* ada-lang.c (ada_make_symbol_completion_list): Add 'code'
[deliverable/binutils-gdb.git] / gdb / symtab.c
1 /* Symbol table lookup for the GNU debugger, GDB.
2
3 Copyright (C) 1986-2004, 2007-2012 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "gdbcore.h"
24 #include "frame.h"
25 #include "target.h"
26 #include "value.h"
27 #include "symfile.h"
28 #include "objfiles.h"
29 #include "gdbcmd.h"
30 #include "call-cmds.h"
31 #include "gdb_regex.h"
32 #include "expression.h"
33 #include "language.h"
34 #include "demangle.h"
35 #include "inferior.h"
36 #include "source.h"
37 #include "filenames.h" /* for FILENAME_CMP */
38 #include "objc-lang.h"
39 #include "d-lang.h"
40 #include "ada-lang.h"
41 #include "go-lang.h"
42 #include "p-lang.h"
43 #include "addrmap.h"
44
45 #include "hashtab.h"
46
47 #include "gdb_obstack.h"
48 #include "block.h"
49 #include "dictionary.h"
50
51 #include <sys/types.h>
52 #include <fcntl.h>
53 #include "gdb_string.h"
54 #include "gdb_stat.h"
55 #include <ctype.h>
56 #include "cp-abi.h"
57 #include "cp-support.h"
58 #include "observer.h"
59 #include "gdb_assert.h"
60 #include "solist.h"
61 #include "macrotab.h"
62 #include "macroscope.h"
63
64 #include "psymtab.h"
65 #include "parser-defs.h"
66
67 /* Prototypes for local functions */
68
69 static void rbreak_command (char *, int);
70
71 static void types_info (char *, int);
72
73 static void functions_info (char *, int);
74
75 static void variables_info (char *, int);
76
77 static void sources_info (char *, int);
78
79 static int find_line_common (struct linetable *, int, int *, int);
80
81 static struct symbol *lookup_symbol_aux (const char *name,
82 const struct block *block,
83 const domain_enum domain,
84 enum language language,
85 int *is_a_field_of_this);
86
87 static
88 struct symbol *lookup_symbol_aux_local (const char *name,
89 const struct block *block,
90 const domain_enum domain,
91 enum language language);
92
93 static
94 struct symbol *lookup_symbol_aux_symtabs (int block_index,
95 const char *name,
96 const domain_enum domain);
97
98 static
99 struct symbol *lookup_symbol_aux_quick (struct objfile *objfile,
100 int block_index,
101 const char *name,
102 const domain_enum domain);
103
104 static void print_msymbol_info (struct minimal_symbol *);
105
106 void _initialize_symtab (void);
107
108 /* */
109
110 /* When non-zero, print debugging messages related to symtab creation. */
111 int symtab_create_debug = 0;
112
113 /* Non-zero if a file may be known by two different basenames.
114 This is the uncommon case, and significantly slows down gdb.
115 Default set to "off" to not slow down the common case. */
116 int basenames_may_differ = 0;
117
118 /* Allow the user to configure the debugger behavior with respect
119 to multiple-choice menus when more than one symbol matches during
120 a symbol lookup. */
121
122 const char multiple_symbols_ask[] = "ask";
123 const char multiple_symbols_all[] = "all";
124 const char multiple_symbols_cancel[] = "cancel";
125 static const char *const multiple_symbols_modes[] =
126 {
127 multiple_symbols_ask,
128 multiple_symbols_all,
129 multiple_symbols_cancel,
130 NULL
131 };
132 static const char *multiple_symbols_mode = multiple_symbols_all;
133
134 /* Read-only accessor to AUTO_SELECT_MODE. */
135
136 const char *
137 multiple_symbols_select_mode (void)
138 {
139 return multiple_symbols_mode;
140 }
141
142 /* Block in which the most recently searched-for symbol was found.
143 Might be better to make this a parameter to lookup_symbol and
144 value_of_this. */
145
146 const struct block *block_found;
147
148 /* See whether FILENAME matches SEARCH_NAME using the rule that we
149 advertise to the user. (The manual's description of linespecs
150 describes what we advertise). SEARCH_LEN is the length of
151 SEARCH_NAME. We assume that SEARCH_NAME is a relative path.
152 Returns true if they match, false otherwise. */
153
154 int
155 compare_filenames_for_search (const char *filename, const char *search_name,
156 int search_len)
157 {
158 int len = strlen (filename);
159
160 if (len < search_len)
161 return 0;
162
163 /* The tail of FILENAME must match. */
164 if (FILENAME_CMP (filename + len - search_len, search_name) != 0)
165 return 0;
166
167 /* Either the names must completely match, or the character
168 preceding the trailing SEARCH_NAME segment of FILENAME must be a
169 directory separator. */
170 return (len == search_len
171 || IS_DIR_SEPARATOR (filename[len - search_len - 1])
172 || (HAS_DRIVE_SPEC (filename)
173 && STRIP_DRIVE_SPEC (filename) == &filename[len - search_len]));
174 }
175
176 /* Check for a symtab of a specific name by searching some symtabs.
177 This is a helper function for callbacks of iterate_over_symtabs.
178
179 The return value, NAME, FULL_PATH, REAL_PATH, CALLBACK, and DATA
180 are identical to the `map_symtabs_matching_filename' method of
181 quick_symbol_functions.
182
183 FIRST and AFTER_LAST indicate the range of symtabs to search.
184 AFTER_LAST is one past the last symtab to search; NULL means to
185 search until the end of the list. */
186
187 int
188 iterate_over_some_symtabs (const char *name,
189 const char *full_path,
190 const char *real_path,
191 int (*callback) (struct symtab *symtab,
192 void *data),
193 void *data,
194 struct symtab *first,
195 struct symtab *after_last)
196 {
197 struct symtab *s = NULL;
198 const char* base_name = lbasename (name);
199 int name_len = strlen (name);
200 int is_abs = IS_ABSOLUTE_PATH (name);
201
202 for (s = first; s != NULL && s != after_last; s = s->next)
203 {
204 /* Exact match is always ok. */
205 if (FILENAME_CMP (name, s->filename) == 0)
206 {
207 if (callback (s, data))
208 return 1;
209 }
210
211 if (!is_abs && compare_filenames_for_search (s->filename, name, name_len))
212 {
213 if (callback (s, data))
214 return 1;
215 }
216
217 /* Before we invoke realpath, which can get expensive when many
218 files are involved, do a quick comparison of the basenames. */
219 if (! basenames_may_differ
220 && FILENAME_CMP (base_name, lbasename (s->filename)) != 0)
221 continue;
222
223 /* If the user gave us an absolute path, try to find the file in
224 this symtab and use its absolute path. */
225
226 if (full_path != NULL)
227 {
228 const char *fp = symtab_to_fullname (s);
229
230 if (fp != NULL && FILENAME_CMP (full_path, fp) == 0)
231 {
232 if (callback (s, data))
233 return 1;
234 }
235
236 if (fp != NULL && !is_abs && compare_filenames_for_search (fp, name,
237 name_len))
238 {
239 if (callback (s, data))
240 return 1;
241 }
242 }
243
244 if (real_path != NULL)
245 {
246 const char *fullname = symtab_to_fullname (s);
247
248 if (fullname != NULL)
249 {
250 char *rp = gdb_realpath (fullname);
251
252 make_cleanup (xfree, rp);
253 if (FILENAME_CMP (real_path, rp) == 0)
254 {
255 if (callback (s, data))
256 return 1;
257 }
258
259 if (!is_abs && compare_filenames_for_search (rp, name, name_len))
260 {
261 if (callback (s, data))
262 return 1;
263 }
264 }
265 }
266 }
267
268 return 0;
269 }
270
271 /* Check for a symtab of a specific name; first in symtabs, then in
272 psymtabs. *If* there is no '/' in the name, a match after a '/'
273 in the symtab filename will also work.
274
275 Calls CALLBACK with each symtab that is found and with the supplied
276 DATA. If CALLBACK returns true, the search stops. */
277
278 void
279 iterate_over_symtabs (const char *name,
280 int (*callback) (struct symtab *symtab,
281 void *data),
282 void *data)
283 {
284 struct symtab *s = NULL;
285 struct objfile *objfile;
286 char *real_path = NULL;
287 char *full_path = NULL;
288 struct cleanup *cleanups = make_cleanup (null_cleanup, NULL);
289
290 /* Here we are interested in canonicalizing an absolute path, not
291 absolutizing a relative path. */
292 if (IS_ABSOLUTE_PATH (name))
293 {
294 full_path = xfullpath (name);
295 make_cleanup (xfree, full_path);
296 real_path = gdb_realpath (name);
297 make_cleanup (xfree, real_path);
298 }
299
300 ALL_OBJFILES (objfile)
301 {
302 if (iterate_over_some_symtabs (name, full_path, real_path, callback, data,
303 objfile->symtabs, NULL))
304 {
305 do_cleanups (cleanups);
306 return;
307 }
308 }
309
310 /* Same search rules as above apply here, but now we look thru the
311 psymtabs. */
312
313 ALL_OBJFILES (objfile)
314 {
315 if (objfile->sf
316 && objfile->sf->qf->map_symtabs_matching_filename (objfile,
317 name,
318 full_path,
319 real_path,
320 callback,
321 data))
322 {
323 do_cleanups (cleanups);
324 return;
325 }
326 }
327
328 do_cleanups (cleanups);
329 }
330
331 /* The callback function used by lookup_symtab. */
332
333 static int
334 lookup_symtab_callback (struct symtab *symtab, void *data)
335 {
336 struct symtab **result_ptr = data;
337
338 *result_ptr = symtab;
339 return 1;
340 }
341
342 /* A wrapper for iterate_over_symtabs that returns the first matching
343 symtab, or NULL. */
344
345 struct symtab *
346 lookup_symtab (const char *name)
347 {
348 struct symtab *result = NULL;
349
350 iterate_over_symtabs (name, lookup_symtab_callback, &result);
351 return result;
352 }
353
354 \f
355 /* Mangle a GDB method stub type. This actually reassembles the pieces of the
356 full method name, which consist of the class name (from T), the unadorned
357 method name from METHOD_ID, and the signature for the specific overload,
358 specified by SIGNATURE_ID. Note that this function is g++ specific. */
359
360 char *
361 gdb_mangle_name (struct type *type, int method_id, int signature_id)
362 {
363 int mangled_name_len;
364 char *mangled_name;
365 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
366 struct fn_field *method = &f[signature_id];
367 const char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
368 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
369 const char *newname = type_name_no_tag (type);
370
371 /* Does the form of physname indicate that it is the full mangled name
372 of a constructor (not just the args)? */
373 int is_full_physname_constructor;
374
375 int is_constructor;
376 int is_destructor = is_destructor_name (physname);
377 /* Need a new type prefix. */
378 char *const_prefix = method->is_const ? "C" : "";
379 char *volatile_prefix = method->is_volatile ? "V" : "";
380 char buf[20];
381 int len = (newname == NULL ? 0 : strlen (newname));
382
383 /* Nothing to do if physname already contains a fully mangled v3 abi name
384 or an operator name. */
385 if ((physname[0] == '_' && physname[1] == 'Z')
386 || is_operator_name (field_name))
387 return xstrdup (physname);
388
389 is_full_physname_constructor = is_constructor_name (physname);
390
391 is_constructor = is_full_physname_constructor
392 || (newname && strcmp (field_name, newname) == 0);
393
394 if (!is_destructor)
395 is_destructor = (strncmp (physname, "__dt", 4) == 0);
396
397 if (is_destructor || is_full_physname_constructor)
398 {
399 mangled_name = (char *) xmalloc (strlen (physname) + 1);
400 strcpy (mangled_name, physname);
401 return mangled_name;
402 }
403
404 if (len == 0)
405 {
406 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
407 }
408 else if (physname[0] == 't' || physname[0] == 'Q')
409 {
410 /* The physname for template and qualified methods already includes
411 the class name. */
412 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
413 newname = NULL;
414 len = 0;
415 }
416 else
417 {
418 xsnprintf (buf, sizeof (buf), "__%s%s%d", const_prefix,
419 volatile_prefix, len);
420 }
421 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
422 + strlen (buf) + len + strlen (physname) + 1);
423
424 mangled_name = (char *) xmalloc (mangled_name_len);
425 if (is_constructor)
426 mangled_name[0] = '\0';
427 else
428 strcpy (mangled_name, field_name);
429
430 strcat (mangled_name, buf);
431 /* If the class doesn't have a name, i.e. newname NULL, then we just
432 mangle it using 0 for the length of the class. Thus it gets mangled
433 as something starting with `::' rather than `classname::'. */
434 if (newname != NULL)
435 strcat (mangled_name, newname);
436
437 strcat (mangled_name, physname);
438 return (mangled_name);
439 }
440
441 /* Initialize the cplus_specific structure. 'cplus_specific' should
442 only be allocated for use with cplus symbols. */
443
444 static void
445 symbol_init_cplus_specific (struct general_symbol_info *gsymbol,
446 struct objfile *objfile)
447 {
448 /* A language_specific structure should not have been previously
449 initialized. */
450 gdb_assert (gsymbol->language_specific.cplus_specific == NULL);
451 gdb_assert (objfile != NULL);
452
453 gsymbol->language_specific.cplus_specific =
454 OBSTACK_ZALLOC (&objfile->objfile_obstack, struct cplus_specific);
455 }
456
457 /* Set the demangled name of GSYMBOL to NAME. NAME must be already
458 correctly allocated. For C++ symbols a cplus_specific struct is
459 allocated so OBJFILE must not be NULL. If this is a non C++ symbol
460 OBJFILE can be NULL. */
461
462 void
463 symbol_set_demangled_name (struct general_symbol_info *gsymbol,
464 char *name,
465 struct objfile *objfile)
466 {
467 if (gsymbol->language == language_cplus)
468 {
469 if (gsymbol->language_specific.cplus_specific == NULL)
470 symbol_init_cplus_specific (gsymbol, objfile);
471
472 gsymbol->language_specific.cplus_specific->demangled_name = name;
473 }
474 else
475 gsymbol->language_specific.mangled_lang.demangled_name = name;
476 }
477
478 /* Return the demangled name of GSYMBOL. */
479
480 const char *
481 symbol_get_demangled_name (const struct general_symbol_info *gsymbol)
482 {
483 if (gsymbol->language == language_cplus)
484 {
485 if (gsymbol->language_specific.cplus_specific != NULL)
486 return gsymbol->language_specific.cplus_specific->demangled_name;
487 else
488 return NULL;
489 }
490 else
491 return gsymbol->language_specific.mangled_lang.demangled_name;
492 }
493
494 \f
495 /* Initialize the language dependent portion of a symbol
496 depending upon the language for the symbol. */
497
498 void
499 symbol_set_language (struct general_symbol_info *gsymbol,
500 enum language language)
501 {
502 gsymbol->language = language;
503 if (gsymbol->language == language_d
504 || gsymbol->language == language_go
505 || gsymbol->language == language_java
506 || gsymbol->language == language_objc
507 || gsymbol->language == language_fortran)
508 {
509 symbol_set_demangled_name (gsymbol, NULL, NULL);
510 }
511 else if (gsymbol->language == language_cplus)
512 gsymbol->language_specific.cplus_specific = NULL;
513 else
514 {
515 memset (&gsymbol->language_specific, 0,
516 sizeof (gsymbol->language_specific));
517 }
518 }
519
520 /* Functions to initialize a symbol's mangled name. */
521
522 /* Objects of this type are stored in the demangled name hash table. */
523 struct demangled_name_entry
524 {
525 char *mangled;
526 char demangled[1];
527 };
528
529 /* Hash function for the demangled name hash. */
530
531 static hashval_t
532 hash_demangled_name_entry (const void *data)
533 {
534 const struct demangled_name_entry *e = data;
535
536 return htab_hash_string (e->mangled);
537 }
538
539 /* Equality function for the demangled name hash. */
540
541 static int
542 eq_demangled_name_entry (const void *a, const void *b)
543 {
544 const struct demangled_name_entry *da = a;
545 const struct demangled_name_entry *db = b;
546
547 return strcmp (da->mangled, db->mangled) == 0;
548 }
549
550 /* Create the hash table used for demangled names. Each hash entry is
551 a pair of strings; one for the mangled name and one for the demangled
552 name. The entry is hashed via just the mangled name. */
553
554 static void
555 create_demangled_names_hash (struct objfile *objfile)
556 {
557 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
558 The hash table code will round this up to the next prime number.
559 Choosing a much larger table size wastes memory, and saves only about
560 1% in symbol reading. */
561
562 objfile->demangled_names_hash = htab_create_alloc
563 (256, hash_demangled_name_entry, eq_demangled_name_entry,
564 NULL, xcalloc, xfree);
565 }
566
567 /* Try to determine the demangled name for a symbol, based on the
568 language of that symbol. If the language is set to language_auto,
569 it will attempt to find any demangling algorithm that works and
570 then set the language appropriately. The returned name is allocated
571 by the demangler and should be xfree'd. */
572
573 static char *
574 symbol_find_demangled_name (struct general_symbol_info *gsymbol,
575 const char *mangled)
576 {
577 char *demangled = NULL;
578
579 if (gsymbol->language == language_unknown)
580 gsymbol->language = language_auto;
581
582 if (gsymbol->language == language_objc
583 || gsymbol->language == language_auto)
584 {
585 demangled =
586 objc_demangle (mangled, 0);
587 if (demangled != NULL)
588 {
589 gsymbol->language = language_objc;
590 return demangled;
591 }
592 }
593 if (gsymbol->language == language_cplus
594 || gsymbol->language == language_auto)
595 {
596 demangled =
597 cplus_demangle (mangled, DMGL_PARAMS | DMGL_ANSI);
598 if (demangled != NULL)
599 {
600 gsymbol->language = language_cplus;
601 return demangled;
602 }
603 }
604 if (gsymbol->language == language_java)
605 {
606 demangled =
607 cplus_demangle (mangled,
608 DMGL_PARAMS | DMGL_ANSI | DMGL_JAVA);
609 if (demangled != NULL)
610 {
611 gsymbol->language = language_java;
612 return demangled;
613 }
614 }
615 if (gsymbol->language == language_d
616 || gsymbol->language == language_auto)
617 {
618 demangled = d_demangle(mangled, 0);
619 if (demangled != NULL)
620 {
621 gsymbol->language = language_d;
622 return demangled;
623 }
624 }
625 /* FIXME(dje): Continually adding languages here is clumsy.
626 Better to just call la_demangle if !auto, and if auto then call
627 a utility routine that tries successive languages in turn and reports
628 which one it finds. I realize the la_demangle options may be different
629 for different languages but there's already a FIXME for that. */
630 if (gsymbol->language == language_go
631 || gsymbol->language == language_auto)
632 {
633 demangled = go_demangle (mangled, 0);
634 if (demangled != NULL)
635 {
636 gsymbol->language = language_go;
637 return demangled;
638 }
639 }
640
641 /* We could support `gsymbol->language == language_fortran' here to provide
642 module namespaces also for inferiors with only minimal symbol table (ELF
643 symbols). Just the mangling standard is not standardized across compilers
644 and there is no DW_AT_producer available for inferiors with only the ELF
645 symbols to check the mangling kind. */
646 return NULL;
647 }
648
649 /* Set both the mangled and demangled (if any) names for GSYMBOL based
650 on LINKAGE_NAME and LEN. Ordinarily, NAME is copied onto the
651 objfile's obstack; but if COPY_NAME is 0 and if NAME is
652 NUL-terminated, then this function assumes that NAME is already
653 correctly saved (either permanently or with a lifetime tied to the
654 objfile), and it will not be copied.
655
656 The hash table corresponding to OBJFILE is used, and the memory
657 comes from that objfile's objfile_obstack. LINKAGE_NAME is copied,
658 so the pointer can be discarded after calling this function. */
659
660 /* We have to be careful when dealing with Java names: when we run
661 into a Java minimal symbol, we don't know it's a Java symbol, so it
662 gets demangled as a C++ name. This is unfortunate, but there's not
663 much we can do about it: but when demangling partial symbols and
664 regular symbols, we'd better not reuse the wrong demangled name.
665 (See PR gdb/1039.) We solve this by putting a distinctive prefix
666 on Java names when storing them in the hash table. */
667
668 /* FIXME: carlton/2003-03-13: This is an unfortunate situation. I
669 don't mind the Java prefix so much: different languages have
670 different demangling requirements, so it's only natural that we
671 need to keep language data around in our demangling cache. But
672 it's not good that the minimal symbol has the wrong demangled name.
673 Unfortunately, I can't think of any easy solution to that
674 problem. */
675
676 #define JAVA_PREFIX "##JAVA$$"
677 #define JAVA_PREFIX_LEN 8
678
679 void
680 symbol_set_names (struct general_symbol_info *gsymbol,
681 const char *linkage_name, int len, int copy_name,
682 struct objfile *objfile)
683 {
684 struct demangled_name_entry **slot;
685 /* A 0-terminated copy of the linkage name. */
686 const char *linkage_name_copy;
687 /* A copy of the linkage name that might have a special Java prefix
688 added to it, for use when looking names up in the hash table. */
689 const char *lookup_name;
690 /* The length of lookup_name. */
691 int lookup_len;
692 struct demangled_name_entry entry;
693
694 if (gsymbol->language == language_ada)
695 {
696 /* In Ada, we do the symbol lookups using the mangled name, so
697 we can save some space by not storing the demangled name.
