Fixed stabs cplus_specific issue
[deliverable/binutils-gdb.git] / gdb / symtab.c
1 /* Symbol table lookup for the GNU debugger, GDB.
2
3 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2007, 2008, 2009,
5 2010 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "symtab.h"
24 #include "gdbtypes.h"
25 #include "gdbcore.h"
26 #include "frame.h"
27 #include "target.h"
28 #include "value.h"
29 #include "symfile.h"
30 #include "objfiles.h"
31 #include "gdbcmd.h"
32 #include "call-cmds.h"
33 #include "gdb_regex.h"
34 #include "expression.h"
35 #include "language.h"
36 #include "demangle.h"
37 #include "inferior.h"
38 #include "linespec.h"
39 #include "source.h"
40 #include "filenames.h" /* for FILENAME_CMP */
41 #include "objc-lang.h"
42 #include "d-lang.h"
43 #include "ada-lang.h"
44 #include "p-lang.h"
45 #include "addrmap.h"
46
47 #include "hashtab.h"
48
49 #include "gdb_obstack.h"
50 #include "block.h"
51 #include "dictionary.h"
52
53 #include <sys/types.h>
54 #include <fcntl.h>
55 #include "gdb_string.h"
56 #include "gdb_stat.h"
57 #include <ctype.h>
58 #include "cp-abi.h"
59 #include "cp-support.h"
60 #include "observer.h"
61 #include "gdb_assert.h"
62 #include "solist.h"
63 #include "macrotab.h"
64 #include "macroscope.h"
65
66 #include "psymtab.h"
67
68 /* Prototypes for local functions */
69
70 static void completion_list_add_name (char *, char *, int, char *, char *);
71
72 static void rbreak_command (char *, int);
73
74 static void types_info (char *, int);
75
76 static void functions_info (char *, int);
77
78 static void variables_info (char *, int);
79
80 static void sources_info (char *, int);
81
82 static void output_source_filename (const char *, int *);
83
84 static int find_line_common (struct linetable *, int, int *);
85
86 /* This one is used by linespec.c */
87
88 char *operator_chars (char *p, char **end);
89
90 static struct symbol *lookup_symbol_aux (const char *name,
91 const struct block *block,
92 const domain_enum domain,
93 enum language language,
94 int *is_a_field_of_this);
95
96 static
97 struct symbol *lookup_symbol_aux_local (const char *name,
98 const struct block *block,
99 const domain_enum domain,
100 enum language language);
101
102 static
103 struct symbol *lookup_symbol_aux_symtabs (int block_index,
104 const char *name,
105 const domain_enum domain);
106
107 static
108 struct symbol *lookup_symbol_aux_quick (struct objfile *objfile,
109 int block_index,
110 const char *name,
111 const domain_enum domain);
112
113 static void print_symbol_info (domain_enum,
114 struct symtab *, struct symbol *, int, char *);
115
116 static void print_msymbol_info (struct minimal_symbol *);
117
118 static void symtab_symbol_info (char *, domain_enum, int);
119
120 void _initialize_symtab (void);
121
122 /* */
123
124 /* Allow the user to configure the debugger behavior with respect
125 to multiple-choice menus when more than one symbol matches during
126 a symbol lookup. */
127
128 const char multiple_symbols_ask[] = "ask";
129 const char multiple_symbols_all[] = "all";
130 const char multiple_symbols_cancel[] = "cancel";
131 static const char *multiple_symbols_modes[] =
132 {
133 multiple_symbols_ask,
134 multiple_symbols_all,
135 multiple_symbols_cancel,
136 NULL
137 };
138 static const char *multiple_symbols_mode = multiple_symbols_all;
139
140 /* Read-only accessor to AUTO_SELECT_MODE. */
141
142 const char *
143 multiple_symbols_select_mode (void)
144 {
145 return multiple_symbols_mode;
146 }
147
148 /* Block in which the most recently searched-for symbol was found.
149 Might be better to make this a parameter to lookup_symbol and
150 value_of_this. */
151
152 const struct block *block_found;
153
154 /* Check for a symtab of a specific name; first in symtabs, then in
155 psymtabs. *If* there is no '/' in the name, a match after a '/'
156 in the symtab filename will also work. */
157
158 struct symtab *
159 lookup_symtab (const char *name)
160 {
161 int found;
162 struct symtab *s = NULL;
163 struct objfile *objfile;
164 char *real_path = NULL;
165 char *full_path = NULL;
166
167 /* Here we are interested in canonicalizing an absolute path, not
168 absolutizing a relative path. */
169 if (IS_ABSOLUTE_PATH (name))
170 {
171 full_path = xfullpath (name);
172 make_cleanup (xfree, full_path);
173 real_path = gdb_realpath (name);
174 make_cleanup (xfree, real_path);
175 }
176
177 got_symtab:
178
179 /* First, search for an exact match */
180
181 ALL_SYMTABS (objfile, s)
182 {
183 if (FILENAME_CMP (name, s->filename) == 0)
184 {
185 return s;
186 }
187
188 /* If the user gave us an absolute path, try to find the file in
189 this symtab and use its absolute path. */
190
191 if (full_path != NULL)
192 {
193 const char *fp = symtab_to_fullname (s);
194
195 if (fp != NULL && FILENAME_CMP (full_path, fp) == 0)
196 {
197 return s;
198 }
199 }
200
201 if (real_path != NULL)
202 {
203 char *fullname = symtab_to_fullname (s);
204
205 if (fullname != NULL)
206 {
207 char *rp = gdb_realpath (fullname);
208
209 make_cleanup (xfree, rp);
210 if (FILENAME_CMP (real_path, rp) == 0)
211 {
212 return s;
213 }
214 }
215 }
216 }
217
218 /* Now, search for a matching tail (only if name doesn't have any dirs) */
219
220 if (lbasename (name) == name)
221 ALL_SYMTABS (objfile, s)
222 {
223 if (FILENAME_CMP (lbasename (s->filename), name) == 0)
224 return s;
225 }
226
227 /* Same search rules as above apply here, but now we look thru the
228 psymtabs. */
229
230 found = 0;
231 ALL_OBJFILES (objfile)
232 {
233 if (objfile->sf
234 && objfile->sf->qf->lookup_symtab (objfile, name, full_path, real_path,
235 &s))
236 {
237 found = 1;
238 break;
239 }
240 }
241
242 if (s != NULL)
243 return s;
244 if (!found)
245 return NULL;
246
247 /* At this point, we have located the psymtab for this file, but
248 the conversion to a symtab has failed. This usually happens
249 when we are looking up an include file. In this case,
250 PSYMTAB_TO_SYMTAB doesn't return a symtab, even though one has
251 been created. So, we need to run through the symtabs again in
252 order to find the file.
253 XXX - This is a crock, and should be fixed inside of the the
254 symbol parsing routines. */
255 goto got_symtab;
256 }
257 \f
258 /* Mangle a GDB method stub type. This actually reassembles the pieces of the
259 full method name, which consist of the class name (from T), the unadorned
260 method name from METHOD_ID, and the signature for the specific overload,
261 specified by SIGNATURE_ID. Note that this function is g++ specific. */
262
263 char *
264 gdb_mangle_name (struct type *type, int method_id, int signature_id)
265 {
266 int mangled_name_len;
267 char *mangled_name;
268 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
269 struct fn_field *method = &f[signature_id];
270 char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
271 char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
272 char *newname = type_name_no_tag (type);
273
274 /* Does the form of physname indicate that it is the full mangled name
275 of a constructor (not just the args)? */
276 int is_full_physname_constructor;
277
278 int is_constructor;
279 int is_destructor = is_destructor_name (physname);
280 /* Need a new type prefix. */
281 char *const_prefix = method->is_const ? "C" : "";
282 char *volatile_prefix = method->is_volatile ? "V" : "";
283 char buf[20];
284 int len = (newname == NULL ? 0 : strlen (newname));
285
286 /* Nothing to do if physname already contains a fully mangled v3 abi name
287 or an operator name. */
288 if ((physname[0] == '_' && physname[1] == 'Z')
289 || is_operator_name (field_name))
290 return xstrdup (physname);
291
292 is_full_physname_constructor = is_constructor_name (physname);
293
294 is_constructor =
295 is_full_physname_constructor || (newname && strcmp (field_name, newname) == 0);
296
297 if (!is_destructor)
298 is_destructor = (strncmp (physname, "__dt", 4) == 0);
299
300 if (is_destructor || is_full_physname_constructor)
301 {
302 mangled_name = (char *) xmalloc (strlen (physname) + 1);
303 strcpy (mangled_name, physname);
304 return mangled_name;
305 }
306
307 if (len == 0)
308 {
309 sprintf (buf, "__%s%s", const_prefix, volatile_prefix);
310 }
311 else if (physname[0] == 't' || physname[0] == 'Q')
312 {
313 /* The physname for template and qualified methods already includes
314 the class name. */
315 sprintf (buf, "__%s%s", const_prefix, volatile_prefix);
316 newname = NULL;
317 len = 0;
318 }
319 else
320 {
321 sprintf (buf, "__%s%s%d", const_prefix, volatile_prefix, len);
322 }
323 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
324 + strlen (buf) + len + strlen (physname) + 1);
325
326 mangled_name = (char *) xmalloc (mangled_name_len);
327 if (is_constructor)
328 mangled_name[0] = '\0';
329 else
330 strcpy (mangled_name, field_name);
331
332 strcat (mangled_name, buf);
333 /* If the class doesn't have a name, i.e. newname NULL, then we just
334 mangle it using 0 for the length of the class. Thus it gets mangled
335 as something starting with `::' rather than `classname::'. */
336 if (newname != NULL)
337 strcat (mangled_name, newname);
338
339 strcat (mangled_name, physname);
340 return (mangled_name);
341 }
342
343 /* Initialize the cplus_specific structure. 'cplus_specific' should
344 only be allocated for use with cplus symbols. */
345
346 static void
347 symbol_init_cplus_specific (struct general_symbol_info *gsymbol,
348 struct objfile *objfile)
349 {
350 /* A language_specific structure should not have been previously
351 initialized. */
352 gdb_assert (gsymbol->language_specific.cplus_specific == NULL);
353 gdb_assert (objfile != NULL);
354
355 gsymbol->language_specific.cplus_specific =
356 OBSTACK_ZALLOC (&objfile->objfile_obstack, struct cplus_specific);
357 }
358
359 /* Set the demangled name of GSYMBOL to NAME. NAME must be already
360 correctly allocated. For C++ symbols a cplus_specific struct is
361 allocated so OBJFILE must not be NULL. If this is a non C++ symbol
362 OBJFILE can be NULL. */
363 void
364 symbol_set_demangled_name (struct general_symbol_info *gsymbol,
365 char *name,
366 struct objfile *objfile)
367 {
368 if (gsymbol->language == language_cplus)
369 {
370 if (gsymbol->language_specific.cplus_specific == NULL)
371 symbol_init_cplus_specific (gsymbol, objfile);
372
373 gsymbol->language_specific.cplus_specific->demangled_name = name;
374 }
375 else
376 gsymbol->language_specific.mangled_lang.demangled_name = name;
377 }
378
379 /* Return the demangled name of GSYMBOL. */
380 char *
381 symbol_get_demangled_name (const struct general_symbol_info *gsymbol)
382 {
383 if (gsymbol->language == language_cplus)
384 {
385 if (gsymbol->language_specific.cplus_specific != NULL)
386 return gsymbol->language_specific.cplus_specific->demangled_name;
387 else
388 return NULL;
389 }
390 else
391 return gsymbol->language_specific.mangled_lang.demangled_name;
392 }
393
394 \f
395 /* Initialize the language dependent portion of a symbol
396 depending upon the language for the symbol. */
397 void
398 symbol_set_language (struct general_symbol_info *gsymbol,
399 enum language language)
400 {
401 gsymbol->language = language;
402 if (gsymbol->language == language_d
403 || gsymbol->language == language_java
404 || gsymbol->language == language_objc
405 || gsymbol->language == language_fortran)
406 {
407 symbol_set_demangled_name (gsymbol, NULL, NULL);
408 }
409 else if (gsymbol->language == language_cplus)
410 gsymbol->language_specific.cplus_specific = NULL;
411 else
412 {
413 memset (&gsymbol->language_specific, 0,
414 sizeof (gsymbol->language_specific));
415 }
416 }
417
418 /* Functions to initialize a symbol's mangled name. */
419
420 /* Objects of this type are stored in the demangled name hash table. */
421 struct demangled_name_entry
422 {
423 char *mangled;
424 char demangled[1];
425 };
426
427 /* Hash function for the demangled name hash. */
428 static hashval_t
429 hash_demangled_name_entry (const void *data)
430 {
431 const struct demangled_name_entry *e = data;
432
433 return htab_hash_string (e->mangled);
434 }
435
436 /* Equality function for the demangled name hash. */
437 static int
438 eq_demangled_name_entry (const void *a, const void *b)
439 {
440 const struct demangled_name_entry *da = a;
441 const struct demangled_name_entry *db = b;
442
443 return strcmp (da->mangled, db->mangled) == 0;
444 }
445
446 /* Create the hash table used for demangled names. Each hash entry is
447 a pair of strings; one for the mangled name and one for the demangled
448 name. The entry is hashed via just the mangled name. */
449
450 static void
451 create_demangled_names_hash (struct objfile *objfile)
452 {
453 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
454 The hash table code will round this up to the next prime number.
455 Choosing a much larger table size wastes memory, and saves only about
456 1% in symbol reading. */
457
458 objfile->demangled_names_hash = htab_create_alloc
459 (256, hash_demangled_name_entry, eq_demangled_name_entry,
460 NULL, xcalloc, xfree);
461 }
462
463 /* Try to determine the demangled name for a symbol, based on the
464 language of that symbol. If the language is set to language_auto,
465 it will attempt to find any demangling algorithm that works and
466 then set the language appropriately. The returned name is allocated
467 by the demangler and should be xfree'd. */
468
469 static char *
470 symbol_find_demangled_name (struct general_symbol_info *gsymbol,
471 const char *mangled)
472 {
473 char *demangled = NULL;
474
475 if (gsymbol->language == language_unknown)
476 gsymbol->language = language_auto;
477
478 if (gsymbol->language == language_objc
479 || gsymbol->language == language_auto)
480 {
481 demangled =
482 objc_demangle (mangled, 0);
483 if (demangled != NULL)
484 {
485 gsymbol->language = language_objc;
486 return demangled;
487 }
488 }
489 if (gsymbol->language == language_cplus
490 || gsymbol->language == language_auto)
491 {
492 demangled =
493 cplus_demangle (mangled, DMGL_PARAMS | DMGL_ANSI | DMGL_VERBOSE);
494 if (demangled != NULL)
495 {
496 gsymbol->language = language_cplus;
497 return demangled;
498 }
499 }
500 if (gsymbol->language == language_java)
501 {
502 demangled =
503 cplus_demangle (mangled,
504 DMGL_PARAMS | DMGL_ANSI | DMGL_JAVA);
505 if (demangled != NULL)
506 {
507 gsymbol->language = language_java;
508 return demangled;
509 }
510 }
511 if (gsymbol->language == language_d
512 || gsymbol->language == language_auto)
513 {
514 demangled = d_demangle(mangled, 0);
515 if (demangled != NULL)
516 {
517 gsymbol->language = language_d;
518 return demangled;
519 }
520 }
521 /* We could support `gsymbol->language == language_fortran' here to provide
522 module namespaces also for inferiors with only minimal symbol table (ELF
523 symbols). Just the mangling standard is not standardized across compilers
524 and there is no DW_AT_producer available for inferiors with only the ELF
525 symbols to check the mangling kind. */
526 return NULL;
527 }
528
529 /* Set both the mangled and demangled (if any) names for GSYMBOL based
530 on LINKAGE_NAME and LEN. Ordinarily, NAME is copied onto the
531 objfile's obstack; but if COPY_NAME is 0 and if NAME is
532 NUL-terminated, then this function assumes that NAME is already
533 correctly saved (either permanently or with a lifetime tied to the
534 objfile), and it will not be copied.
535
536 The hash table corresponding to OBJFILE is used, and the memory
537 comes from that objfile's objfile_obstack. LINKAGE_NAME is copied,
538 so the pointer can be discarded after calling this function. */
539
540 /* We have to be careful when dealing with Java names: when we run
541 into a Java minimal symbol, we don't know it's a Java symbol, so it
542 gets demangled as a C++ name. This is unfortunate, but there's not
543 much we can do about it: but when demangling partial symbols and
544 regular symbols, we'd better not reuse the wrong demangled name.
545 (See PR gdb/1039.) We solve this by putting a distinctive prefix
546 on Java names when storing them in the hash table. */
547
548 /* FIXME: carlton/2003-03-13: This is an unfortunate situation. I
549 don't mind the Java prefix so much: different languages have
550 different demangling requirements, so it's only natural that we
551 need to keep language data around in our demangling cache. But
552 it's not good that the minimal symbol has the wrong demangled name.
553 Unfortunately, I can't think of any easy solution to that
554 problem. */
555
556 #define JAVA_PREFIX "##JAVA$$"
557 #define JAVA_PREFIX_LEN 8
558
559 void
560 symbol_set_names (struct general_symbol_info *gsymbol,
561 const char *linkage_name, int len, int copy_name,
562 struct objfile *objfile)
563 {
564 struct demangled_name_entry **slot;
565 /* A 0-terminated copy of the linkage name. */
566 const char *linkage_name_copy;
567 /* A copy of the linkage name that might have a special Java prefix
568 added to it, for use when looking names up in the hash table. */
569 const char *lookup_name;
570 /* The length of lookup_name. */
571 int lookup_len;
572 struct demangled_name_entry entry;
573
574 if (gsymbol->language == language_ada)
575 {
576 /* In Ada, we do the symbol lookups using the mangled name, so
577 we can save some space by not storing the demangled name.
578
579 As a side note, we have also observed some overlap between
580 the C++ mangling and Ada mangling, similarly to what has
581 been observed with Java. Because we don't store the demangled
582 name with the symbol, we don't need to use the same trick
583 as Java. */
584 if (!copy_name)
585 gsymbol->name = (char *) linkage_name;
586 else
587 {
588 gsymbol->name = obstack_alloc (&objfile->objfile_obstack, len + 1);
589 memcpy (gsymbol->name, linkage_name, len);
590 gsymbol->name[len] = '\0';
591 }
592 symbol_set_demangled_name (gsymbol, NULL, NULL);
593
594 return;
595 }
596
597 if (objfile->demangled_names_hash == NULL)
598 create_demangled_names_hash (objfile);
599
600 /* The stabs reader generally provides names that are not
601 NUL-terminated; most of the other readers don't do this, so we
602 can just use the given copy, unless we're in the Java case. */
603 if (gsymbol->language == language_java)
604 {
605 char *alloc_name;
606
607 lookup_len = len + JAVA_PREFIX_LEN;
608 alloc_name = alloca (lookup_len + 1);
609 memcpy (alloc_name, JAVA_PREFIX, JAVA_PREFIX_LEN);
610 memcpy (alloc_name + JAVA_PREFIX_LEN, linkage_name, len);
611 alloc_name[lookup_len] = '\0';
612
613 lookup_name = alloc_name;
614 linkage_name_copy = alloc_name + JAVA_PREFIX_LEN;
615 }
616 else if (linkage_name[len] != '\0')
617 {
618 char *alloc_name;
619
620 lookup_len = len;
621 alloc_name = alloca (lookup_len + 1);
622 memcpy (alloc_name, linkage_name, len);
623 alloc_name[lookup_len] = '\0';
624
625 lookup_name = alloc_name;
626 linkage_name_copy = alloc_name;
627 }
628 else
629 {
630 lookup_len = len;
631 lookup_name = linkage_name;
632 linkage_name_copy = linkage_name;
633 }
634
635 entry.mangled = (char *) lookup_name;
636 slot = ((struct demangled_name_entry **)
637 htab_find_slot (objfile->demangled_names_hash,
638 &entry, INSERT));
639
640 /* If this name is not in the hash table, add it. */
641 if (*slot == NULL)
642 {
643 char *demangled_name = symbol_find_demangled_name (gsymbol,
644 linkage_name_copy);
645 int demangled_len = demangled_name ? strlen (demangled_name) : 0;
646
647 /* Suppose we have demangled_name==NULL, copy_name==0, and
648 lookup_name==linkage_name. In this case, we already have the
649 mangled name saved, and we don't have a demangled name. So,
650 you might think we could save a little space by not recording
651 this in the hash table at all.
