d83f518fa7ee07ae8429a28739aa6190fdf956e1
[deliverable/binutils-gdb.git] / gdb / symtab.c
1 /* Symbol table lookup for the GNU debugger, GDB.
2
3 Copyright (C) 1986-2004, 2007-2012 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "gdbcore.h"
24 #include "frame.h"
25 #include "target.h"
26 #include "value.h"
27 #include "symfile.h"
28 #include "objfiles.h"
29 #include "gdbcmd.h"
30 #include "call-cmds.h"
31 #include "gdb_regex.h"
32 #include "expression.h"
33 #include "language.h"
34 #include "demangle.h"
35 #include "inferior.h"
36 #include "source.h"
37 #include "filenames.h" /* for FILENAME_CMP */
38 #include "objc-lang.h"
39 #include "d-lang.h"
40 #include "ada-lang.h"
41 #include "go-lang.h"
42 #include "p-lang.h"
43 #include "addrmap.h"
44
45 #include "hashtab.h"
46
47 #include "gdb_obstack.h"
48 #include "block.h"
49 #include "dictionary.h"
50
51 #include <sys/types.h>
52 #include <fcntl.h>
53 #include "gdb_string.h"
54 #include "gdb_stat.h"
55 #include <ctype.h>
56 #include "cp-abi.h"
57 #include "cp-support.h"
58 #include "observer.h"
59 #include "gdb_assert.h"
60 #include "solist.h"
61 #include "macrotab.h"
62 #include "macroscope.h"
63
64 #include "psymtab.h"
65
66 /* Prototypes for local functions */
67
68 static void rbreak_command (char *, int);
69
70 static void types_info (char *, int);
71
72 static void functions_info (char *, int);
73
74 static void variables_info (char *, int);
75
76 static void sources_info (char *, int);
77
78 static void output_source_filename (const char *, int *);
79
80 static int find_line_common (struct linetable *, int, int *, int);
81
82 static struct symbol *lookup_symbol_aux (const char *name,
83 const struct block *block,
84 const domain_enum domain,
85 enum language language,
86 int *is_a_field_of_this);
87
88 static
89 struct symbol *lookup_symbol_aux_local (const char *name,
90 const struct block *block,
91 const domain_enum domain,
92 enum language language);
93
94 static
95 struct symbol *lookup_symbol_aux_symtabs (int block_index,
96 const char *name,
97 const domain_enum domain);
98
99 static
100 struct symbol *lookup_symbol_aux_quick (struct objfile *objfile,
101 int block_index,
102 const char *name,
103 const domain_enum domain);
104
105 static void print_msymbol_info (struct minimal_symbol *);
106
107 void _initialize_symtab (void);
108
109 /* */
110
111 /* When non-zero, print debugging messages related to symtab creation. */
112 int symtab_create_debug = 0;
113
114 /* Non-zero if a file may be known by two different basenames.
115 This is the uncommon case, and significantly slows down gdb.
116 Default set to "off" to not slow down the common case. */
117 int basenames_may_differ = 0;
118
119 /* Allow the user to configure the debugger behavior with respect
120 to multiple-choice menus when more than one symbol matches during
121 a symbol lookup. */
122
123 const char multiple_symbols_ask[] = "ask";
124 const char multiple_symbols_all[] = "all";
125 const char multiple_symbols_cancel[] = "cancel";
126 static const char *const multiple_symbols_modes[] =
127 {
128 multiple_symbols_ask,
129 multiple_symbols_all,
130 multiple_symbols_cancel,
131 NULL
132 };
133 static const char *multiple_symbols_mode = multiple_symbols_all;
134
135 /* Read-only accessor to AUTO_SELECT_MODE. */
136
137 const char *
138 multiple_symbols_select_mode (void)
139 {
140 return multiple_symbols_mode;
141 }
142
143 /* Block in which the most recently searched-for symbol was found.
144 Might be better to make this a parameter to lookup_symbol and
145 value_of_this. */
146
147 const struct block *block_found;
148
149 /* See whether FILENAME matches SEARCH_NAME using the rule that we
150 advertise to the user. (The manual's description of linespecs
151 describes what we advertise). SEARCH_LEN is the length of
152 SEARCH_NAME. We assume that SEARCH_NAME is a relative path.
153 Returns true if they match, false otherwise. */
154
155 int
156 compare_filenames_for_search (const char *filename, const char *search_name,
157 int search_len)
158 {
159 int len = strlen (filename);
160
161 if (len < search_len)
162 return 0;
163
164 /* The tail of FILENAME must match. */
165 if (FILENAME_CMP (filename + len - search_len, search_name) != 0)
166 return 0;
167
168 /* Either the names must completely match, or the character
169 preceding the trailing SEARCH_NAME segment of FILENAME must be a
170 directory separator. */
171 return (len == search_len
172 || IS_DIR_SEPARATOR (filename[len - search_len - 1])
173 || (HAS_DRIVE_SPEC (filename)
174 && STRIP_DRIVE_SPEC (filename) == &filename[len - search_len]));
175 }
176
177 /* Check for a symtab of a specific name by searching some symtabs.
178 This is a helper function for callbacks of iterate_over_symtabs.
179
180 The return value, NAME, FULL_PATH, REAL_PATH, CALLBACK, and DATA
181 are identical to the `map_symtabs_matching_filename' method of
182 quick_symbol_functions.
183
184 FIRST and AFTER_LAST indicate the range of symtabs to search.
185 AFTER_LAST is one past the last symtab to search; NULL means to
186 search until the end of the list. */
187
188 int
189 iterate_over_some_symtabs (const char *name,
190 const char *full_path,
191 const char *real_path,
192 int (*callback) (struct symtab *symtab,
193 void *data),
194 void *data,
195 struct symtab *first,
196 struct symtab *after_last)
197 {
198 struct symtab *s = NULL;
199 const char* base_name = lbasename (name);
200 int name_len = strlen (name);
201 int is_abs = IS_ABSOLUTE_PATH (name);
202
203 for (s = first; s != NULL && s != after_last; s = s->next)
204 {
205 /* Exact match is always ok. */
206 if (FILENAME_CMP (name, s->filename) == 0)
207 {
208 if (callback (s, data))
209 return 1;
210 }
211
212 if (!is_abs && compare_filenames_for_search (s->filename, name, name_len))
213 {
214 if (callback (s, data))
215 return 1;
216 }
217
218 /* Before we invoke realpath, which can get expensive when many
219 files are involved, do a quick comparison of the basenames. */
220 if (! basenames_may_differ
221 && FILENAME_CMP (base_name, lbasename (s->filename)) != 0)
222 continue;
223
224 /* If the user gave us an absolute path, try to find the file in
225 this symtab and use its absolute path. */
226
227 if (full_path != NULL)
228 {
229 const char *fp = symtab_to_fullname (s);
230
231 if (fp != NULL && FILENAME_CMP (full_path, fp) == 0)
232 {
233 if (callback (s, data))
234 return 1;
235 }
236
237 if (fp != NULL && !is_abs && compare_filenames_for_search (fp, name,
238 name_len))
239 {
240 if (callback (s, data))
241 return 1;
242 }
243 }
244
245 if (real_path != NULL)
246 {
247 char *fullname = symtab_to_fullname (s);
248
249 if (fullname != NULL)
250 {
251 char *rp = gdb_realpath (fullname);
252
253 make_cleanup (xfree, rp);
254 if (FILENAME_CMP (real_path, rp) == 0)
255 {
256 if (callback (s, data))
257 return 1;
258 }
259
260 if (!is_abs && compare_filenames_for_search (rp, name, name_len))
261 {
262 if (callback (s, data))
263 return 1;
264 }
265 }
266 }
267 }
268
269 return 0;
270 }
271
272 /* Check for a symtab of a specific name; first in symtabs, then in
273 psymtabs. *If* there is no '/' in the name, a match after a '/'
274 in the symtab filename will also work.
275
276 Calls CALLBACK with each symtab that is found and with the supplied
277 DATA. If CALLBACK returns true, the search stops. */
278
279 void
280 iterate_over_symtabs (const char *name,
281 int (*callback) (struct symtab *symtab,
282 void *data),
283 void *data)
284 {
285 struct symtab *s = NULL;
286 struct objfile *objfile;
287 char *real_path = NULL;
288 char *full_path = NULL;
289 struct cleanup *cleanups = make_cleanup (null_cleanup, NULL);
290
291 /* Here we are interested in canonicalizing an absolute path, not
292 absolutizing a relative path. */
293 if (IS_ABSOLUTE_PATH (name))
294 {
295 full_path = xfullpath (name);
296 make_cleanup (xfree, full_path);
297 real_path = gdb_realpath (name);
298 make_cleanup (xfree, real_path);
299 }
300
301 ALL_OBJFILES (objfile)
302 {
303 if (iterate_over_some_symtabs (name, full_path, real_path, callback, data,
304 objfile->symtabs, NULL))
305 {
306 do_cleanups (cleanups);
307 return;
308 }
309 }
310
311 /* Same search rules as above apply here, but now we look thru the
312 psymtabs. */
313
314 ALL_OBJFILES (objfile)
315 {
316 if (objfile->sf
317 && objfile->sf->qf->map_symtabs_matching_filename (objfile,
318 name,
319 full_path,
320 real_path,
321 callback,
322 data))
323 {
324 do_cleanups (cleanups);
325 return;
326 }
327 }
328
329 do_cleanups (cleanups);
330 }
331
332 /* The callback function used by lookup_symtab. */
333
334 static int
335 lookup_symtab_callback (struct symtab *symtab, void *data)
336 {
337 struct symtab **result_ptr = data;
338
339 *result_ptr = symtab;
340 return 1;
341 }
342
343 /* A wrapper for iterate_over_symtabs that returns the first matching
344 symtab, or NULL. */
345
346 struct symtab *
347 lookup_symtab (const char *name)
348 {
349 struct symtab *result = NULL;
350
351 iterate_over_symtabs (name, lookup_symtab_callback, &result);
352 return result;
353 }
354
355 \f
356 /* Mangle a GDB method stub type. This actually reassembles the pieces of the
357 full method name, which consist of the class name (from T), the unadorned
358 method name from METHOD_ID, and the signature for the specific overload,
359 specified by SIGNATURE_ID. Note that this function is g++ specific. */
360
361 char *
362 gdb_mangle_name (struct type *type, int method_id, int signature_id)
363 {
364 int mangled_name_len;
365 char *mangled_name;
366 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
367 struct fn_field *method = &f[signature_id];
368 const char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
369 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
370 const char *newname = type_name_no_tag (type);
371
372 /* Does the form of physname indicate that it is the full mangled name
373 of a constructor (not just the args)? */
374 int is_full_physname_constructor;
375
376 int is_constructor;
377 int is_destructor = is_destructor_name (physname);
378 /* Need a new type prefix. */
379 char *const_prefix = method->is_const ? "C" : "";
380 char *volatile_prefix = method->is_volatile ? "V" : "";
381 char buf[20];
382 int len = (newname == NULL ? 0 : strlen (newname));
383
384 /* Nothing to do if physname already contains a fully mangled v3 abi name
385 or an operator name. */
386 if ((physname[0] == '_' && physname[1] == 'Z')
387 || is_operator_name (field_name))
388 return xstrdup (physname);
389
390 is_full_physname_constructor = is_constructor_name (physname);
391
392 is_constructor = is_full_physname_constructor
393 || (newname && strcmp (field_name, newname) == 0);
394
395 if (!is_destructor)
396 is_destructor = (strncmp (physname, "__dt", 4) == 0);
397
398 if (is_destructor || is_full_physname_constructor)
399 {
400 mangled_name = (char *) xmalloc (strlen (physname) + 1);
401 strcpy (mangled_name, physname);
402 return mangled_name;
403 }
404
405 if (len == 0)
406 {
407 sprintf (buf, "__%s%s", const_prefix, volatile_prefix);
408 }
409 else if (physname[0] == 't' || physname[0] == 'Q')
410 {
411 /* The physname for template and qualified methods already includes
412 the class name. */
413 sprintf (buf, "__%s%s", const_prefix, volatile_prefix);
414 newname = NULL;
415 len = 0;
416 }
417 else
418 {
419 sprintf (buf, "__%s%s%d", const_prefix, volatile_prefix, len);
420 }
421 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
422 + strlen (buf) + len + strlen (physname) + 1);
423
424 mangled_name = (char *) xmalloc (mangled_name_len);
425 if (is_constructor)
426 mangled_name[0] = '\0';
427 else
428 strcpy (mangled_name, field_name);
429
430 strcat (mangled_name, buf);
431 /* If the class doesn't have a name, i.e. newname NULL, then we just
432 mangle it using 0 for the length of the class. Thus it gets mangled
433 as something starting with `::' rather than `classname::'. */
434 if (newname != NULL)
435 strcat (mangled_name, newname);
436
437 strcat (mangled_name, physname);
438 return (mangled_name);
439 }
440
441 /* Initialize the cplus_specific structure. 'cplus_specific' should
442 only be allocated for use with cplus symbols. */
443
444 static void
445 symbol_init_cplus_specific (struct general_symbol_info *gsymbol,
446 struct objfile *objfile)
447 {
448 /* A language_specific structure should not have been previously
449 initialized. */
450 gdb_assert (gsymbol->language_specific.cplus_specific == NULL);
451 gdb_assert (objfile != NULL);
452
453 gsymbol->language_specific.cplus_specific =
454 OBSTACK_ZALLOC (&objfile->objfile_obstack, struct cplus_specific);
455 }
456
457 /* Set the demangled name of GSYMBOL to NAME. NAME must be already
458 correctly allocated. For C++ symbols a cplus_specific struct is
459 allocated so OBJFILE must not be NULL. If this is a non C++ symbol
460 OBJFILE can be NULL. */
461
462 void
463 symbol_set_demangled_name (struct general_symbol_info *gsymbol,
464 char *name,
465 struct objfile *objfile)
466 {
467 if (gsymbol->language == language_cplus)
468 {
469 if (gsymbol->language_specific.cplus_specific == NULL)
470 symbol_init_cplus_specific (gsymbol, objfile);
471
472 gsymbol->language_specific.cplus_specific->demangled_name = name;
473 }
474 else
475 gsymbol->language_specific.mangled_lang.demangled_name = name;
476 }
477
478 /* Return the demangled name of GSYMBOL. */
479
480 const char *
481 symbol_get_demangled_name (const struct general_symbol_info *gsymbol)
482 {
483 if (gsymbol->language == language_cplus)
484 {
485 if (gsymbol->language_specific.cplus_specific != NULL)
486 return gsymbol->language_specific.cplus_specific->demangled_name;
487 else
488 return NULL;
489 }
490 else
491 return gsymbol->language_specific.mangled_lang.demangled_name;
492 }
493
494 \f
495 /* Initialize the language dependent portion of a symbol
496 depending upon the language for the symbol. */
497
498 void
499 symbol_set_language (struct general_symbol_info *gsymbol,
500 enum language language)
501 {
502 gsymbol->language = language;
503 if (gsymbol->language == language_d
504 || gsymbol->language == language_go
505 || gsymbol->language == language_java
506 || gsymbol->language == language_objc
507 || gsymbol->language == language_fortran)
508 {
509 symbol_set_demangled_name (gsymbol, NULL, NULL);
510 }
511 else if (gsymbol->language == language_cplus)
512 gsymbol->language_specific.cplus_specific = NULL;
513 else
514 {
515 memset (&gsymbol->language_specific, 0,
516 sizeof (gsymbol->language_specific));
517 }
518 }
519
520 /* Functions to initialize a symbol's mangled name. */
521
522 /* Objects of this type are stored in the demangled name hash table. */
523 struct demangled_name_entry
524 {
525 char *mangled;
526 char demangled[1];
527 };
528
529 /* Hash function for the demangled name hash. */
530
531 static hashval_t
532 hash_demangled_name_entry (const void *data)
533 {
534 const struct demangled_name_entry *e = data;
535
536 return htab_hash_string (e->mangled);
537 }
538
539 /* Equality function for the demangled name hash. */
540
541 static int
542 eq_demangled_name_entry (const void *a, const void *b)
543 {
544 const struct demangled_name_entry *da = a;
545 const struct demangled_name_entry *db = b;
546
547 return strcmp (da->mangled, db->mangled) == 0;
548 }
549
550 /* Create the hash table used for demangled names. Each hash entry is
551 a pair of strings; one for the mangled name and one for the demangled
552 name. The entry is hashed via just the mangled name. */
553
554 static void
555 create_demangled_names_hash (struct objfile *objfile)
556 {
557 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
558 The hash table code will round this up to the next prime number.
559 Choosing a much larger table size wastes memory, and saves only about
560 1% in symbol reading. */
561
562 objfile->demangled_names_hash = htab_create_alloc
563 (256, hash_demangled_name_entry, eq_demangled_name_entry,
564 NULL, xcalloc, xfree);
565 }
566
567 /* Try to determine the demangled name for a symbol, based on the
568 language of that symbol. If the language is set to language_auto,
569 it will attempt to find any demangling algorithm that works and
570 then set the language appropriately. The returned name is allocated
571 by the demangler and should be xfree'd. */
572
573 static char *
574 symbol_find_demangled_name (struct general_symbol_info *gsymbol,
575 const char *mangled)
576 {
577 char *demangled = NULL;
578
579 if (gsymbol->language == language_unknown)
580 gsymbol->language = language_auto;
581
582 if (gsymbol->language == language_objc
583 || gsymbol->language == language_auto)
584 {
585 demangled =
586 objc_demangle (mangled, 0);
587 if (demangled != NULL)
588 {
589 gsymbol->language = language_objc;
590 return demangled;
591 }
592 }
593 if (gsymbol->language == language_cplus
594 || gsymbol->language == language_auto)
595 {
596 demangled =
597 cplus_demangle (mangled, DMGL_PARAMS | DMGL_ANSI);
598 if (demangled != NULL)
599 {
600 gsymbol->language = language_cplus;
601 return demangled;
602 }
603 }
604 if (gsymbol->language == language_java)
605 {
606 demangled =
607 cplus_demangle (mangled,
608 DMGL_PARAMS | DMGL_ANSI | DMGL_JAVA);
609 if (demangled != NULL)
610 {
611 gsymbol->language = language_java;
612 return demangled;
613 }
614 }
615 if (gsymbol->language == language_d
616 || gsymbol->language == language_auto)
617 {
618 demangled = d_demangle(mangled, 0);
619 if (demangled != NULL)
620 {
621 gsymbol->language = language_d;
622 return demangled;
623 }
624 }
625 /* FIXME(dje): Continually adding languages here is clumsy.
626 Better to just call la_demangle if !auto, and if auto then call
627 a utility routine that tries successive languages in turn and reports
628 which one it finds. I realize the la_demangle options may be different
629 for different languages but there's already a FIXME for that. */
630 if (gsymbol->language == language_go
631 || gsymbol->language == language_auto)
632 {
633 demangled = go_demangle (mangled, 0);
634 if (demangled != NULL)
635 {
636 gsymbol->language = language_go;
637 return demangled;
638 }
639 }
640
641 /* We could support `gsymbol->language == language_fortran' here to provide
642 module namespaces also for inferiors with only minimal symbol table (ELF
643 symbols). Just the mangling standard is not standardized across compilers
644 and there is no DW_AT_producer available for inferiors with only the ELF
645 symbols to check the mangling kind. */
646 return NULL;
647 }
648
649 /* Set both the mangled and demangled (if any) names for GSYMBOL based
650 on LINKAGE_NAME and LEN. Ordinarily, NAME is copied onto the
651 objfile's obstack; but if COPY_NAME is 0 and if NAME is
652 NUL-terminated, then this function assumes that NAME is already
653 correctly saved (either permanently or with a lifetime tied to the
654 objfile), and it will not be copied.
655
656 The hash table corresponding to OBJFILE is used, and the memory
657 comes from that objfile's objfile_obstack. LINKAGE_NAME is copied,
658 so the pointer can be discarded after calling this function. */
659
660 /* We have to be careful when dealing with Java names: when we run
661 into a Java minimal symbol, we don't know it's a Java symbol, so it
662 gets demangled as a C++ name. This is unfortunate, but there's not
663 much we can do about it: but when demangling partial symbols and
664 regular symbols, we'd better not reuse the wrong demangled name.
665 (See PR gdb/1039.) We solve this by putting a distinctive prefix
666 on Java names when storing them in the hash table. */
667
668 /* FIXME: carlton/2003-03-13: This is an unfortunate situation. I
669 don't mind the Java prefix so much: different languages have
670 different demangling requirements, so it's only natural that we
671 need to keep language data around in our demangling cache. But
672 it's not good that the minimal symbol has the wrong demangled name.