698
699 As a side note, we have also observed some overlap between
700 the C++ mangling and Ada mangling, similarly to what has
701 been observed with Java. Because we don't store the demangled
702 name with the symbol, we don't need to use the same trick
703 as Java. */
704 if (!copy_name)
705 gsymbol->name = linkage_name;
706 else
707 {
708 char *name = obstack_alloc (&objfile->objfile_obstack, len + 1);
709
710 memcpy (name, linkage_name, len);
711 name[len] = '\0';
712 gsymbol->name = name;
713 }
714 symbol_set_demangled_name (gsymbol, NULL, NULL);
715
716 return;
717 }
718
719 if (objfile->demangled_names_hash == NULL)
720 create_demangled_names_hash (objfile);
721
722 /* The stabs reader generally provides names that are not
723 NUL-terminated; most of the other readers don't do this, so we
724 can just use the given copy, unless we're in the Java case. */
725 if (gsymbol->language == language_java)
726 {
727 char *alloc_name;
728
729 lookup_len = len + JAVA_PREFIX_LEN;
730 alloc_name = alloca (lookup_len + 1);
731 memcpy (alloc_name, JAVA_PREFIX, JAVA_PREFIX_LEN);
732 memcpy (alloc_name + JAVA_PREFIX_LEN, linkage_name, len);
733 alloc_name[lookup_len] = '\0';
734
735 lookup_name = alloc_name;
736 linkage_name_copy = alloc_name + JAVA_PREFIX_LEN;
737 }
738 else if (linkage_name[len] != '\0')
739 {
740 char *alloc_name;
741
742 lookup_len = len;
743 alloc_name = alloca (lookup_len + 1);
744 memcpy (alloc_name, linkage_name, len);
745 alloc_name[lookup_len] = '\0';
746
747 lookup_name = alloc_name;
748 linkage_name_copy = alloc_name;
749 }
750 else
751 {
752 lookup_len = len;
753 lookup_name = linkage_name;
754 linkage_name_copy = linkage_name;
755 }
756
757 entry.mangled = (char *) lookup_name;
758 slot = ((struct demangled_name_entry **)
759 htab_find_slot (objfile->demangled_names_hash,
760 &entry, INSERT));
761
762 /* If this name is not in the hash table, add it. */
763 if (*slot == NULL
764 /* A C version of the symbol may have already snuck into the table.
765 This happens to, e.g., main.init (__go_init_main). Cope. */
766 || (gsymbol->language == language_go
767 && (*slot)->demangled[0] == '\0'))
768 {
769 char *demangled_name = symbol_find_demangled_name (gsymbol,
770 linkage_name_copy);
771 int demangled_len = demangled_name ? strlen (demangled_name) : 0;
772
773 /* Suppose we have demangled_name==NULL, copy_name==0, and
774 lookup_name==linkage_name. In this case, we already have the
775 mangled name saved, and we don't have a demangled name. So,
776 you might think we could save a little space by not recording
777 this in the hash table at all.
778
779 It turns out that it is actually important to still save such
780 an entry in the hash table, because storing this name gives
781 us better bcache hit rates for partial symbols. */
782 if (!copy_name && lookup_name == linkage_name)
783 {
784 *slot = obstack_alloc (&objfile->objfile_obstack,
785 offsetof (struct demangled_name_entry,
786 demangled)
787 + demangled_len + 1);
788 (*slot)->mangled = (char *) lookup_name;
789 }
790 else
791 {
792 /* If we must copy the mangled name, put it directly after
793 the demangled name so we can have a single
794 allocation. */
795 *slot = obstack_alloc (&objfile->objfile_obstack,
796 offsetof (struct demangled_name_entry,
797 demangled)
798 + lookup_len + demangled_len + 2);
799 (*slot)->mangled = &((*slot)->demangled[demangled_len + 1]);
800 strcpy ((*slot)->mangled, lookup_name);
801 }
802
803 if (demangled_name != NULL)
804 {
805 strcpy ((*slot)->demangled, demangled_name);
806 xfree (demangled_name);
807 }
808 else
809 (*slot)->demangled[0] = '\0';
810 }
811
812 gsymbol->name = (*slot)->mangled + lookup_len - len;
813 if ((*slot)->demangled[0] != '\0')
814 symbol_set_demangled_name (gsymbol, (*slot)->demangled, objfile);
815 else
816 symbol_set_demangled_name (gsymbol, NULL, objfile);
817 }
818
819 /* Return the source code name of a symbol. In languages where
820 demangling is necessary, this is the demangled name. */
821
822 const char *
823 symbol_natural_name (const struct general_symbol_info *gsymbol)
824 {
825 switch (gsymbol->language)
826 {
827 case language_cplus:
828 case language_d:
829 case language_go:
830 case language_java:
831 case language_objc:
832 case language_fortran:
833 if (symbol_get_demangled_name (gsymbol) != NULL)
834 return symbol_get_demangled_name (gsymbol);
835 break;
836 case language_ada:
837 if (symbol_get_demangled_name (gsymbol) != NULL)
838 return symbol_get_demangled_name (gsymbol);
839 else
840 return ada_decode_symbol (gsymbol);
841 break;
842 default:
843 break;
844 }
845 return gsymbol->name;
846 }
847
848 /* Return the demangled name for a symbol based on the language for
849 that symbol. If no demangled name exists, return NULL. */
850
851 const char *
852 symbol_demangled_name (const struct general_symbol_info *gsymbol)
853 {
854 const char *dem_name = NULL;
855
856 switch (gsymbol->language)
857 {
858 case language_cplus:
859 case language_d:
860 case language_go:
861 case language_java:
862 case language_objc:
863 case language_fortran:
864 dem_name = symbol_get_demangled_name (gsymbol);
865 break;
866 case language_ada:
867 dem_name = symbol_get_demangled_name (gsymbol);
868 if (dem_name == NULL)
869 dem_name = ada_decode_symbol (gsymbol);
870 break;
871 default:
872 break;
873 }
874 return dem_name;
875 }
876
877 /* Return the search name of a symbol---generally the demangled or
878 linkage name of the symbol, depending on how it will be searched for.
879 If there is no distinct demangled name, then returns the same value
880 (same pointer) as SYMBOL_LINKAGE_NAME. */
881
882 const char *
883 symbol_search_name (const struct general_symbol_info *gsymbol)
884 {
885 if (gsymbol->language == language_ada)
886 return gsymbol->name;
887 else
888 return symbol_natural_name (gsymbol);
889 }
890
891 /* Initialize the structure fields to zero values. */
892
893 void
894 init_sal (struct symtab_and_line *sal)
895 {
896 sal->pspace = NULL;
897 sal->symtab = 0;
898 sal->section = 0;
899 sal->line = 0;
900 sal->pc = 0;
901 sal->end = 0;
902 sal->explicit_pc = 0;
903 sal->explicit_line = 0;
904 sal->probe = NULL;
905 }
906 \f
907
908 /* Return 1 if the two sections are the same, or if they could
909 plausibly be copies of each other, one in an original object
910 file and another in a separated debug file. */
911
912 int
913 matching_obj_sections (struct obj_section *obj_first,
914 struct obj_section *obj_second)
915 {
916 asection *first = obj_first? obj_first->the_bfd_section : NULL;
917 asection *second = obj_second? obj_second->the_bfd_section : NULL;
918 struct objfile *obj;
919
920 /* If they're the same section, then they match. */
921 if (first == second)
922 return 1;
923
924 /* If either is NULL, give up. */
925 if (first == NULL || second == NULL)
926 return 0;
927
928 /* This doesn't apply to absolute symbols. */
929 if (first->owner == NULL || second->owner == NULL)
930 return 0;
931
932 /* If they're in the same object file, they must be different sections. */
933 if (first->owner == second->owner)
934 return 0;
935
936 /* Check whether the two sections are potentially corresponding. They must
937 have the same size, address, and name. We can't compare section indexes,
938 which would be more reliable, because some sections may have been
939 stripped. */
940 if (bfd_get_section_size (first) != bfd_get_section_size (second))
941 return 0;
942
943 /* In-memory addresses may start at a different offset, relativize them. */
944 if (bfd_get_section_vma (first->owner, first)
945 - bfd_get_start_address (first->owner)
946 != bfd_get_section_vma (second->owner, second)
947 - bfd_get_start_address (second->owner))
948 return 0;
949
950 if (bfd_get_section_name (first->owner, first) == NULL
951 || bfd_get_section_name (second->owner, second) == NULL
952 || strcmp (bfd_get_section_name (first->owner, first),
953 bfd_get_section_name (second->owner, second)) != 0)
954 return 0;
955
956 /* Otherwise check that they are in corresponding objfiles. */
957
958 ALL_OBJFILES (obj)
959 if (obj->obfd == first->owner)
960 break;
961 gdb_assert (obj != NULL);
962
963 if (obj->separate_debug_objfile != NULL
964 && obj->separate_debug_objfile->obfd == second->owner)
965 return 1;
966 if (obj->separate_debug_objfile_backlink != NULL
967 && obj->separate_debug_objfile_backlink->obfd == second->owner)
968 return 1;
969
970 return 0;
971 }
972
973 struct symtab *
974 find_pc_sect_symtab_via_partial (CORE_ADDR pc, struct obj_section *section)
975 {
976 struct objfile *objfile;
977 struct minimal_symbol *msymbol;
978
979 /* If we know that this is not a text address, return failure. This is
980 necessary because we loop based on texthigh and textlow, which do
981 not include the data ranges. */
982 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
983 if (msymbol
984 && (MSYMBOL_TYPE (msymbol) == mst_data
985 || MSYMBOL_TYPE (msymbol) == mst_bss
986 || MSYMBOL_TYPE (msymbol) == mst_abs
987 || MSYMBOL_TYPE (msymbol) == mst_file_data
988 || MSYMBOL_TYPE (msymbol) == mst_file_bss))
989 return NULL;
990
991 ALL_OBJFILES (objfile)
992 {
993 struct symtab *result = NULL;
994
995 if (objfile->sf)
996 result = objfile->sf->qf->find_pc_sect_symtab (objfile, msymbol,
997 pc, section, 0);
998 if (result)
999 return result;
1000 }
1001
1002 return NULL;
1003 }
1004 \f
1005 /* Debug symbols usually don't have section information. We need to dig that
1006 out of the minimal symbols and stash that in the debug symbol. */
1007
1008 void
1009 fixup_section (struct general_symbol_info *ginfo,
1010 CORE_ADDR addr, struct objfile *objfile)
1011 {
1012 struct minimal_symbol *msym;
1013
1014 /* First, check whether a minimal symbol with the same name exists
1015 and points to the same address. The address check is required
1016 e.g. on PowerPC64, where the minimal symbol for a function will
1017 point to the function descriptor, while the debug symbol will
1018 point to the actual function code. */
1019 msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->name, objfile);
1020 if (msym)
1021 {
1022 ginfo->obj_section = SYMBOL_OBJ_SECTION (msym);
1023 ginfo->section = SYMBOL_SECTION (msym);
1024 }
1025 else
1026 {
1027 /* Static, function-local variables do appear in the linker
1028 (minimal) symbols, but are frequently given names that won't
1029 be found via lookup_minimal_symbol(). E.g., it has been
1030 observed in frv-uclinux (ELF) executables that a static,
1031 function-local variable named "foo" might appear in the
1032 linker symbols as "foo.6" or "foo.3". Thus, there is no
1033 point in attempting to extend the lookup-by-name mechanism to
1034 handle this case due to the fact that there can be multiple
1035 names.
1036
1037 So, instead, search the section table when lookup by name has
1038 failed. The ``addr'' and ``endaddr'' fields may have already
1039 been relocated. If so, the relocation offset (i.e. the
1040 ANOFFSET value) needs to be subtracted from these values when
1041 performing the comparison. We unconditionally subtract it,
1042 because, when no relocation has been performed, the ANOFFSET
1043 value will simply be zero.
1044
1045 The address of the symbol whose section we're fixing up HAS
1046 NOT BEEN adjusted (relocated) yet. It can't have been since
1047 the section isn't yet known and knowing the section is
1048 necessary in order to add the correct relocation value. In
1049 other words, we wouldn't even be in this function (attempting
1050 to compute the section) if it were already known.
1051
1052 Note that it is possible to search the minimal symbols
1053 (subtracting the relocation value if necessary) to find the
1054 matching minimal symbol, but this is overkill and much less
1055 efficient. It is not necessary to find the matching minimal
1056 symbol, only its section.
1057
1058 Note that this technique (of doing a section table search)
1059 can fail when unrelocated section addresses overlap. For
1060 this reason, we still attempt a lookup by name prior to doing
1061 a search of the section table. */
1062
1063 struct obj_section *s;
1064
1065 ALL_OBJFILE_OSECTIONS (objfile, s)
1066 {
1067 int idx = s->the_bfd_section->index;
1068 CORE_ADDR offset = ANOFFSET (objfile->section_offsets, idx);
1069
1070 if (obj_section_addr (s) - offset <= addr
1071 && addr < obj_section_endaddr (s) - offset)
1072 {
1073 ginfo->obj_section = s;
1074 ginfo->section = idx;
1075 return;
1076 }
1077 }
1078 }
1079 }
1080
1081 struct symbol *
1082 fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
1083 {
1084 CORE_ADDR addr;
1085
1086 if (!sym)
1087 return NULL;
1088
1089 if (SYMBOL_OBJ_SECTION (sym))
1090 return sym;
1091
1092 /* We either have an OBJFILE, or we can get at it from the sym's
1093 symtab. Anything else is a bug. */
1094 gdb_assert (objfile || SYMBOL_SYMTAB (sym));
1095
1096 if (objfile == NULL)
1097 objfile = SYMBOL_SYMTAB (sym)->objfile;
1098
1099 /* We should have an objfile by now. */
1100 gdb_assert (objfile);
1101
1102 switch (SYMBOL_CLASS (sym))
1103 {
1104 case LOC_STATIC:
1105 case LOC_LABEL:
1106 addr = SYMBOL_VALUE_ADDRESS (sym);
1107 break;
1108 case LOC_BLOCK:
1109 addr = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
1110 break;
1111
1112 default:
1113 /* Nothing else will be listed in the minsyms -- no use looking
1114 it up. */
1115 return sym;
1116 }
1117
1118 fixup_section (&sym->ginfo, addr, objfile);
1119
1120 return sym;
1121 }
1122
1123 /* Compute the demangled form of NAME as used by the various symbol
1124 lookup functions. The result is stored in *RESULT_NAME. Returns a
1125 cleanup which can be used to clean up the result.
1126
1127 For Ada, this function just sets *RESULT_NAME to NAME, unmodified.
1128 Normally, Ada symbol lookups are performed using the encoded name
1129 rather than the demangled name, and so it might seem to make sense
1130 for this function to return an encoded version of NAME.
1131 Unfortunately, we cannot do this, because this function is used in
1132 circumstances where it is not appropriate to try to encode NAME.
1133 For instance, when displaying the frame info, we demangle the name
1134 of each parameter, and then perform a symbol lookup inside our
1135 function using that demangled name. In Ada, certain functions
1136 have internally-generated parameters whose name contain uppercase
1137 characters. Encoding those name would result in those uppercase
1138 characters to become lowercase, and thus cause the symbol lookup
1139 to fail. */
1140
1141 struct cleanup *
1142 demangle_for_lookup (const char *name, enum language lang,
1143 const char **result_name)
1144 {
1145 char *demangled_name = NULL;
1146 const char *modified_name = NULL;
1147 struct cleanup *cleanup = make_cleanup (null_cleanup, 0);
1148
1149 modified_name = name;
1150
1151 /* If we are using C++, D, Go, or Java, demangle the name before doing a
1152 lookup, so we can always binary search. */
1153 if (lang == language_cplus)
1154 {
1155 demangled_name = cplus_demangle (name, DMGL_ANSI | DMGL_PARAMS);
1156 if (demangled_name)
1157 {
1158 modified_name = demangled_name;
1159 make_cleanup (xfree, demangled_name);
1160 }
1161 else
1162 {
1163 /* If we were given a non-mangled name, canonicalize it
1164 according to the language (so far only for C++). */
1165 demangled_name = cp_canonicalize_string (name);
1166 if (demangled_name)
1167 {
1168 modified_name = demangled_name;
1169 make_cleanup (xfree, demangled_name);
1170 }
1171 }
1172 }
1173 else if (lang == language_java)
1174 {
1175 demangled_name = cplus_demangle (name,
1176 DMGL_ANSI | DMGL_PARAMS | DMGL_JAVA);
1177 if (demangled_name)
1178 {
1179 modified_name = demangled_name;
1180 make_cleanup (xfree, demangled_name);
1181 }
1182 }
1183 else if (lang == language_d)
1184 {
1185 demangled_name = d_demangle (name, 0);
1186 if (demangled_name)
1187 {
1188 modified_name = demangled_name;
1189 make_cleanup (xfree, demangled_name);
1190 }
1191 }
1192 else if (lang == language_go)
1193 {
1194 demangled_name = go_demangle (name, 0);
1195 if (demangled_name)
1196 {
1197 modified_name = demangled_name;
1198 make_cleanup (xfree, demangled_name);
1199 }
1200 }
1201
1202 *result_name = modified_name;
1203 return cleanup;
1204 }
1205
1206 /* Find the definition for a specified symbol name NAME
1207 in domain DOMAIN, visible from lexical block BLOCK.
1208 Returns the struct symbol pointer, or zero if no symbol is found.
1209 C++: if IS_A_FIELD_OF_THIS is nonzero on entry, check to see if
1210 NAME is a field of the current implied argument `this'. If so set
1211 *IS_A_FIELD_OF_THIS to 1, otherwise set it to zero.
1212 BLOCK_FOUND is set to the block in which NAME is found (in the case of
1213 a field of `this', value_of_this sets BLOCK_FOUND to the proper value.) */
1214
1215 /* This function (or rather its subordinates) have a bunch of loops and
1216 it would seem to be attractive to put in some QUIT's (though I'm not really
1217 sure whether it can run long enough to be really important). But there
1218 are a few calls for which it would appear to be bad news to quit
1219 out of here: e.g., find_proc_desc in alpha-mdebug-tdep.c. (Note
1220 that there is C++ code below which can error(), but that probably
1221 doesn't affect these calls since they are looking for a known
1222 variable and thus can probably assume it will never hit the C++
1223 code). */
1224
1225 struct symbol *
1226 lookup_symbol_in_language (const char *name, const struct block *block,
1227 const domain_enum domain, enum language lang,
1228 int *is_a_field_of_this)
1229 {
1230 const char *modified_name;
1231 struct symbol *returnval;
1232 struct cleanup *cleanup = demangle_for_lookup (name, lang, &modified_name);
1233
1234 returnval = lookup_symbol_aux (modified_name, block, domain, lang,
1235 is_a_field_of_this);
1236 do_cleanups (cleanup);
1237
1238 return returnval;
1239 }
1240
1241 /* Behave like lookup_symbol_in_language, but performed with the
1242 current language. */
1243
1244 struct symbol *
1245 lookup_symbol (const char *name, const struct block *block,
1246 domain_enum domain, int *is_a_field_of_this)
1247 {
1248 return lookup_symbol_in_language (name, block, domain,
1249 current_language->la_language,
1250 is_a_field_of_this);
1251 }
1252
1253 /* Look up the `this' symbol for LANG in BLOCK. Return the symbol if
1254 found, or NULL if not found. */
1255
1256 struct symbol *
1257 lookup_language_this (const struct language_defn *lang,
1258 const struct block *block)
1259 {
1260 if (lang->la_name_of_this == NULL || block == NULL)
1261 return NULL;
1262
1263 while (block)
1264 {
1265 struct symbol *sym;
1266
1267 sym = lookup_block_symbol (block, lang->la_name_of_this, VAR_DOMAIN);
1268 if (sym != NULL)
1269 {
1270 block_found = block;
1271 return sym;
1272 }
1273 if (BLOCK_FUNCTION (block))
1274 break;
1275 block = BLOCK_SUPERBLOCK (block);
1276 }
1277
1278 return NULL;
1279 }
1280
1281 /* Behave like lookup_symbol except that NAME is the natural name
1282 (e.g., demangled name) of the symbol that we're looking for. */
1283
1284 static struct symbol *
1285 lookup_symbol_aux (const char *name, const struct block *block,
1286 const domain_enum domain, enum language language,
1287 int *is_a_field_of_this)
1288 {
1289 struct symbol *sym;
1290 const struct language_defn *langdef;
1291
1292 /* Make sure we do something sensible with is_a_field_of_this, since
1293 the callers that set this parameter to some non-null value will
1294 certainly use it later and expect it to be either 0 or 1.
