More char constification
[deliverable/binutils-gdb.git] / gdb / symtab.c
1 /* Symbol table lookup for the GNU debugger, GDB.
2
3 Copyright (C) 1986-2015 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "gdbcore.h"
24 #include "frame.h"
25 #include "target.h"
26 #include "value.h"
27 #include "symfile.h"
28 #include "objfiles.h"
29 #include "gdbcmd.h"
30 #include "gdb_regex.h"
31 #include "expression.h"
32 #include "language.h"
33 #include "demangle.h"
34 #include "inferior.h"
35 #include "source.h"
36 #include "filenames.h" /* for FILENAME_CMP */
37 #include "objc-lang.h"
38 #include "d-lang.h"
39 #include "ada-lang.h"
40 #include "go-lang.h"
41 #include "p-lang.h"
42 #include "addrmap.h"
43 #include "cli/cli-utils.h"
44
45 #include "hashtab.h"
46
47 #include "gdb_obstack.h"
48 #include "block.h"
49 #include "dictionary.h"
50
51 #include <sys/types.h>
52 #include <fcntl.h>
53 #include <sys/stat.h>
54 #include <ctype.h>
55 #include "cp-abi.h"
56 #include "cp-support.h"
57 #include "observer.h"
58 #include "solist.h"
59 #include "macrotab.h"
60 #include "macroscope.h"
61
62 #include "parser-defs.h"
63 #include "completer.h"
64
65 /* Forward declarations for local functions. */
66
67 static void rbreak_command (char *, int);
68
69 static int find_line_common (struct linetable *, int, int *, int);
70
71 static struct block_symbol
72 lookup_symbol_aux (const char *name,
73 const struct block *block,
74 const domain_enum domain,
75 enum language language,
76 struct field_of_this_result *);
77
78 static
79 struct block_symbol lookup_local_symbol (const char *name,
80 const struct block *block,
81 const domain_enum domain,
82 enum language language);
83
84 static struct block_symbol
85 lookup_symbol_in_objfile (struct objfile *objfile, int block_index,
86 const char *name, const domain_enum domain);
87
88 extern initialize_file_ftype _initialize_symtab;
89
90 /* Program space key for finding name and language of "main". */
91
92 static const struct program_space_data *main_progspace_key;
93
94 /* Type of the data stored on the program space. */
95
96 struct main_info
97 {
98 /* Name of "main". */
99
100 char *name_of_main;
101
102 /* Language of "main". */
103
104 enum language language_of_main;
105 };
106
107 /* Program space key for finding its symbol cache. */
108
109 static const struct program_space_data *symbol_cache_key;
110
111 /* The default symbol cache size.
112 There is no extra cpu cost for large N (except when flushing the cache,
113 which is rare). The value here is just a first attempt. A better default
114 value may be higher or lower. A prime number can make up for a bad hash
115 computation, so that's why the number is what it is. */
116 #define DEFAULT_SYMBOL_CACHE_SIZE 1021
117
118 /* The maximum symbol cache size.
119 There's no method to the decision of what value to use here, other than
120 there's no point in allowing a user typo to make gdb consume all memory. */
121 #define MAX_SYMBOL_CACHE_SIZE (1024*1024)
122
123 /* symbol_cache_lookup returns this if a previous lookup failed to find the
124 symbol in any objfile. */
125 #define SYMBOL_LOOKUP_FAILED \
126 ((struct block_symbol) {(struct symbol *) 1, NULL})
127 #define SYMBOL_LOOKUP_FAILED_P(SIB) (SIB.symbol == (struct symbol *) 1)
128
129 /* Recording lookups that don't find the symbol is just as important, if not
130 more so, than recording found symbols. */
131
132 enum symbol_cache_slot_state
133 {
134 SYMBOL_SLOT_UNUSED,
135 SYMBOL_SLOT_NOT_FOUND,
136 SYMBOL_SLOT_FOUND
137 };
138
139 struct symbol_cache_slot
140 {
141 enum symbol_cache_slot_state state;
142
143 /* The objfile that was current when the symbol was looked up.
144 This is only needed for global blocks, but for simplicity's sake
145 we allocate the space for both. If data shows the extra space used
146 for static blocks is a problem, we can split things up then.
147
148 Global blocks need cache lookup to include the objfile context because
149 we need to account for gdbarch_iterate_over_objfiles_in_search_order
150 which can traverse objfiles in, effectively, any order, depending on
151 the current objfile, thus affecting which symbol is found. Normally,
152 only the current objfile is searched first, and then the rest are
153 searched in recorded order; but putting cache lookup inside
154 gdbarch_iterate_over_objfiles_in_search_order would be awkward.
155 Instead we just make the current objfile part of the context of
156 cache lookup. This means we can record the same symbol multiple times,
157 each with a different "current objfile" that was in effect when the
158 lookup was saved in the cache, but cache space is pretty cheap. */
159 const struct objfile *objfile_context;
160
161 union
162 {
163 struct block_symbol found;
164 struct
165 {
166 char *name;
167 domain_enum domain;
168 } not_found;
169 } value;
170 };
171
172 /* Symbols don't specify global vs static block.
173 So keep them in separate caches. */
174
175 struct block_symbol_cache
176 {
177 unsigned int hits;
178 unsigned int misses;
179 unsigned int collisions;
180
181 /* SYMBOLS is a variable length array of this size.
182 One can imagine that in general one cache (global/static) should be a
183 fraction of the size of the other, but there's no data at the moment
184 on which to decide. */
185 unsigned int size;
186
187 struct symbol_cache_slot symbols[1];
188 };
189
190 /* The symbol cache.
191
192 Searching for symbols in the static and global blocks over multiple objfiles
193 again and again can be slow, as can searching very big objfiles. This is a
194 simple cache to improve symbol lookup performance, which is critical to
195 overall gdb performance.
196
197 Symbols are hashed on the name, its domain, and block.
198 They are also hashed on their objfile for objfile-specific lookups. */
199
200 struct symbol_cache
201 {
202 struct block_symbol_cache *global_symbols;
203 struct block_symbol_cache *static_symbols;
204 };
205
206 /* When non-zero, print debugging messages related to symtab creation. */
207 unsigned int symtab_create_debug = 0;
208
209 /* When non-zero, print debugging messages related to symbol lookup. */
210 unsigned int symbol_lookup_debug = 0;
211
212 /* The size of the cache is staged here. */
213 static unsigned int new_symbol_cache_size = DEFAULT_SYMBOL_CACHE_SIZE;
214
215 /* The current value of the symbol cache size.
216 This is saved so that if the user enters a value too big we can restore
217 the original value from here. */
218 static unsigned int symbol_cache_size = DEFAULT_SYMBOL_CACHE_SIZE;
219
220 /* Non-zero if a file may be known by two different basenames.
221 This is the uncommon case, and significantly slows down gdb.
222 Default set to "off" to not slow down the common case. */
223 int basenames_may_differ = 0;
224
225 /* Allow the user to configure the debugger behavior with respect
226 to multiple-choice menus when more than one symbol matches during
227 a symbol lookup. */
228
229 const char multiple_symbols_ask[] = "ask";
230 const char multiple_symbols_all[] = "all";
231 const char multiple_symbols_cancel[] = "cancel";
232 static const char *const multiple_symbols_modes[] =
233 {
234 multiple_symbols_ask,
235 multiple_symbols_all,
236 multiple_symbols_cancel,
237 NULL
238 };
239 static const char *multiple_symbols_mode = multiple_symbols_all;
240
241 /* Read-only accessor to AUTO_SELECT_MODE. */
242
243 const char *
244 multiple_symbols_select_mode (void)
245 {
246 return multiple_symbols_mode;
247 }
248
249 /* Return the name of a domain_enum. */
250
251 const char *
252 domain_name (domain_enum e)
253 {
254 switch (e)
255 {
256 case UNDEF_DOMAIN: return "UNDEF_DOMAIN";
257 case VAR_DOMAIN: return "VAR_DOMAIN";
258 case STRUCT_DOMAIN: return "STRUCT_DOMAIN";
259 case MODULE_DOMAIN: return "MODULE_DOMAIN";
260 case LABEL_DOMAIN: return "LABEL_DOMAIN";
261 case COMMON_BLOCK_DOMAIN: return "COMMON_BLOCK_DOMAIN";
262 default: gdb_assert_not_reached ("bad domain_enum");
263 }
264 }
265
266 /* Return the name of a search_domain . */
267
268 const char *
269 search_domain_name (enum search_domain e)
270 {
271 switch (e)
272 {
273 case VARIABLES_DOMAIN: return "VARIABLES_DOMAIN";
274 case FUNCTIONS_DOMAIN: return "FUNCTIONS_DOMAIN";
275 case TYPES_DOMAIN: return "TYPES_DOMAIN";
276 case ALL_DOMAIN: return "ALL_DOMAIN";
277 default: gdb_assert_not_reached ("bad search_domain");
278 }
279 }
280
281 /* See symtab.h. */
282
283 struct symtab *
284 compunit_primary_filetab (const struct compunit_symtab *cust)
285 {
286 gdb_assert (COMPUNIT_FILETABS (cust) != NULL);
287
288 /* The primary file symtab is the first one in the list. */
289 return COMPUNIT_FILETABS (cust);
290 }
291
292 /* See symtab.h. */
293
294 enum language
295 compunit_language (const struct compunit_symtab *cust)
296 {
297 struct symtab *symtab = compunit_primary_filetab (cust);
298
299 /* The language of the compunit symtab is the language of its primary
300 source file. */
301 return SYMTAB_LANGUAGE (symtab);
302 }
303
304 /* See whether FILENAME matches SEARCH_NAME using the rule that we
305 advertise to the user. (The manual's description of linespecs
306 describes what we advertise). Returns true if they match, false
307 otherwise. */
308
309 int
310 compare_filenames_for_search (const char *filename, const char *search_name)
311 {
312 int len = strlen (filename);
313 size_t search_len = strlen (search_name);
314
315 if (len < search_len)
316 return 0;
317
318 /* The tail of FILENAME must match. */
319 if (FILENAME_CMP (filename + len - search_len, search_name) != 0)
320 return 0;
321
322 /* Either the names must completely match, or the character
323 preceding the trailing SEARCH_NAME segment of FILENAME must be a
324 directory separator.
325
326 The check !IS_ABSOLUTE_PATH ensures SEARCH_NAME "/dir/file.c"
327 cannot match FILENAME "/path//dir/file.c" - as user has requested
328 absolute path. The sama applies for "c:\file.c" possibly
329 incorrectly hypothetically matching "d:\dir\c:\file.c".
330
331 The HAS_DRIVE_SPEC purpose is to make FILENAME "c:file.c"
332 compatible with SEARCH_NAME "file.c". In such case a compiler had
333 to put the "c:file.c" name into debug info. Such compatibility
334 works only on GDB built for DOS host. */
335 return (len == search_len
336 || (!IS_ABSOLUTE_PATH (search_name)
337 && IS_DIR_SEPARATOR (filename[len - search_len - 1]))
338 || (HAS_DRIVE_SPEC (filename)
339 && STRIP_DRIVE_SPEC (filename) == &filename[len - search_len]));
340 }
341
342 /* Check for a symtab of a specific name by searching some symtabs.
343 This is a helper function for callbacks of iterate_over_symtabs.
344
345 If NAME is not absolute, then REAL_PATH is NULL
346 If NAME is absolute, then REAL_PATH is the gdb_realpath form of NAME.
347
348 The return value, NAME, REAL_PATH, CALLBACK, and DATA
349 are identical to the `map_symtabs_matching_filename' method of
350 quick_symbol_functions.
351
352 FIRST and AFTER_LAST indicate the range of compunit symtabs to search.
353 Each symtab within the specified compunit symtab is also searched.
354 AFTER_LAST is one past the last compunit symtab to search; NULL means to
355 search until the end of the list. */
356
357 int
358 iterate_over_some_symtabs (const char *name,
359 const char *real_path,
360 int (*callback) (struct symtab *symtab,
361 void *data),
362 void *data,
363 struct compunit_symtab *first,
364 struct compunit_symtab *after_last)
365 {
366 struct compunit_symtab *cust;
367 struct symtab *s;
368 const char* base_name = lbasename (name);
369
370 for (cust = first; cust != NULL && cust != after_last; cust = cust->next)
371 {
372 ALL_COMPUNIT_FILETABS (cust, s)
373 {
374 if (compare_filenames_for_search (s->filename, name))
375 {
376 if (callback (s, data))
377 return 1;
378 continue;
379 }
380
381 /* Before we invoke realpath, which can get expensive when many
382 files are involved, do a quick comparison of the basenames. */
383 if (! basenames_may_differ
384 && FILENAME_CMP (base_name, lbasename (s->filename)) != 0)
385 continue;
386
387 if (compare_filenames_for_search (symtab_to_fullname (s), name))
388 {
389 if (callback (s, data))
390 return 1;
391 continue;
392 }
393
394 /* If the user gave us an absolute path, try to find the file in
395 this symtab and use its absolute path. */
396 if (real_path != NULL)
397 {
398 const char *fullname = symtab_to_fullname (s);
399
400 gdb_assert (IS_ABSOLUTE_PATH (real_path));
401 gdb_assert (IS_ABSOLUTE_PATH (name));
402 if (FILENAME_CMP (real_path, fullname) == 0)
403 {
404 if (callback (s, data))
405 return 1;
406 continue;
407 }
408 }
409 }
410 }
411
412 return 0;
413 }
414
415 /* Check for a symtab of a specific name; first in symtabs, then in
416 psymtabs. *If* there is no '/' in the name, a match after a '/'
417 in the symtab filename will also work.
418
419 Calls CALLBACK with each symtab that is found and with the supplied
420 DATA. If CALLBACK returns true, the search stops. */
421
422 void
423 iterate_over_symtabs (const char *name,
424 int (*callback) (struct symtab *symtab,
425 void *data),
426 void *data)
427 {
428 struct objfile *objfile;
429 char *real_path = NULL;
430 struct cleanup *cleanups = make_cleanup (null_cleanup, NULL);
431
432 /* Here we are interested in canonicalizing an absolute path, not
433 absolutizing a relative path. */
434 if (IS_ABSOLUTE_PATH (name))
435 {
436 real_path = gdb_realpath (name);
437 make_cleanup (xfree, real_path);
438 gdb_assert (IS_ABSOLUTE_PATH (real_path));
439 }
440
441 ALL_OBJFILES (objfile)
442 {
443 if (iterate_over_some_symtabs (name, real_path, callback, data,
444 objfile->compunit_symtabs, NULL))
445 {
446 do_cleanups (cleanups);
447 return;
448 }
449 }
450
451 /* Same search rules as above apply here, but now we look thru the
452 psymtabs. */
453
454 ALL_OBJFILES (objfile)
455 {
456 if (objfile->sf
457 && objfile->sf->qf->map_symtabs_matching_filename (objfile,
458 name,
459 real_path,
460 callback,
461 data))
462 {
463 do_cleanups (cleanups);
464 return;
465 }
466 }
467
468 do_cleanups (cleanups);
469 }
470
471 /* The callback function used by lookup_symtab. */
472
473 static int
474 lookup_symtab_callback (struct symtab *symtab, void *data)
475 {
476 struct symtab **result_ptr = (struct symtab **) data;
477
478 *result_ptr = symtab;
479 return 1;
480 }
481
482 /* A wrapper for iterate_over_symtabs that returns the first matching
483 symtab, or NULL. */
484
485 struct symtab *
486 lookup_symtab (const char *name)
487 {
488 struct symtab *result = NULL;
489
490 iterate_over_symtabs (name, lookup_symtab_callback, &result);
491 return result;
492 }
493
494 \f
495 /* Mangle a GDB method stub type. This actually reassembles the pieces of the
496 full method name, which consist of the class name (from T), the unadorned
497 method name from METHOD_ID, and the signature for the specific overload,
498 specified by SIGNATURE_ID. Note that this function is g++ specific. */
499
500 char *
501 gdb_mangle_name (struct type *type, int method_id, int signature_id)
502 {
503 int mangled_name_len;
504 char *mangled_name;
505 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
506 struct fn_field *method = &f[signature_id];
507 const char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
508 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
509 const char *newname = type_name_no_tag (type);
510
511 /* Does the form of physname indicate that it is the full mangled name
512 of a constructor (not just the args)? */
513 int is_full_physname_constructor;
514
515 int is_constructor;
516 int is_destructor = is_destructor_name (physname);
517 /* Need a new type prefix. */
518 const char *const_prefix = method->is_const ? "C" : "";
519 const char *volatile_prefix = method->is_volatile ? "V" : "";
520 char buf[20];
521 int len = (newname == NULL ? 0 : strlen (newname));
522
523 /* Nothing to do if physname already contains a fully mangled v3 abi name
524 or an operator name. */
525 if ((physname[0] == '_' && physname[1] == 'Z')
526 || is_operator_name (field_name))
527 return xstrdup (physname);
528
529 is_full_physname_constructor = is_constructor_name (physname);
530
531 is_constructor = is_full_physname_constructor
532 || (newname && strcmp (field_name, newname) == 0);
533
534 if (!is_destructor)
535 is_destructor = (startswith (physname, "__dt"));
536
537 if (is_destructor || is_full_physname_constructor)
538 {
539 mangled_name = (char *) xmalloc (strlen (physname) + 1);
540 strcpy (mangled_name, physname);
541 return mangled_name;
542 }
543
544 if (len == 0)
545 {
546 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
547 }
548 else if (physname[0] == 't' || physname[0] == 'Q')
549 {
550 /* The physname for template and qualified methods already includes
551 the class name. */
552 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
553 newname = NULL;
554 len = 0;
555 }
556 else
557 {
558 xsnprintf (buf, sizeof (buf), "__%s%s%d", const_prefix,
559 volatile_prefix, len);
560 }
561 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
562 + strlen (buf) + len + strlen (physname) + 1);
563
564 mangled_name = (char *) xmalloc (mangled_name_len);
565 if (is_constructor)
566 mangled_name[0] = '\0';
567 else
568 strcpy (mangled_name, field_name);
569
570 strcat (mangled_name, buf);
571 /* If the class doesn't have a name, i.e. newname NULL, then we just
572 mangle it using 0 for the length of the class. Thus it gets mangled
573 as something starting with `::' rather than `classname::'. */
574 if (newname != NULL)
575 strcat (mangled_name, newname);
576
577 strcat (mangled_name, physname);
578 return (mangled_name);
579 }
580
581 /* Set the demangled name of GSYMBOL to NAME. NAME must be already
582 correctly allocated. */
583
584 void
585 symbol_set_demangled_name (struct general_symbol_info *gsymbol,
586 const char *name,
587 struct obstack *obstack)
588 {
589 if (gsymbol->language == language_ada)
590 {
591 if (name == NULL)
592 {
593 gsymbol->ada_mangled = 0;
594 gsymbol->language_specific.obstack = obstack;
595 }
596 else
597 {
598 gsymbol->ada_mangled = 1;
599 gsymbol->language_specific.demangled_name = name;
600 }
601 }
602 else
603 gsymbol->language_specific.demangled_name = name;
604 }
605
606 /* Return the demangled name of GSYMBOL. */
607
608 const char *
609 symbol_get_demangled_name (const struct general_symbol_info *gsymbol)
610 {
611 if (gsymbol->language == language_ada)
612 {
613 if (!gsymbol->ada_mangled)
614 return NULL;
615 /* Fall through. */
616 }
617
618 return gsymbol->language_specific.demangled_name;
619 }
620
621 \f
622 /* Initialize the language dependent portion of a symbol
623 depending upon the language for the symbol. */
624
625 void
626 symbol_set_language (struct general_symbol_info *gsymbol,
627 enum language language,
628 struct obstack *obstack)
629 {
630 gsymbol->language = language;
631 if (gsymbol->language == language_cplus
632 || gsymbol->language == language_d
633 || gsymbol->language == language_go
634 || gsymbol->language == language_java
635 || gsymbol->language == language_objc
636 || gsymbol->language == language_fortran)
637 {
638 symbol_set_demangled_name (gsymbol, NULL, obstack);
639 }
640 else if (gsymbol->language == language_ada)
641 {
642 gdb_assert (gsymbol->ada_mangled == 0);
643 gsymbol->language_specific.obstack = obstack;
644 }
645 else
646 {
647 memset (&gsymbol->language_specific, 0,
648 sizeof (gsymbol->language_specific));
649 }
650 }
651
652 /* Functions to initialize a symbol's mangled name. */
653
654 /* Objects of this type are stored in the demangled name hash table. */
655 struct demangled_name_entry
656 {
657 const char *mangled;
658 char demangled[1];
659 };
660
661 /* Hash function for the demangled name hash. */
662
663 static hashval_t
664 hash_demangled_name_entry (const void *data)
665 {
666 const struct demangled_name_entry *e
667 = (const struct demangled_name_entry *) data;
668
669 return htab_hash_string (e->mangled);
670 }
671
672 /* Equality function for the demangled name hash. */
673
674 static int
675 eq_demangled_name_entry (const void *a, const void *b)
676 {
677 const struct demangled_name_entry *da
678 = (const struct demangled_name_entry *) a;
679 const struct demangled_name_entry *db
680 = (const struct demangled_name_entry *) b;
681
682 return strcmp (da->mangled, db->mangled) == 0;
683 }
684
685 /* Create the hash table used for demangled names. Each hash entry is
686 a pair of strings; one for the mangled name and one for the demangled
687 name. The entry is hashed via just the mangled name. */
688
689 static void
690 create_demangled_names_hash (struct objfile *objfile)
691 {
692 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
693 The hash table code will round this up to the next prime number.
694 Choosing a much larger table size wastes memory, and saves only about
695 1% in symbol reading. */
696
697 objfile->per_bfd->demangled_names_hash = htab_create_alloc
698 (256, hash_demangled_name_entry, eq_demangled_name_entry,
699 NULL, xcalloc, xfree);
700 }
701
702 /* Try to determine the demangled name for a symbol, based on the
703 language of that symbol. If the language is set to language_auto,
704 it will attempt to find any demangling algorithm that works and
705 then set the language appropriately. The returned name is allocated
706 by the demangler and should be xfree'd. */
707
708 static char *
709 symbol_find_demangled_name (struct general_symbol_info *gsymbol,
710 const char *mangled)
711 {
712 char *demangled = NULL;
713
714 if (gsymbol->language == language_unknown)
715 gsymbol->language = language_auto;
716
717 if (gsymbol->language == language_objc
718 || gsymbol->language == language_auto)
719 {
720 demangled =
721 objc_demangle (mangled, 0);
722 if (demangled != NULL)
723 {
724 gsymbol->language = language_objc;
725 return demangled;
726 }
727 }
728 if (gsymbol->language == language_cplus
729 || gsymbol->language == language_auto)
730 {
731 demangled =
732 gdb_demangle (mangled, DMGL_PARAMS | DMGL_ANSI);
733 if (demangled != NULL)
734 {
735 gsymbol->language = language_cplus;
736 return demangled;
737 }
738 }
739 if (gsymbol->language == language_java)
740 {
741 demangled =
742 gdb_demangle (mangled,
743 DMGL_PARAMS | DMGL_ANSI | DMGL_JAVA);
744 if (demangled != NULL)
745 {
746 gsymbol->language = language_java;
747 return demangled;
748 }
749 }
750 if (gsymbol->language == language_d
751 || gsymbol->language == language_auto)
752 {
753 demangled = d_demangle(mangled, 0);
754 if (demangled != NULL)
755 {
756 gsymbol->language = language_d;
757 return demangled;
758 }
759 }
760 /* FIXME(dje): Continually adding languages here is clumsy.
761 Better to just call la_demangle if !auto, and if auto then call
762 a utility routine that tries successive languages in turn and reports
763 which one it finds. I realize the la_demangle options may be different
764 for different languages but there's already a FIXME for that. */
765 if (gsymbol->language == language_go
766 || gsymbol->language == language_auto)
767 {
768 demangled = go_demangle (mangled, 0);
769 if (demangled != NULL)
770 {
771 gsymbol->language = language_go;
772 return demangled;
773 }
774 }
775
776 /* We could support `gsymbol->language == language_fortran' here to provide
777 module namespaces also for inferiors with only minimal symbol table (ELF
778 symbols). Just the mangling standard is not standardized across compilers
779 and there is no DW_AT_producer available for inferiors with only the ELF
780 symbols to check the mangling kind. */
781
782 /* Check for Ada symbols last. See comment below explaining why. */
783
784 if (gsymbol->language == language_auto)
785 {
786 const char *demangled = ada_decode (mangled);
787
788 if (demangled != mangled && demangled != NULL && demangled[0] != '<')
789 {
790 /* Set the gsymbol language to Ada, but still return NULL.
791 Two reasons for that:
792
793 1. For Ada, we prefer computing the symbol's decoded name
794 on the fly rather than pre-compute it, in order to save
795 memory (Ada projects are typically very large).
796
797 2. There are some areas in the definition of the GNAT
798 encoding where, with a bit of bad luck, we might be able
799 to decode a non-Ada symbol, generating an incorrect
800 demangled name (Eg: names ending with "TB" for instance
801 are identified as task bodies and so stripped from
802 the decoded name returned).
803
804 Returning NULL, here, helps us get a little bit of
805 the best of both worlds. Because we're last, we should
806 not affect any of the other languages that were able to
807 demangle the symbol before us; we get to correctly tag
808 Ada symbols as such; and even if we incorrectly tagged
809 a non-Ada symbol, which should be rare, any routing
810 through the Ada language should be transparent (Ada
811 tries to behave much like C/C++ with non-Ada symbols). */
812 gsymbol->language = language_ada;
813 return NULL;
814 }
815 }
816
817 return NULL;
818 }
819
820 /* Set both the mangled and demangled (if any) names for GSYMBOL based
821 on LINKAGE_NAME and LEN. Ordinarily, NAME is copied onto the
822 objfile's obstack; but if COPY_NAME is 0 and if NAME is
823 NUL-terminated, then this function assumes that NAME is already
824 correctly saved (either permanently or with a lifetime tied to the
825 objfile), and it will not be copied.
826
827 The hash table corresponding to OBJFILE is used, and the memory
828 comes from the per-BFD storage_obstack. LINKAGE_NAME is copied,
829 so the pointer can be discarded after calling this function. */
830
831 /* We have to be careful when dealing with Java names: when we run
832 into a Java minimal symbol, we don't know it's a Java symbol, so it
833 gets demangled as a C++ name. This is unfortunate, but there's not
834 much we can do about it: but when demangling partial symbols and
835 regular symbols, we'd better not reuse the wrong demangled name.
836 (See PR gdb/1039.) We solve this by putting a distinctive prefix
837 on Java names when storing them in the hash table. */
838
839 /* FIXME: carlton/2003-03-13: This is an unfortunate situation. I
840 don't mind the Java prefix so much: different languages have
841 different demangling requirements, so it's only natural that we
842 need to keep language data around in our demangling cache. But
843 it's not good that the minimal symbol has the wrong demangled name.
