Reading signal handler frame in AIX
[deliverable/binutils-gdb.git] / gdb / symtab.c
1 /* Symbol table lookup for the GNU debugger, GDB.
2
3 Copyright (C) 1986-2018 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "gdbcore.h"
24 #include "frame.h"
25 #include "target.h"
26 #include "value.h"
27 #include "symfile.h"
28 #include "objfiles.h"
29 #include "gdbcmd.h"
30 #include "gdb_regex.h"
31 #include "expression.h"
32 #include "language.h"
33 #include "demangle.h"
34 #include "inferior.h"
35 #include "source.h"
36 #include "filenames.h" /* for FILENAME_CMP */
37 #include "objc-lang.h"
38 #include "d-lang.h"
39 #include "ada-lang.h"
40 #include "go-lang.h"
41 #include "p-lang.h"
42 #include "addrmap.h"
43 #include "cli/cli-utils.h"
44 #include "fnmatch.h"
45 #include "hashtab.h"
46 #include "typeprint.h"
47
48 #include "gdb_obstack.h"
49 #include "block.h"
50 #include "dictionary.h"
51
52 #include <sys/types.h>
53 #include <fcntl.h>
54 #include <sys/stat.h>
55 #include <ctype.h>
56 #include "cp-abi.h"
57 #include "cp-support.h"
58 #include "observable.h"
59 #include "solist.h"
60 #include "macrotab.h"
61 #include "macroscope.h"
62
63 #include "parser-defs.h"
64 #include "completer.h"
65 #include "progspace-and-thread.h"
66 #include "common/gdb_optional.h"
67 #include "filename-seen-cache.h"
68 #include "arch-utils.h"
69 #include <algorithm>
70 #include "common/pathstuff.h"
71
72 /* Forward declarations for local functions. */
73
74 static void rbreak_command (const char *, int);
75
76 static int find_line_common (struct linetable *, int, int *, int);
77
78 static struct block_symbol
79 lookup_symbol_aux (const char *name,
80 symbol_name_match_type match_type,
81 const struct block *block,
82 const domain_enum domain,
83 enum language language,
84 struct field_of_this_result *);
85
86 static
87 struct block_symbol lookup_local_symbol (const char *name,
88 symbol_name_match_type match_type,
89 const struct block *block,
90 const domain_enum domain,
91 enum language language);
92
93 static struct block_symbol
94 lookup_symbol_in_objfile (struct objfile *objfile, int block_index,
95 const char *name, const domain_enum domain);
96
97 /* See symtab.h. */
98 const struct block_symbol null_block_symbol = { NULL, NULL };
99
100 /* Program space key for finding name and language of "main". */
101
102 static const struct program_space_data *main_progspace_key;
103
104 /* Type of the data stored on the program space. */
105
106 struct main_info
107 {
108 /* Name of "main". */
109
110 char *name_of_main;
111
112 /* Language of "main". */
113
114 enum language language_of_main;
115 };
116
117 /* Program space key for finding its symbol cache. */
118
119 static const struct program_space_data *symbol_cache_key;
120
121 /* The default symbol cache size.
122 There is no extra cpu cost for large N (except when flushing the cache,
123 which is rare). The value here is just a first attempt. A better default
124 value may be higher or lower. A prime number can make up for a bad hash
125 computation, so that's why the number is what it is. */
126 #define DEFAULT_SYMBOL_CACHE_SIZE 1021
127
128 /* The maximum symbol cache size.
129 There's no method to the decision of what value to use here, other than
130 there's no point in allowing a user typo to make gdb consume all memory. */
131 #define MAX_SYMBOL_CACHE_SIZE (1024*1024)
132
133 /* symbol_cache_lookup returns this if a previous lookup failed to find the
134 symbol in any objfile. */
135 #define SYMBOL_LOOKUP_FAILED \
136 ((struct block_symbol) {(struct symbol *) 1, NULL})
137 #define SYMBOL_LOOKUP_FAILED_P(SIB) (SIB.symbol == (struct symbol *) 1)
138
139 /* Recording lookups that don't find the symbol is just as important, if not
140 more so, than recording found symbols. */
141
142 enum symbol_cache_slot_state
143 {
144 SYMBOL_SLOT_UNUSED,
145 SYMBOL_SLOT_NOT_FOUND,
146 SYMBOL_SLOT_FOUND
147 };
148
149 struct symbol_cache_slot
150 {
151 enum symbol_cache_slot_state state;
152
153 /* The objfile that was current when the symbol was looked up.
154 This is only needed for global blocks, but for simplicity's sake
155 we allocate the space for both. If data shows the extra space used
156 for static blocks is a problem, we can split things up then.
157
158 Global blocks need cache lookup to include the objfile context because
159 we need to account for gdbarch_iterate_over_objfiles_in_search_order
160 which can traverse objfiles in, effectively, any order, depending on
161 the current objfile, thus affecting which symbol is found. Normally,
162 only the current objfile is searched first, and then the rest are
163 searched in recorded order; but putting cache lookup inside
164 gdbarch_iterate_over_objfiles_in_search_order would be awkward.
165 Instead we just make the current objfile part of the context of
166 cache lookup. This means we can record the same symbol multiple times,
167 each with a different "current objfile" that was in effect when the
168 lookup was saved in the cache, but cache space is pretty cheap. */
169 const struct objfile *objfile_context;
170
171 union
172 {
173 struct block_symbol found;
174 struct
175 {
176 char *name;
177 domain_enum domain;
178 } not_found;
179 } value;
180 };
181
182 /* Symbols don't specify global vs static block.
183 So keep them in separate caches. */
184
185 struct block_symbol_cache
186 {
187 unsigned int hits;
188 unsigned int misses;
189 unsigned int collisions;
190
191 /* SYMBOLS is a variable length array of this size.
192 One can imagine that in general one cache (global/static) should be a
193 fraction of the size of the other, but there's no data at the moment
194 on which to decide. */
195 unsigned int size;
196
197 struct symbol_cache_slot symbols[1];
198 };
199
200 /* The symbol cache.
201
202 Searching for symbols in the static and global blocks over multiple objfiles
203 again and again can be slow, as can searching very big objfiles. This is a
204 simple cache to improve symbol lookup performance, which is critical to
205 overall gdb performance.
206
207 Symbols are hashed on the name, its domain, and block.
208 They are also hashed on their objfile for objfile-specific lookups. */
209
210 struct symbol_cache
211 {
212 struct block_symbol_cache *global_symbols;
213 struct block_symbol_cache *static_symbols;
214 };
215
216 /* When non-zero, print debugging messages related to symtab creation. */
217 unsigned int symtab_create_debug = 0;
218
219 /* When non-zero, print debugging messages related to symbol lookup. */
220 unsigned int symbol_lookup_debug = 0;
221
222 /* The size of the cache is staged here. */
223 static unsigned int new_symbol_cache_size = DEFAULT_SYMBOL_CACHE_SIZE;
224
225 /* The current value of the symbol cache size.
226 This is saved so that if the user enters a value too big we can restore
227 the original value from here. */
228 static unsigned int symbol_cache_size = DEFAULT_SYMBOL_CACHE_SIZE;
229
230 /* Non-zero if a file may be known by two different basenames.
231 This is the uncommon case, and significantly slows down gdb.
232 Default set to "off" to not slow down the common case. */
233 int basenames_may_differ = 0;
234
235 /* Allow the user to configure the debugger behavior with respect
236 to multiple-choice menus when more than one symbol matches during
237 a symbol lookup. */
238
239 const char multiple_symbols_ask[] = "ask";
240 const char multiple_symbols_all[] = "all";
241 const char multiple_symbols_cancel[] = "cancel";
242 static const char *const multiple_symbols_modes[] =
243 {
244 multiple_symbols_ask,
245 multiple_symbols_all,
246 multiple_symbols_cancel,
247 NULL
248 };
249 static const char *multiple_symbols_mode = multiple_symbols_all;
250
251 /* Read-only accessor to AUTO_SELECT_MODE. */
252
253 const char *
254 multiple_symbols_select_mode (void)
255 {
256 return multiple_symbols_mode;
257 }
258
259 /* Return the name of a domain_enum. */
260
261 const char *
262 domain_name (domain_enum e)
263 {
264 switch (e)
265 {
266 case UNDEF_DOMAIN: return "UNDEF_DOMAIN";
267 case VAR_DOMAIN: return "VAR_DOMAIN";
268 case STRUCT_DOMAIN: return "STRUCT_DOMAIN";
269 case MODULE_DOMAIN: return "MODULE_DOMAIN";
270 case LABEL_DOMAIN: return "LABEL_DOMAIN";
271 case COMMON_BLOCK_DOMAIN: return "COMMON_BLOCK_DOMAIN";
272 default: gdb_assert_not_reached ("bad domain_enum");
273 }
274 }
275
276 /* Return the name of a search_domain . */
277
278 const char *
279 search_domain_name (enum search_domain e)
280 {
281 switch (e)
282 {
283 case VARIABLES_DOMAIN: return "VARIABLES_DOMAIN";
284 case FUNCTIONS_DOMAIN: return "FUNCTIONS_DOMAIN";
285 case TYPES_DOMAIN: return "TYPES_DOMAIN";
286 case ALL_DOMAIN: return "ALL_DOMAIN";
287 default: gdb_assert_not_reached ("bad search_domain");
288 }
289 }
290
291 /* See symtab.h. */
292
293 struct symtab *
294 compunit_primary_filetab (const struct compunit_symtab *cust)
295 {
296 gdb_assert (COMPUNIT_FILETABS (cust) != NULL);
297
298 /* The primary file symtab is the first one in the list. */
299 return COMPUNIT_FILETABS (cust);
300 }
301
302 /* See symtab.h. */
303
304 enum language
305 compunit_language (const struct compunit_symtab *cust)
306 {
307 struct symtab *symtab = compunit_primary_filetab (cust);
308
309 /* The language of the compunit symtab is the language of its primary
310 source file. */
311 return SYMTAB_LANGUAGE (symtab);
312 }
313
314 /* See whether FILENAME matches SEARCH_NAME using the rule that we
315 advertise to the user. (The manual's description of linespecs
316 describes what we advertise). Returns true if they match, false
317 otherwise. */
318
319 int
320 compare_filenames_for_search (const char *filename, const char *search_name)
321 {
322 int len = strlen (filename);
323 size_t search_len = strlen (search_name);
324
325 if (len < search_len)
326 return 0;
327
328 /* The tail of FILENAME must match. */
329 if (FILENAME_CMP (filename + len - search_len, search_name) != 0)
330 return 0;
331
332 /* Either the names must completely match, or the character
333 preceding the trailing SEARCH_NAME segment of FILENAME must be a
334 directory separator.
335
336 The check !IS_ABSOLUTE_PATH ensures SEARCH_NAME "/dir/file.c"
337 cannot match FILENAME "/path//dir/file.c" - as user has requested
338 absolute path. The sama applies for "c:\file.c" possibly
339 incorrectly hypothetically matching "d:\dir\c:\file.c".
340
341 The HAS_DRIVE_SPEC purpose is to make FILENAME "c:file.c"
342 compatible with SEARCH_NAME "file.c". In such case a compiler had
343 to put the "c:file.c" name into debug info. Such compatibility
344 works only on GDB built for DOS host. */
345 return (len == search_len
346 || (!IS_ABSOLUTE_PATH (search_name)
347 && IS_DIR_SEPARATOR (filename[len - search_len - 1]))
348 || (HAS_DRIVE_SPEC (filename)
349 && STRIP_DRIVE_SPEC (filename) == &filename[len - search_len]));
350 }
351
352 /* Same as compare_filenames_for_search, but for glob-style patterns.
353 Heads up on the order of the arguments. They match the order of
354 compare_filenames_for_search, but it's the opposite of the order of
355 arguments to gdb_filename_fnmatch. */
356
357 int
358 compare_glob_filenames_for_search (const char *filename,
359 const char *search_name)
360 {
361 /* We rely on the property of glob-style patterns with FNM_FILE_NAME that
362 all /s have to be explicitly specified. */
363 int file_path_elements = count_path_elements (filename);
364 int search_path_elements = count_path_elements (search_name);
365
366 if (search_path_elements > file_path_elements)
367 return 0;
368
369 if (IS_ABSOLUTE_PATH (search_name))
370 {
371 return (search_path_elements == file_path_elements
372 && gdb_filename_fnmatch (search_name, filename,
373 FNM_FILE_NAME | FNM_NOESCAPE) == 0);
374 }
375
376 {
377 const char *file_to_compare
378 = strip_leading_path_elements (filename,
379 file_path_elements - search_path_elements);
380
381 return gdb_filename_fnmatch (search_name, file_to_compare,
382 FNM_FILE_NAME | FNM_NOESCAPE) == 0;
383 }
384 }
385
386 /* Check for a symtab of a specific name by searching some symtabs.
387 This is a helper function for callbacks of iterate_over_symtabs.
388
389 If NAME is not absolute, then REAL_PATH is NULL
390 If NAME is absolute, then REAL_PATH is the gdb_realpath form of NAME.
391
392 The return value, NAME, REAL_PATH and CALLBACK are identical to the
393 `map_symtabs_matching_filename' method of quick_symbol_functions.
394
395 FIRST and AFTER_LAST indicate the range of compunit symtabs to search.
396 Each symtab within the specified compunit symtab is also searched.
397 AFTER_LAST is one past the last compunit symtab to search; NULL means to
398 search until the end of the list. */
399
400 bool
401 iterate_over_some_symtabs (const char *name,
402 const char *real_path,
403 struct compunit_symtab *first,
404 struct compunit_symtab *after_last,
405 gdb::function_view<bool (symtab *)> callback)
406 {
407 struct compunit_symtab *cust;
408 struct symtab *s;
409 const char* base_name = lbasename (name);
410
411 for (cust = first; cust != NULL && cust != after_last; cust = cust->next)
412 {
413 ALL_COMPUNIT_FILETABS (cust, s)
414 {
415 if (compare_filenames_for_search (s->filename, name))
416 {
417 if (callback (s))
418 return true;
419 continue;
420 }
421
422 /* Before we invoke realpath, which can get expensive when many
423 files are involved, do a quick comparison of the basenames. */
424 if (! basenames_may_differ
425 && FILENAME_CMP (base_name, lbasename (s->filename)) != 0)
426 continue;
427
428 if (compare_filenames_for_search (symtab_to_fullname (s), name))
429 {
430 if (callback (s))
431 return true;
432 continue;
433 }
434
435 /* If the user gave us an absolute path, try to find the file in
436 this symtab and use its absolute path. */
437 if (real_path != NULL)
438 {
439 const char *fullname = symtab_to_fullname (s);
440
441 gdb_assert (IS_ABSOLUTE_PATH (real_path));
442 gdb_assert (IS_ABSOLUTE_PATH (name));
443 if (FILENAME_CMP (real_path, fullname) == 0)
444 {
445 if (callback (s))
446 return true;
447 continue;
448 }
449 }
450 }
451 }
452
453 return false;
454 }
455
456 /* Check for a symtab of a specific name; first in symtabs, then in
457 psymtabs. *If* there is no '/' in the name, a match after a '/'
458 in the symtab filename will also work.
459
460 Calls CALLBACK with each symtab that is found. If CALLBACK returns
461 true, the search stops. */
462
463 void
464 iterate_over_symtabs (const char *name,
465 gdb::function_view<bool (symtab *)> callback)
466 {
467 struct objfile *objfile;
468 gdb::unique_xmalloc_ptr<char> real_path;
469
470 /* Here we are interested in canonicalizing an absolute path, not
471 absolutizing a relative path. */
472 if (IS_ABSOLUTE_PATH (name))
473 {
474 real_path = gdb_realpath (name);
475 gdb_assert (IS_ABSOLUTE_PATH (real_path.get ()));
476 }
477
478 ALL_OBJFILES (objfile)
479 {
480 if (iterate_over_some_symtabs (name, real_path.get (),
481 objfile->compunit_symtabs, NULL,
482 callback))
483 return;
484 }
485
486 /* Same search rules as above apply here, but now we look thru the
487 psymtabs. */
488
489 ALL_OBJFILES (objfile)
490 {
491 if (objfile->sf
492 && objfile->sf->qf->map_symtabs_matching_filename (objfile,
493 name,
494 real_path.get (),
495 callback))
496 return;
497 }
498 }
499
500 /* A wrapper for iterate_over_symtabs that returns the first matching
501 symtab, or NULL. */
502
503 struct symtab *
504 lookup_symtab (const char *name)
505 {
506 struct symtab *result = NULL;
507
508 iterate_over_symtabs (name, [&] (symtab *symtab)
509 {
510 result = symtab;
511 return true;
512 });
513
514 return result;
515 }
516
517 \f
518 /* Mangle a GDB method stub type. This actually reassembles the pieces of the
519 full method name, which consist of the class name (from T), the unadorned
520 method name from METHOD_ID, and the signature for the specific overload,
521 specified by SIGNATURE_ID. Note that this function is g++ specific. */
522
523 char *
524 gdb_mangle_name (struct type *type, int method_id, int signature_id)
525 {
526 int mangled_name_len;
527 char *mangled_name;
528 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
529 struct fn_field *method = &f[signature_id];
530 const char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
531 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
532 const char *newname = TYPE_NAME (type);
533
534 /* Does the form of physname indicate that it is the full mangled name
535 of a constructor (not just the args)? */
536 int is_full_physname_constructor;
537
538 int is_constructor;
539 int is_destructor = is_destructor_name (physname);
540 /* Need a new type prefix. */
541 const char *const_prefix = method->is_const ? "C" : "";
542 const char *volatile_prefix = method->is_volatile ? "V" : "";
543 char buf[20];
544 int len = (newname == NULL ? 0 : strlen (newname));
545
546 /* Nothing to do if physname already contains a fully mangled v3 abi name
547 or an operator name. */
548 if ((physname[0] == '_' && physname[1] == 'Z')
549 || is_operator_name (field_name))
550 return xstrdup (physname);
551
552 is_full_physname_constructor = is_constructor_name (physname);
553
554 is_constructor = is_full_physname_constructor
555 || (newname && strcmp (field_name, newname) == 0);
556
557 if (!is_destructor)
558 is_destructor = (startswith (physname, "__dt"));
559
560 if (is_destructor || is_full_physname_constructor)
561 {
562 mangled_name = (char *) xmalloc (strlen (physname) + 1);
563 strcpy (mangled_name, physname);
564 return mangled_name;
565 }
566
567 if (len == 0)
568 {
569 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
570 }
571 else if (physname[0] == 't' || physname[0] == 'Q')
572 {
573 /* The physname for template and qualified methods already includes
574 the class name. */
575 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
576 newname = NULL;
577 len = 0;
578 }
579 else
580 {
581 xsnprintf (buf, sizeof (buf), "__%s%s%d", const_prefix,
582 volatile_prefix, len);
583 }
584 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
585 + strlen (buf) + len + strlen (physname) + 1);
586
587 mangled_name = (char *) xmalloc (mangled_name_len);
588 if (is_constructor)
589 mangled_name[0] = '\0';
590 else
591 strcpy (mangled_name, field_name);
592
593 strcat (mangled_name, buf);
594 /* If the class doesn't have a name, i.e. newname NULL, then we just
595 mangle it using 0 for the length of the class. Thus it gets mangled
596 as something starting with `::' rather than `classname::'. */
597 if (newname != NULL)
598 strcat (mangled_name, newname);
599
600 strcat (mangled_name, physname);
601 return (mangled_name);
602 }
603
604 /* Set the demangled name of GSYMBOL to NAME. NAME must be already
605 correctly allocated. */
606
607 void
608 symbol_set_demangled_name (struct general_symbol_info *gsymbol,
609 const char *name,
610 struct obstack *obstack)
611 {
612 if (gsymbol->language == language_ada)
613 {
614 if (name == NULL)
615 {
616 gsymbol->ada_mangled = 0;
617 gsymbol->language_specific.obstack = obstack;
618 }
619 else
620 {
621 gsymbol->ada_mangled = 1;
622 gsymbol->language_specific.demangled_name = name;
623 }
624 }
625 else
626 gsymbol->language_specific.demangled_name = name;
627 }
628
629 /* Return the demangled name of GSYMBOL. */
630
631 const char *
632 symbol_get_demangled_name (const struct general_symbol_info *gsymbol)
633 {
634 if (gsymbol->language == language_ada)
635 {
636 if (!gsymbol->ada_mangled)
637 return NULL;
638 /* Fall through. */
639 }
640
641 return gsymbol->language_specific.demangled_name;
642 }
643
644 \f
645 /* Initialize the language dependent portion of a symbol
646 depending upon the language for the symbol. */
647
648 void
649 symbol_set_language (struct general_symbol_info *gsymbol,
650 enum language language,
651 struct obstack *obstack)
652 {
653 gsymbol->language = language;
654 if (gsymbol->language == language_cplus
655 || gsymbol->language == language_d
656 || gsymbol->language == language_go
657 || gsymbol->language == language_objc
658 || gsymbol->language == language_fortran)
659 {
660 symbol_set_demangled_name (gsymbol, NULL, obstack);
661 }
662 else if (gsymbol->language == language_ada)
663 {
664 gdb_assert (gsymbol->ada_mangled == 0);
665 gsymbol->language_specific.obstack = obstack;
666 }
667 else
668 {
669 memset (&gsymbol->language_specific, 0,
670 sizeof (gsymbol->language_specific));
671 }
672 }
673
674 /* Functions to initialize a symbol's mangled name. */
675
676 /* Objects of this type are stored in the demangled name hash table. */
677 struct demangled_name_entry
678 {
679 const char *mangled;
680 char demangled[1];
681 };
682
683 /* Hash function for the demangled name hash. */
684
685 static hashval_t
686 hash_demangled_name_entry (const void *data)
687 {
688 const struct demangled_name_entry *e
689 = (const struct demangled_name_entry *) data;
690
691 return htab_hash_string (e->mangled);
692 }
693
694 /* Equality function for the demangled name hash. */
695
696 static int
697 eq_demangled_name_entry (const void *a, const void *b)
698 {
699 const struct demangled_name_entry *da
700 = (const struct demangled_name_entry *) a;
701 const struct demangled_name_entry *db
702 = (const struct demangled_name_entry *) b;
703
704 return strcmp (da->mangled, db->mangled) == 0;
705 }
706
707 /* Create the hash table used for demangled names. Each hash entry is
708 a pair of strings; one for the mangled name and one for the demangled
709 name. The entry is hashed via just the mangled name. */
710
711 static void
712 create_demangled_names_hash (struct objfile *objfile)
713 {
714 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
715 The hash table code will round this up to the next prime number.
716 Choosing a much larger table size wastes memory, and saves only about
717 1% in symbol reading. */
718
719 objfile->per_bfd->demangled_names_hash = htab_create_alloc
720 (256, hash_demangled_name_entry, eq_demangled_name_entry,
721 NULL, xcalloc, xfree);
722 }
723
724 /* Try to determine the demangled name for a symbol, based on the
725 language of that symbol. If the language is set to language_auto,
726 it will attempt to find any demangling algorithm that works and
727 then set the language appropriately. The returned name is allocated
728 by the demangler and should be xfree'd. */
729
730 static char *
731 symbol_find_demangled_name (struct general_symbol_info *gsymbol,
732 const char *mangled)
733 {
734 char *demangled = NULL;
735 int i;
736
737 if (gsymbol->language == language_unknown)
738 gsymbol->language = language_auto;
739
740 if (gsymbol->language != language_auto)
741 {
742 const struct language_defn *lang = language_def (gsymbol->language);
743
744 language_sniff_from_mangled_name (lang, mangled, &demangled);
745 return demangled;
746 }
747
748 for (i = language_unknown; i < nr_languages; ++i)
749 {
750 enum language l = (enum language) i;
751 const struct language_defn *lang = language_def (l);
752
753 if (language_sniff_from_mangled_name (lang, mangled, &demangled))
754 {
755 gsymbol->language = l;
756 return demangled;
757 }
758 }
759
760 return NULL;
761 }
762
763 /* Set both the mangled and demangled (if any) names for GSYMBOL based
764 on LINKAGE_NAME and LEN. Ordinarily, NAME is copied onto the
765 objfile's obstack; but if COPY_NAME is 0 and if NAME is
766 NUL-terminated, then this function assumes that NAME is already
767 correctly saved (either permanently or with a lifetime tied to the
768 objfile), and it will not be copied.
769
770 The hash table corresponding to OBJFILE is used, and the memory
771 comes from the per-BFD storage_obstack. LINKAGE_NAME is copied,
772 so the pointer can be discarded after calling this function. */
773
774 void
775 symbol_set_names (struct general_symbol_info *gsymbol,
776 const char *linkage_name, int len, int copy_name,
777 struct objfile *objfile)
778 {
779 struct demangled_name_entry **slot;
780 /* A 0-terminated copy of the linkage name. */
781 const char *linkage_name_copy;
782 struct demangled_name_entry entry;
783 struct objfile_per_bfd_storage *per_bfd = objfile->per_bfd;
784
785 if (gsymbol->language == language_ada)
786 {
787 /* In Ada, we do the symbol lookups using the mangled name, so
788 we can save some space by not storing the demangled name. */
789 if (!copy_name)
790 gsymbol->name = linkage_name;
791 else
792 {
793 char *name = (char *) obstack_alloc (&per_bfd->storage_obstack,
794 len + 1);
795
796 memcpy (name, linkage_name, len);
797 name[len] = '\0';
798 gsymbol->name = name;
799 }
800 symbol_set_demangled_name (gsymbol, NULL, &per_bfd->storage_obstack);
801
802 return;
803 }
804
805 if (per_bfd->demangled_names_hash == NULL)
806 create_demangled_names_hash (objfile);
807
808 if (linkage_name[len] != '\0')
809 {
810 char *alloc_name;
811
812 alloc_name = (char *) alloca (len + 1);
813 memcpy (alloc_name, linkage_name, len);
814 alloc_name[len] = '\0';
815
816 linkage_name_copy = alloc_name;
817 }
818 else
819 linkage_name_copy = linkage_name;
820
821 entry.mangled = linkage_name_copy;
822 slot = ((struct demangled_name_entry **)
823 htab_find_slot (per_bfd->demangled_names_hash,
824 &entry, INSERT));
825
826 /* If this name is not in the hash table, add it. */
827 if (*slot == NULL
828 /* A C version of the symbol may have already snuck into the table.
