an enclosing function. Do not stop for
4381 non-inlined functions - the locals of the enclosing function
4382 are in scope for a nested function. */
4383 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
4384 break;
4385 b = BLOCK_SUPERBLOCK (b);
4386 }
4387
4388 /* Add fields from the file's types; symbols will be added below. */
4389
4390 if (code == TYPE_CODE_UNDEF)
4391 {
4392 if (surrounding_static_block != NULL)
4393 ALL_BLOCK_SYMBOLS (surrounding_static_block, iter, sym)
4394 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
4395
4396 if (surrounding_global_block != NULL)
4397 ALL_BLOCK_SYMBOLS (surrounding_global_block, iter, sym)
4398 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
4399 }
4400
4401 /* Go through the symtabs and check the externs and statics for
4402 symbols which match. */
4403
4404 ALL_PRIMARY_SYMTABS (objfile, s)
4405 {
4406 QUIT;
4407 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
4408 ALL_BLOCK_SYMBOLS (b, iter, sym)
4409 {
4410 if (code == TYPE_CODE_UNDEF
4411 || (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4412 && TYPE_CODE (SYMBOL_TYPE (sym)) == code))
4413 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4414 }
4415 }
4416
4417 ALL_PRIMARY_SYMTABS (objfile, s)
4418 {
4419 QUIT;
4420 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
4421 ALL_BLOCK_SYMBOLS (b, iter, sym)
4422 {
4423 if (code == TYPE_CODE_UNDEF
4424 || (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4425 && TYPE_CODE (SYMBOL_TYPE (sym)) == code))
4426 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4427 }
4428 }
4429
4430 /* Skip macros if we are completing a struct tag -- arguable but
4431 usually what is expected. */
4432 if (current_language->la_macro_expansion == macro_expansion_c
4433 && code == TYPE_CODE_UNDEF)
4434 {
4435 struct macro_scope *scope;
4436
4437 /* Add any macros visible in the default scope. Note that this
4438 may yield the occasional wrong result, because an expression
4439 might be evaluated in a scope other than the default. For
4440 example, if the user types "break file:line if <TAB>", the
4441 resulting expression will be evaluated at "file:line" -- but
4442 at there does not seem to be a way to detect this at
4443 completion time. */
4444 scope = default_macro_scope ();
4445 if (scope)
4446 {
4447 macro_for_each_in_scope (scope->file, scope->line,
4448 add_macro_name, &datum);
4449 xfree (scope);
4450 }
4451
4452 /* User-defined macros are always visible. */
4453 macro_for_each (macro_user_macros, add_macro_name, &datum);
4454 }
4455
4456 discard_cleanups (back_to);
4457 return (return_val);
4458 }
4459
4460 VEC (char_ptr) *
4461 default_make_symbol_completion_list (char *text, char *word,
4462 enum type_code code)
4463 {
4464 return default_make_symbol_completion_list_break_on (text, word, "", code);
4465 }
4466
4467 /* Return a vector of all symbols (regardless of class) which begin by
4468 matching TEXT. If the answer is no symbols, then the return value
4469 is NULL. */
4470
4471 VEC (char_ptr) *
4472 make_symbol_completion_list (char *text, char *word)
4473 {
4474 return current_language->la_make_symbol_completion_list (text, word,
4475 TYPE_CODE_UNDEF);
4476 }
4477
4478 /* Like make_symbol_completion_list, but only return STRUCT_DOMAIN
4479 symbols whose type code is CODE. */
4480
4481 VEC (char_ptr) *
4482 make_symbol_completion_type (char *text, char *word, enum type_code code)
4483 {
4484 gdb_assert (code == TYPE_CODE_UNION
4485 || code == TYPE_CODE_STRUCT
4486 || code == TYPE_CODE_CLASS
4487 || code == TYPE_CODE_ENUM);
4488 return current_language->la_make_symbol_completion_list (text, word, code);
4489 }
4490
4491 /* Like make_symbol_completion_list, but suitable for use as a
4492 completion function. */
4493
4494 VEC (char_ptr) *
4495 make_symbol_completion_list_fn (struct cmd_list_element *ignore,
4496 char *text, char *word)
4497 {
4498 return make_symbol_completion_list (text, word);
4499 }
4500
4501 /* Like make_symbol_completion_list, but returns a list of symbols
4502 defined in a source file FILE. */
4503
4504 VEC (char_ptr) *
4505 make_file_symbol_completion_list (char *text, char *word, char *srcfile)
4506 {
4507 struct symbol *sym;
4508 struct symtab *s;
4509 struct block *b;
4510 struct block_iterator iter;
4511 /* The symbol we are completing on. Points in same buffer as text. */
4512 char *sym_text;
4513 /* Length of sym_text. */
4514 int sym_text_len;
4515
4516 /* Now look for the symbol we are supposed to complete on.