652
653 It turns out that it is actually important to still save such
654 an entry in the hash table, because storing this name gives
655 us better bcache hit rates for partial symbols. */
656 if (!copy_name && lookup_name == linkage_name)
657 {
658 *slot = obstack_alloc (&objfile->objfile_obstack,
659 offsetof (struct demangled_name_entry,
660 demangled)
661 + demangled_len + 1);
662 (*slot)->mangled = (char *) lookup_name;
663 }
664 else
665 {
666 /* If we must copy the mangled name, put it directly after
667 the demangled name so we can have a single
668 allocation. */
669 *slot = obstack_alloc (&objfile->objfile_obstack,
670 offsetof (struct demangled_name_entry,
671 demangled)
672 + lookup_len + demangled_len + 2);
673 (*slot)->mangled = &((*slot)->demangled[demangled_len + 1]);
674 strcpy ((*slot)->mangled, lookup_name);
675 }
676
677 if (demangled_name != NULL)
678 {
679 strcpy ((*slot)->demangled, demangled_name);
680 xfree (demangled_name);
681 }
682 else
683 (*slot)->demangled[0] = '\0';
684 }
685
686 gsymbol->name = (*slot)->mangled + lookup_len - len;
687 if ((*slot)->demangled[0] != '\0')
688 symbol_set_demangled_name (gsymbol, (*slot)->demangled, objfile);
689 else
690 symbol_set_demangled_name (gsymbol, NULL, objfile);
691 }
692
693 /* Return the source code name of a symbol. In languages where
694 demangling is necessary, this is the demangled name. */
695
696 char *
697 symbol_natural_name (const struct general_symbol_info *gsymbol)
698 {
699 switch (gsymbol->language)
700 {
701 case language_cplus:
702 case language_d:
703 case language_java:
704 case language_objc:
705 case language_fortran:
706 if (symbol_get_demangled_name (gsymbol) != NULL)
707 return symbol_get_demangled_name (gsymbol);
708 break;
709 case language_ada:
710 if (symbol_get_demangled_name (gsymbol) != NULL)
711 return symbol_get_demangled_name (gsymbol);
712 else
713 return ada_decode_symbol (gsymbol);
714 break;
715 default:
716 break;
717 }
718 return gsymbol->name;
719 }
720
721 /* Return the demangled name for a symbol based on the language for
722 that symbol. If no demangled name exists, return NULL. */
723 char *
724 symbol_demangled_name (const struct general_symbol_info *gsymbol)
725 {
726 switch (gsymbol->language)
727 {
728 case language_cplus:
729 case language_d:
730 case language_java:
731 case language_objc:
732 case language_fortran:
733 if (symbol_get_demangled_name (gsymbol) != NULL)
734 return symbol_get_demangled_name (gsymbol);
735 break;
736 case language_ada:
737 if (symbol_get_demangled_name (gsymbol) != NULL)
738 return symbol_get_demangled_name (gsymbol);
739 else
740 return ada_decode_symbol (gsymbol);
741 break;
742 default:
743 break;
744 }
745 return NULL;
746 }
747
748 /* Return the search name of a symbol---generally the demangled or
749 linkage name of the symbol, depending on how it will be searched for.
750 If there is no distinct demangled name, then returns the same value
751 (same pointer) as SYMBOL_LINKAGE_NAME. */
752 char *
753 symbol_search_name (const struct general_symbol_info *gsymbol)
754 {
755 if (gsymbol->language == language_ada)
756 return gsymbol->name;
757 else
758 return symbol_natural_name (gsymbol);
759 }
760
761 /* Initialize the structure fields to zero values. */
762 void
763 init_sal (struct symtab_and_line *sal)
764 {
765 sal->pspace = NULL;
766 sal->symtab = 0;
767 sal->section = 0;
768 sal->line = 0;
769 sal->pc = 0;
770 sal->end = 0;
771 sal->explicit_pc = 0;
772 sal->explicit_line = 0;
773 }
774 \f
775
776 /* Return 1 if the two sections are the same, or if they could
777 plausibly be copies of each other, one in an original object
778 file and another in a separated debug file. */
779
780 int
781 matching_obj_sections (struct obj_section *obj_first,
782 struct obj_section *obj_second)
783 {
784 asection *first = obj_first? obj_first->the_bfd_section : NULL;
785 asection *second = obj_second? obj_second->the_bfd_section : NULL;
786 struct objfile *obj;
787
788 /* If they're the same section, then they match. */
789 if (first == second)
790 return 1;
791
792 /* If either is NULL, give up. */
793 if (first == NULL || second == NULL)
794 return 0;
795
796 /* This doesn't apply to absolute symbols. */
797 if (first->owner == NULL || second->owner == NULL)
798 return 0;
799
800 /* If they're in the same object file, they must be different sections. */
801 if (first->owner == second->owner)
802 return 0;
803
804 /* Check whether the two sections are potentially corresponding. They must
805 have the same size, address, and name. We can't compare section indexes,
806 which would be more reliable, because some sections may have been
807 stripped. */
808 if (bfd_get_section_size (first) != bfd_get_section_size (second))
809 return 0;
810
811 /* In-memory addresses may start at a different offset, relativize them. */
812 if (bfd_get_section_vma (first->owner, first)
813 - bfd_get_start_address (first->owner)
814 != bfd_get_section_vma (second->owner, second)
815 - bfd_get_start_address (second->owner))
816 return 0;
817
818 if (bfd_get_section_name (first->owner, first) == NULL
819 || bfd_get_section_name (second->owner, second) == NULL
820 || strcmp (bfd_get_section_name (first->owner, first),
821 bfd_get_section_name (second->owner, second)) != 0)
822 return 0;
823
824 /* Otherwise check that they are in corresponding objfiles. */
825
826 ALL_OBJFILES (obj)
827 if (obj->obfd == first->owner)
828 break;
829 gdb_assert (obj != NULL);
830
831 if (obj->separate_debug_objfile != NULL
832 && obj->separate_debug_objfile->obfd == second->owner)
833 return 1;
834 if (obj->separate_debug_objfile_backlink != NULL
835 && obj->separate_debug_objfile_backlink->obfd == second->owner)
836 return 1;
837
838 return 0;
839 }
840
841 struct symtab *
842 find_pc_sect_symtab_via_partial (CORE_ADDR pc, struct obj_section *section)
843 {
844 struct objfile *objfile;
845 struct minimal_symbol *msymbol;
846
847 /* If we know that this is not a text address, return failure. This is
848 necessary because we loop based on texthigh and textlow, which do
849 not include the data ranges. */
850 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
851 if (msymbol
852 && (MSYMBOL_TYPE (msymbol) == mst_data
853 || MSYMBOL_TYPE (msymbol) == mst_bss
854 || MSYMBOL_TYPE (msymbol) == mst_abs
855 || MSYMBOL_TYPE (msymbol) == mst_file_data
856 || MSYMBOL_TYPE (msymbol) == mst_file_bss))
857 return NULL;
858
859 ALL_OBJFILES (objfile)
860 {
861 struct symtab *result = NULL;
862
863 if (objfile->sf)
864 result = objfile->sf->qf->find_pc_sect_symtab (objfile, msymbol,
865 pc, section, 0);
866 if (result)
867 return result;
868 }
869
870 return NULL;
871 }
872 \f
873 /* Debug symbols usually don't have section information. We need to dig that
874 out of the minimal symbols and stash that in the debug symbol. */
875
876 void
877 fixup_section (struct general_symbol_info *ginfo,
878 CORE_ADDR addr, struct objfile *objfile)
879 {
880 struct minimal_symbol *msym;
881
882 /* First, check whether a minimal symbol with the same name exists
883 and points to the same address. The address check is required
884 e.g. on PowerPC64, where the minimal symbol for a function will
885 point to the function descriptor, while the debug symbol will
886 point to the actual function code. */
887 msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->name, objfile);
888 if (msym)
889 {
890 ginfo->obj_section = SYMBOL_OBJ_SECTION (msym);
891 ginfo->section = SYMBOL_SECTION (msym);
892 }
893 else
894 {
895 /* Static, function-local variables do appear in the linker
896 (minimal) symbols, but are frequently given names that won't
897 be found via lookup_minimal_symbol(). E.g., it has been
898 observed in frv-uclinux (ELF) executables that a static,
899 function-local variable named "foo" might appear in the
900 linker symbols as "foo.6" or "foo.3". Thus, there is no
901 point in attempting to extend the lookup-by-name mechanism to
902 handle this case due to the fact that there can be multiple
903 names.
904
905 So, instead, search the section table when lookup by name has
906 failed. The ``addr'' and ``endaddr'' fields may have already
907 been relocated. If so, the relocation offset (i.e. the
908 ANOFFSET value) needs to be subtracted from these values when
909 performing the comparison. We unconditionally subtract it,
910 because, when no relocation has been performed, the ANOFFSET
911 value will simply be zero.
912
913 The address of the symbol whose section we're fixing up HAS
914 NOT BEEN adjusted (relocated) yet. It can't have been since
915 the section isn't yet known and knowing the section is
916 necessary in order to add the correct relocation value. In
917 other words, we wouldn't even be in this function (attempting
918 to compute the section) if it were already known.
919
920 Note that it is possible to search the minimal symbols
921 (subtracting the relocation value if necessary) to find the
922 matching minimal symbol, but this is overkill and much less
923 efficient. It is not necessary to find the matching minimal
924 symbol, only its section.
925
926 Note that this technique (of doing a section table search)
927 can fail when unrelocated section addresses overlap. For
928 this reason, we still attempt a lookup by name prior to doing
929 a search of the section table. */
930
931 struct obj_section *s;
932
933 ALL_OBJFILE_OSECTIONS (objfile, s)
934 {
935 int idx = s->the_bfd_section->index;
936 CORE_ADDR offset = ANOFFSET (objfile->section_offsets, idx);
937
938 if (obj_section_addr (s) - offset <= addr
939 && addr < obj_section_endaddr (s) - offset)
940 {
941 ginfo->obj_section = s;
942 ginfo->section = idx;
943 return;
944 }
945 }
946 }
947 }
948
949 struct symbol *
950 fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
951 {
952 CORE_ADDR addr;
953
954 if (!sym)
955 return NULL;
956
957 if (SYMBOL_OBJ_SECTION (sym))
958 return sym;
959
960 /* We either have an OBJFILE, or we can get at it from the sym's
961 symtab. Anything else is a bug. */
962 gdb_assert (objfile || SYMBOL_SYMTAB (sym));
963
964 if (objfile == NULL)
965 objfile = SYMBOL_SYMTAB (sym)->objfile;
966
967 /* We should have an objfile by now. */
968 gdb_assert (objfile);
969
970 switch (SYMBOL_CLASS (sym))
971 {
972 case LOC_STATIC:
973 case LOC_LABEL:
974 addr = SYMBOL_VALUE_ADDRESS (sym);
975 break;
976 case LOC_BLOCK:
977 addr = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
978 break;
979
980 default:
981 /* Nothing else will be listed in the minsyms -- no use looking
982 it up. */
983 return sym;
984 }
985
986 fixup_section (&sym->ginfo, addr, objfile);
987
988 return sym;
989 }
990
991 /* Find the definition for a specified symbol name NAME
992 in domain DOMAIN, visible from lexical block BLOCK.
993 Returns the struct symbol pointer, or zero if no symbol is found.
994 C++: if IS_A_FIELD_OF_THIS is nonzero on entry, check to see if
995 NAME is a field of the current implied argument `this'. If so set
996 *IS_A_FIELD_OF_THIS to 1, otherwise set it to zero.
997 BLOCK_FOUND is set to the block in which NAME is found (in the case of
998 a field of `this', value_of_this sets BLOCK_FOUND to the proper value.) */
999
1000 /* This function has a bunch of loops in it and it would seem to be
1001 attractive to put in some QUIT's (though I'm not really sure
1002 whether it can run long enough to be really important). But there
1003 are a few calls for which it would appear to be bad news to quit
1004 out of here: find_proc_desc in alpha-tdep.c and mips-tdep.c. (Note
1005 that there is C++ code below which can error(), but that probably
1006 doesn't affect these calls since they are looking for a known
1007 variable and thus can probably assume it will never hit the C++
1008 code). */
1009
1010 struct symbol *
1011 lookup_symbol_in_language (const char *name, const struct block *block,
1012 const domain_enum domain, enum language lang,
1013 int *is_a_field_of_this)
1014 {
1015 char *demangled_name = NULL;
1016 const char *modified_name = NULL;
1017 struct symbol *returnval;
1018 struct cleanup *cleanup = make_cleanup (null_cleanup, 0);
1019
1020 modified_name = name;
1021
1022 /* If we are using C++, D, or Java, demangle the name before doing a
1023 lookup, so we can always binary search. */
1024 if (lang == language_cplus)
1025 {
1026 demangled_name = cplus_demangle (name, DMGL_ANSI | DMGL_PARAMS);
1027 if (demangled_name)
1028 {
1029 modified_name = demangled_name;
1030 make_cleanup (xfree, demangled_name);
1031 }
1032 else
1033 {
1034 /* If we were given a non-mangled name, canonicalize it
1035 according to the language (so far only for C++). */
1036 demangled_name = cp_canonicalize_string (name);
1037 if (demangled_name)
1038 {
1039 modified_name = demangled_name;
1040 make_cleanup (xfree, demangled_name);
1041 }
1042 }
1043 }
1044 else if (lang == language_java)
1045 {
1046 demangled_name = cplus_demangle (name,
1047 DMGL_ANSI | DMGL_PARAMS | DMGL_JAVA);
1048 if (demangled_name)
1049 {
1050 modified_name = demangled_name;
1051 make_cleanup (xfree, demangled_name);
1052 }
1053 }
1054 else if (lang == language_d)
1055 {
1056 demangled_name = d_demangle (name, 0);
1057 if (demangled_name)
1058 {
1059 modified_name = demangled_name;
1060 make_cleanup (xfree, demangled_name);
1061 }
1062 }
1063
1064 if (case_sensitivity == case_sensitive_off)
1065 {
1066 char *copy;
1067 int len, i;
1068
1069 len = strlen (name);
1070 copy = (char *) alloca (len + 1);
1071 for (i= 0; i < len; i++)
1072 copy[i] = tolower (name[i]);
1073 copy[len] = 0;
1074 modified_name = copy;
1075 }
1076
1077 returnval = lookup_symbol_aux (modified_name, block, domain, lang,
1078 is_a_field_of_this);
1079 do_cleanups (cleanup);
1080
1081 return returnval;
1082 }
1083
1084 /* Behave like lookup_symbol_in_language, but performed with the
1085 current language. */
1086
1087 struct symbol *
1088 lookup_symbol (const char *name, const struct block *block,
1089 domain_enum domain, int *is_a_field_of_this)
1090 {
1091 return lookup_symbol_in_language (name, block, domain,
1092 current_language->la_language,
1093 is_a_field_of_this);
1094 }
1095
1096 /* Behave like lookup_symbol except that NAME is the natural name
1097 of the symbol that we're looking for and, if LINKAGE_NAME is
1098 non-NULL, ensure that the symbol's linkage name matches as
1099 well. */
1100
1101 static struct symbol *
1102 lookup_symbol_aux (const char *name, const struct block *block,
1103 const domain_enum domain, enum language language,
1104 int *is_a_field_of_this)
1105 {
1106 struct symbol *sym;
1107 const struct language_defn *langdef;
1108
1109 /* Make sure we do something sensible with is_a_field_of_this, since
1110 the callers that set this parameter to some non-null value will
1111 certainly use it later and expect it to be either 0 or 1.
1112 If we don't set it, the contents of is_a_field_of_this are
1113 undefined. */
1114 if (is_a_field_of_this != NULL)
1115 *is_a_field_of_this = 0;
1116
1117 /* Search specified block and its superiors. Don't search
1118 STATIC_BLOCK or GLOBAL_BLOCK. */
1119
1120 sym = lookup_symbol_aux_local (name, block, domain, language);
1121 if (sym != NULL)
1122 return sym;
1123
1124 /* If requested to do so by the caller and if appropriate for LANGUAGE,
1125 check to see if NAME is a field of `this'. */
1126
1127 langdef = language_def (language);
1128
1129 if (langdef->la_name_of_this != NULL && is_a_field_of_this != NULL
1130 && block != NULL)
1131 {
1132 struct symbol *sym = NULL;
1133 const struct block *function_block = block;
1134
1135 /* 'this' is only defined in the function's block, so find the
1136 enclosing function block. */
1137 for (; function_block && !BLOCK_FUNCTION (function_block);
1138 function_block = BLOCK_SUPERBLOCK (function_block));
1139
1140 if (function_block && !dict_empty (BLOCK_DICT (function_block)))
1141 sym = lookup_block_symbol (function_block, langdef->la_name_of_this,
1142 VAR_DOMAIN);
1143 if (sym)
1144 {
1145 struct type *t = sym->type;
1146
1147 /* I'm not really sure that type of this can ever
1148 be typedefed; just be safe. */
1149 CHECK_TYPEDEF (t);
1150 if (TYPE_CODE (t) == TYPE_CODE_PTR
1151 || TYPE_CODE (t) == TYPE_CODE_REF)
1152 t = TYPE_TARGET_TYPE (t);
1153
1154 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
1155 && TYPE_CODE (t) != TYPE_CODE_UNION)
1156 error (_("Internal error: `%s' is not an aggregate"),
1157 langdef->la_name_of_this);
1158
1159 if (check_field (t, name))
1160 {
1161 *is_a_field_of_this = 1;
1162 return NULL;
1163 }
1164 }
1165 }
1166
1167 /* Now do whatever is appropriate for LANGUAGE to look
1168 up static and global variables. */
1169
1170 sym = langdef->la_lookup_symbol_nonlocal (name, block, domain);
1171 if (sym != NULL)
1172 return sym;
1173
1174 /* Now search all static file-level symbols. Not strictly correct,
1175 but more useful than an error. */
1176
1177 return lookup_static_symbol_aux (name, domain);
1178 }
1179
1180 /* Search all static file-level symbols for NAME from DOMAIN. Do the symtabs
1181 first, then check the psymtabs. If a psymtab indicates the existence of the
1182 desired name as a file-level static, then do psymtab-to-symtab conversion on
1183 the fly and return the found symbol. */
1184
1185 struct symbol *
1186 lookup_static_symbol_aux (const char *name, const domain_enum domain)
1187 {
1188 struct objfile *objfile;
1189 struct symbol *sym;
1190
1191 sym = lookup_symbol_aux_symtabs (STATIC_BLOCK, name, domain);
1192 if (sym != NULL)
1193 return sym;
1194
1195 ALL_OBJFILES (objfile)
1196 {
1197 sym = lookup_symbol_aux_quick (objfile, STATIC_BLOCK, name, domain);
1198 if (sym != NULL)
1199 return sym;
1200 }
1201
1202 return NULL;
1203 }
1204
1205 /* Check to see if the symbol is defined in BLOCK or its superiors.
