gdb: Fix build failure with GCC 7
[deliverable/binutils-gdb.git] / gdb / symtab.c
1 /* Symbol table lookup for the GNU debugger, GDB.
2
3 Copyright (C) 1986-2017 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "gdbcore.h"
24 #include "frame.h"
25 #include "target.h"
26 #include "value.h"
27 #include "symfile.h"
28 #include "objfiles.h"
29 #include "gdbcmd.h"
30 #include "gdb_regex.h"
31 #include "expression.h"
32 #include "language.h"
33 #include "demangle.h"
34 #include "inferior.h"
35 #include "source.h"
36 #include "filenames.h" /* for FILENAME_CMP */
37 #include "objc-lang.h"
38 #include "d-lang.h"
39 #include "ada-lang.h"
40 #include "go-lang.h"
41 #include "p-lang.h"
42 #include "addrmap.h"
43 #include "cli/cli-utils.h"
44 #include "fnmatch.h"
45 #include "hashtab.h"
46
47 #include "gdb_obstack.h"
48 #include "block.h"
49 #include "dictionary.h"
50
51 #include <sys/types.h>
52 #include <fcntl.h>
53 #include <sys/stat.h>
54 #include <ctype.h>
55 #include "cp-abi.h"
56 #include "cp-support.h"
57 #include "observer.h"
58 #include "solist.h"
59 #include "macrotab.h"
60 #include "macroscope.h"
61
62 #include "parser-defs.h"
63 #include "completer.h"
64 #include "progspace-and-thread.h"
65 #include "common/gdb_optional.h"
66 #include "filename-seen-cache.h"
67 #include "arch-utils.h"
68
69 /* Forward declarations for local functions. */
70
71 static void rbreak_command (char *, int);
72
73 static int find_line_common (struct linetable *, int, int *, int);
74
75 static struct block_symbol
76 lookup_symbol_aux (const char *name,
77 const struct block *block,
78 const domain_enum domain,
79 enum language language,
80 struct field_of_this_result *);
81
82 static
83 struct block_symbol lookup_local_symbol (const char *name,
84 const struct block *block,
85 const domain_enum domain,
86 enum language language);
87
88 static struct block_symbol
89 lookup_symbol_in_objfile (struct objfile *objfile, int block_index,
90 const char *name, const domain_enum domain);
91
92 /* See symtab.h. */
93 const struct block_symbol null_block_symbol = { NULL, NULL };
94
95 extern initialize_file_ftype _initialize_symtab;
96
97 /* Program space key for finding name and language of "main". */
98
99 static const struct program_space_data *main_progspace_key;
100
101 /* Type of the data stored on the program space. */
102
103 struct main_info
104 {
105 /* Name of "main". */
106
107 char *name_of_main;
108
109 /* Language of "main". */
110
111 enum language language_of_main;
112 };
113
114 /* Program space key for finding its symbol cache. */
115
116 static const struct program_space_data *symbol_cache_key;
117
118 /* The default symbol cache size.
119 There is no extra cpu cost for large N (except when flushing the cache,
120 which is rare). The value here is just a first attempt. A better default
121 value may be higher or lower. A prime number can make up for a bad hash
122 computation, so that's why the number is what it is. */
123 #define DEFAULT_SYMBOL_CACHE_SIZE 1021
124
125 /* The maximum symbol cache size.
126 There's no method to the decision of what value to use here, other than
127 there's no point in allowing a user typo to make gdb consume all memory. */
128 #define MAX_SYMBOL_CACHE_SIZE (1024*1024)
129
130 /* symbol_cache_lookup returns this if a previous lookup failed to find the
131 symbol in any objfile. */
132 #define SYMBOL_LOOKUP_FAILED \
133 ((struct block_symbol) {(struct symbol *) 1, NULL})
134 #define SYMBOL_LOOKUP_FAILED_P(SIB) (SIB.symbol == (struct symbol *) 1)
135
136 /* Recording lookups that don't find the symbol is just as important, if not
137 more so, than recording found symbols. */
138
139 enum symbol_cache_slot_state
140 {
141 SYMBOL_SLOT_UNUSED,
142 SYMBOL_SLOT_NOT_FOUND,
143 SYMBOL_SLOT_FOUND
144 };
145
146 struct symbol_cache_slot
147 {
148 enum symbol_cache_slot_state state;
149
150 /* The objfile that was current when the symbol was looked up.
151 This is only needed for global blocks, but for simplicity's sake
152 we allocate the space for both. If data shows the extra space used
153 for static blocks is a problem, we can split things up then.
154
155 Global blocks need cache lookup to include the objfile context because
156 we need to account for gdbarch_iterate_over_objfiles_in_search_order
157 which can traverse objfiles in, effectively, any order, depending on
158 the current objfile, thus affecting which symbol is found. Normally,
159 only the current objfile is searched first, and then the rest are
160 searched in recorded order; but putting cache lookup inside
161 gdbarch_iterate_over_objfiles_in_search_order would be awkward.
162 Instead we just make the current objfile part of the context of
163 cache lookup. This means we can record the same symbol multiple times,
164 each with a different "current objfile" that was in effect when the
165 lookup was saved in the cache, but cache space is pretty cheap. */
166 const struct objfile *objfile_context;
167
168 union
169 {
170 struct block_symbol found;
171 struct
172 {
173 char *name;
174 domain_enum domain;
175 } not_found;
176 } value;
177 };
178
179 /* Symbols don't specify global vs static block.
180 So keep them in separate caches. */
181
182 struct block_symbol_cache
183 {
184 unsigned int hits;
185 unsigned int misses;
186 unsigned int collisions;
187
188 /* SYMBOLS is a variable length array of this size.
189 One can imagine that in general one cache (global/static) should be a
190 fraction of the size of the other, but there's no data at the moment
191 on which to decide. */
192 unsigned int size;
193
194 struct symbol_cache_slot symbols[1];
195 };
196
197 /* The symbol cache.
198
199 Searching for symbols in the static and global blocks over multiple objfiles
200 again and again can be slow, as can searching very big objfiles. This is a
201 simple cache to improve symbol lookup performance, which is critical to
202 overall gdb performance.
203
204 Symbols are hashed on the name, its domain, and block.
205 They are also hashed on their objfile for objfile-specific lookups. */
206
207 struct symbol_cache
208 {
209 struct block_symbol_cache *global_symbols;
210 struct block_symbol_cache *static_symbols;
211 };
212
213 /* When non-zero, print debugging messages related to symtab creation. */
214 unsigned int symtab_create_debug = 0;
215
216 /* When non-zero, print debugging messages related to symbol lookup. */
217 unsigned int symbol_lookup_debug = 0;
218
219 /* The size of the cache is staged here. */
220 static unsigned int new_symbol_cache_size = DEFAULT_SYMBOL_CACHE_SIZE;
221
222 /* The current value of the symbol cache size.
223 This is saved so that if the user enters a value too big we can restore
224 the original value from here. */
225 static unsigned int symbol_cache_size = DEFAULT_SYMBOL_CACHE_SIZE;
226
227 /* Non-zero if a file may be known by two different basenames.
228 This is the uncommon case, and significantly slows down gdb.
229 Default set to "off" to not slow down the common case. */
230 int basenames_may_differ = 0;
231
232 /* Allow the user to configure the debugger behavior with respect
233 to multiple-choice menus when more than one symbol matches during
234 a symbol lookup. */
235
236 const char multiple_symbols_ask[] = "ask";
237 const char multiple_symbols_all[] = "all";
238 const char multiple_symbols_cancel[] = "cancel";
239 static const char *const multiple_symbols_modes[] =
240 {
241 multiple_symbols_ask,
242 multiple_symbols_all,
243 multiple_symbols_cancel,
244 NULL
245 };
246 static const char *multiple_symbols_mode = multiple_symbols_all;
247
248 /* Read-only accessor to AUTO_SELECT_MODE. */
249
250 const char *
251 multiple_symbols_select_mode (void)
252 {
253 return multiple_symbols_mode;
254 }
255
256 /* Return the name of a domain_enum. */
257
258 const char *
259 domain_name (domain_enum e)
260 {
261 switch (e)
262 {
263 case UNDEF_DOMAIN: return "UNDEF_DOMAIN";
264 case VAR_DOMAIN: return "VAR_DOMAIN";
265 case STRUCT_DOMAIN: return "STRUCT_DOMAIN";
266 case MODULE_DOMAIN: return "MODULE_DOMAIN";
267 case LABEL_DOMAIN: return "LABEL_DOMAIN";
268 case COMMON_BLOCK_DOMAIN: return "COMMON_BLOCK_DOMAIN";
269 default: gdb_assert_not_reached ("bad domain_enum");
270 }
271 }
272
273 /* Return the name of a search_domain . */
274
275 const char *
276 search_domain_name (enum search_domain e)
277 {
278 switch (e)
279 {
280 case VARIABLES_DOMAIN: return "VARIABLES_DOMAIN";
281 case FUNCTIONS_DOMAIN: return "FUNCTIONS_DOMAIN";
282 case TYPES_DOMAIN: return "TYPES_DOMAIN";
283 case ALL_DOMAIN: return "ALL_DOMAIN";
284 default: gdb_assert_not_reached ("bad search_domain");
285 }
286 }
287
288 /* See symtab.h. */
289
290 struct symtab *
291 compunit_primary_filetab (const struct compunit_symtab *cust)
292 {
293 gdb_assert (COMPUNIT_FILETABS (cust) != NULL);
294
295 /* The primary file symtab is the first one in the list. */
296 return COMPUNIT_FILETABS (cust);
297 }
298
299 /* See symtab.h. */
300
301 enum language
302 compunit_language (const struct compunit_symtab *cust)
303 {
304 struct symtab *symtab = compunit_primary_filetab (cust);
305
306 /* The language of the compunit symtab is the language of its primary
307 source file. */
308 return SYMTAB_LANGUAGE (symtab);
309 }
310
311 /* See whether FILENAME matches SEARCH_NAME using the rule that we
312 advertise to the user. (The manual's description of linespecs
313 describes what we advertise). Returns true if they match, false
314 otherwise. */
315
316 int
317 compare_filenames_for_search (const char *filename, const char *search_name)
318 {
319 int len = strlen (filename);
320 size_t search_len = strlen (search_name);
321
322 if (len < search_len)
323 return 0;
324
325 /* The tail of FILENAME must match. */
326 if (FILENAME_CMP (filename + len - search_len, search_name) != 0)
327 return 0;
328
329 /* Either the names must completely match, or the character
330 preceding the trailing SEARCH_NAME segment of FILENAME must be a
331 directory separator.
332
333 The check !IS_ABSOLUTE_PATH ensures SEARCH_NAME "/dir/file.c"
334 cannot match FILENAME "/path//dir/file.c" - as user has requested
335 absolute path. The sama applies for "c:\file.c" possibly
336 incorrectly hypothetically matching "d:\dir\c:\file.c".
337
338 The HAS_DRIVE_SPEC purpose is to make FILENAME "c:file.c"
339 compatible with SEARCH_NAME "file.c". In such case a compiler had
340 to put the "c:file.c" name into debug info. Such compatibility
341 works only on GDB built for DOS host. */
342 return (len == search_len
343 || (!IS_ABSOLUTE_PATH (search_name)
344 && IS_DIR_SEPARATOR (filename[len - search_len - 1]))
345 || (HAS_DRIVE_SPEC (filename)
346 && STRIP_DRIVE_SPEC (filename) == &filename[len - search_len]));
347 }
348
349 /* Same as compare_filenames_for_search, but for glob-style patterns.
350 Heads up on the order of the arguments. They match the order of
351 compare_filenames_for_search, but it's the opposite of the order of
352 arguments to gdb_filename_fnmatch. */
353
354 int
355 compare_glob_filenames_for_search (const char *filename,
356 const char *search_name)
357 {
358 /* We rely on the property of glob-style patterns with FNM_FILE_NAME that
359 all /s have to be explicitly specified. */
360 int file_path_elements = count_path_elements (filename);
361 int search_path_elements = count_path_elements (search_name);
362
363 if (search_path_elements > file_path_elements)
364 return 0;
365
366 if (IS_ABSOLUTE_PATH (search_name))
367 {
368 return (search_path_elements == file_path_elements
369 && gdb_filename_fnmatch (search_name, filename,
370 FNM_FILE_NAME | FNM_NOESCAPE) == 0);
371 }
372
373 {
374 const char *file_to_compare
375 = strip_leading_path_elements (filename,
376 file_path_elements - search_path_elements);
377
378 return gdb_filename_fnmatch (search_name, file_to_compare,
379 FNM_FILE_NAME | FNM_NOESCAPE) == 0;
380 }
381 }
382
383 /* Check for a symtab of a specific name by searching some symtabs.
384 This is a helper function for callbacks of iterate_over_symtabs.
385
386 If NAME is not absolute, then REAL_PATH is NULL
387 If NAME is absolute, then REAL_PATH is the gdb_realpath form of NAME.
388
389 The return value, NAME, REAL_PATH and CALLBACK are identical to the
390 `map_symtabs_matching_filename' method of quick_symbol_functions.
391
392 FIRST and AFTER_LAST indicate the range of compunit symtabs to search.
393 Each symtab within the specified compunit symtab is also searched.
394 AFTER_LAST is one past the last compunit symtab to search; NULL means to
395 search until the end of the list. */
396
397 bool
398 iterate_over_some_symtabs (const char *name,
399 const char *real_path,
400 struct compunit_symtab *first,
401 struct compunit_symtab *after_last,
402 gdb::function_view<bool (symtab *)> callback)
403 {
404 struct compunit_symtab *cust;
405 struct symtab *s;
406 const char* base_name = lbasename (name);
407
408 for (cust = first; cust != NULL && cust != after_last; cust = cust->next)
409 {
410 ALL_COMPUNIT_FILETABS (cust, s)
411 {
412 if (compare_filenames_for_search (s->filename, name))
413 {
414 if (callback (s))
415 return true;
416 continue;
417 }
418
419 /* Before we invoke realpath, which can get expensive when many
420 files are involved, do a quick comparison of the basenames. */
421 if (! basenames_may_differ
422 && FILENAME_CMP (base_name, lbasename (s->filename)) != 0)
423 continue;
424
425 if (compare_filenames_for_search (symtab_to_fullname (s), name))
426 {
427 if (callback (s))
428 return true;
429 continue;
430 }
431
432 /* If the user gave us an absolute path, try to find the file in
433 this symtab and use its absolute path. */
434 if (real_path != NULL)
435 {
436 const char *fullname = symtab_to_fullname (s);
437
438 gdb_assert (IS_ABSOLUTE_PATH (real_path));
439 gdb_assert (IS_ABSOLUTE_PATH (name));
440 if (FILENAME_CMP (real_path, fullname) == 0)
441 {
442 if (callback (s))
443 return true;
444 continue;
445 }
446 }
447 }
448 }
449
450 return false;
451 }
452
453 /* Check for a symtab of a specific name; first in symtabs, then in
454 psymtabs. *If* there is no '/' in the name, a match after a '/'
455 in the symtab filename will also work.
456
457 Calls CALLBACK with each symtab that is found. If CALLBACK returns
458 true, the search stops. */
459
460 void
461 iterate_over_symtabs (const char *name,
462 gdb::function_view<bool (symtab *)> callback)
463 {
464 struct objfile *objfile;
465 gdb::unique_xmalloc_ptr<char> real_path;
466
467 /* Here we are interested in canonicalizing an absolute path, not
468 absolutizing a relative path. */
469 if (IS_ABSOLUTE_PATH (name))
470 {
471 real_path.reset (gdb_realpath (name));
472 gdb_assert (IS_ABSOLUTE_PATH (real_path.get ()));
473 }
474
475 ALL_OBJFILES (objfile)
476 {
477 if (iterate_over_some_symtabs (name, real_path.get (),
478 objfile->compunit_symtabs, NULL,
479 callback))
480 return;
481 }
482
483 /* Same search rules as above apply here, but now we look thru the
484 psymtabs. */
485
486 ALL_OBJFILES (objfile)
487 {
488 if (objfile->sf
489 && objfile->sf->qf->map_symtabs_matching_filename (objfile,
490 name,
491 real_path.get (),
492 callback))
493 return;
494 }
495 }
496
497 /* A wrapper for iterate_over_symtabs that returns the first matching
498 symtab, or NULL. */
499
500 struct symtab *
501 lookup_symtab (const char *name)
502 {
503 struct symtab *result = NULL;
504
505 iterate_over_symtabs (name, [&] (symtab *symtab)
506 {
507 result = symtab;
508 return true;
509 });
510
511 return result;
512 }
513
514 \f
515 /* Mangle a GDB method stub type. This actually reassembles the pieces of the
516 full method name, which consist of the class name (from T), the unadorned
517 method name from METHOD_ID, and the signature for the specific overload,
518 specified by SIGNATURE_ID. Note that this function is g++ specific. */
519
520 char *
521 gdb_mangle_name (struct type *type, int method_id, int signature_id)
522 {
523 int mangled_name_len;
524 char *mangled_name;
525 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
526 struct fn_field *method = &f[signature_id];
527 const char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
528 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
529 const char *newname = type_name_no_tag (type);
530
531 /* Does the form of physname indicate that it is the full mangled name
532 of a constructor (not just the args)? */
533 int is_full_physname_constructor;
534
535 int is_constructor;
536 int is_destructor = is_destructor_name (physname);
537 /* Need a new type prefix. */
538 const char *const_prefix = method->is_const ? "C" : "";
539 const char *volatile_prefix = method->is_volatile ? "V" : "";
540 char buf[20];
541 int len = (newname == NULL ? 0 : strlen (newname));
542
543 /* Nothing to do if physname already contains a fully mangled v3 abi name
544 or an operator name. */
545 if ((physname[0] == '_' && physname[1] == 'Z')
546 || is_operator_name (field_name))
547 return xstrdup (physname);
548
549 is_full_physname_constructor = is_constructor_name (physname);
550
551 is_constructor = is_full_physname_constructor
552 || (newname && strcmp (field_name, newname) == 0);
553
554 if (!is_destructor)
555 is_destructor = (startswith (physname, "__dt"));
556
557 if (is_destructor || is_full_physname_constructor)
558 {
559 mangled_name = (char *) xmalloc (strlen (physname) + 1);
560 strcpy (mangled_name, physname);
561 return mangled_name;
562 }
563
564 if (len == 0)
565 {
566 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
567 }
568 else if (physname[0] == 't' || physname[0] == 'Q')
569 {
570 /* The physname for template and qualified methods already includes
571 the class name. */
572 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
573 newname = NULL;
574 len = 0;
575 }
576 else
577 {
578 xsnprintf (buf, sizeof (buf), "__%s%s%d", const_prefix,
579 volatile_prefix, len);
580 }
581 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
582 + strlen (buf) + len + strlen (physname) + 1);
583
584 mangled_name = (char *) xmalloc (mangled_name_len);
585 if (is_constructor)
586 mangled_name[0] = '\0';
587 else
588 strcpy (mangled_name, field_name);
589
590 strcat (mangled_name, buf);
591 /* If the class doesn't have a name, i.e. newname NULL, then we just
592 mangle it using 0 for the length of the class. Thus it gets mangled
593 as something starting with `::' rather than `classname::'. */
594 if (newname != NULL)
595 strcat (mangled_name, newname);
596
597 strcat (mangled_name, physname);
598 return (mangled_name);
599 }
600
601 /* Set the demangled name of GSYMBOL to NAME. NAME must be already
602 correctly allocated. */
603
604 void
605 symbol_set_demangled_name (struct general_symbol_info *gsymbol,
606 const char *name,
607 struct obstack *obstack)
608 {
609 if (gsymbol->language == language_ada)
610 {
611 if (name == NULL)
612 {
613 gsymbol->ada_mangled = 0;
614 gsymbol->language_specific.obstack = obstack;
615 }
616 else
617 {
618 gsymbol->ada_mangled = 1;
619 gsymbol->language_specific.demangled_name = name;
620 }
621 }
622 else
623 gsymbol->language_specific.demangled_name = name;
624 }
625
626 /* Return the demangled name of GSYMBOL. */
627
628 const char *
629 symbol_get_demangled_name (const struct general_symbol_info *gsymbol)
630 {
631 if (gsymbol->language == language_ada)
632 {
633 if (!gsymbol->ada_mangled)
634 return NULL;
635 /* Fall through. */
636 }
637
638 return gsymbol->language_specific.demangled_name;
639 }
640
641 \f
642 /* Initialize the language dependent portion of a symbol
643 depending upon the language for the symbol. */
644
645 void
646 symbol_set_language (struct general_symbol_info *gsymbol,
647 enum language language,
648 struct obstack *obstack)
649 {
650 gsymbol->language = language;
651 if (gsymbol->language == language_cplus
652 || gsymbol->language == language_d
653 || gsymbol->language == language_go
654 || gsymbol->language == language_objc
655 || gsymbol->language == language_fortran)
656 {
657 symbol_set_demangled_name (gsymbol, NULL, obstack);
658 }
659 else if (gsymbol->language == language_ada)
660 {
661 gdb_assert (gsymbol->ada_mangled == 0);
662 gsymbol->language_specific.obstack = obstack;
663 }
664 else
665 {
666 memset (&gsymbol->language_specific, 0,
667 sizeof (gsymbol->language_specific));
668 }
669 }
670
671 /* Functions to initialize a symbol's mangled name. */
672
673 /* Objects of this type are stored in the demangled name hash table. */
674 struct demangled_name_entry
675 {
676 const char *mangled;
677 char demangled[1];
678 };
679
680 /* Hash function for the demangled name hash. */
681
682 static hashval_t
683 hash_demangled_name_entry (const void *data)
684 {
685 const struct demangled_name_entry *e
686 = (const struct demangled_name_entry *) data;
687
688 return htab_hash_string (e->mangled);
689 }
690
691 /* Equality function for the demangled name hash. */
692
693 static int
694 eq_demangled_name_entry (const void *a, const void *b)
695 {
696 const struct demangled_name_entry *da
697 = (const struct demangled_name_entry *) a;
698 const struct demangled_name_entry *db
699 = (const struct demangled_name_entry *) b;
700
701 return strcmp (da->mangled, db->mangled) == 0;
702 }
703
704 /* Create the hash table used for demangled names. Each hash entry is
705 a pair of strings; one for the mangled name and one for the demangled
706 name. The entry is hashed via just the mangled name. */
707
708 static void
709 create_demangled_names_hash (struct objfile *objfile)
710 {
711 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
712 The hash table code will round this up to the next prime number.
713 Choosing a much larger table size wastes memory, and saves only about
714 1% in symbol reading. */
715
716 objfile->per_bfd->demangled_names_hash = htab_create_alloc
717 (256, hash_demangled_name_entry, eq_demangled_name_entry,
718 NULL, xcalloc, xfree);
719 }
720
721 /* Try to determine the demangled name for a symbol, based on the
722 language of that symbol. If the language is set to language_auto,
723 it will attempt to find any demangling algorithm that works and
724 then set the language appropriately. The returned name is allocated
725 by the demangler and should be xfree'd. */
726
727 static char *
728 symbol_find_demangled_name (struct general_symbol_info *gsymbol,
729 const char *mangled)
730 {
731 char *demangled = NULL;
732 int i;
733 int recognized;
734
735 if (gsymbol->language == language_unknown)
736 gsymbol->language = language_auto;
737
738 if (gsymbol->language != language_auto)
739 {
740 const struct language_defn *lang = language_def (gsymbol->language);
741
742 language_sniff_from_mangled_name (lang, mangled, &demangled);
743 return demangled;
744 }
745
746 for (i = language_unknown; i < nr_languages; ++i)
747 {
748 enum language l = (enum language) i;
749 const struct language_defn *lang = language_def (l);
750
751 if (language_sniff_from_mangled_name (lang, mangled, &demangled))
752 {
753 gsymbol->language = l;
754 return demangled;
755 }
756 }
757
758 return NULL;
759 }
760
761 /* Set both the mangled and demangled (if any) names for GSYMBOL based
762 on LINKAGE_NAME and LEN. Ordinarily, NAME is copied onto the
763 objfile's obstack; but if COPY_NAME is 0 and if NAME is
764 NUL-terminated, then this function assumes that NAME is already
765 correctly saved (either permanently or with a lifetime tied to the
766 objfile), and it will not be copied.
767
768 The hash table corresponding to OBJFILE is used, and the memory
769 comes from the per-BFD storage_obstack. LINKAGE_NAME is copied,
770 so the pointer can be discarded after calling this function. */
771
772 void
773 symbol_set_names (struct general_symbol_info *gsymbol,
774 const char *linkage_name, int len, int copy_name,
775 struct objfile *objfile)
776 {
777 struct demangled_name_entry **slot;
778 /* A 0-terminated copy of the linkage name. */
779 const char *linkage_name_copy;
780 struct demangled_name_entry entry;
781 struct objfile_per_bfd_storage *per_bfd = objfile->per_bfd;
782
783 if (gsymbol->language == language_ada)
784 {
785 /* In Ada, we do the symbol lookups using the mangled name, so
786 we can save some space by not storing the demangled name. */
787 if (!copy_name)
788 gsymbol->name = linkage_name;
789 else
790 {
791 char *name = (char *) obstack_alloc (&per_bfd->storage_obstack,
792 len + 1);
793
794 memcpy (name, linkage_name, len);
795 name[len] = '\0';
796 gsymbol->name = name;
797 }
798 symbol_set_demangled_name (gsymbol, NULL, &per_bfd->storage_obstack);
799
800 return;
801 }
802
803 if (per_bfd->demangled_names_hash == NULL)
804 create_demangled_names_hash (objfile);
805
806 if (linkage_name[len] != '\0')
807 {
808 char *alloc_name;
809
810 alloc_name = (char *) alloca (len + 1);
811 memcpy (alloc_name, linkage_name, len);
812 alloc_name[len] = '\0';
813
814 linkage_name_copy = alloc_name;
815 }
816 else
817 linkage_name_copy = linkage_name;
818
819 entry.mangled = linkage_name_copy;
820 slot = ((struct demangled_name_entry **)
821 htab_find_slot (per_bfd->demangled_names_hash,
822 &entry, INSERT));
823
824 /* If this name is not in the hash table, add it. */
825 if (*slot == NULL
826 /* A C version of the symbol may have already snuck into the table.