4517 FIXME: This should be language-specific. */
4518 {
4519 char *p;
4520 char quote_found;
4521 char *quote_pos = NULL;
4522
4523 /* First see if this is a quoted string. */
4524 quote_found = '\0';
4525 for (p = text; *p != '\0'; ++p)
4526 {
4527 if (quote_found != '\0')
4528 {
4529 if (*p == quote_found)
4530 /* Found close quote. */
4531 quote_found = '\0';
4532 else if (*p == '\\' && p[1] == quote_found)
4533 /* A backslash followed by the quote character
4534 doesn't end the string. */
4535 ++p;
4536 }
4537 else if (*p == '\'' || *p == '"')
4538 {
4539 quote_found = *p;
4540 quote_pos = p;
4541 }
4542 }
4543 if (quote_found == '\'')
4544 /* A string within single quotes can be a symbol, so complete on it. */
4545 sym_text = quote_pos + 1;
4546 else if (quote_found == '"')
4547 /* A double-quoted string is never a symbol, nor does it make sense
4548 to complete it any other way. */
4549 {
4550 return NULL;
4551 }
4552 else
4553 {
4554 /* Not a quoted string. */
4555 sym_text = language_search_unquoted_string (text, p);
4556 }
4557 }
4558
4559 sym_text_len = strlen (sym_text);
4560
4561 return_val = NULL;
4562
4563 /* Find the symtab for SRCFILE (this loads it if it was not yet read
4564 in). */
4565 s = lookup_symtab (srcfile);
4566 if (s == NULL)
4567 {
4568 /* Maybe they typed the file with leading directories, while the
4569 symbol tables record only its basename. */
4570 const char *tail = lbasename (srcfile);
4571
4572 if (tail > srcfile)
4573 s = lookup_symtab (tail);
4574 }
4575
4576 /* If we have no symtab for that file, return an empty list. */
4577 if (s == NULL)
4578 return (return_val);
4579
4580 /* Go through this symtab and check the externs and statics for
4581 symbols which match. */
4582
4583 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
4584 ALL_BLOCK_SYMBOLS (b, iter, sym)
4585 {
4586 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4587 }
4588
4589 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
4590 ALL_BLOCK_SYMBOLS (b, iter, sym)
4591 {
4592 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4593 }
4594
4595 return (return_val);
4596 }
4597
4598 /* A helper function for make_source_files_completion_list. It adds
4599 another file name to a list of possible completions, growing the
4600 list as necessary. */
4601
4602 static void
4603 add_filename_to_list (const char *fname, char *text, char *word,
4604 VEC (char_ptr) **list)
4605 {
4606 char *new;
4607 size_t fnlen = strlen (fname);
4608
4609 if (word == text)
4610 {
4611 /* Return exactly fname. */
4612 new = xmalloc (fnlen + 5);
4613 strcpy (new, fname);
4614 }
4615 else if (word > text)
4616 {
4617 /* Return some portion of fname. */
4618 new = xmalloc (fnlen + 5);
4619 strcpy (new, fname + (word - text));
4620 }
4621 else
4622 {
4623 /* Return some of TEXT plus fname. */
4624 new = xmalloc (fnlen + (text - word) + 5);
4625 strncpy (new, word, text - word);
4626 new[text - word] = '\0';
4627 strcat (new, fname);
4628 }
4629 VEC_safe_push (char_ptr, *list, new);
4630 }
4631
4632 static int
4633 not_interesting_fname (const char *fname)
4634 {
4635 static const char *illegal_aliens[] = {
4636 "_globals_", /* inserted by coff_symtab_read */
4637 NULL
4638 };
4639 int i;
4640
4641 for (i = 0; illegal_aliens[i]; i++)
4642 {
4643 if (filename_cmp (fname, illegal_aliens[i]) == 0)
4644 return 1;
4645 }
4646 return 0;
4647 }
4648
4649 /* An object of this type is passed as the user_data argument to
4650 map_partial_symbol_filenames. */
4651 struct add_partial_filename_data
4652 {
4653 struct filename_seen_cache *filename_seen_cache;
4654 char *text;
4655 char *word;
4656 int text_len;
4657 VEC (char_ptr) **list;
4658 };
4659
4660 /* A callback for map_partial_symbol_filenames. */