673 Unfortunately, I can't think of any easy solution to that
674 problem. */
675
676 #define JAVA_PREFIX "##JAVA$$"
677 #define JAVA_PREFIX_LEN 8
678
679 void
680 symbol_set_names (struct general_symbol_info *gsymbol,
681 const char *linkage_name, int len, int copy_name,
682 struct objfile *objfile)
683 {
684 struct demangled_name_entry **slot;
685 /* A 0-terminated copy of the linkage name. */
686 const char *linkage_name_copy;
687 /* A copy of the linkage name that might have a special Java prefix
688 added to it, for use when looking names up in the hash table. */
689 const char *lookup_name;
690 /* The length of lookup_name. */
691 int lookup_len;
692 struct demangled_name_entry entry;
693
694 if (gsymbol->language == language_ada)
695 {
696 /* In Ada, we do the symbol lookups using the mangled name, so
697 we can save some space by not storing the demangled name.
698
699 As a side note, we have also observed some overlap between
700 the C++ mangling and Ada mangling, similarly to what has
701 been observed with Java. Because we don't store the demangled
702 name with the symbol, we don't need to use the same trick
703 as Java. */
704 if (!copy_name)
705 gsymbol->name = linkage_name;
706 else
707 {
708 char *name = obstack_alloc (&objfile->objfile_obstack, len + 1);
709
710 memcpy (name, linkage_name, len);
711 name[len] = '\0';
712 gsymbol->name = name;
713 }
714 symbol_set_demangled_name (gsymbol, NULL, NULL);
715
716 return;
717 }
718
719 if (objfile->demangled_names_hash == NULL)
720 create_demangled_names_hash (objfile);
721
722 /* The stabs reader generally provides names that are not
723 NUL-terminated; most of the other readers don't do this, so we
724 can just use the given copy, unless we're in the Java case. */
725 if (gsymbol->language == language_java)
726 {
727 char *alloc_name;
728
729 lookup_len = len + JAVA_PREFIX_LEN;
730 alloc_name = alloca (lookup_len + 1);
731 memcpy (alloc_name, JAVA_PREFIX, JAVA_PREFIX_LEN);
732 memcpy (alloc_name + JAVA_PREFIX_LEN, linkage_name, len);
733 alloc_name[lookup_len] = '\0';
734
735 lookup_name = alloc_name;
736 linkage_name_copy = alloc_name + JAVA_PREFIX_LEN;
737 }
738 else if (linkage_name[len] != '\0')
739 {
740 char *alloc_name;
741
742 lookup_len = len;
743 alloc_name = alloca (lookup_len + 1);
744 memcpy (alloc_name, linkage_name, len);
745 alloc_name[lookup_len] = '\0';
746
747 lookup_name = alloc_name;
748 linkage_name_copy = alloc_name;
749 }
750 else
751 {
752 lookup_len = len;
753 lookup_name = linkage_name;
754 linkage_name_copy = linkage_name;
755 }
756
757 entry.mangled = (char *) lookup_name;
758 slot = ((struct demangled_name_entry **)
759 htab_find_slot (objfile->demangled_names_hash,
760 &entry, INSERT));
761
762 /* If this name is not in the hash table, add it. */
763 if (*slot == NULL
764 /* A C version of the symbol may have already snuck into the table.
765 This happens to, e.g., main.init (__go_init_main). Cope. */
766 || (gsymbol->language == language_go
767 && (*slot)->demangled[0] == '\0'))
768 {
769 char *demangled_name = symbol_find_demangled_name (gsymbol,
770 linkage_name_copy);
771 int demangled_len = demangled_name ? strlen (demangled_name) : 0;
772
773 /* Suppose we have demangled_name==NULL, copy_name==0, and
774 lookup_name==linkage_name. In this case, we already have the
775 mangled name saved, and we don't have a demangled name. So,
776 you might think we could save a little space by not recording
777 this in the hash table at all.
778
779 It turns out that it is actually important to still save such
780 an entry in the hash table, because storing this name gives
781 us better bcache hit rates for partial symbols. */
782 if (!copy_name && lookup_name == linkage_name)
783 {
784 *slot = obstack_alloc (&objfile->objfile_obstack,
785 offsetof (struct demangled_name_entry,
786 demangled)
787 + demangled_len + 1);
788 (*slot)->mangled = (char *) lookup_name;
789 }
790 else
791 {
792 /* If we must copy the mangled name, put it directly after
793 the demangled name so we can have a single
794 allocation. */
795 *slot = obstack_alloc (&objfile->objfile_obstack,
796 offsetof (struct demangled_name_entry,
797 demangled)
798 + lookup_len + demangled_len + 2);
799 (*slot)->mangled = &((*slot)->demangled[demangled_len + 1]);
800 strcpy ((*slot)->mangled, lookup_name);
801 }
802
803 if (demangled_name != NULL)
804 {
805 strcpy ((*slot)->demangled, demangled_name);
806 xfree (demangled_name);
807 }
808 else
809 (*slot)->demangled[0] = '\0';
810 }
811
812 gsymbol->name = (*slot)->mangled + lookup_len - len;
813 if ((*slot)->demangled[0] != '\0')
814 symbol_set_demangled_name (gsymbol, (*slot)->demangled, objfile);
815 else
816 symbol_set_demangled_name (gsymbol, NULL, objfile);
817 }
818
819 /* Return the source code name of a symbol. In languages where
820 demangling is necessary, this is the demangled name. */
821
822 const char *
823 symbol_natural_name (const struct general_symbol_info *gsymbol)
824 {
825 switch (gsymbol->language)
826 {
827 case language_cplus:
828 case language_d:
829 case language_go:
830 case language_java:
831 case language_objc:
832 case language_fortran:
833 if (symbol_get_demangled_name (gsymbol) != NULL)
834 return symbol_get_demangled_name (gsymbol);
835 break;
836 case language_ada:
837 if (symbol_get_demangled_name (gsymbol) != NULL)
838 return symbol_get_demangled_name (gsymbol);
839 else
840 return ada_decode_symbol (gsymbol);
841 break;
842 default:
843 break;
844 }
845 return gsymbol->name;
846 }
847
848 /* Return the demangled name for a symbol based on the language for
849 that symbol. If no demangled name exists, return NULL. */
850
851 const char *
852 symbol_demangled_name (const struct general_symbol_info *gsymbol)
853 {
854 const char *dem_name = NULL;
855
856 switch (gsymbol->language)
857 {
858 case language_cplus:
859 case language_d:
860 case language_go:
861 case language_java:
862 case language_objc:
863 case language_fortran:
864 dem_name = symbol_get_demangled_name (gsymbol);
865 break;
866 case language_ada:
867 dem_name = symbol_get_demangled_name (gsymbol);
868 if (dem_name == NULL)
869 dem_name = ada_decode_symbol (gsymbol);
870 break;
871 default:
872 break;
873 }
874 return dem_name;
875 }
876
877 /* Return the search name of a symbol---generally the demangled or
878 linkage name of the symbol, depending on how it will be searched for.
879 If there is no distinct demangled name, then returns the same value
880 (same pointer) as SYMBOL_LINKAGE_NAME. */
881
882 const char *
883 symbol_search_name (const struct general_symbol_info *gsymbol)
884 {
885 if (gsymbol->language == language_ada)
886 return gsymbol->name;
887 else
888 return symbol_natural_name (gsymbol);
889 }
890
891 /* Initialize the structure fields to zero values. */
892
893 void
894 init_sal (struct symtab_and_line *sal)
895 {
896 sal->pspace = NULL;
897 sal->symtab = 0;
898 sal->section = 0;
899 sal->line = 0;
900 sal->pc = 0;
901 sal->end = 0;
902 sal->explicit_pc = 0;
903 sal->explicit_line = 0;
904 sal->probe = NULL;
905 }
906 \f
907
908 /* Return 1 if the two sections are the same, or if they could
909 plausibly be copies of each other, one in an original object
910 file and another in a separated debug file. */
911
912 int
913 matching_obj_sections (struct obj_section *obj_first,
914 struct obj_section *obj_second)
915 {
916 asection *first = obj_first? obj_first->the_bfd_section : NULL;
917 asection *second = obj_second? obj_second->the_bfd_section : NULL;
918 struct objfile *obj;
919
920 /* If they're the same section, then they match. */
921 if (first == second)
922 return 1;
923
924 /* If either is NULL, give up. */
925 if (first == NULL || second == NULL)
926 return 0;
927
928 /* This doesn't apply to absolute symbols. */
929 if (first->owner == NULL || second->owner == NULL)
930 return 0;
931
932 /* If they're in the same object file, they must be different sections. */
933 if (first->owner == second->owner)
934 return 0;
935
936 /* Check whether the two sections are potentially corresponding. They must
937 have the same size, address, and name. We can't compare section indexes,
938 which would be more reliable, because some sections may have been
939 stripped. */
940 if (bfd_get_section_size (first) != bfd_get_section_size (second))
941 return 0;
942
943 /* In-memory addresses may start at a different offset, relativize them. */
944 if (bfd_get_section_vma (first->owner, first)
945 - bfd_get_start_address (first->owner)
946 != bfd_get_section_vma (second->owner, second)
947 - bfd_get_start_address (second->owner))
948 return 0;
949
950 if (bfd_get_section_name (first->owner, first) == NULL
951 || bfd_get_section_name (second->owner, second) == NULL
952 || strcmp (bfd_get_section_name (first->owner, first),
953 bfd_get_section_name (second->owner, second)) != 0)
954 return 0;
955
956 /* Otherwise check that they are in corresponding objfiles. */
957
958 ALL_OBJFILES (obj)
959 if (obj->obfd == first->owner)
960 break;
961 gdb_assert (obj != NULL);
962
963 if (obj->separate_debug_objfile != NULL
964 && obj->separate_debug_objfile->obfd == second->owner)
965 return 1;
966 if (obj->separate_debug_objfile_backlink != NULL
967 && obj->separate_debug_objfile_backlink->obfd == second->owner)
968 return 1;
969
970 return 0;
971 }
972
973 struct symtab *
974 find_pc_sect_symtab_via_partial (CORE_ADDR pc, struct obj_section *section)
975 {
976 struct objfile *objfile;
977 struct minimal_symbol *msymbol;
978
979 /* If we know that this is not a text address, return failure. This is
980 necessary because we loop based on texthigh and textlow, which do
981 not include the data ranges. */
982 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
983 if (msymbol
984 && (MSYMBOL_TYPE (msymbol) == mst_data
985 || MSYMBOL_TYPE (msymbol) == mst_bss
986 || MSYMBOL_TYPE (msymbol) == mst_abs
987 || MSYMBOL_TYPE (msymbol) == mst_file_data
988 || MSYMBOL_TYPE (msymbol) == mst_file_bss))
989 return NULL;
990
991 ALL_OBJFILES (objfile)
992 {
993 struct symtab *result = NULL;
994
995 if (objfile->sf)
996 result = objfile->sf->qf->find_pc_sect_symtab (objfile, msymbol,
997 pc, section, 0);
998 if (result)
999 return result;
1000 }
1001
1002 return NULL;
1003 }
1004 \f
1005 /* Debug symbols usually don't have section information. We need to dig that
1006 out of the minimal symbols and stash that in the debug symbol. */
1007
1008 void
1009 fixup_section (struct general_symbol_info *ginfo,
1010 CORE_ADDR addr, struct objfile *objfile)
1011 {
1012 struct minimal_symbol *msym;
1013
1014 /* First, check whether a minimal symbol with the same name exists
1015 and points to the same address. The address check is required
1016 e.g. on PowerPC64, where the minimal symbol for a function will
1017 point to the function descriptor, while the debug symbol will
1018 point to the actual function code. */
1019 msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->name, objfile);
1020 if (msym)
1021 {
1022 ginfo->obj_section = SYMBOL_OBJ_SECTION (msym);
1023 ginfo->section = SYMBOL_SECTION (msym);
1024 }
1025 else
1026 {
1027 /* Static, function-local variables do appear in the linker
1028 (minimal) symbols, but are frequently given names that won't
1029 be found via lookup_minimal_symbol(). E.g., it has been
1030 observed in frv-uclinux (ELF) executables that a static,
1031 function-local variable named "foo" might appear in the
1032 linker symbols as "foo.6" or "foo.3". Thus, there is no
1033 point in attempting to extend the lookup-by-name mechanism to
1034 handle this case due to the fact that there can be multiple
1035 names.
1036
1037 So, instead, search the section table when lookup by name has
1038 failed. The ``addr'' and ``endaddr'' fields may have already
1039 been relocated. If so, the relocation offset (i.e. the
1040 ANOFFSET value) needs to be subtracted from these values when
1041 performing the comparison. We unconditionally subtract it,
1042 because, when no relocation has been performed, the ANOFFSET
1043 value will simply be zero.
1044
1045 The address of the symbol whose section we're fixing up HAS
1046 NOT BEEN adjusted (relocated) yet. It can't have been since
1047 the section isn't yet known and knowing the section is
1048 necessary in order to add the correct relocation value. In
1049 other words, we wouldn't even be in this function (attempting
1050 to compute the section) if it were already known.
1051
1052 Note that it is possible to search the minimal symbols
1053 (subtracting the relocation value if necessary) to find the
1054 matching minimal symbol, but this is overkill and much less
1055 efficient. It is not necessary to find the matching minimal
1056 symbol, only its section.
1057
1058 Note that this technique (of doing a section table search)
1059 can fail when unrelocated section addresses overlap. For
1060 this reason, we still attempt a lookup by name prior to doing
1061 a search of the section table. */
1062
1063 struct obj_section *s;
1064
1065 ALL_OBJFILE_OSECTIONS (objfile, s)
1066 {
1067 int idx = s->the_bfd_section->index;
1068 CORE_ADDR offset = ANOFFSET (objfile->section_offsets, idx);
1069
1070 if (obj_section_addr (s) - offset <= addr
1071 && addr < obj_section_endaddr (s) - offset)
1072 {
1073 ginfo->obj_section = s;
1074 ginfo->section = idx;
1075 return;
1076 }
1077 }
1078 }
1079 }
1080
1081 struct symbol *
1082 fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
1083 {
1084 CORE_ADDR addr;
1085
1086 if (!sym)
1087 return NULL;
1088
1089 if (SYMBOL_OBJ_SECTION (sym))
1090 return sym;
1091
1092 /* We either have an OBJFILE, or we can get at it from the sym's
1093 symtab. Anything else is a bug. */
1094 gdb_assert (objfile || SYMBOL_SYMTAB (sym));
1095
1096 if (objfile == NULL)
1097 objfile = SYMBOL_SYMTAB (sym)->objfile;
1098
1099 /* We should have an objfile by now. */
1100 gdb_assert (objfile);
1101
1102 switch (SYMBOL_CLASS (sym))
1103 {
1104 case LOC_STATIC:
1105 case LOC_LABEL:
1106 addr = SYMBOL_VALUE_ADDRESS (sym);
1107 break;
1108 case LOC_BLOCK:
1109 addr = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
1110 break;
1111
1112 default:
1113 /* Nothing else will be listed in the minsyms -- no use looking
1114 it up. */
1115 return sym;
1116 }
1117
1118 fixup_section (&sym->ginfo, addr, objfile);
1119
1120 return sym;
1121 }
1122
1123 /* Compute the demangled form of NAME as used by the various symbol
1124 lookup functions. The result is stored in *RESULT_NAME. Returns a
1125 cleanup which can be used to clean up the result.
1126
1127 For Ada, this function just sets *RESULT_NAME to NAME, unmodified.
1128 Normally, Ada symbol lookups are performed using the encoded name
1129 rather than the demangled name, and so it might seem to make sense
1130 for this function to return an encoded version of NAME.
1131 Unfortunately, we cannot do this, because this function is used in
1132 circumstances where it is not appropriate to try to encode NAME.
1133 For instance, when displaying the frame info, we demangle the name
1134 of each parameter, and then perform a symbol lookup inside our
1135 function using that demangled name. In Ada, certain functions
1136 have internally-generated parameters whose name contain uppercase
1137 characters. Encoding those name would result in those uppercase
1138 characters to become lowercase, and thus cause the symbol lookup
1139 to fail. */
1140
1141 struct cleanup *
1142 demangle_for_lookup (const char *name, enum language lang,
1143 const char **result_name)
1144 {
1145 char *demangled_name = NULL;
1146 const char *modified_name = NULL;
1147 struct cleanup *cleanup = make_cleanup (null_cleanup, 0);
1148
1149 modified_name = name;
1150
1151 /* If we are using C++, D, Go, or Java, demangle the name before doing a
1152 lookup, so we can always binary search. */
1153 if (lang == language_cplus)
1154 {
1155 demangled_name = cplus_demangle (name, DMGL_ANSI | DMGL_PARAMS);
1156 if (demangled_name)
1157 {
1158 modified_name = demangled_name;
1159 make_cleanup (xfree, demangled_name);
1160 }
1161 else
1162 {
1163 /* If we were given a non-mangled name, canonicalize it
1164 according to the language (so far only for C++). */
1165 demangled_name = cp_canonicalize_string (name);
1166 if (demangled_name)
1167 {
1168 modified_name = demangled_name;
1169 make_cleanup (xfree, demangled_name);
1170 }
1171 }
1172 }
1173 else if (lang == language_java)
1174 {
1175 demangled_name = cplus_demangle (name,
1176 DMGL_ANSI | DMGL_PARAMS | DMGL_JAVA);
1177 if (demangled_name)
1178 {
1179 modified_name = demangled_name;
1180 make_cleanup (xfree, demangled_name);
1181 }
1182 }
1183 else if (lang == language_d)
1184 {
1185 demangled_name = d_demangle (name, 0);
1186 if (demangled_name)
1187 {
1188 modified_name = demangled_name;
1189 make_cleanup (xfree, demangled_name);
1190 }
1191 }
1192 else if (lang == language_go)
1193 {
1194 demangled_name = go_demangle (name, 0);
1195 if (demangled_name)
1196 {
1197 modified_name = demangled_name;
1198 make_cleanup (xfree, demangled_name);
1199 }
1200 }
1201
1202 *result_name = modified_name;
1203 return cleanup;
1204 }
1205
1206 /* Find the definition for a specified symbol name NAME
1207 in domain DOMAIN, visible from lexical block BLOCK.
1208 Returns the struct symbol pointer, or zero if no symbol is found.
1209 C++: if IS_A_FIELD_OF_THIS is nonzero on entry, check to see if
1210 NAME is a field of the current implied argument `this'. If so set
1211 *IS_A_FIELD_OF_THIS to 1, otherwise set it to zero.
1212 BLOCK_FOUND is set to the block in which NAME is found (in the case of
1213 a field of `this', value_of_this sets BLOCK_FOUND to the proper value.) */
1214
1215 /* This function (or rather its subordinates) have a bunch of loops and
1216 it would seem to be attractive to put in some QUIT's (though I'm not really
1217 sure whether it can run long enough to be really important). But there
1218 are a few calls for which it would appear to be bad news to quit
1219 out of here: e.g., find_proc_desc in alpha-mdebug-tdep.c. (Note
1220 that there is C++ code below which can error(), but that probably
1221 doesn't affect these calls since they are looking for a known
1222 variable and thus can probably assume it will never hit the C++
1223 code). */
1224
1225 struct symbol *
1226 lookup_symbol_in_language (const char *name, const struct block *block,
1227 const domain_enum domain, enum language lang,
1228 int *is_a_field_of_this)
1229 {
1230 const char *modified_name;
1231 struct symbol *returnval;
1232 struct cleanup *cleanup = demangle_for_lookup (name, lang, &modified_name);
1233
1234 returnval = lookup_symbol_aux (modified_name, block, domain, lang,
1235 is_a_field_of_this);
1236 do_cleanups (cleanup);
1237
1238 return returnval;
1239 }
1240
1241 /* Behave like lookup_symbol_in_language, but performed with the
1242 current language. */
1243
1244 struct symbol *
1245 lookup_symbol (const char *name, const struct block *block,
1246 domain_enum domain, int *is_a_field_of_this)
1247 {
1248 return lookup_symbol_in_language (name, block, domain,
1249 current_language->la_language,
1250 is_a_field_of_this);
1251 }
1252
1253 /* Look up the `this' symbol for LANG in BLOCK. Return the symbol if
1254 found, or NULL if not found. */
1255
1256 struct symbol *
1257 lookup_language_this (const struct language_defn *lang,
1258 const struct block *block)
1259 {
1260 if (lang->la_name_of_this == NULL || block == NULL)
1261 return NULL;
1262
1263 while (block)
1264 {
1265 struct symbol *sym;
1266
1267 sym = lookup_block_symbol (block, lang->la_name_of_this, VAR_DOMAIN);
1268 if (sym != NULL)
1269 {
1270 block_found = block;
1271 return sym;
1272 }
1273 if (BLOCK_FUNCTION (block))
1274 break;
1275 block = BLOCK_SUPERBLOCK (block);
1276 }
1277
1278 return NULL;
1279 }
1280
1281 /* Behave like lookup_symbol except that NAME is the natural name
1282 (e.g., demangled name) of the symbol that we're looking for. */
1283
1284 static struct symbol *
1285 lookup_symbol_aux (const char *name, const struct block *block,
1286 const domain_enum domain, enum language language,
1287 int *is_a_field_of_this)
1288 {
1289 struct symbol *sym;
1290 const struct language_defn *langdef;
1291
1292 /* Make sure we do something sensible with is_a_field_of_this, since
1293 the callers that set this parameter to some non-null value will
1294 certainly use it later and expect it to be either 0 or 1.