827 This happens to, e.g., main.init (__go_init_main). Cope. */
828 || (gsymbol->language == language_go
829 && (*slot)->demangled[0] == '\0'))
830 {
831 char *demangled_name = symbol_find_demangled_name (gsymbol,
832 linkage_name_copy);
833 int demangled_len = demangled_name ? strlen (demangled_name) : 0;
834
835 /* Suppose we have demangled_name==NULL, copy_name==0, and
836 linkage_name_copy==linkage_name. In this case, we already have the
837 mangled name saved, and we don't have a demangled name. So,
838 you might think we could save a little space by not recording
839 this in the hash table at all.
840
841 It turns out that it is actually important to still save such
842 an entry in the hash table, because storing this name gives
843 us better bcache hit rates for partial symbols. */
844 if (!copy_name && linkage_name_copy == linkage_name)
845 {
846 *slot
847 = ((struct demangled_name_entry *)
848 obstack_alloc (&per_bfd->storage_obstack,
849 offsetof (struct demangled_name_entry, demangled)
850 + demangled_len + 1));
851 (*slot)->mangled = linkage_name;
852 }
853 else
854 {
855 char *mangled_ptr;
856
857 /* If we must copy the mangled name, put it directly after
858 the demangled name so we can have a single
859 allocation. */
860 *slot
861 = ((struct demangled_name_entry *)
862 obstack_alloc (&per_bfd->storage_obstack,
863 offsetof (struct demangled_name_entry, demangled)
864 + len + demangled_len + 2));
865 mangled_ptr = &((*slot)->demangled[demangled_len + 1]);
866 strcpy (mangled_ptr, linkage_name_copy);
867 (*slot)->mangled = mangled_ptr;
868 }
869
870 if (demangled_name != NULL)
871 {
872 strcpy ((*slot)->demangled, demangled_name);
873 xfree (demangled_name);
874 }
875 else
876 (*slot)->demangled[0] = '\0';
877 }
878
879 gsymbol->name = (*slot)->mangled;
880 if ((*slot)->demangled[0] != '\0')
881 symbol_set_demangled_name (gsymbol, (*slot)->demangled,
882 &per_bfd->storage_obstack);
883 else
884 symbol_set_demangled_name (gsymbol, NULL, &per_bfd->storage_obstack);
885 }
886
887 /* Return the source code name of a symbol. In languages where
888 demangling is necessary, this is the demangled name. */
889
890 const char *
891 symbol_natural_name (const struct general_symbol_info *gsymbol)
892 {
893 switch (gsymbol->language)
894 {
895 case language_cplus:
896 case language_d:
897 case language_go:
898 case language_objc:
899 case language_fortran:
900 if (symbol_get_demangled_name (gsymbol) != NULL)
901 return symbol_get_demangled_name (gsymbol);
902 break;
903 case language_ada:
904 return ada_decode_symbol (gsymbol);
905 default:
906 break;
907 }
908 return gsymbol->name;
909 }
910
911 /* Return the demangled name for a symbol based on the language for
912 that symbol. If no demangled name exists, return NULL. */
913
914 const char *
915 symbol_demangled_name (const struct general_symbol_info *gsymbol)
916 {
917 const char *dem_name = NULL;
918
919 switch (gsymbol->language)
920 {
921 case language_cplus:
922 case language_d:
923 case language_go:
924 case language_objc:
925 case language_fortran:
926 dem_name = symbol_get_demangled_name (gsymbol);
927 break;
928 case language_ada:
929 dem_name = ada_decode_symbol (gsymbol);
930 break;
931 default:
932 break;
933 }
934 return dem_name;
935 }
936
937 /* Return the search name of a symbol---generally the demangled or
938 linkage name of the symbol, depending on how it will be searched for.
939 If there is no distinct demangled name, then returns the same value
940 (same pointer) as SYMBOL_LINKAGE_NAME. */
941
942 const char *
943 symbol_search_name (const struct general_symbol_info *gsymbol)
944 {
945 if (gsymbol->language == language_ada)
946 return gsymbol->name;
947 else
948 return symbol_natural_name (gsymbol);
949 }
950
951 /* Initialize the structure fields to zero values. */
952
953 void
954 init_sal (struct symtab_and_line *sal)
955 {
956 memset (sal, 0, sizeof (*sal));
957 }
958 \f
959
960 /* Return 1 if the two sections are the same, or if they could
961 plausibly be copies of each other, one in an original object
962 file and another in a separated debug file. */
963
964 int
965 matching_obj_sections (struct obj_section *obj_first,
966 struct obj_section *obj_second)
967 {
968 asection *first = obj_first? obj_first->the_bfd_section : NULL;
969 asection *second = obj_second? obj_second->the_bfd_section : NULL;
970 struct objfile *obj;
971
972 /* If they're the same section, then they match. */
973 if (first == second)
974 return 1;
975
976 /* If either is NULL, give up. */
977 if (first == NULL || second == NULL)
978 return 0;
979
980 /* This doesn't apply to absolute symbols. */
981 if (first->owner == NULL || second->owner == NULL)
982 return 0;
983
984 /* If they're in the same object file, they must be different sections. */
985 if (first->owner == second->owner)
986 return 0;
987
988 /* Check whether the two sections are potentially corresponding. They must
989 have the same size, address, and name. We can't compare section indexes,
990 which would be more reliable, because some sections may have been
991 stripped. */
992 if (bfd_get_section_size (first) != bfd_get_section_size (second))
993 return 0;
994
995 /* In-memory addresses may start at a different offset, relativize them. */
996 if (bfd_get_section_vma (first->owner, first)
997 - bfd_get_start_address (first->owner)
998 != bfd_get_section_vma (second->owner, second)
999 - bfd_get_start_address (second->owner))
1000 return 0;
1001
1002 if (bfd_get_section_name (first->owner, first) == NULL
1003 || bfd_get_section_name (second->owner, second) == NULL
1004 || strcmp (bfd_get_section_name (first->owner, first),
1005 bfd_get_section_name (second->owner, second)) != 0)
1006 return 0;
1007
1008 /* Otherwise check that they are in corresponding objfiles. */
1009
1010 ALL_OBJFILES (obj)
1011 if (obj->obfd == first->owner)
1012 break;
1013 gdb_assert (obj != NULL);
1014
1015 if (obj->separate_debug_objfile != NULL
1016 && obj->separate_debug_objfile->obfd == second->owner)
1017 return 1;
1018 if (obj->separate_debug_objfile_backlink != NULL
1019 && obj->separate_debug_objfile_backlink->obfd == second->owner)
1020 return 1;
1021
1022 return 0;
1023 }
1024
1025 /* See symtab.h. */
1026
1027 void
1028 expand_symtab_containing_pc (CORE_ADDR pc, struct obj_section *section)
1029 {
1030 struct objfile *objfile;
1031 struct bound_minimal_symbol msymbol;
1032
1033 /* If we know that this is not a text address, return failure. This is
1034 necessary because we loop based on texthigh and textlow, which do
1035 not include the data ranges. */
1036 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
1037 if (msymbol.minsym
1038 && (MSYMBOL_TYPE (msymbol.minsym) == mst_data
1039 || MSYMBOL_TYPE (msymbol.minsym) == mst_bss
1040 || MSYMBOL_TYPE (msymbol.minsym) == mst_abs
1041 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_data
1042 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_bss))
1043 return;
1044
1045 ALL_OBJFILES (objfile)
1046 {
1047 struct compunit_symtab *cust = NULL;
1048
1049 if (objfile->sf)
1050 cust = objfile->sf->qf->find_pc_sect_compunit_symtab (objfile, msymbol,
1051 pc, section, 0);
1052 if (cust)
1053 return;
1054 }
1055 }
1056 \f
1057 /* Hash function for the symbol cache. */
1058
1059 static unsigned int
1060 hash_symbol_entry (const struct objfile *objfile_context,
1061 const char *name, domain_enum domain)
1062 {
1063 unsigned int hash = (uintptr_t) objfile_context;
1064
1065 if (name != NULL)
1066 hash += htab_hash_string (name);
1067
1068 /* Because of symbol_matches_domain we need VAR_DOMAIN and STRUCT_DOMAIN
1069 to map to the same slot. */
1070 if (domain == STRUCT_DOMAIN)
1071 hash += VAR_DOMAIN * 7;
1072 else
1073 hash += domain * 7;
1074
1075 return hash;
1076 }
1077
1078 /* Equality function for the symbol cache. */
1079
1080 static int
1081 eq_symbol_entry (const struct symbol_cache_slot *slot,
1082 const struct objfile *objfile_context,
1083 const char *name, domain_enum domain)
1084 {
1085 const char *slot_name;
1086 domain_enum slot_domain;
1087
1088 if (slot->state == SYMBOL_SLOT_UNUSED)
1089 return 0;
1090
1091 if (slot->objfile_context != objfile_context)
1092 return 0;
1093
1094 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1095 {
1096 slot_name = slot->value.not_found.name;
1097 slot_domain = slot->value.not_found.domain;
1098 }
1099 else
1100 {
1101 slot_name = SYMBOL_SEARCH_NAME (slot->value.found.symbol);
1102 slot_domain = SYMBOL_DOMAIN (slot->value.found.symbol);
1103 }
1104
1105 /* NULL names match. */
1106 if (slot_name == NULL && name == NULL)
1107 {
1108 /* But there's no point in calling symbol_matches_domain in the
1109 SYMBOL_SLOT_FOUND case. */
1110 if (slot_domain != domain)
1111 return 0;
1112 }
1113 else if (slot_name != NULL && name != NULL)
1114 {
1115 /* It's important that we use the same comparison that was done the
1116 first time through. If the slot records a found symbol, then this
1117 means using strcmp_iw on SYMBOL_SEARCH_NAME. See dictionary.c.
1118 It also means using symbol_matches_domain for found symbols.
1119 See block.c.
1120
1121 If the slot records a not-found symbol, then require a precise match.
1122 We could still be lax with whitespace like strcmp_iw though. */
1123
1124 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1125 {
1126 if (strcmp (slot_name, name) != 0)
1127 return 0;
1128 if (slot_domain != domain)
1129 return 0;
1130 }
1131 else
1132 {
1133 struct symbol *sym = slot->value.found.symbol;
1134
1135 if (strcmp_iw (slot_name, name) != 0)
1136 return 0;
1137 if (!symbol_matches_domain (SYMBOL_LANGUAGE (sym),
1138 slot_domain, domain))
1139 return 0;
1140 }
1141 }
1142 else
1143 {
1144 /* Only one name is NULL. */
1145 return 0;
1146 }
1147
1148 return 1;
1149 }
1150
1151 /* Given a cache of size SIZE, return the size of the struct (with variable
1152 length array) in bytes. */
1153
1154 static size_t
1155 symbol_cache_byte_size (unsigned int size)
1156 {
1157 return (sizeof (struct block_symbol_cache)
1158 + ((size - 1) * sizeof (struct symbol_cache_slot)));
1159 }
1160
1161 /* Resize CACHE. */
1162
1163 static void
1164 resize_symbol_cache (struct symbol_cache *cache, unsigned int new_size)
1165 {
1166 /* If there's no change in size, don't do anything.
1167 All caches have the same size, so we can just compare with the size
1168 of the global symbols cache. */
1169 if ((cache->global_symbols != NULL
1170 && cache->global_symbols->size == new_size)
1171 || (cache->global_symbols == NULL
1172 && new_size == 0))
1173 return;
1174
1175 xfree (cache->global_symbols);
1176 xfree (cache->static_symbols);
1177
1178 if (new_size == 0)
1179 {
1180 cache->global_symbols = NULL;
1181 cache->static_symbols = NULL;
1182 }
1183 else
1184 {
1185 size_t total_size = symbol_cache_byte_size (new_size);
1186
1187 cache->global_symbols
1188 = (struct block_symbol_cache *) xcalloc (1, total_size);
1189 cache->static_symbols
1190 = (struct block_symbol_cache *) xcalloc (1, total_size);
1191 cache->global_symbols->size = new_size;
1192 cache->static_symbols->size = new_size;
1193 }
1194 }
1195
1196 /* Make a symbol cache of size SIZE. */
1197
1198 static struct symbol_cache *
1199 make_symbol_cache (unsigned int size)
1200 {
1201 struct symbol_cache *cache;
1202
1203 cache = XCNEW (struct symbol_cache);
1204 resize_symbol_cache (cache, symbol_cache_size);
1205 return cache;
1206 }
1207
1208 /* Free the space used by CACHE. */
1209
1210 static void
1211 free_symbol_cache (struct symbol_cache *cache)
1212 {
1213 xfree (cache->global_symbols);
1214 xfree (cache->static_symbols);
1215 xfree (cache);
1216 }
1217
1218 /* Return the symbol cache of PSPACE.
1219 Create one if it doesn't exist yet. */
1220
1221 static struct symbol_cache *
1222 get_symbol_cache (struct program_space *pspace)
1223 {
1224 struct symbol_cache *cache
1225 = (struct symbol_cache *) program_space_data (pspace, symbol_cache_key);
1226
1227 if (cache == NULL)
1228 {
1229 cache = make_symbol_cache (symbol_cache_size);
1230 set_program_space_data (pspace, symbol_cache_key, cache);
1231 }
1232
1233 return cache;
1234 }
1235
1236 /* Delete the symbol cache of PSPACE.
1237 Called when PSPACE is destroyed. */
1238
1239 static void
1240 symbol_cache_cleanup (struct program_space *pspace, void *data)
1241 {
1242 struct symbol_cache *cache = (struct symbol_cache *) data;
1243
1244 free_symbol_cache (cache);
1245 }
1246
1247 /* Set the size of the symbol cache in all program spaces. */
1248
1249 static void
1250 set_symbol_cache_size (unsigned int new_size)
1251 {
1252 struct program_space *pspace;
1253
1254 ALL_PSPACES (pspace)
1255 {
1256 struct symbol_cache *cache
1257 = (struct symbol_cache *) program_space_data (pspace, symbol_cache_key);
1258
1259 /* The pspace could have been created but not have a cache yet. */
1260 if (cache != NULL)
1261 resize_symbol_cache (cache, new_size);
1262 }
1263 }
1264
1265 /* Called when symbol-cache-size is set. */
1266
1267 static void
1268 set_symbol_cache_size_handler (char *args, int from_tty,
1269 struct cmd_list_element *c)
1270 {
1271 if (new_symbol_cache_size > MAX_SYMBOL_CACHE_SIZE)
1272 {
1273 /* Restore the previous value.
1274 This is the value the "show" command prints. */
1275 new_symbol_cache_size = symbol_cache_size;
1276
1277 error (_("Symbol cache size is too large, max is %u."),
1278 MAX_SYMBOL_CACHE_SIZE);
1279 }
1280 symbol_cache_size = new_symbol_cache_size;
1281
1282 set_symbol_cache_size (symbol_cache_size);
1283 }
1284
1285 /* Lookup symbol NAME,DOMAIN in BLOCK in the symbol cache of PSPACE.
1286 OBJFILE_CONTEXT is the current objfile, which may be NULL.
1287 The result is the symbol if found, SYMBOL_LOOKUP_FAILED if a previous lookup
1288 failed (and thus this one will too), or NULL if the symbol is not present
1289 in the cache.
1290 If the symbol is not present in the cache, then *BSC_PTR and *SLOT_PTR are
1291 set to the cache and slot of the symbol to save the result of a full lookup
1292 attempt. */
1293
1294 static struct block_symbol
1295 symbol_cache_lookup (struct symbol_cache *cache,
1296 struct objfile *objfile_context, int block,
1297 const char *name, domain_enum domain,
1298 struct block_symbol_cache **bsc_ptr,
1299 struct symbol_cache_slot **slot_ptr)
1300 {
1301 struct block_symbol_cache *bsc;
1302 unsigned int hash;
1303 struct symbol_cache_slot *slot;
1304
1305 if (block == GLOBAL_BLOCK)
1306 bsc = cache->global_symbols;
1307 else
1308 bsc = cache->static_symbols;
1309 if (bsc == NULL)
1310 {
1311 *bsc_ptr = NULL;
1312 *slot_ptr = NULL;
1313 return (struct block_symbol) {NULL, NULL};
1314 }
1315
1316 hash = hash_symbol_entry (objfile_context, name, domain);
1317 slot = bsc->symbols + hash % bsc->size;
1318
1319 if (eq_symbol_entry (slot, objfile_context, name, domain))
1320 {
1321 if (symbol_lookup_debug)
1322 fprintf_unfiltered (gdb_stdlog,
1323 "%s block symbol cache hit%s for %s, %s\n",
1324 block == GLOBAL_BLOCK ? "Global" : "Static",
1325 slot->state == SYMBOL_SLOT_NOT_FOUND
1326 ? " (not found)" : "",
1327 name, domain_name (domain));
1328 ++bsc->hits;
1329 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1330 return SYMBOL_LOOKUP_FAILED;
1331 return slot->value.found;
1332 }
1333
1334 /* Symbol is not present in the cache. */
1335
1336 *bsc_ptr = bsc;
1337 *slot_ptr = slot;
1338
1339 if (symbol_lookup_debug)
1340 {
1341 fprintf_unfiltered (gdb_stdlog,
1342 "%s block symbol cache miss for %s, %s\n",
1343 block == GLOBAL_BLOCK ? "Global" : "Static",
1344 name, domain_name (domain));
1345 }
1346 ++bsc->misses;
1347 return (struct block_symbol) {NULL, NULL};
1348 }
1349
1350 /* Clear out SLOT. */
1351
1352 static void
1353 symbol_cache_clear_slot (struct symbol_cache_slot *slot)
1354 {
1355 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1356 xfree (slot->value.not_found.name);
1357 slot->state = SYMBOL_SLOT_UNUSED;
1358 }
1359
1360 /* Mark SYMBOL as found in SLOT.
1361 OBJFILE_CONTEXT is the current objfile when the lookup was done, or NULL
1362 if it's not needed to distinguish lookups (STATIC_BLOCK). It is *not*
1363 necessarily the objfile the symbol was found in. */
1364
1365 static void
1366 symbol_cache_mark_found (struct block_symbol_cache *bsc,
1367 struct symbol_cache_slot *slot,
1368 struct objfile *objfile_context,
1369 struct symbol *symbol,
1370 const struct block *block)
1371 {
1372 if (bsc == NULL)
1373 return;
1374 if (slot->state != SYMBOL_SLOT_UNUSED)
1375 {
1376 ++bsc->collisions;
1377 symbol_cache_clear_slot (slot);
1378 }
1379 slot->state = SYMBOL_SLOT_FOUND;
1380 slot->objfile_context = objfile_context;
1381 slot->value.found.symbol = symbol;
1382 slot->value.found.block = block;
1383 }
1384
1385 /* Mark symbol NAME, DOMAIN as not found in SLOT.
1386 OBJFILE_CONTEXT is the current objfile when the lookup was done, or NULL
1387 if it's not needed to distinguish lookups (STATIC_BLOCK). */
1388
1389 static void
1390 symbol_cache_mark_not_found (struct block_symbol_cache *bsc,
1391 struct symbol_cache_slot *slot,
1392 struct objfile *objfile_context,
1393 const char *name, domain_enum domain)
1394 {
1395 if (bsc == NULL)
1396 return;
1397 if (slot->state != SYMBOL_SLOT_UNUSED)
1398 {
1399 ++bsc->collisions;
1400 symbol_cache_clear_slot (slot);
1401 }
1402 slot->state = SYMBOL_SLOT_NOT_FOUND;
1403 slot->objfile_context = objfile_context;
1404 slot->value.not_found.name = xstrdup (name);
1405 slot->value.not_found.domain = domain;
1406 }
1407
1408 /* Flush the symbol cache of PSPACE. */
1409
1410 static void
1411 symbol_cache_flush (struct program_space *pspace)
1412 {
1413 struct symbol_cache *cache
1414 = (struct symbol_cache *) program_space_data (pspace, symbol_cache_key);
1415 int pass;
1416
1417 if (cache == NULL)
1418 return;
1419 if (cache->global_symbols == NULL)
1420 {
1421 gdb_assert (symbol_cache_size == 0);
1422 gdb_assert (cache->static_symbols == NULL);
1423 return;
1424 }
1425
1426 /* If the cache is untouched since the last flush, early exit.
1427 This is important for performance during the startup of a program linked
1428 with 100s (or 1000s) of shared libraries. */
1429 if (cache->global_symbols->misses == 0
1430 && cache->static_symbols->misses == 0)
1431 return;
1432
1433 gdb_assert (cache->global_symbols->size == symbol_cache_size);
1434 gdb_assert (cache->static_symbols->size == symbol_cache_size);
1435
1436 for (pass = 0; pass < 2; ++pass)
1437 {
1438 struct block_symbol_cache *bsc
1439 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1440 unsigned int i;
1441
1442 for (i = 0; i < bsc->size; ++i)
1443 symbol_cache_clear_slot (&bsc->symbols[i]);
1444 }
1445
1446 cache->global_symbols->hits = 0;
1447 cache->global_symbols->misses = 0;
1448 cache->global_symbols->collisions = 0;
1449 cache->static_symbols->hits = 0;
1450 cache->static_symbols->misses = 0;
1451 cache->static_symbols->collisions = 0;
1452 }
1453
1454 /* Dump CACHE. */
1455
1456 static void
1457 symbol_cache_dump (const struct symbol_cache *cache)
1458 {
1459 int pass;
1460
1461 if (cache->global_symbols == NULL)
1462 {
1463 printf_filtered (" <disabled>\n");
1464 return;
1465 }
1466
1467 for (pass = 0; pass < 2; ++pass)
1468 {
1469 const struct block_symbol_cache *bsc
1470 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1471 unsigned int i;
1472
1473 if (pass == 0)
1474 printf_filtered ("Global symbols:\n");
1475 else
1476 printf_filtered ("Static symbols:\n");
1477
1478 for (i = 0; i < bsc->size; ++i)
1479 {
1480 const struct symbol_cache_slot *slot = &bsc->symbols[i];
1481
1482 QUIT;
1483
1484 switch (slot->state)
1485 {
1486 case SYMBOL_SLOT_UNUSED:
1487 break;
1488 case SYMBOL_SLOT_NOT_FOUND:
1489 printf_filtered (" [%4u] = %s, %s %s (not found)\n", i,
1490 host_address_to_string (slot->objfile_context),
1491 slot->value.not_found.name,
1492 domain_name (slot->value.not_found.domain));
1493 break;
1494 case SYMBOL_SLOT_FOUND:
1495 {
1496 struct symbol *found = slot->value.found.symbol;
1497 const struct objfile *context = slot->objfile_context;
1498
1499 printf_filtered (" [%4u] = %s, %s %s\n", i,
1500 host_address_to_string (context),
1501 SYMBOL_PRINT_NAME (found),
1502 domain_name (SYMBOL_DOMAIN (found)));
1503 break;
1504 }
1505 }
1506 }
1507 }
1508 }
1509
1510 /* The "mt print symbol-cache" command. */
1511
1512 static void
1513 maintenance_print_symbol_cache (char *args, int from_tty)
1514 {
1515 struct program_space *pspace;
1516
1517 ALL_PSPACES (pspace)
1518 {
1519 struct symbol_cache *cache;
1520
1521 printf_filtered (_("Symbol cache for pspace %d\n%s:\n"),
1522 pspace->num,
1523 pspace->symfile_object_file != NULL
1524 ? objfile_name (pspace->symfile_object_file)
1525 : "(no object file)");
1526
1527 /* If the cache hasn't been created yet, avoid creating one. */
1528 cache
1529 = (struct symbol_cache *) program_space_data (pspace, symbol_cache_key);
1530 if (cache == NULL)
1531 printf_filtered (" <empty>\n");
1532 else
1533 symbol_cache_dump (cache);
1534 }
1535 }
1536
1537 /* The "mt flush-symbol-cache" command. */
1538
1539 static void
1540 maintenance_flush_symbol_cache (char *args, int from_tty)
1541 {
1542 struct program_space *pspace;
1543
1544 ALL_PSPACES (pspace)
1545 {
1546 symbol_cache_flush (pspace);
1547 }
1548 }
1549
1550 /* Print usage statistics of CACHE. */
1551
1552 static void
1553 symbol_cache_stats (struct symbol_cache *cache)
1554 {
1555 int pass;
1556
1557 if (cache->global_symbols == NULL)
1558 {
1559 printf_filtered (" <disabled>\n");
1560 return;
1561 }
1562
1563 for (pass = 0; pass < 2; ++pass)
1564 {
1565 const struct block_symbol_cache *bsc
1566 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1567
1568 QUIT;
1569
1570 if (pass == 0)
1571 printf_filtered ("Global block cache stats:\n");
1572 else
1573 printf_filtered ("Static block cache stats:\n");
1574
1575 printf_filtered (" size: %u\n", bsc->size);
1576 printf_filtered (" hits: %u\n", bsc->hits);
1577 printf_filtered (" misses: %u\n", bsc->misses);
1578 printf_filtered (" collisions: %u\n", bsc->collisions);
1579 }
1580 }
1581
1582 /* The "mt print symbol-cache-statistics" command. */
1583
1584 static void
1585 maintenance_print_symbol_cache_statistics (char *args, int from_tty)
1586 {
1587 struct program_space *pspace;
1588
1589 ALL_PSPACES (pspace)
1590 {
1591 struct symbol_cache *cache;
1592
1593 printf_filtered (_("Symbol cache statistics for pspace %d\n%s:\n"),
1594 pspace->num,
1595 pspace->symfile_object_file != NULL
1596 ? objfile_name (pspace->symfile_object_file)
1597 : "(no object file)");
1598
1599 /* If the cache hasn't been created yet, avoid creating one. */
1600 cache
1601 = (struct symbol_cache *) program_space_data (pspace, symbol_cache_key);
1602 if (cache == NULL)
1603 printf_filtered (" empty, no stats available\n");
1604 else
1605 symbol_cache_stats (cache);
1606 }
1607 }
1608
1609 /* This module's 'new_objfile' observer. */
1610
1611 static void
1612 symtab_new_objfile_observer (struct objfile *objfile)
1613 {
1614 /* Ideally we'd use OBJFILE->pspace, but OBJFILE may be NULL. */
1615 symbol_cache_flush (current_program_space);
1616 }
1617
1618 /* This module's 'free_objfile' observer. */
1619
1620 static void
1621 symtab_free_objfile_observer (struct objfile *objfile)
1622 {
1623 symbol_cache_flush (objfile->pspace);
1624 }
1625 \f
1626 /* Debug symbols usually don't have section information. We need to dig that
1627 out of the minimal symbols and stash that in the debug symbol. */
1628
1629 void
1630 fixup_section (struct general_symbol_info *ginfo,
1631 CORE_ADDR addr, struct objfile *objfile)
1632 {
1633 struct minimal_symbol *msym;
1634
1635 /* First, check whether a minimal symbol with the same name exists
1636 and points to the same address. The address check is required
1637 e.g. on PowerPC64, where the minimal symbol for a function will
1638 point to the function descriptor, while the debug symbol will
1639 point to the actual function code. */
1640 msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->name, objfile);
1641 if (msym)
1642 ginfo->section = MSYMBOL_SECTION (msym);
1643 else
1644 {
1645 /* Static, function-local variables do appear in the linker
1646 (minimal) symbols, but are frequently given names that won't
1647 be found via lookup_minimal_symbol(). E.g., it has been
1648 observed in frv-uclinux (ELF) executables that a static,
1649 function-local variable named "foo" might appear in the
1650 linker symbols as "foo.6" or "foo.3". Thus, there is no
1651 point in attempting to extend the lookup-by-name mechanism to
1652 handle this case due to the fact that there can be multiple
1653 names.