829 This happens to, e.g., main.init (__go_init_main). Cope. */
830 || (gsymbol->language == language_go
831 && (*slot)->demangled[0] == '\0'))
832 {
833 char *demangled_name = symbol_find_demangled_name (gsymbol,
834 linkage_name_copy);
835 int demangled_len = demangled_name ? strlen (demangled_name) : 0;
836
837 /* Suppose we have demangled_name==NULL, copy_name==0, and
838 linkage_name_copy==linkage_name. In this case, we already have the
839 mangled name saved, and we don't have a demangled name. So,
840 you might think we could save a little space by not recording
841 this in the hash table at all.
842
843 It turns out that it is actually important to still save such
844 an entry in the hash table, because storing this name gives
845 us better bcache hit rates for partial symbols. */
846 if (!copy_name && linkage_name_copy == linkage_name)
847 {
848 *slot
849 = ((struct demangled_name_entry *)
850 obstack_alloc (&per_bfd->storage_obstack,
851 offsetof (struct demangled_name_entry, demangled)
852 + demangled_len + 1));
853 (*slot)->mangled = linkage_name;
854 }
855 else
856 {
857 char *mangled_ptr;
858
859 /* If we must copy the mangled name, put it directly after
860 the demangled name so we can have a single
861 allocation. */
862 *slot
863 = ((struct demangled_name_entry *)
864 obstack_alloc (&per_bfd->storage_obstack,
865 offsetof (struct demangled_name_entry, demangled)
866 + len + demangled_len + 2));
867 mangled_ptr = &((*slot)->demangled[demangled_len + 1]);
868 strcpy (mangled_ptr, linkage_name_copy);
869 (*slot)->mangled = mangled_ptr;
870 }
871
872 if (demangled_name != NULL)
873 {
874 strcpy ((*slot)->demangled, demangled_name);
875 xfree (demangled_name);
876 }
877 else
878 (*slot)->demangled[0] = '\0';
879 }
880
881 gsymbol->name = (*slot)->mangled;
882 if ((*slot)->demangled[0] != '\0')
883 symbol_set_demangled_name (gsymbol, (*slot)->demangled,
884 &per_bfd->storage_obstack);
885 else
886 symbol_set_demangled_name (gsymbol, NULL, &per_bfd->storage_obstack);
887 }
888
889 /* Return the source code name of a symbol. In languages where
890 demangling is necessary, this is the demangled name. */
891
892 const char *
893 symbol_natural_name (const struct general_symbol_info *gsymbol)
894 {
895 switch (gsymbol->language)
896 {
897 case language_cplus:
898 case language_d:
899 case language_go:
900 case language_objc:
901 case language_fortran:
902 if (symbol_get_demangled_name (gsymbol) != NULL)
903 return symbol_get_demangled_name (gsymbol);
904 break;
905 case language_ada:
906 return ada_decode_symbol (gsymbol);
907 default:
908 break;
909 }
910 return gsymbol->name;
911 }
912
913 /* Return the demangled name for a symbol based on the language for
914 that symbol. If no demangled name exists, return NULL. */
915
916 const char *
917 symbol_demangled_name (const struct general_symbol_info *gsymbol)
918 {
919 const char *dem_name = NULL;
920
921 switch (gsymbol->language)
922 {
923 case language_cplus:
924 case language_d:
925 case language_go:
926 case language_objc:
927 case language_fortran:
928 dem_name = symbol_get_demangled_name (gsymbol);
929 break;
930 case language_ada:
931 dem_name = ada_decode_symbol (gsymbol);
932 break;
933 default:
934 break;
935 }
936 return dem_name;
937 }
938
939 /* Return the search name of a symbol---generally the demangled or
940 linkage name of the symbol, depending on how it will be searched for.
941 If there is no distinct demangled name, then returns the same value
942 (same pointer) as SYMBOL_LINKAGE_NAME. */
943
944 const char *
945 symbol_search_name (const struct general_symbol_info *gsymbol)
946 {
947 if (gsymbol->language == language_ada)
948 return gsymbol->name;
949 else
950 return symbol_natural_name (gsymbol);
951 }
952
953 /* See symtab.h. */
954
955 bool
956 symbol_matches_search_name (const struct general_symbol_info *gsymbol,
957 const lookup_name_info &name)
958 {
959 symbol_name_matcher_ftype *name_match
960 = get_symbol_name_matcher (language_def (gsymbol->language), name);
961 return name_match (symbol_search_name (gsymbol), name, NULL);
962 }
963
964 \f
965
966 /* Return 1 if the two sections are the same, or if they could
967 plausibly be copies of each other, one in an original object
968 file and another in a separated debug file. */
969
970 int
971 matching_obj_sections (struct obj_section *obj_first,
972 struct obj_section *obj_second)
973 {
974 asection *first = obj_first? obj_first->the_bfd_section : NULL;
975 asection *second = obj_second? obj_second->the_bfd_section : NULL;
976 struct objfile *obj;
977
978 /* If they're the same section, then they match. */
979 if (first == second)
980 return 1;
981
982 /* If either is NULL, give up. */
983 if (first == NULL || second == NULL)
984 return 0;
985
986 /* This doesn't apply to absolute symbols. */
987 if (first->owner == NULL || second->owner == NULL)
988 return 0;
989
990 /* If they're in the same object file, they must be different sections. */
991 if (first->owner == second->owner)
992 return 0;
993
994 /* Check whether the two sections are potentially corresponding. They must
995 have the same size, address, and name. We can't compare section indexes,
996 which would be more reliable, because some sections may have been
997 stripped. */
998 if (bfd_get_section_size (first) != bfd_get_section_size (second))
999 return 0;
1000
1001 /* In-memory addresses may start at a different offset, relativize them. */
1002 if (bfd_get_section_vma (first->owner, first)
1003 - bfd_get_start_address (first->owner)
1004 != bfd_get_section_vma (second->owner, second)
1005 - bfd_get_start_address (second->owner))
1006 return 0;
1007
1008 if (bfd_get_section_name (first->owner, first) == NULL
1009 || bfd_get_section_name (second->owner, second) == NULL
1010 || strcmp (bfd_get_section_name (first->owner, first),
1011 bfd_get_section_name (second->owner, second)) != 0)
1012 return 0;
1013
1014 /* Otherwise check that they are in corresponding objfiles. */
1015
1016 ALL_OBJFILES (obj)
1017 if (obj->obfd == first->owner)
1018 break;
1019 gdb_assert (obj != NULL);
1020
1021 if (obj->separate_debug_objfile != NULL
1022 && obj->separate_debug_objfile->obfd == second->owner)
1023 return 1;
1024 if (obj->separate_debug_objfile_backlink != NULL
1025 && obj->separate_debug_objfile_backlink->obfd == second->owner)
1026 return 1;
1027
1028 return 0;
1029 }
1030
1031 /* See symtab.h. */
1032
1033 void
1034 expand_symtab_containing_pc (CORE_ADDR pc, struct obj_section *section)
1035 {
1036 struct objfile *objfile;
1037 struct bound_minimal_symbol msymbol;
1038
1039 /* If we know that this is not a text address, return failure. This is
1040 necessary because we loop based on texthigh and textlow, which do
1041 not include the data ranges. */
1042 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
1043 if (msymbol.minsym
1044 && (MSYMBOL_TYPE (msymbol.minsym) == mst_data
1045 || MSYMBOL_TYPE (msymbol.minsym) == mst_bss
1046 || MSYMBOL_TYPE (msymbol.minsym) == mst_abs
1047 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_data
1048 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_bss))
1049 return;
1050
1051 ALL_OBJFILES (objfile)
1052 {
1053 struct compunit_symtab *cust = NULL;
1054
1055 if (objfile->sf)
1056 cust = objfile->sf->qf->find_pc_sect_compunit_symtab (objfile, msymbol,
1057 pc, section, 0);
1058 if (cust)
1059 return;
1060 }
1061 }
1062 \f
1063 /* Hash function for the symbol cache. */
1064
1065 static unsigned int
1066 hash_symbol_entry (const struct objfile *objfile_context,
1067 const char *name, domain_enum domain)
1068 {
1069 unsigned int hash = (uintptr_t) objfile_context;
1070
1071 if (name != NULL)
1072 hash += htab_hash_string (name);
1073
1074 /* Because of symbol_matches_domain we need VAR_DOMAIN and STRUCT_DOMAIN
1075 to map to the same slot. */
1076 if (domain == STRUCT_DOMAIN)
1077 hash += VAR_DOMAIN * 7;
1078 else
1079 hash += domain * 7;
1080
1081 return hash;
1082 }
1083
1084 /* Equality function for the symbol cache. */
1085
1086 static int
1087 eq_symbol_entry (const struct symbol_cache_slot *slot,
1088 const struct objfile *objfile_context,
1089 const char *name, domain_enum domain)
1090 {
1091 const char *slot_name;
1092 domain_enum slot_domain;
1093
1094 if (slot->state == SYMBOL_SLOT_UNUSED)
1095 return 0;
1096
1097 if (slot->objfile_context != objfile_context)
1098 return 0;
1099
1100 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1101 {
1102 slot_name = slot->value.not_found.name;
1103 slot_domain = slot->value.not_found.domain;
1104 }
1105 else
1106 {
1107 slot_name = SYMBOL_SEARCH_NAME (slot->value.found.symbol);
1108 slot_domain = SYMBOL_DOMAIN (slot->value.found.symbol);
1109 }
1110
1111 /* NULL names match. */
1112 if (slot_name == NULL && name == NULL)
1113 {
1114 /* But there's no point in calling symbol_matches_domain in the
1115 SYMBOL_SLOT_FOUND case. */
1116 if (slot_domain != domain)
1117 return 0;
1118 }
1119 else if (slot_name != NULL && name != NULL)
1120 {
1121 /* It's important that we use the same comparison that was done
1122 the first time through. If the slot records a found symbol,
1123 then this means using the symbol name comparison function of
1124 the symbol's language with SYMBOL_SEARCH_NAME. See
1125 dictionary.c. It also means using symbol_matches_domain for
1126 found symbols. See block.c.
1127
1128 If the slot records a not-found symbol, then require a precise match.
1129 We could still be lax with whitespace like strcmp_iw though. */
1130
1131 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1132 {
1133 if (strcmp (slot_name, name) != 0)
1134 return 0;
1135 if (slot_domain != domain)
1136 return 0;
1137 }
1138 else
1139 {
1140 struct symbol *sym = slot->value.found.symbol;
1141 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
1142
1143 if (!SYMBOL_MATCHES_SEARCH_NAME (sym, lookup_name))
1144 return 0;
1145
1146 if (!symbol_matches_domain (SYMBOL_LANGUAGE (sym),
1147 slot_domain, domain))
1148 return 0;
1149 }
1150 }
1151 else
1152 {
1153 /* Only one name is NULL. */
1154 return 0;
1155 }
1156
1157 return 1;
1158 }
1159
1160 /* Given a cache of size SIZE, return the size of the struct (with variable
1161 length array) in bytes. */
1162
1163 static size_t
1164 symbol_cache_byte_size (unsigned int size)
1165 {
1166 return (sizeof (struct block_symbol_cache)
1167 + ((size - 1) * sizeof (struct symbol_cache_slot)));
1168 }
1169
1170 /* Resize CACHE. */
1171
1172 static void
1173 resize_symbol_cache (struct symbol_cache *cache, unsigned int new_size)
1174 {
1175 /* If there's no change in size, don't do anything.
1176 All caches have the same size, so we can just compare with the size
1177 of the global symbols cache. */
1178 if ((cache->global_symbols != NULL
1179 && cache->global_symbols->size == new_size)
1180 || (cache->global_symbols == NULL
1181 && new_size == 0))
1182 return;
1183
1184 xfree (cache->global_symbols);
1185 xfree (cache->static_symbols);
1186
1187 if (new_size == 0)
1188 {
1189 cache->global_symbols = NULL;
1190 cache->static_symbols = NULL;
1191 }
1192 else
1193 {
1194 size_t total_size = symbol_cache_byte_size (new_size);
1195
1196 cache->global_symbols
1197 = (struct block_symbol_cache *) xcalloc (1, total_size);
1198 cache->static_symbols
1199 = (struct block_symbol_cache *) xcalloc (1, total_size);
1200 cache->global_symbols->size = new_size;
1201 cache->static_symbols->size = new_size;
1202 }
1203 }
1204
1205 /* Make a symbol cache of size SIZE. */
1206
1207 static struct symbol_cache *
1208 make_symbol_cache (unsigned int size)
1209 {
1210 struct symbol_cache *cache;
1211
1212 cache = XCNEW (struct symbol_cache);
1213 resize_symbol_cache (cache, symbol_cache_size);
1214 return cache;
1215 }
1216
1217 /* Free the space used by CACHE. */
1218
1219 static void
1220 free_symbol_cache (struct symbol_cache *cache)
1221 {
1222 xfree (cache->global_symbols);
1223 xfree (cache->static_symbols);
1224 xfree (cache);
1225 }
1226
1227 /* Return the symbol cache of PSPACE.
1228 Create one if it doesn't exist yet. */
1229
1230 static struct symbol_cache *
1231 get_symbol_cache (struct program_space *pspace)
1232 {
1233 struct symbol_cache *cache
1234 = (struct symbol_cache *) program_space_data (pspace, symbol_cache_key);
1235
1236 if (cache == NULL)
1237 {
1238 cache = make_symbol_cache (symbol_cache_size);
1239 set_program_space_data (pspace, symbol_cache_key, cache);
1240 }
1241
1242 return cache;
1243 }
1244
1245 /* Delete the symbol cache of PSPACE.
1246 Called when PSPACE is destroyed. */
1247
1248 static void
1249 symbol_cache_cleanup (struct program_space *pspace, void *data)
1250 {
1251 struct symbol_cache *cache = (struct symbol_cache *) data;
1252
1253 free_symbol_cache (cache);
1254 }
1255
1256 /* Set the size of the symbol cache in all program spaces. */
1257
1258 static void
1259 set_symbol_cache_size (unsigned int new_size)
1260 {
1261 struct program_space *pspace;
1262
1263 ALL_PSPACES (pspace)
1264 {
1265 struct symbol_cache *cache
1266 = (struct symbol_cache *) program_space_data (pspace, symbol_cache_key);
1267
1268 /* The pspace could have been created but not have a cache yet. */
1269 if (cache != NULL)
1270 resize_symbol_cache (cache, new_size);
1271 }
1272 }
1273
1274 /* Called when symbol-cache-size is set. */
1275
1276 static void
1277 set_symbol_cache_size_handler (const char *args, int from_tty,
1278 struct cmd_list_element *c)
1279 {
1280 if (new_symbol_cache_size > MAX_SYMBOL_CACHE_SIZE)
1281 {
1282 /* Restore the previous value.
1283 This is the value the "show" command prints. */
1284 new_symbol_cache_size = symbol_cache_size;
1285
1286 error (_("Symbol cache size is too large, max is %u."),
1287 MAX_SYMBOL_CACHE_SIZE);
1288 }
1289 symbol_cache_size = new_symbol_cache_size;
1290
1291 set_symbol_cache_size (symbol_cache_size);
1292 }
1293
1294 /* Lookup symbol NAME,DOMAIN in BLOCK in the symbol cache of PSPACE.
1295 OBJFILE_CONTEXT is the current objfile, which may be NULL.
1296 The result is the symbol if found, SYMBOL_LOOKUP_FAILED if a previous lookup
1297 failed (and thus this one will too), or NULL if the symbol is not present
1298 in the cache.
1299 If the symbol is not present in the cache, then *BSC_PTR and *SLOT_PTR are
1300 set to the cache and slot of the symbol to save the result of a full lookup
1301 attempt. */
1302
1303 static struct block_symbol
1304 symbol_cache_lookup (struct symbol_cache *cache,
1305 struct objfile *objfile_context, int block,
1306 const char *name, domain_enum domain,
1307 struct block_symbol_cache **bsc_ptr,
1308 struct symbol_cache_slot **slot_ptr)
1309 {
1310 struct block_symbol_cache *bsc;
1311 unsigned int hash;
1312 struct symbol_cache_slot *slot;
1313
1314 if (block == GLOBAL_BLOCK)
1315 bsc = cache->global_symbols;
1316 else
1317 bsc = cache->static_symbols;
1318 if (bsc == NULL)
1319 {
1320 *bsc_ptr = NULL;
1321 *slot_ptr = NULL;
1322 return (struct block_symbol) {NULL, NULL};
1323 }
1324
1325 hash = hash_symbol_entry (objfile_context, name, domain);
1326 slot = bsc->symbols + hash % bsc->size;
1327
1328 if (eq_symbol_entry (slot, objfile_context, name, domain))
1329 {
1330 if (symbol_lookup_debug)
1331 fprintf_unfiltered (gdb_stdlog,
1332 "%s block symbol cache hit%s for %s, %s\n",
1333 block == GLOBAL_BLOCK ? "Global" : "Static",
1334 slot->state == SYMBOL_SLOT_NOT_FOUND
1335 ? " (not found)" : "",
1336 name, domain_name (domain));
1337 ++bsc->hits;
1338 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1339 return SYMBOL_LOOKUP_FAILED;
1340 return slot->value.found;
1341 }
1342
1343 /* Symbol is not present in the cache. */
1344
1345 *bsc_ptr = bsc;
1346 *slot_ptr = slot;
1347
1348 if (symbol_lookup_debug)
1349 {
1350 fprintf_unfiltered (gdb_stdlog,
1351 "%s block symbol cache miss for %s, %s\n",
1352 block == GLOBAL_BLOCK ? "Global" : "Static",
1353 name, domain_name (domain));
1354 }
1355 ++bsc->misses;
1356 return (struct block_symbol) {NULL, NULL};
1357 }
1358
1359 /* Clear out SLOT. */
1360
1361 static void
1362 symbol_cache_clear_slot (struct symbol_cache_slot *slot)
1363 {
1364 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1365 xfree (slot->value.not_found.name);
1366 slot->state = SYMBOL_SLOT_UNUSED;
1367 }
1368
1369 /* Mark SYMBOL as found in SLOT.
1370 OBJFILE_CONTEXT is the current objfile when the lookup was done, or NULL
1371 if it's not needed to distinguish lookups (STATIC_BLOCK). It is *not*
1372 necessarily the objfile the symbol was found in. */
1373
1374 static void
1375 symbol_cache_mark_found (struct block_symbol_cache *bsc,
1376 struct symbol_cache_slot *slot,
1377 struct objfile *objfile_context,
1378 struct symbol *symbol,
1379 const struct block *block)
1380 {
1381 if (bsc == NULL)
1382 return;
1383 if (slot->state != SYMBOL_SLOT_UNUSED)
1384 {
1385 ++bsc->collisions;
1386 symbol_cache_clear_slot (slot);
1387 }
1388 slot->state = SYMBOL_SLOT_FOUND;
1389 slot->objfile_context = objfile_context;
1390 slot->value.found.symbol = symbol;
1391 slot->value.found.block = block;
1392 }
1393
1394 /* Mark symbol NAME, DOMAIN as not found in SLOT.
1395 OBJFILE_CONTEXT is the current objfile when the lookup was done, or NULL
1396 if it's not needed to distinguish lookups (STATIC_BLOCK). */
1397
1398 static void
1399 symbol_cache_mark_not_found (struct block_symbol_cache *bsc,
1400 struct symbol_cache_slot *slot,
1401 struct objfile *objfile_context,
1402 const char *name, domain_enum domain)
1403 {
1404 if (bsc == NULL)
1405 return;
1406 if (slot->state != SYMBOL_SLOT_UNUSED)
1407 {
1408 ++bsc->collisions;
1409 symbol_cache_clear_slot (slot);
1410 }
1411 slot->state = SYMBOL_SLOT_NOT_FOUND;
1412 slot->objfile_context = objfile_context;
1413 slot->value.not_found.name = xstrdup (name);
1414 slot->value.not_found.domain = domain;
1415 }
1416
1417 /* Flush the symbol cache of PSPACE. */
1418
1419 static void
1420 symbol_cache_flush (struct program_space *pspace)
1421 {
1422 struct symbol_cache *cache
1423 = (struct symbol_cache *) program_space_data (pspace, symbol_cache_key);
1424 int pass;
1425
1426 if (cache == NULL)
1427 return;
1428 if (cache->global_symbols == NULL)
1429 {
1430 gdb_assert (symbol_cache_size == 0);
1431 gdb_assert (cache->static_symbols == NULL);
1432 return;
1433 }
1434
1435 /* If the cache is untouched since the last flush, early exit.
1436 This is important for performance during the startup of a program linked
1437 with 100s (or 1000s) of shared libraries. */
1438 if (cache->global_symbols->misses == 0
1439 && cache->static_symbols->misses == 0)
1440 return;
1441
1442 gdb_assert (cache->global_symbols->size == symbol_cache_size);
1443 gdb_assert (cache->static_symbols->size == symbol_cache_size);
1444
1445 for (pass = 0; pass < 2; ++pass)
1446 {
1447 struct block_symbol_cache *bsc
1448 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1449 unsigned int i;
1450
1451 for (i = 0; i < bsc->size; ++i)
1452 symbol_cache_clear_slot (&bsc->symbols[i]);
1453 }
1454
1455 cache->global_symbols->hits = 0;
1456 cache->global_symbols->misses = 0;
1457 cache->global_symbols->collisions = 0;
1458 cache->static_symbols->hits = 0;
1459 cache->static_symbols->misses = 0;
1460 cache->static_symbols->collisions = 0;
1461 }
1462
1463 /* Dump CACHE. */
1464
1465 static void
1466 symbol_cache_dump (const struct symbol_cache *cache)
1467 {
1468 int pass;
1469
1470 if (cache->global_symbols == NULL)
1471 {
1472 printf_filtered (" <disabled>\n");
1473 return;
1474 }
1475
1476 for (pass = 0; pass < 2; ++pass)
1477 {
1478 const struct block_symbol_cache *bsc
1479 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1480 unsigned int i;
1481
1482 if (pass == 0)
1483 printf_filtered ("Global symbols:\n");
1484 else
1485 printf_filtered ("Static symbols:\n");
1486
1487 for (i = 0; i < bsc->size; ++i)
1488 {
1489 const struct symbol_cache_slot *slot = &bsc->symbols[i];
1490
1491 QUIT;
1492
1493 switch (slot->state)
1494 {
1495 case SYMBOL_SLOT_UNUSED:
1496 break;
1497 case SYMBOL_SLOT_NOT_FOUND:
1498 printf_filtered (" [%4u] = %s, %s %s (not found)\n", i,
1499 host_address_to_string (slot->objfile_context),
1500 slot->value.not_found.name,
1501 domain_name (slot->value.not_found.domain));
1502 break;
1503 case SYMBOL_SLOT_FOUND:
1504 {
1505 struct symbol *found = slot->value.found.symbol;
1506 const struct objfile *context = slot->objfile_context;
1507
1508 printf_filtered (" [%4u] = %s, %s %s\n", i,
1509 host_address_to_string (context),
1510 SYMBOL_PRINT_NAME (found),
1511 domain_name (SYMBOL_DOMAIN (found)));
1512 break;
1513 }
1514 }
1515 }
1516 }
1517 }
1518
1519 /* The "mt print symbol-cache" command. */
1520
1521 static void
1522 maintenance_print_symbol_cache (const char *args, int from_tty)
1523 {
1524 struct program_space *pspace;
1525
1526 ALL_PSPACES (pspace)
1527 {
1528 struct symbol_cache *cache;
1529
1530 printf_filtered (_("Symbol cache for pspace %d\n%s:\n"),
1531 pspace->num,
1532 pspace->symfile_object_file != NULL
1533 ? objfile_name (pspace->symfile_object_file)
1534 : "(no object file)");
1535
1536 /* If the cache hasn't been created yet, avoid creating one. */
1537 cache
1538 = (struct symbol_cache *) program_space_data (pspace, symbol_cache_key);
1539 if (cache == NULL)
1540 printf_filtered (" <empty>\n");
1541 else
1542 symbol_cache_dump (cache);
1543 }
1544 }
1545
1546 /* The "mt flush-symbol-cache" command. */
1547
1548 static void
1549 maintenance_flush_symbol_cache (const char *args, int from_tty)
1550 {
1551 struct program_space *pspace;
1552
1553 ALL_PSPACES (pspace)
1554 {
1555 symbol_cache_flush (pspace);
1556 }
1557 }
1558
1559 /* Print usage statistics of CACHE. */
1560
1561 static void
1562 symbol_cache_stats (struct symbol_cache *cache)
1563 {
1564 int pass;
1565
1566 if (cache->global_symbols == NULL)
1567 {
1568 printf_filtered (" <disabled>\n");
1569 return;
1570 }
1571
1572 for (pass = 0; pass < 2; ++pass)
1573 {
1574 const struct block_symbol_cache *bsc
1575 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1576
1577 QUIT;
1578
1579 if (pass == 0)
1580 printf_filtered ("Global block cache stats:\n");
1581 else
1582 printf_filtered ("Static block cache stats:\n");
1583
1584 printf_filtered (" size: %u\n", bsc->size);
1585 printf_filtered (" hits: %u\n", bsc->hits);
1586 printf_filtered (" misses: %u\n", bsc->misses);
1587 printf_filtered (" collisions: %u\n", bsc->collisions);
1588 }
1589 }
1590
1591 /* The "mt print symbol-cache-statistics" command. */
1592
1593 static void
1594 maintenance_print_symbol_cache_statistics (const char *args, int from_tty)
1595 {
1596 struct program_space *pspace;
1597
1598 ALL_PSPACES (pspace)
1599 {
1600 struct symbol_cache *cache;
1601
1602 printf_filtered (_("Symbol cache statistics for pspace %d\n%s:\n"),
1603 pspace->num,
1604 pspace->symfile_object_file != NULL
1605 ? objfile_name (pspace->symfile_object_file)
1606 : "(no object file)");
1607
1608 /* If the cache hasn't been created yet, avoid creating one. */
1609 cache
1610 = (struct symbol_cache *) program_space_data (pspace, symbol_cache_key);
1611 if (cache == NULL)
1612 printf_filtered (" empty, no stats available\n");
1613 else
1614 symbol_cache_stats (cache);
1615 }
1616 }
1617
1618 /* This module's 'new_objfile' observer. */
1619
1620 static void
1621 symtab_new_objfile_observer (struct objfile *objfile)
1622 {
1623 /* Ideally we'd use OBJFILE->pspace, but OBJFILE may be NULL. */
1624 symbol_cache_flush (current_program_space);
1625 }
1626
1627 /* This module's 'free_objfile' observer. */
1628
1629 static void
1630 symtab_free_objfile_observer (struct objfile *objfile)
1631 {
1632 symbol_cache_flush (objfile->pspace);
1633 }
1634 \f
1635 /* Debug symbols usually don't have section information. We need to dig that
1636 out of the minimal symbols and stash that in the debug symbol. */
1637
1638 void
1639 fixup_section (struct general_symbol_info *ginfo,
1640 CORE_ADDR addr, struct objfile *objfile)
1641 {
1642 struct minimal_symbol *msym;
1643
1644 /* First, check whether a minimal symbol with the same name exists
1645 and points to the same address. The address check is required
1646 e.g. on PowerPC64, where the minimal symbol for a function will
1647 point to the function descriptor, while the debug symbol will
1648 point to the actual function code. */
1649 msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->name, objfile);
1650 if (msym)
1651 ginfo->section = MSYMBOL_SECTION (msym);
1652 else
1653 {
1654 /* Static, function-local variables do appear in the linker
1655 (minimal) symbols, but are frequently given names that won't
1656 be found via lookup_minimal_symbol(). E.g., it has been
1657 observed in frv-uclinux (ELF) executables that a static,
1658 function-local variable named "foo" might appear in the
1659 linker symbols as "foo.6" or "foo.3". Thus, there is no
1660 point in attempting to extend the lookup-by-name mechanism to
1661 handle this case due to the fact that there can be multiple
1662 names.
