Fix dwarf2loc.h::dwarf2_evaluate_property function description.
[deliverable/binutils-gdb.git] / gdb / symtab.c
1 /* Symbol table lookup for the GNU debugger, GDB.
2
3 Copyright (C) 1986-2014 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "gdbcore.h"
24 #include "frame.h"
25 #include "target.h"
26 #include "value.h"
27 #include "symfile.h"
28 #include "objfiles.h"
29 #include "gdbcmd.h"
30 #include "gdb_regex.h"
31 #include "expression.h"
32 #include "language.h"
33 #include "demangle.h"
34 #include "inferior.h"
35 #include "source.h"
36 #include "filenames.h" /* for FILENAME_CMP */
37 #include "objc-lang.h"
38 #include "d-lang.h"
39 #include "ada-lang.h"
40 #include "go-lang.h"
41 #include "p-lang.h"
42 #include "addrmap.h"
43 #include "cli/cli-utils.h"
44
45 #include "hashtab.h"
46
47 #include "gdb_obstack.h"
48 #include "block.h"
49 #include "dictionary.h"
50
51 #include <sys/types.h>
52 #include <fcntl.h>
53 #include <sys/stat.h>
54 #include <ctype.h>
55 #include "cp-abi.h"
56 #include "cp-support.h"
57 #include "observer.h"
58 #include "solist.h"
59 #include "macrotab.h"
60 #include "macroscope.h"
61
62 #include "parser-defs.h"
63
64 /* Prototypes for local functions */
65
66 static void rbreak_command (char *, int);
67
68 static void types_info (char *, int);
69
70 static void functions_info (char *, int);
71
72 static void variables_info (char *, int);
73
74 static void sources_info (char *, int);
75
76 static int find_line_common (struct linetable *, int, int *, int);
77
78 static struct symbol *lookup_symbol_aux (const char *name,
79 const struct block *block,
80 const domain_enum domain,
81 enum language language,
82 struct field_of_this_result *is_a_field_of_this);
83
84 static
85 struct symbol *lookup_symbol_aux_local (const char *name,
86 const struct block *block,
87 const domain_enum domain,
88 enum language language);
89
90 static
91 struct symbol *lookup_symbol_aux_symtabs (int block_index,
92 const char *name,
93 const domain_enum domain);
94
95 static
96 struct symbol *lookup_symbol_aux_quick (struct objfile *objfile,
97 int block_index,
98 const char *name,
99 const domain_enum domain);
100
101 void _initialize_symtab (void);
102
103 /* */
104
105 /* Program space key for finding name and language of "main". */
106
107 static const struct program_space_data *main_progspace_key;
108
109 /* Type of the data stored on the program space. */
110
111 struct main_info
112 {
113 /* Name of "main". */
114
115 char *name_of_main;
116
117 /* Language of "main". */
118
119 enum language language_of_main;
120 };
121
122 /* When non-zero, print debugging messages related to symtab creation. */
123 unsigned int symtab_create_debug = 0;
124
125 /* Non-zero if a file may be known by two different basenames.
126 This is the uncommon case, and significantly slows down gdb.
127 Default set to "off" to not slow down the common case. */
128 int basenames_may_differ = 0;
129
130 /* Allow the user to configure the debugger behavior with respect
131 to multiple-choice menus when more than one symbol matches during
132 a symbol lookup. */
133
134 const char multiple_symbols_ask[] = "ask";
135 const char multiple_symbols_all[] = "all";
136 const char multiple_symbols_cancel[] = "cancel";
137 static const char *const multiple_symbols_modes[] =
138 {
139 multiple_symbols_ask,
140 multiple_symbols_all,
141 multiple_symbols_cancel,
142 NULL
143 };
144 static const char *multiple_symbols_mode = multiple_symbols_all;
145
146 /* Read-only accessor to AUTO_SELECT_MODE. */
147
148 const char *
149 multiple_symbols_select_mode (void)
150 {
151 return multiple_symbols_mode;
152 }
153
154 /* Block in which the most recently searched-for symbol was found.
155 Might be better to make this a parameter to lookup_symbol and
156 value_of_this. */
157
158 const struct block *block_found;
159
160 /* Return the name of a domain_enum. */
161
162 const char *
163 domain_name (domain_enum e)
164 {
165 switch (e)
166 {
167 case UNDEF_DOMAIN: return "UNDEF_DOMAIN";
168 case VAR_DOMAIN: return "VAR_DOMAIN";
169 case STRUCT_DOMAIN: return "STRUCT_DOMAIN";
170 case LABEL_DOMAIN: return "LABEL_DOMAIN";
171 case COMMON_BLOCK_DOMAIN: return "COMMON_BLOCK_DOMAIN";
172 default: gdb_assert_not_reached ("bad domain_enum");
173 }
174 }
175
176 /* Return the name of a search_domain . */
177
178 const char *
179 search_domain_name (enum search_domain e)
180 {
181 switch (e)
182 {
183 case VARIABLES_DOMAIN: return "VARIABLES_DOMAIN";
184 case FUNCTIONS_DOMAIN: return "FUNCTIONS_DOMAIN";
185 case TYPES_DOMAIN: return "TYPES_DOMAIN";
186 case ALL_DOMAIN: return "ALL_DOMAIN";
187 default: gdb_assert_not_reached ("bad search_domain");
188 }
189 }
190
191 /* Set the primary field in SYMTAB. */
192
193 void
194 set_symtab_primary (struct symtab *symtab, int primary)
195 {
196 symtab->primary = primary;
197
198 if (symtab_create_debug && primary)
199 {
200 fprintf_unfiltered (gdb_stdlog,
201 "Created primary symtab %s for %s.\n",
202 host_address_to_string (symtab),
203 symtab_to_filename_for_display (symtab));
204 }
205 }
206
207 /* See whether FILENAME matches SEARCH_NAME using the rule that we
208 advertise to the user. (The manual's description of linespecs
209 describes what we advertise). Returns true if they match, false
210 otherwise. */
211
212 int
213 compare_filenames_for_search (const char *filename, const char *search_name)
214 {
215 int len = strlen (filename);
216 size_t search_len = strlen (search_name);
217
218 if (len < search_len)
219 return 0;
220
221 /* The tail of FILENAME must match. */
222 if (FILENAME_CMP (filename + len - search_len, search_name) != 0)
223 return 0;
224
225 /* Either the names must completely match, or the character
226 preceding the trailing SEARCH_NAME segment of FILENAME must be a
227 directory separator.
228
229 The check !IS_ABSOLUTE_PATH ensures SEARCH_NAME "/dir/file.c"
230 cannot match FILENAME "/path//dir/file.c" - as user has requested
231 absolute path. The sama applies for "c:\file.c" possibly
232 incorrectly hypothetically matching "d:\dir\c:\file.c".
233
234 The HAS_DRIVE_SPEC purpose is to make FILENAME "c:file.c"
235 compatible with SEARCH_NAME "file.c". In such case a compiler had
236 to put the "c:file.c" name into debug info. Such compatibility
237 works only on GDB built for DOS host. */
238 return (len == search_len
239 || (!IS_ABSOLUTE_PATH (search_name)
240 && IS_DIR_SEPARATOR (filename[len - search_len - 1]))
241 || (HAS_DRIVE_SPEC (filename)
242 && STRIP_DRIVE_SPEC (filename) == &filename[len - search_len]));
243 }
244
245 /* Check for a symtab of a specific name by searching some symtabs.
246 This is a helper function for callbacks of iterate_over_symtabs.
247
248 If NAME is not absolute, then REAL_PATH is NULL
249 If NAME is absolute, then REAL_PATH is the gdb_realpath form of NAME.
250
251 The return value, NAME, REAL_PATH, CALLBACK, and DATA
252 are identical to the `map_symtabs_matching_filename' method of
253 quick_symbol_functions.
254
255 FIRST and AFTER_LAST indicate the range of symtabs to search.
256 AFTER_LAST is one past the last symtab to search; NULL means to
257 search until the end of the list. */
258
259 int
260 iterate_over_some_symtabs (const char *name,
261 const char *real_path,
262 int (*callback) (struct symtab *symtab,
263 void *data),
264 void *data,
265 struct symtab *first,
266 struct symtab *after_last)
267 {
268 struct symtab *s = NULL;
269 const char* base_name = lbasename (name);
270
271 for (s = first; s != NULL && s != after_last; s = s->next)
272 {
273 if (compare_filenames_for_search (s->filename, name))
274 {
275 if (callback (s, data))
276 return 1;
277 continue;
278 }
279
280 /* Before we invoke realpath, which can get expensive when many
281 files are involved, do a quick comparison of the basenames. */
282 if (! basenames_may_differ
283 && FILENAME_CMP (base_name, lbasename (s->filename)) != 0)
284 continue;
285
286 if (compare_filenames_for_search (symtab_to_fullname (s), name))
287 {
288 if (callback (s, data))
289 return 1;
290 continue;
291 }
292
293 /* If the user gave us an absolute path, try to find the file in
294 this symtab and use its absolute path. */
295 if (real_path != NULL)
296 {
297 const char *fullname = symtab_to_fullname (s);
298
299 gdb_assert (IS_ABSOLUTE_PATH (real_path));
300 gdb_assert (IS_ABSOLUTE_PATH (name));
301 if (FILENAME_CMP (real_path, fullname) == 0)
302 {
303 if (callback (s, data))
304 return 1;
305 continue;
306 }
307 }
308 }
309
310 return 0;
311 }
312
313 /* Check for a symtab of a specific name; first in symtabs, then in
314 psymtabs. *If* there is no '/' in the name, a match after a '/'
315 in the symtab filename will also work.
316
317 Calls CALLBACK with each symtab that is found and with the supplied
318 DATA. If CALLBACK returns true, the search stops. */
319
320 void
321 iterate_over_symtabs (const char *name,
322 int (*callback) (struct symtab *symtab,
323 void *data),
324 void *data)
325 {
326 struct objfile *objfile;
327 char *real_path = NULL;
328 struct cleanup *cleanups = make_cleanup (null_cleanup, NULL);
329
330 /* Here we are interested in canonicalizing an absolute path, not
331 absolutizing a relative path. */
332 if (IS_ABSOLUTE_PATH (name))
333 {
334 real_path = gdb_realpath (name);
335 make_cleanup (xfree, real_path);
336 gdb_assert (IS_ABSOLUTE_PATH (real_path));
337 }
338
339 ALL_OBJFILES (objfile)
340 {
341 if (iterate_over_some_symtabs (name, real_path, callback, data,
342 objfile->symtabs, NULL))
343 {
344 do_cleanups (cleanups);
345 return;
346 }
347 }
348
349 /* Same search rules as above apply here, but now we look thru the
350 psymtabs. */
351
352 ALL_OBJFILES (objfile)
353 {
354 if (objfile->sf
355 && objfile->sf->qf->map_symtabs_matching_filename (objfile,
356 name,
357 real_path,
358 callback,
359 data))
360 {
361 do_cleanups (cleanups);
362 return;
363 }
364 }
365
366 do_cleanups (cleanups);
367 }
368
369 /* The callback function used by lookup_symtab. */
370
371 static int
372 lookup_symtab_callback (struct symtab *symtab, void *data)
373 {
374 struct symtab **result_ptr = data;
375
376 *result_ptr = symtab;
377 return 1;
378 }
379
380 /* A wrapper for iterate_over_symtabs that returns the first matching
381 symtab, or NULL. */
382
383 struct symtab *
384 lookup_symtab (const char *name)
385 {
386 struct symtab *result = NULL;
387
388 iterate_over_symtabs (name, lookup_symtab_callback, &result);
389 return result;
390 }
391
392 \f
393 /* Mangle a GDB method stub type. This actually reassembles the pieces of the
394 full method name, which consist of the class name (from T), the unadorned
395 method name from METHOD_ID, and the signature for the specific overload,
396 specified by SIGNATURE_ID. Note that this function is g++ specific. */
397
398 char *
399 gdb_mangle_name (struct type *type, int method_id, int signature_id)
400 {
401 int mangled_name_len;
402 char *mangled_name;
403 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
404 struct fn_field *method = &f[signature_id];
405 const char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
406 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
407 const char *newname = type_name_no_tag (type);
408
409 /* Does the form of physname indicate that it is the full mangled name
410 of a constructor (not just the args)? */
411 int is_full_physname_constructor;
412
413 int is_constructor;
414 int is_destructor = is_destructor_name (physname);
415 /* Need a new type prefix. */
416 char *const_prefix = method->is_const ? "C" : "";
417 char *volatile_prefix = method->is_volatile ? "V" : "";
418 char buf[20];
419 int len = (newname == NULL ? 0 : strlen (newname));
420
421 /* Nothing to do if physname already contains a fully mangled v3 abi name
422 or an operator name. */
423 if ((physname[0] == '_' && physname[1] == 'Z')
424 || is_operator_name (field_name))
425 return xstrdup (physname);
426
427 is_full_physname_constructor = is_constructor_name (physname);
428
429 is_constructor = is_full_physname_constructor
430 || (newname && strcmp (field_name, newname) == 0);
431
432 if (!is_destructor)
433 is_destructor = (strncmp (physname, "__dt", 4) == 0);
434
435 if (is_destructor || is_full_physname_constructor)
436 {
437 mangled_name = (char *) xmalloc (strlen (physname) + 1);
438 strcpy (mangled_name, physname);
439 return mangled_name;
440 }
441
442 if (len == 0)
443 {
444 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
445 }
446 else if (physname[0] == 't' || physname[0] == 'Q')
447 {
448 /* The physname for template and qualified methods already includes
449 the class name. */
450 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
451 newname = NULL;
452 len = 0;
453 }
454 else
455 {
456 xsnprintf (buf, sizeof (buf), "__%s%s%d", const_prefix,
457 volatile_prefix, len);
458 }
459 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
460 + strlen (buf) + len + strlen (physname) + 1);
461
462 mangled_name = (char *) xmalloc (mangled_name_len);
463 if (is_constructor)
464 mangled_name[0] = '\0';
465 else
466 strcpy (mangled_name, field_name);
467
468 strcat (mangled_name, buf);
469 /* If the class doesn't have a name, i.e. newname NULL, then we just
470 mangle it using 0 for the length of the class. Thus it gets mangled
471 as something starting with `::' rather than `classname::'. */
472 if (newname != NULL)
473 strcat (mangled_name, newname);
474
475 strcat (mangled_name, physname);
476 return (mangled_name);
477 }
478
479 /* Initialize the cplus_specific structure. 'cplus_specific' should
480 only be allocated for use with cplus symbols. */
481
482 static void
483 symbol_init_cplus_specific (struct general_symbol_info *gsymbol,
484 struct obstack *obstack)
485 {
486 /* A language_specific structure should not have been previously
487 initialized. */
488 gdb_assert (gsymbol->language_specific.cplus_specific == NULL);
489 gdb_assert (obstack != NULL);
490
491 gsymbol->language_specific.cplus_specific =
492 OBSTACK_ZALLOC (obstack, struct cplus_specific);
493 }
494
495 /* Set the demangled name of GSYMBOL to NAME. NAME must be already
496 correctly allocated. For C++ symbols a cplus_specific struct is
497 allocated so OBJFILE must not be NULL. If this is a non C++ symbol
498 OBJFILE can be NULL. */
499
500 void
501 symbol_set_demangled_name (struct general_symbol_info *gsymbol,
502 const char *name,
503 struct obstack *obstack)
504 {
505 if (gsymbol->language == language_cplus)
506 {
507 if (gsymbol->language_specific.cplus_specific == NULL)
508 symbol_init_cplus_specific (gsymbol, obstack);
509
510 gsymbol->language_specific.cplus_specific->demangled_name = name;
511 }
512 else if (gsymbol->language == language_ada)
513 {
514 if (name == NULL)
515 {
516 gsymbol->ada_mangled = 0;
517 gsymbol->language_specific.obstack = obstack;
518 }
519 else
520 {
521 gsymbol->ada_mangled = 1;
522 gsymbol->language_specific.mangled_lang.demangled_name = name;
523 }
524 }
525 else
526 gsymbol->language_specific.mangled_lang.demangled_name = name;
527 }
528
529 /* Return the demangled name of GSYMBOL. */
530
531 const char *
532 symbol_get_demangled_name (const struct general_symbol_info *gsymbol)
533 {
534 if (gsymbol->language == language_cplus)
535 {
536 if (gsymbol->language_specific.cplus_specific != NULL)
537 return gsymbol->language_specific.cplus_specific->demangled_name;
538 else
539 return NULL;
540 }
541 else if (gsymbol->language == language_ada)
542 {
543 if (!gsymbol->ada_mangled)
544 return NULL;
545 /* Fall through. */
546 }
547
548 return gsymbol->language_specific.mangled_lang.demangled_name;
549 }
550
551 \f
552 /* Initialize the language dependent portion of a symbol
553 depending upon the language for the symbol. */
554
555 void
556 symbol_set_language (struct general_symbol_info *gsymbol,
557 enum language language,
558 struct obstack *obstack)
559 {
560 gsymbol->language = language;
561 if (gsymbol->language == language_d
562 || gsymbol->language == language_go
563 || gsymbol->language == language_java
564 || gsymbol->language == language_objc
565 || gsymbol->language == language_fortran)
566 {
567 symbol_set_demangled_name (gsymbol, NULL, obstack);
568 }
569 else if (gsymbol->language == language_ada)
570 {
571 gdb_assert (gsymbol->ada_mangled == 0);
572 gsymbol->language_specific.obstack = obstack;
573 }
574 else if (gsymbol->language == language_cplus)
575 gsymbol->language_specific.cplus_specific = NULL;
576 else
577 {
578 memset (&gsymbol->language_specific, 0,
579 sizeof (gsymbol->language_specific));
580 }
581 }
582
583 /* Functions to initialize a symbol's mangled name. */
584
585 /* Objects of this type are stored in the demangled name hash table. */
586 struct demangled_name_entry
587 {
588 const char *mangled;
589 char demangled[1];
590 };
591
592 /* Hash function for the demangled name hash. */
593
594 static hashval_t
595 hash_demangled_name_entry (const void *data)
596 {
597 const struct demangled_name_entry *e = data;
598
599 return htab_hash_string (e->mangled);
600 }
601
602 /* Equality function for the demangled name hash. */
603
604 static int
605 eq_demangled_name_entry (const void *a, const void *b)
606 {
607 const struct demangled_name_entry *da = a;
608 const struct demangled_name_entry *db = b;
609
610 return strcmp (da->mangled, db->mangled) == 0;
611 }
612
613 /* Create the hash table used for demangled names. Each hash entry is
614 a pair of strings; one for the mangled name and one for the demangled
615 name. The entry is hashed via just the mangled name. */
616
617 static void
618 create_demangled_names_hash (struct objfile *objfile)
619 {
620 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
621 The hash table code will round this up to the next prime number.
622 Choosing a much larger table size wastes memory, and saves only about
623 1% in symbol reading. */
624
625 objfile->per_bfd->demangled_names_hash = htab_create_alloc
626 (256, hash_demangled_name_entry, eq_demangled_name_entry,
627 NULL, xcalloc, xfree);
628 }
629
630 /* Try to determine the demangled name for a symbol, based on the
631 language of that symbol. If the language is set to language_auto,
632 it will attempt to find any demangling algorithm that works and
633 then set the language appropriately. The returned name is allocated
634 by the demangler and should be xfree'd. */
635
636 static char *
637 symbol_find_demangled_name (struct general_symbol_info *gsymbol,
638 const char *mangled)
639 {
640 char *demangled = NULL;
641
642 if (gsymbol->language == language_unknown)
643 gsymbol->language = language_auto;
644
645 if (gsymbol->language == language_objc
646 || gsymbol->language == language_auto)
647 {
648 demangled =
649 objc_demangle (mangled, 0);
650 if (demangled != NULL)
651 {
652 gsymbol->language = language_objc;
653 return demangled;
654 }
655 }
656 if (gsymbol->language == language_cplus
657 || gsymbol->language == language_auto)
658 {
659 demangled =
660 gdb_demangle (mangled, DMGL_PARAMS | DMGL_ANSI);
661 if (demangled != NULL)
662 {
663 gsymbol->language = language_cplus;
664 return demangled;
665 }
666 }
667 if (gsymbol->language == language_java)
668 {
669 demangled =
670 gdb_demangle (mangled,
671 DMGL_PARAMS | DMGL_ANSI | DMGL_JAVA);
672 if (demangled != NULL)
673 {
674 gsymbol->language = language_java;
675 return demangled;
676 }
677 }
678 if (gsymbol->language == language_d
679 || gsymbol->language == language_auto)
680 {
681 demangled = d_demangle(mangled, 0);
682 if (demangled != NULL)
683 {
684 gsymbol->language = language_d;
685 return demangled;
686 }
687 }
688 /* FIXME(dje): Continually adding languages here is clumsy.
689 Better to just call la_demangle if !auto, and if auto then call
690 a utility routine that tries successive languages in turn and reports
691 which one it finds. I realize the la_demangle options may be different
692 for different languages but there's already a FIXME for that. */
693 if (gsymbol->language == language_go
694 || gsymbol->language == language_auto)
695 {
696 demangled = go_demangle (mangled, 0);
697 if (demangled != NULL)
698 {
699 gsymbol->language = language_go;
700 return demangled;
701 }
702 }
703
704 /* We could support `gsymbol->language == language_fortran' here to provide
705 module namespaces also for inferiors with only minimal symbol table (ELF
706 symbols). Just the mangling standard is not standardized across compilers
707 and there is no DW_AT_producer available for inferiors with only the ELF
708 symbols to check the mangling kind. */
709
710 /* Check for Ada symbols last. See comment below explaining why. */
711
712 if (gsymbol->language == language_auto)
713 {
714 const char *demangled = ada_decode (mangled);
715
716 if (demangled != mangled && demangled != NULL && demangled[0] != '<')
717 {
718 /* Set the gsymbol language to Ada, but still return NULL.
719 Two reasons for that:
720
721 1. For Ada, we prefer computing the symbol's decoded name
722 on the fly rather than pre-compute it, in order to save
723 memory (Ada projects are typically very large).
724
725 2. There are some areas in the definition of the GNAT
726 encoding where, with a bit of bad luck, we might be able
727 to decode a non-Ada symbol, generating an incorrect
728 demangled name (Eg: names ending with "TB" for instance
729 are identified as task bodies and so stripped from
730 the decoded name returned).
