* language.h (struct language_defn): Remove SYMTAB parameter from
[deliverable/binutils-gdb.git] / gdb / symtab.c
1 /* Symbol table lookup for the GNU debugger, GDB.
2
3 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2007, 2008
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "symtab.h"
24 #include "gdbtypes.h"
25 #include "gdbcore.h"
26 #include "frame.h"
27 #include "target.h"
28 #include "value.h"
29 #include "symfile.h"
30 #include "objfiles.h"
31 #include "gdbcmd.h"
32 #include "call-cmds.h"
33 #include "gdb_regex.h"
34 #include "expression.h"
35 #include "language.h"
36 #include "demangle.h"
37 #include "inferior.h"
38 #include "linespec.h"
39 #include "source.h"
40 #include "filenames.h" /* for FILENAME_CMP */
41 #include "objc-lang.h"
42 #include "ada-lang.h"
43 #include "p-lang.h"
44 #include "addrmap.h"
45
46 #include "hashtab.h"
47
48 #include "gdb_obstack.h"
49 #include "block.h"
50 #include "dictionary.h"
51
52 #include <sys/types.h>
53 #include <fcntl.h>
54 #include "gdb_string.h"
55 #include "gdb_stat.h"
56 #include <ctype.h>
57 #include "cp-abi.h"
58 #include "observer.h"
59 #include "gdb_assert.h"
60 #include "solist.h"
61
62 /* Prototypes for local functions */
63
64 static void completion_list_add_name (char *, char *, int, char *, char *);
65
66 static void rbreak_command (char *, int);
67
68 static void types_info (char *, int);
69
70 static void functions_info (char *, int);
71
72 static void variables_info (char *, int);
73
74 static void sources_info (char *, int);
75
76 static void output_source_filename (const char *, int *);
77
78 static int find_line_common (struct linetable *, int, int *);
79
80 /* This one is used by linespec.c */
81
82 char *operator_chars (char *p, char **end);
83
84 static struct symbol *lookup_symbol_aux (const char *name,
85 const char *linkage_name,
86 const struct block *block,
87 const domain_enum domain,
88 enum language language,
89 int *is_a_field_of_this);
90
91 static
92 struct symbol *lookup_symbol_aux_local (const char *name,
93 const char *linkage_name,
94 const struct block *block,
95 const domain_enum domain);
96
97 static
98 struct symbol *lookup_symbol_aux_symtabs (int block_index,
99 const char *name,
100 const char *linkage_name,
101 const domain_enum domain);
102
103 static
104 struct symbol *lookup_symbol_aux_psymtabs (int block_index,
105 const char *name,
106 const char *linkage_name,
107 const domain_enum domain);
108
109 static int file_matches (char *, char **, int);
110
111 static void print_symbol_info (domain_enum,
112 struct symtab *, struct symbol *, int, char *);
113
114 static void print_msymbol_info (struct minimal_symbol *);
115
116 static void symtab_symbol_info (char *, domain_enum, int);
117
118 void _initialize_symtab (void);
119
120 /* */
121
122 /* Allow the user to configure the debugger behavior with respect
123 to multiple-choice menus when more than one symbol matches during
124 a symbol lookup. */
125
126 const char multiple_symbols_ask[] = "ask";
127 const char multiple_symbols_all[] = "all";
128 const char multiple_symbols_cancel[] = "cancel";
129 static const char *multiple_symbols_modes[] =
130 {
131 multiple_symbols_ask,
132 multiple_symbols_all,
133 multiple_symbols_cancel,
134 NULL
135 };
136 static const char *multiple_symbols_mode = multiple_symbols_all;
137
138 /* Read-only accessor to AUTO_SELECT_MODE. */
139
140 const char *
141 multiple_symbols_select_mode (void)
142 {
143 return multiple_symbols_mode;
144 }
145
146 /* The single non-language-specific builtin type */
147 struct type *builtin_type_error;
148
149 /* Block in which the most recently searched-for symbol was found.
150 Might be better to make this a parameter to lookup_symbol and
151 value_of_this. */
152
153 const struct block *block_found;
154
155 /* Check for a symtab of a specific name; first in symtabs, then in
156 psymtabs. *If* there is no '/' in the name, a match after a '/'
157 in the symtab filename will also work. */
158
159 struct symtab *
160 lookup_symtab (const char *name)
161 {
162 struct symtab *s;
163 struct partial_symtab *ps;
164 struct objfile *objfile;
165 char *real_path = NULL;
166 char *full_path = NULL;
167
168 /* Here we are interested in canonicalizing an absolute path, not
169 absolutizing a relative path. */
170 if (IS_ABSOLUTE_PATH (name))
171 {
172 full_path = xfullpath (name);
173 make_cleanup (xfree, full_path);
174 real_path = gdb_realpath (name);
175 make_cleanup (xfree, real_path);
176 }
177
178 got_symtab:
179
180 /* First, search for an exact match */
181
182 ALL_SYMTABS (objfile, s)
183 {
184 if (FILENAME_CMP (name, s->filename) == 0)
185 {
186 return s;
187 }
188
189 /* If the user gave us an absolute path, try to find the file in
190 this symtab and use its absolute path. */
191
192 if (full_path != NULL)
193 {
194 const char *fp = symtab_to_fullname (s);
195 if (fp != NULL && FILENAME_CMP (full_path, fp) == 0)
196 {
197 return s;
198 }
199 }
200
201 if (real_path != NULL)
202 {
203 char *fullname = symtab_to_fullname (s);
204 if (fullname != NULL)
205 {
206 char *rp = gdb_realpath (fullname);
207 make_cleanup (xfree, rp);
208 if (FILENAME_CMP (real_path, rp) == 0)
209 {
210 return s;
211 }
212 }
213 }
214 }
215
216 /* Now, search for a matching tail (only if name doesn't have any dirs) */
217
218 if (lbasename (name) == name)
219 ALL_SYMTABS (objfile, s)
220 {
221 if (FILENAME_CMP (lbasename (s->filename), name) == 0)
222 return s;
223 }
224
225 /* Same search rules as above apply here, but now we look thru the
226 psymtabs. */
227
228 ps = lookup_partial_symtab (name);
229 if (!ps)
230 return (NULL);
231
232 if (ps->readin)
233 error (_("Internal: readin %s pst for `%s' found when no symtab found."),
234 ps->filename, name);
235
236 s = PSYMTAB_TO_SYMTAB (ps);
237
238 if (s)
239 return s;
240
241 /* At this point, we have located the psymtab for this file, but
242 the conversion to a symtab has failed. This usually happens
243 when we are looking up an include file. In this case,
244 PSYMTAB_TO_SYMTAB doesn't return a symtab, even though one has
245 been created. So, we need to run through the symtabs again in
246 order to find the file.
247 XXX - This is a crock, and should be fixed inside of the the
248 symbol parsing routines. */
249 goto got_symtab;
250 }
251
252 /* Lookup the partial symbol table of a source file named NAME.
253 *If* there is no '/' in the name, a match after a '/'
254 in the psymtab filename will also work. */
255
256 struct partial_symtab *
257 lookup_partial_symtab (const char *name)
258 {
259 struct partial_symtab *pst;
260 struct objfile *objfile;
261 char *full_path = NULL;
262 char *real_path = NULL;
263
264 /* Here we are interested in canonicalizing an absolute path, not
265 absolutizing a relative path. */
266 if (IS_ABSOLUTE_PATH (name))
267 {
268 full_path = xfullpath (name);
269 make_cleanup (xfree, full_path);
270 real_path = gdb_realpath (name);
271 make_cleanup (xfree, real_path);
272 }
273
274 ALL_PSYMTABS (objfile, pst)
275 {
276 if (FILENAME_CMP (name, pst->filename) == 0)
277 {
278 return (pst);
279 }
280
281 /* If the user gave us an absolute path, try to find the file in
282 this symtab and use its absolute path. */
283 if (full_path != NULL)
284 {
285 psymtab_to_fullname (pst);
286 if (pst->fullname != NULL
287 && FILENAME_CMP (full_path, pst->fullname) == 0)
288 {
289 return pst;
290 }
291 }
292
293 if (real_path != NULL)
294 {
295 char *rp = NULL;
296 psymtab_to_fullname (pst);
297 if (pst->fullname != NULL)
298 {
299 rp = gdb_realpath (pst->fullname);
300 make_cleanup (xfree, rp);
301 }
302 if (rp != NULL && FILENAME_CMP (real_path, rp) == 0)
303 {
304 return pst;
305 }
306 }
307 }
308
309 /* Now, search for a matching tail (only if name doesn't have any dirs) */
310
311 if (lbasename (name) == name)
312 ALL_PSYMTABS (objfile, pst)
313 {
314 if (FILENAME_CMP (lbasename (pst->filename), name) == 0)
315 return (pst);
316 }
317
318 return (NULL);
319 }
320 \f
321 /* Mangle a GDB method stub type. This actually reassembles the pieces of the
322 full method name, which consist of the class name (from T), the unadorned
323 method name from METHOD_ID, and the signature for the specific overload,
324 specified by SIGNATURE_ID. Note that this function is g++ specific. */
325
326 char *
327 gdb_mangle_name (struct type *type, int method_id, int signature_id)
328 {
329 int mangled_name_len;
330 char *mangled_name;
331 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
332 struct fn_field *method = &f[signature_id];
333 char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
334 char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
335 char *newname = type_name_no_tag (type);
336
337 /* Does the form of physname indicate that it is the full mangled name
338 of a constructor (not just the args)? */
339 int is_full_physname_constructor;
340
341 int is_constructor;
342 int is_destructor = is_destructor_name (physname);
343 /* Need a new type prefix. */
344 char *const_prefix = method->is_const ? "C" : "";
345 char *volatile_prefix = method->is_volatile ? "V" : "";
346 char buf[20];
347 int len = (newname == NULL ? 0 : strlen (newname));
348
349 /* Nothing to do if physname already contains a fully mangled v3 abi name
350 or an operator name. */
351 if ((physname[0] == '_' && physname[1] == 'Z')
352 || is_operator_name (field_name))
353 return xstrdup (physname);
354
355 is_full_physname_constructor = is_constructor_name (physname);
356
357 is_constructor =
358 is_full_physname_constructor || (newname && strcmp (field_name, newname) == 0);
359
360 if (!is_destructor)
361 is_destructor = (strncmp (physname, "__dt", 4) == 0);
362
363 if (is_destructor || is_full_physname_constructor)
364 {
365 mangled_name = (char *) xmalloc (strlen (physname) + 1);
366 strcpy (mangled_name, physname);
367 return mangled_name;
368 }
369
370 if (len == 0)
371 {
372 sprintf (buf, "__%s%s", const_prefix, volatile_prefix);
373 }
374 else if (physname[0] == 't' || physname[0] == 'Q')
375 {
376 /* The physname for template and qualified methods already includes
377 the class name. */
378 sprintf (buf, "__%s%s", const_prefix, volatile_prefix);
379 newname = NULL;
380 len = 0;
381 }
382 else
383 {
384 sprintf (buf, "__%s%s%d", const_prefix, volatile_prefix, len);
385 }
386 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
387 + strlen (buf) + len + strlen (physname) + 1);
388
389 {
390 mangled_name = (char *) xmalloc (mangled_name_len);
391 if (is_constructor)
392 mangled_name[0] = '\0';
393 else
394 strcpy (mangled_name, field_name);
395 }
396 strcat (mangled_name, buf);
397 /* If the class doesn't have a name, i.e. newname NULL, then we just
398 mangle it using 0 for the length of the class. Thus it gets mangled
399 as something starting with `::' rather than `classname::'. */
400 if (newname != NULL)
401 strcat (mangled_name, newname);
402
403 strcat (mangled_name, physname);
404 return (mangled_name);
405 }
406
407 \f
408 /* Initialize the language dependent portion of a symbol
409 depending upon the language for the symbol. */
410 void
411 symbol_init_language_specific (struct general_symbol_info *gsymbol,
412 enum language language)
413 {
414 gsymbol->language = language;
415 if (gsymbol->language == language_cplus
416 || gsymbol->language == language_java
417 || gsymbol->language == language_objc)
418 {
419 gsymbol->language_specific.cplus_specific.demangled_name = NULL;
420 }
421 else
422 {
423 memset (&gsymbol->language_specific, 0,
424 sizeof (gsymbol->language_specific));
425 }
426 }
427
428 /* Functions to initialize a symbol's mangled name. */
429
430 /* Create the hash table used for demangled names. Each hash entry is
431 a pair of strings; one for the mangled name and one for the demangled
432 name. The entry is hashed via just the mangled name. */
433
434 static void
435 create_demangled_names_hash (struct objfile *objfile)
436 {
437 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
438 The hash table code will round this up to the next prime number.
439 Choosing a much larger table size wastes memory, and saves only about
440 1% in symbol reading. */
441
442 objfile->demangled_names_hash = htab_create_alloc
443 (256, htab_hash_string, (int (*) (const void *, const void *)) streq,
444 NULL, xcalloc, xfree);
445 }
446
447 /* Try to determine the demangled name for a symbol, based on the
448 language of that symbol. If the language is set to language_auto,
449 it will attempt to find any demangling algorithm that works and
450 then set the language appropriately. The returned name is allocated
451 by the demangler and should be xfree'd. */
452
453 static char *
454 symbol_find_demangled_name (struct general_symbol_info *gsymbol,
455 const char *mangled)
456 {
457 char *demangled = NULL;
458
459 if (gsymbol->language == language_unknown)
460 gsymbol->language = language_auto;
461
462 if (gsymbol->language == language_objc
463 || gsymbol->language == language_auto)
464 {
465 demangled =
466 objc_demangle (mangled, 0);
467 if (demangled != NULL)
468 {
469 gsymbol->language = language_objc;
470 return demangled;
471 }
472 }
473 if (gsymbol->language == language_cplus
474 || gsymbol->language == language_auto)
475 {
476 demangled =
477 cplus_demangle (mangled, DMGL_PARAMS | DMGL_ANSI);
478 if (demangled != NULL)
479 {
480 gsymbol->language = language_cplus;
481 return demangled;
482 }
483 }
484 if (gsymbol->language == language_java)
485 {
486 demangled =
487 cplus_demangle (mangled,
488 DMGL_PARAMS | DMGL_ANSI | DMGL_JAVA);
489 if (demangled != NULL)
490 {
491 gsymbol->language = language_java;
492 return demangled;
493 }
494 }
495 return NULL;
496 }
497
498 /* Set both the mangled and demangled (if any) names for GSYMBOL based
499 on LINKAGE_NAME and LEN. The hash table corresponding to OBJFILE
500 is used, and the memory comes from that objfile's objfile_obstack.