1295 If we don't set it, the contents of is_a_field_of_this are
1296 undefined. */
1297 if (is_a_field_of_this != NULL)
1298 *is_a_field_of_this = 0;
1299
1300 /* Search specified block and its superiors. Don't search
1301 STATIC_BLOCK or GLOBAL_BLOCK. */
1302
1303 sym = lookup_symbol_aux_local (name, block, domain, language);
1304 if (sym != NULL)
1305 return sym;
1306
1307 /* If requested to do so by the caller and if appropriate for LANGUAGE,
1308 check to see if NAME is a field of `this'. */
1309
1310 langdef = language_def (language);
1311
1312 if (is_a_field_of_this != NULL)
1313 {
1314 struct symbol *sym = lookup_language_this (langdef, block);
1315
1316 if (sym)
1317 {
1318 struct type *t = sym->type;
1319
1320 /* I'm not really sure that type of this can ever
1321 be typedefed; just be safe. */
1322 CHECK_TYPEDEF (t);
1323 if (TYPE_CODE (t) == TYPE_CODE_PTR
1324 || TYPE_CODE (t) == TYPE_CODE_REF)
1325 t = TYPE_TARGET_TYPE (t);
1326
1327 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
1328 && TYPE_CODE (t) != TYPE_CODE_UNION)
1329 error (_("Internal error: `%s' is not an aggregate"),
1330 langdef->la_name_of_this);
1331
1332 if (check_field (t, name))
1333 {
1334 *is_a_field_of_this = 1;
1335 return NULL;
1336 }
1337 }
1338 }
1339
1340 /* Now do whatever is appropriate for LANGUAGE to look
1341 up static and global variables. */
1342
1343 sym = langdef->la_lookup_symbol_nonlocal (name, block, domain);
1344 if (sym != NULL)
1345 return sym;
1346
1347 /* Now search all static file-level symbols. Not strictly correct,
1348 but more useful than an error. */
1349
1350 return lookup_static_symbol_aux (name, domain);
1351 }
1352
1353 /* Search all static file-level symbols for NAME from DOMAIN. Do the symtabs
1354 first, then check the psymtabs. If a psymtab indicates the existence of the
1355 desired name as a file-level static, then do psymtab-to-symtab conversion on
1356 the fly and return the found symbol. */
1357
1358 struct symbol *
1359 lookup_static_symbol_aux (const char *name, const domain_enum domain)
1360 {
1361 struct objfile *objfile;
1362 struct symbol *sym;
1363
1364 sym = lookup_symbol_aux_symtabs (STATIC_BLOCK, name, domain);
1365 if (sym != NULL)
1366 return sym;
1367
1368 ALL_OBJFILES (objfile)
1369 {
1370 sym = lookup_symbol_aux_quick (objfile, STATIC_BLOCK, name, domain);
1371 if (sym != NULL)
1372 return sym;
1373 }
1374
1375 return NULL;
1376 }
1377
1378 /* Check to see if the symbol is defined in BLOCK or its superiors.
1379 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
1380
1381 static struct symbol *
1382 lookup_symbol_aux_local (const char *name, const struct block *block,
1383 const domain_enum domain,
1384 enum language language)
1385 {
1386 struct symbol *sym;
1387 const struct block *static_block = block_static_block (block);
1388 const char *scope = block_scope (block);
1389
1390 /* Check if either no block is specified or it's a global block. */
1391
1392 if (static_block == NULL)
1393 return NULL;
1394
1395 while (block != static_block)
1396 {
1397 sym = lookup_symbol_aux_block (name, block, domain);
1398 if (sym != NULL)
1399 return sym;
1400
1401 if (language == language_cplus || language == language_fortran)
1402 {
1403 sym = cp_lookup_symbol_imports_or_template (scope, name, block,
1404 domain);
1405 if (sym != NULL)
1406 return sym;
1407 }
1408
1409 if (BLOCK_FUNCTION (block) != NULL && block_inlined_p (block))
1410 break;
1411 block = BLOCK_SUPERBLOCK (block);
1412 }
1413
1414 /* We've reached the edge of the function without finding a result. */
1415
1416 return NULL;
1417 }
1418
1419 /* Look up OBJFILE to BLOCK. */
1420
1421 struct objfile *
1422 lookup_objfile_from_block (const struct block *block)
1423 {
1424 struct objfile *obj;
1425 struct symtab *s;
1426
1427 if (block == NULL)
1428 return NULL;
1429
1430 block = block_global_block (block);
1431 /* Go through SYMTABS. */
1432 ALL_SYMTABS (obj, s)
1433 if (block == BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK))
1434 {
1435 if (obj->separate_debug_objfile_backlink)
1436 obj = obj->separate_debug_objfile_backlink;
1437
1438 return obj;
1439 }
1440
1441 return NULL;
1442 }
1443
1444 /* Look up a symbol in a block; if found, fixup the symbol, and set
1445 block_found appropriately. */
1446
1447 struct symbol *
1448 lookup_symbol_aux_block (const char *name, const struct block *block,
1449 const domain_enum domain)
1450 {
1451 struct symbol *sym;
1452
1453 sym = lookup_block_symbol (block, name, domain);
1454 if (sym)
1455 {
1456 block_found = block;
1457 return fixup_symbol_section (sym, NULL);
1458 }
1459
1460 return NULL;
1461 }
1462
1463 /* Check all global symbols in OBJFILE in symtabs and
1464 psymtabs. */
1465
1466 struct symbol *
1467 lookup_global_symbol_from_objfile (const struct objfile *main_objfile,
1468 const char *name,
1469 const domain_enum domain)
1470 {
1471 const struct objfile *objfile;
1472 struct symbol *sym;
1473 struct blockvector *bv;
1474 const struct block *block;
1475 struct symtab *s;
1476
1477 for (objfile = main_objfile;
1478 objfile;
1479 objfile = objfile_separate_debug_iterate (main_objfile, objfile))
1480 {
1481 /* Go through symtabs. */
1482 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
1483 {
1484 bv = BLOCKVECTOR (s);
1485 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1486 sym = lookup_block_symbol (block, name, domain);
1487 if (sym)
1488 {
1489 block_found = block;
1490 return fixup_symbol_section (sym, (struct objfile *)objfile);
1491 }
1492 }
1493
1494 sym = lookup_symbol_aux_quick ((struct objfile *) objfile, GLOBAL_BLOCK,
1495 name, domain);
1496 if (sym)
1497 return sym;
1498 }
1499
1500 return NULL;
1501 }
1502
1503 /* Check to see if the symbol is defined in one of the OBJFILE's
1504 symtabs. BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
1505 depending on whether or not we want to search global symbols or
1506 static symbols. */
1507
1508 static struct symbol *
1509 lookup_symbol_aux_objfile (struct objfile *objfile, int block_index,
1510 const char *name, const domain_enum domain)
1511 {
1512 struct symbol *sym = NULL;
1513 struct blockvector *bv;
1514 const struct block *block;
1515 struct symtab *s;
1516
1517 if (objfile->sf)
1518 objfile->sf->qf->pre_expand_symtabs_matching (objfile, block_index,
1519 name, domain);
1520
1521 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
1522 {
1523 bv = BLOCKVECTOR (s);
1524 block = BLOCKVECTOR_BLOCK (bv, block_index);
1525 sym = lookup_block_symbol (block, name, domain);
1526 if (sym)
1527 {
1528 block_found = block;
1529 return fixup_symbol_section (sym, objfile);
1530 }
1531 }
1532
1533 return NULL;
1534 }
1535
1536 /* Same as lookup_symbol_aux_objfile, except that it searches all
1537 objfiles. Return the first match found. */
1538
1539 static struct symbol *
1540 lookup_symbol_aux_symtabs (int block_index, const char *name,
1541 const domain_enum domain)
1542 {
1543 struct symbol *sym;
1544 struct objfile *objfile;
1545
1546 ALL_OBJFILES (objfile)
1547 {
1548 sym = lookup_symbol_aux_objfile (objfile, block_index, name, domain);
1549 if (sym)
1550 return sym;
1551 }
1552
1553 return NULL;
1554 }
1555
1556 /* Wrapper around lookup_symbol_aux_objfile for search_symbols.
1557 Look up LINKAGE_NAME in DOMAIN in the global and static blocks of OBJFILE
1558 and all related objfiles. */
1559
1560 static struct symbol *
1561 lookup_symbol_in_objfile_from_linkage_name (struct objfile *objfile,
1562 const char *linkage_name,
1563 domain_enum domain)
1564 {
1565 enum language lang = current_language->la_language;
1566 const char *modified_name;
1567 struct cleanup *cleanup = demangle_for_lookup (linkage_name, lang,
1568 &modified_name);
1569 struct objfile *main_objfile, *cur_objfile;
1570
1571 if (objfile->separate_debug_objfile_backlink)
1572 main_objfile = objfile->separate_debug_objfile_backlink;
1573 else
1574 main_objfile = objfile;
1575
1576 for (cur_objfile = main_objfile;
1577 cur_objfile;
1578 cur_objfile = objfile_separate_debug_iterate (main_objfile, cur_objfile))
1579 {
1580 struct symbol *sym;
1581
1582 sym = lookup_symbol_aux_objfile (cur_objfile, GLOBAL_BLOCK,
1583 modified_name, domain);
1584 if (sym == NULL)
1585 sym = lookup_symbol_aux_objfile (cur_objfile, STATIC_BLOCK,
1586 modified_name, domain);
1587 if (sym != NULL)
1588 {
1589 do_cleanups (cleanup);
1590 return sym;
1591 }
1592 }
1593
1594 do_cleanups (cleanup);
1595 return NULL;
1596 }
1597
1598 /* A helper function for lookup_symbol_aux that interfaces with the
1599 "quick" symbol table functions. */
1600
1601 static struct symbol *
1602 lookup_symbol_aux_quick (struct objfile *objfile, int kind,
1603 const char *name, const domain_enum domain)
1604 {
1605 struct symtab *symtab;
1606 struct blockvector *bv;
1607 const struct block *block;
1608 struct symbol *sym;
1609
1610 if (!objfile->sf)
1611 return NULL;
1612 symtab = objfile->sf->qf->lookup_symbol (objfile, kind, name, domain);
1613 if (!symtab)
1614 return NULL;
1615
1616 bv = BLOCKVECTOR (symtab);
1617 block = BLOCKVECTOR_BLOCK (bv, kind);
1618 sym = lookup_block_symbol (block, name, domain);
1619 if (!sym)
1620 {
1621 /* This shouldn't be necessary, but as a last resort try
1622 looking in the statics even though the psymtab claimed
1623 the symbol was global, or vice-versa. It's possible
1624 that the psymtab gets it wrong in some cases. */
1625
1626 /* FIXME: carlton/2002-09-30: Should we really do that?
1627 If that happens, isn't it likely to be a GDB error, in
1628 which case we should fix the GDB error rather than
1629 silently dealing with it here? So I'd vote for
1630 removing the check for the symbol in the other
1631 block. */
1632 block = BLOCKVECTOR_BLOCK (bv,
1633 kind == GLOBAL_BLOCK ?
1634 STATIC_BLOCK : GLOBAL_BLOCK);
1635 sym = lookup_block_symbol (block, name, domain);
1636 if (!sym)
1637 error (_("\
1638 Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n\
1639 %s may be an inlined function, or may be a template function\n\
1640 (if a template, try specifying an instantiation: %s<type>)."),
1641 kind == GLOBAL_BLOCK ? "global" : "static",
1642 name, symtab->filename, name, name);
1643 }
1644 return fixup_symbol_section (sym, objfile);
1645 }
1646
1647 /* A default version of lookup_symbol_nonlocal for use by languages
1648 that can't think of anything better to do. This implements the C
1649 lookup rules. */
1650
1651 struct symbol *
1652 basic_lookup_symbol_nonlocal (const char *name,
1653 const struct block *block,
1654 const domain_enum domain)
1655 {
1656 struct symbol *sym;
1657
1658 /* NOTE: carlton/2003-05-19: The comments below were written when
1659 this (or what turned into this) was part of lookup_symbol_aux;
1660 I'm much less worried about these questions now, since these
1661 decisions have turned out well, but I leave these comments here
1662 for posterity. */
1663
1664 /* NOTE: carlton/2002-12-05: There is a question as to whether or
1665 not it would be appropriate to search the current global block
1666 here as well. (That's what this code used to do before the
1667 is_a_field_of_this check was moved up.) On the one hand, it's
1668 redundant with the lookup_symbol_aux_symtabs search that happens
1669 next. On the other hand, if decode_line_1 is passed an argument
1670 like filename:var, then the user presumably wants 'var' to be
1671 searched for in filename. On the third hand, there shouldn't be
1672 multiple global variables all of which are named 'var', and it's
1673 not like decode_line_1 has ever restricted its search to only
1674 global variables in a single filename. All in all, only
1675 searching the static block here seems best: it's correct and it's
1676 cleanest. */
1677
1678 /* NOTE: carlton/2002-12-05: There's also a possible performance
1679 issue here: if you usually search for global symbols in the
1680 current file, then it would be slightly better to search the
1681 current global block before searching all the symtabs. But there
1682 are other factors that have a much greater effect on performance
1683 than that one, so I don't think we should worry about that for
1684 now. */
1685
1686 sym = lookup_symbol_static (name, block, domain);
1687 if (sym != NULL)
1688 return sym;
1689
1690 return lookup_symbol_global (name, block, domain);
1691 }
1692
1693 /* Lookup a symbol in the static block associated to BLOCK, if there
1694 is one; do nothing if BLOCK is NULL or a global block. */
1695
1696 struct symbol *
1697 lookup_symbol_static (const char *name,
1698 const struct block *block,
1699 const domain_enum domain)
1700 {
1701 const struct block *static_block = block_static_block (block);
1702
1703 if (static_block != NULL)
1704 return lookup_symbol_aux_block (name, static_block, domain);
1705 else
1706 return NULL;
1707 }
1708
1709 /* Private data to be used with lookup_symbol_global_iterator_cb. */
1710
1711 struct global_sym_lookup_data
1712 {
1713 /* The name of the symbol we are searching for. */
1714 const char *name;
1715
1716 /* The domain to use for our search. */
1717 domain_enum domain;
1718
1719 /* The field where the callback should store the symbol if found.
1720 It should be initialized to NULL before the search is started. */
1721 struct symbol *result;
1722 };
1723
1724 /* A callback function for gdbarch_iterate_over_objfiles_in_search_order.
1725 It searches by name for a symbol in the GLOBAL_BLOCK of the given
1726 OBJFILE. The arguments for the search are passed via CB_DATA,
1727 which in reality is a pointer to struct global_sym_lookup_data. */
1728
1729 static int
1730 lookup_symbol_global_iterator_cb (struct objfile *objfile,
1731 void *cb_data)
1732 {
1733 struct global_sym_lookup_data *data =
1734 (struct global_sym_lookup_data *) cb_data;
1735
1736 gdb_assert (data->result == NULL);
1737
1738 data->result = lookup_symbol_aux_objfile (objfile, GLOBAL_BLOCK,
1739 data->name, data->domain);
1740 if (data->result == NULL)
1741 data->result = lookup_symbol_aux_quick (objfile, GLOBAL_BLOCK,
1742 data->name, data->domain);
1743
1744 /* If we found a match, tell the iterator to stop. Otherwise,
1745 keep going. */
1746 return (data->result != NULL);
1747 }
1748
1749 /* Lookup a symbol in all files' global blocks (searching psymtabs if
1750 necessary). */
1751
1752 struct symbol *
1753 lookup_symbol_global (const char *name,
1754 const struct block *block,
1755 const domain_enum domain)
1756 {
1757 struct symbol *sym = NULL;
1758 struct objfile *objfile = NULL;
1759 struct global_sym_lookup_data lookup_data;
1760
1761 /* Call library-specific lookup procedure. */
1762 objfile = lookup_objfile_from_block (block);
1763 if (objfile != NULL)
1764 sym = solib_global_lookup (objfile, name, domain);
1765 if (sym != NULL)
1766 return sym;
1767
1768 memset (&lookup_data, 0, sizeof (lookup_data));
1769 lookup_data.name = name;
1770 lookup_data.domain = domain;
1771 gdbarch_iterate_over_objfiles_in_search_order
1772 (objfile != NULL ? get_objfile_arch (objfile) : target_gdbarch (),
1773 lookup_symbol_global_iterator_cb, &lookup_data, objfile);
1774
1775 return lookup_data.result;
1776 }
1777
1778 int
1779 symbol_matches_domain (enum language symbol_language,
1780 domain_enum symbol_domain,
1781 domain_enum domain)
1782 {
1783 /* For C++ "struct foo { ... }" also defines a typedef for "foo".
1784 A Java class declaration also defines a typedef for the class.
1785 Similarly, any Ada type declaration implicitly defines a typedef. */
1786 if (symbol_language == language_cplus
1787 || symbol_language == language_d
1788 || symbol_language == language_java
1789 || symbol_language == language_ada)
1790 {
1791 if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN)
1792 && symbol_domain == STRUCT_DOMAIN)
1793 return 1;
1794 }
1795 /* For all other languages, strict match is required. */
1796 return (symbol_domain == domain);
1797 }
1798
1799 /* Look up a type named NAME in the struct_domain. The type returned
1800 must not be opaque -- i.e., must have at least one field
1801 defined. */
1802
1803 struct type *
1804 lookup_transparent_type (const char *name)
1805 {
1806 return current_language->la_lookup_transparent_type (name);
1807 }
1808
1809 /* A helper for basic_lookup_transparent_type that interfaces with the
1810 "quick" symbol table functions. */
1811
1812 static struct type *
1813 basic_lookup_transparent_type_quick (struct objfile *objfile, int kind,
1814 const char *name)
1815 {
1816 struct symtab *symtab;
1817 struct blockvector *bv;
1818 struct block *block;
1819 struct symbol *sym;
1820
1821 if (!objfile->sf)
1822 return NULL;
1823 symtab = objfile->sf->qf->lookup_symbol (objfile, kind, name, STRUCT_DOMAIN);
1824 if (!symtab)
1825 return NULL;
1826
1827 bv = BLOCKVECTOR (symtab);
1828 block = BLOCKVECTOR_BLOCK (bv, kind);
1829 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1830 if (!sym)
1831 {
1832 int other_kind = kind == GLOBAL_BLOCK ? STATIC_BLOCK : GLOBAL_BLOCK;
1833
1834 /* This shouldn't be necessary, but as a last resort
1835 * try looking in the 'other kind' even though the psymtab
1836 * claimed the symbol was one thing. It's possible that
1837 * the psymtab gets it wrong in some cases.
1838 */
1839 block = BLOCKVECTOR_BLOCK (bv, other_kind);
1840 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1841 if (!sym)
1842 /* FIXME; error is wrong in one case. */
1843 error (_("\
1844 Internal: global symbol `%s' found in %s psymtab but not in symtab.\n\
1845 %s may be an inlined function, or may be a template function\n\
1846 (if a template, try specifying an instantiation: %s<type>)."),
1847 name, symtab->filename, name, name);
1848 }
1849 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1850 return SYMBOL_TYPE (sym);
1851
1852 return NULL;
1853 }
1854
1855 /* The standard implementation of lookup_transparent_type. This code
1856 was modeled on lookup_symbol -- the parts not relevant to looking
1857 up types were just left out. In particular it's assumed here that
1858 types are available in struct_domain and only at file-static or
1859 global blocks. */
1860
1861 struct type *
1862 basic_lookup_transparent_type (const char *name)
1863 {
1864 struct symbol *sym;
1865 struct symtab *s = NULL;
1866 struct blockvector *bv;
1867 struct objfile *objfile;
1868 struct block *block;
1869 struct type *t;
1870
1871 /* Now search all the global symbols. Do the symtab's first, then
1872 check the psymtab's. If a psymtab indicates the existence
1873 of the desired name as a global, then do psymtab-to-symtab
1874 conversion on the fly and return the found symbol. */
1875
1876 ALL_OBJFILES (objfile)
1877 {
1878 if (objfile->sf)
1879 objfile->sf->qf->pre_expand_symtabs_matching (objfile,
1880 GLOBAL_BLOCK,
1881 name, STRUCT_DOMAIN);
1882
1883 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
1884 {
1885 bv = BLOCKVECTOR (s);
1886 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1887 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1888 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1889 {
1890 return SYMBOL_TYPE (sym);
1891 }
1892 }
1893 }
1894
1895 ALL_OBJFILES (objfile)
1896 {
1897 t = basic_lookup_transparent_type_quick (objfile, GLOBAL_BLOCK, name);
1898 if (t)
1899 return t;
1900 }
1901
1902 /* Now search the static file-level symbols.
1903 Not strictly correct, but more useful than an error.
1904 Do the symtab's first, then
1905 check the psymtab's. If a psymtab indicates the existence
1906 of the desired name as a file-level static, then do psymtab-to-symtab
1907 conversion on the fly and return the found symbol. */
1908
1909 ALL_OBJFILES (objfile)
1910 {
1911 if (objfile->sf)
1912 objfile->sf->qf->pre_expand_symtabs_matching (objfile, STATIC_BLOCK,
1913 name, STRUCT_DOMAIN);
1914
1915 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
1916 {
1917 bv = BLOCKVECTOR (s);
1918 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
1919 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1920 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1921 {
1922 return SYMBOL_TYPE (sym);
1923 }
1924 }
1925 }
1926
1927 ALL_OBJFILES (objfile)
1928 {
1929 t = basic_lookup_transparent_type_quick (objfile, STATIC_BLOCK, name);
1930 if (t)
1931 return t;
1932 }
1933
1934 return (struct type *) 0;
1935 }
1936
1937 /* Find the name of the file containing main(). */
1938 /* FIXME: What about languages without main() or specially linked
1939 executables that have no main() ? */
1940
1941 const char *
1942 find_main_filename (void)
1943 {
1944 struct objfile *objfile;
1945 char *name = main_name ();
1946
1947 ALL_OBJFILES (objfile)
1948 {
1949 const char *result;
1950
1951 if (!objfile->sf)
1952 continue;
1953 result = objfile->sf->qf->find_symbol_file (objfile, name);
1954 if (result)
1955 return result;
1956 }
1957 return (NULL);
1958 }
1959
1960 /* Search BLOCK for symbol NAME in DOMAIN.