731
732 Returning NULL, here, helps us get a little bit of
733 the best of both worlds. Because we're last, we should
734 not affect any of the other languages that were able to
735 demangle the symbol before us; we get to correctly tag
736 Ada symbols as such; and even if we incorrectly tagged
737 a non-Ada symbol, which should be rare, any routing
738 through the Ada language should be transparent (Ada
739 tries to behave much like C/C++ with non-Ada symbols). */
740 gsymbol->language = language_ada;
741 return NULL;
742 }
743 }
744
745 return NULL;
746 }
747
748 /* Set both the mangled and demangled (if any) names for GSYMBOL based
749 on LINKAGE_NAME and LEN. Ordinarily, NAME is copied onto the
750 objfile's obstack; but if COPY_NAME is 0 and if NAME is
751 NUL-terminated, then this function assumes that NAME is already
752 correctly saved (either permanently or with a lifetime tied to the
753 objfile), and it will not be copied.
754
755 The hash table corresponding to OBJFILE is used, and the memory
756 comes from the per-BFD storage_obstack. LINKAGE_NAME is copied,
757 so the pointer can be discarded after calling this function. */
758
759 /* We have to be careful when dealing with Java names: when we run
760 into a Java minimal symbol, we don't know it's a Java symbol, so it
761 gets demangled as a C++ name. This is unfortunate, but there's not
762 much we can do about it: but when demangling partial symbols and
763 regular symbols, we'd better not reuse the wrong demangled name.
764 (See PR gdb/1039.) We solve this by putting a distinctive prefix
765 on Java names when storing them in the hash table. */
766
767 /* FIXME: carlton/2003-03-13: This is an unfortunate situation. I
768 don't mind the Java prefix so much: different languages have
769 different demangling requirements, so it's only natural that we
770 need to keep language data around in our demangling cache. But
771 it's not good that the minimal symbol has the wrong demangled name.
772 Unfortunately, I can't think of any easy solution to that
773 problem. */
774
775 #define JAVA_PREFIX "##JAVA$$"
776 #define JAVA_PREFIX_LEN 8
777
778 void
779 symbol_set_names (struct general_symbol_info *gsymbol,
780 const char *linkage_name, int len, int copy_name,
781 struct objfile *objfile)
782 {
783 struct demangled_name_entry **slot;
784 /* A 0-terminated copy of the linkage name. */
785 const char *linkage_name_copy;
786 /* A copy of the linkage name that might have a special Java prefix
787 added to it, for use when looking names up in the hash table. */
788 const char *lookup_name;
789 /* The length of lookup_name. */
790 int lookup_len;
791 struct demangled_name_entry entry;
792 struct objfile_per_bfd_storage *per_bfd = objfile->per_bfd;
793
794 if (gsymbol->language == language_ada)
795 {
796 /* In Ada, we do the symbol lookups using the mangled name, so
797 we can save some space by not storing the demangled name.
798
799 As a side note, we have also observed some overlap between
800 the C++ mangling and Ada mangling, similarly to what has
801 been observed with Java. Because we don't store the demangled
802 name with the symbol, we don't need to use the same trick
803 as Java. */
804 if (!copy_name)
805 gsymbol->name = linkage_name;
806 else
807 {
808 char *name = obstack_alloc (&per_bfd->storage_obstack, len + 1);
809
810 memcpy (name, linkage_name, len);
811 name[len] = '\0';
812 gsymbol->name = name;
813 }
814 symbol_set_demangled_name (gsymbol, NULL, &per_bfd->storage_obstack);
815
816 return;
817 }
818
819 if (per_bfd->demangled_names_hash == NULL)
820 create_demangled_names_hash (objfile);
821
822 /* The stabs reader generally provides names that are not
823 NUL-terminated; most of the other readers don't do this, so we
824 can just use the given copy, unless we're in the Java case. */
825 if (gsymbol->language == language_java)
826 {
827 char *alloc_name;
828
829 lookup_len = len + JAVA_PREFIX_LEN;
830 alloc_name = alloca (lookup_len + 1);
831 memcpy (alloc_name, JAVA_PREFIX, JAVA_PREFIX_LEN);
832 memcpy (alloc_name + JAVA_PREFIX_LEN, linkage_name, len);
833 alloc_name[lookup_len] = '\0';
834
835 lookup_name = alloc_name;
836 linkage_name_copy = alloc_name + JAVA_PREFIX_LEN;
837 }
838 else if (linkage_name[len] != '\0')
839 {
840 char *alloc_name;
841
842 lookup_len = len;
843 alloc_name = alloca (lookup_len + 1);
844 memcpy (alloc_name, linkage_name, len);
845 alloc_name[lookup_len] = '\0';
846
847 lookup_name = alloc_name;
848 linkage_name_copy = alloc_name;
849 }
850 else
851 {
852 lookup_len = len;
853 lookup_name = linkage_name;
854 linkage_name_copy = linkage_name;
855 }
856
857 entry.mangled = lookup_name;
858 slot = ((struct demangled_name_entry **)
859 htab_find_slot (per_bfd->demangled_names_hash,
860 &entry, INSERT));
861
862 /* If this name is not in the hash table, add it. */
863 if (*slot == NULL
864 /* A C version of the symbol may have already snuck into the table.
865 This happens to, e.g., main.init (__go_init_main). Cope. */
866 || (gsymbol->language == language_go
867 && (*slot)->demangled[0] == '\0'))
868 {
869 char *demangled_name = symbol_find_demangled_name (gsymbol,
870 linkage_name_copy);
871 int demangled_len = demangled_name ? strlen (demangled_name) : 0;
872
873 /* Suppose we have demangled_name==NULL, copy_name==0, and
874 lookup_name==linkage_name. In this case, we already have the
875 mangled name saved, and we don't have a demangled name. So,
876 you might think we could save a little space by not recording
877 this in the hash table at all.
878
879 It turns out that it is actually important to still save such
880 an entry in the hash table, because storing this name gives
881 us better bcache hit rates for partial symbols. */
882 if (!copy_name && lookup_name == linkage_name)
883 {
884 *slot = obstack_alloc (&per_bfd->storage_obstack,
885 offsetof (struct demangled_name_entry,
886 demangled)
887 + demangled_len + 1);
888 (*slot)->mangled = lookup_name;
889 }
890 else
891 {
892 char *mangled_ptr;
893
894 /* If we must copy the mangled name, put it directly after
895 the demangled name so we can have a single
896 allocation. */
897 *slot = obstack_alloc (&per_bfd->storage_obstack,
898 offsetof (struct demangled_name_entry,
899 demangled)
900 + lookup_len + demangled_len + 2);
901 mangled_ptr = &((*slot)->demangled[demangled_len + 1]);
902 strcpy (mangled_ptr, lookup_name);
903 (*slot)->mangled = mangled_ptr;
904 }
905
906 if (demangled_name != NULL)
907 {
908 strcpy ((*slot)->demangled, demangled_name);
909 xfree (demangled_name);
910 }
911 else
912 (*slot)->demangled[0] = '\0';
913 }
914
915 gsymbol->name = (*slot)->mangled + lookup_len - len;
916 if ((*slot)->demangled[0] != '\0')
917 symbol_set_demangled_name (gsymbol, (*slot)->demangled,
918 &per_bfd->storage_obstack);
919 else
920 symbol_set_demangled_name (gsymbol, NULL, &per_bfd->storage_obstack);
921 }
922
923 /* Return the source code name of a symbol. In languages where
924 demangling is necessary, this is the demangled name. */
925
926 const char *
927 symbol_natural_name (const struct general_symbol_info *gsymbol)
928 {
929 switch (gsymbol->language)
930 {
931 case language_cplus:
932 case language_d:
933 case language_go:
934 case language_java:
935 case language_objc:
936 case language_fortran:
937 if (symbol_get_demangled_name (gsymbol) != NULL)
938 return symbol_get_demangled_name (gsymbol);
939 break;
940 case language_ada:
941 return ada_decode_symbol (gsymbol);
942 default:
943 break;
944 }
945 return gsymbol->name;
946 }
947
948 /* Return the demangled name for a symbol based on the language for
949 that symbol. If no demangled name exists, return NULL. */
950
951 const char *
952 symbol_demangled_name (const struct general_symbol_info *gsymbol)
953 {
954 const char *dem_name = NULL;
955
956 switch (gsymbol->language)
957 {
958 case language_cplus:
959 case language_d:
960 case language_go:
961 case language_java:
962 case language_objc:
963 case language_fortran:
964 dem_name = symbol_get_demangled_name (gsymbol);
965 break;
966 case language_ada:
967 dem_name = ada_decode_symbol (gsymbol);
968 break;
969 default:
970 break;
971 }
972 return dem_name;
973 }
974
975 /* Return the search name of a symbol---generally the demangled or
976 linkage name of the symbol, depending on how it will be searched for.
977 If there is no distinct demangled name, then returns the same value
978 (same pointer) as SYMBOL_LINKAGE_NAME. */
979
980 const char *
981 symbol_search_name (const struct general_symbol_info *gsymbol)
982 {
983 if (gsymbol->language == language_ada)
984 return gsymbol->name;
985 else
986 return symbol_natural_name (gsymbol);
987 }
988
989 /* Initialize the structure fields to zero values. */
990
991 void
992 init_sal (struct symtab_and_line *sal)
993 {
994 memset (sal, 0, sizeof (*sal));
995 }
996 \f
997
998 /* Return 1 if the two sections are the same, or if they could
999 plausibly be copies of each other, one in an original object
1000 file and another in a separated debug file. */
1001
1002 int
1003 matching_obj_sections (struct obj_section *obj_first,
1004 struct obj_section *obj_second)
1005 {
1006 asection *first = obj_first? obj_first->the_bfd_section : NULL;
1007 asection *second = obj_second? obj_second->the_bfd_section : NULL;
1008 struct objfile *obj;
1009
1010 /* If they're the same section, then they match. */
1011 if (first == second)
1012 return 1;
1013
1014 /* If either is NULL, give up. */
1015 if (first == NULL || second == NULL)
1016 return 0;
1017
1018 /* This doesn't apply to absolute symbols. */
1019 if (first->owner == NULL || second->owner == NULL)
1020 return 0;
1021
1022 /* If they're in the same object file, they must be different sections. */
1023 if (first->owner == second->owner)
1024 return 0;
1025
1026 /* Check whether the two sections are potentially corresponding. They must
1027 have the same size, address, and name. We can't compare section indexes,
1028 which would be more reliable, because some sections may have been
1029 stripped. */
1030 if (bfd_get_section_size (first) != bfd_get_section_size (second))
1031 return 0;
1032
1033 /* In-memory addresses may start at a different offset, relativize them. */
1034 if (bfd_get_section_vma (first->owner, first)
1035 - bfd_get_start_address (first->owner)
1036 != bfd_get_section_vma (second->owner, second)
1037 - bfd_get_start_address (second->owner))
1038 return 0;
1039
1040 if (bfd_get_section_name (first->owner, first) == NULL
1041 || bfd_get_section_name (second->owner, second) == NULL
1042 || strcmp (bfd_get_section_name (first->owner, first),
1043 bfd_get_section_name (second->owner, second)) != 0)
1044 return 0;
1045
1046 /* Otherwise check that they are in corresponding objfiles. */
1047
1048 ALL_OBJFILES (obj)
1049 if (obj->obfd == first->owner)
1050 break;
1051 gdb_assert (obj != NULL);
1052
1053 if (obj->separate_debug_objfile != NULL
1054 && obj->separate_debug_objfile->obfd == second->owner)
1055 return 1;
1056 if (obj->separate_debug_objfile_backlink != NULL
1057 && obj->separate_debug_objfile_backlink->obfd == second->owner)
1058 return 1;
1059
1060 return 0;
1061 }
1062
1063 struct symtab *
1064 find_pc_sect_symtab_via_partial (CORE_ADDR pc, struct obj_section *section)
1065 {
1066 struct objfile *objfile;
1067 struct bound_minimal_symbol msymbol;
1068
1069 /* If we know that this is not a text address, return failure. This is
1070 necessary because we loop based on texthigh and textlow, which do
1071 not include the data ranges. */
1072 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
1073 if (msymbol.minsym
1074 && (MSYMBOL_TYPE (msymbol.minsym) == mst_data
1075 || MSYMBOL_TYPE (msymbol.minsym) == mst_bss
1076 || MSYMBOL_TYPE (msymbol.minsym) == mst_abs
1077 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_data
1078 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_bss))
1079 return NULL;
1080
1081 ALL_OBJFILES (objfile)
1082 {
1083 struct symtab *result = NULL;
1084
1085 if (objfile->sf)
1086 result = objfile->sf->qf->find_pc_sect_symtab (objfile, msymbol,
1087 pc, section, 0);
1088 if (result)
1089 return result;
1090 }
1091
1092 return NULL;
1093 }
1094 \f
1095 /* Debug symbols usually don't have section information. We need to dig that
1096 out of the minimal symbols and stash that in the debug symbol. */
1097
1098 void
1099 fixup_section (struct general_symbol_info *ginfo,
1100 CORE_ADDR addr, struct objfile *objfile)
1101 {
1102 struct minimal_symbol *msym;
1103
1104 /* First, check whether a minimal symbol with the same name exists
1105 and points to the same address. The address check is required
1106 e.g. on PowerPC64, where the minimal symbol for a function will
1107 point to the function descriptor, while the debug symbol will
1108 point to the actual function code. */
1109 msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->name, objfile);
1110 if (msym)
1111 ginfo->section = MSYMBOL_SECTION (msym);
1112 else
1113 {
1114 /* Static, function-local variables do appear in the linker
1115 (minimal) symbols, but are frequently given names that won't
1116 be found via lookup_minimal_symbol(). E.g., it has been
1117 observed in frv-uclinux (ELF) executables that a static,
1118 function-local variable named "foo" might appear in the
1119 linker symbols as "foo.6" or "foo.3". Thus, there is no
1120 point in attempting to extend the lookup-by-name mechanism to
1121 handle this case due to the fact that there can be multiple
1122 names.
1123
1124 So, instead, search the section table when lookup by name has
1125 failed. The ``addr'' and ``endaddr'' fields may have already
1126 been relocated. If so, the relocation offset (i.e. the
1127 ANOFFSET value) needs to be subtracted from these values when
1128 performing the comparison. We unconditionally subtract it,
1129 because, when no relocation has been performed, the ANOFFSET
1130 value will simply be zero.
1131
1132 The address of the symbol whose section we're fixing up HAS
1133 NOT BEEN adjusted (relocated) yet. It can't have been since
1134 the section isn't yet known and knowing the section is
1135 necessary in order to add the correct relocation value. In
1136 other words, we wouldn't even be in this function (attempting
1137 to compute the section) if it were already known.
1138
1139 Note that it is possible to search the minimal symbols
1140 (subtracting the relocation value if necessary) to find the
1141 matching minimal symbol, but this is overkill and much less
1142 efficient. It is not necessary to find the matching minimal
1143 symbol, only its section.
1144
1145 Note that this technique (of doing a section table search)
1146 can fail when unrelocated section addresses overlap. For
1147 this reason, we still attempt a lookup by name prior to doing
1148 a search of the section table. */
1149
1150 struct obj_section *s;
1151 int fallback = -1;
1152
1153 ALL_OBJFILE_OSECTIONS (objfile, s)
1154 {
1155 int idx = s - objfile->sections;
1156 CORE_ADDR offset = ANOFFSET (objfile->section_offsets, idx);
1157
1158 if (fallback == -1)
1159 fallback = idx;
1160
1161 if (obj_section_addr (s) - offset <= addr
1162 && addr < obj_section_endaddr (s) - offset)
1163 {
1164 ginfo->section = idx;
1165 return;
1166 }
1167 }
1168
1169 /* If we didn't find the section, assume it is in the first
1170 section. If there is no allocated section, then it hardly
1171 matters what we pick, so just pick zero. */
1172 if (fallback == -1)
1173 ginfo->section = 0;
1174 else
1175 ginfo->section = fallback;
1176 }
1177 }
1178
1179 struct symbol *
1180 fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
1181 {
1182 CORE_ADDR addr;
1183
1184 if (!sym)
1185 return NULL;
1186
1187 /* We either have an OBJFILE, or we can get at it from the sym's
1188 symtab. Anything else is a bug. */
1189 gdb_assert (objfile || SYMBOL_SYMTAB (sym));
1190
1191 if (objfile == NULL)
1192 objfile = SYMBOL_SYMTAB (sym)->objfile;
1193
1194 if (SYMBOL_OBJ_SECTION (objfile, sym))
1195 return sym;
1196
1197 /* We should have an objfile by now. */
1198 gdb_assert (objfile);
1199
1200 switch (SYMBOL_CLASS (sym))
1201 {
1202 case LOC_STATIC:
1203 case LOC_LABEL:
1204 addr = SYMBOL_VALUE_ADDRESS (sym);
1205 break;
1206 case LOC_BLOCK:
1207 addr = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
1208 break;
1209
1210 default:
1211 /* Nothing else will be listed in the minsyms -- no use looking
1212 it up. */
1213 return sym;
1214 }
1215
1216 fixup_section (&sym->ginfo, addr, objfile);
1217
1218 return sym;
1219 }
1220
1221 /* Compute the demangled form of NAME as used by the various symbol
1222 lookup functions. The result is stored in *RESULT_NAME. Returns a
1223 cleanup which can be used to clean up the result.
1224
1225 For Ada, this function just sets *RESULT_NAME to NAME, unmodified.
1226 Normally, Ada symbol lookups are performed using the encoded name
1227 rather than the demangled name, and so it might seem to make sense
1228 for this function to return an encoded version of NAME.
1229 Unfortunately, we cannot do this, because this function is used in
1230 circumstances where it is not appropriate to try to encode NAME.
1231 For instance, when displaying the frame info, we demangle the name
1232 of each parameter, and then perform a symbol lookup inside our
1233 function using that demangled name. In Ada, certain functions
1234 have internally-generated parameters whose name contain uppercase
1235 characters. Encoding those name would result in those uppercase
1236 characters to become lowercase, and thus cause the symbol lookup
1237 to fail. */
1238
1239 struct cleanup *
1240 demangle_for_lookup (const char *name, enum language lang,
1241 const char **result_name)
1242 {
1243 char *demangled_name = NULL;
1244 const char *modified_name = NULL;
1245 struct cleanup *cleanup = make_cleanup (null_cleanup, 0);
1246
1247 modified_name = name;
1248
1249 /* If we are using C++, D, Go, or Java, demangle the name before doing a
1250 lookup, so we can always binary search. */
1251 if (lang == language_cplus)
1252 {
1253 demangled_name = gdb_demangle (name, DMGL_ANSI | DMGL_PARAMS);
1254 if (demangled_name)
1255 {
1256 modified_name = demangled_name;
1257 make_cleanup (xfree, demangled_name);
1258 }
1259 else
1260 {
1261 /* If we were given a non-mangled name, canonicalize it
1262 according to the language (so far only for C++). */
1263 demangled_name = cp_canonicalize_string (name);
1264 if (demangled_name)
1265 {
1266 modified_name = demangled_name;
1267 make_cleanup (xfree, demangled_name);
1268 }
1269 }
1270 }
1271 else if (lang == language_java)
1272 {
1273 demangled_name = gdb_demangle (name,
1274 DMGL_ANSI | DMGL_PARAMS | DMGL_JAVA);
1275 if (demangled_name)
1276 {
1277 modified_name = demangled_name;
1278 make_cleanup (xfree, demangled_name);
1279 }
1280 }
1281 else if (lang == language_d)
1282 {
1283 demangled_name = d_demangle (name, 0);
1284 if (demangled_name)
1285 {
1286 modified_name = demangled_name;
1287 make_cleanup (xfree, demangled_name);
1288 }
1289 }
1290 else if (lang == language_go)
1291 {
1292 demangled_name = go_demangle (name, 0);
1293 if (demangled_name)
1294 {
1295 modified_name = demangled_name;
1296 make_cleanup (xfree, demangled_name);
1297 }
1298 }
1299
1300 *result_name = modified_name;
1301 return cleanup;
1302 }
1303
1304 /* Find the definition for a specified symbol name NAME
1305 in domain DOMAIN, visible from lexical block BLOCK.
1306 Returns the struct symbol pointer, or zero if no symbol is found.
1307 C++: if IS_A_FIELD_OF_THIS is nonzero on entry, check to see if
1308 NAME is a field of the current implied argument `this'. If so set
1309 *IS_A_FIELD_OF_THIS to 1, otherwise set it to zero.