1295 If we don't set it, the contents of is_a_field_of_this are
1296 undefined. */
1297 if (is_a_field_of_this != NULL)
1298 *is_a_field_of_this = 0;
1299
1300 /* Search specified block and its superiors. Don't search
1301 STATIC_BLOCK or GLOBAL_BLOCK. */
1302
1303 sym = lookup_symbol_aux_local (name, block, domain, language);
1304 if (sym != NULL)
1305 return sym;
1306
1307 /* If requested to do so by the caller and if appropriate for LANGUAGE,
1308 check to see if NAME is a field of `this'. */
1309
1310 langdef = language_def (language);
1311
1312 if (is_a_field_of_this != NULL)
1313 {
1314 struct symbol *sym = lookup_language_this (langdef, block);
1315
1316 if (sym)
1317 {
1318 struct type *t = sym->type;
1319
1320 /* I'm not really sure that type of this can ever
1321 be typedefed; just be safe. */
1322 CHECK_TYPEDEF (t);
1323 if (TYPE_CODE (t) == TYPE_CODE_PTR
1324 || TYPE_CODE (t) == TYPE_CODE_REF)
1325 t = TYPE_TARGET_TYPE (t);
1326
1327 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
1328 && TYPE_CODE (t) != TYPE_CODE_UNION)
1329 error (_("Internal error: `%s' is not an aggregate"),
1330 langdef->la_name_of_this);
1331
1332 if (check_field (t, name))
1333 {
1334 *is_a_field_of_this = 1;
1335 return NULL;
1336 }
1337 }
1338 }
1339
1340 /* Now do whatever is appropriate for LANGUAGE to look
1341 up static and global variables. */
1342
1343 sym = langdef->la_lookup_symbol_nonlocal (name, block, domain);
1344 if (sym != NULL)
1345 return sym;
1346
1347 /* Now search all static file-level symbols. Not strictly correct,
1348 but more useful than an error. */
1349
1350 return lookup_static_symbol_aux (name, domain);
1351 }
1352
1353 /* Search all static file-level symbols for NAME from DOMAIN. Do the symtabs
1354 first, then check the psymtabs. If a psymtab indicates the existence of the
1355 desired name as a file-level static, then do psymtab-to-symtab conversion on
1356 the fly and return the found symbol. */
1357
1358 struct symbol *
1359 lookup_static_symbol_aux (const char *name, const domain_enum domain)
1360 {
1361 struct objfile *objfile;
1362 struct symbol *sym;
1363
1364 sym = lookup_symbol_aux_symtabs (STATIC_BLOCK, name, domain);
1365 if (sym != NULL)
1366 return sym;
1367
1368 ALL_OBJFILES (objfile)
1369 {
1370 sym = lookup_symbol_aux_quick (objfile, STATIC_BLOCK, name, domain);
1371 if (sym != NULL)
1372 return sym;
1373 }
1374
1375 return NULL;
1376 }
1377
1378 /* Check to see if the symbol is defined in BLOCK or its superiors.
1379 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
1380
1381 static struct symbol *
1382 lookup_symbol_aux_local (const char *name, const struct block *block,
1383 const domain_enum domain,
1384 enum language language)
1385 {
1386 struct symbol *sym;
1387 const struct block *static_block = block_static_block (block);
1388 const char *scope = block_scope (block);
1389
1390 /* Check if either no block is specified or it's a global block. */
1391
1392 if (static_block == NULL)
1393 return NULL;
1394
1395 while (block != static_block)
1396 {
1397 sym = lookup_symbol_aux_block (name, block, domain);
1398 if (sym != NULL)
1399 return sym;
1400
1401 if (language == language_cplus || language == language_fortran)
1402 {
1403 sym = cp_lookup_symbol_imports_or_template (scope, name, block,
1404 domain);
1405 if (sym != NULL)
1406 return sym;
1407 }
1408
1409 if (BLOCK_FUNCTION (block) != NULL && block_inlined_p (block))
1410 break;
1411 block = BLOCK_SUPERBLOCK (block);
1412 }
1413
1414 /* We've reached the edge of the function without finding a result. */
1415
1416 return NULL;
1417 }
1418
1419 /* Look up OBJFILE to BLOCK. */
1420
1421 struct objfile *
1422 lookup_objfile_from_block (const struct block *block)
1423 {
1424 struct objfile *obj;
1425 struct symtab *s;
1426
1427 if (block == NULL)
1428 return NULL;
1429
1430 block = block_global_block (block);
1431 /* Go through SYMTABS. */
1432 ALL_SYMTABS (obj, s)
1433 if (block == BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK))
1434 {
1435 if (obj->separate_debug_objfile_backlink)
1436 obj = obj->separate_debug_objfile_backlink;
1437
1438 return obj;
1439 }
1440
1441 return NULL;
1442 }
1443
1444 /* Look up a symbol in a block; if found, fixup the symbol, and set
1445 block_found appropriately. */
1446
1447 struct symbol *
1448 lookup_symbol_aux_block (const char *name, const struct block *block,
1449 const domain_enum domain)
1450 {
1451 struct symbol *sym;
1452
1453 sym = lookup_block_symbol (block, name, domain);
1454 if (sym)
1455 {
1456 block_found = block;
1457 return fixup_symbol_section (sym, NULL);
1458 }
1459
1460 return NULL;
1461 }
1462
1463 /* Check all global symbols in OBJFILE in symtabs and
1464 psymtabs. */
1465
1466 struct symbol *
1467 lookup_global_symbol_from_objfile (const struct objfile *main_objfile,
1468 const char *name,
1469 const domain_enum domain)
1470 {
1471 const struct objfile *objfile;
1472 struct symbol *sym;
1473 struct blockvector *bv;
1474 const struct block *block;
1475 struct symtab *s;
1476
1477 for (objfile = main_objfile;
1478 objfile;
1479 objfile = objfile_separate_debug_iterate (main_objfile, objfile))
1480 {
1481 /* Go through symtabs. */
1482 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
1483 {
1484 bv = BLOCKVECTOR (s);
1485 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1486 sym = lookup_block_symbol (block, name, domain);
1487 if (sym)
1488 {
1489 block_found = block;
1490 return fixup_symbol_section (sym, (struct objfile *)objfile);
1491 }
1492 }
1493
1494 sym = lookup_symbol_aux_quick ((struct objfile *) objfile, GLOBAL_BLOCK,
1495 name, domain);
1496 if (sym)
1497 return sym;
1498 }
1499
1500 return NULL;
1501 }
1502
1503 /* Check to see if the symbol is defined in one of the OBJFILE's
1504 symtabs. BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
1505 depending on whether or not we want to search global symbols or
1506 static symbols. */
1507
1508 static struct symbol *
1509 lookup_symbol_aux_objfile (struct objfile *objfile, int block_index,
1510 const char *name, const domain_enum domain)
1511 {
1512 struct symbol *sym = NULL;
1513 struct blockvector *bv;
1514 const struct block *block;
1515 struct symtab *s;
1516
1517 if (objfile->sf)
1518 objfile->sf->qf->pre_expand_symtabs_matching (objfile, block_index,
1519 name, domain);
1520
1521 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
1522 {
1523 bv = BLOCKVECTOR (s);
1524 block = BLOCKVECTOR_BLOCK (bv, block_index);
1525 sym = lookup_block_symbol (block, name, domain);
1526 if (sym)
1527 {
1528 block_found = block;
1529 return fixup_symbol_section (sym, objfile);
1530 }
1531 }
1532
1533 return NULL;
1534 }
1535
1536 /* Same as lookup_symbol_aux_objfile, except that it searches all
1537 objfiles. Return the first match found. */
1538
1539 static struct symbol *
1540 lookup_symbol_aux_symtabs (int block_index, const char *name,
1541 const domain_enum domain)
1542 {
1543 struct symbol *sym;
1544 struct objfile *objfile;
1545
1546 ALL_OBJFILES (objfile)
1547 {
1548 sym = lookup_symbol_aux_objfile (objfile, block_index, name, domain);
1549 if (sym)
1550 return sym;
1551 }
1552
1553 return NULL;
1554 }
1555
1556 /* Wrapper around lookup_symbol_aux_objfile for search_symbols.
1557 Look up LINKAGE_NAME in DOMAIN in the global and static blocks of OBJFILE
1558 and all related objfiles. */
1559
1560 static struct symbol *
1561 lookup_symbol_in_objfile_from_linkage_name (struct objfile *objfile,
1562 const char *linkage_name,
1563 domain_enum domain)
1564 {
1565 enum language lang = current_language->la_language;
1566 const char *modified_name;
1567 struct cleanup *cleanup = demangle_for_lookup (linkage_name, lang,
1568 &modified_name);
1569 struct objfile *main_objfile, *cur_objfile;
1570
1571 if (objfile->separate_debug_objfile_backlink)
1572 main_objfile = objfile->separate_debug_objfile_backlink;
1573 else
1574 main_objfile = objfile;
1575
1576 for (cur_objfile = main_objfile;
1577 cur_objfile;
1578 cur_objfile = objfile_separate_debug_iterate (main_objfile, cur_objfile))
1579 {
1580 struct symbol *sym;
1581
1582 sym = lookup_symbol_aux_objfile (cur_objfile, GLOBAL_BLOCK,
1583 modified_name, domain);
1584 if (sym == NULL)
1585 sym = lookup_symbol_aux_objfile (cur_objfile, STATIC_BLOCK,
1586 modified_name, domain);
1587 if (sym != NULL)
1588 {
1589 do_cleanups (cleanup);
1590 return sym;
1591 }
1592 }
1593
1594 do_cleanups (cleanup);
1595 return NULL;
1596 }
1597
1598 /* A helper function for lookup_symbol_aux that interfaces with the
1599 "quick" symbol table functions. */
1600
1601 static struct symbol *
1602 lookup_symbol_aux_quick (struct objfile *objfile, int kind,
1603 const char *name, const domain_enum domain)
1604 {
1605 struct symtab *symtab;
1606 struct blockvector *bv;
1607 const struct block *block;
1608 struct symbol *sym;
1609
1610 if (!objfile->sf)
1611 return NULL;
1612 symtab = objfile->sf->qf->lookup_symbol (objfile, kind, name, domain);
1613 if (!symtab)
1614 return NULL;
1615
1616 bv = BLOCKVECTOR (symtab);
1617 block = BLOCKVECTOR_BLOCK (bv, kind);
1618 sym = lookup_block_symbol (block, name, domain);
1619 if (!sym)
1620 {
1621 /* This shouldn't be necessary, but as a last resort try
1622 looking in the statics even though the psymtab claimed
1623 the symbol was global, or vice-versa. It's possible
1624 that the psymtab gets it wrong in some cases. */
1625
1626 /* FIXME: carlton/2002-09-30: Should we really do that?
1627 If that happens, isn't it likely to be a GDB error, in
1628 which case we should fix the GDB error rather than
1629 silently dealing with it here? So I'd vote for
1630 removing the check for the symbol in the other
1631 block. */
1632 block = BLOCKVECTOR_BLOCK (bv,
1633 kind == GLOBAL_BLOCK ?
1634 STATIC_BLOCK : GLOBAL_BLOCK);
1635 sym = lookup_block_symbol (block, name, domain);
1636 if (!sym)
1637 error (_("\
1638 Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n\
1639 %s may be an inlined function, or may be a template function\n\
1640 (if a template, try specifying an instantiation: %s<type>)."),
1641 kind == GLOBAL_BLOCK ? "global" : "static",
1642 name, symtab->filename, name, name);
1643 }
1644 return fixup_symbol_section (sym, objfile);
1645 }
1646
1647 /* A default version of lookup_symbol_nonlocal for use by languages
1648 that can't think of anything better to do. This implements the C
1649 lookup rules. */
1650
1651 struct symbol *
1652 basic_lookup_symbol_nonlocal (const char *name,
1653 const struct block *block,
1654 const domain_enum domain)
1655 {
1656 struct symbol *sym;
1657
1658 /* NOTE: carlton/2003-05-19: The comments below were written when
1659 this (or what turned into this) was part of lookup_symbol_aux;
1660 I'm much less worried about these questions now, since these
1661 decisions have turned out well, but I leave these comments here
1662 for posterity. */
1663
1664 /* NOTE: carlton/2002-12-05: There is a question as to whether or
1665 not it would be appropriate to search the current global block
1666 here as well. (That's what this code used to do before the
1667 is_a_field_of_this check was moved up.) On the one hand, it's
1668 redundant with the lookup_symbol_aux_symtabs search that happens
1669 next. On the other hand, if decode_line_1 is passed an argument
1670 like filename:var, then the user presumably wants 'var' to be
1671 searched for in filename. On the third hand, there shouldn't be
1672 multiple global variables all of which are named 'var', and it's
1673 not like decode_line_1 has ever restricted its search to only
1674 global variables in a single filename. All in all, only
1675 searching the static block here seems best: it's correct and it's
1676 cleanest. */
1677
1678 /* NOTE: carlton/2002-12-05: There's also a possible performance
1679 issue here: if you usually search for global symbols in the
1680 current file, then it would be slightly better to search the
1681 current global block before searching all the symtabs. But there
1682 are other factors that have a much greater effect on performance
1683 than that one, so I don't think we should worry about that for
1684 now. */
1685
1686 sym = lookup_symbol_static (name, block, domain);
1687 if (sym != NULL)
1688 return sym;
1689
1690 return lookup_symbol_global (name, block, domain);
1691 }
1692
1693 /* Lookup a symbol in the static block associated to BLOCK, if there
1694 is one; do nothing if BLOCK is NULL or a global block. */
1695
1696 struct symbol *
1697 lookup_symbol_static (const char *name,
1698 const struct block *block,
1699 const domain_enum domain)
1700 {
1701 const struct block *static_block = block_static_block (block);
1702
1703 if (static_block != NULL)
1704 return lookup_symbol_aux_block (name, static_block, domain);
1705 else
1706 return NULL;
1707 }
1708
1709 /* Private data to be used with lookup_symbol_global_iterator_cb. */
1710
1711 struct global_sym_lookup_data
1712 {
1713 /* The name of the symbol we are searching for. */
1714 const char *name;
1715
1716 /* The domain to use for our search. */
1717 domain_enum domain;
1718
1719 /* The field where the callback should store the symbol if found.
1720 It should be initialized to NULL before the search is started. */
1721 struct symbol *result;
1722 };
1723
1724 /* A callback function for gdbarch_iterate_over_objfiles_in_search_order.
1725 It searches by name for a symbol in the GLOBAL_BLOCK of the given
1726 OBJFILE. The arguments for the search are passed via CB_DATA,
1727 which in reality is a pointer to struct global_sym_lookup_data. */
1728
1729 static int
1730 lookup_symbol_global_iterator_cb (struct objfile *objfile,
1731 void *cb_data)
1732 {
1733 struct global_sym_lookup_data *data =
1734 (struct global_sym_lookup_data *) cb_data;
1735
1736 gdb_assert (data->result == NULL);
1737
1738 data->result = lookup_symbol_aux_objfile (objfile, GLOBAL_BLOCK,
1739 data->name, data->domain);
1740 if (data->result == NULL)
1741 data->result = lookup_symbol_aux_quick (objfile, GLOBAL_BLOCK,
1742 data->name, data->domain);
1743
1744 /* If we found a match, tell the iterator to stop. Otherwise,
1745 keep going. */
1746 return (data->result != NULL);
1747 }
1748
1749 /* Lookup a symbol in all files' global blocks (searching psymtabs if
1750 necessary). */
1751
1752 struct symbol *
1753 lookup_symbol_global (const char *name,
1754 const struct block *block,
1755 const domain_enum domain)
1756 {
1757 struct symbol *sym = NULL;
1758 struct objfile *objfile = NULL;
1759 struct global_sym_lookup_data lookup_data;
1760
1761 /* Call library-specific lookup procedure. */
1762 objfile = lookup_objfile_from_block (block);
1763 if (objfile != NULL)
1764 sym = solib_global_lookup (objfile, name, domain);
1765 if (sym != NULL)
1766 return sym;
1767
1768 memset (&lookup_data, 0, sizeof (lookup_data));
1769 lookup_data.name = name;
1770 lookup_data.domain = domain;
1771 gdbarch_iterate_over_objfiles_in_search_order
1772 (objfile != NULL ? get_objfile_arch (objfile) : target_gdbarch,
1773 lookup_symbol_global_iterator_cb, &lookup_data, objfile);
1774
1775 return lookup_data.result;
1776 }
1777
1778 int
1779 symbol_matches_domain (enum language symbol_language,
1780 domain_enum symbol_domain,
1781 domain_enum domain)
1782 {
1783 /* For C++ "struct foo { ... }" also defines a typedef for "foo".
1784 A Java class declaration also defines a typedef for the class.
1785 Similarly, any Ada type declaration implicitly defines a typedef. */
1786 if (symbol_language == language_cplus
1787 || symbol_language == language_d
1788 || symbol_language == language_java
1789 || symbol_language == language_ada)
1790 {
1791 if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN)
1792 && symbol_domain == STRUCT_DOMAIN)
1793 return 1;
1794 }
1795 /* For all other languages, strict match is required. */
1796 return (symbol_domain == domain);
1797 }
1798
1799 /* Look up a type named NAME in the struct_domain. The type returned
1800 must not be opaque -- i.e., must have at least one field
1801 defined. */
1802
1803 struct type *
1804 lookup_transparent_type (const char *name)
1805 {
1806 return current_language->la_lookup_transparent_type (name);
1807 }
1808
1809 /* A helper for basic_lookup_transparent_type that interfaces with the
1810 "quick" symbol table functions. */
1811
1812 static struct type *
1813 basic_lookup_transparent_type_quick (struct objfile *objfile, int kind,
1814 const char *name)
1815 {
1816 struct symtab *symtab;
1817 struct blockvector *bv;
1818 struct block *block;
1819 struct symbol *sym;
1820
1821 if (!objfile->sf)
1822 return NULL;
1823 symtab = objfile->sf->qf->lookup_symbol (objfile, kind, name, STRUCT_DOMAIN);
1824 if (!symtab)
1825 return NULL;
1826
1827 bv = BLOCKVECTOR (symtab);
1828 block = BLOCKVECTOR_BLOCK (bv, kind);
1829 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1830 if (!sym)
1831 {
1832 int other_kind = kind == GLOBAL_BLOCK ? STATIC_BLOCK : GLOBAL_BLOCK;
1833
1834 /* This shouldn't be necessary, but as a last resort
1835 * try looking in the 'other kind' even though the psymtab
1836 * claimed the symbol was one thing. It's possible that
1837 * the psymtab gets it wrong in some cases.
1838 */
1839 block = BLOCKVECTOR_BLOCK (bv, other_kind);
1840 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1841 if (!sym)
1842 /* FIXME; error is wrong in one case. */
1843 error (_("\
1844 Internal: global symbol `%s' found in %s psymtab but not in symtab.\n\
1845 %s may be an inlined function, or may be a template function\n\
1846 (if a template, try specifying an instantiation: %s<type>)."),
1847 name, symtab->filename, name, name);
1848 }
1849 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1850 return SYMBOL_TYPE (sym);
1851
1852 return NULL;
1853 }
1854
1855 /* The standard implementation of lookup_transparent_type. This code
1856 was modeled on lookup_symbol -- the parts not relevant to looking
1857 up types were just left out. In particular it's assumed here that
1858 types are available in struct_domain and only at file-static or
1859 global blocks. */
1860
1861 struct type *
1862 basic_lookup_transparent_type (const char *name)
1863 {
1864 struct symbol *sym;
1865 struct symtab *s = NULL;
1866 struct blockvector *bv;
1867 struct objfile *objfile;
1868 struct block *block;
1869 struct type *t;
1870
1871 /* Now search all the global symbols. Do the symtab's first, then
1872 check the psymtab's. If a psymtab indicates the existence
1873 of the desired name as a global, then do psymtab-to-symtab
1874 conversion on the fly and return the found symbol. */
1875
1876 ALL_OBJFILES (objfile)
1877 {
1878 if (objfile->sf)
1879 objfile->sf->qf->pre_expand_symtabs_matching (objfile,
1880 GLOBAL_BLOCK,
1881 name, STRUCT_DOMAIN);
1882
1883 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
1884 {
1885 bv = BLOCKVECTOR (s);
1886 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1887 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1888 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1889 {
1890 return SYMBOL_TYPE (sym);
1891 }
1892 }
1893 }
1894
1895 ALL_OBJFILES (objfile)
1896 {
1897 t = basic_lookup_transparent_type_quick (objfile, GLOBAL_BLOCK, name);
1898 if (t)
1899 return t;
1900 }
1901
1902 /* Now search the static file-level symbols.