1663
1664 So, instead, search the section table when lookup by name has
1665 failed. The ``addr'' and ``endaddr'' fields may have already
1666 been relocated. If so, the relocation offset (i.e. the
1667 ANOFFSET value) needs to be subtracted from these values when
1668 performing the comparison. We unconditionally subtract it,
1669 because, when no relocation has been performed, the ANOFFSET
1670 value will simply be zero.
1671
1672 The address of the symbol whose section we're fixing up HAS
1673 NOT BEEN adjusted (relocated) yet. It can't have been since
1674 the section isn't yet known and knowing the section is
1675 necessary in order to add the correct relocation value. In
1676 other words, we wouldn't even be in this function (attempting
1677 to compute the section) if it were already known.
1678
1679 Note that it is possible to search the minimal symbols
1680 (subtracting the relocation value if necessary) to find the
1681 matching minimal symbol, but this is overkill and much less
1682 efficient. It is not necessary to find the matching minimal
1683 symbol, only its section.
1684
1685 Note that this technique (of doing a section table search)
1686 can fail when unrelocated section addresses overlap. For
1687 this reason, we still attempt a lookup by name prior to doing
1688 a search of the section table. */
1689
1690 struct obj_section *s;
1691 int fallback = -1;
1692
1693 ALL_OBJFILE_OSECTIONS (objfile, s)
1694 {
1695 int idx = s - objfile->sections;
1696 CORE_ADDR offset = ANOFFSET (objfile->section_offsets, idx);
1697
1698 if (fallback == -1)
1699 fallback = idx;
1700
1701 if (obj_section_addr (s) - offset <= addr
1702 && addr < obj_section_endaddr (s) - offset)
1703 {
1704 ginfo->section = idx;
1705 return;
1706 }
1707 }
1708
1709 /* If we didn't find the section, assume it is in the first
1710 section. If there is no allocated section, then it hardly
1711 matters what we pick, so just pick zero. */
1712 if (fallback == -1)
1713 ginfo->section = 0;
1714 else
1715 ginfo->section = fallback;
1716 }
1717 }
1718
1719 struct symbol *
1720 fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
1721 {
1722 CORE_ADDR addr;
1723
1724 if (!sym)
1725 return NULL;
1726
1727 if (!SYMBOL_OBJFILE_OWNED (sym))
1728 return sym;
1729
1730 /* We either have an OBJFILE, or we can get at it from the sym's
1731 symtab. Anything else is a bug. */
1732 gdb_assert (objfile || symbol_symtab (sym));
1733
1734 if (objfile == NULL)
1735 objfile = symbol_objfile (sym);
1736
1737 if (SYMBOL_OBJ_SECTION (objfile, sym))
1738 return sym;
1739
1740 /* We should have an objfile by now. */
1741 gdb_assert (objfile);
1742
1743 switch (SYMBOL_CLASS (sym))
1744 {
1745 case LOC_STATIC:
1746 case LOC_LABEL:
1747 addr = SYMBOL_VALUE_ADDRESS (sym);
1748 break;
1749 case LOC_BLOCK:
1750 addr = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym));
1751 break;
1752
1753 default:
1754 /* Nothing else will be listed in the minsyms -- no use looking
1755 it up. */
1756 return sym;
1757 }
1758
1759 fixup_section (&sym->ginfo, addr, objfile);
1760
1761 return sym;
1762 }
1763
1764 /* See symtab.h. */
1765
1766 demangle_for_lookup_info::demangle_for_lookup_info
1767 (const lookup_name_info &lookup_name, language lang)
1768 {
1769 demangle_result_storage storage;
1770
1771 if (lookup_name.ignore_parameters () && lang == language_cplus)
1772 {
1773 gdb::unique_xmalloc_ptr<char> without_params
1774 = cp_remove_params_if_any (lookup_name.name ().c_str (),
1775 lookup_name.completion_mode ());
1776
1777 if (without_params != NULL)
1778 {
1779 if (lookup_name.match_type () != symbol_name_match_type::SEARCH_NAME)
1780 m_demangled_name = demangle_for_lookup (without_params.get (),
1781 lang, storage);
1782 return;
1783 }
1784 }
1785
1786 if (lookup_name.match_type () == symbol_name_match_type::SEARCH_NAME)
1787 m_demangled_name = lookup_name.name ();
1788 else
1789 m_demangled_name = demangle_for_lookup (lookup_name.name ().c_str (),
1790 lang, storage);
1791 }
1792
1793 /* See symtab.h. */
1794
1795 const lookup_name_info &
1796 lookup_name_info::match_any ()
1797 {
1798 /* Lookup any symbol that "" would complete. I.e., this matches all
1799 symbol names. */
1800 static const lookup_name_info lookup_name ({}, symbol_name_match_type::FULL,
1801 true);
1802
1803 return lookup_name;
1804 }
1805
1806 /* Compute the demangled form of NAME as used by the various symbol
1807 lookup functions. The result can either be the input NAME
1808 directly, or a pointer to a buffer owned by the STORAGE object.
1809
1810 For Ada, this function just returns NAME, unmodified.
1811 Normally, Ada symbol lookups are performed using the encoded name
1812 rather than the demangled name, and so it might seem to make sense
1813 for this function to return an encoded version of NAME.
1814 Unfortunately, we cannot do this, because this function is used in
1815 circumstances where it is not appropriate to try to encode NAME.
1816 For instance, when displaying the frame info, we demangle the name
1817 of each parameter, and then perform a symbol lookup inside our
1818 function using that demangled name. In Ada, certain functions
1819 have internally-generated parameters whose name contain uppercase
1820 characters. Encoding those name would result in those uppercase
1821 characters to become lowercase, and thus cause the symbol lookup
1822 to fail. */
1823
1824 const char *
1825 demangle_for_lookup (const char *name, enum language lang,
1826 demangle_result_storage &storage)
1827 {
1828 /* If we are using C++, D, or Go, demangle the name before doing a
1829 lookup, so we can always binary search. */
1830 if (lang == language_cplus)
1831 {
1832 char *demangled_name = gdb_demangle (name, DMGL_ANSI | DMGL_PARAMS);
1833 if (demangled_name != NULL)
1834 return storage.set_malloc_ptr (demangled_name);
1835
1836 /* If we were given a non-mangled name, canonicalize it
1837 according to the language (so far only for C++). */
1838 std::string canon = cp_canonicalize_string (name);
1839 if (!canon.empty ())
1840 return storage.swap_string (canon);
1841 }
1842 else if (lang == language_d)
1843 {
1844 char *demangled_name = d_demangle (name, 0);
1845 if (demangled_name != NULL)
1846 return storage.set_malloc_ptr (demangled_name);
1847 }
1848 else if (lang == language_go)
1849 {
1850 char *demangled_name = go_demangle (name, 0);
1851 if (demangled_name != NULL)
1852 return storage.set_malloc_ptr (demangled_name);
1853 }
1854
1855 return name;
1856 }
1857
1858 /* See symtab.h. */
1859
1860 unsigned int
1861 search_name_hash (enum language language, const char *search_name)
1862 {
1863 return language_def (language)->la_search_name_hash (search_name);
1864 }
1865
1866 /* See symtab.h.
1867
1868 This function (or rather its subordinates) have a bunch of loops and
1869 it would seem to be attractive to put in some QUIT's (though I'm not really
1870 sure whether it can run long enough to be really important). But there
1871 are a few calls for which it would appear to be bad news to quit
1872 out of here: e.g., find_proc_desc in alpha-mdebug-tdep.c. (Note
1873 that there is C++ code below which can error(), but that probably
1874 doesn't affect these calls since they are looking for a known
1875 variable and thus can probably assume it will never hit the C++
1876 code). */
1877
1878 struct block_symbol
1879 lookup_symbol_in_language (const char *name, const struct block *block,
1880 const domain_enum domain, enum language lang,
1881 struct field_of_this_result *is_a_field_of_this)
1882 {
1883 demangle_result_storage storage;
1884 const char *modified_name = demangle_for_lookup (name, lang, storage);
1885
1886 return lookup_symbol_aux (modified_name,
1887 symbol_name_match_type::FULL,
1888 block, domain, lang,
1889 is_a_field_of_this);
1890 }
1891
1892 /* See symtab.h. */
1893
1894 struct block_symbol
1895 lookup_symbol (const char *name, const struct block *block,
1896 domain_enum domain,
1897 struct field_of_this_result *is_a_field_of_this)
1898 {
1899 return lookup_symbol_in_language (name, block, domain,
1900 current_language->la_language,
1901 is_a_field_of_this);
1902 }
1903
1904 /* See symtab.h. */
1905
1906 struct block_symbol
1907 lookup_symbol_search_name (const char *search_name, const struct block *block,
1908 domain_enum domain)
1909 {
1910 return lookup_symbol_aux (search_name, symbol_name_match_type::SEARCH_NAME,
1911 block, domain, language_asm, NULL);
1912 }
1913
1914 /* See symtab.h. */
1915
1916 struct block_symbol
1917 lookup_language_this (const struct language_defn *lang,
1918 const struct block *block)
1919 {
1920 if (lang->la_name_of_this == NULL || block == NULL)
1921 return (struct block_symbol) {NULL, NULL};
1922
1923 if (symbol_lookup_debug > 1)
1924 {
1925 struct objfile *objfile = lookup_objfile_from_block (block);
1926
1927 fprintf_unfiltered (gdb_stdlog,
1928 "lookup_language_this (%s, %s (objfile %s))",
1929 lang->la_name, host_address_to_string (block),
1930 objfile_debug_name (objfile));
1931 }
1932
1933 while (block)
1934 {
1935 struct symbol *sym;
1936
1937 sym = block_lookup_symbol (block, lang->la_name_of_this,
1938 symbol_name_match_type::SEARCH_NAME,
1939 VAR_DOMAIN);
1940 if (sym != NULL)
1941 {
1942 if (symbol_lookup_debug > 1)
1943 {
1944 fprintf_unfiltered (gdb_stdlog, " = %s (%s, block %s)\n",
1945 SYMBOL_PRINT_NAME (sym),
1946 host_address_to_string (sym),
1947 host_address_to_string (block));
1948 }
1949 return (struct block_symbol) {sym, block};
1950 }
1951 if (BLOCK_FUNCTION (block))
1952 break;
1953 block = BLOCK_SUPERBLOCK (block);
1954 }
1955
1956 if (symbol_lookup_debug > 1)
1957 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
1958 return (struct block_symbol) {NULL, NULL};
1959 }
1960
1961 /* Given TYPE, a structure/union,
1962 return 1 if the component named NAME from the ultimate target
1963 structure/union is defined, otherwise, return 0. */
1964
1965 static int
1966 check_field (struct type *type, const char *name,
1967 struct field_of_this_result *is_a_field_of_this)
1968 {
1969 int i;
1970
1971 /* The type may be a stub. */
1972 type = check_typedef (type);
1973
1974 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1975 {
1976 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1977
1978 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1979 {
1980 is_a_field_of_this->type = type;
1981 is_a_field_of_this->field = &TYPE_FIELD (type, i);
1982 return 1;
1983 }
1984 }
1985
1986 /* C++: If it was not found as a data field, then try to return it
1987 as a pointer to a method. */
1988
1989 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
1990 {
1991 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
1992 {
1993 is_a_field_of_this->type = type;
1994 is_a_field_of_this->fn_field = &TYPE_FN_FIELDLIST (type, i);
1995 return 1;
1996 }
1997 }
1998
1999 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2000 if (check_field (TYPE_BASECLASS (type, i), name, is_a_field_of_this))
2001 return 1;
2002
2003 return 0;
2004 }
2005
2006 /* Behave like lookup_symbol except that NAME is the natural name
2007 (e.g., demangled name) of the symbol that we're looking for. */
2008
2009 static struct block_symbol
2010 lookup_symbol_aux (const char *name, symbol_name_match_type match_type,
2011 const struct block *block,
2012 const domain_enum domain, enum language language,
2013 struct field_of_this_result *is_a_field_of_this)
2014 {
2015 struct block_symbol result;
2016 const struct language_defn *langdef;
2017
2018 if (symbol_lookup_debug)
2019 {
2020 struct objfile *objfile = lookup_objfile_from_block (block);
2021
2022 fprintf_unfiltered (gdb_stdlog,
2023 "lookup_symbol_aux (%s, %s (objfile %s), %s, %s)\n",
2024 name, host_address_to_string (block),
2025 objfile != NULL
2026 ? objfile_debug_name (objfile) : "NULL",
2027 domain_name (domain), language_str (language));
2028 }
2029
2030 /* Make sure we do something sensible with is_a_field_of_this, since
2031 the callers that set this parameter to some non-null value will
2032 certainly use it later. If we don't set it, the contents of
2033 is_a_field_of_this are undefined. */
2034 if (is_a_field_of_this != NULL)
2035 memset (is_a_field_of_this, 0, sizeof (*is_a_field_of_this));
2036
2037 /* Search specified block and its superiors. Don't search
2038 STATIC_BLOCK or GLOBAL_BLOCK. */
2039
2040 result = lookup_local_symbol (name, match_type, block, domain, language);
2041 if (result.symbol != NULL)
2042 {
2043 if (symbol_lookup_debug)
2044 {
2045 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2046 host_address_to_string (result.symbol));
2047 }
2048 return result;
2049 }
2050
2051 /* If requested to do so by the caller and if appropriate for LANGUAGE,
2052 check to see if NAME is a field of `this'. */
2053
2054 langdef = language_def (language);
2055
2056 /* Don't do this check if we are searching for a struct. It will
2057 not be found by check_field, but will be found by other
2058 means. */
2059 if (is_a_field_of_this != NULL && domain != STRUCT_DOMAIN)
2060 {
2061 result = lookup_language_this (langdef, block);
2062
2063 if (result.symbol)
2064 {
2065 struct type *t = result.symbol->type;
2066
2067 /* I'm not really sure that type of this can ever
2068 be typedefed; just be safe. */
2069 t = check_typedef (t);
2070 if (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_IS_REFERENCE (t))
2071 t = TYPE_TARGET_TYPE (t);
2072
2073 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2074 && TYPE_CODE (t) != TYPE_CODE_UNION)
2075 error (_("Internal error: `%s' is not an aggregate"),
2076 langdef->la_name_of_this);
2077
2078 if (check_field (t, name, is_a_field_of_this))
2079 {
2080 if (symbol_lookup_debug)
2081 {
2082 fprintf_unfiltered (gdb_stdlog,
2083 "lookup_symbol_aux (...) = NULL\n");
2084 }
2085 return (struct block_symbol) {NULL, NULL};
2086 }
2087 }
2088 }
2089
2090 /* Now do whatever is appropriate for LANGUAGE to look
2091 up static and global variables. */
2092
2093 result = langdef->la_lookup_symbol_nonlocal (langdef, name, block, domain);
2094 if (result.symbol != NULL)
2095 {
2096 if (symbol_lookup_debug)
2097 {
2098 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2099 host_address_to_string (result.symbol));
2100 }
2101 return result;
2102 }
2103
2104 /* Now search all static file-level symbols. Not strictly correct,
2105 but more useful than an error. */
2106
2107 result = lookup_static_symbol (name, domain);
2108 if (symbol_lookup_debug)
2109 {
2110 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2111 result.symbol != NULL
2112 ? host_address_to_string (result.symbol)
2113 : "NULL");
2114 }
2115 return result;
2116 }
2117
2118 /* Check to see if the symbol is defined in BLOCK or its superiors.
2119 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
2120
2121 static struct block_symbol
2122 lookup_local_symbol (const char *name,
2123 symbol_name_match_type match_type,
2124 const struct block *block,
2125 const domain_enum domain,
2126 enum language language)
2127 {
2128 struct symbol *sym;
2129 const struct block *static_block = block_static_block (block);
2130 const char *scope = block_scope (block);
2131
2132 /* Check if either no block is specified or it's a global block. */
2133
2134 if (static_block == NULL)
2135 return (struct block_symbol) {NULL, NULL};
2136
2137 while (block != static_block)
2138 {
2139 sym = lookup_symbol_in_block (name, match_type, block, domain);
2140 if (sym != NULL)
2141 return (struct block_symbol) {sym, block};
2142
2143 if (language == language_cplus || language == language_fortran)
2144 {
2145 struct block_symbol blocksym
2146 = cp_lookup_symbol_imports_or_template (scope, name, block,
2147 domain);
2148
2149 if (blocksym.symbol != NULL)
2150 return blocksym;
2151 }
2152
2153 if (BLOCK_FUNCTION (block) != NULL && block_inlined_p (block))
2154 break;
2155 block = BLOCK_SUPERBLOCK (block);
2156 }
2157
2158 /* We've reached the end of the function without finding a result. */
2159
2160 return (struct block_symbol) {NULL, NULL};
2161 }
2162
2163 /* See symtab.h. */
2164
2165 struct objfile *
2166 lookup_objfile_from_block (const struct block *block)
2167 {
2168 struct objfile *obj;
2169 struct compunit_symtab *cust;
2170
2171 if (block == NULL)
2172 return NULL;
2173
2174 block = block_global_block (block);
2175 /* Look through all blockvectors. */
2176 ALL_COMPUNITS (obj, cust)
2177 if (block == BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust),
2178 GLOBAL_BLOCK))
2179 {
2180 if (obj->separate_debug_objfile_backlink)
2181 obj = obj->separate_debug_objfile_backlink;
2182
2183 return obj;
2184 }
2185
2186 return NULL;
2187 }
2188
2189 /* See symtab.h. */
2190
2191 struct symbol *
2192 lookup_symbol_in_block (const char *name, symbol_name_match_type match_type,
2193 const struct block *block,
2194 const domain_enum domain)
2195 {
2196 struct symbol *sym;
2197
2198 if (symbol_lookup_debug > 1)
2199 {
2200 struct objfile *objfile = lookup_objfile_from_block (block);
2201
2202 fprintf_unfiltered (gdb_stdlog,
2203 "lookup_symbol_in_block (%s, %s (objfile %s), %s)",
2204 name, host_address_to_string (block),
2205 objfile_debug_name (objfile),
2206 domain_name (domain));
2207 }
2208
2209 sym = block_lookup_symbol (block, name, match_type, domain);
2210 if (sym)
2211 {
2212 if (symbol_lookup_debug > 1)
2213 {
2214 fprintf_unfiltered (gdb_stdlog, " = %s\n",
2215 host_address_to_string (sym));
2216 }
2217 return fixup_symbol_section (sym, NULL);
2218 }
2219
2220 if (symbol_lookup_debug > 1)
2221 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
2222 return NULL;
2223 }
2224
2225 /* See symtab.h. */
2226
2227 struct block_symbol
2228 lookup_global_symbol_from_objfile (struct objfile *main_objfile,
2229 const char *name,
2230 const domain_enum domain)
2231 {
2232 struct objfile *objfile;
2233
2234 for (objfile = main_objfile;
2235 objfile;
2236 objfile = objfile_separate_debug_iterate (main_objfile, objfile))
2237 {
2238 struct block_symbol result
2239 = lookup_symbol_in_objfile (objfile, GLOBAL_BLOCK, name, domain);
2240
2241 if (result.symbol != NULL)
2242 return result;
2243 }
2244
2245 return (struct block_symbol) {NULL, NULL};
2246 }
2247
2248 /* Check to see if the symbol is defined in one of the OBJFILE's
2249 symtabs. BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
2250 depending on whether or not we want to search global symbols or
2251 static symbols. */
2252
2253 static struct block_symbol
2254 lookup_symbol_in_objfile_symtabs (struct objfile *objfile, int block_index,
2255 const char *name, const domain_enum domain)
2256 {
2257 struct compunit_symtab *cust;
2258
2259 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2260
2261 if (symbol_lookup_debug > 1)
2262 {
2263 fprintf_unfiltered (gdb_stdlog,
2264 "lookup_symbol_in_objfile_symtabs (%s, %s, %s, %s)",
2265 objfile_debug_name (objfile),
2266 block_index == GLOBAL_BLOCK
2267 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2268 name, domain_name (domain));
2269 }
2270
2271 ALL_OBJFILE_COMPUNITS (objfile, cust)
2272 {
2273 const struct blockvector *bv;
2274 const struct block *block;
2275 struct block_symbol result;
2276
2277 bv = COMPUNIT_BLOCKVECTOR (cust);
2278 block = BLOCKVECTOR_BLOCK (bv, block_index);
2279 result.symbol = block_lookup_symbol_primary (block, name, domain);
2280 result.block = block;
2281 if (result.symbol != NULL)
2282 {
2283 if (symbol_lookup_debug > 1)
2284 {
2285 fprintf_unfiltered (gdb_stdlog, " = %s (block %s)\n",
2286 host_address_to_string (result.symbol),
2287 host_address_to_string (block));
2288 }
2289 result.symbol = fixup_symbol_section (result.symbol, objfile);
2290 return result;
2291
2292 }
2293 }
2294
2295 if (symbol_lookup_debug > 1)
2296 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
2297 return (struct block_symbol) {NULL, NULL};
2298 }
2299
2300 /* Wrapper around lookup_symbol_in_objfile_symtabs for search_symbols.
2301 Look up LINKAGE_NAME in DOMAIN in the global and static blocks of OBJFILE
2302 and all associated separate debug objfiles.