4661
4662 static void
4663 maybe_add_partial_symtab_filename (const char *filename, const char *fullname,
4664 void *user_data)
4665 {
4666 struct add_partial_filename_data *data = user_data;
4667
4668 if (not_interesting_fname (filename))
4669 return;
4670 if (!filename_seen (data->filename_seen_cache, filename, 1)
4671 && filename_ncmp (filename, data->text, data->text_len) == 0)
4672 {
4673 /* This file matches for a completion; add it to the
4674 current list of matches. */
4675 add_filename_to_list (filename, data->text, data->word, data->list);
4676 }
4677 else
4678 {
4679 const char *base_name = lbasename (filename);
4680
4681 if (base_name != filename
4682 && !filename_seen (data->filename_seen_cache, base_name, 1)
4683 && filename_ncmp (base_name, data->text, data->text_len) == 0)
4684 add_filename_to_list (base_name, data->text, data->word, data->list);
4685 }
4686 }
4687
4688 /* Return a vector of all source files whose names begin with matching
4689 TEXT. The file names are looked up in the symbol tables of this
4690 program. If the answer is no matchess, then the return value is
4691 NULL. */
4692
4693 VEC (char_ptr) *
4694 make_source_files_completion_list (char *text, char *word)
4695 {
4696 struct symtab *s;
4697 struct objfile *objfile;
4698 size_t text_len = strlen (text);
4699 VEC (char_ptr) *list = NULL;
4700 const char *base_name;
4701 struct add_partial_filename_data datum;
4702 struct filename_seen_cache *filename_seen_cache;
4703 struct cleanup *back_to, *cache_cleanup;
4704
4705 if (!have_full_symbols () && !have_partial_symbols ())
4706 return list;
4707
4708 back_to = make_cleanup (do_free_completion_list, &list);
4709
4710 filename_seen_cache = create_filename_seen_cache ();
4711 cache_cleanup = make_cleanup (delete_filename_seen_cache,
4712 filename_seen_cache);
4713
4714 ALL_SYMTABS (objfile, s)
4715 {
4716 if (not_interesting_fname (s->filename))
4717 continue;
4718 if (!filename_seen (filename_seen_cache, s->filename, 1)
4719 && filename_ncmp (s->filename, text, text_len) == 0)
4720 {
4721 /* This file matches for a completion; add it to the current
4722 list of matches. */
4723 add_filename_to_list (s->filename, text, word, &list);
4724 }
4725 else
4726 {
4727 /* NOTE: We allow the user to type a base name when the
4728 debug info records leading directories, but not the other
4729 way around. This is what subroutines of breakpoint
4730 command do when they parse file names. */
4731 base_name = lbasename (s->filename);
4732 if (base_name != s->filename
4733 && !filename_seen (filename_seen_cache, base_name, 1)
4734 && filename_ncmp (base_name, text, text_len) == 0)
4735 add_filename_to_list (base_name, text, word, &list);
4736 }
4737 }
4738
4739 datum.filename_seen_cache = filename_seen_cache;
4740 datum.text = text;
4741 datum.word = word;
4742 datum.text_len = text_len;
4743 datum.list = &list;
4744 map_partial_symbol_filenames (maybe_add_partial_symtab_filename, &datum,
4745 0 /*need_fullname*/);
4746
4747 do_cleanups (cache_cleanup);
4748 discard_cleanups (back_to);
4749
4750 return list;
4751 }
4752
4753 /* Determine if PC is in the prologue of a function. The prologue is the area
4754 between the first instruction of a function, and the first executable line.
4755 Returns 1 if PC *might* be in prologue, 0 if definately *not* in prologue.
4756
4757 If non-zero, func_start is where we think the prologue starts, possibly
4758 by previous examination of symbol table information. */
4759
4760 int
4761 in_prologue (struct gdbarch *gdbarch, CORE_ADDR pc, CORE_ADDR func_start)
4762 {
4763 struct symtab_and_line sal;
4764 CORE_ADDR func_addr, func_end;
4765
4766 /* We have several sources of information we can consult to figure
4767 this out.