1903 Not strictly correct, but more useful than an error.
1904 Do the symtab's first, then
1905 check the psymtab's. If a psymtab indicates the existence
1906 of the desired name as a file-level static, then do psymtab-to-symtab
1907 conversion on the fly and return the found symbol. */
1908
1909 ALL_OBJFILES (objfile)
1910 {
1911 if (objfile->sf)
1912 objfile->sf->qf->pre_expand_symtabs_matching (objfile, STATIC_BLOCK,
1913 name, STRUCT_DOMAIN);
1914
1915 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
1916 {
1917 bv = BLOCKVECTOR (s);
1918 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
1919 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1920 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1921 {
1922 return SYMBOL_TYPE (sym);
1923 }
1924 }
1925 }
1926
1927 ALL_OBJFILES (objfile)
1928 {
1929 t = basic_lookup_transparent_type_quick (objfile, STATIC_BLOCK, name);
1930 if (t)
1931 return t;
1932 }
1933
1934 return (struct type *) 0;
1935 }
1936
1937 /* Find the name of the file containing main(). */
1938 /* FIXME: What about languages without main() or specially linked
1939 executables that have no main() ? */
1940
1941 const char *
1942 find_main_filename (void)
1943 {
1944 struct objfile *objfile;
1945 char *name = main_name ();
1946
1947 ALL_OBJFILES (objfile)
1948 {
1949 const char *result;
1950
1951 if (!objfile->sf)
1952 continue;
1953 result = objfile->sf->qf->find_symbol_file (objfile, name);
1954 if (result)
1955 return result;
1956 }
1957 return (NULL);
1958 }
1959
1960 /* Search BLOCK for symbol NAME in DOMAIN.
1961
1962 Note that if NAME is the demangled form of a C++ symbol, we will fail
1963 to find a match during the binary search of the non-encoded names, but
1964 for now we don't worry about the slight inefficiency of looking for
1965 a match we'll never find, since it will go pretty quick. Once the
1966 binary search terminates, we drop through and do a straight linear
1967 search on the symbols. Each symbol which is marked as being a ObjC/C++
1968 symbol (language_cplus or language_objc set) has both the encoded and
1969 non-encoded names tested for a match. */
1970
1971 struct symbol *
1972 lookup_block_symbol (const struct block *block, const char *name,
1973 const domain_enum domain)
1974 {
1975 struct block_iterator iter;
1976 struct symbol *sym;
1977
1978 if (!BLOCK_FUNCTION (block))
1979 {
1980 for (sym = block_iter_name_first (block, name, &iter);
1981 sym != NULL;
1982 sym = block_iter_name_next (name, &iter))
1983 {
1984 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
1985 SYMBOL_DOMAIN (sym), domain))
1986 return sym;
1987 }
1988 return NULL;
1989 }
1990 else
1991 {
1992 /* Note that parameter symbols do not always show up last in the
1993 list; this loop makes sure to take anything else other than
1994 parameter symbols first; it only uses parameter symbols as a
1995 last resort. Note that this only takes up extra computation
1996 time on a match. */
1997
1998 struct symbol *sym_found = NULL;
1999
2000 for (sym = block_iter_name_first (block, name, &iter);
2001 sym != NULL;
2002 sym = block_iter_name_next (name, &iter))
2003 {
2004 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
2005 SYMBOL_DOMAIN (sym), domain))
2006 {
2007 sym_found = sym;
2008 if (!SYMBOL_IS_ARGUMENT (sym))
2009 {
2010 break;
2011 }
2012 }
2013 }
2014 return (sym_found); /* Will be NULL if not found. */
2015 }
2016 }
2017
2018 /* Iterate over the symbols named NAME, matching DOMAIN, starting with
2019 BLOCK.
2020
2021 For each symbol that matches, CALLBACK is called. The symbol and
2022 DATA are passed to the callback.
2023
2024 If CALLBACK returns zero, the iteration ends. Otherwise, the
2025 search continues. This function iterates upward through blocks.
2026 When the outermost block has been finished, the function
2027 returns. */
2028
2029 void
2030 iterate_over_symbols (const struct block *block, const char *name,
2031 const domain_enum domain,
2032 symbol_found_callback_ftype *callback,
2033 void *data)
2034 {
2035 while (block)
2036 {
2037 struct block_iterator iter;
2038 struct symbol *sym;
2039
2040 for (sym = block_iter_name_first (block, name, &iter);
2041 sym != NULL;
2042 sym = block_iter_name_next (name, &iter))
2043 {
2044 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
2045 SYMBOL_DOMAIN (sym), domain))
2046 {
2047 if (!callback (sym, data))
2048 return;
2049 }
2050 }
2051
2052 block = BLOCK_SUPERBLOCK (block);
2053 }
2054 }
2055
2056 /* Find the symtab associated with PC and SECTION. Look through the
2057 psymtabs and read in another symtab if necessary. */
2058
2059 struct symtab *
2060 find_pc_sect_symtab (CORE_ADDR pc, struct obj_section *section)
2061 {
2062 struct block *b;
2063 struct blockvector *bv;
2064 struct symtab *s = NULL;
2065 struct symtab *best_s = NULL;
2066 struct objfile *objfile;
2067 struct program_space *pspace;
2068 CORE_ADDR distance = 0;
2069 struct minimal_symbol *msymbol;
2070
2071 pspace = current_program_space;
2072
2073 /* If we know that this is not a text address, return failure. This is
2074 necessary because we loop based on the block's high and low code
2075 addresses, which do not include the data ranges, and because
2076 we call find_pc_sect_psymtab which has a similar restriction based
2077 on the partial_symtab's texthigh and textlow. */
2078 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
2079 if (msymbol
2080 && (MSYMBOL_TYPE (msymbol) == mst_data
2081 || MSYMBOL_TYPE (msymbol) == mst_bss
2082 || MSYMBOL_TYPE (msymbol) == mst_abs
2083 || MSYMBOL_TYPE (msymbol) == mst_file_data
2084 || MSYMBOL_TYPE (msymbol) == mst_file_bss))
2085 return NULL;
2086
2087 /* Search all symtabs for the one whose file contains our address, and which
2088 is the smallest of all the ones containing the address. This is designed
2089 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
2090 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
2091 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
2092
2093 This happens for native ecoff format, where code from included files
2094 gets its own symtab. The symtab for the included file should have
2095 been read in already via the dependency mechanism.
2096 It might be swifter to create several symtabs with the same name
2097 like xcoff does (I'm not sure).
2098
2099 It also happens for objfiles that have their functions reordered.
2100 For these, the symtab we are looking for is not necessarily read in. */
2101
2102 ALL_PRIMARY_SYMTABS (objfile, s)
2103 {
2104 bv = BLOCKVECTOR (s);
2105 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
2106
2107 if (BLOCK_START (b) <= pc
2108 && BLOCK_END (b) > pc
2109 && (distance == 0
2110 || BLOCK_END (b) - BLOCK_START (b) < distance))
2111 {
2112 /* For an objfile that has its functions reordered,
2113 find_pc_psymtab will find the proper partial symbol table
2114 and we simply return its corresponding symtab. */
2115 /* In order to better support objfiles that contain both
2116 stabs and coff debugging info, we continue on if a psymtab
2117 can't be found. */
2118 if ((objfile->flags & OBJF_REORDERED) && objfile->sf)
2119 {
2120 struct symtab *result;
2121
2122 result
2123 = objfile->sf->qf->find_pc_sect_symtab (objfile,
2124 msymbol,
2125 pc, section,
2126 0);
2127 if (result)
2128 return result;
2129 }
2130 if (section != 0)
2131 {
2132 struct block_iterator iter;
2133 struct symbol *sym = NULL;
2134
2135 ALL_BLOCK_SYMBOLS (b, iter, sym)
2136 {
2137 fixup_symbol_section (sym, objfile);
2138 if (matching_obj_sections (SYMBOL_OBJ_SECTION (sym), section))
2139 break;
2140 }
2141 if (sym == NULL)
2142 continue; /* No symbol in this symtab matches
2143 section. */
2144 }
2145 distance = BLOCK_END (b) - BLOCK_START (b);
2146 best_s = s;
2147 }
2148 }
2149
2150 if (best_s != NULL)
2151 return (best_s);
2152
2153 ALL_OBJFILES (objfile)
2154 {
2155 struct symtab *result;
2156
2157 if (!objfile->sf)
2158 continue;
2159 result = objfile->sf->qf->find_pc_sect_symtab (objfile,
2160 msymbol,
2161 pc, section,
2162 1);
2163 if (result)
2164 return result;
2165 }
2166
2167 return NULL;
2168 }
2169
2170 /* Find the symtab associated with PC. Look through the psymtabs and read
2171 in another symtab if necessary. Backward compatibility, no section. */
2172
2173 struct symtab *
2174 find_pc_symtab (CORE_ADDR pc)
2175 {
2176 return find_pc_sect_symtab (pc, find_pc_mapped_section (pc));
2177 }
2178 \f
2179
2180 /* Find the source file and line number for a given PC value and SECTION.
2181 Return a structure containing a symtab pointer, a line number,
2182 and a pc range for the entire source line.
2183 The value's .pc field is NOT the specified pc.
2184 NOTCURRENT nonzero means, if specified pc is on a line boundary,
2185 use the line that ends there. Otherwise, in that case, the line
2186 that begins there is used. */
2187
2188 /* The big complication here is that a line may start in one file, and end just
2189 before the start of another file. This usually occurs when you #include
2190 code in the middle of a subroutine. To properly find the end of a line's PC
2191 range, we must search all symtabs associated with this compilation unit, and
2192 find the one whose first PC is closer than that of the next line in this
2193 symtab. */
2194
2195 /* If it's worth the effort, we could be using a binary search. */
2196
2197 struct symtab_and_line
2198 find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent)
2199 {
2200 struct symtab *s;
2201 struct linetable *l;
2202 int len;
2203 int i;
2204 struct linetable_entry *item;
2205 struct symtab_and_line val;
2206 struct blockvector *bv;
2207 struct minimal_symbol *msymbol;
2208 struct minimal_symbol *mfunsym;
2209 struct objfile *objfile;
2210
2211 /* Info on best line seen so far, and where it starts, and its file. */
2212
2213 struct linetable_entry *best = NULL;
2214 CORE_ADDR best_end = 0;
2215 struct symtab *best_symtab = 0;
2216
2217 /* Store here the first line number
2218 of a file which contains the line at the smallest pc after PC.
2219 If we don't find a line whose range contains PC,
2220 we will use a line one less than this,
2221 with a range from the start of that file to the first line's pc. */
2222 struct linetable_entry *alt = NULL;
2223 struct symtab *alt_symtab = 0;
2224
2225 /* Info on best line seen in this file. */
2226
2227 struct linetable_entry *prev;
2228
2229 /* If this pc is not from the current frame,
2230 it is the address of the end of a call instruction.
2231 Quite likely that is the start of the following statement.
2232 But what we want is the statement containing the instruction.
2233 Fudge the pc to make sure we get that. */
2234
2235 init_sal (&val); /* initialize to zeroes */
2236
2237 val.pspace = current_program_space;
2238
2239 /* It's tempting to assume that, if we can't find debugging info for
2240 any function enclosing PC, that we shouldn't search for line
2241 number info, either. However, GAS can emit line number info for
2242 assembly files --- very helpful when debugging hand-written
2243 assembly code. In such a case, we'd have no debug info for the
2244 function, but we would have line info. */
2245
2246 if (notcurrent)
2247 pc -= 1;
2248
2249 /* elz: added this because this function returned the wrong
2250 information if the pc belongs to a stub (import/export)
2251 to call a shlib function. This stub would be anywhere between
2252 two functions in the target, and the line info was erroneously
2253 taken to be the one of the line before the pc. */
2254
2255 /* RT: Further explanation:
2256
2257 * We have stubs (trampolines) inserted between procedures.
2258 *
2259 * Example: "shr1" exists in a shared library, and a "shr1" stub also
2260 * exists in the main image.
2261 *
2262 * In the minimal symbol table, we have a bunch of symbols
2263 * sorted by start address. The stubs are marked as "trampoline",
2264 * the others appear as text. E.g.:
2265 *
2266 * Minimal symbol table for main image
2267 * main: code for main (text symbol)
2268 * shr1: stub (trampoline symbol)
2269 * foo: code for foo (text symbol)
2270 * ...
2271 * Minimal symbol table for "shr1" image:
2272 * ...
2273 * shr1: code for shr1 (text symbol)
2274 * ...
2275 *
2276 * So the code below is trying to detect if we are in the stub
2277 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
2278 * and if found, do the symbolization from the real-code address
2279 * rather than the stub address.
2280 *
2281 * Assumptions being made about the minimal symbol table:
2282 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
2283 * if we're really in the trampoline.s If we're beyond it (say
2284 * we're in "foo" in the above example), it'll have a closer
2285 * symbol (the "foo" text symbol for example) and will not
2286 * return the trampoline.
2287 * 2. lookup_minimal_symbol_text() will find a real text symbol
2288 * corresponding to the trampoline, and whose address will
2289 * be different than the trampoline address. I put in a sanity
2290 * check for the address being the same, to avoid an
2291 * infinite recursion.
2292 */
2293 msymbol = lookup_minimal_symbol_by_pc (pc);
2294 if (msymbol != NULL)
2295 if (MSYMBOL_TYPE (msymbol) == mst_solib_trampoline)
2296 {
2297 mfunsym = lookup_minimal_symbol_text (SYMBOL_LINKAGE_NAME (msymbol),
2298 NULL);
2299 if (mfunsym == NULL)
2300 /* I eliminated this warning since it is coming out
2301 * in the following situation:
2302 * gdb shmain // test program with shared libraries
2303 * (gdb) break shr1 // function in shared lib
2304 * Warning: In stub for ...
2305 * In the above situation, the shared lib is not loaded yet,
2306 * so of course we can't find the real func/line info,
2307 * but the "break" still works, and the warning is annoying.
2308 * So I commented out the warning. RT */
2309 /* warning ("In stub for %s; unable to find real function/line info",
2310 SYMBOL_LINKAGE_NAME (msymbol)); */
2311 ;
2312 /* fall through */
2313 else if (SYMBOL_VALUE_ADDRESS (mfunsym)
2314 == SYMBOL_VALUE_ADDRESS (msymbol))
2315 /* Avoid infinite recursion */
2316 /* See above comment about why warning is commented out. */
2317 /* warning ("In stub for %s; unable to find real function/line info",
2318 SYMBOL_LINKAGE_NAME (msymbol)); */
2319 ;
2320 /* fall through */
2321 else
2322 return find_pc_line (SYMBOL_VALUE_ADDRESS (mfunsym), 0);
2323 }
2324
2325
2326 s = find_pc_sect_symtab (pc, section);
2327 if (!s)
2328 {
2329 /* If no symbol information, return previous pc. */
2330 if (notcurrent)
2331 pc++;
2332 val.pc = pc;
2333 return val;
2334 }
2335
2336 bv = BLOCKVECTOR (s);
2337 objfile = s->objfile;
2338
2339 /* Look at all the symtabs that share this blockvector.
2340 They all have the same apriori range, that we found was right;
2341 but they have different line tables. */
2342
2343 ALL_OBJFILE_SYMTABS (objfile, s)
2344 {
2345 if (BLOCKVECTOR (s) != bv)
2346 continue;
2347
2348 /* Find the best line in this symtab. */
2349 l = LINETABLE (s);
2350 if (!l)
2351 continue;
2352 len = l->nitems;
2353 if (len <= 0)
2354 {
2355 /* I think len can be zero if the symtab lacks line numbers
2356 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
2357 I'm not sure which, and maybe it depends on the symbol
2358 reader). */
2359 continue;
2360 }
2361
2362 prev = NULL;
2363 item = l->item; /* Get first line info. */
2364
2365 /* Is this file's first line closer than the first lines of other files?
2366 If so, record this file, and its first line, as best alternate. */
2367 if (item->pc > pc && (!alt || item->pc < alt->pc))
2368 {
2369 alt = item;
2370 alt_symtab = s;
2371 }
2372
2373 for (i = 0; i < len; i++, item++)
2374 {
2375 /* Leave prev pointing to the linetable entry for the last line
2376 that started at or before PC. */
2377 if (item->pc > pc)
2378 break;
2379
2380 prev = item;
2381 }
2382
2383 /* At this point, prev points at the line whose start addr is <= pc, and
2384 item points at the next line. If we ran off the end of the linetable
2385 (pc >= start of the last line), then prev == item. If pc < start of
2386 the first line, prev will not be set. */
2387
2388 /* Is this file's best line closer than the best in the other files?
2389 If so, record this file, and its best line, as best so far. Don't
2390 save prev if it represents the end of a function (i.e. line number
2391 0) instead of a real line. */
2392
2393 if (prev && prev->line && (!best || prev->pc > best->pc))
2394 {
2395 best = prev;
2396 best_symtab = s;
2397
2398 /* Discard BEST_END if it's before the PC of the current BEST. */
2399 if (best_end <= best->pc)
2400 best_end = 0;
2401 }
2402
2403 /* If another line (denoted by ITEM) is in the linetable and its
2404 PC is after BEST's PC, but before the current BEST_END, then
2405 use ITEM's PC as the new best_end. */
2406 if (best && i < len && item->pc > best->pc
2407 && (best_end == 0 || best_end > item->pc))
2408 best_end = item->pc;
2409 }
2410
2411 if (!best_symtab)
2412 {
2413 /* If we didn't find any line number info, just return zeros.
2414 We used to return alt->line - 1 here, but that could be
2415 anywhere; if we don't have line number info for this PC,
2416 don't make some up. */
2417 val.pc = pc;
2418 }
2419 else if (best->line == 0)
2420 {
2421 /* If our best fit is in a range of PC's for which no line
2422 number info is available (line number is zero) then we didn't
2423 find any valid line information. */
2424 val.pc = pc;
2425 }
2426 else
2427 {
2428 val.symtab = best_symtab;
2429 val.line = best->line;
2430 val.pc = best->pc;
2431 if (best_end && (!alt || best_end < alt->pc))
2432 val.end = best_end;
2433 else if (alt)
2434 val.end = alt->pc;
2435 else
2436 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
2437 }
2438 val.section = section;
2439 return val;
2440 }
2441
2442 /* Backward compatibility (no section). */
2443
2444 struct symtab_and_line
2445 find_pc_line (CORE_ADDR pc, int notcurrent)
2446 {
2447 struct obj_section *section;
2448
2449 section = find_pc_overlay (pc);
2450 if (pc_in_unmapped_range (pc, section))
2451 pc = overlay_mapped_address (pc, section);
2452 return find_pc_sect_line (pc, section, notcurrent);
2453 }
2454 \f
2455 /* Find line number LINE in any symtab whose name is the same as
2456 SYMTAB.
2457
2458 If found, return the symtab that contains the linetable in which it was
2459 found, set *INDEX to the index in the linetable of the best entry
2460 found, and set *EXACT_MATCH nonzero if the value returned is an
2461 exact match.
2462
2463 If not found, return NULL. */
2464
2465 struct symtab *
2466 find_line_symtab (struct symtab *symtab, int line,
2467 int *index, int *exact_match)
2468 {
2469 int exact = 0; /* Initialized here to avoid a compiler warning. */
2470
2471 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
2472 so far seen. */
2473
2474 int best_index;
2475 struct linetable *best_linetable;
2476 struct symtab *best_symtab;
2477
2478 /* First try looking it up in the given symtab. */
2479 best_linetable = LINETABLE (symtab);
2480 best_symtab = symtab;
2481 best_index = find_line_common (best_linetable, line, &exact, 0);
2482 if (best_index < 0 || !exact)
2483 {
2484 /* Didn't find an exact match. So we better keep looking for
2485 another symtab with the same name. In the case of xcoff,
2486 multiple csects for one source file (produced by IBM's FORTRAN
2487 compiler) produce multiple symtabs (this is unavoidable
2488 assuming csects can be at arbitrary places in memory and that
2489 the GLOBAL_BLOCK of a symtab has a begin and end address). */
2490
2491 /* BEST is the smallest linenumber > LINE so far seen,
2492 or 0 if none has been seen so far.