844 Unfortunately, I can't think of any easy solution to that
845 problem. */
846
847 #define JAVA_PREFIX "##JAVA$$"
848 #define JAVA_PREFIX_LEN 8
849
850 void
851 symbol_set_names (struct general_symbol_info *gsymbol,
852 const char *linkage_name, int len, int copy_name,
853 struct objfile *objfile)
854 {
855 struct demangled_name_entry **slot;
856 /* A 0-terminated copy of the linkage name. */
857 const char *linkage_name_copy;
858 /* A copy of the linkage name that might have a special Java prefix
859 added to it, for use when looking names up in the hash table. */
860 const char *lookup_name;
861 /* The length of lookup_name. */
862 int lookup_len;
863 struct demangled_name_entry entry;
864 struct objfile_per_bfd_storage *per_bfd = objfile->per_bfd;
865
866 if (gsymbol->language == language_ada)
867 {
868 /* In Ada, we do the symbol lookups using the mangled name, so
869 we can save some space by not storing the demangled name.
870
871 As a side note, we have also observed some overlap between
872 the C++ mangling and Ada mangling, similarly to what has
873 been observed with Java. Because we don't store the demangled
874 name with the symbol, we don't need to use the same trick
875 as Java. */
876 if (!copy_name)
877 gsymbol->name = linkage_name;
878 else
879 {
880 char *name = (char *) obstack_alloc (&per_bfd->storage_obstack,
881 len + 1);
882
883 memcpy (name, linkage_name, len);
884 name[len] = '\0';
885 gsymbol->name = name;
886 }
887 symbol_set_demangled_name (gsymbol, NULL, &per_bfd->storage_obstack);
888
889 return;
890 }
891
892 if (per_bfd->demangled_names_hash == NULL)
893 create_demangled_names_hash (objfile);
894
895 /* The stabs reader generally provides names that are not
896 NUL-terminated; most of the other readers don't do this, so we
897 can just use the given copy, unless we're in the Java case. */
898 if (gsymbol->language == language_java)
899 {
900 char *alloc_name;
901
902 lookup_len = len + JAVA_PREFIX_LEN;
903 alloc_name = (char *) alloca (lookup_len + 1);
904 memcpy (alloc_name, JAVA_PREFIX, JAVA_PREFIX_LEN);
905 memcpy (alloc_name + JAVA_PREFIX_LEN, linkage_name, len);
906 alloc_name[lookup_len] = '\0';
907
908 lookup_name = alloc_name;
909 linkage_name_copy = alloc_name + JAVA_PREFIX_LEN;
910 }
911 else if (linkage_name[len] != '\0')
912 {
913 char *alloc_name;
914
915 lookup_len = len;
916 alloc_name = (char *) alloca (lookup_len + 1);
917 memcpy (alloc_name, linkage_name, len);
918 alloc_name[lookup_len] = '\0';
919
920 lookup_name = alloc_name;
921 linkage_name_copy = alloc_name;
922 }
923 else
924 {
925 lookup_len = len;
926 lookup_name = linkage_name;
927 linkage_name_copy = linkage_name;
928 }
929
930 entry.mangled = lookup_name;
931 slot = ((struct demangled_name_entry **)
932 htab_find_slot (per_bfd->demangled_names_hash,
933 &entry, INSERT));
934
935 /* If this name is not in the hash table, add it. */
936 if (*slot == NULL
937 /* A C version of the symbol may have already snuck into the table.
938 This happens to, e.g., main.init (__go_init_main). Cope. */
939 || (gsymbol->language == language_go
940 && (*slot)->demangled[0] == '\0'))
941 {
942 char *demangled_name = symbol_find_demangled_name (gsymbol,
943 linkage_name_copy);
944 int demangled_len = demangled_name ? strlen (demangled_name) : 0;
945
946 /* Suppose we have demangled_name==NULL, copy_name==0, and
947 lookup_name==linkage_name. In this case, we already have the
948 mangled name saved, and we don't have a demangled name. So,
949 you might think we could save a little space by not recording
950 this in the hash table at all.
951
952 It turns out that it is actually important to still save such
953 an entry in the hash table, because storing this name gives
954 us better bcache hit rates for partial symbols. */
955 if (!copy_name && lookup_name == linkage_name)
956 {
957 *slot
958 = ((struct demangled_name_entry *)
959 obstack_alloc (&per_bfd->storage_obstack,
960 offsetof (struct demangled_name_entry, demangled)
961 + demangled_len + 1));
962 (*slot)->mangled = lookup_name;
963 }
964 else
965 {
966 char *mangled_ptr;
967
968 /* If we must copy the mangled name, put it directly after
969 the demangled name so we can have a single
970 allocation. */
971 *slot
972 = ((struct demangled_name_entry *)
973 obstack_alloc (&per_bfd->storage_obstack,
974 offsetof (struct demangled_name_entry, demangled)
975 + lookup_len + demangled_len + 2));
976 mangled_ptr = &((*slot)->demangled[demangled_len + 1]);
977 strcpy (mangled_ptr, lookup_name);
978 (*slot)->mangled = mangled_ptr;
979 }
980
981 if (demangled_name != NULL)
982 {
983 strcpy ((*slot)->demangled, demangled_name);
984 xfree (demangled_name);
985 }
986 else
987 (*slot)->demangled[0] = '\0';
988 }
989
990 gsymbol->name = (*slot)->mangled + lookup_len - len;
991 if ((*slot)->demangled[0] != '\0')
992 symbol_set_demangled_name (gsymbol, (*slot)->demangled,
993 &per_bfd->storage_obstack);
994 else
995 symbol_set_demangled_name (gsymbol, NULL, &per_bfd->storage_obstack);
996 }
997
998 /* Return the source code name of a symbol. In languages where
999 demangling is necessary, this is the demangled name. */
1000
1001 const char *
1002 symbol_natural_name (const struct general_symbol_info *gsymbol)
1003 {
1004 switch (gsymbol->language)
1005 {
1006 case language_cplus:
1007 case language_d:
1008 case language_go:
1009 case language_java:
1010 case language_objc:
1011 case language_fortran:
1012 if (symbol_get_demangled_name (gsymbol) != NULL)
1013 return symbol_get_demangled_name (gsymbol);
1014 break;
1015 case language_ada:
1016 return ada_decode_symbol (gsymbol);
1017 default:
1018 break;
1019 }
1020 return gsymbol->name;
1021 }
1022
1023 /* Return the demangled name for a symbol based on the language for
1024 that symbol. If no demangled name exists, return NULL. */
1025
1026 const char *
1027 symbol_demangled_name (const struct general_symbol_info *gsymbol)
1028 {
1029 const char *dem_name = NULL;
1030
1031 switch (gsymbol->language)
1032 {
1033 case language_cplus:
1034 case language_d:
1035 case language_go:
1036 case language_java:
1037 case language_objc:
1038 case language_fortran:
1039 dem_name = symbol_get_demangled_name (gsymbol);
1040 break;
1041 case language_ada:
1042 dem_name = ada_decode_symbol (gsymbol);
1043 break;
1044 default:
1045 break;
1046 }
1047 return dem_name;
1048 }
1049
1050 /* Return the search name of a symbol---generally the demangled or
1051 linkage name of the symbol, depending on how it will be searched for.
1052 If there is no distinct demangled name, then returns the same value
1053 (same pointer) as SYMBOL_LINKAGE_NAME. */
1054
1055 const char *
1056 symbol_search_name (const struct general_symbol_info *gsymbol)
1057 {
1058 if (gsymbol->language == language_ada)
1059 return gsymbol->name;
1060 else
1061 return symbol_natural_name (gsymbol);
1062 }
1063
1064 /* Initialize the structure fields to zero values. */
1065
1066 void
1067 init_sal (struct symtab_and_line *sal)
1068 {
1069 memset (sal, 0, sizeof (*sal));
1070 }
1071 \f
1072
1073 /* Return 1 if the two sections are the same, or if they could
1074 plausibly be copies of each other, one in an original object
1075 file and another in a separated debug file. */
1076
1077 int
1078 matching_obj_sections (struct obj_section *obj_first,
1079 struct obj_section *obj_second)
1080 {
1081 asection *first = obj_first? obj_first->the_bfd_section : NULL;
1082 asection *second = obj_second? obj_second->the_bfd_section : NULL;
1083 struct objfile *obj;
1084
1085 /* If they're the same section, then they match. */
1086 if (first == second)
1087 return 1;
1088
1089 /* If either is NULL, give up. */
1090 if (first == NULL || second == NULL)
1091 return 0;
1092
1093 /* This doesn't apply to absolute symbols. */
1094 if (first->owner == NULL || second->owner == NULL)
1095 return 0;
1096
1097 /* If they're in the same object file, they must be different sections. */
1098 if (first->owner == second->owner)
1099 return 0;
1100
1101 /* Check whether the two sections are potentially corresponding. They must
1102 have the same size, address, and name. We can't compare section indexes,
1103 which would be more reliable, because some sections may have been
1104 stripped. */
1105 if (bfd_get_section_size (first) != bfd_get_section_size (second))
1106 return 0;
1107
1108 /* In-memory addresses may start at a different offset, relativize them. */
1109 if (bfd_get_section_vma (first->owner, first)
1110 - bfd_get_start_address (first->owner)
1111 != bfd_get_section_vma (second->owner, second)
1112 - bfd_get_start_address (second->owner))
1113 return 0;
1114
1115 if (bfd_get_section_name (first->owner, first) == NULL
1116 || bfd_get_section_name (second->owner, second) == NULL
1117 || strcmp (bfd_get_section_name (first->owner, first),
1118 bfd_get_section_name (second->owner, second)) != 0)
1119 return 0;
1120
1121 /* Otherwise check that they are in corresponding objfiles. */
1122
1123 ALL_OBJFILES (obj)
1124 if (obj->obfd == first->owner)
1125 break;
1126 gdb_assert (obj != NULL);
1127
1128 if (obj->separate_debug_objfile != NULL
1129 && obj->separate_debug_objfile->obfd == second->owner)
1130 return 1;
1131 if (obj->separate_debug_objfile_backlink != NULL
1132 && obj->separate_debug_objfile_backlink->obfd == second->owner)
1133 return 1;
1134
1135 return 0;
1136 }
1137
1138 /* See symtab.h. */
1139
1140 void
1141 expand_symtab_containing_pc (CORE_ADDR pc, struct obj_section *section)
1142 {
1143 struct objfile *objfile;
1144 struct bound_minimal_symbol msymbol;
1145
1146 /* If we know that this is not a text address, return failure. This is
1147 necessary because we loop based on texthigh and textlow, which do
1148 not include the data ranges. */
1149 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
1150 if (msymbol.minsym
1151 && (MSYMBOL_TYPE (msymbol.minsym) == mst_data
1152 || MSYMBOL_TYPE (msymbol.minsym) == mst_bss
1153 || MSYMBOL_TYPE (msymbol.minsym) == mst_abs
1154 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_data
1155 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_bss))
1156 return;
1157
1158 ALL_OBJFILES (objfile)
1159 {
1160 struct compunit_symtab *cust = NULL;
1161
1162 if (objfile->sf)
1163 cust = objfile->sf->qf->find_pc_sect_compunit_symtab (objfile, msymbol,
1164 pc, section, 0);
1165 if (cust)
1166 return;
1167 }
1168 }
1169 \f
1170 /* Hash function for the symbol cache. */
1171
1172 static unsigned int
1173 hash_symbol_entry (const struct objfile *objfile_context,
1174 const char *name, domain_enum domain)
1175 {
1176 unsigned int hash = (uintptr_t) objfile_context;
1177
1178 if (name != NULL)
1179 hash += htab_hash_string (name);
1180
1181 /* Because of symbol_matches_domain we need VAR_DOMAIN and STRUCT_DOMAIN
1182 to map to the same slot. */
1183 if (domain == STRUCT_DOMAIN)
1184 hash += VAR_DOMAIN * 7;
1185 else
1186 hash += domain * 7;
1187
1188 return hash;
1189 }
1190
1191 /* Equality function for the symbol cache. */
1192
1193 static int
1194 eq_symbol_entry (const struct symbol_cache_slot *slot,
1195 const struct objfile *objfile_context,
1196 const char *name, domain_enum domain)
1197 {
1198 const char *slot_name;
1199 domain_enum slot_domain;
1200
1201 if (slot->state == SYMBOL_SLOT_UNUSED)
1202 return 0;
1203
1204 if (slot->objfile_context != objfile_context)
1205 return 0;
1206
1207 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1208 {
1209 slot_name = slot->value.not_found.name;
1210 slot_domain = slot->value.not_found.domain;
1211 }
1212 else
1213 {
1214 slot_name = SYMBOL_SEARCH_NAME (slot->value.found.symbol);
1215 slot_domain = SYMBOL_DOMAIN (slot->value.found.symbol);
1216 }
1217
1218 /* NULL names match. */
1219 if (slot_name == NULL && name == NULL)
1220 {
1221 /* But there's no point in calling symbol_matches_domain in the
1222 SYMBOL_SLOT_FOUND case. */
1223 if (slot_domain != domain)
1224 return 0;
1225 }
1226 else if (slot_name != NULL && name != NULL)
1227 {
1228 /* It's important that we use the same comparison that was done the
1229 first time through. If the slot records a found symbol, then this
1230 means using strcmp_iw on SYMBOL_SEARCH_NAME. See dictionary.c.
1231 It also means using symbol_matches_domain for found symbols.
1232 See block.c.
1233
1234 If the slot records a not-found symbol, then require a precise match.
1235 We could still be lax with whitespace like strcmp_iw though. */
1236
1237 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1238 {
1239 if (strcmp (slot_name, name) != 0)
1240 return 0;
1241 if (slot_domain != domain)
1242 return 0;
1243 }
1244 else
1245 {
1246 struct symbol *sym = slot->value.found.symbol;
1247
1248 if (strcmp_iw (slot_name, name) != 0)
1249 return 0;
1250 if (!symbol_matches_domain (SYMBOL_LANGUAGE (sym),
1251 slot_domain, domain))
1252 return 0;
1253 }
1254 }
1255 else
1256 {
1257 /* Only one name is NULL. */
1258 return 0;
1259 }
1260
1261 return 1;
1262 }
1263
1264 /* Given a cache of size SIZE, return the size of the struct (with variable
1265 length array) in bytes. */
1266
1267 static size_t
1268 symbol_cache_byte_size (unsigned int size)
1269 {
1270 return (sizeof (struct block_symbol_cache)
1271 + ((size - 1) * sizeof (struct symbol_cache_slot)));
1272 }
1273
1274 /* Resize CACHE. */
1275
1276 static void
1277 resize_symbol_cache (struct symbol_cache *cache, unsigned int new_size)
1278 {
1279 /* If there's no change in size, don't do anything.
1280 All caches have the same size, so we can just compare with the size
1281 of the global symbols cache. */
1282 if ((cache->global_symbols != NULL
1283 && cache->global_symbols->size == new_size)
1284 || (cache->global_symbols == NULL
1285 && new_size == 0))
1286 return;
1287
1288 xfree (cache->global_symbols);
1289 xfree (cache->static_symbols);
1290
1291 if (new_size == 0)
1292 {
1293 cache->global_symbols = NULL;
1294 cache->static_symbols = NULL;
1295 }
1296 else
1297 {
1298 size_t total_size = symbol_cache_byte_size (new_size);
1299
1300 cache->global_symbols
1301 = (struct block_symbol_cache *) xcalloc (1, total_size);
1302 cache->static_symbols
1303 = (struct block_symbol_cache *) xcalloc (1, total_size);
1304 cache->global_symbols->size = new_size;
1305 cache->static_symbols->size = new_size;
1306 }
1307 }
1308
1309 /* Make a symbol cache of size SIZE. */
1310
1311 static struct symbol_cache *
1312 make_symbol_cache (unsigned int size)
1313 {
1314 struct symbol_cache *cache;
1315
1316 cache = XCNEW (struct symbol_cache);
1317 resize_symbol_cache (cache, symbol_cache_size);
1318 return cache;
1319 }
1320
1321 /* Free the space used by CACHE. */
1322
1323 static void
1324 free_symbol_cache (struct symbol_cache *cache)
1325 {
1326 xfree (cache->global_symbols);
1327 xfree (cache->static_symbols);
1328 xfree (cache);
1329 }
1330
1331 /* Return the symbol cache of PSPACE.
1332 Create one if it doesn't exist yet. */
1333
1334 static struct symbol_cache *
1335 get_symbol_cache (struct program_space *pspace)
1336 {
1337 struct symbol_cache *cache
1338 = (struct symbol_cache *) program_space_data (pspace, symbol_cache_key);
1339
1340 if (cache == NULL)
1341 {
1342 cache = make_symbol_cache (symbol_cache_size);
1343 set_program_space_data (pspace, symbol_cache_key, cache);
1344 }
1345
1346 return cache;
1347 }
1348
1349 /* Delete the symbol cache of PSPACE.
1350 Called when PSPACE is destroyed. */
1351
1352 static void
1353 symbol_cache_cleanup (struct program_space *pspace, void *data)
1354 {
1355 struct symbol_cache *cache = (struct symbol_cache *) data;
1356
1357 free_symbol_cache (cache);
1358 }
1359
1360 /* Set the size of the symbol cache in all program spaces. */
1361
1362 static void
1363 set_symbol_cache_size (unsigned int new_size)
1364 {
1365 struct program_space *pspace;
1366
1367 ALL_PSPACES (pspace)
1368 {
1369 struct symbol_cache *cache
1370 = (struct symbol_cache *) program_space_data (pspace, symbol_cache_key);
1371
1372 /* The pspace could have been created but not have a cache yet. */
1373 if (cache != NULL)
1374 resize_symbol_cache (cache, new_size);
1375 }
1376 }
1377
1378 /* Called when symbol-cache-size is set. */
1379
1380 static void
1381 set_symbol_cache_size_handler (char *args, int from_tty,
1382 struct cmd_list_element *c)
1383 {
1384 if (new_symbol_cache_size > MAX_SYMBOL_CACHE_SIZE)
1385 {
1386 /* Restore the previous value.
1387 This is the value the "show" command prints. */
1388 new_symbol_cache_size = symbol_cache_size;
1389
1390 error (_("Symbol cache size is too large, max is %u."),
1391 MAX_SYMBOL_CACHE_SIZE);
1392 }
1393 symbol_cache_size = new_symbol_cache_size;
1394
1395 set_symbol_cache_size (symbol_cache_size);
1396 }
1397
1398 /* Lookup symbol NAME,DOMAIN in BLOCK in the symbol cache of PSPACE.
1399 OBJFILE_CONTEXT is the current objfile, which may be NULL.
1400 The result is the symbol if found, SYMBOL_LOOKUP_FAILED if a previous lookup
1401 failed (and thus this one will too), or NULL if the symbol is not present
1402 in the cache.
1403 If the symbol is not present in the cache, then *BSC_PTR and *SLOT_PTR are
1404 set to the cache and slot of the symbol to save the result of a full lookup
1405 attempt. */
1406
1407 static struct block_symbol
1408 symbol_cache_lookup (struct symbol_cache *cache,
1409 struct objfile *objfile_context, int block,
1410 const char *name, domain_enum domain,
1411 struct block_symbol_cache **bsc_ptr,
1412 struct symbol_cache_slot **slot_ptr)
1413 {
1414 struct block_symbol_cache *bsc;
1415 unsigned int hash;
1416 struct symbol_cache_slot *slot;
1417
1418 if (block == GLOBAL_BLOCK)
1419 bsc = cache->global_symbols;
1420 else
1421 bsc = cache->static_symbols;
1422 if (bsc == NULL)
1423 {
1424 *bsc_ptr = NULL;
1425 *slot_ptr = NULL;
1426 return (struct block_symbol) {NULL, NULL};
1427 }
1428
1429 hash = hash_symbol_entry (objfile_context, name, domain);
1430 slot = bsc->symbols + hash % bsc->size;
1431
1432 if (eq_symbol_entry (slot, objfile_context, name, domain))
1433 {
1434 if (symbol_lookup_debug)
1435 fprintf_unfiltered (gdb_stdlog,
1436 "%s block symbol cache hit%s for %s, %s\n",
1437 block == GLOBAL_BLOCK ? "Global" : "Static",
1438 slot->state == SYMBOL_SLOT_NOT_FOUND
1439 ? " (not found)" : "",
1440 name, domain_name (domain));
1441 ++bsc->hits;
1442 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1443 return SYMBOL_LOOKUP_FAILED;
1444 return slot->value.found;
1445 }
1446
1447 /* Symbol is not present in the cache. */
1448
1449 *bsc_ptr = bsc;
1450 *slot_ptr = slot;
1451
1452 if (symbol_lookup_debug)
1453 {
1454 fprintf_unfiltered (gdb_stdlog,
1455 "%s block symbol cache miss for %s, %s\n",
1456 block == GLOBAL_BLOCK ? "Global" : "Static",
1457 name, domain_name (domain));
1458 }
1459 ++bsc->misses;
1460 return (struct block_symbol) {NULL, NULL};
1461 }
1462
1463 /* Clear out SLOT. */
1464
1465 static void
1466 symbol_cache_clear_slot (struct symbol_cache_slot *slot)
1467 {
1468 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1469 xfree (slot->value.not_found.name);
1470 slot->state = SYMBOL_SLOT_UNUSED;
1471 }
1472
1473 /* Mark SYMBOL as found in SLOT.
1474 OBJFILE_CONTEXT is the current objfile when the lookup was done, or NULL
1475 if it's not needed to distinguish lookups (STATIC_BLOCK). It is *not*
1476 necessarily the objfile the symbol was found in. */
1477
1478 static void
1479 symbol_cache_mark_found (struct block_symbol_cache *bsc,
1480 struct symbol_cache_slot *slot,
1481 struct objfile *objfile_context,
1482 struct symbol *symbol,
1483 const struct block *block)
1484 {
1485 if (bsc == NULL)
1486 return;
1487 if (slot->state != SYMBOL_SLOT_UNUSED)
1488 {
1489 ++bsc->collisions;
1490 symbol_cache_clear_slot (slot);
1491 }
1492 slot->state = SYMBOL_SLOT_FOUND;
1493 slot->objfile_context = objfile_context;
1494 slot->value.found.symbol = symbol;
1495 slot->value.found.block = block;
1496 }
1497
1498 /* Mark symbol NAME, DOMAIN as not found in SLOT.
1499 OBJFILE_CONTEXT is the current objfile when the lookup was done, or NULL
1500 if it's not needed to distinguish lookups (STATIC_BLOCK). */
1501
1502 static void
1503 symbol_cache_mark_not_found (struct block_symbol_cache *bsc,
1504 struct symbol_cache_slot *slot,
1505 struct objfile *objfile_context,
1506 const char *name, domain_enum domain)
1507 {
1508 if (bsc == NULL)
1509 return;
1510 if (slot->state != SYMBOL_SLOT_UNUSED)
1511 {
1512 ++bsc->collisions;
1513 symbol_cache_clear_slot (slot);
1514 }
1515 slot->state = SYMBOL_SLOT_NOT_FOUND;
1516 slot->objfile_context = objfile_context;
1517 slot->value.not_found.name = xstrdup (name);
1518 slot->value.not_found.domain = domain;
1519 }
1520
1521 /* Flush the symbol cache of PSPACE. */
1522
1523 static void
1524 symbol_cache_flush (struct program_space *pspace)
1525 {
1526 struct symbol_cache *cache
1527 = (struct symbol_cache *) program_space_data (pspace, symbol_cache_key);
1528 int pass;
1529 size_t total_size;
1530
1531 if (cache == NULL)
1532 return;
1533 if (cache->global_symbols == NULL)
1534 {
1535 gdb_assert (symbol_cache_size == 0);
1536 gdb_assert (cache->static_symbols == NULL);
1537 return;
1538 }
1539
1540 /* If the cache is untouched since the last flush, early exit.
