2012-02-01 Gary Benson <gbenson@redhat.com>
[deliverable/binutils-gdb.git] / gdb / symtab.c
1 /* Symbol table lookup for the GNU debugger, GDB.
2
3 Copyright (C) 1986-2004, 2007-2012 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "gdbcore.h"
24 #include "frame.h"
25 #include "target.h"
26 #include "value.h"
27 #include "symfile.h"
28 #include "objfiles.h"
29 #include "gdbcmd.h"
30 #include "call-cmds.h"
31 #include "gdb_regex.h"
32 #include "expression.h"
33 #include "language.h"
34 #include "demangle.h"
35 #include "inferior.h"
36 #include "linespec.h"
37 #include "source.h"
38 #include "filenames.h" /* for FILENAME_CMP */
39 #include "objc-lang.h"
40 #include "d-lang.h"
41 #include "ada-lang.h"
42 #include "p-lang.h"
43 #include "addrmap.h"
44
45 #include "hashtab.h"
46
47 #include "gdb_obstack.h"
48 #include "block.h"
49 #include "dictionary.h"
50
51 #include <sys/types.h>
52 #include <fcntl.h>
53 #include "gdb_string.h"
54 #include "gdb_stat.h"
55 #include <ctype.h>
56 #include "cp-abi.h"
57 #include "cp-support.h"
58 #include "observer.h"
59 #include "gdb_assert.h"
60 #include "solist.h"
61 #include "macrotab.h"
62 #include "macroscope.h"
63
64 #include "psymtab.h"
65
66 /* Prototypes for local functions */
67
68 static void completion_list_add_name (char *, char *, int, char *, char *);
69
70 static void rbreak_command (char *, int);
71
72 static void types_info (char *, int);
73
74 static void functions_info (char *, int);
75
76 static void variables_info (char *, int);
77
78 static void sources_info (char *, int);
79
80 static void output_source_filename (const char *, int *);
81
82 static int find_line_common (struct linetable *, int, int *, int);
83
84 static struct symbol *lookup_symbol_aux (const char *name,
85 const struct block *block,
86 const domain_enum domain,
87 enum language language,
88 int *is_a_field_of_this);
89
90 static
91 struct symbol *lookup_symbol_aux_local (const char *name,
92 const struct block *block,
93 const domain_enum domain,
94 enum language language);
95
96 static
97 struct symbol *lookup_symbol_aux_symtabs (int block_index,
98 const char *name,
99 const domain_enum domain);
100
101 static
102 struct symbol *lookup_symbol_aux_quick (struct objfile *objfile,
103 int block_index,
104 const char *name,
105 const domain_enum domain);
106
107 static void print_msymbol_info (struct minimal_symbol *);
108
109 void _initialize_symtab (void);
110
111 /* */
112
113 /* Non-zero if a file may be known by two different basenames.
114 This is the uncommon case, and significantly slows down gdb.
115 Default set to "off" to not slow down the common case. */
116 int basenames_may_differ = 0;
117
118 /* Allow the user to configure the debugger behavior with respect
119 to multiple-choice menus when more than one symbol matches during
120 a symbol lookup. */
121
122 const char multiple_symbols_ask[] = "ask";
123 const char multiple_symbols_all[] = "all";
124 const char multiple_symbols_cancel[] = "cancel";
125 static const char *const multiple_symbols_modes[] =
126 {
127 multiple_symbols_ask,
128 multiple_symbols_all,
129 multiple_symbols_cancel,
130 NULL
131 };
132 static const char *multiple_symbols_mode = multiple_symbols_all;
133
134 /* Read-only accessor to AUTO_SELECT_MODE. */
135
136 const char *
137 multiple_symbols_select_mode (void)
138 {
139 return multiple_symbols_mode;
140 }
141
142 /* Block in which the most recently searched-for symbol was found.
143 Might be better to make this a parameter to lookup_symbol and
144 value_of_this. */
145
146 const struct block *block_found;
147
148 /* See whether FILENAME matches SEARCH_NAME using the rule that we
149 advertise to the user. (The manual's description of linespecs
150 describes what we advertise). SEARCH_LEN is the length of
151 SEARCH_NAME. We assume that SEARCH_NAME is a relative path.
152 Returns true if they match, false otherwise. */
153
154 int
155 compare_filenames_for_search (const char *filename, const char *search_name,
156 int search_len)
157 {
158 int len = strlen (filename);
159 int offset;
160
161 if (len < search_len)
162 return 0;
163
164 /* The tail of FILENAME must match. */
165 if (FILENAME_CMP (filename + len - search_len, search_name) != 0)
166 return 0;
167
168 /* Either the names must completely match, or the character
169 preceding the trailing SEARCH_NAME segment of FILENAME must be a
170 directory separator. */
171 return (len == search_len
172 || IS_DIR_SEPARATOR (filename[len - search_len - 1])
173 || (HAS_DRIVE_SPEC (filename)
174 && STRIP_DRIVE_SPEC (filename) == &filename[len - search_len]));
175 }
176
177 /* Check for a symtab of a specific name by searching some symtabs.
178 This is a helper function for callbacks of iterate_over_symtabs.
179
180 The return value, NAME, FULL_PATH, REAL_PATH, CALLBACK, and DATA
181 are identical to the `map_symtabs_matching_filename' method of
182 quick_symbol_functions.
183
184 FIRST and AFTER_LAST indicate the range of symtabs to search.
185 AFTER_LAST is one past the last symtab to search; NULL means to
186 search until the end of the list. */
187
188 int
189 iterate_over_some_symtabs (const char *name,
190 const char *full_path,
191 const char *real_path,
192 int (*callback) (struct symtab *symtab,
193 void *data),
194 void *data,
195 struct symtab *first,
196 struct symtab *after_last)
197 {
198 struct symtab *s = NULL;
199 struct cleanup *cleanup;
200 const char* base_name = lbasename (name);
201 int name_len = strlen (name);
202 int is_abs = IS_ABSOLUTE_PATH (name);
203
204 for (s = first; s != NULL && s != after_last; s = s->next)
205 {
206 /* Exact match is always ok. */
207 if (FILENAME_CMP (name, s->filename) == 0)
208 {
209 if (callback (s, data))
210 return 1;
211 }
212
213 if (!is_abs && compare_filenames_for_search (s->filename, name, name_len))
214 {
215 if (callback (s, data))
216 return 1;
217 }
218
219 /* Before we invoke realpath, which can get expensive when many
220 files are involved, do a quick comparison of the basenames. */
221 if (! basenames_may_differ
222 && FILENAME_CMP (base_name, lbasename (s->filename)) != 0)
223 continue;
224
225 /* If the user gave us an absolute path, try to find the file in
226 this symtab and use its absolute path. */
227
228 if (full_path != NULL)
229 {
230 const char *fp = symtab_to_fullname (s);
231
232 if (fp != NULL && FILENAME_CMP (full_path, fp) == 0)
233 {
234 if (callback (s, data))
235 return 1;
236 }
237
238 if (fp != NULL && !is_abs && compare_filenames_for_search (fp, name,
239 name_len))
240 {
241 if (callback (s, data))
242 return 1;
243 }
244 }
245
246 if (real_path != NULL)
247 {
248 char *fullname = symtab_to_fullname (s);
249
250 if (fullname != NULL)
251 {
252 char *rp = gdb_realpath (fullname);
253
254 make_cleanup (xfree, rp);
255 if (FILENAME_CMP (real_path, rp) == 0)
256 {
257 if (callback (s, data))
258 return 1;
259 }
260
261 if (!is_abs && compare_filenames_for_search (rp, name, name_len))
262 {
263 if (callback (s, data))
264 return 1;
265 }
266 }
267 }
268 }
269
270 return 0;
271 }
272
273 /* Check for a symtab of a specific name; first in symtabs, then in
274 psymtabs. *If* there is no '/' in the name, a match after a '/'
275 in the symtab filename will also work.
276
277 Calls CALLBACK with each symtab that is found and with the supplied
278 DATA. If CALLBACK returns true, the search stops. */
279
280 void
281 iterate_over_symtabs (const char *name,
282 int (*callback) (struct symtab *symtab,
283 void *data),
284 void *data)
285 {
286 struct symtab *s = NULL;
287 struct objfile *objfile;
288 char *real_path = NULL;
289 char *full_path = NULL;
290 struct cleanup *cleanups = make_cleanup (null_cleanup, NULL);
291
292 /* Here we are interested in canonicalizing an absolute path, not
293 absolutizing a relative path. */
294 if (IS_ABSOLUTE_PATH (name))
295 {
296 full_path = xfullpath (name);
297 make_cleanup (xfree, full_path);
298 real_path = gdb_realpath (name);
299 make_cleanup (xfree, real_path);
300 }
301
302 ALL_OBJFILES (objfile)
303 {
304 if (iterate_over_some_symtabs (name, full_path, real_path, callback, data,
305 objfile->symtabs, NULL))
306 {
307 do_cleanups (cleanups);
308 return;
309 }
310 }
311
312 /* Same search rules as above apply here, but now we look thru the
313 psymtabs. */
314
315 ALL_OBJFILES (objfile)
316 {
317 if (objfile->sf
318 && objfile->sf->qf->map_symtabs_matching_filename (objfile,
319 name,
320 full_path,
321 real_path,
322 callback,
323 data))
324 {
325 do_cleanups (cleanups);
326 return;
327 }
328 }
329
330 do_cleanups (cleanups);
331 }
332
333 /* The callback function used by lookup_symtab. */
334
335 static int
336 lookup_symtab_callback (struct symtab *symtab, void *data)
337 {
338 struct symtab **result_ptr = data;
339
340 *result_ptr = symtab;
341 return 1;
342 }
343
344 /* A wrapper for iterate_over_symtabs that returns the first matching
345 symtab, or NULL. */
346
347 struct symtab *
348 lookup_symtab (const char *name)
349 {
350 struct symtab *result = NULL;
351
352 iterate_over_symtabs (name, lookup_symtab_callback, &result);
353 return result;
354 }
355
356 \f
357 /* Mangle a GDB method stub type. This actually reassembles the pieces of the
358 full method name, which consist of the class name (from T), the unadorned
359 method name from METHOD_ID, and the signature for the specific overload,
360 specified by SIGNATURE_ID. Note that this function is g++ specific. */
361
362 char *
363 gdb_mangle_name (struct type *type, int method_id, int signature_id)
364 {
365 int mangled_name_len;
366 char *mangled_name;
367 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
368 struct fn_field *method = &f[signature_id];
369 char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
370 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
371 char *newname = type_name_no_tag (type);
372
373 /* Does the form of physname indicate that it is the full mangled name
374 of a constructor (not just the args)? */
375 int is_full_physname_constructor;
376
377 int is_constructor;
378 int is_destructor = is_destructor_name (physname);
379 /* Need a new type prefix. */
380 char *const_prefix = method->is_const ? "C" : "";
381 char *volatile_prefix = method->is_volatile ? "V" : "";
382 char buf[20];
383 int len = (newname == NULL ? 0 : strlen (newname));
384
385 /* Nothing to do if physname already contains a fully mangled v3 abi name
386 or an operator name. */
387 if ((physname[0] == '_' && physname[1] == 'Z')
388 || is_operator_name (field_name))
389 return xstrdup (physname);
390
391 is_full_physname_constructor = is_constructor_name (physname);
392
393 is_constructor = is_full_physname_constructor
394 || (newname && strcmp (field_name, newname) == 0);
395
396 if (!is_destructor)
397 is_destructor = (strncmp (physname, "__dt", 4) == 0);
398
399 if (is_destructor || is_full_physname_constructor)
400 {
401 mangled_name = (char *) xmalloc (strlen (physname) + 1);
402 strcpy (mangled_name, physname);
403 return mangled_name;
404 }
405
406 if (len == 0)
407 {
408 sprintf (buf, "__%s%s", const_prefix, volatile_prefix);
409 }
410 else if (physname[0] == 't' || physname[0] == 'Q')
411 {
412 /* The physname for template and qualified methods already includes
413 the class name. */
414 sprintf (buf, "__%s%s", const_prefix, volatile_prefix);
415 newname = NULL;
416 len = 0;
417 }
418 else
419 {
420 sprintf (buf, "__%s%s%d", const_prefix, volatile_prefix, len);
421 }
422 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
423 + strlen (buf) + len + strlen (physname) + 1);
424
425 mangled_name = (char *) xmalloc (mangled_name_len);
426 if (is_constructor)
427 mangled_name[0] = '\0';
428 else
429 strcpy (mangled_name, field_name);
430
431 strcat (mangled_name, buf);
432 /* If the class doesn't have a name, i.e. newname NULL, then we just
433 mangle it using 0 for the length of the class. Thus it gets mangled
434 as something starting with `::' rather than `classname::'. */
435 if (newname != NULL)
436 strcat (mangled_name, newname);
437
438 strcat (mangled_name, physname);
439 return (mangled_name);
440 }
441
442 /* Initialize the cplus_specific structure. 'cplus_specific' should
443 only be allocated for use with cplus symbols. */
444
445 static void
446 symbol_init_cplus_specific (struct general_symbol_info *gsymbol,
447 struct objfile *objfile)
448 {
449 /* A language_specific structure should not have been previously
450 initialized. */
451 gdb_assert (gsymbol->language_specific.cplus_specific == NULL);
452 gdb_assert (objfile != NULL);
453
454 gsymbol->language_specific.cplus_specific =
455 OBSTACK_ZALLOC (&objfile->objfile_obstack, struct cplus_specific);
456 }
457
458 /* Set the demangled name of GSYMBOL to NAME. NAME must be already
459 correctly allocated. For C++ symbols a cplus_specific struct is
460 allocated so OBJFILE must not be NULL. If this is a non C++ symbol
461 OBJFILE can be NULL. */
462
463 void
464 symbol_set_demangled_name (struct general_symbol_info *gsymbol,
465 char *name,
466 struct objfile *objfile)
467 {
468 if (gsymbol->language == language_cplus)
469 {
470 if (gsymbol->language_specific.cplus_specific == NULL)
471 symbol_init_cplus_specific (gsymbol, objfile);
472
473 gsymbol->language_specific.cplus_specific->demangled_name = name;
474 }
475 else
476 gsymbol->language_specific.mangled_lang.demangled_name = name;
477 }
478
479 /* Return the demangled name of GSYMBOL. */
480
481 char *
482 symbol_get_demangled_name (const struct general_symbol_info *gsymbol)
483 {
484 if (gsymbol->language == language_cplus)
485 {
486 if (gsymbol->language_specific.cplus_specific != NULL)
487 return gsymbol->language_specific.cplus_specific->demangled_name;
488 else
489 return NULL;
490 }
491 else
492 return gsymbol->language_specific.mangled_lang.demangled_name;
493 }
494
495 \f
496 /* Initialize the language dependent portion of a symbol
497 depending upon the language for the symbol. */
498
499 void
500 symbol_set_language (struct general_symbol_info *gsymbol,
501 enum language language)
502 {
503 gsymbol->language = language;
504 if (gsymbol->language == language_d
505 || gsymbol->language == language_java
506 || gsymbol->language == language_objc
507 || gsymbol->language == language_fortran)
508 {
509 symbol_set_demangled_name (gsymbol, NULL, NULL);
510 }
511 else if (gsymbol->language == language_cplus)
512 gsymbol->language_specific.cplus_specific = NULL;
513 else
514 {
515 memset (&gsymbol->language_specific, 0,
516 sizeof (gsymbol->language_specific));
517 }
518 }
519
520 /* Functions to initialize a symbol's mangled name. */
521
522 /* Objects of this type are stored in the demangled name hash table. */
523 struct demangled_name_entry
524 {
525 char *mangled;
526 char demangled[1];
527 };
528
529 /* Hash function for the demangled name hash. */
530
531 static hashval_t
532 hash_demangled_name_entry (const void *data)
533 {
534 const struct demangled_name_entry *e = data;
535
536 return htab_hash_string (e->mangled);
537 }
538
539 /* Equality function for the demangled name hash. */
540
541 static int
542 eq_demangled_name_entry (const void *a, const void *b)
543 {
544 const struct demangled_name_entry *da = a;
545 const struct demangled_name_entry *db = b;
546
547 return strcmp (da->mangled, db->mangled) == 0;
548 }
549
550 /* Create the hash table used for demangled names. Each hash entry is
551 a pair of strings; one for the mangled name and one for the demangled
552 name. The entry is hashed via just the mangled name. */
553
554 static void
555 create_demangled_names_hash (struct objfile *objfile)
556 {
557 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
558 The hash table code will round this up to the next prime number.
559 Choosing a much larger table size wastes memory, and saves only about
560 1% in symbol reading. */
561
562 objfile->demangled_names_hash = htab_create_alloc
563 (256, hash_demangled_name_entry, eq_demangled_name_entry,
564 NULL, xcalloc, xfree);
565 }
566
567 /* Try to determine the demangled name for a symbol, based on the
568 language of that symbol. If the language is set to language_auto,
569 it will attempt to find any demangling algorithm that works and
570 then set the language appropriately. The returned name is allocated
571 by the demangler and should be xfree'd. */
572
573 static char *
574 symbol_find_demangled_name (struct general_symbol_info *gsymbol,
575 const char *mangled)
576 {
577 char *demangled = NULL;
578
579 if (gsymbol->language == language_unknown)
580 gsymbol->language = language_auto;
581
582 if (gsymbol->language == language_objc
583 || gsymbol->language == language_auto)
584 {
585 demangled =
586 objc_demangle (mangled, 0);
587 if (demangled != NULL)
588 {
589 gsymbol->language = language_objc;
590 return demangled;
591 }
592 }
593 if (gsymbol->language == language_cplus
594 || gsymbol->language == language_auto)
595 {
596 demangled =
597 cplus_demangle (mangled, DMGL_PARAMS | DMGL_ANSI);
598 if (demangled != NULL)
599 {
600 gsymbol->language = language_cplus;
601 return demangled;
602 }
603 }
604 if (gsymbol->language == language_java)
605 {
606 demangled =
607 cplus_demangle (mangled,
608 DMGL_PARAMS | DMGL_ANSI | DMGL_JAVA);
609 if (demangled != NULL)
610 {
611 gsymbol->language = language_java;
612 return demangled;
613 }
614 }
615 if (gsymbol->language == language_d
616 || gsymbol->language == language_auto)
617 {
618 demangled = d_demangle(mangled, 0);
619 if (demangled != NULL)
620 {
621 gsymbol->language = language_d;
622 return demangled;
623 }
624 }
625 /* We could support `gsymbol->language == language_fortran' here to provide
626 module namespaces also for inferiors with only minimal symbol table (ELF
627 symbols). Just the mangling standard is not standardized across compilers
628 and there is no DW_AT_producer available for inferiors with only the ELF
629 symbols to check the mangling kind. */
630 return NULL;
631 }
632
633 /* Set both the mangled and demangled (if any) names for GSYMBOL based
634 on LINKAGE_NAME and LEN. Ordinarily, NAME is copied onto the
635 objfile's obstack; but if COPY_NAME is 0 and if NAME is
636 NUL-terminated, then this function assumes that NAME is already
637 correctly saved (either permanently or with a lifetime tied to the
638 objfile), and it will not be copied.
639
640 The hash table corresponding to OBJFILE is used, and the memory
641 comes from that objfile's objfile_obstack. LINKAGE_NAME is copied,
642 so the pointer can be discarded after calling this function. */
643
644 /* We have to be careful when dealing with Java names: when we run
645 into a Java minimal symbol, we don't know it's a Java symbol, so it
646 gets demangled as a C++ name. This is unfortunate, but there's not
647 much we can do about it: but when demangling partial symbols and
648 regular symbols, we'd better not reuse the wrong demangled name.
649 (See PR gdb/1039.) We solve this by putting a distinctive prefix
650 on Java names when storing them in the hash table. */
651
652 /* FIXME: carlton/2003-03-13: This is an unfortunate situation. I
653 don't mind the Java prefix so much: different languages have
654 different demangling requirements, so it's only natural that we
655 need to keep language data around in our demangling cache. But
656 it's not good that the minimal symbol has the wrong demangled name.