2493 BEST_INDEX and BEST_LINETABLE identify the item for it. */
2494 int best;
2495
2496 struct objfile *objfile;
2497 struct symtab *s;
2498
2499 if (best_index >= 0)
2500 best = best_linetable->item[best_index].line;
2501 else
2502 best = 0;
2503
2504 ALL_OBJFILES (objfile)
2505 {
2506 if (objfile->sf)
2507 objfile->sf->qf->expand_symtabs_with_filename (objfile,
2508 symtab->filename);
2509 }
2510
2511 /* Get symbol full file name if possible. */
2512 symtab_to_fullname (symtab);
2513
2514 ALL_SYMTABS (objfile, s)
2515 {
2516 struct linetable *l;
2517 int ind;
2518
2519 if (FILENAME_CMP (symtab->filename, s->filename) != 0)
2520 continue;
2521 if (symtab->fullname != NULL
2522 && symtab_to_fullname (s) != NULL
2523 && FILENAME_CMP (symtab->fullname, s->fullname) != 0)
2524 continue;
2525 l = LINETABLE (s);
2526 ind = find_line_common (l, line, &exact, 0);
2527 if (ind >= 0)
2528 {
2529 if (exact)
2530 {
2531 best_index = ind;
2532 best_linetable = l;
2533 best_symtab = s;
2534 goto done;
2535 }
2536 if (best == 0 || l->item[ind].line < best)
2537 {
2538 best = l->item[ind].line;
2539 best_index = ind;
2540 best_linetable = l;
2541 best_symtab = s;
2542 }
2543 }
2544 }
2545 }
2546 done:
2547 if (best_index < 0)
2548 return NULL;
2549
2550 if (index)
2551 *index = best_index;
2552 if (exact_match)
2553 *exact_match = exact;
2554
2555 return best_symtab;
2556 }
2557
2558 /* Given SYMTAB, returns all the PCs function in the symtab that
2559 exactly match LINE. Returns NULL if there are no exact matches,
2560 but updates BEST_ITEM in this case. */
2561
2562 VEC (CORE_ADDR) *
2563 find_pcs_for_symtab_line (struct symtab *symtab, int line,
2564 struct linetable_entry **best_item)
2565 {
2566 int start = 0, ix;
2567 struct symbol *previous_function = NULL;
2568 VEC (CORE_ADDR) *result = NULL;
2569
2570 /* First, collect all the PCs that are at this line. */
2571 while (1)
2572 {
2573 int was_exact;
2574 int idx;
2575
2576 idx = find_line_common (LINETABLE (symtab), line, &was_exact, start);
2577 if (idx < 0)
2578 break;
2579
2580 if (!was_exact)
2581 {
2582 struct linetable_entry *item = &LINETABLE (symtab)->item[idx];
2583
2584 if (*best_item == NULL || item->line < (*best_item)->line)
2585 *best_item = item;
2586
2587 break;
2588 }
2589
2590 VEC_safe_push (CORE_ADDR, result, LINETABLE (symtab)->item[idx].pc);
2591 start = idx + 1;
2592 }
2593
2594 return result;
2595 }
2596
2597 \f
2598 /* Set the PC value for a given source file and line number and return true.
2599 Returns zero for invalid line number (and sets the PC to 0).
2600 The source file is specified with a struct symtab. */
2601
2602 int
2603 find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
2604 {
2605 struct linetable *l;
2606 int ind;
2607
2608 *pc = 0;
2609 if (symtab == 0)
2610 return 0;
2611
2612 symtab = find_line_symtab (symtab, line, &ind, NULL);
2613 if (symtab != NULL)
2614 {
2615 l = LINETABLE (symtab);
2616 *pc = l->item[ind].pc;
2617 return 1;
2618 }
2619 else
2620 return 0;
2621 }
2622
2623 /* Find the range of pc values in a line.
2624 Store the starting pc of the line into *STARTPTR
2625 and the ending pc (start of next line) into *ENDPTR.
2626 Returns 1 to indicate success.
2627 Returns 0 if could not find the specified line. */
2628
2629 int
2630 find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
2631 CORE_ADDR *endptr)
2632 {
2633 CORE_ADDR startaddr;
2634 struct symtab_and_line found_sal;
2635
2636 startaddr = sal.pc;
2637 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
2638 return 0;
2639
2640 /* This whole function is based on address. For example, if line 10 has
2641 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
2642 "info line *0x123" should say the line goes from 0x100 to 0x200
2643 and "info line *0x355" should say the line goes from 0x300 to 0x400.
2644 This also insures that we never give a range like "starts at 0x134
2645 and ends at 0x12c". */
2646
2647 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
2648 if (found_sal.line != sal.line)
2649 {
2650 /* The specified line (sal) has zero bytes. */
2651 *startptr = found_sal.pc;
2652 *endptr = found_sal.pc;
2653 }
2654 else
2655 {
2656 *startptr = found_sal.pc;
2657 *endptr = found_sal.end;
2658 }
2659 return 1;
2660 }
2661
2662 /* Given a line table and a line number, return the index into the line
2663 table for the pc of the nearest line whose number is >= the specified one.
2664 Return -1 if none is found. The value is >= 0 if it is an index.
2665 START is the index at which to start searching the line table.
2666
2667 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
2668
2669 static int
2670 find_line_common (struct linetable *l, int lineno,
2671 int *exact_match, int start)
2672 {
2673 int i;
2674 int len;
2675
2676 /* BEST is the smallest linenumber > LINENO so far seen,
2677 or 0 if none has been seen so far.
2678 BEST_INDEX identifies the item for it. */
2679
2680 int best_index = -1;
2681 int best = 0;
2682
2683 *exact_match = 0;
2684
2685 if (lineno <= 0)
2686 return -1;
2687 if (l == 0)
2688 return -1;
2689
2690 len = l->nitems;
2691 for (i = start; i < len; i++)
2692 {
2693 struct linetable_entry *item = &(l->item[i]);
2694
2695 if (item->line == lineno)
2696 {
2697 /* Return the first (lowest address) entry which matches. */
2698 *exact_match = 1;
2699 return i;
2700 }
2701
2702 if (item->line > lineno && (best == 0 || item->line < best))
2703 {
2704 best = item->line;
2705 best_index = i;
2706 }
2707 }
2708
2709 /* If we got here, we didn't get an exact match. */
2710 return best_index;
2711 }
2712
2713 int
2714 find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
2715 {
2716 struct symtab_and_line sal;
2717
2718 sal = find_pc_line (pc, 0);
2719 *startptr = sal.pc;
2720 *endptr = sal.end;
2721 return sal.symtab != 0;
2722 }
2723
2724 /* Given a function start address FUNC_ADDR and SYMTAB, find the first
2725 address for that function that has an entry in SYMTAB's line info
2726 table. If such an entry cannot be found, return FUNC_ADDR
2727 unaltered. */
2728
2729 static CORE_ADDR
2730 skip_prologue_using_lineinfo (CORE_ADDR func_addr, struct symtab *symtab)
2731 {
2732 CORE_ADDR func_start, func_end;
2733 struct linetable *l;
2734 int i;
2735
2736 /* Give up if this symbol has no lineinfo table. */
2737 l = LINETABLE (symtab);
2738 if (l == NULL)
2739 return func_addr;
2740
2741 /* Get the range for the function's PC values, or give up if we
2742 cannot, for some reason. */
2743 if (!find_pc_partial_function (func_addr, NULL, &func_start, &func_end))
2744 return func_addr;
2745
2746 /* Linetable entries are ordered by PC values, see the commentary in
2747 symtab.h where `struct linetable' is defined. Thus, the first
2748 entry whose PC is in the range [FUNC_START..FUNC_END[ is the
2749 address we are looking for. */
2750 for (i = 0; i < l->nitems; i++)
2751 {
2752 struct linetable_entry *item = &(l->item[i]);
2753
2754 /* Don't use line numbers of zero, they mark special entries in
2755 the table. See the commentary on symtab.h before the
2756 definition of struct linetable. */
2757 if (item->line > 0 && func_start <= item->pc && item->pc < func_end)
2758 return item->pc;
2759 }
2760
2761 return func_addr;
2762 }
2763
2764 /* Given a function symbol SYM, find the symtab and line for the start
2765 of the function.
2766 If the argument FUNFIRSTLINE is nonzero, we want the first line
2767 of real code inside the function. */
2768
2769 struct symtab_and_line
2770 find_function_start_sal (struct symbol *sym, int funfirstline)
2771 {
2772 struct symtab_and_line sal;
2773
2774 fixup_symbol_section (sym, NULL);
2775 sal = find_pc_sect_line (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)),
2776 SYMBOL_OBJ_SECTION (sym), 0);
2777
2778 /* We always should have a line for the function start address.
2779 If we don't, something is odd. Create a plain SAL refering
2780 just the PC and hope that skip_prologue_sal (if requested)
2781 can find a line number for after the prologue. */
2782 if (sal.pc < BLOCK_START (SYMBOL_BLOCK_VALUE (sym)))
2783 {
2784 init_sal (&sal);
2785 sal.pspace = current_program_space;
2786 sal.pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
2787 sal.section = SYMBOL_OBJ_SECTION (sym);
2788 }
2789
2790 if (funfirstline)
2791 skip_prologue_sal (&sal);
2792
2793 return sal;
2794 }
2795
2796 /* Adjust SAL to the first instruction past the function prologue.
2797 If the PC was explicitly specified, the SAL is not changed.
2798 If the line number was explicitly specified, at most the SAL's PC
2799 is updated. If SAL is already past the prologue, then do nothing. */
2800
2801 void
2802 skip_prologue_sal (struct symtab_and_line *sal)
2803 {
2804 struct symbol *sym;
2805 struct symtab_and_line start_sal;
2806 struct cleanup *old_chain;
2807 CORE_ADDR pc, saved_pc;
2808 struct obj_section *section;
2809 const char *name;
2810 struct objfile *objfile;
2811 struct gdbarch *gdbarch;
2812 struct block *b, *function_block;
2813 int force_skip, skip;
2814
2815 /* Do not change the SAL is PC was specified explicitly. */
2816 if (sal->explicit_pc)
2817 return;
2818
2819 old_chain = save_current_space_and_thread ();
2820 switch_to_program_space_and_thread (sal->pspace);
2821
2822 sym = find_pc_sect_function (sal->pc, sal->section);
2823 if (sym != NULL)
2824 {
2825 fixup_symbol_section (sym, NULL);
2826
2827 pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
2828 section = SYMBOL_OBJ_SECTION (sym);
2829 name = SYMBOL_LINKAGE_NAME (sym);
2830 objfile = SYMBOL_SYMTAB (sym)->objfile;
2831 }
2832 else
2833 {
2834 struct minimal_symbol *msymbol
2835 = lookup_minimal_symbol_by_pc_section (sal->pc, sal->section);
2836
2837 if (msymbol == NULL)
2838 {
2839 do_cleanups (old_chain);
2840 return;
2841 }
2842
2843 pc = SYMBOL_VALUE_ADDRESS (msymbol);
2844 section = SYMBOL_OBJ_SECTION (msymbol);
2845 name = SYMBOL_LINKAGE_NAME (msymbol);
2846 objfile = msymbol_objfile (msymbol);
2847 }
2848
2849 gdbarch = get_objfile_arch (objfile);
2850
2851 /* Process the prologue in two passes. In the first pass try to skip the
2852 prologue (SKIP is true) and verify there is a real need for it (indicated
2853 by FORCE_SKIP). If no such reason was found run a second pass where the
2854 prologue is not skipped (SKIP is false). */
2855
2856 skip = 1;
2857 force_skip = 1;
2858
2859 /* Be conservative - allow direct PC (without skipping prologue) only if we
2860 have proven the CU (Compilation Unit) supports it. sal->SYMTAB does not
2861 have to be set by the caller so we use SYM instead. */
2862 if (sym && SYMBOL_SYMTAB (sym)->locations_valid)
2863 force_skip = 0;
2864
2865 saved_pc = pc;
2866 do
2867 {
2868 pc = saved_pc;
2869
2870 /* If the function is in an unmapped overlay, use its unmapped LMA address,
2871 so that gdbarch_skip_prologue has something unique to work on. */
2872 if (section_is_overlay (section) && !section_is_mapped (section))
2873 pc = overlay_unmapped_address (pc, section);
2874
2875 /* Skip "first line" of function (which is actually its prologue). */
2876 pc += gdbarch_deprecated_function_start_offset (gdbarch);
2877 if (skip)
2878 pc = gdbarch_skip_prologue (gdbarch, pc);
2879
2880 /* For overlays, map pc back into its mapped VMA range. */
2881 pc = overlay_mapped_address (pc, section);
2882
2883 /* Calculate line number. */
2884 start_sal = find_pc_sect_line (pc, section, 0);
2885
2886 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
2887 line is still part of the same function. */
2888 if (skip && start_sal.pc != pc
2889 && (sym ? (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) <= start_sal.end
2890 && start_sal.end < BLOCK_END (SYMBOL_BLOCK_VALUE (sym)))
2891 : (lookup_minimal_symbol_by_pc_section (start_sal.end, section)
2892 == lookup_minimal_symbol_by_pc_section (pc, section))))
2893 {
2894 /* First pc of next line */
2895 pc = start_sal.end;
2896 /* Recalculate the line number (might not be N+1). */
2897 start_sal = find_pc_sect_line (pc, section, 0);
2898 }
2899
2900 /* On targets with executable formats that don't have a concept of
2901 constructors (ELF with .init has, PE doesn't), gcc emits a call
2902 to `__main' in `main' between the prologue and before user
2903 code. */
2904 if (gdbarch_skip_main_prologue_p (gdbarch)
2905 && name && strcmp_iw (name, "main") == 0)
2906 {
2907 pc = gdbarch_skip_main_prologue (gdbarch, pc);
2908 /* Recalculate the line number (might not be N+1). */
2909 start_sal = find_pc_sect_line (pc, section, 0);
2910 force_skip = 1;
2911 }
2912 }
2913 while (!force_skip && skip--);
2914
2915 /* If we still don't have a valid source line, try to find the first
2916 PC in the lineinfo table that belongs to the same function. This
2917 happens with COFF debug info, which does not seem to have an
2918 entry in lineinfo table for the code after the prologue which has
2919 no direct relation to source. For example, this was found to be
2920 the case with the DJGPP target using "gcc -gcoff" when the
2921 compiler inserted code after the prologue to make sure the stack
2922 is aligned. */
2923 if (!force_skip && sym && start_sal.symtab == NULL)
2924 {
2925 pc = skip_prologue_using_lineinfo (pc, SYMBOL_SYMTAB (sym));
2926 /* Recalculate the line number. */
2927 start_sal = find_pc_sect_line (pc, section, 0);
2928 }
2929
2930 do_cleanups (old_chain);
2931
2932 /* If we're already past the prologue, leave SAL unchanged. Otherwise
2933 forward SAL to the end of the prologue. */
2934 if (sal->pc >= pc)
2935 return;
2936
2937 sal->pc = pc;
2938 sal->section = section;
2939
2940 /* Unless the explicit_line flag was set, update the SAL line
2941 and symtab to correspond to the modified PC location. */
2942 if (sal->explicit_line)
2943 return;
2944
2945 sal->symtab = start_sal.symtab;
2946 sal->line = start_sal.line;
2947 sal->end = start_sal.end;
2948
2949 /* Check if we are now inside an inlined function. If we can,
2950 use the call site of the function instead. */
2951 b = block_for_pc_sect (sal->pc, sal->section);
2952 function_block = NULL;
2953 while (b != NULL)
2954 {
2955 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
2956 function_block = b;
2957 else if (BLOCK_FUNCTION (b) != NULL)
2958 break;
2959 b = BLOCK_SUPERBLOCK (b);
2960 }
2961 if (function_block != NULL
2962 && SYMBOL_LINE (BLOCK_FUNCTION (function_block)) != 0)
2963 {
2964 sal->line = SYMBOL_LINE (BLOCK_FUNCTION (function_block));
2965 sal->symtab = SYMBOL_SYMTAB (BLOCK_FUNCTION (function_block));
2966 }
2967 }
2968
2969 /* If P is of the form "operator[ \t]+..." where `...' is
2970 some legitimate operator text, return a pointer to the
2971 beginning of the substring of the operator text.
2972 Otherwise, return "". */
2973
2974 static char *
2975 operator_chars (char *p, char **end)
2976 {
2977 *end = "";
2978 if (strncmp (p, "operator", 8))
2979 return *end;
2980 p += 8;
2981
2982 /* Don't get faked out by `operator' being part of a longer
2983 identifier. */
2984 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
2985 return *end;
2986
2987 /* Allow some whitespace between `operator' and the operator symbol. */
2988 while (*p == ' ' || *p == '\t')
2989 p++;
2990
2991 /* Recognize 'operator TYPENAME'. */
2992
2993 if (isalpha (*p) || *p == '_' || *p == '$')
2994 {
2995 char *q = p + 1;
2996
2997 while (isalnum (*q) || *q == '_' || *q == '$')
2998 q++;
2999 *end = q;
3000 return p;
3001 }
3002
3003 while (*p)
3004 switch (*p)
3005 {
3006 case '\\': /* regexp quoting */
3007 if (p[1] == '*')
3008 {
3009 if (p[2] == '=') /* 'operator\*=' */
3010 *end = p + 3;
3011 else /* 'operator\*' */
3012 *end = p + 2;
3013 return p;
3014 }
3015 else if (p[1] == '[')
3016 {
3017 if (p[2] == ']')
3018 error (_("mismatched quoting on brackets, "
3019 "try 'operator\\[\\]'"));
3020 else if (p[2] == '\\' && p[3] == ']')
3021 {
3022 *end = p + 4; /* 'operator\[\]' */
3023 return p;
3024 }
3025 else
3026 error (_("nothing is allowed between '[' and ']'"));
3027 }
3028 else
3029 {
3030 /* Gratuitous qoute: skip it and move on. */
3031 p++;
3032 continue;
3033 }
3034 break;
3035 case '!':
3036 case '=':
3037 case '*':
3038 case '/':
3039 case '%':
3040 case '^':
3041 if (p[1] == '=')
3042 *end = p + 2;
3043 else
3044 *end = p + 1;
3045 return p;
3046 case '<':
3047 case '>':
3048 case '+':
3049 case '-':
3050 case '&':
3051 case '|':
3052 if (p[0] == '-' && p[1] == '>')
3053 {
3054 /* Struct pointer member operator 'operator->'. */
3055 if (p[2] == '*')
3056 {
3057 *end = p + 3; /* 'operator->*' */
3058 return p;
3059 }
3060 else if (p[2] == '\\')
3061 {
3062 *end = p + 4; /* Hopefully 'operator->\*' */
3063 return p;
3064 }
3065 else
3066 {
3067 *end = p + 2; /* 'operator->' */
3068 return p;
3069 }
3070 }
3071 if (p[1] == '=' || p[1] == p[0])
3072 *end = p + 2;
3073 else
3074 *end = p + 1;
3075 return p;
3076 case '~':
3077 case ',':
3078 *end = p + 1;
3079 return p;
3080 case '(':
3081 if (p[1] != ')')
3082 error (_("`operator ()' must be specified "
3083 "without whitespace in `()'"));
3084 *end = p + 2;
3085 return p;
3086 case '?':
3087 if (p[1] != ':')
3088 error (_("`operator ?:' must be specified "
3089 "without whitespace in `?:'"));
3090 *end = p + 2;
3091 return p;
3092 case '[':
3093 if (p[1] != ']')
3094 error (_("`operator []' must be specified "
3095 "without whitespace in `[]'"));
3096 *end = p + 2;
3097 return p;
3098 default:
3099 error (_("`operator %s' not supported"), p);
3100 break;
3101 }
3102
3103 *end = "";
3104 return *end;
3105 }
3106 \f
3107
3108 /* If FILE is not already in the table of files, return zero;
3109 otherwise return non-zero. Optionally add FILE to the table if ADD
3110 is non-zero. If *FIRST is non-zero, forget the old table
3111 contents. */
3112
3113 static int
3114 filename_seen (const char *file, int add, int *first)
3115 {
3116 /* Table of files seen so far. */
3117 static const char **tab = NULL;
3118 /* Allocated size of tab in elements.
3119 Start with one 256-byte block (when using GNU malloc.c).
3120 24 is the malloc overhead when range checking is in effect. */
3121 static int tab_alloc_size = (256 - 24) / sizeof (char *);
3122 /* Current size of tab in elements. */
3123 static int tab_cur_size;
3124 const char **p;
3125
3126 if (*first)
3127 {
3128 if (tab == NULL)
3129 tab = (const char **) xmalloc (tab_alloc_size * sizeof (*tab));
3130 tab_cur_size = 0;
3131 }
3132
3133 /* Is FILE in tab? */
3134 for (p = tab; p < tab + tab_cur_size; p++)
3135 if (filename_cmp (*p, file) == 0)
3136 return 1;
3137
3138 /* No; maybe add it to tab. */
3139 if (add)
3140 {
3141 if (tab_cur_size == tab_alloc_size)
3142 {
3143 tab_alloc_size *= 2;
3144 tab = (const char **) xrealloc ((char *) tab,
3145 tab_alloc_size * sizeof (*tab));
3146 }
3147 tab[tab_cur_size++] = file;
3148 }
3149
3150 return 0;
3151 }
3152
3153 /* Slave routine for sources_info. Force line breaks at ,'s.