1310 BLOCK_FOUND is set to the block in which NAME is found (in the case of
1311 a field of `this', value_of_this sets BLOCK_FOUND to the proper value.) */
1312
1313 /* This function (or rather its subordinates) have a bunch of loops and
1314 it would seem to be attractive to put in some QUIT's (though I'm not really
1315 sure whether it can run long enough to be really important). But there
1316 are a few calls for which it would appear to be bad news to quit
1317 out of here: e.g., find_proc_desc in alpha-mdebug-tdep.c. (Note
1318 that there is C++ code below which can error(), but that probably
1319 doesn't affect these calls since they are looking for a known
1320 variable and thus can probably assume it will never hit the C++
1321 code). */
1322
1323 struct symbol *
1324 lookup_symbol_in_language (const char *name, const struct block *block,
1325 const domain_enum domain, enum language lang,
1326 struct field_of_this_result *is_a_field_of_this)
1327 {
1328 const char *modified_name;
1329 struct symbol *returnval;
1330 struct cleanup *cleanup = demangle_for_lookup (name, lang, &modified_name);
1331
1332 returnval = lookup_symbol_aux (modified_name, block, domain, lang,
1333 is_a_field_of_this);
1334 do_cleanups (cleanup);
1335
1336 return returnval;
1337 }
1338
1339 /* Behave like lookup_symbol_in_language, but performed with the
1340 current language. */
1341
1342 struct symbol *
1343 lookup_symbol (const char *name, const struct block *block,
1344 domain_enum domain,
1345 struct field_of_this_result *is_a_field_of_this)
1346 {
1347 return lookup_symbol_in_language (name, block, domain,
1348 current_language->la_language,
1349 is_a_field_of_this);
1350 }
1351
1352 /* Look up the `this' symbol for LANG in BLOCK. Return the symbol if
1353 found, or NULL if not found. */
1354
1355 struct symbol *
1356 lookup_language_this (const struct language_defn *lang,
1357 const struct block *block)
1358 {
1359 if (lang->la_name_of_this == NULL || block == NULL)
1360 return NULL;
1361
1362 while (block)
1363 {
1364 struct symbol *sym;
1365
1366 sym = lookup_block_symbol (block, lang->la_name_of_this, VAR_DOMAIN);
1367 if (sym != NULL)
1368 {
1369 block_found = block;
1370 return sym;
1371 }
1372 if (BLOCK_FUNCTION (block))
1373 break;
1374 block = BLOCK_SUPERBLOCK (block);
1375 }
1376
1377 return NULL;
1378 }
1379
1380 /* Given TYPE, a structure/union,
1381 return 1 if the component named NAME from the ultimate target
1382 structure/union is defined, otherwise, return 0. */
1383
1384 static int
1385 check_field (struct type *type, const char *name,
1386 struct field_of_this_result *is_a_field_of_this)
1387 {
1388 int i;
1389
1390 /* The type may be a stub. */
1391 CHECK_TYPEDEF (type);
1392
1393 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1394 {
1395 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1396
1397 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1398 {
1399 is_a_field_of_this->type = type;
1400 is_a_field_of_this->field = &TYPE_FIELD (type, i);
1401 return 1;
1402 }
1403 }
1404
1405 /* C++: If it was not found as a data field, then try to return it
1406 as a pointer to a method. */
1407
1408 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
1409 {
1410 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
1411 {
1412 is_a_field_of_this->type = type;
1413 is_a_field_of_this->fn_field = &TYPE_FN_FIELDLIST (type, i);
1414 return 1;
1415 }
1416 }
1417
1418 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1419 if (check_field (TYPE_BASECLASS (type, i), name, is_a_field_of_this))
1420 return 1;
1421
1422 return 0;
1423 }
1424
1425 /* Behave like lookup_symbol except that NAME is the natural name
1426 (e.g., demangled name) of the symbol that we're looking for. */
1427
1428 static struct symbol *
1429 lookup_symbol_aux (const char *name, const struct block *block,
1430 const domain_enum domain, enum language language,
1431 struct field_of_this_result *is_a_field_of_this)
1432 {
1433 struct symbol *sym;
1434 const struct language_defn *langdef;
1435
1436 /* Make sure we do something sensible with is_a_field_of_this, since
1437 the callers that set this parameter to some non-null value will
1438 certainly use it later. If we don't set it, the contents of
1439 is_a_field_of_this are undefined. */
1440 if (is_a_field_of_this != NULL)
1441 memset (is_a_field_of_this, 0, sizeof (*is_a_field_of_this));
1442
1443 /* Search specified block and its superiors. Don't search
1444 STATIC_BLOCK or GLOBAL_BLOCK. */
1445
1446 sym = lookup_symbol_aux_local (name, block, domain, language);
1447 if (sym != NULL)
1448 return sym;
1449
1450 /* If requested to do so by the caller and if appropriate for LANGUAGE,
1451 check to see if NAME is a field of `this'. */
1452
1453 langdef = language_def (language);
1454
1455 /* Don't do this check if we are searching for a struct. It will
1456 not be found by check_field, but will be found by other
1457 means. */
1458 if (is_a_field_of_this != NULL && domain != STRUCT_DOMAIN)
1459 {
1460 struct symbol *sym = lookup_language_this (langdef, block);
1461
1462 if (sym)
1463 {
1464 struct type *t = sym->type;
1465
1466 /* I'm not really sure that type of this can ever
1467 be typedefed; just be safe. */
1468 CHECK_TYPEDEF (t);
1469 if (TYPE_CODE (t) == TYPE_CODE_PTR
1470 || TYPE_CODE (t) == TYPE_CODE_REF)
1471 t = TYPE_TARGET_TYPE (t);
1472
1473 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
1474 && TYPE_CODE (t) != TYPE_CODE_UNION)
1475 error (_("Internal error: `%s' is not an aggregate"),
1476 langdef->la_name_of_this);
1477
1478 if (check_field (t, name, is_a_field_of_this))
1479 return NULL;
1480 }
1481 }
1482
1483 /* Now do whatever is appropriate for LANGUAGE to look
1484 up static and global variables. */
1485
1486 sym = langdef->la_lookup_symbol_nonlocal (name, block, domain);
1487 if (sym != NULL)
1488 return sym;
1489
1490 /* Now search all static file-level symbols. Not strictly correct,
1491 but more useful than an error. */
1492
1493 return lookup_static_symbol_aux (name, domain);
1494 }
1495
1496 /* Search all static file-level symbols for NAME from DOMAIN. Do the symtabs
1497 first, then check the psymtabs. If a psymtab indicates the existence of the
1498 desired name as a file-level static, then do psymtab-to-symtab conversion on
1499 the fly and return the found symbol. */
1500
1501 struct symbol *
1502 lookup_static_symbol_aux (const char *name, const domain_enum domain)
1503 {
1504 struct objfile *objfile;
1505 struct symbol *sym;
1506
1507 sym = lookup_symbol_aux_symtabs (STATIC_BLOCK, name, domain);
1508 if (sym != NULL)
1509 return sym;
1510
1511 ALL_OBJFILES (objfile)
1512 {
1513 sym = lookup_symbol_aux_quick (objfile, STATIC_BLOCK, name, domain);
1514 if (sym != NULL)
1515 return sym;
1516 }
1517
1518 return NULL;
1519 }
1520
1521 /* Check to see if the symbol is defined in BLOCK or its superiors.
1522 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
1523
1524 static struct symbol *
1525 lookup_symbol_aux_local (const char *name, const struct block *block,
1526 const domain_enum domain,
1527 enum language language)
1528 {
1529 struct symbol *sym;
1530 const struct block *static_block = block_static_block (block);
1531 const char *scope = block_scope (block);
1532
1533 /* Check if either no block is specified or it's a global block. */
1534
1535 if (static_block == NULL)
1536 return NULL;
1537
1538 while (block != static_block)
1539 {
1540 sym = lookup_symbol_aux_block (name, block, domain);
1541 if (sym != NULL)
1542 return sym;
1543
1544 if (language == language_cplus || language == language_fortran)
1545 {
1546 sym = cp_lookup_symbol_imports_or_template (scope, name, block,
1547 domain);
1548 if (sym != NULL)
1549 return sym;
1550 }
1551
1552 if (BLOCK_FUNCTION (block) != NULL && block_inlined_p (block))
1553 break;
1554 block = BLOCK_SUPERBLOCK (block);
1555 }
1556
1557 /* We've reached the edge of the function without finding a result. */
1558
1559 return NULL;
1560 }
1561
1562 /* Look up OBJFILE to BLOCK. */
1563
1564 struct objfile *
1565 lookup_objfile_from_block (const struct block *block)
1566 {
1567 struct objfile *obj;
1568 struct symtab *s;
1569
1570 if (block == NULL)
1571 return NULL;
1572
1573 block = block_global_block (block);
1574 /* Go through SYMTABS. */
1575 ALL_SYMTABS (obj, s)
1576 if (block == BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK))
1577 {
1578 if (obj->separate_debug_objfile_backlink)
1579 obj = obj->separate_debug_objfile_backlink;
1580
1581 return obj;
1582 }
1583
1584 return NULL;
1585 }
1586
1587 /* Look up a symbol in a block; if found, fixup the symbol, and set
1588 block_found appropriately. */
1589
1590 struct symbol *
1591 lookup_symbol_aux_block (const char *name, const struct block *block,
1592 const domain_enum domain)
1593 {
1594 struct symbol *sym;
1595
1596 sym = lookup_block_symbol (block, name, domain);
1597 if (sym)
1598 {
1599 block_found = block;
1600 return fixup_symbol_section (sym, NULL);
1601 }
1602
1603 return NULL;
1604 }
1605
1606 /* Check all global symbols in OBJFILE in symtabs and
1607 psymtabs. */
1608
1609 struct symbol *
1610 lookup_global_symbol_from_objfile (const struct objfile *main_objfile,
1611 const char *name,
1612 const domain_enum domain)
1613 {
1614 const struct objfile *objfile;
1615 struct symbol *sym;
1616 const struct blockvector *bv;
1617 const struct block *block;
1618 struct symtab *s;
1619
1620 for (objfile = main_objfile;
1621 objfile;
1622 objfile = objfile_separate_debug_iterate (main_objfile, objfile))
1623 {
1624 /* Go through symtabs. */
1625 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
1626 {
1627 bv = BLOCKVECTOR (s);
1628 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1629 sym = lookup_block_symbol (block, name, domain);
1630 if (sym)
1631 {
1632 block_found = block;
1633 return fixup_symbol_section (sym, (struct objfile *)objfile);
1634 }
1635 }
1636
1637 sym = lookup_symbol_aux_quick ((struct objfile *) objfile, GLOBAL_BLOCK,
1638 name, domain);
1639 if (sym)
1640 return sym;
1641 }
1642
1643 return NULL;
1644 }
1645
1646 /* Check to see if the symbol is defined in one of the OBJFILE's
1647 symtabs. BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
1648 depending on whether or not we want to search global symbols or
1649 static symbols. */
1650
1651 static struct symbol *
1652 lookup_symbol_aux_objfile (struct objfile *objfile, int block_index,
1653 const char *name, const domain_enum domain)
1654 {
1655 struct symbol *sym = NULL;
1656 const struct blockvector *bv;
1657 const struct block *block;
1658 struct symtab *s;
1659
1660 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
1661 {
1662 bv = BLOCKVECTOR (s);
1663 block = BLOCKVECTOR_BLOCK (bv, block_index);
1664 sym = lookup_block_symbol (block, name, domain);
1665 if (sym)
1666 {
1667 block_found = block;
1668 return fixup_symbol_section (sym, objfile);
1669 }
1670 }
1671
1672 return NULL;
1673 }
1674
1675 /* Same as lookup_symbol_aux_objfile, except that it searches all
1676 objfiles. Return the first match found. */
1677
1678 static struct symbol *
1679 lookup_symbol_aux_symtabs (int block_index, const char *name,
1680 const domain_enum domain)
1681 {
1682 struct symbol *sym;
1683 struct objfile *objfile;
1684
1685 ALL_OBJFILES (objfile)
1686 {
1687 sym = lookup_symbol_aux_objfile (objfile, block_index, name, domain);
1688 if (sym)
1689 return sym;
1690 }
1691
1692 return NULL;
1693 }
1694
1695 /* Wrapper around lookup_symbol_aux_objfile for search_symbols.
1696 Look up LINKAGE_NAME in DOMAIN in the global and static blocks of OBJFILE
1697 and all related objfiles. */
1698
1699 static struct symbol *
1700 lookup_symbol_in_objfile_from_linkage_name (struct objfile *objfile,
1701 const char *linkage_name,
1702 domain_enum domain)
1703 {
1704 enum language lang = current_language->la_language;
1705 const char *modified_name;
1706 struct cleanup *cleanup = demangle_for_lookup (linkage_name, lang,
1707 &modified_name);
1708 struct objfile *main_objfile, *cur_objfile;
1709
1710 if (objfile->separate_debug_objfile_backlink)
1711 main_objfile = objfile->separate_debug_objfile_backlink;
1712 else
1713 main_objfile = objfile;
1714
1715 for (cur_objfile = main_objfile;
1716 cur_objfile;
1717 cur_objfile = objfile_separate_debug_iterate (main_objfile, cur_objfile))
1718 {
1719 struct symbol *sym;
1720
1721 sym = lookup_symbol_aux_objfile (cur_objfile, GLOBAL_BLOCK,
1722 modified_name, domain);
1723 if (sym == NULL)
1724 sym = lookup_symbol_aux_objfile (cur_objfile, STATIC_BLOCK,
1725 modified_name, domain);
1726 if (sym != NULL)
1727 {
1728 do_cleanups (cleanup);
1729 return sym;
1730 }
1731 }
1732
1733 do_cleanups (cleanup);
1734 return NULL;
1735 }
1736
1737 /* A helper function that throws an exception when a symbol was found
1738 in a psymtab but not in a symtab. */
1739
1740 static void ATTRIBUTE_NORETURN
1741 error_in_psymtab_expansion (int kind, const char *name, struct symtab *symtab)
1742 {
1743 error (_("\
1744 Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n\
1745 %s may be an inlined function, or may be a template function\n \
1746 (if a template, try specifying an instantiation: %s<type>)."),
1747 kind == GLOBAL_BLOCK ? "global" : "static",
1748 name, symtab_to_filename_for_display (symtab), name, name);
1749 }
1750
1751 /* A helper function for lookup_symbol_aux that interfaces with the
1752 "quick" symbol table functions. */
1753
1754 static struct symbol *
1755 lookup_symbol_aux_quick (struct objfile *objfile, int kind,
1756 const char *name, const domain_enum domain)
1757 {
1758 struct symtab *symtab;
1759 const struct blockvector *bv;
1760 const struct block *block;
1761 struct symbol *sym;
1762
1763 if (!objfile->sf)
1764 return NULL;
1765 symtab = objfile->sf->qf->lookup_symbol (objfile, kind, name, domain);
1766 if (!symtab)
1767 return NULL;
1768
1769 bv = BLOCKVECTOR (symtab);
1770 block = BLOCKVECTOR_BLOCK (bv, kind);
1771 sym = lookup_block_symbol (block, name, domain);
1772 if (!sym)
1773 error_in_psymtab_expansion (kind, name, symtab);
1774 return fixup_symbol_section (sym, objfile);
1775 }
1776
1777 /* A default version of lookup_symbol_nonlocal for use by languages
1778 that can't think of anything better to do. This implements the C
1779 lookup rules. */
1780
1781 struct symbol *
1782 basic_lookup_symbol_nonlocal (const char *name,
1783 const struct block *block,
1784 const domain_enum domain)
1785 {
1786 struct symbol *sym;
1787
1788 /* NOTE: carlton/2003-05-19: The comments below were written when
1789 this (or what turned into this) was part of lookup_symbol_aux;
1790 I'm much less worried about these questions now, since these
1791 decisions have turned out well, but I leave these comments here
1792 for posterity. */
1793
1794 /* NOTE: carlton/2002-12-05: There is a question as to whether or
1795 not it would be appropriate to search the current global block
1796 here as well. (That's what this code used to do before the
1797 is_a_field_of_this check was moved up.) On the one hand, it's
1798 redundant with the lookup_symbol_aux_symtabs search that happens
1799 next. On the other hand, if decode_line_1 is passed an argument
1800 like filename:var, then the user presumably wants 'var' to be
1801 searched for in filename. On the third hand, there shouldn't be
1802 multiple global variables all of which are named 'var', and it's
1803 not like decode_line_1 has ever restricted its search to only
1804 global variables in a single filename. All in all, only
1805 searching the static block here seems best: it's correct and it's
1806 cleanest. */
1807
1808 /* NOTE: carlton/2002-12-05: There's also a possible performance
1809 issue here: if you usually search for global symbols in the
1810 current file, then it would be slightly better to search the
1811 current global block before searching all the symtabs. But there
1812 are other factors that have a much greater effect on performance
1813 than that one, so I don't think we should worry about that for
1814 now. */
1815
1816 sym = lookup_symbol_static (name, block, domain);
1817 if (sym != NULL)
1818 return sym;
1819
1820 return lookup_symbol_global (name, block, domain);
1821 }
1822
1823 /* Lookup a symbol in the static block associated to BLOCK, if there
1824 is one; do nothing if BLOCK is NULL or a global block. */
1825
1826 struct symbol *
1827 lookup_symbol_static (const char *name,
1828 const struct block *block,
1829 const domain_enum domain)
1830 {
1831 const struct block *static_block = block_static_block (block);
1832
1833 if (static_block != NULL)
1834 return lookup_symbol_aux_block (name, static_block, domain);
1835 else
1836 return NULL;
1837 }
1838
1839 /* Private data to be used with lookup_symbol_global_iterator_cb. */
1840
1841 struct global_sym_lookup_data
1842 {
1843 /* The name of the symbol we are searching for. */
1844 const char *name;
1845
1846 /* The domain to use for our search. */
1847 domain_enum domain;
1848
1849 /* The field where the callback should store the symbol if found.
1850 It should be initialized to NULL before the search is started. */
1851 struct symbol *result;
1852 };
1853
1854 /* A callback function for gdbarch_iterate_over_objfiles_in_search_order.
1855 It searches by name for a symbol in the GLOBAL_BLOCK of the given
1856 OBJFILE. The arguments for the search are passed via CB_DATA,
1857 which in reality is a pointer to struct global_sym_lookup_data. */
1858
1859 static int
1860 lookup_symbol_global_iterator_cb (struct objfile *objfile,
1861 void *cb_data)
1862 {
1863 struct global_sym_lookup_data *data =
1864 (struct global_sym_lookup_data *) cb_data;
1865
1866 gdb_assert (data->result == NULL);
1867
1868 data->result = lookup_symbol_aux_objfile (objfile, GLOBAL_BLOCK,
1869 data->name, data->domain);
1870 if (data->result == NULL)
1871 data->result = lookup_symbol_aux_quick (objfile, GLOBAL_BLOCK,
1872 data->name, data->domain);
1873
1874 /* If we found a match, tell the iterator to stop. Otherwise,
1875 keep going. */
1876 return (data->result != NULL);
1877 }
1878
1879 /* Lookup a symbol in all files' global blocks (searching psymtabs if
1880 necessary). */
1881
1882 struct symbol *
1883 lookup_symbol_global (const char *name,
1884 const struct block *block,
1885 const domain_enum domain)
1886 {
1887 struct symbol *sym = NULL;
1888 struct objfile *objfile = NULL;
1889 struct global_sym_lookup_data lookup_data;
1890
1891 /* Call library-specific lookup procedure. */
1892 objfile = lookup_objfile_from_block (block);
1893 if (objfile != NULL)
1894 sym = solib_global_lookup (objfile, name, domain);
1895 if (sym != NULL)
1896 return sym;
1897
1898 memset (&lookup_data, 0, sizeof (lookup_data));
1899 lookup_data.name = name;
1900 lookup_data.domain = domain;
1901 gdbarch_iterate_over_objfiles_in_search_order
1902 (objfile != NULL ? get_objfile_arch (objfile) : target_gdbarch (),
1903 lookup_symbol_global_iterator_cb, &lookup_data, objfile);
1904
1905 return lookup_data.result;
1906 }
1907
1908 int
1909 symbol_matches_domain (enum language symbol_language,
1910 domain_enum symbol_domain,
1911 domain_enum domain)
1912 {
1913 /* For C++ "struct foo { ... }" also defines a typedef for "foo".
1914 A Java class declaration also defines a typedef for the class.
1915 Similarly, any Ada type declaration implicitly defines a typedef. */
1916 if (symbol_language == language_cplus
1917 || symbol_language == language_d
1918 || symbol_language == language_java
1919 || symbol_language == language_ada)
1920 {
1921 if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN)
1922 && symbol_domain == STRUCT_DOMAIN)
1923 return 1;
1924 }
1925 /* For all other languages, strict match is required. */
1926 return (symbol_domain == domain);
1927 }
1928
1929 /* Look up a type named NAME in the struct_domain. The type returned
1930 must not be opaque -- i.e., must have at least one field
1931 defined. */
1932
1933 struct type *
1934 lookup_transparent_type (const char *name)
1935 {
1936 return current_language->la_lookup_transparent_type (name);
1937 }
1938
1939 /* A helper for basic_lookup_transparent_type that interfaces with the
1940 "quick" symbol table functions. */
1941
1942 static struct type *
1943 basic_lookup_transparent_type_quick (struct objfile *objfile, int kind,
1944 const char *name)
1945 {
1946 struct symtab *symtab;
1947 const struct blockvector *bv;
1948 struct block *block;
1949 struct symbol *sym;
1950
1951 if (!objfile->sf)
1952 return NULL;
1953 symtab = objfile->sf->qf->lookup_symbol (objfile, kind, name, STRUCT_DOMAIN);
1954 if (!symtab)
1955 return NULL;
1956
1957 bv = BLOCKVECTOR (symtab);
1958 block = BLOCKVECTOR_BLOCK (bv, kind);
1959 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1960 if (!sym)
1961 error_in_psymtab_expansion (kind, name, symtab);
1962
1963 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1964 return SYMBOL_TYPE (sym);
1965
1966 return NULL;
1967 }
1968
1969 /* The standard implementation of lookup_transparent_type. This code
1970 was modeled on lookup_symbol -- the parts not relevant to looking
1971 up types were just left out. In particular it's assumed here that
1972 types are available in struct_domain and only at file-static or
1973 global blocks. */
1974
1975 struct type *
1976 basic_lookup_transparent_type (const char *name)
1977 {
1978 struct symbol *sym;
1979 struct symtab *s = NULL;
1980 const struct blockvector *bv;
1981 struct objfile *objfile;
1982 struct block *block;
1983 struct type *t;
1984
1985 /* Now search all the global symbols. Do the symtab's first, then
1986 check the psymtab's. If a psymtab indicates the existence
1987 of the desired name as a global, then do psymtab-to-symtab
1988 conversion on the fly and return the found symbol. */
1989
1990 ALL_OBJFILES (objfile)
1991 {
1992 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
1993 {
1994 bv = BLOCKVECTOR (s);
1995 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1996 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1997 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1998 {
1999 return SYMBOL_TYPE (sym);
2000 }
2001 }
2002 }
2003
2004 ALL_OBJFILES (objfile)
2005 {
2006 t = basic_lookup_transparent_type_quick (objfile, GLOBAL_BLOCK, name);
2007 if (t)
2008 return t;
2009 }
2010
2011 /* Now search the static file-level symbols.
2012 Not strictly correct, but more useful than an error.
2013 Do the symtab's first, then
2014 check the psymtab's. If a psymtab indicates the existence
2015 of the desired name as a file-level static, then do psymtab-to-symtab
2016 conversion on the fly and return the found symbol. */
2017
2018 ALL_OBJFILES (objfile)
2019 {
2020 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
2021 {
2022 bv = BLOCKVECTOR (s);
2023 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
2024 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
2025 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
2026 {
2027 return SYMBOL_TYPE (sym);
2028 }
2029 }
2030 }
2031
2032 ALL_OBJFILES (objfile)
2033 {
2034 t = basic_lookup_transparent_type_quick (objfile, STATIC_BLOCK, name);
2035 if (t)
2036 return t;
2037 }
2038
2039 return (struct type *) 0;
2040 }
2041
2042 /* Search BLOCK for symbol NAME in DOMAIN.
2043
2044 Note that if NAME is the demangled form of a C++ symbol, we will fail
2045 to find a match during the binary search of the non-encoded names, but
2046 for now we don't worry about the slight inefficiency of looking for
2047 a match we'll never find, since it will go pretty quick. Once the
2048 binary search terminates, we drop through and do a straight linear
2049 search on the symbols. Each symbol which is marked as being a ObjC/C++
2050 symbol (language_cplus or language_objc set) has both the encoded and
2051 non-encoded names tested for a match. */
2052
2053 struct symbol *
2054 lookup_block_symbol (const struct block *block, const char *name,
2055 const domain_enum domain)
2056 {
2057 struct block_iterator iter;
2058 struct symbol *sym;
2059
2060 if (!BLOCK_FUNCTION (block))
2061 {
2062 for (sym = block_iter_name_first (block, name, &iter);
2063 sym != NULL;
2064 sym = block_iter_name_next (name, &iter))
2065 {
2066 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
2067 SYMBOL_DOMAIN (sym), domain))
2068 return sym;
2069 }
2070 return NULL;
2071 }
2072 else
2073 {
2074 /* Note that parameter symbols do not always show up last in the
2075 list; this loop makes sure to take anything else other than
2076 parameter symbols first; it only uses parameter symbols as a
2077 last resort. Note that this only takes up extra computation
2078 time on a match. */
2079
2080 struct symbol *sym_found = NULL;
2081
2082 for (sym = block_iter_name_first (block, name, &iter);
2083 sym != NULL;
2084 sym = block_iter_name_next (name, &iter))
2085 {
2086 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
2087 SYMBOL_DOMAIN (sym), domain))
2088 {
2089 sym_found = sym;
2090 if (!SYMBOL_IS_ARGUMENT (sym))
2091 {
2092 break;
2093 }
2094 }
2095 }
2096 return (sym_found); /* Will be NULL if not found. */
2097 }
2098 }
2099
2100 /* Iterate over the symbols named NAME, matching DOMAIN, in BLOCK.