2303
2304 Normally we only look in OBJFILE, and not any separate debug objfiles
2305 because the outer loop will cause them to be searched too. This case is
2306 different. Here we're called from search_symbols where it will only
2307 call us for the the objfile that contains a matching minsym. */
2308
2309 static struct block_symbol
2310 lookup_symbol_in_objfile_from_linkage_name (struct objfile *objfile,
2311 const char *linkage_name,
2312 domain_enum domain)
2313 {
2314 enum language lang = current_language->la_language;
2315 struct objfile *main_objfile, *cur_objfile;
2316
2317 demangle_result_storage storage;
2318 const char *modified_name = demangle_for_lookup (linkage_name, lang, storage);
2319
2320 if (objfile->separate_debug_objfile_backlink)
2321 main_objfile = objfile->separate_debug_objfile_backlink;
2322 else
2323 main_objfile = objfile;
2324
2325 for (cur_objfile = main_objfile;
2326 cur_objfile;
2327 cur_objfile = objfile_separate_debug_iterate (main_objfile, cur_objfile))
2328 {
2329 struct block_symbol result;
2330
2331 result = lookup_symbol_in_objfile_symtabs (cur_objfile, GLOBAL_BLOCK,
2332 modified_name, domain);
2333 if (result.symbol == NULL)
2334 result = lookup_symbol_in_objfile_symtabs (cur_objfile, STATIC_BLOCK,
2335 modified_name, domain);
2336 if (result.symbol != NULL)
2337 return result;
2338 }
2339
2340 return (struct block_symbol) {NULL, NULL};
2341 }
2342
2343 /* A helper function that throws an exception when a symbol was found
2344 in a psymtab but not in a symtab. */
2345
2346 static void ATTRIBUTE_NORETURN
2347 error_in_psymtab_expansion (int block_index, const char *name,
2348 struct compunit_symtab *cust)
2349 {
2350 error (_("\
2351 Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n\
2352 %s may be an inlined function, or may be a template function\n \
2353 (if a template, try specifying an instantiation: %s<type>)."),
2354 block_index == GLOBAL_BLOCK ? "global" : "static",
2355 name,
2356 symtab_to_filename_for_display (compunit_primary_filetab (cust)),
2357 name, name);
2358 }
2359
2360 /* A helper function for various lookup routines that interfaces with
2361 the "quick" symbol table functions. */
2362
2363 static struct block_symbol
2364 lookup_symbol_via_quick_fns (struct objfile *objfile, int block_index,
2365 const char *name, const domain_enum domain)
2366 {
2367 struct compunit_symtab *cust;
2368 const struct blockvector *bv;
2369 const struct block *block;
2370 struct block_symbol result;
2371
2372 if (!objfile->sf)
2373 return (struct block_symbol) {NULL, NULL};
2374
2375 if (symbol_lookup_debug > 1)
2376 {
2377 fprintf_unfiltered (gdb_stdlog,
2378 "lookup_symbol_via_quick_fns (%s, %s, %s, %s)\n",
2379 objfile_debug_name (objfile),
2380 block_index == GLOBAL_BLOCK
2381 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2382 name, domain_name (domain));
2383 }
2384
2385 cust = objfile->sf->qf->lookup_symbol (objfile, block_index, name, domain);
2386 if (cust == NULL)
2387 {
2388 if (symbol_lookup_debug > 1)
2389 {
2390 fprintf_unfiltered (gdb_stdlog,
2391 "lookup_symbol_via_quick_fns (...) = NULL\n");
2392 }
2393 return (struct block_symbol) {NULL, NULL};
2394 }
2395
2396 bv = COMPUNIT_BLOCKVECTOR (cust);
2397 block = BLOCKVECTOR_BLOCK (bv, block_index);
2398 result.symbol = block_lookup_symbol (block, name,
2399 symbol_name_match_type::FULL, domain);
2400 if (result.symbol == NULL)
2401 error_in_psymtab_expansion (block_index, name, cust);
2402
2403 if (symbol_lookup_debug > 1)
2404 {
2405 fprintf_unfiltered (gdb_stdlog,
2406 "lookup_symbol_via_quick_fns (...) = %s (block %s)\n",
2407 host_address_to_string (result.symbol),
2408 host_address_to_string (block));
2409 }
2410
2411 result.symbol = fixup_symbol_section (result.symbol, objfile);
2412 result.block = block;
2413 return result;
2414 }
2415
2416 /* See symtab.h. */
2417
2418 struct block_symbol
2419 basic_lookup_symbol_nonlocal (const struct language_defn *langdef,
2420 const char *name,
2421 const struct block *block,
2422 const domain_enum domain)
2423 {
2424 struct block_symbol result;
2425
2426 /* NOTE: carlton/2003-05-19: The comments below were written when
2427 this (or what turned into this) was part of lookup_symbol_aux;
2428 I'm much less worried about these questions now, since these
2429 decisions have turned out well, but I leave these comments here
2430 for posterity. */
2431
2432 /* NOTE: carlton/2002-12-05: There is a question as to whether or
2433 not it would be appropriate to search the current global block
2434 here as well. (That's what this code used to do before the
2435 is_a_field_of_this check was moved up.) On the one hand, it's
2436 redundant with the lookup in all objfiles search that happens
2437 next. On the other hand, if decode_line_1 is passed an argument
2438 like filename:var, then the user presumably wants 'var' to be
2439 searched for in filename. On the third hand, there shouldn't be
2440 multiple global variables all of which are named 'var', and it's
2441 not like decode_line_1 has ever restricted its search to only
2442 global variables in a single filename. All in all, only
2443 searching the static block here seems best: it's correct and it's
2444 cleanest. */
2445
2446 /* NOTE: carlton/2002-12-05: There's also a possible performance
2447 issue here: if you usually search for global symbols in the
2448 current file, then it would be slightly better to search the
2449 current global block before searching all the symtabs. But there
2450 are other factors that have a much greater effect on performance
2451 than that one, so I don't think we should worry about that for
2452 now. */
2453
2454 /* NOTE: dje/2014-10-26: The lookup in all objfiles search could skip
2455 the current objfile. Searching the current objfile first is useful
2456 for both matching user expectations as well as performance. */
2457
2458 result = lookup_symbol_in_static_block (name, block, domain);
2459 if (result.symbol != NULL)
2460 return result;
2461
2462 /* If we didn't find a definition for a builtin type in the static block,
2463 search for it now. This is actually the right thing to do and can be
2464 a massive performance win. E.g., when debugging a program with lots of
2465 shared libraries we could search all of them only to find out the
2466 builtin type isn't defined in any of them. This is common for types
2467 like "void". */
2468 if (domain == VAR_DOMAIN)
2469 {
2470 struct gdbarch *gdbarch;
2471
2472 if (block == NULL)
2473 gdbarch = target_gdbarch ();
2474 else
2475 gdbarch = block_gdbarch (block);
2476 result.symbol = language_lookup_primitive_type_as_symbol (langdef,
2477 gdbarch, name);
2478 result.block = NULL;
2479 if (result.symbol != NULL)
2480 return result;
2481 }
2482
2483 return lookup_global_symbol (name, block, domain);
2484 }
2485
2486 /* See symtab.h. */
2487
2488 struct block_symbol
2489 lookup_symbol_in_static_block (const char *name,
2490 const struct block *block,
2491 const domain_enum domain)
2492 {
2493 const struct block *static_block = block_static_block (block);
2494 struct symbol *sym;
2495
2496 if (static_block == NULL)
2497 return (struct block_symbol) {NULL, NULL};
2498
2499 if (symbol_lookup_debug)
2500 {
2501 struct objfile *objfile = lookup_objfile_from_block (static_block);
2502
2503 fprintf_unfiltered (gdb_stdlog,
2504 "lookup_symbol_in_static_block (%s, %s (objfile %s),"
2505 " %s)\n",
2506 name,
2507 host_address_to_string (block),
2508 objfile_debug_name (objfile),
2509 domain_name (domain));
2510 }
2511
2512 sym = lookup_symbol_in_block (name,
2513 symbol_name_match_type::FULL,
2514 static_block, domain);
2515 if (symbol_lookup_debug)
2516 {
2517 fprintf_unfiltered (gdb_stdlog,
2518 "lookup_symbol_in_static_block (...) = %s\n",
2519 sym != NULL ? host_address_to_string (sym) : "NULL");
2520 }
2521 return (struct block_symbol) {sym, static_block};
2522 }
2523
2524 /* Perform the standard symbol lookup of NAME in OBJFILE:
2525 1) First search expanded symtabs, and if not found
2526 2) Search the "quick" symtabs (partial or .gdb_index).
2527 BLOCK_INDEX is one of GLOBAL_BLOCK or STATIC_BLOCK. */
2528
2529 static struct block_symbol
2530 lookup_symbol_in_objfile (struct objfile *objfile, int block_index,
2531 const char *name, const domain_enum domain)
2532 {
2533 struct block_symbol result;
2534
2535 if (symbol_lookup_debug)
2536 {
2537 fprintf_unfiltered (gdb_stdlog,
2538 "lookup_symbol_in_objfile (%s, %s, %s, %s)\n",
2539 objfile_debug_name (objfile),
2540 block_index == GLOBAL_BLOCK
2541 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2542 name, domain_name (domain));
2543 }
2544
2545 result = lookup_symbol_in_objfile_symtabs (objfile, block_index,
2546 name, domain);
2547 if (result.symbol != NULL)
2548 {
2549 if (symbol_lookup_debug)
2550 {
2551 fprintf_unfiltered (gdb_stdlog,
2552 "lookup_symbol_in_objfile (...) = %s"
2553 " (in symtabs)\n",
2554 host_address_to_string (result.symbol));
2555 }
2556 return result;
2557 }
2558
2559 result = lookup_symbol_via_quick_fns (objfile, block_index,
2560 name, domain);
2561 if (symbol_lookup_debug)
2562 {
2563 fprintf_unfiltered (gdb_stdlog,
2564 "lookup_symbol_in_objfile (...) = %s%s\n",
2565 result.symbol != NULL
2566 ? host_address_to_string (result.symbol)
2567 : "NULL",
2568 result.symbol != NULL ? " (via quick fns)" : "");
2569 }
2570 return result;
2571 }
2572
2573 /* See symtab.h. */
2574
2575 struct block_symbol
2576 lookup_static_symbol (const char *name, const domain_enum domain)
2577 {
2578 struct symbol_cache *cache = get_symbol_cache (current_program_space);
2579 struct objfile *objfile;
2580 struct block_symbol result;
2581 struct block_symbol_cache *bsc;
2582 struct symbol_cache_slot *slot;
2583
2584 /* Lookup in STATIC_BLOCK is not current-objfile-dependent, so just pass
2585 NULL for OBJFILE_CONTEXT. */
2586 result = symbol_cache_lookup (cache, NULL, STATIC_BLOCK, name, domain,
2587 &bsc, &slot);
2588 if (result.symbol != NULL)
2589 {
2590 if (SYMBOL_LOOKUP_FAILED_P (result))
2591 return (struct block_symbol) {NULL, NULL};
2592 return result;
2593 }
2594
2595 ALL_OBJFILES (objfile)
2596 {
2597 result = lookup_symbol_in_objfile (objfile, STATIC_BLOCK, name, domain);
2598 if (result.symbol != NULL)
2599 {
2600 /* Still pass NULL for OBJFILE_CONTEXT here. */
2601 symbol_cache_mark_found (bsc, slot, NULL, result.symbol,
2602 result.block);
2603 return result;
2604 }
2605 }
2606
2607 /* Still pass NULL for OBJFILE_CONTEXT here. */
2608 symbol_cache_mark_not_found (bsc, slot, NULL, name, domain);
2609 return (struct block_symbol) {NULL, NULL};
2610 }
2611
2612 /* Private data to be used with lookup_symbol_global_iterator_cb. */
2613
2614 struct global_sym_lookup_data
2615 {
2616 /* The name of the symbol we are searching for. */
2617 const char *name;
2618
2619 /* The domain to use for our search. */
2620 domain_enum domain;
2621
2622 /* The field where the callback should store the symbol if found.
2623 It should be initialized to {NULL, NULL} before the search is started. */
2624 struct block_symbol result;
2625 };
2626
2627 /* A callback function for gdbarch_iterate_over_objfiles_in_search_order.
2628 It searches by name for a symbol in the GLOBAL_BLOCK of the given
2629 OBJFILE. The arguments for the search are passed via CB_DATA,
2630 which in reality is a pointer to struct global_sym_lookup_data. */
2631
2632 static int
2633 lookup_symbol_global_iterator_cb (struct objfile *objfile,
2634 void *cb_data)
2635 {
2636 struct global_sym_lookup_data *data =
2637 (struct global_sym_lookup_data *) cb_data;
2638
2639 gdb_assert (data->result.symbol == NULL
2640 && data->result.block == NULL);
2641
2642 data->result = lookup_symbol_in_objfile (objfile, GLOBAL_BLOCK,
2643 data->name, data->domain);
2644
2645 /* If we found a match, tell the iterator to stop. Otherwise,
2646 keep going. */
2647 return (data->result.symbol != NULL);
2648 }
2649
2650 /* See symtab.h. */
2651
2652 struct block_symbol
2653 lookup_global_symbol (const char *name,
2654 const struct block *block,
2655 const domain_enum domain)
2656 {
2657 struct symbol_cache *cache = get_symbol_cache (current_program_space);
2658 struct block_symbol result;
2659 struct objfile *objfile;
2660 struct global_sym_lookup_data lookup_data;
2661 struct block_symbol_cache *bsc;
2662 struct symbol_cache_slot *slot;
2663
2664 objfile = lookup_objfile_from_block (block);
2665
2666 /* First see if we can find the symbol in the cache.
2667 This works because we use the current objfile to qualify the lookup. */
2668 result = symbol_cache_lookup (cache, objfile, GLOBAL_BLOCK, name, domain,
2669 &bsc, &slot);
2670 if (result.symbol != NULL)
2671 {
2672 if (SYMBOL_LOOKUP_FAILED_P (result))
2673 return (struct block_symbol) {NULL, NULL};
2674 return result;
2675 }
2676
2677 /* Call library-specific lookup procedure. */
2678 if (objfile != NULL)
2679 result = solib_global_lookup (objfile, name, domain);
2680
2681 /* If that didn't work go a global search (of global blocks, heh). */
2682 if (result.symbol == NULL)
2683 {
2684 memset (&lookup_data, 0, sizeof (lookup_data));
2685 lookup_data.name = name;
2686 lookup_data.domain = domain;
2687 gdbarch_iterate_over_objfiles_in_search_order
2688 (objfile != NULL ? get_objfile_arch (objfile) : target_gdbarch (),
2689 lookup_symbol_global_iterator_cb, &lookup_data, objfile);
2690 result = lookup_data.result;
2691 }
2692
2693 if (result.symbol != NULL)
2694 symbol_cache_mark_found (bsc, slot, objfile, result.symbol, result.block);
2695 else
2696 symbol_cache_mark_not_found (bsc, slot, objfile, name, domain);
2697
2698 return result;
2699 }
2700
2701 int
2702 symbol_matches_domain (enum language symbol_language,
2703 domain_enum symbol_domain,
2704 domain_enum domain)
2705 {
2706 /* For C++ "struct foo { ... }" also defines a typedef for "foo".
2707 Similarly, any Ada type declaration implicitly defines a typedef. */
2708 if (symbol_language == language_cplus
2709 || symbol_language == language_d
2710 || symbol_language == language_ada
2711 || symbol_language == language_rust)
2712 {
2713 if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN)
2714 && symbol_domain == STRUCT_DOMAIN)
2715 return 1;
2716 }
2717 /* For all other languages, strict match is required. */
2718 return (symbol_domain == domain);
2719 }
2720
2721 /* See symtab.h. */
2722
2723 struct type *
2724 lookup_transparent_type (const char *name)
2725 {
2726 return current_language->la_lookup_transparent_type (name);
2727 }
2728
2729 /* A helper for basic_lookup_transparent_type that interfaces with the
2730 "quick" symbol table functions. */
2731
2732 static struct type *
2733 basic_lookup_transparent_type_quick (struct objfile *objfile, int block_index,
2734 const char *name)
2735 {
2736 struct compunit_symtab *cust;
2737 const struct blockvector *bv;
2738 struct block *block;
2739 struct symbol *sym;
2740
2741 if (!objfile->sf)
2742 return NULL;
2743 cust = objfile->sf->qf->lookup_symbol (objfile, block_index, name,
2744 STRUCT_DOMAIN);
2745 if (cust == NULL)
2746 return NULL;
2747
2748 bv = COMPUNIT_BLOCKVECTOR (cust);
2749 block = BLOCKVECTOR_BLOCK (bv, block_index);
2750 sym = block_find_symbol (block, name, STRUCT_DOMAIN,
2751 block_find_non_opaque_type, NULL);
2752 if (sym == NULL)
2753 error_in_psymtab_expansion (block_index, name, cust);
2754 gdb_assert (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)));
2755 return SYMBOL_TYPE (sym);
2756 }
2757
2758 /* Subroutine of basic_lookup_transparent_type to simplify it.
2759 Look up the non-opaque definition of NAME in BLOCK_INDEX of OBJFILE.
2760 BLOCK_INDEX is either GLOBAL_BLOCK or STATIC_BLOCK. */
2761
2762 static struct type *
2763 basic_lookup_transparent_type_1 (struct objfile *objfile, int block_index,
2764 const char *name)
2765 {
2766 const struct compunit_symtab *cust;
2767 const struct blockvector *bv;
2768 const struct block *block;
2769 const struct symbol *sym;
2770
2771 ALL_OBJFILE_COMPUNITS (objfile, cust)
2772 {
2773 bv = COMPUNIT_BLOCKVECTOR (cust);
2774 block = BLOCKVECTOR_BLOCK (bv, block_index);
2775 sym = block_find_symbol (block, name, STRUCT_DOMAIN,
2776 block_find_non_opaque_type, NULL);
2777 if (sym != NULL)
2778 {
2779 gdb_assert (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)));
2780 return SYMBOL_TYPE (sym);
2781 }
2782 }
2783
2784 return NULL;
2785 }
2786
2787 /* The standard implementation of lookup_transparent_type. This code
2788 was modeled on lookup_symbol -- the parts not relevant to looking
2789 up types were just left out. In particular it's assumed here that
2790 types are available in STRUCT_DOMAIN and only in file-static or
2791 global blocks. */
2792
2793 struct type *
2794 basic_lookup_transparent_type (const char *name)
2795 {
2796 struct objfile *objfile;
2797 struct type *t;
2798
2799 /* Now search all the global symbols. Do the symtab's first, then
2800 check the psymtab's. If a psymtab indicates the existence
2801 of the desired name as a global, then do psymtab-to-symtab
2802 conversion on the fly and return the found symbol. */
2803
2804 ALL_OBJFILES (objfile)
2805 {
2806 t = basic_lookup_transparent_type_1 (objfile, GLOBAL_BLOCK, name);
2807 if (t)
2808 return t;
2809 }
2810
2811 ALL_OBJFILES (objfile)
2812 {
2813 t = basic_lookup_transparent_type_quick (objfile, GLOBAL_BLOCK, name);
2814 if (t)
2815 return t;
2816 }
2817
2818 /* Now search the static file-level symbols.
2819 Not strictly correct, but more useful than an error.
2820 Do the symtab's first, then
2821 check the psymtab's. If a psymtab indicates the existence
2822 of the desired name as a file-level static, then do psymtab-to-symtab
2823 conversion on the fly and return the found symbol. */
2824
2825 ALL_OBJFILES (objfile)
2826 {
2827 t = basic_lookup_transparent_type_1 (objfile, STATIC_BLOCK, name);
2828 if (t)
2829 return t;
2830 }
2831
2832 ALL_OBJFILES (objfile)
2833 {
2834 t = basic_lookup_transparent_type_quick (objfile, STATIC_BLOCK, name);
2835 if (t)
2836 return t;
2837 }
2838
2839 return (struct type *) 0;
2840 }
2841
2842 /* Iterate over the symbols named NAME, matching DOMAIN, in BLOCK.
2843
2844 For each symbol that matches, CALLBACK is called. The symbol is
2845 passed to the callback.
2846
2847 If CALLBACK returns false, the iteration ends. Otherwise, the
2848 search continues. */
2849
2850 void
2851 iterate_over_symbols (const struct block *block,
2852 const lookup_name_info &name,
2853 const domain_enum domain,
2854 gdb::function_view<symbol_found_callback_ftype> callback)
2855 {
2856 struct block_iterator iter;
2857 struct symbol *sym;
2858
2859 ALL_BLOCK_SYMBOLS_WITH_NAME (block, name, iter, sym)
2860 {
2861 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
2862 SYMBOL_DOMAIN (sym), domain))
2863 {
2864 struct block_symbol block_sym = {sym, block};
2865
2866 if (!callback (&block_sym))
2867 return;
2868 }
2869 }
2870 }
2871
2872 /* Find the compunit symtab associated with PC and SECTION.
2873 This will read in debug info as necessary. */
2874
2875 struct compunit_symtab *
2876 find_pc_sect_compunit_symtab (CORE_ADDR pc, struct obj_section *section)
2877 {
2878 struct compunit_symtab *cust;
2879 struct compunit_symtab *best_cust = NULL;
2880 struct objfile *objfile;
2881 CORE_ADDR distance = 0;
2882 struct bound_minimal_symbol msymbol;
2883
2884 /* If we know that this is not a text address, return failure. This is
2885 necessary because we loop based on the block's high and low code
2886 addresses, which do not include the data ranges, and because
2887 we call find_pc_sect_psymtab which has a similar restriction based
2888 on the partial_symtab's texthigh and textlow. */
2889 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
2890 if (msymbol.minsym
2891 && (MSYMBOL_TYPE (msymbol.minsym) == mst_data
2892 || MSYMBOL_TYPE (msymbol.minsym) == mst_bss
2893 || MSYMBOL_TYPE (msymbol.minsym) == mst_abs
2894 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_data
2895 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_bss))
2896 return NULL;
2897
2898 /* Search all symtabs for the one whose file contains our address, and which
2899 is the smallest of all the ones containing the address. This is designed
2900 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
2901 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
2902 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
2903
2904 This happens for native ecoff format, where code from included files
2905 gets its own symtab. The symtab for the included file should have
2906 been read in already via the dependency mechanism.
2907 It might be swifter to create several symtabs with the same name
2908 like xcoff does (I'm not sure).
2909
2910 It also happens for objfiles that have their functions reordered.
2911 For these, the symtab we are looking for is not necessarily read in. */
2912
2913 ALL_COMPUNITS (objfile, cust)
2914 {
2915 struct block *b;
2916 const struct blockvector *bv;
2917
2918 bv = COMPUNIT_BLOCKVECTOR (cust);
2919 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
2920
2921 if (BLOCK_START (b) <= pc
2922 && BLOCK_END (b) > pc
2923 && (distance == 0
2924 || BLOCK_END (b) - BLOCK_START (b) < distance))
2925 {
2926 /* For an objfile that has its functions reordered,
2927 find_pc_psymtab will find the proper partial symbol table
2928 and we simply return its corresponding symtab. */
2929 /* In order to better support objfiles that contain both
2930 stabs and coff debugging info, we continue on if a psymtab
2931 can't be found. */
2932 if ((objfile->flags & OBJF_REORDERED) && objfile->sf)
2933 {
2934 struct compunit_symtab *result;
2935
2936 result
2937 = objfile->sf->qf->find_pc_sect_compunit_symtab (objfile,
2938 msymbol,
2939 pc, section,
2940 0);
2941 if (result != NULL)
2942 return result;
2943 }
2944 if (section != 0)
2945 {
2946 struct block_iterator iter;
2947 struct symbol *sym = NULL;
2948
2949 ALL_BLOCK_SYMBOLS (b, iter, sym)
2950 {
2951 fixup_symbol_section (sym, objfile);
2952 if (matching_obj_sections (SYMBOL_OBJ_SECTION (objfile, sym),
2953 section))
2954 break;
2955 }
2956 if (sym == NULL)
2957 continue; /* No symbol in this symtab matches
2958 section. */
2959 }
2960 distance = BLOCK_END (b) - BLOCK_START (b);
2961 best_cust = cust;
2962 }
2963 }
2964
2965 if (best_cust != NULL)
2966 return best_cust;
2967
2968 /* Not found in symtabs, search the "quick" symtabs (e.g. psymtabs). */
2969
2970 ALL_OBJFILES (objfile)
2971 {
2972 struct compunit_symtab *result;
2973
2974 if (!objfile->sf)
2975 continue;
2976 result = objfile->sf->qf->find_pc_sect_compunit_symtab (objfile,
2977 msymbol,
2978 pc, section,
2979 1);
2980 if (result != NULL)
2981 return result;
2982 }
2983
2984 return NULL;
2985 }
2986
2987 /* Find the compunit symtab associated with PC.
2988 This will read in debug info as necessary.
2989 Backward compatibility, no section. */
2990
2991 struct compunit_symtab *
2992 find_pc_compunit_symtab (CORE_ADDR pc)
2993 {
2994 return find_pc_sect_compunit_symtab (pc, find_pc_mapped_section (pc));
2995 }
2996
2997 /* See symtab.h. */
2998
2999 struct symbol *
3000 find_symbol_at_address (CORE_ADDR address)
3001 {
3002 struct objfile *objfile;
3003
3004 ALL_OBJFILES (objfile)
3005 {
3006 if (objfile->sf == NULL
3007 || objfile->sf->qf->find_compunit_symtab_by_address == NULL)
3008 continue;
3009
3010 struct compunit_symtab *symtab
3011 = objfile->sf->qf->find_compunit_symtab_by_address (objfile, address);
3012 if (symtab != NULL)
3013 {
3014 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (symtab);
3015
3016 for (int i = GLOBAL_BLOCK; i <= STATIC_BLOCK; ++i)
3017 {
3018 struct block *b = BLOCKVECTOR_BLOCK (bv, i);
3019 struct block_iterator iter;
3020 struct symbol *sym;
3021
3022 ALL_BLOCK_SYMBOLS (b, iter, sym)
3023 {
3024 if (SYMBOL_CLASS (sym) == LOC_STATIC
3025 && SYMBOL_VALUE_ADDRESS (sym) == address)
3026 return sym;
3027 }
3028 }
3029 }
3030 }
3031
3032 return NULL;
3033 }
3034
3035 \f
3036
3037 /* Find the source file and line number for a given PC value and SECTION.
3038 Return a structure containing a symtab pointer, a line number,
3039 and a pc range for the entire source line.
3040 The value's .pc field is NOT the specified pc.
3041 NOTCURRENT nonzero means, if specified pc is on a line boundary,
3042 use the line that ends there. Otherwise, in that case, the line
3043 that begins there is used. */
3044
3045 /* The big complication here is that a line may start in one file, and end just
3046 before the start of another file. This usually occurs when you #include
3047 code in the middle of a subroutine. To properly find the end of a line's PC
3048 range, we must search all symtabs associated with this compilation unit, and
3049 find the one whose first PC is closer than that of the next line in this
3050 symtab. */
3051
3052 struct symtab_and_line
3053 find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent)
3054 {
3055 struct compunit_symtab *cust;
3056 struct symtab *iter_s;
3057 struct linetable *l;
3058 int len;
3059 struct linetable_entry *item;
3060 const struct blockvector *bv;
3061 struct bound_minimal_symbol msymbol;
3062
3063 /* Info on best line seen so far, and where it starts, and its file. */
3064
3065 struct linetable_entry *best = NULL;
3066 CORE_ADDR best_end = 0;
3067 struct symtab *best_symtab = 0;
3068
3069 /* Store here the first line number
3070 of a file which contains the line at the smallest pc after PC.
3071 If we don't find a line whose range contains PC,
3072 we will use a line one less than this,
3073 with a range from the start of that file to the first line's pc. */
3074 struct linetable_entry *alt = NULL;
3075
3076 /* Info on best line seen in this file. */
3077
3078 struct linetable_entry *prev;
3079
3080 /* If this pc is not from the current frame,
3081 it is the address of the end of a call instruction.
3082 Quite likely that is the start of the following statement.
3083 But what we want is the statement containing the instruction.
3084 Fudge the pc to make sure we get that. */
3085
3086 /* It's tempting to assume that, if we can't find debugging info for
3087 any function enclosing PC, that we shouldn't search for line
3088 number info, either. However, GAS can emit line number info for
3089 assembly files --- very helpful when debugging hand-written
3090 assembly code. In such a case, we'd have no debug info for the
3091 function, but we would have line info. */
3092
3093 if (notcurrent)
3094 pc -= 1;
3095
3096 /* elz: added this because this function returned the wrong
3097 information if the pc belongs to a stub (import/export)
3098 to call a shlib function. This stub would be anywhere between
3099 two functions in the target, and the line info was erroneously
3100 taken to be the one of the line before the pc. */
3101
3102 /* RT: Further explanation:
3103
3104 * We have stubs (trampolines) inserted between procedures.