657 Unfortunately, I can't think of any easy solution to that
658 problem. */
659
660 #define JAVA_PREFIX "##JAVA$$"
661 #define JAVA_PREFIX_LEN 8
662
663 void
664 symbol_set_names (struct general_symbol_info *gsymbol,
665 const char *linkage_name, int len, int copy_name,
666 struct objfile *objfile)
667 {
668 struct demangled_name_entry **slot;
669 /* A 0-terminated copy of the linkage name. */
670 const char *linkage_name_copy;
671 /* A copy of the linkage name that might have a special Java prefix
672 added to it, for use when looking names up in the hash table. */
673 const char *lookup_name;
674 /* The length of lookup_name. */
675 int lookup_len;
676 struct demangled_name_entry entry;
677
678 if (gsymbol->language == language_ada)
679 {
680 /* In Ada, we do the symbol lookups using the mangled name, so
681 we can save some space by not storing the demangled name.
682
683 As a side note, we have also observed some overlap between
684 the C++ mangling and Ada mangling, similarly to what has
685 been observed with Java. Because we don't store the demangled
686 name with the symbol, we don't need to use the same trick
687 as Java. */
688 if (!copy_name)
689 gsymbol->name = (char *) linkage_name;
690 else
691 {
692 gsymbol->name = obstack_alloc (&objfile->objfile_obstack, len + 1);
693 memcpy (gsymbol->name, linkage_name, len);
694 gsymbol->name[len] = '\0';
695 }
696 symbol_set_demangled_name (gsymbol, NULL, NULL);
697
698 return;
699 }
700
701 if (objfile->demangled_names_hash == NULL)
702 create_demangled_names_hash (objfile);
703
704 /* The stabs reader generally provides names that are not
705 NUL-terminated; most of the other readers don't do this, so we
706 can just use the given copy, unless we're in the Java case. */
707 if (gsymbol->language == language_java)
708 {
709 char *alloc_name;
710
711 lookup_len = len + JAVA_PREFIX_LEN;
712 alloc_name = alloca (lookup_len + 1);
713 memcpy (alloc_name, JAVA_PREFIX, JAVA_PREFIX_LEN);
714 memcpy (alloc_name + JAVA_PREFIX_LEN, linkage_name, len);
715 alloc_name[lookup_len] = '\0';
716
717 lookup_name = alloc_name;
718 linkage_name_copy = alloc_name + JAVA_PREFIX_LEN;
719 }
720 else if (linkage_name[len] != '\0')
721 {
722 char *alloc_name;
723
724 lookup_len = len;
725 alloc_name = alloca (lookup_len + 1);
726 memcpy (alloc_name, linkage_name, len);
727 alloc_name[lookup_len] = '\0';
728
729 lookup_name = alloc_name;
730 linkage_name_copy = alloc_name;
731 }
732 else
733 {
734 lookup_len = len;
735 lookup_name = linkage_name;
736 linkage_name_copy = linkage_name;
737 }
738
739 entry.mangled = (char *) lookup_name;
740 slot = ((struct demangled_name_entry **)
741 htab_find_slot (objfile->demangled_names_hash,
742 &entry, INSERT));
743
744 /* If this name is not in the hash table, add it. */
745 if (*slot == NULL)
746 {
747 char *demangled_name = symbol_find_demangled_name (gsymbol,
748 linkage_name_copy);
749 int demangled_len = demangled_name ? strlen (demangled_name) : 0;
750
751 /* Suppose we have demangled_name==NULL, copy_name==0, and
752 lookup_name==linkage_name. In this case, we already have the
753 mangled name saved, and we don't have a demangled name. So,
754 you might think we could save a little space by not recording
755 this in the hash table at all.
756
757 It turns out that it is actually important to still save such
758 an entry in the hash table, because storing this name gives
759 us better bcache hit rates for partial symbols. */
760 if (!copy_name && lookup_name == linkage_name)
761 {
762 *slot = obstack_alloc (&objfile->objfile_obstack,
763 offsetof (struct demangled_name_entry,
764 demangled)
765 + demangled_len + 1);
766 (*slot)->mangled = (char *) lookup_name;
767 }
768 else
769 {
770 /* If we must copy the mangled name, put it directly after
771 the demangled name so we can have a single
772 allocation. */
773 *slot = obstack_alloc (&objfile->objfile_obstack,
774 offsetof (struct demangled_name_entry,
775 demangled)
776 + lookup_len + demangled_len + 2);
777 (*slot)->mangled = &((*slot)->demangled[demangled_len + 1]);
778 strcpy ((*slot)->mangled, lookup_name);
779 }
780
781 if (demangled_name != NULL)
782 {
783 strcpy ((*slot)->demangled, demangled_name);
784 xfree (demangled_name);
785 }
786 else
787 (*slot)->demangled[0] = '\0';
788 }
789
790 gsymbol->name = (*slot)->mangled + lookup_len - len;
791 if ((*slot)->demangled[0] != '\0')
792 symbol_set_demangled_name (gsymbol, (*slot)->demangled, objfile);
793 else
794 symbol_set_demangled_name (gsymbol, NULL, objfile);
795 }
796
797 /* Return the source code name of a symbol. In languages where
798 demangling is necessary, this is the demangled name. */
799
800 char *
801 symbol_natural_name (const struct general_symbol_info *gsymbol)
802 {
803 switch (gsymbol->language)
804 {
805 case language_cplus:
806 case language_d:
807 case language_java:
808 case language_objc:
809 case language_fortran:
810 if (symbol_get_demangled_name (gsymbol) != NULL)
811 return symbol_get_demangled_name (gsymbol);
812 break;
813 case language_ada:
814 if (symbol_get_demangled_name (gsymbol) != NULL)
815 return symbol_get_demangled_name (gsymbol);
816 else
817 return ada_decode_symbol (gsymbol);
818 break;
819 default:
820 break;
821 }
822 return gsymbol->name;
823 }
824
825 /* Return the demangled name for a symbol based on the language for
826 that symbol. If no demangled name exists, return NULL. */
827
828 char *
829 symbol_demangled_name (const struct general_symbol_info *gsymbol)
830 {
831 switch (gsymbol->language)
832 {
833 case language_cplus:
834 case language_d:
835 case language_java:
836 case language_objc:
837 case language_fortran:
838 if (symbol_get_demangled_name (gsymbol) != NULL)
839 return symbol_get_demangled_name (gsymbol);
840 break;
841 case language_ada:
842 if (symbol_get_demangled_name (gsymbol) != NULL)
843 return symbol_get_demangled_name (gsymbol);
844 else
845 return ada_decode_symbol (gsymbol);
846 break;
847 default:
848 break;
849 }
850 return NULL;
851 }
852
853 /* Return the search name of a symbol---generally the demangled or
854 linkage name of the symbol, depending on how it will be searched for.
855 If there is no distinct demangled name, then returns the same value
856 (same pointer) as SYMBOL_LINKAGE_NAME. */
857
858 char *
859 symbol_search_name (const struct general_symbol_info *gsymbol)
860 {
861 if (gsymbol->language == language_ada)
862 return gsymbol->name;
863 else
864 return symbol_natural_name (gsymbol);
865 }
866
867 /* Initialize the structure fields to zero values. */
868
869 void
870 init_sal (struct symtab_and_line *sal)
871 {
872 sal->pspace = NULL;
873 sal->symtab = 0;
874 sal->section = 0;
875 sal->line = 0;
876 sal->pc = 0;
877 sal->end = 0;
878 sal->explicit_pc = 0;
879 sal->explicit_line = 0;
880 }
881 \f
882
883 /* Return 1 if the two sections are the same, or if they could
884 plausibly be copies of each other, one in an original object
885 file and another in a separated debug file. */
886
887 int
888 matching_obj_sections (struct obj_section *obj_first,
889 struct obj_section *obj_second)
890 {
891 asection *first = obj_first? obj_first->the_bfd_section : NULL;
892 asection *second = obj_second? obj_second->the_bfd_section : NULL;
893 struct objfile *obj;
894
895 /* If they're the same section, then they match. */
896 if (first == second)
897 return 1;
898
899 /* If either is NULL, give up. */
900 if (first == NULL || second == NULL)
901 return 0;
902
903 /* This doesn't apply to absolute symbols. */
904 if (first->owner == NULL || second->owner == NULL)
905 return 0;
906
907 /* If they're in the same object file, they must be different sections. */
908 if (first->owner == second->owner)
909 return 0;
910
911 /* Check whether the two sections are potentially corresponding. They must
912 have the same size, address, and name. We can't compare section indexes,
913 which would be more reliable, because some sections may have been
914 stripped. */
915 if (bfd_get_section_size (first) != bfd_get_section_size (second))
916 return 0;
917
918 /* In-memory addresses may start at a different offset, relativize them. */
919 if (bfd_get_section_vma (first->owner, first)
920 - bfd_get_start_address (first->owner)
921 != bfd_get_section_vma (second->owner, second)
922 - bfd_get_start_address (second->owner))
923 return 0;
924
925 if (bfd_get_section_name (first->owner, first) == NULL
926 || bfd_get_section_name (second->owner, second) == NULL
927 || strcmp (bfd_get_section_name (first->owner, first),
928 bfd_get_section_name (second->owner, second)) != 0)
929 return 0;
930
931 /* Otherwise check that they are in corresponding objfiles. */
932
933 ALL_OBJFILES (obj)
934 if (obj->obfd == first->owner)
935 break;
936 gdb_assert (obj != NULL);
937
938 if (obj->separate_debug_objfile != NULL
939 && obj->separate_debug_objfile->obfd == second->owner)
940 return 1;
941 if (obj->separate_debug_objfile_backlink != NULL
942 && obj->separate_debug_objfile_backlink->obfd == second->owner)
943 return 1;
944
945 return 0;
946 }
947
948 struct symtab *
949 find_pc_sect_symtab_via_partial (CORE_ADDR pc, struct obj_section *section)
950 {
951 struct objfile *objfile;
952 struct minimal_symbol *msymbol;
953
954 /* If we know that this is not a text address, return failure. This is
955 necessary because we loop based on texthigh and textlow, which do
956 not include the data ranges. */
957 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
958 if (msymbol
959 && (MSYMBOL_TYPE (msymbol) == mst_data
960 || MSYMBOL_TYPE (msymbol) == mst_bss
961 || MSYMBOL_TYPE (msymbol) == mst_abs
962 || MSYMBOL_TYPE (msymbol) == mst_file_data
963 || MSYMBOL_TYPE (msymbol) == mst_file_bss))
964 return NULL;
965
966 ALL_OBJFILES (objfile)
967 {
968 struct symtab *result = NULL;
969
970 if (objfile->sf)
971 result = objfile->sf->qf->find_pc_sect_symtab (objfile, msymbol,
972 pc, section, 0);
973 if (result)
974 return result;
975 }
976
977 return NULL;
978 }
979 \f
980 /* Debug symbols usually don't have section information. We need to dig that
981 out of the minimal symbols and stash that in the debug symbol. */
982
983 void
984 fixup_section (struct general_symbol_info *ginfo,
985 CORE_ADDR addr, struct objfile *objfile)
986 {
987 struct minimal_symbol *msym;
988
989 /* First, check whether a minimal symbol with the same name exists
990 and points to the same address. The address check is required
991 e.g. on PowerPC64, where the minimal symbol for a function will
992 point to the function descriptor, while the debug symbol will
993 point to the actual function code. */
994 msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->name, objfile);
995 if (msym)
996 {
997 ginfo->obj_section = SYMBOL_OBJ_SECTION (msym);
998 ginfo->section = SYMBOL_SECTION (msym);
999 }
1000 else
1001 {
1002 /* Static, function-local variables do appear in the linker
1003 (minimal) symbols, but are frequently given names that won't
1004 be found via lookup_minimal_symbol(). E.g., it has been
1005 observed in frv-uclinux (ELF) executables that a static,
1006 function-local variable named "foo" might appear in the
1007 linker symbols as "foo.6" or "foo.3". Thus, there is no
1008 point in attempting to extend the lookup-by-name mechanism to
1009 handle this case due to the fact that there can be multiple
1010 names.
1011
1012 So, instead, search the section table when lookup by name has
1013 failed. The ``addr'' and ``endaddr'' fields may have already
1014 been relocated. If so, the relocation offset (i.e. the
1015 ANOFFSET value) needs to be subtracted from these values when
1016 performing the comparison. We unconditionally subtract it,
1017 because, when no relocation has been performed, the ANOFFSET
1018 value will simply be zero.
1019
1020 The address of the symbol whose section we're fixing up HAS
1021 NOT BEEN adjusted (relocated) yet. It can't have been since
1022 the section isn't yet known and knowing the section is
1023 necessary in order to add the correct relocation value. In
1024 other words, we wouldn't even be in this function (attempting
1025 to compute the section) if it were already known.
1026
1027 Note that it is possible to search the minimal symbols
1028 (subtracting the relocation value if necessary) to find the
1029 matching minimal symbol, but this is overkill and much less
1030 efficient. It is not necessary to find the matching minimal
1031 symbol, only its section.
1032
1033 Note that this technique (of doing a section table search)
1034 can fail when unrelocated section addresses overlap. For
1035 this reason, we still attempt a lookup by name prior to doing
1036 a search of the section table. */
1037
1038 struct obj_section *s;
1039
1040 ALL_OBJFILE_OSECTIONS (objfile, s)
1041 {
1042 int idx = s->the_bfd_section->index;
1043 CORE_ADDR offset = ANOFFSET (objfile->section_offsets, idx);
1044
1045 if (obj_section_addr (s) - offset <= addr
1046 && addr < obj_section_endaddr (s) - offset)
1047 {
1048 ginfo->obj_section = s;
1049 ginfo->section = idx;
1050 return;
1051 }
1052 }
1053 }
1054 }
1055
1056 struct symbol *
1057 fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
1058 {
1059 CORE_ADDR addr;
1060
1061 if (!sym)
1062 return NULL;
1063
1064 if (SYMBOL_OBJ_SECTION (sym))
1065 return sym;
1066
1067 /* We either have an OBJFILE, or we can get at it from the sym's
1068 symtab. Anything else is a bug. */
1069 gdb_assert (objfile || SYMBOL_SYMTAB (sym));
1070
1071 if (objfile == NULL)
1072 objfile = SYMBOL_SYMTAB (sym)->objfile;
1073
1074 /* We should have an objfile by now. */
1075 gdb_assert (objfile);
1076
1077 switch (SYMBOL_CLASS (sym))
1078 {
1079 case LOC_STATIC:
1080 case LOC_LABEL:
1081 addr = SYMBOL_VALUE_ADDRESS (sym);
1082 break;
1083 case LOC_BLOCK:
1084 addr = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
1085 break;
1086
1087 default:
1088 /* Nothing else will be listed in the minsyms -- no use looking
1089 it up. */
1090 return sym;
1091 }
1092
1093 fixup_section (&sym->ginfo, addr, objfile);
1094
1095 return sym;
1096 }
1097
1098 /* Compute the demangled form of NAME as used by the various symbol
1099 lookup functions. The result is stored in *RESULT_NAME. Returns a
1100 cleanup which can be used to clean up the result.
1101
1102 For Ada, this function just sets *RESULT_NAME to NAME, unmodified.
1103 Normally, Ada symbol lookups are performed using the encoded name
1104 rather than the demangled name, and so it might seem to make sense
1105 for this function to return an encoded version of NAME.
1106 Unfortunately, we cannot do this, because this function is used in
1107 circumstances where it is not appropriate to try to encode NAME.
1108 For instance, when displaying the frame info, we demangle the name
1109 of each parameter, and then perform a symbol lookup inside our
1110 function using that demangled name. In Ada, certain functions
1111 have internally-generated parameters whose name contain uppercase
1112 characters. Encoding those name would result in those uppercase
1113 characters to become lowercase, and thus cause the symbol lookup
1114 to fail. */
1115
1116 struct cleanup *
1117 demangle_for_lookup (const char *name, enum language lang,
1118 const char **result_name)
1119 {
1120 char *demangled_name = NULL;
1121 const char *modified_name = NULL;
1122 struct cleanup *cleanup = make_cleanup (null_cleanup, 0);
1123
1124 modified_name = name;
1125
1126 /* If we are using C++, D, or Java, demangle the name before doing a
1127 lookup, so we can always binary search. */
1128 if (lang == language_cplus)
1129 {
1130 demangled_name = cplus_demangle (name, DMGL_ANSI | DMGL_PARAMS);
1131 if (demangled_name)
1132 {
1133 modified_name = demangled_name;
1134 make_cleanup (xfree, demangled_name);
1135 }
1136 else
1137 {
1138 /* If we were given a non-mangled name, canonicalize it
1139 according to the language (so far only for C++). */
1140 demangled_name = cp_canonicalize_string (name);
1141 if (demangled_name)
1142 {
1143 modified_name = demangled_name;
1144 make_cleanup (xfree, demangled_name);
1145 }
1146 }
1147 }
1148 else if (lang == language_java)
1149 {
1150 demangled_name = cplus_demangle (name,
1151 DMGL_ANSI | DMGL_PARAMS | DMGL_JAVA);
1152 if (demangled_name)
1153 {
1154 modified_name = demangled_name;
1155 make_cleanup (xfree, demangled_name);
1156 }
1157 }
1158 else if (lang == language_d)
1159 {
1160 demangled_name = d_demangle (name, 0);
1161 if (demangled_name)
1162 {
1163 modified_name = demangled_name;
1164 make_cleanup (xfree, demangled_name);
1165 }
1166 }
1167
1168 *result_name = modified_name;
1169 return cleanup;
1170 }
1171
1172 /* Find the definition for a specified symbol name NAME
1173 in domain DOMAIN, visible from lexical block BLOCK.
1174 Returns the struct symbol pointer, or zero if no symbol is found.
1175 C++: if IS_A_FIELD_OF_THIS is nonzero on entry, check to see if
1176 NAME is a field of the current implied argument `this'. If so set
1177 *IS_A_FIELD_OF_THIS to 1, otherwise set it to zero.
1178 BLOCK_FOUND is set to the block in which NAME is found (in the case of
1179 a field of `this', value_of_this sets BLOCK_FOUND to the proper value.) */
1180
1181 /* This function (or rather its subordinates) have a bunch of loops and
1182 it would seem to be attractive to put in some QUIT's (though I'm not really
1183 sure whether it can run long enough to be really important). But there
1184 are a few calls for which it would appear to be bad news to quit
1185 out of here: e.g., find_proc_desc in alpha-mdebug-tdep.c. (Note
1186 that there is C++ code below which can error(), but that probably
1187 doesn't affect these calls since they are looking for a known
1188 variable and thus can probably assume it will never hit the C++
1189 code). */
1190
1191 struct symbol *
1192 lookup_symbol_in_language (const char *name, const struct block *block,
1193 const domain_enum domain, enum language lang,
1194 int *is_a_field_of_this)
1195 {
1196 const char *modified_name;
1197 struct symbol *returnval;
1198 struct cleanup *cleanup = demangle_for_lookup (name, lang, &modified_name);
1199
1200 returnval = lookup_symbol_aux (modified_name, block, domain, lang,
1201 is_a_field_of_this);
1202 do_cleanups (cleanup);
1203
1204 return returnval;
1205 }
1206
1207 /* Behave like lookup_symbol_in_language, but performed with the
1208 current language. */
1209
1210 struct symbol *
1211 lookup_symbol (const char *name, const struct block *block,
1212 domain_enum domain, int *is_a_field_of_this)
1213 {
1214 return lookup_symbol_in_language (name, block, domain,
1215 current_language->la_language,
1216 is_a_field_of_this);
1217 }
1218
1219 /* Look up the `this' symbol for LANG in BLOCK. Return the symbol if
1220 found, or NULL if not found. */
1221
1222 struct symbol *
1223 lookup_language_this (const struct language_defn *lang,
1224 const struct block *block)
1225 {
1226 if (lang->la_name_of_this == NULL || block == NULL)
1227 return NULL;
1228
1229 while (block)
1230 {
1231 struct symbol *sym;
1232
1233 sym = lookup_block_symbol (block, lang->la_name_of_this, VAR_DOMAIN);
1234 if (sym != NULL)
1235 return sym;
1236 if (BLOCK_FUNCTION (block))
1237 break;
1238 block = BLOCK_SUPERBLOCK (block);
1239 }
1240
1241 return NULL;
1242 }
1243
1244 /* Behave like lookup_symbol except that NAME is the natural name
1245 (e.g., demangled name) of the symbol that we're looking for. */
1246
1247 static struct symbol *
1248 lookup_symbol_aux (const char *name, const struct block *block,
1249 const domain_enum domain, enum language language,
1250 int *is_a_field_of_this)
1251 {
1252 struct symbol *sym;
1253 const struct language_defn *langdef;
1254
1255 /* Make sure we do something sensible with is_a_field_of_this, since
1256 the callers that set this parameter to some non-null value will
1257 certainly use it later and expect it to be either 0 or 1.