501 LINKAGE_NAME is copied, so the pointer can be discarded after
502 calling this function. */
503
504 /* We have to be careful when dealing with Java names: when we run
505 into a Java minimal symbol, we don't know it's a Java symbol, so it
506 gets demangled as a C++ name. This is unfortunate, but there's not
507 much we can do about it: but when demangling partial symbols and
508 regular symbols, we'd better not reuse the wrong demangled name.
509 (See PR gdb/1039.) We solve this by putting a distinctive prefix
510 on Java names when storing them in the hash table. */
511
512 /* FIXME: carlton/2003-03-13: This is an unfortunate situation. I
513 don't mind the Java prefix so much: different languages have
514 different demangling requirements, so it's only natural that we
515 need to keep language data around in our demangling cache. But
516 it's not good that the minimal symbol has the wrong demangled name.
517 Unfortunately, I can't think of any easy solution to that
518 problem. */
519
520 #define JAVA_PREFIX "##JAVA$$"
521 #define JAVA_PREFIX_LEN 8
522
523 void
524 symbol_set_names (struct general_symbol_info *gsymbol,
525 const char *linkage_name, int len, struct objfile *objfile)
526 {
527 char **slot;
528 /* A 0-terminated copy of the linkage name. */
529 const char *linkage_name_copy;
530 /* A copy of the linkage name that might have a special Java prefix
531 added to it, for use when looking names up in the hash table. */
532 const char *lookup_name;
533 /* The length of lookup_name. */
534 int lookup_len;
535
536 if (objfile->demangled_names_hash == NULL)
537 create_demangled_names_hash (objfile);
538
539 if (gsymbol->language == language_ada)
540 {
541 /* In Ada, we do the symbol lookups using the mangled name, so
542 we can save some space by not storing the demangled name.
543
544 As a side note, we have also observed some overlap between
545 the C++ mangling and Ada mangling, similarly to what has
546 been observed with Java. Because we don't store the demangled
547 name with the symbol, we don't need to use the same trick
548 as Java. */
549 gsymbol->name = obstack_alloc (&objfile->objfile_obstack, len + 1);
550 memcpy (gsymbol->name, linkage_name, len);
551 gsymbol->name[len] = '\0';
552 gsymbol->language_specific.cplus_specific.demangled_name = NULL;
553
554 return;
555 }
556
557 /* The stabs reader generally provides names that are not
558 NUL-terminated; most of the other readers don't do this, so we
559 can just use the given copy, unless we're in the Java case. */
560 if (gsymbol->language == language_java)
561 {
562 char *alloc_name;
563 lookup_len = len + JAVA_PREFIX_LEN;
564
565 alloc_name = alloca (lookup_len + 1);
566 memcpy (alloc_name, JAVA_PREFIX, JAVA_PREFIX_LEN);
567 memcpy (alloc_name + JAVA_PREFIX_LEN, linkage_name, len);
568 alloc_name[lookup_len] = '\0';
569
570 lookup_name = alloc_name;
571 linkage_name_copy = alloc_name + JAVA_PREFIX_LEN;
572 }
573 else if (linkage_name[len] != '\0')
574 {
575 char *alloc_name;
576 lookup_len = len;
577
578 alloc_name = alloca (lookup_len + 1);
579 memcpy (alloc_name, linkage_name, len);
580 alloc_name[lookup_len] = '\0';
581
582 lookup_name = alloc_name;
583 linkage_name_copy = alloc_name;
584 }
585 else
586 {
587 lookup_len = len;
588 lookup_name = linkage_name;
589 linkage_name_copy = linkage_name;
590 }
591
592 slot = (char **) htab_find_slot (objfile->demangled_names_hash,
593 lookup_name, INSERT);
594
595 /* If this name is not in the hash table, add it. */
596 if (*slot == NULL)
597 {
598 char *demangled_name = symbol_find_demangled_name (gsymbol,
599 linkage_name_copy);
600 int demangled_len = demangled_name ? strlen (demangled_name) : 0;
601
602 /* If there is a demangled name, place it right after the mangled name.
603 Otherwise, just place a second zero byte after the end of the mangled
604 name. */
605 *slot = obstack_alloc (&objfile->objfile_obstack,
606 lookup_len + demangled_len + 2);
607 memcpy (*slot, lookup_name, lookup_len + 1);
608 if (demangled_name != NULL)
609 {
610 memcpy (*slot + lookup_len + 1, demangled_name, demangled_len + 1);
611 xfree (demangled_name);
612 }
613 else
614 (*slot)[lookup_len + 1] = '\0';
615 }
616
617 gsymbol->name = *slot + lookup_len - len;
618 if ((*slot)[lookup_len + 1] != '\0')
619 gsymbol->language_specific.cplus_specific.demangled_name
620 = &(*slot)[lookup_len + 1];
621 else
622 gsymbol->language_specific.cplus_specific.demangled_name = NULL;
623 }
624
625 /* Return the source code name of a symbol. In languages where
626 demangling is necessary, this is the demangled name. */
627
628 char *
629 symbol_natural_name (const struct general_symbol_info *gsymbol)
630 {
631 switch (gsymbol->language)
632 {
633 case language_cplus:
634 case language_java:
635 case language_objc:
636 if (gsymbol->language_specific.cplus_specific.demangled_name != NULL)
637 return gsymbol->language_specific.cplus_specific.demangled_name;
638 break;
639 case language_ada:
640 if (gsymbol->language_specific.cplus_specific.demangled_name != NULL)
641 return gsymbol->language_specific.cplus_specific.demangled_name;
642 else
643 return ada_decode_symbol (gsymbol);
644 break;
645 default:
646 break;
647 }
648 return gsymbol->name;
649 }
650
651 /* Return the demangled name for a symbol based on the language for
652 that symbol. If no demangled name exists, return NULL. */
653 char *
654 symbol_demangled_name (struct general_symbol_info *gsymbol)
655 {
656 switch (gsymbol->language)
657 {
658 case language_cplus:
659 case language_java:
660 case language_objc:
661 if (gsymbol->language_specific.cplus_specific.demangled_name != NULL)
662 return gsymbol->language_specific.cplus_specific.demangled_name;
663 break;
664 case language_ada:
665 if (gsymbol->language_specific.cplus_specific.demangled_name != NULL)
666 return gsymbol->language_specific.cplus_specific.demangled_name;
667 else
668 return ada_decode_symbol (gsymbol);
669 break;
670 default:
671 break;
672 }
673 return NULL;
674 }
675
676 /* Return the search name of a symbol---generally the demangled or
677 linkage name of the symbol, depending on how it will be searched for.
678 If there is no distinct demangled name, then returns the same value
679 (same pointer) as SYMBOL_LINKAGE_NAME. */
680 char *
681 symbol_search_name (const struct general_symbol_info *gsymbol)
682 {
683 if (gsymbol->language == language_ada)
684 return gsymbol->name;
685 else
686 return symbol_natural_name (gsymbol);
687 }
688
689 /* Initialize the structure fields to zero values. */
690 void
691 init_sal (struct symtab_and_line *sal)
692 {
693 sal->symtab = 0;
694 sal->section = 0;
695 sal->line = 0;
696 sal->pc = 0;
697 sal->end = 0;
698 sal->explicit_pc = 0;
699 sal->explicit_line = 0;
700 }
701 \f
702
703 /* Return 1 if the two sections are the same, or if they could
704 plausibly be copies of each other, one in an original object
705 file and another in a separated debug file. */
706
707 int
708 matching_bfd_sections (asection *first, asection *second)
709 {
710 struct objfile *obj;
711
712 /* If they're the same section, then they match. */
713 if (first == second)
714 return 1;
715
716 /* If either is NULL, give up. */
717 if (first == NULL || second == NULL)
718 return 0;
719
720 /* This doesn't apply to absolute symbols. */
721 if (first->owner == NULL || second->owner == NULL)
722 return 0;
723
724 /* If they're in the same object file, they must be different sections. */
725 if (first->owner == second->owner)
726 return 0;
727
728 /* Check whether the two sections are potentially corresponding. They must
729 have the same size, address, and name. We can't compare section indexes,
730 which would be more reliable, because some sections may have been
731 stripped. */
732 if (bfd_get_section_size (first) != bfd_get_section_size (second))
733 return 0;
734
735 /* In-memory addresses may start at a different offset, relativize them. */
736 if (bfd_get_section_vma (first->owner, first)
737 - bfd_get_start_address (first->owner)
738 != bfd_get_section_vma (second->owner, second)
739 - bfd_get_start_address (second->owner))
740 return 0;
741
742 if (bfd_get_section_name (first->owner, first) == NULL
743 || bfd_get_section_name (second->owner, second) == NULL
744 || strcmp (bfd_get_section_name (first->owner, first),
745 bfd_get_section_name (second->owner, second)) != 0)
746 return 0;
747
748 /* Otherwise check that they are in corresponding objfiles. */
749
750 ALL_OBJFILES (obj)
751 if (obj->obfd == first->owner)
752 break;
753 gdb_assert (obj != NULL);
754
755 if (obj->separate_debug_objfile != NULL
756 && obj->separate_debug_objfile->obfd == second->owner)
757 return 1;
758 if (obj->separate_debug_objfile_backlink != NULL
759 && obj->separate_debug_objfile_backlink->obfd == second->owner)
760 return 1;
761
762 return 0;
763 }
764
765 /* Find which partial symtab contains PC and SECTION starting at psymtab PST.
766 We may find a different psymtab than PST. See FIND_PC_SECT_PSYMTAB. */
767
768 struct partial_symtab *
769 find_pc_sect_psymtab_closer (CORE_ADDR pc, asection *section,
770 struct partial_symtab *pst,
771 struct minimal_symbol *msymbol)
772 {
773 struct objfile *objfile = pst->objfile;
774 struct partial_symtab *tpst;
775 struct partial_symtab *best_pst = pst;
776 CORE_ADDR best_addr = pst->textlow;
777
778 /* An objfile that has its functions reordered might have
779 many partial symbol tables containing the PC, but
780 we want the partial symbol table that contains the
781 function containing the PC. */
782 if (!(objfile->flags & OBJF_REORDERED) &&
783 section == 0) /* can't validate section this way */
784 return pst;
785
786 if (msymbol == NULL)
787 return (pst);
788
789 /* The code range of partial symtabs sometimes overlap, so, in
790 the loop below, we need to check all partial symtabs and
791 find the one that fits better for the given PC address. We
792 select the partial symtab that contains a symbol whose
793 address is closest to the PC address. By closest we mean
794 that find_pc_sect_symbol returns the symbol with address
795 that is closest and still less than the given PC. */
796 for (tpst = pst; tpst != NULL; tpst = tpst->next)
797 {
798 if (pc >= tpst->textlow && pc < tpst->texthigh)
799 {
800 struct partial_symbol *p;
801 CORE_ADDR this_addr;
802
803 /* NOTE: This assumes that every psymbol has a
804 corresponding msymbol, which is not necessarily
805 true; the debug info might be much richer than the
806 object's symbol table. */
807 p = find_pc_sect_psymbol (tpst, pc, section);
808 if (p != NULL
809 && SYMBOL_VALUE_ADDRESS (p)
810 == SYMBOL_VALUE_ADDRESS (msymbol))
811 return tpst;
812
813 /* Also accept the textlow value of a psymtab as a
814 "symbol", to provide some support for partial
815 symbol tables with line information but no debug
816 symbols (e.g. those produced by an assembler). */
817 if (p != NULL)
818 this_addr = SYMBOL_VALUE_ADDRESS (p);
819 else
820 this_addr = tpst->textlow;
821
822 /* Check whether it is closer than our current
823 BEST_ADDR. Since this symbol address is
824 necessarily lower or equal to PC, the symbol closer
825 to PC is the symbol which address is the highest.
826 This way we return the psymtab which contains such
827 best match symbol. This can help in cases where the
828 symbol information/debuginfo is not complete, like
829 for instance on IRIX6 with gcc, where no debug info
830 is emitted for statics. (See also the nodebug.exp
831 testcase.) */
832 if (this_addr > best_addr)
833 {
834 best_addr = this_addr;
835 best_pst = tpst;
836 }
837 }
838 }
839 return best_pst;
840 }
841
842 /* Find which partial symtab contains PC and SECTION. Return 0 if
843 none. We return the psymtab that contains a symbol whose address
844 exactly matches PC, or, if we cannot find an exact match, the
845 psymtab that contains a symbol whose address is closest to PC. */
846 struct partial_symtab *
847 find_pc_sect_psymtab (CORE_ADDR pc, asection *section)
848 {
849 struct objfile *objfile;
850 struct minimal_symbol *msymbol;
851
852 /* If we know that this is not a text address, return failure. This is
853 necessary because we loop based on texthigh and textlow, which do
854 not include the data ranges. */
855 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
856 if (msymbol
857 && (msymbol->type == mst_data
858 || msymbol->type == mst_bss
859 || msymbol->type == mst_abs
860 || msymbol->type == mst_file_data
861 || msymbol->type == mst_file_bss))
862 return NULL;
863
864 /* Try just the PSYMTABS_ADDRMAP mapping first as it has better granularity
865 than the later used TEXTLOW/TEXTHIGH one. */
866
867 ALL_OBJFILES (objfile)
868 if (objfile->psymtabs_addrmap != NULL)
869 {
870 struct partial_symtab *pst;
871
872 pst = addrmap_find (objfile->psymtabs_addrmap, pc);
873 if (pst != NULL)
874 {
875 /* FIXME: addrmaps currently do not handle overlayed sections,
876 so fall back to the non-addrmap case if we're debugging
877 overlays and the addrmap returned the wrong section. */
878 if (overlay_debugging && msymbol && section)
879 {
880 struct partial_symbol *p;
881 /* NOTE: This assumes that every psymbol has a
882 corresponding msymbol, which is not necessarily
883 true; the debug info might be much richer than the
884 object's symbol table. */
885 p = find_pc_sect_psymbol (pst, pc, section);
886 if (!p
887 || SYMBOL_VALUE_ADDRESS (p)
888 != SYMBOL_VALUE_ADDRESS (msymbol))
889 continue;
890 }
891
892 /* We do not try to call FIND_PC_SECT_PSYMTAB_CLOSER as
893 PSYMTABS_ADDRMAP we used has already the best 1-byte
894 granularity and FIND_PC_SECT_PSYMTAB_CLOSER may mislead us into
895 a worse chosen section due to the TEXTLOW/TEXTHIGH ranges
896 overlap. */
897
898 return pst;
899 }
900 }
901
902 /* Existing PSYMTABS_ADDRMAP mapping is present even for PARTIAL_SYMTABs
903 which still have no corresponding full SYMTABs read. But it is not
904 present for non-DWARF2 debug infos not supporting PSYMTABS_ADDRMAP in GDB
905 so far. */
906
907 ALL_OBJFILES (objfile)
908 {
909 struct partial_symtab *pst;
910
911 /* Check even OBJFILE with non-zero PSYMTABS_ADDRMAP as only several of
912 its CUs may be missing in PSYMTABS_ADDRMAP as they may be varying
913 debug info type in single OBJFILE. */
914
915 ALL_OBJFILE_PSYMTABS (objfile, pst)
916 if (pc >= pst->textlow && pc < pst->texthigh)
917 {
918 struct partial_symtab *best_pst;
919
920 best_pst = find_pc_sect_psymtab_closer (pc, section, pst,
921 msymbol);
922 if (best_pst != NULL)
923 return best_pst;
924 }
925 }
926
927 return NULL;
928 }
929
930 /* Find which partial symtab contains PC. Return 0 if none.