1206 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
1207
1208 static struct symbol *
1209 lookup_symbol_aux_local (const char *name, const struct block *block,
1210 const domain_enum domain,
1211 enum language language)
1212 {
1213 struct symbol *sym;
1214 const struct block *static_block = block_static_block (block);
1215 const char *scope = block_scope (block);
1216
1217 /* Check if either no block is specified or it's a global block. */
1218
1219 if (static_block == NULL)
1220 return NULL;
1221
1222 while (block != static_block)
1223 {
1224 sym = lookup_symbol_aux_block (name, block, domain);
1225 if (sym != NULL)
1226 return sym;
1227
1228 if (language == language_cplus || language == language_fortran)
1229 {
1230 sym = cp_lookup_symbol_imports_or_template (scope, name, block,
1231 domain);
1232 if (sym != NULL)
1233 return sym;
1234 }
1235
1236 if (BLOCK_FUNCTION (block) != NULL && block_inlined_p (block))
1237 break;
1238 block = BLOCK_SUPERBLOCK (block);
1239 }
1240
1241 /* We've reached the edge of the function without finding a result. */
1242
1243 return NULL;
1244 }
1245
1246 /* Look up OBJFILE to BLOCK. */
1247
1248 struct objfile *
1249 lookup_objfile_from_block (const struct block *block)
1250 {
1251 struct objfile *obj;
1252 struct symtab *s;
1253
1254 if (block == NULL)
1255 return NULL;
1256
1257 block = block_global_block (block);
1258 /* Go through SYMTABS. */
1259 ALL_SYMTABS (obj, s)
1260 if (block == BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK))
1261 {
1262 if (obj->separate_debug_objfile_backlink)
1263 obj = obj->separate_debug_objfile_backlink;
1264
1265 return obj;
1266 }
1267
1268 return NULL;
1269 }
1270
1271 /* Look up a symbol in a block; if found, fixup the symbol, and set
1272 block_found appropriately. */
1273
1274 struct symbol *
1275 lookup_symbol_aux_block (const char *name, const struct block *block,
1276 const domain_enum domain)
1277 {
1278 struct symbol *sym;
1279
1280 sym = lookup_block_symbol (block, name, domain);
1281 if (sym)
1282 {
1283 block_found = block;
1284 return fixup_symbol_section (sym, NULL);
1285 }
1286
1287 return NULL;
1288 }
1289
1290 /* Check all global symbols in OBJFILE in symtabs and
1291 psymtabs. */
1292
1293 struct symbol *
1294 lookup_global_symbol_from_objfile (const struct objfile *main_objfile,
1295 const char *name,
1296 const domain_enum domain)
1297 {
1298 const struct objfile *objfile;
1299 struct symbol *sym;
1300 struct blockvector *bv;
1301 const struct block *block;
1302 struct symtab *s;
1303
1304 for (objfile = main_objfile;
1305 objfile;
1306 objfile = objfile_separate_debug_iterate (main_objfile, objfile))
1307 {
1308 /* Go through symtabs. */
1309 ALL_OBJFILE_SYMTABS (objfile, s)
1310 {
1311 bv = BLOCKVECTOR (s);
1312 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1313 sym = lookup_block_symbol (block, name, domain);
1314 if (sym)
1315 {
1316 block_found = block;
1317 return fixup_symbol_section (sym, (struct objfile *)objfile);
1318 }
1319 }
1320
1321 sym = lookup_symbol_aux_quick ((struct objfile *) objfile, GLOBAL_BLOCK,
1322 name, domain);
1323 if (sym)
1324 return sym;
1325 }
1326
1327 return NULL;
1328 }
1329
1330 /* Check to see if the symbol is defined in one of the symtabs.
1331 BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
1332 depending on whether or not we want to search global symbols or
1333 static symbols. */
1334
1335 static struct symbol *
1336 lookup_symbol_aux_symtabs (int block_index, const char *name,
1337 const domain_enum domain)
1338 {
1339 struct symbol *sym;
1340 struct objfile *objfile;
1341 struct blockvector *bv;
1342 const struct block *block;
1343 struct symtab *s;
1344
1345 ALL_OBJFILES (objfile)
1346 {
1347 if (objfile->sf)
1348 objfile->sf->qf->pre_expand_symtabs_matching (objfile,
1349 block_index,
1350 name, domain);
1351
1352 ALL_OBJFILE_SYMTABS (objfile, s)
1353 if (s->primary)
1354 {
1355 bv = BLOCKVECTOR (s);
1356 block = BLOCKVECTOR_BLOCK (bv, block_index);
1357 sym = lookup_block_symbol (block, name, domain);
1358 if (sym)
1359 {
1360 block_found = block;
1361 return fixup_symbol_section (sym, objfile);
1362 }
1363 }
1364 }
1365
1366 return NULL;
1367 }
1368
1369 /* A helper function for lookup_symbol_aux that interfaces with the
1370 "quick" symbol table functions. */
1371
1372 static struct symbol *
1373 lookup_symbol_aux_quick (struct objfile *objfile, int kind,
1374 const char *name, const domain_enum domain)
1375 {
1376 struct symtab *symtab;
1377 struct blockvector *bv;
1378 const struct block *block;
1379 struct symbol *sym;
1380
1381 if (!objfile->sf)
1382 return NULL;
1383 symtab = objfile->sf->qf->lookup_symbol (objfile, kind, name, domain);
1384 if (!symtab)
1385 return NULL;
1386
1387 bv = BLOCKVECTOR (symtab);
1388 block = BLOCKVECTOR_BLOCK (bv, kind);
1389 sym = lookup_block_symbol (block, name, domain);
1390 if (!sym)
1391 {
1392 /* This shouldn't be necessary, but as a last resort try
1393 looking in the statics even though the psymtab claimed
1394 the symbol was global, or vice-versa. It's possible
1395 that the psymtab gets it wrong in some cases. */
1396
1397 /* FIXME: carlton/2002-09-30: Should we really do that?
1398 If that happens, isn't it likely to be a GDB error, in
1399 which case we should fix the GDB error rather than
1400 silently dealing with it here? So I'd vote for
1401 removing the check for the symbol in the other
1402 block. */
1403 block = BLOCKVECTOR_BLOCK (bv,
1404 kind == GLOBAL_BLOCK ?
1405 STATIC_BLOCK : GLOBAL_BLOCK);
1406 sym = lookup_block_symbol (block, name, domain);
1407 if (!sym)
1408 error (_("Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n%s may be an inlined function, or may be a template function\n(if a template, try specifying an instantiation: %s<type>)."),
1409 kind == GLOBAL_BLOCK ? "global" : "static",
1410 name, symtab->filename, name, name);
1411 }
1412 return fixup_symbol_section (sym, objfile);
1413 }
1414
1415 /* A default version of lookup_symbol_nonlocal for use by languages
1416 that can't think of anything better to do. This implements the C
1417 lookup rules. */
1418
1419 struct symbol *
1420 basic_lookup_symbol_nonlocal (const char *name,
1421 const struct block *block,
1422 const domain_enum domain)
1423 {
1424 struct symbol *sym;
1425
1426 /* NOTE: carlton/2003-05-19: The comments below were written when
1427 this (or what turned into this) was part of lookup_symbol_aux;
1428 I'm much less worried about these questions now, since these
1429 decisions have turned out well, but I leave these comments here
1430 for posterity. */
1431
1432 /* NOTE: carlton/2002-12-05: There is a question as to whether or
1433 not it would be appropriate to search the current global block
1434 here as well. (That's what this code used to do before the
1435 is_a_field_of_this check was moved up.) On the one hand, it's
1436 redundant with the lookup_symbol_aux_symtabs search that happens
1437 next. On the other hand, if decode_line_1 is passed an argument
1438 like filename:var, then the user presumably wants 'var' to be
1439 searched for in filename. On the third hand, there shouldn't be
1440 multiple global variables all of which are named 'var', and it's
1441 not like decode_line_1 has ever restricted its search to only
1442 global variables in a single filename. All in all, only
1443 searching the static block here seems best: it's correct and it's
1444 cleanest. */
1445
1446 /* NOTE: carlton/2002-12-05: There's also a possible performance
1447 issue here: if you usually search for global symbols in the
1448 current file, then it would be slightly better to search the
1449 current global block before searching all the symtabs. But there
1450 are other factors that have a much greater effect on performance
1451 than that one, so I don't think we should worry about that for
1452 now. */
1453
1454 sym = lookup_symbol_static (name, block, domain);
1455 if (sym != NULL)
1456 return sym;
1457
1458 return lookup_symbol_global (name, block, domain);
1459 }
1460
1461 /* Lookup a symbol in the static block associated to BLOCK, if there
1462 is one; do nothing if BLOCK is NULL or a global block. */
1463
1464 struct symbol *
1465 lookup_symbol_static (const char *name,
1466 const struct block *block,
1467 const domain_enum domain)
1468 {
1469 const struct block *static_block = block_static_block (block);
1470
1471 if (static_block != NULL)
1472 return lookup_symbol_aux_block (name, static_block, domain);
1473 else
1474 return NULL;
1475 }
1476
1477 /* Lookup a symbol in all files' global blocks (searching psymtabs if
1478 necessary). */
1479
1480 struct symbol *
1481 lookup_symbol_global (const char *name,
1482 const struct block *block,
1483 const domain_enum domain)
1484 {
1485 struct symbol *sym = NULL;
1486 struct objfile *objfile = NULL;
1487
1488 /* Call library-specific lookup procedure. */
1489 objfile = lookup_objfile_from_block (block);
1490 if (objfile != NULL)
1491 sym = solib_global_lookup (objfile, name, domain);
1492 if (sym != NULL)
1493 return sym;
1494
1495 sym = lookup_symbol_aux_symtabs (GLOBAL_BLOCK, name, domain);
1496 if (sym != NULL)
1497 return sym;
1498
1499 ALL_OBJFILES (objfile)
1500 {
1501 sym = lookup_symbol_aux_quick (objfile, GLOBAL_BLOCK, name, domain);
1502 if (sym)
1503 return sym;
1504 }
1505
1506 return NULL;
1507 }
1508
1509 int
1510 symbol_matches_domain (enum language symbol_language,
1511 domain_enum symbol_domain,
1512 domain_enum domain)
1513 {
1514 /* For C++ "struct foo { ... }" also defines a typedef for "foo".
1515 A Java class declaration also defines a typedef for the class.
1516 Similarly, any Ada type declaration implicitly defines a typedef. */
1517 if (symbol_language == language_cplus
1518 || symbol_language == language_d
1519 || symbol_language == language_java
1520 || symbol_language == language_ada)
1521 {
1522 if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN)
1523 && symbol_domain == STRUCT_DOMAIN)
1524 return 1;
1525 }
1526 /* For all other languages, strict match is required. */
1527 return (symbol_domain == domain);
1528 }
1529
1530 /* Look up a type named NAME in the struct_domain. The type returned
1531 must not be opaque -- i.e., must have at least one field
1532 defined. */
1533
1534 struct type *
1535 lookup_transparent_type (const char *name)
1536 {
1537 return current_language->la_lookup_transparent_type (name);
1538 }
1539
1540 /* A helper for basic_lookup_transparent_type that interfaces with the
1541 "quick" symbol table functions. */
1542
1543 static struct type *
1544 basic_lookup_transparent_type_quick (struct objfile *objfile, int kind,
1545 const char *name)
1546 {
1547 struct symtab *symtab;
1548 struct blockvector *bv;
1549 struct block *block;
1550 struct symbol *sym;
1551
1552 if (!objfile->sf)
1553 return NULL;
1554 symtab = objfile->sf->qf->lookup_symbol (objfile, kind, name, STRUCT_DOMAIN);
1555 if (!symtab)
1556 return NULL;
1557
1558 bv = BLOCKVECTOR (symtab);
1559 block = BLOCKVECTOR_BLOCK (bv, kind);
1560 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1561 if (!sym)
1562 {
1563 int other_kind = kind == GLOBAL_BLOCK ? STATIC_BLOCK : GLOBAL_BLOCK;
1564
1565 /* This shouldn't be necessary, but as a last resort
1566 * try looking in the 'other kind' even though the psymtab
1567 * claimed the symbol was one thing. It's possible that
1568 * the psymtab gets it wrong in some cases.
1569 */
1570 block = BLOCKVECTOR_BLOCK (bv, other_kind);
1571 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1572 if (!sym)
1573 /* FIXME; error is wrong in one case */
1574 error (_("Internal: global symbol `%s' found in %s psymtab but not in symtab.\n\
1575 %s may be an inlined function, or may be a template function\n\
1576 (if a template, try specifying an instantiation: %s<type>)."),
1577 name, symtab->filename, name, name);
1578 }
1579 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1580 return SYMBOL_TYPE (sym);
1581
1582 return NULL;
1583 }
1584
1585 /* The standard implementation of lookup_transparent_type. This code
1586 was modeled on lookup_symbol -- the parts not relevant to looking
1587 up types were just left out. In particular it's assumed here that
1588 types are available in struct_domain and only at file-static or
1589 global blocks. */
1590
1591 struct type *
1592 basic_lookup_transparent_type (const char *name)
1593 {
1594 struct symbol *sym;
1595 struct symtab *s = NULL;
1596 struct blockvector *bv;
1597 struct objfile *objfile;
1598 struct block *block;
1599 struct type *t;
1600
1601 /* Now search all the global symbols. Do the symtab's first, then
1602 check the psymtab's. If a psymtab indicates the existence
1603 of the desired name as a global, then do psymtab-to-symtab
1604 conversion on the fly and return the found symbol. */
1605
1606 ALL_OBJFILES (objfile)
1607 {
1608 if (objfile->sf)
1609 objfile->sf->qf->pre_expand_symtabs_matching (objfile,
1610 GLOBAL_BLOCK,
1611 name, STRUCT_DOMAIN);
1612
1613 ALL_OBJFILE_SYMTABS (objfile, s)
1614 if (s->primary)
1615 {
1616 bv = BLOCKVECTOR (s);
1617 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1618 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1619 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1620 {
1621 return SYMBOL_TYPE (sym);
1622 }
1623 }
1624 }
1625
1626 ALL_OBJFILES (objfile)
1627 {
1628 t = basic_lookup_transparent_type_quick (objfile, GLOBAL_BLOCK, name);
1629 if (t)
1630 return t;
1631 }
1632
1633 /* Now search the static file-level symbols.
1634 Not strictly correct, but more useful than an error.
1635 Do the symtab's first, then
1636 check the psymtab's. If a psymtab indicates the existence
1637 of the desired name as a file-level static, then do psymtab-to-symtab
1638 conversion on the fly and return the found symbol.
1639 */
1640
1641 ALL_OBJFILES (objfile)
1642 {
1643 if (objfile->sf)
1644 objfile->sf->qf->pre_expand_symtabs_matching (objfile, STATIC_BLOCK,
1645 name, STRUCT_DOMAIN);
1646
1647 ALL_OBJFILE_SYMTABS (objfile, s)
1648 {
1649 bv = BLOCKVECTOR (s);
1650 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
1651 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1652 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1653 {
1654 return SYMBOL_TYPE (sym);
1655 }
1656 }
1657 }
1658
1659 ALL_OBJFILES (objfile)
1660 {
1661 t = basic_lookup_transparent_type_quick (objfile, STATIC_BLOCK, name);
1662 if (t)
1663 return t;
1664 }
1665
1666 return (struct type *) 0;
1667 }
1668
1669
1670 /* Find the name of the file containing main(). */
1671 /* FIXME: What about languages without main() or specially linked
1672 executables that have no main() ? */
1673
1674 const char *
1675 find_main_filename (void)
1676 {
1677 struct objfile *objfile;
1678 char *name = main_name ();
1679
1680 ALL_OBJFILES (objfile)
1681 {
1682 const char *result;
1683
1684 if (!objfile->sf)
1685 continue;
1686 result = objfile->sf->qf->find_symbol_file (objfile, name);
1687 if (result)
1688 return result;
1689 }
1690 return (NULL);
1691 }
1692
1693 /* Search BLOCK for symbol NAME in DOMAIN.
1694
1695 Note that if NAME is the demangled form of a C++ symbol, we will fail
1696 to find a match during the binary search of the non-encoded names, but
1697 for now we don't worry about the slight inefficiency of looking for
1698 a match we'll never find, since it will go pretty quick. Once the
1699 binary search terminates, we drop through and do a straight linear
1700 search on the symbols. Each symbol which is marked as being a ObjC/C++
1701 symbol (language_cplus or language_objc set) has both the encoded and
1702 non-encoded names tested for a match.
1703 */
1704
1705 struct symbol *
1706 lookup_block_symbol (const struct block *block, const char *name,
1707 const domain_enum domain)
1708 {
1709 struct dict_iterator iter;
1710 struct symbol *sym;
1711
1712 if (!BLOCK_FUNCTION (block))
1713 {
1714 for (sym = dict_iter_name_first (BLOCK_DICT (block), name, &iter);
1715 sym != NULL;
1716 sym = dict_iter_name_next (name, &iter))
1717 {
1718 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
1719 SYMBOL_DOMAIN (sym), domain))
1720 return sym;
1721 }
1722 return NULL;
1723 }
1724 else
1725 {
1726 /* Note that parameter symbols do not always show up last in the
1727 list; this loop makes sure to take anything else other than
1728 parameter symbols first; it only uses parameter symbols as a
1729 last resort. Note that this only takes up extra computation
1730 time on a match. */
1731
1732 struct symbol *sym_found = NULL;
1733
1734 for (sym = dict_iter_name_first (BLOCK_DICT (block), name, &iter);
1735 sym != NULL;
1736 sym = dict_iter_name_next (name, &iter))
1737 {
1738 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
1739 SYMBOL_DOMAIN (sym), domain))
1740 {
1741 sym_found = sym;
1742 if (!SYMBOL_IS_ARGUMENT (sym))
1743 {
1744 break;
1745 }
1746 }
1747 }
1748 return (sym_found); /* Will be NULL if not found. */
1749 }
1750 }
1751
1752 /* Find the symtab associated with PC and SECTION. Look through the
1753 psymtabs and read in another symtab if necessary. */
1754
1755 struct symtab *
1756 find_pc_sect_symtab (CORE_ADDR pc, struct obj_section *section)
1757 {
1758 struct block *b;
1759 struct blockvector *bv;
1760 struct symtab *s = NULL;
1761 struct symtab *best_s = NULL;
1762 struct objfile *objfile;
1763 struct program_space *pspace;
1764 CORE_ADDR distance = 0;
1765 struct minimal_symbol *msymbol;
1766
1767 pspace = current_program_space;
1768
1769 /* If we know that this is not a text address, return failure. This is
1770 necessary because we loop based on the block's high and low code
1771 addresses, which do not include the data ranges, and because
1772 we call find_pc_sect_psymtab which has a similar restriction based
1773 on the partial_symtab's texthigh and textlow. */
1774 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
1775 if (msymbol
1776 && (MSYMBOL_TYPE (msymbol) == mst_data
1777 || MSYMBOL_TYPE (msymbol) == mst_bss
1778 || MSYMBOL_TYPE (msymbol) == mst_abs
1779 || MSYMBOL_TYPE (msymbol) == mst_file_data
1780 || MSYMBOL_TYPE (msymbol) == mst_file_bss))
1781 return NULL;
1782
1783 /* Search all symtabs for the one whose file contains our address, and which
1784 is the smallest of all the ones containing the address. This is designed
1785 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
1786 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
1787 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
1788
1789 This happens for native ecoff format, where code from included files
1790 gets its own symtab. The symtab for the included file should have
1791 been read in already via the dependency mechanism.
1792 It might be swifter to create several symtabs with the same name
1793 like xcoff does (I'm not sure).