1961
1962 Note that if NAME is the demangled form of a C++ symbol, we will fail
1963 to find a match during the binary search of the non-encoded names, but
1964 for now we don't worry about the slight inefficiency of looking for
1965 a match we'll never find, since it will go pretty quick. Once the
1966 binary search terminates, we drop through and do a straight linear
1967 search on the symbols. Each symbol which is marked as being a ObjC/C++
1968 symbol (language_cplus or language_objc set) has both the encoded and
1969 non-encoded names tested for a match. */
1970
1971 struct symbol *
1972 lookup_block_symbol (const struct block *block, const char *name,
1973 const domain_enum domain)
1974 {
1975 struct block_iterator iter;
1976 struct symbol *sym;
1977
1978 if (!BLOCK_FUNCTION (block))
1979 {
1980 for (sym = block_iter_name_first (block, name, &iter);
1981 sym != NULL;
1982 sym = block_iter_name_next (name, &iter))
1983 {
1984 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
1985 SYMBOL_DOMAIN (sym), domain))
1986 return sym;
1987 }
1988 return NULL;
1989 }
1990 else
1991 {
1992 /* Note that parameter symbols do not always show up last in the
1993 list; this loop makes sure to take anything else other than
1994 parameter symbols first; it only uses parameter symbols as a
1995 last resort. Note that this only takes up extra computation
1996 time on a match. */
1997
1998 struct symbol *sym_found = NULL;
1999
2000 for (sym = block_iter_name_first (block, name, &iter);
2001 sym != NULL;
2002 sym = block_iter_name_next (name, &iter))
2003 {
2004 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
2005 SYMBOL_DOMAIN (sym), domain))
2006 {
2007 sym_found = sym;
2008 if (!SYMBOL_IS_ARGUMENT (sym))
2009 {
2010 break;
2011 }
2012 }
2013 }
2014 return (sym_found); /* Will be NULL if not found. */
2015 }
2016 }
2017
2018 /* Iterate over the symbols named NAME, matching DOMAIN, starting with
2019 BLOCK.
2020
2021 For each symbol that matches, CALLBACK is called. The symbol and
2022 DATA are passed to the callback.
2023
2024 If CALLBACK returns zero, the iteration ends. Otherwise, the
2025 search continues. This function iterates upward through blocks.
2026 When the outermost block has been finished, the function
2027 returns. */
2028
2029 void
2030 iterate_over_symbols (const struct block *block, const char *name,
2031 const domain_enum domain,
2032 symbol_found_callback_ftype *callback,
2033 void *data)
2034 {
2035 while (block)
2036 {
2037 struct block_iterator iter;
2038 struct symbol *sym;
2039
2040 for (sym = block_iter_name_first (block, name, &iter);
2041 sym != NULL;
2042 sym = block_iter_name_next (name, &iter))
2043 {
2044 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
2045 SYMBOL_DOMAIN (sym), domain))
2046 {
2047 if (!callback (sym, data))
2048 return;
2049 }
2050 }
2051
2052 block = BLOCK_SUPERBLOCK (block);
2053 }
2054 }
2055
2056 /* Find the symtab associated with PC and SECTION. Look through the
2057 psymtabs and read in another symtab if necessary. */
2058
2059 struct symtab *
2060 find_pc_sect_symtab (CORE_ADDR pc, struct obj_section *section)
2061 {
2062 struct block *b;
2063 struct blockvector *bv;
2064 struct symtab *s = NULL;
2065 struct symtab *best_s = NULL;
2066 struct objfile *objfile;
2067 struct program_space *pspace;
2068 CORE_ADDR distance = 0;
2069 struct minimal_symbol *msymbol;
2070
2071 pspace = current_program_space;
2072
2073 /* If we know that this is not a text address, return failure. This is
2074 necessary because we loop based on the block's high and low code
2075 addresses, which do not include the data ranges, and because
2076 we call find_pc_sect_psymtab which has a similar restriction based
2077 on the partial_symtab's texthigh and textlow. */
2078 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
2079 if (msymbol
2080 && (MSYMBOL_TYPE (msymbol) == mst_data
2081 || MSYMBOL_TYPE (msymbol) == mst_bss
2082 || MSYMBOL_TYPE (msymbol) == mst_abs
2083 || MSYMBOL_TYPE (msymbol) == mst_file_data
2084 || MSYMBOL_TYPE (msymbol) == mst_file_bss))
2085 return NULL;
2086
2087 /* Search all symtabs for the one whose file contains our address, and which
2088 is the smallest of all the ones containing the address. This is designed
2089 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
2090 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
2091 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
2092
2093 This happens for native ecoff format, where code from included files
2094 gets its own symtab. The symtab for the included file should have
2095 been read in already via the dependency mechanism.
2096 It might be swifter to create several symtabs with the same name
2097 like xcoff does (I'm not sure).
2098
2099 It also happens for objfiles that have their functions reordered.
2100 For these, the symtab we are looking for is not necessarily read in. */
2101
2102 ALL_PRIMARY_SYMTABS (objfile, s)
2103 {
2104 bv = BLOCKVECTOR (s);
2105 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
2106
2107 if (BLOCK_START (b) <= pc
2108 && BLOCK_END (b) > pc
2109 && (distance == 0
2110 || BLOCK_END (b) - BLOCK_START (b) < distance))
2111 {
2112 /* For an objfile that has its functions reordered,
2113 find_pc_psymtab will find the proper partial symbol table
2114 and we simply return its corresponding symtab. */
2115 /* In order to better support objfiles that contain both
2116 stabs and coff debugging info, we continue on if a psymtab
2117 can't be found. */
2118 if ((objfile->flags & OBJF_REORDERED) && objfile->sf)
2119 {
2120 struct symtab *result;
2121
2122 result
2123 = objfile->sf->qf->find_pc_sect_symtab (objfile,
2124 msymbol,
2125 pc, section,
2126 0);
2127 if (result)
2128 return result;
2129 }
2130 if (section != 0)
2131 {
2132 struct block_iterator iter;
2133 struct symbol *sym = NULL;
2134
2135 ALL_BLOCK_SYMBOLS (b, iter, sym)
2136 {
2137 fixup_symbol_section (sym, objfile);
2138 if (matching_obj_sections (SYMBOL_OBJ_SECTION (sym), section))
2139 break;
2140 }
2141 if (sym == NULL)
2142 continue; /* No symbol in this symtab matches
2143 section. */
2144 }
2145 distance = BLOCK_END (b) - BLOCK_START (b);
2146 best_s = s;
2147 }
2148 }
2149
2150 if (best_s != NULL)
2151 return (best_s);
2152
2153 ALL_OBJFILES (objfile)
2154 {
2155 struct symtab *result;
2156
2157 if (!objfile->sf)
2158 continue;
2159 result = objfile->sf->qf->find_pc_sect_symtab (objfile,
2160 msymbol,
2161 pc, section,
2162 1);
2163 if (result)
2164 return result;
2165 }
2166
2167 return NULL;
2168 }
2169
2170 /* Find the symtab associated with PC. Look through the psymtabs and read
2171 in another symtab if necessary. Backward compatibility, no section. */
2172
2173 struct symtab *
2174 find_pc_symtab (CORE_ADDR pc)
2175 {
2176 return find_pc_sect_symtab (pc, find_pc_mapped_section (pc));
2177 }
2178 \f
2179
2180 /* Find the source file and line number for a given PC value and SECTION.
2181 Return a structure containing a symtab pointer, a line number,
2182 and a pc range for the entire source line.
2183 The value's .pc field is NOT the specified pc.
2184 NOTCURRENT nonzero means, if specified pc is on a line boundary,
2185 use the line that ends there. Otherwise, in that case, the line
2186 that begins there is used. */
2187
2188 /* The big complication here is that a line may start in one file, and end just
2189 before the start of another file. This usually occurs when you #include
2190 code in the middle of a subroutine. To properly find the end of a line's PC
2191 range, we must search all symtabs associated with this compilation unit, and
2192 find the one whose first PC is closer than that of the next line in this
2193 symtab. */
2194
2195 /* If it's worth the effort, we could be using a binary search. */
2196
2197 struct symtab_and_line
2198 find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent)
2199 {
2200 struct symtab *s;
2201 struct linetable *l;
2202 int len;
2203 int i;
2204 struct linetable_entry *item;
2205 struct symtab_and_line val;
2206 struct blockvector *bv;
2207 struct minimal_symbol *msymbol;
2208 struct minimal_symbol *mfunsym;
2209 struct objfile *objfile;
2210
2211 /* Info on best line seen so far, and where it starts, and its file. */
2212
2213 struct linetable_entry *best = NULL;
2214 CORE_ADDR best_end = 0;
2215 struct symtab *best_symtab = 0;
2216
2217 /* Store here the first line number
2218 of a file which contains the line at the smallest pc after PC.
2219 If we don't find a line whose range contains PC,
2220 we will use a line one less than this,
2221 with a range from the start of that file to the first line's pc. */
2222 struct linetable_entry *alt = NULL;
2223 struct symtab *alt_symtab = 0;
2224
2225 /* Info on best line seen in this file. */
2226
2227 struct linetable_entry *prev;
2228
2229 /* If this pc is not from the current frame,
2230 it is the address of the end of a call instruction.
2231 Quite likely that is the start of the following statement.
2232 But what we want is the statement containing the instruction.
2233 Fudge the pc to make sure we get that. */
2234
2235 init_sal (&val); /* initialize to zeroes */
2236
2237 val.pspace = current_program_space;
2238
2239 /* It's tempting to assume that, if we can't find debugging info for
2240 any function enclosing PC, that we shouldn't search for line
2241 number info, either. However, GAS can emit line number info for
2242 assembly files --- very helpful when debugging hand-written
2243 assembly code. In such a case, we'd have no debug info for the
2244 function, but we would have line info. */
2245
2246 if (notcurrent)
2247 pc -= 1;
2248
2249 /* elz: added this because this function returned the wrong
2250 information if the pc belongs to a stub (import/export)
2251 to call a shlib function. This stub would be anywhere between
2252 two functions in the target, and the line info was erroneously
2253 taken to be the one of the line before the pc. */
2254
2255 /* RT: Further explanation:
2256
2257 * We have stubs (trampolines) inserted between procedures.
2258 *
2259 * Example: "shr1" exists in a shared library, and a "shr1" stub also
2260 * exists in the main image.
2261 *
2262 * In the minimal symbol table, we have a bunch of symbols
2263 * sorted by start address. The stubs are marked as "trampoline",
2264 * the others appear as text. E.g.:
2265 *
2266 * Minimal symbol table for main image
2267 * main: code for main (text symbol)
2268 * shr1: stub (trampoline symbol)
2269 * foo: code for foo (text symbol)
2270 * ...
2271 * Minimal symbol table for "shr1" image:
2272 * ...
2273 * shr1: code for shr1 (text symbol)
2274 * ...
2275 *
2276 * So the code below is trying to detect if we are in the stub
2277 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
2278 * and if found, do the symbolization from the real-code address
2279 * rather than the stub address.
2280 *
2281 * Assumptions being made about the minimal symbol table:
2282 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
2283 * if we're really in the trampoline.s If we're beyond it (say
2284 * we're in "foo" in the above example), it'll have a closer
2285 * symbol (the "foo" text symbol for example) and will not
2286 * return the trampoline.
2287 * 2. lookup_minimal_symbol_text() will find a real text symbol
2288 * corresponding to the trampoline, and whose address will
2289 * be different than the trampoline address. I put in a sanity
2290 * check for the address being the same, to avoid an
2291 * infinite recursion.
2292 */
2293 msymbol = lookup_minimal_symbol_by_pc (pc);
2294 if (msymbol != NULL)
2295 if (MSYMBOL_TYPE (msymbol) == mst_solib_trampoline)
2296 {
2297 mfunsym = lookup_minimal_symbol_text (SYMBOL_LINKAGE_NAME (msymbol),
2298 NULL);
2299 if (mfunsym == NULL)
2300 /* I eliminated this warning since it is coming out
2301 * in the following situation:
2302 * gdb shmain // test program with shared libraries
2303 * (gdb) break shr1 // function in shared lib
2304 * Warning: In stub for ...
2305 * In the above situation, the shared lib is not loaded yet,
2306 * so of course we can't find the real func/line info,
2307 * but the "break" still works, and the warning is annoying.
2308 * So I commented out the warning. RT */
2309 /* warning ("In stub for %s; unable to find real function/line info",
2310 SYMBOL_LINKAGE_NAME (msymbol)); */
2311 ;
2312 /* fall through */
2313 else if (SYMBOL_VALUE_ADDRESS (mfunsym)
2314 == SYMBOL_VALUE_ADDRESS (msymbol))
2315 /* Avoid infinite recursion */
2316 /* See above comment about why warning is commented out. */
2317 /* warning ("In stub for %s; unable to find real function/line info",
2318 SYMBOL_LINKAGE_NAME (msymbol)); */
2319 ;
2320 /* fall through */
2321 else
2322 return find_pc_line (SYMBOL_VALUE_ADDRESS (mfunsym), 0);
2323 }
2324
2325
2326 s = find_pc_sect_symtab (pc, section);
2327 if (!s)
2328 {
2329 /* If no symbol information, return previous pc. */
2330 if (notcurrent)
2331 pc++;
2332 val.pc = pc;
2333 return val;
2334 }
2335
2336 bv = BLOCKVECTOR (s);
2337 objfile = s->objfile;
2338
2339 /* Look at all the symtabs that share this blockvector.
2340 They all have the same apriori range, that we found was right;
2341 but they have different line tables. */
2342
2343 ALL_OBJFILE_SYMTABS (objfile, s)
2344 {
2345 if (BLOCKVECTOR (s) != bv)
2346 continue;
2347
2348 /* Find the best line in this symtab. */
2349 l = LINETABLE (s);
2350 if (!l)
2351 continue;
2352 len = l->nitems;
2353 if (len <= 0)
2354 {
2355 /* I think len can be zero if the symtab lacks line numbers
2356 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
2357 I'm not sure which, and maybe it depends on the symbol
2358 reader). */
2359 continue;
2360 }
2361
2362 prev = NULL;
2363 item = l->item; /* Get first line info. */
2364
2365 /* Is this file's first line closer than the first lines of other files?
2366 If so, record this file, and its first line, as best alternate. */
2367 if (item->pc > pc && (!alt || item->pc < alt->pc))
2368 {
2369 alt = item;
2370 alt_symtab = s;
2371 }
2372
2373 for (i = 0; i < len; i++, item++)
2374 {
2375 /* Leave prev pointing to the linetable entry for the last line
2376 that started at or before PC. */
2377 if (item->pc > pc)
2378 break;
2379
2380 prev = item;
2381 }
2382
2383 /* At this point, prev points at the line whose start addr is <= pc, and
2384 item points at the next line. If we ran off the end of the linetable
2385 (pc >= start of the last line), then prev == item. If pc < start of
2386 the first line, prev will not be set. */
2387
2388 /* Is this file's best line closer than the best in the other files?
2389 If so, record this file, and its best line, as best so far. Don't
2390 save prev if it represents the end of a function (i.e. line number
2391 0) instead of a real line. */
2392
2393 if (prev && prev->line && (!best || prev->pc > best->pc))
2394 {
2395 best = prev;
2396 best_symtab = s;
2397
2398 /* Discard BEST_END if it's before the PC of the current BEST. */
2399 if (best_end <= best->pc)
2400 best_end = 0;
2401 }
2402
2403 /* If another line (denoted by ITEM) is in the linetable and its
2404 PC is after BEST's PC, but before the current BEST_END, then
2405 use ITEM's PC as the new best_end. */
2406 if (best && i < len && item->pc > best->pc
2407 && (best_end == 0 || best_end > item->pc))
2408 best_end = item->pc;
2409 }
2410
2411 if (!best_symtab)
2412 {
2413 /* If we didn't find any line number info, just return zeros.
2414 We used to return alt->line - 1 here, but that could be
2415 anywhere; if we don't have line number info for this PC,
2416 don't make some up. */
2417 val.pc = pc;
2418 }
2419 else if (best->line == 0)
2420 {
2421 /* If our best fit is in a range of PC's for which no line
2422 number info is available (line number is zero) then we didn't
2423 find any valid line information. */
2424 val.pc = pc;
2425 }
2426 else
2427 {
2428 val.symtab = best_symtab;
2429 val.line = best->line;
2430 val.pc = best->pc;
2431 if (best_end && (!alt || best_end < alt->pc))
2432 val.end = best_end;
2433 else if (alt)
2434 val.end = alt->pc;
2435 else
2436 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
2437 }
2438 val.section = section;
2439 return val;
2440 }
2441
2442 /* Backward compatibility (no section). */
2443
2444 struct symtab_and_line
2445 find_pc_line (CORE_ADDR pc, int notcurrent)
2446 {
2447 struct obj_section *section;
2448
2449 section = find_pc_overlay (pc);
2450 if (pc_in_unmapped_range (pc, section))
2451 pc = overlay_mapped_address (pc, section);
2452 return find_pc_sect_line (pc, section, notcurrent);
2453 }
2454 \f
2455 /* Find line number LINE in any symtab whose name is the same as
2456 SYMTAB.
2457
2458 If found, return the symtab that contains the linetable in which it was
2459 found, set *INDEX to the index in the linetable of the best entry
2460 found, and set *EXACT_MATCH nonzero if the value returned is an
2461 exact match.
2462
2463 If not found, return NULL. */
2464
2465 struct symtab *
2466 find_line_symtab (struct symtab *symtab, int line,
2467 int *index, int *exact_match)
2468 {
2469 int exact = 0; /* Initialized here to avoid a compiler warning. */
2470
2471 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
2472 so far seen. */
2473
2474 int best_index;
2475 struct linetable *best_linetable;
2476 struct symtab *best_symtab;
2477
2478 /* First try looking it up in the given symtab. */
2479 best_linetable = LINETABLE (symtab);
2480 best_symtab = symtab;
2481 best_index = find_line_common (best_linetable, line, &exact, 0);
2482 if (best_index < 0 || !exact)
2483 {
2484 /* Didn't find an exact match. So we better keep looking for
2485 another symtab with the same name. In the case of xcoff,
2486 multiple csects for one source file (produced by IBM's FORTRAN
2487 compiler) produce multiple symtabs (this is unavoidable
2488 assuming csects can be at arbitrary places in memory and that
2489 the GLOBAL_BLOCK of a symtab has a begin and end address). */
2490
2491 /* BEST is the smallest linenumber > LINE so far seen,
2492 or 0 if none has been seen so far.
2493 BEST_INDEX and BEST_LINETABLE identify the item for it. */
2494 int best;
2495
2496 struct objfile *objfile;
2497 struct symtab *s;
2498
2499 if (best_index >= 0)
2500 best = best_linetable->item[best_index].line;
2501 else
2502 best = 0;
2503
2504 ALL_OBJFILES (objfile)
2505 {
2506 if (objfile->sf)
2507 objfile->sf->qf->expand_symtabs_with_filename (objfile,
2508 symtab->filename);
2509 }
2510
2511 /* Get symbol full file name if possible. */
2512 symtab_to_fullname (symtab);
2513
2514 ALL_SYMTABS (objfile, s)
2515 {
2516 struct linetable *l;
2517 int ind;
2518
2519 if (FILENAME_CMP (symtab->filename, s->filename) != 0)
2520 continue;
2521 if (symtab->fullname != NULL
2522 && symtab_to_fullname (s) != NULL
2523 && FILENAME_CMP (symtab->fullname, s->fullname) != 0)
2524 continue;
2525 l = LINETABLE (s);
2526 ind = find_line_common (l, line, &exact, 0);
2527 if (ind >= 0)
2528 {
2529 if (exact)
2530 {
2531 best_index = ind;
2532 best_linetable = l;
2533 best_symtab = s;
2534 goto done;
2535 }
2536 if (best == 0 || l->item[ind].line < best)
2537 {
2538 best = l->item[ind].line;
2539 best_index = ind;
2540 best_linetable = l;
2541 best_symtab = s;
2542 }
2543 }
2544 }
2545 }
2546 done:
2547 if (best_index < 0)
2548 return NULL;
2549
2550 if (index)
2551 *index = best_index;
2552 if (exact_match)
2553 *exact_match = exact;
2554
2555 return best_symtab;
2556 }
2557
2558 /* Given SYMTAB, returns all the PCs function in the symtab that
2559 exactly match LINE. Returns NULL if there are no exact matches,
2560 but updates BEST_ITEM in this case. */
2561
2562 VEC (CORE_ADDR) *
2563 find_pcs_for_symtab_line (struct symtab *symtab, int line,
2564 struct linetable_entry **best_item)
2565 {
2566 int start = 0, ix;
2567 struct symbol *previous_function = NULL;
2568 VEC (CORE_ADDR) *result = NULL;
2569
2570 /* First, collect all the PCs that are at this line. */
2571 while (1)
2572 {
2573 int was_exact;
2574 int idx;
2575
2576 idx = find_line_common (LINETABLE (symtab), line, &was_exact, start);
2577 if (idx < 0)
2578 break;
2579
2580 if (!was_exact)
2581 {
2582 struct linetable_entry *item = &LINETABLE (symtab)->item[idx];
2583
2584 if (*best_item == NULL || item->line < (*best_item)->line)
2585 *best_item = item;
2586
2587 break;
2588 }
2589
2590 VEC_safe_push (CORE_ADDR, result, LINETABLE (symtab)->item[idx].pc);
2591 start = idx + 1;
2592 }
2593
2594 return result;
2595 }
2596
2597 \f
2598 /* Set the PC value for a given source file and line number and return true.