931 Backward compatibility, no section */
932
933 struct partial_symtab *
934 find_pc_psymtab (CORE_ADDR pc)
935 {
936 return find_pc_sect_psymtab (pc, find_pc_mapped_section (pc));
937 }
938
939 /* Find which partial symbol within a psymtab matches PC and SECTION.
940 Return 0 if none. Check all psymtabs if PSYMTAB is 0. */
941
942 struct partial_symbol *
943 find_pc_sect_psymbol (struct partial_symtab *psymtab, CORE_ADDR pc,
944 asection *section)
945 {
946 struct partial_symbol *best = NULL, *p, **pp;
947 CORE_ADDR best_pc;
948
949 if (!psymtab)
950 psymtab = find_pc_sect_psymtab (pc, section);
951 if (!psymtab)
952 return 0;
953
954 /* Cope with programs that start at address 0 */
955 best_pc = (psymtab->textlow != 0) ? psymtab->textlow - 1 : 0;
956
957 /* Search the global symbols as well as the static symbols, so that
958 find_pc_partial_function doesn't use a minimal symbol and thus
959 cache a bad endaddr. */
960 for (pp = psymtab->objfile->global_psymbols.list + psymtab->globals_offset;
961 (pp - (psymtab->objfile->global_psymbols.list + psymtab->globals_offset)
962 < psymtab->n_global_syms);
963 pp++)
964 {
965 p = *pp;
966 if (SYMBOL_DOMAIN (p) == VAR_DOMAIN
967 && SYMBOL_CLASS (p) == LOC_BLOCK
968 && pc >= SYMBOL_VALUE_ADDRESS (p)
969 && (SYMBOL_VALUE_ADDRESS (p) > best_pc
970 || (psymtab->textlow == 0
971 && best_pc == 0 && SYMBOL_VALUE_ADDRESS (p) == 0)))
972 {
973 if (section) /* match on a specific section */
974 {
975 fixup_psymbol_section (p, psymtab->objfile);
976 if (!matching_bfd_sections (SYMBOL_BFD_SECTION (p), section))
977 continue;
978 }
979 best_pc = SYMBOL_VALUE_ADDRESS (p);
980 best = p;
981 }
982 }
983
984 for (pp = psymtab->objfile->static_psymbols.list + psymtab->statics_offset;
985 (pp - (psymtab->objfile->static_psymbols.list + psymtab->statics_offset)
986 < psymtab->n_static_syms);
987 pp++)
988 {
989 p = *pp;
990 if (SYMBOL_DOMAIN (p) == VAR_DOMAIN
991 && SYMBOL_CLASS (p) == LOC_BLOCK
992 && pc >= SYMBOL_VALUE_ADDRESS (p)
993 && (SYMBOL_VALUE_ADDRESS (p) > best_pc
994 || (psymtab->textlow == 0
995 && best_pc == 0 && SYMBOL_VALUE_ADDRESS (p) == 0)))
996 {
997 if (section) /* match on a specific section */
998 {
999 fixup_psymbol_section (p, psymtab->objfile);
1000 if (!matching_bfd_sections (SYMBOL_BFD_SECTION (p), section))
1001 continue;
1002 }
1003 best_pc = SYMBOL_VALUE_ADDRESS (p);
1004 best = p;
1005 }
1006 }
1007
1008 return best;
1009 }
1010
1011 /* Find which partial symbol within a psymtab matches PC. Return 0 if none.
1012 Check all psymtabs if PSYMTAB is 0. Backwards compatibility, no section. */
1013
1014 struct partial_symbol *
1015 find_pc_psymbol (struct partial_symtab *psymtab, CORE_ADDR pc)
1016 {
1017 return find_pc_sect_psymbol (psymtab, pc, find_pc_mapped_section (pc));
1018 }
1019 \f
1020 /* Debug symbols usually don't have section information. We need to dig that
1021 out of the minimal symbols and stash that in the debug symbol. */
1022
1023 static void
1024 fixup_section (struct general_symbol_info *ginfo,
1025 CORE_ADDR addr, struct objfile *objfile)
1026 {
1027 struct minimal_symbol *msym;
1028
1029 /* First, check whether a minimal symbol with the same name exists
1030 and points to the same address. The address check is required
1031 e.g. on PowerPC64, where the minimal symbol for a function will
1032 point to the function descriptor, while the debug symbol will
1033 point to the actual function code. */
1034 msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->name, objfile);
1035 if (msym)
1036 {
1037 ginfo->bfd_section = SYMBOL_BFD_SECTION (msym);
1038 ginfo->section = SYMBOL_SECTION (msym);
1039 }
1040 else
1041 {
1042 /* Static, function-local variables do appear in the linker
1043 (minimal) symbols, but are frequently given names that won't
1044 be found via lookup_minimal_symbol(). E.g., it has been
1045 observed in frv-uclinux (ELF) executables that a static,
1046 function-local variable named "foo" might appear in the
1047 linker symbols as "foo.6" or "foo.3". Thus, there is no
1048 point in attempting to extend the lookup-by-name mechanism to
1049 handle this case due to the fact that there can be multiple
1050 names.
1051
1052 So, instead, search the section table when lookup by name has
1053 failed. The ``addr'' and ``endaddr'' fields may have already
1054 been relocated. If so, the relocation offset (i.e. the
1055 ANOFFSET value) needs to be subtracted from these values when
1056 performing the comparison. We unconditionally subtract it,
1057 because, when no relocation has been performed, the ANOFFSET
1058 value will simply be zero.
1059
1060 The address of the symbol whose section we're fixing up HAS
1061 NOT BEEN adjusted (relocated) yet. It can't have been since
1062 the section isn't yet known and knowing the section is
1063 necessary in order to add the correct relocation value. In
1064 other words, we wouldn't even be in this function (attempting
1065 to compute the section) if it were already known.
1066
1067 Note that it is possible to search the minimal symbols
1068 (subtracting the relocation value if necessary) to find the
1069 matching minimal symbol, but this is overkill and much less
1070 efficient. It is not necessary to find the matching minimal
1071 symbol, only its section.
1072
1073 Note that this technique (of doing a section table search)
1074 can fail when unrelocated section addresses overlap. For
1075 this reason, we still attempt a lookup by name prior to doing
1076 a search of the section table. */
1077
1078 struct obj_section *s;
1079 ALL_OBJFILE_OSECTIONS (objfile, s)
1080 {
1081 int idx = s->the_bfd_section->index;
1082 CORE_ADDR offset = ANOFFSET (objfile->section_offsets, idx);
1083
1084 if (s->addr - offset <= addr && addr < s->endaddr - offset)
1085 {
1086 ginfo->bfd_section = s->the_bfd_section;
1087 ginfo->section = idx;
1088 return;
1089 }
1090 }
1091 }
1092 }
1093
1094 struct symbol *
1095 fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
1096 {
1097 CORE_ADDR addr;
1098
1099 if (!sym)
1100 return NULL;
1101
1102 if (SYMBOL_BFD_SECTION (sym))
1103 return sym;
1104
1105 /* We either have an OBJFILE, or we can get at it from the sym's
1106 symtab. Anything else is a bug. */
1107 gdb_assert (objfile || SYMBOL_SYMTAB (sym));
1108
1109 if (objfile == NULL)
1110 objfile = SYMBOL_SYMTAB (sym)->objfile;
1111
1112 /* We should have an objfile by now. */
1113 gdb_assert (objfile);
1114
1115 switch (SYMBOL_CLASS (sym))
1116 {
1117 case LOC_STATIC:
1118 case LOC_LABEL:
1119 case LOC_INDIRECT:
1120 addr = SYMBOL_VALUE_ADDRESS (sym);
1121 break;
1122 case LOC_BLOCK:
1123 addr = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
1124 break;
1125
1126 default:
1127 /* Nothing else will be listed in the minsyms -- no use looking
1128 it up. */
1129 return sym;
1130 }
1131
1132 fixup_section (&sym->ginfo, addr, objfile);
1133
1134 return sym;
1135 }
1136
1137 struct partial_symbol *
1138 fixup_psymbol_section (struct partial_symbol *psym, struct objfile *objfile)
1139 {
1140 CORE_ADDR addr;
1141
1142 if (!psym)
1143 return NULL;
1144
1145 if (SYMBOL_BFD_SECTION (psym))
1146 return psym;
1147
1148 gdb_assert (objfile);
1149
1150 switch (SYMBOL_CLASS (psym))
1151 {
1152 case LOC_STATIC:
1153 case LOC_LABEL:
1154 case LOC_INDIRECT:
1155 case LOC_BLOCK:
1156 addr = SYMBOL_VALUE_ADDRESS (psym);
1157 break;
1158 default:
1159 /* Nothing else will be listed in the minsyms -- no use looking
1160 it up. */
1161 return psym;
1162 }
1163
1164 fixup_section (&psym->ginfo, addr, objfile);
1165
1166 return psym;
1167 }
1168
1169 /* Find the definition for a specified symbol name NAME
1170 in domain DOMAIN, visible from lexical block BLOCK.
1171 Returns the struct symbol pointer, or zero if no symbol is found.
1172 If SYMTAB is non-NULL, store the symbol table in which the
1173 symbol was found there, or NULL if not found.
1174 C++: if IS_A_FIELD_OF_THIS is nonzero on entry, check to see if
1175 NAME is a field of the current implied argument `this'. If so set
1176 *IS_A_FIELD_OF_THIS to 1, otherwise set it to zero.
1177 BLOCK_FOUND is set to the block in which NAME is found (in the case of
1178 a field of `this', value_of_this sets BLOCK_FOUND to the proper value.) */
1179
1180 /* This function has a bunch of loops in it and it would seem to be
1181 attractive to put in some QUIT's (though I'm not really sure
1182 whether it can run long enough to be really important). But there
1183 are a few calls for which it would appear to be bad news to quit
1184 out of here: find_proc_desc in alpha-tdep.c and mips-tdep.c. (Note
1185 that there is C++ code below which can error(), but that probably
1186 doesn't affect these calls since they are looking for a known
1187 variable and thus can probably assume it will never hit the C++
1188 code). */
1189
1190 struct symbol *
1191 lookup_symbol_in_language (const char *name, const struct block *block,
1192 const domain_enum domain, enum language lang,
1193 int *is_a_field_of_this,
1194 struct symtab **symtab)
1195 {
1196 char *demangled_name = NULL;
1197 const char *modified_name = NULL;
1198 const char *mangled_name = NULL;
1199 int needtofreename = 0;
1200 struct symbol *returnval;
1201
1202 modified_name = name;
1203
1204 /* If we are using C++ or Java, demangle the name before doing a lookup, so
1205 we can always binary search. */
1206 if (lang == language_cplus)
1207 {
1208 demangled_name = cplus_demangle (name, DMGL_ANSI | DMGL_PARAMS);
1209 if (demangled_name)
1210 {
1211 mangled_name = name;
1212 modified_name = demangled_name;
1213 needtofreename = 1;
1214 }
1215 }
1216 else if (lang == language_java)
1217 {
1218 demangled_name = cplus_demangle (name,
1219 DMGL_ANSI | DMGL_PARAMS | DMGL_JAVA);
1220 if (demangled_name)
1221 {
1222 mangled_name = name;
1223 modified_name = demangled_name;
1224 needtofreename = 1;
1225 }
1226 }
1227
1228 if (case_sensitivity == case_sensitive_off)
1229 {
1230 char *copy;
1231 int len, i;
1232
1233 len = strlen (name);
1234 copy = (char *) alloca (len + 1);
1235 for (i= 0; i < len; i++)
1236 copy[i] = tolower (name[i]);
1237 copy[len] = 0;
1238 modified_name = copy;
1239 }
1240
1241 returnval = lookup_symbol_aux (modified_name, mangled_name, block,
1242 domain, lang, is_a_field_of_this);
1243 if (needtofreename)
1244 xfree (demangled_name);
1245
1246 /* Override the returned symtab with the symbol's specific one. */
1247 if (returnval != NULL && symtab != NULL)
1248 *symtab = SYMBOL_SYMTAB (returnval);
1249
1250 return returnval;
1251 }
1252
1253 /* Behave like lookup_symbol_in_language, but performed with the
1254 current language. */
1255
1256 struct symbol *
1257 lookup_symbol (const char *name, const struct block *block,
1258 domain_enum domain, int *is_a_field_of_this,
1259 struct symtab **symtab)
1260 {
1261 return lookup_symbol_in_language (name, block, domain,
1262 current_language->la_language,
1263 is_a_field_of_this, symtab);
1264 }
1265
1266 /* Behave like lookup_symbol except that NAME is the natural name
1267 of the symbol that we're looking for and, if LINKAGE_NAME is
1268 non-NULL, ensure that the symbol's linkage name matches as
1269 well. */
1270
1271 static struct symbol *
1272 lookup_symbol_aux (const char *name, const char *linkage_name,
1273 const struct block *block, const domain_enum domain,
1274 enum language language, int *is_a_field_of_this)
1275 {
1276 struct symbol *sym;
1277 const struct language_defn *langdef;
1278
1279 /* Make sure we do something sensible with is_a_field_of_this, since
1280 the callers that set this parameter to some non-null value will
1281 certainly use it later and expect it to be either 0 or 1.