4768 - Compilers usually emit line number info that marks the prologue
4769 as its own "source line". So the ending address of that "line"
4770 is the end of the prologue. If available, this is the most
4771 reliable method.
4772 - The minimal symbols and partial symbols, which can usually tell
4773 us the starting and ending addresses of a function.
4774 - If we know the function's start address, we can call the
4775 architecture-defined gdbarch_skip_prologue function to analyze the
4776 instruction stream and guess where the prologue ends.
4777 - Our `func_start' argument; if non-zero, this is the caller's
4778 best guess as to the function's entry point. At the time of
4779 this writing, handle_inferior_event doesn't get this right, so
4780 it should be our last resort. */
4781
4782 /* Consult the partial symbol table, to find which function
4783 the PC is in. */
4784 if (! find_pc_partial_function (pc, NULL, &func_addr, &func_end))
4785 {
4786 CORE_ADDR prologue_end;
4787
4788 /* We don't even have minsym information, so fall back to using
4789 func_start, if given. */
4790 if (! func_start)
4791 return 1; /* We *might* be in a prologue. */
4792
4793 prologue_end = gdbarch_skip_prologue (gdbarch, func_start);
4794
4795 return func_start <= pc && pc < prologue_end;
4796 }
4797
4798 /* If we have line number information for the function, that's
4799 usually pretty reliable. */
4800 sal = find_pc_line (func_addr, 0);
4801
4802 /* Now sal describes the source line at the function's entry point,
4803 which (by convention) is the prologue. The end of that "line",
4804 sal.end, is the end of the prologue.
4805
4806 Note that, for functions whose source code is all on a single
4807 line, the line number information doesn't always end up this way.
4808 So we must verify that our purported end-of-prologue address is
4809 *within* the function, not at its start or end. */
4810 if (sal.line == 0
4811 || sal.end <= func_addr
4812 || func_end <= sal.end)
4813 {
4814 /* We don't have any good line number info, so use the minsym
4815 information, together with the architecture-specific prologue
4816 scanning code. */
4817 CORE_ADDR prologue_end = gdbarch_skip_prologue (gdbarch, func_addr);
4818
4819 return func_addr <= pc && pc < prologue_end;
4820 }
4821
4822 /* We have line number info, and it looks good. */
4823 return func_addr <= pc && pc < sal.end;
4824 }
4825
4826 /* Given PC at the function's start address, attempt to find the
4827 prologue end using SAL information. Return zero if the skip fails.
4828
4829 A non-optimized prologue traditionally has one SAL for the function
4830 and a second for the function body. A single line function has
4831 them both pointing at the same line.
4832
4833 An optimized prologue is similar but the prologue may contain
4834 instructions (SALs) from the instruction body. Need to skip those
4835 while not getting into the function body.
4836
4837 The functions end point and an increasing SAL line are used as
4838 indicators of the prologue's endpoint.
4839
4840 This code is based on the function refine_prologue_limit
4841 (found in ia64). */
4842
4843 CORE_ADDR
4844 skip_prologue_using_sal (struct gdbarch *gdbarch, CORE_ADDR func_addr)
4845 {
4846 struct symtab_and_line prologue_sal;
4847 CORE_ADDR start_pc;
4848 CORE_ADDR end_pc;
4849 struct block *bl;
4850
4851 /* Get an initial range for the function. */
4852 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
4853 start_pc += gdbarch_deprecated_function_start_offset (gdbarch);
4854
4855 prologue_sal = find_pc_line (start_pc, 0);
4856 if (prologue_sal.line != 0)
4857 {
4858 /* For languages other than assembly, treat two consecutive line
4859 entries at the same address as a zero-instruction prologue.