2599 Returns zero for invalid line number (and sets the PC to 0).
2600 The source file is specified with a struct symtab. */
2601
2602 int
2603 find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
2604 {
2605 struct linetable *l;
2606 int ind;
2607
2608 *pc = 0;
2609 if (symtab == 0)
2610 return 0;
2611
2612 symtab = find_line_symtab (symtab, line, &ind, NULL);
2613 if (symtab != NULL)
2614 {
2615 l = LINETABLE (symtab);
2616 *pc = l->item[ind].pc;
2617 return 1;
2618 }
2619 else
2620 return 0;
2621 }
2622
2623 /* Find the range of pc values in a line.
2624 Store the starting pc of the line into *STARTPTR
2625 and the ending pc (start of next line) into *ENDPTR.
2626 Returns 1 to indicate success.
2627 Returns 0 if could not find the specified line. */
2628
2629 int
2630 find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
2631 CORE_ADDR *endptr)
2632 {
2633 CORE_ADDR startaddr;
2634 struct symtab_and_line found_sal;
2635
2636 startaddr = sal.pc;
2637 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
2638 return 0;
2639
2640 /* This whole function is based on address. For example, if line 10 has
2641 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
2642 "info line *0x123" should say the line goes from 0x100 to 0x200
2643 and "info line *0x355" should say the line goes from 0x300 to 0x400.
2644 This also insures that we never give a range like "starts at 0x134
2645 and ends at 0x12c". */
2646
2647 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
2648 if (found_sal.line != sal.line)
2649 {
2650 /* The specified line (sal) has zero bytes. */
2651 *startptr = found_sal.pc;
2652 *endptr = found_sal.pc;
2653 }
2654 else
2655 {
2656 *startptr = found_sal.pc;
2657 *endptr = found_sal.end;
2658 }
2659 return 1;
2660 }
2661
2662 /* Given a line table and a line number, return the index into the line
2663 table for the pc of the nearest line whose number is >= the specified one.
2664 Return -1 if none is found. The value is >= 0 if it is an index.
2665 START is the index at which to start searching the line table.
2666
2667 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
2668
2669 static int
2670 find_line_common (struct linetable *l, int lineno,
2671 int *exact_match, int start)
2672 {
2673 int i;
2674 int len;
2675
2676 /* BEST is the smallest linenumber > LINENO so far seen,
2677 or 0 if none has been seen so far.
2678 BEST_INDEX identifies the item for it. */
2679
2680 int best_index = -1;
2681 int best = 0;
2682
2683 *exact_match = 0;
2684
2685 if (lineno <= 0)
2686 return -1;
2687 if (l == 0)
2688 return -1;
2689
2690 len = l->nitems;
2691 for (i = start; i < len; i++)
2692 {
2693 struct linetable_entry *item = &(l->item[i]);
2694
2695 if (item->line == lineno)
2696 {
2697 /* Return the first (lowest address) entry which matches. */
2698 *exact_match = 1;
2699 return i;
2700 }
2701
2702 if (item->line > lineno && (best == 0 || item->line < best))
2703 {
2704 best = item->line;
2705 best_index = i;
2706 }
2707 }
2708
2709 /* If we got here, we didn't get an exact match. */
2710 return best_index;
2711 }
2712
2713 int
2714 find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
2715 {
2716 struct symtab_and_line sal;
2717
2718 sal = find_pc_line (pc, 0);
2719 *startptr = sal.pc;
2720 *endptr = sal.end;
2721 return sal.symtab != 0;
2722 }
2723
2724 /* Given a function start address FUNC_ADDR and SYMTAB, find the first
2725 address for that function that has an entry in SYMTAB's line info
2726 table. If such an entry cannot be found, return FUNC_ADDR
2727 unaltered. */
2728
2729 static CORE_ADDR
2730 skip_prologue_using_lineinfo (CORE_ADDR func_addr, struct symtab *symtab)
2731 {
2732 CORE_ADDR func_start, func_end;
2733 struct linetable *l;
2734 int i;
2735
2736 /* Give up if this symbol has no lineinfo table. */
2737 l = LINETABLE (symtab);
2738 if (l == NULL)
2739 return func_addr;
2740
2741 /* Get the range for the function's PC values, or give up if we
2742 cannot, for some reason. */
2743 if (!find_pc_partial_function (func_addr, NULL, &func_start, &func_end))
2744 return func_addr;
2745
2746 /* Linetable entries are ordered by PC values, see the commentary in
2747 symtab.h where `struct linetable' is defined. Thus, the first
2748 entry whose PC is in the range [FUNC_START..FUNC_END[ is the
2749 address we are looking for. */
2750 for (i = 0; i < l->nitems; i++)
2751 {
2752 struct linetable_entry *item = &(l->item[i]);
2753
2754 /* Don't use line numbers of zero, they mark special entries in
2755 the table. See the commentary on symtab.h before the
2756 definition of struct linetable. */
2757 if (item->line > 0 && func_start <= item->pc && item->pc < func_end)
2758 return item->pc;
2759 }
2760
2761 return func_addr;
2762 }
2763
2764 /* Given a function symbol SYM, find the symtab and line for the start
2765 of the function.
2766 If the argument FUNFIRSTLINE is nonzero, we want the first line
2767 of real code inside the function. */
2768
2769 struct symtab_and_line
2770 find_function_start_sal (struct symbol *sym, int funfirstline)
2771 {
2772 struct symtab_and_line sal;
2773
2774 fixup_symbol_section (sym, NULL);
2775 sal = find_pc_sect_line (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)),
2776 SYMBOL_OBJ_SECTION (sym), 0);
2777
2778 /* We always should have a line for the function start address.
2779 If we don't, something is odd. Create a plain SAL refering
2780 just the PC and hope that skip_prologue_sal (if requested)
2781 can find a line number for after the prologue. */
2782 if (sal.pc < BLOCK_START (SYMBOL_BLOCK_VALUE (sym)))
2783 {
2784 init_sal (&sal);
2785 sal.pspace = current_program_space;
2786 sal.pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
2787 sal.section = SYMBOL_OBJ_SECTION (sym);
2788 }
2789
2790 if (funfirstline)
2791 skip_prologue_sal (&sal);
2792
2793 return sal;
2794 }
2795
2796 /* Adjust SAL to the first instruction past the function prologue.
2797 If the PC was explicitly specified, the SAL is not changed.
2798 If the line number was explicitly specified, at most the SAL's PC
2799 is updated. If SAL is already past the prologue, then do nothing. */
2800
2801 void
2802 skip_prologue_sal (struct symtab_and_line *sal)
2803 {
2804 struct symbol *sym;
2805 struct symtab_and_line start_sal;
2806 struct cleanup *old_chain;
2807 CORE_ADDR pc, saved_pc;
2808 struct obj_section *section;
2809 const char *name;
2810 struct objfile *objfile;
2811 struct gdbarch *gdbarch;
2812 struct block *b, *function_block;
2813 int force_skip, skip;
2814
2815 /* Do not change the SAL if PC was specified explicitly. */
2816 if (sal->explicit_pc)
2817 return;
2818
2819 old_chain = save_current_space_and_thread ();
2820 switch_to_program_space_and_thread (sal->pspace);
2821
2822 sym = find_pc_sect_function (sal->pc, sal->section);
2823 if (sym != NULL)
2824 {
2825 fixup_symbol_section (sym, NULL);
2826
2827 pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
2828 section = SYMBOL_OBJ_SECTION (sym);
2829 name = SYMBOL_LINKAGE_NAME (sym);
2830 objfile = SYMBOL_SYMTAB (sym)->objfile;
2831 }
2832 else
2833 {
2834 struct minimal_symbol *msymbol
2835 = lookup_minimal_symbol_by_pc_section (sal->pc, sal->section);
2836
2837 if (msymbol == NULL)
2838 {
2839 do_cleanups (old_chain);
2840 return;
2841 }
2842
2843 pc = SYMBOL_VALUE_ADDRESS (msymbol);
2844 section = SYMBOL_OBJ_SECTION (msymbol);
2845 name = SYMBOL_LINKAGE_NAME (msymbol);
2846 objfile = msymbol_objfile (msymbol);
2847 }
2848
2849 gdbarch = get_objfile_arch (objfile);
2850
2851 /* Process the prologue in two passes. In the first pass try to skip the
2852 prologue (SKIP is true) and verify there is a real need for it (indicated
2853 by FORCE_SKIP). If no such reason was found run a second pass where the
2854 prologue is not skipped (SKIP is false). */
2855
2856 skip = 1;
2857 force_skip = 1;
2858
2859 /* Be conservative - allow direct PC (without skipping prologue) only if we
2860 have proven the CU (Compilation Unit) supports it. sal->SYMTAB does not
2861 have to be set by the caller so we use SYM instead. */
2862 if (sym && SYMBOL_SYMTAB (sym)->locations_valid)
2863 force_skip = 0;
2864
2865 saved_pc = pc;
2866 do
2867 {
2868 pc = saved_pc;
2869
2870 /* If the function is in an unmapped overlay, use its unmapped LMA address,
2871 so that gdbarch_skip_prologue has something unique to work on. */
2872 if (section_is_overlay (section) && !section_is_mapped (section))
2873 pc = overlay_unmapped_address (pc, section);
2874
2875 /* Skip "first line" of function (which is actually its prologue). */
2876 pc += gdbarch_deprecated_function_start_offset (gdbarch);
2877 if (skip)
2878 pc = gdbarch_skip_prologue (gdbarch, pc);
2879
2880 /* For overlays, map pc back into its mapped VMA range. */
2881 pc = overlay_mapped_address (pc, section);
2882
2883 /* Calculate line number. */
2884 start_sal = find_pc_sect_line (pc, section, 0);
2885
2886 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
2887 line is still part of the same function. */
2888 if (skip && start_sal.pc != pc
2889 && (sym ? (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) <= start_sal.end
2890 && start_sal.end < BLOCK_END (SYMBOL_BLOCK_VALUE (sym)))
2891 : (lookup_minimal_symbol_by_pc_section (start_sal.end, section)
2892 == lookup_minimal_symbol_by_pc_section (pc, section))))
2893 {
2894 /* First pc of next line */
2895 pc = start_sal.end;
2896 /* Recalculate the line number (might not be N+1). */
2897 start_sal = find_pc_sect_line (pc, section, 0);
2898 }
2899
2900 /* On targets with executable formats that don't have a concept of
2901 constructors (ELF with .init has, PE doesn't), gcc emits a call
2902 to `__main' in `main' between the prologue and before user
2903 code. */
2904 if (gdbarch_skip_main_prologue_p (gdbarch)
2905 && name && strcmp_iw (name, "main") == 0)
2906 {
2907 pc = gdbarch_skip_main_prologue (gdbarch, pc);
2908 /* Recalculate the line number (might not be N+1). */
2909 start_sal = find_pc_sect_line (pc, section, 0);
2910 force_skip = 1;
2911 }
2912 }
2913 while (!force_skip && skip--);
2914
2915 /* If we still don't have a valid source line, try to find the first
2916 PC in the lineinfo table that belongs to the same function. This
2917 happens with COFF debug info, which does not seem to have an
2918 entry in lineinfo table for the code after the prologue which has
2919 no direct relation to source. For example, this was found to be
2920 the case with the DJGPP target using "gcc -gcoff" when the
2921 compiler inserted code after the prologue to make sure the stack
2922 is aligned. */
2923 if (!force_skip && sym && start_sal.symtab == NULL)
2924 {
2925 pc = skip_prologue_using_lineinfo (pc, SYMBOL_SYMTAB (sym));
2926 /* Recalculate the line number. */
2927 start_sal = find_pc_sect_line (pc, section, 0);
2928 }
2929
2930 do_cleanups (old_chain);
2931
2932 /* If we're already past the prologue, leave SAL unchanged. Otherwise
2933 forward SAL to the end of the prologue. */
2934 if (sal->pc >= pc)
2935 return;
2936
2937 sal->pc = pc;
2938 sal->section = section;
2939
2940 /* Unless the explicit_line flag was set, update the SAL line
2941 and symtab to correspond to the modified PC location. */
2942 if (sal->explicit_line)
2943 return;
2944
2945 sal->symtab = start_sal.symtab;
2946 sal->line = start_sal.line;
2947 sal->end = start_sal.end;
2948
2949 /* Check if we are now inside an inlined function. If we can,
2950 use the call site of the function instead. */
2951 b = block_for_pc_sect (sal->pc, sal->section);
2952 function_block = NULL;
2953 while (b != NULL)
2954 {
2955 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
2956 function_block = b;
2957 else if (BLOCK_FUNCTION (b) != NULL)
2958 break;
2959 b = BLOCK_SUPERBLOCK (b);
2960 }
2961 if (function_block != NULL
2962 && SYMBOL_LINE (BLOCK_FUNCTION (function_block)) != 0)
2963 {
2964 sal->line = SYMBOL_LINE (BLOCK_FUNCTION (function_block));
2965 sal->symtab = SYMBOL_SYMTAB (BLOCK_FUNCTION (function_block));
2966 }
2967 }
2968
2969 /* If P is of the form "operator[ \t]+..." where `...' is
2970 some legitimate operator text, return a pointer to the
2971 beginning of the substring of the operator text.
2972 Otherwise, return "". */
2973
2974 static char *
2975 operator_chars (char *p, char **end)
2976 {
2977 *end = "";
2978 if (strncmp (p, "operator", 8))
2979 return *end;
2980 p += 8;
2981
2982 /* Don't get faked out by `operator' being part of a longer
2983 identifier. */
2984 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
2985 return *end;
2986
2987 /* Allow some whitespace between `operator' and the operator symbol. */
2988 while (*p == ' ' || *p == '\t')
2989 p++;
2990
2991 /* Recognize 'operator TYPENAME'. */
2992
2993 if (isalpha (*p) || *p == '_' || *p == '$')
2994 {
2995 char *q = p + 1;
2996
2997 while (isalnum (*q) || *q == '_' || *q == '$')
2998 q++;
2999 *end = q;
3000 return p;
3001 }
3002
3003 while (*p)
3004 switch (*p)
3005 {
3006 case '\\': /* regexp quoting */
3007 if (p[1] == '*')
3008 {
3009 if (p[2] == '=') /* 'operator\*=' */
3010 *end = p + 3;
3011 else /* 'operator\*' */
3012 *end = p + 2;
3013 return p;
3014 }
3015 else if (p[1] == '[')
3016 {
3017 if (p[2] == ']')
3018 error (_("mismatched quoting on brackets, "
3019 "try 'operator\\[\\]'"));
3020 else if (p[2] == '\\' && p[3] == ']')
3021 {
3022 *end = p + 4; /* 'operator\[\]' */
3023 return p;
3024 }
3025 else
3026 error (_("nothing is allowed between '[' and ']'"));
3027 }
3028 else
3029 {
3030 /* Gratuitous qoute: skip it and move on. */
3031 p++;
3032 continue;
3033 }
3034 break;
3035 case '!':
3036 case '=':
3037 case '*':
3038 case '/':
3039 case '%':
3040 case '^':
3041 if (p[1] == '=')
3042 *end = p + 2;
3043 else
3044 *end = p + 1;
3045 return p;
3046 case '<':
3047 case '>':
3048 case '+':
3049 case '-':
3050 case '&':
3051 case '|':
3052 if (p[0] == '-' && p[1] == '>')
3053 {
3054 /* Struct pointer member operator 'operator->'. */
3055 if (p[2] == '*')
3056 {
3057 *end = p + 3; /* 'operator->*' */
3058 return p;
3059 }
3060 else if (p[2] == '\\')
3061 {
3062 *end = p + 4; /* Hopefully 'operator->\*' */
3063 return p;
3064 }
3065 else
3066 {
3067 *end = p + 2; /* 'operator->' */
3068 return p;
3069 }
3070 }
3071 if (p[1] == '=' || p[1] == p[0])
3072 *end = p + 2;
3073 else
3074 *end = p + 1;
3075 return p;
3076 case '~':
3077 case ',':
3078 *end = p + 1;
3079 return p;
3080 case '(':
3081 if (p[1] != ')')
3082 error (_("`operator ()' must be specified "
3083 "without whitespace in `()'"));
3084 *end = p + 2;
3085 return p;
3086 case '?':
3087 if (p[1] != ':')
3088 error (_("`operator ?:' must be specified "
3089 "without whitespace in `?:'"));
3090 *end = p + 2;
3091 return p;
3092 case '[':
3093 if (p[1] != ']')
3094 error (_("`operator []' must be specified "
3095 "without whitespace in `[]'"));
3096 *end = p + 2;
3097 return p;
3098 default:
3099 error (_("`operator %s' not supported"), p);
3100 break;
3101 }
3102
3103 *end = "";
3104 return *end;
3105 }
3106 \f
3107
3108 /* Cache to watch for file names already seen by filename_seen. */
3109
3110 struct filename_seen_cache
3111 {
3112 /* Table of files seen so far. */
3113 htab_t tab;
3114 /* Initial size of the table. It automagically grows from here. */
3115 #define INITIAL_FILENAME_SEEN_CACHE_SIZE 100
3116 };
3117
3118 /* filename_seen_cache constructor. */
3119
3120 static struct filename_seen_cache *
3121 create_filename_seen_cache (void)
3122 {
3123 struct filename_seen_cache *cache;
3124
3125 cache = XNEW (struct filename_seen_cache);
3126 cache->tab = htab_create_alloc (INITIAL_FILENAME_SEEN_CACHE_SIZE,
3127 filename_hash, filename_eq,
3128 NULL, xcalloc, xfree);
3129
3130 return cache;
3131 }
3132
3133 /* Empty the cache, but do not delete it. */
3134
3135 static void
3136 clear_filename_seen_cache (struct filename_seen_cache *cache)
3137 {
3138 htab_empty (cache->tab);
3139 }
3140
3141 /* filename_seen_cache destructor.
3142 This takes a void * argument as it is generally used as a cleanup. */
3143
3144 static void
3145 delete_filename_seen_cache (void *ptr)
3146 {
3147 struct filename_seen_cache *cache = ptr;
3148
3149 htab_delete (cache->tab);
3150 xfree (cache);
3151 }
3152
3153 /* If FILE is not already in the table of files in CACHE, return zero;
3154 otherwise return non-zero. Optionally add FILE to the table if ADD
3155 is non-zero.
3156
3157 NOTE: We don't manage space for FILE, we assume FILE lives as long
3158 as the caller needs. */
3159
3160 static int
3161 filename_seen (struct filename_seen_cache *cache, const char *file, int add)
3162 {
3163 void **slot;
3164
3165 /* Is FILE in tab? */
3166 slot = htab_find_slot (cache->tab, file, add ? INSERT : NO_INSERT);
3167 if (*slot != NULL)
3168 return 1;
3169
3170 /* No; maybe add it to tab. */
3171 if (add)
3172 *slot = (char *) file;
3173
3174 return 0;
3175 }
3176
3177 /* Data structure to maintain printing state for output_source_filename. */
3178
3179 struct output_source_filename_data
3180 {
3181 /* Cache of what we've seen so far. */
3182 struct filename_seen_cache *filename_seen_cache;
3183
3184 /* Flag of whether we're printing the first one. */
3185 int first;
3186 };
3187
3188 /* Slave routine for sources_info. Force line breaks at ,'s.