1282 If we don't set it, the contents of is_a_field_of_this are
1283 undefined. */
1284 if (is_a_field_of_this != NULL)
1285 *is_a_field_of_this = 0;
1286
1287 /* Search specified block and its superiors. Don't search
1288 STATIC_BLOCK or GLOBAL_BLOCK. */
1289
1290 sym = lookup_symbol_aux_local (name, linkage_name, block, domain);
1291 if (sym != NULL)
1292 return sym;
1293
1294 /* If requested to do so by the caller and if appropriate for LANGUAGE,
1295 check to see if NAME is a field of `this'. */
1296
1297 langdef = language_def (language);
1298
1299 if (langdef->la_name_of_this != NULL && is_a_field_of_this != NULL
1300 && block != NULL)
1301 {
1302 struct symbol *sym = NULL;
1303 /* 'this' is only defined in the function's block, so find the
1304 enclosing function block. */
1305 for (; block && !BLOCK_FUNCTION (block);
1306 block = BLOCK_SUPERBLOCK (block));
1307
1308 if (block && !dict_empty (BLOCK_DICT (block)))
1309 sym = lookup_block_symbol (block, langdef->la_name_of_this,
1310 NULL, VAR_DOMAIN);
1311 if (sym)
1312 {
1313 struct type *t = sym->type;
1314
1315 /* I'm not really sure that type of this can ever
1316 be typedefed; just be safe. */
1317 CHECK_TYPEDEF (t);
1318 if (TYPE_CODE (t) == TYPE_CODE_PTR
1319 || TYPE_CODE (t) == TYPE_CODE_REF)
1320 t = TYPE_TARGET_TYPE (t);
1321
1322 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
1323 && TYPE_CODE (t) != TYPE_CODE_UNION)
1324 error (_("Internal error: `%s' is not an aggregate"),
1325 langdef->la_name_of_this);
1326
1327 if (check_field (t, name))
1328 {
1329 *is_a_field_of_this = 1;
1330 return NULL;
1331 }
1332 }
1333 }
1334
1335 /* Now do whatever is appropriate for LANGUAGE to look
1336 up static and global variables. */
1337
1338 sym = langdef->la_lookup_symbol_nonlocal (name, linkage_name, block, domain);
1339 if (sym != NULL)
1340 return sym;
1341
1342 /* Now search all static file-level symbols. Not strictly correct,
1343 but more useful than an error. Do the symtabs first, then check
1344 the psymtabs. If a psymtab indicates the existence of the
1345 desired name as a file-level static, then do psymtab-to-symtab
1346 conversion on the fly and return the found symbol. */
1347
1348 sym = lookup_symbol_aux_symtabs (STATIC_BLOCK, name, linkage_name, domain);
1349 if (sym != NULL)
1350 return sym;
1351
1352 sym = lookup_symbol_aux_psymtabs (STATIC_BLOCK, name, linkage_name, domain);
1353 if (sym != NULL)
1354 return sym;
1355
1356 return NULL;
1357 }
1358
1359 /* Check to see if the symbol is defined in BLOCK or its superiors.
1360 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
1361
1362 static struct symbol *
1363 lookup_symbol_aux_local (const char *name, const char *linkage_name,
1364 const struct block *block,
1365 const domain_enum domain)
1366 {
1367 struct symbol *sym;
1368 const struct block *static_block = block_static_block (block);
1369
1370 /* Check if either no block is specified or it's a global block. */
1371
1372 if (static_block == NULL)
1373 return NULL;
1374
1375 while (block != static_block)
1376 {
1377 sym = lookup_symbol_aux_block (name, linkage_name, block, domain);
1378 if (sym != NULL)
1379 return sym;
1380 block = BLOCK_SUPERBLOCK (block);
1381 }
1382
1383 /* We've reached the static block without finding a result. */
1384
1385 return NULL;
1386 }
1387
1388 /* Look up OBJFILE to BLOCK. */
1389
1390 static struct objfile *
1391 lookup_objfile_from_block (const struct block *block)
1392 {
1393 struct objfile *obj;
1394 struct symtab *s;
1395
1396 if (block == NULL)
1397 return NULL;
1398
1399 block = block_global_block (block);
1400 /* Go through SYMTABS. */
1401 ALL_SYMTABS (obj, s)
1402 if (block == BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK))
1403 return obj;
1404
1405 return NULL;
1406 }
1407
1408 /* Look up a symbol in a block; if found, locate its symtab, fixup the
1409 symbol, and set block_found appropriately. */
1410
1411 struct symbol *
1412 lookup_symbol_aux_block (const char *name, const char *linkage_name,
1413 const struct block *block,
1414 const domain_enum domain)
1415 {
1416 struct symbol *sym;
1417
1418 sym = lookup_block_symbol (block, name, linkage_name, domain);
1419 if (sym)
1420 {
1421 block_found = block;
1422 return fixup_symbol_section (sym, NULL);
1423 }
1424
1425 return NULL;
1426 }
1427
1428 /* Check all global symbols in OBJFILE in symtabs and
1429 psymtabs. */
1430
1431 struct symbol *
1432 lookup_global_symbol_from_objfile (const struct objfile *objfile,
1433 const char *name,
1434 const char *linkage_name,
1435 const domain_enum domain)
1436 {
1437 struct symbol *sym;
1438 struct blockvector *bv;
1439 const struct block *block;
1440 struct symtab *s;
1441 struct partial_symtab *ps;
1442
1443 /* Go through symtabs. */
1444 ALL_OBJFILE_SYMTABS (objfile, s)
1445 {
1446 bv = BLOCKVECTOR (s);
1447 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1448 sym = lookup_block_symbol (block, name, linkage_name, domain);
1449 if (sym)
1450 {
1451 block_found = block;
1452 return fixup_symbol_section (sym, (struct objfile *)objfile);
1453 }
1454 }
1455
1456 /* Now go through psymtabs. */
1457 ALL_OBJFILE_PSYMTABS (objfile, ps)
1458 {
1459 if (!ps->readin
1460 && lookup_partial_symbol (ps, name, linkage_name,
1461 1, domain))
1462 {
1463 s = PSYMTAB_TO_SYMTAB (ps);
1464 bv = BLOCKVECTOR (s);
1465 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1466 sym = lookup_block_symbol (block, name, linkage_name, domain);
1467 return fixup_symbol_section (sym, (struct objfile *)objfile);
1468 }
1469 }
1470
1471 if (objfile->separate_debug_objfile)
1472 return lookup_global_symbol_from_objfile (objfile->separate_debug_objfile,
1473 name, linkage_name, domain);
1474
1475 return NULL;
1476 }
1477
1478 /* Check to see if the symbol is defined in one of the symtabs.
1479 BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
1480 depending on whether or not we want to search global symbols or
1481 static symbols. */
1482
1483 static struct symbol *
1484 lookup_symbol_aux_symtabs (int block_index,
1485 const char *name, const char *linkage_name,
1486 const domain_enum domain)
1487 {
1488 struct symbol *sym;
1489 struct objfile *objfile;
1490 struct blockvector *bv;
1491 const struct block *block;
1492 struct symtab *s;
1493
1494 ALL_PRIMARY_SYMTABS (objfile, s)
1495 {
1496 bv = BLOCKVECTOR (s);
1497 block = BLOCKVECTOR_BLOCK (bv, block_index);
1498 sym = lookup_block_symbol (block, name, linkage_name, domain);
1499 if (sym)
1500 {
1501 block_found = block;
1502 return fixup_symbol_section (sym, objfile);
1503 }
1504 }
1505
1506 return NULL;
1507 }
1508
1509 /* Check to see if the symbol is defined in one of the partial
1510 symtabs. BLOCK_INDEX should be either GLOBAL_BLOCK or
1511 STATIC_BLOCK, depending on whether or not we want to search global
1512 symbols or static symbols. */
1513
1514 static struct symbol *
1515 lookup_symbol_aux_psymtabs (int block_index, const char *name,
1516 const char *linkage_name,
1517 const domain_enum domain)
1518 {
1519 struct symbol *sym;
1520 struct objfile *objfile;
1521 struct blockvector *bv;
1522 const struct block *block;
1523 struct partial_symtab *ps;
1524 struct symtab *s;
1525 const int psymtab_index = (block_index == GLOBAL_BLOCK ? 1 : 0);
1526
1527 ALL_PSYMTABS (objfile, ps)
1528 {
1529 if (!ps->readin
1530 && lookup_partial_symbol (ps, name, linkage_name,
1531 psymtab_index, domain))
1532 {
1533 s = PSYMTAB_TO_SYMTAB (ps);
1534 bv = BLOCKVECTOR (s);
1535 block = BLOCKVECTOR_BLOCK (bv, block_index);
1536 sym = lookup_block_symbol (block, name, linkage_name, domain);
1537 if (!sym)
1538 {
1539 /* This shouldn't be necessary, but as a last resort try
1540 looking in the statics even though the psymtab claimed
1541 the symbol was global, or vice-versa. It's possible
1542 that the psymtab gets it wrong in some cases. */
1543
1544 /* FIXME: carlton/2002-09-30: Should we really do that?
1545 If that happens, isn't it likely to be a GDB error, in
1546 which case we should fix the GDB error rather than
1547 silently dealing with it here? So I'd vote for
1548 removing the check for the symbol in the other
1549 block. */
1550 block = BLOCKVECTOR_BLOCK (bv,
1551 block_index == GLOBAL_BLOCK ?
1552 STATIC_BLOCK : GLOBAL_BLOCK);
1553 sym = lookup_block_symbol (block, name, linkage_name, domain);
1554 if (!sym)
1555 error (_("Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n%s may be an inlined function, or may be a template function\n(if a template, try specifying an instantiation: %s<type>)."),
1556 block_index == GLOBAL_BLOCK ? "global" : "static",
1557 name, ps->filename, name, name);
1558 }
1559 return fixup_symbol_section (sym, objfile);
1560 }
1561 }
1562
1563 return NULL;
1564 }
1565
1566 /* A default version of lookup_symbol_nonlocal for use by languages
1567 that can't think of anything better to do. This implements the C
1568 lookup rules. */
1569
1570 struct symbol *
1571 basic_lookup_symbol_nonlocal (const char *name,
1572 const char *linkage_name,
1573 const struct block *block,
1574 const domain_enum domain)
1575 {
1576 struct symbol *sym;
1577
1578 /* NOTE: carlton/2003-05-19: The comments below were written when
1579 this (or what turned into this) was part of lookup_symbol_aux;
1580 I'm much less worried about these questions now, since these
1581 decisions have turned out well, but I leave these comments here
1582 for posterity. */
1583
1584 /* NOTE: carlton/2002-12-05: There is a question as to whether or
1585 not it would be appropriate to search the current global block
1586 here as well. (That's what this code used to do before the
1587 is_a_field_of_this check was moved up.) On the one hand, it's
1588 redundant with the lookup_symbol_aux_symtabs search that happens
1589 next. On the other hand, if decode_line_1 is passed an argument
1590 like filename:var, then the user presumably wants 'var' to be
1591 searched for in filename. On the third hand, there shouldn't be
1592 multiple global variables all of which are named 'var', and it's
1593 not like decode_line_1 has ever restricted its search to only
1594 global variables in a single filename. All in all, only
1595 searching the static block here seems best: it's correct and it's
1596 cleanest. */
1597
1598 /* NOTE: carlton/2002-12-05: There's also a possible performance
1599 issue here: if you usually search for global symbols in the
1600 current file, then it would be slightly better to search the
1601 current global block before searching all the symtabs. But there
1602 are other factors that have a much greater effect on performance
1603 than that one, so I don't think we should worry about that for
1604 now. */
1605
1606 sym = lookup_symbol_static (name, linkage_name, block, domain);
1607 if (sym != NULL)
1608 return sym;
1609
1610 return lookup_symbol_global (name, linkage_name, block, domain);
1611 }
1612
1613 /* Lookup a symbol in the static block associated to BLOCK, if there
1614 is one; do nothing if BLOCK is NULL or a global block. */
1615
1616 struct symbol *
1617 lookup_symbol_static (const char *name,
1618 const char *linkage_name,
1619 const struct block *block,
1620 const domain_enum domain)
1621 {
1622 const struct block *static_block = block_static_block (block);
1623
1624 if (static_block != NULL)
1625 return lookup_symbol_aux_block (name, linkage_name, static_block, domain);
1626 else
1627 return NULL;
1628 }
1629
1630 /* Lookup a symbol in all files' global blocks (searching psymtabs if
1631 necessary). */
1632
1633 struct symbol *
1634 lookup_symbol_global (const char *name,
1635 const char *linkage_name,
1636 const struct block *block,
1637 const domain_enum domain)
1638 {
1639 struct symbol *sym = NULL;
1640 struct objfile *objfile = NULL;
1641
1642 /* Call library-specific lookup procedure. */
1643 objfile = lookup_objfile_from_block (block);
1644 if (objfile != NULL)
1645 sym = solib_global_lookup (objfile, name, linkage_name, domain);
1646 if (sym != NULL)
1647 return sym;
1648
1649 sym = lookup_symbol_aux_symtabs (GLOBAL_BLOCK, name, linkage_name, domain);
1650 if (sym != NULL)
1651 return sym;
1652
1653 return lookup_symbol_aux_psymtabs (GLOBAL_BLOCK, name, linkage_name, domain);
1654 }
1655
1656 int
1657 symbol_matches_domain (enum language symbol_language,
1658 domain_enum symbol_domain,
1659 domain_enum domain)
1660 {
1661 /* For C++ "struct foo { ... }" also defines a typedef for "foo".
1662 A Java class declaration also defines a typedef for the class.
1663 Similarly, any Ada type declaration implicitly defines a typedef. */
1664 if (symbol_language == language_cplus
1665 || symbol_language == language_java
1666 || symbol_language == language_ada)
1667 {
1668 if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN)
1669 && symbol_domain == STRUCT_DOMAIN)
1670 return 1;
1671 }
1672 /* For all other languages, strict match is required. */
1673 return (symbol_domain == domain);
1674 }
1675
1676 /* Look, in partial_symtab PST, for symbol whose natural name is NAME.
1677 If LINKAGE_NAME is non-NULL, check in addition that the symbol's
1678 linkage name matches it. Check the global symbols if GLOBAL, the
1679 static symbols if not */
1680
1681 struct partial_symbol *
1682 lookup_partial_symbol (struct partial_symtab *pst, const char *name,
1683 const char *linkage_name, int global,
1684 domain_enum domain)
1685 {
1686 struct partial_symbol *temp;
1687 struct partial_symbol **start, **psym;
1688 struct partial_symbol **top, **real_top, **bottom, **center;
1689 int length = (global ? pst->n_global_syms : pst->n_static_syms);
1690 int do_linear_search = 1;
1691
1692 if (length == 0)
1693 {
1694 return (NULL);
1695 }
1696 start = (global ?
