c4bd13da8d223dc992a3c818601a7b4ee7a850ab
[deliverable/binutils-gdb.git] / gdb / symtab.c
1 /* Symbol table lookup for the GNU debugger, GDB.
2
3 Copyright (C) 1986-2004, 2007-2012 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "gdbcore.h"
24 #include "frame.h"
25 #include "target.h"
26 #include "value.h"
27 #include "symfile.h"
28 #include "objfiles.h"
29 #include "gdbcmd.h"
30 #include "call-cmds.h"
31 #include "gdb_regex.h"
32 #include "expression.h"
33 #include "language.h"
34 #include "demangle.h"
35 #include "inferior.h"
36 #include "source.h"
37 #include "filenames.h" /* for FILENAME_CMP */
38 #include "objc-lang.h"
39 #include "d-lang.h"
40 #include "ada-lang.h"
41 #include "go-lang.h"
42 #include "p-lang.h"
43 #include "addrmap.h"
44
45 #include "hashtab.h"
46
47 #include "gdb_obstack.h"
48 #include "block.h"
49 #include "dictionary.h"
50
51 #include <sys/types.h>
52 #include <fcntl.h>
53 #include "gdb_string.h"
54 #include "gdb_stat.h"
55 #include <ctype.h>
56 #include "cp-abi.h"
57 #include "cp-support.h"
58 #include "observer.h"
59 #include "gdb_assert.h"
60 #include "solist.h"
61 #include "macrotab.h"
62 #include "macroscope.h"
63
64 #include "psymtab.h"
65
66 /* Prototypes for local functions */
67
68 static void rbreak_command (char *, int);
69
70 static void types_info (char *, int);
71
72 static void functions_info (char *, int);
73
74 static void variables_info (char *, int);
75
76 static void sources_info (char *, int);
77
78 static int find_line_common (struct linetable *, int, int *, int);
79
80 static struct symbol *lookup_symbol_aux (const char *name,
81 const struct block *block,
82 const domain_enum domain,
83 enum language language,
84 int *is_a_field_of_this);
85
86 static
87 struct symbol *lookup_symbol_aux_local (const char *name,
88 const struct block *block,
89 const domain_enum domain,
90 enum language language);
91
92 static
93 struct symbol *lookup_symbol_aux_symtabs (int block_index,
94 const char *name,
95 const domain_enum domain);
96
97 static
98 struct symbol *lookup_symbol_aux_quick (struct objfile *objfile,
99 int block_index,
100 const char *name,
101 const domain_enum domain);
102
103 static void print_msymbol_info (struct minimal_symbol *);
104
105 void _initialize_symtab (void);
106
107 /* */
108
109 /* When non-zero, print debugging messages related to symtab creation. */
110 int symtab_create_debug = 0;
111
112 /* Non-zero if a file may be known by two different basenames.
113 This is the uncommon case, and significantly slows down gdb.
114 Default set to "off" to not slow down the common case. */
115 int basenames_may_differ = 0;
116
117 /* Allow the user to configure the debugger behavior with respect
118 to multiple-choice menus when more than one symbol matches during
119 a symbol lookup. */
120
121 const char multiple_symbols_ask[] = "ask";
122 const char multiple_symbols_all[] = "all";
123 const char multiple_symbols_cancel[] = "cancel";
124 static const char *const multiple_symbols_modes[] =
125 {
126 multiple_symbols_ask,
127 multiple_symbols_all,
128 multiple_symbols_cancel,
129 NULL
130 };
131 static const char *multiple_symbols_mode = multiple_symbols_all;
132
133 /* Read-only accessor to AUTO_SELECT_MODE. */
134
135 const char *
136 multiple_symbols_select_mode (void)
137 {
138 return multiple_symbols_mode;
139 }
140
141 /* Block in which the most recently searched-for symbol was found.
142 Might be better to make this a parameter to lookup_symbol and
143 value_of_this. */
144
145 const struct block *block_found;
146
147 /* See whether FILENAME matches SEARCH_NAME using the rule that we
148 advertise to the user. (The manual's description of linespecs
149 describes what we advertise). SEARCH_LEN is the length of
150 SEARCH_NAME. We assume that SEARCH_NAME is a relative path.
151 Returns true if they match, false otherwise. */
152
153 int
154 compare_filenames_for_search (const char *filename, const char *search_name,
155 int search_len)
156 {
157 int len = strlen (filename);
158
159 if (len < search_len)
160 return 0;
161
162 /* The tail of FILENAME must match. */
163 if (FILENAME_CMP (filename + len - search_len, search_name) != 0)
164 return 0;
165
166 /* Either the names must completely match, or the character
167 preceding the trailing SEARCH_NAME segment of FILENAME must be a
168 directory separator. */
169 return (len == search_len
170 || IS_DIR_SEPARATOR (filename[len - search_len - 1])
171 || (HAS_DRIVE_SPEC (filename)
172 && STRIP_DRIVE_SPEC (filename) == &filename[len - search_len]));
173 }
174
175 /* Check for a symtab of a specific name by searching some symtabs.
176 This is a helper function for callbacks of iterate_over_symtabs.
177
178 The return value, NAME, FULL_PATH, REAL_PATH, CALLBACK, and DATA
179 are identical to the `map_symtabs_matching_filename' method of
180 quick_symbol_functions.
181
182 FIRST and AFTER_LAST indicate the range of symtabs to search.
183 AFTER_LAST is one past the last symtab to search; NULL means to
184 search until the end of the list. */
185
186 int
187 iterate_over_some_symtabs (const char *name,
188 const char *full_path,
189 const char *real_path,
190 int (*callback) (struct symtab *symtab,
191 void *data),
192 void *data,
193 struct symtab *first,
194 struct symtab *after_last)
195 {
196 struct symtab *s = NULL;
197 const char* base_name = lbasename (name);
198 int name_len = strlen (name);
199 int is_abs = IS_ABSOLUTE_PATH (name);
200
201 for (s = first; s != NULL && s != after_last; s = s->next)
202 {
203 /* Exact match is always ok. */
204 if (FILENAME_CMP (name, s->filename) == 0)
205 {
206 if (callback (s, data))
207 return 1;
208 }
209
210 if (!is_abs && compare_filenames_for_search (s->filename, name, name_len))
211 {
212 if (callback (s, data))
213 return 1;
214 }
215
216 /* Before we invoke realpath, which can get expensive when many
217 files are involved, do a quick comparison of the basenames. */
218 if (! basenames_may_differ
219 && FILENAME_CMP (base_name, lbasename (s->filename)) != 0)
220 continue;
221
222 /* If the user gave us an absolute path, try to find the file in
223 this symtab and use its absolute path. */
224
225 if (full_path != NULL)
226 {
227 const char *fp = symtab_to_fullname (s);
228
229 if (fp != NULL && FILENAME_CMP (full_path, fp) == 0)
230 {
231 if (callback (s, data))
232 return 1;
233 }
234
235 if (fp != NULL && !is_abs && compare_filenames_for_search (fp, name,
236 name_len))
237 {
238 if (callback (s, data))
239 return 1;
240 }
241 }
242
243 if (real_path != NULL)
244 {
245 const char *fullname = symtab_to_fullname (s);
246
247 if (fullname != NULL)
248 {
249 char *rp = gdb_realpath (fullname);
250
251 make_cleanup (xfree, rp);
252 if (FILENAME_CMP (real_path, rp) == 0)
253 {
254 if (callback (s, data))
255 return 1;
256 }
257
258 if (!is_abs && compare_filenames_for_search (rp, name, name_len))
259 {
260 if (callback (s, data))
261 return 1;
262 }
263 }
264 }
265 }
266
267 return 0;
268 }
269
270 /* Check for a symtab of a specific name; first in symtabs, then in
271 psymtabs. *If* there is no '/' in the name, a match after a '/'
272 in the symtab filename will also work.
273
274 Calls CALLBACK with each symtab that is found and with the supplied
275 DATA. If CALLBACK returns true, the search stops. */
276
277 void
278 iterate_over_symtabs (const char *name,
279 int (*callback) (struct symtab *symtab,
280 void *data),
281 void *data)
282 {
283 struct symtab *s = NULL;
284 struct objfile *objfile;
285 char *real_path = NULL;
286 char *full_path = NULL;
287 struct cleanup *cleanups = make_cleanup (null_cleanup, NULL);
288
289 /* Here we are interested in canonicalizing an absolute path, not
290 absolutizing a relative path. */
291 if (IS_ABSOLUTE_PATH (name))
292 {
293 full_path = xfullpath (name);
294 make_cleanup (xfree, full_path);
295 real_path = gdb_realpath (name);
296 make_cleanup (xfree, real_path);
297 }
298
299 ALL_OBJFILES (objfile)
300 {
301 if (iterate_over_some_symtabs (name, full_path, real_path, callback, data,
302 objfile->symtabs, NULL))
303 {
304 do_cleanups (cleanups);
305 return;
306 }
307 }
308
309 /* Same search rules as above apply here, but now we look thru the
310 psymtabs. */
311
312 ALL_OBJFILES (objfile)
313 {
314 if (objfile->sf
315 && objfile->sf->qf->map_symtabs_matching_filename (objfile,
316 name,
317 full_path,
318 real_path,
319 callback,
320 data))
321 {
322 do_cleanups (cleanups);
323 return;
324 }
325 }
326
327 do_cleanups (cleanups);
328 }
329
330 /* The callback function used by lookup_symtab. */
331
332 static int
333 lookup_symtab_callback (struct symtab *symtab, void *data)
334 {
335 struct symtab **result_ptr = data;
336
337 *result_ptr = symtab;
338 return 1;
339 }
340
341 /* A wrapper for iterate_over_symtabs that returns the first matching
342 symtab, or NULL. */
343
344 struct symtab *
345 lookup_symtab (const char *name)
346 {
347 struct symtab *result = NULL;
348
349 iterate_over_symtabs (name, lookup_symtab_callback, &result);
350 return result;
351 }
352
353 \f
354 /* Mangle a GDB method stub type. This actually reassembles the pieces of the
355 full method name, which consist of the class name (from T), the unadorned
356 method name from METHOD_ID, and the signature for the specific overload,
357 specified by SIGNATURE_ID. Note that this function is g++ specific. */
358
359 char *
360 gdb_mangle_name (struct type *type, int method_id, int signature_id)
361 {
362 int mangled_name_len;
363 char *mangled_name;
364 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
365 struct fn_field *method = &f[signature_id];
366 const char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
367 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
368 const char *newname = type_name_no_tag (type);
369
370 /* Does the form of physname indicate that it is the full mangled name
371 of a constructor (not just the args)? */
372 int is_full_physname_constructor;
373
374 int is_constructor;
375 int is_destructor = is_destructor_name (physname);
376 /* Need a new type prefix. */
377 char *const_prefix = method->is_const ? "C" : "";
378 char *volatile_prefix = method->is_volatile ? "V" : "";
379 char buf[20];
380 int len = (newname == NULL ? 0 : strlen (newname));
381
382 /* Nothing to do if physname already contains a fully mangled v3 abi name
383 or an operator name. */
384 if ((physname[0] == '_' && physname[1] == 'Z')
385 || is_operator_name (field_name))
386 return xstrdup (physname);
387
388 is_full_physname_constructor = is_constructor_name (physname);
389
390 is_constructor = is_full_physname_constructor
391 || (newname && strcmp (field_name, newname) == 0);
392
393 if (!is_destructor)
394 is_destructor = (strncmp (physname, "__dt", 4) == 0);
395
396 if (is_destructor || is_full_physname_constructor)
397 {
398 mangled_name = (char *) xmalloc (strlen (physname) + 1);
399 strcpy (mangled_name, physname);
400 return mangled_name;
401 }
402
403 if (len == 0)
404 {
405 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
406 }
407 else if (physname[0] == 't' || physname[0] == 'Q')
408 {
409 /* The physname for template and qualified methods already includes
410 the class name. */
411 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
412 newname = NULL;
413 len = 0;
414 }
415 else
416 {
417 xsnprintf (buf, sizeof (buf), "__%s%s%d", const_prefix,
418 volatile_prefix, len);
419 }
420 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
421 + strlen (buf) + len + strlen (physname) + 1);
422
423 mangled_name = (char *) xmalloc (mangled_name_len);
424 if (is_constructor)
425 mangled_name[0] = '\0';
426 else
427 strcpy (mangled_name, field_name);
428
429 strcat (mangled_name, buf);
430 /* If the class doesn't have a name, i.e. newname NULL, then we just
431 mangle it using 0 for the length of the class. Thus it gets mangled
432 as something starting with `::' rather than `classname::'. */
433 if (newname != NULL)
434 strcat (mangled_name, newname);
435
436 strcat (mangled_name, physname);
437 return (mangled_name);
438 }
439
440 /* Initialize the cplus_specific structure. 'cplus_specific' should
441 only be allocated for use with cplus symbols. */
442
443 static void
444 symbol_init_cplus_specific (struct general_symbol_info *gsymbol,
445 struct objfile *objfile)
446 {
447 /* A language_specific structure should not have been previously
448 initialized. */
449 gdb_assert (gsymbol->language_specific.cplus_specific == NULL);
450 gdb_assert (objfile != NULL);
451
452 gsymbol->language_specific.cplus_specific =
453 OBSTACK_ZALLOC (&objfile->objfile_obstack, struct cplus_specific);
454 }
455
456 /* Set the demangled name of GSYMBOL to NAME. NAME must be already
457 correctly allocated. For C++ symbols a cplus_specific struct is
458 allocated so OBJFILE must not be NULL. If this is a non C++ symbol
459 OBJFILE can be NULL. */
460
461 void
462 symbol_set_demangled_name (struct general_symbol_info *gsymbol,
463 char *name,
464 struct objfile *objfile)
465 {
466 if (gsymbol->language == language_cplus)
467 {
468 if (gsymbol->language_specific.cplus_specific == NULL)
469 symbol_init_cplus_specific (gsymbol, objfile);
470
471 gsymbol->language_specific.cplus_specific->demangled_name = name;
472 }
473 else
474 gsymbol->language_specific.mangled_lang.demangled_name = name;
475 }
476
477 /* Return the demangled name of GSYMBOL. */
478
479 const char *
480 symbol_get_demangled_name (const struct general_symbol_info *gsymbol)
481 {
482 if (gsymbol->language == language_cplus)
483 {
484 if (gsymbol->language_specific.cplus_specific != NULL)
485 return gsymbol->language_specific.cplus_specific->demangled_name;
486 else
487 return NULL;
488 }
489 else
490 return gsymbol->language_specific.mangled_lang.demangled_name;
491 }
492
493 \f
494 /* Initialize the language dependent portion of a symbol
495 depending upon the language for the symbol. */
496
497 void
498 symbol_set_language (struct general_symbol_info *gsymbol,
499 enum language language)
500 {
501 gsymbol->language = language;
502 if (gsymbol->language == language_d
503 || gsymbol->language == language_go
504 || gsymbol->language == language_java
505 || gsymbol->language == language_objc
506 || gsymbol->language == language_fortran)
507 {
508 symbol_set_demangled_name (gsymbol, NULL, NULL);
509 }
510 else if (gsymbol->language == language_cplus)
511 gsymbol->language_specific.cplus_specific = NULL;
512 else
513 {
514 memset (&gsymbol->language_specific, 0,
515 sizeof (gsymbol->language_specific));
516 }
517 }
518
519 /* Functions to initialize a symbol's mangled name. */
520
521 /* Objects of this type are stored in the demangled name hash table. */
522 struct demangled_name_entry
523 {
524 char *mangled;
525 char demangled[1];
526 };
527
528 /* Hash function for the demangled name hash. */
529
530 static hashval_t
531 hash_demangled_name_entry (const void *data)
532 {
533 const struct demangled_name_entry *e = data;
534
535 return htab_hash_string (e->mangled);
536 }
537
538 /* Equality function for the demangled name hash. */
539
540 static int
541 eq_demangled_name_entry (const void *a, const void *b)
542 {
543 const struct demangled_name_entry *da = a;
544 const struct demangled_name_entry *db = b;
545
546 return strcmp (da->mangled, db->mangled) == 0;
547 }
548
549 /* Create the hash table used for demangled names. Each hash entry is
550 a pair of strings; one for the mangled name and one for the demangled
551 name. The entry is hashed via just the mangled name. */
552
553 static void
554 create_demangled_names_hash (struct objfile *objfile)
555 {
556 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
557 The hash table code will round this up to the next prime number.
558 Choosing a much larger table size wastes memory, and saves only about
559 1% in symbol reading. */
560
561 objfile->demangled_names_hash = htab_create_alloc
562 (256, hash_demangled_name_entry, eq_demangled_name_entry,
563 NULL, xcalloc, xfree);
564 }
565
566 /* Try to determine the demangled name for a symbol, based on the
567 language of that symbol. If the language is set to language_auto,
568 it will attempt to find any demangling algorithm that works and
569 then set the language appropriately. The returned name is allocated
570 by the demangler and should be xfree'd. */
571
572 static char *
573 symbol_find_demangled_name (struct general_symbol_info *gsymbol,
574 const char *mangled)
575 {
576 char *demangled = NULL;
577
578 if (gsymbol->language == language_unknown)
579 gsymbol->language = language_auto;
580
581 if (gsymbol->language == language_objc
582 || gsymbol->language == language_auto)
583 {
584 demangled =
585 objc_demangle (mangled, 0);
586 if (demangled != NULL)
587 {
588 gsymbol->language = language_objc;
589 return demangled;
590 }
591 }
592 if (gsymbol->language == language_cplus
593 || gsymbol->language == language_auto)
594 {
595 demangled =
596 cplus_demangle (mangled, DMGL_PARAMS | DMGL_ANSI);
597 if (demangled != NULL)
598 {
599 gsymbol->language = language_cplus;
600 return demangled;
601 }
602 }
603 if (gsymbol->language == language_java)
604 {
605 demangled =
606 cplus_demangle (mangled,
607 DMGL_PARAMS | DMGL_ANSI | DMGL_JAVA);
608 if (demangled != NULL)
609 {
610 gsymbol->language = language_java;
611 return demangled;
612 }
613 }
614 if (gsymbol->language == language_d
615 || gsymbol->language == language_auto)
616 {
617 demangled = d_demangle(mangled, 0);
618 if (demangled != NULL)
619 {
620 gsymbol->language = language_d;
621 return demangled;
622 }
623 }
624 /* FIXME(dje): Continually adding languages here is clumsy.
625 Better to just call la_demangle if !auto, and if auto then call
626 a utility routine that tries successive languages in turn and reports
627 which one it finds. I realize the la_demangle options may be different
628 for different languages but there's already a FIXME for that. */
629 if (gsymbol->language == language_go
630 || gsymbol->language == language_auto)
631 {
632 demangled = go_demangle (mangled, 0);
633 if (demangled != NULL)
634 {
635 gsymbol->language = language_go;
636 return demangled;
637 }
638 }
639
640 /* We could support `gsymbol->language == language_fortran' here to provide
641 module namespaces also for inferiors with only minimal symbol table (ELF
642 symbols). Just the mangling standard is not standardized across compilers
643 and there is no DW_AT_producer available for inferiors with only the ELF
644 symbols to check the mangling kind. */
645 return NULL;
646 }
647
648 /* Set both the mangled and demangled (if any) names for GSYMBOL based
649 on LINKAGE_NAME and LEN. Ordinarily, NAME is copied onto the
650 objfile's obstack; but if COPY_NAME is 0 and if NAME is
651 NUL-terminated, then this function assumes that NAME is already
652 correctly saved (either permanently or with a lifetime tied to the
653 objfile), and it will not be copied.
654
655 The hash table corresponding to OBJFILE is used, and the memory
656 comes from that objfile's objfile_obstack. LINKAGE_NAME is copied,
657 so the pointer can be discarded after calling this function. */
658
659 /* We have to be careful when dealing with Java names: when we run
660 into a Java minimal symbol, we don't know it's a Java symbol, so it
661 gets demangled as a C++ name. This is unfortunate, but there's not
662 much we can do about it: but when demangling partial symbols and
663 regular symbols, we'd better not reuse the wrong demangled name.
664 (See PR gdb/1039.) We solve this by putting a distinctive prefix
665 on Java names when storing them in the hash table. */
666
667 /* FIXME: carlton/2003-03-13: This is an unfortunate situation. I
668 don't mind the Java prefix so much: different languages have
669 different demangling requirements, so it's only natural that we
670 need to keep language data around in our demangling cache. But
671 it's not good that the minimal symbol has the wrong demangled name.
672 Unfortunately, I can't think of any easy solution to that
673 problem. */
674
675 #define JAVA_PREFIX "##JAVA$$"
676 #define JAVA_PREFIX_LEN 8
677
678 void
679 symbol_set_names (struct general_symbol_info *gsymbol,
680 const char *linkage_name, int len, int copy_name,
681 struct objfile *objfile)
682 {
683 struct demangled_name_entry **slot;
684 /* A 0-terminated copy of the linkage name. */
685 const char *linkage_name_copy;
686 /* A copy of the linkage name that might have a special Java prefix
687 added to it, for use when looking names up in the hash table. */
688 const char *lookup_name;
689 /* The length of lookup_name. */
690 int lookup_len;
691 struct demangled_name_entry entry;
692
693 if (gsymbol->language == language_ada)
694 {
695 /* In Ada, we do the symbol lookups using the mangled name, so
696 we can save some space by not storing the demangled name.