1794
1795 It also happens for objfiles that have their functions reordered.
1796 For these, the symtab we are looking for is not necessarily read in. */
1797
1798 ALL_PRIMARY_SYMTABS (objfile, s)
1799 {
1800 bv = BLOCKVECTOR (s);
1801 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1802
1803 if (BLOCK_START (b) <= pc
1804 && BLOCK_END (b) > pc
1805 && (distance == 0
1806 || BLOCK_END (b) - BLOCK_START (b) < distance))
1807 {
1808 /* For an objfile that has its functions reordered,
1809 find_pc_psymtab will find the proper partial symbol table
1810 and we simply return its corresponding symtab. */
1811 /* In order to better support objfiles that contain both
1812 stabs and coff debugging info, we continue on if a psymtab
1813 can't be found. */
1814 if ((objfile->flags & OBJF_REORDERED) && objfile->sf)
1815 {
1816 struct symtab *result;
1817
1818 result
1819 = objfile->sf->qf->find_pc_sect_symtab (objfile,
1820 msymbol,
1821 pc, section,
1822 0);
1823 if (result)
1824 return result;
1825 }
1826 if (section != 0)
1827 {
1828 struct dict_iterator iter;
1829 struct symbol *sym = NULL;
1830
1831 ALL_BLOCK_SYMBOLS (b, iter, sym)
1832 {
1833 fixup_symbol_section (sym, objfile);
1834 if (matching_obj_sections (SYMBOL_OBJ_SECTION (sym), section))
1835 break;
1836 }
1837 if (sym == NULL)
1838 continue; /* no symbol in this symtab matches section */
1839 }
1840 distance = BLOCK_END (b) - BLOCK_START (b);
1841 best_s = s;
1842 }
1843 }
1844
1845 if (best_s != NULL)
1846 return (best_s);
1847
1848 ALL_OBJFILES (objfile)
1849 {
1850 struct symtab *result;
1851
1852 if (!objfile->sf)
1853 continue;
1854 result = objfile->sf->qf->find_pc_sect_symtab (objfile,
1855 msymbol,
1856 pc, section,
1857 1);
1858 if (result)
1859 return result;
1860 }
1861
1862 return NULL;
1863 }
1864
1865 /* Find the symtab associated with PC. Look through the psymtabs and
1866 read in another symtab if necessary. Backward compatibility, no section */
1867
1868 struct symtab *
1869 find_pc_symtab (CORE_ADDR pc)
1870 {
1871 return find_pc_sect_symtab (pc, find_pc_mapped_section (pc));
1872 }
1873 \f
1874
1875 /* Find the source file and line number for a given PC value and SECTION.
1876 Return a structure containing a symtab pointer, a line number,
1877 and a pc range for the entire source line.
1878 The value's .pc field is NOT the specified pc.
1879 NOTCURRENT nonzero means, if specified pc is on a line boundary,
1880 use the line that ends there. Otherwise, in that case, the line
1881 that begins there is used. */
1882
1883 /* The big complication here is that a line may start in one file, and end just
1884 before the start of another file. This usually occurs when you #include
1885 code in the middle of a subroutine. To properly find the end of a line's PC
1886 range, we must search all symtabs associated with this compilation unit, and
1887 find the one whose first PC is closer than that of the next line in this
1888 symtab. */
1889
1890 /* If it's worth the effort, we could be using a binary search. */
1891
1892 struct symtab_and_line
1893 find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent)
1894 {
1895 struct symtab *s;
1896 struct linetable *l;
1897 int len;
1898 int i;
1899 struct linetable_entry *item;
1900 struct symtab_and_line val;
1901 struct blockvector *bv;
1902 struct minimal_symbol *msymbol;
1903 struct minimal_symbol *mfunsym;
1904
1905 /* Info on best line seen so far, and where it starts, and its file. */
1906
1907 struct linetable_entry *best = NULL;
1908 CORE_ADDR best_end = 0;
1909 struct symtab *best_symtab = 0;
1910
1911 /* Store here the first line number
1912 of a file which contains the line at the smallest pc after PC.
1913 If we don't find a line whose range contains PC,
1914 we will use a line one less than this,
1915 with a range from the start of that file to the first line's pc. */
1916 struct linetable_entry *alt = NULL;
1917 struct symtab *alt_symtab = 0;
1918
1919 /* Info on best line seen in this file. */
1920
1921 struct linetable_entry *prev;
1922
1923 /* If this pc is not from the current frame,
1924 it is the address of the end of a call instruction.
1925 Quite likely that is the start of the following statement.
1926 But what we want is the statement containing the instruction.
1927 Fudge the pc to make sure we get that. */
1928
1929 init_sal (&val); /* initialize to zeroes */
1930
1931 val.pspace = current_program_space;
1932
1933 /* It's tempting to assume that, if we can't find debugging info for
1934 any function enclosing PC, that we shouldn't search for line
1935 number info, either. However, GAS can emit line number info for
1936 assembly files --- very helpful when debugging hand-written
1937 assembly code. In such a case, we'd have no debug info for the
1938 function, but we would have line info. */
1939
1940 if (notcurrent)
1941 pc -= 1;
1942
1943 /* elz: added this because this function returned the wrong
1944 information if the pc belongs to a stub (import/export)
1945 to call a shlib function. This stub would be anywhere between
1946 two functions in the target, and the line info was erroneously
1947 taken to be the one of the line before the pc.
1948 */
1949 /* RT: Further explanation:
1950
1951 * We have stubs (trampolines) inserted between procedures.
1952 *
1953 * Example: "shr1" exists in a shared library, and a "shr1" stub also
1954 * exists in the main image.
1955 *
1956 * In the minimal symbol table, we have a bunch of symbols
1957 * sorted by start address. The stubs are marked as "trampoline",
1958 * the others appear as text. E.g.:
1959 *
1960 * Minimal symbol table for main image
1961 * main: code for main (text symbol)
1962 * shr1: stub (trampoline symbol)
1963 * foo: code for foo (text symbol)
1964 * ...
1965 * Minimal symbol table for "shr1" image:
1966 * ...
1967 * shr1: code for shr1 (text symbol)
1968 * ...
1969 *
1970 * So the code below is trying to detect if we are in the stub
1971 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
1972 * and if found, do the symbolization from the real-code address
1973 * rather than the stub address.
1974 *
1975 * Assumptions being made about the minimal symbol table:
1976 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
1977 * if we're really in the trampoline. If we're beyond it (say
1978 * we're in "foo" in the above example), it'll have a closer
1979 * symbol (the "foo" text symbol for example) and will not
1980 * return the trampoline.
1981 * 2. lookup_minimal_symbol_text() will find a real text symbol
1982 * corresponding to the trampoline, and whose address will
1983 * be different than the trampoline address. I put in a sanity
1984 * check for the address being the same, to avoid an
1985 * infinite recursion.
1986 */
1987 msymbol = lookup_minimal_symbol_by_pc (pc);
1988 if (msymbol != NULL)
1989 if (MSYMBOL_TYPE (msymbol) == mst_solib_trampoline)
1990 {
1991 mfunsym = lookup_minimal_symbol_text (SYMBOL_LINKAGE_NAME (msymbol),
1992 NULL);
1993 if (mfunsym == NULL)
1994 /* I eliminated this warning since it is coming out
1995 * in the following situation:
1996 * gdb shmain // test program with shared libraries
1997 * (gdb) break shr1 // function in shared lib
1998 * Warning: In stub for ...
1999 * In the above situation, the shared lib is not loaded yet,
2000 * so of course we can't find the real func/line info,
2001 * but the "break" still works, and the warning is annoying.
2002 * So I commented out the warning. RT */
2003 /* warning ("In stub for %s; unable to find real function/line info", SYMBOL_LINKAGE_NAME (msymbol)) */ ;
2004 /* fall through */
2005 else if (SYMBOL_VALUE_ADDRESS (mfunsym) == SYMBOL_VALUE_ADDRESS (msymbol))
2006 /* Avoid infinite recursion */
2007 /* See above comment about why warning is commented out */
2008 /* warning ("In stub for %s; unable to find real function/line info", SYMBOL_LINKAGE_NAME (msymbol)) */ ;
2009 /* fall through */
2010 else
2011 return find_pc_line (SYMBOL_VALUE_ADDRESS (mfunsym), 0);
2012 }
2013
2014
2015 s = find_pc_sect_symtab (pc, section);
2016 if (!s)
2017 {
2018 /* if no symbol information, return previous pc */
2019 if (notcurrent)
2020 pc++;
2021 val.pc = pc;
2022 return val;
2023 }
2024
2025 bv = BLOCKVECTOR (s);
2026
2027 /* Look at all the symtabs that share this blockvector.
2028 They all have the same apriori range, that we found was right;
2029 but they have different line tables. */
2030
2031 for (; s && BLOCKVECTOR (s) == bv; s = s->next)
2032 {
2033 /* Find the best line in this symtab. */
2034 l = LINETABLE (s);
2035 if (!l)
2036 continue;
2037 len = l->nitems;
2038 if (len <= 0)
2039 {
2040 /* I think len can be zero if the symtab lacks line numbers
2041 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
2042 I'm not sure which, and maybe it depends on the symbol
2043 reader). */
2044 continue;
2045 }
2046
2047 prev = NULL;
2048 item = l->item; /* Get first line info */
2049
2050 /* Is this file's first line closer than the first lines of other files?
2051 If so, record this file, and its first line, as best alternate. */
2052 if (item->pc > pc && (!alt || item->pc < alt->pc))
2053 {
2054 alt = item;
2055 alt_symtab = s;
2056 }
2057
2058 for (i = 0; i < len; i++, item++)
2059 {
2060 /* Leave prev pointing to the linetable entry for the last line
2061 that started at or before PC. */
2062 if (item->pc > pc)
2063 break;
2064
2065 prev = item;
2066 }
2067
2068 /* At this point, prev points at the line whose start addr is <= pc, and
2069 item points at the next line. If we ran off the end of the linetable
2070 (pc >= start of the last line), then prev == item. If pc < start of
2071 the first line, prev will not be set. */
2072
2073 /* Is this file's best line closer than the best in the other files?
2074 If so, record this file, and its best line, as best so far. Don't
2075 save prev if it represents the end of a function (i.e. line number
2076 0) instead of a real line. */
2077
2078 if (prev && prev->line && (!best || prev->pc > best->pc))
2079 {
2080 best = prev;
2081 best_symtab = s;
2082
2083 /* Discard BEST_END if it's before the PC of the current BEST. */
2084 if (best_end <= best->pc)
2085 best_end = 0;
2086 }
2087
2088 /* If another line (denoted by ITEM) is in the linetable and its
2089 PC is after BEST's PC, but before the current BEST_END, then
2090 use ITEM's PC as the new best_end. */
2091 if (best && i < len && item->pc > best->pc
2092 && (best_end == 0 || best_end > item->pc))
2093 best_end = item->pc;
2094 }
2095
2096 if (!best_symtab)
2097 {
2098 /* If we didn't find any line number info, just return zeros.
2099 We used to return alt->line - 1 here, but that could be
2100 anywhere; if we don't have line number info for this PC,
2101 don't make some up. */
2102 val.pc = pc;
2103 }
2104 else if (best->line == 0)
2105 {
2106 /* If our best fit is in a range of PC's for which no line
2107 number info is available (line number is zero) then we didn't
2108 find any valid line information. */
2109 val.pc = pc;
2110 }
2111 else
2112 {
2113 val.symtab = best_symtab;
2114 val.line = best->line;
2115 val.pc = best->pc;
2116 if (best_end && (!alt || best_end < alt->pc))
2117 val.end = best_end;
2118 else if (alt)
2119 val.end = alt->pc;
2120 else
2121 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
2122 }
2123 val.section = section;
2124 return val;
2125 }
2126
2127 /* Backward compatibility (no section) */
2128
2129 struct symtab_and_line
2130 find_pc_line (CORE_ADDR pc, int notcurrent)
2131 {
2132 struct obj_section *section;
2133
2134 section = find_pc_overlay (pc);
2135 if (pc_in_unmapped_range (pc, section))
2136 pc = overlay_mapped_address (pc, section);
2137 return find_pc_sect_line (pc, section, notcurrent);
2138 }
2139 \f
2140 /* Find line number LINE in any symtab whose name is the same as
2141 SYMTAB.
2142
2143 If found, return the symtab that contains the linetable in which it was
2144 found, set *INDEX to the index in the linetable of the best entry
2145 found, and set *EXACT_MATCH nonzero if the value returned is an
2146 exact match.
2147
2148 If not found, return NULL. */
2149
2150 struct symtab *
2151 find_line_symtab (struct symtab *symtab, int line,
2152 int *index, int *exact_match)
2153 {
2154 int exact = 0; /* Initialized here to avoid a compiler warning. */
2155
2156 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
2157 so far seen. */
2158
2159 int best_index;
2160 struct linetable *best_linetable;
2161 struct symtab *best_symtab;
2162
2163 /* First try looking it up in the given symtab. */
2164 best_linetable = LINETABLE (symtab);
2165 best_symtab = symtab;
2166 best_index = find_line_common (best_linetable, line, &exact);
2167 if (best_index < 0 || !exact)
2168 {
2169 /* Didn't find an exact match. So we better keep looking for
2170 another symtab with the same name. In the case of xcoff,
2171 multiple csects for one source file (produced by IBM's FORTRAN
2172 compiler) produce multiple symtabs (this is unavoidable
2173 assuming csects can be at arbitrary places in memory and that
2174 the GLOBAL_BLOCK of a symtab has a begin and end address). */
2175
2176 /* BEST is the smallest linenumber > LINE so far seen,
2177 or 0 if none has been seen so far.
2178 BEST_INDEX and BEST_LINETABLE identify the item for it. */
2179 int best;
2180
2181 struct objfile *objfile;
2182 struct symtab *s;
2183
2184 if (best_index >= 0)
2185 best = best_linetable->item[best_index].line;
2186 else
2187 best = 0;
2188
2189 ALL_OBJFILES (objfile)
2190 {
2191 if (objfile->sf)
2192 objfile->sf->qf->expand_symtabs_with_filename (objfile,
2193 symtab->filename);
2194 }
2195
2196 /* Get symbol full file name if possible. */
2197 symtab_to_fullname (symtab);
2198
2199 ALL_SYMTABS (objfile, s)
2200 {
2201 struct linetable *l;
2202 int ind;
2203
2204 if (FILENAME_CMP (symtab->filename, s->filename) != 0)
2205 continue;
2206 if (symtab->fullname != NULL
2207 && symtab_to_fullname (s) != NULL
2208 && FILENAME_CMP (symtab->fullname, s->fullname) != 0)
2209 continue;
2210 l = LINETABLE (s);
2211 ind = find_line_common (l, line, &exact);
2212 if (ind >= 0)
2213 {
2214 if (exact)
2215 {
2216 best_index = ind;
2217 best_linetable = l;
2218 best_symtab = s;
2219 goto done;
2220 }
2221 if (best == 0 || l->item[ind].line < best)
2222 {
2223 best = l->item[ind].line;
2224 best_index = ind;
2225 best_linetable = l;
2226 best_symtab = s;
2227 }
2228 }
2229 }
2230 }
2231 done:
2232 if (best_index < 0)
2233 return NULL;
2234
2235 if (index)
2236 *index = best_index;
2237 if (exact_match)
2238 *exact_match = exact;
2239
2240 return best_symtab;
2241 }
2242 \f
2243 /* Set the PC value for a given source file and line number and return true.
2244 Returns zero for invalid line number (and sets the PC to 0).
2245 The source file is specified with a struct symtab. */
2246
2247 int
2248 find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
2249 {
2250 struct linetable *l;
2251 int ind;
2252
2253 *pc = 0;
2254 if (symtab == 0)
2255 return 0;
2256
2257 symtab = find_line_symtab (symtab, line, &ind, NULL);
2258 if (symtab != NULL)
2259 {
2260 l = LINETABLE (symtab);
2261 *pc = l->item[ind].pc;
2262 return 1;
2263 }
2264 else
2265 return 0;
2266 }
2267
2268 /* Find the range of pc values in a line.
2269 Store the starting pc of the line into *STARTPTR
2270 and the ending pc (start of next line) into *ENDPTR.
2271 Returns 1 to indicate success.
2272 Returns 0 if could not find the specified line. */
2273
2274 int
2275 find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
2276 CORE_ADDR *endptr)
2277 {
2278 CORE_ADDR startaddr;
2279 struct symtab_and_line found_sal;
2280
2281 startaddr = sal.pc;
2282 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
2283 return 0;
2284
2285 /* This whole function is based on address. For example, if line 10 has
2286 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
2287 "info line *0x123" should say the line goes from 0x100 to 0x200
2288 and "info line *0x355" should say the line goes from 0x300 to 0x400.
2289 This also insures that we never give a range like "starts at 0x134
2290 and ends at 0x12c". */
2291
2292 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
2293 if (found_sal.line != sal.line)
2294 {
2295 /* The specified line (sal) has zero bytes. */
2296 *startptr = found_sal.pc;
2297 *endptr = found_sal.pc;
2298 }
2299 else
2300 {
2301 *startptr = found_sal.pc;
2302 *endptr = found_sal.end;
2303 }
2304 return 1;
2305 }
2306
2307 /* Given a line table and a line number, return the index into the line
2308 table for the pc of the nearest line whose number is >= the specified one.
2309 Return -1 if none is found. The value is >= 0 if it is an index.
2310
2311 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
2312
2313 static int
2314 find_line_common (struct linetable *l, int lineno,
2315 int *exact_match)
2316 {
2317 int i;
2318 int len;
2319
2320 /* BEST is the smallest linenumber > LINENO so far seen,
2321 or 0 if none has been seen so far.
2322 BEST_INDEX identifies the item for it. */
2323
2324 int best_index = -1;
2325 int best = 0;
2326
2327 *exact_match = 0;
2328
2329 if (lineno <= 0)
2330 return -1;
2331 if (l == 0)
2332 return -1;
2333
2334 len = l->nitems;
2335 for (i = 0; i < len; i++)
2336 {
2337 struct linetable_entry *item = &(l->item[i]);
2338
2339 if (item->line == lineno)
2340 {
2341 /* Return the first (lowest address) entry which matches. */
2342 *exact_match = 1;
2343 return i;
2344 }
2345
2346 if (item->line > lineno && (best == 0 || item->line < best))
2347 {
2348 best = item->line;
2349 best_index = i;
2350 }
2351 }
2352
2353 /* If we got here, we didn't get an exact match. */
2354 return best_index;
2355 }
2356
2357 int
2358 find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
2359 {
2360 struct symtab_and_line sal;
2361
2362 sal = find_pc_line (pc, 0);
2363 *startptr = sal.pc;
2364 *endptr = sal.end;
2365 return sal.symtab != 0;
2366 }
2367
2368 /* Given a function start address FUNC_ADDR and SYMTAB, find the first
2369 address for that function that has an entry in SYMTAB's line info
2370 table. If such an entry cannot be found, return FUNC_ADDR
2371 unaltered. */
2372 CORE_ADDR
2373 skip_prologue_using_lineinfo (CORE_ADDR func_addr, struct symtab *symtab)
2374 {
2375 CORE_ADDR func_start, func_end;
2376 struct linetable *l;
2377 int i;
2378
2379 /* Give up if this symbol has no lineinfo table. */
2380 l = LINETABLE (symtab);
2381 if (l == NULL)
2382 return func_addr;
2383
2384 /* Get the range for the function's PC values, or give up if we
2385 cannot, for some reason. */
2386 if (!find_pc_partial_function (func_addr, NULL, &func_start, &func_end))
2387 return func_addr;
2388
2389 /* Linetable entries are ordered by PC values, see the commentary in
2390 symtab.h where `struct linetable' is defined. Thus, the first
2391 entry whose PC is in the range [FUNC_START..FUNC_END[ is the
2392 address we are looking for. */
2393 for (i = 0; i < l->nitems; i++)
2394 {
2395 struct linetable_entry *item = &(l->item[i]);
2396
2397 /* Don't use line numbers of zero, they mark special entries in
2398 the table. See the commentary on symtab.h before the
2399 definition of struct linetable. */
2400 if (item->line > 0 && func_start <= item->pc && item->pc < func_end)
2401 return item->pc;
2402 }
2403
2404 return func_addr;
2405 }
2406
2407 /* Given a function symbol SYM, find the symtab and line for the start
2408 of the function.