1697 pst->objfile->global_psymbols.list + pst->globals_offset :
1698 pst->objfile->static_psymbols.list + pst->statics_offset);
1699
1700 if (global) /* This means we can use a binary search. */
1701 {
1702 do_linear_search = 0;
1703
1704 /* Binary search. This search is guaranteed to end with center
1705 pointing at the earliest partial symbol whose name might be
1706 correct. At that point *all* partial symbols with an
1707 appropriate name will be checked against the correct
1708 domain. */
1709
1710 bottom = start;
1711 top = start + length - 1;
1712 real_top = top;
1713 while (top > bottom)
1714 {
1715 center = bottom + (top - bottom) / 2;
1716 if (!(center < top))
1717 internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
1718 if (!do_linear_search
1719 && (SYMBOL_LANGUAGE (*center) == language_java))
1720 {
1721 do_linear_search = 1;
1722 }
1723 if (strcmp_iw_ordered (SYMBOL_SEARCH_NAME (*center), name) >= 0)
1724 {
1725 top = center;
1726 }
1727 else
1728 {
1729 bottom = center + 1;
1730 }
1731 }
1732 if (!(top == bottom))
1733 internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
1734
1735 while (top <= real_top
1736 && (linkage_name != NULL
1737 ? strcmp (SYMBOL_LINKAGE_NAME (*top), linkage_name) == 0
1738 : SYMBOL_MATCHES_SEARCH_NAME (*top,name)))
1739 {
1740 if (symbol_matches_domain (SYMBOL_LANGUAGE (*top),
1741 SYMBOL_DOMAIN (*top), domain))
1742 return (*top);
1743 top++;
1744 }
1745 }
1746
1747 /* Can't use a binary search or else we found during the binary search that
1748 we should also do a linear search. */
1749
1750 if (do_linear_search)
1751 {
1752 for (psym = start; psym < start + length; psym++)
1753 {
1754 if (symbol_matches_domain (SYMBOL_LANGUAGE (*psym),
1755 SYMBOL_DOMAIN (*psym), domain))
1756 {
1757 if (linkage_name != NULL
1758 ? strcmp (SYMBOL_LINKAGE_NAME (*psym), linkage_name) == 0
1759 : SYMBOL_MATCHES_SEARCH_NAME (*psym, name))
1760 {
1761 return (*psym);
1762 }
1763 }
1764 }
1765 }
1766
1767 return (NULL);
1768 }
1769
1770 /* Look up a type named NAME in the struct_domain. The type returned
1771 must not be opaque -- i.e., must have at least one field
1772 defined. */
1773
1774 struct type *
1775 lookup_transparent_type (const char *name)
1776 {
1777 return current_language->la_lookup_transparent_type (name);
1778 }
1779
1780 /* The standard implementation of lookup_transparent_type. This code
1781 was modeled on lookup_symbol -- the parts not relevant to looking
1782 up types were just left out. In particular it's assumed here that
1783 types are available in struct_domain and only at file-static or
1784 global blocks. */
1785
1786 struct type *
1787 basic_lookup_transparent_type (const char *name)
1788 {
1789 struct symbol *sym;
1790 struct symtab *s = NULL;
1791 struct partial_symtab *ps;
1792 struct blockvector *bv;
1793 struct objfile *objfile;
1794 struct block *block;
1795
1796 /* Now search all the global symbols. Do the symtab's first, then
1797 check the psymtab's. If a psymtab indicates the existence
1798 of the desired name as a global, then do psymtab-to-symtab
1799 conversion on the fly and return the found symbol. */
1800
1801 ALL_PRIMARY_SYMTABS (objfile, s)
1802 {
1803 bv = BLOCKVECTOR (s);
1804 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1805 sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN);
1806 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1807 {
1808 return SYMBOL_TYPE (sym);
1809 }
1810 }
1811
1812 ALL_PSYMTABS (objfile, ps)
1813 {
1814 if (!ps->readin && lookup_partial_symbol (ps, name, NULL,
1815 1, STRUCT_DOMAIN))
1816 {
1817 s = PSYMTAB_TO_SYMTAB (ps);
1818 bv = BLOCKVECTOR (s);
1819 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1820 sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN);
1821 if (!sym)
1822 {
1823 /* This shouldn't be necessary, but as a last resort
1824 * try looking in the statics even though the psymtab
1825 * claimed the symbol was global. It's possible that
1826 * the psymtab gets it wrong in some cases.
1827 */
1828 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
1829 sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN);
1830 if (!sym)
1831 error (_("Internal: global symbol `%s' found in %s psymtab but not in symtab.\n\
1832 %s may be an inlined function, or may be a template function\n\
1833 (if a template, try specifying an instantiation: %s<type>)."),
1834 name, ps->filename, name, name);
1835 }
1836 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1837 return SYMBOL_TYPE (sym);
1838 }
1839 }
1840
1841 /* Now search the static file-level symbols.
1842 Not strictly correct, but more useful than an error.
1843 Do the symtab's first, then
1844 check the psymtab's. If a psymtab indicates the existence
1845 of the desired name as a file-level static, then do psymtab-to-symtab
1846 conversion on the fly and return the found symbol.
1847 */
1848
1849 ALL_PRIMARY_SYMTABS (objfile, s)
1850 {
1851 bv = BLOCKVECTOR (s);
1852 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
1853 sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN);
1854 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1855 {
1856 return SYMBOL_TYPE (sym);
1857 }
1858 }
1859
1860 ALL_PSYMTABS (objfile, ps)
1861 {
1862 if (!ps->readin && lookup_partial_symbol (ps, name, NULL, 0, STRUCT_DOMAIN))
1863 {
1864 s = PSYMTAB_TO_SYMTAB (ps);
1865 bv = BLOCKVECTOR (s);
1866 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
1867 sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN);
1868 if (!sym)
1869 {
1870 /* This shouldn't be necessary, but as a last resort
1871 * try looking in the globals even though the psymtab
1872 * claimed the symbol was static. It's possible that
1873 * the psymtab gets it wrong in some cases.
1874 */
1875 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1876 sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN);
1877 if (!sym)
1878 error (_("Internal: static symbol `%s' found in %s psymtab but not in symtab.\n\
1879 %s may be an inlined function, or may be a template function\n\
1880 (if a template, try specifying an instantiation: %s<type>)."),
1881 name, ps->filename, name, name);
1882 }
1883 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1884 return SYMBOL_TYPE (sym);
1885 }
1886 }
1887 return (struct type *) 0;
1888 }
1889
1890
1891 /* Find the psymtab containing main(). */
1892 /* FIXME: What about languages without main() or specially linked
1893 executables that have no main() ? */
1894
1895 struct partial_symtab *
1896 find_main_psymtab (void)
1897 {
1898 struct partial_symtab *pst;
1899 struct objfile *objfile;
1900
1901 ALL_PSYMTABS (objfile, pst)
1902 {
1903 if (lookup_partial_symbol (pst, main_name (), NULL, 1, VAR_DOMAIN))
1904 {
1905 return (pst);
1906 }
1907 }
1908 return (NULL);
1909 }
1910
1911 /* Search BLOCK for symbol NAME in DOMAIN.
1912
1913 Note that if NAME is the demangled form of a C++ symbol, we will fail
1914 to find a match during the binary search of the non-encoded names, but
1915 for now we don't worry about the slight inefficiency of looking for
1916 a match we'll never find, since it will go pretty quick. Once the
1917 binary search terminates, we drop through and do a straight linear
1918 search on the symbols. Each symbol which is marked as being a ObjC/C++
1919 symbol (language_cplus or language_objc set) has both the encoded and
1920 non-encoded names tested for a match.
1921
1922 If LINKAGE_NAME is non-NULL, verify that any symbol we find has this
1923 particular mangled name.
1924 */
1925
1926 struct symbol *
1927 lookup_block_symbol (const struct block *block, const char *name,
1928 const char *linkage_name,
1929 const domain_enum domain)
1930 {
1931 struct dict_iterator iter;
1932 struct symbol *sym;
1933
1934 if (!BLOCK_FUNCTION (block))
1935 {
1936 for (sym = dict_iter_name_first (BLOCK_DICT (block), name, &iter);
1937 sym != NULL;
1938 sym = dict_iter_name_next (name, &iter))
1939 {
1940 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
1941 SYMBOL_DOMAIN (sym), domain)
1942 && (linkage_name != NULL
1943 ? strcmp (SYMBOL_LINKAGE_NAME (sym), linkage_name) == 0 : 1))
1944 return sym;
1945 }
1946 return NULL;
1947 }
1948 else
1949 {
1950 /* Note that parameter symbols do not always show up last in the
1951 list; this loop makes sure to take anything else other than
1952 parameter symbols first; it only uses parameter symbols as a
1953 last resort. Note that this only takes up extra computation
1954 time on a match. */
1955
1956 struct symbol *sym_found = NULL;
1957
1958 for (sym = dict_iter_name_first (BLOCK_DICT (block), name, &iter);
1959 sym != NULL;
1960 sym = dict_iter_name_next (name, &iter))
1961 {
1962 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
1963 SYMBOL_DOMAIN (sym), domain)
1964 && (linkage_name != NULL
1965 ? strcmp (SYMBOL_LINKAGE_NAME (sym), linkage_name) == 0 : 1))
1966 {
1967 sym_found = sym;
1968 if (SYMBOL_CLASS (sym) != LOC_ARG &&
1969 SYMBOL_CLASS (sym) != LOC_LOCAL_ARG &&
1970 SYMBOL_CLASS (sym) != LOC_REF_ARG &&
1971 SYMBOL_CLASS (sym) != LOC_REGPARM &&
1972 SYMBOL_CLASS (sym) != LOC_REGPARM_ADDR &&
1973 SYMBOL_CLASS (sym) != LOC_BASEREG_ARG &&
1974 SYMBOL_CLASS (sym) != LOC_COMPUTED_ARG)
1975 {
1976 break;
1977 }
1978 }
1979 }
1980 return (sym_found); /* Will be NULL if not found. */
1981 }
1982 }
1983
1984 /* Find the symtab associated with PC and SECTION. Look through the
1985 psymtabs and read in another symtab if necessary. */
1986
1987 struct symtab *
1988 find_pc_sect_symtab (CORE_ADDR pc, asection *section)
1989 {
1990 struct block *b;
1991 struct blockvector *bv;
1992 struct symtab *s = NULL;
1993 struct symtab *best_s = NULL;
1994 struct partial_symtab *ps;
1995 struct objfile *objfile;
1996 CORE_ADDR distance = 0;
1997 struct minimal_symbol *msymbol;
1998
1999 /* If we know that this is not a text address, return failure. This is
2000 necessary because we loop based on the block's high and low code
2001 addresses, which do not include the data ranges, and because
2002 we call find_pc_sect_psymtab which has a similar restriction based
2003 on the partial_symtab's texthigh and textlow. */
2004 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
2005 if (msymbol
2006 && (msymbol->type == mst_data
2007 || msymbol->type == mst_bss
2008 || msymbol->type == mst_abs
2009 || msymbol->type == mst_file_data
2010 || msymbol->type == mst_file_bss))
2011 return NULL;
2012
2013 /* Search all symtabs for the one whose file contains our address, and which
2014 is the smallest of all the ones containing the address. This is designed
2015 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
2016 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
2017 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
2018
2019 This happens for native ecoff format, where code from included files
2020 gets its own symtab. The symtab for the included file should have
2021 been read in already via the dependency mechanism.
2022 It might be swifter to create several symtabs with the same name
2023 like xcoff does (I'm not sure).
2024
2025 It also happens for objfiles that have their functions reordered.
2026 For these, the symtab we are looking for is not necessarily read in. */
2027
2028 ALL_PRIMARY_SYMTABS (objfile, s)
2029 {
2030 bv = BLOCKVECTOR (s);
2031 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
2032
2033 if (BLOCK_START (b) <= pc
2034 && BLOCK_END (b) > pc
2035 && (distance == 0
2036 || BLOCK_END (b) - BLOCK_START (b) < distance))
2037 {
2038 /* For an objfile that has its functions reordered,
2039 find_pc_psymtab will find the proper partial symbol table
2040 and we simply return its corresponding symtab. */
2041 /* In order to better support objfiles that contain both
2042 stabs and coff debugging info, we continue on if a psymtab
2043 can't be found. */
2044 if ((objfile->flags & OBJF_REORDERED) && objfile->psymtabs)
2045 {
2046 ps = find_pc_sect_psymtab (pc, section);
2047 if (ps)
2048 return PSYMTAB_TO_SYMTAB (ps);
2049 }
2050 if (section != 0)
2051 {
2052 struct dict_iterator iter;
2053 struct symbol *sym = NULL;
2054
2055 ALL_BLOCK_SYMBOLS (b, iter, sym)
2056 {
2057 fixup_symbol_section (sym, objfile);
2058 if (matching_bfd_sections (SYMBOL_BFD_SECTION (sym), section))
2059 break;
2060 }
2061 if (sym == NULL)
2062 continue; /* no symbol in this symtab matches section */
2063 }
2064 distance = BLOCK_END (b) - BLOCK_START (b);
2065 best_s = s;
2066 }
2067 }
2068
2069 if (best_s != NULL)
2070 return (best_s);
2071
2072 s = NULL;
2073 ps = find_pc_sect_psymtab (pc, section);
2074 if (ps)
2075 {
2076 if (ps->readin)
2077 /* Might want to error() here (in case symtab is corrupt and
2078 will cause a core dump), but maybe we can successfully
2079 continue, so let's not. */
2080 warning (_("\
2081 (Internal error: pc 0x%s in read in psymtab, but not in symtab.)\n"),
2082 paddr_nz (pc));
2083 s = PSYMTAB_TO_SYMTAB (ps);
2084 }
2085 return (s);
2086 }
2087
2088 /* Find the symtab associated with PC. Look through the psymtabs and
2089 read in another symtab if necessary. Backward compatibility, no section */
2090
2091 struct symtab *
2092 find_pc_symtab (CORE_ADDR pc)
2093 {
2094 return find_pc_sect_symtab (pc, find_pc_mapped_section (pc));
2095 }
2096 \f
2097
2098 /* Find the source file and line number for a given PC value and SECTION.
2099 Return a structure containing a symtab pointer, a line number,
2100 and a pc range for the entire source line.