3154 NAME is the name to print and *FIRST is nonzero if this is the first
3155 name printed. Set *FIRST to zero. */
3156
3157 static void
3158 output_source_filename (const char *name, int *first)
3159 {
3160 /* Since a single source file can result in several partial symbol
3161 tables, we need to avoid printing it more than once. Note: if
3162 some of the psymtabs are read in and some are not, it gets
3163 printed both under "Source files for which symbols have been
3164 read" and "Source files for which symbols will be read in on
3165 demand". I consider this a reasonable way to deal with the
3166 situation. I'm not sure whether this can also happen for
3167 symtabs; it doesn't hurt to check. */
3168
3169 /* Was NAME already seen? */
3170 if (filename_seen (name, 1, first))
3171 {
3172 /* Yes; don't print it again. */
3173 return;
3174 }
3175 /* No; print it and reset *FIRST. */
3176 if (*first)
3177 {
3178 *first = 0;
3179 }
3180 else
3181 {
3182 printf_filtered (", ");
3183 }
3184
3185 wrap_here ("");
3186 fputs_filtered (name, gdb_stdout);
3187 }
3188
3189 /* A callback for map_partial_symbol_filenames. */
3190
3191 static void
3192 output_partial_symbol_filename (const char *filename, const char *fullname,
3193 void *data)
3194 {
3195 output_source_filename (fullname ? fullname : filename, data);
3196 }
3197
3198 static void
3199 sources_info (char *ignore, int from_tty)
3200 {
3201 struct symtab *s;
3202 struct objfile *objfile;
3203 int first;
3204
3205 if (!have_full_symbols () && !have_partial_symbols ())
3206 {
3207 error (_("No symbol table is loaded. Use the \"file\" command."));
3208 }
3209
3210 printf_filtered ("Source files for which symbols have been read in:\n\n");
3211
3212 first = 1;
3213 ALL_SYMTABS (objfile, s)
3214 {
3215 const char *fullname = symtab_to_fullname (s);
3216
3217 output_source_filename (fullname ? fullname : s->filename, &first);
3218 }
3219 printf_filtered ("\n\n");
3220
3221 printf_filtered ("Source files for which symbols "
3222 "will be read in on demand:\n\n");
3223
3224 first = 1;
3225 map_partial_symbol_filenames (output_partial_symbol_filename, &first,
3226 1 /*need_fullname*/);
3227 printf_filtered ("\n");
3228 }
3229
3230 static int
3231 file_matches (const char *file, char *files[], int nfiles)
3232 {
3233 int i;
3234
3235 if (file != NULL && nfiles != 0)
3236 {
3237 for (i = 0; i < nfiles; i++)
3238 {
3239 if (filename_cmp (files[i], lbasename (file)) == 0)
3240 return 1;
3241 }
3242 }
3243 else if (nfiles == 0)
3244 return 1;
3245 return 0;
3246 }
3247
3248 /* Free any memory associated with a search. */
3249
3250 void
3251 free_search_symbols (struct symbol_search *symbols)
3252 {
3253 struct symbol_search *p;
3254 struct symbol_search *next;
3255
3256 for (p = symbols; p != NULL; p = next)
3257 {
3258 next = p->next;
3259 xfree (p);
3260 }
3261 }
3262
3263 static void
3264 do_free_search_symbols_cleanup (void *symbols)
3265 {
3266 free_search_symbols (symbols);
3267 }
3268
3269 struct cleanup *
3270 make_cleanup_free_search_symbols (struct symbol_search *symbols)
3271 {
3272 return make_cleanup (do_free_search_symbols_cleanup, symbols);
3273 }
3274
3275 /* Helper function for sort_search_symbols and qsort. Can only
3276 sort symbols, not minimal symbols. */
3277
3278 static int
3279 compare_search_syms (const void *sa, const void *sb)
3280 {
3281 struct symbol_search **sym_a = (struct symbol_search **) sa;
3282 struct symbol_search **sym_b = (struct symbol_search **) sb;
3283
3284 return strcmp (SYMBOL_PRINT_NAME ((*sym_a)->symbol),
3285 SYMBOL_PRINT_NAME ((*sym_b)->symbol));
3286 }
3287
3288 /* Sort the ``nfound'' symbols in the list after prevtail. Leave
3289 prevtail where it is, but update its next pointer to point to
3290 the first of the sorted symbols. */
3291
3292 static struct symbol_search *
3293 sort_search_symbols (struct symbol_search *prevtail, int nfound)
3294 {
3295 struct symbol_search **symbols, *symp, *old_next;
3296 int i;
3297
3298 symbols = (struct symbol_search **) xmalloc (sizeof (struct symbol_search *)
3299 * nfound);
3300 symp = prevtail->next;
3301 for (i = 0; i < nfound; i++)
3302 {
3303 symbols[i] = symp;
3304 symp = symp->next;
3305 }
3306 /* Generally NULL. */
3307 old_next = symp;
3308
3309 qsort (symbols, nfound, sizeof (struct symbol_search *),
3310 compare_search_syms);
3311
3312 symp = prevtail;
3313 for (i = 0; i < nfound; i++)
3314 {
3315 symp->next = symbols[i];
3316 symp = symp->next;
3317 }
3318 symp->next = old_next;
3319
3320 xfree (symbols);
3321 return symp;
3322 }
3323
3324 /* An object of this type is passed as the user_data to the
3325 expand_symtabs_matching method. */
3326 struct search_symbols_data
3327 {
3328 int nfiles;
3329 char **files;
3330
3331 /* It is true if PREG contains valid data, false otherwise. */
3332 unsigned preg_p : 1;
3333 regex_t preg;
3334 };
3335
3336 /* A callback for expand_symtabs_matching. */
3337
3338 static int
3339 search_symbols_file_matches (const char *filename, void *user_data)
3340 {
3341 struct search_symbols_data *data = user_data;
3342
3343 return file_matches (filename, data->files, data->nfiles);
3344 }
3345
3346 /* A callback for expand_symtabs_matching. */
3347
3348 static int
3349 search_symbols_name_matches (const char *symname, void *user_data)
3350 {
3351 struct search_symbols_data *data = user_data;
3352
3353 return !data->preg_p || regexec (&data->preg, symname, 0, NULL, 0) == 0;
3354 }
3355
3356 /* Search the symbol table for matches to the regular expression REGEXP,
3357 returning the results in *MATCHES.
3358
3359 Only symbols of KIND are searched:
3360 VARIABLES_DOMAIN - search all symbols, excluding functions, type names,
3361 and constants (enums)
3362 FUNCTIONS_DOMAIN - search all functions
3363 TYPES_DOMAIN - search all type names
3364 ALL_DOMAIN - an internal error for this function
3365
3366 free_search_symbols should be called when *MATCHES is no longer needed.
3367
3368 The results are sorted locally; each symtab's global and static blocks are
3369 separately alphabetized. */
3370
3371 void
3372 search_symbols (char *regexp, enum search_domain kind,
3373 int nfiles, char *files[],
3374 struct symbol_search **matches)
3375 {
3376 struct symtab *s;
3377 struct blockvector *bv;
3378 struct block *b;
3379 int i = 0;
3380 struct block_iterator iter;
3381 struct symbol *sym;
3382 struct objfile *objfile;
3383 struct minimal_symbol *msymbol;
3384 int found_misc = 0;
3385 static const enum minimal_symbol_type types[]
3386 = {mst_data, mst_text, mst_abs};
3387 static const enum minimal_symbol_type types2[]
3388 = {mst_bss, mst_file_text, mst_abs};
3389 static const enum minimal_symbol_type types3[]
3390 = {mst_file_data, mst_solib_trampoline, mst_abs};
3391 static const enum minimal_symbol_type types4[]
3392 = {mst_file_bss, mst_text_gnu_ifunc, mst_abs};
3393 enum minimal_symbol_type ourtype;
3394 enum minimal_symbol_type ourtype2;
3395 enum minimal_symbol_type ourtype3;
3396 enum minimal_symbol_type ourtype4;
3397 struct symbol_search *sr;
3398 struct symbol_search *psr;
3399 struct symbol_search *tail;
3400 struct search_symbols_data datum;
3401
3402 /* OLD_CHAIN .. RETVAL_CHAIN is always freed, RETVAL_CHAIN .. current
3403 CLEANUP_CHAIN is freed only in the case of an error. */
3404 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
3405 struct cleanup *retval_chain;
3406
3407 gdb_assert (kind <= TYPES_DOMAIN);
3408
3409 ourtype = types[kind];
3410 ourtype2 = types2[kind];
3411 ourtype3 = types3[kind];
3412 ourtype4 = types4[kind];
3413
3414 sr = *matches = NULL;
3415 tail = NULL;
3416 datum.preg_p = 0;
3417
3418 if (regexp != NULL)
3419 {
3420 /* Make sure spacing is right for C++ operators.
3421 This is just a courtesy to make the matching less sensitive
3422 to how many spaces the user leaves between 'operator'
3423 and <TYPENAME> or <OPERATOR>. */
3424 char *opend;
3425 char *opname = operator_chars (regexp, &opend);
3426 int errcode;
3427
3428 if (*opname)
3429 {
3430 int fix = -1; /* -1 means ok; otherwise number of
3431 spaces needed. */
3432
3433 if (isalpha (*opname) || *opname == '_' || *opname == '$')
3434 {
3435 /* There should 1 space between 'operator' and 'TYPENAME'. */
3436 if (opname[-1] != ' ' || opname[-2] == ' ')
3437 fix = 1;
3438 }
3439 else
3440 {
3441 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
3442 if (opname[-1] == ' ')
3443 fix = 0;
3444 }
3445 /* If wrong number of spaces, fix it. */
3446 if (fix >= 0)
3447 {
3448 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
3449
3450 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
3451 regexp = tmp;
3452 }
3453 }
3454
3455 errcode = regcomp (&datum.preg, regexp,
3456 REG_NOSUB | (case_sensitivity == case_sensitive_off
3457 ? REG_ICASE : 0));
3458 if (errcode != 0)
3459 {
3460 char *err = get_regcomp_error (errcode, &datum.preg);
3461
3462 make_cleanup (xfree, err);
3463 error (_("Invalid regexp (%s): %s"), err, regexp);
3464 }
3465 datum.preg_p = 1;
3466 make_regfree_cleanup (&datum.preg);
3467 }
3468
3469 /* Search through the partial symtabs *first* for all symbols
3470 matching the regexp. That way we don't have to reproduce all of
3471 the machinery below. */
3472
3473 datum.nfiles = nfiles;
3474 datum.files = files;
3475 ALL_OBJFILES (objfile)
3476 {
3477 if (objfile->sf)
3478 objfile->sf->qf->expand_symtabs_matching (objfile,
3479 (nfiles == 0
3480 ? NULL
3481 : search_symbols_file_matches),
3482 search_symbols_name_matches,
3483 kind,
3484 &datum);
3485 }
3486
3487 retval_chain = old_chain;
3488
3489 /* Here, we search through the minimal symbol tables for functions
3490 and variables that match, and force their symbols to be read.
3491 This is in particular necessary for demangled variable names,
3492 which are no longer put into the partial symbol tables.
3493 The symbol will then be found during the scan of symtabs below.
3494
3495 For functions, find_pc_symtab should succeed if we have debug info
3496 for the function, for variables we have to call
3497 lookup_symbol_in_objfile_from_linkage_name to determine if the variable
3498 has debug info.
3499 If the lookup fails, set found_misc so that we will rescan to print
3500 any matching symbols without debug info.
3501 We only search the objfile the msymbol came from, we no longer search
3502 all objfiles. In large programs (1000s of shared libs) searching all
3503 objfiles is not worth the pain. */
3504
3505 if (nfiles == 0 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
3506 {
3507 ALL_MSYMBOLS (objfile, msymbol)
3508 {
3509 QUIT;
3510
3511 if (msymbol->created_by_gdb)
3512 continue;
3513
3514 if (MSYMBOL_TYPE (msymbol) == ourtype
3515 || MSYMBOL_TYPE (msymbol) == ourtype2
3516 || MSYMBOL_TYPE (msymbol) == ourtype3
3517 || MSYMBOL_TYPE (msymbol) == ourtype4)
3518 {
3519 if (!datum.preg_p
3520 || regexec (&datum.preg, SYMBOL_NATURAL_NAME (msymbol), 0,
3521 NULL, 0) == 0)
3522 {
3523 /* Note: An important side-effect of these lookup functions
3524 is to expand the symbol table if msymbol is found, for the
3525 benefit of the next loop on ALL_PRIMARY_SYMTABS. */
3526 if (kind == FUNCTIONS_DOMAIN
3527 ? find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol)) == NULL
3528 : (lookup_symbol_in_objfile_from_linkage_name
3529 (objfile, SYMBOL_LINKAGE_NAME (msymbol), VAR_DOMAIN)
3530 == NULL))
3531 found_misc = 1;
3532 }
3533 }
3534 }
3535 }
3536
3537 ALL_PRIMARY_SYMTABS (objfile, s)
3538 {
3539 bv = BLOCKVECTOR (s);
3540 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
3541 {
3542 struct symbol_search *prevtail = tail;
3543 int nfound = 0;
3544
3545 b = BLOCKVECTOR_BLOCK (bv, i);
3546 ALL_BLOCK_SYMBOLS (b, iter, sym)
3547 {
3548 struct symtab *real_symtab = SYMBOL_SYMTAB (sym);
3549
3550 QUIT;
3551
3552 if (file_matches (real_symtab->filename, files, nfiles)
3553 && ((!datum.preg_p
3554 || regexec (&datum.preg, SYMBOL_NATURAL_NAME (sym), 0,
3555 NULL, 0) == 0)
3556 && ((kind == VARIABLES_DOMAIN
3557 && SYMBOL_CLASS (sym) != LOC_TYPEDEF
3558 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
3559 && SYMBOL_CLASS (sym) != LOC_BLOCK
3560 /* LOC_CONST can be used for more than just enums,
3561 e.g., c++ static const members.
3562 We only want to skip enums here. */
3563 && !(SYMBOL_CLASS (sym) == LOC_CONST
3564 && TYPE_CODE (SYMBOL_TYPE (sym))
3565 == TYPE_CODE_ENUM))
3566 || (kind == FUNCTIONS_DOMAIN
3567 && SYMBOL_CLASS (sym) == LOC_BLOCK)
3568 || (kind == TYPES_DOMAIN
3569 && SYMBOL_CLASS (sym) == LOC_TYPEDEF))))
3570 {
3571 /* match */
3572 psr = (struct symbol_search *)
3573 xmalloc (sizeof (struct symbol_search));
3574 psr->block = i;
3575 psr->symtab = real_symtab;
3576 psr->symbol = sym;
3577 psr->msymbol = NULL;
3578 psr->next = NULL;
3579 if (tail == NULL)
3580 sr = psr;
3581 else
3582 tail->next = psr;
3583 tail = psr;
3584 nfound ++;
3585 }
3586 }
3587 if (nfound > 0)
3588 {
3589 if (prevtail == NULL)
3590 {
3591 struct symbol_search dummy;
3592
3593 dummy.next = sr;
3594 tail = sort_search_symbols (&dummy, nfound);
3595 sr = dummy.next;
3596
3597 make_cleanup_free_search_symbols (sr);
3598 }
3599 else
3600 tail = sort_search_symbols (prevtail, nfound);
3601 }
3602 }
3603 }
3604
3605 /* If there are no eyes, avoid all contact. I mean, if there are
3606 no debug symbols, then print directly from the msymbol_vector. */
3607
3608 if (found_misc || (nfiles == 0 && kind != FUNCTIONS_DOMAIN))
3609 {
3610 ALL_MSYMBOLS (objfile, msymbol)
3611 {
3612 QUIT;
3613
3614 if (msymbol->created_by_gdb)
3615 continue;
3616
3617 if (MSYMBOL_TYPE (msymbol) == ourtype
3618 || MSYMBOL_TYPE (msymbol) == ourtype2
3619 || MSYMBOL_TYPE (msymbol) == ourtype3
3620 || MSYMBOL_TYPE (msymbol) == ourtype4)
3621 {
3622 if (!datum.preg_p
3623 || regexec (&datum.preg, SYMBOL_NATURAL_NAME (msymbol), 0,
3624 NULL, 0) == 0)
3625 {
3626 /* For functions we can do a quick check of whether the
3627 symbol might be found via find_pc_symtab. */
3628 if (kind != FUNCTIONS_DOMAIN
3629 || find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol)) == NULL)
3630 {
3631 if (lookup_symbol_in_objfile_from_linkage_name
3632 (objfile, SYMBOL_LINKAGE_NAME (msymbol), VAR_DOMAIN)
3633 == NULL)
3634 {
3635 /* match */
3636 psr = (struct symbol_search *)
3637 xmalloc (sizeof (struct symbol_search));
3638 psr->block = i;
3639 psr->msymbol = msymbol;
3640 psr->symtab = NULL;
3641 psr->symbol = NULL;
3642 psr->next = NULL;
3643 if (tail == NULL)
3644 {
3645 sr = psr;
3646 make_cleanup_free_search_symbols (sr);
3647 }
3648 else
3649 tail->next = psr;
3650 tail = psr;
3651 }
3652 }
3653 }
3654 }
3655 }
3656 }
3657
3658 discard_cleanups (retval_chain);
3659 do_cleanups (old_chain);
3660 *matches = sr;
3661 }
3662
3663 /* Helper function for symtab_symbol_info, this function uses
3664 the data returned from search_symbols() to print information
3665 regarding the match to gdb_stdout. */
3666
3667 static void
3668 print_symbol_info (enum search_domain kind,
3669 struct symtab *s, struct symbol *sym,
3670 int block, char *last)
3671 {
3672 if (last == NULL || filename_cmp (last, s->filename) != 0)
3673 {
3674 fputs_filtered ("\nFile ", gdb_stdout);
3675 fputs_filtered (s->filename, gdb_stdout);
3676 fputs_filtered (":\n", gdb_stdout);
3677 }
3678
3679 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
3680 printf_filtered ("static ");
3681
3682 /* Typedef that is not a C++ class. */
3683 if (kind == TYPES_DOMAIN
3684 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
3685 typedef_print (SYMBOL_TYPE (sym), sym, gdb_stdout);
3686 /* variable, func, or typedef-that-is-c++-class. */
3687 else if (kind < TYPES_DOMAIN
3688 || (kind == TYPES_DOMAIN
3689 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
3690 {
3691 type_print (SYMBOL_TYPE (sym),
3692 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
3693 ? "" : SYMBOL_PRINT_NAME (sym)),
3694 gdb_stdout, 0);
3695
3696 printf_filtered (";\n");
3697 }
3698 }
3699
3700 /* This help function for symtab_symbol_info() prints information
3701 for non-debugging symbols to gdb_stdout. */
3702
3703 static void
3704 print_msymbol_info (struct minimal_symbol *msymbol)
3705 {
3706 struct gdbarch *gdbarch = get_objfile_arch (msymbol_objfile (msymbol));
3707 char *tmp;
3708
3709 if (gdbarch_addr_bit (gdbarch) <= 32)
3710 tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol)
3711 & (CORE_ADDR) 0xffffffff,
3712 8);
3713 else
3714 tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol),
3715 16);
3716 printf_filtered ("%s %s\n",
3717 tmp, SYMBOL_PRINT_NAME (msymbol));
3718 }
3719
3720 /* This is the guts of the commands "info functions", "info types", and
3721 "info variables". It calls search_symbols to find all matches and then
3722 print_[m]symbol_info to print out some useful information about the
3723 matches. */
3724
3725 static void
3726 symtab_symbol_info (char *regexp, enum search_domain kind, int from_tty)
3727 {
3728 static const char * const classnames[] =
3729 {"variable", "function", "type"};
3730 struct symbol_search *symbols;
3731 struct symbol_search *p;
3732 struct cleanup *old_chain;
3733 char *last_filename = NULL;
3734 int first = 1;
3735
3736 gdb_assert (kind <= TYPES_DOMAIN);
3737
3738 /* Must make sure that if we're interrupted, symbols gets freed. */
3739 search_symbols (regexp, kind, 0, (char **) NULL, &symbols);
3740 old_chain = make_cleanup_free_search_symbols (symbols);
3741
3742 printf_filtered (regexp
3743 ? "All %ss matching regular expression \"%s\":\n"
3744 : "All defined %ss:\n",
3745 classnames[kind], regexp);
3746
3747 for (p = symbols; p != NULL; p = p->next)
3748 {
3749 QUIT;
3750
3751 if (p->msymbol != NULL)
3752 {
3753 if (first)
3754 {
3755 printf_filtered ("\nNon-debugging symbols:\n");
3756 first = 0;
3757 }
3758 print_msymbol_info (p->msymbol);
3759 }
3760 else
3761 {
3762 print_symbol_info (kind,
3763 p->symtab,
3764 p->symbol,
3765 p->block,
3766 last_filename);
3767 last_filename = p->symtab->filename;
3768 }
3769 }
3770
3771 do_cleanups (old_chain);
3772 }
3773
3774 static void
3775 variables_info (char *regexp, int from_tty)
3776 {
3777 symtab_symbol_info (regexp, VARIABLES_DOMAIN, from_tty);
3778 }
3779
3780 static void
3781 functions_info (char *regexp, int from_tty)
3782 {
3783 symtab_symbol_info (regexp, FUNCTIONS_DOMAIN, from_tty);
3784 }
3785
3786
3787 static void
3788 types_info (char *regexp, int from_tty)
3789 {
3790 symtab_symbol_info (regexp, TYPES_DOMAIN, from_tty);
3791 }
3792
3793 /* Breakpoint all functions matching regular expression. */
3794
3795 void
3796 rbreak_command_wrapper (char *regexp, int from_tty)
3797 {
3798 rbreak_command (regexp, from_tty);
3799 }
3800
3801 /* A cleanup function that calls end_rbreak_breakpoints. */
3802
3803 static void
3804 do_end_rbreak_breakpoints (void *ignore)
3805 {
3806 end_rbreak_breakpoints ();
3807 }
3808
3809 static void
3810 rbreak_command (char *regexp, int from_tty)
3811 {
3812 struct symbol_search *ss;
3813 struct symbol_search *p;
3814 struct cleanup *old_chain;
3815 char *string = NULL;
3816 int len = 0;
3817 char **files = NULL, *file_name;
3818 int nfiles = 0;
3819
3820 if (regexp)
3821 {
3822 char *colon = strchr (regexp, ':');
3823
3824 if (colon && *(colon + 1) != ':')
3825 {
3826 int colon_index;
3827
3828 colon_index = colon - regexp;
3829 file_name = alloca (colon_index + 1);
3830 memcpy (file_name, regexp, colon_index);
3831 file_name[colon_index--] = 0;
3832 while (isspace (file_name[colon_index]))
3833 file_name[colon_index--] = 0;
3834 files = &file_name;
3835 nfiles = 1;
3836 regexp = colon + 1;
3837 while (isspace (*regexp)) regexp++;
3838 }
3839 }
3840
3841 search_symbols (regexp, FUNCTIONS_DOMAIN, nfiles, files, &ss);
3842 old_chain = make_cleanup_free_search_symbols (ss);
3843 make_cleanup (free_current_contents, &string);
3844
3845 start_rbreak_breakpoints ();
3846 make_cleanup (do_end_rbreak_breakpoints, NULL);
3847 for (p = ss; p != NULL; p = p->next)
3848 {
3849 if (p->msymbol == NULL)
3850 {
3851 int newlen = (strlen (p->symtab->filename)
3852 + strlen (SYMBOL_LINKAGE_NAME (p->symbol))
3853 + 4);
3854
3855 if (newlen > len)
3856 {
3857 string = xrealloc (string, newlen);
3858 len = newlen;
3859 }
3860 strcpy (string, p->symtab->filename);
3861 strcat (string, ":'");
3862 strcat (string, SYMBOL_LINKAGE_NAME (p->symbol));
3863 strcat (string, "'");
3864 break_command (string, from_tty);
3865 print_symbol_info (FUNCTIONS_DOMAIN,
3866 p->symtab,
3867 p->symbol,
3868 p->block,
3869 p->symtab->filename);
3870 }
3871 else
3872 {
3873 int newlen = (strlen (SYMBOL_LINKAGE_NAME (p->msymbol)) + 3);
3874
3875 if (newlen > len)
3876 {
3877 string = xrealloc (string, newlen);
3878 len = newlen;
3879 }
3880 strcpy (string, "'");
3881 strcat (string, SYMBOL_LINKAGE_NAME (p->msymbol));
3882 strcat (string, "'");
3883
3884 break_command (string, from_tty);
3885 printf_filtered ("<function, no debug info> %s;\n",
3886 SYMBOL_PRINT_NAME (p->msymbol));
3887 }
3888 }
3889
3890 do_cleanups (old_chain);
3891 }
3892 \f
3893
3894 /* Evaluate if NAME matches SYM_TEXT and SYM_TEXT_LEN.