1654
1655 So, instead, search the section table when lookup by name has
1656 failed. The ``addr'' and ``endaddr'' fields may have already
1657 been relocated. If so, the relocation offset (i.e. the
1658 ANOFFSET value) needs to be subtracted from these values when
1659 performing the comparison. We unconditionally subtract it,
1660 because, when no relocation has been performed, the ANOFFSET
1661 value will simply be zero.
1662
1663 The address of the symbol whose section we're fixing up HAS
1664 NOT BEEN adjusted (relocated) yet. It can't have been since
1665 the section isn't yet known and knowing the section is
1666 necessary in order to add the correct relocation value. In
1667 other words, we wouldn't even be in this function (attempting
1668 to compute the section) if it were already known.
1669
1670 Note that it is possible to search the minimal symbols
1671 (subtracting the relocation value if necessary) to find the
1672 matching minimal symbol, but this is overkill and much less
1673 efficient. It is not necessary to find the matching minimal
1674 symbol, only its section.
1675
1676 Note that this technique (of doing a section table search)
1677 can fail when unrelocated section addresses overlap. For
1678 this reason, we still attempt a lookup by name prior to doing
1679 a search of the section table. */
1680
1681 struct obj_section *s;
1682 int fallback = -1;
1683
1684 ALL_OBJFILE_OSECTIONS (objfile, s)
1685 {
1686 int idx = s - objfile->sections;
1687 CORE_ADDR offset = ANOFFSET (objfile->section_offsets, idx);
1688
1689 if (fallback == -1)
1690 fallback = idx;
1691
1692 if (obj_section_addr (s) - offset <= addr
1693 && addr < obj_section_endaddr (s) - offset)
1694 {
1695 ginfo->section = idx;
1696 return;
1697 }
1698 }
1699
1700 /* If we didn't find the section, assume it is in the first
1701 section. If there is no allocated section, then it hardly
1702 matters what we pick, so just pick zero. */
1703 if (fallback == -1)
1704 ginfo->section = 0;
1705 else
1706 ginfo->section = fallback;
1707 }
1708 }
1709
1710 struct symbol *
1711 fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
1712 {
1713 CORE_ADDR addr;
1714
1715 if (!sym)
1716 return NULL;
1717
1718 if (!SYMBOL_OBJFILE_OWNED (sym))
1719 return sym;
1720
1721 /* We either have an OBJFILE, or we can get at it from the sym's
1722 symtab. Anything else is a bug. */
1723 gdb_assert (objfile || symbol_symtab (sym));
1724
1725 if (objfile == NULL)
1726 objfile = symbol_objfile (sym);
1727
1728 if (SYMBOL_OBJ_SECTION (objfile, sym))
1729 return sym;
1730
1731 /* We should have an objfile by now. */
1732 gdb_assert (objfile);
1733
1734 switch (SYMBOL_CLASS (sym))
1735 {
1736 case LOC_STATIC:
1737 case LOC_LABEL:
1738 addr = SYMBOL_VALUE_ADDRESS (sym);
1739 break;
1740 case LOC_BLOCK:
1741 addr = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
1742 break;
1743
1744 default:
1745 /* Nothing else will be listed in the minsyms -- no use looking
1746 it up. */
1747 return sym;
1748 }
1749
1750 fixup_section (&sym->ginfo, addr, objfile);
1751
1752 return sym;
1753 }
1754
1755 /* Compute the demangled form of NAME as used by the various symbol
1756 lookup functions. The result can either be the input NAME
1757 directly, or a pointer to a buffer owned by the STORAGE object.
1758
1759 For Ada, this function just returns NAME, unmodified.
1760 Normally, Ada symbol lookups are performed using the encoded name
1761 rather than the demangled name, and so it might seem to make sense
1762 for this function to return an encoded version of NAME.
1763 Unfortunately, we cannot do this, because this function is used in
1764 circumstances where it is not appropriate to try to encode NAME.
1765 For instance, when displaying the frame info, we demangle the name
1766 of each parameter, and then perform a symbol lookup inside our
1767 function using that demangled name. In Ada, certain functions
1768 have internally-generated parameters whose name contain uppercase
1769 characters. Encoding those name would result in those uppercase
1770 characters to become lowercase, and thus cause the symbol lookup
1771 to fail. */
1772
1773 const char *
1774 demangle_for_lookup (const char *name, enum language lang,
1775 demangle_result_storage &storage)
1776 {
1777 /* If we are using C++, D, or Go, demangle the name before doing a
1778 lookup, so we can always binary search. */
1779 if (lang == language_cplus)
1780 {
1781 char *demangled_name = gdb_demangle (name, DMGL_ANSI | DMGL_PARAMS);
1782 if (demangled_name != NULL)
1783 return storage.set_malloc_ptr (demangled_name);
1784
1785 /* If we were given a non-mangled name, canonicalize it
1786 according to the language (so far only for C++). */
1787 std::string canon = cp_canonicalize_string (name);
1788 if (!canon.empty ())
1789 return storage.swap_string (canon);
1790 }
1791 else if (lang == language_d)
1792 {
1793 char *demangled_name = d_demangle (name, 0);
1794 if (demangled_name != NULL)
1795 return storage.set_malloc_ptr (demangled_name);
1796 }
1797 else if (lang == language_go)
1798 {
1799 char *demangled_name = go_demangle (name, 0);
1800 if (demangled_name != NULL)
1801 return storage.set_malloc_ptr (demangled_name);
1802 }
1803
1804 return name;
1805 }
1806
1807 /* See symtab.h.
1808
1809 This function (or rather its subordinates) have a bunch of loops and
1810 it would seem to be attractive to put in some QUIT's (though I'm not really
1811 sure whether it can run long enough to be really important). But there
1812 are a few calls for which it would appear to be bad news to quit
1813 out of here: e.g., find_proc_desc in alpha-mdebug-tdep.c. (Note
1814 that there is C++ code below which can error(), but that probably
1815 doesn't affect these calls since they are looking for a known
1816 variable and thus can probably assume it will never hit the C++
1817 code). */
1818
1819 struct block_symbol
1820 lookup_symbol_in_language (const char *name, const struct block *block,
1821 const domain_enum domain, enum language lang,
1822 struct field_of_this_result *is_a_field_of_this)
1823 {
1824 demangle_result_storage storage;
1825 const char *modified_name = demangle_for_lookup (name, lang, storage);
1826
1827 return lookup_symbol_aux (modified_name, block, domain, lang,
1828 is_a_field_of_this);
1829 }
1830
1831 /* See symtab.h. */
1832
1833 struct block_symbol
1834 lookup_symbol (const char *name, const struct block *block,
1835 domain_enum domain,
1836 struct field_of_this_result *is_a_field_of_this)
1837 {
1838 return lookup_symbol_in_language (name, block, domain,
1839 current_language->la_language,
1840 is_a_field_of_this);
1841 }
1842
1843 /* See symtab.h. */
1844
1845 struct block_symbol
1846 lookup_language_this (const struct language_defn *lang,
1847 const struct block *block)
1848 {
1849 if (lang->la_name_of_this == NULL || block == NULL)
1850 return (struct block_symbol) {NULL, NULL};
1851
1852 if (symbol_lookup_debug > 1)
1853 {
1854 struct objfile *objfile = lookup_objfile_from_block (block);
1855
1856 fprintf_unfiltered (gdb_stdlog,
1857 "lookup_language_this (%s, %s (objfile %s))",
1858 lang->la_name, host_address_to_string (block),
1859 objfile_debug_name (objfile));
1860 }
1861
1862 while (block)
1863 {
1864 struct symbol *sym;
1865
1866 sym = block_lookup_symbol (block, lang->la_name_of_this, VAR_DOMAIN);
1867 if (sym != NULL)
1868 {
1869 if (symbol_lookup_debug > 1)
1870 {
1871 fprintf_unfiltered (gdb_stdlog, " = %s (%s, block %s)\n",
1872 SYMBOL_PRINT_NAME (sym),
1873 host_address_to_string (sym),
1874 host_address_to_string (block));
1875 }
1876 return (struct block_symbol) {sym, block};
1877 }
1878 if (BLOCK_FUNCTION (block))
1879 break;
1880 block = BLOCK_SUPERBLOCK (block);
1881 }
1882
1883 if (symbol_lookup_debug > 1)
1884 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
1885 return (struct block_symbol) {NULL, NULL};
1886 }
1887
1888 /* Given TYPE, a structure/union,
1889 return 1 if the component named NAME from the ultimate target
1890 structure/union is defined, otherwise, return 0. */
1891
1892 static int
1893 check_field (struct type *type, const char *name,
1894 struct field_of_this_result *is_a_field_of_this)
1895 {
1896 int i;
1897
1898 /* The type may be a stub. */
1899 type = check_typedef (type);
1900
1901 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1902 {
1903 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1904
1905 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1906 {
1907 is_a_field_of_this->type = type;
1908 is_a_field_of_this->field = &TYPE_FIELD (type, i);
1909 return 1;
1910 }
1911 }
1912
1913 /* C++: If it was not found as a data field, then try to return it
1914 as a pointer to a method. */
1915
1916 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
1917 {
1918 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
1919 {
1920 is_a_field_of_this->type = type;
1921 is_a_field_of_this->fn_field = &TYPE_FN_FIELDLIST (type, i);
1922 return 1;
1923 }
1924 }
1925
1926 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1927 if (check_field (TYPE_BASECLASS (type, i), name, is_a_field_of_this))
1928 return 1;
1929
1930 return 0;
1931 }
1932
1933 /* Behave like lookup_symbol except that NAME is the natural name
1934 (e.g., demangled name) of the symbol that we're looking for. */
1935
1936 static struct block_symbol
1937 lookup_symbol_aux (const char *name, const struct block *block,
1938 const domain_enum domain, enum language language,
1939 struct field_of_this_result *is_a_field_of_this)
1940 {
1941 struct block_symbol result;
1942 const struct language_defn *langdef;
1943
1944 if (symbol_lookup_debug)
1945 {
1946 struct objfile *objfile = lookup_objfile_from_block (block);
1947
1948 fprintf_unfiltered (gdb_stdlog,
1949 "lookup_symbol_aux (%s, %s (objfile %s), %s, %s)\n",
1950 name, host_address_to_string (block),
1951 objfile != NULL
1952 ? objfile_debug_name (objfile) : "NULL",
1953 domain_name (domain), language_str (language));
1954 }
1955
1956 /* Make sure we do something sensible with is_a_field_of_this, since
1957 the callers that set this parameter to some non-null value will
1958 certainly use it later. If we don't set it, the contents of
1959 is_a_field_of_this are undefined. */
1960 if (is_a_field_of_this != NULL)
1961 memset (is_a_field_of_this, 0, sizeof (*is_a_field_of_this));
1962
1963 /* Search specified block and its superiors. Don't search
1964 STATIC_BLOCK or GLOBAL_BLOCK. */
1965
1966 result = lookup_local_symbol (name, block, domain, language);
1967 if (result.symbol != NULL)
1968 {
1969 if (symbol_lookup_debug)
1970 {
1971 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
1972 host_address_to_string (result.symbol));
1973 }
1974 return result;
1975 }
1976
1977 /* If requested to do so by the caller and if appropriate for LANGUAGE,
1978 check to see if NAME is a field of `this'. */
1979
1980 langdef = language_def (language);
1981
1982 /* Don't do this check if we are searching for a struct. It will
1983 not be found by check_field, but will be found by other
1984 means. */
1985 if (is_a_field_of_this != NULL && domain != STRUCT_DOMAIN)
1986 {
1987 result = lookup_language_this (langdef, block);
1988
1989 if (result.symbol)
1990 {
1991 struct type *t = result.symbol->type;
1992
1993 /* I'm not really sure that type of this can ever
1994 be typedefed; just be safe. */
1995 t = check_typedef (t);
1996 if (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_IS_REFERENCE (t))
1997 t = TYPE_TARGET_TYPE (t);
1998
1999 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2000 && TYPE_CODE (t) != TYPE_CODE_UNION)
2001 error (_("Internal error: `%s' is not an aggregate"),
2002 langdef->la_name_of_this);
2003
2004 if (check_field (t, name, is_a_field_of_this))
2005 {
2006 if (symbol_lookup_debug)
2007 {
2008 fprintf_unfiltered (gdb_stdlog,
2009 "lookup_symbol_aux (...) = NULL\n");
2010 }
2011 return (struct block_symbol) {NULL, NULL};
2012 }
2013 }
2014 }
2015
2016 /* Now do whatever is appropriate for LANGUAGE to look
2017 up static and global variables. */
2018
2019 result = langdef->la_lookup_symbol_nonlocal (langdef, name, block, domain);
2020 if (result.symbol != NULL)
2021 {
2022 if (symbol_lookup_debug)
2023 {
2024 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2025 host_address_to_string (result.symbol));
2026 }
2027 return result;
2028 }
2029
2030 /* Now search all static file-level symbols. Not strictly correct,
2031 but more useful than an error. */
2032
2033 result = lookup_static_symbol (name, domain);
2034 if (symbol_lookup_debug)
2035 {
2036 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2037 result.symbol != NULL
2038 ? host_address_to_string (result.symbol)
2039 : "NULL");
2040 }
2041 return result;
2042 }
2043
2044 /* Check to see if the symbol is defined in BLOCK or its superiors.
2045 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
2046
2047 static struct block_symbol
2048 lookup_local_symbol (const char *name, const struct block *block,
2049 const domain_enum domain,
2050 enum language language)
2051 {
2052 struct symbol *sym;
2053 const struct block *static_block = block_static_block (block);
2054 const char *scope = block_scope (block);
2055
2056 /* Check if either no block is specified or it's a global block. */
2057
2058 if (static_block == NULL)
2059 return (struct block_symbol) {NULL, NULL};
2060
2061 while (block != static_block)
2062 {
2063 sym = lookup_symbol_in_block (name, block, domain);
2064 if (sym != NULL)
2065 return (struct block_symbol) {sym, block};
2066
2067 if (language == language_cplus || language == language_fortran)
2068 {
2069 struct block_symbol sym
2070 = cp_lookup_symbol_imports_or_template (scope, name, block,
2071 domain);
2072
2073 if (sym.symbol != NULL)
2074 return sym;
2075 }
2076
2077 if (BLOCK_FUNCTION (block) != NULL && block_inlined_p (block))
2078 break;
2079 block = BLOCK_SUPERBLOCK (block);
2080 }
2081
2082 /* We've reached the end of the function without finding a result. */
2083
2084 return (struct block_symbol) {NULL, NULL};
2085 }
2086
2087 /* See symtab.h. */
2088
2089 struct objfile *
2090 lookup_objfile_from_block (const struct block *block)
2091 {
2092 struct objfile *obj;
2093 struct compunit_symtab *cust;
2094
2095 if (block == NULL)
2096 return NULL;
2097
2098 block = block_global_block (block);
2099 /* Look through all blockvectors. */
2100 ALL_COMPUNITS (obj, cust)
2101 if (block == BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust),
2102 GLOBAL_BLOCK))
2103 {
2104 if (obj->separate_debug_objfile_backlink)
2105 obj = obj->separate_debug_objfile_backlink;
2106
2107 return obj;
2108 }
2109
2110 return NULL;
2111 }
2112
2113 /* See symtab.h. */
2114
2115 struct symbol *
2116 lookup_symbol_in_block (const char *name, const struct block *block,
2117 const domain_enum domain)
2118 {
2119 struct symbol *sym;
2120
2121 if (symbol_lookup_debug > 1)
2122 {
2123 struct objfile *objfile = lookup_objfile_from_block (block);
2124
2125 fprintf_unfiltered (gdb_stdlog,
2126 "lookup_symbol_in_block (%s, %s (objfile %s), %s)",
2127 name, host_address_to_string (block),
2128 objfile_debug_name (objfile),
2129 domain_name (domain));
2130 }
2131
2132 sym = block_lookup_symbol (block, name, domain);
2133 if (sym)
2134 {
2135 if (symbol_lookup_debug > 1)
2136 {
2137 fprintf_unfiltered (gdb_stdlog, " = %s\n",
2138 host_address_to_string (sym));
2139 }
2140 return fixup_symbol_section (sym, NULL);
2141 }
2142
2143 if (symbol_lookup_debug > 1)
2144 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
2145 return NULL;
2146 }
2147
2148 /* See symtab.h. */
2149
2150 struct block_symbol
2151 lookup_global_symbol_from_objfile (struct objfile *main_objfile,
2152 const char *name,
2153 const domain_enum domain)
2154 {
2155 struct objfile *objfile;
2156
2157 for (objfile = main_objfile;
2158 objfile;
2159 objfile = objfile_separate_debug_iterate (main_objfile, objfile))
2160 {
2161 struct block_symbol result
2162 = lookup_symbol_in_objfile (objfile, GLOBAL_BLOCK, name, domain);
2163
2164 if (result.symbol != NULL)
2165 return result;
2166 }
2167
2168 return (struct block_symbol) {NULL, NULL};
2169 }
2170
2171 /* Check to see if the symbol is defined in one of the OBJFILE's
2172 symtabs. BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
2173 depending on whether or not we want to search global symbols or
2174 static symbols. */
2175
2176 static struct block_symbol
2177 lookup_symbol_in_objfile_symtabs (struct objfile *objfile, int block_index,
2178 const char *name, const domain_enum domain)
2179 {
2180 struct compunit_symtab *cust;
2181
2182 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2183
2184 if (symbol_lookup_debug > 1)
2185 {
2186 fprintf_unfiltered (gdb_stdlog,
2187 "lookup_symbol_in_objfile_symtabs (%s, %s, %s, %s)",
2188 objfile_debug_name (objfile),
2189 block_index == GLOBAL_BLOCK
2190 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2191 name, domain_name (domain));
2192 }
2193
2194 ALL_OBJFILE_COMPUNITS (objfile, cust)
2195 {
2196 const struct blockvector *bv;
2197 const struct block *block;
2198 struct block_symbol result;
2199
2200 bv = COMPUNIT_BLOCKVECTOR (cust);
2201 block = BLOCKVECTOR_BLOCK (bv, block_index);
2202 result.symbol = block_lookup_symbol_primary (block, name, domain);
2203 result.block = block;
2204 if (result.symbol != NULL)
2205 {
2206 if (symbol_lookup_debug > 1)
2207 {
2208 fprintf_unfiltered (gdb_stdlog, " = %s (block %s)\n",
2209 host_address_to_string (result.symbol),
2210 host_address_to_string (block));
2211 }
2212 result.symbol = fixup_symbol_section (result.symbol, objfile);
2213 return result;
2214
2215 }
2216 }
2217
2218 if (symbol_lookup_debug > 1)
2219 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
2220 return (struct block_symbol) {NULL, NULL};
2221 }
2222
2223 /* Wrapper around lookup_symbol_in_objfile_symtabs for search_symbols.
2224 Look up LINKAGE_NAME in DOMAIN in the global and static blocks of OBJFILE
2225 and all associated separate debug objfiles.