2409 If the argument FUNFIRSTLINE is nonzero, we want the first line
2410 of real code inside the function. */
2411
2412 struct symtab_and_line
2413 find_function_start_sal (struct symbol *sym, int funfirstline)
2414 {
2415 struct symtab_and_line sal;
2416
2417 fixup_symbol_section (sym, NULL);
2418 sal = find_pc_sect_line (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)),
2419 SYMBOL_OBJ_SECTION (sym), 0);
2420
2421 /* We always should have a line for the function start address.
2422 If we don't, something is odd. Create a plain SAL refering
2423 just the PC and hope that skip_prologue_sal (if requested)
2424 can find a line number for after the prologue. */
2425 if (sal.pc < BLOCK_START (SYMBOL_BLOCK_VALUE (sym)))
2426 {
2427 init_sal (&sal);
2428 sal.pspace = current_program_space;
2429 sal.pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
2430 sal.section = SYMBOL_OBJ_SECTION (sym);
2431 }
2432
2433 if (funfirstline)
2434 skip_prologue_sal (&sal);
2435
2436 return sal;
2437 }
2438
2439 /* Adjust SAL to the first instruction past the function prologue.
2440 If the PC was explicitly specified, the SAL is not changed.
2441 If the line number was explicitly specified, at most the SAL's PC
2442 is updated. If SAL is already past the prologue, then do nothing. */
2443 void
2444 skip_prologue_sal (struct symtab_and_line *sal)
2445 {
2446 struct symbol *sym;
2447 struct symtab_and_line start_sal;
2448 struct cleanup *old_chain;
2449 CORE_ADDR pc;
2450 struct obj_section *section;
2451 const char *name;
2452 struct objfile *objfile;
2453 struct gdbarch *gdbarch;
2454 struct block *b, *function_block;
2455
2456 /* Do not change the SAL is PC was specified explicitly. */
2457 if (sal->explicit_pc)
2458 return;
2459
2460 old_chain = save_current_space_and_thread ();
2461 switch_to_program_space_and_thread (sal->pspace);
2462
2463 sym = find_pc_sect_function (sal->pc, sal->section);
2464 if (sym != NULL)
2465 {
2466 fixup_symbol_section (sym, NULL);
2467
2468 pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
2469 section = SYMBOL_OBJ_SECTION (sym);
2470 name = SYMBOL_LINKAGE_NAME (sym);
2471 objfile = SYMBOL_SYMTAB (sym)->objfile;
2472 }
2473 else
2474 {
2475 struct minimal_symbol *msymbol
2476 = lookup_minimal_symbol_by_pc_section (sal->pc, sal->section);
2477
2478 if (msymbol == NULL)
2479 {
2480 do_cleanups (old_chain);
2481 return;
2482 }
2483
2484 pc = SYMBOL_VALUE_ADDRESS (msymbol);
2485 section = SYMBOL_OBJ_SECTION (msymbol);
2486 name = SYMBOL_LINKAGE_NAME (msymbol);
2487 objfile = msymbol_objfile (msymbol);
2488 }
2489
2490 gdbarch = get_objfile_arch (objfile);
2491
2492 /* If the function is in an unmapped overlay, use its unmapped LMA address,
2493 so that gdbarch_skip_prologue has something unique to work on. */
2494 if (section_is_overlay (section) && !section_is_mapped (section))
2495 pc = overlay_unmapped_address (pc, section);
2496
2497 /* Skip "first line" of function (which is actually its prologue). */
2498 pc += gdbarch_deprecated_function_start_offset (gdbarch);
2499 pc = gdbarch_skip_prologue (gdbarch, pc);
2500
2501 /* For overlays, map pc back into its mapped VMA range. */
2502 pc = overlay_mapped_address (pc, section);
2503
2504 /* Calculate line number. */
2505 start_sal = find_pc_sect_line (pc, section, 0);
2506
2507 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
2508 line is still part of the same function. */
2509 if (start_sal.pc != pc
2510 && (sym? (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) <= start_sal.end
2511 && start_sal.end < BLOCK_END (SYMBOL_BLOCK_VALUE (sym)))
2512 : (lookup_minimal_symbol_by_pc_section (start_sal.end, section)
2513 == lookup_minimal_symbol_by_pc_section (pc, section))))
2514 {
2515 /* First pc of next line */
2516 pc = start_sal.end;
2517 /* Recalculate the line number (might not be N+1). */
2518 start_sal = find_pc_sect_line (pc, section, 0);
2519 }
2520
2521 /* On targets with executable formats that don't have a concept of
2522 constructors (ELF with .init has, PE doesn't), gcc emits a call
2523 to `__main' in `main' between the prologue and before user
2524 code. */
2525 if (gdbarch_skip_main_prologue_p (gdbarch)
2526 && name && strcmp (name, "main") == 0)
2527 {
2528 pc = gdbarch_skip_main_prologue (gdbarch, pc);
2529 /* Recalculate the line number (might not be N+1). */
2530 start_sal = find_pc_sect_line (pc, section, 0);
2531 }
2532
2533 /* If we still don't have a valid source line, try to find the first
2534 PC in the lineinfo table that belongs to the same function. This
2535 happens with COFF debug info, which does not seem to have an
2536 entry in lineinfo table for the code after the prologue which has
2537 no direct relation to source. For example, this was found to be
2538 the case with the DJGPP target using "gcc -gcoff" when the
2539 compiler inserted code after the prologue to make sure the stack
2540 is aligned. */
2541 if (sym && start_sal.symtab == NULL)
2542 {
2543 pc = skip_prologue_using_lineinfo (pc, SYMBOL_SYMTAB (sym));
2544 /* Recalculate the line number. */
2545 start_sal = find_pc_sect_line (pc, section, 0);
2546 }
2547
2548 do_cleanups (old_chain);
2549
2550 /* If we're already past the prologue, leave SAL unchanged. Otherwise
2551 forward SAL to the end of the prologue. */
2552 if (sal->pc >= pc)
2553 return;
2554
2555 sal->pc = pc;
2556 sal->section = section;
2557
2558 /* Unless the explicit_line flag was set, update the SAL line
2559 and symtab to correspond to the modified PC location. */
2560 if (sal->explicit_line)
2561 return;
2562
2563 sal->symtab = start_sal.symtab;
2564 sal->line = start_sal.line;
2565 sal->end = start_sal.end;
2566
2567 /* Check if we are now inside an inlined function. If we can,
2568 use the call site of the function instead. */
2569 b = block_for_pc_sect (sal->pc, sal->section);
2570 function_block = NULL;
2571 while (b != NULL)
2572 {
2573 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
2574 function_block = b;
2575 else if (BLOCK_FUNCTION (b) != NULL)
2576 break;
2577 b = BLOCK_SUPERBLOCK (b);
2578 }
2579 if (function_block != NULL
2580 && SYMBOL_LINE (BLOCK_FUNCTION (function_block)) != 0)
2581 {
2582 sal->line = SYMBOL_LINE (BLOCK_FUNCTION (function_block));
2583 sal->symtab = SYMBOL_SYMTAB (BLOCK_FUNCTION (function_block));
2584 }
2585 }
2586
2587 /* If P is of the form "operator[ \t]+..." where `...' is
2588 some legitimate operator text, return a pointer to the
2589 beginning of the substring of the operator text.
2590 Otherwise, return "". */
2591 char *
2592 operator_chars (char *p, char **end)
2593 {
2594 *end = "";
2595 if (strncmp (p, "operator", 8))
2596 return *end;
2597 p += 8;
2598
2599 /* Don't get faked out by `operator' being part of a longer
2600 identifier. */
2601 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
2602 return *end;
2603
2604 /* Allow some whitespace between `operator' and the operator symbol. */
2605 while (*p == ' ' || *p == '\t')
2606 p++;
2607
2608 /* Recognize 'operator TYPENAME'. */
2609
2610 if (isalpha (*p) || *p == '_' || *p == '$')
2611 {
2612 char *q = p + 1;
2613
2614 while (isalnum (*q) || *q == '_' || *q == '$')
2615 q++;
2616 *end = q;
2617 return p;
2618 }
2619
2620 while (*p)
2621 switch (*p)
2622 {
2623 case '\\': /* regexp quoting */
2624 if (p[1] == '*')
2625 {
2626 if (p[2] == '=') /* 'operator\*=' */
2627 *end = p + 3;
2628 else /* 'operator\*' */
2629 *end = p + 2;
2630 return p;
2631 }
2632 else if (p[1] == '[')
2633 {
2634 if (p[2] == ']')
2635 error (_("mismatched quoting on brackets, try 'operator\\[\\]'"));
2636 else if (p[2] == '\\' && p[3] == ']')
2637 {
2638 *end = p + 4; /* 'operator\[\]' */
2639 return p;
2640 }
2641 else
2642 error (_("nothing is allowed between '[' and ']'"));
2643 }
2644 else
2645 {
2646 /* Gratuitous qoute: skip it and move on. */
2647 p++;
2648 continue;
2649 }
2650 break;
2651 case '!':
2652 case '=':
2653 case '*':
2654 case '/':
2655 case '%':
2656 case '^':
2657 if (p[1] == '=')
2658 *end = p + 2;
2659 else
2660 *end = p + 1;
2661 return p;
2662 case '<':
2663 case '>':
2664 case '+':
2665 case '-':
2666 case '&':
2667 case '|':
2668 if (p[0] == '-' && p[1] == '>')
2669 {
2670 /* Struct pointer member operator 'operator->'. */
2671 if (p[2] == '*')
2672 {
2673 *end = p + 3; /* 'operator->*' */
2674 return p;
2675 }
2676 else if (p[2] == '\\')
2677 {
2678 *end = p + 4; /* Hopefully 'operator->\*' */
2679 return p;
2680 }
2681 else
2682 {
2683 *end = p + 2; /* 'operator->' */
2684 return p;
2685 }
2686 }
2687 if (p[1] == '=' || p[1] == p[0])
2688 *end = p + 2;
2689 else
2690 *end = p + 1;
2691 return p;
2692 case '~':
2693 case ',':
2694 *end = p + 1;
2695 return p;
2696 case '(':
2697 if (p[1] != ')')
2698 error (_("`operator ()' must be specified without whitespace in `()'"));
2699 *end = p + 2;
2700 return p;
2701 case '?':
2702 if (p[1] != ':')
2703 error (_("`operator ?:' must be specified without whitespace in `?:'"));
2704 *end = p + 2;
2705 return p;
2706 case '[':
2707 if (p[1] != ']')
2708 error (_("`operator []' must be specified without whitespace in `[]'"));
2709 *end = p + 2;
2710 return p;
2711 default:
2712 error (_("`operator %s' not supported"), p);
2713 break;
2714 }
2715
2716 *end = "";
2717 return *end;
2718 }
2719 \f
2720
2721 /* If FILE is not already in the table of files, return zero;
2722 otherwise return non-zero. Optionally add FILE to the table if ADD
2723 is non-zero. If *FIRST is non-zero, forget the old table
2724 contents. */
2725 static int
2726 filename_seen (const char *file, int add, int *first)
2727 {
2728 /* Table of files seen so far. */
2729 static const char **tab = NULL;
2730 /* Allocated size of tab in elements.
2731 Start with one 256-byte block (when using GNU malloc.c).
2732 24 is the malloc overhead when range checking is in effect. */
2733 static int tab_alloc_size = (256 - 24) / sizeof (char *);
2734 /* Current size of tab in elements. */
2735 static int tab_cur_size;
2736 const char **p;
2737
2738 if (*first)
2739 {
2740 if (tab == NULL)
2741 tab = (const char **) xmalloc (tab_alloc_size * sizeof (*tab));
2742 tab_cur_size = 0;
2743 }
2744
2745 /* Is FILE in tab? */
2746 for (p = tab; p < tab + tab_cur_size; p++)
2747 if (strcmp (*p, file) == 0)
2748 return 1;
2749
2750 /* No; maybe add it to tab. */
2751 if (add)
2752 {
2753 if (tab_cur_size == tab_alloc_size)
2754 {
2755 tab_alloc_size *= 2;
2756 tab = (const char **) xrealloc ((char *) tab,
2757 tab_alloc_size * sizeof (*tab));
2758 }
2759 tab[tab_cur_size++] = file;
2760 }
2761
2762 return 0;
2763 }
2764
2765 /* Slave routine for sources_info. Force line breaks at ,'s.
2766 NAME is the name to print and *FIRST is nonzero if this is the first
2767 name printed. Set *FIRST to zero. */
2768 static void
2769 output_source_filename (const char *name, int *first)
2770 {
2771 /* Since a single source file can result in several partial symbol
2772 tables, we need to avoid printing it more than once. Note: if
2773 some of the psymtabs are read in and some are not, it gets
2774 printed both under "Source files for which symbols have been
2775 read" and "Source files for which symbols will be read in on
2776 demand". I consider this a reasonable way to deal with the
2777 situation. I'm not sure whether this can also happen for
2778 symtabs; it doesn't hurt to check. */
2779
2780 /* Was NAME already seen? */
2781 if (filename_seen (name, 1, first))
2782 {
2783 /* Yes; don't print it again. */
2784 return;
2785 }
2786 /* No; print it and reset *FIRST. */
2787 if (*first)
2788 {
2789 *first = 0;
2790 }
2791 else
2792 {
2793 printf_filtered (", ");
2794 }
2795
2796 wrap_here ("");
2797 fputs_filtered (name, gdb_stdout);
2798 }
2799
2800 /* A callback for map_partial_symbol_filenames. */
2801 static void
2802 output_partial_symbol_filename (const char *fullname, const char *filename,
2803 void *data)
2804 {
2805 output_source_filename (fullname ? fullname : filename, data);
2806 }
2807
2808 static void
2809 sources_info (char *ignore, int from_tty)
2810 {
2811 struct symtab *s;
2812 struct objfile *objfile;
2813 int first;
2814
2815 if (!have_full_symbols () && !have_partial_symbols ())
2816 {
2817 error (_("No symbol table is loaded. Use the \"file\" command."));
2818 }
2819
2820 printf_filtered ("Source files for which symbols have been read in:\n\n");
2821
2822 first = 1;
2823 ALL_SYMTABS (objfile, s)
2824 {
2825 const char *fullname = symtab_to_fullname (s);
2826
2827 output_source_filename (fullname ? fullname : s->filename, &first);
2828 }
2829 printf_filtered ("\n\n");
2830
2831 printf_filtered ("Source files for which symbols will be read in on demand:\n\n");
2832
2833 first = 1;
2834 map_partial_symbol_filenames (output_partial_symbol_filename, &first);
2835 printf_filtered ("\n");
2836 }
2837
2838 static int
2839 file_matches (const char *file, char *files[], int nfiles)
2840 {
2841 int i;
2842
2843 if (file != NULL && nfiles != 0)
2844 {
2845 for (i = 0; i < nfiles; i++)
2846 {
2847 if (strcmp (files[i], lbasename (file)) == 0)
2848 return 1;
2849 }
2850 }
2851 else if (nfiles == 0)
2852 return 1;
2853 return 0;
2854 }
2855
2856 /* Free any memory associated with a search. */
2857 void
2858 free_search_symbols (struct symbol_search *symbols)
2859 {
2860 struct symbol_search *p;
2861 struct symbol_search *next;
2862
2863 for (p = symbols; p != NULL; p = next)
2864 {
2865 next = p->next;
2866 xfree (p);
2867 }
2868 }
2869
2870 static void
2871 do_free_search_symbols_cleanup (void *symbols)
2872 {
2873 free_search_symbols (symbols);
2874 }
2875
2876 struct cleanup *
2877 make_cleanup_free_search_symbols (struct symbol_search *symbols)
2878 {
2879 return make_cleanup (do_free_search_symbols_cleanup, symbols);
2880 }
2881
2882 /* Helper function for sort_search_symbols and qsort. Can only
2883 sort symbols, not minimal symbols. */
2884 static int
2885 compare_search_syms (const void *sa, const void *sb)
2886 {
2887 struct symbol_search **sym_a = (struct symbol_search **) sa;
2888 struct symbol_search **sym_b = (struct symbol_search **) sb;
2889
2890 return strcmp (SYMBOL_PRINT_NAME ((*sym_a)->symbol),
2891 SYMBOL_PRINT_NAME ((*sym_b)->symbol));
2892 }
2893
2894 /* Sort the ``nfound'' symbols in the list after prevtail. Leave
2895 prevtail where it is, but update its next pointer to point to
2896 the first of the sorted symbols. */
2897 static struct symbol_search *
2898 sort_search_symbols (struct symbol_search *prevtail, int nfound)
2899 {
2900 struct symbol_search **symbols, *symp, *old_next;
2901 int i;
2902
2903 symbols = (struct symbol_search **) xmalloc (sizeof (struct symbol_search *)
2904 * nfound);
2905 symp = prevtail->next;
2906 for (i = 0; i < nfound; i++)
2907 {
2908 symbols[i] = symp;
2909 symp = symp->next;
2910 }
2911 /* Generally NULL. */
2912 old_next = symp;
2913
2914 qsort (symbols, nfound, sizeof (struct symbol_search *),
2915 compare_search_syms);
2916
2917 symp = prevtail;
2918 for (i = 0; i < nfound; i++)
2919 {
2920 symp->next = symbols[i];
2921 symp = symp->next;
2922 }
2923 symp->next = old_next;
2924
2925 xfree (symbols);
2926 return symp;
2927 }
2928
2929 /* An object of this type is passed as the user_data to the
2930 expand_symtabs_matching method. */
2931 struct search_symbols_data
2932 {
2933 int nfiles;
2934 char **files;
2935 char *regexp;
2936 };
2937
2938 /* A callback for expand_symtabs_matching. */
2939 static int
2940 search_symbols_file_matches (const char *filename, void *user_data)
2941 {
2942 struct search_symbols_data *data = user_data;
2943
2944 return file_matches (filename, data->files, data->nfiles);
2945 }
2946
2947 /* A callback for expand_symtabs_matching. */
2948 static int
2949 search_symbols_name_matches (const char *symname, void *user_data)
2950 {
2951 struct search_symbols_data *data = user_data;
2952
2953 return data->regexp == NULL || re_exec (symname);
2954 }
2955
2956 /* Search the symbol table for matches to the regular expression REGEXP,
2957 returning the results in *MATCHES.
2958
2959 Only symbols of KIND are searched:
2960 FUNCTIONS_DOMAIN - search all functions
2961 TYPES_DOMAIN - search all type names
2962 VARIABLES_DOMAIN - search all symbols, excluding functions, type names,
2963 and constants (enums)
2964
2965 free_search_symbols should be called when *MATCHES is no longer needed.
2966
2967 The results are sorted locally; each symtab's global and static blocks are
2968 separately alphabetized.