2101
2102 For each symbol that matches, CALLBACK is called. The symbol and
2103 DATA are passed to the callback.
2104
2105 If CALLBACK returns zero, the iteration ends. Otherwise, the
2106 search continues. */
2107
2108 void
2109 iterate_over_symbols (const struct block *block, const char *name,
2110 const domain_enum domain,
2111 symbol_found_callback_ftype *callback,
2112 void *data)
2113 {
2114 struct block_iterator iter;
2115 struct symbol *sym;
2116
2117 for (sym = block_iter_name_first (block, name, &iter);
2118 sym != NULL;
2119 sym = block_iter_name_next (name, &iter))
2120 {
2121 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
2122 SYMBOL_DOMAIN (sym), domain))
2123 {
2124 if (!callback (sym, data))
2125 return;
2126 }
2127 }
2128 }
2129
2130 /* Find the symtab associated with PC and SECTION. Look through the
2131 psymtabs and read in another symtab if necessary. */
2132
2133 struct symtab *
2134 find_pc_sect_symtab (CORE_ADDR pc, struct obj_section *section)
2135 {
2136 struct block *b;
2137 const struct blockvector *bv;
2138 struct symtab *s = NULL;
2139 struct symtab *best_s = NULL;
2140 struct objfile *objfile;
2141 CORE_ADDR distance = 0;
2142 struct bound_minimal_symbol msymbol;
2143
2144 /* If we know that this is not a text address, return failure. This is
2145 necessary because we loop based on the block's high and low code
2146 addresses, which do not include the data ranges, and because
2147 we call find_pc_sect_psymtab which has a similar restriction based
2148 on the partial_symtab's texthigh and textlow. */
2149 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
2150 if (msymbol.minsym
2151 && (MSYMBOL_TYPE (msymbol.minsym) == mst_data
2152 || MSYMBOL_TYPE (msymbol.minsym) == mst_bss
2153 || MSYMBOL_TYPE (msymbol.minsym) == mst_abs
2154 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_data
2155 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_bss))
2156 return NULL;
2157
2158 /* Search all symtabs for the one whose file contains our address, and which
2159 is the smallest of all the ones containing the address. This is designed
2160 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
2161 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
2162 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
2163
2164 This happens for native ecoff format, where code from included files
2165 gets its own symtab. The symtab for the included file should have
2166 been read in already via the dependency mechanism.
2167 It might be swifter to create several symtabs with the same name
2168 like xcoff does (I'm not sure).
2169
2170 It also happens for objfiles that have their functions reordered.
2171 For these, the symtab we are looking for is not necessarily read in. */
2172
2173 ALL_PRIMARY_SYMTABS (objfile, s)
2174 {
2175 bv = BLOCKVECTOR (s);
2176 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
2177
2178 if (BLOCK_START (b) <= pc
2179 && BLOCK_END (b) > pc
2180 && (distance == 0
2181 || BLOCK_END (b) - BLOCK_START (b) < distance))
2182 {
2183 /* For an objfile that has its functions reordered,
2184 find_pc_psymtab will find the proper partial symbol table
2185 and we simply return its corresponding symtab. */
2186 /* In order to better support objfiles that contain both
2187 stabs and coff debugging info, we continue on if a psymtab
2188 can't be found. */
2189 if ((objfile->flags & OBJF_REORDERED) && objfile->sf)
2190 {
2191 struct symtab *result;
2192
2193 result
2194 = objfile->sf->qf->find_pc_sect_symtab (objfile,
2195 msymbol,
2196 pc, section,
2197 0);
2198 if (result)
2199 return result;
2200 }
2201 if (section != 0)
2202 {
2203 struct block_iterator iter;
2204 struct symbol *sym = NULL;
2205
2206 ALL_BLOCK_SYMBOLS (b, iter, sym)
2207 {
2208 fixup_symbol_section (sym, objfile);
2209 if (matching_obj_sections (SYMBOL_OBJ_SECTION (objfile, sym),
2210 section))
2211 break;
2212 }
2213 if (sym == NULL)
2214 continue; /* No symbol in this symtab matches
2215 section. */
2216 }
2217 distance = BLOCK_END (b) - BLOCK_START (b);
2218 best_s = s;
2219 }
2220 }
2221
2222 if (best_s != NULL)
2223 return (best_s);
2224
2225 /* Not found in symtabs, search the "quick" symtabs (e.g. psymtabs). */
2226
2227 ALL_OBJFILES (objfile)
2228 {
2229 struct symtab *result;
2230
2231 if (!objfile->sf)
2232 continue;
2233 result = objfile->sf->qf->find_pc_sect_symtab (objfile,
2234 msymbol,
2235 pc, section,
2236 1);
2237 if (result)
2238 return result;
2239 }
2240
2241 return NULL;
2242 }
2243
2244 /* Find the symtab associated with PC. Look through the psymtabs and read
2245 in another symtab if necessary. Backward compatibility, no section. */
2246
2247 struct symtab *
2248 find_pc_symtab (CORE_ADDR pc)
2249 {
2250 return find_pc_sect_symtab (pc, find_pc_mapped_section (pc));
2251 }
2252 \f
2253
2254 /* Find the source file and line number for a given PC value and SECTION.
2255 Return a structure containing a symtab pointer, a line number,
2256 and a pc range for the entire source line.
2257 The value's .pc field is NOT the specified pc.
2258 NOTCURRENT nonzero means, if specified pc is on a line boundary,
2259 use the line that ends there. Otherwise, in that case, the line
2260 that begins there is used. */
2261
2262 /* The big complication here is that a line may start in one file, and end just
2263 before the start of another file. This usually occurs when you #include
2264 code in the middle of a subroutine. To properly find the end of a line's PC
2265 range, we must search all symtabs associated with this compilation unit, and
2266 find the one whose first PC is closer than that of the next line in this
2267 symtab. */
2268
2269 /* If it's worth the effort, we could be using a binary search. */
2270
2271 struct symtab_and_line
2272 find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent)
2273 {
2274 struct symtab *s;
2275 struct linetable *l;
2276 int len;
2277 int i;
2278 struct linetable_entry *item;
2279 struct symtab_and_line val;
2280 const struct blockvector *bv;
2281 struct bound_minimal_symbol msymbol;
2282 struct objfile *objfile;
2283
2284 /* Info on best line seen so far, and where it starts, and its file. */
2285
2286 struct linetable_entry *best = NULL;
2287 CORE_ADDR best_end = 0;
2288 struct symtab *best_symtab = 0;
2289
2290 /* Store here the first line number
2291 of a file which contains the line at the smallest pc after PC.
2292 If we don't find a line whose range contains PC,
2293 we will use a line one less than this,
2294 with a range from the start of that file to the first line's pc. */
2295 struct linetable_entry *alt = NULL;
2296
2297 /* Info on best line seen in this file. */
2298
2299 struct linetable_entry *prev;
2300
2301 /* If this pc is not from the current frame,
2302 it is the address of the end of a call instruction.
2303 Quite likely that is the start of the following statement.
2304 But what we want is the statement containing the instruction.
2305 Fudge the pc to make sure we get that. */
2306
2307 init_sal (&val); /* initialize to zeroes */
2308
2309 val.pspace = current_program_space;
2310
2311 /* It's tempting to assume that, if we can't find debugging info for
2312 any function enclosing PC, that we shouldn't search for line
2313 number info, either. However, GAS can emit line number info for
2314 assembly files --- very helpful when debugging hand-written
2315 assembly code. In such a case, we'd have no debug info for the
2316 function, but we would have line info. */
2317
2318 if (notcurrent)
2319 pc -= 1;
2320
2321 /* elz: added this because this function returned the wrong
2322 information if the pc belongs to a stub (import/export)
2323 to call a shlib function. This stub would be anywhere between
2324 two functions in the target, and the line info was erroneously
2325 taken to be the one of the line before the pc. */
2326
2327 /* RT: Further explanation:
2328
2329 * We have stubs (trampolines) inserted between procedures.
2330 *
2331 * Example: "shr1" exists in a shared library, and a "shr1" stub also
2332 * exists in the main image.
2333 *
2334 * In the minimal symbol table, we have a bunch of symbols
2335 * sorted by start address. The stubs are marked as "trampoline",
2336 * the others appear as text. E.g.:
2337 *
2338 * Minimal symbol table for main image
2339 * main: code for main (text symbol)
2340 * shr1: stub (trampoline symbol)
2341 * foo: code for foo (text symbol)
2342 * ...
2343 * Minimal symbol table for "shr1" image:
2344 * ...
2345 * shr1: code for shr1 (text symbol)
2346 * ...
2347 *
2348 * So the code below is trying to detect if we are in the stub
2349 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
2350 * and if found, do the symbolization from the real-code address
2351 * rather than the stub address.
2352 *
2353 * Assumptions being made about the minimal symbol table:
2354 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
2355 * if we're really in the trampoline.s If we're beyond it (say
2356 * we're in "foo" in the above example), it'll have a closer
2357 * symbol (the "foo" text symbol for example) and will not
2358 * return the trampoline.
2359 * 2. lookup_minimal_symbol_text() will find a real text symbol
2360 * corresponding to the trampoline, and whose address will
2361 * be different than the trampoline address. I put in a sanity
2362 * check for the address being the same, to avoid an
2363 * infinite recursion.
2364 */
2365 msymbol = lookup_minimal_symbol_by_pc (pc);
2366 if (msymbol.minsym != NULL)
2367 if (MSYMBOL_TYPE (msymbol.minsym) == mst_solib_trampoline)
2368 {
2369 struct bound_minimal_symbol mfunsym
2370 = lookup_minimal_symbol_text (MSYMBOL_LINKAGE_NAME (msymbol.minsym),
2371 NULL);
2372
2373 if (mfunsym.minsym == NULL)
2374 /* I eliminated this warning since it is coming out
2375 * in the following situation:
2376 * gdb shmain // test program with shared libraries
2377 * (gdb) break shr1 // function in shared lib
2378 * Warning: In stub for ...
2379 * In the above situation, the shared lib is not loaded yet,
2380 * so of course we can't find the real func/line info,
2381 * but the "break" still works, and the warning is annoying.
2382 * So I commented out the warning. RT */
2383 /* warning ("In stub for %s; unable to find real function/line info",
2384 SYMBOL_LINKAGE_NAME (msymbol)); */
2385 ;
2386 /* fall through */
2387 else if (BMSYMBOL_VALUE_ADDRESS (mfunsym)
2388 == BMSYMBOL_VALUE_ADDRESS (msymbol))
2389 /* Avoid infinite recursion */
2390 /* See above comment about why warning is commented out. */
2391 /* warning ("In stub for %s; unable to find real function/line info",
2392 SYMBOL_LINKAGE_NAME (msymbol)); */
2393 ;
2394 /* fall through */
2395 else
2396 return find_pc_line (BMSYMBOL_VALUE_ADDRESS (mfunsym), 0);
2397 }
2398
2399
2400 s = find_pc_sect_symtab (pc, section);
2401 if (!s)
2402 {
2403 /* If no symbol information, return previous pc. */
2404 if (notcurrent)
2405 pc++;
2406 val.pc = pc;
2407 return val;
2408 }
2409
2410 bv = BLOCKVECTOR (s);
2411 objfile = s->objfile;
2412
2413 /* Look at all the symtabs that share this blockvector.
2414 They all have the same apriori range, that we found was right;
2415 but they have different line tables. */
2416
2417 ALL_OBJFILE_SYMTABS (objfile, s)
2418 {
2419 if (BLOCKVECTOR (s) != bv)
2420 continue;
2421
2422 /* Find the best line in this symtab. */
2423 l = LINETABLE (s);
2424 if (!l)
2425 continue;
2426 len = l->nitems;
2427 if (len <= 0)
2428 {
2429 /* I think len can be zero if the symtab lacks line numbers
2430 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
2431 I'm not sure which, and maybe it depends on the symbol
2432 reader). */
2433 continue;
2434 }
2435
2436 prev = NULL;
2437 item = l->item; /* Get first line info. */
2438
2439 /* Is this file's first line closer than the first lines of other files?
2440 If so, record this file, and its first line, as best alternate. */
2441 if (item->pc > pc && (!alt || item->pc < alt->pc))
2442 alt = item;
2443
2444 for (i = 0; i < len; i++, item++)
2445 {
2446 /* Leave prev pointing to the linetable entry for the last line
2447 that started at or before PC. */
2448 if (item->pc > pc)
2449 break;
2450
2451 prev = item;
2452 }
2453
2454 /* At this point, prev points at the line whose start addr is <= pc, and
2455 item points at the next line. If we ran off the end of the linetable
2456 (pc >= start of the last line), then prev == item. If pc < start of
2457 the first line, prev will not be set. */
2458
2459 /* Is this file's best line closer than the best in the other files?
2460 If so, record this file, and its best line, as best so far. Don't
2461 save prev if it represents the end of a function (i.e. line number
2462 0) instead of a real line. */
2463
2464 if (prev && prev->line && (!best || prev->pc > best->pc))
2465 {
2466 best = prev;
2467 best_symtab = s;
2468
2469 /* Discard BEST_END if it's before the PC of the current BEST. */
2470 if (best_end <= best->pc)
2471 best_end = 0;
2472 }
2473
2474 /* If another line (denoted by ITEM) is in the linetable and its
2475 PC is after BEST's PC, but before the current BEST_END, then
2476 use ITEM's PC as the new best_end. */
2477 if (best && i < len && item->pc > best->pc
2478 && (best_end == 0 || best_end > item->pc))
2479 best_end = item->pc;
2480 }
2481
2482 if (!best_symtab)
2483 {
2484 /* If we didn't find any line number info, just return zeros.
2485 We used to return alt->line - 1 here, but that could be
2486 anywhere; if we don't have line number info for this PC,
2487 don't make some up. */
2488 val.pc = pc;
2489 }
2490 else if (best->line == 0)
2491 {
2492 /* If our best fit is in a range of PC's for which no line
2493 number info is available (line number is zero) then we didn't
2494 find any valid line information. */
2495 val.pc = pc;
2496 }
2497 else
2498 {
2499 val.symtab = best_symtab;
2500 val.line = best->line;
2501 val.pc = best->pc;
2502 if (best_end && (!alt || best_end < alt->pc))
2503 val.end = best_end;
2504 else if (alt)
2505 val.end = alt->pc;
2506 else
2507 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
2508 }
2509 val.section = section;
2510 return val;
2511 }
2512
2513 /* Backward compatibility (no section). */
2514
2515 struct symtab_and_line
2516 find_pc_line (CORE_ADDR pc, int notcurrent)
2517 {
2518 struct obj_section *section;
2519
2520 section = find_pc_overlay (pc);
2521 if (pc_in_unmapped_range (pc, section))
2522 pc = overlay_mapped_address (pc, section);
2523 return find_pc_sect_line (pc, section, notcurrent);
2524 }
2525 \f
2526 /* Find line number LINE in any symtab whose name is the same as
2527 SYMTAB.
2528
2529 If found, return the symtab that contains the linetable in which it was
2530 found, set *INDEX to the index in the linetable of the best entry
2531 found, and set *EXACT_MATCH nonzero if the value returned is an
2532 exact match.
2533
2534 If not found, return NULL. */
2535
2536 struct symtab *
2537 find_line_symtab (struct symtab *symtab, int line,
2538 int *index, int *exact_match)
2539 {
2540 int exact = 0; /* Initialized here to avoid a compiler warning. */
2541
2542 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
2543 so far seen. */
2544
2545 int best_index;
2546 struct linetable *best_linetable;
2547 struct symtab *best_symtab;
2548
2549 /* First try looking it up in the given symtab. */
2550 best_linetable = LINETABLE (symtab);
2551 best_symtab = symtab;
2552 best_index = find_line_common (best_linetable, line, &exact, 0);
2553 if (best_index < 0 || !exact)
2554 {
2555 /* Didn't find an exact match. So we better keep looking for
2556 another symtab with the same name. In the case of xcoff,
2557 multiple csects for one source file (produced by IBM's FORTRAN
2558 compiler) produce multiple symtabs (this is unavoidable
2559 assuming csects can be at arbitrary places in memory and that
2560 the GLOBAL_BLOCK of a symtab has a begin and end address). */
2561
2562 /* BEST is the smallest linenumber > LINE so far seen,
2563 or 0 if none has been seen so far.
2564 BEST_INDEX and BEST_LINETABLE identify the item for it. */
2565 int best;
2566
2567 struct objfile *objfile;
2568 struct symtab *s;
2569
2570 if (best_index >= 0)
2571 best = best_linetable->item[best_index].line;
2572 else
2573 best = 0;
2574
2575 ALL_OBJFILES (objfile)
2576 {
2577 if (objfile->sf)
2578 objfile->sf->qf->expand_symtabs_with_fullname (objfile,
2579 symtab_to_fullname (symtab));
2580 }
2581
2582 ALL_SYMTABS (objfile, s)
2583 {
2584 struct linetable *l;
2585 int ind;
2586
2587 if (FILENAME_CMP (symtab->filename, s->filename) != 0)
2588 continue;
2589 if (FILENAME_CMP (symtab_to_fullname (symtab),
2590 symtab_to_fullname (s)) != 0)
2591 continue;
2592 l = LINETABLE (s);
2593 ind = find_line_common (l, line, &exact, 0);
2594 if (ind >= 0)
2595 {
2596 if (exact)
2597 {
2598 best_index = ind;
2599 best_linetable = l;
2600 best_symtab = s;
2601 goto done;
2602 }
2603 if (best == 0 || l->item[ind].line < best)
2604 {
2605 best = l->item[ind].line;
2606 best_index = ind;
2607 best_linetable = l;
2608 best_symtab = s;
2609 }
2610 }
2611 }
2612 }
2613 done:
2614 if (best_index < 0)
2615 return NULL;
2616
2617 if (index)
2618 *index = best_index;
2619 if (exact_match)
2620 *exact_match = exact;
2621
2622 return best_symtab;
2623 }
2624
2625 /* Given SYMTAB, returns all the PCs function in the symtab that
2626 exactly match LINE. Returns NULL if there are no exact matches,
2627 but updates BEST_ITEM in this case. */
2628
2629 VEC (CORE_ADDR) *
2630 find_pcs_for_symtab_line (struct symtab *symtab, int line,
2631 struct linetable_entry **best_item)
2632 {
2633 int start = 0;
2634 VEC (CORE_ADDR) *result = NULL;
2635
2636 /* First, collect all the PCs that are at this line. */
2637 while (1)
2638 {
2639 int was_exact;
2640 int idx;
2641
2642 idx = find_line_common (LINETABLE (symtab), line, &was_exact, start);
2643 if (idx < 0)
2644 break;
2645
2646 if (!was_exact)
2647 {
2648 struct linetable_entry *item = &LINETABLE (symtab)->item[idx];
2649
2650 if (*best_item == NULL || item->line < (*best_item)->line)
2651 *best_item = item;
2652
2653 break;
2654 }
2655
2656 VEC_safe_push (CORE_ADDR, result, LINETABLE (symtab)->item[idx].pc);
2657 start = idx + 1;
2658 }
2659
2660 return result;
2661 }
2662
2663 \f
2664 /* Set the PC value for a given source file and line number and return true.
2665 Returns zero for invalid line number (and sets the PC to 0).
2666 The source file is specified with a struct symtab. */
2667
2668 int
2669 find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
2670 {
2671 struct linetable *l;
2672 int ind;
2673
2674 *pc = 0;
2675 if (symtab == 0)
2676 return 0;
2677
2678 symtab = find_line_symtab (symtab, line, &ind, NULL);
2679 if (symtab != NULL)
2680 {
2681 l = LINETABLE (symtab);
2682 *pc = l->item[ind].pc;
2683 return 1;
2684 }
2685 else
2686 return 0;
2687 }
2688
2689 /* Find the range of pc values in a line.
2690 Store the starting pc of the line into *STARTPTR
2691 and the ending pc (start of next line) into *ENDPTR.
2692 Returns 1 to indicate success.
2693 Returns 0 if could not find the specified line. */
2694
2695 int
2696 find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
2697 CORE_ADDR *endptr)
2698 {
2699 CORE_ADDR startaddr;
2700 struct symtab_and_line found_sal;
2701
2702 startaddr = sal.pc;
2703 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
2704 return 0;
2705
2706 /* This whole function is based on address. For example, if line 10 has
2707 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
2708 "info line *0x123" should say the line goes from 0x100 to 0x200
2709 and "info line *0x355" should say the line goes from 0x300 to 0x400.
2710 This also insures that we never give a range like "starts at 0x134
2711 and ends at 0x12c". */
2712
2713 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
2714 if (found_sal.line != sal.line)
2715 {
2716 /* The specified line (sal) has zero bytes. */
2717 *startptr = found_sal.pc;
2718 *endptr = found_sal.pc;
2719 }
2720 else
2721 {
2722 *startptr = found_sal.pc;
2723 *endptr = found_sal.end;
2724 }
2725 return 1;
2726 }
2727
2728 /* Given a line table and a line number, return the index into the line
2729 table for the pc of the nearest line whose number is >= the specified one.
2730 Return -1 if none is found. The value is >= 0 if it is an index.
2731 START is the index at which to start searching the line table.
2732
2733 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
2734
2735 static int
2736 find_line_common (struct linetable *l, int lineno,
2737 int *exact_match, int start)
2738 {
2739 int i;
2740 int len;
2741
2742 /* BEST is the smallest linenumber > LINENO so far seen,
2743 or 0 if none has been seen so far.
2744 BEST_INDEX identifies the item for it. */
2745
2746 int best_index = -1;
2747 int best = 0;
2748
2749 *exact_match = 0;
2750
2751 if (lineno <= 0)
2752 return -1;
2753 if (l == 0)
2754 return -1;
2755
2756 len = l->nitems;
2757 for (i = start; i < len; i++)
2758 {
2759 struct linetable_entry *item = &(l->item[i]);
2760
2761 if (item->line == lineno)
2762 {
2763 /* Return the first (lowest address) entry which matches. */
2764 *exact_match = 1;
2765 return i;
2766 }
2767
2768 if (item->line > lineno && (best == 0 || item->line < best))
2769 {
2770 best = item->line;
2771 best_index = i;
2772 }
2773 }
2774
2775 /* If we got here, we didn't get an exact match. */
2776 return best_index;
2777 }
2778
2779 int
2780 find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
2781 {
2782 struct symtab_and_line sal;
2783
2784 sal = find_pc_line (pc, 0);
2785 *startptr = sal.pc;
2786 *endptr = sal.end;
2787 return sal.symtab != 0;
2788 }
2789
2790 /* Given a function symbol SYM, find the symtab and line for the start
2791 of the function.