4860 The GNU assembler emits separate line notes for each instruction
4861 in a multi-instruction macro, but compilers generally will not
4862 do this. */
4863 if (prologue_sal.symtab->language != language_asm)
4864 {
4865 struct linetable *linetable = LINETABLE (prologue_sal.symtab);
4866 int idx = 0;
4867
4868 /* Skip any earlier lines, and any end-of-sequence marker
4869 from a previous function. */
4870 while (linetable->item[idx].pc != prologue_sal.pc
4871 || linetable->item[idx].line == 0)
4872 idx++;
4873
4874 if (idx+1 < linetable->nitems
4875 && linetable->item[idx+1].line != 0
4876 && linetable->item[idx+1].pc == start_pc)
4877 return start_pc;
4878 }
4879
4880 /* If there is only one sal that covers the entire function,
4881 then it is probably a single line function, like
4882 "foo(){}". */
4883 if (prologue_sal.end >= end_pc)
4884 return 0;
4885
4886 while (prologue_sal.end < end_pc)
4887 {
4888 struct symtab_and_line sal;
4889
4890 sal = find_pc_line (prologue_sal.end, 0);
4891 if (sal.line == 0)
4892 break;
4893 /* Assume that a consecutive SAL for the same (or larger)
4894 line mark the prologue -> body transition. */
4895 if (sal.line >= prologue_sal.line)
4896 break;
4897 /* Likewise if we are in a different symtab altogether
4898 (e.g. within a file included via #include).  */
4899 if (sal.symtab != prologue_sal.symtab)
4900 break;
4901
4902 /* The line number is smaller. Check that it's from the
4903 same function, not something inlined. If it's inlined,
4904 then there is no point comparing the line numbers. */
4905 bl = block_for_pc (prologue_sal.end);
4906 while (bl)
4907 {
4908 if (block_inlined_p (bl))
4909 break;
4910 if (BLOCK_FUNCTION (bl))
4911 {
4912 bl = NULL;
4913 break;
4914 }
4915 bl = BLOCK_SUPERBLOCK (bl);
4916 }
4917 if (bl != NULL)
4918 break;
4919
4920 /* The case in which compiler's optimizer/scheduler has
4921 moved instructions into the prologue. We look ahead in
4922 the function looking for address ranges whose
4923 corresponding line number is less the first one that we
4924 found for the function. This is more conservative then
4925 refine_prologue_limit which scans a large number of SALs
4926 looking for any in the prologue. */
4927 prologue_sal = sal;
4928 }
4929 }
4930
4931 if (prologue_sal.end < end_pc)
4932 /* Return the end of this line, or zero if we could not find a
4933 line. */
4934 return prologue_sal.end;
4935 else
4936 /* Don't return END_PC, which is past the end of the function. */
4937 return prologue_sal.pc;
4938 }
4939 \f
4940 /* Track MAIN */
4941 static char *name_of_main;
4942 enum language language_of_main = language_unknown;
4943
4944 void
4945 set_main_name (const char *name)
4946 {
4947 if (name_of_main != NULL)
4948 {
4949 xfree (name_of_main);
4950 name_of_main = NULL;
4951 language_of_main = language_unknown;
4952 }
4953 if (name != NULL)
4954 {
4955 name_of_main = xstrdup (name);
4956 language_of_main = language_unknown;
4957 }
4958 }
4959
4960 /* Deduce the name of the main procedure, and set NAME_OF_MAIN
4961 accordingly. */
4962
4963 static void
4964 find_main_name (void)
4965 {
4966 const char *new_main_name;
4967
4968 /* Try to see if the main procedure is in Ada. */
4969 /* FIXME: brobecker/2005-03-07: Another way of doing this would
4970 be to add a new method in the language vector, and call this
4971 method for each language until one of them returns a non-empty
4972 name. This would allow us to remove this hard-coded call to
4973 an Ada function. It is not clear that this is a better approach
4974 at this point, because all methods need to be written in a way
4975 such that false positives never be returned. For instance, it is
4976 important that a method does not return a wrong name for the main
4977 procedure if the main procedure is actually written in a different
4978 language. It is easy to guaranty this with Ada, since we use a
4979 special symbol generated only when the main in Ada to find the name
4980 of the main procedure. It is difficult however to see how this can
4981 be guarantied for languages such as C, for instance. This suggests
4982 that order of call for these methods becomes important, which means
4983 a more complicated approach. */
4984 new_main_name = ada_main_name ();
4985 if (new_main_name != NULL)
4986 {
4987 set_main_name (new_main_name);
4988 return;
4989 }
4990
4991 new_main_name = go_main_name ();
4992 if (new_main_name != NULL)
4993 {
4994 set_main_name (new_main_name);
4995 return;
4996 }
4997
4998 new_main_name = pascal_main_name ();
4999 if (new_main_name != NULL)
5000 {
5001 set_main_name (new_main_name);
5002 return;
5003 }
5004
5005 /* The languages above didn't identify the name of the main procedure.