1258 If we don't set it, the contents of is_a_field_of_this are
1259 undefined. */
1260 if (is_a_field_of_this != NULL)
1261 *is_a_field_of_this = 0;
1262
1263 /* Search specified block and its superiors. Don't search
1264 STATIC_BLOCK or GLOBAL_BLOCK. */
1265
1266 sym = lookup_symbol_aux_local (name, block, domain, language);
1267 if (sym != NULL)
1268 return sym;
1269
1270 /* If requested to do so by the caller and if appropriate for LANGUAGE,
1271 check to see if NAME is a field of `this'. */
1272
1273 langdef = language_def (language);
1274
1275 if (is_a_field_of_this != NULL)
1276 {
1277 struct symbol *sym = lookup_language_this (langdef, block);
1278
1279 if (sym)
1280 {
1281 struct type *t = sym->type;
1282
1283 /* I'm not really sure that type of this can ever
1284 be typedefed; just be safe. */
1285 CHECK_TYPEDEF (t);
1286 if (TYPE_CODE (t) == TYPE_CODE_PTR
1287 || TYPE_CODE (t) == TYPE_CODE_REF)
1288 t = TYPE_TARGET_TYPE (t);
1289
1290 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
1291 && TYPE_CODE (t) != TYPE_CODE_UNION)
1292 error (_("Internal error: `%s' is not an aggregate"),
1293 langdef->la_name_of_this);
1294
1295 if (check_field (t, name))
1296 {
1297 *is_a_field_of_this = 1;
1298 return NULL;
1299 }
1300 }
1301 }
1302
1303 /* Now do whatever is appropriate for LANGUAGE to look
1304 up static and global variables. */
1305
1306 sym = langdef->la_lookup_symbol_nonlocal (name, block, domain);
1307 if (sym != NULL)
1308 return sym;
1309
1310 /* Now search all static file-level symbols. Not strictly correct,
1311 but more useful than an error. */
1312
1313 return lookup_static_symbol_aux (name, domain);
1314 }
1315
1316 /* Search all static file-level symbols for NAME from DOMAIN. Do the symtabs
1317 first, then check the psymtabs. If a psymtab indicates the existence of the
1318 desired name as a file-level static, then do psymtab-to-symtab conversion on
1319 the fly and return the found symbol. */
1320
1321 struct symbol *
1322 lookup_static_symbol_aux (const char *name, const domain_enum domain)
1323 {
1324 struct objfile *objfile;
1325 struct symbol *sym;
1326
1327 sym = lookup_symbol_aux_symtabs (STATIC_BLOCK, name, domain);
1328 if (sym != NULL)
1329 return sym;
1330
1331 ALL_OBJFILES (objfile)
1332 {
1333 sym = lookup_symbol_aux_quick (objfile, STATIC_BLOCK, name, domain);
1334 if (sym != NULL)
1335 return sym;
1336 }
1337
1338 return NULL;
1339 }
1340
1341 /* Check to see if the symbol is defined in BLOCK or its superiors.
1342 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
1343
1344 static struct symbol *
1345 lookup_symbol_aux_local (const char *name, const struct block *block,
1346 const domain_enum domain,
1347 enum language language)
1348 {
1349 struct symbol *sym;
1350 const struct block *static_block = block_static_block (block);
1351 const char *scope = block_scope (block);
1352
1353 /* Check if either no block is specified or it's a global block. */
1354
1355 if (static_block == NULL)
1356 return NULL;
1357
1358 while (block != static_block)
1359 {
1360 sym = lookup_symbol_aux_block (name, block, domain);
1361 if (sym != NULL)
1362 return sym;
1363
1364 if (language == language_cplus || language == language_fortran)
1365 {
1366 sym = cp_lookup_symbol_imports_or_template (scope, name, block,
1367 domain);
1368 if (sym != NULL)
1369 return sym;
1370 }
1371
1372 if (BLOCK_FUNCTION (block) != NULL && block_inlined_p (block))
1373 break;
1374 block = BLOCK_SUPERBLOCK (block);
1375 }
1376
1377 /* We've reached the edge of the function without finding a result. */
1378
1379 return NULL;
1380 }
1381
1382 /* Look up OBJFILE to BLOCK. */
1383
1384 struct objfile *
1385 lookup_objfile_from_block (const struct block *block)
1386 {
1387 struct objfile *obj;
1388 struct symtab *s;
1389
1390 if (block == NULL)
1391 return NULL;
1392
1393 block = block_global_block (block);
1394 /* Go through SYMTABS. */
1395 ALL_SYMTABS (obj, s)
1396 if (block == BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK))
1397 {
1398 if (obj->separate_debug_objfile_backlink)
1399 obj = obj->separate_debug_objfile_backlink;
1400
1401 return obj;
1402 }
1403
1404 return NULL;
1405 }
1406
1407 /* Look up a symbol in a block; if found, fixup the symbol, and set
1408 block_found appropriately. */
1409
1410 struct symbol *
1411 lookup_symbol_aux_block (const char *name, const struct block *block,
1412 const domain_enum domain)
1413 {
1414 struct symbol *sym;
1415
1416 sym = lookup_block_symbol (block, name, domain);
1417 if (sym)
1418 {
1419 block_found = block;
1420 return fixup_symbol_section (sym, NULL);
1421 }
1422
1423 return NULL;
1424 }
1425
1426 /* Check all global symbols in OBJFILE in symtabs and
1427 psymtabs. */
1428
1429 struct symbol *
1430 lookup_global_symbol_from_objfile (const struct objfile *main_objfile,
1431 const char *name,
1432 const domain_enum domain)
1433 {
1434 const struct objfile *objfile;
1435 struct symbol *sym;
1436 struct blockvector *bv;
1437 const struct block *block;
1438 struct symtab *s;
1439
1440 for (objfile = main_objfile;
1441 objfile;
1442 objfile = objfile_separate_debug_iterate (main_objfile, objfile))
1443 {
1444 /* Go through symtabs. */
1445 ALL_OBJFILE_SYMTABS (objfile, s)
1446 {
1447 bv = BLOCKVECTOR (s);
1448 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1449 sym = lookup_block_symbol (block, name, domain);
1450 if (sym)
1451 {
1452 block_found = block;
1453 return fixup_symbol_section (sym, (struct objfile *)objfile);
1454 }
1455 }
1456
1457 sym = lookup_symbol_aux_quick ((struct objfile *) objfile, GLOBAL_BLOCK,
1458 name, domain);
1459 if (sym)
1460 return sym;
1461 }
1462
1463 return NULL;
1464 }
1465
1466 /* Check to see if the symbol is defined in one of the symtabs.
1467 BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
1468 depending on whether or not we want to search global symbols or
1469 static symbols. */
1470
1471 static struct symbol *
1472 lookup_symbol_aux_symtabs (int block_index, const char *name,
1473 const domain_enum domain)
1474 {
1475 struct symbol *sym;
1476 struct objfile *objfile;
1477 struct blockvector *bv;
1478 const struct block *block;
1479 struct symtab *s;
1480
1481 ALL_OBJFILES (objfile)
1482 {
1483 if (objfile->sf)
1484 objfile->sf->qf->pre_expand_symtabs_matching (objfile,
1485 block_index,
1486 name, domain);
1487
1488 ALL_OBJFILE_SYMTABS (objfile, s)
1489 if (s->primary)
1490 {
1491 bv = BLOCKVECTOR (s);
1492 block = BLOCKVECTOR_BLOCK (bv, block_index);
1493 sym = lookup_block_symbol (block, name, domain);
1494 if (sym)
1495 {
1496 block_found = block;
1497 return fixup_symbol_section (sym, objfile);
1498 }
1499 }
1500 }
1501
1502 return NULL;
1503 }
1504
1505 /* A helper function for lookup_symbol_aux that interfaces with the
1506 "quick" symbol table functions. */
1507
1508 static struct symbol *
1509 lookup_symbol_aux_quick (struct objfile *objfile, int kind,
1510 const char *name, const domain_enum domain)
1511 {
1512 struct symtab *symtab;
1513 struct blockvector *bv;
1514 const struct block *block;
1515 struct symbol *sym;
1516
1517 if (!objfile->sf)
1518 return NULL;
1519 symtab = objfile->sf->qf->lookup_symbol (objfile, kind, name, domain);
1520 if (!symtab)
1521 return NULL;
1522
1523 bv = BLOCKVECTOR (symtab);
1524 block = BLOCKVECTOR_BLOCK (bv, kind);
1525 sym = lookup_block_symbol (block, name, domain);
1526 if (!sym)
1527 {
1528 /* This shouldn't be necessary, but as a last resort try
1529 looking in the statics even though the psymtab claimed
1530 the symbol was global, or vice-versa. It's possible
1531 that the psymtab gets it wrong in some cases. */
1532
1533 /* FIXME: carlton/2002-09-30: Should we really do that?
1534 If that happens, isn't it likely to be a GDB error, in
1535 which case we should fix the GDB error rather than
1536 silently dealing with it here? So I'd vote for
1537 removing the check for the symbol in the other
1538 block. */
1539 block = BLOCKVECTOR_BLOCK (bv,
1540 kind == GLOBAL_BLOCK ?
1541 STATIC_BLOCK : GLOBAL_BLOCK);
1542 sym = lookup_block_symbol (block, name, domain);
1543 if (!sym)
1544 error (_("\
1545 Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n\
1546 %s may be an inlined function, or may be a template function\n\
1547 (if a template, try specifying an instantiation: %s<type>)."),
1548 kind == GLOBAL_BLOCK ? "global" : "static",
1549 name, symtab->filename, name, name);
1550 }
1551 return fixup_symbol_section (sym, objfile);
1552 }
1553
1554 /* A default version of lookup_symbol_nonlocal for use by languages
1555 that can't think of anything better to do. This implements the C
1556 lookup rules. */
1557
1558 struct symbol *
1559 basic_lookup_symbol_nonlocal (const char *name,
1560 const struct block *block,
1561 const domain_enum domain)
1562 {
1563 struct symbol *sym;
1564
1565 /* NOTE: carlton/2003-05-19: The comments below were written when
1566 this (or what turned into this) was part of lookup_symbol_aux;
1567 I'm much less worried about these questions now, since these
1568 decisions have turned out well, but I leave these comments here
1569 for posterity. */
1570
1571 /* NOTE: carlton/2002-12-05: There is a question as to whether or
1572 not it would be appropriate to search the current global block
1573 here as well. (That's what this code used to do before the
1574 is_a_field_of_this check was moved up.) On the one hand, it's
1575 redundant with the lookup_symbol_aux_symtabs search that happens
1576 next. On the other hand, if decode_line_1 is passed an argument
1577 like filename:var, then the user presumably wants 'var' to be
1578 searched for in filename. On the third hand, there shouldn't be
1579 multiple global variables all of which are named 'var', and it's
1580 not like decode_line_1 has ever restricted its search to only
1581 global variables in a single filename. All in all, only
1582 searching the static block here seems best: it's correct and it's
1583 cleanest. */
1584
1585 /* NOTE: carlton/2002-12-05: There's also a possible performance
1586 issue here: if you usually search for global symbols in the
1587 current file, then it would be slightly better to search the
1588 current global block before searching all the symtabs. But there
1589 are other factors that have a much greater effect on performance
1590 than that one, so I don't think we should worry about that for
1591 now. */
1592
1593 sym = lookup_symbol_static (name, block, domain);
1594 if (sym != NULL)
1595 return sym;
1596
1597 return lookup_symbol_global (name, block, domain);
1598 }
1599
1600 /* Lookup a symbol in the static block associated to BLOCK, if there
1601 is one; do nothing if BLOCK is NULL or a global block. */
1602
1603 struct symbol *
1604 lookup_symbol_static (const char *name,
1605 const struct block *block,
1606 const domain_enum domain)
1607 {
1608 const struct block *static_block = block_static_block (block);
1609
1610 if (static_block != NULL)
1611 return lookup_symbol_aux_block (name, static_block, domain);
1612 else
1613 return NULL;
1614 }
1615
1616 /* Lookup a symbol in all files' global blocks (searching psymtabs if
1617 necessary). */
1618
1619 struct symbol *
1620 lookup_symbol_global (const char *name,
1621 const struct block *block,
1622 const domain_enum domain)
1623 {
1624 struct symbol *sym = NULL;
1625 struct objfile *objfile = NULL;
1626
1627 /* Call library-specific lookup procedure. */
1628 objfile = lookup_objfile_from_block (block);
1629 if (objfile != NULL)
1630 sym = solib_global_lookup (objfile, name, domain);
1631 if (sym != NULL)
1632 return sym;
1633
1634 sym = lookup_symbol_aux_symtabs (GLOBAL_BLOCK, name, domain);
1635 if (sym != NULL)
1636 return sym;
1637
1638 ALL_OBJFILES (objfile)
1639 {
1640 sym = lookup_symbol_aux_quick (objfile, GLOBAL_BLOCK, name, domain);
1641 if (sym)
1642 return sym;
1643 }
1644
1645 return NULL;
1646 }
1647
1648 int
1649 symbol_matches_domain (enum language symbol_language,
1650 domain_enum symbol_domain,
1651 domain_enum domain)
1652 {
1653 /* For C++ "struct foo { ... }" also defines a typedef for "foo".
1654 A Java class declaration also defines a typedef for the class.
1655 Similarly, any Ada type declaration implicitly defines a typedef. */
1656 if (symbol_language == language_cplus
1657 || symbol_language == language_d
1658 || symbol_language == language_java
1659 || symbol_language == language_ada)
1660 {
1661 if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN)
1662 && symbol_domain == STRUCT_DOMAIN)
1663 return 1;
1664 }
1665 /* For all other languages, strict match is required. */
1666 return (symbol_domain == domain);
1667 }
1668
1669 /* Look up a type named NAME in the struct_domain. The type returned
1670 must not be opaque -- i.e., must have at least one field
1671 defined. */
1672
1673 struct type *
1674 lookup_transparent_type (const char *name)
1675 {
1676 return current_language->la_lookup_transparent_type (name);
1677 }
1678
1679 /* A helper for basic_lookup_transparent_type that interfaces with the
1680 "quick" symbol table functions. */
1681
1682 static struct type *
1683 basic_lookup_transparent_type_quick (struct objfile *objfile, int kind,
1684 const char *name)
1685 {
1686 struct symtab *symtab;
1687 struct blockvector *bv;
1688 struct block *block;
1689 struct symbol *sym;
1690
1691 if (!objfile->sf)
1692 return NULL;
1693 symtab = objfile->sf->qf->lookup_symbol (objfile, kind, name, STRUCT_DOMAIN);
1694 if (!symtab)
1695 return NULL;
1696
1697 bv = BLOCKVECTOR (symtab);
1698 block = BLOCKVECTOR_BLOCK (bv, kind);
1699 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1700 if (!sym)
1701 {
1702 int other_kind = kind == GLOBAL_BLOCK ? STATIC_BLOCK : GLOBAL_BLOCK;
1703
1704 /* This shouldn't be necessary, but as a last resort
1705 * try looking in the 'other kind' even though the psymtab
1706 * claimed the symbol was one thing. It's possible that
1707 * the psymtab gets it wrong in some cases.
1708 */
1709 block = BLOCKVECTOR_BLOCK (bv, other_kind);
1710 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1711 if (!sym)
1712 /* FIXME; error is wrong in one case. */
1713 error (_("\
1714 Internal: global symbol `%s' found in %s psymtab but not in symtab.\n\
1715 %s may be an inlined function, or may be a template function\n\
1716 (if a template, try specifying an instantiation: %s<type>)."),
1717 name, symtab->filename, name, name);
1718 }
1719 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1720 return SYMBOL_TYPE (sym);
1721
1722 return NULL;
1723 }
1724
1725 /* The standard implementation of lookup_transparent_type. This code
1726 was modeled on lookup_symbol -- the parts not relevant to looking
1727 up types were just left out. In particular it's assumed here that
1728 types are available in struct_domain and only at file-static or
1729 global blocks. */
1730
1731 struct type *
1732 basic_lookup_transparent_type (const char *name)
1733 {
1734 struct symbol *sym;
1735 struct symtab *s = NULL;
1736 struct blockvector *bv;
1737 struct objfile *objfile;
1738 struct block *block;
1739 struct type *t;
1740
1741 /* Now search all the global symbols. Do the symtab's first, then
1742 check the psymtab's. If a psymtab indicates the existence
1743 of the desired name as a global, then do psymtab-to-symtab
1744 conversion on the fly and return the found symbol. */
1745
1746 ALL_OBJFILES (objfile)
1747 {
1748 if (objfile->sf)
1749 objfile->sf->qf->pre_expand_symtabs_matching (objfile,
1750 GLOBAL_BLOCK,
1751 name, STRUCT_DOMAIN);
1752
1753 ALL_OBJFILE_SYMTABS (objfile, s)
1754 if (s->primary)
1755 {
1756 bv = BLOCKVECTOR (s);
1757 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1758 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1759 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1760 {
1761 return SYMBOL_TYPE (sym);
1762 }
1763 }
1764 }
1765
1766 ALL_OBJFILES (objfile)
1767 {
1768 t = basic_lookup_transparent_type_quick (objfile, GLOBAL_BLOCK, name);
1769 if (t)
1770 return t;
1771 }
1772
1773 /* Now search the static file-level symbols.
1774 Not strictly correct, but more useful than an error.
1775 Do the symtab's first, then
1776 check the psymtab's. If a psymtab indicates the existence
1777 of the desired name as a file-level static, then do psymtab-to-symtab
1778 conversion on the fly and return the found symbol. */
1779
1780 ALL_OBJFILES (objfile)
1781 {
1782 if (objfile->sf)
1783 objfile->sf->qf->pre_expand_symtabs_matching (objfile, STATIC_BLOCK,
1784 name, STRUCT_DOMAIN);
1785
1786 ALL_OBJFILE_SYMTABS (objfile, s)
1787 {
1788 bv = BLOCKVECTOR (s);
1789 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
1790 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1791 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1792 {
1793 return SYMBOL_TYPE (sym);
1794 }
1795 }
1796 }
1797
1798 ALL_OBJFILES (objfile)
1799 {
1800 t = basic_lookup_transparent_type_quick (objfile, STATIC_BLOCK, name);
1801 if (t)
1802 return t;
1803 }
1804
1805 return (struct type *) 0;
1806 }
1807
1808 /* Find the name of the file containing main(). */
1809 /* FIXME: What about languages without main() or specially linked
1810 executables that have no main() ? */
1811
1812 const char *
1813 find_main_filename (void)
1814 {
1815 struct objfile *objfile;
1816 char *name = main_name ();
1817
1818 ALL_OBJFILES (objfile)
1819 {
1820 const char *result;
1821
1822 if (!objfile->sf)
1823 continue;
1824 result = objfile->sf->qf->find_symbol_file (objfile, name);
1825 if (result)
1826 return result;
1827 }
1828 return (NULL);
1829 }
1830
1831 /* Search BLOCK for symbol NAME in DOMAIN.
1832
1833 Note that if NAME is the demangled form of a C++ symbol, we will fail
1834 to find a match during the binary search of the non-encoded names, but
1835 for now we don't worry about the slight inefficiency of looking for
1836 a match we'll never find, since it will go pretty quick. Once the
1837 binary search terminates, we drop through and do a straight linear
1838 search on the symbols. Each symbol which is marked as being a ObjC/C++
1839 symbol (language_cplus or language_objc set) has both the encoded and
1840 non-encoded names tested for a match. */
1841
1842 struct symbol *
1843 lookup_block_symbol (const struct block *block, const char *name,
1844 const domain_enum domain)
1845 {
1846 struct dict_iterator iter;
1847 struct symbol *sym;
1848
1849 if (!BLOCK_FUNCTION (block))
1850 {
1851 for (sym = dict_iter_name_first (BLOCK_DICT (block), name, &iter);
1852 sym != NULL;
1853 sym = dict_iter_name_next (name, &iter))
1854 {
1855 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
1856 SYMBOL_DOMAIN (sym), domain))
1857 return sym;
1858 }
1859 return NULL;
1860 }
1861 else
1862 {
1863 /* Note that parameter symbols do not always show up last in the
1864 list; this loop makes sure to take anything else other than
1865 parameter symbols first; it only uses parameter symbols as a
1866 last resort. Note that this only takes up extra computation
1867 time on a match. */
1868
1869 struct symbol *sym_found = NULL;
1870
1871 for (sym = dict_iter_name_first (BLOCK_DICT (block), name, &iter);
1872 sym != NULL;
1873 sym = dict_iter_name_next (name, &iter))
1874 {
1875 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
1876 SYMBOL_DOMAIN (sym), domain))
1877 {
1878 sym_found = sym;
1879 if (!SYMBOL_IS_ARGUMENT (sym))
1880 {
1881 break;
1882 }
1883 }
1884 }
1885 return (sym_found); /* Will be NULL if not found. */
1886 }
1887 }
1888
1889 /* Iterate over the symbols named NAME, matching DOMAIN, starting with
1890 BLOCK.
1891
1892 For each symbol that matches, CALLBACK is called. The symbol and
1893 DATA are passed to the callback.
1894
1895 If CALLBACK returns zero, the iteration ends. Otherwise, the
1896 search continues. This function iterates upward through blocks.