2969 */
2970 void
2971 search_symbols (char *regexp, domain_enum kind, int nfiles, char *files[],
2972 struct symbol_search **matches)
2973 {
2974 struct symtab *s;
2975 struct blockvector *bv;
2976 struct block *b;
2977 int i = 0;
2978 struct dict_iterator iter;
2979 struct symbol *sym;
2980 struct objfile *objfile;
2981 struct minimal_symbol *msymbol;
2982 char *val;
2983 int found_misc = 0;
2984 static const enum minimal_symbol_type types[]
2985 = {mst_data, mst_text, mst_abs, mst_unknown};
2986 static const enum minimal_symbol_type types2[]
2987 = {mst_bss, mst_file_text, mst_abs, mst_unknown};
2988 static const enum minimal_symbol_type types3[]
2989 = {mst_file_data, mst_solib_trampoline, mst_abs, mst_unknown};
2990 static const enum minimal_symbol_type types4[]
2991 = {mst_file_bss, mst_text, mst_abs, mst_unknown};
2992 enum minimal_symbol_type ourtype;
2993 enum minimal_symbol_type ourtype2;
2994 enum minimal_symbol_type ourtype3;
2995 enum minimal_symbol_type ourtype4;
2996 struct symbol_search *sr;
2997 struct symbol_search *psr;
2998 struct symbol_search *tail;
2999 struct cleanup *old_chain = NULL;
3000 struct search_symbols_data datum;
3001
3002 if (kind < VARIABLES_DOMAIN)
3003 error (_("must search on specific domain"));
3004
3005 ourtype = types[(int) (kind - VARIABLES_DOMAIN)];
3006 ourtype2 = types2[(int) (kind - VARIABLES_DOMAIN)];
3007 ourtype3 = types3[(int) (kind - VARIABLES_DOMAIN)];
3008 ourtype4 = types4[(int) (kind - VARIABLES_DOMAIN)];
3009
3010 sr = *matches = NULL;
3011 tail = NULL;
3012
3013 if (regexp != NULL)
3014 {
3015 /* Make sure spacing is right for C++ operators.
3016 This is just a courtesy to make the matching less sensitive
3017 to how many spaces the user leaves between 'operator'
3018 and <TYPENAME> or <OPERATOR>. */
3019 char *opend;
3020 char *opname = operator_chars (regexp, &opend);
3021
3022 if (*opname)
3023 {
3024 int fix = -1; /* -1 means ok; otherwise number of spaces needed. */
3025
3026 if (isalpha (*opname) || *opname == '_' || *opname == '$')
3027 {
3028 /* There should 1 space between 'operator' and 'TYPENAME'. */
3029 if (opname[-1] != ' ' || opname[-2] == ' ')
3030 fix = 1;
3031 }
3032 else
3033 {
3034 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
3035 if (opname[-1] == ' ')
3036 fix = 0;
3037 }
3038 /* If wrong number of spaces, fix it. */
3039 if (fix >= 0)
3040 {
3041 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
3042
3043 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
3044 regexp = tmp;
3045 }
3046 }
3047
3048 if (0 != (val = re_comp (regexp)))
3049 error (_("Invalid regexp (%s): %s"), val, regexp);
3050 }
3051
3052 /* Search through the partial symtabs *first* for all symbols
3053 matching the regexp. That way we don't have to reproduce all of
3054 the machinery below. */
3055
3056 datum.nfiles = nfiles;
3057 datum.files = files;
3058 datum.regexp = regexp;
3059 ALL_OBJFILES (objfile)
3060 {
3061 if (objfile->sf)
3062 objfile->sf->qf->expand_symtabs_matching (objfile,
3063 search_symbols_file_matches,
3064 search_symbols_name_matches,
3065 kind,
3066 &datum);
3067 }
3068
3069 /* Here, we search through the minimal symbol tables for functions
3070 and variables that match, and force their symbols to be read.
3071 This is in particular necessary for demangled variable names,
3072 which are no longer put into the partial symbol tables.
3073 The symbol will then be found during the scan of symtabs below.
3074
3075 For functions, find_pc_symtab should succeed if we have debug info
3076 for the function, for variables we have to call lookup_symbol
3077 to determine if the variable has debug info.
3078 If the lookup fails, set found_misc so that we will rescan to print
3079 any matching symbols without debug info.
3080 */
3081
3082 if (nfiles == 0 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
3083 {
3084 ALL_MSYMBOLS (objfile, msymbol)
3085 {
3086 QUIT;
3087
3088 if (MSYMBOL_TYPE (msymbol) == ourtype ||
3089 MSYMBOL_TYPE (msymbol) == ourtype2 ||
3090 MSYMBOL_TYPE (msymbol) == ourtype3 ||
3091 MSYMBOL_TYPE (msymbol) == ourtype4)
3092 {
3093 if (regexp == NULL
3094 || re_exec (SYMBOL_NATURAL_NAME (msymbol)) != 0)
3095 {
3096 if (0 == find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol)))
3097 {
3098 /* FIXME: carlton/2003-02-04: Given that the
3099 semantics of lookup_symbol keeps on changing
3100 slightly, it would be a nice idea if we had a
3101 function lookup_symbol_minsym that found the
3102 symbol associated to a given minimal symbol (if
3103 any). */
3104 if (kind == FUNCTIONS_DOMAIN
3105 || lookup_symbol (SYMBOL_LINKAGE_NAME (msymbol),
3106 (struct block *) NULL,
3107 VAR_DOMAIN, 0)
3108 == NULL)
3109 found_misc = 1;
3110 }
3111 }
3112 }
3113 }
3114 }
3115
3116 ALL_PRIMARY_SYMTABS (objfile, s)
3117 {
3118 bv = BLOCKVECTOR (s);
3119 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
3120 {
3121 struct symbol_search *prevtail = tail;
3122 int nfound = 0;
3123
3124 b = BLOCKVECTOR_BLOCK (bv, i);
3125 ALL_BLOCK_SYMBOLS (b, iter, sym)
3126 {
3127 struct symtab *real_symtab = SYMBOL_SYMTAB (sym);
3128
3129 QUIT;
3130
3131 if (file_matches (real_symtab->filename, files, nfiles)
3132 && ((regexp == NULL
3133 || re_exec (SYMBOL_NATURAL_NAME (sym)) != 0)
3134 && ((kind == VARIABLES_DOMAIN
3135 && SYMBOL_CLASS (sym) != LOC_TYPEDEF
3136 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
3137 && SYMBOL_CLASS (sym) != LOC_BLOCK
3138 /* LOC_CONST can be used for more than just enums,
3139 e.g., c++ static const members.
3140 We only want to skip enums here. */
3141 && !(SYMBOL_CLASS (sym) == LOC_CONST
3142 && TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_ENUM))
3143 || (kind == FUNCTIONS_DOMAIN && SYMBOL_CLASS (sym) == LOC_BLOCK)
3144 || (kind == TYPES_DOMAIN && SYMBOL_CLASS (sym) == LOC_TYPEDEF))))
3145 {
3146 /* match */
3147 psr = (struct symbol_search *) xmalloc (sizeof (struct symbol_search));
3148 psr->block = i;
3149 psr->symtab = real_symtab;
3150 psr->symbol = sym;
3151 psr->msymbol = NULL;
3152 psr->next = NULL;
3153 if (tail == NULL)
3154 sr = psr;
3155 else
3156 tail->next = psr;
3157 tail = psr;
3158 nfound ++;
3159 }
3160 }
3161 if (nfound > 0)
3162 {
3163 if (prevtail == NULL)
3164 {
3165 struct symbol_search dummy;
3166
3167 dummy.next = sr;
3168 tail = sort_search_symbols (&dummy, nfound);
3169 sr = dummy.next;
3170
3171 old_chain = make_cleanup_free_search_symbols (sr);
3172 }
3173 else
3174 tail = sort_search_symbols (prevtail, nfound);
3175 }
3176 }
3177 }
3178
3179 /* If there are no eyes, avoid all contact. I mean, if there are
3180 no debug symbols, then print directly from the msymbol_vector. */
3181
3182 if (found_misc || kind != FUNCTIONS_DOMAIN)
3183 {
3184 ALL_MSYMBOLS (objfile, msymbol)
3185 {
3186 QUIT;
3187
3188 if (MSYMBOL_TYPE (msymbol) == ourtype ||
3189 MSYMBOL_TYPE (msymbol) == ourtype2 ||
3190 MSYMBOL_TYPE (msymbol) == ourtype3 ||
3191 MSYMBOL_TYPE (msymbol) == ourtype4)
3192 {
3193 if (regexp == NULL
3194 || re_exec (SYMBOL_NATURAL_NAME (msymbol)) != 0)
3195 {
3196 /* Functions: Look up by address. */
3197 if (kind != FUNCTIONS_DOMAIN ||
3198 (0 == find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol))))
3199 {
3200 /* Variables/Absolutes: Look up by name */
3201 if (lookup_symbol (SYMBOL_LINKAGE_NAME (msymbol),
3202 (struct block *) NULL, VAR_DOMAIN, 0)
3203 == NULL)
3204 {
3205 /* match */
3206 psr = (struct symbol_search *) xmalloc (sizeof (struct symbol_search));
3207 psr->block = i;
3208 psr->msymbol = msymbol;
3209 psr->symtab = NULL;
3210 psr->symbol = NULL;
3211 psr->next = NULL;
3212 if (tail == NULL)
3213 {
3214 sr = psr;
3215 old_chain = make_cleanup_free_search_symbols (sr);
3216 }
3217 else
3218 tail->next = psr;
3219 tail = psr;
3220 }
3221 }
3222 }
3223 }
3224 }
3225 }
3226
3227 *matches = sr;
3228 if (sr != NULL)
3229 discard_cleanups (old_chain);
3230 }
3231
3232 /* Helper function for symtab_symbol_info, this function uses
3233 the data returned from search_symbols() to print information
3234 regarding the match to gdb_stdout.
3235 */
3236 static void
3237 print_symbol_info (domain_enum kind, struct symtab *s, struct symbol *sym,
3238 int block, char *last)
3239 {
3240 if (last == NULL || strcmp (last, s->filename) != 0)
3241 {
3242 fputs_filtered ("\nFile ", gdb_stdout);
3243 fputs_filtered (s->filename, gdb_stdout);
3244 fputs_filtered (":\n", gdb_stdout);
3245 }
3246
3247 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
3248 printf_filtered ("static ");
3249
3250 /* Typedef that is not a C++ class */
3251 if (kind == TYPES_DOMAIN
3252 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
3253 typedef_print (SYMBOL_TYPE (sym), sym, gdb_stdout);
3254 /* variable, func, or typedef-that-is-c++-class */
3255 else if (kind < TYPES_DOMAIN ||
3256 (kind == TYPES_DOMAIN &&
3257 SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
3258 {
3259 type_print (SYMBOL_TYPE (sym),
3260 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
3261 ? "" : SYMBOL_PRINT_NAME (sym)),
3262 gdb_stdout, 0);
3263
3264 printf_filtered (";\n");
3265 }
3266 }
3267
3268 /* This help function for symtab_symbol_info() prints information
3269 for non-debugging symbols to gdb_stdout.
3270 */
3271 static void
3272 print_msymbol_info (struct minimal_symbol *msymbol)
3273 {
3274 struct gdbarch *gdbarch = get_objfile_arch (msymbol_objfile (msymbol));
3275 char *tmp;
3276
3277 if (gdbarch_addr_bit (gdbarch) <= 32)
3278 tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol)
3279 & (CORE_ADDR) 0xffffffff,
3280 8);
3281 else
3282 tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol),
3283 16);
3284 printf_filtered ("%s %s\n",
3285 tmp, SYMBOL_PRINT_NAME (msymbol));
3286 }
3287
3288 /* This is the guts of the commands "info functions", "info types", and
3289 "info variables". It calls search_symbols to find all matches and then
3290 print_[m]symbol_info to print out some useful information about the
3291 matches.
3292 */
3293 static void
3294 symtab_symbol_info (char *regexp, domain_enum kind, int from_tty)
3295 {
3296 static const char * const classnames[] =
3297 {"variable", "function", "type", "method"};
3298 struct symbol_search *symbols;
3299 struct symbol_search *p;
3300 struct cleanup *old_chain;
3301 char *last_filename = NULL;
3302 int first = 1;
3303
3304 /* must make sure that if we're interrupted, symbols gets freed */
3305 search_symbols (regexp, kind, 0, (char **) NULL, &symbols);
3306 old_chain = make_cleanup_free_search_symbols (symbols);
3307
3308 printf_filtered (regexp
3309 ? "All %ss matching regular expression \"%s\":\n"
3310 : "All defined %ss:\n",
3311 classnames[(int) (kind - VARIABLES_DOMAIN)], regexp);
3312
3313 for (p = symbols; p != NULL; p = p->next)
3314 {
3315 QUIT;
3316
3317 if (p->msymbol != NULL)
3318 {
3319 if (first)
3320 {
3321 printf_filtered ("\nNon-debugging symbols:\n");
3322 first = 0;
3323 }
3324 print_msymbol_info (p->msymbol);
3325 }
3326 else
3327 {
3328 print_symbol_info (kind,
3329 p->symtab,
3330 p->symbol,
3331 p->block,
3332 last_filename);
3333 last_filename = p->symtab->filename;
3334 }
3335 }
3336
3337 do_cleanups (old_chain);
3338 }
3339
3340 static void
3341 variables_info (char *regexp, int from_tty)
3342 {
3343 symtab_symbol_info (regexp, VARIABLES_DOMAIN, from_tty);
3344 }
3345
3346 static void
3347 functions_info (char *regexp, int from_tty)
3348 {
3349 symtab_symbol_info (regexp, FUNCTIONS_DOMAIN, from_tty);
3350 }
3351
3352
3353 static void
3354 types_info (char *regexp, int from_tty)
3355 {
3356 symtab_symbol_info (regexp, TYPES_DOMAIN, from_tty);
3357 }
3358
3359 /* Breakpoint all functions matching regular expression. */
3360
3361 void
3362 rbreak_command_wrapper (char *regexp, int from_tty)
3363 {
3364 rbreak_command (regexp, from_tty);
3365 }
3366
3367 /* A cleanup function that calls end_rbreak_breakpoints. */
3368
3369 static void
3370 do_end_rbreak_breakpoints (void *ignore)
3371 {
3372 end_rbreak_breakpoints ();
3373 }
3374
3375 static void
3376 rbreak_command (char *regexp, int from_tty)
3377 {
3378 struct symbol_search *ss;
3379 struct symbol_search *p;
3380 struct cleanup *old_chain;
3381 char *string = NULL;
3382 int len = 0;
3383 char **files = NULL;
3384 int nfiles = 0;
3385
3386 if (regexp)
3387 {
3388 char *colon = strchr (regexp, ':');
3389
3390 if (colon && *(colon + 1) != ':')
3391 {
3392 int colon_index;
3393 char * file_name;
3394
3395 colon_index = colon - regexp;
3396 file_name = alloca (colon_index + 1);
3397 memcpy (file_name, regexp, colon_index);
3398 file_name[colon_index--] = 0;
3399 while (isspace (file_name[colon_index]))
3400 file_name[colon_index--] = 0;
3401 files = &file_name;
3402 nfiles = 1;
3403 regexp = colon + 1;
3404 while (isspace (*regexp)) regexp++;
3405 }
3406 }
3407
3408 search_symbols (regexp, FUNCTIONS_DOMAIN, nfiles, files, &ss);
3409 old_chain = make_cleanup_free_search_symbols (ss);
3410 make_cleanup (free_current_contents, &string);
3411
3412 start_rbreak_breakpoints ();
3413 make_cleanup (do_end_rbreak_breakpoints, NULL);
3414 for (p = ss; p != NULL; p = p->next)
3415 {
3416 if (p->msymbol == NULL)
3417 {
3418 int newlen = (strlen (p->symtab->filename)
3419 + strlen (SYMBOL_LINKAGE_NAME (p->symbol))
3420 + 4);
3421
3422 if (newlen > len)
3423 {
3424 string = xrealloc (string, newlen);
3425 len = newlen;
3426 }
3427 strcpy (string, p->symtab->filename);
3428 strcat (string, ":'");
3429 strcat (string, SYMBOL_LINKAGE_NAME (p->symbol));
3430 strcat (string, "'");
3431 break_command (string, from_tty);
3432 print_symbol_info (FUNCTIONS_DOMAIN,
3433 p->symtab,
3434 p->symbol,
3435 p->block,
3436 p->symtab->filename);
3437 }
3438 else
3439 {
3440 int newlen = (strlen (SYMBOL_LINKAGE_NAME (p->msymbol)) + 3);
3441
3442 if (newlen > len)
3443 {
3444 string = xrealloc (string, newlen);
3445 len = newlen;
3446 }
3447 strcpy (string, "'");
3448 strcat (string, SYMBOL_LINKAGE_NAME (p->msymbol));
3449 strcat (string, "'");
3450
3451 break_command (string, from_tty);
3452 printf_filtered ("<function, no debug info> %s;\n",
3453 SYMBOL_PRINT_NAME (p->msymbol));
3454 }
3455 }
3456
3457 do_cleanups (old_chain);
3458 }
3459 \f
3460
3461 /* Helper routine for make_symbol_completion_list. */
3462
3463 static int return_val_size;
3464 static int return_val_index;
3465 static char **return_val;
3466
3467 #define COMPLETION_LIST_ADD_SYMBOL(symbol, sym_text, len, text, word) \
3468 completion_list_add_name \
3469 (SYMBOL_NATURAL_NAME (symbol), (sym_text), (len), (text), (word))
3470
3471 /* Test to see if the symbol specified by SYMNAME (which is already
3472 demangled for C++ symbols) matches SYM_TEXT in the first SYM_TEXT_LEN
3473 characters. If so, add it to the current completion list. */
3474
3475 static void
3476 completion_list_add_name (char *symname, char *sym_text, int sym_text_len,
3477 char *text, char *word)
3478 {
3479 int newsize;
3480
3481 /* clip symbols that cannot match */
3482
3483 if (strncmp (symname, sym_text, sym_text_len) != 0)
3484 {
3485 return;
3486 }
3487
3488 /* We have a match for a completion, so add SYMNAME to the current list
3489 of matches. Note that the name is moved to freshly malloc'd space. */
3490
3491 {
3492 char *new;
3493
3494 if (word == sym_text)
3495 {
3496 new = xmalloc (strlen (symname) + 5);
3497 strcpy (new, symname);
3498 }
3499 else if (word > sym_text)
3500 {
3501 /* Return some portion of symname. */
3502 new = xmalloc (strlen (symname) + 5);
3503 strcpy (new, symname + (word - sym_text));
3504 }
3505 else
3506 {
3507 /* Return some of SYM_TEXT plus symname. */
3508 new = xmalloc (strlen (symname) + (sym_text - word) + 5);
3509 strncpy (new, word, sym_text - word);
3510 new[sym_text - word] = '\0';
3511 strcat (new, symname);
3512 }
3513
3514 if (return_val_index + 3 > return_val_size)
3515 {
3516 newsize = (return_val_size *= 2) * sizeof (char *);
3517 return_val = (char **) xrealloc ((char *) return_val, newsize);
3518 }
3519 return_val[return_val_index++] = new;
3520 return_val[return_val_index] = NULL;
3521 }
3522 }
3523
3524 /* ObjC: In case we are completing on a selector, look as the msymbol
3525 again and feed all the selectors into the mill. */
3526
3527 static void
3528 completion_list_objc_symbol (struct minimal_symbol *msymbol, char *sym_text,
3529 int sym_text_len, char *text, char *word)
3530 {
3531 static char *tmp = NULL;
3532 static unsigned int tmplen = 0;
3533
3534 char *method, *category, *selector;
3535 char *tmp2 = NULL;
3536
3537 method = SYMBOL_NATURAL_NAME (msymbol);
3538
3539 /* Is it a method? */
3540 if ((method[0] != '-') && (method[0] != '+'))
3541 return;
3542
3543 if (sym_text[0] == '[')
3544 /* Complete on shortened method method. */
3545 completion_list_add_name (method + 1, sym_text, sym_text_len, text, word);
3546
3547 while ((strlen (method) + 1) >= tmplen)
3548 {
3549 if (tmplen == 0)
3550 tmplen = 1024;
3551 else
3552 tmplen *= 2;
3553 tmp = xrealloc (tmp, tmplen);
3554 }
3555 selector = strchr (method, ' ');
3556 if (selector != NULL)
3557 selector++;
3558
3559 category = strchr (method, '(');
3560
3561 if ((category != NULL) && (selector != NULL))
3562 {
3563 memcpy (tmp, method, (category - method));
3564 tmp[category - method] = ' ';
3565 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
3566 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
3567 if (sym_text[0] == '[')
3568 completion_list_add_name (tmp + 1, sym_text, sym_text_len, text, word);
3569 }
3570
3571 if (selector != NULL)
3572 {
3573 /* Complete on selector only. */
3574 strcpy (tmp, selector);
3575 tmp2 = strchr (tmp, ']');
3576 if (tmp2 != NULL)
3577 *tmp2 = '\0';
3578
3579 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
3580 }
3581 }
3582
3583 /* Break the non-quoted text based on the characters which are in
3584 symbols. FIXME: This should probably be language-specific. */
3585
3586 static char *
3587 language_search_unquoted_string (char *text, char *p)
3588 {
3589 for (; p > text; --p)
3590 {
3591 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
3592 continue;
3593 else
3594 {
3595 if ((current_language->la_language == language_objc))
3596 {
3597 if (p[-1] == ':') /* might be part of a method name */
3598 continue;
3599 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
3600 p -= 2; /* beginning of a method name */
3601 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
3602 { /* might be part of a method name */
3603 char *t = p;
3604
3605 /* Seeing a ' ' or a '(' is not conclusive evidence
3606 that we are in the middle of a method name. However,
3607 finding "-[" or "+[" should be pretty un-ambiguous.