5006 Fallback to "main". */
5007 set_main_name ("main");
5008 }
5009
5010 char *
5011 main_name (void)
5012 {
5013 if (name_of_main == NULL)
5014 find_main_name ();
5015
5016 return name_of_main;
5017 }
5018
5019 /* Handle ``executable_changed'' events for the symtab module. */
5020
5021 static void
5022 symtab_observer_executable_changed (void)
5023 {
5024 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
5025 set_main_name (NULL);
5026 }
5027
5028 /* Return 1 if the supplied producer string matches the ARM RealView
5029 compiler (armcc). */
5030
5031 int
5032 producer_is_realview (const char *producer)
5033 {
5034 static const char *const arm_idents[] = {
5035 "ARM C Compiler, ADS",
5036 "Thumb C Compiler, ADS",
5037 "ARM C++ Compiler, ADS",
5038 "Thumb C++ Compiler, ADS",
5039 "ARM/Thumb C/C++ Compiler, RVCT",
5040 "ARM C/C++ Compiler, RVCT"
5041 };
5042 int i;
5043
5044 if (producer == NULL)
5045 return 0;
5046
5047 for (i = 0; i < ARRAY_SIZE (arm_idents); i++)
5048 if (strncmp (producer, arm_idents[i], strlen (arm_idents[i])) == 0)
5049 return 1;
5050
5051 return 0;
5052 }
5053
5054 void
5055 _initialize_symtab (void)
5056 {
5057 add_info ("variables", variables_info, _("\
5058 All global and static variable names, or those matching REGEXP."));
5059 if (dbx_commands)
5060 add_com ("whereis", class_info, variables_info, _("\
5061 All global and static variable names, or those matching REGEXP."));
5062
5063 add_info ("functions", functions_info,
5064 _("All function names, or those matching REGEXP."));
5065
5066 /* FIXME: This command has at least the following problems:
5067 1. It prints builtin types (in a very strange and confusing fashion).
5068 2. It doesn't print right, e.g. with
5069 typedef struct foo *FOO
5070 type_print prints "FOO" when we want to make it (in this situation)
5071 print "struct foo *".
5072 I also think "ptype" or "whatis" is more likely to be useful (but if
5073 there is much disagreement "info types" can be fixed). */
5074 add_info ("types", types_info,
5075 _("All type names, or those matching REGEXP."));
5076
5077 add_info ("sources", sources_info,
5078 _("Source files in the program."));
5079
5080 add_com ("rbreak", class_breakpoint, rbreak_command,
5081 _("Set a breakpoint for all functions matching REGEXP."));
5082
5083 if (xdb_commands)
5084 {
5085 add_com ("lf", class_info, sources_info,
5086 _("Source files in the program"));
5087 add_com ("lg", class_info, variables_info, _("\
5088 All global and static variable names, or those matching REGEXP."));
5089 }
5090
5091 add_setshow_enum_cmd ("multiple-symbols", no_class,
5092 multiple_symbols_modes, &multiple_symbols_mode,
5093 _("\
5094 Set the debugger behavior when more than one symbol are possible matches\n\
5095 in an expression."), _("\
5096 Show how the debugger handles ambiguities in expressions."), _("\
5097 Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
5098 NULL, NULL, &setlist, &showlist);
5099
5100 add_setshow_boolean_cmd ("basenames-may-differ", class_obscure,
5101 &basenames_may_differ, _("\
5102 Set whether a source file may have multiple base names."), _("\
5103 Show whether a source file may have multiple base names."), _("\
5104 (A \"base name\" is the name of a file with the directory part removed.\n\
5105 Example: The base name of \"/home/user/hello.c\" is \"hello.c\".)\n\
5106 If set, GDB will canonicalize file names (e.g., expand symlinks)\n\
5107 before comparing them. Canonicalization is an expensive operation,\n\
5108 but it allows the same file be known by more than one base name.\n\
5109 If not set (the default), all source files are assumed to have just\n\
5110 one base name, and gdb will do file name comparisons more efficiently."),
5111 NULL, NULL,
5112 &setlist, &showlist);
5113
5114 add_setshow_boolean_cmd ("symtab-create", no_class, &symtab_create_debug,
5115 _("Set debugging of symbol table creation."),
5116 _("Show debugging of symbol table creation."), _("\
5117 When enabled, debugging messages are printed when building symbol tables."),
5118 NULL,
5119 NULL,
5120 &setdebuglist, &showdebuglist);
5121
5122 observer_attach_executable_changed (symtab_observer_executable_changed);
5123 }
This page took 0.144743 seconds and 4 git commands to generate.