2226
2227 Normally we only look in OBJFILE, and not any separate debug objfiles
2228 because the outer loop will cause them to be searched too. This case is
2229 different. Here we're called from search_symbols where it will only
2230 call us for the the objfile that contains a matching minsym. */
2231
2232 static struct block_symbol
2233 lookup_symbol_in_objfile_from_linkage_name (struct objfile *objfile,
2234 const char *linkage_name,
2235 domain_enum domain)
2236 {
2237 enum language lang = current_language->la_language;
2238 struct objfile *main_objfile, *cur_objfile;
2239
2240 demangle_result_storage storage;
2241 const char *modified_name = demangle_for_lookup (linkage_name, lang, storage);
2242
2243 if (objfile->separate_debug_objfile_backlink)
2244 main_objfile = objfile->separate_debug_objfile_backlink;
2245 else
2246 main_objfile = objfile;
2247
2248 for (cur_objfile = main_objfile;
2249 cur_objfile;
2250 cur_objfile = objfile_separate_debug_iterate (main_objfile, cur_objfile))
2251 {
2252 struct block_symbol result;
2253
2254 result = lookup_symbol_in_objfile_symtabs (cur_objfile, GLOBAL_BLOCK,
2255 modified_name, domain);
2256 if (result.symbol == NULL)
2257 result = lookup_symbol_in_objfile_symtabs (cur_objfile, STATIC_BLOCK,
2258 modified_name, domain);
2259 if (result.symbol != NULL)
2260 return result;
2261 }
2262
2263 return (struct block_symbol) {NULL, NULL};
2264 }
2265
2266 /* A helper function that throws an exception when a symbol was found
2267 in a psymtab but not in a symtab. */
2268
2269 static void ATTRIBUTE_NORETURN
2270 error_in_psymtab_expansion (int block_index, const char *name,
2271 struct compunit_symtab *cust)
2272 {
2273 error (_("\
2274 Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n\
2275 %s may be an inlined function, or may be a template function\n \
2276 (if a template, try specifying an instantiation: %s<type>)."),
2277 block_index == GLOBAL_BLOCK ? "global" : "static",
2278 name,
2279 symtab_to_filename_for_display (compunit_primary_filetab (cust)),
2280 name, name);
2281 }
2282
2283 /* A helper function for various lookup routines that interfaces with
2284 the "quick" symbol table functions. */
2285
2286 static struct block_symbol
2287 lookup_symbol_via_quick_fns (struct objfile *objfile, int block_index,
2288 const char *name, const domain_enum domain)
2289 {
2290 struct compunit_symtab *cust;
2291 const struct blockvector *bv;
2292 const struct block *block;
2293 struct block_symbol result;
2294
2295 if (!objfile->sf)
2296 return (struct block_symbol) {NULL, NULL};
2297
2298 if (symbol_lookup_debug > 1)
2299 {
2300 fprintf_unfiltered (gdb_stdlog,
2301 "lookup_symbol_via_quick_fns (%s, %s, %s, %s)\n",
2302 objfile_debug_name (objfile),
2303 block_index == GLOBAL_BLOCK
2304 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2305 name, domain_name (domain));
2306 }
2307
2308 cust = objfile->sf->qf->lookup_symbol (objfile, block_index, name, domain);
2309 if (cust == NULL)
2310 {
2311 if (symbol_lookup_debug > 1)
2312 {
2313 fprintf_unfiltered (gdb_stdlog,
2314 "lookup_symbol_via_quick_fns (...) = NULL\n");
2315 }
2316 return (struct block_symbol) {NULL, NULL};
2317 }
2318
2319 bv = COMPUNIT_BLOCKVECTOR (cust);
2320 block = BLOCKVECTOR_BLOCK (bv, block_index);
2321 result.symbol = block_lookup_symbol (block, name, domain);
2322 if (result.symbol == NULL)
2323 error_in_psymtab_expansion (block_index, name, cust);
2324
2325 if (symbol_lookup_debug > 1)
2326 {
2327 fprintf_unfiltered (gdb_stdlog,
2328 "lookup_symbol_via_quick_fns (...) = %s (block %s)\n",
2329 host_address_to_string (result.symbol),
2330 host_address_to_string (block));
2331 }
2332
2333 result.symbol = fixup_symbol_section (result.symbol, objfile);
2334 result.block = block;
2335 return result;
2336 }
2337
2338 /* See symtab.h. */
2339
2340 struct block_symbol
2341 basic_lookup_symbol_nonlocal (const struct language_defn *langdef,
2342 const char *name,
2343 const struct block *block,
2344 const domain_enum domain)
2345 {
2346 struct block_symbol result;
2347
2348 /* NOTE: carlton/2003-05-19: The comments below were written when
2349 this (or what turned into this) was part of lookup_symbol_aux;
2350 I'm much less worried about these questions now, since these
2351 decisions have turned out well, but I leave these comments here
2352 for posterity. */
2353
2354 /* NOTE: carlton/2002-12-05: There is a question as to whether or
2355 not it would be appropriate to search the current global block
2356 here as well. (That's what this code used to do before the
2357 is_a_field_of_this check was moved up.) On the one hand, it's
2358 redundant with the lookup in all objfiles search that happens
2359 next. On the other hand, if decode_line_1 is passed an argument
2360 like filename:var, then the user presumably wants 'var' to be
2361 searched for in filename. On the third hand, there shouldn't be
2362 multiple global variables all of which are named 'var', and it's
2363 not like decode_line_1 has ever restricted its search to only
2364 global variables in a single filename. All in all, only
2365 searching the static block here seems best: it's correct and it's
2366 cleanest. */
2367
2368 /* NOTE: carlton/2002-12-05: There's also a possible performance
2369 issue here: if you usually search for global symbols in the
2370 current file, then it would be slightly better to search the
2371 current global block before searching all the symtabs. But there
2372 are other factors that have a much greater effect on performance
2373 than that one, so I don't think we should worry about that for
2374 now. */
2375
2376 /* NOTE: dje/2014-10-26: The lookup in all objfiles search could skip
2377 the current objfile. Searching the current objfile first is useful
2378 for both matching user expectations as well as performance. */
2379
2380 result = lookup_symbol_in_static_block (name, block, domain);
2381 if (result.symbol != NULL)
2382 return result;
2383
2384 /* If we didn't find a definition for a builtin type in the static block,
2385 search for it now. This is actually the right thing to do and can be
2386 a massive performance win. E.g., when debugging a program with lots of
2387 shared libraries we could search all of them only to find out the
2388 builtin type isn't defined in any of them. This is common for types
2389 like "void". */
2390 if (domain == VAR_DOMAIN)
2391 {
2392 struct gdbarch *gdbarch;
2393
2394 if (block == NULL)
2395 gdbarch = target_gdbarch ();
2396 else
2397 gdbarch = block_gdbarch (block);
2398 result.symbol = language_lookup_primitive_type_as_symbol (langdef,
2399 gdbarch, name);
2400 result.block = NULL;
2401 if (result.symbol != NULL)
2402 return result;
2403 }
2404
2405 return lookup_global_symbol (name, block, domain);
2406 }
2407
2408 /* See symtab.h. */
2409
2410 struct block_symbol
2411 lookup_symbol_in_static_block (const char *name,
2412 const struct block *block,
2413 const domain_enum domain)
2414 {
2415 const struct block *static_block = block_static_block (block);
2416 struct symbol *sym;
2417
2418 if (static_block == NULL)
2419 return (struct block_symbol) {NULL, NULL};
2420
2421 if (symbol_lookup_debug)
2422 {
2423 struct objfile *objfile = lookup_objfile_from_block (static_block);
2424
2425 fprintf_unfiltered (gdb_stdlog,
2426 "lookup_symbol_in_static_block (%s, %s (objfile %s),"
2427 " %s)\n",
2428 name,
2429 host_address_to_string (block),
2430 objfile_debug_name (objfile),
2431 domain_name (domain));
2432 }
2433
2434 sym = lookup_symbol_in_block (name, static_block, domain);
2435 if (symbol_lookup_debug)
2436 {
2437 fprintf_unfiltered (gdb_stdlog,
2438 "lookup_symbol_in_static_block (...) = %s\n",
2439 sym != NULL ? host_address_to_string (sym) : "NULL");
2440 }
2441 return (struct block_symbol) {sym, static_block};
2442 }
2443
2444 /* Perform the standard symbol lookup of NAME in OBJFILE:
2445 1) First search expanded symtabs, and if not found
2446 2) Search the "quick" symtabs (partial or .gdb_index).
2447 BLOCK_INDEX is one of GLOBAL_BLOCK or STATIC_BLOCK. */
2448
2449 static struct block_symbol
2450 lookup_symbol_in_objfile (struct objfile *objfile, int block_index,
2451 const char *name, const domain_enum domain)
2452 {
2453 struct block_symbol result;
2454
2455 if (symbol_lookup_debug)
2456 {
2457 fprintf_unfiltered (gdb_stdlog,
2458 "lookup_symbol_in_objfile (%s, %s, %s, %s)\n",
2459 objfile_debug_name (objfile),
2460 block_index == GLOBAL_BLOCK
2461 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2462 name, domain_name (domain));
2463 }
2464
2465 result = lookup_symbol_in_objfile_symtabs (objfile, block_index,
2466 name, domain);
2467 if (result.symbol != NULL)
2468 {
2469 if (symbol_lookup_debug)
2470 {
2471 fprintf_unfiltered (gdb_stdlog,
2472 "lookup_symbol_in_objfile (...) = %s"
2473 " (in symtabs)\n",
2474 host_address_to_string (result.symbol));
2475 }
2476 return result;
2477 }
2478
2479 result = lookup_symbol_via_quick_fns (objfile, block_index,
2480 name, domain);
2481 if (symbol_lookup_debug)
2482 {
2483 fprintf_unfiltered (gdb_stdlog,
2484 "lookup_symbol_in_objfile (...) = %s%s\n",
2485 result.symbol != NULL
2486 ? host_address_to_string (result.symbol)
2487 : "NULL",
2488 result.symbol != NULL ? " (via quick fns)" : "");
2489 }
2490 return result;
2491 }
2492
2493 /* See symtab.h. */
2494
2495 struct block_symbol
2496 lookup_static_symbol (const char *name, const domain_enum domain)
2497 {
2498 struct symbol_cache *cache = get_symbol_cache (current_program_space);
2499 struct objfile *objfile;
2500 struct block_symbol result;
2501 struct block_symbol_cache *bsc;
2502 struct symbol_cache_slot *slot;
2503
2504 /* Lookup in STATIC_BLOCK is not current-objfile-dependent, so just pass
2505 NULL for OBJFILE_CONTEXT. */
2506 result = symbol_cache_lookup (cache, NULL, STATIC_BLOCK, name, domain,
2507 &bsc, &slot);
2508 if (result.symbol != NULL)
2509 {
2510 if (SYMBOL_LOOKUP_FAILED_P (result))
2511 return (struct block_symbol) {NULL, NULL};
2512 return result;
2513 }
2514
2515 ALL_OBJFILES (objfile)
2516 {
2517 result = lookup_symbol_in_objfile (objfile, STATIC_BLOCK, name, domain);
2518 if (result.symbol != NULL)
2519 {
2520 /* Still pass NULL for OBJFILE_CONTEXT here. */
2521 symbol_cache_mark_found (bsc, slot, NULL, result.symbol,
2522 result.block);
2523 return result;
2524 }
2525 }
2526
2527 /* Still pass NULL for OBJFILE_CONTEXT here. */
2528 symbol_cache_mark_not_found (bsc, slot, NULL, name, domain);
2529 return (struct block_symbol) {NULL, NULL};
2530 }
2531
2532 /* Private data to be used with lookup_symbol_global_iterator_cb. */
2533
2534 struct global_sym_lookup_data
2535 {
2536 /* The name of the symbol we are searching for. */
2537 const char *name;
2538
2539 /* The domain to use for our search. */
2540 domain_enum domain;
2541
2542 /* The field where the callback should store the symbol if found.
2543 It should be initialized to {NULL, NULL} before the search is started. */
2544 struct block_symbol result;
2545 };
2546
2547 /* A callback function for gdbarch_iterate_over_objfiles_in_search_order.
2548 It searches by name for a symbol in the GLOBAL_BLOCK of the given
2549 OBJFILE. The arguments for the search are passed via CB_DATA,
2550 which in reality is a pointer to struct global_sym_lookup_data. */
2551
2552 static int
2553 lookup_symbol_global_iterator_cb (struct objfile *objfile,
2554 void *cb_data)
2555 {
2556 struct global_sym_lookup_data *data =
2557 (struct global_sym_lookup_data *) cb_data;
2558
2559 gdb_assert (data->result.symbol == NULL
2560 && data->result.block == NULL);
2561
2562 data->result = lookup_symbol_in_objfile (objfile, GLOBAL_BLOCK,
2563 data->name, data->domain);
2564
2565 /* If we found a match, tell the iterator to stop. Otherwise,
2566 keep going. */
2567 return (data->result.symbol != NULL);
2568 }
2569
2570 /* See symtab.h. */
2571
2572 struct block_symbol
2573 lookup_global_symbol (const char *name,
2574 const struct block *block,
2575 const domain_enum domain)
2576 {
2577 struct symbol_cache *cache = get_symbol_cache (current_program_space);
2578 struct block_symbol result;
2579 struct objfile *objfile;
2580 struct global_sym_lookup_data lookup_data;
2581 struct block_symbol_cache *bsc;
2582 struct symbol_cache_slot *slot;
2583
2584 objfile = lookup_objfile_from_block (block);
2585
2586 /* First see if we can find the symbol in the cache.
2587 This works because we use the current objfile to qualify the lookup. */
2588 result = symbol_cache_lookup (cache, objfile, GLOBAL_BLOCK, name, domain,
2589 &bsc, &slot);
2590 if (result.symbol != NULL)
2591 {
2592 if (SYMBOL_LOOKUP_FAILED_P (result))
2593 return (struct block_symbol) {NULL, NULL};
2594 return result;
2595 }
2596
2597 /* Call library-specific lookup procedure. */
2598 if (objfile != NULL)
2599 result = solib_global_lookup (objfile, name, domain);
2600
2601 /* If that didn't work go a global search (of global blocks, heh). */
2602 if (result.symbol == NULL)
2603 {
2604 memset (&lookup_data, 0, sizeof (lookup_data));
2605 lookup_data.name = name;
2606 lookup_data.domain = domain;
2607 gdbarch_iterate_over_objfiles_in_search_order
2608 (objfile != NULL ? get_objfile_arch (objfile) : target_gdbarch (),
2609 lookup_symbol_global_iterator_cb, &lookup_data, objfile);
2610 result = lookup_data.result;
2611 }
2612
2613 if (result.symbol != NULL)
2614 symbol_cache_mark_found (bsc, slot, objfile, result.symbol, result.block);
2615 else
2616 symbol_cache_mark_not_found (bsc, slot, objfile, name, domain);
2617
2618 return result;
2619 }
2620
2621 int
2622 symbol_matches_domain (enum language symbol_language,
2623 domain_enum symbol_domain,
2624 domain_enum domain)
2625 {
2626 /* For C++ "struct foo { ... }" also defines a typedef for "foo".
2627 Similarly, any Ada type declaration implicitly defines a typedef. */
2628 if (symbol_language == language_cplus
2629 || symbol_language == language_d
2630 || symbol_language == language_ada
2631 || symbol_language == language_rust)
2632 {
2633 if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN)
2634 && symbol_domain == STRUCT_DOMAIN)
2635 return 1;
2636 }
2637 /* For all other languages, strict match is required. */
2638 return (symbol_domain == domain);
2639 }
2640
2641 /* See symtab.h. */
2642
2643 struct type *
2644 lookup_transparent_type (const char *name)
2645 {
2646 return current_language->la_lookup_transparent_type (name);
2647 }
2648
2649 /* A helper for basic_lookup_transparent_type that interfaces with the
2650 "quick" symbol table functions. */
2651
2652 static struct type *
2653 basic_lookup_transparent_type_quick (struct objfile *objfile, int block_index,
2654 const char *name)
2655 {
2656 struct compunit_symtab *cust;
2657 const struct blockvector *bv;
2658 struct block *block;
2659 struct symbol *sym;
2660
2661 if (!objfile->sf)
2662 return NULL;
2663 cust = objfile->sf->qf->lookup_symbol (objfile, block_index, name,
2664 STRUCT_DOMAIN);
2665 if (cust == NULL)
2666 return NULL;
2667
2668 bv = COMPUNIT_BLOCKVECTOR (cust);
2669 block = BLOCKVECTOR_BLOCK (bv, block_index);
2670 sym = block_find_symbol (block, name, STRUCT_DOMAIN,
2671 block_find_non_opaque_type, NULL);
2672 if (sym == NULL)
2673 error_in_psymtab_expansion (block_index, name, cust);
2674 gdb_assert (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)));
2675 return SYMBOL_TYPE (sym);
2676 }
2677
2678 /* Subroutine of basic_lookup_transparent_type to simplify it.
2679 Look up the non-opaque definition of NAME in BLOCK_INDEX of OBJFILE.
2680 BLOCK_INDEX is either GLOBAL_BLOCK or STATIC_BLOCK. */
2681
2682 static struct type *
2683 basic_lookup_transparent_type_1 (struct objfile *objfile, int block_index,
2684 const char *name)
2685 {
2686 const struct compunit_symtab *cust;
2687 const struct blockvector *bv;
2688 const struct block *block;
2689 const struct symbol *sym;
2690
2691 ALL_OBJFILE_COMPUNITS (objfile, cust)
2692 {
2693 bv = COMPUNIT_BLOCKVECTOR (cust);
2694 block = BLOCKVECTOR_BLOCK (bv, block_index);
2695 sym = block_find_symbol (block, name, STRUCT_DOMAIN,
2696 block_find_non_opaque_type, NULL);
2697 if (sym != NULL)
2698 {
2699 gdb_assert (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)));
2700 return SYMBOL_TYPE (sym);
2701 }
2702 }
2703
2704 return NULL;
2705 }
2706
2707 /* The standard implementation of lookup_transparent_type. This code
2708 was modeled on lookup_symbol -- the parts not relevant to looking
2709 up types were just left out. In particular it's assumed here that
2710 types are available in STRUCT_DOMAIN and only in file-static or
2711 global blocks. */
2712
2713 struct type *
2714 basic_lookup_transparent_type (const char *name)
2715 {
2716 struct objfile *objfile;
2717 struct type *t;
2718
2719 /* Now search all the global symbols. Do the symtab's first, then
2720 check the psymtab's. If a psymtab indicates the existence
2721 of the desired name as a global, then do psymtab-to-symtab
2722 conversion on the fly and return the found symbol. */
2723
2724 ALL_OBJFILES (objfile)
2725 {
2726 t = basic_lookup_transparent_type_1 (objfile, GLOBAL_BLOCK, name);
2727 if (t)
2728 return t;
2729 }
2730
2731 ALL_OBJFILES (objfile)
2732 {
2733 t = basic_lookup_transparent_type_quick (objfile, GLOBAL_BLOCK, name);
2734 if (t)
2735 return t;
2736 }
2737
2738 /* Now search the static file-level symbols.
2739 Not strictly correct, but more useful than an error.
2740 Do the symtab's first, then
2741 check the psymtab's. If a psymtab indicates the existence
2742 of the desired name as a file-level static, then do psymtab-to-symtab
2743 conversion on the fly and return the found symbol. */
2744
2745 ALL_OBJFILES (objfile)
2746 {
2747 t = basic_lookup_transparent_type_1 (objfile, STATIC_BLOCK, name);
2748 if (t)
2749 return t;
2750 }
2751
2752 ALL_OBJFILES (objfile)
2753 {
2754 t = basic_lookup_transparent_type_quick (objfile, STATIC_BLOCK, name);
2755 if (t)
2756 return t;
2757 }
2758
2759 return (struct type *) 0;
2760 }
2761
2762 /* Iterate over the symbols named NAME, matching DOMAIN, in BLOCK.
2763
2764 For each symbol that matches, CALLBACK is called. The symbol is
2765 passed to the callback.
2766
2767 If CALLBACK returns false, the iteration ends. Otherwise, the
2768 search continues. */
2769
2770 void
2771 iterate_over_symbols (const struct block *block, const char *name,
2772 const domain_enum domain,
2773 gdb::function_view<symbol_found_callback_ftype> callback)
2774 {
2775 struct block_iterator iter;
2776 struct symbol *sym;
2777
2778 ALL_BLOCK_SYMBOLS_WITH_NAME (block, name, iter, sym)
2779 {
2780 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
2781 SYMBOL_DOMAIN (sym), domain))
2782 {
2783 if (!callback (sym))
2784 return;
2785 }
2786 }
2787 }
2788
2789 /* Find the compunit symtab associated with PC and SECTION.
2790 This will read in debug info as necessary. */
2791
2792 struct compunit_symtab *
2793 find_pc_sect_compunit_symtab (CORE_ADDR pc, struct obj_section *section)
2794 {
2795 struct compunit_symtab *cust;
2796 struct compunit_symtab *best_cust = NULL;
2797 struct objfile *objfile;
2798 CORE_ADDR distance = 0;
2799 struct bound_minimal_symbol msymbol;
2800
2801 /* If we know that this is not a text address, return failure. This is
2802 necessary because we loop based on the block's high and low code
2803 addresses, which do not include the data ranges, and because
2804 we call find_pc_sect_psymtab which has a similar restriction based
2805 on the partial_symtab's texthigh and textlow. */
2806 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
2807 if (msymbol.minsym
2808 && (MSYMBOL_TYPE (msymbol.minsym) == mst_data
2809 || MSYMBOL_TYPE (msymbol.minsym) == mst_bss
2810 || MSYMBOL_TYPE (msymbol.minsym) == mst_abs
2811 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_data
2812 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_bss))
2813 return NULL;
2814
2815 /* Search all symtabs for the one whose file contains our address, and which
2816 is the smallest of all the ones containing the address. This is designed
2817 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
2818 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
2819 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
2820
2821 This happens for native ecoff format, where code from included files
2822 gets its own symtab. The symtab for the included file should have
2823 been read in already via the dependency mechanism.
2824 It might be swifter to create several symtabs with the same name
2825 like xcoff does (I'm not sure).
2826
2827 It also happens for objfiles that have their functions reordered.
2828 For these, the symtab we are looking for is not necessarily read in. */
2829
2830 ALL_COMPUNITS (objfile, cust)
2831 {
2832 struct block *b;
2833 const struct blockvector *bv;
2834
2835 bv = COMPUNIT_BLOCKVECTOR (cust);
2836 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
2837
2838 if (BLOCK_START (b) <= pc
2839 && BLOCK_END (b) > pc
2840 && (distance == 0
2841 || BLOCK_END (b) - BLOCK_START (b) < distance))
2842 {
2843 /* For an objfile that has its functions reordered,
2844 find_pc_psymtab will find the proper partial symbol table
2845 and we simply return its corresponding symtab. */
2846 /* In order to better support objfiles that contain both
2847 stabs and coff debugging info, we continue on if a psymtab
2848 can't be found. */
2849 if ((objfile->flags & OBJF_REORDERED) && objfile->sf)
2850 {
2851 struct compunit_symtab *result;
2852
2853 result
2854 = objfile->sf->qf->find_pc_sect_compunit_symtab (objfile,
2855 msymbol,
2856 pc, section,
2857 0);
2858 if (result != NULL)
2859 return result;
2860 }
2861 if (section != 0)
2862 {
2863 struct block_iterator iter;
2864 struct symbol *sym = NULL;
2865
2866 ALL_BLOCK_SYMBOLS (b, iter, sym)
2867 {
2868 fixup_symbol_section (sym, objfile);
2869 if (matching_obj_sections (SYMBOL_OBJ_SECTION (objfile, sym),
2870 section))
2871 break;
2872 }
2873 if (sym == NULL)
2874 continue; /* No symbol in this symtab matches
2875 section. */
2876 }
2877 distance = BLOCK_END (b) - BLOCK_START (b);
2878 best_cust = cust;
2879 }
2880 }
2881
2882 if (best_cust != NULL)
2883 return best_cust;
2884
2885 /* Not found in symtabs, search the "quick" symtabs (e.g. psymtabs). */
2886
2887 ALL_OBJFILES (objfile)
2888 {
2889 struct compunit_symtab *result;
2890
2891 if (!objfile->sf)
2892 continue;
2893 result = objfile->sf->qf->find_pc_sect_compunit_symtab (objfile,
2894 msymbol,
2895 pc, section,
2896 1);
2897 if (result != NULL)
2898 return result;
2899 }
2900
2901 return NULL;
2902 }
2903
2904 /* Find the compunit symtab associated with PC.
2905 This will read in debug info as necessary.
2906 Backward compatibility, no section. */
2907
2908 struct compunit_symtab *
2909 find_pc_compunit_symtab (CORE_ADDR pc)
2910 {
2911 return find_pc_sect_compunit_symtab (pc, find_pc_mapped_section (pc));
2912 }
2913 \f
2914
2915 /* Find the source file and line number for a given PC value and SECTION.
2916 Return a structure containing a symtab pointer, a line number,
2917 and a pc range for the entire source line.
2918 The value's .pc field is NOT the specified pc.
2919 NOTCURRENT nonzero means, if specified pc is on a line boundary,
2920 use the line that ends there. Otherwise, in that case, the line
2921 that begins there is used. */
2922
2923 /* The big complication here is that a line may start in one file, and end just
2924 before the start of another file. This usually occurs when you #include
2925 code in the middle of a subroutine. To properly find the end of a line's PC
2926 range, we must search all symtabs associated with this compilation unit, and
2927 find the one whose first PC is closer than that of the next line in this
2928 symtab. */
2929
2930 /* If it's worth the effort, we could be using a binary search. */
2931
2932 struct symtab_and_line
2933 find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent)
2934 {
2935 struct compunit_symtab *cust;
2936 struct symtab *iter_s;
2937 struct linetable *l;
2938 int len;
2939 int i;
2940 struct linetable_entry *item;
2941 struct symtab_and_line val;
2942 const struct blockvector *bv;
2943 struct bound_minimal_symbol msymbol;
2944
2945 /* Info on best line seen so far, and where it starts, and its file. */
2946
2947 struct linetable_entry *best = NULL;
2948 CORE_ADDR best_end = 0;
2949 struct symtab *best_symtab = 0;
2950
2951 /* Store here the first line number
2952 of a file which contains the line at the smallest pc after PC.
2953 If we don't find a line whose range contains PC,
2954 we will use a line one less than this,
2955 with a range from the start of that file to the first line's pc. */
2956 struct linetable_entry *alt = NULL;
2957
2958 /* Info on best line seen in this file. */
2959
2960 struct linetable_entry *prev;
2961
2962 /* If this pc is not from the current frame,
2963 it is the address of the end of a call instruction.
2964 Quite likely that is the start of the following statement.
2965 But what we want is the statement containing the instruction.
2966 Fudge the pc to make sure we get that. */
2967
2968 init_sal (&val); /* initialize to zeroes */
2969
2970 val.pspace = current_program_space;
2971
2972 /* It's tempting to assume that, if we can't find debugging info for
2973 any function enclosing PC, that we shouldn't search for line
2974 number info, either. However, GAS can emit line number info for
2975 assembly files --- very helpful when debugging hand-written
2976 assembly code. In such a case, we'd have no debug info for the
2977 function, but we would have line info. */
2978
2979 if (notcurrent)
2980 pc -= 1;
2981
2982 /* elz: added this because this function returned the wrong
2983 information if the pc belongs to a stub (import/export)
2984 to call a shlib function. This stub would be anywhere between
2985 two functions in the target, and the line info was erroneously
2986 taken to be the one of the line before the pc. */
2987
2988 /* RT: Further explanation:
2989
2990 * We have stubs (trampolines) inserted between procedures.
2991 *
2992 * Example: "shr1" exists in a shared library, and a "shr1" stub also
2993 * exists in the main image.
2994 *
2995 * In the minimal symbol table, we have a bunch of symbols
2996 * sorted by start address. The stubs are marked as "trampoline",
2997 * the others appear as text. E.g.:
2998 *
2999 * Minimal symbol table for main image
3000 * main: code for main (text symbol)
3001 * shr1: stub (trampoline symbol)
3002 * foo: code for foo (text symbol)
3003 * ...
3004 * Minimal symbol table for "shr1" image:
3005 * ...