3608 Unfortunately we have to find it now to decide. */
3609
3610 while (t > text)
3611 if (isalnum (t[-1]) || t[-1] == '_' ||
3612 t[-1] == ' ' || t[-1] == ':' ||
3613 t[-1] == '(' || t[-1] == ')')
3614 --t;
3615 else
3616 break;
3617
3618 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
3619 p = t - 2; /* method name detected */
3620 /* else we leave with p unchanged */
3621 }
3622 }
3623 break;
3624 }
3625 }
3626 return p;
3627 }
3628
3629 static void
3630 completion_list_add_fields (struct symbol *sym, char *sym_text,
3631 int sym_text_len, char *text, char *word)
3632 {
3633 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
3634 {
3635 struct type *t = SYMBOL_TYPE (sym);
3636 enum type_code c = TYPE_CODE (t);
3637 int j;
3638
3639 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
3640 for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++)
3641 if (TYPE_FIELD_NAME (t, j))
3642 completion_list_add_name (TYPE_FIELD_NAME (t, j),
3643 sym_text, sym_text_len, text, word);
3644 }
3645 }
3646
3647 /* Type of the user_data argument passed to add_macro_name or
3648 add_partial_symbol_name. The contents are simply whatever is
3649 needed by completion_list_add_name. */
3650 struct add_name_data
3651 {
3652 char *sym_text;
3653 int sym_text_len;
3654 char *text;
3655 char *word;
3656 };
3657
3658 /* A callback used with macro_for_each and macro_for_each_in_scope.
3659 This adds a macro's name to the current completion list. */
3660 static void
3661 add_macro_name (const char *name, const struct macro_definition *ignore,
3662 void *user_data)
3663 {
3664 struct add_name_data *datum = (struct add_name_data *) user_data;
3665
3666 completion_list_add_name ((char *) name,
3667 datum->sym_text, datum->sym_text_len,
3668 datum->text, datum->word);
3669 }
3670
3671 /* A callback for map_partial_symbol_names. */
3672 static void
3673 add_partial_symbol_name (const char *name, void *user_data)
3674 {
3675 struct add_name_data *datum = (struct add_name_data *) user_data;
3676
3677 completion_list_add_name ((char *) name,
3678 datum->sym_text, datum->sym_text_len,
3679 datum->text, datum->word);
3680 }
3681
3682 char **
3683 default_make_symbol_completion_list_break_on (char *text, char *word,
3684 const char *break_on)
3685 {
3686 /* Problem: All of the symbols have to be copied because readline
3687 frees them. I'm not going to worry about this; hopefully there
3688 won't be that many. */
3689
3690 struct symbol *sym;
3691 struct symtab *s;
3692 struct minimal_symbol *msymbol;
3693 struct objfile *objfile;
3694 struct block *b;
3695 const struct block *surrounding_static_block, *surrounding_global_block;
3696 struct dict_iterator iter;
3697 /* The symbol we are completing on. Points in same buffer as text. */
3698 char *sym_text;
3699 /* Length of sym_text. */
3700 int sym_text_len;
3701 struct add_name_data datum;
3702
3703 /* Now look for the symbol we are supposed to complete on. */
3704 {
3705 char *p;
3706 char quote_found;
3707 char *quote_pos = NULL;
3708
3709 /* First see if this is a quoted string. */
3710 quote_found = '\0';
3711 for (p = text; *p != '\0'; ++p)
3712 {
3713 if (quote_found != '\0')
3714 {
3715 if (*p == quote_found)
3716 /* Found close quote. */
3717 quote_found = '\0';
3718 else if (*p == '\\' && p[1] == quote_found)
3719 /* A backslash followed by the quote character
3720 doesn't end the string. */
3721 ++p;
3722 }
3723 else if (*p == '\'' || *p == '"')
3724 {
3725 quote_found = *p;
3726 quote_pos = p;
3727 }
3728 }
3729 if (quote_found == '\'')
3730 /* A string within single quotes can be a symbol, so complete on it. */
3731 sym_text = quote_pos + 1;
3732 else if (quote_found == '"')
3733 /* A double-quoted string is never a symbol, nor does it make sense
3734 to complete it any other way. */
3735 {
3736 return_val = (char **) xmalloc (sizeof (char *));
3737 return_val[0] = NULL;
3738 return return_val;
3739 }
3740 else
3741 {
3742 /* It is not a quoted string. Break it based on the characters
3743 which are in symbols. */
3744 while (p > text)
3745 {
3746 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0'
3747 || p[-1] == ':' || strchr (break_on, p[-1]) != NULL)
3748 --p;
3749 else
3750 break;
3751 }
3752 sym_text = p;
3753 }
3754 }
3755
3756 sym_text_len = strlen (sym_text);
3757
3758 return_val_size = 100;
3759 return_val_index = 0;
3760 return_val = (char **) xmalloc ((return_val_size + 1) * sizeof (char *));
3761 return_val[0] = NULL;
3762
3763 datum.sym_text = sym_text;
3764 datum.sym_text_len = sym_text_len;
3765 datum.text = text;
3766 datum.word = word;
3767
3768 /* Look through the partial symtabs for all symbols which begin
3769 by matching SYM_TEXT. Add each one that you find to the list. */
3770 map_partial_symbol_names (add_partial_symbol_name, &datum);
3771
3772 /* At this point scan through the misc symbol vectors and add each
3773 symbol you find to the list. Eventually we want to ignore
3774 anything that isn't a text symbol (everything else will be
3775 handled by the psymtab code above). */
3776
3777 ALL_MSYMBOLS (objfile, msymbol)
3778 {
3779 QUIT;
3780 COMPLETION_LIST_ADD_SYMBOL (msymbol, sym_text, sym_text_len, text, word);
3781
3782 completion_list_objc_symbol (msymbol, sym_text, sym_text_len, text, word);
3783 }
3784
3785 /* Search upwards from currently selected frame (so that we can
3786 complete on local vars). Also catch fields of types defined in
3787 this places which match our text string. Only complete on types
3788 visible from current context. */
3789
3790 b = get_selected_block (0);
3791 surrounding_static_block = block_static_block (b);
3792 surrounding_global_block = block_global_block (b);
3793 if (surrounding_static_block != NULL)
3794 while (b != surrounding_static_block)
3795 {
3796 QUIT;
3797
3798 ALL_BLOCK_SYMBOLS (b, iter, sym)
3799 {
3800 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text,
3801 word);
3802 completion_list_add_fields (sym, sym_text, sym_text_len, text,
3803 word);
3804 }
3805
3806 /* Stop when we encounter an enclosing function. Do not stop for
3807 non-inlined functions - the locals of the enclosing function
3808 are in scope for a nested function. */
3809 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
3810 break;
3811 b = BLOCK_SUPERBLOCK (b);
3812 }
3813
3814 /* Add fields from the file's types; symbols will be added below. */
3815
3816 if (surrounding_static_block != NULL)
3817 ALL_BLOCK_SYMBOLS (surrounding_static_block, iter, sym)
3818 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
3819
3820 if (surrounding_global_block != NULL)
3821 ALL_BLOCK_SYMBOLS (surrounding_global_block, iter, sym)
3822 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
3823
3824 /* Go through the symtabs and check the externs and statics for
3825 symbols which match. */
3826
3827 ALL_PRIMARY_SYMTABS (objfile, s)
3828 {
3829 QUIT;
3830 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
3831 ALL_BLOCK_SYMBOLS (b, iter, sym)
3832 {
3833 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
3834 }
3835 }
3836
3837 ALL_PRIMARY_SYMTABS (objfile, s)
3838 {
3839 QUIT;
3840 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
3841 ALL_BLOCK_SYMBOLS (b, iter, sym)
3842 {
3843 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
3844 }
3845 }
3846
3847 if (current_language->la_macro_expansion == macro_expansion_c)
3848 {
3849 struct macro_scope *scope;
3850
3851 /* Add any macros visible in the default scope. Note that this
3852 may yield the occasional wrong result, because an expression
3853 might be evaluated in a scope other than the default. For
3854 example, if the user types "break file:line if <TAB>", the
3855 resulting expression will be evaluated at "file:line" -- but
3856 at there does not seem to be a way to detect this at
3857 completion time. */
3858 scope = default_macro_scope ();
3859 if (scope)
3860 {
3861 macro_for_each_in_scope (scope->file, scope->line,
3862 add_macro_name, &datum);
3863 xfree (scope);
3864 }
3865
3866 /* User-defined macros are always visible. */
3867 macro_for_each (macro_user_macros, add_macro_name, &datum);
3868 }
3869
3870 return (return_val);
3871 }
3872
3873 char **
3874 default_make_symbol_completion_list (char *text, char *word)
3875 {
3876 return default_make_symbol_completion_list_break_on (text, word, "");
3877 }
3878
3879 /* Return a NULL terminated array of all symbols (regardless of class)
3880 which begin by matching TEXT. If the answer is no symbols, then
3881 the return value is an array which contains only a NULL pointer. */
3882
3883 char **
3884 make_symbol_completion_list (char *text, char *word)
3885 {
3886 return current_language->la_make_symbol_completion_list (text, word);
3887 }
3888
3889 /* Like make_symbol_completion_list, but suitable for use as a
3890 completion function. */
3891
3892 char **
3893 make_symbol_completion_list_fn (struct cmd_list_element *ignore,
3894 char *text, char *word)
3895 {
3896 return make_symbol_completion_list (text, word);
3897 }
3898
3899 /* Like make_symbol_completion_list, but returns a list of symbols
3900 defined in a source file FILE. */
3901
3902 char **
3903 make_file_symbol_completion_list (char *text, char *word, char *srcfile)
3904 {
3905 struct symbol *sym;
3906 struct symtab *s;
3907 struct block *b;
3908 struct dict_iterator iter;
3909 /* The symbol we are completing on. Points in same buffer as text. */
3910 char *sym_text;
3911 /* Length of sym_text. */
3912 int sym_text_len;
3913
3914 /* Now look for the symbol we are supposed to complete on.
3915 FIXME: This should be language-specific. */
3916 {
3917 char *p;
3918 char quote_found;
3919 char *quote_pos = NULL;
3920
3921 /* First see if this is a quoted string. */
3922 quote_found = '\0';
3923 for (p = text; *p != '\0'; ++p)
3924 {
3925 if (quote_found != '\0')
3926 {
3927 if (*p == quote_found)
3928 /* Found close quote. */
3929 quote_found = '\0';
3930 else if (*p == '\\' && p[1] == quote_found)
3931 /* A backslash followed by the quote character
3932 doesn't end the string. */
3933 ++p;
3934 }
3935 else if (*p == '\'' || *p == '"')
3936 {
3937 quote_found = *p;
3938 quote_pos = p;
3939 }
3940 }
3941 if (quote_found == '\'')
3942 /* A string within single quotes can be a symbol, so complete on it. */
3943 sym_text = quote_pos + 1;
3944 else if (quote_found == '"')
3945 /* A double-quoted string is never a symbol, nor does it make sense
3946 to complete it any other way. */
3947 {
3948 return_val = (char **) xmalloc (sizeof (char *));
3949 return_val[0] = NULL;
3950 return return_val;
3951 }
3952 else
3953 {
3954 /* Not a quoted string. */
3955 sym_text = language_search_unquoted_string (text, p);
3956 }
3957 }
3958
3959 sym_text_len = strlen (sym_text);
3960
3961 return_val_size = 10;
3962 return_val_index = 0;
3963 return_val = (char **) xmalloc ((return_val_size + 1) * sizeof (char *));
3964 return_val[0] = NULL;
3965
3966 /* Find the symtab for SRCFILE (this loads it if it was not yet read
3967 in). */
3968 s = lookup_symtab (srcfile);
3969 if (s == NULL)
3970 {
3971 /* Maybe they typed the file with leading directories, while the
3972 symbol tables record only its basename. */
3973 const char *tail = lbasename (srcfile);
3974
3975 if (tail > srcfile)
3976 s = lookup_symtab (tail);
3977 }
3978
3979 /* If we have no symtab for that file, return an empty list. */
3980 if (s == NULL)
3981 return (return_val);
3982
3983 /* Go through this symtab and check the externs and statics for
3984 symbols which match. */
3985
3986 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
3987 ALL_BLOCK_SYMBOLS (b, iter, sym)
3988 {
3989 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
3990 }
3991
3992 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
3993 ALL_BLOCK_SYMBOLS (b, iter, sym)
3994 {
3995 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
3996 }
3997
3998 return (return_val);
3999 }
4000
4001 /* A helper function for make_source_files_completion_list. It adds
4002 another file name to a list of possible completions, growing the
4003 list as necessary. */
4004
4005 static void
4006 add_filename_to_list (const char *fname, char *text, char *word,
4007 char ***list, int *list_used, int *list_alloced)
4008 {
4009 char *new;
4010 size_t fnlen = strlen (fname);
4011
4012 if (*list_used + 1 >= *list_alloced)
4013 {
4014 *list_alloced *= 2;
4015 *list = (char **) xrealloc ((char *) *list,
4016 *list_alloced * sizeof (char *));
4017 }
4018
4019 if (word == text)
4020 {
4021 /* Return exactly fname. */
4022 new = xmalloc (fnlen + 5);
4023 strcpy (new, fname);
4024 }
4025 else if (word > text)
4026 {
4027 /* Return some portion of fname. */
4028 new = xmalloc (fnlen + 5);
4029 strcpy (new, fname + (word - text));
4030 }
4031 else
4032 {
4033 /* Return some of TEXT plus fname. */
4034 new = xmalloc (fnlen + (text - word) + 5);
4035 strncpy (new, word, text - word);
4036 new[text - word] = '\0';
4037 strcat (new, fname);
4038 }
4039 (*list)[*list_used] = new;
4040 (*list)[++*list_used] = NULL;
4041 }
4042
4043 static int
4044 not_interesting_fname (const char *fname)
4045 {
4046 static const char *illegal_aliens[] = {
4047 "_globals_", /* inserted by coff_symtab_read */
4048 NULL
4049 };
4050 int i;
4051
4052 for (i = 0; illegal_aliens[i]; i++)
4053 {
4054 if (strcmp (fname, illegal_aliens[i]) == 0)
4055 return 1;
4056 }
4057 return 0;
4058 }
4059
4060 /* An object of this type is passed as the user_data argument to
4061 map_partial_symbol_filenames. */
4062 struct add_partial_filename_data
4063 {
4064 int *first;
4065 char *text;
4066 char *word;
4067 int text_len;
4068 char ***list;
4069 int *list_used;
4070 int *list_alloced;
4071 };
4072
4073 /* A callback for map_partial_symbol_filenames. */
4074 static void
4075 maybe_add_partial_symtab_filename (const char *fullname, const char *filename,
4076 void *user_data)
4077 {
4078 struct add_partial_filename_data *data = user_data;
4079
4080 if (not_interesting_fname (filename))
4081 return;
4082 if (!filename_seen (filename, 1, data->first)
4083 #if HAVE_DOS_BASED_FILE_SYSTEM
4084 && strncasecmp (filename, data->text, data->text_len) == 0
4085 #else
4086 && strncmp (filename, data->text, data->text_len) == 0
4087 #endif
4088 )
4089 {
4090 /* This file matches for a completion; add it to the
4091 current list of matches. */
4092 add_filename_to_list (filename, data->text, data->word,
4093 data->list, data->list_used, data->list_alloced);
4094 }
4095 else
4096 {
4097 const char *base_name = lbasename (filename);
4098
4099 if (base_name != filename
4100 && !filename_seen (base_name, 1, data->first)
4101 #if HAVE_DOS_BASED_FILE_SYSTEM
4102 && strncasecmp (base_name, data->text, data->text_len) == 0
4103 #else
4104 && strncmp (base_name, data->text, data->text_len) == 0
4105 #endif
4106 )
4107 add_filename_to_list (base_name, data->text, data->word,
4108 data->list, data->list_used, data->list_alloced);
4109 }
4110 }
4111
4112 /* Return a NULL terminated array of all source files whose names
4113 begin with matching TEXT. The file names are looked up in the
4114 symbol tables of this program. If the answer is no matchess, then
4115 the return value is an array which contains only a NULL pointer. */
4116
4117 char **
4118 make_source_files_completion_list (char *text, char *word)
4119 {
4120 struct symtab *s;
4121 struct objfile *objfile;
4122 int first = 1;
4123 int list_alloced = 1;
4124 int list_used = 0;
4125 size_t text_len = strlen (text);
4126 char **list = (char **) xmalloc (list_alloced * sizeof (char *));
4127 const char *base_name;
4128 struct add_partial_filename_data datum;
4129
4130 list[0] = NULL;
4131
4132 if (!have_full_symbols () && !have_partial_symbols ())
4133 return list;
4134
4135 ALL_SYMTABS (objfile, s)
4136 {
4137 if (not_interesting_fname (s->filename))
4138 continue;
4139 if (!filename_seen (s->filename, 1, &first)
4140 #if HAVE_DOS_BASED_FILE_SYSTEM
4141 && strncasecmp (s->filename, text, text_len) == 0
4142 #else
4143 && strncmp (s->filename, text, text_len) == 0
4144 #endif
4145 )
4146 {
4147 /* This file matches for a completion; add it to the current
4148 list of matches. */
4149 add_filename_to_list (s->filename, text, word,
4150 &list, &list_used, &list_alloced);
4151 }
4152 else
4153 {
4154 /* NOTE: We allow the user to type a base name when the
4155 debug info records leading directories, but not the other
4156 way around. This is what subroutines of breakpoint
4157 command do when they parse file names. */
4158 base_name = lbasename (s->filename);
4159 if (base_name != s->filename
4160 && !filename_seen (base_name, 1, &first)
4161 #if HAVE_DOS_BASED_FILE_SYSTEM
4162 && strncasecmp (base_name, text, text_len) == 0
4163 #else
4164 && strncmp (base_name, text, text_len) == 0
4165 #endif
4166 )
4167 add_filename_to_list (base_name, text, word,
4168 &list, &list_used, &list_alloced);
4169 }
4170 }
4171
4172 datum.first = &first;
4173 datum.text = text;
4174 datum.word = word;
4175 datum.text_len = text_len;
4176 datum.list = &list;
4177 datum.list_used = &list_used;
4178 datum.list_alloced = &list_alloced;
4179 map_partial_symbol_filenames (maybe_add_partial_symtab_filename, &datum);
4180
4181 return list;
4182 }
4183
4184 /* Determine if PC is in the prologue of a function. The prologue is the area
4185 between the first instruction of a function, and the first executable line.
4186 Returns 1 if PC *might* be in prologue, 0 if definately *not* in prologue.
4187
4188 If non-zero, func_start is where we think the prologue starts, possibly
4189 by previous examination of symbol table information.