1541 This is important for performance during the startup of a program linked
1542 with 100s (or 1000s) of shared libraries. */
1543 if (cache->global_symbols->misses == 0
1544 && cache->static_symbols->misses == 0)
1545 return;
1546
1547 gdb_assert (cache->global_symbols->size == symbol_cache_size);
1548 gdb_assert (cache->static_symbols->size == symbol_cache_size);
1549
1550 for (pass = 0; pass < 2; ++pass)
1551 {
1552 struct block_symbol_cache *bsc
1553 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1554 unsigned int i;
1555
1556 for (i = 0; i < bsc->size; ++i)
1557 symbol_cache_clear_slot (&bsc->symbols[i]);
1558 }
1559
1560 cache->global_symbols->hits = 0;
1561 cache->global_symbols->misses = 0;
1562 cache->global_symbols->collisions = 0;
1563 cache->static_symbols->hits = 0;
1564 cache->static_symbols->misses = 0;
1565 cache->static_symbols->collisions = 0;
1566 }
1567
1568 /* Dump CACHE. */
1569
1570 static void
1571 symbol_cache_dump (const struct symbol_cache *cache)
1572 {
1573 int pass;
1574
1575 if (cache->global_symbols == NULL)
1576 {
1577 printf_filtered (" <disabled>\n");
1578 return;
1579 }
1580
1581 for (pass = 0; pass < 2; ++pass)
1582 {
1583 const struct block_symbol_cache *bsc
1584 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1585 unsigned int i;
1586
1587 if (pass == 0)
1588 printf_filtered ("Global symbols:\n");
1589 else
1590 printf_filtered ("Static symbols:\n");
1591
1592 for (i = 0; i < bsc->size; ++i)
1593 {
1594 const struct symbol_cache_slot *slot = &bsc->symbols[i];
1595
1596 QUIT;
1597
1598 switch (slot->state)
1599 {
1600 case SYMBOL_SLOT_UNUSED:
1601 break;
1602 case SYMBOL_SLOT_NOT_FOUND:
1603 printf_filtered (" [%4u] = %s, %s %s (not found)\n", i,
1604 host_address_to_string (slot->objfile_context),
1605 slot->value.not_found.name,
1606 domain_name (slot->value.not_found.domain));
1607 break;
1608 case SYMBOL_SLOT_FOUND:
1609 {
1610 struct symbol *found = slot->value.found.symbol;
1611 const struct objfile *context = slot->objfile_context;
1612
1613 printf_filtered (" [%4u] = %s, %s %s\n", i,
1614 host_address_to_string (context),
1615 SYMBOL_PRINT_NAME (found),
1616 domain_name (SYMBOL_DOMAIN (found)));
1617 break;
1618 }
1619 }
1620 }
1621 }
1622 }
1623
1624 /* The "mt print symbol-cache" command. */
1625
1626 static void
1627 maintenance_print_symbol_cache (char *args, int from_tty)
1628 {
1629 struct program_space *pspace;
1630
1631 ALL_PSPACES (pspace)
1632 {
1633 struct symbol_cache *cache;
1634
1635 printf_filtered (_("Symbol cache for pspace %d\n%s:\n"),
1636 pspace->num,
1637 pspace->symfile_object_file != NULL
1638 ? objfile_name (pspace->symfile_object_file)
1639 : "(no object file)");
1640
1641 /* If the cache hasn't been created yet, avoid creating one. */
1642 cache
1643 = (struct symbol_cache *) program_space_data (pspace, symbol_cache_key);
1644 if (cache == NULL)
1645 printf_filtered (" <empty>\n");
1646 else
1647 symbol_cache_dump (cache);
1648 }
1649 }
1650
1651 /* The "mt flush-symbol-cache" command. */
1652
1653 static void
1654 maintenance_flush_symbol_cache (char *args, int from_tty)
1655 {
1656 struct program_space *pspace;
1657
1658 ALL_PSPACES (pspace)
1659 {
1660 symbol_cache_flush (pspace);
1661 }
1662 }
1663
1664 /* Print usage statistics of CACHE. */
1665
1666 static void
1667 symbol_cache_stats (struct symbol_cache *cache)
1668 {
1669 int pass;
1670
1671 if (cache->global_symbols == NULL)
1672 {
1673 printf_filtered (" <disabled>\n");
1674 return;
1675 }
1676
1677 for (pass = 0; pass < 2; ++pass)
1678 {
1679 const struct block_symbol_cache *bsc
1680 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1681
1682 QUIT;
1683
1684 if (pass == 0)
1685 printf_filtered ("Global block cache stats:\n");
1686 else
1687 printf_filtered ("Static block cache stats:\n");
1688
1689 printf_filtered (" size: %u\n", bsc->size);
1690 printf_filtered (" hits: %u\n", bsc->hits);
1691 printf_filtered (" misses: %u\n", bsc->misses);
1692 printf_filtered (" collisions: %u\n", bsc->collisions);
1693 }
1694 }
1695
1696 /* The "mt print symbol-cache-statistics" command. */
1697
1698 static void
1699 maintenance_print_symbol_cache_statistics (char *args, int from_tty)
1700 {
1701 struct program_space *pspace;
1702
1703 ALL_PSPACES (pspace)
1704 {
1705 struct symbol_cache *cache;
1706
1707 printf_filtered (_("Symbol cache statistics for pspace %d\n%s:\n"),
1708 pspace->num,
1709 pspace->symfile_object_file != NULL
1710 ? objfile_name (pspace->symfile_object_file)
1711 : "(no object file)");
1712
1713 /* If the cache hasn't been created yet, avoid creating one. */
1714 cache
1715 = (struct symbol_cache *) program_space_data (pspace, symbol_cache_key);
1716 if (cache == NULL)
1717 printf_filtered (" empty, no stats available\n");
1718 else
1719 symbol_cache_stats (cache);
1720 }
1721 }
1722
1723 /* This module's 'new_objfile' observer. */
1724
1725 static void
1726 symtab_new_objfile_observer (struct objfile *objfile)
1727 {
1728 /* Ideally we'd use OBJFILE->pspace, but OBJFILE may be NULL. */
1729 symbol_cache_flush (current_program_space);
1730 }
1731
1732 /* This module's 'free_objfile' observer. */
1733
1734 static void
1735 symtab_free_objfile_observer (struct objfile *objfile)
1736 {
1737 symbol_cache_flush (objfile->pspace);
1738 }
1739 \f
1740 /* Debug symbols usually don't have section information. We need to dig that
1741 out of the minimal symbols and stash that in the debug symbol. */
1742
1743 void
1744 fixup_section (struct general_symbol_info *ginfo,
1745 CORE_ADDR addr, struct objfile *objfile)
1746 {
1747 struct minimal_symbol *msym;
1748
1749 /* First, check whether a minimal symbol with the same name exists
1750 and points to the same address. The address check is required
1751 e.g. on PowerPC64, where the minimal symbol for a function will
1752 point to the function descriptor, while the debug symbol will
1753 point to the actual function code. */
1754 msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->name, objfile);
1755 if (msym)
1756 ginfo->section = MSYMBOL_SECTION (msym);
1757 else
1758 {
1759 /* Static, function-local variables do appear in the linker
1760 (minimal) symbols, but are frequently given names that won't
1761 be found via lookup_minimal_symbol(). E.g., it has been
1762 observed in frv-uclinux (ELF) executables that a static,
1763 function-local variable named "foo" might appear in the
1764 linker symbols as "foo.6" or "foo.3". Thus, there is no
1765 point in attempting to extend the lookup-by-name mechanism to
1766 handle this case due to the fact that there can be multiple
1767 names.
1768
1769 So, instead, search the section table when lookup by name has
1770 failed. The ``addr'' and ``endaddr'' fields may have already
1771 been relocated. If so, the relocation offset (i.e. the
1772 ANOFFSET value) needs to be subtracted from these values when
1773 performing the comparison. We unconditionally subtract it,
1774 because, when no relocation has been performed, the ANOFFSET
1775 value will simply be zero.
1776
1777 The address of the symbol whose section we're fixing up HAS
1778 NOT BEEN adjusted (relocated) yet. It can't have been since
1779 the section isn't yet known and knowing the section is
1780 necessary in order to add the correct relocation value. In
1781 other words, we wouldn't even be in this function (attempting
1782 to compute the section) if it were already known.
1783
1784 Note that it is possible to search the minimal symbols
1785 (subtracting the relocation value if necessary) to find the
1786 matching minimal symbol, but this is overkill and much less
1787 efficient. It is not necessary to find the matching minimal
1788 symbol, only its section.
1789
1790 Note that this technique (of doing a section table search)
1791 can fail when unrelocated section addresses overlap. For
1792 this reason, we still attempt a lookup by name prior to doing
1793 a search of the section table. */
1794
1795 struct obj_section *s;
1796 int fallback = -1;
1797
1798 ALL_OBJFILE_OSECTIONS (objfile, s)
1799 {
1800 int idx = s - objfile->sections;
1801 CORE_ADDR offset = ANOFFSET (objfile->section_offsets, idx);
1802
1803 if (fallback == -1)
1804 fallback = idx;
1805
1806 if (obj_section_addr (s) - offset <= addr
1807 && addr < obj_section_endaddr (s) - offset)
1808 {
1809 ginfo->section = idx;
1810 return;
1811 }
1812 }
1813
1814 /* If we didn't find the section, assume it is in the first
1815 section. If there is no allocated section, then it hardly
1816 matters what we pick, so just pick zero. */
1817 if (fallback == -1)
1818 ginfo->section = 0;
1819 else
1820 ginfo->section = fallback;
1821 }
1822 }
1823
1824 struct symbol *
1825 fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
1826 {
1827 CORE_ADDR addr;
1828
1829 if (!sym)
1830 return NULL;
1831
1832 if (!SYMBOL_OBJFILE_OWNED (sym))
1833 return sym;
1834
1835 /* We either have an OBJFILE, or we can get at it from the sym's
1836 symtab. Anything else is a bug. */
1837 gdb_assert (objfile || symbol_symtab (sym));
1838
1839 if (objfile == NULL)
1840 objfile = symbol_objfile (sym);
1841
1842 if (SYMBOL_OBJ_SECTION (objfile, sym))
1843 return sym;
1844
1845 /* We should have an objfile by now. */
1846 gdb_assert (objfile);
1847
1848 switch (SYMBOL_CLASS (sym))
1849 {
1850 case LOC_STATIC:
1851 case LOC_LABEL:
1852 addr = SYMBOL_VALUE_ADDRESS (sym);
1853 break;
1854 case LOC_BLOCK:
1855 addr = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
1856 break;
1857
1858 default:
1859 /* Nothing else will be listed in the minsyms -- no use looking
1860 it up. */
1861 return sym;
1862 }
1863
1864 fixup_section (&sym->ginfo, addr, objfile);
1865
1866 return sym;
1867 }
1868
1869 /* Compute the demangled form of NAME as used by the various symbol
1870 lookup functions. The result is stored in *RESULT_NAME. Returns a
1871 cleanup which can be used to clean up the result.
1872
1873 For Ada, this function just sets *RESULT_NAME to NAME, unmodified.
1874 Normally, Ada symbol lookups are performed using the encoded name
1875 rather than the demangled name, and so it might seem to make sense
1876 for this function to return an encoded version of NAME.
1877 Unfortunately, we cannot do this, because this function is used in
1878 circumstances where it is not appropriate to try to encode NAME.
1879 For instance, when displaying the frame info, we demangle the name
1880 of each parameter, and then perform a symbol lookup inside our
1881 function using that demangled name. In Ada, certain functions
1882 have internally-generated parameters whose name contain uppercase
1883 characters. Encoding those name would result in those uppercase
1884 characters to become lowercase, and thus cause the symbol lookup
1885 to fail. */
1886
1887 struct cleanup *
1888 demangle_for_lookup (const char *name, enum language lang,
1889 const char **result_name)
1890 {
1891 char *demangled_name = NULL;
1892 const char *modified_name = NULL;
1893 struct cleanup *cleanup = make_cleanup (null_cleanup, 0);
1894
1895 modified_name = name;
1896
1897 /* If we are using C++, D, Go, or Java, demangle the name before doing a
1898 lookup, so we can always binary search. */
1899 if (lang == language_cplus)
1900 {
1901 demangled_name = gdb_demangle (name, DMGL_ANSI | DMGL_PARAMS);
1902 if (demangled_name)
1903 {
1904 modified_name = demangled_name;
1905 make_cleanup (xfree, demangled_name);
1906 }
1907 else
1908 {
1909 /* If we were given a non-mangled name, canonicalize it
1910 according to the language (so far only for C++). */
1911 demangled_name = cp_canonicalize_string (name);
1912 if (demangled_name)
1913 {
1914 modified_name = demangled_name;
1915 make_cleanup (xfree, demangled_name);
1916 }
1917 }
1918 }
1919 else if (lang == language_java)
1920 {
1921 demangled_name = gdb_demangle (name,
1922 DMGL_ANSI | DMGL_PARAMS | DMGL_JAVA);
1923 if (demangled_name)
1924 {
1925 modified_name = demangled_name;
1926 make_cleanup (xfree, demangled_name);
1927 }
1928 }
1929 else if (lang == language_d)
1930 {
1931 demangled_name = d_demangle (name, 0);
1932 if (demangled_name)
1933 {
1934 modified_name = demangled_name;
1935 make_cleanup (xfree, demangled_name);
1936 }
1937 }
1938 else if (lang == language_go)
1939 {
1940 demangled_name = go_demangle (name, 0);
1941 if (demangled_name)
1942 {
1943 modified_name = demangled_name;
1944 make_cleanup (xfree, demangled_name);
1945 }
1946 }
1947
1948 *result_name = modified_name;
1949 return cleanup;
1950 }
1951
1952 /* See symtab.h.
1953
1954 This function (or rather its subordinates) have a bunch of loops and
1955 it would seem to be attractive to put in some QUIT's (though I'm not really
1956 sure whether it can run long enough to be really important). But there
1957 are a few calls for which it would appear to be bad news to quit
1958 out of here: e.g., find_proc_desc in alpha-mdebug-tdep.c. (Note
1959 that there is C++ code below which can error(), but that probably
1960 doesn't affect these calls since they are looking for a known
1961 variable and thus can probably assume it will never hit the C++
1962 code). */
1963
1964 struct block_symbol
1965 lookup_symbol_in_language (const char *name, const struct block *block,
1966 const domain_enum domain, enum language lang,
1967 struct field_of_this_result *is_a_field_of_this)
1968 {
1969 const char *modified_name;
1970 struct block_symbol returnval;
1971 struct cleanup *cleanup = demangle_for_lookup (name, lang, &modified_name);
1972
1973 returnval = lookup_symbol_aux (modified_name, block, domain, lang,
1974 is_a_field_of_this);
1975 do_cleanups (cleanup);
1976
1977 return returnval;
1978 }
1979
1980 /* See symtab.h. */
1981
1982 struct block_symbol
1983 lookup_symbol (const char *name, const struct block *block,
1984 domain_enum domain,
1985 struct field_of_this_result *is_a_field_of_this)
1986 {
1987 return lookup_symbol_in_language (name, block, domain,
1988 current_language->la_language,
1989 is_a_field_of_this);
1990 }
1991
1992 /* See symtab.h. */
1993
1994 struct block_symbol
1995 lookup_language_this (const struct language_defn *lang,
1996 const struct block *block)
1997 {
1998 if (lang->la_name_of_this == NULL || block == NULL)
1999 return (struct block_symbol) {NULL, NULL};
2000
2001 if (symbol_lookup_debug > 1)
2002 {
2003 struct objfile *objfile = lookup_objfile_from_block (block);
2004
2005 fprintf_unfiltered (gdb_stdlog,
2006 "lookup_language_this (%s, %s (objfile %s))",
2007 lang->la_name, host_address_to_string (block),
2008 objfile_debug_name (objfile));
2009 }
2010
2011 while (block)
2012 {
2013 struct symbol *sym;
2014
2015 sym = block_lookup_symbol (block, lang->la_name_of_this, VAR_DOMAIN);
2016 if (sym != NULL)
2017 {
2018 if (symbol_lookup_debug > 1)
2019 {
2020 fprintf_unfiltered (gdb_stdlog, " = %s (%s, block %s)\n",
2021 SYMBOL_PRINT_NAME (sym),
2022 host_address_to_string (sym),
2023 host_address_to_string (block));
2024 }
2025 return (struct block_symbol) {sym, block};
2026 }
2027 if (BLOCK_FUNCTION (block))
2028 break;
2029 block = BLOCK_SUPERBLOCK (block);
2030 }
2031
2032 if (symbol_lookup_debug > 1)
2033 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
2034 return (struct block_symbol) {NULL, NULL};
2035 }
2036
2037 /* Given TYPE, a structure/union,
2038 return 1 if the component named NAME from the ultimate target
2039 structure/union is defined, otherwise, return 0. */
2040
2041 static int
2042 check_field (struct type *type, const char *name,
2043 struct field_of_this_result *is_a_field_of_this)
2044 {
2045 int i;
2046
2047 /* The type may be a stub. */
2048 type = check_typedef (type);
2049
2050 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
2051 {
2052 const char *t_field_name = TYPE_FIELD_NAME (type, i);
2053
2054 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2055 {
2056 is_a_field_of_this->type = type;
2057 is_a_field_of_this->field = &TYPE_FIELD (type, i);
2058 return 1;
2059 }
2060 }
2061
2062 /* C++: If it was not found as a data field, then try to return it
2063 as a pointer to a method. */
2064
2065 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
2066 {
2067 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
2068 {
2069 is_a_field_of_this->type = type;
2070 is_a_field_of_this->fn_field = &TYPE_FN_FIELDLIST (type, i);
2071 return 1;
2072 }
2073 }
2074
2075 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2076 if (check_field (TYPE_BASECLASS (type, i), name, is_a_field_of_this))
2077 return 1;
2078
2079 return 0;
2080 }
2081
2082 /* Behave like lookup_symbol except that NAME is the natural name
2083 (e.g., demangled name) of the symbol that we're looking for. */
2084
2085 static struct block_symbol
2086 lookup_symbol_aux (const char *name, const struct block *block,
2087 const domain_enum domain, enum language language,
2088 struct field_of_this_result *is_a_field_of_this)
2089 {
2090 struct block_symbol result;
2091 const struct language_defn *langdef;
2092
2093 if (symbol_lookup_debug)
2094 {
2095 struct objfile *objfile = lookup_objfile_from_block (block);
2096
2097 fprintf_unfiltered (gdb_stdlog,
2098 "lookup_symbol_aux (%s, %s (objfile %s), %s, %s)\n",
2099 name, host_address_to_string (block),
2100 objfile != NULL
2101 ? objfile_debug_name (objfile) : "NULL",
2102 domain_name (domain), language_str (language));
2103 }
2104
2105 /* Make sure we do something sensible with is_a_field_of_this, since
2106 the callers that set this parameter to some non-null value will
2107 certainly use it later. If we don't set it, the contents of
2108 is_a_field_of_this are undefined. */
2109 if (is_a_field_of_this != NULL)
2110 memset (is_a_field_of_this, 0, sizeof (*is_a_field_of_this));
2111
2112 /* Search specified block and its superiors. Don't search
2113 STATIC_BLOCK or GLOBAL_BLOCK. */
2114
2115 result = lookup_local_symbol (name, block, domain, language);
2116 if (result.symbol != NULL)
2117 {
2118 if (symbol_lookup_debug)
2119 {
2120 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2121 host_address_to_string (result.symbol));
2122 }
2123 return result;
2124 }
2125
2126 /* If requested to do so by the caller and if appropriate for LANGUAGE,
2127 check to see if NAME is a field of `this'. */
2128
2129 langdef = language_def (language);
2130
2131 /* Don't do this check if we are searching for a struct. It will
2132 not be found by check_field, but will be found by other
2133 means. */
2134 if (is_a_field_of_this != NULL && domain != STRUCT_DOMAIN)
2135 {
2136 result = lookup_language_this (langdef, block);
2137
2138 if (result.symbol)
2139 {
2140 struct type *t = result.symbol->type;
2141
2142 /* I'm not really sure that type of this can ever
2143 be typedefed; just be safe. */
2144 t = check_typedef (t);
2145 if (TYPE_CODE (t) == TYPE_CODE_PTR
2146 || TYPE_CODE (t) == TYPE_CODE_REF)
2147 t = TYPE_TARGET_TYPE (t);
2148
2149 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2150 && TYPE_CODE (t) != TYPE_CODE_UNION)
2151 error (_("Internal error: `%s' is not an aggregate"),
2152 langdef->la_name_of_this);
2153
2154 if (check_field (t, name, is_a_field_of_this))
2155 {
2156 if (symbol_lookup_debug)
2157 {
2158 fprintf_unfiltered (gdb_stdlog,
2159 "lookup_symbol_aux (...) = NULL\n");
2160 }
2161 return (struct block_symbol) {NULL, NULL};
2162 }
2163 }
2164 }
2165
2166 /* Now do whatever is appropriate for LANGUAGE to look
2167 up static and global variables. */
2168
2169 result = langdef->la_lookup_symbol_nonlocal (langdef, name, block, domain);
2170 if (result.symbol != NULL)
2171 {
2172 if (symbol_lookup_debug)
2173 {
2174 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2175 host_address_to_string (result.symbol));
2176 }
2177 return result;
2178 }
2179
2180 /* Now search all static file-level symbols. Not strictly correct,
2181 but more useful than an error. */
2182
2183 result = lookup_static_symbol (name, domain);
2184 if (symbol_lookup_debug)
2185 {
2186 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2187 result.symbol != NULL
2188 ? host_address_to_string (result.symbol)
2189 : "NULL");
2190 }
2191 return result;
2192 }
2193
2194 /* Check to see if the symbol is defined in BLOCK or its superiors.
2195 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
2196
2197 static struct block_symbol
2198 lookup_local_symbol (const char *name, const struct block *block,
2199 const domain_enum domain,
2200 enum language language)
2201 {
2202 struct symbol *sym;
2203 const struct block *static_block = block_static_block (block);
2204 const char *scope = block_scope (block);
2205
2206 /* Check if either no block is specified or it's a global block. */
2207
2208 if (static_block == NULL)
2209 return (struct block_symbol) {NULL, NULL};
2210
2211 while (block != static_block)
2212 {
2213 sym = lookup_symbol_in_block (name, block, domain);
2214 if (sym != NULL)
2215 return (struct block_symbol) {sym, block};
2216
2217 if (language == language_cplus || language == language_fortran)
2218 {
2219 struct block_symbol sym
2220 = cp_lookup_symbol_imports_or_template (scope, name, block,
2221 domain);
2222
2223 if (sym.symbol != NULL)
2224 return sym;
2225 }
2226
2227 if (BLOCK_FUNCTION (block) != NULL && block_inlined_p (block))
2228 break;
2229 block = BLOCK_SUPERBLOCK (block);
2230 }
2231
2232 /* We've reached the end of the function without finding a result. */
2233
2234 return (struct block_symbol) {NULL, NULL};
2235 }
2236
2237 /* See symtab.h. */
2238
2239 struct objfile *
2240 lookup_objfile_from_block (const struct block *block)
2241 {
2242 struct objfile *obj;
2243 struct compunit_symtab *cust;
2244
2245 if (block == NULL)
2246 return NULL;
2247
2248 block = block_global_block (block);
2249 /* Look through all blockvectors. */
2250 ALL_COMPUNITS (obj, cust)
2251 if (block == BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust),
2252 GLOBAL_BLOCK))
2253 {
2254 if (obj->separate_debug_objfile_backlink)
2255 obj = obj->separate_debug_objfile_backlink;
2256
2257 return obj;
2258 }
2259
2260 return NULL;
2261 }
2262
2263 /* See symtab.h. */
2264
2265 struct symbol *
2266 lookup_symbol_in_block (const char *name, const struct block *block,
2267 const domain_enum domain)
2268 {
2269 struct symbol *sym;
2270
2271 if (symbol_lookup_debug > 1)
2272 {
2273 struct objfile *objfile = lookup_objfile_from_block (block);
2274
2275 fprintf_unfiltered (gdb_stdlog,
2276 "lookup_symbol_in_block (%s, %s (objfile %s), %s)",
2277 name, host_address_to_string (block),
2278 objfile_debug_name (objfile),
2279 domain_name (domain));
2280 }
2281
2282 sym = block_lookup_symbol (block, name, domain);
2283 if (sym)
2284 {
2285 if (symbol_lookup_debug > 1)
2286 {
2287 fprintf_unfiltered (gdb_stdlog, " = %s\n",
2288 host_address_to_string (sym));
2289 }
2290 return fixup_symbol_section (sym, NULL);
2291 }
2292
2293 if (symbol_lookup_debug > 1)
2294 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
2295 return NULL;
2296 }
2297
2298 /* See symtab.h. */
2299
2300 struct block_symbol
2301 lookup_global_symbol_from_objfile (struct objfile *main_objfile,
2302 const char *name,
2303 const domain_enum domain)
2304 {
2305 struct objfile *objfile;
2306
2307 for (objfile = main_objfile;
2308 objfile;
2309 objfile = objfile_separate_debug_iterate (main_objfile, objfile))
2310 {
2311 struct block_symbol result
2312 = lookup_symbol_in_objfile (objfile, GLOBAL_BLOCK, name, domain);
2313
2314 if (result.symbol != NULL)
2315 return result;
2316 }
2317
2318 return (struct block_symbol) {NULL, NULL};
2319 }
2320
2321 /* Check to see if the symbol is defined in one of the OBJFILE's
2322 symtabs. BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
2323 depending on whether or not we want to search global symbols or
2324 static symbols. */
2325
2326 static struct block_symbol
2327 lookup_symbol_in_objfile_symtabs (struct objfile *objfile, int block_index,
2328 const char *name, const domain_enum domain)
2329 {
2330 struct compunit_symtab *cust;
2331
2332 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2333
2334 if (symbol_lookup_debug > 1)
2335 {
2336 fprintf_unfiltered (gdb_stdlog,
2337 "lookup_symbol_in_objfile_symtabs (%s, %s, %s, %s)",
2338 objfile_debug_name (objfile),
2339 block_index == GLOBAL_BLOCK
2340 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2341 name, domain_name (domain));
2342 }
2343
2344 ALL_OBJFILE_COMPUNITS (objfile, cust)
2345 {
2346 const struct blockvector *bv;
2347 const struct block *block;
2348 struct block_symbol result;
2349
2350 bv = COMPUNIT_BLOCKVECTOR (cust);
2351 block = BLOCKVECTOR_BLOCK (bv, block_index);
2352 result.symbol = block_lookup_symbol_primary (block, name, domain);
2353 result.block = block;
2354 if (result.symbol != NULL)
2355 {
2356 if (symbol_lookup_debug > 1)
2357 {
2358 fprintf_unfiltered (gdb_stdlog, " = %s (block %s)\n",
2359 host_address_to_string (result.symbol),
2360 host_address_to_string (block));
2361 }
2362 result.symbol = fixup_symbol_section (result.symbol, objfile);
2363 return result;
2364
2365 }
2366 }
2367
2368 if (symbol_lookup_debug > 1)
2369 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
2370 return (struct block_symbol) {NULL, NULL};
2371 }
2372
2373 /* Wrapper around lookup_symbol_in_objfile_symtabs for search_symbols.
2374 Look up LINKAGE_NAME in DOMAIN in the global and static blocks of OBJFILE
2375 and all associated separate debug objfiles.