2792 If the argument FUNFIRSTLINE is nonzero, we want the first line
2793 of real code inside the function. */
2794
2795 struct symtab_and_line
2796 find_function_start_sal (struct symbol *sym, int funfirstline)
2797 {
2798 struct symtab_and_line sal;
2799
2800 fixup_symbol_section (sym, NULL);
2801 sal = find_pc_sect_line (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)),
2802 SYMBOL_OBJ_SECTION (SYMBOL_OBJFILE (sym), sym), 0);
2803
2804 /* We always should have a line for the function start address.
2805 If we don't, something is odd. Create a plain SAL refering
2806 just the PC and hope that skip_prologue_sal (if requested)
2807 can find a line number for after the prologue. */
2808 if (sal.pc < BLOCK_START (SYMBOL_BLOCK_VALUE (sym)))
2809 {
2810 init_sal (&sal);
2811 sal.pspace = current_program_space;
2812 sal.pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
2813 sal.section = SYMBOL_OBJ_SECTION (SYMBOL_OBJFILE (sym), sym);
2814 }
2815
2816 if (funfirstline)
2817 skip_prologue_sal (&sal);
2818
2819 return sal;
2820 }
2821
2822 /* Given a function start address FUNC_ADDR and SYMTAB, find the first
2823 address for that function that has an entry in SYMTAB's line info
2824 table. If such an entry cannot be found, return FUNC_ADDR
2825 unaltered. */
2826
2827 static CORE_ADDR
2828 skip_prologue_using_lineinfo (CORE_ADDR func_addr, struct symtab *symtab)
2829 {
2830 CORE_ADDR func_start, func_end;
2831 struct linetable *l;
2832 int i;
2833
2834 /* Give up if this symbol has no lineinfo table. */
2835 l = LINETABLE (symtab);
2836 if (l == NULL)
2837 return func_addr;
2838
2839 /* Get the range for the function's PC values, or give up if we
2840 cannot, for some reason. */
2841 if (!find_pc_partial_function (func_addr, NULL, &func_start, &func_end))
2842 return func_addr;
2843
2844 /* Linetable entries are ordered by PC values, see the commentary in
2845 symtab.h where `struct linetable' is defined. Thus, the first
2846 entry whose PC is in the range [FUNC_START..FUNC_END[ is the
2847 address we are looking for. */
2848 for (i = 0; i < l->nitems; i++)
2849 {
2850 struct linetable_entry *item = &(l->item[i]);
2851
2852 /* Don't use line numbers of zero, they mark special entries in
2853 the table. See the commentary on symtab.h before the
2854 definition of struct linetable. */
2855 if (item->line > 0 && func_start <= item->pc && item->pc < func_end)
2856 return item->pc;
2857 }
2858
2859 return func_addr;
2860 }
2861
2862 /* Adjust SAL to the first instruction past the function prologue.
2863 If the PC was explicitly specified, the SAL is not changed.
2864 If the line number was explicitly specified, at most the SAL's PC
2865 is updated. If SAL is already past the prologue, then do nothing. */
2866
2867 void
2868 skip_prologue_sal (struct symtab_and_line *sal)
2869 {
2870 struct symbol *sym;
2871 struct symtab_and_line start_sal;
2872 struct cleanup *old_chain;
2873 CORE_ADDR pc, saved_pc;
2874 struct obj_section *section;
2875 const char *name;
2876 struct objfile *objfile;
2877 struct gdbarch *gdbarch;
2878 const struct block *b, *function_block;
2879 int force_skip, skip;
2880
2881 /* Do not change the SAL if PC was specified explicitly. */
2882 if (sal->explicit_pc)
2883 return;
2884
2885 old_chain = save_current_space_and_thread ();
2886 switch_to_program_space_and_thread (sal->pspace);
2887
2888 sym = find_pc_sect_function (sal->pc, sal->section);
2889 if (sym != NULL)
2890 {
2891 fixup_symbol_section (sym, NULL);
2892
2893 pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
2894 section = SYMBOL_OBJ_SECTION (SYMBOL_OBJFILE (sym), sym);
2895 name = SYMBOL_LINKAGE_NAME (sym);
2896 objfile = SYMBOL_SYMTAB (sym)->objfile;
2897 }
2898 else
2899 {
2900 struct bound_minimal_symbol msymbol
2901 = lookup_minimal_symbol_by_pc_section (sal->pc, sal->section);
2902
2903 if (msymbol.minsym == NULL)
2904 {
2905 do_cleanups (old_chain);
2906 return;
2907 }
2908
2909 objfile = msymbol.objfile;
2910 pc = BMSYMBOL_VALUE_ADDRESS (msymbol);
2911 section = MSYMBOL_OBJ_SECTION (objfile, msymbol.minsym);
2912 name = MSYMBOL_LINKAGE_NAME (msymbol.minsym);
2913 }
2914
2915 gdbarch = get_objfile_arch (objfile);
2916
2917 /* Process the prologue in two passes. In the first pass try to skip the
2918 prologue (SKIP is true) and verify there is a real need for it (indicated
2919 by FORCE_SKIP). If no such reason was found run a second pass where the
2920 prologue is not skipped (SKIP is false). */
2921
2922 skip = 1;
2923 force_skip = 1;
2924
2925 /* Be conservative - allow direct PC (without skipping prologue) only if we
2926 have proven the CU (Compilation Unit) supports it. sal->SYMTAB does not
2927 have to be set by the caller so we use SYM instead. */
2928 if (sym && SYMBOL_SYMTAB (sym)->locations_valid)
2929 force_skip = 0;
2930
2931 saved_pc = pc;
2932 do
2933 {
2934 pc = saved_pc;
2935
2936 /* If the function is in an unmapped overlay, use its unmapped LMA address,
2937 so that gdbarch_skip_prologue has something unique to work on. */
2938 if (section_is_overlay (section) && !section_is_mapped (section))
2939 pc = overlay_unmapped_address (pc, section);
2940
2941 /* Skip "first line" of function (which is actually its prologue). */
2942 pc += gdbarch_deprecated_function_start_offset (gdbarch);
2943 if (gdbarch_skip_entrypoint_p (gdbarch))
2944 pc = gdbarch_skip_entrypoint (gdbarch, pc);
2945 if (skip)
2946 pc = gdbarch_skip_prologue (gdbarch, pc);
2947
2948 /* For overlays, map pc back into its mapped VMA range. */
2949 pc = overlay_mapped_address (pc, section);
2950
2951 /* Calculate line number. */
2952 start_sal = find_pc_sect_line (pc, section, 0);
2953
2954 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
2955 line is still part of the same function. */
2956 if (skip && start_sal.pc != pc
2957 && (sym ? (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) <= start_sal.end
2958 && start_sal.end < BLOCK_END (SYMBOL_BLOCK_VALUE (sym)))
2959 : (lookup_minimal_symbol_by_pc_section (start_sal.end, section).minsym
2960 == lookup_minimal_symbol_by_pc_section (pc, section).minsym)))
2961 {
2962 /* First pc of next line */
2963 pc = start_sal.end;
2964 /* Recalculate the line number (might not be N+1). */
2965 start_sal = find_pc_sect_line (pc, section, 0);
2966 }
2967
2968 /* On targets with executable formats that don't have a concept of
2969 constructors (ELF with .init has, PE doesn't), gcc emits a call
2970 to `__main' in `main' between the prologue and before user
2971 code. */
2972 if (gdbarch_skip_main_prologue_p (gdbarch)
2973 && name && strcmp_iw (name, "main") == 0)
2974 {
2975 pc = gdbarch_skip_main_prologue (gdbarch, pc);
2976 /* Recalculate the line number (might not be N+1). */
2977 start_sal = find_pc_sect_line (pc, section, 0);
2978 force_skip = 1;
2979 }
2980 }
2981 while (!force_skip && skip--);
2982
2983 /* If we still don't have a valid source line, try to find the first
2984 PC in the lineinfo table that belongs to the same function. This
2985 happens with COFF debug info, which does not seem to have an
2986 entry in lineinfo table for the code after the prologue which has
2987 no direct relation to source. For example, this was found to be
2988 the case with the DJGPP target using "gcc -gcoff" when the
2989 compiler inserted code after the prologue to make sure the stack
2990 is aligned. */
2991 if (!force_skip && sym && start_sal.symtab == NULL)
2992 {
2993 pc = skip_prologue_using_lineinfo (pc, SYMBOL_SYMTAB (sym));
2994 /* Recalculate the line number. */
2995 start_sal = find_pc_sect_line (pc, section, 0);
2996 }
2997
2998 do_cleanups (old_chain);
2999
3000 /* If we're already past the prologue, leave SAL unchanged. Otherwise
3001 forward SAL to the end of the prologue. */
3002 if (sal->pc >= pc)
3003 return;
3004
3005 sal->pc = pc;
3006 sal->section = section;
3007
3008 /* Unless the explicit_line flag was set, update the SAL line
3009 and symtab to correspond to the modified PC location. */
3010 if (sal->explicit_line)
3011 return;
3012
3013 sal->symtab = start_sal.symtab;
3014 sal->line = start_sal.line;
3015 sal->end = start_sal.end;
3016
3017 /* Check if we are now inside an inlined function. If we can,
3018 use the call site of the function instead. */
3019 b = block_for_pc_sect (sal->pc, sal->section);
3020 function_block = NULL;
3021 while (b != NULL)
3022 {
3023 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
3024 function_block = b;
3025 else if (BLOCK_FUNCTION (b) != NULL)
3026 break;
3027 b = BLOCK_SUPERBLOCK (b);
3028 }
3029 if (function_block != NULL
3030 && SYMBOL_LINE (BLOCK_FUNCTION (function_block)) != 0)
3031 {
3032 sal->line = SYMBOL_LINE (BLOCK_FUNCTION (function_block));
3033 sal->symtab = SYMBOL_SYMTAB (BLOCK_FUNCTION (function_block));
3034 }
3035 }
3036
3037 /* Determine if PC is in the prologue of a function. The prologue is the area
3038 between the first instruction of a function, and the first executable line.
3039 Returns 1 if PC *might* be in prologue, 0 if definately *not* in prologue.
3040
3041 If non-zero, func_start is where we think the prologue starts, possibly
3042 by previous examination of symbol table information. */
3043
3044 int
3045 in_prologue (struct gdbarch *gdbarch, CORE_ADDR pc, CORE_ADDR func_start)
3046 {
3047 struct symtab_and_line sal;
3048 CORE_ADDR func_addr, func_end;
3049
3050 /* We have several sources of information we can consult to figure
3051 this out.
3052 - Compilers usually emit line number info that marks the prologue
3053 as its own "source line". So the ending address of that "line"
3054 is the end of the prologue. If available, this is the most
3055 reliable method.
3056 - The minimal symbols and partial symbols, which can usually tell
3057 us the starting and ending addresses of a function.
3058 - If we know the function's start address, we can call the
3059 architecture-defined gdbarch_skip_prologue function to analyze the
3060 instruction stream and guess where the prologue ends.
3061 - Our `func_start' argument; if non-zero, this is the caller's
3062 best guess as to the function's entry point. At the time of
3063 this writing, handle_inferior_event doesn't get this right, so
3064 it should be our last resort. */
3065
3066 /* Consult the partial symbol table, to find which function
3067 the PC is in. */
3068 if (! find_pc_partial_function (pc, NULL, &func_addr, &func_end))
3069 {
3070 CORE_ADDR prologue_end;
3071
3072 /* We don't even have minsym information, so fall back to using
3073 func_start, if given. */
3074 if (! func_start)
3075 return 1; /* We *might* be in a prologue. */
3076
3077 prologue_end = gdbarch_skip_prologue (gdbarch, func_start);
3078
3079 return func_start <= pc && pc < prologue_end;
3080 }
3081
3082 /* If we have line number information for the function, that's
3083 usually pretty reliable. */
3084 sal = find_pc_line (func_addr, 0);
3085
3086 /* Now sal describes the source line at the function's entry point,
3087 which (by convention) is the prologue. The end of that "line",
3088 sal.end, is the end of the prologue.
3089
3090 Note that, for functions whose source code is all on a single
3091 line, the line number information doesn't always end up this way.
3092 So we must verify that our purported end-of-prologue address is
3093 *within* the function, not at its start or end. */
3094 if (sal.line == 0
3095 || sal.end <= func_addr
3096 || func_end <= sal.end)
3097 {
3098 /* We don't have any good line number info, so use the minsym
3099 information, together with the architecture-specific prologue
3100 scanning code. */
3101 CORE_ADDR prologue_end = gdbarch_skip_prologue (gdbarch, func_addr);
3102
3103 return func_addr <= pc && pc < prologue_end;
3104 }
3105
3106 /* We have line number info, and it looks good. */
3107 return func_addr <= pc && pc < sal.end;
3108 }
3109
3110 /* Given PC at the function's start address, attempt to find the
3111 prologue end using SAL information. Return zero if the skip fails.
3112
3113 A non-optimized prologue traditionally has one SAL for the function
3114 and a second for the function body. A single line function has
3115 them both pointing at the same line.
3116
3117 An optimized prologue is similar but the prologue may contain
3118 instructions (SALs) from the instruction body. Need to skip those
3119 while not getting into the function body.
3120
3121 The functions end point and an increasing SAL line are used as
3122 indicators of the prologue's endpoint.
3123
3124 This code is based on the function refine_prologue_limit
3125 (found in ia64). */
3126
3127 CORE_ADDR
3128 skip_prologue_using_sal (struct gdbarch *gdbarch, CORE_ADDR func_addr)
3129 {
3130 struct symtab_and_line prologue_sal;
3131 CORE_ADDR start_pc;
3132 CORE_ADDR end_pc;
3133 const struct block *bl;
3134
3135 /* Get an initial range for the function. */
3136 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
3137 start_pc += gdbarch_deprecated_function_start_offset (gdbarch);
3138
3139 prologue_sal = find_pc_line (start_pc, 0);
3140 if (prologue_sal.line != 0)
3141 {
3142 /* For languages other than assembly, treat two consecutive line
3143 entries at the same address as a zero-instruction prologue.
3144 The GNU assembler emits separate line notes for each instruction
3145 in a multi-instruction macro, but compilers generally will not
3146 do this. */
3147 if (prologue_sal.symtab->language != language_asm)
3148 {
3149 struct linetable *linetable = LINETABLE (prologue_sal.symtab);
3150 int idx = 0;
3151
3152 /* Skip any earlier lines, and any end-of-sequence marker
3153 from a previous function. */
3154 while (linetable->item[idx].pc != prologue_sal.pc
3155 || linetable->item[idx].line == 0)
3156 idx++;
3157
3158 if (idx+1 < linetable->nitems
3159 && linetable->item[idx+1].line != 0
3160 && linetable->item[idx+1].pc == start_pc)
3161 return start_pc;
3162 }
3163
3164 /* If there is only one sal that covers the entire function,
3165 then it is probably a single line function, like
3166 "foo(){}". */
3167 if (prologue_sal.end >= end_pc)
3168 return 0;
3169
3170 while (prologue_sal.end < end_pc)
3171 {
3172 struct symtab_and_line sal;
3173
3174 sal = find_pc_line (prologue_sal.end, 0);
3175 if (sal.line == 0)
3176 break;
3177 /* Assume that a consecutive SAL for the same (or larger)
3178 line mark the prologue -> body transition. */
3179 if (sal.line >= prologue_sal.line)
3180 break;
3181 /* Likewise if we are in a different symtab altogether
3182 (e.g. within a file included via #include).  */
3183 if (sal.symtab != prologue_sal.symtab)
3184 break;
3185
3186 /* The line number is smaller. Check that it's from the
3187 same function, not something inlined. If it's inlined,
3188 then there is no point comparing the line numbers. */
3189 bl = block_for_pc (prologue_sal.end);
3190 while (bl)
3191 {
3192 if (block_inlined_p (bl))
3193 break;
3194 if (BLOCK_FUNCTION (bl))
3195 {
3196 bl = NULL;
3197 break;
3198 }
3199 bl = BLOCK_SUPERBLOCK (bl);
3200 }
3201 if (bl != NULL)
3202 break;
3203
3204 /* The case in which compiler's optimizer/scheduler has
3205 moved instructions into the prologue. We look ahead in
3206 the function looking for address ranges whose
3207 corresponding line number is less the first one that we
3208 found for the function. This is more conservative then
3209 refine_prologue_limit which scans a large number of SALs
3210 looking for any in the prologue. */
3211 prologue_sal = sal;
3212 }
3213 }
3214
3215 if (prologue_sal.end < end_pc)
3216 /* Return the end of this line, or zero if we could not find a
3217 line. */
3218 return prologue_sal.end;
3219 else
3220 /* Don't return END_PC, which is past the end of the function. */
3221 return prologue_sal.pc;
3222 }
3223 \f
3224 /* If P is of the form "operator[ \t]+..." where `...' is
3225 some legitimate operator text, return a pointer to the
3226 beginning of the substring of the operator text.
3227 Otherwise, return "". */
3228
3229 static const char *
3230 operator_chars (const char *p, const char **end)
3231 {
3232 *end = "";
3233 if (strncmp (p, "operator", 8))
3234 return *end;
3235 p += 8;
3236
3237 /* Don't get faked out by `operator' being part of a longer
3238 identifier. */
3239 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
3240 return *end;
3241
3242 /* Allow some whitespace between `operator' and the operator symbol. */
3243 while (*p == ' ' || *p == '\t')
3244 p++;
3245
3246 /* Recognize 'operator TYPENAME'. */
3247
3248 if (isalpha (*p) || *p == '_' || *p == '$')
3249 {
3250 const char *q = p + 1;
3251
3252 while (isalnum (*q) || *q == '_' || *q == '$')
3253 q++;
3254 *end = q;
3255 return p;
3256 }
3257
3258 while (*p)
3259 switch (*p)
3260 {
3261 case '\\': /* regexp quoting */
3262 if (p[1] == '*')
3263 {
3264 if (p[2] == '=') /* 'operator\*=' */
3265 *end = p + 3;
3266 else /* 'operator\*' */
3267 *end = p + 2;
3268 return p;
3269 }
3270 else if (p[1] == '[')
3271 {
3272 if (p[2] == ']')
3273 error (_("mismatched quoting on brackets, "
3274 "try 'operator\\[\\]'"));
3275 else if (p[2] == '\\' && p[3] == ']')
3276 {
3277 *end = p + 4; /* 'operator\[\]' */
3278 return p;
3279 }
3280 else
3281 error (_("nothing is allowed between '[' and ']'"));
3282 }
3283 else
3284 {
3285 /* Gratuitous qoute: skip it and move on. */
3286 p++;
3287 continue;
3288 }
3289 break;
3290 case '!':
3291 case '=':
3292 case '*':
3293 case '/':
3294 case '%':
3295 case '^':
3296 if (p[1] == '=')
3297 *end = p + 2;
3298 else
3299 *end = p + 1;
3300 return p;
3301 case '<':
3302 case '>':
3303 case '+':
3304 case '-':
3305 case '&':
3306 case '|':
3307 if (p[0] == '-' && p[1] == '>')
3308 {
3309 /* Struct pointer member operator 'operator->'. */
3310 if (p[2] == '*')
3311 {
3312 *end = p + 3; /* 'operator->*' */
3313 return p;
3314 }
3315 else if (p[2] == '\\')
3316 {
3317 *end = p + 4; /* Hopefully 'operator->\*' */
3318 return p;
3319 }
3320 else
3321 {
3322 *end = p + 2; /* 'operator->' */
3323 return p;
3324 }
3325 }
3326 if (p[1] == '=' || p[1] == p[0])
3327 *end = p + 2;
3328 else
3329 *end = p + 1;
3330 return p;
3331 case '~':
3332 case ',':
3333 *end = p + 1;
3334 return p;
3335 case '(':
3336 if (p[1] != ')')
3337 error (_("`operator ()' must be specified "
3338 "without whitespace in `()'"));
3339 *end = p + 2;
3340 return p;
3341 case '?':
3342 if (p[1] != ':')
3343 error (_("`operator ?:' must be specified "
3344 "without whitespace in `?:'"));
3345 *end = p + 2;
3346 return p;
3347 case '[':
3348 if (p[1] != ']')
3349 error (_("`operator []' must be specified "
3350 "without whitespace in `[]'"));
3351 *end = p + 2;
3352 return p;
3353 default:
3354 error (_("`operator %s' not supported"), p);
3355 break;
3356 }
3357
3358 *end = "";
3359 return *end;
3360 }
3361 \f
3362
3363 /* Cache to watch for file names already seen by filename_seen. */
3364
3365 struct filename_seen_cache
3366 {
3367 /* Table of files seen so far. */
3368 htab_t tab;
3369 /* Initial size of the table. It automagically grows from here. */
3370 #define INITIAL_FILENAME_SEEN_CACHE_SIZE 100
3371 };
3372
3373 /* filename_seen_cache constructor. */
3374
3375 static struct filename_seen_cache *
3376 create_filename_seen_cache (void)
3377 {
3378 struct filename_seen_cache *cache;
3379
3380 cache = XNEW (struct filename_seen_cache);
3381 cache->tab = htab_create_alloc (INITIAL_FILENAME_SEEN_CACHE_SIZE,
3382 filename_hash, filename_eq,
3383 NULL, xcalloc, xfree);
3384
3385 return cache;
3386 }
3387
3388 /* Empty the cache, but do not delete it. */
3389
3390 static void
3391 clear_filename_seen_cache (struct filename_seen_cache *cache)
3392 {
3393 htab_empty (cache->tab);
3394 }
3395
3396 /* filename_seen_cache destructor.
3397 This takes a void * argument as it is generally used as a cleanup. */
3398
3399 static void
3400 delete_filename_seen_cache (void *ptr)
3401 {
3402 struct filename_seen_cache *cache = ptr;
3403
3404 htab_delete (cache->tab);
3405 xfree (cache);
3406 }
3407
3408 /* If FILE is not already in the table of files in CACHE, return zero;
3409 otherwise return non-zero. Optionally add FILE to the table if ADD
3410 is non-zero.