2101 The value's .pc field is NOT the specified pc.
2102 NOTCURRENT nonzero means, if specified pc is on a line boundary,
2103 use the line that ends there. Otherwise, in that case, the line
2104 that begins there is used. */
2105
2106 /* The big complication here is that a line may start in one file, and end just
2107 before the start of another file. This usually occurs when you #include
2108 code in the middle of a subroutine. To properly find the end of a line's PC
2109 range, we must search all symtabs associated with this compilation unit, and
2110 find the one whose first PC is closer than that of the next line in this
2111 symtab. */
2112
2113 /* If it's worth the effort, we could be using a binary search. */
2114
2115 struct symtab_and_line
2116 find_pc_sect_line (CORE_ADDR pc, struct bfd_section *section, int notcurrent)
2117 {
2118 struct symtab *s;
2119 struct linetable *l;
2120 int len;
2121 int i;
2122 struct linetable_entry *item;
2123 struct symtab_and_line val;
2124 struct blockvector *bv;
2125 struct minimal_symbol *msymbol;
2126 struct minimal_symbol *mfunsym;
2127
2128 /* Info on best line seen so far, and where it starts, and its file. */
2129
2130 struct linetable_entry *best = NULL;
2131 CORE_ADDR best_end = 0;
2132 struct symtab *best_symtab = 0;
2133
2134 /* Store here the first line number
2135 of a file which contains the line at the smallest pc after PC.
2136 If we don't find a line whose range contains PC,
2137 we will use a line one less than this,
2138 with a range from the start of that file to the first line's pc. */
2139 struct linetable_entry *alt = NULL;
2140 struct symtab *alt_symtab = 0;
2141
2142 /* Info on best line seen in this file. */
2143
2144 struct linetable_entry *prev;
2145
2146 /* If this pc is not from the current frame,
2147 it is the address of the end of a call instruction.
2148 Quite likely that is the start of the following statement.
2149 But what we want is the statement containing the instruction.
2150 Fudge the pc to make sure we get that. */
2151
2152 init_sal (&val); /* initialize to zeroes */
2153
2154 /* It's tempting to assume that, if we can't find debugging info for
2155 any function enclosing PC, that we shouldn't search for line
2156 number info, either. However, GAS can emit line number info for
2157 assembly files --- very helpful when debugging hand-written
2158 assembly code. In such a case, we'd have no debug info for the
2159 function, but we would have line info. */
2160
2161 if (notcurrent)
2162 pc -= 1;
2163
2164 /* elz: added this because this function returned the wrong
2165 information if the pc belongs to a stub (import/export)
2166 to call a shlib function. This stub would be anywhere between
2167 two functions in the target, and the line info was erroneously
2168 taken to be the one of the line before the pc.
2169 */
2170 /* RT: Further explanation:
2171
2172 * We have stubs (trampolines) inserted between procedures.
2173 *
2174 * Example: "shr1" exists in a shared library, and a "shr1" stub also
2175 * exists in the main image.
2176 *
2177 * In the minimal symbol table, we have a bunch of symbols
2178 * sorted by start address. The stubs are marked as "trampoline",
2179 * the others appear as text. E.g.:
2180 *
2181 * Minimal symbol table for main image
2182 * main: code for main (text symbol)
2183 * shr1: stub (trampoline symbol)
2184 * foo: code for foo (text symbol)
2185 * ...
2186 * Minimal symbol table for "shr1" image:
2187 * ...
2188 * shr1: code for shr1 (text symbol)
2189 * ...
2190 *
2191 * So the code below is trying to detect if we are in the stub
2192 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
2193 * and if found, do the symbolization from the real-code address
2194 * rather than the stub address.
2195 *
2196 * Assumptions being made about the minimal symbol table:
2197 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
2198 * if we're really in the trampoline. If we're beyond it (say
2199 * we're in "foo" in the above example), it'll have a closer
2200 * symbol (the "foo" text symbol for example) and will not
2201 * return the trampoline.
2202 * 2. lookup_minimal_symbol_text() will find a real text symbol
2203 * corresponding to the trampoline, and whose address will
2204 * be different than the trampoline address. I put in a sanity
2205 * check for the address being the same, to avoid an
2206 * infinite recursion.
2207 */
2208 msymbol = lookup_minimal_symbol_by_pc (pc);
2209 if (msymbol != NULL)
2210 if (MSYMBOL_TYPE (msymbol) == mst_solib_trampoline)
2211 {
2212 mfunsym = lookup_minimal_symbol_text (SYMBOL_LINKAGE_NAME (msymbol),
2213 NULL);
2214 if (mfunsym == NULL)
2215 /* I eliminated this warning since it is coming out
2216 * in the following situation:
2217 * gdb shmain // test program with shared libraries
2218 * (gdb) break shr1 // function in shared lib
2219 * Warning: In stub for ...
2220 * In the above situation, the shared lib is not loaded yet,
2221 * so of course we can't find the real func/line info,
2222 * but the "break" still works, and the warning is annoying.
2223 * So I commented out the warning. RT */
2224 /* warning ("In stub for %s; unable to find real function/line info", SYMBOL_LINKAGE_NAME (msymbol)) */ ;
2225 /* fall through */
2226 else if (SYMBOL_VALUE_ADDRESS (mfunsym) == SYMBOL_VALUE_ADDRESS (msymbol))
2227 /* Avoid infinite recursion */
2228 /* See above comment about why warning is commented out */
2229 /* warning ("In stub for %s; unable to find real function/line info", SYMBOL_LINKAGE_NAME (msymbol)) */ ;
2230 /* fall through */
2231 else
2232 return find_pc_line (SYMBOL_VALUE_ADDRESS (mfunsym), 0);
2233 }
2234
2235
2236 s = find_pc_sect_symtab (pc, section);
2237 if (!s)
2238 {
2239 /* if no symbol information, return previous pc */
2240 if (notcurrent)
2241 pc++;
2242 val.pc = pc;
2243 return val;
2244 }
2245
2246 bv = BLOCKVECTOR (s);
2247
2248 /* Look at all the symtabs that share this blockvector.
2249 They all have the same apriori range, that we found was right;
2250 but they have different line tables. */
2251
2252 for (; s && BLOCKVECTOR (s) == bv; s = s->next)
2253 {
2254 /* Find the best line in this symtab. */
2255 l = LINETABLE (s);
2256 if (!l)
2257 continue;
2258 len = l->nitems;
2259 if (len <= 0)
2260 {
2261 /* I think len can be zero if the symtab lacks line numbers
2262 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
2263 I'm not sure which, and maybe it depends on the symbol
2264 reader). */
2265 continue;
2266 }
2267
2268 prev = NULL;
2269 item = l->item; /* Get first line info */
2270
2271 /* Is this file's first line closer than the first lines of other files?
2272 If so, record this file, and its first line, as best alternate. */
2273 if (item->pc > pc && (!alt || item->pc < alt->pc))
2274 {
2275 alt = item;
2276 alt_symtab = s;
2277 }
2278
2279 for (i = 0; i < len; i++, item++)
2280 {
2281 /* Leave prev pointing to the linetable entry for the last line
2282 that started at or before PC. */
2283 if (item->pc > pc)
2284 break;
2285
2286 prev = item;
2287 }
2288
2289 /* At this point, prev points at the line whose start addr is <= pc, and
2290 item points at the next line. If we ran off the end of the linetable
2291 (pc >= start of the last line), then prev == item. If pc < start of
2292 the first line, prev will not be set. */
2293
2294 /* Is this file's best line closer than the best in the other files?
2295 If so, record this file, and its best line, as best so far. Don't
2296 save prev if it represents the end of a function (i.e. line number
2297 0) instead of a real line. */
2298
2299 if (prev && prev->line && (!best || prev->pc > best->pc))
2300 {
2301 best = prev;
2302 best_symtab = s;
2303
2304 /* Discard BEST_END if it's before the PC of the current BEST. */
2305 if (best_end <= best->pc)
2306 best_end = 0;
2307 }
2308
2309 /* If another line (denoted by ITEM) is in the linetable and its
2310 PC is after BEST's PC, but before the current BEST_END, then
2311 use ITEM's PC as the new best_end. */
2312 if (best && i < len && item->pc > best->pc
2313 && (best_end == 0 || best_end > item->pc))
2314 best_end = item->pc;
2315 }
2316
2317 if (!best_symtab)
2318 {
2319 /* If we didn't find any line number info, just return zeros.
2320 We used to return alt->line - 1 here, but that could be
2321 anywhere; if we don't have line number info for this PC,
2322 don't make some up. */
2323 val.pc = pc;
2324 }
2325 else if (best->line == 0)
2326 {
2327 /* If our best fit is in a range of PC's for which no line
2328 number info is available (line number is zero) then we didn't
2329 find any valid line information. */
2330 val.pc = pc;
2331 }
2332 else
2333 {
2334 val.symtab = best_symtab;
2335 val.line = best->line;
2336 val.pc = best->pc;
2337 if (best_end && (!alt || best_end < alt->pc))
2338 val.end = best_end;
2339 else if (alt)
2340 val.end = alt->pc;
2341 else
2342 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
2343 }
2344 val.section = section;
2345 return val;
2346 }
2347
2348 /* Backward compatibility (no section) */
2349
2350 struct symtab_and_line
2351 find_pc_line (CORE_ADDR pc, int notcurrent)
2352 {
2353 asection *section;
2354
2355 section = find_pc_overlay (pc);
2356 if (pc_in_unmapped_range (pc, section))
2357 pc = overlay_mapped_address (pc, section);
2358 return find_pc_sect_line (pc, section, notcurrent);
2359 }
2360 \f
2361 /* Find line number LINE in any symtab whose name is the same as
2362 SYMTAB.
2363
2364 If found, return the symtab that contains the linetable in which it was
2365 found, set *INDEX to the index in the linetable of the best entry
2366 found, and set *EXACT_MATCH nonzero if the value returned is an
2367 exact match.
2368
2369 If not found, return NULL. */
2370
2371 struct symtab *
2372 find_line_symtab (struct symtab *symtab, int line, int *index, int *exact_match)
2373 {
2374 int exact;
2375
2376 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
2377 so far seen. */
2378
2379 int best_index;
2380 struct linetable *best_linetable;
2381 struct symtab *best_symtab;
2382
2383 /* First try looking it up in the given symtab. */
2384 best_linetable = LINETABLE (symtab);
2385 best_symtab = symtab;
2386 best_index = find_line_common (best_linetable, line, &exact);
2387 if (best_index < 0 || !exact)
2388 {
2389 /* Didn't find an exact match. So we better keep looking for
2390 another symtab with the same name. In the case of xcoff,
2391 multiple csects for one source file (produced by IBM's FORTRAN
2392 compiler) produce multiple symtabs (this is unavoidable
2393 assuming csects can be at arbitrary places in memory and that
2394 the GLOBAL_BLOCK of a symtab has a begin and end address). */
2395
2396 /* BEST is the smallest linenumber > LINE so far seen,
2397 or 0 if none has been seen so far.
2398 BEST_INDEX and BEST_LINETABLE identify the item for it. */
2399 int best;
2400
2401 struct objfile *objfile;
2402 struct symtab *s;
2403 struct partial_symtab *p;
2404
2405 if (best_index >= 0)
2406 best = best_linetable->item[best_index].line;
2407 else
2408 best = 0;
2409
2410 ALL_PSYMTABS (objfile, p)
2411 {
2412 if (strcmp (symtab->filename, p->filename) != 0)
2413 continue;
2414 PSYMTAB_TO_SYMTAB (p);
2415 }
2416
2417 ALL_SYMTABS (objfile, s)
2418 {
2419 struct linetable *l;
2420 int ind;
2421
2422 if (strcmp (symtab->filename, s->filename) != 0)
2423 continue;
2424 l = LINETABLE (s);
2425 ind = find_line_common (l, line, &exact);
2426 if (ind >= 0)
2427 {
2428 if (exact)
2429 {
2430 best_index = ind;
2431 best_linetable = l;
2432 best_symtab = s;
2433 goto done;
2434 }
2435 if (best == 0 || l->item[ind].line < best)
2436 {
2437 best = l->item[ind].line;
2438 best_index = ind;
2439 best_linetable = l;
2440 best_symtab = s;
2441 }
2442 }
2443 }
2444 }
2445 done:
2446 if (best_index < 0)
2447 return NULL;
2448
2449 if (index)
2450 *index = best_index;
2451 if (exact_match)
2452 *exact_match = exact;
2453
2454 return best_symtab;
2455 }
2456 \f
2457 /* Set the PC value for a given source file and line number and return true.
2458 Returns zero for invalid line number (and sets the PC to 0).
2459 The source file is specified with a struct symtab. */
2460
2461 int
2462 find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
2463 {
2464 struct linetable *l;
2465 int ind;
2466
2467 *pc = 0;
2468 if (symtab == 0)
2469 return 0;
2470
2471 symtab = find_line_symtab (symtab, line, &ind, NULL);
2472 if (symtab != NULL)
2473 {
2474 l = LINETABLE (symtab);
2475 *pc = l->item[ind].pc;
2476 return 1;
2477 }
2478 else
2479 return 0;
2480 }
2481
2482 /* Find the range of pc values in a line.
2483 Store the starting pc of the line into *STARTPTR
2484 and the ending pc (start of next line) into *ENDPTR.
2485 Returns 1 to indicate success.
2486 Returns 0 if could not find the specified line. */
2487
2488 int
2489 find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
2490 CORE_ADDR *endptr)
2491 {
2492 CORE_ADDR startaddr;
2493 struct symtab_and_line found_sal;
2494
2495 startaddr = sal.pc;
2496 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
2497 return 0;
2498
2499 /* This whole function is based on address. For example, if line 10 has
2500 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
2501 "info line *0x123" should say the line goes from 0x100 to 0x200
2502 and "info line *0x355" should say the line goes from 0x300 to 0x400.
2503 This also insures that we never give a range like "starts at 0x134
2504 and ends at 0x12c". */
2505
2506 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
2507 if (found_sal.line != sal.line)
2508 {
2509 /* The specified line (sal) has zero bytes. */
2510 *startptr = found_sal.pc;
2511 *endptr = found_sal.pc;
2512 }
2513 else
2514 {
2515 *startptr = found_sal.pc;
2516 *endptr = found_sal.end;
2517 }
2518 return 1;
2519 }
2520
2521 /* Given a line table and a line number, return the index into the line
2522 table for the pc of the nearest line whose number is >= the specified one.
2523 Return -1 if none is found. The value is >= 0 if it is an index.
2524
2525 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
2526
2527 static int
2528 find_line_common (struct linetable *l, int lineno,
2529 int *exact_match)
2530 {
2531 int i;
2532 int len;
2533
2534 /* BEST is the smallest linenumber > LINENO so far seen,
2535 or 0 if none has been seen so far.