697
698 As a side note, we have also observed some overlap between
699 the C++ mangling and Ada mangling, similarly to what has
700 been observed with Java. Because we don't store the demangled
701 name with the symbol, we don't need to use the same trick
702 as Java. */
703 if (!copy_name)
704 gsymbol->name = linkage_name;
705 else
706 {
707 char *name = obstack_alloc (&objfile->objfile_obstack, len + 1);
708
709 memcpy (name, linkage_name, len);
710 name[len] = '\0';
711 gsymbol->name = name;
712 }
713 symbol_set_demangled_name (gsymbol, NULL, NULL);
714
715 return;
716 }
717
718 if (objfile->demangled_names_hash == NULL)
719 create_demangled_names_hash (objfile);
720
721 /* The stabs reader generally provides names that are not
722 NUL-terminated; most of the other readers don't do this, so we
723 can just use the given copy, unless we're in the Java case. */
724 if (gsymbol->language == language_java)
725 {
726 char *alloc_name;
727
728 lookup_len = len + JAVA_PREFIX_LEN;
729 alloc_name = alloca (lookup_len + 1);
730 memcpy (alloc_name, JAVA_PREFIX, JAVA_PREFIX_LEN);
731 memcpy (alloc_name + JAVA_PREFIX_LEN, linkage_name, len);
732 alloc_name[lookup_len] = '\0';
733
734 lookup_name = alloc_name;
735 linkage_name_copy = alloc_name + JAVA_PREFIX_LEN;
736 }
737 else if (linkage_name[len] != '\0')
738 {
739 char *alloc_name;
740
741 lookup_len = len;
742 alloc_name = alloca (lookup_len + 1);
743 memcpy (alloc_name, linkage_name, len);
744 alloc_name[lookup_len] = '\0';
745
746 lookup_name = alloc_name;
747 linkage_name_copy = alloc_name;
748 }
749 else
750 {
751 lookup_len = len;
752 lookup_name = linkage_name;
753 linkage_name_copy = linkage_name;
754 }
755
756 entry.mangled = (char *) lookup_name;
757 slot = ((struct demangled_name_entry **)
758 htab_find_slot (objfile->demangled_names_hash,
759 &entry, INSERT));
760
761 /* If this name is not in the hash table, add it. */
762 if (*slot == NULL
763 /* A C version of the symbol may have already snuck into the table.
764 This happens to, e.g., main.init (__go_init_main). Cope. */
765 || (gsymbol->language == language_go
766 && (*slot)->demangled[0] == '\0'))
767 {
768 char *demangled_name = symbol_find_demangled_name (gsymbol,
769 linkage_name_copy);
770 int demangled_len = demangled_name ? strlen (demangled_name) : 0;
771
772 /* Suppose we have demangled_name==NULL, copy_name==0, and
773 lookup_name==linkage_name. In this case, we already have the
774 mangled name saved, and we don't have a demangled name. So,
775 you might think we could save a little space by not recording
776 this in the hash table at all.
777
778 It turns out that it is actually important to still save such
779 an entry in the hash table, because storing this name gives
780 us better bcache hit rates for partial symbols. */
781 if (!copy_name && lookup_name == linkage_name)
782 {
783 *slot = obstack_alloc (&objfile->objfile_obstack,
784 offsetof (struct demangled_name_entry,
785 demangled)
786 + demangled_len + 1);
787 (*slot)->mangled = (char *) lookup_name;
788 }
789 else
790 {
791 /* If we must copy the mangled name, put it directly after
792 the demangled name so we can have a single
793 allocation. */
794 *slot = obstack_alloc (&objfile->objfile_obstack,
795 offsetof (struct demangled_name_entry,
796 demangled)
797 + lookup_len + demangled_len + 2);
798 (*slot)->mangled = &((*slot)->demangled[demangled_len + 1]);
799 strcpy ((*slot)->mangled, lookup_name);
800 }
801
802 if (demangled_name != NULL)
803 {
804 strcpy ((*slot)->demangled, demangled_name);
805 xfree (demangled_name);
806 }
807 else
808 (*slot)->demangled[0] = '\0';
809 }
810
811 gsymbol->name = (*slot)->mangled + lookup_len - len;
812 if ((*slot)->demangled[0] != '\0')
813 symbol_set_demangled_name (gsymbol, (*slot)->demangled, objfile);
814 else
815 symbol_set_demangled_name (gsymbol, NULL, objfile);
816 }
817
818 /* Return the source code name of a symbol. In languages where
819 demangling is necessary, this is the demangled name. */
820
821 const char *
822 symbol_natural_name (const struct general_symbol_info *gsymbol)
823 {
824 switch (gsymbol->language)
825 {
826 case language_cplus:
827 case language_d:
828 case language_go:
829 case language_java:
830 case language_objc:
831 case language_fortran:
832 if (symbol_get_demangled_name (gsymbol) != NULL)
833 return symbol_get_demangled_name (gsymbol);
834 break;
835 case language_ada:
836 if (symbol_get_demangled_name (gsymbol) != NULL)
837 return symbol_get_demangled_name (gsymbol);
838 else
839 return ada_decode_symbol (gsymbol);
840 break;
841 default:
842 break;
843 }
844 return gsymbol->name;
845 }
846
847 /* Return the demangled name for a symbol based on the language for
848 that symbol. If no demangled name exists, return NULL. */
849
850 const char *
851 symbol_demangled_name (const struct general_symbol_info *gsymbol)
852 {
853 const char *dem_name = NULL;
854
855 switch (gsymbol->language)
856 {
857 case language_cplus:
858 case language_d:
859 case language_go:
860 case language_java:
861 case language_objc:
862 case language_fortran:
863 dem_name = symbol_get_demangled_name (gsymbol);
864 break;
865 case language_ada:
866 dem_name = symbol_get_demangled_name (gsymbol);
867 if (dem_name == NULL)
868 dem_name = ada_decode_symbol (gsymbol);
869 break;
870 default:
871 break;
872 }
873 return dem_name;
874 }
875
876 /* Return the search name of a symbol---generally the demangled or
877 linkage name of the symbol, depending on how it will be searched for.
878 If there is no distinct demangled name, then returns the same value
879 (same pointer) as SYMBOL_LINKAGE_NAME. */
880
881 const char *
882 symbol_search_name (const struct general_symbol_info *gsymbol)
883 {
884 if (gsymbol->language == language_ada)
885 return gsymbol->name;
886 else
887 return symbol_natural_name (gsymbol);
888 }
889
890 /* Initialize the structure fields to zero values. */
891
892 void
893 init_sal (struct symtab_and_line *sal)
894 {
895 sal->pspace = NULL;
896 sal->symtab = 0;
897 sal->section = 0;
898 sal->line = 0;
899 sal->pc = 0;
900 sal->end = 0;
901 sal->explicit_pc = 0;
902 sal->explicit_line = 0;
903 sal->probe = NULL;
904 }
905 \f
906
907 /* Return 1 if the two sections are the same, or if they could
908 plausibly be copies of each other, one in an original object
909 file and another in a separated debug file. */
910
911 int
912 matching_obj_sections (struct obj_section *obj_first,
913 struct obj_section *obj_second)
914 {
915 asection *first = obj_first? obj_first->the_bfd_section : NULL;
916 asection *second = obj_second? obj_second->the_bfd_section : NULL;
917 struct objfile *obj;
918
919 /* If they're the same section, then they match. */
920 if (first == second)
921 return 1;
922
923 /* If either is NULL, give up. */
924 if (first == NULL || second == NULL)
925 return 0;
926
927 /* This doesn't apply to absolute symbols. */
928 if (first->owner == NULL || second->owner == NULL)
929 return 0;
930
931 /* If they're in the same object file, they must be different sections. */
932 if (first->owner == second->owner)
933 return 0;
934
935 /* Check whether the two sections are potentially corresponding. They must
936 have the same size, address, and name. We can't compare section indexes,
937 which would be more reliable, because some sections may have been
938 stripped. */
939 if (bfd_get_section_size (first) != bfd_get_section_size (second))
940 return 0;
941
942 /* In-memory addresses may start at a different offset, relativize them. */
943 if (bfd_get_section_vma (first->owner, first)
944 - bfd_get_start_address (first->owner)
945 != bfd_get_section_vma (second->owner, second)
946 - bfd_get_start_address (second->owner))
947 return 0;
948
949 if (bfd_get_section_name (first->owner, first) == NULL
950 || bfd_get_section_name (second->owner, second) == NULL
951 || strcmp (bfd_get_section_name (first->owner, first),
952 bfd_get_section_name (second->owner, second)) != 0)
953 return 0;
954
955 /* Otherwise check that they are in corresponding objfiles. */
956
957 ALL_OBJFILES (obj)
958 if (obj->obfd == first->owner)
959 break;
960 gdb_assert (obj != NULL);
961
962 if (obj->separate_debug_objfile != NULL
963 && obj->separate_debug_objfile->obfd == second->owner)
964 return 1;
965 if (obj->separate_debug_objfile_backlink != NULL
966 && obj->separate_debug_objfile_backlink->obfd == second->owner)
967 return 1;
968
969 return 0;
970 }
971
972 struct symtab *
973 find_pc_sect_symtab_via_partial (CORE_ADDR pc, struct obj_section *section)
974 {
975 struct objfile *objfile;
976 struct minimal_symbol *msymbol;
977
978 /* If we know that this is not a text address, return failure. This is
979 necessary because we loop based on texthigh and textlow, which do
980 not include the data ranges. */
981 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
982 if (msymbol
983 && (MSYMBOL_TYPE (msymbol) == mst_data
984 || MSYMBOL_TYPE (msymbol) == mst_bss
985 || MSYMBOL_TYPE (msymbol) == mst_abs
986 || MSYMBOL_TYPE (msymbol) == mst_file_data
987 || MSYMBOL_TYPE (msymbol) == mst_file_bss))
988 return NULL;
989
990 ALL_OBJFILES (objfile)
991 {
992 struct symtab *result = NULL;
993
994 if (objfile->sf)
995 result = objfile->sf->qf->find_pc_sect_symtab (objfile, msymbol,
996 pc, section, 0);
997 if (result)
998 return result;
999 }
1000
1001 return NULL;
1002 }
1003 \f
1004 /* Debug symbols usually don't have section information. We need to dig that
1005 out of the minimal symbols and stash that in the debug symbol. */
1006
1007 void
1008 fixup_section (struct general_symbol_info *ginfo,
1009 CORE_ADDR addr, struct objfile *objfile)
1010 {
1011 struct minimal_symbol *msym;
1012
1013 /* First, check whether a minimal symbol with the same name exists
1014 and points to the same address. The address check is required
1015 e.g. on PowerPC64, where the minimal symbol for a function will
1016 point to the function descriptor, while the debug symbol will
1017 point to the actual function code. */
1018 msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->name, objfile);
1019 if (msym)
1020 {
1021 ginfo->obj_section = SYMBOL_OBJ_SECTION (msym);
1022 ginfo->section = SYMBOL_SECTION (msym);
1023 }
1024 else
1025 {
1026 /* Static, function-local variables do appear in the linker
1027 (minimal) symbols, but are frequently given names that won't
1028 be found via lookup_minimal_symbol(). E.g., it has been
1029 observed in frv-uclinux (ELF) executables that a static,
1030 function-local variable named "foo" might appear in the
1031 linker symbols as "foo.6" or "foo.3". Thus, there is no
1032 point in attempting to extend the lookup-by-name mechanism to
1033 handle this case due to the fact that there can be multiple
1034 names.
1035
1036 So, instead, search the section table when lookup by name has
1037 failed. The ``addr'' and ``endaddr'' fields may have already
1038 been relocated. If so, the relocation offset (i.e. the
1039 ANOFFSET value) needs to be subtracted from these values when
1040 performing the comparison. We unconditionally subtract it,
1041 because, when no relocation has been performed, the ANOFFSET
1042 value will simply be zero.
1043
1044 The address of the symbol whose section we're fixing up HAS
1045 NOT BEEN adjusted (relocated) yet. It can't have been since
1046 the section isn't yet known and knowing the section is
1047 necessary in order to add the correct relocation value. In
1048 other words, we wouldn't even be in this function (attempting
1049 to compute the section) if it were already known.
1050
1051 Note that it is possible to search the minimal symbols
1052 (subtracting the relocation value if necessary) to find the
1053 matching minimal symbol, but this is overkill and much less
1054 efficient. It is not necessary to find the matching minimal
1055 symbol, only its section.
1056
1057 Note that this technique (of doing a section table search)
1058 can fail when unrelocated section addresses overlap. For
1059 this reason, we still attempt a lookup by name prior to doing
1060 a search of the section table. */
1061
1062 struct obj_section *s;
1063
1064 ALL_OBJFILE_OSECTIONS (objfile, s)
1065 {
1066 int idx = s->the_bfd_section->index;
1067 CORE_ADDR offset = ANOFFSET (objfile->section_offsets, idx);
1068
1069 if (obj_section_addr (s) - offset <= addr
1070 && addr < obj_section_endaddr (s) - offset)
1071 {
1072 ginfo->obj_section = s;
1073 ginfo->section = idx;
1074 return;
1075 }
1076 }
1077 }
1078 }
1079
1080 struct symbol *
1081 fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
1082 {
1083 CORE_ADDR addr;
1084
1085 if (!sym)
1086 return NULL;
1087
1088 if (SYMBOL_OBJ_SECTION (sym))
1089 return sym;
1090
1091 /* We either have an OBJFILE, or we can get at it from the sym's
1092 symtab. Anything else is a bug. */
1093 gdb_assert (objfile || SYMBOL_SYMTAB (sym));
1094
1095 if (objfile == NULL)
1096 objfile = SYMBOL_SYMTAB (sym)->objfile;
1097
1098 /* We should have an objfile by now. */
1099 gdb_assert (objfile);
1100
1101 switch (SYMBOL_CLASS (sym))
1102 {
1103 case LOC_STATIC:
1104 case LOC_LABEL:
1105 addr = SYMBOL_VALUE_ADDRESS (sym);
1106 break;
1107 case LOC_BLOCK:
1108 addr = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
1109 break;
1110
1111 default:
1112 /* Nothing else will be listed in the minsyms -- no use looking
1113 it up. */
1114 return sym;
1115 }
1116
1117 fixup_section (&sym->ginfo, addr, objfile);
1118
1119 return sym;
1120 }
1121
1122 /* Compute the demangled form of NAME as used by the various symbol
1123 lookup functions. The result is stored in *RESULT_NAME. Returns a
1124 cleanup which can be used to clean up the result.
1125
1126 For Ada, this function just sets *RESULT_NAME to NAME, unmodified.
1127 Normally, Ada symbol lookups are performed using the encoded name
1128 rather than the demangled name, and so it might seem to make sense
1129 for this function to return an encoded version of NAME.
1130 Unfortunately, we cannot do this, because this function is used in
1131 circumstances where it is not appropriate to try to encode NAME.
1132 For instance, when displaying the frame info, we demangle the name
1133 of each parameter, and then perform a symbol lookup inside our
1134 function using that demangled name. In Ada, certain functions
1135 have internally-generated parameters whose name contain uppercase
1136 characters. Encoding those name would result in those uppercase
1137 characters to become lowercase, and thus cause the symbol lookup
1138 to fail. */
1139
1140 struct cleanup *
1141 demangle_for_lookup (const char *name, enum language lang,
1142 const char **result_name)
1143 {
1144 char *demangled_name = NULL;
1145 const char *modified_name = NULL;
1146 struct cleanup *cleanup = make_cleanup (null_cleanup, 0);
1147
1148 modified_name = name;
1149
1150 /* If we are using C++, D, Go, or Java, demangle the name before doing a
1151 lookup, so we can always binary search. */
1152 if (lang == language_cplus)
1153 {
1154 demangled_name = cplus_demangle (name, DMGL_ANSI | DMGL_PARAMS);
1155 if (demangled_name)
1156 {
1157 modified_name = demangled_name;
1158 make_cleanup (xfree, demangled_name);
1159 }
1160 else
1161 {
1162 /* If we were given a non-mangled name, canonicalize it
1163 according to the language (so far only for C++). */
1164 demangled_name = cp_canonicalize_string (name);
1165 if (demangled_name)
1166 {
1167 modified_name = demangled_name;
1168 make_cleanup (xfree, demangled_name);
1169 }
1170 }
1171 }
1172 else if (lang == language_java)
1173 {
1174 demangled_name = cplus_demangle (name,
1175 DMGL_ANSI | DMGL_PARAMS | DMGL_JAVA);
1176 if (demangled_name)
1177 {
1178 modified_name = demangled_name;
1179 make_cleanup (xfree, demangled_name);
1180 }
1181 }
1182 else if (lang == language_d)
1183 {
1184 demangled_name = d_demangle (name, 0);
1185 if (demangled_name)
1186 {
1187 modified_name = demangled_name;
1188 make_cleanup (xfree, demangled_name);
1189 }
1190 }
1191 else if (lang == language_go)
1192 {
1193 demangled_name = go_demangle (name, 0);
1194 if (demangled_name)
1195 {
1196 modified_name = demangled_name;
1197 make_cleanup (xfree, demangled_name);
1198 }
1199 }
1200
1201 *result_name = modified_name;
1202 return cleanup;
1203 }
1204
1205 /* Find the definition for a specified symbol name NAME
1206 in domain DOMAIN, visible from lexical block BLOCK.
1207 Returns the struct symbol pointer, or zero if no symbol is found.
1208 C++: if IS_A_FIELD_OF_THIS is nonzero on entry, check to see if
1209 NAME is a field of the current implied argument `this'. If so set
1210 *IS_A_FIELD_OF_THIS to 1, otherwise set it to zero.
1211 BLOCK_FOUND is set to the block in which NAME is found (in the case of
1212 a field of `this', value_of_this sets BLOCK_FOUND to the proper value.) */
1213
1214 /* This function (or rather its subordinates) have a bunch of loops and
1215 it would seem to be attractive to put in some QUIT's (though I'm not really
1216 sure whether it can run long enough to be really important). But there
1217 are a few calls for which it would appear to be bad news to quit
1218 out of here: e.g., find_proc_desc in alpha-mdebug-tdep.c. (Note
1219 that there is C++ code below which can error(), but that probably
1220 doesn't affect these calls since they are looking for a known
1221 variable and thus can probably assume it will never hit the C++
1222 code). */
1223
1224 struct symbol *
1225 lookup_symbol_in_language (const char *name, const struct block *block,
1226 const domain_enum domain, enum language lang,
1227 int *is_a_field_of_this)
1228 {
1229 const char *modified_name;
1230 struct symbol *returnval;
1231 struct cleanup *cleanup = demangle_for_lookup (name, lang, &modified_name);
1232
1233 returnval = lookup_symbol_aux (modified_name, block, domain, lang,
1234 is_a_field_of_this);
1235 do_cleanups (cleanup);
1236
1237 return returnval;
1238 }
1239
1240 /* Behave like lookup_symbol_in_language, but performed with the
1241 current language. */
1242
1243 struct symbol *
1244 lookup_symbol (const char *name, const struct block *block,
1245 domain_enum domain, int *is_a_field_of_this)
1246 {
1247 return lookup_symbol_in_language (name, block, domain,
1248 current_language->la_language,
1249 is_a_field_of_this);
1250 }
1251
1252 /* Look up the `this' symbol for LANG in BLOCK. Return the symbol if
1253 found, or NULL if not found. */
1254
1255 struct symbol *
1256 lookup_language_this (const struct language_defn *lang,
1257 const struct block *block)
1258 {
1259 if (lang->la_name_of_this == NULL || block == NULL)
1260 return NULL;
1261
1262 while (block)
1263 {
1264 struct symbol *sym;
1265
1266 sym = lookup_block_symbol (block, lang->la_name_of_this, VAR_DOMAIN);
1267 if (sym != NULL)
1268 {
1269 block_found = block;
1270 return sym;
1271 }
1272 if (BLOCK_FUNCTION (block))
1273 break;
1274 block = BLOCK_SUPERBLOCK (block);
1275 }
1276
1277 return NULL;
1278 }
1279
1280 /* Behave like lookup_symbol except that NAME is the natural name
1281 (e.g., demangled name) of the symbol that we're looking for. */
1282
1283 static struct symbol *
1284 lookup_symbol_aux (const char *name, const struct block *block,
1285 const domain_enum domain, enum language language,
1286 int *is_a_field_of_this)
1287 {
1288 struct symbol *sym;
1289 const struct language_defn *langdef;
1290
1291 /* Make sure we do something sensible with is_a_field_of_this, since
1292 the callers that set this parameter to some non-null value will
1293 certainly use it later and expect it to be either 0 or 1.