3006 * shr1: code for shr1 (text symbol)
3007 * ...
3008 *
3009 * So the code below is trying to detect if we are in the stub
3010 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
3011 * and if found, do the symbolization from the real-code address
3012 * rather than the stub address.
3013 *
3014 * Assumptions being made about the minimal symbol table:
3015 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
3016 * if we're really in the trampoline.s If we're beyond it (say
3017 * we're in "foo" in the above example), it'll have a closer
3018 * symbol (the "foo" text symbol for example) and will not
3019 * return the trampoline.
3020 * 2. lookup_minimal_symbol_text() will find a real text symbol
3021 * corresponding to the trampoline, and whose address will
3022 * be different than the trampoline address. I put in a sanity
3023 * check for the address being the same, to avoid an
3024 * infinite recursion.
3025 */
3026 msymbol = lookup_minimal_symbol_by_pc (pc);
3027 if (msymbol.minsym != NULL)
3028 if (MSYMBOL_TYPE (msymbol.minsym) == mst_solib_trampoline)
3029 {
3030 struct bound_minimal_symbol mfunsym
3031 = lookup_minimal_symbol_text (MSYMBOL_LINKAGE_NAME (msymbol.minsym),
3032 NULL);
3033
3034 if (mfunsym.minsym == NULL)
3035 /* I eliminated this warning since it is coming out
3036 * in the following situation:
3037 * gdb shmain // test program with shared libraries
3038 * (gdb) break shr1 // function in shared lib
3039 * Warning: In stub for ...
3040 * In the above situation, the shared lib is not loaded yet,
3041 * so of course we can't find the real func/line info,
3042 * but the "break" still works, and the warning is annoying.
3043 * So I commented out the warning. RT */
3044 /* warning ("In stub for %s; unable to find real function/line info",
3045 SYMBOL_LINKAGE_NAME (msymbol)); */
3046 ;
3047 /* fall through */
3048 else if (BMSYMBOL_VALUE_ADDRESS (mfunsym)
3049 == BMSYMBOL_VALUE_ADDRESS (msymbol))
3050 /* Avoid infinite recursion */
3051 /* See above comment about why warning is commented out. */
3052 /* warning ("In stub for %s; unable to find real function/line info",
3053 SYMBOL_LINKAGE_NAME (msymbol)); */
3054 ;
3055 /* fall through */
3056 else
3057 return find_pc_line (BMSYMBOL_VALUE_ADDRESS (mfunsym), 0);
3058 }
3059
3060
3061 cust = find_pc_sect_compunit_symtab (pc, section);
3062 if (cust == NULL)
3063 {
3064 /* If no symbol information, return previous pc. */
3065 if (notcurrent)
3066 pc++;
3067 val.pc = pc;
3068 return val;
3069 }
3070
3071 bv = COMPUNIT_BLOCKVECTOR (cust);
3072
3073 /* Look at all the symtabs that share this blockvector.
3074 They all have the same apriori range, that we found was right;
3075 but they have different line tables. */
3076
3077 ALL_COMPUNIT_FILETABS (cust, iter_s)
3078 {
3079 /* Find the best line in this symtab. */
3080 l = SYMTAB_LINETABLE (iter_s);
3081 if (!l)
3082 continue;
3083 len = l->nitems;
3084 if (len <= 0)
3085 {
3086 /* I think len can be zero if the symtab lacks line numbers
3087 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
3088 I'm not sure which, and maybe it depends on the symbol
3089 reader). */
3090 continue;
3091 }
3092
3093 prev = NULL;
3094 item = l->item; /* Get first line info. */
3095
3096 /* Is this file's first line closer than the first lines of other files?
3097 If so, record this file, and its first line, as best alternate. */
3098 if (item->pc > pc && (!alt || item->pc < alt->pc))
3099 alt = item;
3100
3101 for (i = 0; i < len; i++, item++)
3102 {
3103 /* Leave prev pointing to the linetable entry for the last line
3104 that started at or before PC. */
3105 if (item->pc > pc)
3106 break;
3107
3108 prev = item;
3109 }
3110
3111 /* At this point, prev points at the line whose start addr is <= pc, and
3112 item points at the next line. If we ran off the end of the linetable
3113 (pc >= start of the last line), then prev == item. If pc < start of
3114 the first line, prev will not be set. */
3115
3116 /* Is this file's best line closer than the best in the other files?
3117 If so, record this file, and its best line, as best so far. Don't
3118 save prev if it represents the end of a function (i.e. line number
3119 0) instead of a real line. */
3120
3121 if (prev && prev->line && (!best || prev->pc > best->pc))
3122 {
3123 best = prev;
3124 best_symtab = iter_s;
3125
3126 /* Discard BEST_END if it's before the PC of the current BEST. */
3127 if (best_end <= best->pc)
3128 best_end = 0;
3129 }
3130
3131 /* If another line (denoted by ITEM) is in the linetable and its
3132 PC is after BEST's PC, but before the current BEST_END, then
3133 use ITEM's PC as the new best_end. */
3134 if (best && i < len && item->pc > best->pc
3135 && (best_end == 0 || best_end > item->pc))
3136 best_end = item->pc;
3137 }
3138
3139 if (!best_symtab)
3140 {
3141 /* If we didn't find any line number info, just return zeros.
3142 We used to return alt->line - 1 here, but that could be
3143 anywhere; if we don't have line number info for this PC,
3144 don't make some up. */
3145 val.pc = pc;
3146 }
3147 else if (best->line == 0)
3148 {
3149 /* If our best fit is in a range of PC's for which no line
3150 number info is available (line number is zero) then we didn't
3151 find any valid line information. */
3152 val.pc = pc;
3153 }
3154 else
3155 {
3156 val.symtab = best_symtab;
3157 val.line = best->line;
3158 val.pc = best->pc;
3159 if (best_end && (!alt || best_end < alt->pc))
3160 val.end = best_end;
3161 else if (alt)
3162 val.end = alt->pc;
3163 else
3164 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
3165 }
3166 val.section = section;
3167 return val;
3168 }
3169
3170 /* Backward compatibility (no section). */
3171
3172 struct symtab_and_line
3173 find_pc_line (CORE_ADDR pc, int notcurrent)
3174 {
3175 struct obj_section *section;
3176
3177 section = find_pc_overlay (pc);
3178 if (pc_in_unmapped_range (pc, section))
3179 pc = overlay_mapped_address (pc, section);
3180 return find_pc_sect_line (pc, section, notcurrent);
3181 }
3182
3183 /* See symtab.h. */
3184
3185 struct symtab *
3186 find_pc_line_symtab (CORE_ADDR pc)
3187 {
3188 struct symtab_and_line sal;
3189
3190 /* This always passes zero for NOTCURRENT to find_pc_line.
3191 There are currently no callers that ever pass non-zero. */
3192 sal = find_pc_line (pc, 0);
3193 return sal.symtab;
3194 }
3195 \f
3196 /* Find line number LINE in any symtab whose name is the same as
3197 SYMTAB.
3198
3199 If found, return the symtab that contains the linetable in which it was
3200 found, set *INDEX to the index in the linetable of the best entry
3201 found, and set *EXACT_MATCH nonzero if the value returned is an
3202 exact match.
3203
3204 If not found, return NULL. */
3205
3206 struct symtab *
3207 find_line_symtab (struct symtab *symtab, int line,
3208 int *index, int *exact_match)
3209 {
3210 int exact = 0; /* Initialized here to avoid a compiler warning. */
3211
3212 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
3213 so far seen. */
3214
3215 int best_index;
3216 struct linetable *best_linetable;
3217 struct symtab *best_symtab;
3218
3219 /* First try looking it up in the given symtab. */
3220 best_linetable = SYMTAB_LINETABLE (symtab);
3221 best_symtab = symtab;
3222 best_index = find_line_common (best_linetable, line, &exact, 0);
3223 if (best_index < 0 || !exact)
3224 {
3225 /* Didn't find an exact match. So we better keep looking for
3226 another symtab with the same name. In the case of xcoff,
3227 multiple csects for one source file (produced by IBM's FORTRAN
3228 compiler) produce multiple symtabs (this is unavoidable
3229 assuming csects can be at arbitrary places in memory and that
3230 the GLOBAL_BLOCK of a symtab has a begin and end address). */
3231
3232 /* BEST is the smallest linenumber > LINE so far seen,
3233 or 0 if none has been seen so far.
3234 BEST_INDEX and BEST_LINETABLE identify the item for it. */
3235 int best;
3236
3237 struct objfile *objfile;
3238 struct compunit_symtab *cu;
3239 struct symtab *s;
3240
3241 if (best_index >= 0)
3242 best = best_linetable->item[best_index].line;
3243 else
3244 best = 0;
3245
3246 ALL_OBJFILES (objfile)
3247 {
3248 if (objfile->sf)
3249 objfile->sf->qf->expand_symtabs_with_fullname (objfile,
3250 symtab_to_fullname (symtab));
3251 }
3252
3253 ALL_FILETABS (objfile, cu, s)
3254 {
3255 struct linetable *l;
3256 int ind;
3257
3258 if (FILENAME_CMP (symtab->filename, s->filename) != 0)
3259 continue;
3260 if (FILENAME_CMP (symtab_to_fullname (symtab),
3261 symtab_to_fullname (s)) != 0)
3262 continue;
3263 l = SYMTAB_LINETABLE (s);
3264 ind = find_line_common (l, line, &exact, 0);
3265 if (ind >= 0)
3266 {
3267 if (exact)
3268 {
3269 best_index = ind;
3270 best_linetable = l;
3271 best_symtab = s;
3272 goto done;
3273 }
3274 if (best == 0 || l->item[ind].line < best)
3275 {
3276 best = l->item[ind].line;
3277 best_index = ind;
3278 best_linetable = l;
3279 best_symtab = s;
3280 }
3281 }
3282 }
3283 }
3284 done:
3285 if (best_index < 0)
3286 return NULL;
3287
3288 if (index)
3289 *index = best_index;
3290 if (exact_match)
3291 *exact_match = exact;
3292
3293 return best_symtab;
3294 }
3295
3296 /* Given SYMTAB, returns all the PCs function in the symtab that
3297 exactly match LINE. Returns an empty vector if there are no exact
3298 matches, but updates BEST_ITEM in this case. */
3299
3300 std::vector<CORE_ADDR>
3301 find_pcs_for_symtab_line (struct symtab *symtab, int line,
3302 struct linetable_entry **best_item)
3303 {
3304 int start = 0;
3305 std::vector<CORE_ADDR> result;
3306
3307 /* First, collect all the PCs that are at this line. */
3308 while (1)
3309 {
3310 int was_exact;
3311 int idx;
3312
3313 idx = find_line_common (SYMTAB_LINETABLE (symtab), line, &was_exact,
3314 start);
3315 if (idx < 0)
3316 break;
3317
3318 if (!was_exact)
3319 {
3320 struct linetable_entry *item = &SYMTAB_LINETABLE (symtab)->item[idx];
3321
3322 if (*best_item == NULL || item->line < (*best_item)->line)
3323 *best_item = item;
3324
3325 break;
3326 }
3327
3328 result.push_back (SYMTAB_LINETABLE (symtab)->item[idx].pc);
3329 start = idx + 1;
3330 }
3331
3332 return result;
3333 }
3334
3335 \f
3336 /* Set the PC value for a given source file and line number and return true.
3337 Returns zero for invalid line number (and sets the PC to 0).
3338 The source file is specified with a struct symtab. */
3339
3340 int
3341 find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
3342 {
3343 struct linetable *l;
3344 int ind;
3345
3346 *pc = 0;
3347 if (symtab == 0)
3348 return 0;
3349
3350 symtab = find_line_symtab (symtab, line, &ind, NULL);
3351 if (symtab != NULL)
3352 {
3353 l = SYMTAB_LINETABLE (symtab);
3354 *pc = l->item[ind].pc;
3355 return 1;
3356 }
3357 else
3358 return 0;
3359 }
3360
3361 /* Find the range of pc values in a line.
3362 Store the starting pc of the line into *STARTPTR
3363 and the ending pc (start of next line) into *ENDPTR.
3364 Returns 1 to indicate success.
3365 Returns 0 if could not find the specified line. */
3366
3367 int
3368 find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
3369 CORE_ADDR *endptr)
3370 {
3371 CORE_ADDR startaddr;
3372 struct symtab_and_line found_sal;
3373
3374 startaddr = sal.pc;
3375 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
3376 return 0;
3377
3378 /* This whole function is based on address. For example, if line 10 has
3379 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
3380 "info line *0x123" should say the line goes from 0x100 to 0x200
3381 and "info line *0x355" should say the line goes from 0x300 to 0x400.
3382 This also insures that we never give a range like "starts at 0x134
3383 and ends at 0x12c". */
3384
3385 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
3386 if (found_sal.line != sal.line)
3387 {
3388 /* The specified line (sal) has zero bytes. */
3389 *startptr = found_sal.pc;
3390 *endptr = found_sal.pc;
3391 }
3392 else
3393 {
3394 *startptr = found_sal.pc;
3395 *endptr = found_sal.end;
3396 }
3397 return 1;
3398 }
3399
3400 /* Given a line table and a line number, return the index into the line
3401 table for the pc of the nearest line whose number is >= the specified one.
3402 Return -1 if none is found. The value is >= 0 if it is an index.
3403 START is the index at which to start searching the line table.
3404
3405 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
3406
3407 static int
3408 find_line_common (struct linetable *l, int lineno,
3409 int *exact_match, int start)
3410 {
3411 int i;
3412 int len;
3413
3414 /* BEST is the smallest linenumber > LINENO so far seen,
3415 or 0 if none has been seen so far.
3416 BEST_INDEX identifies the item for it. */
3417
3418 int best_index = -1;
3419 int best = 0;
3420
3421 *exact_match = 0;
3422
3423 if (lineno <= 0)
3424 return -1;
3425 if (l == 0)
3426 return -1;
3427
3428 len = l->nitems;
3429 for (i = start; i < len; i++)
3430 {
3431 struct linetable_entry *item = &(l->item[i]);
3432
3433 if (item->line == lineno)
3434 {
3435 /* Return the first (lowest address) entry which matches. */
3436 *exact_match = 1;
3437 return i;
3438 }
3439
3440 if (item->line > lineno && (best == 0 || item->line < best))
3441 {
3442 best = item->line;
3443 best_index = i;
3444 }
3445 }
3446
3447 /* If we got here, we didn't get an exact match. */
3448 return best_index;
3449 }
3450
3451 int
3452 find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
3453 {
3454 struct symtab_and_line sal;
3455
3456 sal = find_pc_line (pc, 0);
3457 *startptr = sal.pc;
3458 *endptr = sal.end;
3459 return sal.symtab != 0;
3460 }
3461
3462 /* Given a function symbol SYM, find the symtab and line for the start
3463 of the function.
3464 If the argument FUNFIRSTLINE is nonzero, we want the first line
3465 of real code inside the function.
3466 This function should return SALs matching those from minsym_found,
3467 otherwise false multiple-locations breakpoints could be placed. */
3468
3469 struct symtab_and_line
3470 find_function_start_sal (struct symbol *sym, int funfirstline)
3471 {
3472 struct symtab_and_line sal;
3473 struct obj_section *section;
3474
3475 fixup_symbol_section (sym, NULL);
3476 section = SYMBOL_OBJ_SECTION (symbol_objfile (sym), sym);
3477 sal = find_pc_sect_line (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)), section, 0);
3478
3479 if (funfirstline && sal.symtab != NULL
3480 && (COMPUNIT_LOCATIONS_VALID (SYMTAB_COMPUNIT (sal.symtab))
3481 || SYMTAB_LANGUAGE (sal.symtab) == language_asm))
3482 {
3483 struct gdbarch *gdbarch = symbol_arch (sym);
3484
3485 sal.pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
3486 if (gdbarch_skip_entrypoint_p (gdbarch))
3487 sal.pc = gdbarch_skip_entrypoint (gdbarch, sal.pc);
3488 return sal;
3489 }
3490
3491 /* We always should have a line for the function start address.
3492 If we don't, something is odd. Create a plain SAL refering
3493 just the PC and hope that skip_prologue_sal (if requested)
3494 can find a line number for after the prologue. */
3495 if (sal.pc < BLOCK_START (SYMBOL_BLOCK_VALUE (sym)))
3496 {
3497 init_sal (&sal);
3498 sal.pspace = current_program_space;
3499 sal.pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
3500 sal.section = section;
3501 }
3502
3503 if (funfirstline)
3504 skip_prologue_sal (&sal);
3505
3506 return sal;
3507 }
3508
3509 /* Given a function start address FUNC_ADDR and SYMTAB, find the first
3510 address for that function that has an entry in SYMTAB's line info
3511 table. If such an entry cannot be found, return FUNC_ADDR
3512 unaltered. */
3513
3514 static CORE_ADDR
3515 skip_prologue_using_lineinfo (CORE_ADDR func_addr, struct symtab *symtab)
3516 {
3517 CORE_ADDR func_start, func_end;
3518 struct linetable *l;
3519 int i;
3520
3521 /* Give up if this symbol has no lineinfo table. */
3522 l = SYMTAB_LINETABLE (symtab);
3523 if (l == NULL)
3524 return func_addr;
3525
3526 /* Get the range for the function's PC values, or give up if we
3527 cannot, for some reason. */
3528 if (!find_pc_partial_function (func_addr, NULL, &func_start, &func_end))
3529 return func_addr;
3530
3531 /* Linetable entries are ordered by PC values, see the commentary in
3532 symtab.h where `struct linetable' is defined. Thus, the first
3533 entry whose PC is in the range [FUNC_START..FUNC_END[ is the
3534 address we are looking for. */
3535 for (i = 0; i < l->nitems; i++)
3536 {
3537 struct linetable_entry *item = &(l->item[i]);
3538
3539 /* Don't use line numbers of zero, they mark special entries in
3540 the table. See the commentary on symtab.h before the
3541 definition of struct linetable. */
3542 if (item->line > 0 && func_start <= item->pc && item->pc < func_end)
3543 return item->pc;
3544 }
3545
3546 return func_addr;
3547 }
3548
3549 /* Adjust SAL to the first instruction past the function prologue.
3550 If the PC was explicitly specified, the SAL is not changed.
3551 If the line number was explicitly specified, at most the SAL's PC
3552 is updated. If SAL is already past the prologue, then do nothing. */
3553
3554 void
3555 skip_prologue_sal (struct symtab_and_line *sal)
3556 {
3557 struct symbol *sym;
3558 struct symtab_and_line start_sal;
3559 CORE_ADDR pc, saved_pc;
3560 struct obj_section *section;
3561 const char *name;
3562 struct objfile *objfile;
3563 struct gdbarch *gdbarch;
3564 const struct block *b, *function_block;
3565 int force_skip, skip;
3566
3567 /* Do not change the SAL if PC was specified explicitly. */
3568 if (sal->explicit_pc)
3569 return;
3570
3571 scoped_restore_current_pspace_and_thread restore_pspace_thread;
3572
3573 switch_to_program_space_and_thread (sal->pspace);
3574
3575 sym = find_pc_sect_function (sal->pc, sal->section);
3576 if (sym != NULL)
3577 {
3578 fixup_symbol_section (sym, NULL);
3579
3580 objfile = symbol_objfile (sym);
3581 pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
3582 section = SYMBOL_OBJ_SECTION (objfile, sym);
3583 name = SYMBOL_LINKAGE_NAME (sym);
3584 }
3585 else
3586 {
3587 struct bound_minimal_symbol msymbol
3588 = lookup_minimal_symbol_by_pc_section (sal->pc, sal->section);
3589
3590 if (msymbol.minsym == NULL)
3591 return;
3592
3593 objfile = msymbol.objfile;
3594 pc = BMSYMBOL_VALUE_ADDRESS (msymbol);
3595 section = MSYMBOL_OBJ_SECTION (objfile, msymbol.minsym);
3596 name = MSYMBOL_LINKAGE_NAME (msymbol.minsym);
3597 }
3598
3599 gdbarch = get_objfile_arch (objfile);
3600
3601 /* Process the prologue in two passes. In the first pass try to skip the
3602 prologue (SKIP is true) and verify there is a real need for it (indicated
3603 by FORCE_SKIP). If no such reason was found run a second pass where the
3604 prologue is not skipped (SKIP is false). */
3605
3606 skip = 1;
3607 force_skip = 1;
3608
3609 /* Be conservative - allow direct PC (without skipping prologue) only if we
3610 have proven the CU (Compilation Unit) supports it. sal->SYMTAB does not
3611 have to be set by the caller so we use SYM instead. */
3612 if (sym != NULL
3613 && COMPUNIT_LOCATIONS_VALID (SYMTAB_COMPUNIT (symbol_symtab (sym))))
3614 force_skip = 0;
3615
3616 saved_pc = pc;
3617 do
3618 {
3619 pc = saved_pc;
3620
3621 /* If the function is in an unmapped overlay, use its unmapped LMA address,
3622 so that gdbarch_skip_prologue has something unique to work on. */
3623 if (section_is_overlay (section) && !section_is_mapped (section))
3624 pc = overlay_unmapped_address (pc, section);
3625
3626 /* Skip "first line" of function (which is actually its prologue). */
3627 pc += gdbarch_deprecated_function_start_offset (gdbarch);
3628 if (gdbarch_skip_entrypoint_p (gdbarch))
3629 pc = gdbarch_skip_entrypoint (gdbarch, pc);
3630 if (skip)
3631 pc = gdbarch_skip_prologue_noexcept (gdbarch, pc);
3632
3633 /* For overlays, map pc back into its mapped VMA range. */
3634 pc = overlay_mapped_address (pc, section);
3635
3636 /* Calculate line number. */
3637 start_sal = find_pc_sect_line (pc, section, 0);
3638
3639 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
3640 line is still part of the same function. */
3641 if (skip && start_sal.pc != pc
3642 && (sym ? (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) <= start_sal.end
3643 && start_sal.end < BLOCK_END (SYMBOL_BLOCK_VALUE (sym)))
3644 : (lookup_minimal_symbol_by_pc_section (start_sal.end, section).minsym
3645 == lookup_minimal_symbol_by_pc_section (pc, section).minsym)))
3646 {
3647 /* First pc of next line */
3648 pc = start_sal.end;
3649 /* Recalculate the line number (might not be N+1). */
3650 start_sal = find_pc_sect_line (pc, section, 0);
3651 }
3652
3653 /* On targets with executable formats that don't have a concept of
3654 constructors (ELF with .init has, PE doesn't), gcc emits a call
3655 to `__main' in `main' between the prologue and before user
3656 code. */
3657 if (gdbarch_skip_main_prologue_p (gdbarch)
3658 && name && strcmp_iw (name, "main") == 0)
3659 {
3660 pc = gdbarch_skip_main_prologue (gdbarch, pc);
3661 /* Recalculate the line number (might not be N+1). */
3662 start_sal = find_pc_sect_line (pc, section, 0);
3663 force_skip = 1;
3664 }
3665 }
3666 while (!force_skip && skip--);
3667
3668 /* If we still don't have a valid source line, try to find the first
3669 PC in the lineinfo table that belongs to the same function. This
3670 happens with COFF debug info, which does not seem to have an
3671 entry in lineinfo table for the code after the prologue which has
3672 no direct relation to source. For example, this was found to be
3673 the case with the DJGPP target using "gcc -gcoff" when the
3674 compiler inserted code after the prologue to make sure the stack
3675 is aligned. */
3676 if (!force_skip && sym && start_sal.symtab == NULL)
3677 {
3678 pc = skip_prologue_using_lineinfo (pc, symbol_symtab (sym));
3679 /* Recalculate the line number. */
3680 start_sal = find_pc_sect_line (pc, section, 0);
3681 }
3682
3683 /* If we're already past the prologue, leave SAL unchanged. Otherwise
3684 forward SAL to the end of the prologue. */
3685 if (sal->pc >= pc)
3686 return;
3687
3688 sal->pc = pc;
3689 sal->section = section;
3690
3691 /* Unless the explicit_line flag was set, update the SAL line
3692 and symtab to correspond to the modified PC location. */
3693 if (sal->explicit_line)
3694 return;
3695
3696 sal->symtab = start_sal.symtab;
3697 sal->line = start_sal.line;
3698 sal->end = start_sal.end;
3699
3700 /* Check if we are now inside an inlined function. If we can,
3701 use the call site of the function instead. */
3702 b = block_for_pc_sect (sal->pc, sal->section);
3703 function_block = NULL;
3704 while (b != NULL)
3705 {
3706 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
3707 function_block = b;
3708 else if (BLOCK_FUNCTION (b) != NULL)
3709 break;
3710 b = BLOCK_SUPERBLOCK (b);
3711 }
3712 if (function_block != NULL
3713 && SYMBOL_LINE (BLOCK_FUNCTION (function_block)) != 0)
3714 {
3715 sal->line = SYMBOL_LINE (BLOCK_FUNCTION (function_block));
3716 sal->symtab = symbol_symtab (BLOCK_FUNCTION (function_block));
3717 }
3718 }
3719
3720 /* Given PC at the function's start address, attempt to find the
3721 prologue end using SAL information. Return zero if the skip fails.
3722
3723 A non-optimized prologue traditionally has one SAL for the function
3724 and a second for the function body. A single line function has
3725 them both pointing at the same line.