2376
2377 Normally we only look in OBJFILE, and not any separate debug objfiles
2378 because the outer loop will cause them to be searched too. This case is
2379 different. Here we're called from search_symbols where it will only
2380 call us for the the objfile that contains a matching minsym. */
2381
2382 static struct block_symbol
2383 lookup_symbol_in_objfile_from_linkage_name (struct objfile *objfile,
2384 const char *linkage_name,
2385 domain_enum domain)
2386 {
2387 enum language lang = current_language->la_language;
2388 const char *modified_name;
2389 struct cleanup *cleanup = demangle_for_lookup (linkage_name, lang,
2390 &modified_name);
2391 struct objfile *main_objfile, *cur_objfile;
2392
2393 if (objfile->separate_debug_objfile_backlink)
2394 main_objfile = objfile->separate_debug_objfile_backlink;
2395 else
2396 main_objfile = objfile;
2397
2398 for (cur_objfile = main_objfile;
2399 cur_objfile;
2400 cur_objfile = objfile_separate_debug_iterate (main_objfile, cur_objfile))
2401 {
2402 struct block_symbol result;
2403
2404 result = lookup_symbol_in_objfile_symtabs (cur_objfile, GLOBAL_BLOCK,
2405 modified_name, domain);
2406 if (result.symbol == NULL)
2407 result = lookup_symbol_in_objfile_symtabs (cur_objfile, STATIC_BLOCK,
2408 modified_name, domain);
2409 if (result.symbol != NULL)
2410 {
2411 do_cleanups (cleanup);
2412 return result;
2413 }
2414 }
2415
2416 do_cleanups (cleanup);
2417 return (struct block_symbol) {NULL, NULL};
2418 }
2419
2420 /* A helper function that throws an exception when a symbol was found
2421 in a psymtab but not in a symtab. */
2422
2423 static void ATTRIBUTE_NORETURN
2424 error_in_psymtab_expansion (int block_index, const char *name,
2425 struct compunit_symtab *cust)
2426 {
2427 error (_("\
2428 Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n\
2429 %s may be an inlined function, or may be a template function\n \
2430 (if a template, try specifying an instantiation: %s<type>)."),
2431 block_index == GLOBAL_BLOCK ? "global" : "static",
2432 name,
2433 symtab_to_filename_for_display (compunit_primary_filetab (cust)),
2434 name, name);
2435 }
2436
2437 /* A helper function for various lookup routines that interfaces with
2438 the "quick" symbol table functions. */
2439
2440 static struct block_symbol
2441 lookup_symbol_via_quick_fns (struct objfile *objfile, int block_index,
2442 const char *name, const domain_enum domain)
2443 {
2444 struct compunit_symtab *cust;
2445 const struct blockvector *bv;
2446 const struct block *block;
2447 struct block_symbol result;
2448
2449 if (!objfile->sf)
2450 return (struct block_symbol) {NULL, NULL};
2451
2452 if (symbol_lookup_debug > 1)
2453 {
2454 fprintf_unfiltered (gdb_stdlog,
2455 "lookup_symbol_via_quick_fns (%s, %s, %s, %s)\n",
2456 objfile_debug_name (objfile),
2457 block_index == GLOBAL_BLOCK
2458 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2459 name, domain_name (domain));
2460 }
2461
2462 cust = objfile->sf->qf->lookup_symbol (objfile, block_index, name, domain);
2463 if (cust == NULL)
2464 {
2465 if (symbol_lookup_debug > 1)
2466 {
2467 fprintf_unfiltered (gdb_stdlog,
2468 "lookup_symbol_via_quick_fns (...) = NULL\n");
2469 }
2470 return (struct block_symbol) {NULL, NULL};
2471 }
2472
2473 bv = COMPUNIT_BLOCKVECTOR (cust);
2474 block = BLOCKVECTOR_BLOCK (bv, block_index);
2475 result.symbol = block_lookup_symbol (block, name, domain);
2476 if (result.symbol == NULL)
2477 error_in_psymtab_expansion (block_index, name, cust);
2478
2479 if (symbol_lookup_debug > 1)
2480 {
2481 fprintf_unfiltered (gdb_stdlog,
2482 "lookup_symbol_via_quick_fns (...) = %s (block %s)\n",
2483 host_address_to_string (result.symbol),
2484 host_address_to_string (block));
2485 }
2486
2487 result.symbol = fixup_symbol_section (result.symbol, objfile);
2488 result.block = block;
2489 return result;
2490 }
2491
2492 /* See symtab.h. */
2493
2494 struct block_symbol
2495 basic_lookup_symbol_nonlocal (const struct language_defn *langdef,
2496 const char *name,
2497 const struct block *block,
2498 const domain_enum domain)
2499 {
2500 struct block_symbol result;
2501
2502 /* NOTE: carlton/2003-05-19: The comments below were written when
2503 this (or what turned into this) was part of lookup_symbol_aux;
2504 I'm much less worried about these questions now, since these
2505 decisions have turned out well, but I leave these comments here
2506 for posterity. */
2507
2508 /* NOTE: carlton/2002-12-05: There is a question as to whether or
2509 not it would be appropriate to search the current global block
2510 here as well. (That's what this code used to do before the
2511 is_a_field_of_this check was moved up.) On the one hand, it's
2512 redundant with the lookup in all objfiles search that happens
2513 next. On the other hand, if decode_line_1 is passed an argument
2514 like filename:var, then the user presumably wants 'var' to be
2515 searched for in filename. On the third hand, there shouldn't be
2516 multiple global variables all of which are named 'var', and it's
2517 not like decode_line_1 has ever restricted its search to only
2518 global variables in a single filename. All in all, only
2519 searching the static block here seems best: it's correct and it's
2520 cleanest. */
2521
2522 /* NOTE: carlton/2002-12-05: There's also a possible performance
2523 issue here: if you usually search for global symbols in the
2524 current file, then it would be slightly better to search the
2525 current global block before searching all the symtabs. But there
2526 are other factors that have a much greater effect on performance
2527 than that one, so I don't think we should worry about that for
2528 now. */
2529
2530 /* NOTE: dje/2014-10-26: The lookup in all objfiles search could skip
2531 the current objfile. Searching the current objfile first is useful
2532 for both matching user expectations as well as performance. */
2533
2534 result = lookup_symbol_in_static_block (name, block, domain);
2535 if (result.symbol != NULL)
2536 return result;
2537
2538 /* If we didn't find a definition for a builtin type in the static block,
2539 search for it now. This is actually the right thing to do and can be
2540 a massive performance win. E.g., when debugging a program with lots of
2541 shared libraries we could search all of them only to find out the
2542 builtin type isn't defined in any of them. This is common for types
2543 like "void". */
2544 if (domain == VAR_DOMAIN)
2545 {
2546 struct gdbarch *gdbarch;
2547
2548 if (block == NULL)
2549 gdbarch = target_gdbarch ();
2550 else
2551 gdbarch = block_gdbarch (block);
2552 result.symbol = language_lookup_primitive_type_as_symbol (langdef,
2553 gdbarch, name);
2554 result.block = NULL;
2555 if (result.symbol != NULL)
2556 return result;
2557 }
2558
2559 return lookup_global_symbol (name, block, domain);
2560 }
2561
2562 /* See symtab.h. */
2563
2564 struct block_symbol
2565 lookup_symbol_in_static_block (const char *name,
2566 const struct block *block,
2567 const domain_enum domain)
2568 {
2569 const struct block *static_block = block_static_block (block);
2570 struct symbol *sym;
2571
2572 if (static_block == NULL)
2573 return (struct block_symbol) {NULL, NULL};
2574
2575 if (symbol_lookup_debug)
2576 {
2577 struct objfile *objfile = lookup_objfile_from_block (static_block);
2578
2579 fprintf_unfiltered (gdb_stdlog,
2580 "lookup_symbol_in_static_block (%s, %s (objfile %s),"
2581 " %s)\n",
2582 name,
2583 host_address_to_string (block),
2584 objfile_debug_name (objfile),
2585 domain_name (domain));
2586 }
2587
2588 sym = lookup_symbol_in_block (name, static_block, domain);
2589 if (symbol_lookup_debug)
2590 {
2591 fprintf_unfiltered (gdb_stdlog,
2592 "lookup_symbol_in_static_block (...) = %s\n",
2593 sym != NULL ? host_address_to_string (sym) : "NULL");
2594 }
2595 return (struct block_symbol) {sym, static_block};
2596 }
2597
2598 /* Perform the standard symbol lookup of NAME in OBJFILE:
2599 1) First search expanded symtabs, and if not found
2600 2) Search the "quick" symtabs (partial or .gdb_index).
2601 BLOCK_INDEX is one of GLOBAL_BLOCK or STATIC_BLOCK. */
2602
2603 static struct block_symbol
2604 lookup_symbol_in_objfile (struct objfile *objfile, int block_index,
2605 const char *name, const domain_enum domain)
2606 {
2607 struct block_symbol result;
2608
2609 if (symbol_lookup_debug)
2610 {
2611 fprintf_unfiltered (gdb_stdlog,
2612 "lookup_symbol_in_objfile (%s, %s, %s, %s)\n",
2613 objfile_debug_name (objfile),
2614 block_index == GLOBAL_BLOCK
2615 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2616 name, domain_name (domain));
2617 }
2618
2619 result = lookup_symbol_in_objfile_symtabs (objfile, block_index,
2620 name, domain);
2621 if (result.symbol != NULL)
2622 {
2623 if (symbol_lookup_debug)
2624 {
2625 fprintf_unfiltered (gdb_stdlog,
2626 "lookup_symbol_in_objfile (...) = %s"
2627 " (in symtabs)\n",
2628 host_address_to_string (result.symbol));
2629 }
2630 return result;
2631 }
2632
2633 result = lookup_symbol_via_quick_fns (objfile, block_index,
2634 name, domain);
2635 if (symbol_lookup_debug)
2636 {
2637 fprintf_unfiltered (gdb_stdlog,
2638 "lookup_symbol_in_objfile (...) = %s%s\n",
2639 result.symbol != NULL
2640 ? host_address_to_string (result.symbol)
2641 : "NULL",
2642 result.symbol != NULL ? " (via quick fns)" : "");
2643 }
2644 return result;
2645 }
2646
2647 /* See symtab.h. */
2648
2649 struct block_symbol
2650 lookup_static_symbol (const char *name, const domain_enum domain)
2651 {
2652 struct symbol_cache *cache = get_symbol_cache (current_program_space);
2653 struct objfile *objfile;
2654 struct block_symbol result;
2655 struct block_symbol_cache *bsc;
2656 struct symbol_cache_slot *slot;
2657
2658 /* Lookup in STATIC_BLOCK is not current-objfile-dependent, so just pass
2659 NULL for OBJFILE_CONTEXT. */
2660 result = symbol_cache_lookup (cache, NULL, STATIC_BLOCK, name, domain,
2661 &bsc, &slot);
2662 if (result.symbol != NULL)
2663 {
2664 if (SYMBOL_LOOKUP_FAILED_P (result))
2665 return (struct block_symbol) {NULL, NULL};
2666 return result;
2667 }
2668
2669 ALL_OBJFILES (objfile)
2670 {
2671 result = lookup_symbol_in_objfile (objfile, STATIC_BLOCK, name, domain);
2672 if (result.symbol != NULL)
2673 {
2674 /* Still pass NULL for OBJFILE_CONTEXT here. */
2675 symbol_cache_mark_found (bsc, slot, NULL, result.symbol,
2676 result.block);
2677 return result;
2678 }
2679 }
2680
2681 /* Still pass NULL for OBJFILE_CONTEXT here. */
2682 symbol_cache_mark_not_found (bsc, slot, NULL, name, domain);
2683 return (struct block_symbol) {NULL, NULL};
2684 }
2685
2686 /* Private data to be used with lookup_symbol_global_iterator_cb. */
2687
2688 struct global_sym_lookup_data
2689 {
2690 /* The name of the symbol we are searching for. */
2691 const char *name;
2692
2693 /* The domain to use for our search. */
2694 domain_enum domain;
2695
2696 /* The field where the callback should store the symbol if found.
2697 It should be initialized to {NULL, NULL} before the search is started. */
2698 struct block_symbol result;
2699 };
2700
2701 /* A callback function for gdbarch_iterate_over_objfiles_in_search_order.
2702 It searches by name for a symbol in the GLOBAL_BLOCK of the given
2703 OBJFILE. The arguments for the search are passed via CB_DATA,
2704 which in reality is a pointer to struct global_sym_lookup_data. */
2705
2706 static int
2707 lookup_symbol_global_iterator_cb (struct objfile *objfile,
2708 void *cb_data)
2709 {
2710 struct global_sym_lookup_data *data =
2711 (struct global_sym_lookup_data *) cb_data;
2712
2713 gdb_assert (data->result.symbol == NULL
2714 && data->result.block == NULL);
2715
2716 data->result = lookup_symbol_in_objfile (objfile, GLOBAL_BLOCK,
2717 data->name, data->domain);
2718
2719 /* If we found a match, tell the iterator to stop. Otherwise,
2720 keep going. */
2721 return (data->result.symbol != NULL);
2722 }
2723
2724 /* See symtab.h. */
2725
2726 struct block_symbol
2727 lookup_global_symbol (const char *name,
2728 const struct block *block,
2729 const domain_enum domain)
2730 {
2731 struct symbol_cache *cache = get_symbol_cache (current_program_space);
2732 struct block_symbol result;
2733 struct objfile *objfile;
2734 struct global_sym_lookup_data lookup_data;
2735 struct block_symbol_cache *bsc;
2736 struct symbol_cache_slot *slot;
2737
2738 objfile = lookup_objfile_from_block (block);
2739
2740 /* First see if we can find the symbol in the cache.
2741 This works because we use the current objfile to qualify the lookup. */
2742 result = symbol_cache_lookup (cache, objfile, GLOBAL_BLOCK, name, domain,
2743 &bsc, &slot);
2744 if (result.symbol != NULL)
2745 {
2746 if (SYMBOL_LOOKUP_FAILED_P (result))
2747 return (struct block_symbol) {NULL, NULL};
2748 return result;
2749 }
2750
2751 /* Call library-specific lookup procedure. */
2752 if (objfile != NULL)
2753 result = solib_global_lookup (objfile, name, domain);
2754
2755 /* If that didn't work go a global search (of global blocks, heh). */
2756 if (result.symbol == NULL)
2757 {
2758 memset (&lookup_data, 0, sizeof (lookup_data));
2759 lookup_data.name = name;
2760 lookup_data.domain = domain;
2761 gdbarch_iterate_over_objfiles_in_search_order
2762 (objfile != NULL ? get_objfile_arch (objfile) : target_gdbarch (),
2763 lookup_symbol_global_iterator_cb, &lookup_data, objfile);
2764 result = lookup_data.result;
2765 }
2766
2767 if (result.symbol != NULL)
2768 symbol_cache_mark_found (bsc, slot, objfile, result.symbol, result.block);
2769 else
2770 symbol_cache_mark_not_found (bsc, slot, objfile, name, domain);
2771
2772 return result;
2773 }
2774
2775 int
2776 symbol_matches_domain (enum language symbol_language,
2777 domain_enum symbol_domain,
2778 domain_enum domain)
2779 {
2780 /* For C++ "struct foo { ... }" also defines a typedef for "foo".
2781 A Java class declaration also defines a typedef for the class.
2782 Similarly, any Ada type declaration implicitly defines a typedef. */
2783 if (symbol_language == language_cplus
2784 || symbol_language == language_d
2785 || symbol_language == language_java
2786 || symbol_language == language_ada)
2787 {
2788 if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN)
2789 && symbol_domain == STRUCT_DOMAIN)
2790 return 1;
2791 }
2792 /* For all other languages, strict match is required. */
2793 return (symbol_domain == domain);
2794 }
2795
2796 /* See symtab.h. */
2797
2798 struct type *
2799 lookup_transparent_type (const char *name)
2800 {
2801 return current_language->la_lookup_transparent_type (name);
2802 }
2803
2804 /* A helper for basic_lookup_transparent_type that interfaces with the
2805 "quick" symbol table functions. */
2806
2807 static struct type *
2808 basic_lookup_transparent_type_quick (struct objfile *objfile, int block_index,
2809 const char *name)
2810 {
2811 struct compunit_symtab *cust;
2812 const struct blockvector *bv;
2813 struct block *block;
2814 struct symbol *sym;
2815
2816 if (!objfile->sf)
2817 return NULL;
2818 cust = objfile->sf->qf->lookup_symbol (objfile, block_index, name,
2819 STRUCT_DOMAIN);
2820 if (cust == NULL)
2821 return NULL;
2822
2823 bv = COMPUNIT_BLOCKVECTOR (cust);
2824 block = BLOCKVECTOR_BLOCK (bv, block_index);
2825 sym = block_find_symbol (block, name, STRUCT_DOMAIN,
2826 block_find_non_opaque_type, NULL);
2827 if (sym == NULL)
2828 error_in_psymtab_expansion (block_index, name, cust);
2829 gdb_assert (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)));
2830 return SYMBOL_TYPE (sym);
2831 }
2832
2833 /* Subroutine of basic_lookup_transparent_type to simplify it.
2834 Look up the non-opaque definition of NAME in BLOCK_INDEX of OBJFILE.
2835 BLOCK_INDEX is either GLOBAL_BLOCK or STATIC_BLOCK. */
2836
2837 static struct type *
2838 basic_lookup_transparent_type_1 (struct objfile *objfile, int block_index,
2839 const char *name)
2840 {
2841 const struct compunit_symtab *cust;
2842 const struct blockvector *bv;
2843 const struct block *block;
2844 const struct symbol *sym;
2845
2846 ALL_OBJFILE_COMPUNITS (objfile, cust)
2847 {
2848 bv = COMPUNIT_BLOCKVECTOR (cust);
2849 block = BLOCKVECTOR_BLOCK (bv, block_index);
2850 sym = block_find_symbol (block, name, STRUCT_DOMAIN,
2851 block_find_non_opaque_type, NULL);
2852 if (sym != NULL)
2853 {
2854 gdb_assert (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)));
2855 return SYMBOL_TYPE (sym);
2856 }
2857 }
2858
2859 return NULL;
2860 }
2861
2862 /* The standard implementation of lookup_transparent_type. This code
2863 was modeled on lookup_symbol -- the parts not relevant to looking
2864 up types were just left out. In particular it's assumed here that
2865 types are available in STRUCT_DOMAIN and only in file-static or
2866 global blocks. */
2867
2868 struct type *
2869 basic_lookup_transparent_type (const char *name)
2870 {
2871 struct symbol *sym;
2872 struct compunit_symtab *cust;
2873 const struct blockvector *bv;
2874 struct objfile *objfile;
2875 struct block *block;
2876 struct type *t;
2877
2878 /* Now search all the global symbols. Do the symtab's first, then
2879 check the psymtab's. If a psymtab indicates the existence
2880 of the desired name as a global, then do psymtab-to-symtab
2881 conversion on the fly and return the found symbol. */
2882
2883 ALL_OBJFILES (objfile)
2884 {
2885 t = basic_lookup_transparent_type_1 (objfile, GLOBAL_BLOCK, name);
2886 if (t)
2887 return t;
2888 }
2889
2890 ALL_OBJFILES (objfile)
2891 {
2892 t = basic_lookup_transparent_type_quick (objfile, GLOBAL_BLOCK, name);
2893 if (t)
2894 return t;
2895 }
2896
2897 /* Now search the static file-level symbols.
2898 Not strictly correct, but more useful than an error.
2899 Do the symtab's first, then
2900 check the psymtab's. If a psymtab indicates the existence
2901 of the desired name as a file-level static, then do psymtab-to-symtab
2902 conversion on the fly and return the found symbol. */
2903
2904 ALL_OBJFILES (objfile)
2905 {
2906 t = basic_lookup_transparent_type_1 (objfile, STATIC_BLOCK, name);
2907 if (t)
2908 return t;
2909 }
2910
2911 ALL_OBJFILES (objfile)
2912 {
2913 t = basic_lookup_transparent_type_quick (objfile, STATIC_BLOCK, name);
2914 if (t)
2915 return t;
2916 }
2917
2918 return (struct type *) 0;
2919 }
2920
2921 /* Iterate over the symbols named NAME, matching DOMAIN, in BLOCK.
2922
2923 For each symbol that matches, CALLBACK is called. The symbol and
2924 DATA are passed to the callback.
2925
2926 If CALLBACK returns zero, the iteration ends. Otherwise, the
2927 search continues. */
2928
2929 void
2930 iterate_over_symbols (const struct block *block, const char *name,
2931 const domain_enum domain,
2932 symbol_found_callback_ftype *callback,
2933 void *data)
2934 {
2935 struct block_iterator iter;
2936 struct symbol *sym;
2937
2938 ALL_BLOCK_SYMBOLS_WITH_NAME (block, name, iter, sym)
2939 {
2940 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
2941 SYMBOL_DOMAIN (sym), domain))
2942 {
2943 if (!callback (sym, data))
2944 return;
2945 }
2946 }
2947 }
2948
2949 /* Find the compunit symtab associated with PC and SECTION.
2950 This will read in debug info as necessary. */
2951
2952 struct compunit_symtab *
2953 find_pc_sect_compunit_symtab (CORE_ADDR pc, struct obj_section *section)
2954 {
2955 struct compunit_symtab *cust;
2956 struct compunit_symtab *best_cust = NULL;
2957 struct objfile *objfile;
2958 CORE_ADDR distance = 0;
2959 struct bound_minimal_symbol msymbol;
2960
2961 /* If we know that this is not a text address, return failure. This is
2962 necessary because we loop based on the block's high and low code
2963 addresses, which do not include the data ranges, and because
2964 we call find_pc_sect_psymtab which has a similar restriction based
2965 on the partial_symtab's texthigh and textlow. */
2966 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
2967 if (msymbol.minsym
2968 && (MSYMBOL_TYPE (msymbol.minsym) == mst_data
2969 || MSYMBOL_TYPE (msymbol.minsym) == mst_bss
2970 || MSYMBOL_TYPE (msymbol.minsym) == mst_abs
2971 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_data
2972 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_bss))
2973 return NULL;
2974
2975 /* Search all symtabs for the one whose file contains our address, and which
2976 is the smallest of all the ones containing the address. This is designed
2977 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
2978 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
2979 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
2980
2981 This happens for native ecoff format, where code from included files
2982 gets its own symtab. The symtab for the included file should have
2983 been read in already via the dependency mechanism.
2984 It might be swifter to create several symtabs with the same name
2985 like xcoff does (I'm not sure).
2986
2987 It also happens for objfiles that have their functions reordered.
2988 For these, the symtab we are looking for is not necessarily read in. */
2989
2990 ALL_COMPUNITS (objfile, cust)
2991 {
2992 struct block *b;
2993 const struct blockvector *bv;
2994
2995 bv = COMPUNIT_BLOCKVECTOR (cust);
2996 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
2997
2998 if (BLOCK_START (b) <= pc
2999 && BLOCK_END (b) > pc
3000 && (distance == 0
3001 || BLOCK_END (b) - BLOCK_START (b) < distance))
3002 {
3003 /* For an objfile that has its functions reordered,
3004 find_pc_psymtab will find the proper partial symbol table
3005 and we simply return its corresponding symtab. */
3006 /* In order to better support objfiles that contain both
3007 stabs and coff debugging info, we continue on if a psymtab
3008 can't be found. */
3009 if ((objfile->flags & OBJF_REORDERED) && objfile->sf)
3010 {
3011 struct compunit_symtab *result;
3012
3013 result
3014 = objfile->sf->qf->find_pc_sect_compunit_symtab (objfile,
3015 msymbol,
3016 pc, section,
3017 0);
3018 if (result != NULL)
3019 return result;
3020 }
3021 if (section != 0)
3022 {
3023 struct block_iterator iter;
3024 struct symbol *sym = NULL;
3025
3026 ALL_BLOCK_SYMBOLS (b, iter, sym)
3027 {
3028 fixup_symbol_section (sym, objfile);
3029 if (matching_obj_sections (SYMBOL_OBJ_SECTION (objfile, sym),
3030 section))
3031 break;
3032 }
3033 if (sym == NULL)
3034 continue; /* No symbol in this symtab matches
3035 section. */
3036 }
3037 distance = BLOCK_END (b) - BLOCK_START (b);
3038 best_cust = cust;
3039 }
3040 }
3041
3042 if (best_cust != NULL)
3043 return best_cust;
3044
3045 /* Not found in symtabs, search the "quick" symtabs (e.g. psymtabs). */
3046
3047 ALL_OBJFILES (objfile)
3048 {
3049 struct compunit_symtab *result;
3050
3051 if (!objfile->sf)
3052 continue;
3053 result = objfile->sf->qf->find_pc_sect_compunit_symtab (objfile,
3054 msymbol,
3055 pc, section,
3056 1);
3057 if (result != NULL)
3058 return result;
3059 }
3060
3061 return NULL;
3062 }
3063
3064 /* Find the compunit symtab associated with PC.
3065 This will read in debug info as necessary.
3066 Backward compatibility, no section. */
3067
3068 struct compunit_symtab *
3069 find_pc_compunit_symtab (CORE_ADDR pc)
3070 {
3071 return find_pc_sect_compunit_symtab (pc, find_pc_mapped_section (pc));
3072 }
3073 \f
3074
3075 /* Find the source file and line number for a given PC value and SECTION.
3076 Return a structure containing a symtab pointer, a line number,
3077 and a pc range for the entire source line.
3078 The value's .pc field is NOT the specified pc.
3079 NOTCURRENT nonzero means, if specified pc is on a line boundary,
3080 use the line that ends there. Otherwise, in that case, the line
3081 that begins there is used. */
3082
3083 /* The big complication here is that a line may start in one file, and end just
3084 before the start of another file. This usually occurs when you #include
3085 code in the middle of a subroutine. To properly find the end of a line's PC
3086 range, we must search all symtabs associated with this compilation unit, and
3087 find the one whose first PC is closer than that of the next line in this
3088 symtab. */
3089
3090 /* If it's worth the effort, we could be using a binary search. */
3091
3092 struct symtab_and_line
3093 find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent)
3094 {
3095 struct compunit_symtab *cust;
3096 struct symtab *iter_s;
3097 struct linetable *l;
3098 int len;
3099 int i;
3100 struct linetable_entry *item;
3101 struct symtab_and_line val;
3102 const struct blockvector *bv;
3103 struct bound_minimal_symbol msymbol;
3104
3105 /* Info on best line seen so far, and where it starts, and its file. */
3106
3107 struct linetable_entry *best = NULL;
3108 CORE_ADDR best_end = 0;
3109 struct symtab *best_symtab = 0;
3110
3111 /* Store here the first line number
3112 of a file which contains the line at the smallest pc after PC.
3113 If we don't find a line whose range contains PC,
3114 we will use a line one less than this,
3115 with a range from the start of that file to the first line's pc. */
3116 struct linetable_entry *alt = NULL;
3117
3118 /* Info on best line seen in this file. */
3119
3120 struct linetable_entry *prev;
3121
3122 /* If this pc is not from the current frame,
3123 it is the address of the end of a call instruction.
3124 Quite likely that is the start of the following statement.
3125 But what we want is the statement containing the instruction.
3126 Fudge the pc to make sure we get that. */
3127
3128 init_sal (&val); /* initialize to zeroes */
3129
3130 val.pspace = current_program_space;
3131
3132 /* It's tempting to assume that, if we can't find debugging info for
3133 any function enclosing PC, that we shouldn't search for line
3134 number info, either. However, GAS can emit line number info for
3135 assembly files --- very helpful when debugging hand-written
3136 assembly code. In such a case, we'd have no debug info for the
3137 function, but we would have line info. */
3138
3139 if (notcurrent)
3140 pc -= 1;
3141
3142 /* elz: added this because this function returned the wrong
3143 information if the pc belongs to a stub (import/export)
3144 to call a shlib function. This stub would be anywhere between
3145 two functions in the target, and the line info was erroneously
3146 taken to be the one of the line before the pc. */
3147
3148 /* RT: Further explanation:
3149
3150 * We have stubs (trampolines) inserted between procedures.
3151 *
3152 * Example: "shr1" exists in a shared library, and a "shr1" stub also
3153 * exists in the main image.
3154 *
3155 * In the minimal symbol table, we have a bunch of symbols
3156 * sorted by start address. The stubs are marked as "trampoline",
3157 * the others appear as text. E.g.:
3158 *
3159 * Minimal symbol table for main image
3160 * main: code for main (text symbol)
3161 * shr1: stub (trampoline symbol)
3162 * foo: code for foo (text symbol)
3163 * ...
3164 * Minimal symbol table for "shr1" image:
3165 * ...
3166 * shr1: code for shr1 (text symbol)
3167 * ...
3168 *
3169 * So the code below is trying to detect if we are in the stub
3170 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
3171 * and if found, do the symbolization from the real-code address
3172 * rather than the stub address.
3173 *
3174 * Assumptions being made about the minimal symbol table:
3175 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
3176 * if we're really in the trampoline.s If we're beyond it (say
3177 * we're in "foo" in the above example), it'll have a closer
3178 * symbol (the "foo" text symbol for example) and will not
3179 * return the trampoline.
3180 * 2. lookup_minimal_symbol_text() will find a real text symbol
3181 * corresponding to the trampoline, and whose address will
3182 * be different than the trampoline address. I put in a sanity
3183 * check for the address being the same, to avoid an
3184 * infinite recursion.
3185 */
3186 msymbol = lookup_minimal_symbol_by_pc (pc);
3187 if (msymbol.minsym != NULL)
3188 if (MSYMBOL_TYPE (msymbol.minsym) == mst_solib_trampoline)
3189 {
3190 struct bound_minimal_symbol mfunsym
3191 = lookup_minimal_symbol_text (MSYMBOL_LINKAGE_NAME (msymbol.minsym),
3192 NULL);
3193
3194 if (mfunsym.minsym == NULL)
3195 /* I eliminated this warning since it is coming out
3196 * in the following situation:
3197 * gdb shmain // test program with shared libraries
3198 * (gdb) break shr1 // function in shared lib
3199 * Warning: In stub for ...
3200 * In the above situation, the shared lib is not loaded yet,
3201 * so of course we can't find the real func/line info,
3202 * but the "break" still works, and the warning is annoying.