1897 When the outermost block has been finished, the function
1898 returns. */
1899
1900 void
1901 iterate_over_symbols (const struct block *block, const char *name,
1902 const domain_enum domain,
1903 symbol_found_callback_ftype *callback,
1904 void *data)
1905 {
1906 while (block)
1907 {
1908 struct dict_iterator iter;
1909 struct symbol *sym;
1910
1911 for (sym = dict_iter_name_first (BLOCK_DICT (block), name, &iter);
1912 sym != NULL;
1913 sym = dict_iter_name_next (name, &iter))
1914 {
1915 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
1916 SYMBOL_DOMAIN (sym), domain))
1917 {
1918 if (!callback (sym, data))
1919 return;
1920 }
1921 }
1922
1923 block = BLOCK_SUPERBLOCK (block);
1924 }
1925 }
1926
1927 /* Find the symtab associated with PC and SECTION. Look through the
1928 psymtabs and read in another symtab if necessary. */
1929
1930 struct symtab *
1931 find_pc_sect_symtab (CORE_ADDR pc, struct obj_section *section)
1932 {
1933 struct block *b;
1934 struct blockvector *bv;
1935 struct symtab *s = NULL;
1936 struct symtab *best_s = NULL;
1937 struct objfile *objfile;
1938 struct program_space *pspace;
1939 CORE_ADDR distance = 0;
1940 struct minimal_symbol *msymbol;
1941
1942 pspace = current_program_space;
1943
1944 /* If we know that this is not a text address, return failure. This is
1945 necessary because we loop based on the block's high and low code
1946 addresses, which do not include the data ranges, and because
1947 we call find_pc_sect_psymtab which has a similar restriction based
1948 on the partial_symtab's texthigh and textlow. */
1949 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
1950 if (msymbol
1951 && (MSYMBOL_TYPE (msymbol) == mst_data
1952 || MSYMBOL_TYPE (msymbol) == mst_bss
1953 || MSYMBOL_TYPE (msymbol) == mst_abs
1954 || MSYMBOL_TYPE (msymbol) == mst_file_data
1955 || MSYMBOL_TYPE (msymbol) == mst_file_bss))
1956 return NULL;
1957
1958 /* Search all symtabs for the one whose file contains our address, and which
1959 is the smallest of all the ones containing the address. This is designed
1960 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
1961 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
1962 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
1963
1964 This happens for native ecoff format, where code from included files
1965 gets its own symtab. The symtab for the included file should have
1966 been read in already via the dependency mechanism.
1967 It might be swifter to create several symtabs with the same name
1968 like xcoff does (I'm not sure).
1969
1970 It also happens for objfiles that have their functions reordered.
1971 For these, the symtab we are looking for is not necessarily read in. */
1972
1973 ALL_PRIMARY_SYMTABS (objfile, s)
1974 {
1975 bv = BLOCKVECTOR (s);
1976 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1977
1978 if (BLOCK_START (b) <= pc
1979 && BLOCK_END (b) > pc
1980 && (distance == 0
1981 || BLOCK_END (b) - BLOCK_START (b) < distance))
1982 {
1983 /* For an objfile that has its functions reordered,
1984 find_pc_psymtab will find the proper partial symbol table
1985 and we simply return its corresponding symtab. */
1986 /* In order to better support objfiles that contain both
1987 stabs and coff debugging info, we continue on if a psymtab
1988 can't be found. */
1989 if ((objfile->flags & OBJF_REORDERED) && objfile->sf)
1990 {
1991 struct symtab *result;
1992
1993 result
1994 = objfile->sf->qf->find_pc_sect_symtab (objfile,
1995 msymbol,
1996 pc, section,
1997 0);
1998 if (result)
1999 return result;
2000 }
2001 if (section != 0)
2002 {
2003 struct dict_iterator iter;
2004 struct symbol *sym = NULL;
2005
2006 ALL_BLOCK_SYMBOLS (b, iter, sym)
2007 {
2008 fixup_symbol_section (sym, objfile);
2009 if (matching_obj_sections (SYMBOL_OBJ_SECTION (sym), section))
2010 break;
2011 }
2012 if (sym == NULL)
2013 continue; /* No symbol in this symtab matches
2014 section. */
2015 }
2016 distance = BLOCK_END (b) - BLOCK_START (b);
2017 best_s = s;
2018 }
2019 }
2020
2021 if (best_s != NULL)
2022 return (best_s);
2023
2024 ALL_OBJFILES (objfile)
2025 {
2026 struct symtab *result;
2027
2028 if (!objfile->sf)
2029 continue;
2030 result = objfile->sf->qf->find_pc_sect_symtab (objfile,
2031 msymbol,
2032 pc, section,
2033 1);
2034 if (result)
2035 return result;
2036 }
2037
2038 return NULL;
2039 }
2040
2041 /* Find the symtab associated with PC. Look through the psymtabs and read
2042 in another symtab if necessary. Backward compatibility, no section. */
2043
2044 struct symtab *
2045 find_pc_symtab (CORE_ADDR pc)
2046 {
2047 return find_pc_sect_symtab (pc, find_pc_mapped_section (pc));
2048 }
2049 \f
2050
2051 /* Find the source file and line number for a given PC value and SECTION.
2052 Return a structure containing a symtab pointer, a line number,
2053 and a pc range for the entire source line.
2054 The value's .pc field is NOT the specified pc.
2055 NOTCURRENT nonzero means, if specified pc is on a line boundary,
2056 use the line that ends there. Otherwise, in that case, the line
2057 that begins there is used. */
2058
2059 /* The big complication here is that a line may start in one file, and end just
2060 before the start of another file. This usually occurs when you #include
2061 code in the middle of a subroutine. To properly find the end of a line's PC
2062 range, we must search all symtabs associated with this compilation unit, and
2063 find the one whose first PC is closer than that of the next line in this
2064 symtab. */
2065
2066 /* If it's worth the effort, we could be using a binary search. */
2067
2068 struct symtab_and_line
2069 find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent)
2070 {
2071 struct symtab *s;
2072 struct linetable *l;
2073 int len;
2074 int i;
2075 struct linetable_entry *item;
2076 struct symtab_and_line val;
2077 struct blockvector *bv;
2078 struct minimal_symbol *msymbol;
2079 struct minimal_symbol *mfunsym;
2080 struct objfile *objfile;
2081
2082 /* Info on best line seen so far, and where it starts, and its file. */
2083
2084 struct linetable_entry *best = NULL;
2085 CORE_ADDR best_end = 0;
2086 struct symtab *best_symtab = 0;
2087
2088 /* Store here the first line number
2089 of a file which contains the line at the smallest pc after PC.
2090 If we don't find a line whose range contains PC,
2091 we will use a line one less than this,
2092 with a range from the start of that file to the first line's pc. */
2093 struct linetable_entry *alt = NULL;
2094 struct symtab *alt_symtab = 0;
2095
2096 /* Info on best line seen in this file. */
2097
2098 struct linetable_entry *prev;
2099
2100 /* If this pc is not from the current frame,
2101 it is the address of the end of a call instruction.
2102 Quite likely that is the start of the following statement.
2103 But what we want is the statement containing the instruction.
2104 Fudge the pc to make sure we get that. */
2105
2106 init_sal (&val); /* initialize to zeroes */
2107
2108 val.pspace = current_program_space;
2109
2110 /* It's tempting to assume that, if we can't find debugging info for
2111 any function enclosing PC, that we shouldn't search for line
2112 number info, either. However, GAS can emit line number info for
2113 assembly files --- very helpful when debugging hand-written
2114 assembly code. In such a case, we'd have no debug info for the
2115 function, but we would have line info. */
2116
2117 if (notcurrent)
2118 pc -= 1;
2119
2120 /* elz: added this because this function returned the wrong
2121 information if the pc belongs to a stub (import/export)
2122 to call a shlib function. This stub would be anywhere between
2123 two functions in the target, and the line info was erroneously
2124 taken to be the one of the line before the pc. */
2125
2126 /* RT: Further explanation:
2127
2128 * We have stubs (trampolines) inserted between procedures.
2129 *
2130 * Example: "shr1" exists in a shared library, and a "shr1" stub also
2131 * exists in the main image.
2132 *
2133 * In the minimal symbol table, we have a bunch of symbols
2134 * sorted by start address. The stubs are marked as "trampoline",
2135 * the others appear as text. E.g.:
2136 *
2137 * Minimal symbol table for main image
2138 * main: code for main (text symbol)
2139 * shr1: stub (trampoline symbol)
2140 * foo: code for foo (text symbol)
2141 * ...
2142 * Minimal symbol table for "shr1" image:
2143 * ...
2144 * shr1: code for shr1 (text symbol)
2145 * ...
2146 *
2147 * So the code below is trying to detect if we are in the stub
2148 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
2149 * and if found, do the symbolization from the real-code address
2150 * rather than the stub address.
2151 *
2152 * Assumptions being made about the minimal symbol table:
2153 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
2154 * if we're really in the trampoline.s If we're beyond it (say
2155 * we're in "foo" in the above example), it'll have a closer
2156 * symbol (the "foo" text symbol for example) and will not
2157 * return the trampoline.
2158 * 2. lookup_minimal_symbol_text() will find a real text symbol
2159 * corresponding to the trampoline, and whose address will
2160 * be different than the trampoline address. I put in a sanity
2161 * check for the address being the same, to avoid an
2162 * infinite recursion.
2163 */
2164 msymbol = lookup_minimal_symbol_by_pc (pc);
2165 if (msymbol != NULL)
2166 if (MSYMBOL_TYPE (msymbol) == mst_solib_trampoline)
2167 {
2168 mfunsym = lookup_minimal_symbol_text (SYMBOL_LINKAGE_NAME (msymbol),
2169 NULL);
2170 if (mfunsym == NULL)
2171 /* I eliminated this warning since it is coming out
2172 * in the following situation:
2173 * gdb shmain // test program with shared libraries
2174 * (gdb) break shr1 // function in shared lib
2175 * Warning: In stub for ...
2176 * In the above situation, the shared lib is not loaded yet,
2177 * so of course we can't find the real func/line info,
2178 * but the "break" still works, and the warning is annoying.
2179 * So I commented out the warning. RT */
2180 /* warning ("In stub for %s; unable to find real function/line info",
2181 SYMBOL_LINKAGE_NAME (msymbol)); */
2182 ;
2183 /* fall through */
2184 else if (SYMBOL_VALUE_ADDRESS (mfunsym)
2185 == SYMBOL_VALUE_ADDRESS (msymbol))
2186 /* Avoid infinite recursion */
2187 /* See above comment about why warning is commented out. */
2188 /* warning ("In stub for %s; unable to find real function/line info",
2189 SYMBOL_LINKAGE_NAME (msymbol)); */
2190 ;
2191 /* fall through */
2192 else
2193 return find_pc_line (SYMBOL_VALUE_ADDRESS (mfunsym), 0);
2194 }
2195
2196
2197 s = find_pc_sect_symtab (pc, section);
2198 if (!s)
2199 {
2200 /* If no symbol information, return previous pc. */
2201 if (notcurrent)
2202 pc++;
2203 val.pc = pc;
2204 return val;
2205 }
2206
2207 bv = BLOCKVECTOR (s);
2208 objfile = s->objfile;
2209
2210 /* Look at all the symtabs that share this blockvector.
2211 They all have the same apriori range, that we found was right;
2212 but they have different line tables. */
2213
2214 ALL_OBJFILE_SYMTABS (objfile, s)
2215 {
2216 if (BLOCKVECTOR (s) != bv)
2217 continue;
2218
2219 /* Find the best line in this symtab. */
2220 l = LINETABLE (s);
2221 if (!l)
2222 continue;
2223 len = l->nitems;
2224 if (len <= 0)
2225 {
2226 /* I think len can be zero if the symtab lacks line numbers
2227 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
2228 I'm not sure which, and maybe it depends on the symbol
2229 reader). */
2230 continue;
2231 }
2232
2233 prev = NULL;
2234 item = l->item; /* Get first line info. */
2235
2236 /* Is this file's first line closer than the first lines of other files?
2237 If so, record this file, and its first line, as best alternate. */
2238 if (item->pc > pc && (!alt || item->pc < alt->pc))
2239 {
2240 alt = item;
2241 alt_symtab = s;
2242 }
2243
2244 for (i = 0; i < len; i++, item++)
2245 {
2246 /* Leave prev pointing to the linetable entry for the last line
2247 that started at or before PC. */
2248 if (item->pc > pc)
2249 break;
2250
2251 prev = item;
2252 }
2253
2254 /* At this point, prev points at the line whose start addr is <= pc, and
2255 item points at the next line. If we ran off the end of the linetable
2256 (pc >= start of the last line), then prev == item. If pc < start of
2257 the first line, prev will not be set. */
2258
2259 /* Is this file's best line closer than the best in the other files?
2260 If so, record this file, and its best line, as best so far. Don't
2261 save prev if it represents the end of a function (i.e. line number
2262 0) instead of a real line. */
2263
2264 if (prev && prev->line && (!best || prev->pc > best->pc))
2265 {
2266 best = prev;
2267 best_symtab = s;
2268
2269 /* Discard BEST_END if it's before the PC of the current BEST. */
2270 if (best_end <= best->pc)
2271 best_end = 0;
2272 }
2273
2274 /* If another line (denoted by ITEM) is in the linetable and its
2275 PC is after BEST's PC, but before the current BEST_END, then
2276 use ITEM's PC as the new best_end. */
2277 if (best && i < len && item->pc > best->pc
2278 && (best_end == 0 || best_end > item->pc))
2279 best_end = item->pc;
2280 }
2281
2282 if (!best_symtab)
2283 {
2284 /* If we didn't find any line number info, just return zeros.
2285 We used to return alt->line - 1 here, but that could be
2286 anywhere; if we don't have line number info for this PC,
2287 don't make some up. */
2288 val.pc = pc;
2289 }
2290 else if (best->line == 0)
2291 {
2292 /* If our best fit is in a range of PC's for which no line
2293 number info is available (line number is zero) then we didn't
2294 find any valid line information. */
2295 val.pc = pc;
2296 }
2297 else
2298 {
2299 val.symtab = best_symtab;
2300 val.line = best->line;
2301 val.pc = best->pc;
2302 if (best_end && (!alt || best_end < alt->pc))
2303 val.end = best_end;
2304 else if (alt)
2305 val.end = alt->pc;
2306 else
2307 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
2308 }
2309 val.section = section;
2310 return val;
2311 }
2312
2313 /* Backward compatibility (no section). */
2314
2315 struct symtab_and_line
2316 find_pc_line (CORE_ADDR pc, int notcurrent)
2317 {
2318 struct obj_section *section;
2319
2320 section = find_pc_overlay (pc);
2321 if (pc_in_unmapped_range (pc, section))
2322 pc = overlay_mapped_address (pc, section);
2323 return find_pc_sect_line (pc, section, notcurrent);
2324 }
2325 \f
2326 /* Find line number LINE in any symtab whose name is the same as
2327 SYMTAB.
2328
2329 If found, return the symtab that contains the linetable in which it was
2330 found, set *INDEX to the index in the linetable of the best entry
2331 found, and set *EXACT_MATCH nonzero if the value returned is an
2332 exact match.
2333
2334 If not found, return NULL. */
2335
2336 struct symtab *
2337 find_line_symtab (struct symtab *symtab, int line,
2338 int *index, int *exact_match)
2339 {
2340 int exact = 0; /* Initialized here to avoid a compiler warning. */
2341
2342 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
2343 so far seen. */
2344
2345 int best_index;
2346 struct linetable *best_linetable;
2347 struct symtab *best_symtab;
2348
2349 /* First try looking it up in the given symtab. */
2350 best_linetable = LINETABLE (symtab);
2351 best_symtab = symtab;
2352 best_index = find_line_common (best_linetable, line, &exact, 0);
2353 if (best_index < 0 || !exact)
2354 {
2355 /* Didn't find an exact match. So we better keep looking for
2356 another symtab with the same name. In the case of xcoff,
2357 multiple csects for one source file (produced by IBM's FORTRAN
2358 compiler) produce multiple symtabs (this is unavoidable
2359 assuming csects can be at arbitrary places in memory and that
2360 the GLOBAL_BLOCK of a symtab has a begin and end address). */
2361
2362 /* BEST is the smallest linenumber > LINE so far seen,
2363 or 0 if none has been seen so far.
2364 BEST_INDEX and BEST_LINETABLE identify the item for it. */
2365 int best;
2366
2367 struct objfile *objfile;
2368 struct symtab *s;
2369
2370 if (best_index >= 0)
2371 best = best_linetable->item[best_index].line;
2372 else
2373 best = 0;
2374
2375 ALL_OBJFILES (objfile)
2376 {
2377 if (objfile->sf)
2378 objfile->sf->qf->expand_symtabs_with_filename (objfile,
2379 symtab->filename);
2380 }
2381
2382 /* Get symbol full file name if possible. */
2383 symtab_to_fullname (symtab);
2384
2385 ALL_SYMTABS (objfile, s)
2386 {
2387 struct linetable *l;
2388 int ind;
2389
2390 if (FILENAME_CMP (symtab->filename, s->filename) != 0)
2391 continue;
2392 if (symtab->fullname != NULL
2393 && symtab_to_fullname (s) != NULL
2394 && FILENAME_CMP (symtab->fullname, s->fullname) != 0)
2395 continue;
2396 l = LINETABLE (s);
2397 ind = find_line_common (l, line, &exact, 0);
2398 if (ind >= 0)
2399 {
2400 if (exact)
2401 {
2402 best_index = ind;
2403 best_linetable = l;
2404 best_symtab = s;
2405 goto done;
2406 }
2407 if (best == 0 || l->item[ind].line < best)
2408 {
2409 best = l->item[ind].line;
2410 best_index = ind;
2411 best_linetable = l;
2412 best_symtab = s;
2413 }
2414 }
2415 }
2416 }
2417 done:
2418 if (best_index < 0)
2419 return NULL;
2420
2421 if (index)
2422 *index = best_index;
2423 if (exact_match)
2424 *exact_match = exact;
2425
2426 return best_symtab;
2427 }
2428
2429 /* Given SYMTAB, returns all the PCs function in the symtab that
2430 exactly match LINE. Returns NULL if there are no exact matches,
2431 but updates BEST_ITEM in this case. */
2432
2433 VEC (CORE_ADDR) *
2434 find_pcs_for_symtab_line (struct symtab *symtab, int line,
2435 struct linetable_entry **best_item)
2436 {
2437 int start = 0, ix;
2438 struct symbol *previous_function = NULL;
2439 VEC (CORE_ADDR) *result = NULL;
2440
2441 /* First, collect all the PCs that are at this line. */
2442 while (1)
2443 {
2444 int was_exact;
2445 int idx;
2446
2447 idx = find_line_common (LINETABLE (symtab), line, &was_exact, start);
2448 if (idx < 0)
2449 break;
2450
2451 if (!was_exact)
2452 {
2453 struct linetable_entry *item = &LINETABLE (symtab)->item[idx];
2454
2455 if (*best_item == NULL || item->line < (*best_item)->line)
2456 *best_item = item;
2457
2458 break;
2459 }
2460
2461 VEC_safe_push (CORE_ADDR, result, LINETABLE (symtab)->item[idx].pc);
2462 start = idx + 1;
2463 }
2464
2465 return result;
2466 }
2467
2468 \f
2469 /* Set the PC value for a given source file and line number and return true.