3411
3412 NOTE: We don't manage space for FILE, we assume FILE lives as long
3413 as the caller needs. */
3414
3415 static int
3416 filename_seen (struct filename_seen_cache *cache, const char *file, int add)
3417 {
3418 void **slot;
3419
3420 /* Is FILE in tab? */
3421 slot = htab_find_slot (cache->tab, file, add ? INSERT : NO_INSERT);
3422 if (*slot != NULL)
3423 return 1;
3424
3425 /* No; maybe add it to tab. */
3426 if (add)
3427 *slot = (char *) file;
3428
3429 return 0;
3430 }
3431
3432 /* Data structure to maintain printing state for output_source_filename. */
3433
3434 struct output_source_filename_data
3435 {
3436 /* Cache of what we've seen so far. */
3437 struct filename_seen_cache *filename_seen_cache;
3438
3439 /* Flag of whether we're printing the first one. */
3440 int first;
3441 };
3442
3443 /* Slave routine for sources_info. Force line breaks at ,'s.
3444 NAME is the name to print.
3445 DATA contains the state for printing and watching for duplicates. */
3446
3447 static void
3448 output_source_filename (const char *name,
3449 struct output_source_filename_data *data)
3450 {
3451 /* Since a single source file can result in several partial symbol
3452 tables, we need to avoid printing it more than once. Note: if
3453 some of the psymtabs are read in and some are not, it gets
3454 printed both under "Source files for which symbols have been
3455 read" and "Source files for which symbols will be read in on
3456 demand". I consider this a reasonable way to deal with the
3457 situation. I'm not sure whether this can also happen for
3458 symtabs; it doesn't hurt to check. */
3459
3460 /* Was NAME already seen? */
3461 if (filename_seen (data->filename_seen_cache, name, 1))
3462 {
3463 /* Yes; don't print it again. */
3464 return;
3465 }
3466
3467 /* No; print it and reset *FIRST. */
3468 if (! data->first)
3469 printf_filtered (", ");
3470 data->first = 0;
3471
3472 wrap_here ("");
3473 fputs_filtered (name, gdb_stdout);
3474 }
3475
3476 /* A callback for map_partial_symbol_filenames. */
3477
3478 static void
3479 output_partial_symbol_filename (const char *filename, const char *fullname,
3480 void *data)
3481 {
3482 output_source_filename (fullname ? fullname : filename, data);
3483 }
3484
3485 static void
3486 sources_info (char *ignore, int from_tty)
3487 {
3488 struct symtab *s;
3489 struct objfile *objfile;
3490 struct output_source_filename_data data;
3491 struct cleanup *cleanups;
3492
3493 if (!have_full_symbols () && !have_partial_symbols ())
3494 {
3495 error (_("No symbol table is loaded. Use the \"file\" command."));
3496 }
3497
3498 data.filename_seen_cache = create_filename_seen_cache ();
3499 cleanups = make_cleanup (delete_filename_seen_cache,
3500 data.filename_seen_cache);
3501
3502 printf_filtered ("Source files for which symbols have been read in:\n\n");
3503
3504 data.first = 1;
3505 ALL_SYMTABS (objfile, s)
3506 {
3507 const char *fullname = symtab_to_fullname (s);
3508
3509 output_source_filename (fullname, &data);
3510 }
3511 printf_filtered ("\n\n");
3512
3513 printf_filtered ("Source files for which symbols "
3514 "will be read in on demand:\n\n");
3515
3516 clear_filename_seen_cache (data.filename_seen_cache);
3517 data.first = 1;
3518 map_symbol_filenames (output_partial_symbol_filename, &data,
3519 1 /*need_fullname*/);
3520 printf_filtered ("\n");
3521
3522 do_cleanups (cleanups);
3523 }
3524
3525 /* Compare FILE against all the NFILES entries of FILES. If BASENAMES is
3526 non-zero compare only lbasename of FILES. */
3527
3528 static int
3529 file_matches (const char *file, const char *files[], int nfiles, int basenames)
3530 {
3531 int i;
3532
3533 if (file != NULL && nfiles != 0)
3534 {
3535 for (i = 0; i < nfiles; i++)
3536 {
3537 if (compare_filenames_for_search (file, (basenames
3538 ? lbasename (files[i])
3539 : files[i])))
3540 return 1;
3541 }
3542 }
3543 else if (nfiles == 0)
3544 return 1;
3545 return 0;
3546 }
3547
3548 /* Free any memory associated with a search. */
3549
3550 void
3551 free_search_symbols (struct symbol_search *symbols)
3552 {
3553 struct symbol_search *p;
3554 struct symbol_search *next;
3555
3556 for (p = symbols; p != NULL; p = next)
3557 {
3558 next = p->next;
3559 xfree (p);
3560 }
3561 }
3562
3563 static void
3564 do_free_search_symbols_cleanup (void *symbolsp)
3565 {
3566 struct symbol_search *symbols = *(struct symbol_search **) symbolsp;
3567
3568 free_search_symbols (symbols);
3569 }
3570
3571 struct cleanup *
3572 make_cleanup_free_search_symbols (struct symbol_search **symbolsp)
3573 {
3574 return make_cleanup (do_free_search_symbols_cleanup, symbolsp);
3575 }
3576
3577 /* Helper function for sort_search_symbols_remove_dups and qsort. Can only
3578 sort symbols, not minimal symbols. */
3579
3580 static int
3581 compare_search_syms (const void *sa, const void *sb)
3582 {
3583 struct symbol_search *sym_a = *(struct symbol_search **) sa;
3584 struct symbol_search *sym_b = *(struct symbol_search **) sb;
3585 int c;
3586
3587 c = FILENAME_CMP (sym_a->symtab->filename, sym_b->symtab->filename);
3588 if (c != 0)
3589 return c;
3590
3591 if (sym_a->block != sym_b->block)
3592 return sym_a->block - sym_b->block;
3593
3594 return strcmp (SYMBOL_PRINT_NAME (sym_a->symbol),
3595 SYMBOL_PRINT_NAME (sym_b->symbol));
3596 }
3597
3598 /* Sort the NFOUND symbols in list FOUND and remove duplicates.
3599 The duplicates are freed, and the new list is returned in
3600 *NEW_HEAD, *NEW_TAIL. */
3601
3602 static void
3603 sort_search_symbols_remove_dups (struct symbol_search *found, int nfound,
3604 struct symbol_search **new_head,
3605 struct symbol_search **new_tail)
3606 {
3607 struct symbol_search **symbols, *symp, *old_next;
3608 int i, j, nunique;
3609
3610 gdb_assert (found != NULL && nfound > 0);
3611
3612 /* Build an array out of the list so we can easily sort them. */
3613 symbols = (struct symbol_search **) xmalloc (sizeof (struct symbol_search *)
3614 * nfound);
3615 symp = found;
3616 for (i = 0; i < nfound; i++)
3617 {
3618 gdb_assert (symp != NULL);
3619 gdb_assert (symp->block >= 0 && symp->block <= 1);
3620 symbols[i] = symp;
3621 symp = symp->next;
3622 }
3623 gdb_assert (symp == NULL);
3624
3625 qsort (symbols, nfound, sizeof (struct symbol_search *),
3626 compare_search_syms);
3627
3628 /* Collapse out the dups. */
3629 for (i = 1, j = 1; i < nfound; ++i)
3630 {
3631 if (compare_search_syms (&symbols[j - 1], &symbols[i]) != 0)
3632 symbols[j++] = symbols[i];
3633 else
3634 xfree (symbols[i]);
3635 }
3636 nunique = j;
3637 symbols[j - 1]->next = NULL;
3638
3639 /* Rebuild the linked list. */
3640 for (i = 0; i < nunique - 1; i++)
3641 symbols[i]->next = symbols[i + 1];
3642 symbols[nunique - 1]->next = NULL;
3643
3644 *new_head = symbols[0];
3645 *new_tail = symbols[nunique - 1];
3646 xfree (symbols);
3647 }
3648
3649 /* An object of this type is passed as the user_data to the
3650 expand_symtabs_matching method. */
3651 struct search_symbols_data
3652 {
3653 int nfiles;
3654 const char **files;
3655
3656 /* It is true if PREG contains valid data, false otherwise. */
3657 unsigned preg_p : 1;
3658 regex_t preg;
3659 };
3660
3661 /* A callback for expand_symtabs_matching. */
3662
3663 static int
3664 search_symbols_file_matches (const char *filename, void *user_data,
3665 int basenames)
3666 {
3667 struct search_symbols_data *data = user_data;
3668
3669 return file_matches (filename, data->files, data->nfiles, basenames);
3670 }
3671
3672 /* A callback for expand_symtabs_matching. */
3673
3674 static int
3675 search_symbols_name_matches (const char *symname, void *user_data)
3676 {
3677 struct search_symbols_data *data = user_data;
3678
3679 return !data->preg_p || regexec (&data->preg, symname, 0, NULL, 0) == 0;
3680 }
3681
3682 /* Search the symbol table for matches to the regular expression REGEXP,
3683 returning the results in *MATCHES.
3684
3685 Only symbols of KIND are searched:
3686 VARIABLES_DOMAIN - search all symbols, excluding functions, type names,
3687 and constants (enums)
3688 FUNCTIONS_DOMAIN - search all functions
3689 TYPES_DOMAIN - search all type names
3690 ALL_DOMAIN - an internal error for this function
3691
3692 free_search_symbols should be called when *MATCHES is no longer needed.
3693
3694 Within each file the results are sorted locally; each symtab's global and
3695 static blocks are separately alphabetized.
3696 Duplicate entries are removed. */
3697
3698 void
3699 search_symbols (const char *regexp, enum search_domain kind,
3700 int nfiles, const char *files[],
3701 struct symbol_search **matches)
3702 {
3703 struct symtab *s;
3704 const struct blockvector *bv;
3705 struct block *b;
3706 int i = 0;
3707 struct block_iterator iter;
3708 struct symbol *sym;
3709 struct objfile *objfile;
3710 struct minimal_symbol *msymbol;
3711 int found_misc = 0;
3712 static const enum minimal_symbol_type types[]
3713 = {mst_data, mst_text, mst_abs};
3714 static const enum minimal_symbol_type types2[]
3715 = {mst_bss, mst_file_text, mst_abs};
3716 static const enum minimal_symbol_type types3[]
3717 = {mst_file_data, mst_solib_trampoline, mst_abs};
3718 static const enum minimal_symbol_type types4[]
3719 = {mst_file_bss, mst_text_gnu_ifunc, mst_abs};
3720 enum minimal_symbol_type ourtype;
3721 enum minimal_symbol_type ourtype2;
3722 enum minimal_symbol_type ourtype3;
3723 enum minimal_symbol_type ourtype4;
3724 struct symbol_search *found;
3725 struct symbol_search *tail;
3726 struct search_symbols_data datum;
3727 int nfound;
3728
3729 /* OLD_CHAIN .. RETVAL_CHAIN is always freed, RETVAL_CHAIN .. current
3730 CLEANUP_CHAIN is freed only in the case of an error. */
3731 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
3732 struct cleanup *retval_chain;
3733
3734 gdb_assert (kind <= TYPES_DOMAIN);
3735
3736 ourtype = types[kind];
3737 ourtype2 = types2[kind];
3738 ourtype3 = types3[kind];
3739 ourtype4 = types4[kind];
3740
3741 *matches = NULL;
3742 datum.preg_p = 0;
3743
3744 if (regexp != NULL)
3745 {
3746 /* Make sure spacing is right for C++ operators.
3747 This is just a courtesy to make the matching less sensitive
3748 to how many spaces the user leaves between 'operator'
3749 and <TYPENAME> or <OPERATOR>. */
3750 const char *opend;
3751 const char *opname = operator_chars (regexp, &opend);
3752 int errcode;
3753
3754 if (*opname)
3755 {
3756 int fix = -1; /* -1 means ok; otherwise number of
3757 spaces needed. */
3758
3759 if (isalpha (*opname) || *opname == '_' || *opname == '$')
3760 {
3761 /* There should 1 space between 'operator' and 'TYPENAME'. */
3762 if (opname[-1] != ' ' || opname[-2] == ' ')
3763 fix = 1;
3764 }
3765 else
3766 {
3767 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
3768 if (opname[-1] == ' ')
3769 fix = 0;
3770 }
3771 /* If wrong number of spaces, fix it. */
3772 if (fix >= 0)
3773 {
3774 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
3775
3776 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
3777 regexp = tmp;
3778 }
3779 }
3780
3781 errcode = regcomp (&datum.preg, regexp,
3782 REG_NOSUB | (case_sensitivity == case_sensitive_off
3783 ? REG_ICASE : 0));
3784 if (errcode != 0)
3785 {
3786 char *err = get_regcomp_error (errcode, &datum.preg);
3787
3788 make_cleanup (xfree, err);
3789 error (_("Invalid regexp (%s): %s"), err, regexp);
3790 }
3791 datum.preg_p = 1;
3792 make_regfree_cleanup (&datum.preg);
3793 }
3794
3795 /* Search through the partial symtabs *first* for all symbols
3796 matching the regexp. That way we don't have to reproduce all of
3797 the machinery below. */
3798
3799 datum.nfiles = nfiles;
3800 datum.files = files;
3801 expand_symtabs_matching ((nfiles == 0
3802 ? NULL
3803 : search_symbols_file_matches),
3804 search_symbols_name_matches,
3805 kind, &datum);
3806
3807 /* Here, we search through the minimal symbol tables for functions
3808 and variables that match, and force their symbols to be read.
3809 This is in particular necessary for demangled variable names,
3810 which are no longer put into the partial symbol tables.
3811 The symbol will then be found during the scan of symtabs below.
3812
3813 For functions, find_pc_symtab should succeed if we have debug info
3814 for the function, for variables we have to call
3815 lookup_symbol_in_objfile_from_linkage_name to determine if the variable
3816 has debug info.
3817 If the lookup fails, set found_misc so that we will rescan to print
3818 any matching symbols without debug info.
3819 We only search the objfile the msymbol came from, we no longer search
3820 all objfiles. In large programs (1000s of shared libs) searching all
3821 objfiles is not worth the pain. */
3822
3823 if (nfiles == 0 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
3824 {
3825 ALL_MSYMBOLS (objfile, msymbol)
3826 {
3827 QUIT;
3828
3829 if (msymbol->created_by_gdb)
3830 continue;
3831
3832 if (MSYMBOL_TYPE (msymbol) == ourtype
3833 || MSYMBOL_TYPE (msymbol) == ourtype2
3834 || MSYMBOL_TYPE (msymbol) == ourtype3
3835 || MSYMBOL_TYPE (msymbol) == ourtype4)
3836 {
3837 if (!datum.preg_p
3838 || regexec (&datum.preg, MSYMBOL_NATURAL_NAME (msymbol), 0,
3839 NULL, 0) == 0)
3840 {
3841 /* Note: An important side-effect of these lookup functions
3842 is to expand the symbol table if msymbol is found, for the
3843 benefit of the next loop on ALL_PRIMARY_SYMTABS. */
3844 if (kind == FUNCTIONS_DOMAIN
3845 ? find_pc_symtab (MSYMBOL_VALUE_ADDRESS (objfile,
3846 msymbol)) == NULL
3847 : (lookup_symbol_in_objfile_from_linkage_name
3848 (objfile, MSYMBOL_LINKAGE_NAME (msymbol), VAR_DOMAIN)
3849 == NULL))
3850 found_misc = 1;
3851 }
3852 }
3853 }
3854 }
3855
3856 found = NULL;
3857 tail = NULL;
3858 nfound = 0;
3859 retval_chain = make_cleanup_free_search_symbols (&found);
3860
3861 ALL_PRIMARY_SYMTABS (objfile, s)
3862 {
3863 bv = BLOCKVECTOR (s);
3864 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
3865 {
3866 b = BLOCKVECTOR_BLOCK (bv, i);
3867 ALL_BLOCK_SYMBOLS (b, iter, sym)
3868 {
3869 struct symtab *real_symtab = SYMBOL_SYMTAB (sym);
3870
3871 QUIT;
3872
3873 /* Check first sole REAL_SYMTAB->FILENAME. It does not need to be
3874 a substring of symtab_to_fullname as it may contain "./" etc. */
3875 if ((file_matches (real_symtab->filename, files, nfiles, 0)
3876 || ((basenames_may_differ
3877 || file_matches (lbasename (real_symtab->filename),
3878 files, nfiles, 1))
3879 && file_matches (symtab_to_fullname (real_symtab),
3880 files, nfiles, 0)))
3881 && ((!datum.preg_p
3882 || regexec (&datum.preg, SYMBOL_NATURAL_NAME (sym), 0,
3883 NULL, 0) == 0)
3884 && ((kind == VARIABLES_DOMAIN
3885 && SYMBOL_CLASS (sym) != LOC_TYPEDEF
3886 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
3887 && SYMBOL_CLASS (sym) != LOC_BLOCK
3888 /* LOC_CONST can be used for more than just enums,
3889 e.g., c++ static const members.
3890 We only want to skip enums here. */
3891 && !(SYMBOL_CLASS (sym) == LOC_CONST
3892 && TYPE_CODE (SYMBOL_TYPE (sym))
3893 == TYPE_CODE_ENUM))
3894 || (kind == FUNCTIONS_DOMAIN
3895 && SYMBOL_CLASS (sym) == LOC_BLOCK)
3896 || (kind == TYPES_DOMAIN
3897 && SYMBOL_CLASS (sym) == LOC_TYPEDEF))))
3898 {
3899 /* match */
3900 struct symbol_search *psr = (struct symbol_search *)
3901 xmalloc (sizeof (struct symbol_search));
3902 psr->block = i;
3903 psr->symtab = real_symtab;
3904 psr->symbol = sym;
3905 memset (&psr->msymbol, 0, sizeof (psr->msymbol));
3906 psr->next = NULL;
3907 if (tail == NULL)
3908 found = psr;
3909 else
3910 tail->next = psr;
3911 tail = psr;
3912 nfound ++;
3913 }
3914 }
3915 }
3916 }
3917
3918 if (found != NULL)
3919 {
3920 sort_search_symbols_remove_dups (found, nfound, &found, &tail);
3921 /* Note: nfound is no longer useful beyond this point. */
3922 }
3923
3924 /* If there are no eyes, avoid all contact. I mean, if there are
3925 no debug symbols, then print directly from the msymbol_vector. */
3926
3927 if (found_misc || (nfiles == 0 && kind != FUNCTIONS_DOMAIN))
3928 {
3929 ALL_MSYMBOLS (objfile, msymbol)
3930 {
3931 QUIT;
3932
3933 if (msymbol->created_by_gdb)
3934 continue;
3935
3936 if (MSYMBOL_TYPE (msymbol) == ourtype
3937 || MSYMBOL_TYPE (msymbol) == ourtype2
3938 || MSYMBOL_TYPE (msymbol) == ourtype3
3939 || MSYMBOL_TYPE (msymbol) == ourtype4)
3940 {
3941 if (!datum.preg_p
3942 || regexec (&datum.preg, MSYMBOL_NATURAL_NAME (msymbol), 0,
3943 NULL, 0) == 0)
3944 {
3945 /* For functions we can do a quick check of whether the
3946 symbol might be found via find_pc_symtab. */
3947 if (kind != FUNCTIONS_DOMAIN
3948 || find_pc_symtab (MSYMBOL_VALUE_ADDRESS (objfile,
3949 msymbol)) == NULL)
3950 {
3951 if (lookup_symbol_in_objfile_from_linkage_name
3952 (objfile, MSYMBOL_LINKAGE_NAME (msymbol), VAR_DOMAIN)
3953 == NULL)
3954 {
3955 /* match */
3956 struct symbol_search *psr = (struct symbol_search *)
3957 xmalloc (sizeof (struct symbol_search));
3958 psr->block = i;
3959 psr->msymbol.minsym = msymbol;
3960 psr->msymbol.objfile = objfile;
3961 psr->symtab = NULL;
3962 psr->symbol = NULL;
3963 psr->next = NULL;
3964 if (tail == NULL)
3965 found = psr;
3966 else
3967 tail->next = psr;
3968 tail = psr;
3969 }
3970 }
3971 }
3972 }
3973 }
3974 }
3975
3976 discard_cleanups (retval_chain);
3977 do_cleanups (old_chain);
3978 *matches = found;
3979 }
3980
3981 /* Helper function for symtab_symbol_info, this function uses
3982 the data returned from search_symbols() to print information
3983 regarding the match to gdb_stdout. */
3984
3985 static void
3986 print_symbol_info (enum search_domain kind,
3987 struct symtab *s, struct symbol *sym,
3988 int block, const char *last)
3989 {
3990 const char *s_filename = symtab_to_filename_for_display (s);
3991
3992 if (last == NULL || filename_cmp (last, s_filename) != 0)
3993 {
3994 fputs_filtered ("\nFile ", gdb_stdout);
3995 fputs_filtered (s_filename, gdb_stdout);
3996 fputs_filtered (":\n", gdb_stdout);
3997 }
3998
3999 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
4000 printf_filtered ("static ");
4001
4002 /* Typedef that is not a C++ class. */
4003 if (kind == TYPES_DOMAIN
4004 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
4005 typedef_print (SYMBOL_TYPE (sym), sym, gdb_stdout);
4006 /* variable, func, or typedef-that-is-c++-class. */
4007 else if (kind < TYPES_DOMAIN
4008 || (kind == TYPES_DOMAIN
4009 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
4010 {
4011 type_print (SYMBOL_TYPE (sym),
4012 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
4013 ? "" : SYMBOL_PRINT_NAME (sym)),
4014 gdb_stdout, 0);
4015
4016 printf_filtered (";\n");
4017 }
4018 }
4019
4020 /* This help function for symtab_symbol_info() prints information
4021 for non-debugging symbols to gdb_stdout. */
4022
4023 static void
4024 print_msymbol_info (struct bound_minimal_symbol msymbol)
4025 {
4026 struct gdbarch *gdbarch = get_objfile_arch (msymbol.objfile);
4027 char *tmp;
4028
4029 if (gdbarch_addr_bit (gdbarch) <= 32)
4030 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol)
4031 & (CORE_ADDR) 0xffffffff,
4032 8);
4033 else
4034 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol),
4035 16);
4036 printf_filtered ("%s %s\n",
4037 tmp, MSYMBOL_PRINT_NAME (msymbol.minsym));
4038 }
4039
4040 /* This is the guts of the commands "info functions", "info types", and
4041 "info variables". It calls search_symbols to find all matches and then
4042 print_[m]symbol_info to print out some useful information about the
4043 matches. */
4044
4045 static void
4046 symtab_symbol_info (char *regexp, enum search_domain kind, int from_tty)
4047 {
4048 static const char * const classnames[] =
4049 {"variable", "function", "type"};
4050 struct symbol_search *symbols;
4051 struct symbol_search *p;
4052 struct cleanup *old_chain;
4053 const char *last_filename = NULL;
4054 int first = 1;
4055
4056 gdb_assert (kind <= TYPES_DOMAIN);
4057
4058 /* Must make sure that if we're interrupted, symbols gets freed. */
4059 search_symbols (regexp, kind, 0, NULL, &symbols);
4060 old_chain = make_cleanup_free_search_symbols (&symbols);
4061
4062 if (regexp != NULL)
4063 printf_filtered (_("All %ss matching regular expression \"%s\":\n"),
4064 classnames[kind], regexp);
4065 else
4066 printf_filtered (_("All defined %ss:\n"), classnames[kind]);
4067
4068 for (p = symbols; p != NULL; p = p->next)
4069 {
4070 QUIT;
4071
4072 if (p->msymbol.minsym != NULL)
4073 {
4074 if (first)
4075 {
4076 printf_filtered (_("\nNon-debugging symbols:\n"));
4077 first = 0;
4078 }
4079 print_msymbol_info (p->msymbol);
4080 }
4081 else
4082 {
4083 print_symbol_info (kind,
4084 p->symtab,
4085 p->symbol,
4086 p->block,
4087 last_filename);
4088 last_filename = symtab_to_filename_for_display (p->symtab);
4089 }
4090 }
4091
4092 do_cleanups (old_chain);
4093 }
4094
4095 static void
4096 variables_info (char *regexp, int from_tty)
4097 {
4098 symtab_symbol_info (regexp, VARIABLES_DOMAIN, from_tty);
4099 }
4100
4101 static void
4102 functions_info (char *regexp, int from_tty)
4103 {
4104 symtab_symbol_info (regexp, FUNCTIONS_DOMAIN, from_tty);
4105 }
4106
4107
4108 static void
4109 types_info (char *regexp, int from_tty)
4110 {
4111 symtab_symbol_info (regexp, TYPES_DOMAIN, from_tty);
4112 }
4113
4114 /* Breakpoint all functions matching regular expression. */
4115
4116 void
4117 rbreak_command_wrapper (char *regexp, int from_tty)
4118 {
4119 rbreak_command (regexp, from_tty);
4120 }
4121
4122 /* A cleanup function that calls end_rbreak_breakpoints. */
4123
4124 static void
4125 do_end_rbreak_breakpoints (void *ignore)
4126 {
4127 end_rbreak_breakpoints ();
4128 }
4129
4130 static void
4131 rbreak_command (char *regexp, int from_tty)
4132 {
4133 struct symbol_search *ss;
4134 struct symbol_search *p;
4135 struct cleanup *old_chain;
4136 char *string = NULL;
4137 int len = 0;
4138 const char **files = NULL;
4139 const char *file_name;
4140 int nfiles = 0;
4141
4142 if (regexp)
4143 {
4144 char *colon = strchr (regexp, ':');
4145
4146 if (colon && *(colon + 1) != ':')
4147 {
4148 int colon_index;
4149 char *local_name;
4150
4151 colon_index = colon - regexp;
4152 local_name = alloca (colon_index + 1);
4153 memcpy (local_name, regexp, colon_index);
4154 local_name[colon_index--] = 0;
4155 while (isspace (local_name[colon_index]))
4156 local_name[colon_index--] = 0;
4157 file_name = local_name;
4158 files = &file_name;
4159 nfiles = 1;
4160 regexp = skip_spaces (colon + 1);
4161 }
4162 }
4163
4164 search_symbols (regexp, FUNCTIONS_DOMAIN, nfiles, files, &ss);
4165 old_chain = make_cleanup_free_search_symbols (&ss);
4166 make_cleanup (free_current_contents, &string);
4167
4168 start_rbreak_breakpoints ();
4169 make_cleanup (do_end_rbreak_breakpoints, NULL);
4170 for (p = ss; p != NULL; p = p->next)
4171 {
4172 if (p->msymbol.minsym == NULL)
4173 {
4174 const char *fullname = symtab_to_fullname (p->symtab);
4175
4176 int newlen = (strlen (fullname)
4177 + strlen (SYMBOL_LINKAGE_NAME (p->symbol))
4178 + 4);
4179
4180 if (newlen > len)
4181 {
4182 string = xrealloc (string, newlen);
4183 len = newlen;
4184 }
4185 strcpy (string, fullname);
4186 strcat (string, ":'");
4187 strcat (string, SYMBOL_LINKAGE_NAME (p->symbol));
4188 strcat (string, "'");
4189 break_command (string, from_tty);
4190 print_symbol_info (FUNCTIONS_DOMAIN,
4191 p->symtab,
4192 p->symbol,
4193 p->block,
4194 symtab_to_filename_for_display (p->symtab));
4195 }
4196 else
4197 {
4198 int newlen = (strlen (MSYMBOL_LINKAGE_NAME (p->msymbol.minsym)) + 3);
4199
4200 if (newlen > len)
4201 {
4202 string = xrealloc (string, newlen);
4203 len = newlen;
4204 }
4205 strcpy (string, "'");
4206 strcat (string, MSYMBOL_LINKAGE_NAME (p->msymbol.minsym));
4207 strcat (string, "'");
4208
4209 break_command (string, from_tty);
4210 printf_filtered ("<function, no debug info> %s;\n",
4211 MSYMBOL_PRINT_NAME (p->msymbol.minsym));
4212 }
4213 }
4214
4215 do_cleanups (old_chain);
4216 }
4217 \f
4218
4219 /* Evaluate if NAME matches SYM_TEXT and SYM_TEXT_LEN.