1294 If we don't set it, the contents of is_a_field_of_this are
1295 undefined. */
1296 if (is_a_field_of_this != NULL)
1297 *is_a_field_of_this = 0;
1298
1299 /* Search specified block and its superiors. Don't search
1300 STATIC_BLOCK or GLOBAL_BLOCK. */
1301
1302 sym = lookup_symbol_aux_local (name, block, domain, language);
1303 if (sym != NULL)
1304 return sym;
1305
1306 /* If requested to do so by the caller and if appropriate for LANGUAGE,
1307 check to see if NAME is a field of `this'. */
1308
1309 langdef = language_def (language);
1310
1311 if (is_a_field_of_this != NULL)
1312 {
1313 struct symbol *sym = lookup_language_this (langdef, block);
1314
1315 if (sym)
1316 {
1317 struct type *t = sym->type;
1318
1319 /* I'm not really sure that type of this can ever
1320 be typedefed; just be safe. */
1321 CHECK_TYPEDEF (t);
1322 if (TYPE_CODE (t) == TYPE_CODE_PTR
1323 || TYPE_CODE (t) == TYPE_CODE_REF)
1324 t = TYPE_TARGET_TYPE (t);
1325
1326 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
1327 && TYPE_CODE (t) != TYPE_CODE_UNION)
1328 error (_("Internal error: `%s' is not an aggregate"),
1329 langdef->la_name_of_this);
1330
1331 if (check_field (t, name))
1332 {
1333 *is_a_field_of_this = 1;
1334 return NULL;
1335 }
1336 }
1337 }
1338
1339 /* Now do whatever is appropriate for LANGUAGE to look
1340 up static and global variables. */
1341
1342 sym = langdef->la_lookup_symbol_nonlocal (name, block, domain);
1343 if (sym != NULL)
1344 return sym;
1345
1346 /* Now search all static file-level symbols. Not strictly correct,
1347 but more useful than an error. */
1348
1349 return lookup_static_symbol_aux (name, domain);
1350 }
1351
1352 /* Search all static file-level symbols for NAME from DOMAIN. Do the symtabs
1353 first, then check the psymtabs. If a psymtab indicates the existence of the
1354 desired name as a file-level static, then do psymtab-to-symtab conversion on
1355 the fly and return the found symbol. */
1356
1357 struct symbol *
1358 lookup_static_symbol_aux (const char *name, const domain_enum domain)
1359 {
1360 struct objfile *objfile;
1361 struct symbol *sym;
1362
1363 sym = lookup_symbol_aux_symtabs (STATIC_BLOCK, name, domain);
1364 if (sym != NULL)
1365 return sym;
1366
1367 ALL_OBJFILES (objfile)
1368 {
1369 sym = lookup_symbol_aux_quick (objfile, STATIC_BLOCK, name, domain);
1370 if (sym != NULL)
1371 return sym;
1372 }
1373
1374 return NULL;
1375 }
1376
1377 /* Check to see if the symbol is defined in BLOCK or its superiors.
1378 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
1379
1380 static struct symbol *
1381 lookup_symbol_aux_local (const char *name, const struct block *block,
1382 const domain_enum domain,
1383 enum language language)
1384 {
1385 struct symbol *sym;
1386 const struct block *static_block = block_static_block (block);
1387 const char *scope = block_scope (block);
1388
1389 /* Check if either no block is specified or it's a global block. */
1390
1391 if (static_block == NULL)
1392 return NULL;
1393
1394 while (block != static_block)
1395 {
1396 sym = lookup_symbol_aux_block (name, block, domain);
1397 if (sym != NULL)
1398 return sym;
1399
1400 if (language == language_cplus || language == language_fortran)
1401 {
1402 sym = cp_lookup_symbol_imports_or_template (scope, name, block,
1403 domain);
1404 if (sym != NULL)
1405 return sym;
1406 }
1407
1408 if (BLOCK_FUNCTION (block) != NULL && block_inlined_p (block))
1409 break;
1410 block = BLOCK_SUPERBLOCK (block);
1411 }
1412
1413 /* We've reached the edge of the function without finding a result. */
1414
1415 return NULL;
1416 }
1417
1418 /* Look up OBJFILE to BLOCK. */
1419
1420 struct objfile *
1421 lookup_objfile_from_block (const struct block *block)
1422 {
1423 struct objfile *obj;
1424 struct symtab *s;
1425
1426 if (block == NULL)
1427 return NULL;
1428
1429 block = block_global_block (block);
1430 /* Go through SYMTABS. */
1431 ALL_SYMTABS (obj, s)
1432 if (block == BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK))
1433 {
1434 if (obj->separate_debug_objfile_backlink)
1435 obj = obj->separate_debug_objfile_backlink;
1436
1437 return obj;
1438 }
1439
1440 return NULL;
1441 }
1442
1443 /* Look up a symbol in a block; if found, fixup the symbol, and set
1444 block_found appropriately. */
1445
1446 struct symbol *
1447 lookup_symbol_aux_block (const char *name, const struct block *block,
1448 const domain_enum domain)
1449 {
1450 struct symbol *sym;
1451
1452 sym = lookup_block_symbol (block, name, domain);
1453 if (sym)
1454 {
1455 block_found = block;
1456 return fixup_symbol_section (sym, NULL);
1457 }
1458
1459 return NULL;
1460 }
1461
1462 /* Check all global symbols in OBJFILE in symtabs and
1463 psymtabs. */
1464
1465 struct symbol *
1466 lookup_global_symbol_from_objfile (const struct objfile *main_objfile,
1467 const char *name,
1468 const domain_enum domain)
1469 {
1470 const struct objfile *objfile;
1471 struct symbol *sym;
1472 struct blockvector *bv;
1473 const struct block *block;
1474 struct symtab *s;
1475
1476 for (objfile = main_objfile;
1477 objfile;
1478 objfile = objfile_separate_debug_iterate (main_objfile, objfile))
1479 {
1480 /* Go through symtabs. */
1481 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
1482 {
1483 bv = BLOCKVECTOR (s);
1484 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1485 sym = lookup_block_symbol (block, name, domain);
1486 if (sym)
1487 {
1488 block_found = block;
1489 return fixup_symbol_section (sym, (struct objfile *)objfile);
1490 }
1491 }
1492
1493 sym = lookup_symbol_aux_quick ((struct objfile *) objfile, GLOBAL_BLOCK,
1494 name, domain);
1495 if (sym)
1496 return sym;
1497 }
1498
1499 return NULL;
1500 }
1501
1502 /* Check to see if the symbol is defined in one of the OBJFILE's
1503 symtabs. BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
1504 depending on whether or not we want to search global symbols or
1505 static symbols. */
1506
1507 static struct symbol *
1508 lookup_symbol_aux_objfile (struct objfile *objfile, int block_index,
1509 const char *name, const domain_enum domain)
1510 {
1511 struct symbol *sym = NULL;
1512 struct blockvector *bv;
1513 const struct block *block;
1514 struct symtab *s;
1515
1516 if (objfile->sf)
1517 objfile->sf->qf->pre_expand_symtabs_matching (objfile, block_index,
1518 name, domain);
1519
1520 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
1521 {
1522 bv = BLOCKVECTOR (s);
1523 block = BLOCKVECTOR_BLOCK (bv, block_index);
1524 sym = lookup_block_symbol (block, name, domain);
1525 if (sym)
1526 {
1527 block_found = block;
1528 return fixup_symbol_section (sym, objfile);
1529 }
1530 }
1531
1532 return NULL;
1533 }
1534
1535 /* Same as lookup_symbol_aux_objfile, except that it searches all
1536 objfiles. Return the first match found. */
1537
1538 static struct symbol *
1539 lookup_symbol_aux_symtabs (int block_index, const char *name,
1540 const domain_enum domain)
1541 {
1542 struct symbol *sym;
1543 struct objfile *objfile;
1544
1545 ALL_OBJFILES (objfile)
1546 {
1547 sym = lookup_symbol_aux_objfile (objfile, block_index, name, domain);
1548 if (sym)
1549 return sym;
1550 }
1551
1552 return NULL;
1553 }
1554
1555 /* Wrapper around lookup_symbol_aux_objfile for search_symbols.
1556 Look up LINKAGE_NAME in DOMAIN in the global and static blocks of OBJFILE
1557 and all related objfiles. */
1558
1559 static struct symbol *
1560 lookup_symbol_in_objfile_from_linkage_name (struct objfile *objfile,
1561 const char *linkage_name,
1562 domain_enum domain)
1563 {
1564 enum language lang = current_language->la_language;
1565 const char *modified_name;
1566 struct cleanup *cleanup = demangle_for_lookup (linkage_name, lang,
1567 &modified_name);
1568 struct objfile *main_objfile, *cur_objfile;
1569
1570 if (objfile->separate_debug_objfile_backlink)
1571 main_objfile = objfile->separate_debug_objfile_backlink;
1572 else
1573 main_objfile = objfile;
1574
1575 for (cur_objfile = main_objfile;
1576 cur_objfile;
1577 cur_objfile = objfile_separate_debug_iterate (main_objfile, cur_objfile))
1578 {
1579 struct symbol *sym;
1580
1581 sym = lookup_symbol_aux_objfile (cur_objfile, GLOBAL_BLOCK,
1582 modified_name, domain);
1583 if (sym == NULL)
1584 sym = lookup_symbol_aux_objfile (cur_objfile, STATIC_BLOCK,
1585 modified_name, domain);
1586 if (sym != NULL)
1587 {
1588 do_cleanups (cleanup);
1589 return sym;
1590 }
1591 }
1592
1593 do_cleanups (cleanup);
1594 return NULL;
1595 }
1596
1597 /* A helper function for lookup_symbol_aux that interfaces with the
1598 "quick" symbol table functions. */
1599
1600 static struct symbol *
1601 lookup_symbol_aux_quick (struct objfile *objfile, int kind,
1602 const char *name, const domain_enum domain)
1603 {
1604 struct symtab *symtab;
1605 struct blockvector *bv;
1606 const struct block *block;
1607 struct symbol *sym;
1608
1609 if (!objfile->sf)
1610 return NULL;
1611 symtab = objfile->sf->qf->lookup_symbol (objfile, kind, name, domain);
1612 if (!symtab)
1613 return NULL;
1614
1615 bv = BLOCKVECTOR (symtab);
1616 block = BLOCKVECTOR_BLOCK (bv, kind);
1617 sym = lookup_block_symbol (block, name, domain);
1618 if (!sym)
1619 {
1620 /* This shouldn't be necessary, but as a last resort try
1621 looking in the statics even though the psymtab claimed
1622 the symbol was global, or vice-versa. It's possible
1623 that the psymtab gets it wrong in some cases. */
1624
1625 /* FIXME: carlton/2002-09-30: Should we really do that?
1626 If that happens, isn't it likely to be a GDB error, in
1627 which case we should fix the GDB error rather than
1628 silently dealing with it here? So I'd vote for
1629 removing the check for the symbol in the other
1630 block. */
1631 block = BLOCKVECTOR_BLOCK (bv,
1632 kind == GLOBAL_BLOCK ?
1633 STATIC_BLOCK : GLOBAL_BLOCK);
1634 sym = lookup_block_symbol (block, name, domain);
1635 if (!sym)
1636 error (_("\
1637 Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n\
1638 %s may be an inlined function, or may be a template function\n\
1639 (if a template, try specifying an instantiation: %s<type>)."),
1640 kind == GLOBAL_BLOCK ? "global" : "static",
1641 name, symtab->filename, name, name);
1642 }
1643 return fixup_symbol_section (sym, objfile);
1644 }
1645
1646 /* A default version of lookup_symbol_nonlocal for use by languages
1647 that can't think of anything better to do. This implements the C
1648 lookup rules. */
1649
1650 struct symbol *
1651 basic_lookup_symbol_nonlocal (const char *name,
1652 const struct block *block,
1653 const domain_enum domain)
1654 {
1655 struct symbol *sym;
1656
1657 /* NOTE: carlton/2003-05-19: The comments below were written when
1658 this (or what turned into this) was part of lookup_symbol_aux;
1659 I'm much less worried about these questions now, since these
1660 decisions have turned out well, but I leave these comments here
1661 for posterity. */
1662
1663 /* NOTE: carlton/2002-12-05: There is a question as to whether or
1664 not it would be appropriate to search the current global block
1665 here as well. (That's what this code used to do before the
1666 is_a_field_of_this check was moved up.) On the one hand, it's
1667 redundant with the lookup_symbol_aux_symtabs search that happens
1668 next. On the other hand, if decode_line_1 is passed an argument
1669 like filename:var, then the user presumably wants 'var' to be
1670 searched for in filename. On the third hand, there shouldn't be
1671 multiple global variables all of which are named 'var', and it's
1672 not like decode_line_1 has ever restricted its search to only
1673 global variables in a single filename. All in all, only
1674 searching the static block here seems best: it's correct and it's
1675 cleanest. */
1676
1677 /* NOTE: carlton/2002-12-05: There's also a possible performance
1678 issue here: if you usually search for global symbols in the
1679 current file, then it would be slightly better to search the
1680 current global block before searching all the symtabs. But there
1681 are other factors that have a much greater effect on performance
1682 than that one, so I don't think we should worry about that for
1683 now. */
1684
1685 sym = lookup_symbol_static (name, block, domain);
1686 if (sym != NULL)
1687 return sym;
1688
1689 return lookup_symbol_global (name, block, domain);
1690 }
1691
1692 /* Lookup a symbol in the static block associated to BLOCK, if there
1693 is one; do nothing if BLOCK is NULL or a global block. */
1694
1695 struct symbol *
1696 lookup_symbol_static (const char *name,
1697 const struct block *block,
1698 const domain_enum domain)
1699 {
1700 const struct block *static_block = block_static_block (block);
1701
1702 if (static_block != NULL)
1703 return lookup_symbol_aux_block (name, static_block, domain);
1704 else
1705 return NULL;
1706 }
1707
1708 /* Private data to be used with lookup_symbol_global_iterator_cb. */
1709
1710 struct global_sym_lookup_data
1711 {
1712 /* The name of the symbol we are searching for. */
1713 const char *name;
1714
1715 /* The domain to use for our search. */
1716 domain_enum domain;
1717
1718 /* The field where the callback should store the symbol if found.
1719 It should be initialized to NULL before the search is started. */
1720 struct symbol *result;
1721 };
1722
1723 /* A callback function for gdbarch_iterate_over_objfiles_in_search_order.
1724 It searches by name for a symbol in the GLOBAL_BLOCK of the given
1725 OBJFILE. The arguments for the search are passed via CB_DATA,
1726 which in reality is a pointer to struct global_sym_lookup_data. */
1727
1728 static int
1729 lookup_symbol_global_iterator_cb (struct objfile *objfile,
1730 void *cb_data)
1731 {
1732 struct global_sym_lookup_data *data =
1733 (struct global_sym_lookup_data *) cb_data;
1734
1735 gdb_assert (data->result == NULL);
1736
1737 data->result = lookup_symbol_aux_objfile (objfile, GLOBAL_BLOCK,
1738 data->name, data->domain);
1739 if (data->result == NULL)
1740 data->result = lookup_symbol_aux_quick (objfile, GLOBAL_BLOCK,
1741 data->name, data->domain);
1742
1743 /* If we found a match, tell the iterator to stop. Otherwise,
1744 keep going. */
1745 return (data->result != NULL);
1746 }
1747
1748 /* Lookup a symbol in all files' global blocks (searching psymtabs if
1749 necessary). */
1750
1751 struct symbol *
1752 lookup_symbol_global (const char *name,
1753 const struct block *block,
1754 const domain_enum domain)
1755 {
1756 struct symbol *sym = NULL;
1757 struct objfile *objfile = NULL;
1758 struct global_sym_lookup_data lookup_data;
1759
1760 /* Call library-specific lookup procedure. */
1761 objfile = lookup_objfile_from_block (block);
1762 if (objfile != NULL)
1763 sym = solib_global_lookup (objfile, name, domain);
1764 if (sym != NULL)
1765 return sym;
1766
1767 memset (&lookup_data, 0, sizeof (lookup_data));
1768 lookup_data.name = name;
1769 lookup_data.domain = domain;
1770 gdbarch_iterate_over_objfiles_in_search_order
1771 (objfile != NULL ? get_objfile_arch (objfile) : target_gdbarch (),
1772 lookup_symbol_global_iterator_cb, &lookup_data, objfile);
1773
1774 return lookup_data.result;
1775 }
1776
1777 int
1778 symbol_matches_domain (enum language symbol_language,
1779 domain_enum symbol_domain,
1780 domain_enum domain)
1781 {
1782 /* For C++ "struct foo { ... }" also defines a typedef for "foo".
1783 A Java class declaration also defines a typedef for the class.
1784 Similarly, any Ada type declaration implicitly defines a typedef. */
1785 if (symbol_language == language_cplus
1786 || symbol_language == language_d
1787 || symbol_language == language_java
1788 || symbol_language == language_ada)
1789 {
1790 if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN)
1791 && symbol_domain == STRUCT_DOMAIN)
1792 return 1;
1793 }
1794 /* For all other languages, strict match is required. */
1795 return (symbol_domain == domain);
1796 }
1797
1798 /* Look up a type named NAME in the struct_domain. The type returned
1799 must not be opaque -- i.e., must have at least one field
1800 defined. */
1801
1802 struct type *
1803 lookup_transparent_type (const char *name)
1804 {
1805 return current_language->la_lookup_transparent_type (name);
1806 }
1807
1808 /* A helper for basic_lookup_transparent_type that interfaces with the
1809 "quick" symbol table functions. */
1810
1811 static struct type *
1812 basic_lookup_transparent_type_quick (struct objfile *objfile, int kind,
1813 const char *name)
1814 {
1815 struct symtab *symtab;
1816 struct blockvector *bv;
1817 struct block *block;
1818 struct symbol *sym;
1819
1820 if (!objfile->sf)
1821 return NULL;
1822 symtab = objfile->sf->qf->lookup_symbol (objfile, kind, name, STRUCT_DOMAIN);
1823 if (!symtab)
1824 return NULL;
1825
1826 bv = BLOCKVECTOR (symtab);
1827 block = BLOCKVECTOR_BLOCK (bv, kind);
1828 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1829 if (!sym)
1830 {
1831 int other_kind = kind == GLOBAL_BLOCK ? STATIC_BLOCK : GLOBAL_BLOCK;
1832
1833 /* This shouldn't be necessary, but as a last resort
1834 * try looking in the 'other kind' even though the psymtab
1835 * claimed the symbol was one thing. It's possible that
1836 * the psymtab gets it wrong in some cases.
1837 */
1838 block = BLOCKVECTOR_BLOCK (bv, other_kind);
1839 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1840 if (!sym)
1841 /* FIXME; error is wrong in one case. */
1842 error (_("\
1843 Internal: global symbol `%s' found in %s psymtab but not in symtab.\n\
1844 %s may be an inlined function, or may be a template function\n\
1845 (if a template, try specifying an instantiation: %s<type>)."),
1846 name, symtab->filename, name, name);
1847 }
1848 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1849 return SYMBOL_TYPE (sym);
1850
1851 return NULL;
1852 }
1853
1854 /* The standard implementation of lookup_transparent_type. This code
1855 was modeled on lookup_symbol -- the parts not relevant to looking
1856 up types were just left out. In particular it's assumed here that
1857 types are available in struct_domain and only at file-static or
1858 global blocks. */
1859
1860 struct type *
1861 basic_lookup_transparent_type (const char *name)
1862 {
1863 struct symbol *sym;
1864 struct symtab *s = NULL;
1865 struct blockvector *bv;
1866 struct objfile *objfile;
1867 struct block *block;
1868 struct type *t;
1869
1870 /* Now search all the global symbols. Do the symtab's first, then
1871 check the psymtab's. If a psymtab indicates the existence
1872 of the desired name as a global, then do psymtab-to-symtab
1873 conversion on the fly and return the found symbol. */
1874
1875 ALL_OBJFILES (objfile)
1876 {
1877 if (objfile->sf)
1878 objfile->sf->qf->pre_expand_symtabs_matching (objfile,
1879 GLOBAL_BLOCK,
1880 name, STRUCT_DOMAIN);
1881
1882 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
1883 {
1884 bv = BLOCKVECTOR (s);
1885 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1886 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1887 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1888 {
1889 return SYMBOL_TYPE (sym);
1890 }
1891 }
1892 }
1893
1894 ALL_OBJFILES (objfile)
1895 {
1896 t = basic_lookup_transparent_type_quick (objfile, GLOBAL_BLOCK, name);
1897 if (t)
1898 return t;
1899 }
1900
1901 /* Now search the static file-level symbols.