3189 NAME is the name to print.
3190 DATA contains the state for printing and watching for duplicates. */
3191
3192 static void
3193 output_source_filename (const char *name,
3194 struct output_source_filename_data *data)
3195 {
3196 /* Since a single source file can result in several partial symbol
3197 tables, we need to avoid printing it more than once. Note: if
3198 some of the psymtabs are read in and some are not, it gets
3199 printed both under "Source files for which symbols have been
3200 read" and "Source files for which symbols will be read in on
3201 demand". I consider this a reasonable way to deal with the
3202 situation. I'm not sure whether this can also happen for
3203 symtabs; it doesn't hurt to check. */
3204
3205 /* Was NAME already seen? */
3206 if (filename_seen (data->filename_seen_cache, name, 1))
3207 {
3208 /* Yes; don't print it again. */
3209 return;
3210 }
3211
3212 /* No; print it and reset *FIRST. */
3213 if (! data->first)
3214 printf_filtered (", ");
3215 data->first = 0;
3216
3217 wrap_here ("");
3218 fputs_filtered (name, gdb_stdout);
3219 }
3220
3221 /* A callback for map_partial_symbol_filenames. */
3222
3223 static void
3224 output_partial_symbol_filename (const char *filename, const char *fullname,
3225 void *data)
3226 {
3227 output_source_filename (fullname ? fullname : filename, data);
3228 }
3229
3230 static void
3231 sources_info (char *ignore, int from_tty)
3232 {
3233 struct symtab *s;
3234 struct objfile *objfile;
3235 struct output_source_filename_data data;
3236 struct cleanup *cleanups;
3237
3238 if (!have_full_symbols () && !have_partial_symbols ())
3239 {
3240 error (_("No symbol table is loaded. Use the \"file\" command."));
3241 }
3242
3243 data.filename_seen_cache = create_filename_seen_cache ();
3244 cleanups = make_cleanup (delete_filename_seen_cache,
3245 data.filename_seen_cache);
3246
3247 printf_filtered ("Source files for which symbols have been read in:\n\n");
3248
3249 data.first = 1;
3250 ALL_SYMTABS (objfile, s)
3251 {
3252 const char *fullname = symtab_to_fullname (s);
3253
3254 output_source_filename (fullname ? fullname : s->filename, &data);
3255 }
3256 printf_filtered ("\n\n");
3257
3258 printf_filtered ("Source files for which symbols "
3259 "will be read in on demand:\n\n");
3260
3261 clear_filename_seen_cache (data.filename_seen_cache);
3262 data.first = 1;
3263 map_partial_symbol_filenames (output_partial_symbol_filename, &data,
3264 1 /*need_fullname*/);
3265 printf_filtered ("\n");
3266
3267 do_cleanups (cleanups);
3268 }
3269
3270 static int
3271 file_matches (const char *file, char *files[], int nfiles)
3272 {
3273 int i;
3274
3275 if (file != NULL && nfiles != 0)
3276 {
3277 for (i = 0; i < nfiles; i++)
3278 {
3279 if (filename_cmp (files[i], lbasename (file)) == 0)
3280 return 1;
3281 }
3282 }
3283 else if (nfiles == 0)
3284 return 1;
3285 return 0;
3286 }
3287
3288 /* Free any memory associated with a search. */
3289
3290 void
3291 free_search_symbols (struct symbol_search *symbols)
3292 {
3293 struct symbol_search *p;
3294 struct symbol_search *next;
3295
3296 for (p = symbols; p != NULL; p = next)
3297 {
3298 next = p->next;
3299 xfree (p);
3300 }
3301 }
3302
3303 static void
3304 do_free_search_symbols_cleanup (void *symbols)
3305 {
3306 free_search_symbols (symbols);
3307 }
3308
3309 struct cleanup *
3310 make_cleanup_free_search_symbols (struct symbol_search *symbols)
3311 {
3312 return make_cleanup (do_free_search_symbols_cleanup, symbols);
3313 }
3314
3315 /* Helper function for sort_search_symbols and qsort. Can only
3316 sort symbols, not minimal symbols. */
3317
3318 static int
3319 compare_search_syms (const void *sa, const void *sb)
3320 {
3321 struct symbol_search **sym_a = (struct symbol_search **) sa;
3322 struct symbol_search **sym_b = (struct symbol_search **) sb;
3323
3324 return strcmp (SYMBOL_PRINT_NAME ((*sym_a)->symbol),
3325 SYMBOL_PRINT_NAME ((*sym_b)->symbol));
3326 }
3327
3328 /* Sort the ``nfound'' symbols in the list after prevtail. Leave
3329 prevtail where it is, but update its next pointer to point to
3330 the first of the sorted symbols. */
3331
3332 static struct symbol_search *
3333 sort_search_symbols (struct symbol_search *prevtail, int nfound)
3334 {
3335 struct symbol_search **symbols, *symp, *old_next;
3336 int i;
3337
3338 symbols = (struct symbol_search **) xmalloc (sizeof (struct symbol_search *)
3339 * nfound);
3340 symp = prevtail->next;
3341 for (i = 0; i < nfound; i++)
3342 {
3343 symbols[i] = symp;
3344 symp = symp->next;
3345 }
3346 /* Generally NULL. */
3347 old_next = symp;
3348
3349 qsort (symbols, nfound, sizeof (struct symbol_search *),
3350 compare_search_syms);
3351
3352 symp = prevtail;
3353 for (i = 0; i < nfound; i++)
3354 {
3355 symp->next = symbols[i];
3356 symp = symp->next;
3357 }
3358 symp->next = old_next;
3359
3360 xfree (symbols);
3361 return symp;
3362 }
3363
3364 /* An object of this type is passed as the user_data to the
3365 expand_symtabs_matching method. */
3366 struct search_symbols_data
3367 {
3368 int nfiles;
3369 char **files;
3370
3371 /* It is true if PREG contains valid data, false otherwise. */
3372 unsigned preg_p : 1;
3373 regex_t preg;
3374 };
3375
3376 /* A callback for expand_symtabs_matching. */
3377
3378 static int
3379 search_symbols_file_matches (const char *filename, void *user_data)
3380 {
3381 struct search_symbols_data *data = user_data;
3382
3383 return file_matches (filename, data->files, data->nfiles);
3384 }
3385
3386 /* A callback for expand_symtabs_matching. */
3387
3388 static int
3389 search_symbols_name_matches (const char *symname, void *user_data)
3390 {
3391 struct search_symbols_data *data = user_data;
3392
3393 return !data->preg_p || regexec (&data->preg, symname, 0, NULL, 0) == 0;
3394 }
3395
3396 /* Search the symbol table for matches to the regular expression REGEXP,
3397 returning the results in *MATCHES.
3398
3399 Only symbols of KIND are searched:
3400 VARIABLES_DOMAIN - search all symbols, excluding functions, type names,
3401 and constants (enums)
3402 FUNCTIONS_DOMAIN - search all functions
3403 TYPES_DOMAIN - search all type names
3404 ALL_DOMAIN - an internal error for this function
3405
3406 free_search_symbols should be called when *MATCHES is no longer needed.
3407
3408 The results are sorted locally; each symtab's global and static blocks are
3409 separately alphabetized. */
3410
3411 void
3412 search_symbols (char *regexp, enum search_domain kind,
3413 int nfiles, char *files[],
3414 struct symbol_search **matches)
3415 {
3416 struct symtab *s;
3417 struct blockvector *bv;
3418 struct block *b;
3419 int i = 0;
3420 struct block_iterator iter;
3421 struct symbol *sym;
3422 struct objfile *objfile;
3423 struct minimal_symbol *msymbol;
3424 int found_misc = 0;
3425 static const enum minimal_symbol_type types[]
3426 = {mst_data, mst_text, mst_abs};
3427 static const enum minimal_symbol_type types2[]
3428 = {mst_bss, mst_file_text, mst_abs};
3429 static const enum minimal_symbol_type types3[]
3430 = {mst_file_data, mst_solib_trampoline, mst_abs};
3431 static const enum minimal_symbol_type types4[]
3432 = {mst_file_bss, mst_text_gnu_ifunc, mst_abs};
3433 enum minimal_symbol_type ourtype;
3434 enum minimal_symbol_type ourtype2;
3435 enum minimal_symbol_type ourtype3;
3436 enum minimal_symbol_type ourtype4;
3437 struct symbol_search *sr;
3438 struct symbol_search *psr;
3439 struct symbol_search *tail;
3440 struct search_symbols_data datum;
3441
3442 /* OLD_CHAIN .. RETVAL_CHAIN is always freed, RETVAL_CHAIN .. current
3443 CLEANUP_CHAIN is freed only in the case of an error. */
3444 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
3445 struct cleanup *retval_chain;
3446
3447 gdb_assert (kind <= TYPES_DOMAIN);
3448
3449 ourtype = types[kind];
3450 ourtype2 = types2[kind];
3451 ourtype3 = types3[kind];
3452 ourtype4 = types4[kind];
3453
3454 sr = *matches = NULL;
3455 tail = NULL;
3456 datum.preg_p = 0;
3457
3458 if (regexp != NULL)
3459 {
3460 /* Make sure spacing is right for C++ operators.
3461 This is just a courtesy to make the matching less sensitive
3462 to how many spaces the user leaves between 'operator'
3463 and <TYPENAME> or <OPERATOR>. */
3464 char *opend;
3465 char *opname = operator_chars (regexp, &opend);
3466 int errcode;
3467
3468 if (*opname)
3469 {
3470 int fix = -1; /* -1 means ok; otherwise number of
3471 spaces needed. */
3472
3473 if (isalpha (*opname) || *opname == '_' || *opname == '$')
3474 {
3475 /* There should 1 space between 'operator' and 'TYPENAME'. */
3476 if (opname[-1] != ' ' || opname[-2] == ' ')
3477 fix = 1;
3478 }
3479 else
3480 {
3481 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
3482 if (opname[-1] == ' ')
3483 fix = 0;
3484 }
3485 /* If wrong number of spaces, fix it. */
3486 if (fix >= 0)
3487 {
3488 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
3489
3490 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
3491 regexp = tmp;
3492 }
3493 }
3494
3495 errcode = regcomp (&datum.preg, regexp,
3496 REG_NOSUB | (case_sensitivity == case_sensitive_off
3497 ? REG_ICASE : 0));
3498 if (errcode != 0)
3499 {
3500 char *err = get_regcomp_error (errcode, &datum.preg);
3501
3502 make_cleanup (xfree, err);
3503 error (_("Invalid regexp (%s): %s"), err, regexp);
3504 }
3505 datum.preg_p = 1;
3506 make_regfree_cleanup (&datum.preg);
3507 }
3508
3509 /* Search through the partial symtabs *first* for all symbols
3510 matching the regexp. That way we don't have to reproduce all of
3511 the machinery below. */
3512
3513 datum.nfiles = nfiles;
3514 datum.files = files;
3515 ALL_OBJFILES (objfile)
3516 {
3517 if (objfile->sf)
3518 objfile->sf->qf->expand_symtabs_matching (objfile,
3519 (nfiles == 0
3520 ? NULL
3521 : search_symbols_file_matches),
3522 search_symbols_name_matches,
3523 kind,
3524 &datum);
3525 }
3526
3527 retval_chain = old_chain;
3528
3529 /* Here, we search through the minimal symbol tables for functions
3530 and variables that match, and force their symbols to be read.
3531 This is in particular necessary for demangled variable names,
3532 which are no longer put into the partial symbol tables.
3533 The symbol will then be found during the scan of symtabs below.
3534
3535 For functions, find_pc_symtab should succeed if we have debug info
3536 for the function, for variables we have to call
3537 lookup_symbol_in_objfile_from_linkage_name to determine if the variable
3538 has debug info.
3539 If the lookup fails, set found_misc so that we will rescan to print
3540 any matching symbols without debug info.
3541 We only search the objfile the msymbol came from, we no longer search
3542 all objfiles. In large programs (1000s of shared libs) searching all
3543 objfiles is not worth the pain. */
3544
3545 if (nfiles == 0 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
3546 {
3547 ALL_MSYMBOLS (objfile, msymbol)
3548 {
3549 QUIT;
3550
3551 if (msymbol->created_by_gdb)
3552 continue;
3553
3554 if (MSYMBOL_TYPE (msymbol) == ourtype
3555 || MSYMBOL_TYPE (msymbol) == ourtype2
3556 || MSYMBOL_TYPE (msymbol) == ourtype3
3557 || MSYMBOL_TYPE (msymbol) == ourtype4)
3558 {
3559 if (!datum.preg_p
3560 || regexec (&datum.preg, SYMBOL_NATURAL_NAME (msymbol), 0,
3561 NULL, 0) == 0)
3562 {
3563 /* Note: An important side-effect of these lookup functions
3564 is to expand the symbol table if msymbol is found, for the
3565 benefit of the next loop on ALL_PRIMARY_SYMTABS. */
3566 if (kind == FUNCTIONS_DOMAIN
3567 ? find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol)) == NULL
3568 : (lookup_symbol_in_objfile_from_linkage_name
3569 (objfile, SYMBOL_LINKAGE_NAME (msymbol), VAR_DOMAIN)
3570 == NULL))
3571 found_misc = 1;
3572 }
3573 }
3574 }
3575 }
3576
3577 ALL_PRIMARY_SYMTABS (objfile, s)
3578 {
3579 bv = BLOCKVECTOR (s);
3580 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
3581 {
3582 struct symbol_search *prevtail = tail;
3583 int nfound = 0;
3584
3585 b = BLOCKVECTOR_BLOCK (bv, i);
3586 ALL_BLOCK_SYMBOLS (b, iter, sym)
3587 {
3588 struct symtab *real_symtab = SYMBOL_SYMTAB (sym);
3589
3590 QUIT;
3591
3592 if (file_matches (real_symtab->filename, files, nfiles)
3593 && ((!datum.preg_p
3594 || regexec (&datum.preg, SYMBOL_NATURAL_NAME (sym), 0,
3595 NULL, 0) == 0)
3596 && ((kind == VARIABLES_DOMAIN
3597 && SYMBOL_CLASS (sym) != LOC_TYPEDEF
3598 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
3599 && SYMBOL_CLASS (sym) != LOC_BLOCK
3600 /* LOC_CONST can be used for more than just enums,
3601 e.g., c++ static const members.
3602 We only want to skip enums here. */
3603 && !(SYMBOL_CLASS (sym) == LOC_CONST
3604 && TYPE_CODE (SYMBOL_TYPE (sym))
3605 == TYPE_CODE_ENUM))
3606 || (kind == FUNCTIONS_DOMAIN
3607 && SYMBOL_CLASS (sym) == LOC_BLOCK)
3608 || (kind == TYPES_DOMAIN
3609 && SYMBOL_CLASS (sym) == LOC_TYPEDEF))))
3610 {
3611 /* match */
3612 psr = (struct symbol_search *)
3613 xmalloc (sizeof (struct symbol_search));
3614 psr->block = i;
3615 psr->symtab = real_symtab;
3616 psr->symbol = sym;
3617 psr->msymbol = NULL;
3618 psr->next = NULL;
3619 if (tail == NULL)
3620 sr = psr;
3621 else
3622 tail->next = psr;
3623 tail = psr;
3624 nfound ++;
3625 }
3626 }
3627 if (nfound > 0)
3628 {
3629 if (prevtail == NULL)
3630 {
3631 struct symbol_search dummy;
3632
3633 dummy.next = sr;
3634 tail = sort_search_symbols (&dummy, nfound);
3635 sr = dummy.next;
3636
3637 make_cleanup_free_search_symbols (sr);
3638 }
3639 else
3640 tail = sort_search_symbols (prevtail, nfound);
3641 }
3642 }
3643 }
3644
3645 /* If there are no eyes, avoid all contact. I mean, if there are
3646 no debug symbols, then print directly from the msymbol_vector. */
3647
3648 if (found_misc || (nfiles == 0 && kind != FUNCTIONS_DOMAIN))
3649 {
3650 ALL_MSYMBOLS (objfile, msymbol)
3651 {
3652 QUIT;
3653
3654 if (msymbol->created_by_gdb)
3655 continue;
3656
3657 if (MSYMBOL_TYPE (msymbol) == ourtype
3658 || MSYMBOL_TYPE (msymbol) == ourtype2
3659 || MSYMBOL_TYPE (msymbol) == ourtype3
3660 || MSYMBOL_TYPE (msymbol) == ourtype4)
3661 {
3662 if (!datum.preg_p
3663 || regexec (&datum.preg, SYMBOL_NATURAL_NAME (msymbol), 0,
3664 NULL, 0) == 0)
3665 {
3666 /* For functions we can do a quick check of whether the
3667 symbol might be found via find_pc_symtab. */
3668 if (kind != FUNCTIONS_DOMAIN
3669 || find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol)) == NULL)
3670 {
3671 if (lookup_symbol_in_objfile_from_linkage_name
3672 (objfile, SYMBOL_LINKAGE_NAME (msymbol), VAR_DOMAIN)
3673 == NULL)
3674 {
3675 /* match */
3676 psr = (struct symbol_search *)
3677 xmalloc (sizeof (struct symbol_search));
3678 psr->block = i;
3679 psr->msymbol = msymbol;
3680 psr->symtab = NULL;
3681 psr->symbol = NULL;
3682 psr->next = NULL;
3683 if (tail == NULL)
3684 {
3685 sr = psr;
3686 make_cleanup_free_search_symbols (sr);
3687 }
3688 else
3689 tail->next = psr;
3690 tail = psr;
3691 }
3692 }
3693 }
3694 }
3695 }
3696 }
3697
3698 discard_cleanups (retval_chain);
3699 do_cleanups (old_chain);
3700 *matches = sr;
3701 }
3702
3703 /* Helper function for symtab_symbol_info, this function uses
3704 the data returned from search_symbols() to print information
3705 regarding the match to gdb_stdout. */
3706
3707 static void
3708 print_symbol_info (enum search_domain kind,
3709 struct symtab *s, struct symbol *sym,
3710 int block, char *last)
3711 {
3712 if (last == NULL || filename_cmp (last, s->filename) != 0)
3713 {
3714 fputs_filtered ("\nFile ", gdb_stdout);
3715 fputs_filtered (s->filename, gdb_stdout);
3716 fputs_filtered (":\n", gdb_stdout);
3717 }
3718
3719 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
3720 printf_filtered ("static ");
3721
3722 /* Typedef that is not a C++ class. */
3723 if (kind == TYPES_DOMAIN
3724 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
3725 typedef_print (SYMBOL_TYPE (sym), sym, gdb_stdout);
3726 /* variable, func, or typedef-that-is-c++-class. */
3727 else if (kind < TYPES_DOMAIN
3728 || (kind == TYPES_DOMAIN
3729 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
3730 {
3731 type_print (SYMBOL_TYPE (sym),
3732 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
3733 ? "" : SYMBOL_PRINT_NAME (sym)),
3734 gdb_stdout, 0);
3735
3736 printf_filtered (";\n");
3737 }
3738 }
3739
3740 /* This help function for symtab_symbol_info() prints information
3741 for non-debugging symbols to gdb_stdout. */
3742
3743 static void
3744 print_msymbol_info (struct minimal_symbol *msymbol)
3745 {
3746 struct gdbarch *gdbarch = get_objfile_arch (msymbol_objfile (msymbol));
3747 char *tmp;
3748
3749 if (gdbarch_addr_bit (gdbarch) <= 32)
3750 tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol)
3751 & (CORE_ADDR) 0xffffffff,
3752 8);
3753 else
3754 tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol),
3755 16);
3756 printf_filtered ("%s %s\n",
3757 tmp, SYMBOL_PRINT_NAME (msymbol));
3758 }
3759
3760 /* This is the guts of the commands "info functions", "info types", and
3761 "info variables". It calls search_symbols to find all matches and then
3762 print_[m]symbol_info to print out some useful information about the
3763 matches. */
3764
3765 static void
3766 symtab_symbol_info (char *regexp, enum search_domain kind, int from_tty)
3767 {
3768 static const char * const classnames[] =
3769 {"variable", "function", "type"};
3770 struct symbol_search *symbols;
3771 struct symbol_search *p;
3772 struct cleanup *old_chain;
3773 char *last_filename = NULL;
3774 int first = 1;
3775
3776 gdb_assert (kind <= TYPES_DOMAIN);
3777
3778 /* Must make sure that if we're interrupted, symbols gets freed. */
3779 search_symbols (regexp, kind, 0, (char **) NULL, &symbols);
3780 old_chain = make_cleanup_free_search_symbols (symbols);
3781
3782 if (regexp != NULL)
3783 printf_filtered (_("All %ss matching regular expression \"%s\":\n"),
3784 classnames[kind], regexp);
3785 else
3786 printf_filtered (_("All defined %ss:\n"), classnames[kind]);
3787
3788 for (p = symbols; p != NULL; p = p->next)
3789 {
3790 QUIT;
3791
3792 if (p->msymbol != NULL)
3793 {
3794 if (first)
3795 {
3796 printf_filtered (_("\nNon-debugging symbols:\n"));
3797 first = 0;
3798 }
3799 print_msymbol_info (p->msymbol);
3800 }
3801 else
3802 {
3803 print_symbol_info (kind,
3804 p->symtab,
3805 p->symbol,
3806 p->block,
3807 last_filename);
3808 last_filename = p->symtab->filename;
3809 }
3810 }
3811
3812 do_cleanups (old_chain);
3813 }
3814
3815 static void
3816 variables_info (char *regexp, int from_tty)
3817 {
3818 symtab_symbol_info (regexp, VARIABLES_DOMAIN, from_tty);
3819 }
3820
3821 static void
3822 functions_info (char *regexp, int from_tty)
3823 {
3824 symtab_symbol_info (regexp, FUNCTIONS_DOMAIN, from_tty);
3825 }
3826
3827
3828 static void
3829 types_info (char *regexp, int from_tty)
3830 {
3831 symtab_symbol_info (regexp, TYPES_DOMAIN, from_tty);
3832 }
3833
3834 /* Breakpoint all functions matching regular expression. */
3835
3836 void
3837 rbreak_command_wrapper (char *regexp, int from_tty)
3838 {
3839 rbreak_command (regexp, from_tty);
3840 }
3841
3842 /* A cleanup function that calls end_rbreak_breakpoints. */
3843
3844 static void
3845 do_end_rbreak_breakpoints (void *ignore)
3846 {
3847 end_rbreak_breakpoints ();
3848 }
3849
3850 static void
3851 rbreak_command (char *regexp, int from_tty)
3852 {
3853 struct symbol_search *ss;
3854 struct symbol_search *p;
3855 struct cleanup *old_chain;
3856 char *string = NULL;
3857 int len = 0;
3858 char **files = NULL, *file_name;
3859 int nfiles = 0;
3860
3861 if (regexp)
3862 {
3863 char *colon = strchr (regexp, ':');
3864
3865 if (colon && *(colon + 1) != ':')
3866 {
3867 int colon_index;
3868
3869 colon_index = colon - regexp;
3870 file_name = alloca (colon_index + 1);
3871 memcpy (file_name, regexp, colon_index);
3872 file_name[colon_index--] = 0;
3873 while (isspace (file_name[colon_index]))
3874 file_name[colon_index--] = 0;
3875 files = &file_name;
3876 nfiles = 1;
3877 regexp = colon + 1;
3878 while (isspace (*regexp)) regexp++;
3879 }
3880 }
3881
3882 search_symbols (regexp, FUNCTIONS_DOMAIN, nfiles, files, &ss);
3883 old_chain = make_cleanup_free_search_symbols (ss);
3884 make_cleanup (free_current_contents, &string);
3885
3886 start_rbreak_breakpoints ();
3887 make_cleanup (do_end_rbreak_breakpoints, NULL);
3888 for (p = ss; p != NULL; p = p->next)
3889 {
3890 if (p->msymbol == NULL)
3891 {
3892 int newlen = (strlen (p->symtab->filename)
3893 + strlen (SYMBOL_LINKAGE_NAME (p->symbol))
3894 + 4);
3895
3896 if (newlen > len)
3897 {
3898 string = xrealloc (string, newlen);
3899 len = newlen;
3900 }
3901 strcpy (string, p->symtab->filename);
3902 strcat (string, ":'");
3903 strcat (string, SYMBOL_LINKAGE_NAME (p->symbol));
3904 strcat (string, "'");
3905 break_command (string, from_tty);
3906 print_symbol_info (FUNCTIONS_DOMAIN,
3907 p->symtab,
3908 p->symbol,
3909 p->block,
3910 p->symtab->filename);
3911 }
3912 else
3913 {
3914 int newlen = (strlen (SYMBOL_LINKAGE_NAME (p->msymbol)) + 3);
3915
3916 if (newlen > len)
3917 {
3918 string = xrealloc (string, newlen);
3919 len = newlen;
3920 }
3921 strcpy (string, "'");
3922 strcat (string, SYMBOL_LINKAGE_NAME (p->msymbol));
3923 strcat (string, "'");
3924
3925 break_command (string, from_tty);
3926 printf_filtered ("<function, no debug info> %s;\n",
3927 SYMBOL_PRINT_NAME (p->msymbol));
3928 }
3929 }
3930
3931 do_cleanups (old_chain);
3932 }
3933 \f
3934
3935 /* Evaluate if NAME matches SYM_TEXT and SYM_TEXT_LEN.