2470 Returns zero for invalid line number (and sets the PC to 0).
2471 The source file is specified with a struct symtab. */
2472
2473 int
2474 find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
2475 {
2476 struct linetable *l;
2477 int ind;
2478
2479 *pc = 0;
2480 if (symtab == 0)
2481 return 0;
2482
2483 symtab = find_line_symtab (symtab, line, &ind, NULL);
2484 if (symtab != NULL)
2485 {
2486 l = LINETABLE (symtab);
2487 *pc = l->item[ind].pc;
2488 return 1;
2489 }
2490 else
2491 return 0;
2492 }
2493
2494 /* Find the range of pc values in a line.
2495 Store the starting pc of the line into *STARTPTR
2496 and the ending pc (start of next line) into *ENDPTR.
2497 Returns 1 to indicate success.
2498 Returns 0 if could not find the specified line. */
2499
2500 int
2501 find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
2502 CORE_ADDR *endptr)
2503 {
2504 CORE_ADDR startaddr;
2505 struct symtab_and_line found_sal;
2506
2507 startaddr = sal.pc;
2508 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
2509 return 0;
2510
2511 /* This whole function is based on address. For example, if line 10 has
2512 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
2513 "info line *0x123" should say the line goes from 0x100 to 0x200
2514 and "info line *0x355" should say the line goes from 0x300 to 0x400.
2515 This also insures that we never give a range like "starts at 0x134
2516 and ends at 0x12c". */
2517
2518 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
2519 if (found_sal.line != sal.line)
2520 {
2521 /* The specified line (sal) has zero bytes. */
2522 *startptr = found_sal.pc;
2523 *endptr = found_sal.pc;
2524 }
2525 else
2526 {
2527 *startptr = found_sal.pc;
2528 *endptr = found_sal.end;
2529 }
2530 return 1;
2531 }
2532
2533 /* Given a line table and a line number, return the index into the line
2534 table for the pc of the nearest line whose number is >= the specified one.
2535 Return -1 if none is found. The value is >= 0 if it is an index.
2536 START is the index at which to start searching the line table.
2537
2538 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
2539
2540 static int
2541 find_line_common (struct linetable *l, int lineno,
2542 int *exact_match, int start)
2543 {
2544 int i;
2545 int len;
2546
2547 /* BEST is the smallest linenumber > LINENO so far seen,
2548 or 0 if none has been seen so far.
2549 BEST_INDEX identifies the item for it. */
2550
2551 int best_index = -1;
2552 int best = 0;
2553
2554 *exact_match = 0;
2555
2556 if (lineno <= 0)
2557 return -1;
2558 if (l == 0)
2559 return -1;
2560
2561 len = l->nitems;
2562 for (i = start; i < len; i++)
2563 {
2564 struct linetable_entry *item = &(l->item[i]);
2565
2566 if (item->line == lineno)
2567 {
2568 /* Return the first (lowest address) entry which matches. */
2569 *exact_match = 1;
2570 return i;
2571 }
2572
2573 if (item->line > lineno && (best == 0 || item->line < best))
2574 {
2575 best = item->line;
2576 best_index = i;
2577 }
2578 }
2579
2580 /* If we got here, we didn't get an exact match. */
2581 return best_index;
2582 }
2583
2584 int
2585 find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
2586 {
2587 struct symtab_and_line sal;
2588
2589 sal = find_pc_line (pc, 0);
2590 *startptr = sal.pc;
2591 *endptr = sal.end;
2592 return sal.symtab != 0;
2593 }
2594
2595 /* Given a function start address FUNC_ADDR and SYMTAB, find the first
2596 address for that function that has an entry in SYMTAB's line info
2597 table. If such an entry cannot be found, return FUNC_ADDR
2598 unaltered. */
2599
2600 CORE_ADDR
2601 skip_prologue_using_lineinfo (CORE_ADDR func_addr, struct symtab *symtab)
2602 {
2603 CORE_ADDR func_start, func_end;
2604 struct linetable *l;
2605 int i;
2606
2607 /* Give up if this symbol has no lineinfo table. */
2608 l = LINETABLE (symtab);
2609 if (l == NULL)
2610 return func_addr;
2611
2612 /* Get the range for the function's PC values, or give up if we
2613 cannot, for some reason. */
2614 if (!find_pc_partial_function (func_addr, NULL, &func_start, &func_end))
2615 return func_addr;
2616
2617 /* Linetable entries are ordered by PC values, see the commentary in
2618 symtab.h where `struct linetable' is defined. Thus, the first
2619 entry whose PC is in the range [FUNC_START..FUNC_END[ is the
2620 address we are looking for. */
2621 for (i = 0; i < l->nitems; i++)
2622 {
2623 struct linetable_entry *item = &(l->item[i]);
2624
2625 /* Don't use line numbers of zero, they mark special entries in
2626 the table. See the commentary on symtab.h before the
2627 definition of struct linetable. */
2628 if (item->line > 0 && func_start <= item->pc && item->pc < func_end)
2629 return item->pc;
2630 }
2631
2632 return func_addr;
2633 }
2634
2635 /* Given a function symbol SYM, find the symtab and line for the start
2636 of the function.
2637 If the argument FUNFIRSTLINE is nonzero, we want the first line
2638 of real code inside the function. */
2639
2640 struct symtab_and_line
2641 find_function_start_sal (struct symbol *sym, int funfirstline)
2642 {
2643 struct symtab_and_line sal;
2644
2645 fixup_symbol_section (sym, NULL);
2646 sal = find_pc_sect_line (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)),
2647 SYMBOL_OBJ_SECTION (sym), 0);
2648
2649 /* We always should have a line for the function start address.
2650 If we don't, something is odd. Create a plain SAL refering
2651 just the PC and hope that skip_prologue_sal (if requested)
2652 can find a line number for after the prologue. */
2653 if (sal.pc < BLOCK_START (SYMBOL_BLOCK_VALUE (sym)))
2654 {
2655 init_sal (&sal);
2656 sal.pspace = current_program_space;
2657 sal.pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
2658 sal.section = SYMBOL_OBJ_SECTION (sym);
2659 }
2660
2661 if (funfirstline)
2662 skip_prologue_sal (&sal);
2663
2664 return sal;
2665 }
2666
2667 /* Adjust SAL to the first instruction past the function prologue.
2668 If the PC was explicitly specified, the SAL is not changed.
2669 If the line number was explicitly specified, at most the SAL's PC
2670 is updated. If SAL is already past the prologue, then do nothing. */
2671
2672 void
2673 skip_prologue_sal (struct symtab_and_line *sal)
2674 {
2675 struct symbol *sym;
2676 struct symtab_and_line start_sal;
2677 struct cleanup *old_chain;
2678 CORE_ADDR pc, saved_pc;
2679 struct obj_section *section;
2680 const char *name;
2681 struct objfile *objfile;
2682 struct gdbarch *gdbarch;
2683 struct block *b, *function_block;
2684 int force_skip, skip;
2685
2686 /* Do not change the SAL is PC was specified explicitly. */
2687 if (sal->explicit_pc)
2688 return;
2689
2690 old_chain = save_current_space_and_thread ();
2691 switch_to_program_space_and_thread (sal->pspace);
2692
2693 sym = find_pc_sect_function (sal->pc, sal->section);
2694 if (sym != NULL)
2695 {
2696 fixup_symbol_section (sym, NULL);
2697
2698 pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
2699 section = SYMBOL_OBJ_SECTION (sym);
2700 name = SYMBOL_LINKAGE_NAME (sym);
2701 objfile = SYMBOL_SYMTAB (sym)->objfile;
2702 }
2703 else
2704 {
2705 struct minimal_symbol *msymbol
2706 = lookup_minimal_symbol_by_pc_section (sal->pc, sal->section);
2707
2708 if (msymbol == NULL)
2709 {
2710 do_cleanups (old_chain);
2711 return;
2712 }
2713
2714 pc = SYMBOL_VALUE_ADDRESS (msymbol);
2715 section = SYMBOL_OBJ_SECTION (msymbol);
2716 name = SYMBOL_LINKAGE_NAME (msymbol);
2717 objfile = msymbol_objfile (msymbol);
2718 }
2719
2720 gdbarch = get_objfile_arch (objfile);
2721
2722 /* Process the prologue in two passes. In the first pass try to skip the
2723 prologue (SKIP is true) and verify there is a real need for it (indicated
2724 by FORCE_SKIP). If no such reason was found run a second pass where the
2725 prologue is not skipped (SKIP is false). */
2726
2727 skip = 1;
2728 force_skip = 1;
2729
2730 /* Be conservative - allow direct PC (without skipping prologue) only if we
2731 have proven the CU (Compilation Unit) supports it. sal->SYMTAB does not
2732 have to be set by the caller so we use SYM instead. */
2733 if (sym && SYMBOL_SYMTAB (sym)->locations_valid)
2734 force_skip = 0;
2735
2736 saved_pc = pc;
2737 do
2738 {
2739 pc = saved_pc;
2740
2741 /* If the function is in an unmapped overlay, use its unmapped LMA address,
2742 so that gdbarch_skip_prologue has something unique to work on. */
2743 if (section_is_overlay (section) && !section_is_mapped (section))
2744 pc = overlay_unmapped_address (pc, section);
2745
2746 /* Skip "first line" of function (which is actually its prologue). */
2747 pc += gdbarch_deprecated_function_start_offset (gdbarch);
2748 if (skip)
2749 pc = gdbarch_skip_prologue (gdbarch, pc);
2750
2751 /* For overlays, map pc back into its mapped VMA range. */
2752 pc = overlay_mapped_address (pc, section);
2753
2754 /* Calculate line number. */
2755 start_sal = find_pc_sect_line (pc, section, 0);
2756
2757 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
2758 line is still part of the same function. */
2759 if (skip && start_sal.pc != pc
2760 && (sym ? (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) <= start_sal.end
2761 && start_sal.end < BLOCK_END (SYMBOL_BLOCK_VALUE (sym)))
2762 : (lookup_minimal_symbol_by_pc_section (start_sal.end, section)
2763 == lookup_minimal_symbol_by_pc_section (pc, section))))
2764 {
2765 /* First pc of next line */
2766 pc = start_sal.end;
2767 /* Recalculate the line number (might not be N+1). */
2768 start_sal = find_pc_sect_line (pc, section, 0);
2769 }
2770
2771 /* On targets with executable formats that don't have a concept of
2772 constructors (ELF with .init has, PE doesn't), gcc emits a call
2773 to `__main' in `main' between the prologue and before user
2774 code. */
2775 if (gdbarch_skip_main_prologue_p (gdbarch)
2776 && name && strcmp (name, "main") == 0)
2777 {
2778 pc = gdbarch_skip_main_prologue (gdbarch, pc);
2779 /* Recalculate the line number (might not be N+1). */
2780 start_sal = find_pc_sect_line (pc, section, 0);
2781 force_skip = 1;
2782 }
2783 }
2784 while (!force_skip && skip--);
2785
2786 /* If we still don't have a valid source line, try to find the first
2787 PC in the lineinfo table that belongs to the same function. This
2788 happens with COFF debug info, which does not seem to have an
2789 entry in lineinfo table for the code after the prologue which has
2790 no direct relation to source. For example, this was found to be
2791 the case with the DJGPP target using "gcc -gcoff" when the
2792 compiler inserted code after the prologue to make sure the stack
2793 is aligned. */
2794 if (!force_skip && sym && start_sal.symtab == NULL)
2795 {
2796 pc = skip_prologue_using_lineinfo (pc, SYMBOL_SYMTAB (sym));
2797 /* Recalculate the line number. */
2798 start_sal = find_pc_sect_line (pc, section, 0);
2799 }
2800
2801 do_cleanups (old_chain);
2802
2803 /* If we're already past the prologue, leave SAL unchanged. Otherwise
2804 forward SAL to the end of the prologue. */
2805 if (sal->pc >= pc)
2806 return;
2807
2808 sal->pc = pc;
2809 sal->section = section;
2810
2811 /* Unless the explicit_line flag was set, update the SAL line
2812 and symtab to correspond to the modified PC location. */
2813 if (sal->explicit_line)
2814 return;
2815
2816 sal->symtab = start_sal.symtab;
2817 sal->line = start_sal.line;
2818 sal->end = start_sal.end;
2819
2820 /* Check if we are now inside an inlined function. If we can,
2821 use the call site of the function instead. */
2822 b = block_for_pc_sect (sal->pc, sal->section);
2823 function_block = NULL;
2824 while (b != NULL)
2825 {
2826 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
2827 function_block = b;
2828 else if (BLOCK_FUNCTION (b) != NULL)
2829 break;
2830 b = BLOCK_SUPERBLOCK (b);
2831 }
2832 if (function_block != NULL
2833 && SYMBOL_LINE (BLOCK_FUNCTION (function_block)) != 0)
2834 {
2835 sal->line = SYMBOL_LINE (BLOCK_FUNCTION (function_block));
2836 sal->symtab = SYMBOL_SYMTAB (BLOCK_FUNCTION (function_block));
2837 }
2838 }
2839
2840 /* If P is of the form "operator[ \t]+..." where `...' is
2841 some legitimate operator text, return a pointer to the
2842 beginning of the substring of the operator text.
2843 Otherwise, return "". */
2844
2845 static char *
2846 operator_chars (char *p, char **end)
2847 {
2848 *end = "";
2849 if (strncmp (p, "operator", 8))
2850 return *end;
2851 p += 8;
2852
2853 /* Don't get faked out by `operator' being part of a longer
2854 identifier. */
2855 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
2856 return *end;
2857
2858 /* Allow some whitespace between `operator' and the operator symbol. */
2859 while (*p == ' ' || *p == '\t')
2860 p++;
2861
2862 /* Recognize 'operator TYPENAME'. */
2863
2864 if (isalpha (*p) || *p == '_' || *p == '$')
2865 {
2866 char *q = p + 1;
2867
2868 while (isalnum (*q) || *q == '_' || *q == '$')
2869 q++;
2870 *end = q;
2871 return p;
2872 }
2873
2874 while (*p)
2875 switch (*p)
2876 {
2877 case '\\': /* regexp quoting */
2878 if (p[1] == '*')
2879 {
2880 if (p[2] == '=') /* 'operator\*=' */
2881 *end = p + 3;
2882 else /* 'operator\*' */
2883 *end = p + 2;
2884 return p;
2885 }
2886 else if (p[1] == '[')
2887 {
2888 if (p[2] == ']')
2889 error (_("mismatched quoting on brackets, "
2890 "try 'operator\\[\\]'"));
2891 else if (p[2] == '\\' && p[3] == ']')
2892 {
2893 *end = p + 4; /* 'operator\[\]' */
2894 return p;
2895 }
2896 else
2897 error (_("nothing is allowed between '[' and ']'"));
2898 }
2899 else
2900 {
2901 /* Gratuitous qoute: skip it and move on. */
2902 p++;
2903 continue;
2904 }
2905 break;
2906 case '!':
2907 case '=':
2908 case '*':
2909 case '/':
2910 case '%':
2911 case '^':
2912 if (p[1] == '=')
2913 *end = p + 2;
2914 else
2915 *end = p + 1;
2916 return p;
2917 case '<':
2918 case '>':
2919 case '+':
2920 case '-':
2921 case '&':
2922 case '|':
2923 if (p[0] == '-' && p[1] == '>')
2924 {
2925 /* Struct pointer member operator 'operator->'. */
2926 if (p[2] == '*')
2927 {
2928 *end = p + 3; /* 'operator->*' */
2929 return p;
2930 }
2931 else if (p[2] == '\\')
2932 {
2933 *end = p + 4; /* Hopefully 'operator->\*' */
2934 return p;
2935 }
2936 else
2937 {
2938 *end = p + 2; /* 'operator->' */
2939 return p;
2940 }
2941 }
2942 if (p[1] == '=' || p[1] == p[0])
2943 *end = p + 2;
2944 else
2945 *end = p + 1;
2946 return p;
2947 case '~':
2948 case ',':
2949 *end = p + 1;
2950 return p;
2951 case '(':
2952 if (p[1] != ')')
2953 error (_("`operator ()' must be specified "
2954 "without whitespace in `()'"));
2955 *end = p + 2;
2956 return p;
2957 case '?':
2958 if (p[1] != ':')
2959 error (_("`operator ?:' must be specified "
2960 "without whitespace in `?:'"));
2961 *end = p + 2;
2962 return p;
2963 case '[':
2964 if (p[1] != ']')
2965 error (_("`operator []' must be specified "
2966 "without whitespace in `[]'"));
2967 *end = p + 2;
2968 return p;
2969 default:
2970 error (_("`operator %s' not supported"), p);
2971 break;
2972 }
2973
2974 *end = "";
2975 return *end;
2976 }
2977 \f
2978
2979 /* If FILE is not already in the table of files, return zero;
2980 otherwise return non-zero. Optionally add FILE to the table if ADD
2981 is non-zero. If *FIRST is non-zero, forget the old table
2982 contents. */
2983
2984 static int
2985 filename_seen (const char *file, int add, int *first)
2986 {
2987 /* Table of files seen so far. */
2988 static const char **tab = NULL;
2989 /* Allocated size of tab in elements.
2990 Start with one 256-byte block (when using GNU malloc.c).
2991 24 is the malloc overhead when range checking is in effect. */
2992 static int tab_alloc_size = (256 - 24) / sizeof (char *);
2993 /* Current size of tab in elements. */
2994 static int tab_cur_size;
2995 const char **p;
2996
2997 if (*first)
2998 {
2999 if (tab == NULL)
3000 tab = (const char **) xmalloc (tab_alloc_size * sizeof (*tab));
3001 tab_cur_size = 0;
3002 }
3003
3004 /* Is FILE in tab? */
3005 for (p = tab; p < tab + tab_cur_size; p++)
3006 if (filename_cmp (*p, file) == 0)
3007 return 1;
3008
3009 /* No; maybe add it to tab. */
3010 if (add)
3011 {
3012 if (tab_cur_size == tab_alloc_size)
3013 {
3014 tab_alloc_size *= 2;
3015 tab = (const char **) xrealloc ((char *) tab,
3016 tab_alloc_size * sizeof (*tab));
3017 }
3018 tab[tab_cur_size++] = file;
3019 }
3020
3021 return 0;
3022 }
3023
3024 /* Slave routine for sources_info. Force line breaks at ,'s.