1902 Not strictly correct, but more useful than an error.
1903 Do the symtab's first, then
1904 check the psymtab's. If a psymtab indicates the existence
1905 of the desired name as a file-level static, then do psymtab-to-symtab
1906 conversion on the fly and return the found symbol. */
1907
1908 ALL_OBJFILES (objfile)
1909 {
1910 if (objfile->sf)
1911 objfile->sf->qf->pre_expand_symtabs_matching (objfile, STATIC_BLOCK,
1912 name, STRUCT_DOMAIN);
1913
1914 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
1915 {
1916 bv = BLOCKVECTOR (s);
1917 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
1918 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1919 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1920 {
1921 return SYMBOL_TYPE (sym);
1922 }
1923 }
1924 }
1925
1926 ALL_OBJFILES (objfile)
1927 {
1928 t = basic_lookup_transparent_type_quick (objfile, STATIC_BLOCK, name);
1929 if (t)
1930 return t;
1931 }
1932
1933 return (struct type *) 0;
1934 }
1935
1936 /* Find the name of the file containing main(). */
1937 /* FIXME: What about languages without main() or specially linked
1938 executables that have no main() ? */
1939
1940 const char *
1941 find_main_filename (void)
1942 {
1943 struct objfile *objfile;
1944 char *name = main_name ();
1945
1946 ALL_OBJFILES (objfile)
1947 {
1948 const char *result;
1949
1950 if (!objfile->sf)
1951 continue;
1952 result = objfile->sf->qf->find_symbol_file (objfile, name);
1953 if (result)
1954 return result;
1955 }
1956 return (NULL);
1957 }
1958
1959 /* Search BLOCK for symbol NAME in DOMAIN.
1960
1961 Note that if NAME is the demangled form of a C++ symbol, we will fail
1962 to find a match during the binary search of the non-encoded names, but
1963 for now we don't worry about the slight inefficiency of looking for
1964 a match we'll never find, since it will go pretty quick. Once the
1965 binary search terminates, we drop through and do a straight linear
1966 search on the symbols. Each symbol which is marked as being a ObjC/C++
1967 symbol (language_cplus or language_objc set) has both the encoded and
1968 non-encoded names tested for a match. */
1969
1970 struct symbol *
1971 lookup_block_symbol (const struct block *block, const char *name,
1972 const domain_enum domain)
1973 {
1974 struct block_iterator iter;
1975 struct symbol *sym;
1976
1977 if (!BLOCK_FUNCTION (block))
1978 {
1979 for (sym = block_iter_name_first (block, name, &iter);
1980 sym != NULL;
1981 sym = block_iter_name_next (name, &iter))
1982 {
1983 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
1984 SYMBOL_DOMAIN (sym), domain))
1985 return sym;
1986 }
1987 return NULL;
1988 }
1989 else
1990 {
1991 /* Note that parameter symbols do not always show up last in the
1992 list; this loop makes sure to take anything else other than
1993 parameter symbols first; it only uses parameter symbols as a
1994 last resort. Note that this only takes up extra computation
1995 time on a match. */
1996
1997 struct symbol *sym_found = NULL;
1998
1999 for (sym = block_iter_name_first (block, name, &iter);
2000 sym != NULL;
2001 sym = block_iter_name_next (name, &iter))
2002 {
2003 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
2004 SYMBOL_DOMAIN (sym), domain))
2005 {
2006 sym_found = sym;
2007 if (!SYMBOL_IS_ARGUMENT (sym))
2008 {
2009 break;
2010 }
2011 }
2012 }
2013 return (sym_found); /* Will be NULL if not found. */
2014 }
2015 }
2016
2017 /* Iterate over the symbols named NAME, matching DOMAIN, starting with
2018 BLOCK.
2019
2020 For each symbol that matches, CALLBACK is called. The symbol and
2021 DATA are passed to the callback.
2022
2023 If CALLBACK returns zero, the iteration ends. Otherwise, the
2024 search continues. This function iterates upward through blocks.
2025 When the outermost block has been finished, the function
2026 returns. */
2027
2028 void
2029 iterate_over_symbols (const struct block *block, const char *name,
2030 const domain_enum domain,
2031 symbol_found_callback_ftype *callback,
2032 void *data)
2033 {
2034 while (block)
2035 {
2036 struct block_iterator iter;
2037 struct symbol *sym;
2038
2039 for (sym = block_iter_name_first (block, name, &iter);
2040 sym != NULL;
2041 sym = block_iter_name_next (name, &iter))
2042 {
2043 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
2044 SYMBOL_DOMAIN (sym), domain))
2045 {
2046 if (!callback (sym, data))
2047 return;
2048 }
2049 }
2050
2051 block = BLOCK_SUPERBLOCK (block);
2052 }
2053 }
2054
2055 /* Find the symtab associated with PC and SECTION. Look through the
2056 psymtabs and read in another symtab if necessary. */
2057
2058 struct symtab *
2059 find_pc_sect_symtab (CORE_ADDR pc, struct obj_section *section)
2060 {
2061 struct block *b;
2062 struct blockvector *bv;
2063 struct symtab *s = NULL;
2064 struct symtab *best_s = NULL;
2065 struct objfile *objfile;
2066 struct program_space *pspace;
2067 CORE_ADDR distance = 0;
2068 struct minimal_symbol *msymbol;
2069
2070 pspace = current_program_space;
2071
2072 /* If we know that this is not a text address, return failure. This is
2073 necessary because we loop based on the block's high and low code
2074 addresses, which do not include the data ranges, and because
2075 we call find_pc_sect_psymtab which has a similar restriction based
2076 on the partial_symtab's texthigh and textlow. */
2077 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
2078 if (msymbol
2079 && (MSYMBOL_TYPE (msymbol) == mst_data
2080 || MSYMBOL_TYPE (msymbol) == mst_bss
2081 || MSYMBOL_TYPE (msymbol) == mst_abs
2082 || MSYMBOL_TYPE (msymbol) == mst_file_data
2083 || MSYMBOL_TYPE (msymbol) == mst_file_bss))
2084 return NULL;
2085
2086 /* Search all symtabs for the one whose file contains our address, and which
2087 is the smallest of all the ones containing the address. This is designed
2088 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
2089 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
2090 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
2091
2092 This happens for native ecoff format, where code from included files
2093 gets its own symtab. The symtab for the included file should have
2094 been read in already via the dependency mechanism.
2095 It might be swifter to create several symtabs with the same name
2096 like xcoff does (I'm not sure).
2097
2098 It also happens for objfiles that have their functions reordered.
2099 For these, the symtab we are looking for is not necessarily read in. */
2100
2101 ALL_PRIMARY_SYMTABS (objfile, s)
2102 {
2103 bv = BLOCKVECTOR (s);
2104 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
2105
2106 if (BLOCK_START (b) <= pc
2107 && BLOCK_END (b) > pc
2108 && (distance == 0
2109 || BLOCK_END (b) - BLOCK_START (b) < distance))
2110 {
2111 /* For an objfile that has its functions reordered,
2112 find_pc_psymtab will find the proper partial symbol table
2113 and we simply return its corresponding symtab. */
2114 /* In order to better support objfiles that contain both
2115 stabs and coff debugging info, we continue on if a psymtab
2116 can't be found. */
2117 if ((objfile->flags & OBJF_REORDERED) && objfile->sf)
2118 {
2119 struct symtab *result;
2120
2121 result
2122 = objfile->sf->qf->find_pc_sect_symtab (objfile,
2123 msymbol,
2124 pc, section,
2125 0);
2126 if (result)
2127 return result;
2128 }
2129 if (section != 0)
2130 {
2131 struct block_iterator iter;
2132 struct symbol *sym = NULL;
2133
2134 ALL_BLOCK_SYMBOLS (b, iter, sym)
2135 {
2136 fixup_symbol_section (sym, objfile);
2137 if (matching_obj_sections (SYMBOL_OBJ_SECTION (sym), section))
2138 break;
2139 }
2140 if (sym == NULL)
2141 continue; /* No symbol in this symtab matches
2142 section. */
2143 }
2144 distance = BLOCK_END (b) - BLOCK_START (b);
2145 best_s = s;
2146 }
2147 }
2148
2149 if (best_s != NULL)
2150 return (best_s);
2151
2152 ALL_OBJFILES (objfile)
2153 {
2154 struct symtab *result;
2155
2156 if (!objfile->sf)
2157 continue;
2158 result = objfile->sf->qf->find_pc_sect_symtab (objfile,
2159 msymbol,
2160 pc, section,
2161 1);
2162 if (result)
2163 return result;
2164 }
2165
2166 return NULL;
2167 }
2168
2169 /* Find the symtab associated with PC. Look through the psymtabs and read
2170 in another symtab if necessary. Backward compatibility, no section. */
2171
2172 struct symtab *
2173 find_pc_symtab (CORE_ADDR pc)
2174 {
2175 return find_pc_sect_symtab (pc, find_pc_mapped_section (pc));
2176 }
2177 \f
2178
2179 /* Find the source file and line number for a given PC value and SECTION.
2180 Return a structure containing a symtab pointer, a line number,
2181 and a pc range for the entire source line.
2182 The value's .pc field is NOT the specified pc.
2183 NOTCURRENT nonzero means, if specified pc is on a line boundary,
2184 use the line that ends there. Otherwise, in that case, the line
2185 that begins there is used. */
2186
2187 /* The big complication here is that a line may start in one file, and end just
2188 before the start of another file. This usually occurs when you #include
2189 code in the middle of a subroutine. To properly find the end of a line's PC
2190 range, we must search all symtabs associated with this compilation unit, and
2191 find the one whose first PC is closer than that of the next line in this
2192 symtab. */
2193
2194 /* If it's worth the effort, we could be using a binary search. */
2195
2196 struct symtab_and_line
2197 find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent)
2198 {
2199 struct symtab *s;
2200 struct linetable *l;
2201 int len;
2202 int i;
2203 struct linetable_entry *item;
2204 struct symtab_and_line val;
2205 struct blockvector *bv;
2206 struct minimal_symbol *msymbol;
2207 struct minimal_symbol *mfunsym;
2208 struct objfile *objfile;
2209
2210 /* Info on best line seen so far, and where it starts, and its file. */
2211
2212 struct linetable_entry *best = NULL;
2213 CORE_ADDR best_end = 0;
2214 struct symtab *best_symtab = 0;
2215
2216 /* Store here the first line number
2217 of a file which contains the line at the smallest pc after PC.
2218 If we don't find a line whose range contains PC,
2219 we will use a line one less than this,
2220 with a range from the start of that file to the first line's pc. */
2221 struct linetable_entry *alt = NULL;
2222 struct symtab *alt_symtab = 0;
2223
2224 /* Info on best line seen in this file. */
2225
2226 struct linetable_entry *prev;
2227
2228 /* If this pc is not from the current frame,
2229 it is the address of the end of a call instruction.
2230 Quite likely that is the start of the following statement.
2231 But what we want is the statement containing the instruction.
2232 Fudge the pc to make sure we get that. */
2233
2234 init_sal (&val); /* initialize to zeroes */
2235
2236 val.pspace = current_program_space;
2237
2238 /* It's tempting to assume that, if we can't find debugging info for
2239 any function enclosing PC, that we shouldn't search for line
2240 number info, either. However, GAS can emit line number info for
2241 assembly files --- very helpful when debugging hand-written
2242 assembly code. In such a case, we'd have no debug info for the
2243 function, but we would have line info. */
2244
2245 if (notcurrent)
2246 pc -= 1;
2247
2248 /* elz: added this because this function returned the wrong
2249 information if the pc belongs to a stub (import/export)
2250 to call a shlib function. This stub would be anywhere between
2251 two functions in the target, and the line info was erroneously
2252 taken to be the one of the line before the pc. */
2253
2254 /* RT: Further explanation:
2255
2256 * We have stubs (trampolines) inserted between procedures.
2257 *
2258 * Example: "shr1" exists in a shared library, and a "shr1" stub also
2259 * exists in the main image.
2260 *
2261 * In the minimal symbol table, we have a bunch of symbols
2262 * sorted by start address. The stubs are marked as "trampoline",
2263 * the others appear as text. E.g.:
2264 *
2265 * Minimal symbol table for main image
2266 * main: code for main (text symbol)
2267 * shr1: stub (trampoline symbol)
2268 * foo: code for foo (text symbol)
2269 * ...
2270 * Minimal symbol table for "shr1" image:
2271 * ...
2272 * shr1: code for shr1 (text symbol)
2273 * ...
2274 *
2275 * So the code below is trying to detect if we are in the stub
2276 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
2277 * and if found, do the symbolization from the real-code address
2278 * rather than the stub address.
2279 *
2280 * Assumptions being made about the minimal symbol table:
2281 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
2282 * if we're really in the trampoline.s If we're beyond it (say
2283 * we're in "foo" in the above example), it'll have a closer
2284 * symbol (the "foo" text symbol for example) and will not
2285 * return the trampoline.
2286 * 2. lookup_minimal_symbol_text() will find a real text symbol
2287 * corresponding to the trampoline, and whose address will
2288 * be different than the trampoline address. I put in a sanity
2289 * check for the address being the same, to avoid an
2290 * infinite recursion.
2291 */
2292 msymbol = lookup_minimal_symbol_by_pc (pc);
2293 if (msymbol != NULL)
2294 if (MSYMBOL_TYPE (msymbol) == mst_solib_trampoline)
2295 {
2296 mfunsym = lookup_minimal_symbol_text (SYMBOL_LINKAGE_NAME (msymbol),
2297 NULL);
2298 if (mfunsym == NULL)
2299 /* I eliminated this warning since it is coming out
2300 * in the following situation:
2301 * gdb shmain // test program with shared libraries
2302 * (gdb) break shr1 // function in shared lib
2303 * Warning: In stub for ...
2304 * In the above situation, the shared lib is not loaded yet,
2305 * so of course we can't find the real func/line info,
2306 * but the "break" still works, and the warning is annoying.
2307 * So I commented out the warning. RT */
2308 /* warning ("In stub for %s; unable to find real function/line info",
2309 SYMBOL_LINKAGE_NAME (msymbol)); */
2310 ;
2311 /* fall through */
2312 else if (SYMBOL_VALUE_ADDRESS (mfunsym)
2313 == SYMBOL_VALUE_ADDRESS (msymbol))
2314 /* Avoid infinite recursion */
2315 /* See above comment about why warning is commented out. */
2316 /* warning ("In stub for %s; unable to find real function/line info",
2317 SYMBOL_LINKAGE_NAME (msymbol)); */
2318 ;
2319 /* fall through */
2320 else
2321 return find_pc_line (SYMBOL_VALUE_ADDRESS (mfunsym), 0);
2322 }
2323
2324
2325 s = find_pc_sect_symtab (pc, section);
2326 if (!s)
2327 {
2328 /* If no symbol information, return previous pc. */
2329 if (notcurrent)
2330 pc++;
2331 val.pc = pc;
2332 return val;
2333 }
2334
2335 bv = BLOCKVECTOR (s);
2336 objfile = s->objfile;
2337
2338 /* Look at all the symtabs that share this blockvector.
2339 They all have the same apriori range, that we found was right;
2340 but they have different line tables. */
2341
2342 ALL_OBJFILE_SYMTABS (objfile, s)
2343 {
2344 if (BLOCKVECTOR (s) != bv)
2345 continue;
2346
2347 /* Find the best line in this symtab. */
2348 l = LINETABLE (s);
2349 if (!l)
2350 continue;
2351 len = l->nitems;
2352 if (len <= 0)
2353 {
2354 /* I think len can be zero if the symtab lacks line numbers
2355 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
2356 I'm not sure which, and maybe it depends on the symbol
2357 reader). */
2358 continue;
2359 }
2360
2361 prev = NULL;
2362 item = l->item; /* Get first line info. */
2363
2364 /* Is this file's first line closer than the first lines of other files?
2365 If so, record this file, and its first line, as best alternate. */
2366 if (item->pc > pc && (!alt || item->pc < alt->pc))
2367 {
2368 alt = item;
2369 alt_symtab = s;
2370 }
2371
2372 for (i = 0; i < len; i++, item++)
2373 {
2374 /* Leave prev pointing to the linetable entry for the last line
2375 that started at or before PC. */
2376 if (item->pc > pc)
2377 break;
2378
2379 prev = item;
2380 }
2381
2382 /* At this point, prev points at the line whose start addr is <= pc, and
2383 item points at the next line. If we ran off the end of the linetable
2384 (pc >= start of the last line), then prev == item. If pc < start of
2385 the first line, prev will not be set. */
2386
2387 /* Is this file's best line closer than the best in the other files?
2388 If so, record this file, and its best line, as best so far. Don't
2389 save prev if it represents the end of a function (i.e. line number
2390 0) instead of a real line. */
2391
2392 if (prev && prev->line && (!best || prev->pc > best->pc))
2393 {
2394 best = prev;
2395 best_symtab = s;
2396
2397 /* Discard BEST_END if it's before the PC of the current BEST. */
2398 if (best_end <= best->pc)
2399 best_end = 0;
2400 }
2401
2402 /* If another line (denoted by ITEM) is in the linetable and its
2403 PC is after BEST's PC, but before the current BEST_END, then
2404 use ITEM's PC as the new best_end. */
2405 if (best && i < len && item->pc > best->pc
2406 && (best_end == 0 || best_end > item->pc))
2407 best_end = item->pc;
2408 }
2409
2410 if (!best_symtab)
2411 {
2412 /* If we didn't find any line number info, just return zeros.
2413 We used to return alt->line - 1 here, but that could be
2414 anywhere; if we don't have line number info for this PC,
2415 don't make some up. */
2416 val.pc = pc;
2417 }
2418 else if (best->line == 0)
2419 {
2420 /* If our best fit is in a range of PC's for which no line
2421 number info is available (line number is zero) then we didn't
2422 find any valid line information. */
2423 val.pc = pc;
2424 }
2425 else
2426 {
2427 val.symtab = best_symtab;
2428 val.line = best->line;
2429 val.pc = best->pc;
2430 if (best_end && (!alt || best_end < alt->pc))
2431 val.end = best_end;
2432 else if (alt)
2433 val.end = alt->pc;
2434 else
2435 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
2436 }
2437 val.section = section;
2438 return val;
2439 }
2440
2441 /* Backward compatibility (no section). */
2442
2443 struct symtab_and_line
2444 find_pc_line (CORE_ADDR pc, int notcurrent)
2445 {
2446 struct obj_section *section;
2447
2448 section = find_pc_overlay (pc);
2449 if (pc_in_unmapped_range (pc, section))
2450 pc = overlay_mapped_address (pc, section);
2451 return find_pc_sect_line (pc, section, notcurrent);
2452 }
2453 \f
2454 /* Find line number LINE in any symtab whose name is the same as
2455 SYMTAB.
2456
2457 If found, return the symtab that contains the linetable in which it was
2458 found, set *INDEX to the index in the linetable of the best entry
2459 found, and set *EXACT_MATCH nonzero if the value returned is an
2460 exact match.
2461
2462 If not found, return NULL. */
2463
2464 struct symtab *
2465 find_line_symtab (struct symtab *symtab, int line,
2466 int *index, int *exact_match)
2467 {
2468 int exact = 0; /* Initialized here to avoid a compiler warning. */
2469
2470 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
2471 so far seen. */
2472
2473 int best_index;
2474 struct linetable *best_linetable;
2475 struct symtab *best_symtab;
2476
2477 /* First try looking it up in the given symtab. */
2478 best_linetable = LINETABLE (symtab);
2479 best_symtab = symtab;
2480 best_index = find_line_common (best_linetable, line, &exact, 0);
2481 if (best_index < 0 || !exact)
2482 {
2483 /* Didn't find an exact match. So we better keep looking for
2484 another symtab with the same name. In the case of xcoff,
2485 multiple csects for one source file (produced by IBM's FORTRAN
2486 compiler) produce multiple symtabs (this is unavoidable
2487 assuming csects can be at arbitrary places in memory and that
2488 the GLOBAL_BLOCK of a symtab has a begin and end address). */
2489
2490 /* BEST is the smallest linenumber > LINE so far seen,
2491 or 0 if none has been seen so far.