4220
4221 Either sym_text[sym_text_len] != '(' and then we search for any
4222 symbol starting with SYM_TEXT text.
4223
4224 Otherwise sym_text[sym_text_len] == '(' and then we require symbol name to
4225 be terminated at that point. Partial symbol tables do not have parameters
4226 information. */
4227
4228 static int
4229 compare_symbol_name (const char *name, const char *sym_text, int sym_text_len)
4230 {
4231 int (*ncmp) (const char *, const char *, size_t);
4232
4233 ncmp = (case_sensitivity == case_sensitive_on ? strncmp : strncasecmp);
4234
4235 if (ncmp (name, sym_text, sym_text_len) != 0)
4236 return 0;
4237
4238 if (sym_text[sym_text_len] == '(')
4239 {
4240 /* User searches for `name(someth...'. Require NAME to be terminated.
4241 Normally psymtabs and gdbindex have no parameter types so '\0' will be
4242 present but accept even parameters presence. In this case this
4243 function is in fact strcmp_iw but whitespace skipping is not supported
4244 for tab completion. */
4245
4246 if (name[sym_text_len] != '\0' && name[sym_text_len] != '(')
4247 return 0;
4248 }
4249
4250 return 1;
4251 }
4252
4253 /* Free any memory associated with a completion list. */
4254
4255 static void
4256 free_completion_list (VEC (char_ptr) **list_ptr)
4257 {
4258 int i;
4259 char *p;
4260
4261 for (i = 0; VEC_iterate (char_ptr, *list_ptr, i, p); ++i)
4262 xfree (p);
4263 VEC_free (char_ptr, *list_ptr);
4264 }
4265
4266 /* Callback for make_cleanup. */
4267
4268 static void
4269 do_free_completion_list (void *list)
4270 {
4271 free_completion_list (list);
4272 }
4273
4274 /* Helper routine for make_symbol_completion_list. */
4275
4276 static VEC (char_ptr) *return_val;
4277
4278 #define COMPLETION_LIST_ADD_SYMBOL(symbol, sym_text, len, text, word) \
4279 completion_list_add_name \
4280 (SYMBOL_NATURAL_NAME (symbol), (sym_text), (len), (text), (word))
4281
4282 #define MCOMPLETION_LIST_ADD_SYMBOL(symbol, sym_text, len, text, word) \
4283 completion_list_add_name \
4284 (MSYMBOL_NATURAL_NAME (symbol), (sym_text), (len), (text), (word))
4285
4286 /* Test to see if the symbol specified by SYMNAME (which is already
4287 demangled for C++ symbols) matches SYM_TEXT in the first SYM_TEXT_LEN
4288 characters. If so, add it to the current completion list. */
4289
4290 static void
4291 completion_list_add_name (const char *symname,
4292 const char *sym_text, int sym_text_len,
4293 const char *text, const char *word)
4294 {
4295 /* Clip symbols that cannot match. */
4296 if (!compare_symbol_name (symname, sym_text, sym_text_len))
4297 return;
4298
4299 /* We have a match for a completion, so add SYMNAME to the current list
4300 of matches. Note that the name is moved to freshly malloc'd space. */
4301
4302 {
4303 char *new;
4304
4305 if (word == sym_text)
4306 {
4307 new = xmalloc (strlen (symname) + 5);
4308 strcpy (new, symname);
4309 }
4310 else if (word > sym_text)
4311 {
4312 /* Return some portion of symname. */
4313 new = xmalloc (strlen (symname) + 5);
4314 strcpy (new, symname + (word - sym_text));
4315 }
4316 else
4317 {
4318 /* Return some of SYM_TEXT plus symname. */
4319 new = xmalloc (strlen (symname) + (sym_text - word) + 5);
4320 strncpy (new, word, sym_text - word);
4321 new[sym_text - word] = '\0';
4322 strcat (new, symname);
4323 }
4324
4325 VEC_safe_push (char_ptr, return_val, new);
4326 }
4327 }
4328
4329 /* ObjC: In case we are completing on a selector, look as the msymbol
4330 again and feed all the selectors into the mill. */
4331
4332 static void
4333 completion_list_objc_symbol (struct minimal_symbol *msymbol,
4334 const char *sym_text, int sym_text_len,
4335 const char *text, const char *word)
4336 {
4337 static char *tmp = NULL;
4338 static unsigned int tmplen = 0;
4339
4340 const char *method, *category, *selector;
4341 char *tmp2 = NULL;
4342
4343 method = MSYMBOL_NATURAL_NAME (msymbol);
4344
4345 /* Is it a method? */
4346 if ((method[0] != '-') && (method[0] != '+'))
4347 return;
4348
4349 if (sym_text[0] == '[')
4350 /* Complete on shortened method method. */
4351 completion_list_add_name (method + 1, sym_text, sym_text_len, text, word);
4352
4353 while ((strlen (method) + 1) >= tmplen)
4354 {
4355 if (tmplen == 0)
4356 tmplen = 1024;
4357 else
4358 tmplen *= 2;
4359 tmp = xrealloc (tmp, tmplen);
4360 }
4361 selector = strchr (method, ' ');
4362 if (selector != NULL)
4363 selector++;
4364
4365 category = strchr (method, '(');
4366
4367 if ((category != NULL) && (selector != NULL))
4368 {
4369 memcpy (tmp, method, (category - method));
4370 tmp[category - method] = ' ';
4371 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
4372 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
4373 if (sym_text[0] == '[')
4374 completion_list_add_name (tmp + 1, sym_text, sym_text_len, text, word);
4375 }
4376
4377 if (selector != NULL)
4378 {
4379 /* Complete on selector only. */
4380 strcpy (tmp, selector);
4381 tmp2 = strchr (tmp, ']');
4382 if (tmp2 != NULL)
4383 *tmp2 = '\0';
4384
4385 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
4386 }
4387 }
4388
4389 /* Break the non-quoted text based on the characters which are in
4390 symbols. FIXME: This should probably be language-specific. */
4391
4392 static const char *
4393 language_search_unquoted_string (const char *text, const char *p)
4394 {
4395 for (; p > text; --p)
4396 {
4397 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
4398 continue;
4399 else
4400 {
4401 if ((current_language->la_language == language_objc))
4402 {
4403 if (p[-1] == ':') /* Might be part of a method name. */
4404 continue;
4405 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
4406 p -= 2; /* Beginning of a method name. */
4407 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
4408 { /* Might be part of a method name. */
4409 const char *t = p;
4410
4411 /* Seeing a ' ' or a '(' is not conclusive evidence
4412 that we are in the middle of a method name. However,
4413 finding "-[" or "+[" should be pretty un-ambiguous.
4414 Unfortunately we have to find it now to decide. */
4415
4416 while (t > text)
4417 if (isalnum (t[-1]) || t[-1] == '_' ||
4418 t[-1] == ' ' || t[-1] == ':' ||
4419 t[-1] == '(' || t[-1] == ')')
4420 --t;
4421 else
4422 break;
4423
4424 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
4425 p = t - 2; /* Method name detected. */
4426 /* Else we leave with p unchanged. */
4427 }
4428 }
4429 break;
4430 }
4431 }
4432 return p;
4433 }
4434
4435 static void
4436 completion_list_add_fields (struct symbol *sym, const char *sym_text,
4437 int sym_text_len, const char *text,
4438 const char *word)
4439 {
4440 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4441 {
4442 struct type *t = SYMBOL_TYPE (sym);
4443 enum type_code c = TYPE_CODE (t);
4444 int j;
4445
4446 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
4447 for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++)
4448 if (TYPE_FIELD_NAME (t, j))
4449 completion_list_add_name (TYPE_FIELD_NAME (t, j),
4450 sym_text, sym_text_len, text, word);
4451 }
4452 }
4453
4454 /* Type of the user_data argument passed to add_macro_name or
4455 symbol_completion_matcher. The contents are simply whatever is
4456 needed by completion_list_add_name. */
4457 struct add_name_data
4458 {
4459 const char *sym_text;
4460 int sym_text_len;
4461 const char *text;
4462 const char *word;
4463 };
4464
4465 /* A callback used with macro_for_each and macro_for_each_in_scope.
4466 This adds a macro's name to the current completion list. */
4467
4468 static void
4469 add_macro_name (const char *name, const struct macro_definition *ignore,
4470 struct macro_source_file *ignore2, int ignore3,
4471 void *user_data)
4472 {
4473 struct add_name_data *datum = (struct add_name_data *) user_data;
4474
4475 completion_list_add_name (name,
4476 datum->sym_text, datum->sym_text_len,
4477 datum->text, datum->word);
4478 }
4479
4480 /* A callback for expand_symtabs_matching. */
4481
4482 static int
4483 symbol_completion_matcher (const char *name, void *user_data)
4484 {
4485 struct add_name_data *datum = (struct add_name_data *) user_data;
4486
4487 return compare_symbol_name (name, datum->sym_text, datum->sym_text_len);
4488 }
4489
4490 VEC (char_ptr) *
4491 default_make_symbol_completion_list_break_on (const char *text,
4492 const char *word,
4493 const char *break_on,
4494 enum type_code code)
4495 {
4496 /* Problem: All of the symbols have to be copied because readline
4497 frees them. I'm not going to worry about this; hopefully there
4498 won't be that many. */
4499
4500 struct symbol *sym;
4501 struct symtab *s;
4502 struct minimal_symbol *msymbol;
4503 struct objfile *objfile;
4504 const struct block *b;
4505 const struct block *surrounding_static_block, *surrounding_global_block;
4506 struct block_iterator iter;
4507 /* The symbol we are completing on. Points in same buffer as text. */
4508 const char *sym_text;
4509 /* Length of sym_text. */
4510 int sym_text_len;
4511 struct add_name_data datum;
4512 struct cleanup *back_to;
4513
4514 /* Now look for the symbol we are supposed to complete on. */
4515 {
4516 const char *p;
4517 char quote_found;
4518 const char *quote_pos = NULL;
4519
4520 /* First see if this is a quoted string. */
4521 quote_found = '\0';
4522 for (p = text; *p != '\0'; ++p)
4523 {
4524 if (quote_found != '\0')
4525 {
4526 if (*p == quote_found)
4527 /* Found close quote. */
4528 quote_found = '\0';
4529 else if (*p == '\\' && p[1] == quote_found)
4530 /* A backslash followed by the quote character
4531 doesn't end the string. */
4532 ++p;
4533 }
4534 else if (*p == '\'' || *p == '"')
4535 {
4536 quote_found = *p;
4537 quote_pos = p;
4538 }
4539 }
4540 if (quote_found == '\'')
4541 /* A string within single quotes can be a symbol, so complete on it. */
4542 sym_text = quote_pos + 1;
4543 else if (quote_found == '"')
4544 /* A double-quoted string is never a symbol, nor does it make sense
4545 to complete it any other way. */
4546 {
4547 return NULL;
4548 }
4549 else
4550 {
4551 /* It is not a quoted string. Break it based on the characters
4552 which are in symbols. */
4553 while (p > text)
4554 {
4555 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0'
4556 || p[-1] == ':' || strchr (break_on, p[-1]) != NULL)
4557 --p;
4558 else
4559 break;
4560 }
4561 sym_text = p;
4562 }
4563 }
4564
4565 sym_text_len = strlen (sym_text);
4566
4567 /* Prepare SYM_TEXT_LEN for compare_symbol_name. */
4568
4569 if (current_language->la_language == language_cplus
4570 || current_language->la_language == language_java
4571 || current_language->la_language == language_fortran)
4572 {
4573 /* These languages may have parameters entered by user but they are never
4574 present in the partial symbol tables. */
4575
4576 const char *cs = memchr (sym_text, '(', sym_text_len);
4577
4578 if (cs)
4579 sym_text_len = cs - sym_text;
4580 }
4581 gdb_assert (sym_text[sym_text_len] == '\0' || sym_text[sym_text_len] == '(');
4582
4583 return_val = NULL;
4584 back_to = make_cleanup (do_free_completion_list, &return_val);
4585
4586 datum.sym_text = sym_text;
4587 datum.sym_text_len = sym_text_len;
4588 datum.text = text;
4589 datum.word = word;
4590
4591 /* Look through the partial symtabs for all symbols which begin
4592 by matching SYM_TEXT. Expand all CUs that you find to the list.
4593 The real names will get added by COMPLETION_LIST_ADD_SYMBOL below. */
4594 expand_symtabs_matching (NULL, symbol_completion_matcher, ALL_DOMAIN,
4595 &datum);
4596
4597 /* At this point scan through the misc symbol vectors and add each
4598 symbol you find to the list. Eventually we want to ignore
4599 anything that isn't a text symbol (everything else will be
4600 handled by the psymtab code above). */
4601
4602 if (code == TYPE_CODE_UNDEF)
4603 {
4604 ALL_MSYMBOLS (objfile, msymbol)
4605 {
4606 QUIT;
4607 MCOMPLETION_LIST_ADD_SYMBOL (msymbol, sym_text, sym_text_len, text,
4608 word);
4609
4610 completion_list_objc_symbol (msymbol, sym_text, sym_text_len, text,
4611 word);
4612 }
4613 }
4614
4615 /* Search upwards from currently selected frame (so that we can
4616 complete on local vars). Also catch fields of types defined in
4617 this places which match our text string. Only complete on types
4618 visible from current context. */
4619
4620 b = get_selected_block (0);
4621 surrounding_static_block = block_static_block (b);
4622 surrounding_global_block = block_global_block (b);
4623 if (surrounding_static_block != NULL)
4624 while (b != surrounding_static_block)
4625 {
4626 QUIT;
4627
4628 ALL_BLOCK_SYMBOLS (b, iter, sym)
4629 {
4630 if (code == TYPE_CODE_UNDEF)
4631 {
4632 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text,
4633 word);
4634 completion_list_add_fields (sym, sym_text, sym_text_len, text,
4635 word);
4636 }
4637 else if (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4638 && TYPE_CODE (SYMBOL_TYPE (sym)) == code)
4639 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text,
4640 word);
4641 }
4642
4643 /* Stop when we encounter an enclosing function. Do not stop for
4644 non-inlined functions - the locals of the enclosing function
4645 are in scope for a nested function. */
4646 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
4647 break;
4648 b = BLOCK_SUPERBLOCK (b);
4649 }
4650
4651 /* Add fields from the file's types; symbols will be added below. */
4652
4653 if (code == TYPE_CODE_UNDEF)
4654 {
4655 if (surrounding_static_block != NULL)
4656 ALL_BLOCK_SYMBOLS (surrounding_static_block, iter, sym)
4657 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
4658
4659 if (surrounding_global_block != NULL)
4660 ALL_BLOCK_SYMBOLS (surrounding_global_block, iter, sym)
4661 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
4662 }
4663
4664 /* Go through the symtabs and check the externs and statics for
4665 symbols which match. */
4666
4667 ALL_PRIMARY_SYMTABS (objfile, s)
4668 {
4669 QUIT;
4670 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
4671 ALL_BLOCK_SYMBOLS (b, iter, sym)
4672 {
4673 if (code == TYPE_CODE_UNDEF
4674 || (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4675 && TYPE_CODE (SYMBOL_TYPE (sym)) == code))
4676 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4677 }
4678 }
4679
4680 ALL_PRIMARY_SYMTABS (objfile, s)
4681 {
4682 QUIT;
4683 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
4684 ALL_BLOCK_SYMBOLS (b, iter, sym)
4685 {
4686 if (code == TYPE_CODE_UNDEF
4687 || (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4688 && TYPE_CODE (SYMBOL_TYPE (sym)) == code))
4689 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4690 }
4691 }
4692
4693 /* Skip macros if we are completing a struct tag -- arguable but
4694 usually what is expected. */
4695 if (current_language->la_macro_expansion == macro_expansion_c
4696 && code == TYPE_CODE_UNDEF)
4697 {
4698 struct macro_scope *scope;
4699
4700 /* Add any macros visible in the default scope. Note that this
4701 may yield the occasional wrong result, because an expression
4702 might be evaluated in a scope other than the default. For
4703 example, if the user types "break file:line if <TAB>", the
4704 resulting expression will be evaluated at "file:line" -- but
4705 at there does not seem to be a way to detect this at
4706 completion time. */
4707 scope = default_macro_scope ();
4708 if (scope)
4709 {
4710 macro_for_each_in_scope (scope->file, scope->line,
4711 add_macro_name, &datum);
4712 xfree (scope);
4713 }
4714
4715 /* User-defined macros are always visible. */
4716 macro_for_each (macro_user_macros, add_macro_name, &datum);
4717 }
4718
4719 discard_cleanups (back_to);
4720 return (return_val);
4721 }
4722
4723 VEC (char_ptr) *
4724 default_make_symbol_completion_list (const char *text, const char *word,
4725 enum type_code code)
4726 {
4727 return default_make_symbol_completion_list_break_on (text, word, "", code);
4728 }
4729
4730 /* Return a vector of all symbols (regardless of class) which begin by
4731 matching TEXT. If the answer is no symbols, then the return value
4732 is NULL. */
4733
4734 VEC (char_ptr) *
4735 make_symbol_completion_list (const char *text, const char *word)
4736 {
4737 return current_language->la_make_symbol_completion_list (text, word,
4738 TYPE_CODE_UNDEF);
4739 }
4740
4741 /* Like make_symbol_completion_list, but only return STRUCT_DOMAIN
4742 symbols whose type code is CODE. */
4743
4744 VEC (char_ptr) *
4745 make_symbol_completion_type (const char *text, const char *word,
4746 enum type_code code)
4747 {
4748 gdb_assert (code == TYPE_CODE_UNION
4749 || code == TYPE_CODE_STRUCT
4750 || code == TYPE_CODE_CLASS
4751 || code == TYPE_CODE_ENUM);
4752 return current_language->la_make_symbol_completion_list (text, word, code);
4753 }
4754
4755 /* Like make_symbol_completion_list, but suitable for use as a
4756 completion function. */
4757
4758 VEC (char_ptr) *
4759 make_symbol_completion_list_fn (struct cmd_list_element *ignore,
4760 const char *text, const char *word)
4761 {
4762 return make_symbol_completion_list (text, word);
4763 }
4764
4765 /* Like make_symbol_completion_list, but returns a list of symbols
4766 defined in a source file FILE. */
4767
4768 VEC (char_ptr) *
4769 make_file_symbol_completion_list (const char *text, const char *word,
4770 const char *srcfile)
4771 {
4772 struct symbol *sym;
4773 struct symtab *s;
4774 struct block *b;
4775 struct block_iterator iter;
4776 /* The symbol we are completing on. Points in same buffer as text. */
4777 const char *sym_text;
4778 /* Length of sym_text. */
4779 int sym_text_len;
4780
4781 /* Now look for the symbol we are supposed to complete on.