3025 NAME is the name to print and *FIRST is nonzero if this is the first
3026 name printed. Set *FIRST to zero. */
3027
3028 static void
3029 output_source_filename (const char *name, int *first)
3030 {
3031 /* Since a single source file can result in several partial symbol
3032 tables, we need to avoid printing it more than once. Note: if
3033 some of the psymtabs are read in and some are not, it gets
3034 printed both under "Source files for which symbols have been
3035 read" and "Source files for which symbols will be read in on
3036 demand". I consider this a reasonable way to deal with the
3037 situation. I'm not sure whether this can also happen for
3038 symtabs; it doesn't hurt to check. */
3039
3040 /* Was NAME already seen? */
3041 if (filename_seen (name, 1, first))
3042 {
3043 /* Yes; don't print it again. */
3044 return;
3045 }
3046 /* No; print it and reset *FIRST. */
3047 if (*first)
3048 {
3049 *first = 0;
3050 }
3051 else
3052 {
3053 printf_filtered (", ");
3054 }
3055
3056 wrap_here ("");
3057 fputs_filtered (name, gdb_stdout);
3058 }
3059
3060 /* A callback for map_partial_symbol_filenames. */
3061
3062 static void
3063 output_partial_symbol_filename (const char *filename, const char *fullname,
3064 void *data)
3065 {
3066 output_source_filename (fullname ? fullname : filename, data);
3067 }
3068
3069 static void
3070 sources_info (char *ignore, int from_tty)
3071 {
3072 struct symtab *s;
3073 struct objfile *objfile;
3074 int first;
3075
3076 if (!have_full_symbols () && !have_partial_symbols ())
3077 {
3078 error (_("No symbol table is loaded. Use the \"file\" command."));
3079 }
3080
3081 printf_filtered ("Source files for which symbols have been read in:\n\n");
3082
3083 first = 1;
3084 ALL_SYMTABS (objfile, s)
3085 {
3086 const char *fullname = symtab_to_fullname (s);
3087
3088 output_source_filename (fullname ? fullname : s->filename, &first);
3089 }
3090 printf_filtered ("\n\n");
3091
3092 printf_filtered ("Source files for which symbols "
3093 "will be read in on demand:\n\n");
3094
3095 first = 1;
3096 map_partial_symbol_filenames (output_partial_symbol_filename, &first,
3097 1 /*need_fullname*/);
3098 printf_filtered ("\n");
3099 }
3100
3101 static int
3102 file_matches (const char *file, char *files[], int nfiles)
3103 {
3104 int i;
3105
3106 if (file != NULL && nfiles != 0)
3107 {
3108 for (i = 0; i < nfiles; i++)
3109 {
3110 if (filename_cmp (files[i], lbasename (file)) == 0)
3111 return 1;
3112 }
3113 }
3114 else if (nfiles == 0)
3115 return 1;
3116 return 0;
3117 }
3118
3119 /* Free any memory associated with a search. */
3120
3121 void
3122 free_search_symbols (struct symbol_search *symbols)
3123 {
3124 struct symbol_search *p;
3125 struct symbol_search *next;
3126
3127 for (p = symbols; p != NULL; p = next)
3128 {
3129 next = p->next;
3130 xfree (p);
3131 }
3132 }
3133
3134 static void
3135 do_free_search_symbols_cleanup (void *symbols)
3136 {
3137 free_search_symbols (symbols);
3138 }
3139
3140 struct cleanup *
3141 make_cleanup_free_search_symbols (struct symbol_search *symbols)
3142 {
3143 return make_cleanup (do_free_search_symbols_cleanup, symbols);
3144 }
3145
3146 /* Helper function for sort_search_symbols and qsort. Can only
3147 sort symbols, not minimal symbols. */
3148
3149 static int
3150 compare_search_syms (const void *sa, const void *sb)
3151 {
3152 struct symbol_search **sym_a = (struct symbol_search **) sa;
3153 struct symbol_search **sym_b = (struct symbol_search **) sb;
3154
3155 return strcmp (SYMBOL_PRINT_NAME ((*sym_a)->symbol),
3156 SYMBOL_PRINT_NAME ((*sym_b)->symbol));
3157 }
3158
3159 /* Sort the ``nfound'' symbols in the list after prevtail. Leave
3160 prevtail where it is, but update its next pointer to point to
3161 the first of the sorted symbols. */
3162
3163 static struct symbol_search *
3164 sort_search_symbols (struct symbol_search *prevtail, int nfound)
3165 {
3166 struct symbol_search **symbols, *symp, *old_next;
3167 int i;
3168
3169 symbols = (struct symbol_search **) xmalloc (sizeof (struct symbol_search *)
3170 * nfound);
3171 symp = prevtail->next;
3172 for (i = 0; i < nfound; i++)
3173 {
3174 symbols[i] = symp;
3175 symp = symp->next;
3176 }
3177 /* Generally NULL. */
3178 old_next = symp;
3179
3180 qsort (symbols, nfound, sizeof (struct symbol_search *),
3181 compare_search_syms);
3182
3183 symp = prevtail;
3184 for (i = 0; i < nfound; i++)
3185 {
3186 symp->next = symbols[i];
3187 symp = symp->next;
3188 }
3189 symp->next = old_next;
3190
3191 xfree (symbols);
3192 return symp;
3193 }
3194
3195 /* An object of this type is passed as the user_data to the
3196 expand_symtabs_matching method. */
3197 struct search_symbols_data
3198 {
3199 int nfiles;
3200 char **files;
3201
3202 /* It is true if PREG contains valid data, false otherwise. */
3203 unsigned preg_p : 1;
3204 regex_t preg;
3205 };
3206
3207 /* A callback for expand_symtabs_matching. */
3208
3209 static int
3210 search_symbols_file_matches (const char *filename, void *user_data)
3211 {
3212 struct search_symbols_data *data = user_data;
3213
3214 return file_matches (filename, data->files, data->nfiles);
3215 }
3216
3217 /* A callback for expand_symtabs_matching. */
3218
3219 static int
3220 search_symbols_name_matches (const char *symname, void *user_data)
3221 {
3222 struct search_symbols_data *data = user_data;
3223
3224 return !data->preg_p || regexec (&data->preg, symname, 0, NULL, 0) == 0;
3225 }
3226
3227 /* Search the symbol table for matches to the regular expression REGEXP,
3228 returning the results in *MATCHES.
3229
3230 Only symbols of KIND are searched:
3231 VARIABLES_DOMAIN - search all symbols, excluding functions, type names,
3232 and constants (enums)
3233 FUNCTIONS_DOMAIN - search all functions
3234 TYPES_DOMAIN - search all type names
3235 ALL_DOMAIN - an internal error for this function
3236
3237 free_search_symbols should be called when *MATCHES is no longer needed.
3238
3239 The results are sorted locally; each symtab's global and static blocks are
3240 separately alphabetized. */
3241
3242 void
3243 search_symbols (char *regexp, enum search_domain kind,
3244 int nfiles, char *files[],
3245 struct symbol_search **matches)
3246 {
3247 struct symtab *s;
3248 struct blockvector *bv;
3249 struct block *b;
3250 int i = 0;
3251 struct dict_iterator iter;
3252 struct symbol *sym;
3253 struct objfile *objfile;
3254 struct minimal_symbol *msymbol;
3255 char *val;
3256 int found_misc = 0;
3257 static const enum minimal_symbol_type types[]
3258 = {mst_data, mst_text, mst_abs};
3259 static const enum minimal_symbol_type types2[]
3260 = {mst_bss, mst_file_text, mst_abs};
3261 static const enum minimal_symbol_type types3[]
3262 = {mst_file_data, mst_solib_trampoline, mst_abs};
3263 static const enum minimal_symbol_type types4[]
3264 = {mst_file_bss, mst_text_gnu_ifunc, mst_abs};
3265 enum minimal_symbol_type ourtype;
3266 enum minimal_symbol_type ourtype2;
3267 enum minimal_symbol_type ourtype3;
3268 enum minimal_symbol_type ourtype4;
3269 struct symbol_search *sr;
3270 struct symbol_search *psr;
3271 struct symbol_search *tail;
3272 struct search_symbols_data datum;
3273
3274 /* OLD_CHAIN .. RETVAL_CHAIN is always freed, RETVAL_CHAIN .. current
3275 CLEANUP_CHAIN is freed only in the case of an error. */
3276 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
3277 struct cleanup *retval_chain;
3278
3279 gdb_assert (kind <= TYPES_DOMAIN);
3280
3281 ourtype = types[kind];
3282 ourtype2 = types2[kind];
3283 ourtype3 = types3[kind];
3284 ourtype4 = types4[kind];
3285
3286 sr = *matches = NULL;
3287 tail = NULL;
3288 datum.preg_p = 0;
3289
3290 if (regexp != NULL)
3291 {
3292 /* Make sure spacing is right for C++ operators.
3293 This is just a courtesy to make the matching less sensitive
3294 to how many spaces the user leaves between 'operator'
3295 and <TYPENAME> or <OPERATOR>. */
3296 char *opend;
3297 char *opname = operator_chars (regexp, &opend);
3298 int errcode;
3299
3300 if (*opname)
3301 {
3302 int fix = -1; /* -1 means ok; otherwise number of
3303 spaces needed. */
3304
3305 if (isalpha (*opname) || *opname == '_' || *opname == '$')
3306 {
3307 /* There should 1 space between 'operator' and 'TYPENAME'. */
3308 if (opname[-1] != ' ' || opname[-2] == ' ')
3309 fix = 1;
3310 }
3311 else
3312 {
3313 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
3314 if (opname[-1] == ' ')
3315 fix = 0;
3316 }
3317 /* If wrong number of spaces, fix it. */
3318 if (fix >= 0)
3319 {
3320 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
3321
3322 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
3323 regexp = tmp;
3324 }
3325 }
3326
3327 errcode = regcomp (&datum.preg, regexp,
3328 REG_NOSUB | (case_sensitivity == case_sensitive_off
3329 ? REG_ICASE : 0));
3330 if (errcode != 0)
3331 {
3332 char *err = get_regcomp_error (errcode, &datum.preg);
3333
3334 make_cleanup (xfree, err);
3335 error (_("Invalid regexp (%s): %s"), err, regexp);
3336 }
3337 datum.preg_p = 1;
3338 make_regfree_cleanup (&datum.preg);
3339 }
3340
3341 /* Search through the partial symtabs *first* for all symbols
3342 matching the regexp. That way we don't have to reproduce all of
3343 the machinery below. */
3344
3345 datum.nfiles = nfiles;
3346 datum.files = files;
3347 ALL_OBJFILES (objfile)
3348 {
3349 if (objfile->sf)
3350 objfile->sf->qf->expand_symtabs_matching (objfile,
3351 search_symbols_file_matches,
3352 search_symbols_name_matches,
3353 kind,
3354 &datum);
3355 }
3356
3357 retval_chain = old_chain;
3358
3359 /* Here, we search through the minimal symbol tables for functions
3360 and variables that match, and force their symbols to be read.
3361 This is in particular necessary for demangled variable names,
3362 which are no longer put into the partial symbol tables.
3363 The symbol will then be found during the scan of symtabs below.
3364
3365 For functions, find_pc_symtab should succeed if we have debug info
3366 for the function, for variables we have to call lookup_symbol
3367 to determine if the variable has debug info.
3368 If the lookup fails, set found_misc so that we will rescan to print
3369 any matching symbols without debug info. */
3370
3371 if (nfiles == 0 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
3372 {
3373 ALL_MSYMBOLS (objfile, msymbol)
3374 {
3375 QUIT;
3376
3377 if (MSYMBOL_TYPE (msymbol) == ourtype ||
3378 MSYMBOL_TYPE (msymbol) == ourtype2 ||
3379 MSYMBOL_TYPE (msymbol) == ourtype3 ||
3380 MSYMBOL_TYPE (msymbol) == ourtype4)
3381 {
3382 if (!datum.preg_p
3383 || regexec (&datum.preg, SYMBOL_NATURAL_NAME (msymbol), 0,
3384 NULL, 0) == 0)
3385 {
3386 if (0 == find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol)))
3387 {
3388 /* FIXME: carlton/2003-02-04: Given that the
3389 semantics of lookup_symbol keeps on changing
3390 slightly, it would be a nice idea if we had a
3391 function lookup_symbol_minsym that found the
3392 symbol associated to a given minimal symbol (if
3393 any). */
3394 if (kind == FUNCTIONS_DOMAIN
3395 || lookup_symbol (SYMBOL_LINKAGE_NAME (msymbol),
3396 (struct block *) NULL,
3397 VAR_DOMAIN, 0)
3398 == NULL)
3399 found_misc = 1;
3400 }
3401 }
3402 }
3403 }
3404 }
3405
3406 ALL_PRIMARY_SYMTABS (objfile, s)
3407 {
3408 bv = BLOCKVECTOR (s);
3409 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
3410 {
3411 struct symbol_search *prevtail = tail;
3412 int nfound = 0;
3413
3414 b = BLOCKVECTOR_BLOCK (bv, i);
3415 ALL_BLOCK_SYMBOLS (b, iter, sym)
3416 {
3417 struct symtab *real_symtab = SYMBOL_SYMTAB (sym);
3418
3419 QUIT;
3420
3421 if (file_matches (real_symtab->filename, files, nfiles)
3422 && ((!datum.preg_p
3423 || regexec (&datum.preg, SYMBOL_NATURAL_NAME (sym), 0,
3424 NULL, 0) == 0)
3425 && ((kind == VARIABLES_DOMAIN
3426 && SYMBOL_CLASS (sym) != LOC_TYPEDEF
3427 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
3428 && SYMBOL_CLASS (sym) != LOC_BLOCK
3429 /* LOC_CONST can be used for more than just enums,
3430 e.g., c++ static const members.
3431 We only want to skip enums here. */
3432 && !(SYMBOL_CLASS (sym) == LOC_CONST
3433 && TYPE_CODE (SYMBOL_TYPE (sym))
3434 == TYPE_CODE_ENUM))
3435 || (kind == FUNCTIONS_DOMAIN
3436 && SYMBOL_CLASS (sym) == LOC_BLOCK)
3437 || (kind == TYPES_DOMAIN
3438 && SYMBOL_CLASS (sym) == LOC_TYPEDEF))))
3439 {
3440 /* match */
3441 psr = (struct symbol_search *)
3442 xmalloc (sizeof (struct symbol_search));
3443 psr->block = i;
3444 psr->symtab = real_symtab;
3445 psr->symbol = sym;
3446 psr->msymbol = NULL;
3447 psr->next = NULL;
3448 if (tail == NULL)
3449 sr = psr;
3450 else
3451 tail->next = psr;
3452 tail = psr;
3453 nfound ++;
3454 }
3455 }
3456 if (nfound > 0)
3457 {
3458 if (prevtail == NULL)
3459 {
3460 struct symbol_search dummy;
3461
3462 dummy.next = sr;
3463 tail = sort_search_symbols (&dummy, nfound);
3464 sr = dummy.next;
3465
3466 make_cleanup_free_search_symbols (sr);
3467 }
3468 else
3469 tail = sort_search_symbols (prevtail, nfound);
3470 }
3471 }
3472 }
3473
3474 /* If there are no eyes, avoid all contact. I mean, if there are
3475 no debug symbols, then print directly from the msymbol_vector. */
3476
3477 if (found_misc || kind != FUNCTIONS_DOMAIN)
3478 {
3479 ALL_MSYMBOLS (objfile, msymbol)
3480 {
3481 QUIT;
3482
3483 if (MSYMBOL_TYPE (msymbol) == ourtype ||
3484 MSYMBOL_TYPE (msymbol) == ourtype2 ||
3485 MSYMBOL_TYPE (msymbol) == ourtype3 ||
3486 MSYMBOL_TYPE (msymbol) == ourtype4)
3487 {
3488 if (!datum.preg_p
3489 || regexec (&datum.preg, SYMBOL_NATURAL_NAME (msymbol), 0,
3490 NULL, 0) == 0)
3491 {
3492 /* Functions: Look up by address. */
3493 if (kind != FUNCTIONS_DOMAIN ||
3494 (0 == find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol))))
3495 {
3496 /* Variables/Absolutes: Look up by name. */
3497 if (lookup_symbol (SYMBOL_LINKAGE_NAME (msymbol),
3498 (struct block *) NULL, VAR_DOMAIN, 0)
3499 == NULL)
3500 {
3501 /* match */
3502 psr = (struct symbol_search *)
3503 xmalloc (sizeof (struct symbol_search));
3504 psr->block = i;
3505 psr->msymbol = msymbol;
3506 psr->symtab = NULL;
3507 psr->symbol = NULL;
3508 psr->next = NULL;
3509 if (tail == NULL)
3510 {
3511 sr = psr;
3512 make_cleanup_free_search_symbols (sr);
3513 }
3514 else
3515 tail->next = psr;
3516 tail = psr;
3517 }
3518 }
3519 }
3520 }
3521 }
3522 }
3523
3524 discard_cleanups (retval_chain);
3525 do_cleanups (old_chain);
3526 *matches = sr;
3527 }
3528
3529 /* Helper function for symtab_symbol_info, this function uses
3530 the data returned from search_symbols() to print information
3531 regarding the match to gdb_stdout. */
3532
3533 static void
3534 print_symbol_info (enum search_domain kind,
3535 struct symtab *s, struct symbol *sym,
3536 int block, char *last)
3537 {
3538 if (last == NULL || filename_cmp (last, s->filename) != 0)
3539 {
3540 fputs_filtered ("\nFile ", gdb_stdout);
3541 fputs_filtered (s->filename, gdb_stdout);
3542 fputs_filtered (":\n", gdb_stdout);
3543 }
3544
3545 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
3546 printf_filtered ("static ");
3547
3548 /* Typedef that is not a C++ class. */
3549 if (kind == TYPES_DOMAIN
3550 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
3551 typedef_print (SYMBOL_TYPE (sym), sym, gdb_stdout);
3552 /* variable, func, or typedef-that-is-c++-class. */
3553 else if (kind < TYPES_DOMAIN ||
3554 (kind == TYPES_DOMAIN &&
3555 SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
3556 {
3557 type_print (SYMBOL_TYPE (sym),
3558 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
3559 ? "" : SYMBOL_PRINT_NAME (sym)),
3560 gdb_stdout, 0);
3561
3562 printf_filtered (";\n");
3563 }
3564 }
3565
3566 /* This help function for symtab_symbol_info() prints information
3567 for non-debugging symbols to gdb_stdout. */
3568
3569 static void
3570 print_msymbol_info (struct minimal_symbol *msymbol)
3571 {
3572 struct gdbarch *gdbarch = get_objfile_arch (msymbol_objfile (msymbol));
3573 char *tmp;
3574
3575 if (gdbarch_addr_bit (gdbarch) <= 32)
3576 tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol)
3577 & (CORE_ADDR) 0xffffffff,
3578 8);
3579 else
3580 tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol),
3581 16);
3582 printf_filtered ("%s %s\n",
3583 tmp, SYMBOL_PRINT_NAME (msymbol));
3584 }
3585
3586 /* This is the guts of the commands "info functions", "info types", and
3587 "info variables". It calls search_symbols to find all matches and then
3588 print_[m]symbol_info to print out some useful information about the
3589 matches. */
3590
3591 static void
3592 symtab_symbol_info (char *regexp, enum search_domain kind, int from_tty)
3593 {
3594 static const char * const classnames[] =
3595 {"variable", "function", "type"};
3596 struct symbol_search *symbols;
3597 struct symbol_search *p;
3598 struct cleanup *old_chain;
3599 char *last_filename = NULL;
3600 int first = 1;
3601
3602 gdb_assert (kind <= TYPES_DOMAIN);
3603
3604 /* Must make sure that if we're interrupted, symbols gets freed. */
3605 search_symbols (regexp, kind, 0, (char **) NULL, &symbols);
3606 old_chain = make_cleanup_free_search_symbols (symbols);
3607
3608 printf_filtered (regexp
3609 ? "All %ss matching regular expression \"%s\":\n"
3610 : "All defined %ss:\n",
3611 classnames[kind], regexp);
3612
3613 for (p = symbols; p != NULL; p = p->next)
3614 {
3615 QUIT;
3616
3617 if (p->msymbol != NULL)
3618 {
3619 if (first)
3620 {
3621 printf_filtered ("\nNon-debugging symbols:\n");
3622 first = 0;
3623 }
3624 print_msymbol_info (p->msymbol);
3625 }
3626 else
3627 {
3628 print_symbol_info (kind,
3629 p->symtab,
3630 p->symbol,
3631 p->block,
3632 last_filename);
3633 last_filename = p->symtab->filename;
3634 }
3635 }
3636
3637 do_cleanups (old_chain);
3638 }
3639
3640 static void
3641 variables_info (char *regexp, int from_tty)
3642 {
3643 symtab_symbol_info (regexp, VARIABLES_DOMAIN, from_tty);
3644 }
3645
3646 static void
3647 functions_info (char *regexp, int from_tty)
3648 {
3649 symtab_symbol_info (regexp, FUNCTIONS_DOMAIN, from_tty);
3650 }
3651
3652
3653 static void
3654 types_info (char *regexp, int from_tty)
3655 {
3656 symtab_symbol_info (regexp, TYPES_DOMAIN, from_tty);
3657 }
3658
3659 /* Breakpoint all functions matching regular expression. */
3660
3661 void
3662 rbreak_command_wrapper (char *regexp, int from_tty)
3663 {
3664 rbreak_command (regexp, from_tty);
3665 }
3666
3667 /* A cleanup function that calls end_rbreak_breakpoints. */
3668
3669 static void
3670 do_end_rbreak_breakpoints (void *ignore)
3671 {
3672 end_rbreak_breakpoints ();
3673 }
3674
3675 static void
3676 rbreak_command (char *regexp, int from_tty)
3677 {
3678 struct symbol_search *ss;
3679 struct symbol_search *p;
3680 struct cleanup *old_chain;
3681 char *string = NULL;
3682 int len = 0;
3683 char **files = NULL, *file_name;
3684 int nfiles = 0;
3685
3686 if (regexp)
3687 {
3688 char *colon = strchr (regexp, ':');
3689
3690 if (colon && *(colon + 1) != ':')
3691 {
3692 int colon_index;
3693
3694 colon_index = colon - regexp;
3695 file_name = alloca (colon_index + 1);
3696 memcpy (file_name, regexp, colon_index);
3697 file_name[colon_index--] = 0;
3698 while (isspace (file_name[colon_index]))
3699 file_name[colon_index--] = 0;
3700 files = &file_name;
3701 nfiles = 1;
3702 regexp = colon + 1;
3703 while (isspace (*regexp)) regexp++;
3704 }
3705 }
3706
3707 search_symbols (regexp, FUNCTIONS_DOMAIN, nfiles, files, &ss);
3708 old_chain = make_cleanup_free_search_symbols (ss);
3709 make_cleanup (free_current_contents, &string);
3710
3711 start_rbreak_breakpoints ();
3712 make_cleanup (do_end_rbreak_breakpoints, NULL);
3713 for (p = ss; p != NULL; p = p->next)
3714 {
3715 if (p->msymbol == NULL)
3716 {
3717 int newlen = (strlen (p->symtab->filename)
3718 + strlen (SYMBOL_LINKAGE_NAME (p->symbol))
3719 + 4);
3720
3721 if (newlen > len)
3722 {
3723 string = xrealloc (string, newlen);
3724 len = newlen;
3725 }
3726 strcpy (string, p->symtab->filename);
3727 strcat (string, ":'");
3728 strcat (string, SYMBOL_LINKAGE_NAME (p->symbol));
3729 strcat (string, "'");
3730 break_command (string, from_tty);
3731 print_symbol_info (FUNCTIONS_DOMAIN,
3732 p->symtab,
3733 p->symbol,
3734 p->block,
3735 p->symtab->filename);
3736 }
3737 else
3738 {
3739 int newlen = (strlen (SYMBOL_LINKAGE_NAME (p->msymbol)) + 3);
3740
3741 if (newlen > len)
3742 {
3743 string = xrealloc (string, newlen);
3744 len = newlen;
3745 }
3746 strcpy (string, "'");
3747 strcat (string, SYMBOL_LINKAGE_NAME (p->msymbol));
3748 strcat (string, "'");
3749
3750 break_command (string, from_tty);
3751 printf_filtered ("<function, no debug info> %s;\n",
3752 SYMBOL_PRINT_NAME (p->msymbol));
3753 }
3754 }
3755
3756 do_cleanups (old_chain);
3757 }
3758 \f
3759
3760 /* Evaluate if NAME matches SYM_TEXT and SYM_TEXT_LEN.