2492 BEST_INDEX and BEST_LINETABLE identify the item for it. */
2493 int best;
2494
2495 struct objfile *objfile;
2496 struct symtab *s;
2497
2498 if (best_index >= 0)
2499 best = best_linetable->item[best_index].line;
2500 else
2501 best = 0;
2502
2503 ALL_OBJFILES (objfile)
2504 {
2505 if (objfile->sf)
2506 objfile->sf->qf->expand_symtabs_with_filename (objfile,
2507 symtab->filename);
2508 }
2509
2510 /* Get symbol full file name if possible. */
2511 symtab_to_fullname (symtab);
2512
2513 ALL_SYMTABS (objfile, s)
2514 {
2515 struct linetable *l;
2516 int ind;
2517
2518 if (FILENAME_CMP (symtab->filename, s->filename) != 0)
2519 continue;
2520 if (symtab->fullname != NULL
2521 && symtab_to_fullname (s) != NULL
2522 && FILENAME_CMP (symtab->fullname, s->fullname) != 0)
2523 continue;
2524 l = LINETABLE (s);
2525 ind = find_line_common (l, line, &exact, 0);
2526 if (ind >= 0)
2527 {
2528 if (exact)
2529 {
2530 best_index = ind;
2531 best_linetable = l;
2532 best_symtab = s;
2533 goto done;
2534 }
2535 if (best == 0 || l->item[ind].line < best)
2536 {
2537 best = l->item[ind].line;
2538 best_index = ind;
2539 best_linetable = l;
2540 best_symtab = s;
2541 }
2542 }
2543 }
2544 }
2545 done:
2546 if (best_index < 0)
2547 return NULL;
2548
2549 if (index)
2550 *index = best_index;
2551 if (exact_match)
2552 *exact_match = exact;
2553
2554 return best_symtab;
2555 }
2556
2557 /* Given SYMTAB, returns all the PCs function in the symtab that
2558 exactly match LINE. Returns NULL if there are no exact matches,
2559 but updates BEST_ITEM in this case. */
2560
2561 VEC (CORE_ADDR) *
2562 find_pcs_for_symtab_line (struct symtab *symtab, int line,
2563 struct linetable_entry **best_item)
2564 {
2565 int start = 0, ix;
2566 struct symbol *previous_function = NULL;
2567 VEC (CORE_ADDR) *result = NULL;
2568
2569 /* First, collect all the PCs that are at this line. */
2570 while (1)
2571 {
2572 int was_exact;
2573 int idx;
2574
2575 idx = find_line_common (LINETABLE (symtab), line, &was_exact, start);
2576 if (idx < 0)
2577 break;
2578
2579 if (!was_exact)
2580 {
2581 struct linetable_entry *item = &LINETABLE (symtab)->item[idx];
2582
2583 if (*best_item == NULL || item->line < (*best_item)->line)
2584 *best_item = item;
2585
2586 break;
2587 }
2588
2589 VEC_safe_push (CORE_ADDR, result, LINETABLE (symtab)->item[idx].pc);
2590 start = idx + 1;
2591 }
2592
2593 return result;
2594 }
2595
2596 \f
2597 /* Set the PC value for a given source file and line number and return true.
2598 Returns zero for invalid line number (and sets the PC to 0).
2599 The source file is specified with a struct symtab. */
2600
2601 int
2602 find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
2603 {
2604 struct linetable *l;
2605 int ind;
2606
2607 *pc = 0;
2608 if (symtab == 0)
2609 return 0;
2610
2611 symtab = find_line_symtab (symtab, line, &ind, NULL);
2612 if (symtab != NULL)
2613 {
2614 l = LINETABLE (symtab);
2615 *pc = l->item[ind].pc;
2616 return 1;
2617 }
2618 else
2619 return 0;
2620 }
2621
2622 /* Find the range of pc values in a line.
2623 Store the starting pc of the line into *STARTPTR
2624 and the ending pc (start of next line) into *ENDPTR.
2625 Returns 1 to indicate success.
2626 Returns 0 if could not find the specified line. */
2627
2628 int
2629 find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
2630 CORE_ADDR *endptr)
2631 {
2632 CORE_ADDR startaddr;
2633 struct symtab_and_line found_sal;
2634
2635 startaddr = sal.pc;
2636 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
2637 return 0;
2638
2639 /* This whole function is based on address. For example, if line 10 has
2640 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
2641 "info line *0x123" should say the line goes from 0x100 to 0x200
2642 and "info line *0x355" should say the line goes from 0x300 to 0x400.
2643 This also insures that we never give a range like "starts at 0x134
2644 and ends at 0x12c". */
2645
2646 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
2647 if (found_sal.line != sal.line)
2648 {
2649 /* The specified line (sal) has zero bytes. */
2650 *startptr = found_sal.pc;
2651 *endptr = found_sal.pc;
2652 }
2653 else
2654 {
2655 *startptr = found_sal.pc;
2656 *endptr = found_sal.end;
2657 }
2658 return 1;
2659 }
2660
2661 /* Given a line table and a line number, return the index into the line
2662 table for the pc of the nearest line whose number is >= the specified one.
2663 Return -1 if none is found. The value is >= 0 if it is an index.
2664 START is the index at which to start searching the line table.
2665
2666 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
2667
2668 static int
2669 find_line_common (struct linetable *l, int lineno,
2670 int *exact_match, int start)
2671 {
2672 int i;
2673 int len;
2674
2675 /* BEST is the smallest linenumber > LINENO so far seen,
2676 or 0 if none has been seen so far.
2677 BEST_INDEX identifies the item for it. */
2678
2679 int best_index = -1;
2680 int best = 0;
2681
2682 *exact_match = 0;
2683
2684 if (lineno <= 0)
2685 return -1;
2686 if (l == 0)
2687 return -1;
2688
2689 len = l->nitems;
2690 for (i = start; i < len; i++)
2691 {
2692 struct linetable_entry *item = &(l->item[i]);
2693
2694 if (item->line == lineno)
2695 {
2696 /* Return the first (lowest address) entry which matches. */
2697 *exact_match = 1;
2698 return i;
2699 }
2700
2701 if (item->line > lineno && (best == 0 || item->line < best))
2702 {
2703 best = item->line;
2704 best_index = i;
2705 }
2706 }
2707
2708 /* If we got here, we didn't get an exact match. */
2709 return best_index;
2710 }
2711
2712 int
2713 find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
2714 {
2715 struct symtab_and_line sal;
2716
2717 sal = find_pc_line (pc, 0);
2718 *startptr = sal.pc;
2719 *endptr = sal.end;
2720 return sal.symtab != 0;
2721 }
2722
2723 /* Given a function start address FUNC_ADDR and SYMTAB, find the first
2724 address for that function that has an entry in SYMTAB's line info
2725 table. If such an entry cannot be found, return FUNC_ADDR
2726 unaltered. */
2727
2728 static CORE_ADDR
2729 skip_prologue_using_lineinfo (CORE_ADDR func_addr, struct symtab *symtab)
2730 {
2731 CORE_ADDR func_start, func_end;
2732 struct linetable *l;
2733 int i;
2734
2735 /* Give up if this symbol has no lineinfo table. */
2736 l = LINETABLE (symtab);
2737 if (l == NULL)
2738 return func_addr;
2739
2740 /* Get the range for the function's PC values, or give up if we
2741 cannot, for some reason. */
2742 if (!find_pc_partial_function (func_addr, NULL, &func_start, &func_end))
2743 return func_addr;
2744
2745 /* Linetable entries are ordered by PC values, see the commentary in
2746 symtab.h where `struct linetable' is defined. Thus, the first
2747 entry whose PC is in the range [FUNC_START..FUNC_END[ is the
2748 address we are looking for. */
2749 for (i = 0; i < l->nitems; i++)
2750 {
2751 struct linetable_entry *item = &(l->item[i]);
2752
2753 /* Don't use line numbers of zero, they mark special entries in
2754 the table. See the commentary on symtab.h before the
2755 definition of struct linetable. */
2756 if (item->line > 0 && func_start <= item->pc && item->pc < func_end)
2757 return item->pc;
2758 }
2759
2760 return func_addr;
2761 }
2762
2763 /* Given a function symbol SYM, find the symtab and line for the start
2764 of the function.
2765 If the argument FUNFIRSTLINE is nonzero, we want the first line
2766 of real code inside the function. */
2767
2768 struct symtab_and_line
2769 find_function_start_sal (struct symbol *sym, int funfirstline)
2770 {
2771 struct symtab_and_line sal;
2772
2773 fixup_symbol_section (sym, NULL);
2774 sal = find_pc_sect_line (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)),
2775 SYMBOL_OBJ_SECTION (sym), 0);
2776
2777 /* We always should have a line for the function start address.
2778 If we don't, something is odd. Create a plain SAL refering
2779 just the PC and hope that skip_prologue_sal (if requested)
2780 can find a line number for after the prologue. */
2781 if (sal.pc < BLOCK_START (SYMBOL_BLOCK_VALUE (sym)))
2782 {
2783 init_sal (&sal);
2784 sal.pspace = current_program_space;
2785 sal.pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
2786 sal.section = SYMBOL_OBJ_SECTION (sym);
2787 }
2788
2789 if (funfirstline)
2790 skip_prologue_sal (&sal);
2791
2792 return sal;
2793 }
2794
2795 /* Adjust SAL to the first instruction past the function prologue.
2796 If the PC was explicitly specified, the SAL is not changed.
2797 If the line number was explicitly specified, at most the SAL's PC
2798 is updated. If SAL is already past the prologue, then do nothing. */
2799
2800 void
2801 skip_prologue_sal (struct symtab_and_line *sal)
2802 {
2803 struct symbol *sym;
2804 struct symtab_and_line start_sal;
2805 struct cleanup *old_chain;
2806 CORE_ADDR pc, saved_pc;
2807 struct obj_section *section;
2808 const char *name;
2809 struct objfile *objfile;
2810 struct gdbarch *gdbarch;
2811 struct block *b, *function_block;
2812 int force_skip, skip;
2813
2814 /* Do not change the SAL if PC was specified explicitly. */
2815 if (sal->explicit_pc)
2816 return;
2817
2818 old_chain = save_current_space_and_thread ();
2819 switch_to_program_space_and_thread (sal->pspace);
2820
2821 sym = find_pc_sect_function (sal->pc, sal->section);
2822 if (sym != NULL)
2823 {
2824 fixup_symbol_section (sym, NULL);
2825
2826 pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
2827 section = SYMBOL_OBJ_SECTION (sym);
2828 name = SYMBOL_LINKAGE_NAME (sym);
2829 objfile = SYMBOL_SYMTAB (sym)->objfile;
2830 }
2831 else
2832 {
2833 struct minimal_symbol *msymbol
2834 = lookup_minimal_symbol_by_pc_section (sal->pc, sal->section);
2835
2836 if (msymbol == NULL)
2837 {
2838 do_cleanups (old_chain);
2839 return;
2840 }
2841
2842 pc = SYMBOL_VALUE_ADDRESS (msymbol);
2843 section = SYMBOL_OBJ_SECTION (msymbol);
2844 name = SYMBOL_LINKAGE_NAME (msymbol);
2845 objfile = msymbol_objfile (msymbol);
2846 }
2847
2848 gdbarch = get_objfile_arch (objfile);
2849
2850 /* Process the prologue in two passes. In the first pass try to skip the
2851 prologue (SKIP is true) and verify there is a real need for it (indicated
2852 by FORCE_SKIP). If no such reason was found run a second pass where the
2853 prologue is not skipped (SKIP is false). */
2854
2855 skip = 1;
2856 force_skip = 1;
2857
2858 /* Be conservative - allow direct PC (without skipping prologue) only if we
2859 have proven the CU (Compilation Unit) supports it. sal->SYMTAB does not
2860 have to be set by the caller so we use SYM instead. */
2861 if (sym && SYMBOL_SYMTAB (sym)->locations_valid)
2862 force_skip = 0;
2863
2864 saved_pc = pc;
2865 do
2866 {
2867 pc = saved_pc;
2868
2869 /* If the function is in an unmapped overlay, use its unmapped LMA address,
2870 so that gdbarch_skip_prologue has something unique to work on. */
2871 if (section_is_overlay (section) && !section_is_mapped (section))
2872 pc = overlay_unmapped_address (pc, section);
2873
2874 /* Skip "first line" of function (which is actually its prologue). */
2875 pc += gdbarch_deprecated_function_start_offset (gdbarch);
2876 if (skip)
2877 pc = gdbarch_skip_prologue (gdbarch, pc);
2878
2879 /* For overlays, map pc back into its mapped VMA range. */
2880 pc = overlay_mapped_address (pc, section);
2881
2882 /* Calculate line number. */
2883 start_sal = find_pc_sect_line (pc, section, 0);
2884
2885 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
2886 line is still part of the same function. */
2887 if (skip && start_sal.pc != pc
2888 && (sym ? (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) <= start_sal.end
2889 && start_sal.end < BLOCK_END (SYMBOL_BLOCK_VALUE (sym)))
2890 : (lookup_minimal_symbol_by_pc_section (start_sal.end, section)
2891 == lookup_minimal_symbol_by_pc_section (pc, section))))
2892 {
2893 /* First pc of next line */
2894 pc = start_sal.end;
2895 /* Recalculate the line number (might not be N+1). */
2896 start_sal = find_pc_sect_line (pc, section, 0);
2897 }
2898
2899 /* On targets with executable formats that don't have a concept of
2900 constructors (ELF with .init has, PE doesn't), gcc emits a call
2901 to `__main' in `main' between the prologue and before user
2902 code. */
2903 if (gdbarch_skip_main_prologue_p (gdbarch)
2904 && name && strcmp_iw (name, "main") == 0)
2905 {
2906 pc = gdbarch_skip_main_prologue (gdbarch, pc);
2907 /* Recalculate the line number (might not be N+1). */
2908 start_sal = find_pc_sect_line (pc, section, 0);
2909 force_skip = 1;
2910 }
2911 }
2912 while (!force_skip && skip--);
2913
2914 /* If we still don't have a valid source line, try to find the first
2915 PC in the lineinfo table that belongs to the same function. This
2916 happens with COFF debug info, which does not seem to have an
2917 entry in lineinfo table for the code after the prologue which has
2918 no direct relation to source. For example, this was found to be
2919 the case with the DJGPP target using "gcc -gcoff" when the
2920 compiler inserted code after the prologue to make sure the stack
2921 is aligned. */
2922 if (!force_skip && sym && start_sal.symtab == NULL)
2923 {
2924 pc = skip_prologue_using_lineinfo (pc, SYMBOL_SYMTAB (sym));
2925 /* Recalculate the line number. */
2926 start_sal = find_pc_sect_line (pc, section, 0);
2927 }
2928
2929 do_cleanups (old_chain);
2930
2931 /* If we're already past the prologue, leave SAL unchanged. Otherwise
2932 forward SAL to the end of the prologue. */
2933 if (sal->pc >= pc)
2934 return;
2935
2936 sal->pc = pc;
2937 sal->section = section;
2938
2939 /* Unless the explicit_line flag was set, update the SAL line
2940 and symtab to correspond to the modified PC location. */
2941 if (sal->explicit_line)
2942 return;
2943
2944 sal->symtab = start_sal.symtab;
2945 sal->line = start_sal.line;
2946 sal->end = start_sal.end;
2947
2948 /* Check if we are now inside an inlined function. If we can,
2949 use the call site of the function instead. */
2950 b = block_for_pc_sect (sal->pc, sal->section);
2951 function_block = NULL;
2952 while (b != NULL)
2953 {
2954 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
2955 function_block = b;
2956 else if (BLOCK_FUNCTION (b) != NULL)
2957 break;
2958 b = BLOCK_SUPERBLOCK (b);
2959 }
2960 if (function_block != NULL
2961 && SYMBOL_LINE (BLOCK_FUNCTION (function_block)) != 0)
2962 {
2963 sal->line = SYMBOL_LINE (BLOCK_FUNCTION (function_block));
2964 sal->symtab = SYMBOL_SYMTAB (BLOCK_FUNCTION (function_block));
2965 }
2966 }
2967
2968 /* If P is of the form "operator[ \t]+..." where `...' is
2969 some legitimate operator text, return a pointer to the
2970 beginning of the substring of the operator text.
2971 Otherwise, return "". */
2972
2973 static char *
2974 operator_chars (char *p, char **end)
2975 {
2976 *end = "";
2977 if (strncmp (p, "operator", 8))
2978 return *end;
2979 p += 8;
2980
2981 /* Don't get faked out by `operator' being part of a longer
2982 identifier. */
2983 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
2984 return *end;
2985
2986 /* Allow some whitespace between `operator' and the operator symbol. */
2987 while (*p == ' ' || *p == '\t')
2988 p++;
2989
2990 /* Recognize 'operator TYPENAME'. */
2991
2992 if (isalpha (*p) || *p == '_' || *p == '$')
2993 {
2994 char *q = p + 1;
2995
2996 while (isalnum (*q) || *q == '_' || *q == '$')
2997 q++;
2998 *end = q;
2999 return p;
3000 }
3001
3002 while (*p)
3003 switch (*p)
3004 {
3005 case '\\': /* regexp quoting */
3006 if (p[1] == '*')
3007 {
3008 if (p[2] == '=') /* 'operator\*=' */
3009 *end = p + 3;
3010 else /* 'operator\*' */
3011 *end = p + 2;
3012 return p;
3013 }
3014 else if (p[1] == '[')
3015 {
3016 if (p[2] == ']')
3017 error (_("mismatched quoting on brackets, "
3018 "try 'operator\\[\\]'"));
3019 else if (p[2] == '\\' && p[3] == ']')
3020 {
3021 *end = p + 4; /* 'operator\[\]' */
3022 return p;
3023 }
3024 else
3025 error (_("nothing is allowed between '[' and ']'"));
3026 }
3027 else
3028 {
3029 /* Gratuitous qoute: skip it and move on. */
3030 p++;
3031 continue;
3032 }
3033 break;
3034 case '!':
3035 case '=':
3036 case '*':
3037 case '/':
3038 case '%':
3039 case '^':
3040 if (p[1] == '=')
3041 *end = p + 2;
3042 else
3043 *end = p + 1;
3044 return p;
3045 case '<':
3046 case '>':
3047 case '+':
3048 case '-':
3049 case '&':
3050 case '|':
3051 if (p[0] == '-' && p[1] == '>')
3052 {
3053 /* Struct pointer member operator 'operator->'. */
3054 if (p[2] == '*')
3055 {
3056 *end = p + 3; /* 'operator->*' */
3057 return p;
3058 }
3059 else if (p[2] == '\\')
3060 {
3061 *end = p + 4; /* Hopefully 'operator->\*' */
3062 return p;
3063 }
3064 else
3065 {
3066 *end = p + 2; /* 'operator->' */
3067 return p;
3068 }
3069 }
3070 if (p[1] == '=' || p[1] == p[0])
3071 *end = p + 2;
3072 else
3073 *end = p + 1;
3074 return p;
3075 case '~':
3076 case ',':
3077 *end = p + 1;
3078 return p;
3079 case '(':
3080 if (p[1] != ')')
3081 error (_("`operator ()' must be specified "
3082 "without whitespace in `()'"));
3083 *end = p + 2;
3084 return p;
3085 case '?':
3086 if (p[1] != ':')
3087 error (_("`operator ?:' must be specified "
3088 "without whitespace in `?:'"));
3089 *end = p + 2;
3090 return p;
3091 case '[':
3092 if (p[1] != ']')
3093 error (_("`operator []' must be specified "
3094 "without whitespace in `[]'"));
3095 *end = p + 2;
3096 return p;
3097 default:
3098 error (_("`operator %s' not supported"), p);
3099 break;
3100 }
3101
3102 *end = "";
3103 return *end;
3104 }
3105 \f
3106
3107 /* Cache to watch for file names already seen by filename_seen. */
3108
3109 struct filename_seen_cache
3110 {
3111 /* Table of files seen so far. */
3112 htab_t tab;
3113 /* Initial size of the table. It automagically grows from here. */
3114 #define INITIAL_FILENAME_SEEN_CACHE_SIZE 100
3115 };
3116
3117 /* filename_seen_cache constructor. */
3118
3119 static struct filename_seen_cache *
3120 create_filename_seen_cache (void)
3121 {
3122 struct filename_seen_cache *cache;
3123
3124 cache = XNEW (struct filename_seen_cache);
3125 cache->tab = htab_create_alloc (INITIAL_FILENAME_SEEN_CACHE_SIZE,
3126 filename_hash, filename_eq,
3127 NULL, xcalloc, xfree);
3128
3129 return cache;
3130 }
3131
3132 /* Empty the cache, but do not delete it. */
3133
3134 static void
3135 clear_filename_seen_cache (struct filename_seen_cache *cache)
3136 {
3137 htab_empty (cache->tab);
3138 }
3139
3140 /* filename_seen_cache destructor.
3141 This takes a void * argument as it is generally used as a cleanup. */
3142
3143 static void
3144 delete_filename_seen_cache (void *ptr)
3145 {
3146 struct filename_seen_cache *cache = ptr;
3147
3148 htab_delete (cache->tab);
3149 xfree (cache);
3150 }
3151
3152 /* If FILE is not already in the table of files in CACHE, return zero;
3153 otherwise return non-zero. Optionally add FILE to the table if ADD
3154 is non-zero.
3155
3156 NOTE: We don't manage space for FILE, we assume FILE lives as long
3157 as the caller needs. */
3158
3159 static int
3160 filename_seen (struct filename_seen_cache *cache, const char *file, int add)
3161 {
3162 void **slot;
3163
3164 /* Is FILE in tab? */
3165 slot = htab_find_slot (cache->tab, file, add ? INSERT : NO_INSERT);
3166 if (*slot != NULL)
3167 return 1;
3168
3169 /* No; maybe add it to tab. */
3170 if (add)
3171 *slot = (char *) file;
3172
3173 return 0;
3174 }
3175
3176 /* Data structure to maintain printing state for output_source_filename. */
3177
3178 struct output_source_filename_data
3179 {
3180 /* Cache of what we've seen so far. */
3181 struct filename_seen_cache *filename_seen_cache;
3182
3183 /* Flag of whether we're printing the first one. */
3184 int first;
3185 };
3186
3187 /* Slave routine for sources_info. Force line breaks at ,'s.