3203 * So I commented out the warning. RT */
3204 /* warning ("In stub for %s; unable to find real function/line info",
3205 SYMBOL_LINKAGE_NAME (msymbol)); */
3206 ;
3207 /* fall through */
3208 else if (BMSYMBOL_VALUE_ADDRESS (mfunsym)
3209 == BMSYMBOL_VALUE_ADDRESS (msymbol))
3210 /* Avoid infinite recursion */
3211 /* See above comment about why warning is commented out. */
3212 /* warning ("In stub for %s; unable to find real function/line info",
3213 SYMBOL_LINKAGE_NAME (msymbol)); */
3214 ;
3215 /* fall through */
3216 else
3217 return find_pc_line (BMSYMBOL_VALUE_ADDRESS (mfunsym), 0);
3218 }
3219
3220
3221 cust = find_pc_sect_compunit_symtab (pc, section);
3222 if (cust == NULL)
3223 {
3224 /* If no symbol information, return previous pc. */
3225 if (notcurrent)
3226 pc++;
3227 val.pc = pc;
3228 return val;
3229 }
3230
3231 bv = COMPUNIT_BLOCKVECTOR (cust);
3232
3233 /* Look at all the symtabs that share this blockvector.
3234 They all have the same apriori range, that we found was right;
3235 but they have different line tables. */
3236
3237 ALL_COMPUNIT_FILETABS (cust, iter_s)
3238 {
3239 /* Find the best line in this symtab. */
3240 l = SYMTAB_LINETABLE (iter_s);
3241 if (!l)
3242 continue;
3243 len = l->nitems;
3244 if (len <= 0)
3245 {
3246 /* I think len can be zero if the symtab lacks line numbers
3247 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
3248 I'm not sure which, and maybe it depends on the symbol
3249 reader). */
3250 continue;
3251 }
3252
3253 prev = NULL;
3254 item = l->item; /* Get first line info. */
3255
3256 /* Is this file's first line closer than the first lines of other files?
3257 If so, record this file, and its first line, as best alternate. */
3258 if (item->pc > pc && (!alt || item->pc < alt->pc))
3259 alt = item;
3260
3261 for (i = 0; i < len; i++, item++)
3262 {
3263 /* Leave prev pointing to the linetable entry for the last line
3264 that started at or before PC. */
3265 if (item->pc > pc)
3266 break;
3267
3268 prev = item;
3269 }
3270
3271 /* At this point, prev points at the line whose start addr is <= pc, and
3272 item points at the next line. If we ran off the end of the linetable
3273 (pc >= start of the last line), then prev == item. If pc < start of
3274 the first line, prev will not be set. */
3275
3276 /* Is this file's best line closer than the best in the other files?
3277 If so, record this file, and its best line, as best so far. Don't
3278 save prev if it represents the end of a function (i.e. line number
3279 0) instead of a real line. */
3280
3281 if (prev && prev->line && (!best || prev->pc > best->pc))
3282 {
3283 best = prev;
3284 best_symtab = iter_s;
3285
3286 /* Discard BEST_END if it's before the PC of the current BEST. */
3287 if (best_end <= best->pc)
3288 best_end = 0;
3289 }
3290
3291 /* If another line (denoted by ITEM) is in the linetable and its
3292 PC is after BEST's PC, but before the current BEST_END, then
3293 use ITEM's PC as the new best_end. */
3294 if (best && i < len && item->pc > best->pc
3295 && (best_end == 0 || best_end > item->pc))
3296 best_end = item->pc;
3297 }
3298
3299 if (!best_symtab)
3300 {
3301 /* If we didn't find any line number info, just return zeros.
3302 We used to return alt->line - 1 here, but that could be
3303 anywhere; if we don't have line number info for this PC,
3304 don't make some up. */
3305 val.pc = pc;
3306 }
3307 else if (best->line == 0)
3308 {
3309 /* If our best fit is in a range of PC's for which no line
3310 number info is available (line number is zero) then we didn't
3311 find any valid line information. */
3312 val.pc = pc;
3313 }
3314 else
3315 {
3316 val.symtab = best_symtab;
3317 val.line = best->line;
3318 val.pc = best->pc;
3319 if (best_end && (!alt || best_end < alt->pc))
3320 val.end = best_end;
3321 else if (alt)
3322 val.end = alt->pc;
3323 else
3324 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
3325 }
3326 val.section = section;
3327 return val;
3328 }
3329
3330 /* Backward compatibility (no section). */
3331
3332 struct symtab_and_line
3333 find_pc_line (CORE_ADDR pc, int notcurrent)
3334 {
3335 struct obj_section *section;
3336
3337 section = find_pc_overlay (pc);
3338 if (pc_in_unmapped_range (pc, section))
3339 pc = overlay_mapped_address (pc, section);
3340 return find_pc_sect_line (pc, section, notcurrent);
3341 }
3342
3343 /* See symtab.h. */
3344
3345 struct symtab *
3346 find_pc_line_symtab (CORE_ADDR pc)
3347 {
3348 struct symtab_and_line sal;
3349
3350 /* This always passes zero for NOTCURRENT to find_pc_line.
3351 There are currently no callers that ever pass non-zero. */
3352 sal = find_pc_line (pc, 0);
3353 return sal.symtab;
3354 }
3355 \f
3356 /* Find line number LINE in any symtab whose name is the same as
3357 SYMTAB.
3358
3359 If found, return the symtab that contains the linetable in which it was
3360 found, set *INDEX to the index in the linetable of the best entry
3361 found, and set *EXACT_MATCH nonzero if the value returned is an
3362 exact match.
3363
3364 If not found, return NULL. */
3365
3366 struct symtab *
3367 find_line_symtab (struct symtab *symtab, int line,
3368 int *index, int *exact_match)
3369 {
3370 int exact = 0; /* Initialized here to avoid a compiler warning. */
3371
3372 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
3373 so far seen. */
3374
3375 int best_index;
3376 struct linetable *best_linetable;
3377 struct symtab *best_symtab;
3378
3379 /* First try looking it up in the given symtab. */
3380 best_linetable = SYMTAB_LINETABLE (symtab);
3381 best_symtab = symtab;
3382 best_index = find_line_common (best_linetable, line, &exact, 0);
3383 if (best_index < 0 || !exact)
3384 {
3385 /* Didn't find an exact match. So we better keep looking for
3386 another symtab with the same name. In the case of xcoff,
3387 multiple csects for one source file (produced by IBM's FORTRAN
3388 compiler) produce multiple symtabs (this is unavoidable
3389 assuming csects can be at arbitrary places in memory and that
3390 the GLOBAL_BLOCK of a symtab has a begin and end address). */
3391
3392 /* BEST is the smallest linenumber > LINE so far seen,
3393 or 0 if none has been seen so far.
3394 BEST_INDEX and BEST_LINETABLE identify the item for it. */
3395 int best;
3396
3397 struct objfile *objfile;
3398 struct compunit_symtab *cu;
3399 struct symtab *s;
3400
3401 if (best_index >= 0)
3402 best = best_linetable->item[best_index].line;
3403 else
3404 best = 0;
3405
3406 ALL_OBJFILES (objfile)
3407 {
3408 if (objfile->sf)
3409 objfile->sf->qf->expand_symtabs_with_fullname (objfile,
3410 symtab_to_fullname (symtab));
3411 }
3412
3413 ALL_FILETABS (objfile, cu, s)
3414 {
3415 struct linetable *l;
3416 int ind;
3417
3418 if (FILENAME_CMP (symtab->filename, s->filename) != 0)
3419 continue;
3420 if (FILENAME_CMP (symtab_to_fullname (symtab),
3421 symtab_to_fullname (s)) != 0)
3422 continue;
3423 l = SYMTAB_LINETABLE (s);
3424 ind = find_line_common (l, line, &exact, 0);
3425 if (ind >= 0)
3426 {
3427 if (exact)
3428 {
3429 best_index = ind;
3430 best_linetable = l;
3431 best_symtab = s;
3432 goto done;
3433 }
3434 if (best == 0 || l->item[ind].line < best)
3435 {
3436 best = l->item[ind].line;
3437 best_index = ind;
3438 best_linetable = l;
3439 best_symtab = s;
3440 }
3441 }
3442 }
3443 }
3444 done:
3445 if (best_index < 0)
3446 return NULL;
3447
3448 if (index)
3449 *index = best_index;
3450 if (exact_match)
3451 *exact_match = exact;
3452
3453 return best_symtab;
3454 }
3455
3456 /* Given SYMTAB, returns all the PCs function in the symtab that
3457 exactly match LINE. Returns NULL if there are no exact matches,
3458 but updates BEST_ITEM in this case. */
3459
3460 VEC (CORE_ADDR) *
3461 find_pcs_for_symtab_line (struct symtab *symtab, int line,
3462 struct linetable_entry **best_item)
3463 {
3464 int start = 0;
3465 VEC (CORE_ADDR) *result = NULL;
3466
3467 /* First, collect all the PCs that are at this line. */
3468 while (1)
3469 {
3470 int was_exact;
3471 int idx;
3472
3473 idx = find_line_common (SYMTAB_LINETABLE (symtab), line, &was_exact,
3474 start);
3475 if (idx < 0)
3476 break;
3477
3478 if (!was_exact)
3479 {
3480 struct linetable_entry *item = &SYMTAB_LINETABLE (symtab)->item[idx];
3481
3482 if (*best_item == NULL || item->line < (*best_item)->line)
3483 *best_item = item;
3484
3485 break;
3486 }
3487
3488 VEC_safe_push (CORE_ADDR, result,
3489 SYMTAB_LINETABLE (symtab)->item[idx].pc);
3490 start = idx + 1;
3491 }
3492
3493 return result;
3494 }
3495
3496 \f
3497 /* Set the PC value for a given source file and line number and return true.
3498 Returns zero for invalid line number (and sets the PC to 0).
3499 The source file is specified with a struct symtab. */
3500
3501 int
3502 find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
3503 {
3504 struct linetable *l;
3505 int ind;
3506
3507 *pc = 0;
3508 if (symtab == 0)
3509 return 0;
3510
3511 symtab = find_line_symtab (symtab, line, &ind, NULL);
3512 if (symtab != NULL)
3513 {
3514 l = SYMTAB_LINETABLE (symtab);
3515 *pc = l->item[ind].pc;
3516 return 1;
3517 }
3518 else
3519 return 0;
3520 }
3521
3522 /* Find the range of pc values in a line.
3523 Store the starting pc of the line into *STARTPTR
3524 and the ending pc (start of next line) into *ENDPTR.
3525 Returns 1 to indicate success.
3526 Returns 0 if could not find the specified line. */
3527
3528 int
3529 find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
3530 CORE_ADDR *endptr)
3531 {
3532 CORE_ADDR startaddr;
3533 struct symtab_and_line found_sal;
3534
3535 startaddr = sal.pc;
3536 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
3537 return 0;
3538
3539 /* This whole function is based on address. For example, if line 10 has
3540 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
3541 "info line *0x123" should say the line goes from 0x100 to 0x200
3542 and "info line *0x355" should say the line goes from 0x300 to 0x400.
3543 This also insures that we never give a range like "starts at 0x134
3544 and ends at 0x12c". */
3545
3546 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
3547 if (found_sal.line != sal.line)
3548 {
3549 /* The specified line (sal) has zero bytes. */
3550 *startptr = found_sal.pc;
3551 *endptr = found_sal.pc;
3552 }
3553 else
3554 {
3555 *startptr = found_sal.pc;
3556 *endptr = found_sal.end;
3557 }
3558 return 1;
3559 }
3560
3561 /* Given a line table and a line number, return the index into the line
3562 table for the pc of the nearest line whose number is >= the specified one.
3563 Return -1 if none is found. The value is >= 0 if it is an index.
3564 START is the index at which to start searching the line table.
3565
3566 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
3567
3568 static int
3569 find_line_common (struct linetable *l, int lineno,
3570 int *exact_match, int start)
3571 {
3572 int i;
3573 int len;
3574
3575 /* BEST is the smallest linenumber > LINENO so far seen,
3576 or 0 if none has been seen so far.
3577 BEST_INDEX identifies the item for it. */
3578
3579 int best_index = -1;
3580 int best = 0;
3581
3582 *exact_match = 0;
3583
3584 if (lineno <= 0)
3585 return -1;
3586 if (l == 0)
3587 return -1;
3588
3589 len = l->nitems;
3590 for (i = start; i < len; i++)
3591 {
3592 struct linetable_entry *item = &(l->item[i]);
3593
3594 if (item->line == lineno)
3595 {
3596 /* Return the first (lowest address) entry which matches. */
3597 *exact_match = 1;
3598 return i;
3599 }
3600
3601 if (item->line > lineno && (best == 0 || item->line < best))
3602 {
3603 best = item->line;
3604 best_index = i;
3605 }
3606 }
3607
3608 /* If we got here, we didn't get an exact match. */
3609 return best_index;
3610 }
3611
3612 int
3613 find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
3614 {
3615 struct symtab_and_line sal;
3616
3617 sal = find_pc_line (pc, 0);
3618 *startptr = sal.pc;
3619 *endptr = sal.end;
3620 return sal.symtab != 0;
3621 }
3622
3623 /* Given a function symbol SYM, find the symtab and line for the start
3624 of the function.
3625 If the argument FUNFIRSTLINE is nonzero, we want the first line
3626 of real code inside the function.
3627 This function should return SALs matching those from minsym_found,
3628 otherwise false multiple-locations breakpoints could be placed. */
3629
3630 struct symtab_and_line
3631 find_function_start_sal (struct symbol *sym, int funfirstline)
3632 {
3633 struct symtab_and_line sal;
3634 struct obj_section *section;
3635
3636 fixup_symbol_section (sym, NULL);
3637 section = SYMBOL_OBJ_SECTION (symbol_objfile (sym), sym);
3638 sal = find_pc_sect_line (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)), section, 0);
3639
3640 if (funfirstline && sal.symtab != NULL
3641 && (COMPUNIT_LOCATIONS_VALID (SYMTAB_COMPUNIT (sal.symtab))
3642 || SYMTAB_LANGUAGE (sal.symtab) == language_asm))
3643 {
3644 struct gdbarch *gdbarch = symbol_arch (sym);
3645
3646 sal.pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
3647 if (gdbarch_skip_entrypoint_p (gdbarch))
3648 sal.pc = gdbarch_skip_entrypoint (gdbarch, sal.pc);
3649 return sal;
3650 }
3651
3652 /* We always should have a line for the function start address.
3653 If we don't, something is odd. Create a plain SAL refering
3654 just the PC and hope that skip_prologue_sal (if requested)
3655 can find a line number for after the prologue. */
3656 if (sal.pc < BLOCK_START (SYMBOL_BLOCK_VALUE (sym)))
3657 {
3658 init_sal (&sal);
3659 sal.pspace = current_program_space;
3660 sal.pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
3661 sal.section = section;
3662 }
3663
3664 if (funfirstline)
3665 skip_prologue_sal (&sal);
3666
3667 return sal;
3668 }
3669
3670 /* Given a function start address FUNC_ADDR and SYMTAB, find the first
3671 address for that function that has an entry in SYMTAB's line info
3672 table. If such an entry cannot be found, return FUNC_ADDR
3673 unaltered. */
3674
3675 static CORE_ADDR
3676 skip_prologue_using_lineinfo (CORE_ADDR func_addr, struct symtab *symtab)
3677 {
3678 CORE_ADDR func_start, func_end;
3679 struct linetable *l;
3680 int i;
3681
3682 /* Give up if this symbol has no lineinfo table. */
3683 l = SYMTAB_LINETABLE (symtab);
3684 if (l == NULL)
3685 return func_addr;
3686
3687 /* Get the range for the function's PC values, or give up if we
3688 cannot, for some reason. */
3689 if (!find_pc_partial_function (func_addr, NULL, &func_start, &func_end))
3690 return func_addr;
3691
3692 /* Linetable entries are ordered by PC values, see the commentary in
3693 symtab.h where `struct linetable' is defined. Thus, the first
3694 entry whose PC is in the range [FUNC_START..FUNC_END[ is the
3695 address we are looking for. */
3696 for (i = 0; i < l->nitems; i++)
3697 {
3698 struct linetable_entry *item = &(l->item[i]);
3699
3700 /* Don't use line numbers of zero, they mark special entries in
3701 the table. See the commentary on symtab.h before the
3702 definition of struct linetable. */
3703 if (item->line > 0 && func_start <= item->pc && item->pc < func_end)
3704 return item->pc;
3705 }
3706
3707 return func_addr;
3708 }
3709
3710 /* Adjust SAL to the first instruction past the function prologue.
3711 If the PC was explicitly specified, the SAL is not changed.
3712 If the line number was explicitly specified, at most the SAL's PC
3713 is updated. If SAL is already past the prologue, then do nothing. */
3714
3715 void
3716 skip_prologue_sal (struct symtab_and_line *sal)
3717 {
3718 struct symbol *sym;
3719 struct symtab_and_line start_sal;
3720 struct cleanup *old_chain;
3721 CORE_ADDR pc, saved_pc;
3722 struct obj_section *section;
3723 const char *name;
3724 struct objfile *objfile;
3725 struct gdbarch *gdbarch;
3726 const struct block *b, *function_block;
3727 int force_skip, skip;
3728
3729 /* Do not change the SAL if PC was specified explicitly. */
3730 if (sal->explicit_pc)
3731 return;
3732
3733 old_chain = save_current_space_and_thread ();
3734 switch_to_program_space_and_thread (sal->pspace);
3735
3736 sym = find_pc_sect_function (sal->pc, sal->section);
3737 if (sym != NULL)
3738 {
3739 fixup_symbol_section (sym, NULL);
3740
3741 objfile = symbol_objfile (sym);
3742 pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
3743 section = SYMBOL_OBJ_SECTION (objfile, sym);
3744 name = SYMBOL_LINKAGE_NAME (sym);
3745 }
3746 else
3747 {
3748 struct bound_minimal_symbol msymbol
3749 = lookup_minimal_symbol_by_pc_section (sal->pc, sal->section);
3750
3751 if (msymbol.minsym == NULL)
3752 {
3753 do_cleanups (old_chain);
3754 return;
3755 }
3756
3757 objfile = msymbol.objfile;
3758 pc = BMSYMBOL_VALUE_ADDRESS (msymbol);
3759 section = MSYMBOL_OBJ_SECTION (objfile, msymbol.minsym);
3760 name = MSYMBOL_LINKAGE_NAME (msymbol.minsym);
3761 }
3762
3763 gdbarch = get_objfile_arch (objfile);
3764
3765 /* Process the prologue in two passes. In the first pass try to skip the
3766 prologue (SKIP is true) and verify there is a real need for it (indicated
3767 by FORCE_SKIP). If no such reason was found run a second pass where the
3768 prologue is not skipped (SKIP is false). */
3769
3770 skip = 1;
3771 force_skip = 1;
3772
3773 /* Be conservative - allow direct PC (without skipping prologue) only if we
3774 have proven the CU (Compilation Unit) supports it. sal->SYMTAB does not
3775 have to be set by the caller so we use SYM instead. */
3776 if (sym != NULL
3777 && COMPUNIT_LOCATIONS_VALID (SYMTAB_COMPUNIT (symbol_symtab (sym))))
3778 force_skip = 0;
3779
3780 saved_pc = pc;
3781 do
3782 {
3783 pc = saved_pc;
3784
3785 /* If the function is in an unmapped overlay, use its unmapped LMA address,
3786 so that gdbarch_skip_prologue has something unique to work on. */
3787 if (section_is_overlay (section) && !section_is_mapped (section))
3788 pc = overlay_unmapped_address (pc, section);
3789
3790 /* Skip "first line" of function (which is actually its prologue). */
3791 pc += gdbarch_deprecated_function_start_offset (gdbarch);
3792 if (gdbarch_skip_entrypoint_p (gdbarch))
3793 pc = gdbarch_skip_entrypoint (gdbarch, pc);
3794 if (skip)
3795 pc = gdbarch_skip_prologue (gdbarch, pc);
3796
3797 /* For overlays, map pc back into its mapped VMA range. */
3798 pc = overlay_mapped_address (pc, section);
3799
3800 /* Calculate line number. */
3801 start_sal = find_pc_sect_line (pc, section, 0);
3802
3803 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
3804 line is still part of the same function. */
3805 if (skip && start_sal.pc != pc
3806 && (sym ? (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) <= start_sal.end
3807 && start_sal.end < BLOCK_END (SYMBOL_BLOCK_VALUE (sym)))
3808 : (lookup_minimal_symbol_by_pc_section (start_sal.end, section).minsym
3809 == lookup_minimal_symbol_by_pc_section (pc, section).minsym)))
3810 {
3811 /* First pc of next line */
3812 pc = start_sal.end;
3813 /* Recalculate the line number (might not be N+1). */
3814 start_sal = find_pc_sect_line (pc, section, 0);
3815 }
3816
3817 /* On targets with executable formats that don't have a concept of
3818 constructors (ELF with .init has, PE doesn't), gcc emits a call
3819 to `__main' in `main' between the prologue and before user
3820 code. */
3821 if (gdbarch_skip_main_prologue_p (gdbarch)
3822 && name && strcmp_iw (name, "main") == 0)
3823 {
3824 pc = gdbarch_skip_main_prologue (gdbarch, pc);
3825 /* Recalculate the line number (might not be N+1). */
3826 start_sal = find_pc_sect_line (pc, section, 0);
3827 force_skip = 1;
3828 }
3829 }
3830 while (!force_skip && skip--);
3831
3832 /* If we still don't have a valid source line, try to find the first
3833 PC in the lineinfo table that belongs to the same function. This
3834 happens with COFF debug info, which does not seem to have an
3835 entry in lineinfo table for the code after the prologue which has
3836 no direct relation to source. For example, this was found to be
3837 the case with the DJGPP target using "gcc -gcoff" when the
3838 compiler inserted code after the prologue to make sure the stack
3839 is aligned. */
3840 if (!force_skip && sym && start_sal.symtab == NULL)
3841 {
3842 pc = skip_prologue_using_lineinfo (pc, symbol_symtab (sym));
3843 /* Recalculate the line number. */
3844 start_sal = find_pc_sect_line (pc, section, 0);
3845 }
3846
3847 do_cleanups (old_chain);
3848
3849 /* If we're already past the prologue, leave SAL unchanged. Otherwise
3850 forward SAL to the end of the prologue. */
3851 if (sal->pc >= pc)
3852 return;
3853
3854 sal->pc = pc;
3855 sal->section = section;
3856
3857 /* Unless the explicit_line flag was set, update the SAL line
3858 and symtab to correspond to the modified PC location. */
3859 if (sal->explicit_line)
3860 return;
3861
3862 sal->symtab = start_sal.symtab;
3863 sal->line = start_sal.line;
3864 sal->end = start_sal.end;
3865
3866 /* Check if we are now inside an inlined function. If we can,
3867 use the call site of the function instead. */
3868 b = block_for_pc_sect (sal->pc, sal->section);
3869 function_block = NULL;
3870 while (b != NULL)
3871 {
3872 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
3873 function_block = b;
3874 else if (BLOCK_FUNCTION (b) != NULL)
3875 break;
3876 b = BLOCK_SUPERBLOCK (b);
3877 }
3878 if (function_block != NULL
3879 && SYMBOL_LINE (BLOCK_FUNCTION (function_block)) != 0)
3880 {
3881 sal->line = SYMBOL_LINE (BLOCK_FUNCTION (function_block));
3882 sal->symtab = symbol_symtab (BLOCK_FUNCTION (function_block));
3883 }
3884 }
3885
3886 /* Given PC at the function's start address, attempt to find the
3887 prologue end using SAL information. Return zero if the skip fails.
3888
3889 A non-optimized prologue traditionally has one SAL for the function
3890 and a second for the function body. A single line function has
3891 them both pointing at the same line.
3892
3893 An optimized prologue is similar but the prologue may contain
3894 instructions (SALs) from the instruction body. Need to skip those
3895 while not getting into the function body.
3896
3897 The functions end point and an increasing SAL line are used as
3898 indicators of the prologue's endpoint.
3899
3900 This code is based on the function refine_prologue_limit
3901 (found in ia64). */
3902
3903 CORE_ADDR
3904 skip_prologue_using_sal (struct gdbarch *gdbarch, CORE_ADDR func_addr)
3905 {
3906 struct symtab_and_line prologue_sal;
3907 CORE_ADDR start_pc;
3908 CORE_ADDR end_pc;
3909 const struct block *bl;
3910
3911 /* Get an initial range for the function. */
3912 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
3913 start_pc += gdbarch_deprecated_function_start_offset (gdbarch);
3914
3915 prologue_sal = find_pc_line (start_pc, 0);
3916 if (prologue_sal.line != 0)
3917 {
3918 /* For languages other than assembly, treat two consecutive line
3919 entries at the same address as a zero-instruction prologue.
3920 The GNU assembler emits separate line notes for each instruction
3921 in a multi-instruction macro, but compilers generally will not
3922 do this. */
3923 if (prologue_sal.symtab->language != language_asm)
3924 {
3925 struct linetable *linetable = SYMTAB_LINETABLE (prologue_sal.symtab);
3926 int idx = 0;
3927
3928 /* Skip any earlier lines, and any end-of-sequence marker
3929 from a previous function. */
3930 while (linetable->item[idx].pc != prologue_sal.pc
3931 || linetable->item[idx].line == 0)
3932 idx++;
3933
3934 if (idx+1 < linetable->nitems
3935 && linetable->item[idx+1].line != 0
3936 && linetable->item[idx+1].pc == start_pc)
3937 return start_pc;
3938 }
3939
3940 /* If there is only one sal that covers the entire function,
3941 then it is probably a single line function, like
3942 "foo(){}". */
3943 if (prologue_sal.end >= end_pc)
3944 return 0;
3945
3946 while (prologue_sal.end < end_pc)
3947 {
3948 struct symtab_and_line sal;
3949
3950 sal = find_pc_line (prologue_sal.end, 0);
3951 if (sal.line == 0)
3952 break;
3953 /* Assume that a consecutive SAL for the same (or larger)
3954 line mark the prologue -> body transition. */
3955 if (sal.line >= prologue_sal.line)
3956 break;
3957 /* Likewise if we are in a different symtab altogether
3958 (e.g. within a file included via #include).  */
3959 if (sal.symtab != prologue_sal.symtab)
3960 break;
3961
3962 /* The line number is smaller. Check that it's from the
3963 same function, not something inlined. If it's inlined,
3964 then there is no point comparing the line numbers. */
3965 bl = block_for_pc (prologue_sal.end);
3966 while (bl)
3967 {
3968 if (block_inlined_p (bl))
3969 break;
3970 if (BLOCK_FUNCTION (bl))
3971 {
3972 bl = NULL;
3973 break;
3974 }
3975 bl = BLOCK_SUPERBLOCK (bl);
3976 }
3977 if (bl != NULL)
3978 break;
3979
3980 /* The case in which compiler's optimizer/scheduler has
3981 moved instructions into the prologue. We look ahead in
3982 the function looking for address ranges whose
3983 corresponding line number is less the first one that we
3984 found for the function. This is more conservative then
3985 refine_prologue_limit which scans a large number of SALs
3986 looking for any in the prologue. */
3987 prologue_sal = sal;
3988 }
3989 }
3990
3991 if (prologue_sal.end < end_pc)
3992 /* Return the end of this line, or zero if we could not find a
3993 line. */
3994 return prologue_sal.end;
3995 else
3996 /* Don't return END_PC, which is past the end of the function. */
3997 return prologue_sal.pc;
3998 }
3999 \f
4000 /* If P is of the form "operator[ \t]+..." where `...' is
4001 some legitimate operator text, return a pointer to the
4002 beginning of the substring of the operator text.