3105 *
3106 * Example: "shr1" exists in a shared library, and a "shr1" stub also
3107 * exists in the main image.
3108 *
3109 * In the minimal symbol table, we have a bunch of symbols
3110 * sorted by start address. The stubs are marked as "trampoline",
3111 * the others appear as text. E.g.:
3112 *
3113 * Minimal symbol table for main image
3114 * main: code for main (text symbol)
3115 * shr1: stub (trampoline symbol)
3116 * foo: code for foo (text symbol)
3117 * ...
3118 * Minimal symbol table for "shr1" image:
3119 * ...
3120 * shr1: code for shr1 (text symbol)
3121 * ...
3122 *
3123 * So the code below is trying to detect if we are in the stub
3124 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
3125 * and if found, do the symbolization from the real-code address
3126 * rather than the stub address.
3127 *
3128 * Assumptions being made about the minimal symbol table:
3129 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
3130 * if we're really in the trampoline.s If we're beyond it (say
3131 * we're in "foo" in the above example), it'll have a closer
3132 * symbol (the "foo" text symbol for example) and will not
3133 * return the trampoline.
3134 * 2. lookup_minimal_symbol_text() will find a real text symbol
3135 * corresponding to the trampoline, and whose address will
3136 * be different than the trampoline address. I put in a sanity
3137 * check for the address being the same, to avoid an
3138 * infinite recursion.
3139 */
3140 msymbol = lookup_minimal_symbol_by_pc (pc);
3141 if (msymbol.minsym != NULL)
3142 if (MSYMBOL_TYPE (msymbol.minsym) == mst_solib_trampoline)
3143 {
3144 struct bound_minimal_symbol mfunsym
3145 = lookup_minimal_symbol_text (MSYMBOL_LINKAGE_NAME (msymbol.minsym),
3146 NULL);
3147
3148 if (mfunsym.minsym == NULL)
3149 /* I eliminated this warning since it is coming out
3150 * in the following situation:
3151 * gdb shmain // test program with shared libraries
3152 * (gdb) break shr1 // function in shared lib
3153 * Warning: In stub for ...
3154 * In the above situation, the shared lib is not loaded yet,
3155 * so of course we can't find the real func/line info,
3156 * but the "break" still works, and the warning is annoying.
3157 * So I commented out the warning. RT */
3158 /* warning ("In stub for %s; unable to find real function/line info",
3159 SYMBOL_LINKAGE_NAME (msymbol)); */
3160 ;
3161 /* fall through */
3162 else if (BMSYMBOL_VALUE_ADDRESS (mfunsym)
3163 == BMSYMBOL_VALUE_ADDRESS (msymbol))
3164 /* Avoid infinite recursion */
3165 /* See above comment about why warning is commented out. */
3166 /* warning ("In stub for %s; unable to find real function/line info",
3167 SYMBOL_LINKAGE_NAME (msymbol)); */
3168 ;
3169 /* fall through */
3170 else
3171 return find_pc_line (BMSYMBOL_VALUE_ADDRESS (mfunsym), 0);
3172 }
3173
3174 symtab_and_line val;
3175 val.pspace = current_program_space;
3176
3177 cust = find_pc_sect_compunit_symtab (pc, section);
3178 if (cust == NULL)
3179 {
3180 /* If no symbol information, return previous pc. */
3181 if (notcurrent)
3182 pc++;
3183 val.pc = pc;
3184 return val;
3185 }
3186
3187 bv = COMPUNIT_BLOCKVECTOR (cust);
3188
3189 /* Look at all the symtabs that share this blockvector.
3190 They all have the same apriori range, that we found was right;
3191 but they have different line tables. */
3192
3193 ALL_COMPUNIT_FILETABS (cust, iter_s)
3194 {
3195 /* Find the best line in this symtab. */
3196 l = SYMTAB_LINETABLE (iter_s);
3197 if (!l)
3198 continue;
3199 len = l->nitems;
3200 if (len <= 0)
3201 {
3202 /* I think len can be zero if the symtab lacks line numbers
3203 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
3204 I'm not sure which, and maybe it depends on the symbol
3205 reader). */
3206 continue;
3207 }
3208
3209 prev = NULL;
3210 item = l->item; /* Get first line info. */
3211
3212 /* Is this file's first line closer than the first lines of other files?
3213 If so, record this file, and its first line, as best alternate. */
3214 if (item->pc > pc && (!alt || item->pc < alt->pc))
3215 alt = item;
3216
3217 auto pc_compare = [](const CORE_ADDR & comp_pc,
3218 const struct linetable_entry & lhs)->bool
3219 {
3220 return comp_pc < lhs.pc;
3221 };
3222
3223 struct linetable_entry *first = item;
3224 struct linetable_entry *last = item + len;
3225 item = std::upper_bound (first, last, pc, pc_compare);
3226 if (item != first)
3227 prev = item - 1; /* Found a matching item. */
3228
3229 /* At this point, prev points at the line whose start addr is <= pc, and
3230 item points at the next line. If we ran off the end of the linetable
3231 (pc >= start of the last line), then prev == item. If pc < start of
3232 the first line, prev will not be set. */
3233
3234 /* Is this file's best line closer than the best in the other files?
3235 If so, record this file, and its best line, as best so far. Don't
3236 save prev if it represents the end of a function (i.e. line number
3237 0) instead of a real line. */
3238
3239 if (prev && prev->line && (!best || prev->pc > best->pc))
3240 {
3241 best = prev;
3242 best_symtab = iter_s;
3243
3244 /* Discard BEST_END if it's before the PC of the current BEST. */
3245 if (best_end <= best->pc)
3246 best_end = 0;
3247 }
3248
3249 /* If another line (denoted by ITEM) is in the linetable and its
3250 PC is after BEST's PC, but before the current BEST_END, then
3251 use ITEM's PC as the new best_end. */
3252 if (best && item < last && item->pc > best->pc
3253 && (best_end == 0 || best_end > item->pc))
3254 best_end = item->pc;
3255 }
3256
3257 if (!best_symtab)
3258 {
3259 /* If we didn't find any line number info, just return zeros.
3260 We used to return alt->line - 1 here, but that could be
3261 anywhere; if we don't have line number info for this PC,
3262 don't make some up. */
3263 val.pc = pc;
3264 }
3265 else if (best->line == 0)
3266 {
3267 /* If our best fit is in a range of PC's for which no line
3268 number info is available (line number is zero) then we didn't
3269 find any valid line information. */
3270 val.pc = pc;
3271 }
3272 else
3273 {
3274 val.symtab = best_symtab;
3275 val.line = best->line;
3276 val.pc = best->pc;
3277 if (best_end && (!alt || best_end < alt->pc))
3278 val.end = best_end;
3279 else if (alt)
3280 val.end = alt->pc;
3281 else
3282 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
3283 }
3284 val.section = section;
3285 return val;
3286 }
3287
3288 /* Backward compatibility (no section). */
3289
3290 struct symtab_and_line
3291 find_pc_line (CORE_ADDR pc, int notcurrent)
3292 {
3293 struct obj_section *section;
3294
3295 section = find_pc_overlay (pc);
3296 if (pc_in_unmapped_range (pc, section))
3297 pc = overlay_mapped_address (pc, section);
3298 return find_pc_sect_line (pc, section, notcurrent);
3299 }
3300
3301 /* See symtab.h. */
3302
3303 struct symtab *
3304 find_pc_line_symtab (CORE_ADDR pc)
3305 {
3306 struct symtab_and_line sal;
3307
3308 /* This always passes zero for NOTCURRENT to find_pc_line.
3309 There are currently no callers that ever pass non-zero. */
3310 sal = find_pc_line (pc, 0);
3311 return sal.symtab;
3312 }
3313 \f
3314 /* Find line number LINE in any symtab whose name is the same as
3315 SYMTAB.
3316
3317 If found, return the symtab that contains the linetable in which it was
3318 found, set *INDEX to the index in the linetable of the best entry
3319 found, and set *EXACT_MATCH nonzero if the value returned is an
3320 exact match.
3321
3322 If not found, return NULL. */
3323
3324 struct symtab *
3325 find_line_symtab (struct symtab *symtab, int line,
3326 int *index, int *exact_match)
3327 {
3328 int exact = 0; /* Initialized here to avoid a compiler warning. */
3329
3330 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
3331 so far seen. */
3332
3333 int best_index;
3334 struct linetable *best_linetable;
3335 struct symtab *best_symtab;
3336
3337 /* First try looking it up in the given symtab. */
3338 best_linetable = SYMTAB_LINETABLE (symtab);
3339 best_symtab = symtab;
3340 best_index = find_line_common (best_linetable, line, &exact, 0);
3341 if (best_index < 0 || !exact)
3342 {
3343 /* Didn't find an exact match. So we better keep looking for
3344 another symtab with the same name. In the case of xcoff,
3345 multiple csects for one source file (produced by IBM's FORTRAN
3346 compiler) produce multiple symtabs (this is unavoidable
3347 assuming csects can be at arbitrary places in memory and that
3348 the GLOBAL_BLOCK of a symtab has a begin and end address). */
3349
3350 /* BEST is the smallest linenumber > LINE so far seen,
3351 or 0 if none has been seen so far.
3352 BEST_INDEX and BEST_LINETABLE identify the item for it. */
3353 int best;
3354
3355 struct objfile *objfile;
3356 struct compunit_symtab *cu;
3357 struct symtab *s;
3358
3359 if (best_index >= 0)
3360 best = best_linetable->item[best_index].line;
3361 else
3362 best = 0;
3363
3364 ALL_OBJFILES (objfile)
3365 {
3366 if (objfile->sf)
3367 objfile->sf->qf->expand_symtabs_with_fullname (objfile,
3368 symtab_to_fullname (symtab));
3369 }
3370
3371 ALL_FILETABS (objfile, cu, s)
3372 {
3373 struct linetable *l;
3374 int ind;
3375
3376 if (FILENAME_CMP (symtab->filename, s->filename) != 0)
3377 continue;
3378 if (FILENAME_CMP (symtab_to_fullname (symtab),
3379 symtab_to_fullname (s)) != 0)
3380 continue;
3381 l = SYMTAB_LINETABLE (s);
3382 ind = find_line_common (l, line, &exact, 0);
3383 if (ind >= 0)
3384 {
3385 if (exact)
3386 {
3387 best_index = ind;
3388 best_linetable = l;
3389 best_symtab = s;
3390 goto done;
3391 }
3392 if (best == 0 || l->item[ind].line < best)
3393 {
3394 best = l->item[ind].line;
3395 best_index = ind;
3396 best_linetable = l;
3397 best_symtab = s;
3398 }
3399 }
3400 }
3401 }
3402 done:
3403 if (best_index < 0)
3404 return NULL;
3405
3406 if (index)
3407 *index = best_index;
3408 if (exact_match)
3409 *exact_match = exact;
3410
3411 return best_symtab;
3412 }
3413
3414 /* Given SYMTAB, returns all the PCs function in the symtab that
3415 exactly match LINE. Returns an empty vector if there are no exact
3416 matches, but updates BEST_ITEM in this case. */
3417
3418 std::vector<CORE_ADDR>
3419 find_pcs_for_symtab_line (struct symtab *symtab, int line,
3420 struct linetable_entry **best_item)
3421 {
3422 int start = 0;
3423 std::vector<CORE_ADDR> result;
3424
3425 /* First, collect all the PCs that are at this line. */
3426 while (1)
3427 {
3428 int was_exact;
3429 int idx;
3430
3431 idx = find_line_common (SYMTAB_LINETABLE (symtab), line, &was_exact,
3432 start);
3433 if (idx < 0)
3434 break;
3435
3436 if (!was_exact)
3437 {
3438 struct linetable_entry *item = &SYMTAB_LINETABLE (symtab)->item[idx];
3439
3440 if (*best_item == NULL || item->line < (*best_item)->line)
3441 *best_item = item;
3442
3443 break;
3444 }
3445
3446 result.push_back (SYMTAB_LINETABLE (symtab)->item[idx].pc);
3447 start = idx + 1;
3448 }
3449
3450 return result;
3451 }
3452
3453 \f
3454 /* Set the PC value for a given source file and line number and return true.
3455 Returns zero for invalid line number (and sets the PC to 0).
3456 The source file is specified with a struct symtab. */
3457
3458 int
3459 find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
3460 {
3461 struct linetable *l;
3462 int ind;
3463
3464 *pc = 0;
3465 if (symtab == 0)
3466 return 0;
3467
3468 symtab = find_line_symtab (symtab, line, &ind, NULL);
3469 if (symtab != NULL)
3470 {
3471 l = SYMTAB_LINETABLE (symtab);
3472 *pc = l->item[ind].pc;
3473 return 1;
3474 }
3475 else
3476 return 0;
3477 }
3478
3479 /* Find the range of pc values in a line.
3480 Store the starting pc of the line into *STARTPTR
3481 and the ending pc (start of next line) into *ENDPTR.
3482 Returns 1 to indicate success.
3483 Returns 0 if could not find the specified line. */
3484
3485 int
3486 find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
3487 CORE_ADDR *endptr)
3488 {
3489 CORE_ADDR startaddr;
3490 struct symtab_and_line found_sal;
3491
3492 startaddr = sal.pc;
3493 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
3494 return 0;
3495
3496 /* This whole function is based on address. For example, if line 10 has
3497 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
3498 "info line *0x123" should say the line goes from 0x100 to 0x200
3499 and "info line *0x355" should say the line goes from 0x300 to 0x400.
3500 This also insures that we never give a range like "starts at 0x134
3501 and ends at 0x12c". */
3502
3503 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
3504 if (found_sal.line != sal.line)
3505 {
3506 /* The specified line (sal) has zero bytes. */
3507 *startptr = found_sal.pc;
3508 *endptr = found_sal.pc;
3509 }
3510 else
3511 {
3512 *startptr = found_sal.pc;
3513 *endptr = found_sal.end;
3514 }
3515 return 1;
3516 }
3517
3518 /* Given a line table and a line number, return the index into the line
3519 table for the pc of the nearest line whose number is >= the specified one.
3520 Return -1 if none is found. The value is >= 0 if it is an index.
3521 START is the index at which to start searching the line table.
3522
3523 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
3524
3525 static int
3526 find_line_common (struct linetable *l, int lineno,
3527 int *exact_match, int start)
3528 {
3529 int i;
3530 int len;
3531
3532 /* BEST is the smallest linenumber > LINENO so far seen,
3533 or 0 if none has been seen so far.
3534 BEST_INDEX identifies the item for it. */
3535
3536 int best_index = -1;
3537 int best = 0;
3538
3539 *exact_match = 0;
3540
3541 if (lineno <= 0)
3542 return -1;
3543 if (l == 0)
3544 return -1;
3545
3546 len = l->nitems;
3547 for (i = start; i < len; i++)
3548 {
3549 struct linetable_entry *item = &(l->item[i]);
3550
3551 if (item->line == lineno)
3552 {
3553 /* Return the first (lowest address) entry which matches. */
3554 *exact_match = 1;
3555 return i;
3556 }
3557
3558 if (item->line > lineno && (best == 0 || item->line < best))
3559 {
3560 best = item->line;
3561 best_index = i;
3562 }
3563 }
3564
3565 /* If we got here, we didn't get an exact match. */
3566 return best_index;
3567 }
3568
3569 int
3570 find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
3571 {
3572 struct symtab_and_line sal;
3573
3574 sal = find_pc_line (pc, 0);
3575 *startptr = sal.pc;
3576 *endptr = sal.end;
3577 return sal.symtab != 0;
3578 }
3579
3580 /* Helper for find_function_start_sal. Does most of the work, except
3581 setting the sal's symbol. */
3582
3583 static symtab_and_line
3584 find_function_start_sal_1 (CORE_ADDR func_addr, obj_section *section,
3585 bool funfirstline)
3586 {
3587 symtab_and_line sal = find_pc_sect_line (func_addr, section, 0);
3588
3589 if (funfirstline && sal.symtab != NULL
3590 && (COMPUNIT_LOCATIONS_VALID (SYMTAB_COMPUNIT (sal.symtab))
3591 || SYMTAB_LANGUAGE (sal.symtab) == language_asm))
3592 {
3593 struct gdbarch *gdbarch = get_objfile_arch (SYMTAB_OBJFILE (sal.symtab));
3594
3595 sal.pc = func_addr;
3596 if (gdbarch_skip_entrypoint_p (gdbarch))
3597 sal.pc = gdbarch_skip_entrypoint (gdbarch, sal.pc);
3598 return sal;
3599 }
3600
3601 /* We always should have a line for the function start address.
3602 If we don't, something is odd. Create a plain SAL referring
3603 just the PC and hope that skip_prologue_sal (if requested)
3604 can find a line number for after the prologue. */
3605 if (sal.pc < func_addr)
3606 {
3607 sal = {};
3608 sal.pspace = current_program_space;
3609 sal.pc = func_addr;
3610 sal.section = section;
3611 }
3612
3613 if (funfirstline)
3614 skip_prologue_sal (&sal);
3615
3616 return sal;
3617 }
3618
3619 /* See symtab.h. */
3620
3621 symtab_and_line
3622 find_function_start_sal (CORE_ADDR func_addr, obj_section *section,
3623 bool funfirstline)
3624 {
3625 symtab_and_line sal
3626 = find_function_start_sal_1 (func_addr, section, funfirstline);
3627
3628 /* find_function_start_sal_1 does a linetable search, so it finds
3629 the symtab and linenumber, but not a symbol. Fill in the
3630 function symbol too. */
3631 sal.symbol = find_pc_sect_containing_function (sal.pc, sal.section);
3632
3633 return sal;
3634 }
3635
3636 /* See symtab.h. */
3637
3638 symtab_and_line
3639 find_function_start_sal (symbol *sym, bool funfirstline)
3640 {
3641 fixup_symbol_section (sym, NULL);
3642 symtab_and_line sal
3643 = find_function_start_sal_1 (BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)),
3644 SYMBOL_OBJ_SECTION (symbol_objfile (sym), sym),
3645 funfirstline);
3646 sal.symbol = sym;
3647 return sal;
3648 }
3649
3650
3651 /* Given a function start address FUNC_ADDR and SYMTAB, find the first
3652 address for that function that has an entry in SYMTAB's line info
3653 table. If such an entry cannot be found, return FUNC_ADDR
3654 unaltered. */
3655
3656 static CORE_ADDR
3657 skip_prologue_using_lineinfo (CORE_ADDR func_addr, struct symtab *symtab)
3658 {
3659 CORE_ADDR func_start, func_end;
3660 struct linetable *l;
3661 int i;
3662
3663 /* Give up if this symbol has no lineinfo table. */
3664 l = SYMTAB_LINETABLE (symtab);
3665 if (l == NULL)
3666 return func_addr;
3667
3668 /* Get the range for the function's PC values, or give up if we
3669 cannot, for some reason. */
3670 if (!find_pc_partial_function (func_addr, NULL, &func_start, &func_end))
3671 return func_addr;
3672
3673 /* Linetable entries are ordered by PC values, see the commentary in
3674 symtab.h where `struct linetable' is defined. Thus, the first
3675 entry whose PC is in the range [FUNC_START..FUNC_END[ is the
3676 address we are looking for. */
3677 for (i = 0; i < l->nitems; i++)
3678 {
3679 struct linetable_entry *item = &(l->item[i]);
3680
3681 /* Don't use line numbers of zero, they mark special entries in
3682 the table. See the commentary on symtab.h before the
3683 definition of struct linetable. */
3684 if (item->line > 0 && func_start <= item->pc && item->pc < func_end)
3685 return item->pc;
3686 }
3687
3688 return func_addr;
3689 }
3690
3691 /* Adjust SAL to the first instruction past the function prologue.
3692 If the PC was explicitly specified, the SAL is not changed.
3693 If the line number was explicitly specified, at most the SAL's PC
3694 is updated. If SAL is already past the prologue, then do nothing. */
3695
3696 void
3697 skip_prologue_sal (struct symtab_and_line *sal)
3698 {
3699 struct symbol *sym;
3700 struct symtab_and_line start_sal;
3701 CORE_ADDR pc, saved_pc;
3702 struct obj_section *section;
3703 const char *name;
3704 struct objfile *objfile;
3705 struct gdbarch *gdbarch;
3706 const struct block *b, *function_block;
3707 int force_skip, skip;
3708
3709 /* Do not change the SAL if PC was specified explicitly. */
3710 if (sal->explicit_pc)
3711 return;
3712
3713 scoped_restore_current_pspace_and_thread restore_pspace_thread;
3714
3715 switch_to_program_space_and_thread (sal->pspace);
3716
3717 sym = find_pc_sect_function (sal->pc, sal->section);
3718 if (sym != NULL)
3719 {
3720 fixup_symbol_section (sym, NULL);
3721
3722 objfile = symbol_objfile (sym);
3723 pc = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym));
3724 section = SYMBOL_OBJ_SECTION (objfile, sym);
3725 name = SYMBOL_LINKAGE_NAME (sym);
3726 }
3727 else
3728 {
3729 struct bound_minimal_symbol msymbol
3730 = lookup_minimal_symbol_by_pc_section (sal->pc, sal->section);
3731
3732 if (msymbol.minsym == NULL)
3733 return;
3734
3735 objfile = msymbol.objfile;
3736 pc = BMSYMBOL_VALUE_ADDRESS (msymbol);
3737 section = MSYMBOL_OBJ_SECTION (objfile, msymbol.minsym);
3738 name = MSYMBOL_LINKAGE_NAME (msymbol.minsym);
3739 }
3740
3741 gdbarch = get_objfile_arch (objfile);
3742
3743 /* Process the prologue in two passes. In the first pass try to skip the
3744 prologue (SKIP is true) and verify there is a real need for it (indicated
3745 by FORCE_SKIP). If no such reason was found run a second pass where the
3746 prologue is not skipped (SKIP is false). */
3747
3748 skip = 1;
3749 force_skip = 1;
3750
3751 /* Be conservative - allow direct PC (without skipping prologue) only if we
3752 have proven the CU (Compilation Unit) supports it. sal->SYMTAB does not
3753 have to be set by the caller so we use SYM instead. */
3754 if (sym != NULL
3755 && COMPUNIT_LOCATIONS_VALID (SYMTAB_COMPUNIT (symbol_symtab (sym))))
3756 force_skip = 0;
3757
3758 saved_pc = pc;
3759 do
3760 {
3761 pc = saved_pc;
3762
3763 /* If the function is in an unmapped overlay, use its unmapped LMA address,
3764 so that gdbarch_skip_prologue has something unique to work on. */
3765 if (section_is_overlay (section) && !section_is_mapped (section))
3766 pc = overlay_unmapped_address (pc, section);
3767
3768 /* Skip "first line" of function (which is actually its prologue). */
3769 pc += gdbarch_deprecated_function_start_offset (gdbarch);
3770 if (gdbarch_skip_entrypoint_p (gdbarch))
3771 pc = gdbarch_skip_entrypoint (gdbarch, pc);
3772 if (skip)
3773 pc = gdbarch_skip_prologue_noexcept (gdbarch, pc);
3774
3775 /* For overlays, map pc back into its mapped VMA range. */
3776 pc = overlay_mapped_address (pc, section);
3777
3778 /* Calculate line number. */
3779 start_sal = find_pc_sect_line (pc, section, 0);
3780
3781 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
3782 line is still part of the same function. */
3783 if (skip && start_sal.pc != pc
3784 && (sym ? (BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)) <= start_sal.end
3785 && start_sal.end < BLOCK_END (SYMBOL_BLOCK_VALUE (sym)))
3786 : (lookup_minimal_symbol_by_pc_section (start_sal.end, section).minsym
3787 == lookup_minimal_symbol_by_pc_section (pc, section).minsym)))
3788 {
3789 /* First pc of next line */
3790 pc = start_sal.end;
3791 /* Recalculate the line number (might not be N+1). */
3792 start_sal = find_pc_sect_line (pc, section, 0);
3793 }
3794
3795 /* On targets with executable formats that don't have a concept of
3796 constructors (ELF with .init has, PE doesn't), gcc emits a call
3797 to `__main' in `main' between the prologue and before user
3798 code. */
3799 if (gdbarch_skip_main_prologue_p (gdbarch)
3800 && name && strcmp_iw (name, "main") == 0)
3801 {
3802 pc = gdbarch_skip_main_prologue (gdbarch, pc);
3803 /* Recalculate the line number (might not be N+1). */
3804 start_sal = find_pc_sect_line (pc, section, 0);
3805 force_skip = 1;
3806 }
3807 }
3808 while (!force_skip && skip--);
3809
3810 /* If we still don't have a valid source line, try to find the first
3811 PC in the lineinfo table that belongs to the same function. This
3812 happens with COFF debug info, which does not seem to have an
3813 entry in lineinfo table for the code after the prologue which has
3814 no direct relation to source. For example, this was found to be
3815 the case with the DJGPP target using "gcc -gcoff" when the
3816 compiler inserted code after the prologue to make sure the stack
3817 is aligned. */
3818 if (!force_skip && sym && start_sal.symtab == NULL)
3819 {
3820 pc = skip_prologue_using_lineinfo (pc, symbol_symtab (sym));
3821 /* Recalculate the line number. */
3822 start_sal = find_pc_sect_line (pc, section, 0);
3823 }
3824
3825 /* If we're already past the prologue, leave SAL unchanged. Otherwise
3826 forward SAL to the end of the prologue. */
3827 if (sal->pc >= pc)
3828 return;
3829
3830 sal->pc = pc;
3831 sal->section = section;
3832
3833 /* Unless the explicit_line flag was set, update the SAL line
3834 and symtab to correspond to the modified PC location. */
3835 if (sal->explicit_line)
3836 return;
3837
3838 sal->symtab = start_sal.symtab;
3839 sal->line = start_sal.line;
3840 sal->end = start_sal.end;
3841
3842 /* Check if we are now inside an inlined function. If we can,
3843 use the call site of the function instead. */
3844 b = block_for_pc_sect (sal->pc, sal->section);
3845 function_block = NULL;
3846 while (b != NULL)
3847 {
3848 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
3849 function_block = b;
3850 else if (BLOCK_FUNCTION (b) != NULL)
3851 break;
3852 b = BLOCK_SUPERBLOCK (b);
3853 }
3854 if (function_block != NULL
3855 && SYMBOL_LINE (BLOCK_FUNCTION (function_block)) != 0)
3856 {
3857 sal->line = SYMBOL_LINE (BLOCK_FUNCTION (function_block));
3858 sal->symtab = symbol_symtab (BLOCK_FUNCTION (function_block));
3859 }
3860 }
3861
3862 /* Given PC at the function's start address, attempt to find the
3863 prologue end using SAL information. Return zero if the skip fails.