3188 NAME is the name to print.
3189 DATA contains the state for printing and watching for duplicates. */
3190
3191 static void
3192 output_source_filename (const char *name,
3193 struct output_source_filename_data *data)
3194 {
3195 /* Since a single source file can result in several partial symbol
3196 tables, we need to avoid printing it more than once. Note: if
3197 some of the psymtabs are read in and some are not, it gets
3198 printed both under "Source files for which symbols have been
3199 read" and "Source files for which symbols will be read in on
3200 demand". I consider this a reasonable way to deal with the
3201 situation. I'm not sure whether this can also happen for
3202 symtabs; it doesn't hurt to check. */
3203
3204 /* Was NAME already seen? */
3205 if (filename_seen (data->filename_seen_cache, name, 1))
3206 {
3207 /* Yes; don't print it again. */
3208 return;
3209 }
3210
3211 /* No; print it and reset *FIRST. */
3212 if (! data->first)
3213 printf_filtered (", ");
3214 data->first = 0;
3215
3216 wrap_here ("");
3217 fputs_filtered (name, gdb_stdout);
3218 }
3219
3220 /* A callback for map_partial_symbol_filenames. */
3221
3222 static void
3223 output_partial_symbol_filename (const char *filename, const char *fullname,
3224 void *data)
3225 {
3226 output_source_filename (fullname ? fullname : filename, data);
3227 }
3228
3229 static void
3230 sources_info (char *ignore, int from_tty)
3231 {
3232 struct symtab *s;
3233 struct objfile *objfile;
3234 struct output_source_filename_data data;
3235 struct cleanup *cleanups;
3236
3237 if (!have_full_symbols () && !have_partial_symbols ())
3238 {
3239 error (_("No symbol table is loaded. Use the \"file\" command."));
3240 }
3241
3242 data.filename_seen_cache = create_filename_seen_cache ();
3243 cleanups = make_cleanup (delete_filename_seen_cache,
3244 data.filename_seen_cache);
3245
3246 printf_filtered ("Source files for which symbols have been read in:\n\n");
3247
3248 data.first = 1;
3249 ALL_SYMTABS (objfile, s)
3250 {
3251 const char *fullname = symtab_to_fullname (s);
3252
3253 output_source_filename (fullname ? fullname : s->filename, &data);
3254 }
3255 printf_filtered ("\n\n");
3256
3257 printf_filtered ("Source files for which symbols "
3258 "will be read in on demand:\n\n");
3259
3260 clear_filename_seen_cache (data.filename_seen_cache);
3261 data.first = 1;
3262 map_partial_symbol_filenames (output_partial_symbol_filename, &data,
3263 1 /*need_fullname*/);
3264 printf_filtered ("\n");
3265
3266 do_cleanups (cleanups);
3267 }
3268
3269 static int
3270 file_matches (const char *file, char *files[], int nfiles)
3271 {
3272 int i;
3273
3274 if (file != NULL && nfiles != 0)
3275 {
3276 for (i = 0; i < nfiles; i++)
3277 {
3278 if (filename_cmp (files[i], lbasename (file)) == 0)
3279 return 1;
3280 }
3281 }
3282 else if (nfiles == 0)
3283 return 1;
3284 return 0;
3285 }
3286
3287 /* Free any memory associated with a search. */
3288
3289 void
3290 free_search_symbols (struct symbol_search *symbols)
3291 {
3292 struct symbol_search *p;
3293 struct symbol_search *next;
3294
3295 for (p = symbols; p != NULL; p = next)
3296 {
3297 next = p->next;
3298 xfree (p);
3299 }
3300 }
3301
3302 static void
3303 do_free_search_symbols_cleanup (void *symbols)
3304 {
3305 free_search_symbols (symbols);
3306 }
3307
3308 struct cleanup *
3309 make_cleanup_free_search_symbols (struct symbol_search *symbols)
3310 {
3311 return make_cleanup (do_free_search_symbols_cleanup, symbols);
3312 }
3313
3314 /* Helper function for sort_search_symbols and qsort. Can only
3315 sort symbols, not minimal symbols. */
3316
3317 static int
3318 compare_search_syms (const void *sa, const void *sb)
3319 {
3320 struct symbol_search **sym_a = (struct symbol_search **) sa;
3321 struct symbol_search **sym_b = (struct symbol_search **) sb;
3322
3323 return strcmp (SYMBOL_PRINT_NAME ((*sym_a)->symbol),
3324 SYMBOL_PRINT_NAME ((*sym_b)->symbol));
3325 }
3326
3327 /* Sort the ``nfound'' symbols in the list after prevtail. Leave
3328 prevtail where it is, but update its next pointer to point to
3329 the first of the sorted symbols. */
3330
3331 static struct symbol_search *
3332 sort_search_symbols (struct symbol_search *prevtail, int nfound)
3333 {
3334 struct symbol_search **symbols, *symp, *old_next;
3335 int i;
3336
3337 symbols = (struct symbol_search **) xmalloc (sizeof (struct symbol_search *)
3338 * nfound);
3339 symp = prevtail->next;
3340 for (i = 0; i < nfound; i++)
3341 {
3342 symbols[i] = symp;
3343 symp = symp->next;
3344 }
3345 /* Generally NULL. */
3346 old_next = symp;
3347
3348 qsort (symbols, nfound, sizeof (struct symbol_search *),
3349 compare_search_syms);
3350
3351 symp = prevtail;
3352 for (i = 0; i < nfound; i++)
3353 {
3354 symp->next = symbols[i];
3355 symp = symp->next;
3356 }
3357 symp->next = old_next;
3358
3359 xfree (symbols);
3360 return symp;
3361 }
3362
3363 /* An object of this type is passed as the user_data to the
3364 expand_symtabs_matching method. */
3365 struct search_symbols_data
3366 {
3367 int nfiles;
3368 char **files;
3369
3370 /* It is true if PREG contains valid data, false otherwise. */
3371 unsigned preg_p : 1;
3372 regex_t preg;
3373 };
3374
3375 /* A callback for expand_symtabs_matching. */
3376
3377 static int
3378 search_symbols_file_matches (const char *filename, void *user_data)
3379 {
3380 struct search_symbols_data *data = user_data;
3381
3382 return file_matches (filename, data->files, data->nfiles);
3383 }
3384
3385 /* A callback for expand_symtabs_matching. */
3386
3387 static int
3388 search_symbols_name_matches (const char *symname, void *user_data)
3389 {
3390 struct search_symbols_data *data = user_data;
3391
3392 return !data->preg_p || regexec (&data->preg, symname, 0, NULL, 0) == 0;
3393 }
3394
3395 /* Search the symbol table for matches to the regular expression REGEXP,
3396 returning the results in *MATCHES.
3397
3398 Only symbols of KIND are searched:
3399 VARIABLES_DOMAIN - search all symbols, excluding functions, type names,
3400 and constants (enums)
3401 FUNCTIONS_DOMAIN - search all functions
3402 TYPES_DOMAIN - search all type names
3403 ALL_DOMAIN - an internal error for this function
3404
3405 free_search_symbols should be called when *MATCHES is no longer needed.
3406
3407 The results are sorted locally; each symtab's global and static blocks are
3408 separately alphabetized. */
3409
3410 void
3411 search_symbols (char *regexp, enum search_domain kind,
3412 int nfiles, char *files[],
3413 struct symbol_search **matches)
3414 {
3415 struct symtab *s;
3416 struct blockvector *bv;
3417 struct block *b;
3418 int i = 0;
3419 struct block_iterator iter;
3420 struct symbol *sym;
3421 struct objfile *objfile;
3422 struct minimal_symbol *msymbol;
3423 int found_misc = 0;
3424 static const enum minimal_symbol_type types[]
3425 = {mst_data, mst_text, mst_abs};
3426 static const enum minimal_symbol_type types2[]
3427 = {mst_bss, mst_file_text, mst_abs};
3428 static const enum minimal_symbol_type types3[]
3429 = {mst_file_data, mst_solib_trampoline, mst_abs};
3430 static const enum minimal_symbol_type types4[]
3431 = {mst_file_bss, mst_text_gnu_ifunc, mst_abs};
3432 enum minimal_symbol_type ourtype;
3433 enum minimal_symbol_type ourtype2;
3434 enum minimal_symbol_type ourtype3;
3435 enum minimal_symbol_type ourtype4;
3436 struct symbol_search *sr;
3437 struct symbol_search *psr;
3438 struct symbol_search *tail;
3439 struct search_symbols_data datum;
3440
3441 /* OLD_CHAIN .. RETVAL_CHAIN is always freed, RETVAL_CHAIN .. current
3442 CLEANUP_CHAIN is freed only in the case of an error. */
3443 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
3444 struct cleanup *retval_chain;
3445
3446 gdb_assert (kind <= TYPES_DOMAIN);
3447
3448 ourtype = types[kind];
3449 ourtype2 = types2[kind];
3450 ourtype3 = types3[kind];
3451 ourtype4 = types4[kind];
3452
3453 sr = *matches = NULL;
3454 tail = NULL;
3455 datum.preg_p = 0;
3456
3457 if (regexp != NULL)
3458 {
3459 /* Make sure spacing is right for C++ operators.
3460 This is just a courtesy to make the matching less sensitive
3461 to how many spaces the user leaves between 'operator'
3462 and <TYPENAME> or <OPERATOR>. */
3463 char *opend;
3464 char *opname = operator_chars (regexp, &opend);
3465 int errcode;
3466
3467 if (*opname)
3468 {
3469 int fix = -1; /* -1 means ok; otherwise number of
3470 spaces needed. */
3471
3472 if (isalpha (*opname) || *opname == '_' || *opname == '$')
3473 {
3474 /* There should 1 space between 'operator' and 'TYPENAME'. */
3475 if (opname[-1] != ' ' || opname[-2] == ' ')
3476 fix = 1;
3477 }
3478 else
3479 {
3480 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
3481 if (opname[-1] == ' ')
3482 fix = 0;
3483 }
3484 /* If wrong number of spaces, fix it. */
3485 if (fix >= 0)
3486 {
3487 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
3488
3489 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
3490 regexp = tmp;
3491 }
3492 }
3493
3494 errcode = regcomp (&datum.preg, regexp,
3495 REG_NOSUB | (case_sensitivity == case_sensitive_off
3496 ? REG_ICASE : 0));
3497 if (errcode != 0)
3498 {
3499 char *err = get_regcomp_error (errcode, &datum.preg);
3500
3501 make_cleanup (xfree, err);
3502 error (_("Invalid regexp (%s): %s"), err, regexp);
3503 }
3504 datum.preg_p = 1;
3505 make_regfree_cleanup (&datum.preg);
3506 }
3507
3508 /* Search through the partial symtabs *first* for all symbols
3509 matching the regexp. That way we don't have to reproduce all of
3510 the machinery below. */
3511
3512 datum.nfiles = nfiles;
3513 datum.files = files;
3514 ALL_OBJFILES (objfile)
3515 {
3516 if (objfile->sf)
3517 objfile->sf->qf->expand_symtabs_matching (objfile,
3518 (nfiles == 0
3519 ? NULL
3520 : search_symbols_file_matches),
3521 search_symbols_name_matches,
3522 kind,
3523 &datum);
3524 }
3525
3526 retval_chain = old_chain;
3527
3528 /* Here, we search through the minimal symbol tables for functions
3529 and variables that match, and force their symbols to be read.
3530 This is in particular necessary for demangled variable names,
3531 which are no longer put into the partial symbol tables.
3532 The symbol will then be found during the scan of symtabs below.
3533
3534 For functions, find_pc_symtab should succeed if we have debug info
3535 for the function, for variables we have to call
3536 lookup_symbol_in_objfile_from_linkage_name to determine if the variable
3537 has debug info.
3538 If the lookup fails, set found_misc so that we will rescan to print
3539 any matching symbols without debug info.
3540 We only search the objfile the msymbol came from, we no longer search
3541 all objfiles. In large programs (1000s of shared libs) searching all
3542 objfiles is not worth the pain. */
3543
3544 if (nfiles == 0 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
3545 {
3546 ALL_MSYMBOLS (objfile, msymbol)
3547 {
3548 QUIT;
3549
3550 if (msymbol->created_by_gdb)
3551 continue;
3552
3553 if (MSYMBOL_TYPE (msymbol) == ourtype
3554 || MSYMBOL_TYPE (msymbol) == ourtype2
3555 || MSYMBOL_TYPE (msymbol) == ourtype3
3556 || MSYMBOL_TYPE (msymbol) == ourtype4)
3557 {
3558 if (!datum.preg_p
3559 || regexec (&datum.preg, SYMBOL_NATURAL_NAME (msymbol), 0,
3560 NULL, 0) == 0)
3561 {
3562 /* Note: An important side-effect of these lookup functions
3563 is to expand the symbol table if msymbol is found, for the
3564 benefit of the next loop on ALL_PRIMARY_SYMTABS. */
3565 if (kind == FUNCTIONS_DOMAIN
3566 ? find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol)) == NULL
3567 : (lookup_symbol_in_objfile_from_linkage_name
3568 (objfile, SYMBOL_LINKAGE_NAME (msymbol), VAR_DOMAIN)
3569 == NULL))
3570 found_misc = 1;
3571 }
3572 }
3573 }
3574 }
3575
3576 ALL_PRIMARY_SYMTABS (objfile, s)
3577 {
3578 bv = BLOCKVECTOR (s);
3579 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
3580 {
3581 struct symbol_search *prevtail = tail;
3582 int nfound = 0;
3583
3584 b = BLOCKVECTOR_BLOCK (bv, i);
3585 ALL_BLOCK_SYMBOLS (b, iter, sym)
3586 {
3587 struct symtab *real_symtab = SYMBOL_SYMTAB (sym);
3588
3589 QUIT;
3590
3591 if (file_matches (real_symtab->filename, files, nfiles)
3592 && ((!datum.preg_p
3593 || regexec (&datum.preg, SYMBOL_NATURAL_NAME (sym), 0,
3594 NULL, 0) == 0)
3595 && ((kind == VARIABLES_DOMAIN
3596 && SYMBOL_CLASS (sym) != LOC_TYPEDEF
3597 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
3598 && SYMBOL_CLASS (sym) != LOC_BLOCK
3599 /* LOC_CONST can be used for more than just enums,
3600 e.g., c++ static const members.
3601 We only want to skip enums here. */
3602 && !(SYMBOL_CLASS (sym) == LOC_CONST
3603 && TYPE_CODE (SYMBOL_TYPE (sym))
3604 == TYPE_CODE_ENUM))
3605 || (kind == FUNCTIONS_DOMAIN
3606 && SYMBOL_CLASS (sym) == LOC_BLOCK)
3607 || (kind == TYPES_DOMAIN
3608 && SYMBOL_CLASS (sym) == LOC_TYPEDEF))))
3609 {
3610 /* match */
3611 psr = (struct symbol_search *)
3612 xmalloc (sizeof (struct symbol_search));
3613 psr->block = i;
3614 psr->symtab = real_symtab;
3615 psr->symbol = sym;
3616 psr->msymbol = NULL;
3617 psr->next = NULL;
3618 if (tail == NULL)
3619 sr = psr;
3620 else
3621 tail->next = psr;
3622 tail = psr;
3623 nfound ++;
3624 }
3625 }
3626 if (nfound > 0)
3627 {
3628 if (prevtail == NULL)
3629 {
3630 struct symbol_search dummy;
3631
3632 dummy.next = sr;
3633 tail = sort_search_symbols (&dummy, nfound);
3634 sr = dummy.next;
3635
3636 make_cleanup_free_search_symbols (sr);
3637 }
3638 else
3639 tail = sort_search_symbols (prevtail, nfound);
3640 }
3641 }
3642 }
3643
3644 /* If there are no eyes, avoid all contact. I mean, if there are
3645 no debug symbols, then print directly from the msymbol_vector. */
3646
3647 if (found_misc || (nfiles == 0 && kind != FUNCTIONS_DOMAIN))
3648 {
3649 ALL_MSYMBOLS (objfile, msymbol)
3650 {
3651 QUIT;
3652
3653 if (msymbol->created_by_gdb)
3654 continue;
3655
3656 if (MSYMBOL_TYPE (msymbol) == ourtype
3657 || MSYMBOL_TYPE (msymbol) == ourtype2
3658 || MSYMBOL_TYPE (msymbol) == ourtype3
3659 || MSYMBOL_TYPE (msymbol) == ourtype4)
3660 {
3661 if (!datum.preg_p
3662 || regexec (&datum.preg, SYMBOL_NATURAL_NAME (msymbol), 0,
3663 NULL, 0) == 0)
3664 {
3665 /* For functions we can do a quick check of whether the
3666 symbol might be found via find_pc_symtab. */
3667 if (kind != FUNCTIONS_DOMAIN
3668 || find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol)) == NULL)
3669 {
3670 if (lookup_symbol_in_objfile_from_linkage_name
3671 (objfile, SYMBOL_LINKAGE_NAME (msymbol), VAR_DOMAIN)
3672 == NULL)
3673 {
3674 /* match */
3675 psr = (struct symbol_search *)
3676 xmalloc (sizeof (struct symbol_search));
3677 psr->block = i;
3678 psr->msymbol = msymbol;
3679 psr->symtab = NULL;
3680 psr->symbol = NULL;
3681 psr->next = NULL;
3682 if (tail == NULL)
3683 {
3684 sr = psr;
3685 make_cleanup_free_search_symbols (sr);
3686 }
3687 else
3688 tail->next = psr;
3689 tail = psr;
3690 }
3691 }
3692 }
3693 }
3694 }
3695 }
3696
3697 discard_cleanups (retval_chain);
3698 do_cleanups (old_chain);
3699 *matches = sr;
3700 }
3701
3702 /* Helper function for symtab_symbol_info, this function uses
3703 the data returned from search_symbols() to print information
3704 regarding the match to gdb_stdout. */
3705
3706 static void
3707 print_symbol_info (enum search_domain kind,
3708 struct symtab *s, struct symbol *sym,
3709 int block, char *last)
3710 {
3711 if (last == NULL || filename_cmp (last, s->filename) != 0)
3712 {
3713 fputs_filtered ("\nFile ", gdb_stdout);
3714 fputs_filtered (s->filename, gdb_stdout);
3715 fputs_filtered (":\n", gdb_stdout);
3716 }
3717
3718 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
3719 printf_filtered ("static ");
3720
3721 /* Typedef that is not a C++ class. */
3722 if (kind == TYPES_DOMAIN
3723 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
3724 typedef_print (SYMBOL_TYPE (sym), sym, gdb_stdout);
3725 /* variable, func, or typedef-that-is-c++-class. */
3726 else if (kind < TYPES_DOMAIN
3727 || (kind == TYPES_DOMAIN
3728 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
3729 {
3730 type_print (SYMBOL_TYPE (sym),
3731 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
3732 ? "" : SYMBOL_PRINT_NAME (sym)),
3733 gdb_stdout, 0);
3734
3735 printf_filtered (";\n");
3736 }
3737 }
3738
3739 /* This help function for symtab_symbol_info() prints information
3740 for non-debugging symbols to gdb_stdout. */
3741
3742 static void
3743 print_msymbol_info (struct minimal_symbol *msymbol)
3744 {
3745 struct gdbarch *gdbarch = get_objfile_arch (msymbol_objfile (msymbol));
3746 char *tmp;
3747
3748 if (gdbarch_addr_bit (gdbarch) <= 32)
3749 tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol)
3750 & (CORE_ADDR) 0xffffffff,
3751 8);
3752 else
3753 tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol),
3754 16);
3755 printf_filtered ("%s %s\n",
3756 tmp, SYMBOL_PRINT_NAME (msymbol));
3757 }
3758
3759 /* This is the guts of the commands "info functions", "info types", and
3760 "info variables". It calls search_symbols to find all matches and then
3761 print_[m]symbol_info to print out some useful information about the
3762 matches. */
3763
3764 static void
3765 symtab_symbol_info (char *regexp, enum search_domain kind, int from_tty)
3766 {
3767 static const char * const classnames[] =
3768 {"variable", "function", "type"};
3769 struct symbol_search *symbols;
3770 struct symbol_search *p;
3771 struct cleanup *old_chain;
3772 char *last_filename = NULL;
3773 int first = 1;
3774
3775 gdb_assert (kind <= TYPES_DOMAIN);
3776
3777 /* Must make sure that if we're interrupted, symbols gets freed. */
3778 search_symbols (regexp, kind, 0, (char **) NULL, &symbols);
3779 old_chain = make_cleanup_free_search_symbols (symbols);
3780
3781 if (regexp != NULL)
3782 printf_filtered (_("All %ss matching regular expression \"%s\":\n"),
3783 classnames[kind], regexp);
3784 else
3785 printf_filtered (_("All defined %ss:\n"), classnames[kind]);
3786
3787 for (p = symbols; p != NULL; p = p->next)
3788 {
3789 QUIT;
3790
3791 if (p->msymbol != NULL)
3792 {
3793 if (first)
3794 {
3795 printf_filtered (_("\nNon-debugging symbols:\n"));
3796 first = 0;
3797 }
3798 print_msymbol_info (p->msymbol);
3799 }
3800 else
3801 {
3802 print_symbol_info (kind,
3803 p->symtab,
3804 p->symbol,
3805 p->block,
3806 last_filename);
3807 last_filename = p->symtab->filename;
3808 }
3809 }
3810
3811 do_cleanups (old_chain);
3812 }
3813
3814 static void
3815 variables_info (char *regexp, int from_tty)
3816 {
3817 symtab_symbol_info (regexp, VARIABLES_DOMAIN, from_tty);
3818 }
3819
3820 static void
3821 functions_info (char *regexp, int from_tty)
3822 {
3823 symtab_symbol_info (regexp, FUNCTIONS_DOMAIN, from_tty);
3824 }
3825
3826
3827 static void
3828 types_info (char *regexp, int from_tty)
3829 {
3830 symtab_symbol_info (regexp, TYPES_DOMAIN, from_tty);
3831 }
3832
3833 /* Breakpoint all functions matching regular expression. */
3834
3835 void
3836 rbreak_command_wrapper (char *regexp, int from_tty)
3837 {
3838 rbreak_command (regexp, from_tty);
3839 }
3840
3841 /* A cleanup function that calls end_rbreak_breakpoints. */
3842
3843 static void
3844 do_end_rbreak_breakpoints (void *ignore)
3845 {
3846 end_rbreak_breakpoints ();
3847 }
3848
3849 static void
3850 rbreak_command (char *regexp, int from_tty)
3851 {
3852 struct symbol_search *ss;
3853 struct symbol_search *p;
3854 struct cleanup *old_chain;
3855 char *string = NULL;
3856 int len = 0;
3857 char **files = NULL, *file_name;
3858 int nfiles = 0;
3859
3860 if (regexp)
3861 {
3862 char *colon = strchr (regexp, ':');
3863
3864 if (colon && *(colon + 1) != ':')
3865 {
3866 int colon_index;
3867
3868 colon_index = colon - regexp;
3869 file_name = alloca (colon_index + 1);
3870 memcpy (file_name, regexp, colon_index);
3871 file_name[colon_index--] = 0;
3872 while (isspace (file_name[colon_index]))
3873 file_name[colon_index--] = 0;
3874 files = &file_name;
3875 nfiles = 1;
3876 regexp = colon + 1;
3877 while (isspace (*regexp)) regexp++;
3878 }
3879 }
3880
3881 search_symbols (regexp, FUNCTIONS_DOMAIN, nfiles, files, &ss);
3882 old_chain = make_cleanup_free_search_symbols (ss);
3883 make_cleanup (free_current_contents, &string);
3884
3885 start_rbreak_breakpoints ();
3886 make_cleanup (do_end_rbreak_breakpoints, NULL);
3887 for (p = ss; p != NULL; p = p->next)
3888 {
3889 if (p->msymbol == NULL)
3890 {
3891 int newlen = (strlen (p->symtab->filename)
3892 + strlen (SYMBOL_LINKAGE_NAME (p->symbol))
3893 + 4);
3894
3895 if (newlen > len)
3896 {
3897 string = xrealloc (string, newlen);
3898 len = newlen;
3899 }
3900 strcpy (string, p->symtab->filename);
3901 strcat (string, ":'");
3902 strcat (string, SYMBOL_LINKAGE_NAME (p->symbol));
3903 strcat (string, "'");
3904 break_command (string, from_tty);
3905 print_symbol_info (FUNCTIONS_DOMAIN,
3906 p->symtab,
3907 p->symbol,
3908 p->block,
3909 p->symtab->filename);
3910 }
3911 else
3912 {
3913 int newlen = (strlen (SYMBOL_LINKAGE_NAME (p->msymbol)) + 3);
3914
3915 if (newlen > len)
3916 {
3917 string = xrealloc (string, newlen);
3918 len = newlen;
3919 }
3920 strcpy (string, "'");
3921 strcat (string, SYMBOL_LINKAGE_NAME (p->msymbol));
3922 strcat (string, "'");
3923
3924 break_command (string, from_tty);
3925 printf_filtered ("<function, no debug info> %s;\n",
3926 SYMBOL_PRINT_NAME (p->msymbol));
3927 }
3928 }
3929
3930 do_cleanups (old_chain);
3931 }
3932 \f
3933
3934 /* Evaluate if NAME matches SYM_TEXT and SYM_TEXT_LEN.