4003 Otherwise, return "". */
4004
4005 static const char *
4006 operator_chars (const char *p, const char **end)
4007 {
4008 *end = "";
4009 if (!startswith (p, "operator"))
4010 return *end;
4011 p += 8;
4012
4013 /* Don't get faked out by `operator' being part of a longer
4014 identifier. */
4015 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
4016 return *end;
4017
4018 /* Allow some whitespace between `operator' and the operator symbol. */
4019 while (*p == ' ' || *p == '\t')
4020 p++;
4021
4022 /* Recognize 'operator TYPENAME'. */
4023
4024 if (isalpha (*p) || *p == '_' || *p == '$')
4025 {
4026 const char *q = p + 1;
4027
4028 while (isalnum (*q) || *q == '_' || *q == '$')
4029 q++;
4030 *end = q;
4031 return p;
4032 }
4033
4034 while (*p)
4035 switch (*p)
4036 {
4037 case '\\': /* regexp quoting */
4038 if (p[1] == '*')
4039 {
4040 if (p[2] == '=') /* 'operator\*=' */
4041 *end = p + 3;
4042 else /* 'operator\*' */
4043 *end = p + 2;
4044 return p;
4045 }
4046 else if (p[1] == '[')
4047 {
4048 if (p[2] == ']')
4049 error (_("mismatched quoting on brackets, "
4050 "try 'operator\\[\\]'"));
4051 else if (p[2] == '\\' && p[3] == ']')
4052 {
4053 *end = p + 4; /* 'operator\[\]' */
4054 return p;
4055 }
4056 else
4057 error (_("nothing is allowed between '[' and ']'"));
4058 }
4059 else
4060 {
4061 /* Gratuitous qoute: skip it and move on. */
4062 p++;
4063 continue;
4064 }
4065 break;
4066 case '!':
4067 case '=':
4068 case '*':
4069 case '/':
4070 case '%':
4071 case '^':
4072 if (p[1] == '=')
4073 *end = p + 2;
4074 else
4075 *end = p + 1;
4076 return p;
4077 case '<':
4078 case '>':
4079 case '+':
4080 case '-':
4081 case '&':
4082 case '|':
4083 if (p[0] == '-' && p[1] == '>')
4084 {
4085 /* Struct pointer member operator 'operator->'. */
4086 if (p[2] == '*')
4087 {
4088 *end = p + 3; /* 'operator->*' */
4089 return p;
4090 }
4091 else if (p[2] == '\\')
4092 {
4093 *end = p + 4; /* Hopefully 'operator->\*' */
4094 return p;
4095 }
4096 else
4097 {
4098 *end = p + 2; /* 'operator->' */
4099 return p;
4100 }
4101 }
4102 if (p[1] == '=' || p[1] == p[0])
4103 *end = p + 2;
4104 else
4105 *end = p + 1;
4106 return p;
4107 case '~':
4108 case ',':
4109 *end = p + 1;
4110 return p;
4111 case '(':
4112 if (p[1] != ')')
4113 error (_("`operator ()' must be specified "
4114 "without whitespace in `()'"));
4115 *end = p + 2;
4116 return p;
4117 case '?':
4118 if (p[1] != ':')
4119 error (_("`operator ?:' must be specified "
4120 "without whitespace in `?:'"));
4121 *end = p + 2;
4122 return p;
4123 case '[':
4124 if (p[1] != ']')
4125 error (_("`operator []' must be specified "
4126 "without whitespace in `[]'"));
4127 *end = p + 2;
4128 return p;
4129 default:
4130 error (_("`operator %s' not supported"), p);
4131 break;
4132 }
4133
4134 *end = "";
4135 return *end;
4136 }
4137 \f
4138
4139 /* Cache to watch for file names already seen by filename_seen. */
4140
4141 struct filename_seen_cache
4142 {
4143 /* Table of files seen so far. */
4144 htab_t tab;
4145 /* Initial size of the table. It automagically grows from here. */
4146 #define INITIAL_FILENAME_SEEN_CACHE_SIZE 100
4147 };
4148
4149 /* filename_seen_cache constructor. */
4150
4151 static struct filename_seen_cache *
4152 create_filename_seen_cache (void)
4153 {
4154 struct filename_seen_cache *cache = XNEW (struct filename_seen_cache);
4155
4156 cache->tab = htab_create_alloc (INITIAL_FILENAME_SEEN_CACHE_SIZE,
4157 filename_hash, filename_eq,
4158 NULL, xcalloc, xfree);
4159
4160 return cache;
4161 }
4162
4163 /* Empty the cache, but do not delete it. */
4164
4165 static void
4166 clear_filename_seen_cache (struct filename_seen_cache *cache)
4167 {
4168 htab_empty (cache->tab);
4169 }
4170
4171 /* filename_seen_cache destructor.
4172 This takes a void * argument as it is generally used as a cleanup. */
4173
4174 static void
4175 delete_filename_seen_cache (void *ptr)
4176 {
4177 struct filename_seen_cache *cache = (struct filename_seen_cache *) ptr;
4178
4179 htab_delete (cache->tab);
4180 xfree (cache);
4181 }
4182
4183 /* If FILE is not already in the table of files in CACHE, return zero;
4184 otherwise return non-zero. Optionally add FILE to the table if ADD
4185 is non-zero.
4186
4187 NOTE: We don't manage space for FILE, we assume FILE lives as long
4188 as the caller needs. */
4189
4190 static int
4191 filename_seen (struct filename_seen_cache *cache, const char *file, int add)
4192 {
4193 void **slot;
4194
4195 /* Is FILE in tab? */
4196 slot = htab_find_slot (cache->tab, file, add ? INSERT : NO_INSERT);
4197 if (*slot != NULL)
4198 return 1;
4199
4200 /* No; maybe add it to tab. */
4201 if (add)
4202 *slot = (char *) file;
4203
4204 return 0;
4205 }
4206
4207 /* Data structure to maintain printing state for output_source_filename. */
4208
4209 struct output_source_filename_data
4210 {
4211 /* Cache of what we've seen so far. */
4212 struct filename_seen_cache *filename_seen_cache;
4213
4214 /* Flag of whether we're printing the first one. */
4215 int first;
4216 };
4217
4218 /* Slave routine for sources_info. Force line breaks at ,'s.
4219 NAME is the name to print.
4220 DATA contains the state for printing and watching for duplicates. */
4221
4222 static void
4223 output_source_filename (const char *name,
4224 struct output_source_filename_data *data)
4225 {
4226 /* Since a single source file can result in several partial symbol
4227 tables, we need to avoid printing it more than once. Note: if
4228 some of the psymtabs are read in and some are not, it gets
4229 printed both under "Source files for which symbols have been
4230 read" and "Source files for which symbols will be read in on
4231 demand". I consider this a reasonable way to deal with the
4232 situation. I'm not sure whether this can also happen for
4233 symtabs; it doesn't hurt to check. */
4234
4235 /* Was NAME already seen? */
4236 if (filename_seen (data->filename_seen_cache, name, 1))
4237 {
4238 /* Yes; don't print it again. */
4239 return;
4240 }
4241
4242 /* No; print it and reset *FIRST. */
4243 if (! data->first)
4244 printf_filtered (", ");
4245 data->first = 0;
4246
4247 wrap_here ("");
4248 fputs_filtered (name, gdb_stdout);
4249 }
4250
4251 /* A callback for map_partial_symbol_filenames. */
4252
4253 static void
4254 output_partial_symbol_filename (const char *filename, const char *fullname,
4255 void *data)
4256 {
4257 output_source_filename (fullname ? fullname : filename,
4258 (struct output_source_filename_data *) data);
4259 }
4260
4261 static void
4262 sources_info (char *ignore, int from_tty)
4263 {
4264 struct compunit_symtab *cu;
4265 struct symtab *s;
4266 struct objfile *objfile;
4267 struct output_source_filename_data data;
4268 struct cleanup *cleanups;
4269
4270 if (!have_full_symbols () && !have_partial_symbols ())
4271 {
4272 error (_("No symbol table is loaded. Use the \"file\" command."));
4273 }
4274
4275 data.filename_seen_cache = create_filename_seen_cache ();
4276 cleanups = make_cleanup (delete_filename_seen_cache,
4277 data.filename_seen_cache);
4278
4279 printf_filtered ("Source files for which symbols have been read in:\n\n");
4280
4281 data.first = 1;
4282 ALL_FILETABS (objfile, cu, s)
4283 {
4284 const char *fullname = symtab_to_fullname (s);
4285
4286 output_source_filename (fullname, &data);
4287 }
4288 printf_filtered ("\n\n");
4289
4290 printf_filtered ("Source files for which symbols "
4291 "will be read in on demand:\n\n");
4292
4293 clear_filename_seen_cache (data.filename_seen_cache);
4294 data.first = 1;
4295 map_symbol_filenames (output_partial_symbol_filename, &data,
4296 1 /*need_fullname*/);
4297 printf_filtered ("\n");
4298
4299 do_cleanups (cleanups);
4300 }
4301
4302 /* Compare FILE against all the NFILES entries of FILES. If BASENAMES is
4303 non-zero compare only lbasename of FILES. */
4304
4305 static int
4306 file_matches (const char *file, const char *files[], int nfiles, int basenames)
4307 {
4308 int i;
4309
4310 if (file != NULL && nfiles != 0)
4311 {
4312 for (i = 0; i < nfiles; i++)
4313 {
4314 if (compare_filenames_for_search (file, (basenames
4315 ? lbasename (files[i])
4316 : files[i])))
4317 return 1;
4318 }
4319 }
4320 else if (nfiles == 0)
4321 return 1;
4322 return 0;
4323 }
4324
4325 /* Free any memory associated with a search. */
4326
4327 void
4328 free_search_symbols (struct symbol_search *symbols)
4329 {
4330 struct symbol_search *p;
4331 struct symbol_search *next;
4332
4333 for (p = symbols; p != NULL; p = next)
4334 {
4335 next = p->next;
4336 xfree (p);
4337 }
4338 }
4339
4340 static void
4341 do_free_search_symbols_cleanup (void *symbolsp)
4342 {
4343 struct symbol_search *symbols = *(struct symbol_search **) symbolsp;
4344
4345 free_search_symbols (symbols);
4346 }
4347
4348 struct cleanup *
4349 make_cleanup_free_search_symbols (struct symbol_search **symbolsp)
4350 {
4351 return make_cleanup (do_free_search_symbols_cleanup, symbolsp);
4352 }
4353
4354 /* Helper function for sort_search_symbols_remove_dups and qsort. Can only
4355 sort symbols, not minimal symbols. */
4356
4357 static int
4358 compare_search_syms (const void *sa, const void *sb)
4359 {
4360 struct symbol_search *sym_a = *(struct symbol_search **) sa;
4361 struct symbol_search *sym_b = *(struct symbol_search **) sb;
4362 int c;
4363
4364 c = FILENAME_CMP (symbol_symtab (sym_a->symbol)->filename,
4365 symbol_symtab (sym_b->symbol)->filename);
4366 if (c != 0)
4367 return c;
4368
4369 if (sym_a->block != sym_b->block)
4370 return sym_a->block - sym_b->block;
4371
4372 return strcmp (SYMBOL_PRINT_NAME (sym_a->symbol),
4373 SYMBOL_PRINT_NAME (sym_b->symbol));
4374 }
4375
4376 /* Sort the NFOUND symbols in list FOUND and remove duplicates.
4377 The duplicates are freed, and the new list is returned in
4378 *NEW_HEAD, *NEW_TAIL. */
4379
4380 static void
4381 sort_search_symbols_remove_dups (struct symbol_search *found, int nfound,
4382 struct symbol_search **new_head,
4383 struct symbol_search **new_tail)
4384 {
4385 struct symbol_search **symbols, *symp, *old_next;
4386 int i, j, nunique;
4387
4388 gdb_assert (found != NULL && nfound > 0);
4389
4390 /* Build an array out of the list so we can easily sort them. */
4391 symbols = XNEWVEC (struct symbol_search *, nfound);
4392
4393 symp = found;
4394 for (i = 0; i < nfound; i++)
4395 {
4396 gdb_assert (symp != NULL);
4397 gdb_assert (symp->block >= 0 && symp->block <= 1);
4398 symbols[i] = symp;
4399 symp = symp->next;
4400 }
4401 gdb_assert (symp == NULL);
4402
4403 qsort (symbols, nfound, sizeof (struct symbol_search *),
4404 compare_search_syms);
4405
4406 /* Collapse out the dups. */
4407 for (i = 1, j = 1; i < nfound; ++i)
4408 {
4409 if (compare_search_syms (&symbols[j - 1], &symbols[i]) != 0)
4410 symbols[j++] = symbols[i];
4411 else
4412 xfree (symbols[i]);
4413 }
4414 nunique = j;
4415 symbols[j - 1]->next = NULL;
4416
4417 /* Rebuild the linked list. */
4418 for (i = 0; i < nunique - 1; i++)
4419 symbols[i]->next = symbols[i + 1];
4420 symbols[nunique - 1]->next = NULL;
4421
4422 *new_head = symbols[0];
4423 *new_tail = symbols[nunique - 1];
4424 xfree (symbols);
4425 }
4426
4427 /* An object of this type is passed as the user_data to the
4428 expand_symtabs_matching method. */
4429 struct search_symbols_data
4430 {
4431 int nfiles;
4432 const char **files;
4433
4434 /* It is true if PREG contains valid data, false otherwise. */
4435 unsigned preg_p : 1;
4436 regex_t preg;
4437 };
4438
4439 /* A callback for expand_symtabs_matching. */
4440
4441 static int
4442 search_symbols_file_matches (const char *filename, void *user_data,
4443 int basenames)
4444 {
4445 struct search_symbols_data *data = (struct search_symbols_data *) user_data;
4446
4447 return file_matches (filename, data->files, data->nfiles, basenames);
4448 }
4449
4450 /* A callback for expand_symtabs_matching. */
4451
4452 static int
4453 search_symbols_name_matches (const char *symname, void *user_data)
4454 {
4455 struct search_symbols_data *data = (struct search_symbols_data *) user_data;
4456
4457 return !data->preg_p || regexec (&data->preg, symname, 0, NULL, 0) == 0;
4458 }
4459
4460 /* Search the symbol table for matches to the regular expression REGEXP,
4461 returning the results in *MATCHES.
4462
4463 Only symbols of KIND are searched:
4464 VARIABLES_DOMAIN - search all symbols, excluding functions, type names,
4465 and constants (enums)
4466 FUNCTIONS_DOMAIN - search all functions
4467 TYPES_DOMAIN - search all type names
4468 ALL_DOMAIN - an internal error for this function
4469
4470 free_search_symbols should be called when *MATCHES is no longer needed.
4471
4472 Within each file the results are sorted locally; each symtab's global and
4473 static blocks are separately alphabetized.
4474 Duplicate entries are removed. */
4475
4476 void
4477 search_symbols (const char *regexp, enum search_domain kind,
4478 int nfiles, const char *files[],
4479 struct symbol_search **matches)
4480 {
4481 struct compunit_symtab *cust;
4482 const struct blockvector *bv;
4483 struct block *b;
4484 int i = 0;
4485 struct block_iterator iter;
4486 struct symbol *sym;
4487 struct objfile *objfile;
4488 struct minimal_symbol *msymbol;
4489 int found_misc = 0;
4490 static const enum minimal_symbol_type types[]
4491 = {mst_data, mst_text, mst_abs};
4492 static const enum minimal_symbol_type types2[]
4493 = {mst_bss, mst_file_text, mst_abs};
4494 static const enum minimal_symbol_type types3[]
4495 = {mst_file_data, mst_solib_trampoline, mst_abs};
4496 static const enum minimal_symbol_type types4[]
4497 = {mst_file_bss, mst_text_gnu_ifunc, mst_abs};
4498 enum minimal_symbol_type ourtype;
4499 enum minimal_symbol_type ourtype2;
4500 enum minimal_symbol_type ourtype3;
4501 enum minimal_symbol_type ourtype4;
4502 struct symbol_search *found;
4503 struct symbol_search *tail;
4504 struct search_symbols_data datum;
4505 int nfound;
4506
4507 /* OLD_CHAIN .. RETVAL_CHAIN is always freed, RETVAL_CHAIN .. current
4508 CLEANUP_CHAIN is freed only in the case of an error. */
4509 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
4510 struct cleanup *retval_chain;
4511
4512 gdb_assert (kind <= TYPES_DOMAIN);
4513
4514 ourtype = types[kind];
4515 ourtype2 = types2[kind];
4516 ourtype3 = types3[kind];
4517 ourtype4 = types4[kind];
4518
4519 *matches = NULL;
4520 datum.preg_p = 0;
4521
4522 if (regexp != NULL)
4523 {
4524 /* Make sure spacing is right for C++ operators.
4525 This is just a courtesy to make the matching less sensitive
4526 to how many spaces the user leaves between 'operator'
4527 and <TYPENAME> or <OPERATOR>. */
4528 const char *opend;
4529 const char *opname = operator_chars (regexp, &opend);
4530 int errcode;
4531
4532 if (*opname)
4533 {
4534 int fix = -1; /* -1 means ok; otherwise number of
4535 spaces needed. */
4536
4537 if (isalpha (*opname) || *opname == '_' || *opname == '$')
4538 {
4539 /* There should 1 space between 'operator' and 'TYPENAME'. */
4540 if (opname[-1] != ' ' || opname[-2] == ' ')
4541 fix = 1;
4542 }
4543 else
4544 {
4545 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
4546 if (opname[-1] == ' ')
4547 fix = 0;
4548 }
4549 /* If wrong number of spaces, fix it. */
4550 if (fix >= 0)
4551 {
4552 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
4553
4554 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
4555 regexp = tmp;
4556 }
4557 }
4558
4559 errcode = regcomp (&datum.preg, regexp,
4560 REG_NOSUB | (case_sensitivity == case_sensitive_off
4561 ? REG_ICASE : 0));
4562 if (errcode != 0)
4563 {
4564 char *err = get_regcomp_error (errcode, &datum.preg);
4565
4566 make_cleanup (xfree, err);
4567 error (_("Invalid regexp (%s): %s"), err, regexp);
4568 }
4569 datum.preg_p = 1;
4570 make_regfree_cleanup (&datum.preg);
4571 }
4572
4573 /* Search through the partial symtabs *first* for all symbols
4574 matching the regexp. That way we don't have to reproduce all of
4575 the machinery below. */
4576
4577 datum.nfiles = nfiles;
4578 datum.files = files;
4579 expand_symtabs_matching ((nfiles == 0
4580 ? NULL
4581 : search_symbols_file_matches),
4582 search_symbols_name_matches,
4583 NULL, kind, &datum);
4584
4585 /* Here, we search through the minimal symbol tables for functions
4586 and variables that match, and force their symbols to be read.
4587 This is in particular necessary for demangled variable names,
4588 which are no longer put into the partial symbol tables.
4589 The symbol will then be found during the scan of symtabs below.
4590
4591 For functions, find_pc_symtab should succeed if we have debug info
4592 for the function, for variables we have to call
4593 lookup_symbol_in_objfile_from_linkage_name to determine if the variable
4594 has debug info.
4595 If the lookup fails, set found_misc so that we will rescan to print
4596 any matching symbols without debug info.
4597 We only search the objfile the msymbol came from, we no longer search
4598 all objfiles. In large programs (1000s of shared libs) searching all
4599 objfiles is not worth the pain. */
4600
4601 if (nfiles == 0 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
4602 {
4603 ALL_MSYMBOLS (objfile, msymbol)
4604 {
4605 QUIT;
4606
4607 if (msymbol->created_by_gdb)
4608 continue;
4609
4610 if (MSYMBOL_TYPE (msymbol) == ourtype
4611 || MSYMBOL_TYPE (msymbol) == ourtype2
4612 || MSYMBOL_TYPE (msymbol) == ourtype3
4613 || MSYMBOL_TYPE (msymbol) == ourtype4)
4614 {
4615 if (!datum.preg_p
4616 || regexec (&datum.preg, MSYMBOL_NATURAL_NAME (msymbol), 0,
4617 NULL, 0) == 0)
4618 {
4619 /* Note: An important side-effect of these lookup functions
4620 is to expand the symbol table if msymbol is found, for the
4621 benefit of the next loop on ALL_COMPUNITS. */
4622 if (kind == FUNCTIONS_DOMAIN
4623 ? (find_pc_compunit_symtab
4624 (MSYMBOL_VALUE_ADDRESS (objfile, msymbol)) == NULL)
4625 : (lookup_symbol_in_objfile_from_linkage_name
4626 (objfile, MSYMBOL_LINKAGE_NAME (msymbol), VAR_DOMAIN)
4627 .symbol == NULL))
4628 found_misc = 1;
4629 }
4630 }
4631 }
4632 }
4633
4634 found = NULL;
4635 tail = NULL;
4636 nfound = 0;
4637 retval_chain = make_cleanup_free_search_symbols (&found);
4638
4639 ALL_COMPUNITS (objfile, cust)
4640 {
4641 bv = COMPUNIT_BLOCKVECTOR (cust);
4642 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
4643 {
4644 b = BLOCKVECTOR_BLOCK (bv, i);
4645 ALL_BLOCK_SYMBOLS (b, iter, sym)
4646 {
4647 struct symtab *real_symtab = symbol_symtab (sym);
4648
4649 QUIT;
4650
4651 /* Check first sole REAL_SYMTAB->FILENAME. It does not need to be
4652 a substring of symtab_to_fullname as it may contain "./" etc. */
4653 if ((file_matches (real_symtab->filename, files, nfiles, 0)
4654 || ((basenames_may_differ
4655 || file_matches (lbasename (real_symtab->filename),
4656 files, nfiles, 1))
4657 && file_matches (symtab_to_fullname (real_symtab),
4658 files, nfiles, 0)))
4659 && ((!datum.preg_p
4660 || regexec (&datum.preg, SYMBOL_NATURAL_NAME (sym), 0,
4661 NULL, 0) == 0)
4662 && ((kind == VARIABLES_DOMAIN
4663 && SYMBOL_CLASS (sym) != LOC_TYPEDEF
4664 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
4665 && SYMBOL_CLASS (sym) != LOC_BLOCK
4666 /* LOC_CONST can be used for more than just enums,
4667 e.g., c++ static const members.