3864
3865 A non-optimized prologue traditionally has one SAL for the function
3866 and a second for the function body. A single line function has
3867 them both pointing at the same line.
3868
3869 An optimized prologue is similar but the prologue may contain
3870 instructions (SALs) from the instruction body. Need to skip those
3871 while not getting into the function body.
3872
3873 The functions end point and an increasing SAL line are used as
3874 indicators of the prologue's endpoint.
3875
3876 This code is based on the function refine_prologue_limit
3877 (found in ia64). */
3878
3879 CORE_ADDR
3880 skip_prologue_using_sal (struct gdbarch *gdbarch, CORE_ADDR func_addr)
3881 {
3882 struct symtab_and_line prologue_sal;
3883 CORE_ADDR start_pc;
3884 CORE_ADDR end_pc;
3885 const struct block *bl;
3886
3887 /* Get an initial range for the function. */
3888 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
3889 start_pc += gdbarch_deprecated_function_start_offset (gdbarch);
3890
3891 prologue_sal = find_pc_line (start_pc, 0);
3892 if (prologue_sal.line != 0)
3893 {
3894 /* For languages other than assembly, treat two consecutive line
3895 entries at the same address as a zero-instruction prologue.
3896 The GNU assembler emits separate line notes for each instruction
3897 in a multi-instruction macro, but compilers generally will not
3898 do this. */
3899 if (prologue_sal.symtab->language != language_asm)
3900 {
3901 struct linetable *linetable = SYMTAB_LINETABLE (prologue_sal.symtab);
3902 int idx = 0;
3903
3904 /* Skip any earlier lines, and any end-of-sequence marker
3905 from a previous function. */
3906 while (linetable->item[idx].pc != prologue_sal.pc
3907 || linetable->item[idx].line == 0)
3908 idx++;
3909
3910 if (idx+1 < linetable->nitems
3911 && linetable->item[idx+1].line != 0
3912 && linetable->item[idx+1].pc == start_pc)
3913 return start_pc;
3914 }
3915
3916 /* If there is only one sal that covers the entire function,
3917 then it is probably a single line function, like
3918 "foo(){}". */
3919 if (prologue_sal.end >= end_pc)
3920 return 0;
3921
3922 while (prologue_sal.end < end_pc)
3923 {
3924 struct symtab_and_line sal;
3925
3926 sal = find_pc_line (prologue_sal.end, 0);
3927 if (sal.line == 0)
3928 break;
3929 /* Assume that a consecutive SAL for the same (or larger)
3930 line mark the prologue -> body transition. */
3931 if (sal.line >= prologue_sal.line)
3932 break;
3933 /* Likewise if we are in a different symtab altogether
3934 (e.g. within a file included via #include).  */
3935 if (sal.symtab != prologue_sal.symtab)
3936 break;
3937
3938 /* The line number is smaller. Check that it's from the
3939 same function, not something inlined. If it's inlined,
3940 then there is no point comparing the line numbers. */
3941 bl = block_for_pc (prologue_sal.end);
3942 while (bl)
3943 {
3944 if (block_inlined_p (bl))
3945 break;
3946 if (BLOCK_FUNCTION (bl))
3947 {
3948 bl = NULL;
3949 break;
3950 }
3951 bl = BLOCK_SUPERBLOCK (bl);
3952 }
3953 if (bl != NULL)
3954 break;
3955
3956 /* The case in which compiler's optimizer/scheduler has
3957 moved instructions into the prologue. We look ahead in
3958 the function looking for address ranges whose
3959 corresponding line number is less the first one that we
3960 found for the function. This is more conservative then
3961 refine_prologue_limit which scans a large number of SALs
3962 looking for any in the prologue. */
3963 prologue_sal = sal;
3964 }
3965 }
3966
3967 if (prologue_sal.end < end_pc)
3968 /* Return the end of this line, or zero if we could not find a
3969 line. */
3970 return prologue_sal.end;
3971 else
3972 /* Don't return END_PC, which is past the end of the function. */
3973 return prologue_sal.pc;
3974 }
3975
3976 /* See symtab.h. */
3977
3978 symbol *
3979 find_function_alias_target (bound_minimal_symbol msymbol)
3980 {
3981 CORE_ADDR func_addr;
3982 if (!msymbol_is_function (msymbol.objfile, msymbol.minsym, &func_addr))
3983 return NULL;
3984
3985 symbol *sym = find_pc_function (func_addr);
3986 if (sym != NULL
3987 && SYMBOL_CLASS (sym) == LOC_BLOCK
3988 && BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)) == func_addr)
3989 return sym;
3990
3991 return NULL;
3992 }
3993
3994 \f
3995 /* If P is of the form "operator[ \t]+..." where `...' is
3996 some legitimate operator text, return a pointer to the
3997 beginning of the substring of the operator text.
3998 Otherwise, return "". */
3999
4000 static const char *
4001 operator_chars (const char *p, const char **end)
4002 {
4003 *end = "";
4004 if (!startswith (p, CP_OPERATOR_STR))
4005 return *end;
4006 p += CP_OPERATOR_LEN;
4007
4008 /* Don't get faked out by `operator' being part of a longer
4009 identifier. */
4010 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
4011 return *end;
4012
4013 /* Allow some whitespace between `operator' and the operator symbol. */
4014 while (*p == ' ' || *p == '\t')
4015 p++;
4016
4017 /* Recognize 'operator TYPENAME'. */
4018
4019 if (isalpha (*p) || *p == '_' || *p == '$')
4020 {
4021 const char *q = p + 1;
4022
4023 while (isalnum (*q) || *q == '_' || *q == '$')
4024 q++;
4025 *end = q;
4026 return p;
4027 }
4028
4029 while (*p)
4030 switch (*p)
4031 {
4032 case '\\': /* regexp quoting */
4033 if (p[1] == '*')
4034 {
4035 if (p[2] == '=') /* 'operator\*=' */
4036 *end = p + 3;
4037 else /* 'operator\*' */
4038 *end = p + 2;
4039 return p;
4040 }
4041 else if (p[1] == '[')
4042 {
4043 if (p[2] == ']')
4044 error (_("mismatched quoting on brackets, "
4045 "try 'operator\\[\\]'"));
4046 else if (p[2] == '\\' && p[3] == ']')
4047 {
4048 *end = p + 4; /* 'operator\[\]' */
4049 return p;
4050 }
4051 else
4052 error (_("nothing is allowed between '[' and ']'"));
4053 }
4054 else
4055 {
4056 /* Gratuitous qoute: skip it and move on. */
4057 p++;
4058 continue;
4059 }
4060 break;
4061 case '!':
4062 case '=':
4063 case '*':
4064 case '/':
4065 case '%':
4066 case '^':
4067 if (p[1] == '=')
4068 *end = p + 2;
4069 else
4070 *end = p + 1;
4071 return p;
4072 case '<':
4073 case '>':
4074 case '+':
4075 case '-':
4076 case '&':
4077 case '|':
4078 if (p[0] == '-' && p[1] == '>')
4079 {
4080 /* Struct pointer member operator 'operator->'. */
4081 if (p[2] == '*')
4082 {
4083 *end = p + 3; /* 'operator->*' */
4084 return p;
4085 }
4086 else if (p[2] == '\\')
4087 {
4088 *end = p + 4; /* Hopefully 'operator->\*' */
4089 return p;
4090 }
4091 else
4092 {
4093 *end = p + 2; /* 'operator->' */
4094 return p;
4095 }
4096 }
4097 if (p[1] == '=' || p[1] == p[0])
4098 *end = p + 2;
4099 else
4100 *end = p + 1;
4101 return p;
4102 case '~':
4103 case ',':
4104 *end = p + 1;
4105 return p;
4106 case '(':
4107 if (p[1] != ')')
4108 error (_("`operator ()' must be specified "
4109 "without whitespace in `()'"));
4110 *end = p + 2;
4111 return p;
4112 case '?':
4113 if (p[1] != ':')
4114 error (_("`operator ?:' must be specified "
4115 "without whitespace in `?:'"));
4116 *end = p + 2;
4117 return p;
4118 case '[':
4119 if (p[1] != ']')
4120 error (_("`operator []' must be specified "
4121 "without whitespace in `[]'"));
4122 *end = p + 2;
4123 return p;
4124 default:
4125 error (_("`operator %s' not supported"), p);
4126 break;
4127 }
4128
4129 *end = "";
4130 return *end;
4131 }
4132 \f
4133
4134 /* Data structure to maintain printing state for output_source_filename. */
4135
4136 struct output_source_filename_data
4137 {
4138 /* Cache of what we've seen so far. */
4139 struct filename_seen_cache *filename_seen_cache;
4140
4141 /* Flag of whether we're printing the first one. */
4142 int first;
4143 };
4144
4145 /* Slave routine for sources_info. Force line breaks at ,'s.
4146 NAME is the name to print.
4147 DATA contains the state for printing and watching for duplicates. */
4148
4149 static void
4150 output_source_filename (const char *name,
4151 struct output_source_filename_data *data)
4152 {
4153 /* Since a single source file can result in several partial symbol
4154 tables, we need to avoid printing it more than once. Note: if
4155 some of the psymtabs are read in and some are not, it gets
4156 printed both under "Source files for which symbols have been
4157 read" and "Source files for which symbols will be read in on
4158 demand". I consider this a reasonable way to deal with the
4159 situation. I'm not sure whether this can also happen for
4160 symtabs; it doesn't hurt to check. */
4161
4162 /* Was NAME already seen? */
4163 if (data->filename_seen_cache->seen (name))
4164 {
4165 /* Yes; don't print it again. */
4166 return;
4167 }
4168
4169 /* No; print it and reset *FIRST. */
4170 if (! data->first)
4171 printf_filtered (", ");
4172 data->first = 0;
4173
4174 wrap_here ("");
4175 fputs_filtered (name, gdb_stdout);
4176 }
4177
4178 /* A callback for map_partial_symbol_filenames. */
4179
4180 static void
4181 output_partial_symbol_filename (const char *filename, const char *fullname,
4182 void *data)
4183 {
4184 output_source_filename (fullname ? fullname : filename,
4185 (struct output_source_filename_data *) data);
4186 }
4187
4188 static void
4189 info_sources_command (const char *ignore, int from_tty)
4190 {
4191 struct compunit_symtab *cu;
4192 struct symtab *s;
4193 struct objfile *objfile;
4194 struct output_source_filename_data data;
4195
4196 if (!have_full_symbols () && !have_partial_symbols ())
4197 {
4198 error (_("No symbol table is loaded. Use the \"file\" command."));
4199 }
4200
4201 filename_seen_cache filenames_seen;
4202
4203 data.filename_seen_cache = &filenames_seen;
4204
4205 printf_filtered ("Source files for which symbols have been read in:\n\n");
4206
4207 data.first = 1;
4208 ALL_FILETABS (objfile, cu, s)
4209 {
4210 const char *fullname = symtab_to_fullname (s);
4211
4212 output_source_filename (fullname, &data);
4213 }
4214 printf_filtered ("\n\n");
4215
4216 printf_filtered ("Source files for which symbols "
4217 "will be read in on demand:\n\n");
4218
4219 filenames_seen.clear ();
4220 data.first = 1;
4221 map_symbol_filenames (output_partial_symbol_filename, &data,
4222 1 /*need_fullname*/);
4223 printf_filtered ("\n");
4224 }
4225
4226 /* Compare FILE against all the NFILES entries of FILES. If BASENAMES is
4227 non-zero compare only lbasename of FILES. */
4228
4229 static int
4230 file_matches (const char *file, const char *files[], int nfiles, int basenames)
4231 {
4232 int i;
4233
4234 if (file != NULL && nfiles != 0)
4235 {
4236 for (i = 0; i < nfiles; i++)
4237 {
4238 if (compare_filenames_for_search (file, (basenames
4239 ? lbasename (files[i])
4240 : files[i])))
4241 return 1;
4242 }
4243 }
4244 else if (nfiles == 0)
4245 return 1;
4246 return 0;
4247 }
4248
4249 /* Helper function for sort_search_symbols_remove_dups and qsort. Can only
4250 sort symbols, not minimal symbols. */
4251
4252 int
4253 symbol_search::compare_search_syms (const symbol_search &sym_a,
4254 const symbol_search &sym_b)
4255 {
4256 int c;
4257
4258 c = FILENAME_CMP (symbol_symtab (sym_a.symbol)->filename,
4259 symbol_symtab (sym_b.symbol)->filename);
4260 if (c != 0)
4261 return c;
4262
4263 if (sym_a.block != sym_b.block)
4264 return sym_a.block - sym_b.block;
4265
4266 return strcmp (SYMBOL_PRINT_NAME (sym_a.symbol),
4267 SYMBOL_PRINT_NAME (sym_b.symbol));
4268 }
4269
4270 /* Returns true if the type_name of symbol_type of SYM matches TREG.
4271 If SYM has no symbol_type or symbol_name, returns false. */
4272
4273 bool
4274 treg_matches_sym_type_name (const compiled_regex &treg,
4275 const struct symbol *sym)
4276 {
4277 struct type *sym_type;
4278 std::string printed_sym_type_name;
4279
4280 if (symbol_lookup_debug > 1)
4281 {
4282 fprintf_unfiltered (gdb_stdlog,
4283 "treg_matches_sym_type_name\n sym %s\n",
4284 SYMBOL_NATURAL_NAME (sym));
4285 }
4286
4287 sym_type = SYMBOL_TYPE (sym);
4288 if (sym_type == NULL)
4289 return false;
4290
4291 if (language_mode == language_mode_auto)
4292 {
4293 scoped_restore_current_language l;
4294
4295 set_language (SYMBOL_LANGUAGE (sym));
4296 printed_sym_type_name = type_to_string (sym_type);
4297 }
4298 else
4299 printed_sym_type_name = type_to_string (sym_type);
4300
4301 if (symbol_lookup_debug > 1)
4302 {
4303 fprintf_unfiltered (gdb_stdlog,
4304 " sym_type_name %s\n",
4305 printed_sym_type_name.c_str ());
4306 }
4307
4308
4309 if (printed_sym_type_name.empty ())
4310 return false;
4311
4312 return treg.exec (printed_sym_type_name.c_str (), 0, NULL, 0) == 0;
4313 }
4314
4315
4316 /* Sort the symbols in RESULT and remove duplicates. */
4317
4318 static void
4319 sort_search_symbols_remove_dups (std::vector<symbol_search> *result)
4320 {
4321 std::sort (result->begin (), result->end ());
4322 result->erase (std::unique (result->begin (), result->end ()),
4323 result->end ());
4324 }
4325
4326 /* Search the symbol table for matches to the regular expression REGEXP,
4327 returning the results.
4328
4329 Only symbols of KIND are searched:
4330 VARIABLES_DOMAIN - search all symbols, excluding functions, type names,
4331 and constants (enums).
4332 if T_REGEXP is not NULL, only returns var that have
4333 a type matching regular expression T_REGEXP.
4334 FUNCTIONS_DOMAIN - search all functions
4335 TYPES_DOMAIN - search all type names
4336 ALL_DOMAIN - an internal error for this function
4337
4338 Within each file the results are sorted locally; each symtab's global and
4339 static blocks are separately alphabetized.
4340 Duplicate entries are removed. */
4341
4342 std::vector<symbol_search>
4343 search_symbols (const char *regexp, enum search_domain kind,
4344 const char *t_regexp,
4345 int nfiles, const char *files[])
4346 {
4347 struct compunit_symtab *cust;
4348 const struct blockvector *bv;
4349 struct block *b;
4350 int i = 0;
4351 struct block_iterator iter;
4352 struct symbol *sym;
4353 struct objfile *objfile;
4354 struct minimal_symbol *msymbol;
4355 int found_misc = 0;
4356 static const enum minimal_symbol_type types[]
4357 = {mst_data, mst_text, mst_abs};
4358 static const enum minimal_symbol_type types2[]
4359 = {mst_bss, mst_file_text, mst_abs};
4360 static const enum minimal_symbol_type types3[]
4361 = {mst_file_data, mst_solib_trampoline, mst_abs};
4362 static const enum minimal_symbol_type types4[]
4363 = {mst_file_bss, mst_text_gnu_ifunc, mst_abs};
4364 enum minimal_symbol_type ourtype;
4365 enum minimal_symbol_type ourtype2;
4366 enum minimal_symbol_type ourtype3;
4367 enum minimal_symbol_type ourtype4;
4368 std::vector<symbol_search> result;
4369 gdb::optional<compiled_regex> preg;
4370 gdb::optional<compiled_regex> treg;
4371
4372 gdb_assert (kind <= TYPES_DOMAIN);
4373
4374 ourtype = types[kind];
4375 ourtype2 = types2[kind];
4376 ourtype3 = types3[kind];
4377 ourtype4 = types4[kind];
4378
4379 if (regexp != NULL)
4380 {
4381 /* Make sure spacing is right for C++ operators.
4382 This is just a courtesy to make the matching less sensitive
4383 to how many spaces the user leaves between 'operator'
4384 and <TYPENAME> or <OPERATOR>. */
4385 const char *opend;
4386 const char *opname = operator_chars (regexp, &opend);
4387
4388 if (*opname)
4389 {
4390 int fix = -1; /* -1 means ok; otherwise number of
4391 spaces needed. */
4392
4393 if (isalpha (*opname) || *opname == '_' || *opname == '$')
4394 {
4395 /* There should 1 space between 'operator' and 'TYPENAME'. */
4396 if (opname[-1] != ' ' || opname[-2] == ' ')
4397 fix = 1;
4398 }
4399 else
4400 {
4401 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
4402 if (opname[-1] == ' ')
4403 fix = 0;
4404 }
4405 /* If wrong number of spaces, fix it. */
4406 if (fix >= 0)
4407 {
4408 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
4409
4410 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
4411 regexp = tmp;
4412 }
4413 }
4414
4415 int cflags = REG_NOSUB | (case_sensitivity == case_sensitive_off
4416 ? REG_ICASE : 0);
4417 preg.emplace (regexp, cflags, _("Invalid regexp"));
4418 }
4419
4420 if (t_regexp != NULL)
4421 {
4422 int cflags = REG_NOSUB | (case_sensitivity == case_sensitive_off
4423 ? REG_ICASE : 0);
4424 treg.emplace (t_regexp, cflags, _("Invalid regexp"));
4425 }
4426
4427 /* Search through the partial symtabs *first* for all symbols
4428 matching the regexp. That way we don't have to reproduce all of
4429 the machinery below. */
4430 expand_symtabs_matching ([&] (const char *filename, bool basenames)
4431 {
4432 return file_matches (filename, files, nfiles,
4433 basenames);
4434 },
4435 lookup_name_info::match_any (),
4436 [&] (const char *symname)
4437 {
4438 return (!preg.has_value ()
4439 || preg->exec (symname,
4440 0, NULL, 0) == 0);
4441 },
4442 NULL,
4443 kind);
4444
4445 /* Here, we search through the minimal symbol tables for functions
4446 and variables that match, and force their symbols to be read.
4447 This is in particular necessary for demangled variable names,
4448 which are no longer put into the partial symbol tables.
4449 The symbol will then be found during the scan of symtabs below.
4450
4451 For functions, find_pc_symtab should succeed if we have debug info
4452 for the function, for variables we have to call
4453 lookup_symbol_in_objfile_from_linkage_name to determine if the variable
4454 has debug info.
4455 If the lookup fails, set found_misc so that we will rescan to print
4456 any matching symbols without debug info.
4457 We only search the objfile the msymbol came from, we no longer search
4458 all objfiles. In large programs (1000s of shared libs) searching all
4459 objfiles is not worth the pain. */
4460
4461 if (nfiles == 0 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
4462 {
4463 ALL_MSYMBOLS (objfile, msymbol)
4464 {
4465 QUIT;
4466
4467 if (msymbol->created_by_gdb)
4468 continue;
4469
4470 if (MSYMBOL_TYPE (msymbol) == ourtype
4471 || MSYMBOL_TYPE (msymbol) == ourtype2
4472 || MSYMBOL_TYPE (msymbol) == ourtype3
4473 || MSYMBOL_TYPE (msymbol) == ourtype4)
4474 {
4475 if (!preg.has_value ()
4476 || preg->exec (MSYMBOL_NATURAL_NAME (msymbol), 0,
4477 NULL, 0) == 0)
4478 {
4479 /* Note: An important side-effect of these lookup functions
4480 is to expand the symbol table if msymbol is found, for the
4481 benefit of the next loop on ALL_COMPUNITS. */
4482 if (kind == FUNCTIONS_DOMAIN
4483 ? (find_pc_compunit_symtab
4484 (MSYMBOL_VALUE_ADDRESS (objfile, msymbol)) == NULL)
4485 : (lookup_symbol_in_objfile_from_linkage_name
4486 (objfile, MSYMBOL_LINKAGE_NAME (msymbol), VAR_DOMAIN)
4487 .symbol == NULL))
4488 found_misc = 1;
4489 }
4490 }
4491 }
4492 }
4493
4494 ALL_COMPUNITS (objfile, cust)
4495 {
4496 bv = COMPUNIT_BLOCKVECTOR (cust);
4497 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
4498 {
4499 b = BLOCKVECTOR_BLOCK (bv, i);
4500 ALL_BLOCK_SYMBOLS (b, iter, sym)
4501 {
4502 struct symtab *real_symtab = symbol_symtab (sym);
4503
4504 QUIT;
4505
4506 /* Check first sole REAL_SYMTAB->FILENAME. It does not need to be
4507 a substring of symtab_to_fullname as it may contain "./" etc. */
4508 if ((file_matches (real_symtab->filename, files, nfiles, 0)
4509 || ((basenames_may_differ
4510 || file_matches (lbasename (real_symtab->filename),
4511 files, nfiles, 1))
4512 && file_matches (symtab_to_fullname (real_symtab),
4513 files, nfiles, 0)))
4514 && ((!preg.has_value ()
4515 || preg->exec (SYMBOL_NATURAL_NAME (sym), 0,
4516 NULL, 0) == 0)
4517 && ((kind == VARIABLES_DOMAIN
4518 && SYMBOL_CLASS (sym) != LOC_TYPEDEF
4519 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
4520 && SYMBOL_CLASS (sym) != LOC_BLOCK
4521 /* LOC_CONST can be used for more than just enums,
4522 e.g., c++ static const members.