3726
3727 An optimized prologue is similar but the prologue may contain
3728 instructions (SALs) from the instruction body. Need to skip those
3729 while not getting into the function body.
3730
3731 The functions end point and an increasing SAL line are used as
3732 indicators of the prologue's endpoint.
3733
3734 This code is based on the function refine_prologue_limit
3735 (found in ia64). */
3736
3737 CORE_ADDR
3738 skip_prologue_using_sal (struct gdbarch *gdbarch, CORE_ADDR func_addr)
3739 {
3740 struct symtab_and_line prologue_sal;
3741 CORE_ADDR start_pc;
3742 CORE_ADDR end_pc;
3743 const struct block *bl;
3744
3745 /* Get an initial range for the function. */
3746 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
3747 start_pc += gdbarch_deprecated_function_start_offset (gdbarch);
3748
3749 prologue_sal = find_pc_line (start_pc, 0);
3750 if (prologue_sal.line != 0)
3751 {
3752 /* For languages other than assembly, treat two consecutive line
3753 entries at the same address as a zero-instruction prologue.
3754 The GNU assembler emits separate line notes for each instruction
3755 in a multi-instruction macro, but compilers generally will not
3756 do this. */
3757 if (prologue_sal.symtab->language != language_asm)
3758 {
3759 struct linetable *linetable = SYMTAB_LINETABLE (prologue_sal.symtab);
3760 int idx = 0;
3761
3762 /* Skip any earlier lines, and any end-of-sequence marker
3763 from a previous function. */
3764 while (linetable->item[idx].pc != prologue_sal.pc
3765 || linetable->item[idx].line == 0)
3766 idx++;
3767
3768 if (idx+1 < linetable->nitems
3769 && linetable->item[idx+1].line != 0
3770 && linetable->item[idx+1].pc == start_pc)
3771 return start_pc;
3772 }
3773
3774 /* If there is only one sal that covers the entire function,
3775 then it is probably a single line function, like
3776 "foo(){}". */
3777 if (prologue_sal.end >= end_pc)
3778 return 0;
3779
3780 while (prologue_sal.end < end_pc)
3781 {
3782 struct symtab_and_line sal;
3783
3784 sal = find_pc_line (prologue_sal.end, 0);
3785 if (sal.line == 0)
3786 break;
3787 /* Assume that a consecutive SAL for the same (or larger)
3788 line mark the prologue -> body transition. */
3789 if (sal.line >= prologue_sal.line)
3790 break;
3791 /* Likewise if we are in a different symtab altogether
3792 (e.g. within a file included via #include).  */
3793 if (sal.symtab != prologue_sal.symtab)
3794 break;
3795
3796 /* The line number is smaller. Check that it's from the
3797 same function, not something inlined. If it's inlined,
3798 then there is no point comparing the line numbers. */
3799 bl = block_for_pc (prologue_sal.end);
3800 while (bl)
3801 {
3802 if (block_inlined_p (bl))
3803 break;
3804 if (BLOCK_FUNCTION (bl))
3805 {
3806 bl = NULL;
3807 break;
3808 }
3809 bl = BLOCK_SUPERBLOCK (bl);
3810 }
3811 if (bl != NULL)
3812 break;
3813
3814 /* The case in which compiler's optimizer/scheduler has
3815 moved instructions into the prologue. We look ahead in
3816 the function looking for address ranges whose
3817 corresponding line number is less the first one that we
3818 found for the function. This is more conservative then
3819 refine_prologue_limit which scans a large number of SALs
3820 looking for any in the prologue. */
3821 prologue_sal = sal;
3822 }
3823 }
3824
3825 if (prologue_sal.end < end_pc)
3826 /* Return the end of this line, or zero if we could not find a
3827 line. */
3828 return prologue_sal.end;
3829 else
3830 /* Don't return END_PC, which is past the end of the function. */
3831 return prologue_sal.pc;
3832 }
3833 \f
3834 /* If P is of the form "operator[ \t]+..." where `...' is
3835 some legitimate operator text, return a pointer to the
3836 beginning of the substring of the operator text.
3837 Otherwise, return "". */
3838
3839 static const char *
3840 operator_chars (const char *p, const char **end)
3841 {
3842 *end = "";
3843 if (!startswith (p, CP_OPERATOR_STR))
3844 return *end;
3845 p += CP_OPERATOR_LEN;
3846
3847 /* Don't get faked out by `operator' being part of a longer
3848 identifier. */
3849 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
3850 return *end;
3851
3852 /* Allow some whitespace between `operator' and the operator symbol. */
3853 while (*p == ' ' || *p == '\t')
3854 p++;
3855
3856 /* Recognize 'operator TYPENAME'. */
3857
3858 if (isalpha (*p) || *p == '_' || *p == '$')
3859 {
3860 const char *q = p + 1;
3861
3862 while (isalnum (*q) || *q == '_' || *q == '$')
3863 q++;
3864 *end = q;
3865 return p;
3866 }
3867
3868 while (*p)
3869 switch (*p)
3870 {
3871 case '\\': /* regexp quoting */
3872 if (p[1] == '*')
3873 {
3874 if (p[2] == '=') /* 'operator\*=' */
3875 *end = p + 3;
3876 else /* 'operator\*' */
3877 *end = p + 2;
3878 return p;
3879 }
3880 else if (p[1] == '[')
3881 {
3882 if (p[2] == ']')
3883 error (_("mismatched quoting on brackets, "
3884 "try 'operator\\[\\]'"));
3885 else if (p[2] == '\\' && p[3] == ']')
3886 {
3887 *end = p + 4; /* 'operator\[\]' */
3888 return p;
3889 }
3890 else
3891 error (_("nothing is allowed between '[' and ']'"));
3892 }
3893 else
3894 {
3895 /* Gratuitous qoute: skip it and move on. */
3896 p++;
3897 continue;
3898 }
3899 break;
3900 case '!':
3901 case '=':
3902 case '*':
3903 case '/':
3904 case '%':
3905 case '^':
3906 if (p[1] == '=')
3907 *end = p + 2;
3908 else
3909 *end = p + 1;
3910 return p;
3911 case '<':
3912 case '>':
3913 case '+':
3914 case '-':
3915 case '&':
3916 case '|':
3917 if (p[0] == '-' && p[1] == '>')
3918 {
3919 /* Struct pointer member operator 'operator->'. */
3920 if (p[2] == '*')
3921 {
3922 *end = p + 3; /* 'operator->*' */
3923 return p;
3924 }
3925 else if (p[2] == '\\')
3926 {
3927 *end = p + 4; /* Hopefully 'operator->\*' */
3928 return p;
3929 }
3930 else
3931 {
3932 *end = p + 2; /* 'operator->' */
3933 return p;
3934 }
3935 }
3936 if (p[1] == '=' || p[1] == p[0])
3937 *end = p + 2;
3938 else
3939 *end = p + 1;
3940 return p;
3941 case '~':
3942 case ',':
3943 *end = p + 1;
3944 return p;
3945 case '(':
3946 if (p[1] != ')')
3947 error (_("`operator ()' must be specified "
3948 "without whitespace in `()'"));
3949 *end = p + 2;
3950 return p;
3951 case '?':
3952 if (p[1] != ':')
3953 error (_("`operator ?:' must be specified "
3954 "without whitespace in `?:'"));
3955 *end = p + 2;
3956 return p;
3957 case '[':
3958 if (p[1] != ']')
3959 error (_("`operator []' must be specified "
3960 "without whitespace in `[]'"));
3961 *end = p + 2;
3962 return p;
3963 default:
3964 error (_("`operator %s' not supported"), p);
3965 break;
3966 }
3967
3968 *end = "";
3969 return *end;
3970 }
3971 \f
3972
3973 /* Data structure to maintain printing state for output_source_filename. */
3974
3975 struct output_source_filename_data
3976 {
3977 /* Cache of what we've seen so far. */
3978 struct filename_seen_cache *filename_seen_cache;
3979
3980 /* Flag of whether we're printing the first one. */
3981 int first;
3982 };
3983
3984 /* Slave routine for sources_info. Force line breaks at ,'s.
3985 NAME is the name to print.
3986 DATA contains the state for printing and watching for duplicates. */
3987
3988 static void
3989 output_source_filename (const char *name,
3990 struct output_source_filename_data *data)
3991 {
3992 /* Since a single source file can result in several partial symbol
3993 tables, we need to avoid printing it more than once. Note: if
3994 some of the psymtabs are read in and some are not, it gets
3995 printed both under "Source files for which symbols have been
3996 read" and "Source files for which symbols will be read in on
3997 demand". I consider this a reasonable way to deal with the
3998 situation. I'm not sure whether this can also happen for
3999 symtabs; it doesn't hurt to check. */
4000
4001 /* Was NAME already seen? */
4002 if (data->filename_seen_cache->seen (name))
4003 {
4004 /* Yes; don't print it again. */
4005 return;
4006 }
4007
4008 /* No; print it and reset *FIRST. */
4009 if (! data->first)
4010 printf_filtered (", ");
4011 data->first = 0;
4012
4013 wrap_here ("");
4014 fputs_filtered (name, gdb_stdout);
4015 }
4016
4017 /* A callback for map_partial_symbol_filenames. */
4018
4019 static void
4020 output_partial_symbol_filename (const char *filename, const char *fullname,
4021 void *data)
4022 {
4023 output_source_filename (fullname ? fullname : filename,
4024 (struct output_source_filename_data *) data);
4025 }
4026
4027 static void
4028 sources_info (char *ignore, int from_tty)
4029 {
4030 struct compunit_symtab *cu;
4031 struct symtab *s;
4032 struct objfile *objfile;
4033 struct output_source_filename_data data;
4034
4035 if (!have_full_symbols () && !have_partial_symbols ())
4036 {
4037 error (_("No symbol table is loaded. Use the \"file\" command."));
4038 }
4039
4040 filename_seen_cache filenames_seen;
4041
4042 data.filename_seen_cache = &filenames_seen;
4043
4044 printf_filtered ("Source files for which symbols have been read in:\n\n");
4045
4046 data.first = 1;
4047 ALL_FILETABS (objfile, cu, s)
4048 {
4049 const char *fullname = symtab_to_fullname (s);
4050
4051 output_source_filename (fullname, &data);
4052 }
4053 printf_filtered ("\n\n");
4054
4055 printf_filtered ("Source files for which symbols "
4056 "will be read in on demand:\n\n");
4057
4058 filenames_seen.clear ();
4059 data.first = 1;
4060 map_symbol_filenames (output_partial_symbol_filename, &data,
4061 1 /*need_fullname*/);
4062 printf_filtered ("\n");
4063 }
4064
4065 /* Compare FILE against all the NFILES entries of FILES. If BASENAMES is
4066 non-zero compare only lbasename of FILES. */
4067
4068 static int
4069 file_matches (const char *file, const char *files[], int nfiles, int basenames)
4070 {
4071 int i;
4072
4073 if (file != NULL && nfiles != 0)
4074 {
4075 for (i = 0; i < nfiles; i++)
4076 {
4077 if (compare_filenames_for_search (file, (basenames
4078 ? lbasename (files[i])
4079 : files[i])))
4080 return 1;
4081 }
4082 }
4083 else if (nfiles == 0)
4084 return 1;
4085 return 0;
4086 }
4087
4088 /* Free any memory associated with a search. */
4089
4090 void
4091 free_search_symbols (struct symbol_search *symbols)
4092 {
4093 struct symbol_search *p;
4094 struct symbol_search *next;
4095
4096 for (p = symbols; p != NULL; p = next)
4097 {
4098 next = p->next;
4099 xfree (p);
4100 }
4101 }
4102
4103 static void
4104 do_free_search_symbols_cleanup (void *symbolsp)
4105 {
4106 struct symbol_search *symbols = *(struct symbol_search **) symbolsp;
4107
4108 free_search_symbols (symbols);
4109 }
4110
4111 struct cleanup *
4112 make_cleanup_free_search_symbols (struct symbol_search **symbolsp)
4113 {
4114 return make_cleanup (do_free_search_symbols_cleanup, symbolsp);
4115 }
4116
4117 /* Helper function for sort_search_symbols_remove_dups and qsort. Can only
4118 sort symbols, not minimal symbols. */
4119
4120 static int
4121 compare_search_syms (const void *sa, const void *sb)
4122 {
4123 struct symbol_search *sym_a = *(struct symbol_search **) sa;
4124 struct symbol_search *sym_b = *(struct symbol_search **) sb;
4125 int c;
4126
4127 c = FILENAME_CMP (symbol_symtab (sym_a->symbol)->filename,
4128 symbol_symtab (sym_b->symbol)->filename);
4129 if (c != 0)
4130 return c;
4131
4132 if (sym_a->block != sym_b->block)
4133 return sym_a->block - sym_b->block;
4134
4135 return strcmp (SYMBOL_PRINT_NAME (sym_a->symbol),
4136 SYMBOL_PRINT_NAME (sym_b->symbol));
4137 }
4138
4139 /* Sort the NFOUND symbols in list FOUND and remove duplicates.
4140 The duplicates are freed, and the new list is returned in
4141 *NEW_HEAD, *NEW_TAIL. */
4142
4143 static void
4144 sort_search_symbols_remove_dups (struct symbol_search *found, int nfound,
4145 struct symbol_search **new_head,
4146 struct symbol_search **new_tail)
4147 {
4148 struct symbol_search **symbols, *symp;
4149 int i, j, nunique;
4150
4151 gdb_assert (found != NULL && nfound > 0);
4152
4153 /* Build an array out of the list so we can easily sort them. */
4154 symbols = XNEWVEC (struct symbol_search *, nfound);
4155
4156 symp = found;
4157 for (i = 0; i < nfound; i++)
4158 {
4159 gdb_assert (symp != NULL);
4160 gdb_assert (symp->block >= 0 && symp->block <= 1);
4161 symbols[i] = symp;
4162 symp = symp->next;
4163 }
4164 gdb_assert (symp == NULL);
4165
4166 qsort (symbols, nfound, sizeof (struct symbol_search *),
4167 compare_search_syms);
4168
4169 /* Collapse out the dups. */
4170 for (i = 1, j = 1; i < nfound; ++i)
4171 {
4172 if (compare_search_syms (&symbols[j - 1], &symbols[i]) != 0)
4173 symbols[j++] = symbols[i];
4174 else
4175 xfree (symbols[i]);
4176 }
4177 nunique = j;
4178 symbols[j - 1]->next = NULL;
4179
4180 /* Rebuild the linked list. */
4181 for (i = 0; i < nunique - 1; i++)
4182 symbols[i]->next = symbols[i + 1];
4183 symbols[nunique - 1]->next = NULL;
4184
4185 *new_head = symbols[0];
4186 *new_tail = symbols[nunique - 1];
4187 xfree (symbols);
4188 }
4189
4190 /* Search the symbol table for matches to the regular expression REGEXP,
4191 returning the results in *MATCHES.
4192
4193 Only symbols of KIND are searched:
4194 VARIABLES_DOMAIN - search all symbols, excluding functions, type names,
4195 and constants (enums)
4196 FUNCTIONS_DOMAIN - search all functions
4197 TYPES_DOMAIN - search all type names
4198 ALL_DOMAIN - an internal error for this function
4199
4200 free_search_symbols should be called when *MATCHES is no longer needed.
4201
4202 Within each file the results are sorted locally; each symtab's global and
4203 static blocks are separately alphabetized.
4204 Duplicate entries are removed. */
4205
4206 void
4207 search_symbols (const char *regexp, enum search_domain kind,
4208 int nfiles, const char *files[],
4209 struct symbol_search **matches)
4210 {
4211 struct compunit_symtab *cust;
4212 const struct blockvector *bv;
4213 struct block *b;
4214 int i = 0;
4215 struct block_iterator iter;
4216 struct symbol *sym;
4217 struct objfile *objfile;
4218 struct minimal_symbol *msymbol;
4219 int found_misc = 0;
4220 static const enum minimal_symbol_type types[]
4221 = {mst_data, mst_text, mst_abs};
4222 static const enum minimal_symbol_type types2[]
4223 = {mst_bss, mst_file_text, mst_abs};
4224 static const enum minimal_symbol_type types3[]
4225 = {mst_file_data, mst_solib_trampoline, mst_abs};
4226 static const enum minimal_symbol_type types4[]
4227 = {mst_file_bss, mst_text_gnu_ifunc, mst_abs};
4228 enum minimal_symbol_type ourtype;
4229 enum minimal_symbol_type ourtype2;
4230 enum minimal_symbol_type ourtype3;
4231 enum minimal_symbol_type ourtype4;
4232 struct symbol_search *found;
4233 struct symbol_search *tail;
4234 int nfound;
4235 gdb::optional<compiled_regex> preg;
4236
4237 /* OLD_CHAIN .. RETVAL_CHAIN is always freed, RETVAL_CHAIN .. current
4238 CLEANUP_CHAIN is freed only in the case of an error. */
4239 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
4240 struct cleanup *retval_chain;
4241
4242 gdb_assert (kind <= TYPES_DOMAIN);
4243
4244 ourtype = types[kind];
4245 ourtype2 = types2[kind];
4246 ourtype3 = types3[kind];
4247 ourtype4 = types4[kind];
4248
4249 *matches = NULL;
4250
4251 if (regexp != NULL)
4252 {
4253 /* Make sure spacing is right for C++ operators.
4254 This is just a courtesy to make the matching less sensitive
4255 to how many spaces the user leaves between 'operator'
4256 and <TYPENAME> or <OPERATOR>. */
4257 const char *opend;
4258 const char *opname = operator_chars (regexp, &opend);
4259 int errcode;
4260
4261 if (*opname)
4262 {
4263 int fix = -1; /* -1 means ok; otherwise number of
4264 spaces needed. */
4265
4266 if (isalpha (*opname) || *opname == '_' || *opname == '$')
4267 {
4268 /* There should 1 space between 'operator' and 'TYPENAME'. */
4269 if (opname[-1] != ' ' || opname[-2] == ' ')
4270 fix = 1;
4271 }
4272 else
4273 {
4274 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
4275 if (opname[-1] == ' ')
4276 fix = 0;
4277 }
4278 /* If wrong number of spaces, fix it. */
4279 if (fix >= 0)
4280 {
4281 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
4282
4283 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
4284 regexp = tmp;
4285 }
4286 }
4287
4288 int cflags = REG_NOSUB | (case_sensitivity == case_sensitive_off
4289 ? REG_ICASE : 0);
4290 preg.emplace (regexp, cflags, _("Invalid regexp"));
4291 }
4292
4293 /* Search through the partial symtabs *first* for all symbols
4294 matching the regexp. That way we don't have to reproduce all of
4295 the machinery below. */
4296 expand_symtabs_matching ([&] (const char *filename, bool basenames)
4297 {
4298 return file_matches (filename, files, nfiles,
4299 basenames);
4300 },
4301 [&] (const char *symname)
4302 {
4303 return (!preg || preg->exec (symname,
4304 0, NULL, 0) == 0);
4305 },
4306 NULL,
4307 kind);
4308
4309 /* Here, we search through the minimal symbol tables for functions
4310 and variables that match, and force their symbols to be read.
4311 This is in particular necessary for demangled variable names,
4312 which are no longer put into the partial symbol tables.
4313 The symbol will then be found during the scan of symtabs below.
4314
4315 For functions, find_pc_symtab should succeed if we have debug info
4316 for the function, for variables we have to call
4317 lookup_symbol_in_objfile_from_linkage_name to determine if the variable
4318 has debug info.
4319 If the lookup fails, set found_misc so that we will rescan to print
4320 any matching symbols without debug info.
4321 We only search the objfile the msymbol came from, we no longer search
4322 all objfiles. In large programs (1000s of shared libs) searching all
4323 objfiles is not worth the pain. */
4324
4325 if (nfiles == 0 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
4326 {
4327 ALL_MSYMBOLS (objfile, msymbol)
4328 {
4329 QUIT;
4330
4331 if (msymbol->created_by_gdb)
4332 continue;
4333
4334 if (MSYMBOL_TYPE (msymbol) == ourtype
4335 || MSYMBOL_TYPE (msymbol) == ourtype2
4336 || MSYMBOL_TYPE (msymbol) == ourtype3
4337 || MSYMBOL_TYPE (msymbol) == ourtype4)
4338 {
4339 if (!preg
4340 || preg->exec (MSYMBOL_NATURAL_NAME (msymbol), 0,
4341 NULL, 0) == 0)
4342 {
4343 /* Note: An important side-effect of these lookup functions
4344 is to expand the symbol table if msymbol is found, for the
4345 benefit of the next loop on ALL_COMPUNITS. */
4346 if (kind == FUNCTIONS_DOMAIN
4347 ? (find_pc_compunit_symtab
4348 (MSYMBOL_VALUE_ADDRESS (objfile, msymbol)) == NULL)
4349 : (lookup_symbol_in_objfile_from_linkage_name
4350 (objfile, MSYMBOL_LINKAGE_NAME (msymbol), VAR_DOMAIN)
4351 .symbol == NULL))
4352 found_misc = 1;
4353 }
4354 }
4355 }
4356 }
4357
4358 found = NULL;
4359 tail = NULL;
4360 nfound = 0;
4361 retval_chain = make_cleanup_free_search_symbols (&found);
4362
4363 ALL_COMPUNITS (objfile, cust)
4364 {
4365 bv = COMPUNIT_BLOCKVECTOR (cust);
4366 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
4367 {
4368 b = BLOCKVECTOR_BLOCK (bv, i);
4369 ALL_BLOCK_SYMBOLS (b, iter, sym)
4370 {
4371 struct symtab *real_symtab = symbol_symtab (sym);
4372
4373 QUIT;
4374
4375 /* Check first sole REAL_SYMTAB->FILENAME. It does not need to be
4376 a substring of symtab_to_fullname as it may contain "./" etc. */
4377 if ((file_matches (real_symtab->filename, files, nfiles, 0)
4378 || ((basenames_may_differ
4379 || file_matches (lbasename (real_symtab->filename),
4380 files, nfiles, 1))
4381 && file_matches (symtab_to_fullname (real_symtab),
4382 files, nfiles, 0)))
4383 && ((!preg
4384 || preg->exec (SYMBOL_NATURAL_NAME (sym), 0,
4385 NULL, 0) == 0)
4386 && ((kind == VARIABLES_DOMAIN
4387 && SYMBOL_CLASS (sym) != LOC_TYPEDEF
4388 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
4389 && SYMBOL_CLASS (sym) != LOC_BLOCK
4390 /* LOC_CONST can be used for more than just enums,
4391 e.g., c++ static const members.