4668 We only want to skip enums here. */
4669 && !(SYMBOL_CLASS (sym) == LOC_CONST
4670 && (TYPE_CODE (SYMBOL_TYPE (sym))
4671 == TYPE_CODE_ENUM)))
4672 || (kind == FUNCTIONS_DOMAIN
4673 && SYMBOL_CLASS (sym) == LOC_BLOCK)
4674 || (kind == TYPES_DOMAIN
4675 && SYMBOL_CLASS (sym) == LOC_TYPEDEF))))
4676 {
4677 /* match */
4678 struct symbol_search *psr = XCNEW (struct symbol_search);
4679
4680 psr->block = i;
4681 psr->symbol = sym;
4682 psr->next = NULL;
4683 if (tail == NULL)
4684 found = psr;
4685 else
4686 tail->next = psr;
4687 tail = psr;
4688 nfound ++;
4689 }
4690 }
4691 }
4692 }
4693
4694 if (found != NULL)
4695 {
4696 sort_search_symbols_remove_dups (found, nfound, &found, &tail);
4697 /* Note: nfound is no longer useful beyond this point. */
4698 }
4699
4700 /* If there are no eyes, avoid all contact. I mean, if there are
4701 no debug symbols, then add matching minsyms. */
4702
4703 if (found_misc || (nfiles == 0 && kind != FUNCTIONS_DOMAIN))
4704 {
4705 ALL_MSYMBOLS (objfile, msymbol)
4706 {
4707 QUIT;
4708
4709 if (msymbol->created_by_gdb)
4710 continue;
4711
4712 if (MSYMBOL_TYPE (msymbol) == ourtype
4713 || MSYMBOL_TYPE (msymbol) == ourtype2
4714 || MSYMBOL_TYPE (msymbol) == ourtype3
4715 || MSYMBOL_TYPE (msymbol) == ourtype4)
4716 {
4717 if (!datum.preg_p
4718 || regexec (&datum.preg, MSYMBOL_NATURAL_NAME (msymbol), 0,
4719 NULL, 0) == 0)
4720 {
4721 /* For functions we can do a quick check of whether the
4722 symbol might be found via find_pc_symtab. */
4723 if (kind != FUNCTIONS_DOMAIN
4724 || (find_pc_compunit_symtab
4725 (MSYMBOL_VALUE_ADDRESS (objfile, msymbol)) == NULL))
4726 {
4727 if (lookup_symbol_in_objfile_from_linkage_name
4728 (objfile, MSYMBOL_LINKAGE_NAME (msymbol), VAR_DOMAIN)
4729 .symbol == NULL)
4730 {
4731 /* match */
4732 struct symbol_search *psr = XNEW (struct symbol_search);
4733 psr->block = i;
4734 psr->msymbol.minsym = msymbol;
4735 psr->msymbol.objfile = objfile;
4736 psr->symbol = NULL;
4737 psr->next = NULL;
4738 if (tail == NULL)
4739 found = psr;
4740 else
4741 tail->next = psr;
4742 tail = psr;
4743 }
4744 }
4745 }
4746 }
4747 }
4748 }
4749
4750 discard_cleanups (retval_chain);
4751 do_cleanups (old_chain);
4752 *matches = found;
4753 }
4754
4755 /* Helper function for symtab_symbol_info, this function uses
4756 the data returned from search_symbols() to print information
4757 regarding the match to gdb_stdout. */
4758
4759 static void
4760 print_symbol_info (enum search_domain kind,
4761 struct symbol *sym,
4762 int block, const char *last)
4763 {
4764 struct symtab *s = symbol_symtab (sym);
4765 const char *s_filename = symtab_to_filename_for_display (s);
4766
4767 if (last == NULL || filename_cmp (last, s_filename) != 0)
4768 {
4769 fputs_filtered ("\nFile ", gdb_stdout);
4770 fputs_filtered (s_filename, gdb_stdout);
4771 fputs_filtered (":\n", gdb_stdout);
4772 }
4773
4774 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
4775 printf_filtered ("static ");
4776
4777 /* Typedef that is not a C++ class. */
4778 if (kind == TYPES_DOMAIN
4779 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
4780 typedef_print (SYMBOL_TYPE (sym), sym, gdb_stdout);
4781 /* variable, func, or typedef-that-is-c++-class. */
4782 else if (kind < TYPES_DOMAIN
4783 || (kind == TYPES_DOMAIN
4784 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
4785 {
4786 type_print (SYMBOL_TYPE (sym),
4787 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
4788 ? "" : SYMBOL_PRINT_NAME (sym)),
4789 gdb_stdout, 0);
4790
4791 printf_filtered (";\n");
4792 }
4793 }
4794
4795 /* This help function for symtab_symbol_info() prints information
4796 for non-debugging symbols to gdb_stdout. */
4797
4798 static void
4799 print_msymbol_info (struct bound_minimal_symbol msymbol)
4800 {
4801 struct gdbarch *gdbarch = get_objfile_arch (msymbol.objfile);
4802 char *tmp;
4803
4804 if (gdbarch_addr_bit (gdbarch) <= 32)
4805 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol)
4806 & (CORE_ADDR) 0xffffffff,
4807 8);
4808 else
4809 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol),
4810 16);
4811 printf_filtered ("%s %s\n",
4812 tmp, MSYMBOL_PRINT_NAME (msymbol.minsym));
4813 }
4814
4815 /* This is the guts of the commands "info functions", "info types", and
4816 "info variables". It calls search_symbols to find all matches and then
4817 print_[m]symbol_info to print out some useful information about the
4818 matches. */
4819
4820 static void
4821 symtab_symbol_info (char *regexp, enum search_domain kind, int from_tty)
4822 {
4823 static const char * const classnames[] =
4824 {"variable", "function", "type"};
4825 struct symbol_search *symbols;
4826 struct symbol_search *p;
4827 struct cleanup *old_chain;
4828 const char *last_filename = NULL;
4829 int first = 1;
4830
4831 gdb_assert (kind <= TYPES_DOMAIN);
4832
4833 /* Must make sure that if we're interrupted, symbols gets freed. */
4834 search_symbols (regexp, kind, 0, NULL, &symbols);
4835 old_chain = make_cleanup_free_search_symbols (&symbols);
4836
4837 if (regexp != NULL)
4838 printf_filtered (_("All %ss matching regular expression \"%s\":\n"),
4839 classnames[kind], regexp);
4840 else
4841 printf_filtered (_("All defined %ss:\n"), classnames[kind]);
4842
4843 for (p = symbols; p != NULL; p = p->next)
4844 {
4845 QUIT;
4846
4847 if (p->msymbol.minsym != NULL)
4848 {
4849 if (first)
4850 {
4851 printf_filtered (_("\nNon-debugging symbols:\n"));
4852 first = 0;
4853 }
4854 print_msymbol_info (p->msymbol);
4855 }
4856 else
4857 {
4858 print_symbol_info (kind,
4859 p->symbol,
4860 p->block,
4861 last_filename);
4862 last_filename
4863 = symtab_to_filename_for_display (symbol_symtab (p->symbol));
4864 }
4865 }
4866
4867 do_cleanups (old_chain);
4868 }
4869
4870 static void
4871 variables_info (char *regexp, int from_tty)
4872 {
4873 symtab_symbol_info (regexp, VARIABLES_DOMAIN, from_tty);
4874 }
4875
4876 static void
4877 functions_info (char *regexp, int from_tty)
4878 {
4879 symtab_symbol_info (regexp, FUNCTIONS_DOMAIN, from_tty);
4880 }
4881
4882
4883 static void
4884 types_info (char *regexp, int from_tty)
4885 {
4886 symtab_symbol_info (regexp, TYPES_DOMAIN, from_tty);
4887 }
4888
4889 /* Breakpoint all functions matching regular expression. */
4890
4891 void
4892 rbreak_command_wrapper (char *regexp, int from_tty)
4893 {
4894 rbreak_command (regexp, from_tty);
4895 }
4896
4897 /* A cleanup function that calls end_rbreak_breakpoints. */
4898
4899 static void
4900 do_end_rbreak_breakpoints (void *ignore)
4901 {
4902 end_rbreak_breakpoints ();
4903 }
4904
4905 static void
4906 rbreak_command (char *regexp, int from_tty)
4907 {
4908 struct symbol_search *ss;
4909 struct symbol_search *p;
4910 struct cleanup *old_chain;
4911 char *string = NULL;
4912 int len = 0;
4913 const char **files = NULL;
4914 const char *file_name;
4915 int nfiles = 0;
4916
4917 if (regexp)
4918 {
4919 char *colon = strchr (regexp, ':');
4920
4921 if (colon && *(colon + 1) != ':')
4922 {
4923 int colon_index;
4924 char *local_name;
4925
4926 colon_index = colon - regexp;
4927 local_name = (char *) alloca (colon_index + 1);
4928 memcpy (local_name, regexp, colon_index);
4929 local_name[colon_index--] = 0;
4930 while (isspace (local_name[colon_index]))
4931 local_name[colon_index--] = 0;
4932 file_name = local_name;
4933 files = &file_name;
4934 nfiles = 1;
4935 regexp = skip_spaces (colon + 1);
4936 }
4937 }
4938
4939 search_symbols (regexp, FUNCTIONS_DOMAIN, nfiles, files, &ss);
4940 old_chain = make_cleanup_free_search_symbols (&ss);
4941 make_cleanup (free_current_contents, &string);
4942
4943 start_rbreak_breakpoints ();
4944 make_cleanup (do_end_rbreak_breakpoints, NULL);
4945 for (p = ss; p != NULL; p = p->next)
4946 {
4947 if (p->msymbol.minsym == NULL)
4948 {
4949 struct symtab *symtab = symbol_symtab (p->symbol);
4950 const char *fullname = symtab_to_fullname (symtab);
4951
4952 int newlen = (strlen (fullname)
4953 + strlen (SYMBOL_LINKAGE_NAME (p->symbol))
4954 + 4);
4955
4956 if (newlen > len)
4957 {
4958 string = (char *) xrealloc (string, newlen);
4959 len = newlen;
4960 }
4961 strcpy (string, fullname);
4962 strcat (string, ":'");
4963 strcat (string, SYMBOL_LINKAGE_NAME (p->symbol));
4964 strcat (string, "'");
4965 break_command (string, from_tty);
4966 print_symbol_info (FUNCTIONS_DOMAIN,
4967 p->symbol,
4968 p->block,
4969 symtab_to_filename_for_display (symtab));
4970 }
4971 else
4972 {
4973 int newlen = (strlen (MSYMBOL_LINKAGE_NAME (p->msymbol.minsym)) + 3);
4974
4975 if (newlen > len)
4976 {
4977 string = (char *) xrealloc (string, newlen);
4978 len = newlen;
4979 }
4980 strcpy (string, "'");
4981 strcat (string, MSYMBOL_LINKAGE_NAME (p->msymbol.minsym));
4982 strcat (string, "'");
4983
4984 break_command (string, from_tty);
4985 printf_filtered ("<function, no debug info> %s;\n",
4986 MSYMBOL_PRINT_NAME (p->msymbol.minsym));
4987 }
4988 }
4989
4990 do_cleanups (old_chain);
4991 }
4992 \f
4993
4994 /* Evaluate if NAME matches SYM_TEXT and SYM_TEXT_LEN.
4995
4996 Either sym_text[sym_text_len] != '(' and then we search for any
4997 symbol starting with SYM_TEXT text.
4998
4999 Otherwise sym_text[sym_text_len] == '(' and then we require symbol name to
5000 be terminated at that point. Partial symbol tables do not have parameters
5001 information. */
5002
5003 static int
5004 compare_symbol_name (const char *name, const char *sym_text, int sym_text_len)
5005 {
5006 int (*ncmp) (const char *, const char *, size_t);
5007
5008 ncmp = (case_sensitivity == case_sensitive_on ? strncmp : strncasecmp);
5009
5010 if (ncmp (name, sym_text, sym_text_len) != 0)
5011 return 0;
5012
5013 if (sym_text[sym_text_len] == '(')
5014 {
5015 /* User searches for `name(someth...'. Require NAME to be terminated.
5016 Normally psymtabs and gdbindex have no parameter types so '\0' will be
5017 present but accept even parameters presence. In this case this
5018 function is in fact strcmp_iw but whitespace skipping is not supported
5019 for tab completion. */
5020
5021 if (name[sym_text_len] != '\0' && name[sym_text_len] != '(')
5022 return 0;
5023 }
5024
5025 return 1;
5026 }
5027
5028 /* Free any memory associated with a completion list. */
5029
5030 static void
5031 free_completion_list (VEC (char_ptr) **list_ptr)
5032 {
5033 int i;
5034 char *p;
5035
5036 for (i = 0; VEC_iterate (char_ptr, *list_ptr, i, p); ++i)
5037 xfree (p);
5038 VEC_free (char_ptr, *list_ptr);
5039 }
5040
5041 /* Callback for make_cleanup. */
5042
5043 static void
5044 do_free_completion_list (void *list)
5045 {
5046 free_completion_list ((VEC (char_ptr) **) list);
5047 }
5048
5049 /* Helper routine for make_symbol_completion_list. */
5050
5051 static VEC (char_ptr) *return_val;
5052
5053 #define COMPLETION_LIST_ADD_SYMBOL(symbol, sym_text, len, text, word) \
5054 completion_list_add_name \
5055 (SYMBOL_NATURAL_NAME (symbol), (sym_text), (len), (text), (word))
5056
5057 #define MCOMPLETION_LIST_ADD_SYMBOL(symbol, sym_text, len, text, word) \
5058 completion_list_add_name \
5059 (MSYMBOL_NATURAL_NAME (symbol), (sym_text), (len), (text), (word))
5060
5061 /* Tracker for how many unique completions have been generated. Used
5062 to terminate completion list generation early if the list has grown
5063 to a size so large as to be useless. This helps avoid GDB seeming
5064 to lock up in the event the user requests to complete on something
5065 vague that necessitates the time consuming expansion of many symbol
5066 tables. */
5067
5068 static completion_tracker_t completion_tracker;
5069
5070 /* Test to see if the symbol specified by SYMNAME (which is already
5071 demangled for C++ symbols) matches SYM_TEXT in the first SYM_TEXT_LEN
5072 characters. If so, add it to the current completion list. */
5073
5074 static void
5075 completion_list_add_name (const char *symname,
5076 const char *sym_text, int sym_text_len,
5077 const char *text, const char *word)
5078 {
5079 /* Clip symbols that cannot match. */
5080 if (!compare_symbol_name (symname, sym_text, sym_text_len))
5081 return;
5082
5083 /* We have a match for a completion, so add SYMNAME to the current list
5084 of matches. Note that the name is moved to freshly malloc'd space. */
5085
5086 {
5087 char *newobj;
5088 enum maybe_add_completion_enum add_status;
5089
5090 if (word == sym_text)
5091 {
5092 newobj = (char *) xmalloc (strlen (symname) + 5);
5093 strcpy (newobj, symname);
5094 }
5095 else if (word > sym_text)
5096 {
5097 /* Return some portion of symname. */
5098 newobj = (char *) xmalloc (strlen (symname) + 5);
5099 strcpy (newobj, symname + (word - sym_text));
5100 }
5101 else
5102 {
5103 /* Return some of SYM_TEXT plus symname. */
5104 newobj = (char *) xmalloc (strlen (symname) + (sym_text - word) + 5);
5105 strncpy (newobj, word, sym_text - word);
5106 newobj[sym_text - word] = '\0';
5107 strcat (newobj, symname);
5108 }
5109
5110 add_status = maybe_add_completion (completion_tracker, newobj);
5111
5112 switch (add_status)
5113 {
5114 case MAYBE_ADD_COMPLETION_OK:
5115 VEC_safe_push (char_ptr, return_val, newobj);
5116 break;
5117 case MAYBE_ADD_COMPLETION_OK_MAX_REACHED:
5118 VEC_safe_push (char_ptr, return_val, newobj);
5119 throw_max_completions_reached_error ();
5120 case MAYBE_ADD_COMPLETION_MAX_REACHED:
5121 xfree (newobj);
5122 throw_max_completions_reached_error ();
5123 case MAYBE_ADD_COMPLETION_DUPLICATE:
5124 xfree (newobj);
5125 break;
5126 }
5127 }
5128 }
5129
5130 /* ObjC: In case we are completing on a selector, look as the msymbol
5131 again and feed all the selectors into the mill. */
5132
5133 static void
5134 completion_list_objc_symbol (struct minimal_symbol *msymbol,
5135 const char *sym_text, int sym_text_len,
5136 const char *text, const char *word)
5137 {
5138 static char *tmp = NULL;
5139 static unsigned int tmplen = 0;
5140
5141 const char *method, *category, *selector;
5142 char *tmp2 = NULL;
5143
5144 method = MSYMBOL_NATURAL_NAME (msymbol);
5145
5146 /* Is it a method? */
5147 if ((method[0] != '-') && (method[0] != '+'))
5148 return;
5149
5150 if (sym_text[0] == '[')
5151 /* Complete on shortened method method. */
5152 completion_list_add_name (method + 1, sym_text, sym_text_len, text, word);
5153
5154 while ((strlen (method) + 1) >= tmplen)
5155 {
5156 if (tmplen == 0)
5157 tmplen = 1024;
5158 else
5159 tmplen *= 2;
5160 tmp = (char *) xrealloc (tmp, tmplen);
5161 }
5162 selector = strchr (method, ' ');
5163 if (selector != NULL)
5164 selector++;
5165
5166 category = strchr (method, '(');
5167
5168 if ((category != NULL) && (selector != NULL))
5169 {
5170 memcpy (tmp, method, (category - method));
5171 tmp[category - method] = ' ';
5172 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
5173 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
5174 if (sym_text[0] == '[')
5175 completion_list_add_name (tmp + 1, sym_text, sym_text_len, text, word);
5176 }
5177
5178 if (selector != NULL)
5179 {
5180 /* Complete on selector only. */
5181 strcpy (tmp, selector);
5182 tmp2 = strchr (tmp, ']');
5183 if (tmp2 != NULL)
5184 *tmp2 = '\0';
5185
5186 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
5187 }
5188 }
5189
5190 /* Break the non-quoted text based on the characters which are in
5191 symbols. FIXME: This should probably be language-specific. */
5192
5193 static const char *
5194 language_search_unquoted_string (const char *text, const char *p)
5195 {
5196 for (; p > text; --p)
5197 {
5198 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
5199 continue;
5200 else
5201 {
5202 if ((current_language->la_language == language_objc))
5203 {
5204 if (p[-1] == ':') /* Might be part of a method name. */
5205 continue;
5206 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
5207 p -= 2; /* Beginning of a method name. */
5208 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
5209 { /* Might be part of a method name. */
5210 const char *t = p;
5211
5212 /* Seeing a ' ' or a '(' is not conclusive evidence
5213 that we are in the middle of a method name. However,
5214 finding "-[" or "+[" should be pretty un-ambiguous.
5215 Unfortunately we have to find it now to decide. */
5216
5217 while (t > text)
5218 if (isalnum (t[-1]) || t[-1] == '_' ||
5219 t[-1] == ' ' || t[-1] == ':' ||
5220 t[-1] == '(' || t[-1] == ')')
5221 --t;
5222 else
5223 break;
5224
5225 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
5226 p = t - 2; /* Method name detected. */
5227 /* Else we leave with p unchanged. */
5228 }
5229 }
5230 break;
5231 }
5232 }
5233 return p;
5234 }
5235
5236 static void
5237 completion_list_add_fields (struct symbol *sym, const char *sym_text,
5238 int sym_text_len, const char *text,
5239 const char *word)
5240 {
5241 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5242 {
5243 struct type *t = SYMBOL_TYPE (sym);
5244 enum type_code c = TYPE_CODE (t);
5245 int j;
5246
5247 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
5248 for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++)
5249 if (TYPE_FIELD_NAME (t, j))
5250 completion_list_add_name (TYPE_FIELD_NAME (t, j),
5251 sym_text, sym_text_len, text, word);
5252 }
5253 }
5254
5255 /* Type of the user_data argument passed to add_macro_name,
5256 symbol_completion_matcher and symtab_expansion_callback. */
5257
5258 struct add_name_data
5259 {
5260 /* Arguments required by completion_list_add_name. */
5261 const char *sym_text;
5262 int sym_text_len;
5263 const char *text;
5264 const char *word;
5265
5266 /* Extra argument required for add_symtab_completions. */
5267 enum type_code code;
5268 };
5269
5270 /* A callback used with macro_for_each and macro_for_each_in_scope.
5271 This adds a macro's name to the current completion list. */
5272
5273 static void
5274 add_macro_name (const char *name, const struct macro_definition *ignore,
5275 struct macro_source_file *ignore2, int ignore3,
5276 void *user_data)
5277 {
5278 struct add_name_data *datum = (struct add_name_data *) user_data;
5279
5280 completion_list_add_name (name,
5281 datum->sym_text, datum->sym_text_len,
5282 datum->text, datum->word);
5283 }
5284
5285 /* A callback for expand_symtabs_matching. */
5286
5287 static int
5288 symbol_completion_matcher (const char *name, void *user_data)
5289 {
5290 struct add_name_data *datum = (struct add_name_data *) user_data;
5291
5292 return compare_symbol_name (name, datum->sym_text, datum->sym_text_len);
5293 }
5294
5295 /* Add matching symbols from SYMTAB to the current completion list. */
5296
5297 static void
5298 add_symtab_completions (struct compunit_symtab *cust,
5299 const char *sym_text, int sym_text_len,
5300 const char *text, const char *word,
5301 enum type_code code)
5302 {
5303 struct symbol *sym;
5304 const struct block *b;
5305 struct block_iterator iter;
5306 int i;
5307
5308 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
5309 {
5310 QUIT;
5311 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust), i);
5312 ALL_BLOCK_SYMBOLS (b, iter, sym)
5313 {
5314 if (code == TYPE_CODE_UNDEF
5315 || (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
5316 && TYPE_CODE (SYMBOL_TYPE (sym)) == code))
5317 COMPLETION_LIST_ADD_SYMBOL (sym,
5318 sym_text, sym_text_len,
5319 text, word);
5320 }
5321 }
5322 }
5323
5324 /* Callback to add completions to the current list when symbol tables
5325 are expanded during completion list generation. */
5326
5327 static void
5328 symtab_expansion_callback (struct compunit_symtab *symtab,
5329 void *user_data)
5330 {
5331 struct add_name_data *datum = (struct add_name_data *) user_data;
5332
5333 add_symtab_completions (symtab,
5334 datum->sym_text, datum->sym_text_len,
5335 datum->text, datum->word,
5336 datum->code);
5337 }
5338
5339 static void
5340 default_make_symbol_completion_list_break_on_1 (const char *text,
5341 const char *word,
5342 const char *break_on,
5343 enum type_code code)
5344 {
5345 /* Problem: All of the symbols have to be copied because readline
5346 frees them. I'm not going to worry about this; hopefully there
5347 won't be that many. */
5348
5349 struct symbol *sym;
5350 struct compunit_symtab *cust;
5351 struct minimal_symbol *msymbol;
5352 struct objfile *objfile;
5353 const struct block *b;
5354 const struct block *surrounding_static_block, *surrounding_global_block;
5355 struct block_iterator iter;
5356 /* The symbol we are completing on. Points in same buffer as text. */
5357 const char *sym_text;
5358 /* Length of sym_text. */
5359 int sym_text_len;
5360 struct add_name_data datum;
5361 struct cleanup *cleanups;
5362
5363 /* Now look for the symbol we are supposed to complete on. */
5364 {
5365 const char *p;
5366 char quote_found;
5367 const char *quote_pos = NULL;
5368
5369 /* First see if this is a quoted string. */
5370 quote_found = '\0';
5371 for (p = text; *p != '\0'; ++p)
5372 {
5373 if (quote_found != '\0')
5374 {
5375 if (*p == quote_found)
5376 /* Found close quote. */
5377 quote_found = '\0';
5378 else if (*p == '\\' && p[1] == quote_found)
5379 /* A backslash followed by the quote character
5380 doesn't end the string. */
5381 ++p;
5382 }
5383 else if (*p == '\'' || *p == '"')
5384 {
5385 quote_found = *p;
5386 quote_pos = p;
5387 }
5388 }
5389 if (quote_found == '\'')
5390 /* A string within single quotes can be a symbol, so complete on it. */
5391 sym_text = quote_pos + 1;
5392 else if (quote_found == '"')
5393 /* A double-quoted string is never a symbol, nor does it make sense
5394 to complete it any other way. */
5395 {
5396 return;
5397 }
5398 else
5399 {
5400 /* It is not a quoted string. Break it based on the characters
5401 which are in symbols. */
5402 while (p > text)
5403 {
5404 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0'
5405 || p[-1] == ':' || strchr (break_on, p[-1]) != NULL)
5406 --p;
5407 else
5408 break;
5409 }
5410 sym_text = p;
5411 }
5412 }
5413
5414 sym_text_len = strlen (sym_text);
5415
5416 /* Prepare SYM_TEXT_LEN for compare_symbol_name. */
5417
5418 if (current_language->la_language == language_cplus
5419 || current_language->la_language == language_java
5420 || current_language->la_language == language_fortran)
5421 {
5422 /* These languages may have parameters entered by user but they are never
5423 present in the partial symbol tables. */
5424
5425 const char *cs = memchr (sym_text, '(', sym_text_len);
5426
5427 if (cs)
5428 sym_text_len = cs - sym_text;
5429 }
5430 gdb_assert (sym_text[sym_text_len] == '\0' || sym_text[sym_text_len] == '(');
5431
5432 completion_tracker = new_completion_tracker ();
5433 cleanups = make_cleanup_free_completion_tracker (&completion_tracker);
5434
5435 datum.sym_text = sym_text;
5436 datum.sym_text_len = sym_text_len;
5437 datum.text = text;
5438 datum.word = word;
5439 datum.code = code;
5440
5441 /* At this point scan through the misc symbol vectors and add each
5442 symbol you find to the list. Eventually we want to ignore
5443 anything that isn't a text symbol (everything else will be
5444 handled by the psymtab code below). */
5445
5446 if (code == TYPE_CODE_UNDEF)
5447 {
5448 ALL_MSYMBOLS (objfile, msymbol)
5449 {
5450 QUIT;
5451 MCOMPLETION_LIST_ADD_SYMBOL (msymbol, sym_text, sym_text_len, text,
5452 word);
5453
5454 completion_list_objc_symbol (msymbol, sym_text, sym_text_len, text,
5455 word);
5456 }
5457 }
5458
5459 /* Add completions for all currently loaded symbol tables. */
5460 ALL_COMPUNITS (objfile, cust)
5461 add_symtab_completions (cust, sym_text, sym_text_len, text, word,
5462 code);
5463
5464 /* Look through the partial symtabs for all symbols which begin
5465 by matching SYM_TEXT. Expand all CUs that you find to the list.
5466 symtab_expansion_callback is called for each expanded symtab,
5467 causing those symtab's completions to be added to the list too. */
5468 expand_symtabs_matching (NULL, symbol_completion_matcher,
5469 symtab_expansion_callback, ALL_DOMAIN,
5470 &datum);
5471
5472 /* Search upwards from currently selected frame (so that we can
5473 complete on local vars). Also catch fields of types defined in
5474 this places which match our text string. Only complete on types
5475 visible from current context. */
5476
5477 b = get_selected_block (0);
5478 surrounding_static_block = block_static_block (b);
5479 surrounding_global_block = block_global_block (b);
5480 if (surrounding_static_block != NULL)
5481 while (b != surrounding_static_block)
5482 {
5483 QUIT;
5484
5485 ALL_BLOCK_SYMBOLS (b, iter, sym)
5486 {
5487 if (code == TYPE_CODE_UNDEF)
5488 {
5489 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text,
5490 word);
5491 completion_list_add_fields (sym, sym_text, sym_text_len, text,
5492 word);
5493 }
5494 else if (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
5495 && TYPE_CODE (SYMBOL_TYPE (sym)) == code)
5496 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text,
5497 word);
5498 }
5499
5500 /* Stop when we encounter an enclosing function. Do not stop for
5501 non-inlined functions - the locals of the enclosing function
5502 are in scope for a nested function. */
5503 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
5504 break;
5505 b = BLOCK_SUPERBLOCK (b);
5506 }
5507
5508 /* Add fields from the file's types; symbols will be added below. */
5509
5510 if (code == TYPE_CODE_UNDEF)
5511 {
5512 if (surrounding_static_block != NULL)
5513 ALL_BLOCK_SYMBOLS (surrounding_static_block, iter, sym)
5514 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
5515
5516 if (surrounding_global_block != NULL)
5517 ALL_BLOCK_SYMBOLS (surrounding_global_block, iter, sym)
5518 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
5519 }
5520
5521 /* Skip macros if we are completing a struct tag -- arguable but
5522 usually what is expected. */
5523 if (current_language->la_macro_expansion == macro_expansion_c
5524 && code == TYPE_CODE_UNDEF)
5525 {
5526 struct macro_scope *scope;
5527
5528 /* Add any macros visible in the default scope. Note that this
5529 may yield the occasional wrong result, because an expression
5530 might be evaluated in a scope other than the default. For
5531 example, if the user types "break file:line if <TAB>", the
5532 resulting expression will be evaluated at "file:line" -- but
5533 at there does not seem to be a way to detect this at
5534 completion time. */
5535 scope = default_macro_scope ();
5536 if (scope)
5537 {
5538 macro_for_each_in_scope (scope->file, scope->line,
5539 add_macro_name, &datum);
5540 xfree (scope);
5541 }
5542
5543 /* User-defined macros are always visible. */
5544 macro_for_each (macro_user_macros, add_macro_name, &datum);
5545 }
5546
5547 do_cleanups (cleanups);
5548 }
5549
5550 VEC (char_ptr) *
5551 default_make_symbol_completion_list_break_on (const char *text,
5552 const char *word,
5553 const char *break_on,
5554 enum type_code code)
5555 {
5556 struct cleanup *back_to;
5557
5558 return_val = NULL;
5559 back_to = make_cleanup (do_free_completion_list, &return_val);
5560
5561 TRY
5562 {
5563 default_make_symbol_completion_list_break_on_1 (text, word,
5564 break_on, code);
5565 }
5566 CATCH (except, RETURN_MASK_ERROR)
5567 {
5568 if (except.error != MAX_COMPLETIONS_REACHED_ERROR)
5569 throw_exception (except);
5570 }
5571 END_CATCH
5572
5573 discard_cleanups (back_to);
5574 return return_val;
5575 }
5576
5577 VEC (char_ptr) *
5578 default_make_symbol_completion_list (const char *text, const char *word,
5579 enum type_code code)
5580 {
5581 return default_make_symbol_completion_list_break_on (text, word, "", code);
5582 }
5583
5584 /* Return a vector of all symbols (regardless of class) which begin by
5585 matching TEXT. If the answer is no symbols, then the return value
5586 is NULL. */
5587
5588 VEC (char_ptr) *
5589 make_symbol_completion_list (const char *text, const char *word)
5590 {
5591 return current_language->la_make_symbol_completion_list (text, word,
5592 TYPE_CODE_UNDEF);
5593 }
5594
5595 /* Like make_symbol_completion_list, but only return STRUCT_DOMAIN
5596 symbols whose type code is CODE. */
5597
5598 VEC (char_ptr) *
5599 make_symbol_completion_type (const char *text, const char *word,
5600 enum type_code code)
5601 {
5602 gdb_assert (code == TYPE_CODE_UNION
5603 || code == TYPE_CODE_STRUCT
5604 || code == TYPE_CODE_ENUM);
5605 return current_language->la_make_symbol_completion_list (text, word, code);
5606 }
5607
5608 /* Like make_symbol_completion_list, but suitable for use as a
5609 completion function. */
5610
5611 VEC (char_ptr) *
5612 make_symbol_completion_list_fn (struct cmd_list_element *ignore,
5613 const char *text, const char *word)
5614 {
5615 return make_symbol_completion_list (text, word);
5616 }
5617
5618 /* Like make_symbol_completion_list, but returns a list of symbols
5619 defined in a source file FILE. */
5620
5621 static VEC (char_ptr) *
5622 make_file_symbol_completion_list_1 (const char *text, const char *word,
5623 const char *srcfile)
5624 {
5625 struct symbol *sym;
5626 struct symtab *s;
5627 struct block *b;
5628 struct block_iterator iter;
5629 /* The symbol we are completing on. Points in same buffer as text. */
5630 const char *sym_text;
5631 /* Length of sym_text. */
5632 int sym_text_len;
5633
5634 /* Now look for the symbol we are supposed to complete on.