3936
3937 Either sym_text[sym_text_len] != '(' and then we search for any
3938 symbol starting with SYM_TEXT text.
3939
3940 Otherwise sym_text[sym_text_len] == '(' and then we require symbol name to
3941 be terminated at that point. Partial symbol tables do not have parameters
3942 information. */
3943
3944 static int
3945 compare_symbol_name (const char *name, const char *sym_text, int sym_text_len)
3946 {
3947 int (*ncmp) (const char *, const char *, size_t);
3948
3949 ncmp = (case_sensitivity == case_sensitive_on ? strncmp : strncasecmp);
3950
3951 if (ncmp (name, sym_text, sym_text_len) != 0)
3952 return 0;
3953
3954 if (sym_text[sym_text_len] == '(')
3955 {
3956 /* User searches for `name(someth...'. Require NAME to be terminated.
3957 Normally psymtabs and gdbindex have no parameter types so '\0' will be
3958 present but accept even parameters presence. In this case this
3959 function is in fact strcmp_iw but whitespace skipping is not supported
3960 for tab completion. */
3961
3962 if (name[sym_text_len] != '\0' && name[sym_text_len] != '(')
3963 return 0;
3964 }
3965
3966 return 1;
3967 }
3968
3969 /* Free any memory associated with a completion list. */
3970
3971 static void
3972 free_completion_list (VEC (char_ptr) **list_ptr)
3973 {
3974 int i;
3975 char *p;
3976
3977 for (i = 0; VEC_iterate (char_ptr, *list_ptr, i, p); ++i)
3978 xfree (p);
3979 VEC_free (char_ptr, *list_ptr);
3980 }
3981
3982 /* Callback for make_cleanup. */
3983
3984 static void
3985 do_free_completion_list (void *list)
3986 {
3987 free_completion_list (list);
3988 }
3989
3990 /* Helper routine for make_symbol_completion_list. */
3991
3992 static VEC (char_ptr) *return_val;
3993
3994 #define COMPLETION_LIST_ADD_SYMBOL(symbol, sym_text, len, text, word) \
3995 completion_list_add_name \
3996 (SYMBOL_NATURAL_NAME (symbol), (sym_text), (len), (text), (word))
3997
3998 /* Test to see if the symbol specified by SYMNAME (which is already
3999 demangled for C++ symbols) matches SYM_TEXT in the first SYM_TEXT_LEN
4000 characters. If so, add it to the current completion list. */
4001
4002 static void
4003 completion_list_add_name (const char *symname,
4004 const char *sym_text, int sym_text_len,
4005 const char *text, const char *word)
4006 {
4007 int newsize;
4008
4009 /* Clip symbols that cannot match. */
4010 if (!compare_symbol_name (symname, sym_text, sym_text_len))
4011 return;
4012
4013 /* We have a match for a completion, so add SYMNAME to the current list
4014 of matches. Note that the name is moved to freshly malloc'd space. */
4015
4016 {
4017 char *new;
4018
4019 if (word == sym_text)
4020 {
4021 new = xmalloc (strlen (symname) + 5);
4022 strcpy (new, symname);
4023 }
4024 else if (word > sym_text)
4025 {
4026 /* Return some portion of symname. */
4027 new = xmalloc (strlen (symname) + 5);
4028 strcpy (new, symname + (word - sym_text));
4029 }
4030 else
4031 {
4032 /* Return some of SYM_TEXT plus symname. */
4033 new = xmalloc (strlen (symname) + (sym_text - word) + 5);
4034 strncpy (new, word, sym_text - word);
4035 new[sym_text - word] = '\0';
4036 strcat (new, symname);
4037 }
4038
4039 VEC_safe_push (char_ptr, return_val, new);
4040 }
4041 }
4042
4043 /* ObjC: In case we are completing on a selector, look as the msymbol
4044 again and feed all the selectors into the mill. */
4045
4046 static void
4047 completion_list_objc_symbol (struct minimal_symbol *msymbol,
4048 const char *sym_text, int sym_text_len,
4049 const char *text, const char *word)
4050 {
4051 static char *tmp = NULL;
4052 static unsigned int tmplen = 0;
4053
4054 const char *method, *category, *selector;
4055 char *tmp2 = NULL;
4056
4057 method = SYMBOL_NATURAL_NAME (msymbol);
4058
4059 /* Is it a method? */
4060 if ((method[0] != '-') && (method[0] != '+'))
4061 return;
4062
4063 if (sym_text[0] == '[')
4064 /* Complete on shortened method method. */
4065 completion_list_add_name (method + 1, sym_text, sym_text_len, text, word);
4066
4067 while ((strlen (method) + 1) >= tmplen)
4068 {
4069 if (tmplen == 0)
4070 tmplen = 1024;
4071 else
4072 tmplen *= 2;
4073 tmp = xrealloc (tmp, tmplen);
4074 }
4075 selector = strchr (method, ' ');
4076 if (selector != NULL)
4077 selector++;
4078
4079 category = strchr (method, '(');
4080
4081 if ((category != NULL) && (selector != NULL))
4082 {
4083 memcpy (tmp, method, (category - method));
4084 tmp[category - method] = ' ';
4085 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
4086 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
4087 if (sym_text[0] == '[')
4088 completion_list_add_name (tmp + 1, sym_text, sym_text_len, text, word);
4089 }
4090
4091 if (selector != NULL)
4092 {
4093 /* Complete on selector only. */
4094 strcpy (tmp, selector);
4095 tmp2 = strchr (tmp, ']');
4096 if (tmp2 != NULL)
4097 *tmp2 = '\0';
4098
4099 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
4100 }
4101 }
4102
4103 /* Break the non-quoted text based on the characters which are in
4104 symbols. FIXME: This should probably be language-specific. */
4105
4106 static char *
4107 language_search_unquoted_string (char *text, char *p)
4108 {
4109 for (; p > text; --p)
4110 {
4111 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
4112 continue;
4113 else
4114 {
4115 if ((current_language->la_language == language_objc))
4116 {
4117 if (p[-1] == ':') /* Might be part of a method name. */
4118 continue;
4119 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
4120 p -= 2; /* Beginning of a method name. */
4121 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
4122 { /* Might be part of a method name. */
4123 char *t = p;
4124
4125 /* Seeing a ' ' or a '(' is not conclusive evidence
4126 that we are in the middle of a method name. However,
4127 finding "-[" or "+[" should be pretty un-ambiguous.
4128 Unfortunately we have to find it now to decide. */
4129
4130 while (t > text)
4131 if (isalnum (t[-1]) || t[-1] == '_' ||
4132 t[-1] == ' ' || t[-1] == ':' ||
4133 t[-1] == '(' || t[-1] == ')')
4134 --t;
4135 else
4136 break;
4137
4138 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
4139 p = t - 2; /* Method name detected. */
4140 /* Else we leave with p unchanged. */
4141 }
4142 }
4143 break;
4144 }
4145 }
4146 return p;
4147 }
4148
4149 static void
4150 completion_list_add_fields (struct symbol *sym, char *sym_text,
4151 int sym_text_len, char *text, char *word)
4152 {
4153 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4154 {
4155 struct type *t = SYMBOL_TYPE (sym);
4156 enum type_code c = TYPE_CODE (t);
4157 int j;
4158
4159 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
4160 for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++)
4161 if (TYPE_FIELD_NAME (t, j))
4162 completion_list_add_name (TYPE_FIELD_NAME (t, j),
4163 sym_text, sym_text_len, text, word);
4164 }
4165 }
4166
4167 /* Type of the user_data argument passed to add_macro_name or
4168 expand_partial_symbol_name. The contents are simply whatever is
4169 needed by completion_list_add_name. */
4170 struct add_name_data
4171 {
4172 char *sym_text;
4173 int sym_text_len;
4174 char *text;
4175 char *word;
4176 };
4177
4178 /* A callback used with macro_for_each and macro_for_each_in_scope.
4179 This adds a macro's name to the current completion list. */
4180
4181 static void
4182 add_macro_name (const char *name, const struct macro_definition *ignore,
4183 struct macro_source_file *ignore2, int ignore3,
4184 void *user_data)
4185 {
4186 struct add_name_data *datum = (struct add_name_data *) user_data;
4187
4188 completion_list_add_name ((char *) name,
4189 datum->sym_text, datum->sym_text_len,
4190 datum->text, datum->word);
4191 }
4192
4193 /* A callback for expand_partial_symbol_names. */
4194
4195 static int
4196 expand_partial_symbol_name (const char *name, void *user_data)
4197 {
4198 struct add_name_data *datum = (struct add_name_data *) user_data;
4199
4200 return compare_symbol_name (name, datum->sym_text, datum->sym_text_len);
4201 }
4202
4203 VEC (char_ptr) *
4204 default_make_symbol_completion_list_break_on (char *text, char *word,
4205 const char *break_on,
4206 enum type_code code)
4207 {
4208 /* Problem: All of the symbols have to be copied because readline
4209 frees them. I'm not going to worry about this; hopefully there
4210 won't be that many. */
4211
4212 struct symbol *sym;
4213 struct symtab *s;
4214 struct minimal_symbol *msymbol;
4215 struct objfile *objfile;
4216 struct block *b;
4217 const struct block *surrounding_static_block, *surrounding_global_block;
4218 struct block_iterator iter;
4219 /* The symbol we are completing on. Points in same buffer as text. */
4220 char *sym_text;
4221 /* Length of sym_text. */
4222 int sym_text_len;
4223 struct add_name_data datum;
4224 struct cleanup *back_to;
4225
4226 /* Now look for the symbol we are supposed to complete on. */
4227 {
4228 char *p;
4229 char quote_found;
4230 char *quote_pos = NULL;
4231
4232 /* First see if this is a quoted string. */
4233 quote_found = '\0';
4234 for (p = text; *p != '\0'; ++p)
4235 {
4236 if (quote_found != '\0')
4237 {
4238 if (*p == quote_found)
4239 /* Found close quote. */
4240 quote_found = '\0';
4241 else if (*p == '\\' && p[1] == quote_found)
4242 /* A backslash followed by the quote character
4243 doesn't end the string. */
4244 ++p;
4245 }
4246 else if (*p == '\'' || *p == '"')
4247 {
4248 quote_found = *p;
4249 quote_pos = p;
4250 }
4251 }
4252 if (quote_found == '\'')
4253 /* A string within single quotes can be a symbol, so complete on it. */
4254 sym_text = quote_pos + 1;
4255 else if (quote_found == '"')
4256 /* A double-quoted string is never a symbol, nor does it make sense
4257 to complete it any other way. */
4258 {
4259 return NULL;
4260 }
4261 else
4262 {
4263 /* It is not a quoted string. Break it based on the characters
4264 which are in symbols. */
4265 while (p > text)
4266 {
4267 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0'
4268 || p[-1] == ':' || strchr (break_on, p[-1]) != NULL)
4269 --p;
4270 else
4271 break;
4272 }
4273 sym_text = p;
4274 }
4275 }
4276
4277 sym_text_len = strlen (sym_text);
4278
4279 /* Prepare SYM_TEXT_LEN for compare_symbol_name. */
4280
4281 if (current_language->la_language == language_cplus
4282 || current_language->la_language == language_java
4283 || current_language->la_language == language_fortran)
4284 {
4285 /* These languages may have parameters entered by user but they are never
4286 present in the partial symbol tables. */
4287
4288 const char *cs = memchr (sym_text, '(', sym_text_len);
4289
4290 if (cs)
4291 sym_text_len = cs - sym_text;
4292 }
4293 gdb_assert (sym_text[sym_text_len] == '\0' || sym_text[sym_text_len] == '(');
4294
4295 return_val = NULL;
4296 back_to = make_cleanup (do_free_completion_list, &return_val);
4297
4298 datum.sym_text = sym_text;
4299 datum.sym_text_len = sym_text_len;
4300 datum.text = text;
4301 datum.word = word;
4302
4303 /* Look through the partial symtabs for all symbols which begin
4304 by matching SYM_TEXT. Expand all CUs that you find to the list.
4305 The real names will get added by COMPLETION_LIST_ADD_SYMBOL below. */
4306 expand_partial_symbol_names (expand_partial_symbol_name, &datum);
4307
4308 /* At this point scan through the misc symbol vectors and add each
4309 symbol you find to the list. Eventually we want to ignore
4310 anything that isn't a text symbol (everything else will be
4311 handled by the psymtab code above). */
4312
4313 if (code == TYPE_CODE_UNDEF)
4314 {
4315 ALL_MSYMBOLS (objfile, msymbol)
4316 {
4317 QUIT;
4318 COMPLETION_LIST_ADD_SYMBOL (msymbol, sym_text, sym_text_len, text,
4319 word);
4320
4321 completion_list_objc_symbol (msymbol, sym_text, sym_text_len, text,
4322 word);
4323 }
4324 }
4325
4326 /* Search upwards from currently selected frame (so that we can
4327 complete on local vars). Also catch fields of types defined in
4328 this places which match our text string. Only complete on types
4329 visible from current context. */
4330
4331 b = get_selected_block (0);
4332 surrounding_static_block = block_static_block (b);
4333 surrounding_global_block = block_global_block (b);
4334 if (surrounding_static_block != NULL)
4335 while (b != surrounding_static_block)
4336 {
4337 QUIT;
4338
4339 ALL_BLOCK_SYMBOLS (b, iter, sym)
4340 {
4341 if (code == TYPE_CODE_UNDEF)
4342 {
4343 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text,
4344 word);
4345 completion_list_add_fields (sym, sym_text, sym_text_len, text,
4346 word);
4347 }
4348 else if (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4349 && TYPE_CODE (SYMBOL_TYPE (sym)) == code)
4350 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text,
4351 word);
4352 }
4353
4354 /* Stop when we encounter an enclosing function. Do not stop for
4355 non-inlined functions - the locals of the enclosing function
4356 are in scope for a nested function. */
4357 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
4358 break;
4359 b = BLOCK_SUPERBLOCK (b);
4360 }
4361
4362 /* Add fields from the file's types; symbols will be added below. */
4363
4364 if (code == TYPE_CODE_UNDEF)
4365 {
4366 if (surrounding_static_block != NULL)
4367 ALL_BLOCK_SYMBOLS (surrounding_static_block, iter, sym)
4368 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
4369
4370 if (surrounding_global_block != NULL)
4371 ALL_BLOCK_SYMBOLS (surrounding_global_block, iter, sym)
4372 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
4373 }
4374
4375 /* Go through the symtabs and check the externs and statics for
4376 symbols which match. */
4377
4378 ALL_PRIMARY_SYMTABS (objfile, s)
4379 {
4380 QUIT;
4381 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
4382 ALL_BLOCK_SYMBOLS (b, iter, sym)
4383 {
4384 if (code == TYPE_CODE_UNDEF
4385 || (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4386 && TYPE_CODE (SYMBOL_TYPE (sym)) == code))
4387 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4388 }
4389 }
4390
4391 ALL_PRIMARY_SYMTABS (objfile, s)
4392 {
4393 QUIT;
4394 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
4395 ALL_BLOCK_SYMBOLS (b, iter, sym)
4396 {
4397 if (code == TYPE_CODE_UNDEF
4398 || (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4399 && TYPE_CODE (SYMBOL_TYPE (sym)) == code))
4400 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4401 }
4402 }
4403
4404 /* Skip macros if we are completing a struct tag -- arguable but
4405 usually what is expected. */
4406 if (current_language->la_macro_expansion == macro_expansion_c
4407 && code == TYPE_CODE_UNDEF)
4408 {
4409 struct macro_scope *scope;
4410
4411 /* Add any macros visible in the default scope. Note that this
4412 may yield the occasional wrong result, because an expression
4413 might be evaluated in a scope other than the default. For
4414 example, if the user types "break file:line if <TAB>", the
4415 resulting expression will be evaluated at "file:line" -- but
4416 at there does not seem to be a way to detect this at
4417 completion time. */
4418 scope = default_macro_scope ();
4419 if (scope)
4420 {
4421 macro_for_each_in_scope (scope->file, scope->line,
4422 add_macro_name, &datum);
4423 xfree (scope);
4424 }
4425
4426 /* User-defined macros are always visible. */
4427 macro_for_each (macro_user_macros, add_macro_name, &datum);
4428 }
4429
4430 discard_cleanups (back_to);
4431 return (return_val);
4432 }
4433
4434 VEC (char_ptr) *
4435 default_make_symbol_completion_list (char *text, char *word,
4436 enum type_code code)
4437 {
4438 return default_make_symbol_completion_list_break_on (text, word, "", code);
4439 }
4440
4441 /* Return a vector of all symbols (regardless of class) which begin by
4442 matching TEXT. If the answer is no symbols, then the return value
4443 is NULL. */
4444
4445 VEC (char_ptr) *
4446 make_symbol_completion_list (char *text, char *word)
4447 {
4448 return current_language->la_make_symbol_completion_list (text, word,
4449 TYPE_CODE_UNDEF);
4450 }
4451
4452 /* Like make_symbol_completion_list, but only return STRUCT_DOMAIN
4453 symbols whose type code is CODE. */
4454
4455 VEC (char_ptr) *
4456 make_symbol_completion_type (char *text, char *word, enum type_code code)
4457 {
4458 gdb_assert (code == TYPE_CODE_UNION
4459 || code == TYPE_CODE_STRUCT
4460 || code == TYPE_CODE_CLASS
4461 || code == TYPE_CODE_ENUM);
4462 return current_language->la_make_symbol_completion_list (text, word, code);
4463 }
4464
4465 /* Like make_symbol_completion_list, but suitable for use as a
4466 completion function. */
4467
4468 VEC (char_ptr) *
4469 make_symbol_completion_list_fn (struct cmd_list_element *ignore,
4470 char *text, char *word)
4471 {
4472 return make_symbol_completion_list (text, word);
4473 }
4474
4475 /* Like make_symbol_completion_list, but returns a list of symbols
4476 defined in a source file FILE. */
4477
4478 VEC (char_ptr) *
4479 make_file_symbol_completion_list (char *text, char *word, char *srcfile)
4480 {
4481 struct symbol *sym;
4482 struct symtab *s;
4483 struct block *b;
4484 struct block_iterator iter;
4485 /* The symbol we are completing on. Points in same buffer as text. */
4486 char *sym_text;
4487 /* Length of sym_text. */
4488 int sym_text_len;
4489
4490 /* Now look for the symbol we are supposed to complete on.