3761
3762 Either sym_text[sym_text_len] != '(' and then we search for any
3763 symbol starting with SYM_TEXT text.
3764
3765 Otherwise sym_text[sym_text_len] == '(' and then we require symbol name to
3766 be terminated at that point. Partial symbol tables do not have parameters
3767 information. */
3768
3769 static int
3770 compare_symbol_name (const char *name, const char *sym_text, int sym_text_len)
3771 {
3772 int (*ncmp) (const char *, const char *, size_t);
3773
3774 ncmp = (case_sensitivity == case_sensitive_on ? strncmp : strncasecmp);
3775
3776 if (ncmp (name, sym_text, sym_text_len) != 0)
3777 return 0;
3778
3779 if (sym_text[sym_text_len] == '(')
3780 {
3781 /* User searches for `name(someth...'. Require NAME to be terminated.
3782 Normally psymtabs and gdbindex have no parameter types so '\0' will be
3783 present but accept even parameters presence. In this case this
3784 function is in fact strcmp_iw but whitespace skipping is not supported
3785 for tab completion. */
3786
3787 if (name[sym_text_len] != '\0' && name[sym_text_len] != '(')
3788 return 0;
3789 }
3790
3791 return 1;
3792 }
3793
3794 /* Free any memory associated with a completion list. */
3795
3796 static void
3797 free_completion_list (char ***list_ptr)
3798 {
3799 int i = 0;
3800 char **list = *list_ptr;
3801
3802 while (list[i] != NULL)
3803 {
3804 xfree (list[i]);
3805 i++;
3806 }
3807 xfree (list);
3808 }
3809
3810 /* Callback for make_cleanup. */
3811
3812 static void
3813 do_free_completion_list (void *list)
3814 {
3815 free_completion_list (list);
3816 }
3817
3818 /* Helper routine for make_symbol_completion_list. */
3819
3820 static int return_val_size;
3821 static int return_val_index;
3822 static char **return_val;
3823
3824 #define COMPLETION_LIST_ADD_SYMBOL(symbol, sym_text, len, text, word) \
3825 completion_list_add_name \
3826 (SYMBOL_NATURAL_NAME (symbol), (sym_text), (len), (text), (word))
3827
3828 /* Test to see if the symbol specified by SYMNAME (which is already
3829 demangled for C++ symbols) matches SYM_TEXT in the first SYM_TEXT_LEN
3830 characters. If so, add it to the current completion list. */
3831
3832 static void
3833 completion_list_add_name (char *symname, char *sym_text, int sym_text_len,
3834 char *text, char *word)
3835 {
3836 int newsize;
3837
3838 /* Clip symbols that cannot match. */
3839 if (!compare_symbol_name (symname, sym_text, sym_text_len))
3840 return;
3841
3842 /* We have a match for a completion, so add SYMNAME to the current list
3843 of matches. Note that the name is moved to freshly malloc'd space. */
3844
3845 {
3846 char *new;
3847
3848 if (word == sym_text)
3849 {
3850 new = xmalloc (strlen (symname) + 5);
3851 strcpy (new, symname);
3852 }
3853 else if (word > sym_text)
3854 {
3855 /* Return some portion of symname. */
3856 new = xmalloc (strlen (symname) + 5);
3857 strcpy (new, symname + (word - sym_text));
3858 }
3859 else
3860 {
3861 /* Return some of SYM_TEXT plus symname. */
3862 new = xmalloc (strlen (symname) + (sym_text - word) + 5);
3863 strncpy (new, word, sym_text - word);
3864 new[sym_text - word] = '\0';
3865 strcat (new, symname);
3866 }
3867
3868 if (return_val_index + 3 > return_val_size)
3869 {
3870 newsize = (return_val_size *= 2) * sizeof (char *);
3871 return_val = (char **) xrealloc ((char *) return_val, newsize);
3872 }
3873 return_val[return_val_index++] = new;
3874 return_val[return_val_index] = NULL;
3875 }
3876 }
3877
3878 /* ObjC: In case we are completing on a selector, look as the msymbol
3879 again and feed all the selectors into the mill. */
3880
3881 static void
3882 completion_list_objc_symbol (struct minimal_symbol *msymbol, char *sym_text,
3883 int sym_text_len, char *text, char *word)
3884 {
3885 static char *tmp = NULL;
3886 static unsigned int tmplen = 0;
3887
3888 char *method, *category, *selector;
3889 char *tmp2 = NULL;
3890
3891 method = SYMBOL_NATURAL_NAME (msymbol);
3892
3893 /* Is it a method? */
3894 if ((method[0] != '-') && (method[0] != '+'))
3895 return;
3896
3897 if (sym_text[0] == '[')
3898 /* Complete on shortened method method. */
3899 completion_list_add_name (method + 1, sym_text, sym_text_len, text, word);
3900
3901 while ((strlen (method) + 1) >= tmplen)
3902 {
3903 if (tmplen == 0)
3904 tmplen = 1024;
3905 else
3906 tmplen *= 2;
3907 tmp = xrealloc (tmp, tmplen);
3908 }
3909 selector = strchr (method, ' ');
3910 if (selector != NULL)
3911 selector++;
3912
3913 category = strchr (method, '(');
3914
3915 if ((category != NULL) && (selector != NULL))
3916 {
3917 memcpy (tmp, method, (category - method));
3918 tmp[category - method] = ' ';
3919 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
3920 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
3921 if (sym_text[0] == '[')
3922 completion_list_add_name (tmp + 1, sym_text, sym_text_len, text, word);
3923 }
3924
3925 if (selector != NULL)
3926 {
3927 /* Complete on selector only. */
3928 strcpy (tmp, selector);
3929 tmp2 = strchr (tmp, ']');
3930 if (tmp2 != NULL)
3931 *tmp2 = '\0';
3932
3933 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
3934 }
3935 }
3936
3937 /* Break the non-quoted text based on the characters which are in
3938 symbols. FIXME: This should probably be language-specific. */
3939
3940 static char *
3941 language_search_unquoted_string (char *text, char *p)
3942 {
3943 for (; p > text; --p)
3944 {
3945 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
3946 continue;
3947 else
3948 {
3949 if ((current_language->la_language == language_objc))
3950 {
3951 if (p[-1] == ':') /* Might be part of a method name. */
3952 continue;
3953 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
3954 p -= 2; /* Beginning of a method name. */
3955 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
3956 { /* Might be part of a method name. */
3957 char *t = p;
3958
3959 /* Seeing a ' ' or a '(' is not conclusive evidence
3960 that we are in the middle of a method name. However,
3961 finding "-[" or "+[" should be pretty un-ambiguous.
3962 Unfortunately we have to find it now to decide. */
3963
3964 while (t > text)
3965 if (isalnum (t[-1]) || t[-1] == '_' ||
3966 t[-1] == ' ' || t[-1] == ':' ||
3967 t[-1] == '(' || t[-1] == ')')
3968 --t;
3969 else
3970 break;
3971
3972 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
3973 p = t - 2; /* Method name detected. */
3974 /* Else we leave with p unchanged. */
3975 }
3976 }
3977 break;
3978 }
3979 }
3980 return p;
3981 }
3982
3983 static void
3984 completion_list_add_fields (struct symbol *sym, char *sym_text,
3985 int sym_text_len, char *text, char *word)
3986 {
3987 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
3988 {
3989 struct type *t = SYMBOL_TYPE (sym);
3990 enum type_code c = TYPE_CODE (t);
3991 int j;
3992
3993 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
3994 for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++)
3995 if (TYPE_FIELD_NAME (t, j))
3996 completion_list_add_name (TYPE_FIELD_NAME (t, j),
3997 sym_text, sym_text_len, text, word);
3998 }
3999 }
4000
4001 /* Type of the user_data argument passed to add_macro_name or
4002 expand_partial_symbol_name. The contents are simply whatever is
4003 needed by completion_list_add_name. */
4004 struct add_name_data
4005 {
4006 char *sym_text;
4007 int sym_text_len;
4008 char *text;
4009 char *word;
4010 };
4011
4012 /* A callback used with macro_for_each and macro_for_each_in_scope.
4013 This adds a macro's name to the current completion list. */
4014
4015 static void
4016 add_macro_name (const char *name, const struct macro_definition *ignore,
4017 struct macro_source_file *ignore2, int ignore3,
4018 void *user_data)
4019 {
4020 struct add_name_data *datum = (struct add_name_data *) user_data;
4021
4022 completion_list_add_name ((char *) name,
4023 datum->sym_text, datum->sym_text_len,
4024 datum->text, datum->word);
4025 }
4026
4027 /* A callback for expand_partial_symbol_names. */
4028
4029 static int
4030 expand_partial_symbol_name (const char *name, void *user_data)
4031 {
4032 struct add_name_data *datum = (struct add_name_data *) user_data;
4033
4034 return compare_symbol_name (name, datum->sym_text, datum->sym_text_len);
4035 }
4036
4037 char **
4038 default_make_symbol_completion_list_break_on (char *text, char *word,
4039 const char *break_on)
4040 {
4041 /* Problem: All of the symbols have to be copied because readline
4042 frees them. I'm not going to worry about this; hopefully there
4043 won't be that many. */
4044
4045 struct symbol *sym;
4046 struct symtab *s;
4047 struct minimal_symbol *msymbol;
4048 struct objfile *objfile;
4049 struct block *b;
4050 const struct block *surrounding_static_block, *surrounding_global_block;
4051 struct dict_iterator iter;
4052 /* The symbol we are completing on. Points in same buffer as text. */
4053 char *sym_text;
4054 /* Length of sym_text. */
4055 int sym_text_len;
4056 struct add_name_data datum;
4057 struct cleanup *back_to;
4058
4059 /* Now look for the symbol we are supposed to complete on. */
4060 {
4061 char *p;
4062 char quote_found;
4063 char *quote_pos = NULL;
4064
4065 /* First see if this is a quoted string. */
4066 quote_found = '\0';
4067 for (p = text; *p != '\0'; ++p)
4068 {
4069 if (quote_found != '\0')
4070 {
4071 if (*p == quote_found)
4072 /* Found close quote. */
4073 quote_found = '\0';
4074 else if (*p == '\\' && p[1] == quote_found)
4075 /* A backslash followed by the quote character
4076 doesn't end the string. */
4077 ++p;
4078 }
4079 else if (*p == '\'' || *p == '"')
4080 {
4081 quote_found = *p;
4082 quote_pos = p;
4083 }
4084 }
4085 if (quote_found == '\'')
4086 /* A string within single quotes can be a symbol, so complete on it. */
4087 sym_text = quote_pos + 1;
4088 else if (quote_found == '"')
4089 /* A double-quoted string is never a symbol, nor does it make sense
4090 to complete it any other way. */
4091 {
4092 return_val = (char **) xmalloc (sizeof (char *));
4093 return_val[0] = NULL;
4094 return return_val;
4095 }
4096 else
4097 {
4098 /* It is not a quoted string. Break it based on the characters
4099 which are in symbols. */
4100 while (p > text)
4101 {
4102 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0'
4103 || p[-1] == ':' || strchr (break_on, p[-1]) != NULL)
4104 --p;
4105 else
4106 break;
4107 }
4108 sym_text = p;
4109 }
4110 }
4111
4112 sym_text_len = strlen (sym_text);
4113
4114 /* Prepare SYM_TEXT_LEN for compare_symbol_name. */
4115
4116 if (current_language->la_language == language_cplus
4117 || current_language->la_language == language_java
4118 || current_language->la_language == language_fortran)
4119 {
4120 /* These languages may have parameters entered by user but they are never
4121 present in the partial symbol tables. */
4122
4123 const char *cs = memchr (sym_text, '(', sym_text_len);
4124
4125 if (cs)
4126 sym_text_len = cs - sym_text;
4127 }
4128 gdb_assert (sym_text[sym_text_len] == '\0' || sym_text[sym_text_len] == '(');
4129
4130 return_val_size = 100;
4131 return_val_index = 0;
4132 return_val = (char **) xmalloc ((return_val_size + 1) * sizeof (char *));
4133 return_val[0] = NULL;
4134 back_to = make_cleanup (do_free_completion_list, &return_val);
4135
4136 datum.sym_text = sym_text;
4137 datum.sym_text_len = sym_text_len;
4138 datum.text = text;
4139 datum.word = word;
4140
4141 /* Look through the partial symtabs for all symbols which begin
4142 by matching SYM_TEXT. Expand all CUs that you find to the list.
4143 The real names will get added by COMPLETION_LIST_ADD_SYMBOL below. */
4144 expand_partial_symbol_names (expand_partial_symbol_name, &datum);
4145
4146 /* At this point scan through the misc symbol vectors and add each
4147 symbol you find to the list. Eventually we want to ignore
4148 anything that isn't a text symbol (everything else will be
4149 handled by the psymtab code above). */
4150
4151 ALL_MSYMBOLS (objfile, msymbol)
4152 {
4153 QUIT;
4154 COMPLETION_LIST_ADD_SYMBOL (msymbol, sym_text, sym_text_len, text, word);
4155
4156 completion_list_objc_symbol (msymbol, sym_text, sym_text_len, text, word);
4157 }
4158
4159 /* Search upwards from currently selected frame (so that we can
4160 complete on local vars). Also catch fields of types defined in
4161 this places which match our text string. Only complete on types
4162 visible from current context. */
4163
4164 b = get_selected_block (0);
4165 surrounding_static_block = block_static_block (b);
4166 surrounding_global_block = block_global_block (b);
4167 if (surrounding_static_block != NULL)
4168 while (b != surrounding_static_block)
4169 {
4170 QUIT;
4171
4172 ALL_BLOCK_SYMBOLS (b, iter, sym)
4173 {
4174 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text,
4175 word);
4176 completion_list_add_fields (sym, sym_text, sym_text_len, text,
4177 word);
4178 }
4179
4180 /* Stop when we encounter an enclosing function. Do not stop for
4181 non-inlined functions - the locals of the enclosing function
4182 are in scope for a nested function. */
4183 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
4184 break;
4185 b = BLOCK_SUPERBLOCK (b);
4186 }
4187
4188 /* Add fields from the file's types; symbols will be added below. */
4189
4190 if (surrounding_static_block != NULL)
4191 ALL_BLOCK_SYMBOLS (surrounding_static_block, iter, sym)
4192 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
4193
4194 if (surrounding_global_block != NULL)
4195 ALL_BLOCK_SYMBOLS (surrounding_global_block, iter, sym)
4196 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
4197
4198 /* Go through the symtabs and check the externs and statics for
4199 symbols which match. */
4200
4201 ALL_PRIMARY_SYMTABS (objfile, s)
4202 {
4203 QUIT;
4204 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
4205 ALL_BLOCK_SYMBOLS (b, iter, sym)
4206 {
4207 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4208 }
4209 }
4210
4211 ALL_PRIMARY_SYMTABS (objfile, s)
4212 {
4213 QUIT;
4214 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
4215 ALL_BLOCK_SYMBOLS (b, iter, sym)
4216 {
4217 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4218 }
4219 }
4220
4221 if (current_language->la_macro_expansion == macro_expansion_c)
4222 {
4223 struct macro_scope *scope;
4224
4225 /* Add any macros visible in the default scope. Note that this
4226 may yield the occasional wrong result, because an expression
4227 might be evaluated in a scope other than the default. For
4228 example, if the user types "break file:line if <TAB>", the
4229 resulting expression will be evaluated at "file:line" -- but
4230 at there does not seem to be a way to detect this at
4231 completion time. */
4232 scope = default_macro_scope ();
4233 if (scope)
4234 {
4235 macro_for_each_in_scope (scope->file, scope->line,
4236 add_macro_name, &datum);
4237 xfree (scope);
4238 }
4239
4240 /* User-defined macros are always visible. */
4241 macro_for_each (macro_user_macros, add_macro_name, &datum);
4242 }
4243
4244 discard_cleanups (back_to);
4245 return (return_val);
4246 }
4247
4248 char **
4249 default_make_symbol_completion_list (char *text, char *word)
4250 {
4251 return default_make_symbol_completion_list_break_on (text, word, "");
4252 }
4253
4254 /* Return a NULL terminated array of all symbols (regardless of class)
4255 which begin by matching TEXT. If the answer is no symbols, then
4256 the return value is an array which contains only a NULL pointer. */
4257
4258 char **
4259 make_symbol_completion_list (char *text, char *word)
4260 {
4261 return current_language->la_make_symbol_completion_list (text, word);
4262 }
4263
4264 /* Like make_symbol_completion_list, but suitable for use as a
4265 completion function. */
4266
4267 char **
4268 make_symbol_completion_list_fn (struct cmd_list_element *ignore,
4269 char *text, char *word)
4270 {
4271 return make_symbol_completion_list (text, word);
4272 }
4273
4274 /* Like make_symbol_completion_list, but returns a list of symbols
4275 defined in a source file FILE. */
4276
4277 char **
4278 make_file_symbol_completion_list (char *text, char *word, char *srcfile)
4279 {
4280 struct symbol *sym;
4281 struct symtab *s;
4282 struct block *b;
4283 struct dict_iterator iter;
4284 /* The symbol we are completing on. Points in same buffer as text. */
4285 char *sym_text;
4286 /* Length of sym_text. */
4287 int sym_text_len;
4288
4289 /* Now look for the symbol we are supposed to complete on.