4523 We only want to skip enums here. */
4524 && !(SYMBOL_CLASS (sym) == LOC_CONST
4525 && (TYPE_CODE (SYMBOL_TYPE (sym))
4526 == TYPE_CODE_ENUM))
4527 && (!treg.has_value ()
4528 || treg_matches_sym_type_name (*treg, sym)))
4529 || (kind == FUNCTIONS_DOMAIN
4530 && SYMBOL_CLASS (sym) == LOC_BLOCK
4531 && (!treg.has_value ()
4532 || treg_matches_sym_type_name (*treg, sym)))
4533 || (kind == TYPES_DOMAIN
4534 && SYMBOL_CLASS (sym) == LOC_TYPEDEF))))
4535 {
4536 /* match */
4537 result.emplace_back (i, sym);
4538 }
4539 }
4540 }
4541 }
4542
4543 if (!result.empty ())
4544 sort_search_symbols_remove_dups (&result);
4545
4546 /* If there are no eyes, avoid all contact. I mean, if there are
4547 no debug symbols, then add matching minsyms. */
4548
4549 if (found_misc || (nfiles == 0 && kind != FUNCTIONS_DOMAIN))
4550 {
4551 ALL_MSYMBOLS (objfile, msymbol)
4552 {
4553 QUIT;
4554
4555 if (msymbol->created_by_gdb)
4556 continue;
4557
4558 if (MSYMBOL_TYPE (msymbol) == ourtype
4559 || MSYMBOL_TYPE (msymbol) == ourtype2
4560 || MSYMBOL_TYPE (msymbol) == ourtype3
4561 || MSYMBOL_TYPE (msymbol) == ourtype4)
4562 {
4563 /* If the user wants to see var matching a type regexp,
4564 then never give a minimal symbol. */
4565 if (kind != VARIABLES_DOMAIN
4566 && !treg.has_value () /* minimal symbol has never a type ???? */
4567 && (!preg.has_value ()
4568 || preg->exec (MSYMBOL_NATURAL_NAME (msymbol), 0,
4569 NULL, 0) == 0))
4570 {
4571 /* For functions we can do a quick check of whether the
4572 symbol might be found via find_pc_symtab. */
4573 if (kind != FUNCTIONS_DOMAIN
4574 || (find_pc_compunit_symtab
4575 (MSYMBOL_VALUE_ADDRESS (objfile, msymbol)) == NULL))
4576 {
4577 if (lookup_symbol_in_objfile_from_linkage_name
4578 (objfile, MSYMBOL_LINKAGE_NAME (msymbol), VAR_DOMAIN)
4579 .symbol == NULL)
4580 {
4581 /* match */
4582 result.emplace_back (i, msymbol, objfile);
4583 }
4584 }
4585 }
4586 }
4587 }
4588 }
4589
4590 return result;
4591 }
4592
4593 /* Helper function for symtab_symbol_info, this function uses
4594 the data returned from search_symbols() to print information
4595 regarding the match to gdb_stdout. If LAST is not NULL,
4596 print file and line number information for the symbol as
4597 well. Skip printing the filename if it matches LAST. */
4598
4599 static void
4600 print_symbol_info (enum search_domain kind,
4601 struct symbol *sym,
4602 int block, const char *last)
4603 {
4604 struct symtab *s = symbol_symtab (sym);
4605
4606 if (last != NULL)
4607 {
4608 const char *s_filename = symtab_to_filename_for_display (s);
4609
4610 if (filename_cmp (last, s_filename) != 0)
4611 {
4612 fputs_filtered ("\nFile ", gdb_stdout);
4613 fputs_filtered (s_filename, gdb_stdout);
4614 fputs_filtered (":\n", gdb_stdout);
4615 }
4616
4617 if (SYMBOL_LINE (sym) != 0)
4618 printf_filtered ("%d:\t", SYMBOL_LINE (sym));
4619 else
4620 puts_filtered ("\t");
4621 }
4622
4623 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
4624 printf_filtered ("static ");
4625
4626 /* Typedef that is not a C++ class. */
4627 if (kind == TYPES_DOMAIN
4628 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
4629 typedef_print (SYMBOL_TYPE (sym), sym, gdb_stdout);
4630 /* variable, func, or typedef-that-is-c++-class. */
4631 else if (kind < TYPES_DOMAIN
4632 || (kind == TYPES_DOMAIN
4633 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
4634 {
4635 type_print (SYMBOL_TYPE (sym),
4636 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
4637 ? "" : SYMBOL_PRINT_NAME (sym)),
4638 gdb_stdout, 0);
4639
4640 printf_filtered (";\n");
4641 }
4642 }
4643
4644 /* This help function for symtab_symbol_info() prints information
4645 for non-debugging symbols to gdb_stdout. */
4646
4647 static void
4648 print_msymbol_info (struct bound_minimal_symbol msymbol)
4649 {
4650 struct gdbarch *gdbarch = get_objfile_arch (msymbol.objfile);
4651 char *tmp;
4652
4653 if (gdbarch_addr_bit (gdbarch) <= 32)
4654 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol)
4655 & (CORE_ADDR) 0xffffffff,
4656 8);
4657 else
4658 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol),
4659 16);
4660 printf_filtered ("%s %s\n",
4661 tmp, MSYMBOL_PRINT_NAME (msymbol.minsym));
4662 }
4663
4664 /* This is the guts of the commands "info functions", "info types", and
4665 "info variables". It calls search_symbols to find all matches and then
4666 print_[m]symbol_info to print out some useful information about the
4667 matches. */
4668
4669 static void
4670 symtab_symbol_info (bool quiet,
4671 const char *regexp, enum search_domain kind,
4672 const char *t_regexp, int from_tty)
4673 {
4674 static const char * const classnames[] =
4675 {"variable", "function", "type"};
4676 const char *last_filename = "";
4677 int first = 1;
4678
4679 gdb_assert (kind <= TYPES_DOMAIN);
4680
4681 /* Must make sure that if we're interrupted, symbols gets freed. */
4682 std::vector<symbol_search> symbols = search_symbols (regexp, kind,
4683 t_regexp, 0, NULL);
4684
4685 if (!quiet)
4686 {
4687 if (regexp != NULL)
4688 {
4689 if (t_regexp != NULL)
4690 printf_filtered
4691 (_("All %ss matching regular expression \"%s\""
4692 " with type matching regulation expression \"%s\":\n"),
4693 classnames[kind], regexp, t_regexp);
4694 else
4695 printf_filtered (_("All %ss matching regular expression \"%s\":\n"),
4696 classnames[kind], regexp);
4697 }
4698 else
4699 {
4700 if (t_regexp != NULL)
4701 printf_filtered
4702 (_("All defined %ss"
4703 " with type matching regulation expression \"%s\" :\n"),
4704 classnames[kind], t_regexp);
4705 else
4706 printf_filtered (_("All defined %ss:\n"), classnames[kind]);
4707 }
4708 }
4709
4710 for (const symbol_search &p : symbols)
4711 {
4712 QUIT;
4713
4714 if (p.msymbol.minsym != NULL)
4715 {
4716 if (first)
4717 {
4718 if (!quiet)
4719 printf_filtered (_("\nNon-debugging symbols:\n"));
4720 first = 0;
4721 }
4722 print_msymbol_info (p.msymbol);
4723 }
4724 else
4725 {
4726 print_symbol_info (kind,
4727 p.symbol,
4728 p.block,
4729 last_filename);
4730 last_filename
4731 = symtab_to_filename_for_display (symbol_symtab (p.symbol));
4732 }
4733 }
4734 }
4735
4736 static void
4737 info_variables_command (const char *args, int from_tty)
4738 {
4739 std::string regexp;
4740 std::string t_regexp;
4741 bool quiet = false;
4742
4743 while (args != NULL
4744 && extract_info_print_args (&args, &quiet, &regexp, &t_regexp))
4745 ;
4746
4747 if (args != NULL)
4748 report_unrecognized_option_error ("info variables", args);
4749
4750 symtab_symbol_info (quiet,
4751 regexp.empty () ? NULL : regexp.c_str (),
4752 VARIABLES_DOMAIN,
4753 t_regexp.empty () ? NULL : t_regexp.c_str (),
4754 from_tty);
4755 }
4756
4757
4758 static void
4759 info_functions_command (const char *args, int from_tty)
4760 {
4761 std::string regexp;
4762 std::string t_regexp;
4763 bool quiet;
4764
4765 while (args != NULL
4766 && extract_info_print_args (&args, &quiet, &regexp, &t_regexp))
4767 ;
4768
4769 if (args != NULL)
4770 report_unrecognized_option_error ("info functions", args);
4771
4772 symtab_symbol_info (quiet,
4773 regexp.empty () ? NULL : regexp.c_str (),
4774 FUNCTIONS_DOMAIN,
4775 t_regexp.empty () ? NULL : t_regexp.c_str (),
4776 from_tty);
4777 }
4778
4779
4780 static void
4781 info_types_command (const char *regexp, int from_tty)
4782 {
4783 symtab_symbol_info (false, regexp, TYPES_DOMAIN, NULL, from_tty);
4784 }
4785
4786 /* Breakpoint all functions matching regular expression. */
4787
4788 void
4789 rbreak_command_wrapper (char *regexp, int from_tty)
4790 {
4791 rbreak_command (regexp, from_tty);
4792 }
4793
4794 static void
4795 rbreak_command (const char *regexp, int from_tty)
4796 {
4797 std::string string;
4798 const char **files = NULL;
4799 const char *file_name;
4800 int nfiles = 0;
4801
4802 if (regexp)
4803 {
4804 const char *colon = strchr (regexp, ':');
4805
4806 if (colon && *(colon + 1) != ':')
4807 {
4808 int colon_index;
4809 char *local_name;
4810
4811 colon_index = colon - regexp;
4812 local_name = (char *) alloca (colon_index + 1);
4813 memcpy (local_name, regexp, colon_index);
4814 local_name[colon_index--] = 0;
4815 while (isspace (local_name[colon_index]))
4816 local_name[colon_index--] = 0;
4817 file_name = local_name;
4818 files = &file_name;
4819 nfiles = 1;
4820 regexp = skip_spaces (colon + 1);
4821 }
4822 }
4823
4824 std::vector<symbol_search> symbols = search_symbols (regexp,
4825 FUNCTIONS_DOMAIN,
4826 NULL,
4827 nfiles, files);
4828
4829 scoped_rbreak_breakpoints finalize;
4830 for (const symbol_search &p : symbols)
4831 {
4832 if (p.msymbol.minsym == NULL)
4833 {
4834 struct symtab *symtab = symbol_symtab (p.symbol);
4835 const char *fullname = symtab_to_fullname (symtab);
4836
4837 string = string_printf ("%s:'%s'", fullname,
4838 SYMBOL_LINKAGE_NAME (p.symbol));
4839 break_command (&string[0], from_tty);
4840 print_symbol_info (FUNCTIONS_DOMAIN, p.symbol, p.block, NULL);
4841 }
4842 else
4843 {
4844 string = string_printf ("'%s'",
4845 MSYMBOL_LINKAGE_NAME (p.msymbol.minsym));
4846
4847 break_command (&string[0], from_tty);
4848 printf_filtered ("<function, no debug info> %s;\n",
4849 MSYMBOL_PRINT_NAME (p.msymbol.minsym));
4850 }
4851 }
4852 }
4853 \f
4854
4855 /* Evaluate if SYMNAME matches LOOKUP_NAME. */
4856
4857 static int
4858 compare_symbol_name (const char *symbol_name, language symbol_language,
4859 const lookup_name_info &lookup_name,
4860 completion_match_result &match_res)
4861 {
4862 const language_defn *lang = language_def (symbol_language);
4863
4864 symbol_name_matcher_ftype *name_match
4865 = get_symbol_name_matcher (lang, lookup_name);
4866
4867 return name_match (symbol_name, lookup_name, &match_res);
4868 }
4869
4870 /* See symtab.h. */
4871
4872 void
4873 completion_list_add_name (completion_tracker &tracker,
4874 language symbol_language,
4875 const char *symname,
4876 const lookup_name_info &lookup_name,
4877 const char *text, const char *word)
4878 {
4879 completion_match_result &match_res
4880 = tracker.reset_completion_match_result ();
4881
4882 /* Clip symbols that cannot match. */
4883 if (!compare_symbol_name (symname, symbol_language, lookup_name, match_res))
4884 return;
4885
4886 /* Refresh SYMNAME from the match string. It's potentially
4887 different depending on language. (E.g., on Ada, the match may be
4888 the encoded symbol name wrapped in "<>"). */
4889 symname = match_res.match.match ();
4890 gdb_assert (symname != NULL);
4891
4892 /* We have a match for a completion, so add SYMNAME to the current list
4893 of matches. Note that the name is moved to freshly malloc'd space. */
4894
4895 {
4896 gdb::unique_xmalloc_ptr<char> completion
4897 = make_completion_match_str (symname, text, word);
4898
4899 /* Here we pass the match-for-lcd object to add_completion. Some
4900 languages match the user text against substrings of symbol
4901 names in some cases. E.g., in C++, "b push_ba" completes to
4902 "std::vector::push_back", "std::string::push_back", etc., and
4903 in this case we want the completion lowest common denominator
4904 to be "push_back" instead of "std::". */
4905 tracker.add_completion (std::move (completion),
4906 &match_res.match_for_lcd, text, word);
4907 }
4908 }
4909
4910 /* completion_list_add_name wrapper for struct symbol. */
4911
4912 static void
4913 completion_list_add_symbol (completion_tracker &tracker,
4914 symbol *sym,
4915 const lookup_name_info &lookup_name,
4916 const char *text, const char *word)
4917 {
4918 completion_list_add_name (tracker, SYMBOL_LANGUAGE (sym),
4919 SYMBOL_NATURAL_NAME (sym),
4920 lookup_name, text, word);
4921 }
4922
4923 /* completion_list_add_name wrapper for struct minimal_symbol. */
4924
4925 static void
4926 completion_list_add_msymbol (completion_tracker &tracker,
4927 minimal_symbol *sym,
4928 const lookup_name_info &lookup_name,
4929 const char *text, const char *word)
4930 {
4931 completion_list_add_name (tracker, MSYMBOL_LANGUAGE (sym),
4932 MSYMBOL_NATURAL_NAME (sym),
4933 lookup_name, text, word);
4934 }
4935
4936
4937 /* ObjC: In case we are completing on a selector, look as the msymbol
4938 again and feed all the selectors into the mill. */
4939
4940 static void
4941 completion_list_objc_symbol (completion_tracker &tracker,
4942 struct minimal_symbol *msymbol,
4943 const lookup_name_info &lookup_name,
4944 const char *text, const char *word)
4945 {
4946 static char *tmp = NULL;
4947 static unsigned int tmplen = 0;
4948
4949 const char *method, *category, *selector;
4950 char *tmp2 = NULL;
4951
4952 method = MSYMBOL_NATURAL_NAME (msymbol);
4953
4954 /* Is it a method? */
4955 if ((method[0] != '-') && (method[0] != '+'))
4956 return;
4957
4958 if (text[0] == '[')
4959 /* Complete on shortened method method. */
4960 completion_list_add_name (tracker, language_objc,
4961 method + 1,
4962 lookup_name,
4963 text, word);
4964
4965 while ((strlen (method) + 1) >= tmplen)
4966 {
4967 if (tmplen == 0)
4968 tmplen = 1024;
4969 else
4970 tmplen *= 2;
4971 tmp = (char *) xrealloc (tmp, tmplen);
4972 }
4973 selector = strchr (method, ' ');
4974 if (selector != NULL)
4975 selector++;
4976
4977 category = strchr (method, '(');
4978
4979 if ((category != NULL) && (selector != NULL))
4980 {
4981 memcpy (tmp, method, (category - method));
4982 tmp[category - method] = ' ';
4983 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
4984 completion_list_add_name (tracker, language_objc, tmp,
4985 lookup_name, text, word);
4986 if (text[0] == '[')
4987 completion_list_add_name (tracker, language_objc, tmp + 1,
4988 lookup_name, text, word);
4989 }
4990
4991 if (selector != NULL)
4992 {
4993 /* Complete on selector only. */
4994 strcpy (tmp, selector);
4995 tmp2 = strchr (tmp, ']');
4996 if (tmp2 != NULL)
4997 *tmp2 = '\0';
4998
4999 completion_list_add_name (tracker, language_objc, tmp,
5000 lookup_name, text, word);
5001 }
5002 }
5003
5004 /* Break the non-quoted text based on the characters which are in
5005 symbols. FIXME: This should probably be language-specific. */
5006
5007 static const char *
5008 language_search_unquoted_string (const char *text, const char *p)
5009 {
5010 for (; p > text; --p)
5011 {
5012 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
5013 continue;
5014 else
5015 {
5016 if ((current_language->la_language == language_objc))
5017 {
5018 if (p[-1] == ':') /* Might be part of a method name. */
5019 continue;
5020 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
5021 p -= 2; /* Beginning of a method name. */
5022 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
5023 { /* Might be part of a method name. */
5024 const char *t = p;
5025
5026 /* Seeing a ' ' or a '(' is not conclusive evidence
5027 that we are in the middle of a method name. However,
5028 finding "-[" or "+[" should be pretty un-ambiguous.
5029 Unfortunately we have to find it now to decide. */
5030
5031 while (t > text)
5032 if (isalnum (t[-1]) || t[-1] == '_' ||
5033 t[-1] == ' ' || t[-1] == ':' ||
5034 t[-1] == '(' || t[-1] == ')')
5035 --t;
5036 else
5037 break;
5038
5039 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
5040 p = t - 2; /* Method name detected. */
5041 /* Else we leave with p unchanged. */
5042 }
5043 }
5044 break;
5045 }
5046 }
5047 return p;
5048 }
5049
5050 static void
5051 completion_list_add_fields (completion_tracker &tracker,
5052 struct symbol *sym,
5053 const lookup_name_info &lookup_name,
5054 const char *text, const char *word)
5055 {
5056 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5057 {
5058 struct type *t = SYMBOL_TYPE (sym);
5059 enum type_code c = TYPE_CODE (t);
5060 int j;
5061
5062 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
5063 for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++)
5064 if (TYPE_FIELD_NAME (t, j))
5065 completion_list_add_name (tracker, SYMBOL_LANGUAGE (sym),
5066 TYPE_FIELD_NAME (t, j),
5067 lookup_name, text, word);
5068 }
5069 }
5070
5071 /* See symtab.h. */
5072
5073 bool
5074 symbol_is_function_or_method (symbol *sym)
5075 {
5076 switch (TYPE_CODE (SYMBOL_TYPE (sym)))
5077 {
5078 case TYPE_CODE_FUNC:
5079 case TYPE_CODE_METHOD:
5080 return true;
5081 default:
5082 return false;
5083 }
5084 }
5085
5086 /* See symtab.h. */
5087
5088 bool
5089 symbol_is_function_or_method (minimal_symbol *msymbol)
5090 {
5091 switch (MSYMBOL_TYPE (msymbol))
5092 {
5093 case mst_text:
5094 case mst_text_gnu_ifunc:
5095 case mst_solib_trampoline:
5096 case mst_file_text:
5097 return true;
5098 default:
5099 return false;
5100 }
5101 }
5102
5103 /* See symtab.h. */
5104
5105 bound_minimal_symbol
5106 find_gnu_ifunc (const symbol *sym)
5107 {
5108 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
5109 return {};
5110
5111 lookup_name_info lookup_name (SYMBOL_SEARCH_NAME (sym),
5112 symbol_name_match_type::SEARCH_NAME);
5113 struct objfile *objfile = symbol_objfile (sym);
5114
5115 CORE_ADDR address = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym));
5116 minimal_symbol *ifunc = NULL;
5117
5118 iterate_over_minimal_symbols (objfile, lookup_name,
5119 [&] (minimal_symbol *minsym)
5120 {
5121 if (MSYMBOL_TYPE (minsym) == mst_text_gnu_ifunc
5122 || MSYMBOL_TYPE (minsym) == mst_data_gnu_ifunc)
5123 {
5124 CORE_ADDR msym_addr = MSYMBOL_VALUE_ADDRESS (objfile, minsym);
5125 if (MSYMBOL_TYPE (minsym) == mst_data_gnu_ifunc)
5126 {
5127 struct gdbarch *gdbarch = get_objfile_arch (objfile);
5128 msym_addr
5129 = gdbarch_convert_from_func_ptr_addr (gdbarch,
5130 msym_addr,
5131 current_top_target ());
5132 }
5133 if (msym_addr == address)
5134 {
5135 ifunc = minsym;
5136 return true;
5137 }
5138 }
5139 return false;
5140 });
5141
5142 if (ifunc != NULL)
5143 return {ifunc, objfile};
5144 return {};
5145 }
5146
5147 /* Add matching symbols from SYMTAB to the current completion list. */
5148
5149 static void
5150 add_symtab_completions (struct compunit_symtab *cust,
5151 completion_tracker &tracker,
5152 complete_symbol_mode mode,
5153 const lookup_name_info &lookup_name,
5154 const char *text, const char *word,
5155 enum type_code code)
5156 {
5157 struct symbol *sym;
5158 const struct block *b;
5159 struct block_iterator iter;
5160 int i;
5161
5162 if (cust == NULL)
5163 return;
5164
5165 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
5166 {
5167 QUIT;
5168 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust), i);
5169 ALL_BLOCK_SYMBOLS (b, iter, sym)
5170 {
5171 if (completion_skip_symbol (mode, sym))
5172 continue;
5173
5174 if (code == TYPE_CODE_UNDEF
5175 || (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
5176 && TYPE_CODE (SYMBOL_TYPE (sym)) == code))
5177 completion_list_add_symbol (tracker, sym,
5178 lookup_name,
5179 text, word);
5180 }
5181 }
5182 }
5183
5184 void
5185 default_collect_symbol_completion_matches_break_on
5186 (completion_tracker &tracker, complete_symbol_mode mode,
5187 symbol_name_match_type name_match_type,
5188 const char *text, const char *word,
5189 const char *break_on, enum type_code code)
5190 {
5191 /* Problem: All of the symbols have to be copied because readline
5192 frees them. I'm not going to worry about this; hopefully there
5193 won't be that many. */
5194
5195 struct symbol *sym;
5196 struct compunit_symtab *cust;
5197 struct minimal_symbol *msymbol;
5198 struct objfile *objfile;
5199 const struct block *b;
5200 const struct block *surrounding_static_block, *surrounding_global_block;
5201 struct block_iterator iter;
5202 /* The symbol we are completing on. Points in same buffer as text. */
5203 const char *sym_text;
5204
5205 /* Now look for the symbol we are supposed to complete on. */
5206 if (mode == complete_symbol_mode::LINESPEC)
5207 sym_text = text;
5208 else
5209 {
5210 const char *p;
5211 char quote_found;
5212 const char *quote_pos = NULL;
5213
5214 /* First see if this is a quoted string. */
5215 quote_found = '\0';
5216 for (p = text; *p != '\0'; ++p)
5217 {
5218 if (quote_found != '\0')
5219 {
5220 if (*p == quote_found)
5221 /* Found close quote. */
5222 quote_found = '\0';
5223 else if (*p == '\\' && p[1] == quote_found)
5224 /* A backslash followed by the quote character
5225 doesn't end the string. */
5226 ++p;
5227 }
5228 else if (*p == '\'' || *p == '"')
5229 {
5230 quote_found = *p;
5231 quote_pos = p;
5232 }
5233 }
5234 if (quote_found == '\'')
5235 /* A string within single quotes can be a symbol, so complete on it. */
5236 sym_text = quote_pos + 1;
5237 else if (quote_found == '"')
5238 /* A double-quoted string is never a symbol, nor does it make sense
5239 to complete it any other way. */
5240 {
5241 return;
5242 }
5243 else
5244 {
5245 /* It is not a quoted string. Break it based on the characters
5246 which are in symbols. */
5247 while (p > text)
5248 {
5249 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0'
5250 || p[-1] == ':' || strchr (break_on, p[-1]) != NULL)
5251 --p;
5252 else
5253 break;
5254 }
5255 sym_text = p;
5256 }
5257 }
5258
5259 lookup_name_info lookup_name (sym_text, name_match_type, true);
5260
5261 /* At this point scan through the misc symbol vectors and add each
5262 symbol you find to the list. Eventually we want to ignore
5263 anything that isn't a text symbol (everything else will be
5264 handled by the psymtab code below). */
5265
5266 if (code == TYPE_CODE_UNDEF)
5267 {
5268 ALL_MSYMBOLS (objfile, msymbol)
5269 {
5270 QUIT;
5271
5272 if (completion_skip_symbol (mode, msymbol))
5273 continue;
5274
5275 completion_list_add_msymbol (tracker, msymbol, lookup_name,
5276 sym_text, word);
5277
5278 completion_list_objc_symbol (tracker, msymbol, lookup_name,
5279 sym_text, word);
5280 }
5281 }
5282
5283 /* Add completions for all currently loaded symbol tables. */
5284 ALL_COMPUNITS (objfile, cust)
5285 add_symtab_completions (cust, tracker, mode, lookup_name,
5286 sym_text, word, code);
5287
5288 /* Look through the partial symtabs for all symbols which begin by
5289 matching SYM_TEXT. Expand all CUs that you find to the list. */
5290 expand_symtabs_matching (NULL,
5291 lookup_name,
5292 NULL,
5293 [&] (compunit_symtab *symtab) /* expansion notify */
5294 {
5295 add_symtab_completions (symtab,
5296 tracker, mode, lookup_name,
5297 sym_text, word, code);
5298 },
5299 ALL_DOMAIN);
5300
5301 /* Search upwards from currently selected frame (so that we can
5302 complete on local vars). Also catch fields of types defined in
5303 this places which match our text string. Only complete on types
5304 visible from current context. */
5305
5306 b = get_selected_block (0);
5307 surrounding_static_block = block_static_block (b);
5308 surrounding_global_block = block_global_block (b);
5309 if (surrounding_static_block != NULL)
5310 while (b != surrounding_static_block)
5311 {
5312 QUIT;
5313
5314 ALL_BLOCK_SYMBOLS (b, iter, sym)
5315 {
5316 if (code == TYPE_CODE_UNDEF)
5317 {
5318 completion_list_add_symbol (tracker, sym, lookup_name,
5319 sym_text, word);
5320 completion_list_add_fields (tracker, sym, lookup_name,
5321 sym_text, word);
5322 }
5323 else if (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
5324 && TYPE_CODE (SYMBOL_TYPE (sym)) == code)
5325 completion_list_add_symbol (tracker, sym, lookup_name,
5326 sym_text, word);
5327 }
5328
5329 /* Stop when we encounter an enclosing function. Do not stop for
5330 non-inlined functions - the locals of the enclosing function
5331 are in scope for a nested function. */
5332 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
5333 break;
5334 b = BLOCK_SUPERBLOCK (b);
5335 }
5336
5337 /* Add fields from the file's types; symbols will be added below. */
5338
5339 if (code == TYPE_CODE_UNDEF)
5340 {
5341 if (surrounding_static_block != NULL)
5342 ALL_BLOCK_SYMBOLS (surrounding_static_block, iter, sym)
5343 completion_list_add_fields (tracker, sym, lookup_name,
5344 sym_text, word);
5345
5346 if (surrounding_global_block != NULL)
5347 ALL_BLOCK_SYMBOLS (surrounding_global_block, iter, sym)
5348 completion_list_add_fields (tracker, sym, lookup_name,
5349 sym_text, word);
5350 }
5351
5352 /* Skip macros if we are completing a struct tag -- arguable but
5353 usually what is expected. */
5354 if (current_language->la_macro_expansion == macro_expansion_c
5355 && code == TYPE_CODE_UNDEF)
5356 {
5357 gdb::unique_xmalloc_ptr<struct macro_scope> scope;
5358
5359 /* This adds a macro's name to the current completion list. */
5360 auto add_macro_name = [&] (const char *macro_name,
5361 const macro_definition *,
5362 macro_source_file *,
5363 int)
5364 {
5365 completion_list_add_name (tracker, language_c, macro_name,
5366 lookup_name, sym_text, word);
5367 };
5368
5369 /* Add any macros visible in the default scope. Note that this
5370 may yield the occasional wrong result, because an expression
5371 might be evaluated in a scope other than the default. For
5372 example, if the user types "break file:line if <TAB>", the
5373 resulting expression will be evaluated at "file:line" -- but
5374 at there does not seem to be a way to detect this at
5375 completion time. */
5376 scope = default_macro_scope ();
5377 if (scope)
5378 macro_for_each_in_scope (scope->file, scope->line,
5379 add_macro_name);
5380
5381 /* User-defined macros are always visible. */
5382 macro_for_each (macro_user_macros, add_macro_name);
5383 }
5384 }
5385
5386 void
5387 default_collect_symbol_completion_matches (completion_tracker &tracker,
5388 complete_symbol_mode mode,
5389 symbol_name_match_type name_match_type,
5390 const char *text, const char *word,
5391 enum type_code code)
5392 {
5393 return default_collect_symbol_completion_matches_break_on (tracker, mode,
5394 name_match_type,
5395 text, word, "",
5396 code);
5397 }
5398
5399 /* Collect all symbols (regardless of class) which begin by matching
5400 TEXT. */
5401
5402 void
5403 collect_symbol_completion_matches (completion_tracker &tracker,
5404 complete_symbol_mode mode,
5405 symbol_name_match_type name_match_type,
5406 const char *text, const char *word)
5407 {
5408 current_language->la_collect_symbol_completion_matches (tracker, mode,
5409 name_match_type,
5410 text, word,
5411 TYPE_CODE_UNDEF);
5412 }
5413
5414 /* Like collect_symbol_completion_matches, but only collect
5415 STRUCT_DOMAIN symbols whose type code is CODE. */
5416
5417 void
5418 collect_symbol_completion_matches_type (completion_tracker &tracker,
5419 const char *text, const char *word,
5420 enum type_code code)
5421 {
5422 complete_symbol_mode mode = complete_symbol_mode::EXPRESSION;
5423 symbol_name_match_type name_match_type = symbol_name_match_type::EXPRESSION;
5424
5425 gdb_assert (code == TYPE_CODE_UNION
5426 || code == TYPE_CODE_STRUCT
5427 || code == TYPE_CODE_ENUM);
5428 current_language->la_collect_symbol_completion_matches (tracker, mode,
5429 name_match_type,
5430 text, word, code);
5431 }
5432
5433 /* Like collect_symbol_completion_matches, but collects a list of
5434 symbols defined in all source files named SRCFILE. */
5435
5436 void
5437 collect_file_symbol_completion_matches (completion_tracker &tracker,
5438 complete_symbol_mode mode,
5439 symbol_name_match_type name_match_type,
5440 const char *text, const char *word,
5441 const char *srcfile)
5442 {
5443 /* The symbol we are completing on. Points in same buffer as text. */
5444 const char *sym_text;
5445
5446 /* Now look for the symbol we are supposed to complete on.