5635 FIXME: This should be language-specific. */
5636 {
5637 const char *p;
5638 char quote_found;
5639 const char *quote_pos = NULL;
5640
5641 /* First see if this is a quoted string. */
5642 quote_found = '\0';
5643 for (p = text; *p != '\0'; ++p)
5644 {
5645 if (quote_found != '\0')
5646 {
5647 if (*p == quote_found)
5648 /* Found close quote. */
5649 quote_found = '\0';
5650 else if (*p == '\\' && p[1] == quote_found)
5651 /* A backslash followed by the quote character
5652 doesn't end the string. */
5653 ++p;
5654 }
5655 else if (*p == '\'' || *p == '"')
5656 {
5657 quote_found = *p;
5658 quote_pos = p;
5659 }
5660 }
5661 if (quote_found == '\'')
5662 /* A string within single quotes can be a symbol, so complete on it. */
5663 sym_text = quote_pos + 1;
5664 else if (quote_found == '"')
5665 /* A double-quoted string is never a symbol, nor does it make sense
5666 to complete it any other way. */
5667 {
5668 return NULL;
5669 }
5670 else
5671 {
5672 /* Not a quoted string. */
5673 sym_text = language_search_unquoted_string (text, p);
5674 }
5675 }
5676
5677 sym_text_len = strlen (sym_text);
5678
5679 /* Find the symtab for SRCFILE (this loads it if it was not yet read
5680 in). */
5681 s = lookup_symtab (srcfile);
5682 if (s == NULL)
5683 {
5684 /* Maybe they typed the file with leading directories, while the
5685 symbol tables record only its basename. */
5686 const char *tail = lbasename (srcfile);
5687
5688 if (tail > srcfile)
5689 s = lookup_symtab (tail);
5690 }
5691
5692 /* If we have no symtab for that file, return an empty list. */
5693 if (s == NULL)
5694 return (return_val);
5695
5696 /* Go through this symtab and check the externs and statics for
5697 symbols which match. */
5698
5699 b = BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (s), GLOBAL_BLOCK);
5700 ALL_BLOCK_SYMBOLS (b, iter, sym)
5701 {
5702 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
5703 }
5704
5705 b = BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (s), STATIC_BLOCK);
5706 ALL_BLOCK_SYMBOLS (b, iter, sym)
5707 {
5708 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
5709 }
5710
5711 return (return_val);
5712 }
5713
5714 /* Wrapper around make_file_symbol_completion_list_1
5715 to handle MAX_COMPLETIONS_REACHED_ERROR. */
5716
5717 VEC (char_ptr) *
5718 make_file_symbol_completion_list (const char *text, const char *word,
5719 const char *srcfile)
5720 {
5721 struct cleanup *back_to, *cleanups;
5722
5723 completion_tracker = new_completion_tracker ();
5724 cleanups = make_cleanup_free_completion_tracker (&completion_tracker);
5725 return_val = NULL;
5726 back_to = make_cleanup (do_free_completion_list, &return_val);
5727
5728 TRY
5729 {
5730 make_file_symbol_completion_list_1 (text, word, srcfile);
5731 }
5732 CATCH (except, RETURN_MASK_ERROR)
5733 {
5734 if (except.error != MAX_COMPLETIONS_REACHED_ERROR)
5735 throw_exception (except);
5736 }
5737 END_CATCH
5738
5739 discard_cleanups (back_to);
5740 do_cleanups (cleanups);
5741 return return_val;
5742 }
5743
5744 /* A helper function for make_source_files_completion_list. It adds
5745 another file name to a list of possible completions, growing the
5746 list as necessary. */
5747
5748 static void
5749 add_filename_to_list (const char *fname, const char *text, const char *word,
5750 VEC (char_ptr) **list)
5751 {
5752 char *newobj;
5753 size_t fnlen = strlen (fname);
5754
5755 if (word == text)
5756 {
5757 /* Return exactly fname. */
5758 newobj = (char *) xmalloc (fnlen + 5);
5759 strcpy (newobj, fname);
5760 }
5761 else if (word > text)
5762 {
5763 /* Return some portion of fname. */
5764 newobj = (char *) xmalloc (fnlen + 5);
5765 strcpy (newobj, fname + (word - text));
5766 }
5767 else
5768 {
5769 /* Return some of TEXT plus fname. */
5770 newobj = (char *) xmalloc (fnlen + (text - word) + 5);
5771 strncpy (newobj, word, text - word);
5772 newobj[text - word] = '\0';
5773 strcat (newobj, fname);
5774 }
5775 VEC_safe_push (char_ptr, *list, newobj);
5776 }
5777
5778 static int
5779 not_interesting_fname (const char *fname)
5780 {
5781 static const char *illegal_aliens[] = {
5782 "_globals_", /* inserted by coff_symtab_read */
5783 NULL
5784 };
5785 int i;
5786
5787 for (i = 0; illegal_aliens[i]; i++)
5788 {
5789 if (filename_cmp (fname, illegal_aliens[i]) == 0)
5790 return 1;
5791 }
5792 return 0;
5793 }
5794
5795 /* An object of this type is passed as the user_data argument to
5796 map_partial_symbol_filenames. */
5797 struct add_partial_filename_data
5798 {
5799 struct filename_seen_cache *filename_seen_cache;
5800 const char *text;
5801 const char *word;
5802 int text_len;
5803 VEC (char_ptr) **list;
5804 };
5805
5806 /* A callback for map_partial_symbol_filenames. */
5807
5808 static void
5809 maybe_add_partial_symtab_filename (const char *filename, const char *fullname,
5810 void *user_data)
5811 {
5812 struct add_partial_filename_data *data
5813 = (struct add_partial_filename_data *) user_data;
5814
5815 if (not_interesting_fname (filename))
5816 return;
5817 if (!filename_seen (data->filename_seen_cache, filename, 1)
5818 && filename_ncmp (filename, data->text, data->text_len) == 0)
5819 {
5820 /* This file matches for a completion; add it to the
5821 current list of matches. */
5822 add_filename_to_list (filename, data->text, data->word, data->list);
5823 }
5824 else
5825 {
5826 const char *base_name = lbasename (filename);
5827
5828 if (base_name != filename
5829 && !filename_seen (data->filename_seen_cache, base_name, 1)
5830 && filename_ncmp (base_name, data->text, data->text_len) == 0)
5831 add_filename_to_list (base_name, data->text, data->word, data->list);
5832 }
5833 }
5834
5835 /* Return a vector of all source files whose names begin with matching
5836 TEXT. The file names are looked up in the symbol tables of this
5837 program. If the answer is no matchess, then the return value is
5838 NULL. */
5839
5840 VEC (char_ptr) *
5841 make_source_files_completion_list (const char *text, const char *word)
5842 {
5843 struct compunit_symtab *cu;
5844 struct symtab *s;
5845 struct objfile *objfile;
5846 size_t text_len = strlen (text);
5847 VEC (char_ptr) *list = NULL;
5848 const char *base_name;
5849 struct add_partial_filename_data datum;
5850 struct filename_seen_cache *filename_seen_cache;
5851 struct cleanup *back_to, *cache_cleanup;
5852
5853 if (!have_full_symbols () && !have_partial_symbols ())
5854 return list;
5855
5856 back_to = make_cleanup (do_free_completion_list, &list);
5857
5858 filename_seen_cache = create_filename_seen_cache ();
5859 cache_cleanup = make_cleanup (delete_filename_seen_cache,
5860 filename_seen_cache);
5861
5862 ALL_FILETABS (objfile, cu, s)
5863 {
5864 if (not_interesting_fname (s->filename))
5865 continue;
5866 if (!filename_seen (filename_seen_cache, s->filename, 1)
5867 && filename_ncmp (s->filename, text, text_len) == 0)
5868 {
5869 /* This file matches for a completion; add it to the current
5870 list of matches. */
5871 add_filename_to_list (s->filename, text, word, &list);
5872 }
5873 else
5874 {
5875 /* NOTE: We allow the user to type a base name when the
5876 debug info records leading directories, but not the other
5877 way around. This is what subroutines of breakpoint
5878 command do when they parse file names. */
5879 base_name = lbasename (s->filename);
5880 if (base_name != s->filename
5881 && !filename_seen (filename_seen_cache, base_name, 1)
5882 && filename_ncmp (base_name, text, text_len) == 0)
5883 add_filename_to_list (base_name, text, word, &list);
5884 }
5885 }
5886
5887 datum.filename_seen_cache = filename_seen_cache;
5888 datum.text = text;
5889 datum.word = word;
5890 datum.text_len = text_len;
5891 datum.list = &list;
5892 map_symbol_filenames (maybe_add_partial_symtab_filename, &datum,
5893 0 /*need_fullname*/);
5894
5895 do_cleanups (cache_cleanup);
5896 discard_cleanups (back_to);
5897
5898 return list;
5899 }
5900 \f
5901 /* Track MAIN */
5902
5903 /* Return the "main_info" object for the current program space. If
5904 the object has not yet been created, create it and fill in some
5905 default values. */
5906
5907 static struct main_info *
5908 get_main_info (void)
5909 {
5910 struct main_info *info
5911 = (struct main_info *) program_space_data (current_program_space,
5912 main_progspace_key);
5913
5914 if (info == NULL)
5915 {
5916 /* It may seem strange to store the main name in the progspace
5917 and also in whatever objfile happens to see a main name in
5918 its debug info. The reason for this is mainly historical:
5919 gdb returned "main" as the name even if no function named
5920 "main" was defined the program; and this approach lets us
5921 keep compatibility. */
5922 info = XCNEW (struct main_info);
5923 info->language_of_main = language_unknown;
5924 set_program_space_data (current_program_space, main_progspace_key,
5925 info);
5926 }
5927
5928 return info;
5929 }
5930
5931 /* A cleanup to destroy a struct main_info when a progspace is
5932 destroyed. */
5933
5934 static void
5935 main_info_cleanup (struct program_space *pspace, void *data)
5936 {
5937 struct main_info *info = (struct main_info *) data;
5938
5939 if (info != NULL)
5940 xfree (info->name_of_main);
5941 xfree (info);
5942 }
5943
5944 static void
5945 set_main_name (const char *name, enum language lang)
5946 {
5947 struct main_info *info = get_main_info ();
5948
5949 if (info->name_of_main != NULL)
5950 {
5951 xfree (info->name_of_main);
5952 info->name_of_main = NULL;
5953 info->language_of_main = language_unknown;
5954 }
5955 if (name != NULL)
5956 {
5957 info->name_of_main = xstrdup (name);
5958 info->language_of_main = lang;
5959 }
5960 }
5961
5962 /* Deduce the name of the main procedure, and set NAME_OF_MAIN
5963 accordingly. */
5964
5965 static void
5966 find_main_name (void)
5967 {
5968 const char *new_main_name;
5969 struct objfile *objfile;
5970
5971 /* First check the objfiles to see whether a debuginfo reader has
5972 picked up the appropriate main name. Historically the main name
5973 was found in a more or less random way; this approach instead
5974 relies on the order of objfile creation -- which still isn't
5975 guaranteed to get the correct answer, but is just probably more
5976 accurate. */
5977 ALL_OBJFILES (objfile)
5978 {
5979 if (objfile->per_bfd->name_of_main != NULL)
5980 {
5981 set_main_name (objfile->per_bfd->name_of_main,
5982 objfile->per_bfd->language_of_main);
5983 return;
5984 }
5985 }
5986
5987 /* Try to see if the main procedure is in Ada. */
5988 /* FIXME: brobecker/2005-03-07: Another way of doing this would
5989 be to add a new method in the language vector, and call this
5990 method for each language until one of them returns a non-empty
5991 name. This would allow us to remove this hard-coded call to
5992 an Ada function. It is not clear that this is a better approach
5993 at this point, because all methods need to be written in a way
5994 such that false positives never be returned. For instance, it is
5995 important that a method does not return a wrong name for the main
5996 procedure if the main procedure is actually written in a different
5997 language. It is easy to guaranty this with Ada, since we use a
5998 special symbol generated only when the main in Ada to find the name
5999 of the main procedure. It is difficult however to see how this can
6000 be guarantied for languages such as C, for instance. This suggests
6001 that order of call for these methods becomes important, which means
6002 a more complicated approach. */
6003 new_main_name = ada_main_name ();
6004 if (new_main_name != NULL)
6005 {
6006 set_main_name (new_main_name, language_ada);
6007 return;
6008 }
6009
6010 new_main_name = d_main_name ();
6011 if (new_main_name != NULL)
6012 {
6013 set_main_name (new_main_name, language_d);
6014 return;
6015 }
6016
6017 new_main_name = go_main_name ();
6018 if (new_main_name != NULL)
6019 {
6020 set_main_name (new_main_name, language_go);
6021 return;
6022 }
6023
6024 new_main_name = pascal_main_name ();
6025 if (new_main_name != NULL)
6026 {
6027 set_main_name (new_main_name, language_pascal);
6028 return;
6029 }
6030
6031 /* The languages above didn't identify the name of the main procedure.
6032 Fallback to "main". */
6033 set_main_name ("main", language_unknown);
6034 }
6035
6036 char *
6037 main_name (void)
6038 {
6039 struct main_info *info = get_main_info ();
6040
6041 if (info->name_of_main == NULL)
6042 find_main_name ();
6043
6044 return info->name_of_main;
6045 }
6046
6047 /* Return the language of the main function. If it is not known,
6048 return language_unknown. */
6049
6050 enum language
6051 main_language (void)
6052 {
6053 struct main_info *info = get_main_info ();
6054
6055 if (info->name_of_main == NULL)
6056 find_main_name ();
6057
6058 return info->language_of_main;
6059 }
6060
6061 /* Handle ``executable_changed'' events for the symtab module. */
6062
6063 static void
6064 symtab_observer_executable_changed (void)
6065 {
6066 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
6067 set_main_name (NULL, language_unknown);
6068 }
6069
6070 /* Return 1 if the supplied producer string matches the ARM RealView
6071 compiler (armcc). */
6072
6073 int
6074 producer_is_realview (const char *producer)
6075 {
6076 static const char *const arm_idents[] = {
6077 "ARM C Compiler, ADS",
6078 "Thumb C Compiler, ADS",
6079 "ARM C++ Compiler, ADS",
6080 "Thumb C++ Compiler, ADS",
6081 "ARM/Thumb C/C++ Compiler, RVCT",
6082 "ARM C/C++ Compiler, RVCT"
6083 };
6084 int i;
6085
6086 if (producer == NULL)
6087 return 0;
6088
6089 for (i = 0; i < ARRAY_SIZE (arm_idents); i++)
6090 if (startswith (producer, arm_idents[i]))
6091 return 1;
6092
6093 return 0;
6094 }
6095
6096 \f
6097
6098 /* The next index to hand out in response to a registration request. */
6099
6100 static int next_aclass_value = LOC_FINAL_VALUE;
6101
6102 /* The maximum number of "aclass" registrations we support. This is
6103 constant for convenience. */
6104 #define MAX_SYMBOL_IMPLS (LOC_FINAL_VALUE + 10)
6105
6106 /* The objects representing the various "aclass" values. The elements
6107 from 0 up to LOC_FINAL_VALUE-1 represent themselves, and subsequent
6108 elements are those registered at gdb initialization time. */
6109
6110 static struct symbol_impl symbol_impl[MAX_SYMBOL_IMPLS];
6111
6112 /* The globally visible pointer. This is separate from 'symbol_impl'
6113 so that it can be const. */
6114
6115 const struct symbol_impl *symbol_impls = &symbol_impl[0];
6116
6117 /* Make sure we saved enough room in struct symbol. */
6118
6119 gdb_static_assert (MAX_SYMBOL_IMPLS <= (1 << SYMBOL_ACLASS_BITS));
6120
6121 /* Register a computed symbol type. ACLASS must be LOC_COMPUTED. OPS
6122 is the ops vector associated with this index. This returns the new
6123 index, which should be used as the aclass_index field for symbols
6124 of this type. */
6125
6126 int
6127 register_symbol_computed_impl (enum address_class aclass,
6128 const struct symbol_computed_ops *ops)
6129 {
6130 int result = next_aclass_value++;
6131
6132 gdb_assert (aclass == LOC_COMPUTED);
6133 gdb_assert (result < MAX_SYMBOL_IMPLS);
6134 symbol_impl[result].aclass = aclass;
6135 symbol_impl[result].ops_computed = ops;
6136
6137 /* Sanity check OPS. */
6138 gdb_assert (ops != NULL);
6139 gdb_assert (ops->tracepoint_var_ref != NULL);
6140 gdb_assert (ops->describe_location != NULL);
6141 gdb_assert (ops->read_needs_frame != NULL);
6142 gdb_assert (ops->read_variable != NULL);
6143
6144 return result;
6145 }
6146
6147 /* Register a function with frame base type. ACLASS must be LOC_BLOCK.
6148 OPS is the ops vector associated with this index. This returns the
6149 new index, which should be used as the aclass_index field for symbols
6150 of this type. */
6151
6152 int
6153 register_symbol_block_impl (enum address_class aclass,
6154 const struct symbol_block_ops *ops)
6155 {
6156 int result = next_aclass_value++;
6157
6158 gdb_assert (aclass == LOC_BLOCK);
6159 gdb_assert (result < MAX_SYMBOL_IMPLS);
6160 symbol_impl[result].aclass = aclass;
6161 symbol_impl[result].ops_block = ops;
6162
6163 /* Sanity check OPS. */
6164 gdb_assert (ops != NULL);
6165 gdb_assert (ops->find_frame_base_location != NULL);
6166
6167 return result;
6168 }
6169
6170 /* Register a register symbol type. ACLASS must be LOC_REGISTER or
6171 LOC_REGPARM_ADDR. OPS is the register ops vector associated with
6172 this index. This returns the new index, which should be used as
6173 the aclass_index field for symbols of this type. */
6174
6175 int
6176 register_symbol_register_impl (enum address_class aclass,
6177 const struct symbol_register_ops *ops)
6178 {
6179 int result = next_aclass_value++;
6180
6181 gdb_assert (aclass == LOC_REGISTER || aclass == LOC_REGPARM_ADDR);
6182 gdb_assert (result < MAX_SYMBOL_IMPLS);
6183 symbol_impl[result].aclass = aclass;
6184 symbol_impl[result].ops_register = ops;
6185
6186 return result;
6187 }
6188
6189 /* Initialize elements of 'symbol_impl' for the constants in enum
6190 address_class. */
6191
6192 static void
6193 initialize_ordinary_address_classes (void)
6194 {
6195 int i;
6196
6197 for (i = 0; i < LOC_FINAL_VALUE; ++i)
6198 symbol_impl[i].aclass = (enum address_class) i;
6199 }
6200
6201 \f
6202
6203 /* Helper function to initialize the fields of an objfile-owned symbol.
6204 It assumed that *SYM is already all zeroes. */
6205
6206 static void
6207 initialize_objfile_symbol_1 (struct symbol *sym)
6208 {
6209 SYMBOL_OBJFILE_OWNED (sym) = 1;
6210 SYMBOL_SECTION (sym) = -1;
6211 }
6212
6213 /* Initialize the symbol SYM, and mark it as being owned by an objfile. */
6214
6215 void
6216 initialize_objfile_symbol (struct symbol *sym)
6217 {
6218 memset (sym, 0, sizeof (*sym));
6219 initialize_objfile_symbol_1 (sym);
6220 }
6221
6222 /* Allocate and initialize a new 'struct symbol' on OBJFILE's
6223 obstack. */
6224
6225 struct symbol *
6226 allocate_symbol (struct objfile *objfile)
6227 {
6228 struct symbol *result;
6229
6230 result = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symbol);
6231 initialize_objfile_symbol_1 (result);
6232
6233 return result;
6234 }
6235
6236 /* Allocate and initialize a new 'struct template_symbol' on OBJFILE's
6237 obstack. */
6238
6239 struct template_symbol *
6240 allocate_template_symbol (struct objfile *objfile)
6241 {
6242 struct template_symbol *result;
6243
6244 result = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct template_symbol);
6245 initialize_objfile_symbol_1 (&result->base);
6246
6247 return result;
6248 }
6249
6250 /* See symtab.h. */
6251
6252 struct objfile *
6253 symbol_objfile (const struct symbol *symbol)
6254 {
6255 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
6256 return SYMTAB_OBJFILE (symbol->owner.symtab);
6257 }
6258
6259 /* See symtab.h. */
6260
6261 struct gdbarch *
6262 symbol_arch (const struct symbol *symbol)
6263 {
6264 if (!SYMBOL_OBJFILE_OWNED (symbol))
6265 return symbol->owner.arch;
6266 return get_objfile_arch (SYMTAB_OBJFILE (symbol->owner.symtab));
6267 }
6268
6269 /* See symtab.h. */
6270
6271 struct symtab *
6272 symbol_symtab (const struct symbol *symbol)
6273 {
6274 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
6275 return symbol->owner.symtab;
6276 }
6277
6278 /* See symtab.h. */
6279
6280 void
6281 symbol_set_symtab (struct symbol *symbol, struct symtab *symtab)
6282 {
6283 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
6284 symbol->owner.symtab = symtab;
6285 }
6286
6287 \f
6288
6289 void
6290 _initialize_symtab (void)
6291 {
6292 initialize_ordinary_address_classes ();
6293
6294 main_progspace_key
6295 = register_program_space_data_with_cleanup (NULL, main_info_cleanup);
6296
6297 symbol_cache_key
6298 = register_program_space_data_with_cleanup (NULL, symbol_cache_cleanup);
6299
6300 add_info ("variables", variables_info, _("\
6301 All global and static variable names, or those matching REGEXP."));
6302 if (dbx_commands)
6303 add_com ("whereis", class_info, variables_info, _("\
6304 All global and static variable names, or those matching REGEXP."));
6305
6306 add_info ("functions", functions_info,
6307 _("All function names, or those matching REGEXP."));
6308
6309 /* FIXME: This command has at least the following problems:
6310 1. It prints builtin types (in a very strange and confusing fashion).
6311 2. It doesn't print right, e.g. with
6312 typedef struct foo *FOO
6313 type_print prints "FOO" when we want to make it (in this situation)
6314 print "struct foo *".
6315 I also think "ptype" or "whatis" is more likely to be useful (but if
6316 there is much disagreement "info types" can be fixed). */
6317 add_info ("types", types_info,
6318 _("All type names, or those matching REGEXP."));
6319
6320 add_info ("sources", sources_info,
6321 _("Source files in the program."));
6322
6323 add_com ("rbreak", class_breakpoint, rbreak_command,
6324 _("Set a breakpoint for all functions matching REGEXP."));
6325
6326 add_setshow_enum_cmd ("multiple-symbols", no_class,
6327 multiple_symbols_modes, &multiple_symbols_mode,
6328 _("\
6329 Set the debugger behavior when more than one symbol are possible matches\n\
6330 in an expression."), _("\
6331 Show how the debugger handles ambiguities in expressions."), _("\
6332 Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
6333 NULL, NULL, &setlist, &showlist);
6334
6335 add_setshow_boolean_cmd ("basenames-may-differ", class_obscure,
6336 &basenames_may_differ, _("\
6337 Set whether a source file may have multiple base names."), _("\
6338 Show whether a source file may have multiple base names."), _("\
6339 (A \"base name\" is the name of a file with the directory part removed.\n\
6340 Example: The base name of \"/home/user/hello.c\" is \"hello.c\".)\n\
6341 If set, GDB will canonicalize file names (e.g., expand symlinks)\n\
6342 before comparing them. Canonicalization is an expensive operation,\n\
6343 but it allows the same file be known by more than one base name.\n\
6344 If not set (the default), all source files are assumed to have just\n\
6345 one base name, and gdb will do file name comparisons more efficiently."),
6346 NULL, NULL,
6347 &setlist, &showlist);
6348
6349 add_setshow_zuinteger_cmd ("symtab-create", no_class, &symtab_create_debug,
6350 _("Set debugging of symbol table creation."),
6351 _("Show debugging of symbol table creation."), _("\
6352 When enabled (non-zero), debugging messages are printed when building\n\
6353 symbol tables. A value of 1 (one) normally provides enough information.\n\
6354 A value greater than 1 provides more verbose information."),
6355 NULL,
6356 NULL,
6357 &setdebuglist, &showdebuglist);
6358
6359 add_setshow_zuinteger_cmd ("symbol-lookup", no_class, &symbol_lookup_debug,
6360 _("\
6361 Set debugging of symbol lookup."), _("\
6362 Show debugging of symbol lookup."), _("\
6363 When enabled (non-zero), symbol lookups are logged."),
6364 NULL, NULL,
6365 &setdebuglist, &showdebuglist);
6366
6367 add_setshow_zuinteger_cmd ("symbol-cache-size", no_class,
6368 &new_symbol_cache_size,
6369 _("Set the size of the symbol cache."),
6370 _("Show the size of the symbol cache."), _("\
6371 The size of the symbol cache.\n\
6372 If zero then the symbol cache is disabled."),
6373 set_symbol_cache_size_handler, NULL,
6374 &maintenance_set_cmdlist,
6375 &maintenance_show_cmdlist);
6376
6377 add_cmd ("symbol-cache", class_maintenance, maintenance_print_symbol_cache,
6378 _("Dump the symbol cache for each program space."),
6379 &maintenanceprintlist);
6380
6381 add_cmd ("symbol-cache-statistics", class_maintenance,
6382 maintenance_print_symbol_cache_statistics,
6383 _("Print symbol cache statistics for each program space."),
6384 &maintenanceprintlist);
6385
6386 add_cmd ("flush-symbol-cache", class_maintenance,
6387 maintenance_flush_symbol_cache,
6388 _("Flush the symbol cache for each program space."),
6389 &maintenancelist);
6390
6391 observer_attach_executable_changed (symtab_observer_executable_changed);
6392 observer_attach_new_objfile (symtab_new_objfile_observer);
6393 observer_attach_free_objfile (symtab_free_objfile_observer);
6394 }
This page took 0.176013 seconds and 4 git commands to generate.