2536 BEST_INDEX identifies the item for it. */
2537
2538 int best_index = -1;
2539 int best = 0;
2540
2541 *exact_match = 0;
2542
2543 if (lineno <= 0)
2544 return -1;
2545 if (l == 0)
2546 return -1;
2547
2548 len = l->nitems;
2549 for (i = 0; i < len; i++)
2550 {
2551 struct linetable_entry *item = &(l->item[i]);
2552
2553 if (item->line == lineno)
2554 {
2555 /* Return the first (lowest address) entry which matches. */
2556 *exact_match = 1;
2557 return i;
2558 }
2559
2560 if (item->line > lineno && (best == 0 || item->line < best))
2561 {
2562 best = item->line;
2563 best_index = i;
2564 }
2565 }
2566
2567 /* If we got here, we didn't get an exact match. */
2568 return best_index;
2569 }
2570
2571 int
2572 find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
2573 {
2574 struct symtab_and_line sal;
2575 sal = find_pc_line (pc, 0);
2576 *startptr = sal.pc;
2577 *endptr = sal.end;
2578 return sal.symtab != 0;
2579 }
2580
2581 /* Given a function start address PC and SECTION, find the first
2582 address after the function prologue. */
2583 CORE_ADDR
2584 find_function_start_pc (struct gdbarch *gdbarch,
2585 CORE_ADDR pc, asection *section)
2586 {
2587 /* If the function is in an unmapped overlay, use its unmapped LMA address,
2588 so that gdbarch_skip_prologue has something unique to work on. */
2589 if (section_is_overlay (section) && !section_is_mapped (section))
2590 pc = overlay_unmapped_address (pc, section);
2591
2592 pc += gdbarch_deprecated_function_start_offset (gdbarch);
2593 pc = gdbarch_skip_prologue (gdbarch, pc);
2594
2595 /* For overlays, map pc back into its mapped VMA range. */
2596 pc = overlay_mapped_address (pc, section);
2597
2598 return pc;
2599 }
2600
2601 /* Given a function symbol SYM, find the symtab and line for the start
2602 of the function.
2603 If the argument FUNFIRSTLINE is nonzero, we want the first line
2604 of real code inside the function. */
2605
2606 struct symtab_and_line
2607 find_function_start_sal (struct symbol *sym, int funfirstline)
2608 {
2609 struct block *block = SYMBOL_BLOCK_VALUE (sym);
2610 struct objfile *objfile = lookup_objfile_from_block (block);
2611 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2612
2613 CORE_ADDR pc;
2614 struct symtab_and_line sal;
2615
2616 pc = BLOCK_START (block);
2617 fixup_symbol_section (sym, objfile);
2618 if (funfirstline)
2619 {
2620 /* Skip "first line" of function (which is actually its prologue). */
2621 pc = find_function_start_pc (gdbarch, pc, SYMBOL_BFD_SECTION (sym));
2622 }
2623 sal = find_pc_sect_line (pc, SYMBOL_BFD_SECTION (sym), 0);
2624
2625 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
2626 line is still part of the same function. */
2627 if (sal.pc != pc
2628 && BLOCK_START (block) <= sal.end
2629 && sal.end < BLOCK_END (block))
2630 {
2631 /* First pc of next line */
2632 pc = sal.end;
2633 /* Recalculate the line number (might not be N+1). */
2634 sal = find_pc_sect_line (pc, SYMBOL_BFD_SECTION (sym), 0);
2635 }
2636 sal.pc = pc;
2637
2638 return sal;
2639 }
2640
2641 /* If P is of the form "operator[ \t]+..." where `...' is
2642 some legitimate operator text, return a pointer to the
2643 beginning of the substring of the operator text.
2644 Otherwise, return "". */
2645 char *
2646 operator_chars (char *p, char **end)
2647 {
2648 *end = "";
2649 if (strncmp (p, "operator", 8))
2650 return *end;
2651 p += 8;
2652
2653 /* Don't get faked out by `operator' being part of a longer
2654 identifier. */
2655 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
2656 return *end;
2657
2658 /* Allow some whitespace between `operator' and the operator symbol. */
2659 while (*p == ' ' || *p == '\t')
2660 p++;
2661
2662 /* Recognize 'operator TYPENAME'. */
2663
2664 if (isalpha (*p) || *p == '_' || *p == '$')
2665 {
2666 char *q = p + 1;
2667 while (isalnum (*q) || *q == '_' || *q == '$')
2668 q++;
2669 *end = q;
2670 return p;
2671 }
2672
2673 while (*p)
2674 switch (*p)
2675 {
2676 case '\\': /* regexp quoting */
2677 if (p[1] == '*')
2678 {
2679 if (p[2] == '=') /* 'operator\*=' */
2680 *end = p + 3;
2681 else /* 'operator\*' */
2682 *end = p + 2;
2683 return p;
2684 }
2685 else if (p[1] == '[')
2686 {
2687 if (p[2] == ']')
2688 error (_("mismatched quoting on brackets, try 'operator\\[\\]'"));
2689 else if (p[2] == '\\' && p[3] == ']')
2690 {
2691 *end = p + 4; /* 'operator\[\]' */
2692 return p;
2693 }
2694 else
2695 error (_("nothing is allowed between '[' and ']'"));
2696 }
2697 else
2698 {
2699 /* Gratuitous qoute: skip it and move on. */
2700 p++;
2701 continue;
2702 }
2703 break;
2704 case '!':
2705 case '=':
2706 case '*':
2707 case '/':
2708 case '%':
2709 case '^':
2710 if (p[1] == '=')
2711 *end = p + 2;
2712 else
2713 *end = p + 1;
2714 return p;
2715 case '<':
2716 case '>':
2717 case '+':
2718 case '-':
2719 case '&':
2720 case '|':
2721 if (p[0] == '-' && p[1] == '>')
2722 {
2723 /* Struct pointer member operator 'operator->'. */
2724 if (p[2] == '*')
2725 {
2726 *end = p + 3; /* 'operator->*' */
2727 return p;
2728 }
2729 else if (p[2] == '\\')
2730 {
2731 *end = p + 4; /* Hopefully 'operator->\*' */
2732 return p;
2733 }
2734 else
2735 {
2736 *end = p + 2; /* 'operator->' */
2737 return p;
2738 }
2739 }
2740 if (p[1] == '=' || p[1] == p[0])
2741 *end = p + 2;
2742 else
2743 *end = p + 1;
2744 return p;
2745 case '~':
2746 case ',':
2747 *end = p + 1;
2748 return p;
2749 case '(':
2750 if (p[1] != ')')
2751 error (_("`operator ()' must be specified without whitespace in `()'"));
2752 *end = p + 2;
2753 return p;
2754 case '?':
2755 if (p[1] != ':')
2756 error (_("`operator ?:' must be specified without whitespace in `?:'"));
2757 *end = p + 2;
2758 return p;
2759 case '[':
2760 if (p[1] != ']')
2761 error (_("`operator []' must be specified without whitespace in `[]'"));
2762 *end = p + 2;
2763 return p;
2764 default:
2765 error (_("`operator %s' not supported"), p);
2766 break;
2767 }
2768
2769 *end = "";
2770 return *end;
2771 }
2772 \f
2773
2774 /* If FILE is not already in the table of files, return zero;
2775 otherwise return non-zero. Optionally add FILE to the table if ADD
2776 is non-zero. If *FIRST is non-zero, forget the old table
2777 contents. */
2778 static int
2779 filename_seen (const char *file, int add, int *first)
2780 {
2781 /* Table of files seen so far. */
2782 static const char **tab = NULL;
2783 /* Allocated size of tab in elements.
2784 Start with one 256-byte block (when using GNU malloc.c).
2785 24 is the malloc overhead when range checking is in effect. */
2786 static int tab_alloc_size = (256 - 24) / sizeof (char *);
2787 /* Current size of tab in elements. */
2788 static int tab_cur_size;
2789 const char **p;
2790
2791 if (*first)
2792 {
2793 if (tab == NULL)
2794 tab = (const char **) xmalloc (tab_alloc_size * sizeof (*tab));
2795 tab_cur_size = 0;
2796 }
2797
2798 /* Is FILE in tab? */
2799 for (p = tab; p < tab + tab_cur_size; p++)
2800 if (strcmp (*p, file) == 0)
2801 return 1;
2802
2803 /* No; maybe add it to tab. */
2804 if (add)
2805 {
2806 if (tab_cur_size == tab_alloc_size)
2807 {
2808 tab_alloc_size *= 2;
2809 tab = (const char **) xrealloc ((char *) tab,
2810 tab_alloc_size * sizeof (*tab));
2811 }
2812 tab[tab_cur_size++] = file;
2813 }
2814
2815 return 0;
2816 }
2817
2818 /* Slave routine for sources_info. Force line breaks at ,'s.
2819 NAME is the name to print and *FIRST is nonzero if this is the first
2820 name printed. Set *FIRST to zero. */
2821 static void
2822 output_source_filename (const char *name, int *first)
2823 {
2824 /* Since a single source file can result in several partial symbol
2825 tables, we need to avoid printing it more than once. Note: if
2826 some of the psymtabs are read in and some are not, it gets
2827 printed both under "Source files for which symbols have been
2828 read" and "Source files for which symbols will be read in on
2829 demand". I consider this a reasonable way to deal with the
2830 situation. I'm not sure whether this can also happen for
2831 symtabs; it doesn't hurt to check. */
2832
2833 /* Was NAME already seen? */
2834 if (filename_seen (name, 1, first))
2835 {
2836 /* Yes; don't print it again. */
2837 return;
2838 }
2839 /* No; print it and reset *FIRST. */
2840 if (*first)
2841 {
2842 *first = 0;
2843 }
2844 else
2845 {
2846 printf_filtered (", ");
2847 }
2848
2849 wrap_here ("");
2850 fputs_filtered (name, gdb_stdout);
2851 }
2852
2853 static void
2854 sources_info (char *ignore, int from_tty)
2855 {
2856 struct symtab *s;
2857 struct partial_symtab *ps;
2858 struct objfile *objfile;
2859 int first;
2860
2861 if (!have_full_symbols () && !have_partial_symbols ())
2862 {
2863 error (_("No symbol table is loaded. Use the \"file\" command."));
2864 }
2865
2866 printf_filtered ("Source files for which symbols have been read in:\n\n");
2867
2868 first = 1;
2869 ALL_SYMTABS (objfile, s)
2870 {
2871 const char *fullname = symtab_to_fullname (s);
2872 output_source_filename (fullname ? fullname : s->filename, &first);
2873 }
2874 printf_filtered ("\n\n");
2875
2876 printf_filtered ("Source files for which symbols will be read in on demand:\n\n");
2877
2878 first = 1;
2879 ALL_PSYMTABS (objfile, ps)
2880 {
2881 if (!ps->readin)
2882 {
2883 const char *fullname = psymtab_to_fullname (ps);
2884 output_source_filename (fullname ? fullname : ps->filename, &first);
2885 }
2886 }
2887 printf_filtered ("\n");
2888 }
2889
2890 static int
2891 file_matches (char *file, char *files[], int nfiles)
2892 {
2893 int i;
2894
2895 if (file != NULL && nfiles != 0)
2896 {
2897 for (i = 0; i < nfiles; i++)
2898 {
2899 if (strcmp (files[i], lbasename (file)) == 0)
2900 return 1;
2901 }
2902 }
2903 else if (nfiles == 0)
2904 return 1;
2905 return 0;
2906 }
2907
2908 /* Free any memory associated with a search. */
2909 void
2910 free_search_symbols (struct symbol_search *symbols)
2911 {
2912 struct symbol_search *p;
2913 struct symbol_search *next;
2914
2915 for (p = symbols; p != NULL; p = next)
2916 {
2917 next = p->next;
2918 xfree (p);
2919 }
2920 }
2921
2922 static void
2923 do_free_search_symbols_cleanup (void *symbols)
2924 {
2925 free_search_symbols (symbols);
2926 }
2927
2928 struct cleanup *
2929 make_cleanup_free_search_symbols (struct symbol_search *symbols)
2930 {
2931 return make_cleanup (do_free_search_symbols_cleanup, symbols);
2932 }
2933
2934 /* Helper function for sort_search_symbols and qsort. Can only
2935 sort symbols, not minimal symbols. */
2936 static int
2937 compare_search_syms (const void *sa, const void *sb)
2938 {
2939 struct symbol_search **sym_a = (struct symbol_search **) sa;
2940 struct symbol_search **sym_b = (struct symbol_search **) sb;
2941
2942 return strcmp (SYMBOL_PRINT_NAME ((*sym_a)->symbol),
2943 SYMBOL_PRINT_NAME ((*sym_b)->symbol));
2944 }
2945
2946 /* Sort the ``nfound'' symbols in the list after prevtail. Leave
2947 prevtail where it is, but update its next pointer to point to
2948 the first of the sorted symbols. */
2949 static struct symbol_search *
2950 sort_search_symbols (struct symbol_search *prevtail, int nfound)
2951 {
2952 struct symbol_search **symbols, *symp, *old_next;
2953 int i;
2954
2955 symbols = (struct symbol_search **) xmalloc (sizeof (struct symbol_search *)
2956 * nfound);
2957 symp = prevtail->next;
2958 for (i = 0; i < nfound; i++)
2959 {
2960 symbols[i] = symp;
2961 symp = symp->next;
2962 }
2963 /* Generally NULL. */
2964 old_next = symp;
2965
2966 qsort (symbols, nfound, sizeof (struct symbol_search *),
2967 compare_search_syms);
2968
2969 symp = prevtail;
2970 for (i = 0; i < nfound; i++)
2971 {
2972 symp->next = symbols[i];
2973 symp = symp->next;
2974 }
2975 symp->next = old_next;
2976
2977 xfree (symbols);
2978 return symp;
2979 }
2980
2981 /* Search the symbol table for matches to the regular expression REGEXP,
2982 returning the results in *MATCHES.
2983
2984 Only symbols of KIND are searched:
2985 FUNCTIONS_DOMAIN - search all functions
2986 TYPES_DOMAIN - search all type names
2987 METHODS_DOMAIN - search all methods NOT IMPLEMENTED
2988 VARIABLES_DOMAIN - search all symbols, excluding functions, type names,
2989 and constants (enums)
2990
2991 free_search_symbols should be called when *MATCHES is no longer needed.
2992
2993 The results are sorted locally; each symtab's global and static blocks are
2994 separately alphabetized.