4392 We only want to skip enums here. */
4393 && !(SYMBOL_CLASS (sym) == LOC_CONST
4394 && (TYPE_CODE (SYMBOL_TYPE (sym))
4395 == TYPE_CODE_ENUM)))
4396 || (kind == FUNCTIONS_DOMAIN
4397 && SYMBOL_CLASS (sym) == LOC_BLOCK)
4398 || (kind == TYPES_DOMAIN
4399 && SYMBOL_CLASS (sym) == LOC_TYPEDEF))))
4400 {
4401 /* match */
4402 struct symbol_search *psr = XCNEW (struct symbol_search);
4403
4404 psr->block = i;
4405 psr->symbol = sym;
4406 psr->next = NULL;
4407 if (tail == NULL)
4408 found = psr;
4409 else
4410 tail->next = psr;
4411 tail = psr;
4412 nfound ++;
4413 }
4414 }
4415 }
4416 }
4417
4418 if (found != NULL)
4419 {
4420 sort_search_symbols_remove_dups (found, nfound, &found, &tail);
4421 /* Note: nfound is no longer useful beyond this point. */
4422 }
4423
4424 /* If there are no eyes, avoid all contact. I mean, if there are
4425 no debug symbols, then add matching minsyms. */
4426
4427 if (found_misc || (nfiles == 0 && kind != FUNCTIONS_DOMAIN))
4428 {
4429 ALL_MSYMBOLS (objfile, msymbol)
4430 {
4431 QUIT;
4432
4433 if (msymbol->created_by_gdb)
4434 continue;
4435
4436 if (MSYMBOL_TYPE (msymbol) == ourtype
4437 || MSYMBOL_TYPE (msymbol) == ourtype2
4438 || MSYMBOL_TYPE (msymbol) == ourtype3
4439 || MSYMBOL_TYPE (msymbol) == ourtype4)
4440 {
4441 if (!preg || preg->exec (MSYMBOL_NATURAL_NAME (msymbol), 0,
4442 NULL, 0) == 0)
4443 {
4444 /* For functions we can do a quick check of whether the
4445 symbol might be found via find_pc_symtab. */
4446 if (kind != FUNCTIONS_DOMAIN
4447 || (find_pc_compunit_symtab
4448 (MSYMBOL_VALUE_ADDRESS (objfile, msymbol)) == NULL))
4449 {
4450 if (lookup_symbol_in_objfile_from_linkage_name
4451 (objfile, MSYMBOL_LINKAGE_NAME (msymbol), VAR_DOMAIN)
4452 .symbol == NULL)
4453 {
4454 /* match */
4455 struct symbol_search *psr = XNEW (struct symbol_search);
4456 psr->block = i;
4457 psr->msymbol.minsym = msymbol;
4458 psr->msymbol.objfile = objfile;
4459 psr->symbol = NULL;
4460 psr->next = NULL;
4461 if (tail == NULL)
4462 found = psr;
4463 else
4464 tail->next = psr;
4465 tail = psr;
4466 }
4467 }
4468 }
4469 }
4470 }
4471 }
4472
4473 discard_cleanups (retval_chain);
4474 do_cleanups (old_chain);
4475 *matches = found;
4476 }
4477
4478 /* Helper function for symtab_symbol_info, this function uses
4479 the data returned from search_symbols() to print information
4480 regarding the match to gdb_stdout. */
4481
4482 static void
4483 print_symbol_info (enum search_domain kind,
4484 struct symbol *sym,
4485 int block, const char *last)
4486 {
4487 struct symtab *s = symbol_symtab (sym);
4488 const char *s_filename = symtab_to_filename_for_display (s);
4489
4490 if (last == NULL || filename_cmp (last, s_filename) != 0)
4491 {
4492 fputs_filtered ("\nFile ", gdb_stdout);
4493 fputs_filtered (s_filename, gdb_stdout);
4494 fputs_filtered (":\n", gdb_stdout);
4495 }
4496
4497 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
4498 printf_filtered ("static ");
4499
4500 /* Typedef that is not a C++ class. */
4501 if (kind == TYPES_DOMAIN
4502 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
4503 typedef_print (SYMBOL_TYPE (sym), sym, gdb_stdout);
4504 /* variable, func, or typedef-that-is-c++-class. */
4505 else if (kind < TYPES_DOMAIN
4506 || (kind == TYPES_DOMAIN
4507 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
4508 {
4509 type_print (SYMBOL_TYPE (sym),
4510 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
4511 ? "" : SYMBOL_PRINT_NAME (sym)),
4512 gdb_stdout, 0);
4513
4514 printf_filtered (";\n");
4515 }
4516 }
4517
4518 /* This help function for symtab_symbol_info() prints information
4519 for non-debugging symbols to gdb_stdout. */
4520
4521 static void
4522 print_msymbol_info (struct bound_minimal_symbol msymbol)
4523 {
4524 struct gdbarch *gdbarch = get_objfile_arch (msymbol.objfile);
4525 char *tmp;
4526
4527 if (gdbarch_addr_bit (gdbarch) <= 32)
4528 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol)
4529 & (CORE_ADDR) 0xffffffff,
4530 8);
4531 else
4532 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol),
4533 16);
4534 printf_filtered ("%s %s\n",
4535 tmp, MSYMBOL_PRINT_NAME (msymbol.minsym));
4536 }
4537
4538 /* This is the guts of the commands "info functions", "info types", and
4539 "info variables". It calls search_symbols to find all matches and then
4540 print_[m]symbol_info to print out some useful information about the
4541 matches. */
4542
4543 static void
4544 symtab_symbol_info (char *regexp, enum search_domain kind, int from_tty)
4545 {
4546 static const char * const classnames[] =
4547 {"variable", "function", "type"};
4548 struct symbol_search *symbols;
4549 struct symbol_search *p;
4550 struct cleanup *old_chain;
4551 const char *last_filename = NULL;
4552 int first = 1;
4553
4554 gdb_assert (kind <= TYPES_DOMAIN);
4555
4556 /* Must make sure that if we're interrupted, symbols gets freed. */
4557 search_symbols (regexp, kind, 0, NULL, &symbols);
4558 old_chain = make_cleanup_free_search_symbols (&symbols);
4559
4560 if (regexp != NULL)
4561 printf_filtered (_("All %ss matching regular expression \"%s\":\n"),
4562 classnames[kind], regexp);
4563 else
4564 printf_filtered (_("All defined %ss:\n"), classnames[kind]);
4565
4566 for (p = symbols; p != NULL; p = p->next)
4567 {
4568 QUIT;
4569
4570 if (p->msymbol.minsym != NULL)
4571 {
4572 if (first)
4573 {
4574 printf_filtered (_("\nNon-debugging symbols:\n"));
4575 first = 0;
4576 }
4577 print_msymbol_info (p->msymbol);
4578 }
4579 else
4580 {
4581 print_symbol_info (kind,
4582 p->symbol,
4583 p->block,
4584 last_filename);
4585 last_filename
4586 = symtab_to_filename_for_display (symbol_symtab (p->symbol));
4587 }
4588 }
4589
4590 do_cleanups (old_chain);
4591 }
4592
4593 static void
4594 variables_info (char *regexp, int from_tty)
4595 {
4596 symtab_symbol_info (regexp, VARIABLES_DOMAIN, from_tty);
4597 }
4598
4599 static void
4600 functions_info (char *regexp, int from_tty)
4601 {
4602 symtab_symbol_info (regexp, FUNCTIONS_DOMAIN, from_tty);
4603 }
4604
4605
4606 static void
4607 types_info (char *regexp, int from_tty)
4608 {
4609 symtab_symbol_info (regexp, TYPES_DOMAIN, from_tty);
4610 }
4611
4612 /* Breakpoint all functions matching regular expression. */
4613
4614 void
4615 rbreak_command_wrapper (char *regexp, int from_tty)
4616 {
4617 rbreak_command (regexp, from_tty);
4618 }
4619
4620 /* A cleanup function that calls end_rbreak_breakpoints. */
4621
4622 static void
4623 do_end_rbreak_breakpoints (void *ignore)
4624 {
4625 end_rbreak_breakpoints ();
4626 }
4627
4628 static void
4629 rbreak_command (char *regexp, int from_tty)
4630 {
4631 struct symbol_search *ss;
4632 struct symbol_search *p;
4633 struct cleanup *old_chain;
4634 char *string = NULL;
4635 int len = 0;
4636 const char **files = NULL;
4637 const char *file_name;
4638 int nfiles = 0;
4639
4640 if (regexp)
4641 {
4642 char *colon = strchr (regexp, ':');
4643
4644 if (colon && *(colon + 1) != ':')
4645 {
4646 int colon_index;
4647 char *local_name;
4648
4649 colon_index = colon - regexp;
4650 local_name = (char *) alloca (colon_index + 1);
4651 memcpy (local_name, regexp, colon_index);
4652 local_name[colon_index--] = 0;
4653 while (isspace (local_name[colon_index]))
4654 local_name[colon_index--] = 0;
4655 file_name = local_name;
4656 files = &file_name;
4657 nfiles = 1;
4658 regexp = skip_spaces (colon + 1);
4659 }
4660 }
4661
4662 search_symbols (regexp, FUNCTIONS_DOMAIN, nfiles, files, &ss);
4663 old_chain = make_cleanup_free_search_symbols (&ss);
4664 make_cleanup (free_current_contents, &string);
4665
4666 start_rbreak_breakpoints ();
4667 make_cleanup (do_end_rbreak_breakpoints, NULL);
4668 for (p = ss; p != NULL; p = p->next)
4669 {
4670 if (p->msymbol.minsym == NULL)
4671 {
4672 struct symtab *symtab = symbol_symtab (p->symbol);
4673 const char *fullname = symtab_to_fullname (symtab);
4674
4675 int newlen = (strlen (fullname)
4676 + strlen (SYMBOL_LINKAGE_NAME (p->symbol))
4677 + 4);
4678
4679 if (newlen > len)
4680 {
4681 string = (char *) xrealloc (string, newlen);
4682 len = newlen;
4683 }
4684 strcpy (string, fullname);
4685 strcat (string, ":'");
4686 strcat (string, SYMBOL_LINKAGE_NAME (p->symbol));
4687 strcat (string, "'");
4688 break_command (string, from_tty);
4689 print_symbol_info (FUNCTIONS_DOMAIN,
4690 p->symbol,
4691 p->block,
4692 symtab_to_filename_for_display (symtab));
4693 }
4694 else
4695 {
4696 int newlen = (strlen (MSYMBOL_LINKAGE_NAME (p->msymbol.minsym)) + 3);
4697
4698 if (newlen > len)
4699 {
4700 string = (char *) xrealloc (string, newlen);
4701 len = newlen;
4702 }
4703 strcpy (string, "'");
4704 strcat (string, MSYMBOL_LINKAGE_NAME (p->msymbol.minsym));
4705 strcat (string, "'");
4706
4707 break_command (string, from_tty);
4708 printf_filtered ("<function, no debug info> %s;\n",
4709 MSYMBOL_PRINT_NAME (p->msymbol.minsym));
4710 }
4711 }
4712
4713 do_cleanups (old_chain);
4714 }
4715 \f
4716
4717 /* Evaluate if NAME matches SYM_TEXT and SYM_TEXT_LEN.
4718
4719 Either sym_text[sym_text_len] != '(' and then we search for any
4720 symbol starting with SYM_TEXT text.
4721
4722 Otherwise sym_text[sym_text_len] == '(' and then we require symbol name to
4723 be terminated at that point. Partial symbol tables do not have parameters
4724 information. */
4725
4726 static int
4727 compare_symbol_name (const char *name, const char *sym_text, int sym_text_len)
4728 {
4729 int (*ncmp) (const char *, const char *, size_t);
4730
4731 ncmp = (case_sensitivity == case_sensitive_on ? strncmp : strncasecmp);
4732
4733 if (ncmp (name, sym_text, sym_text_len) != 0)
4734 return 0;
4735
4736 if (sym_text[sym_text_len] == '(')
4737 {
4738 /* User searches for `name(someth...'. Require NAME to be terminated.
4739 Normally psymtabs and gdbindex have no parameter types so '\0' will be
4740 present but accept even parameters presence. In this case this
4741 function is in fact strcmp_iw but whitespace skipping is not supported
4742 for tab completion. */
4743
4744 if (name[sym_text_len] != '\0' && name[sym_text_len] != '(')
4745 return 0;
4746 }
4747
4748 return 1;
4749 }
4750
4751 /* Test to see if the symbol specified by SYMNAME (which is already
4752 demangled for C++ symbols) matches SYM_TEXT in the first SYM_TEXT_LEN
4753 characters. If so, add it to the current completion list. */
4754
4755 static void
4756 completion_list_add_name (completion_tracker &tracker,
4757 const char *symname,
4758 const char *sym_text, int sym_text_len,
4759 const char *text, const char *word)
4760 {
4761 /* Clip symbols that cannot match. */
4762 if (!compare_symbol_name (symname, sym_text, sym_text_len))
4763 return;
4764
4765 /* We have a match for a completion, so add SYMNAME to the current list
4766 of matches. Note that the name is moved to freshly malloc'd space. */
4767
4768 {
4769 char *newobj;
4770
4771 if (word == sym_text)
4772 {
4773 newobj = (char *) xmalloc (strlen (symname) + 5);
4774 strcpy (newobj, symname);
4775 }
4776 else if (word > sym_text)
4777 {
4778 /* Return some portion of symname. */
4779 newobj = (char *) xmalloc (strlen (symname) + 5);
4780 strcpy (newobj, symname + (word - sym_text));
4781 }
4782 else
4783 {
4784 /* Return some of SYM_TEXT plus symname. */
4785 newobj = (char *) xmalloc (strlen (symname) + (sym_text - word) + 5);
4786 strncpy (newobj, word, sym_text - word);
4787 newobj[sym_text - word] = '\0';
4788 strcat (newobj, symname);
4789 }
4790
4791 gdb::unique_xmalloc_ptr<char> completion (newobj);
4792
4793 tracker.add_completion (std::move (completion));
4794 }
4795 }
4796
4797 /* completion_list_add_name wrapper for struct symbol. */
4798
4799 static void
4800 completion_list_add_symbol (completion_tracker &tracker,
4801 symbol *sym,
4802 const char *sym_text, int sym_text_len,
4803 const char *text, const char *word)
4804 {
4805 completion_list_add_name (tracker, SYMBOL_NATURAL_NAME (sym),
4806 sym_text, sym_text_len, text, word);
4807 }
4808
4809 /* completion_list_add_name wrapper for struct minimal_symbol. */
4810
4811 static void
4812 completion_list_add_msymbol (completion_tracker &tracker,
4813 minimal_symbol *sym,
4814 const char *sym_text, int sym_text_len,
4815 const char *text, const char *word)
4816 {
4817 completion_list_add_name (tracker, MSYMBOL_NATURAL_NAME (sym),
4818 sym_text, sym_text_len, text, word);
4819 }
4820
4821 /* ObjC: In case we are completing on a selector, look as the msymbol
4822 again and feed all the selectors into the mill. */
4823
4824 static void
4825 completion_list_objc_symbol (completion_tracker &tracker,
4826 struct minimal_symbol *msymbol,
4827 const char *sym_text, int sym_text_len,
4828 const char *text, const char *word)
4829 {
4830 static char *tmp = NULL;
4831 static unsigned int tmplen = 0;
4832
4833 const char *method, *category, *selector;
4834 char *tmp2 = NULL;
4835
4836 method = MSYMBOL_NATURAL_NAME (msymbol);
4837
4838 /* Is it a method? */
4839 if ((method[0] != '-') && (method[0] != '+'))
4840 return;
4841
4842 if (sym_text[0] == '[')
4843 /* Complete on shortened method method. */
4844 completion_list_add_name (tracker, method + 1,
4845 sym_text, sym_text_len, text, word);
4846
4847 while ((strlen (method) + 1) >= tmplen)
4848 {
4849 if (tmplen == 0)
4850 tmplen = 1024;
4851 else
4852 tmplen *= 2;
4853 tmp = (char *) xrealloc (tmp, tmplen);
4854 }
4855 selector = strchr (method, ' ');
4856 if (selector != NULL)
4857 selector++;
4858
4859 category = strchr (method, '(');
4860
4861 if ((category != NULL) && (selector != NULL))
4862 {
4863 memcpy (tmp, method, (category - method));
4864 tmp[category - method] = ' ';
4865 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
4866 completion_list_add_name (tracker, tmp,
4867 sym_text, sym_text_len, text, word);
4868 if (sym_text[0] == '[')
4869 completion_list_add_name (tracker, tmp + 1,
4870 sym_text, sym_text_len, text, word);
4871 }
4872
4873 if (selector != NULL)
4874 {
4875 /* Complete on selector only. */
4876 strcpy (tmp, selector);
4877 tmp2 = strchr (tmp, ']');
4878 if (tmp2 != NULL)
4879 *tmp2 = '\0';
4880
4881 completion_list_add_name (tracker, tmp,
4882 sym_text, sym_text_len, text, word);
4883 }
4884 }
4885
4886 /* Break the non-quoted text based on the characters which are in
4887 symbols. FIXME: This should probably be language-specific. */
4888
4889 static const char *
4890 language_search_unquoted_string (const char *text, const char *p)
4891 {
4892 for (; p > text; --p)
4893 {
4894 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
4895 continue;
4896 else
4897 {
4898 if ((current_language->la_language == language_objc))
4899 {
4900 if (p[-1] == ':') /* Might be part of a method name. */
4901 continue;
4902 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
4903 p -= 2; /* Beginning of a method name. */
4904 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
4905 { /* Might be part of a method name. */
4906 const char *t = p;
4907
4908 /* Seeing a ' ' or a '(' is not conclusive evidence
4909 that we are in the middle of a method name. However,
4910 finding "-[" or "+[" should be pretty un-ambiguous.
4911 Unfortunately we have to find it now to decide. */
4912
4913 while (t > text)
4914 if (isalnum (t[-1]) || t[-1] == '_' ||
4915 t[-1] == ' ' || t[-1] == ':' ||
4916 t[-1] == '(' || t[-1] == ')')
4917 --t;
4918 else
4919 break;
4920
4921 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
4922 p = t - 2; /* Method name detected. */
4923 /* Else we leave with p unchanged. */
4924 }
4925 }
4926 break;
4927 }
4928 }
4929 return p;
4930 }
4931
4932 static void
4933 completion_list_add_fields (completion_tracker &tracker,
4934 struct symbol *sym,
4935 const char *sym_text, int sym_text_len,
4936 const char *text, const char *word)
4937 {
4938 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4939 {
4940 struct type *t = SYMBOL_TYPE (sym);
4941 enum type_code c = TYPE_CODE (t);
4942 int j;
4943
4944 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
4945 for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++)
4946 if (TYPE_FIELD_NAME (t, j))
4947 completion_list_add_name (tracker, TYPE_FIELD_NAME (t, j),
4948 sym_text, sym_text_len, text, word);
4949 }
4950 }
4951
4952 /* Add matching symbols from SYMTAB to the current completion list. */
4953
4954 static void
4955 add_symtab_completions (struct compunit_symtab *cust,
4956 completion_tracker &tracker,
4957 const char *sym_text, int sym_text_len,
4958 const char *text, const char *word,
4959 enum type_code code)
4960 {
4961 struct symbol *sym;
4962 const struct block *b;
4963 struct block_iterator iter;
4964 int i;
4965
4966 if (cust == NULL)
4967 return;
4968
4969 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
4970 {
4971 QUIT;
4972 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust), i);
4973 ALL_BLOCK_SYMBOLS (b, iter, sym)
4974 {
4975 if (code == TYPE_CODE_UNDEF
4976 || (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4977 && TYPE_CODE (SYMBOL_TYPE (sym)) == code))
4978 completion_list_add_symbol (tracker, sym,
4979 sym_text, sym_text_len,
4980 text, word);
4981 }
4982 }
4983 }
4984
4985 void
4986 default_collect_symbol_completion_matches_break_on
4987 (completion_tracker &tracker,
4988 complete_symbol_mode mode,
4989 const char *text, const char *word,
4990 const char *break_on, enum type_code code)
4991 {
4992 /* Problem: All of the symbols have to be copied because readline
4993 frees them. I'm not going to worry about this; hopefully there
4994 won't be that many. */
4995
4996 struct symbol *sym;
4997 struct compunit_symtab *cust;
4998 struct minimal_symbol *msymbol;
4999 struct objfile *objfile;
5000 const struct block *b;
5001 const struct block *surrounding_static_block, *surrounding_global_block;
5002 struct block_iterator iter;
5003 /* The symbol we are completing on. Points in same buffer as text. */
5004 const char *sym_text;
5005 /* Length of sym_text. */
5006 int sym_text_len;
5007
5008 /* Now look for the symbol we are supposed to complete on. */
5009 if (mode == complete_symbol_mode::LINESPEC)
5010 sym_text = text;
5011 else
5012 {
5013 const char *p;
5014 char quote_found;
5015 const char *quote_pos = NULL;
5016
5017 /* First see if this is a quoted string. */
5018 quote_found = '\0';
5019 for (p = text; *p != '\0'; ++p)
5020 {
5021 if (quote_found != '\0')
5022 {
5023 if (*p == quote_found)
5024 /* Found close quote. */
5025 quote_found = '\0';
5026 else if (*p == '\\' && p[1] == quote_found)
5027 /* A backslash followed by the quote character
5028 doesn't end the string. */
5029 ++p;
5030 }
5031 else if (*p == '\'' || *p == '"')
5032 {
5033 quote_found = *p;
5034 quote_pos = p;
5035 }
5036 }
5037 if (quote_found == '\'')
5038 /* A string within single quotes can be a symbol, so complete on it. */
5039 sym_text = quote_pos + 1;
5040 else if (quote_found == '"')
5041 /* A double-quoted string is never a symbol, nor does it make sense
5042 to complete it any other way. */
5043 {
5044 return;
5045 }
5046 else
5047 {
5048 /* It is not a quoted string. Break it based on the characters
5049 which are in symbols. */
5050 while (p > text)
5051 {
5052 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0'
5053 || p[-1] == ':' || strchr (break_on, p[-1]) != NULL)
5054 --p;
5055 else
5056 break;
5057 }
5058 sym_text = p;
5059 }
5060 }
5061
5062 sym_text_len = strlen (sym_text);
5063
5064 /* Prepare SYM_TEXT_LEN for compare_symbol_name. */
5065
5066 if (current_language->la_language == language_cplus
5067 || current_language->la_language == language_fortran)
5068 {
5069 /* These languages may have parameters entered by user but they are never
5070 present in the partial symbol tables. */
5071
5072 const char *cs = (const char *) memchr (sym_text, '(', sym_text_len);
5073
5074 if (cs)
5075 sym_text_len = cs - sym_text;
5076 }
5077 gdb_assert (sym_text[sym_text_len] == '\0' || sym_text[sym_text_len] == '(');
5078
5079 /* At this point scan through the misc symbol vectors and add each
5080 symbol you find to the list. Eventually we want to ignore
5081 anything that isn't a text symbol (everything else will be
5082 handled by the psymtab code below). */
5083
5084 if (code == TYPE_CODE_UNDEF)
5085 {
5086 ALL_MSYMBOLS (objfile, msymbol)
5087 {
5088 QUIT;
5089
5090 completion_list_add_msymbol (tracker,
5091 msymbol, sym_text, sym_text_len,
5092 text, word);
5093
5094 completion_list_objc_symbol (tracker,
5095 msymbol, sym_text, sym_text_len,
5096 text, word);
5097 }
5098 }
5099
5100 /* Add completions for all currently loaded symbol tables. */
5101 ALL_COMPUNITS (objfile, cust)
5102 add_symtab_completions (cust, tracker,
5103 sym_text, sym_text_len, text, word, code);
5104
5105 /* Look through the partial symtabs for all symbols which begin by
5106 matching SYM_TEXT. Expand all CUs that you find to the list. */
5107 expand_symtabs_matching (NULL,
5108 [&] (const char *name) /* symbol matcher */
5109 {
5110 return compare_symbol_name (name,
5111 sym_text,
5112 sym_text_len);
5113 },
5114 [&] (compunit_symtab *symtab) /* expansion notify */
5115 {
5116 add_symtab_completions (symtab,
5117 tracker,
5118 sym_text, sym_text_len,
5119 text, word, code);
5120 },
5121 ALL_DOMAIN);
5122
5123 /* Search upwards from currently selected frame (so that we can
5124 complete on local vars). Also catch fields of types defined in
5125 this places which match our text string. Only complete on types
5126 visible from current context. */
5127
5128 b = get_selected_block (0);
5129 surrounding_static_block = block_static_block (b);
5130 surrounding_global_block = block_global_block (b);
5131 if (surrounding_static_block != NULL)
5132 while (b != surrounding_static_block)
5133 {
5134 QUIT;
5135
5136 ALL_BLOCK_SYMBOLS (b, iter, sym)
5137 {
5138 if (code == TYPE_CODE_UNDEF)
5139 {
5140 completion_list_add_symbol (tracker, sym,
5141 sym_text, sym_text_len, text,
5142 word);
5143 completion_list_add_fields (tracker, sym,
5144 sym_text, sym_text_len, text,
5145 word);
5146 }
5147 else if (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
5148 && TYPE_CODE (SYMBOL_TYPE (sym)) == code)
5149 completion_list_add_symbol (tracker, sym,
5150 sym_text, sym_text_len, text,
5151 word);
5152 }
5153
5154 /* Stop when we encounter an enclosing function. Do not stop for
5155 non-inlined functions - the locals of the enclosing function
5156 are in scope for a nested function. */
5157 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
5158 break;
5159 b = BLOCK_SUPERBLOCK (b);
5160 }
5161
5162 /* Add fields from the file's types; symbols will be added below. */
5163
5164 if (code == TYPE_CODE_UNDEF)
5165 {
5166 if (surrounding_static_block != NULL)
5167 ALL_BLOCK_SYMBOLS (surrounding_static_block, iter, sym)
5168 completion_list_add_fields (tracker, sym,
5169 sym_text, sym_text_len, text, word);
5170
5171 if (surrounding_global_block != NULL)
5172 ALL_BLOCK_SYMBOLS (surrounding_global_block, iter, sym)
5173 completion_list_add_fields (tracker, sym,
5174 sym_text, sym_text_len, text, word);
5175 }
5176
5177 /* Skip macros if we are completing a struct tag -- arguable but
5178 usually what is expected. */
5179 if (current_language->la_macro_expansion == macro_expansion_c
5180 && code == TYPE_CODE_UNDEF)
5181 {
5182 struct macro_scope *scope;
5183
5184 /* This adds a macro's name to the current completion list. */
5185 auto add_macro_name = [&] (const char *macro_name,
5186 const macro_definition *,
5187 macro_source_file *,
5188 int)
5189 {
5190 completion_list_add_name (tracker, macro_name,
5191 sym_text, sym_text_len,
5192 text, word);
5193 };
5194
5195 /* Add any macros visible in the default scope. Note that this
5196 may yield the occasional wrong result, because an expression
5197 might be evaluated in a scope other than the default. For
5198 example, if the user types "break file:line if <TAB>", the
5199 resulting expression will be evaluated at "file:line" -- but
5200 at there does not seem to be a way to detect this at
5201 completion time. */
5202 scope = default_macro_scope ();
5203 if (scope)
5204 {
5205 macro_for_each_in_scope (scope->file, scope->line,
5206 add_macro_name);
5207 xfree (scope);
5208 }
5209
5210 /* User-defined macros are always visible. */
5211 macro_for_each (macro_user_macros, add_macro_name);
5212 }
5213 }
5214
5215 void
5216 default_collect_symbol_completion_matches (completion_tracker &tracker,
5217 complete_symbol_mode mode,
5218 const char *text, const char *word,
5219 enum type_code code)
5220 {
5221 return default_collect_symbol_completion_matches_break_on (tracker, mode,
5222 text, word, "",
5223 code);
5224 }
5225
5226 /* Collect all symbols (regardless of class) which begin by matching
5227 TEXT. */
5228
5229 void
5230 collect_symbol_completion_matches (completion_tracker &tracker,
5231 complete_symbol_mode mode,
5232 const char *text, const char *word)
5233 {
5234 current_language->la_collect_symbol_completion_matches (tracker, mode,
5235 text, word,
5236 TYPE_CODE_UNDEF);
5237 }
5238
5239 /* Like collect_symbol_completion_matches, but only collect
5240 STRUCT_DOMAIN symbols whose type code is CODE. */
5241
5242 void
5243 collect_symbol_completion_matches_type (completion_tracker &tracker,
5244 const char *text, const char *word,
5245 enum type_code code)
5246 {
5247 complete_symbol_mode mode = complete_symbol_mode::EXPRESSION;
5248
5249 gdb_assert (code == TYPE_CODE_UNION
5250 || code == TYPE_CODE_STRUCT
5251 || code == TYPE_CODE_ENUM);
5252 current_language->la_collect_symbol_completion_matches (tracker, mode,
5253 text, word, code);
5254 }
5255
5256 /* Like collect_symbol_completion_matches, but collects a list of
5257 symbols defined in all source files named SRCFILE. */
5258
5259 void
5260 collect_file_symbol_completion_matches (completion_tracker &tracker,
5261 complete_symbol_mode mode,
5262 const char *text, const char *word,
5263 const char *srcfile)
5264 {
5265 /* The symbol we are completing on. Points in same buffer as text. */
5266 const char *sym_text;
5267 /* Length of sym_text. */
5268 int sym_text_len;
5269
5270 /* Now look for the symbol we are supposed to complete on.