4190 */
4191
4192 int
4193 in_prologue (struct gdbarch *gdbarch, CORE_ADDR pc, CORE_ADDR func_start)
4194 {
4195 struct symtab_and_line sal;
4196 CORE_ADDR func_addr, func_end;
4197
4198 /* We have several sources of information we can consult to figure
4199 this out.
4200 - Compilers usually emit line number info that marks the prologue
4201 as its own "source line". So the ending address of that "line"
4202 is the end of the prologue. If available, this is the most
4203 reliable method.
4204 - The minimal symbols and partial symbols, which can usually tell
4205 us the starting and ending addresses of a function.
4206 - If we know the function's start address, we can call the
4207 architecture-defined gdbarch_skip_prologue function to analyze the
4208 instruction stream and guess where the prologue ends.
4209 - Our `func_start' argument; if non-zero, this is the caller's
4210 best guess as to the function's entry point. At the time of
4211 this writing, handle_inferior_event doesn't get this right, so
4212 it should be our last resort. */
4213
4214 /* Consult the partial symbol table, to find which function
4215 the PC is in. */
4216 if (! find_pc_partial_function (pc, NULL, &func_addr, &func_end))
4217 {
4218 CORE_ADDR prologue_end;
4219
4220 /* We don't even have minsym information, so fall back to using
4221 func_start, if given. */
4222 if (! func_start)
4223 return 1; /* We *might* be in a prologue. */
4224
4225 prologue_end = gdbarch_skip_prologue (gdbarch, func_start);
4226
4227 return func_start <= pc && pc < prologue_end;
4228 }
4229
4230 /* If we have line number information for the function, that's
4231 usually pretty reliable. */
4232 sal = find_pc_line (func_addr, 0);
4233
4234 /* Now sal describes the source line at the function's entry point,
4235 which (by convention) is the prologue. The end of that "line",
4236 sal.end, is the end of the prologue.
4237
4238 Note that, for functions whose source code is all on a single
4239 line, the line number information doesn't always end up this way.
4240 So we must verify that our purported end-of-prologue address is
4241 *within* the function, not at its start or end. */
4242 if (sal.line == 0
4243 || sal.end <= func_addr
4244 || func_end <= sal.end)
4245 {
4246 /* We don't have any good line number info, so use the minsym
4247 information, together with the architecture-specific prologue
4248 scanning code. */
4249 CORE_ADDR prologue_end = gdbarch_skip_prologue (gdbarch, func_addr);
4250
4251 return func_addr <= pc && pc < prologue_end;
4252 }
4253
4254 /* We have line number info, and it looks good. */
4255 return func_addr <= pc && pc < sal.end;
4256 }
4257
4258 /* Given PC at the function's start address, attempt to find the
4259 prologue end using SAL information. Return zero if the skip fails.
4260
4261 A non-optimized prologue traditionally has one SAL for the function
4262 and a second for the function body. A single line function has
4263 them both pointing at the same line.
4264
4265 An optimized prologue is similar but the prologue may contain
4266 instructions (SALs) from the instruction body. Need to skip those
4267 while not getting into the function body.
4268
4269 The functions end point and an increasing SAL line are used as
4270 indicators of the prologue's endpoint.
4271
4272 This code is based on the function refine_prologue_limit (versions
4273 found in both ia64 and ppc). */
4274
4275 CORE_ADDR
4276 skip_prologue_using_sal (struct gdbarch *gdbarch, CORE_ADDR func_addr)
4277 {
4278 struct symtab_and_line prologue_sal;
4279 CORE_ADDR start_pc;
4280 CORE_ADDR end_pc;
4281 struct block *bl;
4282
4283 /* Get an initial range for the function. */
4284 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
4285 start_pc += gdbarch_deprecated_function_start_offset (gdbarch);
4286
4287 prologue_sal = find_pc_line (start_pc, 0);
4288 if (prologue_sal.line != 0)
4289 {
4290 /* For langauges other than assembly, treat two consecutive line
4291 entries at the same address as a zero-instruction prologue.
4292 The GNU assembler emits separate line notes for each instruction
4293 in a multi-instruction macro, but compilers generally will not
4294 do this. */
4295 if (prologue_sal.symtab->language != language_asm)
4296 {
4297 struct linetable *linetable = LINETABLE (prologue_sal.symtab);
4298 int idx = 0;
4299
4300 /* Skip any earlier lines, and any end-of-sequence marker
4301 from a previous function. */
4302 while (linetable->item[idx].pc != prologue_sal.pc
4303 || linetable->item[idx].line == 0)
4304 idx++;
4305
4306 if (idx+1 < linetable->nitems
4307 && linetable->item[idx+1].line != 0
4308 && linetable->item[idx+1].pc == start_pc)
4309 return start_pc;
4310 }
4311
4312 /* If there is only one sal that covers the entire function,
4313 then it is probably a single line function, like
4314 "foo(){}". */
4315 if (prologue_sal.end >= end_pc)
4316 return 0;
4317
4318 while (prologue_sal.end < end_pc)
4319 {
4320 struct symtab_and_line sal;
4321
4322 sal = find_pc_line (prologue_sal.end, 0);
4323 if (sal.line == 0)
4324 break;
4325 /* Assume that a consecutive SAL for the same (or larger)
4326 line mark the prologue -> body transition. */
4327 if (sal.line >= prologue_sal.line)
4328 break;
4329
4330 /* The line number is smaller. Check that it's from the
4331 same function, not something inlined. If it's inlined,
4332 then there is no point comparing the line numbers. */
4333 bl = block_for_pc (prologue_sal.end);
4334 while (bl)
4335 {
4336 if (block_inlined_p (bl))
4337 break;
4338 if (BLOCK_FUNCTION (bl))
4339 {
4340 bl = NULL;
4341 break;
4342 }
4343 bl = BLOCK_SUPERBLOCK (bl);
4344 }
4345 if (bl != NULL)
4346 break;
4347
4348 /* The case in which compiler's optimizer/scheduler has
4349 moved instructions into the prologue. We look ahead in
4350 the function looking for address ranges whose
4351 corresponding line number is less the first one that we
4352 found for the function. This is more conservative then
4353 refine_prologue_limit which scans a large number of SALs
4354 looking for any in the prologue */
4355 prologue_sal = sal;
4356 }
4357 }
4358
4359 if (prologue_sal.end < end_pc)
4360 /* Return the end of this line, or zero if we could not find a
4361 line. */
4362 return prologue_sal.end;
4363 else
4364 /* Don't return END_PC, which is past the end of the function. */
4365 return prologue_sal.pc;
4366 }
4367 \f
4368 struct symtabs_and_lines
4369 decode_line_spec (char *string, int funfirstline)
4370 {
4371 struct symtabs_and_lines sals;
4372 struct symtab_and_line cursal;
4373
4374 if (string == 0)
4375 error (_("Empty line specification."));
4376
4377 /* We use whatever is set as the current source line. We do not try
4378 and get a default or it will recursively call us! */
4379 cursal = get_current_source_symtab_and_line ();
4380
4381 sals = decode_line_1 (&string, funfirstline,
4382 cursal.symtab, cursal.line,
4383 (char ***) NULL, NULL);
4384
4385 if (*string)
4386 error (_("Junk at end of line specification: %s"), string);
4387 return sals;
4388 }
4389
4390 /* Track MAIN */
4391 static char *name_of_main;
4392
4393 void
4394 set_main_name (const char *name)
4395 {
4396 if (name_of_main != NULL)
4397 {
4398 xfree (name_of_main);
4399 name_of_main = NULL;
4400 }
4401 if (name != NULL)
4402 {
4403 name_of_main = xstrdup (name);
4404 }
4405 }
4406
4407 /* Deduce the name of the main procedure, and set NAME_OF_MAIN
4408 accordingly. */
4409
4410 static void
4411 find_main_name (void)
4412 {
4413 const char *new_main_name;
4414
4415 /* Try to see if the main procedure is in Ada. */
4416 /* FIXME: brobecker/2005-03-07: Another way of doing this would
4417 be to add a new method in the language vector, and call this
4418 method for each language until one of them returns a non-empty
4419 name. This would allow us to remove this hard-coded call to
4420 an Ada function. It is not clear that this is a better approach
4421 at this point, because all methods need to be written in a way
4422 such that false positives never be returned. For instance, it is
4423 important that a method does not return a wrong name for the main
4424 procedure if the main procedure is actually written in a different
4425 language. It is easy to guaranty this with Ada, since we use a
4426 special symbol generated only when the main in Ada to find the name
4427 of the main procedure. It is difficult however to see how this can
4428 be guarantied for languages such as C, for instance. This suggests
4429 that order of call for these methods becomes important, which means
4430 a more complicated approach. */
4431 new_main_name = ada_main_name ();
4432 if (new_main_name != NULL)
4433 {
4434 set_main_name (new_main_name);
4435 return;
4436 }
4437
4438 new_main_name = pascal_main_name ();
4439 if (new_main_name != NULL)
4440 {
4441 set_main_name (new_main_name);
4442 return;
4443 }
4444
4445 /* The languages above didn't identify the name of the main procedure.
4446 Fallback to "main". */
4447 set_main_name ("main");
4448 }
4449
4450 char *
4451 main_name (void)
4452 {
4453 if (name_of_main == NULL)
4454 find_main_name ();
4455
4456 return name_of_main;
4457 }
4458
4459 /* Handle ``executable_changed'' events for the symtab module. */
4460
4461 static void
4462 symtab_observer_executable_changed (void)
4463 {
4464 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
4465 set_main_name (NULL);
4466 }
4467
4468 /* Helper to expand_line_sal below. Appends new sal to SAL,
4469 initializing it from SYMTAB, LINENO and PC. */
4470 static void
4471 append_expanded_sal (struct symtabs_and_lines *sal,
4472 struct program_space *pspace,
4473 struct symtab *symtab,
4474 int lineno, CORE_ADDR pc)
4475 {
4476 sal->sals = xrealloc (sal->sals,
4477 sizeof (sal->sals[0])
4478 * (sal->nelts + 1));
4479 init_sal (sal->sals + sal->nelts);
4480 sal->sals[sal->nelts].pspace = pspace;
4481 sal->sals[sal->nelts].symtab = symtab;
4482 sal->sals[sal->nelts].section = NULL;
4483 sal->sals[sal->nelts].end = 0;
4484 sal->sals[sal->nelts].line = lineno;
4485 sal->sals[sal->nelts].pc = pc;
4486 ++sal->nelts;
4487 }
4488
4489 /* Helper to expand_line_sal below. Search in the symtabs for any
4490 linetable entry that exactly matches FULLNAME and LINENO and append
4491 them to RET. If FULLNAME is NULL or if a symtab has no full name,
4492 use FILENAME and LINENO instead. If there is at least one match,
4493 return 1; otherwise, return 0, and return the best choice in BEST_ITEM
4494 and BEST_SYMTAB. */
4495
4496 static int
4497 append_exact_match_to_sals (char *filename, char *fullname, int lineno,
4498 struct symtabs_and_lines *ret,
4499 struct linetable_entry **best_item,
4500 struct symtab **best_symtab)
4501 {
4502 struct program_space *pspace;
4503 struct objfile *objfile;
4504 struct symtab *symtab;
4505 int exact = 0;
4506 int j;
4507 *best_item = 0;
4508 *best_symtab = 0;
4509
4510 ALL_PSPACES (pspace)
4511 ALL_PSPACE_SYMTABS (pspace, objfile, symtab)
4512 {
4513 if (FILENAME_CMP (filename, symtab->filename) == 0)
4514 {
4515 struct linetable *l;
4516 int len;
4517
4518 if (fullname != NULL
4519 && symtab_to_fullname (symtab) != NULL
4520 && FILENAME_CMP (fullname, symtab->fullname) != 0)
4521 continue;
4522 l = LINETABLE (symtab);
4523 if (!l)
4524 continue;
4525 len = l->nitems;
4526
4527 for (j = 0; j < len; j++)
4528 {
4529 struct linetable_entry *item = &(l->item[j]);
4530
4531 if (item->line == lineno)
4532 {
4533 exact = 1;
4534 append_expanded_sal (ret, objfile->pspace,
4535 symtab, lineno, item->pc);
4536 }
4537 else if (!exact && item->line > lineno
4538 && (*best_item == NULL
4539 || item->line < (*best_item)->line))
4540 {
4541 *best_item = item;
4542 *best_symtab = symtab;
4543 }
4544 }
4545 }
4546 }
4547 return exact;
4548 }
4549
4550 /* Compute a set of all sals in all program spaces that correspond to
4551 same file and line as SAL and return those. If there are several
4552 sals that belong to the same block, only one sal for the block is
4553 included in results. */
4554
4555 struct symtabs_and_lines
4556 expand_line_sal (struct symtab_and_line sal)
4557 {
4558 struct symtabs_and_lines ret;
4559 int i, j;
4560 struct objfile *objfile;
4561 int lineno;
4562 int deleted = 0;
4563 struct block **blocks = NULL;
4564 int *filter;
4565 struct cleanup *old_chain;
4566
4567 ret.nelts = 0;
4568 ret.sals = NULL;
4569
4570 /* Only expand sals that represent file.c:line. */
4571 if (sal.symtab == NULL || sal.line == 0 || sal.pc != 0)
4572 {
4573 ret.sals = xmalloc (sizeof (struct symtab_and_line));
4574 ret.sals[0] = sal;
4575 ret.nelts = 1;
4576 return ret;
4577 }
4578 else
4579 {
4580 struct program_space *pspace;
4581 struct linetable_entry *best_item = 0;
4582 struct symtab *best_symtab = 0;
4583 int exact = 0;
4584 char *match_filename;
4585
4586 lineno = sal.line;
4587 match_filename = sal.symtab->filename;
4588
4589 /* We need to find all symtabs for a file which name
4590 is described by sal. We cannot just directly
4591 iterate over symtabs, since a symtab might not be
4592 yet created. We also cannot iterate over psymtabs,
4593 calling PSYMTAB_TO_SYMTAB and working on that symtab,
4594 since PSYMTAB_TO_SYMTAB will return NULL for psymtab
4595 corresponding to an included file. Therefore, we do
4596 first pass over psymtabs, reading in those with
4597 the right name. Then, we iterate over symtabs, knowing
4598 that all symtabs we're interested in are loaded. */
4599
4600 old_chain = save_current_program_space ();
4601 ALL_PSPACES (pspace)
4602 {
4603 set_current_program_space (pspace);
4604 ALL_PSPACE_OBJFILES (pspace, objfile)
4605 {
4606 if (objfile->sf)
4607 objfile->sf->qf->expand_symtabs_with_filename (objfile,
4608 sal.symtab->filename);
4609 }
4610 }
4611 do_cleanups (old_chain);
4612
4613 /* Now search the symtab for exact matches and append them. If
4614 none is found, append the best_item and all its exact
4615 matches. */
4616 symtab_to_fullname (sal.symtab);
4617 exact = append_exact_match_to_sals (sal.symtab->filename,
4618 sal.symtab->fullname, lineno,
4619 &ret, &best_item, &best_symtab);
4620 if (!exact && best_item)
4621 append_exact_match_to_sals (best_symtab->filename,
4622 best_symtab->fullname, best_item->line,
4623 &ret, &best_item, &best_symtab);
4624 }
4625
4626 /* For optimized code, compiler can scatter one source line accross
4627 disjoint ranges of PC values, even when no duplicate functions
4628 or inline functions are involved. For example, 'for (;;)' inside
4629 non-template non-inline non-ctor-or-dtor function can result
4630 in two PC ranges. In this case, we don't want to set breakpoint
4631 on first PC of each range. To filter such cases, we use containing
4632 blocks -- for each PC found above we see if there are other PCs
4633 that are in the same block. If yes, the other PCs are filtered out. */
4634
4635 old_chain = save_current_program_space ();
4636 filter = alloca (ret.nelts * sizeof (int));
4637 blocks = alloca (ret.nelts * sizeof (struct block *));
4638 for (i = 0; i < ret.nelts; ++i)
4639 {
4640 set_current_program_space (ret.sals[i].pspace);
4641
4642 filter[i] = 1;
4643 blocks[i] = block_for_pc_sect (ret.sals[i].pc, ret.sals[i].section);
4644
4645 }
4646 do_cleanups (old_chain);
4647
4648 for (i = 0; i < ret.nelts; ++i)
4649 if (blocks[i] != NULL)
4650 for (j = i+1; j < ret.nelts; ++j)
4651 if (blocks[j] == blocks[i])
4652 {
4653 filter[j] = 0;
4654 ++deleted;
4655 break;
4656 }
4657
4658 {
4659 struct symtab_and_line *final =
4660 xmalloc (sizeof (struct symtab_and_line) * (ret.nelts-deleted));
4661
4662 for (i = 0, j = 0; i < ret.nelts; ++i)
4663 if (filter[i])
4664 final[j++] = ret.sals[i];
4665
4666 ret.nelts -= deleted;
4667 xfree (ret.sals);
4668 ret.sals = final;
4669 }
4670
4671 return ret;
4672 }
4673
4674 /* Return 1 if the supplied producer string matches the ARM RealView
4675 compiler (armcc). */
4676
4677 int
4678 producer_is_realview (const char *producer)
4679 {
4680 static const char *const arm_idents[] = {
4681 "ARM C Compiler, ADS",
4682 "Thumb C Compiler, ADS",
4683 "ARM C++ Compiler, ADS",
4684 "Thumb C++ Compiler, ADS",
4685 "ARM/Thumb C/C++ Compiler, RVCT",
4686 "ARM C/C++ Compiler, RVCT"
4687 };
4688 int i;
4689
4690 if (producer == NULL)
4691 return 0;
4692
4693 for (i = 0; i < ARRAY_SIZE (arm_idents); i++)
4694 if (strncmp (producer, arm_idents[i], strlen (arm_idents[i])) == 0)
4695 return 1;
4696
4697 return 0;
4698 }
4699
4700 void
4701 _initialize_symtab (void)
4702 {
4703 add_info ("variables", variables_info, _("\
4704 All global and static variable names, or those matching REGEXP."));
4705 if (dbx_commands)
4706 add_com ("whereis", class_info, variables_info, _("\
4707 All global and static variable names, or those matching REGEXP."));
4708
4709 add_info ("functions", functions_info,
4710 _("All function names, or those matching REGEXP."));
4711
4712 /* FIXME: This command has at least the following problems:
4713 1. It prints builtin types (in a very strange and confusing fashion).
4714 2. It doesn't print right, e.g. with
4715 typedef struct foo *FOO
4716 type_print prints "FOO" when we want to make it (in this situation)
4717 print "struct foo *".
4718 I also think "ptype" or "whatis" is more likely to be useful (but if
4719 there is much disagreement "info types" can be fixed). */
4720 add_info ("types", types_info,
4721 _("All type names, or those matching REGEXP."));
4722
4723 add_info ("sources", sources_info,
4724 _("Source files in the program."));
4725
4726 add_com ("rbreak", class_breakpoint, rbreak_command,
4727 _("Set a breakpoint for all functions matching REGEXP."));
4728
4729 if (xdb_commands)
4730 {
4731 add_com ("lf", class_info, sources_info,
4732 _("Source files in the program"));
4733 add_com ("lg", class_info, variables_info, _("\
4734 All global and static variable names, or those matching REGEXP."));
4735 }
4736
4737 add_setshow_enum_cmd ("multiple-symbols", no_class,
4738 multiple_symbols_modes, &multiple_symbols_mode,
4739 _("\
4740 Set the debugger behavior when more than one symbol are possible matches\n\
4741 in an expression."), _("\
4742 Show how the debugger handles ambiguities in expressions."), _("\
4743 Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
4744 NULL, NULL, &setlist, &showlist);
4745
4746 observer_attach_executable_changed (symtab_observer_executable_changed);
4747 }
This page took 0.174978 seconds and 4 git commands to generate.