3935
3936 Either sym_text[sym_text_len] != '(' and then we search for any
3937 symbol starting with SYM_TEXT text.
3938
3939 Otherwise sym_text[sym_text_len] == '(' and then we require symbol name to
3940 be terminated at that point. Partial symbol tables do not have parameters
3941 information. */
3942
3943 static int
3944 compare_symbol_name (const char *name, const char *sym_text, int sym_text_len)
3945 {
3946 int (*ncmp) (const char *, const char *, size_t);
3947
3948 ncmp = (case_sensitivity == case_sensitive_on ? strncmp : strncasecmp);
3949
3950 if (ncmp (name, sym_text, sym_text_len) != 0)
3951 return 0;
3952
3953 if (sym_text[sym_text_len] == '(')
3954 {
3955 /* User searches for `name(someth...'. Require NAME to be terminated.
3956 Normally psymtabs and gdbindex have no parameter types so '\0' will be
3957 present but accept even parameters presence. In this case this
3958 function is in fact strcmp_iw but whitespace skipping is not supported
3959 for tab completion. */
3960
3961 if (name[sym_text_len] != '\0' && name[sym_text_len] != '(')
3962 return 0;
3963 }
3964
3965 return 1;
3966 }
3967
3968 /* Free any memory associated with a completion list. */
3969
3970 static void
3971 free_completion_list (VEC (char_ptr) **list_ptr)
3972 {
3973 int i;
3974 char *p;
3975
3976 for (i = 0; VEC_iterate (char_ptr, *list_ptr, i, p); ++i)
3977 xfree (p);
3978 VEC_free (char_ptr, *list_ptr);
3979 }
3980
3981 /* Callback for make_cleanup. */
3982
3983 static void
3984 do_free_completion_list (void *list)
3985 {
3986 free_completion_list (list);
3987 }
3988
3989 /* Helper routine for make_symbol_completion_list. */
3990
3991 static VEC (char_ptr) *return_val;
3992
3993 #define COMPLETION_LIST_ADD_SYMBOL(symbol, sym_text, len, text, word) \
3994 completion_list_add_name \
3995 (SYMBOL_NATURAL_NAME (symbol), (sym_text), (len), (text), (word))
3996
3997 /* Test to see if the symbol specified by SYMNAME (which is already
3998 demangled for C++ symbols) matches SYM_TEXT in the first SYM_TEXT_LEN
3999 characters. If so, add it to the current completion list. */
4000
4001 static void
4002 completion_list_add_name (const char *symname,
4003 const char *sym_text, int sym_text_len,
4004 const char *text, const char *word)
4005 {
4006 int newsize;
4007
4008 /* Clip symbols that cannot match. */
4009 if (!compare_symbol_name (symname, sym_text, sym_text_len))
4010 return;
4011
4012 /* We have a match for a completion, so add SYMNAME to the current list
4013 of matches. Note that the name is moved to freshly malloc'd space. */
4014
4015 {
4016 char *new;
4017
4018 if (word == sym_text)
4019 {
4020 new = xmalloc (strlen (symname) + 5);
4021 strcpy (new, symname);
4022 }
4023 else if (word > sym_text)
4024 {
4025 /* Return some portion of symname. */
4026 new = xmalloc (strlen (symname) + 5);
4027 strcpy (new, symname + (word - sym_text));
4028 }
4029 else
4030 {
4031 /* Return some of SYM_TEXT plus symname. */
4032 new = xmalloc (strlen (symname) + (sym_text - word) + 5);
4033 strncpy (new, word, sym_text - word);
4034 new[sym_text - word] = '\0';
4035 strcat (new, symname);
4036 }
4037
4038 VEC_safe_push (char_ptr, return_val, new);
4039 }
4040 }
4041
4042 /* ObjC: In case we are completing on a selector, look as the msymbol
4043 again and feed all the selectors into the mill. */
4044
4045 static void
4046 completion_list_objc_symbol (struct minimal_symbol *msymbol,
4047 const char *sym_text, int sym_text_len,
4048 const char *text, const char *word)
4049 {
4050 static char *tmp = NULL;
4051 static unsigned int tmplen = 0;
4052
4053 const char *method, *category, *selector;
4054 char *tmp2 = NULL;
4055
4056 method = SYMBOL_NATURAL_NAME (msymbol);
4057
4058 /* Is it a method? */
4059 if ((method[0] != '-') && (method[0] != '+'))
4060 return;
4061
4062 if (sym_text[0] == '[')
4063 /* Complete on shortened method method. */
4064 completion_list_add_name (method + 1, sym_text, sym_text_len, text, word);
4065
4066 while ((strlen (method) + 1) >= tmplen)
4067 {
4068 if (tmplen == 0)
4069 tmplen = 1024;
4070 else
4071 tmplen *= 2;
4072 tmp = xrealloc (tmp, tmplen);
4073 }
4074 selector = strchr (method, ' ');
4075 if (selector != NULL)
4076 selector++;
4077
4078 category = strchr (method, '(');
4079
4080 if ((category != NULL) && (selector != NULL))
4081 {
4082 memcpy (tmp, method, (category - method));
4083 tmp[category - method] = ' ';
4084 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
4085 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
4086 if (sym_text[0] == '[')
4087 completion_list_add_name (tmp + 1, sym_text, sym_text_len, text, word);
4088 }
4089
4090 if (selector != NULL)
4091 {
4092 /* Complete on selector only. */
4093 strcpy (tmp, selector);
4094 tmp2 = strchr (tmp, ']');
4095 if (tmp2 != NULL)
4096 *tmp2 = '\0';
4097
4098 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
4099 }
4100 }
4101
4102 /* Break the non-quoted text based on the characters which are in
4103 symbols. FIXME: This should probably be language-specific. */
4104
4105 static char *
4106 language_search_unquoted_string (char *text, char *p)
4107 {
4108 for (; p > text; --p)
4109 {
4110 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
4111 continue;
4112 else
4113 {
4114 if ((current_language->la_language == language_objc))
4115 {
4116 if (p[-1] == ':') /* Might be part of a method name. */
4117 continue;
4118 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
4119 p -= 2; /* Beginning of a method name. */
4120 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
4121 { /* Might be part of a method name. */
4122 char *t = p;
4123
4124 /* Seeing a ' ' or a '(' is not conclusive evidence
4125 that we are in the middle of a method name. However,
4126 finding "-[" or "+[" should be pretty un-ambiguous.
4127 Unfortunately we have to find it now to decide. */
4128
4129 while (t > text)
4130 if (isalnum (t[-1]) || t[-1] == '_' ||
4131 t[-1] == ' ' || t[-1] == ':' ||
4132 t[-1] == '(' || t[-1] == ')')
4133 --t;
4134 else
4135 break;
4136
4137 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
4138 p = t - 2; /* Method name detected. */
4139 /* Else we leave with p unchanged. */
4140 }
4141 }
4142 break;
4143 }
4144 }
4145 return p;
4146 }
4147
4148 static void
4149 completion_list_add_fields (struct symbol *sym, char *sym_text,
4150 int sym_text_len, char *text, char *word)
4151 {
4152 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4153 {
4154 struct type *t = SYMBOL_TYPE (sym);
4155 enum type_code c = TYPE_CODE (t);
4156 int j;
4157
4158 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
4159 for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++)
4160 if (TYPE_FIELD_NAME (t, j))
4161 completion_list_add_name (TYPE_FIELD_NAME (t, j),
4162 sym_text, sym_text_len, text, word);
4163 }
4164 }
4165
4166 /* Type of the user_data argument passed to add_macro_name or
4167 expand_partial_symbol_name. The contents are simply whatever is
4168 needed by completion_list_add_name. */
4169 struct add_name_data
4170 {
4171 char *sym_text;
4172 int sym_text_len;
4173 char *text;
4174 char *word;
4175 };
4176
4177 /* A callback used with macro_for_each and macro_for_each_in_scope.
4178 This adds a macro's name to the current completion list. */
4179
4180 static void
4181 add_macro_name (const char *name, const struct macro_definition *ignore,
4182 struct macro_source_file *ignore2, int ignore3,
4183 void *user_data)
4184 {
4185 struct add_name_data *datum = (struct add_name_data *) user_data;
4186
4187 completion_list_add_name ((char *) name,
4188 datum->sym_text, datum->sym_text_len,
4189 datum->text, datum->word);
4190 }
4191
4192 /* A callback for expand_partial_symbol_names. */
4193
4194 static int
4195 expand_partial_symbol_name (const char *name, void *user_data)
4196 {
4197 struct add_name_data *datum = (struct add_name_data *) user_data;
4198
4199 return compare_symbol_name (name, datum->sym_text, datum->sym_text_len);
4200 }
4201
4202 VEC (char_ptr) *
4203 default_make_symbol_completion_list_break_on (char *text, char *word,
4204 const char *break_on)
4205 {
4206 /* Problem: All of the symbols have to be copied because readline
4207 frees them. I'm not going to worry about this; hopefully there
4208 won't be that many. */
4209
4210 struct symbol *sym;
4211 struct symtab *s;
4212 struct minimal_symbol *msymbol;
4213 struct objfile *objfile;
4214 struct block *b;
4215 const struct block *surrounding_static_block, *surrounding_global_block;
4216 struct block_iterator iter;
4217 /* The symbol we are completing on. Points in same buffer as text. */
4218 char *sym_text;
4219 /* Length of sym_text. */
4220 int sym_text_len;
4221 struct add_name_data datum;
4222 struct cleanup *back_to;
4223
4224 /* Now look for the symbol we are supposed to complete on. */
4225 {
4226 char *p;
4227 char quote_found;
4228 char *quote_pos = NULL;
4229
4230 /* First see if this is a quoted string. */
4231 quote_found = '\0';
4232 for (p = text; *p != '\0'; ++p)
4233 {
4234 if (quote_found != '\0')
4235 {
4236 if (*p == quote_found)
4237 /* Found close quote. */
4238 quote_found = '\0';
4239 else if (*p == '\\' && p[1] == quote_found)
4240 /* A backslash followed by the quote character
4241 doesn't end the string. */
4242 ++p;
4243 }
4244 else if (*p == '\'' || *p == '"')
4245 {
4246 quote_found = *p;
4247 quote_pos = p;
4248 }
4249 }
4250 if (quote_found == '\'')
4251 /* A string within single quotes can be a symbol, so complete on it. */
4252 sym_text = quote_pos + 1;
4253 else if (quote_found == '"')
4254 /* A double-quoted string is never a symbol, nor does it make sense
4255 to complete it any other way. */
4256 {
4257 return NULL;
4258 }
4259 else
4260 {
4261 /* It is not a quoted string. Break it based on the characters
4262 which are in symbols. */
4263 while (p > text)
4264 {
4265 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0'
4266 || p[-1] == ':' || strchr (break_on, p[-1]) != NULL)
4267 --p;
4268 else
4269 break;
4270 }
4271 sym_text = p;
4272 }
4273 }
4274
4275 sym_text_len = strlen (sym_text);
4276
4277 /* Prepare SYM_TEXT_LEN for compare_symbol_name. */
4278
4279 if (current_language->la_language == language_cplus
4280 || current_language->la_language == language_java
4281 || current_language->la_language == language_fortran)
4282 {
4283 /* These languages may have parameters entered by user but they are never
4284 present in the partial symbol tables. */
4285
4286 const char *cs = memchr (sym_text, '(', sym_text_len);
4287
4288 if (cs)
4289 sym_text_len = cs - sym_text;
4290 }
4291 gdb_assert (sym_text[sym_text_len] == '\0' || sym_text[sym_text_len] == '(');
4292
4293 return_val = NULL;
4294 back_to = make_cleanup (do_free_completion_list, &return_val);
4295
4296 datum.sym_text = sym_text;
4297 datum.sym_text_len = sym_text_len;
4298 datum.text = text;
4299 datum.word = word;
4300
4301 /* Look through the partial symtabs for all symbols which begin
4302 by matching SYM_TEXT. Expand all CUs that you find to the list.
4303 The real names will get added by COMPLETION_LIST_ADD_SYMBOL below. */
4304 expand_partial_symbol_names (expand_partial_symbol_name, &datum);
4305
4306 /* At this point scan through the misc symbol vectors and add each
4307 symbol you find to the list. Eventually we want to ignore
4308 anything that isn't a text symbol (everything else will be
4309 handled by the psymtab code above). */
4310
4311 ALL_MSYMBOLS (objfile, msymbol)
4312 {
4313 QUIT;
4314 COMPLETION_LIST_ADD_SYMBOL (msymbol, sym_text, sym_text_len, text, word);
4315
4316 completion_list_objc_symbol (msymbol, sym_text, sym_text_len, text, word);
4317 }
4318
4319 /* Search upwards from currently selected frame (so that we can
4320 complete on local vars). Also catch fields of types defined in
4321 this places which match our text string. Only complete on types
4322 visible from current context. */
4323
4324 b = get_selected_block (0);
4325 surrounding_static_block = block_static_block (b);
4326 surrounding_global_block = block_global_block (b);
4327 if (surrounding_static_block != NULL)
4328 while (b != surrounding_static_block)
4329 {
4330 QUIT;
4331
4332 ALL_BLOCK_SYMBOLS (b, iter, sym)
4333 {
4334 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text,
4335 word);
4336 completion_list_add_fields (sym, sym_text, sym_text_len, text,
4337 word);
4338 }
4339
4340 /* Stop when we encounter an enclosing function. Do not stop for
4341 non-inlined functions - the locals of the enclosing function
4342 are in scope for a nested function. */
4343 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
4344 break;
4345 b = BLOCK_SUPERBLOCK (b);
4346 }
4347
4348 /* Add fields from the file's types; symbols will be added below. */
4349
4350 if (surrounding_static_block != NULL)
4351 ALL_BLOCK_SYMBOLS (surrounding_static_block, iter, sym)
4352 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
4353
4354 if (surrounding_global_block != NULL)
4355 ALL_BLOCK_SYMBOLS (surrounding_global_block, iter, sym)
4356 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
4357
4358 /* Go through the symtabs and check the externs and statics for
4359 symbols which match. */
4360
4361 ALL_PRIMARY_SYMTABS (objfile, s)
4362 {
4363 QUIT;
4364 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
4365 ALL_BLOCK_SYMBOLS (b, iter, sym)
4366 {
4367 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4368 }
4369 }
4370
4371 ALL_PRIMARY_SYMTABS (objfile, s)
4372 {
4373 QUIT;
4374 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
4375 ALL_BLOCK_SYMBOLS (b, iter, sym)
4376 {
4377 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4378 }
4379 }
4380
4381 if (current_language->la_macro_expansion == macro_expansion_c)
4382 {
4383 struct macro_scope *scope;
4384
4385 /* Add any macros visible in the default scope. Note that this
4386 may yield the occasional wrong result, because an expression
4387 might be evaluated in a scope other than the default. For
4388 example, if the user types "break file:line if <TAB>", the
4389 resulting expression will be evaluated at "file:line" -- but
4390 at there does not seem to be a way to detect this at
4391 completion time. */
4392 scope = default_macro_scope ();
4393 if (scope)
4394 {
4395 macro_for_each_in_scope (scope->file, scope->line,
4396 add_macro_name, &datum);
4397 xfree (scope);
4398 }
4399
4400 /* User-defined macros are always visible. */
4401 macro_for_each (macro_user_macros, add_macro_name, &datum);
4402 }
4403
4404 discard_cleanups (back_to);
4405 return (return_val);
4406 }
4407
4408 VEC (char_ptr) *
4409 default_make_symbol_completion_list (char *text, char *word)
4410 {
4411 return default_make_symbol_completion_list_break_on (text, word, "");
4412 }
4413
4414 /* Return a vector of all symbols (regardless of class) which begin by
4415 matching TEXT. If the answer is no symbols, then the return value
4416 is NULL. */
4417
4418 VEC (char_ptr) *
4419 make_symbol_completion_list (char *text, char *word)
4420 {
4421 return current_language->la_make_symbol_completion_list (text, word);
4422 }
4423
4424 /* Like make_symbol_completion_list, but suitable for use as a
4425 completion function. */
4426
4427 VEC (char_ptr) *
4428 make_symbol_completion_list_fn (struct cmd_list_element *ignore,
4429 char *text, char *word)
4430 {
4431 return make_symbol_completion_list (text, word);
4432 }
4433
4434 /* Like make_symbol_completion_list, but returns a list of symbols
4435 defined in a source file FILE. */
4436
4437 VEC (char_ptr) *
4438 make_file_symbol_completion_list (char *text, char *word, char *srcfile)
4439 {
4440 struct symbol *sym;
4441 struct symtab *s;
4442 struct block *b;
4443 struct block_iterator iter;
4444 /* The symbol we are completing on. Points in same buffer as text. */
4445 char *sym_text;
4446 /* Length of sym_text. */
4447 int sym_text_len;
4448
4449 /* Now look for the symbol we are supposed to complete on.