5271 FIXME: This should be language-specific. */
5272 if (mode == complete_symbol_mode::LINESPEC)
5273 sym_text = text;
5274 else
5275 {
5276 const char *p;
5277 char quote_found;
5278 const char *quote_pos = NULL;
5279
5280 /* First see if this is a quoted string. */
5281 quote_found = '\0';
5282 for (p = text; *p != '\0'; ++p)
5283 {
5284 if (quote_found != '\0')
5285 {
5286 if (*p == quote_found)
5287 /* Found close quote. */
5288 quote_found = '\0';
5289 else if (*p == '\\' && p[1] == quote_found)
5290 /* A backslash followed by the quote character
5291 doesn't end the string. */
5292 ++p;
5293 }
5294 else if (*p == '\'' || *p == '"')
5295 {
5296 quote_found = *p;
5297 quote_pos = p;
5298 }
5299 }
5300 if (quote_found == '\'')
5301 /* A string within single quotes can be a symbol, so complete on it. */
5302 sym_text = quote_pos + 1;
5303 else if (quote_found == '"')
5304 /* A double-quoted string is never a symbol, nor does it make sense
5305 to complete it any other way. */
5306 {
5307 return;
5308 }
5309 else
5310 {
5311 /* Not a quoted string. */
5312 sym_text = language_search_unquoted_string (text, p);
5313 }
5314 }
5315
5316 sym_text_len = strlen (sym_text);
5317
5318 /* Go through symtabs for SRCFILE and check the externs and statics
5319 for symbols which match. */
5320 iterate_over_symtabs (srcfile, [&] (symtab *s)
5321 {
5322 add_symtab_completions (SYMTAB_COMPUNIT (s),
5323 tracker,
5324 sym_text, sym_text_len,
5325 text, word, TYPE_CODE_UNDEF);
5326 return false;
5327 });
5328 }
5329
5330 /* A helper function for make_source_files_completion_list. It adds
5331 another file name to a list of possible completions, growing the
5332 list as necessary. */
5333
5334 static void
5335 add_filename_to_list (const char *fname, const char *text, const char *word,
5336 completion_list *list)
5337 {
5338 char *newobj;
5339 size_t fnlen = strlen (fname);
5340
5341 if (word == text)
5342 {
5343 /* Return exactly fname. */
5344 newobj = (char *) xmalloc (fnlen + 5);
5345 strcpy (newobj, fname);
5346 }
5347 else if (word > text)
5348 {
5349 /* Return some portion of fname. */
5350 newobj = (char *) xmalloc (fnlen + 5);
5351 strcpy (newobj, fname + (word - text));
5352 }
5353 else
5354 {
5355 /* Return some of TEXT plus fname. */
5356 newobj = (char *) xmalloc (fnlen + (text - word) + 5);
5357 strncpy (newobj, word, text - word);
5358 newobj[text - word] = '\0';
5359 strcat (newobj, fname);
5360 }
5361 list->emplace_back (newobj);
5362 }
5363
5364 static int
5365 not_interesting_fname (const char *fname)
5366 {
5367 static const char *illegal_aliens[] = {
5368 "_globals_", /* inserted by coff_symtab_read */
5369 NULL
5370 };
5371 int i;
5372
5373 for (i = 0; illegal_aliens[i]; i++)
5374 {
5375 if (filename_cmp (fname, illegal_aliens[i]) == 0)
5376 return 1;
5377 }
5378 return 0;
5379 }
5380
5381 /* An object of this type is passed as the user_data argument to
5382 map_partial_symbol_filenames. */
5383 struct add_partial_filename_data
5384 {
5385 struct filename_seen_cache *filename_seen_cache;
5386 const char *text;
5387 const char *word;
5388 int text_len;
5389 completion_list *list;
5390 };
5391
5392 /* A callback for map_partial_symbol_filenames. */
5393
5394 static void
5395 maybe_add_partial_symtab_filename (const char *filename, const char *fullname,
5396 void *user_data)
5397 {
5398 struct add_partial_filename_data *data
5399 = (struct add_partial_filename_data *) user_data;
5400
5401 if (not_interesting_fname (filename))
5402 return;
5403 if (!data->filename_seen_cache->seen (filename)
5404 && filename_ncmp (filename, data->text, data->text_len) == 0)
5405 {
5406 /* This file matches for a completion; add it to the
5407 current list of matches. */
5408 add_filename_to_list (filename, data->text, data->word, data->list);
5409 }
5410 else
5411 {
5412 const char *base_name = lbasename (filename);
5413
5414 if (base_name != filename
5415 && !data->filename_seen_cache->seen (base_name)
5416 && filename_ncmp (base_name, data->text, data->text_len) == 0)
5417 add_filename_to_list (base_name, data->text, data->word, data->list);
5418 }
5419 }
5420
5421 /* Return a list of all source files whose names begin with matching
5422 TEXT. The file names are looked up in the symbol tables of this
5423 program. */
5424
5425 completion_list
5426 make_source_files_completion_list (const char *text, const char *word)
5427 {
5428 struct compunit_symtab *cu;
5429 struct symtab *s;
5430 struct objfile *objfile;
5431 size_t text_len = strlen (text);
5432 completion_list list;
5433 const char *base_name;
5434 struct add_partial_filename_data datum;
5435 struct cleanup *back_to;
5436
5437 if (!have_full_symbols () && !have_partial_symbols ())
5438 return list;
5439
5440 filename_seen_cache filenames_seen;
5441
5442 ALL_FILETABS (objfile, cu, s)
5443 {
5444 if (not_interesting_fname (s->filename))
5445 continue;
5446 if (!filenames_seen.seen (s->filename)
5447 && filename_ncmp (s->filename, text, text_len) == 0)
5448 {
5449 /* This file matches for a completion; add it to the current
5450 list of matches. */
5451 add_filename_to_list (s->filename, text, word, &list);
5452 }
5453 else
5454 {
5455 /* NOTE: We allow the user to type a base name when the
5456 debug info records leading directories, but not the other
5457 way around. This is what subroutines of breakpoint
5458 command do when they parse file names. */
5459 base_name = lbasename (s->filename);
5460 if (base_name != s->filename
5461 && !filenames_seen.seen (base_name)
5462 && filename_ncmp (base_name, text, text_len) == 0)
5463 add_filename_to_list (base_name, text, word, &list);
5464 }
5465 }
5466
5467 datum.filename_seen_cache = &filenames_seen;
5468 datum.text = text;
5469 datum.word = word;
5470 datum.text_len = text_len;
5471 datum.list = &list;
5472 map_symbol_filenames (maybe_add_partial_symtab_filename, &datum,
5473 0 /*need_fullname*/);
5474
5475 return list;
5476 }
5477 \f
5478 /* Track MAIN */
5479
5480 /* Return the "main_info" object for the current program space. If
5481 the object has not yet been created, create it and fill in some
5482 default values. */
5483
5484 static struct main_info *
5485 get_main_info (void)
5486 {
5487 struct main_info *info
5488 = (struct main_info *) program_space_data (current_program_space,
5489 main_progspace_key);
5490
5491 if (info == NULL)
5492 {
5493 /* It may seem strange to store the main name in the progspace
5494 and also in whatever objfile happens to see a main name in
5495 its debug info. The reason for this is mainly historical:
5496 gdb returned "main" as the name even if no function named
5497 "main" was defined the program; and this approach lets us
5498 keep compatibility. */
5499 info = XCNEW (struct main_info);
5500 info->language_of_main = language_unknown;
5501 set_program_space_data (current_program_space, main_progspace_key,
5502 info);
5503 }
5504
5505 return info;
5506 }
5507
5508 /* A cleanup to destroy a struct main_info when a progspace is
5509 destroyed. */
5510
5511 static void
5512 main_info_cleanup (struct program_space *pspace, void *data)
5513 {
5514 struct main_info *info = (struct main_info *) data;
5515
5516 if (info != NULL)
5517 xfree (info->name_of_main);
5518 xfree (info);
5519 }
5520
5521 static void
5522 set_main_name (const char *name, enum language lang)
5523 {
5524 struct main_info *info = get_main_info ();
5525
5526 if (info->name_of_main != NULL)
5527 {
5528 xfree (info->name_of_main);
5529 info->name_of_main = NULL;
5530 info->language_of_main = language_unknown;
5531 }
5532 if (name != NULL)
5533 {
5534 info->name_of_main = xstrdup (name);
5535 info->language_of_main = lang;
5536 }
5537 }
5538
5539 /* Deduce the name of the main procedure, and set NAME_OF_MAIN
5540 accordingly. */
5541
5542 static void
5543 find_main_name (void)
5544 {
5545 const char *new_main_name;
5546 struct objfile *objfile;
5547
5548 /* First check the objfiles to see whether a debuginfo reader has
5549 picked up the appropriate main name. Historically the main name
5550 was found in a more or less random way; this approach instead
5551 relies on the order of objfile creation -- which still isn't
5552 guaranteed to get the correct answer, but is just probably more
5553 accurate. */
5554 ALL_OBJFILES (objfile)
5555 {
5556 if (objfile->per_bfd->name_of_main != NULL)
5557 {
5558 set_main_name (objfile->per_bfd->name_of_main,
5559 objfile->per_bfd->language_of_main);
5560 return;
5561 }
5562 }
5563
5564 /* Try to see if the main procedure is in Ada. */
5565 /* FIXME: brobecker/2005-03-07: Another way of doing this would
5566 be to add a new method in the language vector, and call this
5567 method for each language until one of them returns a non-empty
5568 name. This would allow us to remove this hard-coded call to
5569 an Ada function. It is not clear that this is a better approach
5570 at this point, because all methods need to be written in a way
5571 such that false positives never be returned. For instance, it is
5572 important that a method does not return a wrong name for the main
5573 procedure if the main procedure is actually written in a different
5574 language. It is easy to guaranty this with Ada, since we use a
5575 special symbol generated only when the main in Ada to find the name
5576 of the main procedure. It is difficult however to see how this can
5577 be guarantied for languages such as C, for instance. This suggests
5578 that order of call for these methods becomes important, which means
5579 a more complicated approach. */
5580 new_main_name = ada_main_name ();
5581 if (new_main_name != NULL)
5582 {
5583 set_main_name (new_main_name, language_ada);
5584 return;
5585 }
5586
5587 new_main_name = d_main_name ();
5588 if (new_main_name != NULL)
5589 {
5590 set_main_name (new_main_name, language_d);
5591 return;
5592 }
5593
5594 new_main_name = go_main_name ();
5595 if (new_main_name != NULL)
5596 {
5597 set_main_name (new_main_name, language_go);
5598 return;
5599 }
5600
5601 new_main_name = pascal_main_name ();
5602 if (new_main_name != NULL)
5603 {
5604 set_main_name (new_main_name, language_pascal);
5605 return;
5606 }
5607
5608 /* The languages above didn't identify the name of the main procedure.
5609 Fallback to "main". */
5610 set_main_name ("main", language_unknown);
5611 }
5612
5613 char *
5614 main_name (void)
5615 {
5616 struct main_info *info = get_main_info ();
5617
5618 if (info->name_of_main == NULL)
5619 find_main_name ();
5620
5621 return info->name_of_main;
5622 }
5623
5624 /* Return the language of the main function. If it is not known,
5625 return language_unknown. */
5626
5627 enum language
5628 main_language (void)
5629 {
5630 struct main_info *info = get_main_info ();
5631
5632 if (info->name_of_main == NULL)
5633 find_main_name ();
5634
5635 return info->language_of_main;
5636 }
5637
5638 /* Handle ``executable_changed'' events for the symtab module. */
5639
5640 static void
5641 symtab_observer_executable_changed (void)
5642 {
5643 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
5644 set_main_name (NULL, language_unknown);
5645 }
5646
5647 /* Return 1 if the supplied producer string matches the ARM RealView
5648 compiler (armcc). */
5649
5650 int
5651 producer_is_realview (const char *producer)
5652 {
5653 static const char *const arm_idents[] = {
5654 "ARM C Compiler, ADS",
5655 "Thumb C Compiler, ADS",
5656 "ARM C++ Compiler, ADS",
5657 "Thumb C++ Compiler, ADS",
5658 "ARM/Thumb C/C++ Compiler, RVCT",
5659 "ARM C/C++ Compiler, RVCT"
5660 };
5661 int i;
5662
5663 if (producer == NULL)
5664 return 0;
5665
5666 for (i = 0; i < ARRAY_SIZE (arm_idents); i++)
5667 if (startswith (producer, arm_idents[i]))
5668 return 1;
5669
5670 return 0;
5671 }
5672
5673 \f
5674
5675 /* The next index to hand out in response to a registration request. */
5676
5677 static int next_aclass_value = LOC_FINAL_VALUE;
5678
5679 /* The maximum number of "aclass" registrations we support. This is
5680 constant for convenience. */
5681 #define MAX_SYMBOL_IMPLS (LOC_FINAL_VALUE + 10)
5682
5683 /* The objects representing the various "aclass" values. The elements
5684 from 0 up to LOC_FINAL_VALUE-1 represent themselves, and subsequent
5685 elements are those registered at gdb initialization time. */
5686
5687 static struct symbol_impl symbol_impl[MAX_SYMBOL_IMPLS];
5688
5689 /* The globally visible pointer. This is separate from 'symbol_impl'
5690 so that it can be const. */
5691
5692 const struct symbol_impl *symbol_impls = &symbol_impl[0];
5693
5694 /* Make sure we saved enough room in struct symbol. */
5695
5696 gdb_static_assert (MAX_SYMBOL_IMPLS <= (1 << SYMBOL_ACLASS_BITS));
5697
5698 /* Register a computed symbol type. ACLASS must be LOC_COMPUTED. OPS
5699 is the ops vector associated with this index. This returns the new
5700 index, which should be used as the aclass_index field for symbols
5701 of this type. */
5702
5703 int
5704 register_symbol_computed_impl (enum address_class aclass,
5705 const struct symbol_computed_ops *ops)
5706 {
5707 int result = next_aclass_value++;
5708
5709 gdb_assert (aclass == LOC_COMPUTED);
5710 gdb_assert (result < MAX_SYMBOL_IMPLS);
5711 symbol_impl[result].aclass = aclass;
5712 symbol_impl[result].ops_computed = ops;
5713
5714 /* Sanity check OPS. */
5715 gdb_assert (ops != NULL);
5716 gdb_assert (ops->tracepoint_var_ref != NULL);
5717 gdb_assert (ops->describe_location != NULL);
5718 gdb_assert (ops->get_symbol_read_needs != NULL);
5719 gdb_assert (ops->read_variable != NULL);
5720
5721 return result;
5722 }
5723
5724 /* Register a function with frame base type. ACLASS must be LOC_BLOCK.
5725 OPS is the ops vector associated with this index. This returns the
5726 new index, which should be used as the aclass_index field for symbols
5727 of this type. */
5728
5729 int
5730 register_symbol_block_impl (enum address_class aclass,
5731 const struct symbol_block_ops *ops)
5732 {
5733 int result = next_aclass_value++;
5734
5735 gdb_assert (aclass == LOC_BLOCK);
5736 gdb_assert (result < MAX_SYMBOL_IMPLS);
5737 symbol_impl[result].aclass = aclass;
5738 symbol_impl[result].ops_block = ops;
5739
5740 /* Sanity check OPS. */
5741 gdb_assert (ops != NULL);
5742 gdb_assert (ops->find_frame_base_location != NULL);
5743
5744 return result;
5745 }
5746
5747 /* Register a register symbol type. ACLASS must be LOC_REGISTER or
5748 LOC_REGPARM_ADDR. OPS is the register ops vector associated with
5749 this index. This returns the new index, which should be used as
5750 the aclass_index field for symbols of this type. */
5751
5752 int
5753 register_symbol_register_impl (enum address_class aclass,
5754 const struct symbol_register_ops *ops)
5755 {
5756 int result = next_aclass_value++;
5757
5758 gdb_assert (aclass == LOC_REGISTER || aclass == LOC_REGPARM_ADDR);
5759 gdb_assert (result < MAX_SYMBOL_IMPLS);
5760 symbol_impl[result].aclass = aclass;
5761 symbol_impl[result].ops_register = ops;
5762
5763 return result;
5764 }
5765
5766 /* Initialize elements of 'symbol_impl' for the constants in enum
5767 address_class. */
5768
5769 static void
5770 initialize_ordinary_address_classes (void)
5771 {
5772 int i;
5773
5774 for (i = 0; i < LOC_FINAL_VALUE; ++i)
5775 symbol_impl[i].aclass = (enum address_class) i;
5776 }
5777
5778 \f
5779
5780 /* Helper function to initialize the fields of an objfile-owned symbol.
5781 It assumed that *SYM is already all zeroes. */
5782
5783 static void
5784 initialize_objfile_symbol_1 (struct symbol *sym)
5785 {
5786 SYMBOL_OBJFILE_OWNED (sym) = 1;
5787 SYMBOL_SECTION (sym) = -1;
5788 }
5789
5790 /* Initialize the symbol SYM, and mark it as being owned by an objfile. */
5791
5792 void
5793 initialize_objfile_symbol (struct symbol *sym)
5794 {
5795 memset (sym, 0, sizeof (*sym));
5796 initialize_objfile_symbol_1 (sym);
5797 }
5798
5799 /* Allocate and initialize a new 'struct symbol' on OBJFILE's
5800 obstack. */
5801
5802 struct symbol *
5803 allocate_symbol (struct objfile *objfile)
5804 {
5805 struct symbol *result;
5806
5807 result = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symbol);
5808 initialize_objfile_symbol_1 (result);
5809
5810 return result;
5811 }
5812
5813 /* Allocate and initialize a new 'struct template_symbol' on OBJFILE's
5814 obstack. */
5815
5816 struct template_symbol *
5817 allocate_template_symbol (struct objfile *objfile)
5818 {
5819 struct template_symbol *result;
5820
5821 result = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct template_symbol);
5822 initialize_objfile_symbol_1 (&result->base);
5823
5824 return result;
5825 }
5826
5827 /* See symtab.h. */
5828
5829 struct objfile *
5830 symbol_objfile (const struct symbol *symbol)
5831 {
5832 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
5833 return SYMTAB_OBJFILE (symbol->owner.symtab);
5834 }
5835
5836 /* See symtab.h. */
5837
5838 struct gdbarch *
5839 symbol_arch (const struct symbol *symbol)
5840 {
5841 if (!SYMBOL_OBJFILE_OWNED (symbol))
5842 return symbol->owner.arch;
5843 return get_objfile_arch (SYMTAB_OBJFILE (symbol->owner.symtab));
5844 }
5845
5846 /* See symtab.h. */
5847
5848 struct symtab *
5849 symbol_symtab (const struct symbol *symbol)
5850 {
5851 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
5852 return symbol->owner.symtab;
5853 }
5854
5855 /* See symtab.h. */
5856
5857 void
5858 symbol_set_symtab (struct symbol *symbol, struct symtab *symtab)
5859 {
5860 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
5861 symbol->owner.symtab = symtab;
5862 }
5863
5864 \f
5865
5866 void
5867 _initialize_symtab (void)
5868 {
5869 initialize_ordinary_address_classes ();
5870
5871 main_progspace_key
5872 = register_program_space_data_with_cleanup (NULL, main_info_cleanup);
5873
5874 symbol_cache_key
5875 = register_program_space_data_with_cleanup (NULL, symbol_cache_cleanup);
5876
5877 add_info ("variables", variables_info, _("\
5878 All global and static variable names, or those matching REGEXP."));
5879 if (dbx_commands)
5880 add_com ("whereis", class_info, variables_info, _("\
5881 All global and static variable names, or those matching REGEXP."));
5882
5883 add_info ("functions", functions_info,
5884 _("All function names, or those matching REGEXP."));
5885
5886 /* FIXME: This command has at least the following problems:
5887 1. It prints builtin types (in a very strange and confusing fashion).
5888 2. It doesn't print right, e.g. with
5889 typedef struct foo *FOO
5890 type_print prints "FOO" when we want to make it (in this situation)
5891 print "struct foo *".
5892 I also think "ptype" or "whatis" is more likely to be useful (but if
5893 there is much disagreement "info types" can be fixed). */
5894 add_info ("types", types_info,
5895 _("All type names, or those matching REGEXP."));
5896
5897 add_info ("sources", sources_info,
5898 _("Source files in the program."));
5899
5900 add_com ("rbreak", class_breakpoint, rbreak_command,
5901 _("Set a breakpoint for all functions matching REGEXP."));
5902
5903 add_setshow_enum_cmd ("multiple-symbols", no_class,
5904 multiple_symbols_modes, &multiple_symbols_mode,
5905 _("\
5906 Set the debugger behavior when more than one symbol are possible matches\n\
5907 in an expression."), _("\
5908 Show how the debugger handles ambiguities in expressions."), _("\
5909 Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
5910 NULL, NULL, &setlist, &showlist);
5911
5912 add_setshow_boolean_cmd ("basenames-may-differ", class_obscure,
5913 &basenames_may_differ, _("\
5914 Set whether a source file may have multiple base names."), _("\
5915 Show whether a source file may have multiple base names."), _("\
5916 (A \"base name\" is the name of a file with the directory part removed.\n\
5917 Example: The base name of \"/home/user/hello.c\" is \"hello.c\".)\n\
5918 If set, GDB will canonicalize file names (e.g., expand symlinks)\n\
5919 before comparing them. Canonicalization is an expensive operation,\n\
5920 but it allows the same file be known by more than one base name.\n\
5921 If not set (the default), all source files are assumed to have just\n\
5922 one base name, and gdb will do file name comparisons more efficiently."),
5923 NULL, NULL,
5924 &setlist, &showlist);
5925
5926 add_setshow_zuinteger_cmd ("symtab-create", no_class, &symtab_create_debug,
5927 _("Set debugging of symbol table creation."),
5928 _("Show debugging of symbol table creation."), _("\
5929 When enabled (non-zero), debugging messages are printed when building\n\
5930 symbol tables. A value of 1 (one) normally provides enough information.\n\
5931 A value greater than 1 provides more verbose information."),
5932 NULL,
5933 NULL,
5934 &setdebuglist, &showdebuglist);
5935
5936 add_setshow_zuinteger_cmd ("symbol-lookup", no_class, &symbol_lookup_debug,
5937 _("\
5938 Set debugging of symbol lookup."), _("\
5939 Show debugging of symbol lookup."), _("\
5940 When enabled (non-zero), symbol lookups are logged."),
5941 NULL, NULL,
5942 &setdebuglist, &showdebuglist);
5943
5944 add_setshow_zuinteger_cmd ("symbol-cache-size", no_class,
5945 &new_symbol_cache_size,
5946 _("Set the size of the symbol cache."),
5947 _("Show the size of the symbol cache."), _("\
5948 The size of the symbol cache.\n\
5949 If zero then the symbol cache is disabled."),
5950 set_symbol_cache_size_handler, NULL,
5951 &maintenance_set_cmdlist,
5952 &maintenance_show_cmdlist);
5953
5954 add_cmd ("symbol-cache", class_maintenance, maintenance_print_symbol_cache,
5955 _("Dump the symbol cache for each program space."),
5956 &maintenanceprintlist);
5957
5958 add_cmd ("symbol-cache-statistics", class_maintenance,
5959 maintenance_print_symbol_cache_statistics,
5960 _("Print symbol cache statistics for each program space."),
5961 &maintenanceprintlist);
5962
5963 add_cmd ("flush-symbol-cache", class_maintenance,
5964 maintenance_flush_symbol_cache,
5965 _("Flush the symbol cache for each program space."),
5966 &maintenancelist);
5967
5968 observer_attach_executable_changed (symtab_observer_executable_changed);
5969 observer_attach_new_objfile (symtab_new_objfile_observer);
5970 observer_attach_free_objfile (symtab_free_objfile_observer);
5971 }
This page took 0.156341 seconds and 4 git commands to generate.