4491 FIXME: This should be language-specific. */
4492 {
4493 char *p;
4494 char quote_found;
4495 char *quote_pos = NULL;
4496
4497 /* First see if this is a quoted string. */
4498 quote_found = '\0';
4499 for (p = text; *p != '\0'; ++p)
4500 {
4501 if (quote_found != '\0')
4502 {
4503 if (*p == quote_found)
4504 /* Found close quote. */
4505 quote_found = '\0';
4506 else if (*p == '\\' && p[1] == quote_found)
4507 /* A backslash followed by the quote character
4508 doesn't end the string. */
4509 ++p;
4510 }
4511 else if (*p == '\'' || *p == '"')
4512 {
4513 quote_found = *p;
4514 quote_pos = p;
4515 }
4516 }
4517 if (quote_found == '\'')
4518 /* A string within single quotes can be a symbol, so complete on it. */
4519 sym_text = quote_pos + 1;
4520 else if (quote_found == '"')
4521 /* A double-quoted string is never a symbol, nor does it make sense
4522 to complete it any other way. */
4523 {
4524 return NULL;
4525 }
4526 else
4527 {
4528 /* Not a quoted string. */
4529 sym_text = language_search_unquoted_string (text, p);
4530 }
4531 }
4532
4533 sym_text_len = strlen (sym_text);
4534
4535 return_val = NULL;
4536
4537 /* Find the symtab for SRCFILE (this loads it if it was not yet read
4538 in). */
4539 s = lookup_symtab (srcfile);
4540 if (s == NULL)
4541 {
4542 /* Maybe they typed the file with leading directories, while the
4543 symbol tables record only its basename. */
4544 const char *tail = lbasename (srcfile);
4545
4546 if (tail > srcfile)
4547 s = lookup_symtab (tail);
4548 }
4549
4550 /* If we have no symtab for that file, return an empty list. */
4551 if (s == NULL)
4552 return (return_val);
4553
4554 /* Go through this symtab and check the externs and statics for
4555 symbols which match. */
4556
4557 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
4558 ALL_BLOCK_SYMBOLS (b, iter, sym)
4559 {
4560 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4561 }
4562
4563 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
4564 ALL_BLOCK_SYMBOLS (b, iter, sym)
4565 {
4566 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4567 }
4568
4569 return (return_val);
4570 }
4571
4572 /* A helper function for make_source_files_completion_list. It adds
4573 another file name to a list of possible completions, growing the
4574 list as necessary. */
4575
4576 static void
4577 add_filename_to_list (const char *fname, char *text, char *word,
4578 VEC (char_ptr) **list)
4579 {
4580 char *new;
4581 size_t fnlen = strlen (fname);
4582
4583 if (word == text)
4584 {
4585 /* Return exactly fname. */
4586 new = xmalloc (fnlen + 5);
4587 strcpy (new, fname);
4588 }
4589 else if (word > text)
4590 {
4591 /* Return some portion of fname. */
4592 new = xmalloc (fnlen + 5);
4593 strcpy (new, fname + (word - text));
4594 }
4595 else
4596 {
4597 /* Return some of TEXT plus fname. */
4598 new = xmalloc (fnlen + (text - word) + 5);
4599 strncpy (new, word, text - word);
4600 new[text - word] = '\0';
4601 strcat (new, fname);
4602 }
4603 VEC_safe_push (char_ptr, *list, new);
4604 }
4605
4606 static int
4607 not_interesting_fname (const char *fname)
4608 {
4609 static const char *illegal_aliens[] = {
4610 "_globals_", /* inserted by coff_symtab_read */
4611 NULL
4612 };
4613 int i;
4614
4615 for (i = 0; illegal_aliens[i]; i++)
4616 {
4617 if (filename_cmp (fname, illegal_aliens[i]) == 0)
4618 return 1;
4619 }
4620 return 0;
4621 }
4622
4623 /* An object of this type is passed as the user_data argument to
4624 map_partial_symbol_filenames. */
4625 struct add_partial_filename_data
4626 {
4627 struct filename_seen_cache *filename_seen_cache;
4628 char *text;
4629 char *word;
4630 int text_len;
4631 VEC (char_ptr) **list;
4632 };
4633
4634 /* A callback for map_partial_symbol_filenames. */
4635
4636 static void
4637 maybe_add_partial_symtab_filename (const char *filename, const char *fullname,
4638 void *user_data)
4639 {
4640 struct add_partial_filename_data *data = user_data;
4641
4642 if (not_interesting_fname (filename))
4643 return;
4644 if (!filename_seen (data->filename_seen_cache, filename, 1)
4645 && filename_ncmp (filename, data->text, data->text_len) == 0)
4646 {
4647 /* This file matches for a completion; add it to the
4648 current list of matches. */
4649 add_filename_to_list (filename, data->text, data->word, data->list);
4650 }
4651 else
4652 {
4653 const char *base_name = lbasename (filename);
4654
4655 if (base_name != filename
4656 && !filename_seen (data->filename_seen_cache, base_name, 1)
4657 && filename_ncmp (base_name, data->text, data->text_len) == 0)
4658 add_filename_to_list (base_name, data->text, data->word, data->list);
4659 }
4660 }
4661
4662 /* Return a vector of all source files whose names begin with matching
4663 TEXT. The file names are looked up in the symbol tables of this
4664 program. If the answer is no matchess, then the return value is
4665 NULL. */
4666
4667 VEC (char_ptr) *
4668 make_source_files_completion_list (char *text, char *word)
4669 {
4670 struct symtab *s;
4671 struct objfile *objfile;
4672 size_t text_len = strlen (text);
4673 VEC (char_ptr) *list = NULL;
4674 const char *base_name;
4675 struct add_partial_filename_data datum;
4676 struct filename_seen_cache *filename_seen_cache;
4677 struct cleanup *back_to, *cache_cleanup;
4678
4679 if (!have_full_symbols () && !have_partial_symbols ())
4680 return list;
4681
4682 back_to = make_cleanup (do_free_completion_list, &list);
4683
4684 filename_seen_cache = create_filename_seen_cache ();
4685 cache_cleanup = make_cleanup (delete_filename_seen_cache,
4686 filename_seen_cache);
4687
4688 ALL_SYMTABS (objfile, s)
4689 {
4690 if (not_interesting_fname (s->filename))
4691 continue;
4692 if (!filename_seen (filename_seen_cache, s->filename, 1)
4693 && filename_ncmp (s->filename, text, text_len) == 0)
4694 {
4695 /* This file matches for a completion; add it to the current
4696 list of matches. */
4697 add_filename_to_list (s->filename, text, word, &list);
4698 }
4699 else
4700 {
4701 /* NOTE: We allow the user to type a base name when the
4702 debug info records leading directories, but not the other
4703 way around. This is what subroutines of breakpoint
4704 command do when they parse file names. */
4705 base_name = lbasename (s->filename);
4706 if (base_name != s->filename
4707 && !filename_seen (filename_seen_cache, base_name, 1)
4708 && filename_ncmp (base_name, text, text_len) == 0)
4709 add_filename_to_list (base_name, text, word, &list);
4710 }
4711 }
4712
4713 datum.filename_seen_cache = filename_seen_cache;
4714 datum.text = text;
4715 datum.word = word;
4716 datum.text_len = text_len;
4717 datum.list = &list;
4718 map_partial_symbol_filenames (maybe_add_partial_symtab_filename, &datum,
4719 0 /*need_fullname*/);
4720
4721 do_cleanups (cache_cleanup);
4722 discard_cleanups (back_to);
4723
4724 return list;
4725 }
4726
4727 /* Determine if PC is in the prologue of a function. The prologue is the area
4728 between the first instruction of a function, and the first executable line.
4729 Returns 1 if PC *might* be in prologue, 0 if definately *not* in prologue.
4730
4731 If non-zero, func_start is where we think the prologue starts, possibly
4732 by previous examination of symbol table information. */
4733
4734 int
4735 in_prologue (struct gdbarch *gdbarch, CORE_ADDR pc, CORE_ADDR func_start)
4736 {
4737 struct symtab_and_line sal;
4738 CORE_ADDR func_addr, func_end;
4739
4740 /* We have several sources of information we can consult to figure
4741 this out.
4742 - Compilers usually emit line number info that marks the prologue
4743 as its own "source line". So the ending address of that "line"
4744 is the end of the prologue. If available, this is the most
4745 reliable method.
4746 - The minimal symbols and partial symbols, which can usually tell
4747 us the starting and ending addresses of a function.
4748 - If we know the function's start address, we can call the
4749 architecture-defined gdbarch_skip_prologue function to analyze the
4750 instruction stream and guess where the prologue ends.
4751 - Our `func_start' argument; if non-zero, this is the caller's
4752 best guess as to the function's entry point. At the time of
4753 this writing, handle_inferior_event doesn't get this right, so
4754 it should be our last resort. */
4755
4756 /* Consult the partial symbol table, to find which function
4757 the PC is in. */
4758 if (! find_pc_partial_function (pc, NULL, &func_addr, &func_end))
4759 {
4760 CORE_ADDR prologue_end;
4761
4762 /* We don't even have minsym information, so fall back to using
4763 func_start, if given. */
4764 if (! func_start)
4765 return 1; /* We *might* be in a prologue. */
4766
4767 prologue_end = gdbarch_skip_prologue (gdbarch, func_start);
4768
4769 return func_start <= pc && pc < prologue_end;
4770 }
4771
4772 /* If we have line number information for the function, that's
4773 usually pretty reliable. */
4774 sal = find_pc_line (func_addr, 0);
4775
4776 /* Now sal describes the source line at the function's entry point,
4777 which (by convention) is the prologue. The end of that "line",
4778 sal.end, is the end of the prologue.
4779
4780 Note that, for functions whose source code is all on a single
4781 line, the line number information doesn't always end up this way.
4782 So we must verify that our purported end-of-prologue address is
4783 *within* the function, not at its start or end. */
4784 if (sal.line == 0
4785 || sal.end <= func_addr
4786 || func_end <= sal.end)
4787 {
4788 /* We don't have any good line number info, so use the minsym
4789 information, together with the architecture-specific prologue
4790 scanning code. */
4791 CORE_ADDR prologue_end = gdbarch_skip_prologue (gdbarch, func_addr);
4792
4793 return func_addr <= pc && pc < prologue_end;
4794 }
4795
4796 /* We have line number info, and it looks good. */
4797 return func_addr <= pc && pc < sal.end;
4798 }
4799
4800 /* Given PC at the function's start address, attempt to find the
4801 prologue end using SAL information. Return zero if the skip fails.
4802
4803 A non-optimized prologue traditionally has one SAL for the function
4804 and a second for the function body. A single line function has
4805 them both pointing at the same line.
4806
4807 An optimized prologue is similar but the prologue may contain
4808 instructions (SALs) from the instruction body. Need to skip those
4809 while not getting into the function body.
4810
4811 The functions end point and an increasing SAL line are used as
4812 indicators of the prologue's endpoint.
4813
4814 This code is based on the function refine_prologue_limit
4815 (found in ia64). */
4816
4817 CORE_ADDR
4818 skip_prologue_using_sal (struct gdbarch *gdbarch, CORE_ADDR func_addr)
4819 {
4820 struct symtab_and_line prologue_sal;
4821 CORE_ADDR start_pc;
4822 CORE_ADDR end_pc;
4823 struct block *bl;
4824
4825 /* Get an initial range for the function. */
4826 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
4827 start_pc += gdbarch_deprecated_function_start_offset (gdbarch);
4828
4829 prologue_sal = find_pc_line (start_pc, 0);
4830 if (prologue_sal.line != 0)
4831 {
4832 /* For languages other than assembly, treat two consecutive line
4833 entries at the same address as a zero-instruction prologue.
4834 The GNU assembler emits separate line notes for each instruction
4835 in a multi-instruction macro, but compilers generally will not
4836 do this. */
4837 if (prologue_sal.symtab->language != language_asm)
4838 {
4839 struct linetable *linetable = LINETABLE (prologue_sal.symtab);
4840 int idx = 0;
4841
4842 /* Skip any earlier lines, and any end-of-sequence marker
4843 from a previous function. */
4844 while (linetable->item[idx].pc != prologue_sal.pc
4845 || linetable->item[idx].line == 0)
4846 idx++;
4847
4848 if (idx+1 < linetable->nitems
4849 && linetable->item[idx+1].line != 0
4850 && linetable->item[idx+1].pc == start_pc)
4851 return start_pc;
4852 }
4853
4854 /* If there is only one sal that covers the entire function,
4855 then it is probably a single line function, like
4856 "foo(){}". */
4857 if (prologue_sal.end >= end_pc)
4858 return 0;
4859
4860 while (prologue_sal.end < end_pc)
4861 {
4862 struct symtab_and_line sal;
4863
4864 sal = find_pc_line (prologue_sal.end, 0);
4865 if (sal.line == 0)
4866 break;
4867 /* Assume that a consecutive SAL for the same (or larger)
4868 line mark the prologue -> body transition. */
4869 if (sal.line >= prologue_sal.line)
4870 break;
4871
4872 /* The line number is smaller. Check that it's from the
4873 same function, not something inlined. If it's inlined,
4874 then there is no point comparing the line numbers. */
4875 bl = block_for_pc (prologue_sal.end);
4876 while (bl)
4877 {
4878 if (block_inlined_p (bl))
4879 break;
4880 if (BLOCK_FUNCTION (bl))
4881 {
4882 bl = NULL;
4883 break;
4884 }
4885 bl = BLOCK_SUPERBLOCK (bl);
4886 }
4887 if (bl != NULL)
4888 break;
4889
4890 /* The case in which compiler's optimizer/scheduler has
4891 moved instructions into the prologue. We look ahead in
4892 the function looking for address ranges whose
4893 corresponding line number is less the first one that we
4894 found for the function. This is more conservative then
4895 refine_prologue_limit which scans a large number of SALs
4896 looking for any in the prologue. */
4897 prologue_sal = sal;
4898 }
4899 }
4900
4901 if (prologue_sal.end < end_pc)
4902 /* Return the end of this line, or zero if we could not find a
4903 line. */
4904 return prologue_sal.end;
4905 else
4906 /* Don't return END_PC, which is past the end of the function. */
4907 return prologue_sal.pc;
4908 }
4909 \f
4910 /* Track MAIN */
4911 static char *name_of_main;
4912 enum language language_of_main = language_unknown;
4913
4914 void
4915 set_main_name (const char *name)
4916 {
4917 if (name_of_main != NULL)
4918 {
4919 xfree (name_of_main);
4920 name_of_main = NULL;
4921 language_of_main = language_unknown;
4922 }
4923 if (name != NULL)
4924 {
4925 name_of_main = xstrdup (name);
4926 language_of_main = language_unknown;
4927 }
4928 }
4929
4930 /* Deduce the name of the main procedure, and set NAME_OF_MAIN
4931 accordingly. */
4932
4933 static void
4934 find_main_name (void)
4935 {
4936 const char *new_main_name;
4937
4938 /* Try to see if the main procedure is in Ada. */
4939 /* FIXME: brobecker/2005-03-07: Another way of doing this would
4940 be to add a new method in the language vector, and call this
4941 method for each language until one of them returns a non-empty
4942 name. This would allow us to remove this hard-coded call to
4943 an Ada function. It is not clear that this is a better approach
4944 at this point, because all methods need to be written in a way
4945 such that false positives never be returned. For instance, it is
4946 important that a method does not return a wrong name for the main
4947 procedure if the main procedure is actually written in a different
4948 language. It is easy to guaranty this with Ada, since we use a
4949 special symbol generated only when the main in Ada to find the name
4950 of the main procedure. It is difficult however to see how this can
4951 be guarantied for languages such as C, for instance. This suggests
4952 that order of call for these methods becomes important, which means
4953 a more complicated approach. */
4954 new_main_name = ada_main_name ();
4955 if (new_main_name != NULL)
4956 {
4957 set_main_name (new_main_name);
4958 return;
4959 }
4960
4961 new_main_name = go_main_name ();
4962 if (new_main_name != NULL)
4963 {
4964 set_main_name (new_main_name);
4965 return;
4966 }
4967
4968 new_main_name = pascal_main_name ();
4969 if (new_main_name != NULL)
4970 {
4971 set_main_name (new_main_name);
4972 return;
4973 }
4974
4975 /* The languages above didn't identify the name of the main procedure.
4976 Fallback to "main". */
4977 set_main_name ("main");
4978 }
4979
4980 char *
4981 main_name (void)
4982 {
4983 if (name_of_main == NULL)
4984 find_main_name ();
4985
4986 return name_of_main;
4987 }
4988
4989 /* Handle ``executable_changed'' events for the symtab module. */
4990
4991 static void
4992 symtab_observer_executable_changed (void)
4993 {
4994 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
4995 set_main_name (NULL);
4996 }
4997
4998 /* Return 1 if the supplied producer string matches the ARM RealView
4999 compiler (armcc). */
5000
5001 int
5002 producer_is_realview (const char *producer)
5003 {
5004 static const char *const arm_idents[] = {
5005 "ARM C Compiler, ADS",
5006 "Thumb C Compiler, ADS",
5007 "ARM C++ Compiler, ADS",
5008 "Thumb C++ Compiler, ADS",
5009 "ARM/Thumb C/C++ Compiler, RVCT",
5010 "ARM C/C++ Compiler, RVCT"
5011 };
5012 int i;
5013
5014 if (producer == NULL)
5015 return 0;
5016
5017 for (i = 0; i < ARRAY_SIZE (arm_idents); i++)
5018 if (strncmp (producer, arm_idents[i], strlen (arm_idents[i])) == 0)
5019 return 1;
5020
5021 return 0;
5022 }
5023
5024 void
5025 _initialize_symtab (void)
5026 {
5027 add_info ("variables", variables_info, _("\
5028 All global and static variable names, or those matching REGEXP."));
5029 if (dbx_commands)
5030 add_com ("whereis", class_info, variables_info, _("\
5031 All global and static variable names, or those matching REGEXP."));
5032
5033 add_info ("functions", functions_info,
5034 _("All function names, or those matching REGEXP."));
5035
5036 /* FIXME: This command has at least the following problems:
5037 1. It prints builtin types (in a very strange and confusing fashion).
5038 2. It doesn't print right, e.g. with
5039 typedef struct foo *FOO
5040 type_print prints "FOO" when we want to make it (in this situation)
5041 print "struct foo *".
5042 I also think "ptype" or "whatis" is more likely to be useful (but if
5043 there is much disagreement "info types" can be fixed). */
5044 add_info ("types", types_info,
5045 _("All type names, or those matching REGEXP."));
5046
5047 add_info ("sources", sources_info,
5048 _("Source files in the program."));
5049
5050 add_com ("rbreak", class_breakpoint, rbreak_command,
5051 _("Set a breakpoint for all functions matching REGEXP."));
5052
5053 if (xdb_commands)
5054 {
5055 add_com ("lf", class_info, sources_info,
5056 _("Source files in the program"));
5057 add_com ("lg", class_info, variables_info, _("\
5058 All global and static variable names, or those matching REGEXP."));
5059 }
5060
5061 add_setshow_enum_cmd ("multiple-symbols", no_class,
5062 multiple_symbols_modes, &multiple_symbols_mode,
5063 _("\
5064 Set the debugger behavior when more than one symbol are possible matches\n\
5065 in an expression."), _("\
5066 Show how the debugger handles ambiguities in expressions."), _("\
5067 Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
5068 NULL, NULL, &setlist, &showlist);
5069
5070 add_setshow_boolean_cmd ("basenames-may-differ", class_obscure,
5071 &basenames_may_differ, _("\
5072 Set whether a source file may have multiple base names."), _("\
5073 Show whether a source file may have multiple base names."), _("\
5074 (A \"base name\" is the name of a file with the directory part removed.\n\
5075 Example: The base name of \"/home/user/hello.c\" is \"hello.c\".)\n\
5076 If set, GDB will canonicalize file names (e.g., expand symlinks)\n\
5077 before comparing them. Canonicalization is an expensive operation,\n\
5078 but it allows the same file be known by more than one base name.\n\
5079 If not set (the default), all source files are assumed to have just\n\
5080 one base name, and gdb will do file name comparisons more efficiently."),
5081 NULL, NULL,
5082 &setlist, &showlist);
5083
5084 add_setshow_boolean_cmd ("symtab-create", no_class, &symtab_create_debug,
5085 _("Set debugging of symbol table creation."),
5086 _("Show debugging of symbol table creation."), _("\
5087 When enabled, debugging messages are printed when building symbol tables."),
5088 NULL,
5089 NULL,
5090 &setdebuglist, &showdebuglist);
5091
5092 observer_attach_executable_changed (symtab_observer_executable_changed);
5093 }
This page took 0.236034 seconds and 4 git commands to generate.