4782 FIXME: This should be language-specific. */
4783 {
4784 const char *p;
4785 char quote_found;
4786 const char *quote_pos = NULL;
4787
4788 /* First see if this is a quoted string. */
4789 quote_found = '\0';
4790 for (p = text; *p != '\0'; ++p)
4791 {
4792 if (quote_found != '\0')
4793 {
4794 if (*p == quote_found)
4795 /* Found close quote. */
4796 quote_found = '\0';
4797 else if (*p == '\\' && p[1] == quote_found)
4798 /* A backslash followed by the quote character
4799 doesn't end the string. */
4800 ++p;
4801 }
4802 else if (*p == '\'' || *p == '"')
4803 {
4804 quote_found = *p;
4805 quote_pos = p;
4806 }
4807 }
4808 if (quote_found == '\'')
4809 /* A string within single quotes can be a symbol, so complete on it. */
4810 sym_text = quote_pos + 1;
4811 else if (quote_found == '"')
4812 /* A double-quoted string is never a symbol, nor does it make sense
4813 to complete it any other way. */
4814 {
4815 return NULL;
4816 }
4817 else
4818 {
4819 /* Not a quoted string. */
4820 sym_text = language_search_unquoted_string (text, p);
4821 }
4822 }
4823
4824 sym_text_len = strlen (sym_text);
4825
4826 return_val = NULL;
4827
4828 /* Find the symtab for SRCFILE (this loads it if it was not yet read
4829 in). */
4830 s = lookup_symtab (srcfile);
4831 if (s == NULL)
4832 {
4833 /* Maybe they typed the file with leading directories, while the
4834 symbol tables record only its basename. */
4835 const char *tail = lbasename (srcfile);
4836
4837 if (tail > srcfile)
4838 s = lookup_symtab (tail);
4839 }
4840
4841 /* If we have no symtab for that file, return an empty list. */
4842 if (s == NULL)
4843 return (return_val);
4844
4845 /* Go through this symtab and check the externs and statics for
4846 symbols which match. */
4847
4848 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
4849 ALL_BLOCK_SYMBOLS (b, iter, sym)
4850 {
4851 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4852 }
4853
4854 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
4855 ALL_BLOCK_SYMBOLS (b, iter, sym)
4856 {
4857 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4858 }
4859
4860 return (return_val);
4861 }
4862
4863 /* A helper function for make_source_files_completion_list. It adds
4864 another file name to a list of possible completions, growing the
4865 list as necessary. */
4866
4867 static void
4868 add_filename_to_list (const char *fname, const char *text, const char *word,
4869 VEC (char_ptr) **list)
4870 {
4871 char *new;
4872 size_t fnlen = strlen (fname);
4873
4874 if (word == text)
4875 {
4876 /* Return exactly fname. */
4877 new = xmalloc (fnlen + 5);
4878 strcpy (new, fname);
4879 }
4880 else if (word > text)
4881 {
4882 /* Return some portion of fname. */
4883 new = xmalloc (fnlen + 5);
4884 strcpy (new, fname + (word - text));
4885 }
4886 else
4887 {
4888 /* Return some of TEXT plus fname. */
4889 new = xmalloc (fnlen + (text - word) + 5);
4890 strncpy (new, word, text - word);
4891 new[text - word] = '\0';
4892 strcat (new, fname);
4893 }
4894 VEC_safe_push (char_ptr, *list, new);
4895 }
4896
4897 static int
4898 not_interesting_fname (const char *fname)
4899 {
4900 static const char *illegal_aliens[] = {
4901 "_globals_", /* inserted by coff_symtab_read */
4902 NULL
4903 };
4904 int i;
4905
4906 for (i = 0; illegal_aliens[i]; i++)
4907 {
4908 if (filename_cmp (fname, illegal_aliens[i]) == 0)
4909 return 1;
4910 }
4911 return 0;
4912 }
4913
4914 /* An object of this type is passed as the user_data argument to
4915 map_partial_symbol_filenames. */
4916 struct add_partial_filename_data
4917 {
4918 struct filename_seen_cache *filename_seen_cache;
4919 const char *text;
4920 const char *word;
4921 int text_len;
4922 VEC (char_ptr) **list;
4923 };
4924
4925 /* A callback for map_partial_symbol_filenames. */
4926
4927 static void
4928 maybe_add_partial_symtab_filename (const char *filename, const char *fullname,
4929 void *user_data)
4930 {
4931 struct add_partial_filename_data *data = user_data;
4932
4933 if (not_interesting_fname (filename))
4934 return;
4935 if (!filename_seen (data->filename_seen_cache, filename, 1)
4936 && filename_ncmp (filename, data->text, data->text_len) == 0)
4937 {
4938 /* This file matches for a completion; add it to the
4939 current list of matches. */
4940 add_filename_to_list (filename, data->text, data->word, data->list);
4941 }
4942 else
4943 {
4944 const char *base_name = lbasename (filename);
4945
4946 if (base_name != filename
4947 && !filename_seen (data->filename_seen_cache, base_name, 1)
4948 && filename_ncmp (base_name, data->text, data->text_len) == 0)
4949 add_filename_to_list (base_name, data->text, data->word, data->list);
4950 }
4951 }
4952
4953 /* Return a vector of all source files whose names begin with matching
4954 TEXT. The file names are looked up in the symbol tables of this
4955 program. If the answer is no matchess, then the return value is
4956 NULL. */
4957
4958 VEC (char_ptr) *
4959 make_source_files_completion_list (const char *text, const char *word)
4960 {
4961 struct symtab *s;
4962 struct objfile *objfile;
4963 size_t text_len = strlen (text);
4964 VEC (char_ptr) *list = NULL;
4965 const char *base_name;
4966 struct add_partial_filename_data datum;
4967 struct filename_seen_cache *filename_seen_cache;
4968 struct cleanup *back_to, *cache_cleanup;
4969
4970 if (!have_full_symbols () && !have_partial_symbols ())
4971 return list;
4972
4973 back_to = make_cleanup (do_free_completion_list, &list);
4974
4975 filename_seen_cache = create_filename_seen_cache ();
4976 cache_cleanup = make_cleanup (delete_filename_seen_cache,
4977 filename_seen_cache);
4978
4979 ALL_SYMTABS (objfile, s)
4980 {
4981 if (not_interesting_fname (s->filename))
4982 continue;
4983 if (!filename_seen (filename_seen_cache, s->filename, 1)
4984 && filename_ncmp (s->filename, text, text_len) == 0)
4985 {
4986 /* This file matches for a completion; add it to the current
4987 list of matches. */
4988 add_filename_to_list (s->filename, text, word, &list);
4989 }
4990 else
4991 {
4992 /* NOTE: We allow the user to type a base name when the
4993 debug info records leading directories, but not the other
4994 way around. This is what subroutines of breakpoint
4995 command do when they parse file names. */
4996 base_name = lbasename (s->filename);
4997 if (base_name != s->filename
4998 && !filename_seen (filename_seen_cache, base_name, 1)
4999 && filename_ncmp (base_name, text, text_len) == 0)
5000 add_filename_to_list (base_name, text, word, &list);
5001 }
5002 }
5003
5004 datum.filename_seen_cache = filename_seen_cache;
5005 datum.text = text;
5006 datum.word = word;
5007 datum.text_len = text_len;
5008 datum.list = &list;
5009 map_symbol_filenames (maybe_add_partial_symtab_filename, &datum,
5010 0 /*need_fullname*/);
5011
5012 do_cleanups (cache_cleanup);
5013 discard_cleanups (back_to);
5014
5015 return list;
5016 }
5017 \f
5018 /* Track MAIN */
5019
5020 /* Return the "main_info" object for the current program space. If
5021 the object has not yet been created, create it and fill in some
5022 default values. */
5023
5024 static struct main_info *
5025 get_main_info (void)
5026 {
5027 struct main_info *info = program_space_data (current_program_space,
5028 main_progspace_key);
5029
5030 if (info == NULL)
5031 {
5032 /* It may seem strange to store the main name in the progspace
5033 and also in whatever objfile happens to see a main name in
5034 its debug info. The reason for this is mainly historical:
5035 gdb returned "main" as the name even if no function named
5036 "main" was defined the program; and this approach lets us
5037 keep compatibility. */
5038 info = XCNEW (struct main_info);
5039 info->language_of_main = language_unknown;
5040 set_program_space_data (current_program_space, main_progspace_key,
5041 info);
5042 }
5043
5044 return info;
5045 }
5046
5047 /* A cleanup to destroy a struct main_info when a progspace is
5048 destroyed. */
5049
5050 static void
5051 main_info_cleanup (struct program_space *pspace, void *data)
5052 {
5053 struct main_info *info = data;
5054
5055 if (info != NULL)
5056 xfree (info->name_of_main);
5057 xfree (info);
5058 }
5059
5060 static void
5061 set_main_name (const char *name, enum language lang)
5062 {
5063 struct main_info *info = get_main_info ();
5064
5065 if (info->name_of_main != NULL)
5066 {
5067 xfree (info->name_of_main);
5068 info->name_of_main = NULL;
5069 info->language_of_main = language_unknown;
5070 }
5071 if (name != NULL)
5072 {
5073 info->name_of_main = xstrdup (name);
5074 info->language_of_main = lang;
5075 }
5076 }
5077
5078 /* Deduce the name of the main procedure, and set NAME_OF_MAIN
5079 accordingly. */
5080
5081 static void
5082 find_main_name (void)
5083 {
5084 const char *new_main_name;
5085 struct objfile *objfile;
5086
5087 /* First check the objfiles to see whether a debuginfo reader has
5088 picked up the appropriate main name. Historically the main name
5089 was found in a more or less random way; this approach instead
5090 relies on the order of objfile creation -- which still isn't
5091 guaranteed to get the correct answer, but is just probably more
5092 accurate. */
5093 ALL_OBJFILES (objfile)
5094 {
5095 if (objfile->per_bfd->name_of_main != NULL)
5096 {
5097 set_main_name (objfile->per_bfd->name_of_main,
5098 objfile->per_bfd->language_of_main);
5099 return;
5100 }
5101 }
5102
5103 /* Try to see if the main procedure is in Ada. */
5104 /* FIXME: brobecker/2005-03-07: Another way of doing this would
5105 be to add a new method in the language vector, and call this
5106 method for each language until one of them returns a non-empty
5107 name. This would allow us to remove this hard-coded call to
5108 an Ada function. It is not clear that this is a better approach
5109 at this point, because all methods need to be written in a way
5110 such that false positives never be returned. For instance, it is
5111 important that a method does not return a wrong name for the main
5112 procedure if the main procedure is actually written in a different
5113 language. It is easy to guaranty this with Ada, since we use a
5114 special symbol generated only when the main in Ada to find the name
5115 of the main procedure. It is difficult however to see how this can
5116 be guarantied for languages such as C, for instance. This suggests
5117 that order of call for these methods becomes important, which means
5118 a more complicated approach. */
5119 new_main_name = ada_main_name ();
5120 if (new_main_name != NULL)
5121 {
5122 set_main_name (new_main_name, language_ada);
5123 return;
5124 }
5125
5126 new_main_name = d_main_name ();
5127 if (new_main_name != NULL)
5128 {
5129 set_main_name (new_main_name, language_d);
5130 return;
5131 }
5132
5133 new_main_name = go_main_name ();
5134 if (new_main_name != NULL)
5135 {
5136 set_main_name (new_main_name, language_go);
5137 return;
5138 }
5139
5140 new_main_name = pascal_main_name ();
5141 if (new_main_name != NULL)
5142 {
5143 set_main_name (new_main_name, language_pascal);
5144 return;
5145 }
5146
5147 /* The languages above didn't identify the name of the main procedure.
5148 Fallback to "main". */
5149 set_main_name ("main", language_unknown);
5150 }
5151
5152 char *
5153 main_name (void)
5154 {
5155 struct main_info *info = get_main_info ();
5156
5157 if (info->name_of_main == NULL)
5158 find_main_name ();
5159
5160 return info->name_of_main;
5161 }
5162
5163 /* Return the language of the main function. If it is not known,
5164 return language_unknown. */
5165
5166 enum language
5167 main_language (void)
5168 {
5169 struct main_info *info = get_main_info ();
5170
5171 if (info->name_of_main == NULL)
5172 find_main_name ();
5173
5174 return info->language_of_main;
5175 }
5176
5177 /* Handle ``executable_changed'' events for the symtab module. */
5178
5179 static void
5180 symtab_observer_executable_changed (void)
5181 {
5182 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
5183 set_main_name (NULL, language_unknown);
5184 }
5185
5186 /* Return 1 if the supplied producer string matches the ARM RealView
5187 compiler (armcc). */
5188
5189 int
5190 producer_is_realview (const char *producer)
5191 {
5192 static const char *const arm_idents[] = {
5193 "ARM C Compiler, ADS",
5194 "Thumb C Compiler, ADS",
5195 "ARM C++ Compiler, ADS",
5196 "Thumb C++ Compiler, ADS",
5197 "ARM/Thumb C/C++ Compiler, RVCT",
5198 "ARM C/C++ Compiler, RVCT"
5199 };
5200 int i;
5201
5202 if (producer == NULL)
5203 return 0;
5204
5205 for (i = 0; i < ARRAY_SIZE (arm_idents); i++)
5206 if (strncmp (producer, arm_idents[i], strlen (arm_idents[i])) == 0)
5207 return 1;
5208
5209 return 0;
5210 }
5211
5212 \f
5213
5214 /* The next index to hand out in response to a registration request. */
5215
5216 static int next_aclass_value = LOC_FINAL_VALUE;
5217
5218 /* The maximum number of "aclass" registrations we support. This is
5219 constant for convenience. */
5220 #define MAX_SYMBOL_IMPLS (LOC_FINAL_VALUE + 10)
5221
5222 /* The objects representing the various "aclass" values. The elements
5223 from 0 up to LOC_FINAL_VALUE-1 represent themselves, and subsequent
5224 elements are those registered at gdb initialization time. */
5225
5226 static struct symbol_impl symbol_impl[MAX_SYMBOL_IMPLS];
5227
5228 /* The globally visible pointer. This is separate from 'symbol_impl'
5229 so that it can be const. */
5230
5231 const struct symbol_impl *symbol_impls = &symbol_impl[0];
5232
5233 /* Make sure we saved enough room in struct symbol. */
5234
5235 gdb_static_assert (MAX_SYMBOL_IMPLS <= (1 << SYMBOL_ACLASS_BITS));
5236
5237 /* Register a computed symbol type. ACLASS must be LOC_COMPUTED. OPS
5238 is the ops vector associated with this index. This returns the new
5239 index, which should be used as the aclass_index field for symbols
5240 of this type. */
5241
5242 int
5243 register_symbol_computed_impl (enum address_class aclass,
5244 const struct symbol_computed_ops *ops)
5245 {
5246 int result = next_aclass_value++;
5247
5248 gdb_assert (aclass == LOC_COMPUTED);
5249 gdb_assert (result < MAX_SYMBOL_IMPLS);
5250 symbol_impl[result].aclass = aclass;
5251 symbol_impl[result].ops_computed = ops;
5252
5253 /* Sanity check OPS. */
5254 gdb_assert (ops != NULL);
5255 gdb_assert (ops->tracepoint_var_ref != NULL);
5256 gdb_assert (ops->describe_location != NULL);
5257 gdb_assert (ops->read_needs_frame != NULL);
5258 gdb_assert (ops->read_variable != NULL);
5259
5260 return result;
5261 }
5262
5263 /* Register a function with frame base type. ACLASS must be LOC_BLOCK.
5264 OPS is the ops vector associated with this index. This returns the
5265 new index, which should be used as the aclass_index field for symbols
5266 of this type. */
5267
5268 int
5269 register_symbol_block_impl (enum address_class aclass,
5270 const struct symbol_block_ops *ops)
5271 {
5272 int result = next_aclass_value++;
5273
5274 gdb_assert (aclass == LOC_BLOCK);
5275 gdb_assert (result < MAX_SYMBOL_IMPLS);
5276 symbol_impl[result].aclass = aclass;
5277 symbol_impl[result].ops_block = ops;
5278
5279 /* Sanity check OPS. */
5280 gdb_assert (ops != NULL);
5281 gdb_assert (ops->find_frame_base_location != NULL);
5282
5283 return result;
5284 }
5285
5286 /* Register a register symbol type. ACLASS must be LOC_REGISTER or
5287 LOC_REGPARM_ADDR. OPS is the register ops vector associated with
5288 this index. This returns the new index, which should be used as
5289 the aclass_index field for symbols of this type. */
5290
5291 int
5292 register_symbol_register_impl (enum address_class aclass,
5293 const struct symbol_register_ops *ops)
5294 {
5295 int result = next_aclass_value++;
5296
5297 gdb_assert (aclass == LOC_REGISTER || aclass == LOC_REGPARM_ADDR);
5298 gdb_assert (result < MAX_SYMBOL_IMPLS);
5299 symbol_impl[result].aclass = aclass;
5300 symbol_impl[result].ops_register = ops;
5301
5302 return result;
5303 }
5304
5305 /* Initialize elements of 'symbol_impl' for the constants in enum
5306 address_class. */
5307
5308 static void
5309 initialize_ordinary_address_classes (void)
5310 {
5311 int i;
5312
5313 for (i = 0; i < LOC_FINAL_VALUE; ++i)
5314 symbol_impl[i].aclass = i;
5315 }
5316
5317 \f
5318
5319 /* Initialize the symbol SYM. */
5320
5321 void
5322 initialize_symbol (struct symbol *sym)
5323 {
5324 memset (sym, 0, sizeof (*sym));
5325 SYMBOL_SECTION (sym) = -1;
5326 }
5327
5328 /* Allocate and initialize a new 'struct symbol' on OBJFILE's
5329 obstack. */
5330
5331 struct symbol *
5332 allocate_symbol (struct objfile *objfile)
5333 {
5334 struct symbol *result;
5335
5336 result = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symbol);
5337 SYMBOL_SECTION (result) = -1;
5338
5339 return result;
5340 }
5341
5342 /* Allocate and initialize a new 'struct template_symbol' on OBJFILE's
5343 obstack. */
5344
5345 struct template_symbol *
5346 allocate_template_symbol (struct objfile *objfile)
5347 {
5348 struct template_symbol *result;
5349
5350 result = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct template_symbol);
5351 SYMBOL_SECTION (&result->base) = -1;
5352
5353 return result;
5354 }
5355
5356 \f
5357
5358 void
5359 _initialize_symtab (void)
5360 {
5361 initialize_ordinary_address_classes ();
5362
5363 main_progspace_key
5364 = register_program_space_data_with_cleanup (NULL, main_info_cleanup);
5365
5366 add_info ("variables", variables_info, _("\
5367 All global and static variable names, or those matching REGEXP."));
5368 if (dbx_commands)
5369 add_com ("whereis", class_info, variables_info, _("\
5370 All global and static variable names, or those matching REGEXP."));
5371
5372 add_info ("functions", functions_info,
5373 _("All function names, or those matching REGEXP."));
5374
5375 /* FIXME: This command has at least the following problems:
5376 1. It prints builtin types (in a very strange and confusing fashion).
5377 2. It doesn't print right, e.g. with
5378 typedef struct foo *FOO
5379 type_print prints "FOO" when we want to make it (in this situation)
5380 print "struct foo *".
5381 I also think "ptype" or "whatis" is more likely to be useful (but if
5382 there is much disagreement "info types" can be fixed). */
5383 add_info ("types", types_info,
5384 _("All type names, or those matching REGEXP."));
5385
5386 add_info ("sources", sources_info,
5387 _("Source files in the program."));
5388
5389 add_com ("rbreak", class_breakpoint, rbreak_command,
5390 _("Set a breakpoint for all functions matching REGEXP."));
5391
5392 if (xdb_commands)
5393 {
5394 add_com ("lf", class_info, sources_info,
5395 _("Source files in the program"));
5396 add_com ("lg", class_info, variables_info, _("\
5397 All global and static variable names, or those matching REGEXP."));
5398 }
5399
5400 add_setshow_enum_cmd ("multiple-symbols", no_class,
5401 multiple_symbols_modes, &multiple_symbols_mode,
5402 _("\
5403 Set the debugger behavior when more than one symbol are possible matches\n\
5404 in an expression."), _("\
5405 Show how the debugger handles ambiguities in expressions."), _("\
5406 Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
5407 NULL, NULL, &setlist, &showlist);
5408
5409 add_setshow_boolean_cmd ("basenames-may-differ", class_obscure,
5410 &basenames_may_differ, _("\
5411 Set whether a source file may have multiple base names."), _("\
5412 Show whether a source file may have multiple base names."), _("\
5413 (A \"base name\" is the name of a file with the directory part removed.\n\
5414 Example: The base name of \"/home/user/hello.c\" is \"hello.c\".)\n\
5415 If set, GDB will canonicalize file names (e.g., expand symlinks)\n\
5416 before comparing them. Canonicalization is an expensive operation,\n\
5417 but it allows the same file be known by more than one base name.\n\
5418 If not set (the default), all source files are assumed to have just\n\
5419 one base name, and gdb will do file name comparisons more efficiently."),
5420 NULL, NULL,
5421 &setlist, &showlist);
5422
5423 add_setshow_zuinteger_cmd ("symtab-create", no_class, &symtab_create_debug,
5424 _("Set debugging of symbol table creation."),
5425 _("Show debugging of symbol table creation."), _("\
5426 When enabled (non-zero), debugging messages are printed when building\n\
5427 symbol tables. A value of 1 (one) normally provides enough information.\n\
5428 A value greater than 1 provides more verbose information."),
5429 NULL,
5430 NULL,
5431 &setdebuglist, &showdebuglist);
5432
5433 observer_attach_executable_changed (symtab_observer_executable_changed);
5434 }
This page took 0.175784 seconds and 4 git commands to generate.