5447 FIXME: This should be language-specific. */
5448 if (mode == complete_symbol_mode::LINESPEC)
5449 sym_text = text;
5450 else
5451 {
5452 const char *p;
5453 char quote_found;
5454 const char *quote_pos = NULL;
5455
5456 /* First see if this is a quoted string. */
5457 quote_found = '\0';
5458 for (p = text; *p != '\0'; ++p)
5459 {
5460 if (quote_found != '\0')
5461 {
5462 if (*p == quote_found)
5463 /* Found close quote. */
5464 quote_found = '\0';
5465 else if (*p == '\\' && p[1] == quote_found)
5466 /* A backslash followed by the quote character
5467 doesn't end the string. */
5468 ++p;
5469 }
5470 else if (*p == '\'' || *p == '"')
5471 {
5472 quote_found = *p;
5473 quote_pos = p;
5474 }
5475 }
5476 if (quote_found == '\'')
5477 /* A string within single quotes can be a symbol, so complete on it. */
5478 sym_text = quote_pos + 1;
5479 else if (quote_found == '"')
5480 /* A double-quoted string is never a symbol, nor does it make sense
5481 to complete it any other way. */
5482 {
5483 return;
5484 }
5485 else
5486 {
5487 /* Not a quoted string. */
5488 sym_text = language_search_unquoted_string (text, p);
5489 }
5490 }
5491
5492 lookup_name_info lookup_name (sym_text, name_match_type, true);
5493
5494 /* Go through symtabs for SRCFILE and check the externs and statics
5495 for symbols which match. */
5496 iterate_over_symtabs (srcfile, [&] (symtab *s)
5497 {
5498 add_symtab_completions (SYMTAB_COMPUNIT (s),
5499 tracker, mode, lookup_name,
5500 sym_text, word, TYPE_CODE_UNDEF);
5501 return false;
5502 });
5503 }
5504
5505 /* A helper function for make_source_files_completion_list. It adds
5506 another file name to a list of possible completions, growing the
5507 list as necessary. */
5508
5509 static void
5510 add_filename_to_list (const char *fname, const char *text, const char *word,
5511 completion_list *list)
5512 {
5513 list->emplace_back (make_completion_match_str (fname, text, word));
5514 }
5515
5516 static int
5517 not_interesting_fname (const char *fname)
5518 {
5519 static const char *illegal_aliens[] = {
5520 "_globals_", /* inserted by coff_symtab_read */
5521 NULL
5522 };
5523 int i;
5524
5525 for (i = 0; illegal_aliens[i]; i++)
5526 {
5527 if (filename_cmp (fname, illegal_aliens[i]) == 0)
5528 return 1;
5529 }
5530 return 0;
5531 }
5532
5533 /* An object of this type is passed as the user_data argument to
5534 map_partial_symbol_filenames. */
5535 struct add_partial_filename_data
5536 {
5537 struct filename_seen_cache *filename_seen_cache;
5538 const char *text;
5539 const char *word;
5540 int text_len;
5541 completion_list *list;
5542 };
5543
5544 /* A callback for map_partial_symbol_filenames. */
5545
5546 static void
5547 maybe_add_partial_symtab_filename (const char *filename, const char *fullname,
5548 void *user_data)
5549 {
5550 struct add_partial_filename_data *data
5551 = (struct add_partial_filename_data *) user_data;
5552
5553 if (not_interesting_fname (filename))
5554 return;
5555 if (!data->filename_seen_cache->seen (filename)
5556 && filename_ncmp (filename, data->text, data->text_len) == 0)
5557 {
5558 /* This file matches for a completion; add it to the
5559 current list of matches. */
5560 add_filename_to_list (filename, data->text, data->word, data->list);
5561 }
5562 else
5563 {
5564 const char *base_name = lbasename (filename);
5565
5566 if (base_name != filename
5567 && !data->filename_seen_cache->seen (base_name)
5568 && filename_ncmp (base_name, data->text, data->text_len) == 0)
5569 add_filename_to_list (base_name, data->text, data->word, data->list);
5570 }
5571 }
5572
5573 /* Return a list of all source files whose names begin with matching
5574 TEXT. The file names are looked up in the symbol tables of this
5575 program. */
5576
5577 completion_list
5578 make_source_files_completion_list (const char *text, const char *word)
5579 {
5580 struct compunit_symtab *cu;
5581 struct symtab *s;
5582 struct objfile *objfile;
5583 size_t text_len = strlen (text);
5584 completion_list list;
5585 const char *base_name;
5586 struct add_partial_filename_data datum;
5587
5588 if (!have_full_symbols () && !have_partial_symbols ())
5589 return list;
5590
5591 filename_seen_cache filenames_seen;
5592
5593 ALL_FILETABS (objfile, cu, s)
5594 {
5595 if (not_interesting_fname (s->filename))
5596 continue;
5597 if (!filenames_seen.seen (s->filename)
5598 && filename_ncmp (s->filename, text, text_len) == 0)
5599 {
5600 /* This file matches for a completion; add it to the current
5601 list of matches. */
5602 add_filename_to_list (s->filename, text, word, &list);
5603 }
5604 else
5605 {
5606 /* NOTE: We allow the user to type a base name when the
5607 debug info records leading directories, but not the other
5608 way around. This is what subroutines of breakpoint
5609 command do when they parse file names. */
5610 base_name = lbasename (s->filename);
5611 if (base_name != s->filename
5612 && !filenames_seen.seen (base_name)
5613 && filename_ncmp (base_name, text, text_len) == 0)
5614 add_filename_to_list (base_name, text, word, &list);
5615 }
5616 }
5617
5618 datum.filename_seen_cache = &filenames_seen;
5619 datum.text = text;
5620 datum.word = word;
5621 datum.text_len = text_len;
5622 datum.list = &list;
5623 map_symbol_filenames (maybe_add_partial_symtab_filename, &datum,
5624 0 /*need_fullname*/);
5625
5626 return list;
5627 }
5628 \f
5629 /* Track MAIN */
5630
5631 /* Return the "main_info" object for the current program space. If
5632 the object has not yet been created, create it and fill in some
5633 default values. */
5634
5635 static struct main_info *
5636 get_main_info (void)
5637 {
5638 struct main_info *info
5639 = (struct main_info *) program_space_data (current_program_space,
5640 main_progspace_key);
5641
5642 if (info == NULL)
5643 {
5644 /* It may seem strange to store the main name in the progspace
5645 and also in whatever objfile happens to see a main name in
5646 its debug info. The reason for this is mainly historical:
5647 gdb returned "main" as the name even if no function named
5648 "main" was defined the program; and this approach lets us
5649 keep compatibility. */
5650 info = XCNEW (struct main_info);
5651 info->language_of_main = language_unknown;
5652 set_program_space_data (current_program_space, main_progspace_key,
5653 info);
5654 }
5655
5656 return info;
5657 }
5658
5659 /* A cleanup to destroy a struct main_info when a progspace is
5660 destroyed. */
5661
5662 static void
5663 main_info_cleanup (struct program_space *pspace, void *data)
5664 {
5665 struct main_info *info = (struct main_info *) data;
5666
5667 if (info != NULL)
5668 xfree (info->name_of_main);
5669 xfree (info);
5670 }
5671
5672 static void
5673 set_main_name (const char *name, enum language lang)
5674 {
5675 struct main_info *info = get_main_info ();
5676
5677 if (info->name_of_main != NULL)
5678 {
5679 xfree (info->name_of_main);
5680 info->name_of_main = NULL;
5681 info->language_of_main = language_unknown;
5682 }
5683 if (name != NULL)
5684 {
5685 info->name_of_main = xstrdup (name);
5686 info->language_of_main = lang;
5687 }
5688 }
5689
5690 /* Deduce the name of the main procedure, and set NAME_OF_MAIN
5691 accordingly. */
5692
5693 static void
5694 find_main_name (void)
5695 {
5696 const char *new_main_name;
5697 struct objfile *objfile;
5698
5699 /* First check the objfiles to see whether a debuginfo reader has
5700 picked up the appropriate main name. Historically the main name
5701 was found in a more or less random way; this approach instead
5702 relies on the order of objfile creation -- which still isn't
5703 guaranteed to get the correct answer, but is just probably more
5704 accurate. */
5705 ALL_OBJFILES (objfile)
5706 {
5707 if (objfile->per_bfd->name_of_main != NULL)
5708 {
5709 set_main_name (objfile->per_bfd->name_of_main,
5710 objfile->per_bfd->language_of_main);
5711 return;
5712 }
5713 }
5714
5715 /* Try to see if the main procedure is in Ada. */
5716 /* FIXME: brobecker/2005-03-07: Another way of doing this would
5717 be to add a new method in the language vector, and call this
5718 method for each language until one of them returns a non-empty
5719 name. This would allow us to remove this hard-coded call to
5720 an Ada function. It is not clear that this is a better approach
5721 at this point, because all methods need to be written in a way
5722 such that false positives never be returned. For instance, it is
5723 important that a method does not return a wrong name for the main
5724 procedure if the main procedure is actually written in a different
5725 language. It is easy to guaranty this with Ada, since we use a
5726 special symbol generated only when the main in Ada to find the name
5727 of the main procedure. It is difficult however to see how this can
5728 be guarantied for languages such as C, for instance. This suggests
5729 that order of call for these methods becomes important, which means
5730 a more complicated approach. */
5731 new_main_name = ada_main_name ();
5732 if (new_main_name != NULL)
5733 {
5734 set_main_name (new_main_name, language_ada);
5735 return;
5736 }
5737
5738 new_main_name = d_main_name ();
5739 if (new_main_name != NULL)
5740 {
5741 set_main_name (new_main_name, language_d);
5742 return;
5743 }
5744
5745 new_main_name = go_main_name ();
5746 if (new_main_name != NULL)
5747 {
5748 set_main_name (new_main_name, language_go);
5749 return;
5750 }
5751
5752 new_main_name = pascal_main_name ();
5753 if (new_main_name != NULL)
5754 {
5755 set_main_name (new_main_name, language_pascal);
5756 return;
5757 }
5758
5759 /* The languages above didn't identify the name of the main procedure.
5760 Fallback to "main". */
5761 set_main_name ("main", language_unknown);
5762 }
5763
5764 char *
5765 main_name (void)
5766 {
5767 struct main_info *info = get_main_info ();
5768
5769 if (info->name_of_main == NULL)
5770 find_main_name ();
5771
5772 return info->name_of_main;
5773 }
5774
5775 /* Return the language of the main function. If it is not known,
5776 return language_unknown. */
5777
5778 enum language
5779 main_language (void)
5780 {
5781 struct main_info *info = get_main_info ();
5782
5783 if (info->name_of_main == NULL)
5784 find_main_name ();
5785
5786 return info->language_of_main;
5787 }
5788
5789 /* Handle ``executable_changed'' events for the symtab module. */
5790
5791 static void
5792 symtab_observer_executable_changed (void)
5793 {
5794 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
5795 set_main_name (NULL, language_unknown);
5796 }
5797
5798 /* Return 1 if the supplied producer string matches the ARM RealView
5799 compiler (armcc). */
5800
5801 int
5802 producer_is_realview (const char *producer)
5803 {
5804 static const char *const arm_idents[] = {
5805 "ARM C Compiler, ADS",
5806 "Thumb C Compiler, ADS",
5807 "ARM C++ Compiler, ADS",
5808 "Thumb C++ Compiler, ADS",
5809 "ARM/Thumb C/C++ Compiler, RVCT",
5810 "ARM C/C++ Compiler, RVCT"
5811 };
5812 int i;
5813
5814 if (producer == NULL)
5815 return 0;
5816
5817 for (i = 0; i < ARRAY_SIZE (arm_idents); i++)
5818 if (startswith (producer, arm_idents[i]))
5819 return 1;
5820
5821 return 0;
5822 }
5823
5824 \f
5825
5826 /* The next index to hand out in response to a registration request. */
5827
5828 static int next_aclass_value = LOC_FINAL_VALUE;
5829
5830 /* The maximum number of "aclass" registrations we support. This is
5831 constant for convenience. */
5832 #define MAX_SYMBOL_IMPLS (LOC_FINAL_VALUE + 10)
5833
5834 /* The objects representing the various "aclass" values. The elements
5835 from 0 up to LOC_FINAL_VALUE-1 represent themselves, and subsequent
5836 elements are those registered at gdb initialization time. */
5837
5838 static struct symbol_impl symbol_impl[MAX_SYMBOL_IMPLS];
5839
5840 /* The globally visible pointer. This is separate from 'symbol_impl'
5841 so that it can be const. */
5842
5843 const struct symbol_impl *symbol_impls = &symbol_impl[0];
5844
5845 /* Make sure we saved enough room in struct symbol. */
5846
5847 gdb_static_assert (MAX_SYMBOL_IMPLS <= (1 << SYMBOL_ACLASS_BITS));
5848
5849 /* Register a computed symbol type. ACLASS must be LOC_COMPUTED. OPS
5850 is the ops vector associated with this index. This returns the new
5851 index, which should be used as the aclass_index field for symbols
5852 of this type. */
5853
5854 int
5855 register_symbol_computed_impl (enum address_class aclass,
5856 const struct symbol_computed_ops *ops)
5857 {
5858 int result = next_aclass_value++;
5859
5860 gdb_assert (aclass == LOC_COMPUTED);
5861 gdb_assert (result < MAX_SYMBOL_IMPLS);
5862 symbol_impl[result].aclass = aclass;
5863 symbol_impl[result].ops_computed = ops;
5864
5865 /* Sanity check OPS. */
5866 gdb_assert (ops != NULL);
5867 gdb_assert (ops->tracepoint_var_ref != NULL);
5868 gdb_assert (ops->describe_location != NULL);
5869 gdb_assert (ops->get_symbol_read_needs != NULL);
5870 gdb_assert (ops->read_variable != NULL);
5871
5872 return result;
5873 }
5874
5875 /* Register a function with frame base type. ACLASS must be LOC_BLOCK.
5876 OPS is the ops vector associated with this index. This returns the
5877 new index, which should be used as the aclass_index field for symbols
5878 of this type. */
5879
5880 int
5881 register_symbol_block_impl (enum address_class aclass,
5882 const struct symbol_block_ops *ops)
5883 {
5884 int result = next_aclass_value++;
5885
5886 gdb_assert (aclass == LOC_BLOCK);
5887 gdb_assert (result < MAX_SYMBOL_IMPLS);
5888 symbol_impl[result].aclass = aclass;
5889 symbol_impl[result].ops_block = ops;
5890
5891 /* Sanity check OPS. */
5892 gdb_assert (ops != NULL);
5893 gdb_assert (ops->find_frame_base_location != NULL);
5894
5895 return result;
5896 }
5897
5898 /* Register a register symbol type. ACLASS must be LOC_REGISTER or
5899 LOC_REGPARM_ADDR. OPS is the register ops vector associated with
5900 this index. This returns the new index, which should be used as
5901 the aclass_index field for symbols of this type. */
5902
5903 int
5904 register_symbol_register_impl (enum address_class aclass,
5905 const struct symbol_register_ops *ops)
5906 {
5907 int result = next_aclass_value++;
5908
5909 gdb_assert (aclass == LOC_REGISTER || aclass == LOC_REGPARM_ADDR);
5910 gdb_assert (result < MAX_SYMBOL_IMPLS);
5911 symbol_impl[result].aclass = aclass;
5912 symbol_impl[result].ops_register = ops;
5913
5914 return result;
5915 }
5916
5917 /* Initialize elements of 'symbol_impl' for the constants in enum
5918 address_class. */
5919
5920 static void
5921 initialize_ordinary_address_classes (void)
5922 {
5923 int i;
5924
5925 for (i = 0; i < LOC_FINAL_VALUE; ++i)
5926 symbol_impl[i].aclass = (enum address_class) i;
5927 }
5928
5929 \f
5930
5931 /* Helper function to initialize the fields of an objfile-owned symbol.
5932 It assumed that *SYM is already all zeroes. */
5933
5934 static void
5935 initialize_objfile_symbol_1 (struct symbol *sym)
5936 {
5937 SYMBOL_OBJFILE_OWNED (sym) = 1;
5938 SYMBOL_SECTION (sym) = -1;
5939 }
5940
5941 /* Initialize the symbol SYM, and mark it as being owned by an objfile. */
5942
5943 void
5944 initialize_objfile_symbol (struct symbol *sym)
5945 {
5946 memset (sym, 0, sizeof (*sym));
5947 initialize_objfile_symbol_1 (sym);
5948 }
5949
5950 /* Allocate and initialize a new 'struct symbol' on OBJFILE's
5951 obstack. */
5952
5953 struct symbol *
5954 allocate_symbol (struct objfile *objfile)
5955 {
5956 struct symbol *result;
5957
5958 result = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symbol);
5959 initialize_objfile_symbol_1 (result);
5960
5961 return result;
5962 }
5963
5964 /* Allocate and initialize a new 'struct template_symbol' on OBJFILE's
5965 obstack. */
5966
5967 struct template_symbol *
5968 allocate_template_symbol (struct objfile *objfile)
5969 {
5970 struct template_symbol *result;
5971
5972 result = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct template_symbol);
5973 initialize_objfile_symbol_1 (result);
5974
5975 return result;
5976 }
5977
5978 /* See symtab.h. */
5979
5980 struct objfile *
5981 symbol_objfile (const struct symbol *symbol)
5982 {
5983 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
5984 return SYMTAB_OBJFILE (symbol->owner.symtab);
5985 }
5986
5987 /* See symtab.h. */
5988
5989 struct gdbarch *
5990 symbol_arch (const struct symbol *symbol)
5991 {
5992 if (!SYMBOL_OBJFILE_OWNED (symbol))
5993 return symbol->owner.arch;
5994 return get_objfile_arch (SYMTAB_OBJFILE (symbol->owner.symtab));
5995 }
5996
5997 /* See symtab.h. */
5998
5999 struct symtab *
6000 symbol_symtab (const struct symbol *symbol)
6001 {
6002 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
6003 return symbol->owner.symtab;
6004 }
6005
6006 /* See symtab.h. */
6007
6008 void
6009 symbol_set_symtab (struct symbol *symbol, struct symtab *symtab)
6010 {
6011 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
6012 symbol->owner.symtab = symtab;
6013 }
6014
6015 \f
6016
6017 void
6018 _initialize_symtab (void)
6019 {
6020 initialize_ordinary_address_classes ();
6021
6022 main_progspace_key
6023 = register_program_space_data_with_cleanup (NULL, main_info_cleanup);
6024
6025 symbol_cache_key
6026 = register_program_space_data_with_cleanup (NULL, symbol_cache_cleanup);
6027
6028 add_info ("variables", info_variables_command,
6029 info_print_args_help (_("\
6030 All global and static variable names or those matching REGEXPs.\n\
6031 Usage: info variables [-q] [-t TYPEREGEXP] [NAMEREGEXP]\n\
6032 Prints the global and static variables.\n"),
6033 _("global and static variables")));
6034 if (dbx_commands)
6035 add_com ("whereis", class_info, info_variables_command,
6036 info_print_args_help (_("\
6037 All global and static variable names, or those matching REGEXPs.\n\
6038 Usage: whereis [-q] [-t TYPEREGEXP] [NAMEREGEXP]\n\
6039 Prints the global and static variables.\n"),
6040 _("global and static variables")));
6041
6042 add_info ("functions", info_functions_command,
6043 info_print_args_help (_("\
6044 All function names or those matching REGEXPs.\n\
6045 Usage: info functions [-q] [-t TYPEREGEXP] [NAMEREGEXP]\n\
6046 Prints the functions.\n"),
6047 _("functions")));
6048
6049 /* FIXME: This command has at least the following problems:
6050 1. It prints builtin types (in a very strange and confusing fashion).
6051 2. It doesn't print right, e.g. with
6052 typedef struct foo *FOO
6053 type_print prints "FOO" when we want to make it (in this situation)
6054 print "struct foo *".
6055 I also think "ptype" or "whatis" is more likely to be useful (but if
6056 there is much disagreement "info types" can be fixed). */
6057 add_info ("types", info_types_command,
6058 _("All type names, or those matching REGEXP."));
6059
6060 add_info ("sources", info_sources_command,
6061 _("Source files in the program."));
6062
6063 add_com ("rbreak", class_breakpoint, rbreak_command,
6064 _("Set a breakpoint for all functions matching REGEXP."));
6065
6066 add_setshow_enum_cmd ("multiple-symbols", no_class,
6067 multiple_symbols_modes, &multiple_symbols_mode,
6068 _("\
6069 Set the debugger behavior when more than one symbol are possible matches\n\
6070 in an expression."), _("\
6071 Show how the debugger handles ambiguities in expressions."), _("\
6072 Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
6073 NULL, NULL, &setlist, &showlist);
6074
6075 add_setshow_boolean_cmd ("basenames-may-differ", class_obscure,
6076 &basenames_may_differ, _("\
6077 Set whether a source file may have multiple base names."), _("\
6078 Show whether a source file may have multiple base names."), _("\
6079 (A \"base name\" is the name of a file with the directory part removed.\n\
6080 Example: The base name of \"/home/user/hello.c\" is \"hello.c\".)\n\
6081 If set, GDB will canonicalize file names (e.g., expand symlinks)\n\
6082 before comparing them. Canonicalization is an expensive operation,\n\
6083 but it allows the same file be known by more than one base name.\n\
6084 If not set (the default), all source files are assumed to have just\n\
6085 one base name, and gdb will do file name comparisons more efficiently."),
6086 NULL, NULL,
6087 &setlist, &showlist);
6088
6089 add_setshow_zuinteger_cmd ("symtab-create", no_class, &symtab_create_debug,
6090 _("Set debugging of symbol table creation."),
6091 _("Show debugging of symbol table creation."), _("\
6092 When enabled (non-zero), debugging messages are printed when building\n\
6093 symbol tables. A value of 1 (one) normally provides enough information.\n\
6094 A value greater than 1 provides more verbose information."),
6095 NULL,
6096 NULL,
6097 &setdebuglist, &showdebuglist);
6098
6099 add_setshow_zuinteger_cmd ("symbol-lookup", no_class, &symbol_lookup_debug,
6100 _("\
6101 Set debugging of symbol lookup."), _("\
6102 Show debugging of symbol lookup."), _("\
6103 When enabled (non-zero), symbol lookups are logged."),
6104 NULL, NULL,
6105 &setdebuglist, &showdebuglist);
6106
6107 add_setshow_zuinteger_cmd ("symbol-cache-size", no_class,
6108 &new_symbol_cache_size,
6109 _("Set the size of the symbol cache."),
6110 _("Show the size of the symbol cache."), _("\
6111 The size of the symbol cache.\n\
6112 If zero then the symbol cache is disabled."),
6113 set_symbol_cache_size_handler, NULL,
6114 &maintenance_set_cmdlist,
6115 &maintenance_show_cmdlist);
6116
6117 add_cmd ("symbol-cache", class_maintenance, maintenance_print_symbol_cache,
6118 _("Dump the symbol cache for each program space."),
6119 &maintenanceprintlist);
6120
6121 add_cmd ("symbol-cache-statistics", class_maintenance,
6122 maintenance_print_symbol_cache_statistics,
6123 _("Print symbol cache statistics for each program space."),
6124 &maintenanceprintlist);
6125
6126 add_cmd ("flush-symbol-cache", class_maintenance,
6127 maintenance_flush_symbol_cache,
6128 _("Flush the symbol cache for each program space."),
6129 &maintenancelist);
6130
6131 gdb::observers::executable_changed.attach (symtab_observer_executable_changed);
6132 gdb::observers::new_objfile.attach (symtab_new_objfile_observer);
6133 gdb::observers::free_objfile.attach (symtab_free_objfile_observer);
6134 }
This page took 0.177076 seconds and 4 git commands to generate.