4450 FIXME: This should be language-specific. */
4451 {
4452 char *p;
4453 char quote_found;
4454 char *quote_pos = NULL;
4455
4456 /* First see if this is a quoted string. */
4457 quote_found = '\0';
4458 for (p = text; *p != '\0'; ++p)
4459 {
4460 if (quote_found != '\0')
4461 {
4462 if (*p == quote_found)
4463 /* Found close quote. */
4464 quote_found = '\0';
4465 else if (*p == '\\' && p[1] == quote_found)
4466 /* A backslash followed by the quote character
4467 doesn't end the string. */
4468 ++p;
4469 }
4470 else if (*p == '\'' || *p == '"')
4471 {
4472 quote_found = *p;
4473 quote_pos = p;
4474 }
4475 }
4476 if (quote_found == '\'')
4477 /* A string within single quotes can be a symbol, so complete on it. */
4478 sym_text = quote_pos + 1;
4479 else if (quote_found == '"')
4480 /* A double-quoted string is never a symbol, nor does it make sense
4481 to complete it any other way. */
4482 {
4483 return NULL;
4484 }
4485 else
4486 {
4487 /* Not a quoted string. */
4488 sym_text = language_search_unquoted_string (text, p);
4489 }
4490 }
4491
4492 sym_text_len = strlen (sym_text);
4493
4494 return_val = NULL;
4495
4496 /* Find the symtab for SRCFILE (this loads it if it was not yet read
4497 in). */
4498 s = lookup_symtab (srcfile);
4499 if (s == NULL)
4500 {
4501 /* Maybe they typed the file with leading directories, while the
4502 symbol tables record only its basename. */
4503 const char *tail = lbasename (srcfile);
4504
4505 if (tail > srcfile)
4506 s = lookup_symtab (tail);
4507 }
4508
4509 /* If we have no symtab for that file, return an empty list. */
4510 if (s == NULL)
4511 return (return_val);
4512
4513 /* Go through this symtab and check the externs and statics for
4514 symbols which match. */
4515
4516 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
4517 ALL_BLOCK_SYMBOLS (b, iter, sym)
4518 {
4519 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4520 }
4521
4522 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
4523 ALL_BLOCK_SYMBOLS (b, iter, sym)
4524 {
4525 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4526 }
4527
4528 return (return_val);
4529 }
4530
4531 /* A helper function for make_source_files_completion_list. It adds
4532 another file name to a list of possible completions, growing the
4533 list as necessary. */
4534
4535 static void
4536 add_filename_to_list (const char *fname, char *text, char *word,
4537 VEC (char_ptr) **list)
4538 {
4539 char *new;
4540 size_t fnlen = strlen (fname);
4541
4542 if (word == text)
4543 {
4544 /* Return exactly fname. */
4545 new = xmalloc (fnlen + 5);
4546 strcpy (new, fname);
4547 }
4548 else if (word > text)
4549 {
4550 /* Return some portion of fname. */
4551 new = xmalloc (fnlen + 5);
4552 strcpy (new, fname + (word - text));
4553 }
4554 else
4555 {
4556 /* Return some of TEXT plus fname. */
4557 new = xmalloc (fnlen + (text - word) + 5);
4558 strncpy (new, word, text - word);
4559 new[text - word] = '\0';
4560 strcat (new, fname);
4561 }
4562 VEC_safe_push (char_ptr, *list, new);
4563 }
4564
4565 static int
4566 not_interesting_fname (const char *fname)
4567 {
4568 static const char *illegal_aliens[] = {
4569 "_globals_", /* inserted by coff_symtab_read */
4570 NULL
4571 };
4572 int i;
4573
4574 for (i = 0; illegal_aliens[i]; i++)
4575 {
4576 if (filename_cmp (fname, illegal_aliens[i]) == 0)
4577 return 1;
4578 }
4579 return 0;
4580 }
4581
4582 /* An object of this type is passed as the user_data argument to
4583 map_partial_symbol_filenames. */
4584 struct add_partial_filename_data
4585 {
4586 struct filename_seen_cache *filename_seen_cache;
4587 char *text;
4588 char *word;
4589 int text_len;
4590 VEC (char_ptr) **list;
4591 };
4592
4593 /* A callback for map_partial_symbol_filenames. */
4594
4595 static void
4596 maybe_add_partial_symtab_filename (const char *filename, const char *fullname,
4597 void *user_data)
4598 {
4599 struct add_partial_filename_data *data = user_data;
4600
4601 if (not_interesting_fname (filename))
4602 return;
4603 if (!filename_seen (data->filename_seen_cache, filename, 1)
4604 && filename_ncmp (filename, data->text, data->text_len) == 0)
4605 {
4606 /* This file matches for a completion; add it to the
4607 current list of matches. */
4608 add_filename_to_list (filename, data->text, data->word, data->list);
4609 }
4610 else
4611 {
4612 const char *base_name = lbasename (filename);
4613
4614 if (base_name != filename
4615 && !filename_seen (data->filename_seen_cache, base_name, 1)
4616 && filename_ncmp (base_name, data->text, data->text_len) == 0)
4617 add_filename_to_list (base_name, data->text, data->word, data->list);
4618 }
4619 }
4620
4621 /* Return a vector of all source files whose names begin with matching
4622 TEXT. The file names are looked up in the symbol tables of this
4623 program. If the answer is no matchess, then the return value is
4624 NULL. */
4625
4626 VEC (char_ptr) *
4627 make_source_files_completion_list (char *text, char *word)
4628 {
4629 struct symtab *s;
4630 struct objfile *objfile;
4631 size_t text_len = strlen (text);
4632 VEC (char_ptr) *list = NULL;
4633 const char *base_name;
4634 struct add_partial_filename_data datum;
4635 struct filename_seen_cache *filename_seen_cache;
4636 struct cleanup *back_to, *cache_cleanup;
4637
4638 if (!have_full_symbols () && !have_partial_symbols ())
4639 return list;
4640
4641 back_to = make_cleanup (do_free_completion_list, &list);
4642
4643 filename_seen_cache = create_filename_seen_cache ();
4644 cache_cleanup = make_cleanup (delete_filename_seen_cache,
4645 filename_seen_cache);
4646
4647 ALL_SYMTABS (objfile, s)
4648 {
4649 if (not_interesting_fname (s->filename))
4650 continue;
4651 if (!filename_seen (filename_seen_cache, s->filename, 1)
4652 && filename_ncmp (s->filename, text, text_len) == 0)
4653 {
4654 /* This file matches for a completion; add it to the current
4655 list of matches. */
4656 add_filename_to_list (s->filename, text, word, &list);
4657 }
4658 else
4659 {
4660 /* NOTE: We allow the user to type a base name when the
4661 debug info records leading directories, but not the other
4662 way around. This is what subroutines of breakpoint
4663 command do when they parse file names. */
4664 base_name = lbasename (s->filename);
4665 if (base_name != s->filename
4666 && !filename_seen (filename_seen_cache, base_name, 1)
4667 && filename_ncmp (base_name, text, text_len) == 0)
4668 add_filename_to_list (base_name, text, word, &list);
4669 }
4670 }
4671
4672 datum.filename_seen_cache = filename_seen_cache;
4673 datum.text = text;
4674 datum.word = word;
4675 datum.text_len = text_len;
4676 datum.list = &list;
4677 map_partial_symbol_filenames (maybe_add_partial_symtab_filename, &datum,
4678 0 /*need_fullname*/);
4679
4680 do_cleanups (cache_cleanup);
4681 discard_cleanups (back_to);
4682
4683 return list;
4684 }
4685
4686 /* Determine if PC is in the prologue of a function. The prologue is the area
4687 between the first instruction of a function, and the first executable line.
4688 Returns 1 if PC *might* be in prologue, 0 if definately *not* in prologue.
4689
4690 If non-zero, func_start is where we think the prologue starts, possibly
4691 by previous examination of symbol table information. */
4692
4693 int
4694 in_prologue (struct gdbarch *gdbarch, CORE_ADDR pc, CORE_ADDR func_start)
4695 {
4696 struct symtab_and_line sal;
4697 CORE_ADDR func_addr, func_end;
4698
4699 /* We have several sources of information we can consult to figure
4700 this out.
4701 - Compilers usually emit line number info that marks the prologue
4702 as its own "source line". So the ending address of that "line"
4703 is the end of the prologue. If available, this is the most
4704 reliable method.
4705 - The minimal symbols and partial symbols, which can usually tell
4706 us the starting and ending addresses of a function.
4707 - If we know the function's start address, we can call the
4708 architecture-defined gdbarch_skip_prologue function to analyze the
4709 instruction stream and guess where the prologue ends.
4710 - Our `func_start' argument; if non-zero, this is the caller's
4711 best guess as to the function's entry point. At the time of
4712 this writing, handle_inferior_event doesn't get this right, so
4713 it should be our last resort. */
4714
4715 /* Consult the partial symbol table, to find which function
4716 the PC is in. */
4717 if (! find_pc_partial_function (pc, NULL, &func_addr, &func_end))
4718 {
4719 CORE_ADDR prologue_end;
4720
4721 /* We don't even have minsym information, so fall back to using
4722 func_start, if given. */
4723 if (! func_start)
4724 return 1; /* We *might* be in a prologue. */
4725
4726 prologue_end = gdbarch_skip_prologue (gdbarch, func_start);
4727
4728 return func_start <= pc && pc < prologue_end;
4729 }
4730
4731 /* If we have line number information for the function, that's
4732 usually pretty reliable. */
4733 sal = find_pc_line (func_addr, 0);
4734
4735 /* Now sal describes the source line at the function's entry point,
4736 which (by convention) is the prologue. The end of that "line",
4737 sal.end, is the end of the prologue.
4738
4739 Note that, for functions whose source code is all on a single
4740 line, the line number information doesn't always end up this way.
4741 So we must verify that our purported end-of-prologue address is
4742 *within* the function, not at its start or end. */
4743 if (sal.line == 0
4744 || sal.end <= func_addr
4745 || func_end <= sal.end)
4746 {
4747 /* We don't have any good line number info, so use the minsym
4748 information, together with the architecture-specific prologue
4749 scanning code. */
4750 CORE_ADDR prologue_end = gdbarch_skip_prologue (gdbarch, func_addr);
4751
4752 return func_addr <= pc && pc < prologue_end;
4753 }
4754
4755 /* We have line number info, and it looks good. */
4756 return func_addr <= pc && pc < sal.end;
4757 }
4758
4759 /* Given PC at the function's start address, attempt to find the
4760 prologue end using SAL information. Return zero if the skip fails.
4761
4762 A non-optimized prologue traditionally has one SAL for the function
4763 and a second for the function body. A single line function has
4764 them both pointing at the same line.
4765
4766 An optimized prologue is similar but the prologue may contain
4767 instructions (SALs) from the instruction body. Need to skip those
4768 while not getting into the function body.
4769
4770 The functions end point and an increasing SAL line are used as
4771 indicators of the prologue's endpoint.
4772
4773 This code is based on the function refine_prologue_limit
4774 (found in ia64). */
4775
4776 CORE_ADDR
4777 skip_prologue_using_sal (struct gdbarch *gdbarch, CORE_ADDR func_addr)
4778 {
4779 struct symtab_and_line prologue_sal;
4780 CORE_ADDR start_pc;
4781 CORE_ADDR end_pc;
4782 struct block *bl;
4783
4784 /* Get an initial range for the function. */
4785 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
4786 start_pc += gdbarch_deprecated_function_start_offset (gdbarch);
4787
4788 prologue_sal = find_pc_line (start_pc, 0);
4789 if (prologue_sal.line != 0)
4790 {
4791 /* For languages other than assembly, treat two consecutive line
4792 entries at the same address as a zero-instruction prologue.
4793 The GNU assembler emits separate line notes for each instruction
4794 in a multi-instruction macro, but compilers generally will not
4795 do this. */
4796 if (prologue_sal.symtab->language != language_asm)
4797 {
4798 struct linetable *linetable = LINETABLE (prologue_sal.symtab);
4799 int idx = 0;
4800
4801 /* Skip any earlier lines, and any end-of-sequence marker
4802 from a previous function. */
4803 while (linetable->item[idx].pc != prologue_sal.pc
4804 || linetable->item[idx].line == 0)
4805 idx++;
4806
4807 if (idx+1 < linetable->nitems
4808 && linetable->item[idx+1].line != 0
4809 && linetable->item[idx+1].pc == start_pc)
4810 return start_pc;
4811 }
4812
4813 /* If there is only one sal that covers the entire function,
4814 then it is probably a single line function, like
4815 "foo(){}". */
4816 if (prologue_sal.end >= end_pc)
4817 return 0;
4818
4819 while (prologue_sal.end < end_pc)
4820 {
4821 struct symtab_and_line sal;
4822
4823 sal = find_pc_line (prologue_sal.end, 0);
4824 if (sal.line == 0)
4825 break;
4826 /* Assume that a consecutive SAL for the same (or larger)
4827 line mark the prologue -> body transition. */
4828 if (sal.line >= prologue_sal.line)
4829 break;
4830
4831 /* The line number is smaller. Check that it's from the
4832 same function, not something inlined. If it's inlined,
4833 then there is no point comparing the line numbers. */
4834 bl = block_for_pc (prologue_sal.end);
4835 while (bl)
4836 {
4837 if (block_inlined_p (bl))
4838 break;
4839 if (BLOCK_FUNCTION (bl))
4840 {
4841 bl = NULL;
4842 break;
4843 }
4844 bl = BLOCK_SUPERBLOCK (bl);
4845 }
4846 if (bl != NULL)
4847 break;
4848
4849 /* The case in which compiler's optimizer/scheduler has
4850 moved instructions into the prologue. We look ahead in
4851 the function looking for address ranges whose
4852 corresponding line number is less the first one that we
4853 found for the function. This is more conservative then
4854 refine_prologue_limit which scans a large number of SALs
4855 looking for any in the prologue. */
4856 prologue_sal = sal;
4857 }
4858 }
4859
4860 if (prologue_sal.end < end_pc)
4861 /* Return the end of this line, or zero if we could not find a
4862 line. */
4863 return prologue_sal.end;
4864 else
4865 /* Don't return END_PC, which is past the end of the function. */
4866 return prologue_sal.pc;
4867 }
4868 \f
4869 /* Track MAIN */
4870 static char *name_of_main;
4871 enum language language_of_main = language_unknown;
4872
4873 void
4874 set_main_name (const char *name)
4875 {
4876 if (name_of_main != NULL)
4877 {
4878 xfree (name_of_main);
4879 name_of_main = NULL;
4880 language_of_main = language_unknown;
4881 }
4882 if (name != NULL)
4883 {
4884 name_of_main = xstrdup (name);
4885 language_of_main = language_unknown;
4886 }
4887 }
4888
4889 /* Deduce the name of the main procedure, and set NAME_OF_MAIN
4890 accordingly. */
4891
4892 static void
4893 find_main_name (void)
4894 {
4895 const char *new_main_name;
4896
4897 /* Try to see if the main procedure is in Ada. */
4898 /* FIXME: brobecker/2005-03-07: Another way of doing this would
4899 be to add a new method in the language vector, and call this
4900 method for each language until one of them returns a non-empty
4901 name. This would allow us to remove this hard-coded call to
4902 an Ada function. It is not clear that this is a better approach
4903 at this point, because all methods need to be written in a way
4904 such that false positives never be returned. For instance, it is
4905 important that a method does not return a wrong name for the main
4906 procedure if the main procedure is actually written in a different
4907 language. It is easy to guaranty this with Ada, since we use a
4908 special symbol generated only when the main in Ada to find the name
4909 of the main procedure. It is difficult however to see how this can
4910 be guarantied for languages such as C, for instance. This suggests
4911 that order of call for these methods becomes important, which means
4912 a more complicated approach. */
4913 new_main_name = ada_main_name ();
4914 if (new_main_name != NULL)
4915 {
4916 set_main_name (new_main_name);
4917 return;
4918 }
4919
4920 new_main_name = go_main_name ();
4921 if (new_main_name != NULL)
4922 {
4923 set_main_name (new_main_name);
4924 return;
4925 }
4926
4927 new_main_name = pascal_main_name ();
4928 if (new_main_name != NULL)
4929 {
4930 set_main_name (new_main_name);
4931 return;
4932 }
4933
4934 /* The languages above didn't identify the name of the main procedure.
4935 Fallback to "main". */
4936 set_main_name ("main");
4937 }
4938
4939 char *
4940 main_name (void)
4941 {
4942 if (name_of_main == NULL)
4943 find_main_name ();
4944
4945 return name_of_main;
4946 }
4947
4948 /* Handle ``executable_changed'' events for the symtab module. */
4949
4950 static void
4951 symtab_observer_executable_changed (void)
4952 {
4953 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
4954 set_main_name (NULL);
4955 }
4956
4957 /* Return 1 if the supplied producer string matches the ARM RealView
4958 compiler (armcc). */
4959
4960 int
4961 producer_is_realview (const char *producer)
4962 {
4963 static const char *const arm_idents[] = {
4964 "ARM C Compiler, ADS",
4965 "Thumb C Compiler, ADS",
4966 "ARM C++ Compiler, ADS",
4967 "Thumb C++ Compiler, ADS",
4968 "ARM/Thumb C/C++ Compiler, RVCT",
4969 "ARM C/C++ Compiler, RVCT"
4970 };
4971 int i;
4972
4973 if (producer == NULL)
4974 return 0;
4975
4976 for (i = 0; i < ARRAY_SIZE (arm_idents); i++)
4977 if (strncmp (producer, arm_idents[i], strlen (arm_idents[i])) == 0)
4978 return 1;
4979
4980 return 0;
4981 }
4982
4983 void
4984 _initialize_symtab (void)
4985 {
4986 add_info ("variables", variables_info, _("\
4987 All global and static variable names, or those matching REGEXP."));
4988 if (dbx_commands)
4989 add_com ("whereis", class_info, variables_info, _("\
4990 All global and static variable names, or those matching REGEXP."));
4991
4992 add_info ("functions", functions_info,
4993 _("All function names, or those matching REGEXP."));
4994
4995 /* FIXME: This command has at least the following problems:
4996 1. It prints builtin types (in a very strange and confusing fashion).
4997 2. It doesn't print right, e.g. with
4998 typedef struct foo *FOO
4999 type_print prints "FOO" when we want to make it (in this situation)
5000 print "struct foo *".
5001 I also think "ptype" or "whatis" is more likely to be useful (but if
5002 there is much disagreement "info types" can be fixed). */
5003 add_info ("types", types_info,
5004 _("All type names, or those matching REGEXP."));
5005
5006 add_info ("sources", sources_info,
5007 _("Source files in the program."));
5008
5009 add_com ("rbreak", class_breakpoint, rbreak_command,
5010 _("Set a breakpoint for all functions matching REGEXP."));
5011
5012 if (xdb_commands)
5013 {
5014 add_com ("lf", class_info, sources_info,
5015 _("Source files in the program"));
5016 add_com ("lg", class_info, variables_info, _("\
5017 All global and static variable names, or those matching REGEXP."));
5018 }
5019
5020 add_setshow_enum_cmd ("multiple-symbols", no_class,
5021 multiple_symbols_modes, &multiple_symbols_mode,
5022 _("\
5023 Set the debugger behavior when more than one symbol are possible matches\n\
5024 in an expression."), _("\
5025 Show how the debugger handles ambiguities in expressions."), _("\
5026 Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
5027 NULL, NULL, &setlist, &showlist);
5028
5029 add_setshow_boolean_cmd ("basenames-may-differ", class_obscure,
5030 &basenames_may_differ, _("\
5031 Set whether a source file may have multiple base names."), _("\
5032 Show whether a source file may have multiple base names."), _("\
5033 (A \"base name\" is the name of a file with the directory part removed.\n\
5034 Example: The base name of \"/home/user/hello.c\" is \"hello.c\".)\n\
5035 If set, GDB will canonicalize file names (e.g., expand symlinks)\n\
5036 before comparing them. Canonicalization is an expensive operation,\n\
5037 but it allows the same file be known by more than one base name.\n\
5038 If not set (the default), all source files are assumed to have just\n\
5039 one base name, and gdb will do file name comparisons more efficiently."),
5040 NULL, NULL,
5041 &setlist, &showlist);
5042
5043 add_setshow_boolean_cmd ("symtab-create", no_class, &symtab_create_debug,
5044 _("Set debugging of symbol table creation."),
5045 _("Show debugging of symbol table creation."), _("\
5046 When enabled, debugging messages are printed when building symbol tables."),
5047 NULL,
5048 NULL,
5049 &setdebuglist, &showdebuglist);
5050
5051 observer_attach_executable_changed (symtab_observer_executable_changed);
5052 }
This page took 0.136569 seconds and 4 git commands to generate.