3895
3896 Either sym_text[sym_text_len] != '(' and then we search for any
3897 symbol starting with SYM_TEXT text.
3898
3899 Otherwise sym_text[sym_text_len] == '(' and then we require symbol name to
3900 be terminated at that point. Partial symbol tables do not have parameters
3901 information. */
3902
3903 static int
3904 compare_symbol_name (const char *name, const char *sym_text, int sym_text_len)
3905 {
3906 int (*ncmp) (const char *, const char *, size_t);
3907
3908 ncmp = (case_sensitivity == case_sensitive_on ? strncmp : strncasecmp);
3909
3910 if (ncmp (name, sym_text, sym_text_len) != 0)
3911 return 0;
3912
3913 if (sym_text[sym_text_len] == '(')
3914 {
3915 /* User searches for `name(someth...'. Require NAME to be terminated.
3916 Normally psymtabs and gdbindex have no parameter types so '\0' will be
3917 present but accept even parameters presence. In this case this
3918 function is in fact strcmp_iw but whitespace skipping is not supported
3919 for tab completion. */
3920
3921 if (name[sym_text_len] != '\0' && name[sym_text_len] != '(')
3922 return 0;
3923 }
3924
3925 return 1;
3926 }
3927
3928 /* Free any memory associated with a completion list. */
3929
3930 static void
3931 free_completion_list (VEC (char_ptr) **list_ptr)
3932 {
3933 int i;
3934 char *p;
3935
3936 for (i = 0; VEC_iterate (char_ptr, *list_ptr, i, p); ++i)
3937 xfree (p);
3938 VEC_free (char_ptr, *list_ptr);
3939 }
3940
3941 /* Callback for make_cleanup. */
3942
3943 static void
3944 do_free_completion_list (void *list)
3945 {
3946 free_completion_list (list);
3947 }
3948
3949 /* Helper routine for make_symbol_completion_list. */
3950
3951 static VEC (char_ptr) *return_val;
3952
3953 #define COMPLETION_LIST_ADD_SYMBOL(symbol, sym_text, len, text, word) \
3954 completion_list_add_name \
3955 (SYMBOL_NATURAL_NAME (symbol), (sym_text), (len), (text), (word))
3956
3957 /* Test to see if the symbol specified by SYMNAME (which is already
3958 demangled for C++ symbols) matches SYM_TEXT in the first SYM_TEXT_LEN
3959 characters. If so, add it to the current completion list. */
3960
3961 static void
3962 completion_list_add_name (const char *symname,
3963 const char *sym_text, int sym_text_len,
3964 const char *text, const char *word)
3965 {
3966 int newsize;
3967
3968 /* Clip symbols that cannot match. */
3969 if (!compare_symbol_name (symname, sym_text, sym_text_len))
3970 return;
3971
3972 /* We have a match for a completion, so add SYMNAME to the current list
3973 of matches. Note that the name is moved to freshly malloc'd space. */
3974
3975 {
3976 char *new;
3977
3978 if (word == sym_text)
3979 {
3980 new = xmalloc (strlen (symname) + 5);
3981 strcpy (new, symname);
3982 }
3983 else if (word > sym_text)
3984 {
3985 /* Return some portion of symname. */
3986 new = xmalloc (strlen (symname) + 5);
3987 strcpy (new, symname + (word - sym_text));
3988 }
3989 else
3990 {
3991 /* Return some of SYM_TEXT plus symname. */
3992 new = xmalloc (strlen (symname) + (sym_text - word) + 5);
3993 strncpy (new, word, sym_text - word);
3994 new[sym_text - word] = '\0';
3995 strcat (new, symname);
3996 }
3997
3998 VEC_safe_push (char_ptr, return_val, new);
3999 }
4000 }
4001
4002 /* ObjC: In case we are completing on a selector, look as the msymbol
4003 again and feed all the selectors into the mill. */
4004
4005 static void
4006 completion_list_objc_symbol (struct minimal_symbol *msymbol,
4007 const char *sym_text, int sym_text_len,
4008 const char *text, const char *word)
4009 {
4010 static char *tmp = NULL;
4011 static unsigned int tmplen = 0;
4012
4013 const char *method, *category, *selector;
4014 char *tmp2 = NULL;
4015
4016 method = SYMBOL_NATURAL_NAME (msymbol);
4017
4018 /* Is it a method? */
4019 if ((method[0] != '-') && (method[0] != '+'))
4020 return;
4021
4022 if (sym_text[0] == '[')
4023 /* Complete on shortened method method. */
4024 completion_list_add_name (method + 1, sym_text, sym_text_len, text, word);
4025
4026 while ((strlen (method) + 1) >= tmplen)
4027 {
4028 if (tmplen == 0)
4029 tmplen = 1024;
4030 else
4031 tmplen *= 2;
4032 tmp = xrealloc (tmp, tmplen);
4033 }
4034 selector = strchr (method, ' ');
4035 if (selector != NULL)
4036 selector++;
4037
4038 category = strchr (method, '(');
4039
4040 if ((category != NULL) && (selector != NULL))
4041 {
4042 memcpy (tmp, method, (category - method));
4043 tmp[category - method] = ' ';
4044 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
4045 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
4046 if (sym_text[0] == '[')
4047 completion_list_add_name (tmp + 1, sym_text, sym_text_len, text, word);
4048 }
4049
4050 if (selector != NULL)
4051 {
4052 /* Complete on selector only. */
4053 strcpy (tmp, selector);
4054 tmp2 = strchr (tmp, ']');
4055 if (tmp2 != NULL)
4056 *tmp2 = '\0';
4057
4058 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
4059 }
4060 }
4061
4062 /* Break the non-quoted text based on the characters which are in
4063 symbols. FIXME: This should probably be language-specific. */
4064
4065 static char *
4066 language_search_unquoted_string (char *text, char *p)
4067 {
4068 for (; p > text; --p)
4069 {
4070 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
4071 continue;
4072 else
4073 {
4074 if ((current_language->la_language == language_objc))
4075 {
4076 if (p[-1] == ':') /* Might be part of a method name. */
4077 continue;
4078 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
4079 p -= 2; /* Beginning of a method name. */
4080 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
4081 { /* Might be part of a method name. */
4082 char *t = p;
4083
4084 /* Seeing a ' ' or a '(' is not conclusive evidence
4085 that we are in the middle of a method name. However,
4086 finding "-[" or "+[" should be pretty un-ambiguous.
4087 Unfortunately we have to find it now to decide. */
4088
4089 while (t > text)
4090 if (isalnum (t[-1]) || t[-1] == '_' ||
4091 t[-1] == ' ' || t[-1] == ':' ||
4092 t[-1] == '(' || t[-1] == ')')
4093 --t;
4094 else
4095 break;
4096
4097 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
4098 p = t - 2; /* Method name detected. */
4099 /* Else we leave with p unchanged. */
4100 }
4101 }
4102 break;
4103 }
4104 }
4105 return p;
4106 }
4107
4108 static void
4109 completion_list_add_fields (struct symbol *sym, char *sym_text,
4110 int sym_text_len, char *text, char *word)
4111 {
4112 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4113 {
4114 struct type *t = SYMBOL_TYPE (sym);
4115 enum type_code c = TYPE_CODE (t);
4116 int j;
4117
4118 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
4119 for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++)
4120 if (TYPE_FIELD_NAME (t, j))
4121 completion_list_add_name (TYPE_FIELD_NAME (t, j),
4122 sym_text, sym_text_len, text, word);
4123 }
4124 }
4125
4126 /* Type of the user_data argument passed to add_macro_name or
4127 expand_partial_symbol_name. The contents are simply whatever is
4128 needed by completion_list_add_name. */
4129 struct add_name_data
4130 {
4131 char *sym_text;
4132 int sym_text_len;
4133 char *text;
4134 char *word;
4135 };
4136
4137 /* A callback used with macro_for_each and macro_for_each_in_scope.
4138 This adds a macro's name to the current completion list. */
4139
4140 static void
4141 add_macro_name (const char *name, const struct macro_definition *ignore,
4142 struct macro_source_file *ignore2, int ignore3,
4143 void *user_data)
4144 {
4145 struct add_name_data *datum = (struct add_name_data *) user_data;
4146
4147 completion_list_add_name ((char *) name,
4148 datum->sym_text, datum->sym_text_len,
4149 datum->text, datum->word);
4150 }
4151
4152 /* A callback for expand_partial_symbol_names. */
4153
4154 static int
4155 expand_partial_symbol_name (const char *name, void *user_data)
4156 {
4157 struct add_name_data *datum = (struct add_name_data *) user_data;
4158
4159 return compare_symbol_name (name, datum->sym_text, datum->sym_text_len);
4160 }
4161
4162 VEC (char_ptr) *
4163 default_make_symbol_completion_list_break_on (char *text, char *word,
4164 const char *break_on)
4165 {
4166 /* Problem: All of the symbols have to be copied because readline
4167 frees them. I'm not going to worry about this; hopefully there
4168 won't be that many. */
4169
4170 struct symbol *sym;
4171 struct symtab *s;
4172 struct minimal_symbol *msymbol;
4173 struct objfile *objfile;
4174 struct block *b;
4175 const struct block *surrounding_static_block, *surrounding_global_block;
4176 struct block_iterator iter;
4177 /* The symbol we are completing on. Points in same buffer as text. */
4178 char *sym_text;
4179 /* Length of sym_text. */
4180 int sym_text_len;
4181 struct add_name_data datum;
4182 struct cleanup *back_to;
4183
4184 /* Now look for the symbol we are supposed to complete on. */
4185 {
4186 char *p;
4187 char quote_found;
4188 char *quote_pos = NULL;
4189
4190 /* First see if this is a quoted string. */
4191 quote_found = '\0';
4192 for (p = text; *p != '\0'; ++p)
4193 {
4194 if (quote_found != '\0')
4195 {
4196 if (*p == quote_found)
4197 /* Found close quote. */
4198 quote_found = '\0';
4199 else if (*p == '\\' && p[1] == quote_found)
4200 /* A backslash followed by the quote character
4201 doesn't end the string. */
4202 ++p;
4203 }
4204 else if (*p == '\'' || *p == '"')
4205 {
4206 quote_found = *p;
4207 quote_pos = p;
4208 }
4209 }
4210 if (quote_found == '\'')
4211 /* A string within single quotes can be a symbol, so complete on it. */
4212 sym_text = quote_pos + 1;
4213 else if (quote_found == '"')
4214 /* A double-quoted string is never a symbol, nor does it make sense
4215 to complete it any other way. */
4216 {
4217 return NULL;
4218 }
4219 else
4220 {
4221 /* It is not a quoted string. Break it based on the characters
4222 which are in symbols. */
4223 while (p > text)
4224 {
4225 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0'
4226 || p[-1] == ':' || strchr (break_on, p[-1]) != NULL)
4227 --p;
4228 else
4229 break;
4230 }
4231 sym_text = p;
4232 }
4233 }
4234
4235 sym_text_len = strlen (sym_text);
4236
4237 /* Prepare SYM_TEXT_LEN for compare_symbol_name. */
4238
4239 if (current_language->la_language == language_cplus
4240 || current_language->la_language == language_java
4241 || current_language->la_language == language_fortran)
4242 {
4243 /* These languages may have parameters entered by user but they are never
4244 present in the partial symbol tables. */
4245
4246 const char *cs = memchr (sym_text, '(', sym_text_len);
4247
4248 if (cs)
4249 sym_text_len = cs - sym_text;
4250 }
4251 gdb_assert (sym_text[sym_text_len] == '\0' || sym_text[sym_text_len] == '(');
4252
4253 return_val = NULL;
4254 back_to = make_cleanup (do_free_completion_list, &return_val);
4255
4256 datum.sym_text = sym_text;
4257 datum.sym_text_len = sym_text_len;
4258 datum.text = text;
4259 datum.word = word;
4260
4261 /* Look through the partial symtabs for all symbols which begin
4262 by matching SYM_TEXT. Expand all CUs that you find to the list.
4263 The real names will get added by COMPLETION_LIST_ADD_SYMBOL below. */
4264 expand_partial_symbol_names (expand_partial_symbol_name, &datum);
4265
4266 /* At this point scan through the misc symbol vectors and add each
4267 symbol you find to the list. Eventually we want to ignore
4268 anything that isn't a text symbol (everything else will be
4269 handled by the psymtab code above). */
4270
4271 ALL_MSYMBOLS (objfile, msymbol)
4272 {
4273 QUIT;
4274 COMPLETION_LIST_ADD_SYMBOL (msymbol, sym_text, sym_text_len, text, word);
4275
4276 completion_list_objc_symbol (msymbol, sym_text, sym_text_len, text, word);
4277 }
4278
4279 /* Search upwards from currently selected frame (so that we can
4280 complete on local vars). Also catch fields of types defined in
4281 this places which match our text string. Only complete on types
4282 visible from current context. */
4283
4284 b = get_selected_block (0);
4285 surrounding_static_block = block_static_block (b);
4286 surrounding_global_block = block_global_block (b);
4287 if (surrounding_static_block != NULL)
4288 while (b != surrounding_static_block)
4289 {
4290 QUIT;
4291
4292 ALL_BLOCK_SYMBOLS (b, iter, sym)
4293 {
4294 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text,
4295 word);
4296 completion_list_add_fields (sym, sym_text, sym_text_len, text,
4297 word);
4298 }
4299
4300 /* Stop when we encounter an enclosing function. Do not stop for
4301 non-inlined functions - the locals of the enclosing function
4302 are in scope for a nested function. */
4303 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
4304 break;
4305 b = BLOCK_SUPERBLOCK (b);
4306 }
4307
4308 /* Add fields from the file's types; symbols will be added below. */
4309
4310 if (surrounding_static_block != NULL)
4311 ALL_BLOCK_SYMBOLS (surrounding_static_block, iter, sym)
4312 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
4313
4314 if (surrounding_global_block != NULL)
4315 ALL_BLOCK_SYMBOLS (surrounding_global_block, iter, sym)
4316 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
4317
4318 /* Go through the symtabs and check the externs and statics for
4319 symbols which match. */
4320
4321 ALL_PRIMARY_SYMTABS (objfile, s)
4322 {
4323 QUIT;
4324 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
4325 ALL_BLOCK_SYMBOLS (b, iter, sym)
4326 {
4327 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4328 }
4329 }
4330
4331 ALL_PRIMARY_SYMTABS (objfile, s)
4332 {
4333 QUIT;
4334 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
4335 ALL_BLOCK_SYMBOLS (b, iter, sym)
4336 {
4337 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4338 }
4339 }
4340
4341 if (current_language->la_macro_expansion == macro_expansion_c)
4342 {
4343 struct macro_scope *scope;
4344
4345 /* Add any macros visible in the default scope. Note that this
4346 may yield the occasional wrong result, because an expression
4347 might be evaluated in a scope other than the default. For
4348 example, if the user types "break file:line if <TAB>", the
4349 resulting expression will be evaluated at "file:line" -- but
4350 at there does not seem to be a way to detect this at
4351 completion time. */
4352 scope = default_macro_scope ();
4353 if (scope)
4354 {
4355 macro_for_each_in_scope (scope->file, scope->line,
4356 add_macro_name, &datum);
4357 xfree (scope);
4358 }
4359
4360 /* User-defined macros are always visible. */
4361 macro_for_each (macro_user_macros, add_macro_name, &datum);
4362 }
4363
4364 discard_cleanups (back_to);
4365 return (return_val);
4366 }
4367
4368 VEC (char_ptr) *
4369 default_make_symbol_completion_list (char *text, char *word)
4370 {
4371 return default_make_symbol_completion_list_break_on (text, word, "");
4372 }
4373
4374 /* Return a vector of all symbols (regardless of class) which begin by
4375 matching TEXT. If the answer is no symbols, then the return value
4376 is NULL. */
4377
4378 VEC (char_ptr) *
4379 make_symbol_completion_list (char *text, char *word)
4380 {
4381 return current_language->la_make_symbol_completion_list (text, word);
4382 }
4383
4384 /* Like make_symbol_completion_list, but suitable for use as a
4385 completion function. */
4386
4387 VEC (char_ptr) *
4388 make_symbol_completion_list_fn (struct cmd_list_element *ignore,
4389 char *text, char *word)
4390 {
4391 return make_symbol_completion_list (text, word);
4392 }
4393
4394 /* Like make_symbol_completion_list, but returns a list of symbols
4395 defined in a source file FILE. */
4396
4397 VEC (char_ptr) *
4398 make_file_symbol_completion_list (char *text, char *word, char *srcfile)
4399 {
4400 struct symbol *sym;
4401 struct symtab *s;
4402 struct block *b;
4403 struct block_iterator iter;
4404 /* The symbol we are completing on. Points in same buffer as text. */
4405 char *sym_text;
4406 /* Length of sym_text. */
4407 int sym_text_len;
4408
4409 /* Now look for the symbol we are supposed to complete on.