4290 FIXME: This should be language-specific. */
4291 {
4292 char *p;
4293 char quote_found;
4294 char *quote_pos = NULL;
4295
4296 /* First see if this is a quoted string. */
4297 quote_found = '\0';
4298 for (p = text; *p != '\0'; ++p)
4299 {
4300 if (quote_found != '\0')
4301 {
4302 if (*p == quote_found)
4303 /* Found close quote. */
4304 quote_found = '\0';
4305 else if (*p == '\\' && p[1] == quote_found)
4306 /* A backslash followed by the quote character
4307 doesn't end the string. */
4308 ++p;
4309 }
4310 else if (*p == '\'' || *p == '"')
4311 {
4312 quote_found = *p;
4313 quote_pos = p;
4314 }
4315 }
4316 if (quote_found == '\'')
4317 /* A string within single quotes can be a symbol, so complete on it. */
4318 sym_text = quote_pos + 1;
4319 else if (quote_found == '"')
4320 /* A double-quoted string is never a symbol, nor does it make sense
4321 to complete it any other way. */
4322 {
4323 return_val = (char **) xmalloc (sizeof (char *));
4324 return_val[0] = NULL;
4325 return return_val;
4326 }
4327 else
4328 {
4329 /* Not a quoted string. */
4330 sym_text = language_search_unquoted_string (text, p);
4331 }
4332 }
4333
4334 sym_text_len = strlen (sym_text);
4335
4336 return_val_size = 10;
4337 return_val_index = 0;
4338 return_val = (char **) xmalloc ((return_val_size + 1) * sizeof (char *));
4339 return_val[0] = NULL;
4340
4341 /* Find the symtab for SRCFILE (this loads it if it was not yet read
4342 in). */
4343 s = lookup_symtab (srcfile);
4344 if (s == NULL)
4345 {
4346 /* Maybe they typed the file with leading directories, while the
4347 symbol tables record only its basename. */
4348 const char *tail = lbasename (srcfile);
4349
4350 if (tail > srcfile)
4351 s = lookup_symtab (tail);
4352 }
4353
4354 /* If we have no symtab for that file, return an empty list. */
4355 if (s == NULL)
4356 return (return_val);
4357
4358 /* Go through this symtab and check the externs and statics for
4359 symbols which match. */
4360
4361 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
4362 ALL_BLOCK_SYMBOLS (b, iter, sym)
4363 {
4364 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4365 }
4366
4367 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
4368 ALL_BLOCK_SYMBOLS (b, iter, sym)
4369 {
4370 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4371 }
4372
4373 return (return_val);
4374 }
4375
4376 /* A helper function for make_source_files_completion_list. It adds
4377 another file name to a list of possible completions, growing the
4378 list as necessary. */
4379
4380 static void
4381 add_filename_to_list (const char *fname, char *text, char *word,
4382 char ***list, int *list_used, int *list_alloced)
4383 {
4384 char *new;
4385 size_t fnlen = strlen (fname);
4386
4387 if (*list_used + 1 >= *list_alloced)
4388 {
4389 *list_alloced *= 2;
4390 *list = (char **) xrealloc ((char *) *list,
4391 *list_alloced * sizeof (char *));
4392 }
4393
4394 if (word == text)
4395 {
4396 /* Return exactly fname. */
4397 new = xmalloc (fnlen + 5);
4398 strcpy (new, fname);
4399 }
4400 else if (word > text)
4401 {
4402 /* Return some portion of fname. */
4403 new = xmalloc (fnlen + 5);
4404 strcpy (new, fname + (word - text));
4405 }
4406 else
4407 {
4408 /* Return some of TEXT plus fname. */
4409 new = xmalloc (fnlen + (text - word) + 5);
4410 strncpy (new, word, text - word);
4411 new[text - word] = '\0';
4412 strcat (new, fname);
4413 }
4414 (*list)[*list_used] = new;
4415 (*list)[++*list_used] = NULL;
4416 }
4417
4418 static int
4419 not_interesting_fname (const char *fname)
4420 {
4421 static const char *illegal_aliens[] = {
4422 "_globals_", /* inserted by coff_symtab_read */
4423 NULL
4424 };
4425 int i;
4426
4427 for (i = 0; illegal_aliens[i]; i++)
4428 {
4429 if (filename_cmp (fname, illegal_aliens[i]) == 0)
4430 return 1;
4431 }
4432 return 0;
4433 }
4434
4435 /* An object of this type is passed as the user_data argument to
4436 map_partial_symbol_filenames. */
4437 struct add_partial_filename_data
4438 {
4439 int *first;
4440 char *text;
4441 char *word;
4442 int text_len;
4443 char ***list;
4444 int *list_used;
4445 int *list_alloced;
4446 };
4447
4448 /* A callback for map_partial_symbol_filenames. */
4449
4450 static void
4451 maybe_add_partial_symtab_filename (const char *filename, const char *fullname,
4452 void *user_data)
4453 {
4454 struct add_partial_filename_data *data = user_data;
4455
4456 if (not_interesting_fname (filename))
4457 return;
4458 if (!filename_seen (filename, 1, data->first)
4459 && filename_ncmp (filename, data->text, data->text_len) == 0)
4460 {
4461 /* This file matches for a completion; add it to the
4462 current list of matches. */
4463 add_filename_to_list (filename, data->text, data->word,
4464 data->list, data->list_used, data->list_alloced);
4465 }
4466 else
4467 {
4468 const char *base_name = lbasename (filename);
4469
4470 if (base_name != filename
4471 && !filename_seen (base_name, 1, data->first)
4472 && filename_ncmp (base_name, data->text, data->text_len) == 0)
4473 add_filename_to_list (base_name, data->text, data->word,
4474 data->list, data->list_used, data->list_alloced);
4475 }
4476 }
4477
4478 /* Return a NULL terminated array of all source files whose names
4479 begin with matching TEXT. The file names are looked up in the
4480 symbol tables of this program. If the answer is no matchess, then
4481 the return value is an array which contains only a NULL pointer. */
4482
4483 char **
4484 make_source_files_completion_list (char *text, char *word)
4485 {
4486 struct symtab *s;
4487 struct objfile *objfile;
4488 int first = 1;
4489 int list_alloced = 1;
4490 int list_used = 0;
4491 size_t text_len = strlen (text);
4492 char **list = (char **) xmalloc (list_alloced * sizeof (char *));
4493 const char *base_name;
4494 struct add_partial_filename_data datum;
4495 struct cleanup *back_to;
4496
4497 list[0] = NULL;
4498
4499 if (!have_full_symbols () && !have_partial_symbols ())
4500 return list;
4501
4502 back_to = make_cleanup (do_free_completion_list, &list);
4503
4504 ALL_SYMTABS (objfile, s)
4505 {
4506 if (not_interesting_fname (s->filename))
4507 continue;
4508 if (!filename_seen (s->filename, 1, &first)
4509 && filename_ncmp (s->filename, text, text_len) == 0)
4510 {
4511 /* This file matches for a completion; add it to the current
4512 list of matches. */
4513 add_filename_to_list (s->filename, text, word,
4514 &list, &list_used, &list_alloced);
4515 }
4516 else
4517 {
4518 /* NOTE: We allow the user to type a base name when the
4519 debug info records leading directories, but not the other
4520 way around. This is what subroutines of breakpoint
4521 command do when they parse file names. */
4522 base_name = lbasename (s->filename);
4523 if (base_name != s->filename
4524 && !filename_seen (base_name, 1, &first)
4525 && filename_ncmp (base_name, text, text_len) == 0)
4526 add_filename_to_list (base_name, text, word,
4527 &list, &list_used, &list_alloced);
4528 }
4529 }
4530
4531 datum.first = &first;
4532 datum.text = text;
4533 datum.word = word;
4534 datum.text_len = text_len;
4535 datum.list = &list;
4536 datum.list_used = &list_used;
4537 datum.list_alloced = &list_alloced;
4538 map_partial_symbol_filenames (maybe_add_partial_symtab_filename, &datum,
4539 0 /*need_fullname*/);
4540 discard_cleanups (back_to);
4541
4542 return list;
4543 }
4544
4545 /* Determine if PC is in the prologue of a function. The prologue is the area
4546 between the first instruction of a function, and the first executable line.
4547 Returns 1 if PC *might* be in prologue, 0 if definately *not* in prologue.
4548
4549 If non-zero, func_start is where we think the prologue starts, possibly
4550 by previous examination of symbol table information. */
4551
4552 int
4553 in_prologue (struct gdbarch *gdbarch, CORE_ADDR pc, CORE_ADDR func_start)
4554 {
4555 struct symtab_and_line sal;
4556 CORE_ADDR func_addr, func_end;
4557
4558 /* We have several sources of information we can consult to figure
4559 this out.
4560 - Compilers usually emit line number info that marks the prologue
4561 as its own "source line". So the ending address of that "line"
4562 is the end of the prologue. If available, this is the most
4563 reliable method.
4564 - The minimal symbols and partial symbols, which can usually tell
4565 us the starting and ending addresses of a function.
4566 - If we know the function's start address, we can call the
4567 architecture-defined gdbarch_skip_prologue function to analyze the
4568 instruction stream and guess where the prologue ends.
4569 - Our `func_start' argument; if non-zero, this is the caller's
4570 best guess as to the function's entry point. At the time of
4571 this writing, handle_inferior_event doesn't get this right, so
4572 it should be our last resort. */
4573
4574 /* Consult the partial symbol table, to find which function
4575 the PC is in. */
4576 if (! find_pc_partial_function (pc, NULL, &func_addr, &func_end))
4577 {
4578 CORE_ADDR prologue_end;
4579
4580 /* We don't even have minsym information, so fall back to using
4581 func_start, if given. */
4582 if (! func_start)
4583 return 1; /* We *might* be in a prologue. */
4584
4585 prologue_end = gdbarch_skip_prologue (gdbarch, func_start);
4586
4587 return func_start <= pc && pc < prologue_end;
4588 }
4589
4590 /* If we have line number information for the function, that's
4591 usually pretty reliable. */
4592 sal = find_pc_line (func_addr, 0);
4593
4594 /* Now sal describes the source line at the function's entry point,
4595 which (by convention) is the prologue. The end of that "line",
4596 sal.end, is the end of the prologue.
4597
4598 Note that, for functions whose source code is all on a single
4599 line, the line number information doesn't always end up this way.
4600 So we must verify that our purported end-of-prologue address is
4601 *within* the function, not at its start or end. */
4602 if (sal.line == 0
4603 || sal.end <= func_addr
4604 || func_end <= sal.end)
4605 {
4606 /* We don't have any good line number info, so use the minsym
4607 information, together with the architecture-specific prologue
4608 scanning code. */
4609 CORE_ADDR prologue_end = gdbarch_skip_prologue (gdbarch, func_addr);
4610
4611 return func_addr <= pc && pc < prologue_end;
4612 }
4613
4614 /* We have line number info, and it looks good. */
4615 return func_addr <= pc && pc < sal.end;
4616 }
4617
4618 /* Given PC at the function's start address, attempt to find the
4619 prologue end using SAL information. Return zero if the skip fails.
4620
4621 A non-optimized prologue traditionally has one SAL for the function
4622 and a second for the function body. A single line function has
4623 them both pointing at the same line.
4624
4625 An optimized prologue is similar but the prologue may contain
4626 instructions (SALs) from the instruction body. Need to skip those
4627 while not getting into the function body.
4628
4629 The functions end point and an increasing SAL line are used as
4630 indicators of the prologue's endpoint.
4631
4632 This code is based on the function refine_prologue_limit
4633 (found in ia64). */
4634
4635 CORE_ADDR
4636 skip_prologue_using_sal (struct gdbarch *gdbarch, CORE_ADDR func_addr)
4637 {
4638 struct symtab_and_line prologue_sal;
4639 CORE_ADDR start_pc;
4640 CORE_ADDR end_pc;
4641 struct block *bl;
4642
4643 /* Get an initial range for the function. */
4644 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
4645 start_pc += gdbarch_deprecated_function_start_offset (gdbarch);
4646
4647 prologue_sal = find_pc_line (start_pc, 0);
4648 if (prologue_sal.line != 0)
4649 {
4650 /* For languages other than assembly, treat two consecutive line
4651 entries at the same address as a zero-instruction prologue.
4652 The GNU assembler emits separate line notes for each instruction
4653 in a multi-instruction macro, but compilers generally will not
4654 do this. */
4655 if (prologue_sal.symtab->language != language_asm)
4656 {
4657 struct linetable *linetable = LINETABLE (prologue_sal.symtab);
4658 int idx = 0;
4659
4660 /* Skip any earlier lines, and any end-of-sequence marker
4661 from a previous function. */
4662 while (linetable->item[idx].pc != prologue_sal.pc
4663 || linetable->item[idx].line == 0)
4664 idx++;
4665
4666 if (idx+1 < linetable->nitems
4667 && linetable->item[idx+1].line != 0
4668 && linetable->item[idx+1].pc == start_pc)
4669 return start_pc;
4670 }
4671
4672 /* If there is only one sal that covers the entire function,
4673 then it is probably a single line function, like
4674 "foo(){}". */
4675 if (prologue_sal.end >= end_pc)
4676 return 0;
4677
4678 while (prologue_sal.end < end_pc)
4679 {
4680 struct symtab_and_line sal;
4681
4682 sal = find_pc_line (prologue_sal.end, 0);
4683 if (sal.line == 0)
4684 break;
4685 /* Assume that a consecutive SAL for the same (or larger)
4686 line mark the prologue -> body transition. */
4687 if (sal.line >= prologue_sal.line)
4688 break;
4689
4690 /* The line number is smaller. Check that it's from the
4691 same function, not something inlined. If it's inlined,
4692 then there is no point comparing the line numbers. */
4693 bl = block_for_pc (prologue_sal.end);
4694 while (bl)
4695 {
4696 if (block_inlined_p (bl))
4697 break;
4698 if (BLOCK_FUNCTION (bl))
4699 {
4700 bl = NULL;
4701 break;
4702 }
4703 bl = BLOCK_SUPERBLOCK (bl);
4704 }
4705 if (bl != NULL)
4706 break;
4707
4708 /* The case in which compiler's optimizer/scheduler has
4709 moved instructions into the prologue. We look ahead in
4710 the function looking for address ranges whose
4711 corresponding line number is less the first one that we
4712 found for the function. This is more conservative then
4713 refine_prologue_limit which scans a large number of SALs
4714 looking for any in the prologue. */
4715 prologue_sal = sal;
4716 }
4717 }
4718
4719 if (prologue_sal.end < end_pc)
4720 /* Return the end of this line, or zero if we could not find a
4721 line. */
4722 return prologue_sal.end;
4723 else
4724 /* Don't return END_PC, which is past the end of the function. */
4725 return prologue_sal.pc;
4726 }
4727 \f
4728 struct symtabs_and_lines
4729 decode_line_spec (char *string, int flags)
4730 {
4731 struct symtabs_and_lines sals;
4732 struct symtab_and_line cursal;
4733
4734 if (string == 0)
4735 error (_("Empty line specification."));
4736
4737 /* We use whatever is set as the current source line. We do not try
4738 and get a default or it will recursively call us! */
4739 cursal = get_current_source_symtab_and_line ();
4740
4741 sals = decode_line_1 (&string, flags,
4742 cursal.symtab, cursal.line);
4743
4744 if (*string)
4745 error (_("Junk at end of line specification: %s"), string);
4746 return sals;
4747 }
4748
4749 /* Track MAIN */
4750 static char *name_of_main;
4751 enum language language_of_main = language_unknown;
4752
4753 void
4754 set_main_name (const char *name)
4755 {
4756 if (name_of_main != NULL)
4757 {
4758 xfree (name_of_main);
4759 name_of_main = NULL;
4760 language_of_main = language_unknown;
4761 }
4762 if (name != NULL)
4763 {
4764 name_of_main = xstrdup (name);
4765 language_of_main = language_unknown;
4766 }
4767 }
4768
4769 /* Deduce the name of the main procedure, and set NAME_OF_MAIN
4770 accordingly. */
4771
4772 static void
4773 find_main_name (void)
4774 {
4775 const char *new_main_name;
4776
4777 /* Try to see if the main procedure is in Ada. */
4778 /* FIXME: brobecker/2005-03-07: Another way of doing this would
4779 be to add a new method in the language vector, and call this
4780 method for each language until one of them returns a non-empty
4781 name. This would allow us to remove this hard-coded call to
4782 an Ada function. It is not clear that this is a better approach
4783 at this point, because all methods need to be written in a way
4784 such that false positives never be returned. For instance, it is
4785 important that a method does not return a wrong name for the main
4786 procedure if the main procedure is actually written in a different
4787 language. It is easy to guaranty this with Ada, since we use a
4788 special symbol generated only when the main in Ada to find the name
4789 of the main procedure. It is difficult however to see how this can
4790 be guarantied for languages such as C, for instance. This suggests
4791 that order of call for these methods becomes important, which means
4792 a more complicated approach. */
4793 new_main_name = ada_main_name ();
4794 if (new_main_name != NULL)
4795 {
4796 set_main_name (new_main_name);
4797 return;
4798 }
4799
4800 new_main_name = pascal_main_name ();
4801 if (new_main_name != NULL)
4802 {
4803 set_main_name (new_main_name);
4804 return;
4805 }
4806
4807 /* The languages above didn't identify the name of the main procedure.
4808 Fallback to "main". */
4809 set_main_name ("main");
4810 }
4811
4812 char *
4813 main_name (void)
4814 {
4815 if (name_of_main == NULL)
4816 find_main_name ();
4817
4818 return name_of_main;
4819 }
4820
4821 /* Handle ``executable_changed'' events for the symtab module. */
4822
4823 static void
4824 symtab_observer_executable_changed (void)
4825 {
4826 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
4827 set_main_name (NULL);
4828 }
4829
4830 /* Return 1 if the supplied producer string matches the ARM RealView
4831 compiler (armcc). */
4832
4833 int
4834 producer_is_realview (const char *producer)
4835 {
4836 static const char *const arm_idents[] = {
4837 "ARM C Compiler, ADS",
4838 "Thumb C Compiler, ADS",
4839 "ARM C++ Compiler, ADS",
4840 "Thumb C++ Compiler, ADS",
4841 "ARM/Thumb C/C++ Compiler, RVCT",
4842 "ARM C/C++ Compiler, RVCT"
4843 };
4844 int i;
4845
4846 if (producer == NULL)
4847 return 0;
4848
4849 for (i = 0; i < ARRAY_SIZE (arm_idents); i++)
4850 if (strncmp (producer, arm_idents[i], strlen (arm_idents[i])) == 0)
4851 return 1;
4852
4853 return 0;
4854 }
4855
4856 void
4857 _initialize_symtab (void)
4858 {
4859 add_info ("variables", variables_info, _("\
4860 All global and static variable names, or those matching REGEXP."));
4861 if (dbx_commands)
4862 add_com ("whereis", class_info, variables_info, _("\
4863 All global and static variable names, or those matching REGEXP."));
4864
4865 add_info ("functions", functions_info,
4866 _("All function names, or those matching REGEXP."));
4867
4868 /* FIXME: This command has at least the following problems:
4869 1. It prints builtin types (in a very strange and confusing fashion).
4870 2. It doesn't print right, e.g. with
4871 typedef struct foo *FOO
4872 type_print prints "FOO" when we want to make it (in this situation)
4873 print "struct foo *".
4874 I also think "ptype" or "whatis" is more likely to be useful (but if
4875 there is much disagreement "info types" can be fixed). */
4876 add_info ("types", types_info,
4877 _("All type names, or those matching REGEXP."));
4878
4879 add_info ("sources", sources_info,
4880 _("Source files in the program."));
4881
4882 add_com ("rbreak", class_breakpoint, rbreak_command,
4883 _("Set a breakpoint for all functions matching REGEXP."));
4884
4885 if (xdb_commands)
4886 {
4887 add_com ("lf", class_info, sources_info,
4888 _("Source files in the program"));
4889 add_com ("lg", class_info, variables_info, _("\
4890 All global and static variable names, or those matching REGEXP."));
4891 }
4892
4893 add_setshow_enum_cmd ("multiple-symbols", no_class,
4894 multiple_symbols_modes, &multiple_symbols_mode,
4895 _("\
4896 Set the debugger behavior when more than one symbol are possible matches\n\
4897 in an expression."), _("\
4898 Show how the debugger handles ambiguities in expressions."), _("\
4899 Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
4900 NULL, NULL, &setlist, &showlist);
4901
4902 add_setshow_boolean_cmd ("basenames-may-differ", class_obscure,
4903 &basenames_may_differ, _("\
4904 Set whether a source file may have multiple base names."), _("\
4905 Show whether a source file may have multiple base names."), _("\
4906 (A \"base name\" is the name of a file with the directory part removed.\n\
4907 Example: The base name of \"/home/user/hello.c\" is \"hello.c\".)\n\
4908 If set, GDB will canonicalize file names (e.g., expand symlinks)\n\
4909 before comparing them. Canonicalization is an expensive operation,\n\
4910 but it allows the same file be known by more than one base name.\n\
4911 If not set (the default), all source files are assumed to have just\n\
4912 one base name, and gdb will do file name comparisons more efficiently."),
4913 NULL, NULL,
4914 &setlist, &showlist);
4915
4916 observer_attach_executable_changed (symtab_observer_executable_changed);
4917 }
This page took 0.1496 seconds and 4 git commands to generate.