4410 FIXME: This should be language-specific. */
4411 {
4412 char *p;
4413 char quote_found;
4414 char *quote_pos = NULL;
4415
4416 /* First see if this is a quoted string. */
4417 quote_found = '\0';
4418 for (p = text; *p != '\0'; ++p)
4419 {
4420 if (quote_found != '\0')
4421 {
4422 if (*p == quote_found)
4423 /* Found close quote. */
4424 quote_found = '\0';
4425 else if (*p == '\\' && p[1] == quote_found)
4426 /* A backslash followed by the quote character
4427 doesn't end the string. */
4428 ++p;
4429 }
4430 else if (*p == '\'' || *p == '"')
4431 {
4432 quote_found = *p;
4433 quote_pos = p;
4434 }
4435 }
4436 if (quote_found == '\'')
4437 /* A string within single quotes can be a symbol, so complete on it. */
4438 sym_text = quote_pos + 1;
4439 else if (quote_found == '"')
4440 /* A double-quoted string is never a symbol, nor does it make sense
4441 to complete it any other way. */
4442 {
4443 return NULL;
4444 }
4445 else
4446 {
4447 /* Not a quoted string. */
4448 sym_text = language_search_unquoted_string (text, p);
4449 }
4450 }
4451
4452 sym_text_len = strlen (sym_text);
4453
4454 return_val = NULL;
4455
4456 /* Find the symtab for SRCFILE (this loads it if it was not yet read
4457 in). */
4458 s = lookup_symtab (srcfile);
4459 if (s == NULL)
4460 {
4461 /* Maybe they typed the file with leading directories, while the
4462 symbol tables record only its basename. */
4463 const char *tail = lbasename (srcfile);
4464
4465 if (tail > srcfile)
4466 s = lookup_symtab (tail);
4467 }
4468
4469 /* If we have no symtab for that file, return an empty list. */
4470 if (s == NULL)
4471 return (return_val);
4472
4473 /* Go through this symtab and check the externs and statics for
4474 symbols which match. */
4475
4476 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
4477 ALL_BLOCK_SYMBOLS (b, iter, sym)
4478 {
4479 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4480 }
4481
4482 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
4483 ALL_BLOCK_SYMBOLS (b, iter, sym)
4484 {
4485 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4486 }
4487
4488 return (return_val);
4489 }
4490
4491 /* A helper function for make_source_files_completion_list. It adds
4492 another file name to a list of possible completions, growing the
4493 list as necessary. */
4494
4495 static void
4496 add_filename_to_list (const char *fname, char *text, char *word,
4497 VEC (char_ptr) **list)
4498 {
4499 char *new;
4500 size_t fnlen = strlen (fname);
4501
4502 if (word == text)
4503 {
4504 /* Return exactly fname. */
4505 new = xmalloc (fnlen + 5);
4506 strcpy (new, fname);
4507 }
4508 else if (word > text)
4509 {
4510 /* Return some portion of fname. */
4511 new = xmalloc (fnlen + 5);
4512 strcpy (new, fname + (word - text));
4513 }
4514 else
4515 {
4516 /* Return some of TEXT plus fname. */
4517 new = xmalloc (fnlen + (text - word) + 5);
4518 strncpy (new, word, text - word);
4519 new[text - word] = '\0';
4520 strcat (new, fname);
4521 }
4522 VEC_safe_push (char_ptr, *list, new);
4523 }
4524
4525 static int
4526 not_interesting_fname (const char *fname)
4527 {
4528 static const char *illegal_aliens[] = {
4529 "_globals_", /* inserted by coff_symtab_read */
4530 NULL
4531 };
4532 int i;
4533
4534 for (i = 0; illegal_aliens[i]; i++)
4535 {
4536 if (filename_cmp (fname, illegal_aliens[i]) == 0)
4537 return 1;
4538 }
4539 return 0;
4540 }
4541
4542 /* An object of this type is passed as the user_data argument to
4543 map_partial_symbol_filenames. */
4544 struct add_partial_filename_data
4545 {
4546 int *first;
4547 char *text;
4548 char *word;
4549 int text_len;
4550 VEC (char_ptr) **list;
4551 };
4552
4553 /* A callback for map_partial_symbol_filenames. */
4554
4555 static void
4556 maybe_add_partial_symtab_filename (const char *filename, const char *fullname,
4557 void *user_data)
4558 {
4559 struct add_partial_filename_data *data = user_data;
4560
4561 if (not_interesting_fname (filename))
4562 return;
4563 if (!filename_seen (filename, 1, data->first)
4564 && filename_ncmp (filename, data->text, data->text_len) == 0)
4565 {
4566 /* This file matches for a completion; add it to the
4567 current list of matches. */
4568 add_filename_to_list (filename, data->text, data->word, data->list);
4569 }
4570 else
4571 {
4572 const char *base_name = lbasename (filename);
4573
4574 if (base_name != filename
4575 && !filename_seen (base_name, 1, data->first)
4576 && filename_ncmp (base_name, data->text, data->text_len) == 0)
4577 add_filename_to_list (base_name, data->text, data->word, data->list);
4578 }
4579 }
4580
4581 /* Return a vector of all source files whose names begin with matching
4582 TEXT. The file names are looked up in the symbol tables of this
4583 program. If the answer is no matchess, then the return value is
4584 NULL. */
4585
4586 VEC (char_ptr) *
4587 make_source_files_completion_list (char *text, char *word)
4588 {
4589 struct symtab *s;
4590 struct objfile *objfile;
4591 int first = 1;
4592 size_t text_len = strlen (text);
4593 VEC (char_ptr) *list = NULL;
4594 const char *base_name;
4595 struct add_partial_filename_data datum;
4596 struct cleanup *back_to;
4597
4598 if (!have_full_symbols () && !have_partial_symbols ())
4599 return list;
4600
4601 back_to = make_cleanup (do_free_completion_list, &list);
4602
4603 ALL_SYMTABS (objfile, s)
4604 {
4605 if (not_interesting_fname (s->filename))
4606 continue;
4607 if (!filename_seen (s->filename, 1, &first)
4608 && filename_ncmp (s->filename, text, text_len) == 0)
4609 {
4610 /* This file matches for a completion; add it to the current
4611 list of matches. */
4612 add_filename_to_list (s->filename, text, word, &list);
4613 }
4614 else
4615 {
4616 /* NOTE: We allow the user to type a base name when the
4617 debug info records leading directories, but not the other
4618 way around. This is what subroutines of breakpoint
4619 command do when they parse file names. */
4620 base_name = lbasename (s->filename);
4621 if (base_name != s->filename
4622 && !filename_seen (base_name, 1, &first)
4623 && filename_ncmp (base_name, text, text_len) == 0)
4624 add_filename_to_list (base_name, text, word, &list);
4625 }
4626 }
4627
4628 datum.first = &first;
4629 datum.text = text;
4630 datum.word = word;
4631 datum.text_len = text_len;
4632 datum.list = &list;
4633 map_partial_symbol_filenames (maybe_add_partial_symtab_filename, &datum,
4634 0 /*need_fullname*/);
4635 discard_cleanups (back_to);
4636
4637 return list;
4638 }
4639
4640 /* Determine if PC is in the prologue of a function. The prologue is the area
4641 between the first instruction of a function, and the first executable line.
4642 Returns 1 if PC *might* be in prologue, 0 if definately *not* in prologue.
4643
4644 If non-zero, func_start is where we think the prologue starts, possibly
4645 by previous examination of symbol table information. */
4646
4647 int
4648 in_prologue (struct gdbarch *gdbarch, CORE_ADDR pc, CORE_ADDR func_start)
4649 {
4650 struct symtab_and_line sal;
4651 CORE_ADDR func_addr, func_end;
4652
4653 /* We have several sources of information we can consult to figure
4654 this out.
4655 - Compilers usually emit line number info that marks the prologue
4656 as its own "source line". So the ending address of that "line"
4657 is the end of the prologue. If available, this is the most
4658 reliable method.
4659 - The minimal symbols and partial symbols, which can usually tell
4660 us the starting and ending addresses of a function.
4661 - If we know the function's start address, we can call the
4662 architecture-defined gdbarch_skip_prologue function to analyze the
4663 instruction stream and guess where the prologue ends.
4664 - Our `func_start' argument; if non-zero, this is the caller's
4665 best guess as to the function's entry point. At the time of
4666 this writing, handle_inferior_event doesn't get this right, so
4667 it should be our last resort. */
4668
4669 /* Consult the partial symbol table, to find which function
4670 the PC is in. */
4671 if (! find_pc_partial_function (pc, NULL, &func_addr, &func_end))
4672 {
4673 CORE_ADDR prologue_end;
4674
4675 /* We don't even have minsym information, so fall back to using
4676 func_start, if given. */
4677 if (! func_start)
4678 return 1; /* We *might* be in a prologue. */
4679
4680 prologue_end = gdbarch_skip_prologue (gdbarch, func_start);
4681
4682 return func_start <= pc && pc < prologue_end;
4683 }
4684
4685 /* If we have line number information for the function, that's
4686 usually pretty reliable. */
4687 sal = find_pc_line (func_addr, 0);
4688
4689 /* Now sal describes the source line at the function's entry point,
4690 which (by convention) is the prologue. The end of that "line",
4691 sal.end, is the end of the prologue.
4692
4693 Note that, for functions whose source code is all on a single
4694 line, the line number information doesn't always end up this way.
4695 So we must verify that our purported end-of-prologue address is
4696 *within* the function, not at its start or end. */
4697 if (sal.line == 0
4698 || sal.end <= func_addr
4699 || func_end <= sal.end)
4700 {
4701 /* We don't have any good line number info, so use the minsym
4702 information, together with the architecture-specific prologue
4703 scanning code. */
4704 CORE_ADDR prologue_end = gdbarch_skip_prologue (gdbarch, func_addr);
4705
4706 return func_addr <= pc && pc < prologue_end;
4707 }
4708
4709 /* We have line number info, and it looks good. */
4710 return func_addr <= pc && pc < sal.end;
4711 }
4712
4713 /* Given PC at the function's start address, attempt to find the
4714 prologue end using SAL information. Return zero if the skip fails.
4715
4716 A non-optimized prologue traditionally has one SAL for the function
4717 and a second for the function body. A single line function has
4718 them both pointing at the same line.
4719
4720 An optimized prologue is similar but the prologue may contain
4721 instructions (SALs) from the instruction body. Need to skip those
4722 while not getting into the function body.
4723
4724 The functions end point and an increasing SAL line are used as
4725 indicators of the prologue's endpoint.
4726
4727 This code is based on the function refine_prologue_limit
4728 (found in ia64). */
4729
4730 CORE_ADDR
4731 skip_prologue_using_sal (struct gdbarch *gdbarch, CORE_ADDR func_addr)
4732 {
4733 struct symtab_and_line prologue_sal;
4734 CORE_ADDR start_pc;
4735 CORE_ADDR end_pc;
4736 struct block *bl;
4737
4738 /* Get an initial range for the function. */
4739 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
4740 start_pc += gdbarch_deprecated_function_start_offset (gdbarch);
4741
4742 prologue_sal = find_pc_line (start_pc, 0);
4743 if (prologue_sal.line != 0)
4744 {
4745 /* For languages other than assembly, treat two consecutive line
4746 entries at the same address as a zero-instruction prologue.
4747 The GNU assembler emits separate line notes for each instruction
4748 in a multi-instruction macro, but compilers generally will not
4749 do this. */
4750 if (prologue_sal.symtab->language != language_asm)
4751 {
4752 struct linetable *linetable = LINETABLE (prologue_sal.symtab);
4753 int idx = 0;
4754
4755 /* Skip any earlier lines, and any end-of-sequence marker
4756 from a previous function. */
4757 while (linetable->item[idx].pc != prologue_sal.pc
4758 || linetable->item[idx].line == 0)
4759 idx++;
4760
4761 if (idx+1 < linetable->nitems
4762 && linetable->item[idx+1].line != 0
4763 && linetable->item[idx+1].pc == start_pc)
4764 return start_pc;
4765 }
4766
4767 /* If there is only one sal that covers the entire function,
4768 then it is probably a single line function, like
4769 "foo(){}". */
4770 if (prologue_sal.end >= end_pc)
4771 return 0;
4772
4773 while (prologue_sal.end < end_pc)
4774 {
4775 struct symtab_and_line sal;
4776
4777 sal = find_pc_line (prologue_sal.end, 0);
4778 if (sal.line == 0)
4779 break;
4780 /* Assume that a consecutive SAL for the same (or larger)
4781 line mark the prologue -> body transition. */
4782 if (sal.line >= prologue_sal.line)
4783 break;
4784
4785 /* The line number is smaller. Check that it's from the
4786 same function, not something inlined. If it's inlined,
4787 then there is no point comparing the line numbers. */
4788 bl = block_for_pc (prologue_sal.end);
4789 while (bl)
4790 {
4791 if (block_inlined_p (bl))
4792 break;
4793 if (BLOCK_FUNCTION (bl))
4794 {
4795 bl = NULL;
4796 break;
4797 }
4798 bl = BLOCK_SUPERBLOCK (bl);
4799 }
4800 if (bl != NULL)
4801 break;
4802
4803 /* The case in which compiler's optimizer/scheduler has
4804 moved instructions into the prologue. We look ahead in
4805 the function looking for address ranges whose
4806 corresponding line number is less the first one that we
4807 found for the function. This is more conservative then
4808 refine_prologue_limit which scans a large number of SALs
4809 looking for any in the prologue. */
4810 prologue_sal = sal;
4811 }
4812 }
4813
4814 if (prologue_sal.end < end_pc)
4815 /* Return the end of this line, or zero if we could not find a
4816 line. */
4817 return prologue_sal.end;
4818 else
4819 /* Don't return END_PC, which is past the end of the function. */
4820 return prologue_sal.pc;
4821 }
4822 \f
4823 /* Track MAIN */
4824 static char *name_of_main;
4825 enum language language_of_main = language_unknown;
4826
4827 void
4828 set_main_name (const char *name)
4829 {
4830 if (name_of_main != NULL)
4831 {
4832 xfree (name_of_main);
4833 name_of_main = NULL;
4834 language_of_main = language_unknown;
4835 }
4836 if (name != NULL)
4837 {
4838 name_of_main = xstrdup (name);
4839 language_of_main = language_unknown;
4840 }
4841 }
4842
4843 /* Deduce the name of the main procedure, and set NAME_OF_MAIN
4844 accordingly. */
4845
4846 static void
4847 find_main_name (void)
4848 {
4849 const char *new_main_name;
4850
4851 /* Try to see if the main procedure is in Ada. */
4852 /* FIXME: brobecker/2005-03-07: Another way of doing this would
4853 be to add a new method in the language vector, and call this
4854 method for each language until one of them returns a non-empty
4855 name. This would allow us to remove this hard-coded call to
4856 an Ada function. It is not clear that this is a better approach
4857 at this point, because all methods need to be written in a way
4858 such that false positives never be returned. For instance, it is
4859 important that a method does not return a wrong name for the main
4860 procedure if the main procedure is actually written in a different
4861 language. It is easy to guaranty this with Ada, since we use a
4862 special symbol generated only when the main in Ada to find the name
4863 of the main procedure. It is difficult however to see how this can
4864 be guarantied for languages such as C, for instance. This suggests
4865 that order of call for these methods becomes important, which means
4866 a more complicated approach. */
4867 new_main_name = ada_main_name ();
4868 if (new_main_name != NULL)
4869 {
4870 set_main_name (new_main_name);
4871 return;
4872 }
4873
4874 new_main_name = go_main_name ();
4875 if (new_main_name != NULL)
4876 {
4877 set_main_name (new_main_name);
4878 return;
4879 }
4880
4881 new_main_name = pascal_main_name ();
4882 if (new_main_name != NULL)
4883 {
4884 set_main_name (new_main_name);
4885 return;
4886 }
4887
4888 /* The languages above didn't identify the name of the main procedure.
4889 Fallback to "main". */
4890 set_main_name ("main");
4891 }
4892
4893 char *
4894 main_name (void)
4895 {
4896 if (name_of_main == NULL)
4897 find_main_name ();
4898
4899 return name_of_main;
4900 }
4901
4902 /* Handle ``executable_changed'' events for the symtab module. */
4903
4904 static void
4905 symtab_observer_executable_changed (void)
4906 {
4907 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
4908 set_main_name (NULL);
4909 }
4910
4911 /* Return 1 if the supplied producer string matches the ARM RealView
4912 compiler (armcc). */
4913
4914 int
4915 producer_is_realview (const char *producer)
4916 {
4917 static const char *const arm_idents[] = {
4918 "ARM C Compiler, ADS",
4919 "Thumb C Compiler, ADS",
4920 "ARM C++ Compiler, ADS",
4921 "Thumb C++ Compiler, ADS",
4922 "ARM/Thumb C/C++ Compiler, RVCT",
4923 "ARM C/C++ Compiler, RVCT"
4924 };
4925 int i;
4926
4927 if (producer == NULL)
4928 return 0;
4929
4930 for (i = 0; i < ARRAY_SIZE (arm_idents); i++)
4931 if (strncmp (producer, arm_idents[i], strlen (arm_idents[i])) == 0)
4932 return 1;
4933
4934 return 0;
4935 }
4936
4937 void
4938 _initialize_symtab (void)
4939 {
4940 add_info ("variables", variables_info, _("\
4941 All global and static variable names, or those matching REGEXP."));
4942 if (dbx_commands)
4943 add_com ("whereis", class_info, variables_info, _("\
4944 All global and static variable names, or those matching REGEXP."));
4945
4946 add_info ("functions", functions_info,
4947 _("All function names, or those matching REGEXP."));
4948
4949 /* FIXME: This command has at least the following problems:
4950 1. It prints builtin types (in a very strange and confusing fashion).
4951 2. It doesn't print right, e.g. with
4952 typedef struct foo *FOO
4953 type_print prints "FOO" when we want to make it (in this situation)
4954 print "struct foo *".
4955 I also think "ptype" or "whatis" is more likely to be useful (but if
4956 there is much disagreement "info types" can be fixed). */
4957 add_info ("types", types_info,
4958 _("All type names, or those matching REGEXP."));
4959
4960 add_info ("sources", sources_info,
4961 _("Source files in the program."));
4962
4963 add_com ("rbreak", class_breakpoint, rbreak_command,
4964 _("Set a breakpoint for all functions matching REGEXP."));
4965
4966 if (xdb_commands)
4967 {
4968 add_com ("lf", class_info, sources_info,
4969 _("Source files in the program"));
4970 add_com ("lg", class_info, variables_info, _("\
4971 All global and static variable names, or those matching REGEXP."));
4972 }
4973
4974 add_setshow_enum_cmd ("multiple-symbols", no_class,
4975 multiple_symbols_modes, &multiple_symbols_mode,
4976 _("\
4977 Set the debugger behavior when more than one symbol are possible matches\n\
4978 in an expression."), _("\
4979 Show how the debugger handles ambiguities in expressions."), _("\
4980 Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
4981 NULL, NULL, &setlist, &showlist);
4982
4983 add_setshow_boolean_cmd ("basenames-may-differ", class_obscure,
4984 &basenames_may_differ, _("\
4985 Set whether a source file may have multiple base names."), _("\
4986 Show whether a source file may have multiple base names."), _("\
4987 (A \"base name\" is the name of a file with the directory part removed.\n\
4988 Example: The base name of \"/home/user/hello.c\" is \"hello.c\".)\n\
4989 If set, GDB will canonicalize file names (e.g., expand symlinks)\n\
4990 before comparing them. Canonicalization is an expensive operation,\n\
4991 but it allows the same file be known by more than one base name.\n\
4992 If not set (the default), all source files are assumed to have just\n\
4993 one base name, and gdb will do file name comparisons more efficiently."),
4994 NULL, NULL,
4995 &setlist, &showlist);
4996
4997 add_setshow_boolean_cmd ("symtab-create", no_class, &symtab_create_debug,
4998 _("Set debugging of symbol table creation."),
4999 _("Show debugging of symbol table creation."), _("\
5000 When enabled, debugging messages are printed when building symbol tables."),
5001 NULL,
5002 NULL,
5003 &setdebuglist, &showdebuglist);
5004
5005 observer_attach_executable_changed (symtab_observer_executable_changed);
5006 }
This page took 0.146324 seconds and 4 git commands to generate.