2995 */
2996 void
2997 search_symbols (char *regexp, domain_enum kind, int nfiles, char *files[],
2998 struct symbol_search **matches)
2999 {
3000 struct symtab *s;
3001 struct partial_symtab *ps;
3002 struct blockvector *bv;
3003 struct block *b;
3004 int i = 0;
3005 struct dict_iterator iter;
3006 struct symbol *sym;
3007 struct partial_symbol **psym;
3008 struct objfile *objfile;
3009 struct minimal_symbol *msymbol;
3010 char *val;
3011 int found_misc = 0;
3012 static enum minimal_symbol_type types[]
3013 =
3014 {mst_data, mst_text, mst_abs, mst_unknown};
3015 static enum minimal_symbol_type types2[]
3016 =
3017 {mst_bss, mst_file_text, mst_abs, mst_unknown};
3018 static enum minimal_symbol_type types3[]
3019 =
3020 {mst_file_data, mst_solib_trampoline, mst_abs, mst_unknown};
3021 static enum minimal_symbol_type types4[]
3022 =
3023 {mst_file_bss, mst_text, mst_abs, mst_unknown};
3024 enum minimal_symbol_type ourtype;
3025 enum minimal_symbol_type ourtype2;
3026 enum minimal_symbol_type ourtype3;
3027 enum minimal_symbol_type ourtype4;
3028 struct symbol_search *sr;
3029 struct symbol_search *psr;
3030 struct symbol_search *tail;
3031 struct cleanup *old_chain = NULL;
3032
3033 if (kind < VARIABLES_DOMAIN)
3034 error (_("must search on specific domain"));
3035
3036 ourtype = types[(int) (kind - VARIABLES_DOMAIN)];
3037 ourtype2 = types2[(int) (kind - VARIABLES_DOMAIN)];
3038 ourtype3 = types3[(int) (kind - VARIABLES_DOMAIN)];
3039 ourtype4 = types4[(int) (kind - VARIABLES_DOMAIN)];
3040
3041 sr = *matches = NULL;
3042 tail = NULL;
3043
3044 if (regexp != NULL)
3045 {
3046 /* Make sure spacing is right for C++ operators.
3047 This is just a courtesy to make the matching less sensitive
3048 to how many spaces the user leaves between 'operator'
3049 and <TYPENAME> or <OPERATOR>. */
3050 char *opend;
3051 char *opname = operator_chars (regexp, &opend);
3052 if (*opname)
3053 {
3054 int fix = -1; /* -1 means ok; otherwise number of spaces needed. */
3055 if (isalpha (*opname) || *opname == '_' || *opname == '$')
3056 {
3057 /* There should 1 space between 'operator' and 'TYPENAME'. */
3058 if (opname[-1] != ' ' || opname[-2] == ' ')
3059 fix = 1;
3060 }
3061 else
3062 {
3063 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
3064 if (opname[-1] == ' ')
3065 fix = 0;
3066 }
3067 /* If wrong number of spaces, fix it. */
3068 if (fix >= 0)
3069 {
3070 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
3071 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
3072 regexp = tmp;
3073 }
3074 }
3075
3076 if (0 != (val = re_comp (regexp)))
3077 error (_("Invalid regexp (%s): %s"), val, regexp);
3078 }
3079
3080 /* Search through the partial symtabs *first* for all symbols
3081 matching the regexp. That way we don't have to reproduce all of
3082 the machinery below. */
3083
3084 ALL_PSYMTABS (objfile, ps)
3085 {
3086 struct partial_symbol **bound, **gbound, **sbound;
3087 int keep_going = 1;
3088
3089 if (ps->readin)
3090 continue;
3091
3092 gbound = objfile->global_psymbols.list + ps->globals_offset + ps->n_global_syms;
3093 sbound = objfile->static_psymbols.list + ps->statics_offset + ps->n_static_syms;
3094 bound = gbound;
3095
3096 /* Go through all of the symbols stored in a partial
3097 symtab in one loop. */
3098 psym = objfile->global_psymbols.list + ps->globals_offset;
3099 while (keep_going)
3100 {
3101 if (psym >= bound)
3102 {
3103 if (bound == gbound && ps->n_static_syms != 0)
3104 {
3105 psym = objfile->static_psymbols.list + ps->statics_offset;
3106 bound = sbound;
3107 }
3108 else
3109 keep_going = 0;
3110 continue;
3111 }
3112 else
3113 {
3114 QUIT;
3115
3116 /* If it would match (logic taken from loop below)
3117 load the file and go on to the next one. We check the
3118 filename here, but that's a bit bogus: we don't know
3119 what file it really comes from until we have full
3120 symtabs. The symbol might be in a header file included by
3121 this psymtab. This only affects Insight. */
3122 if (file_matches (ps->filename, files, nfiles)
3123 && ((regexp == NULL
3124 || re_exec (SYMBOL_NATURAL_NAME (*psym)) != 0)
3125 && ((kind == VARIABLES_DOMAIN && SYMBOL_CLASS (*psym) != LOC_TYPEDEF
3126 && SYMBOL_CLASS (*psym) != LOC_BLOCK)
3127 || (kind == FUNCTIONS_DOMAIN && SYMBOL_CLASS (*psym) == LOC_BLOCK)
3128 || (kind == TYPES_DOMAIN && SYMBOL_CLASS (*psym) == LOC_TYPEDEF)
3129 || (kind == METHODS_DOMAIN && SYMBOL_CLASS (*psym) == LOC_BLOCK))))
3130 {
3131 PSYMTAB_TO_SYMTAB (ps);
3132 keep_going = 0;
3133 }
3134 }
3135 psym++;
3136 }
3137 }
3138
3139 /* Here, we search through the minimal symbol tables for functions
3140 and variables that match, and force their symbols to be read.
3141 This is in particular necessary for demangled variable names,
3142 which are no longer put into the partial symbol tables.
3143 The symbol will then be found during the scan of symtabs below.
3144
3145 For functions, find_pc_symtab should succeed if we have debug info
3146 for the function, for variables we have to call lookup_symbol
3147 to determine if the variable has debug info.
3148 If the lookup fails, set found_misc so that we will rescan to print
3149 any matching symbols without debug info.
3150 */
3151
3152 if (nfiles == 0 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
3153 {
3154 ALL_MSYMBOLS (objfile, msymbol)
3155 {
3156 if (MSYMBOL_TYPE (msymbol) == ourtype ||
3157 MSYMBOL_TYPE (msymbol) == ourtype2 ||
3158 MSYMBOL_TYPE (msymbol) == ourtype3 ||
3159 MSYMBOL_TYPE (msymbol) == ourtype4)
3160 {
3161 if (regexp == NULL
3162 || re_exec (SYMBOL_NATURAL_NAME (msymbol)) != 0)
3163 {
3164 if (0 == find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol)))
3165 {
3166 /* FIXME: carlton/2003-02-04: Given that the
3167 semantics of lookup_symbol keeps on changing
3168 slightly, it would be a nice idea if we had a
3169 function lookup_symbol_minsym that found the
3170 symbol associated to a given minimal symbol (if
3171 any). */
3172 if (kind == FUNCTIONS_DOMAIN
3173 || lookup_symbol (SYMBOL_LINKAGE_NAME (msymbol),
3174 (struct block *) NULL,
3175 VAR_DOMAIN,
3176 0, (struct symtab **) NULL)
3177 == NULL)
3178 found_misc = 1;
3179 }
3180 }
3181 }
3182 }
3183 }
3184
3185 ALL_PRIMARY_SYMTABS (objfile, s)
3186 {
3187 bv = BLOCKVECTOR (s);
3188 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
3189 {
3190 struct symbol_search *prevtail = tail;
3191 int nfound = 0;
3192 b = BLOCKVECTOR_BLOCK (bv, i);
3193 ALL_BLOCK_SYMBOLS (b, iter, sym)
3194 {
3195 struct symtab *real_symtab = SYMBOL_SYMTAB (sym);
3196 QUIT;
3197
3198 if (file_matches (real_symtab->filename, files, nfiles)
3199 && ((regexp == NULL
3200 || re_exec (SYMBOL_NATURAL_NAME (sym)) != 0)
3201 && ((kind == VARIABLES_DOMAIN && SYMBOL_CLASS (sym) != LOC_TYPEDEF
3202 && SYMBOL_CLASS (sym) != LOC_BLOCK
3203 && SYMBOL_CLASS (sym) != LOC_CONST)
3204 || (kind == FUNCTIONS_DOMAIN && SYMBOL_CLASS (sym) == LOC_BLOCK)
3205 || (kind == TYPES_DOMAIN && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
3206 || (kind == METHODS_DOMAIN && SYMBOL_CLASS (sym) == LOC_BLOCK))))
3207 {
3208 /* match */
3209 psr = (struct symbol_search *) xmalloc (sizeof (struct symbol_search));
3210 psr->block = i;
3211 psr->symtab = real_symtab;
3212 psr->symbol = sym;
3213 psr->msymbol = NULL;
3214 psr->next = NULL;
3215 if (tail == NULL)
3216 sr = psr;
3217 else
3218 tail->next = psr;
3219 tail = psr;
3220 nfound ++;
3221 }
3222 }
3223 if (nfound > 0)
3224 {
3225 if (prevtail == NULL)
3226 {
3227 struct symbol_search dummy;
3228
3229 dummy.next = sr;
3230 tail = sort_search_symbols (&dummy, nfound);
3231 sr = dummy.next;
3232
3233 old_chain = make_cleanup_free_search_symbols (sr);
3234 }
3235 else
3236 tail = sort_search_symbols (prevtail, nfound);
3237 }
3238 }
3239 }
3240
3241 /* If there are no eyes, avoid all contact. I mean, if there are
3242 no debug symbols, then print directly from the msymbol_vector. */
3243
3244 if (found_misc || kind != FUNCTIONS_DOMAIN)
3245 {
3246 ALL_MSYMBOLS (objfile, msymbol)
3247 {
3248 if (MSYMBOL_TYPE (msymbol) == ourtype ||
3249 MSYMBOL_TYPE (msymbol) == ourtype2 ||
3250 MSYMBOL_TYPE (msymbol) == ourtype3 ||
3251 MSYMBOL_TYPE (msymbol) == ourtype4)
3252 {
3253 if (regexp == NULL
3254 || re_exec (SYMBOL_NATURAL_NAME (msymbol)) != 0)
3255 {
3256 /* Functions: Look up by address. */
3257 if (kind != FUNCTIONS_DOMAIN ||
3258 (0 == find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol))))
3259 {
3260 /* Variables/Absolutes: Look up by name */
3261 if (lookup_symbol (SYMBOL_LINKAGE_NAME (msymbol),
3262 (struct block *) NULL, VAR_DOMAIN,
3263 0, (struct symtab **) NULL) == NULL)
3264 {
3265 /* match */
3266 psr = (struct symbol_search *) xmalloc (sizeof (struct symbol_search));
3267 psr->block = i;
3268 psr->msymbol = msymbol;
3269 psr->symtab = NULL;
3270 psr->symbol = NULL;
3271 psr->next = NULL;
3272 if (tail == NULL)
3273 {
3274 sr = psr;
3275 old_chain = make_cleanup_free_search_symbols (sr);
3276 }
3277 else
3278 tail->next = psr;
3279 tail = psr;
3280 }
3281 }
3282 }
3283 }
3284 }
3285 }
3286
3287 *matches = sr;
3288 if (sr != NULL)
3289 discard_cleanups (old_chain);
3290 }
3291
3292 /* Helper function for symtab_symbol_info, this function uses
3293 the data returned from search_symbols() to print information
3294 regarding the match to gdb_stdout.
3295 */
3296 static void
3297 print_symbol_info (domain_enum kind, struct symtab *s, struct symbol *sym,
3298 int block, char *last)
3299 {
3300 if (last == NULL || strcmp (last, s->filename) != 0)
3301 {
3302 fputs_filtered ("\nFile ", gdb_stdout);
3303 fputs_filtered (s->filename, gdb_stdout);
3304 fputs_filtered (":\n", gdb_stdout);
3305 }
3306
3307 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
3308 printf_filtered ("static ");
3309
3310 /* Typedef that is not a C++ class */
3311 if (kind == TYPES_DOMAIN
3312 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
3313 typedef_print (SYMBOL_TYPE (sym), sym, gdb_stdout);
3314 /* variable, func, or typedef-that-is-c++-class */
3315 else if (kind < TYPES_DOMAIN ||
3316 (kind == TYPES_DOMAIN &&
3317 SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
3318 {
3319 type_print (SYMBOL_TYPE (sym),
3320 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
3321 ? "" : SYMBOL_PRINT_NAME (sym)),
3322 gdb_stdout, 0);
3323
3324 printf_filtered (";\n");
3325 }
3326 }
3327
3328 /* This help function for symtab_symbol_info() prints information
3329 for non-debugging symbols to gdb_stdout.
3330 */
3331 static void
3332 print_msymbol_info (struct minimal_symbol *msymbol)
3333 {
3334 char *tmp;
3335
3336 if (gdbarch_addr_bit (current_gdbarch) <= 32)
3337 tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol)
3338 & (CORE_ADDR) 0xffffffff,
3339 8);
3340 else
3341 tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol),
3342 16);
3343 printf_filtered ("%s %s\n",
3344 tmp, SYMBOL_PRINT_NAME (msymbol));
3345 }
3346
3347 /* This is the guts of the commands "info functions", "info types", and
3348 "info variables". It calls search_symbols to find all matches and then
3349 print_[m]symbol_info to print out some useful information about the
3350 matches.
3351 */
3352 static void
3353 symtab_symbol_info (char *regexp, domain_enum kind, int from_tty)
3354 {
3355 static char *classnames[]
3356 =
3357 {"variable", "function", "type", "method"};
3358 struct symbol_search *symbols;
3359 struct symbol_search *p;
3360 struct cleanup *old_chain;
3361 char *last_filename = NULL;
3362 int first = 1;
3363
3364 /* must make sure that if we're interrupted, symbols gets freed */
3365 search_symbols (regexp, kind, 0, (char **) NULL, &symbols);
3366 old_chain = make_cleanup_free_search_symbols (symbols);
3367
3368 printf_filtered (regexp
3369 ? "All %ss matching regular expression \"%s\":\n"
3370 : "All defined %ss:\n",
3371 classnames[(int) (kind - VARIABLES_DOMAIN)], regexp);
3372
3373 for (p = symbols; p != NULL; p = p->next)
3374 {
3375 QUIT;
3376
3377 if (p->msymbol != NULL)
3378 {
3379 if (first)
3380 {
3381 printf_filtered ("\nNon-debugging symbols:\n");
3382 first = 0;
3383 }
3384 print_msymbol_info (p->msymbol);
3385 }
3386 else
3387 {
3388 print_symbol_info (kind,
3389 p->symtab,
3390 p->symbol,
3391 p->block,
3392 last_filename);
3393 last_filename = p->symtab->filename;
3394 }
3395 }
3396
3397 do_cleanups (old_chain);
3398 }
3399
3400 static void
3401 variables_info (char *regexp, int from_tty)
3402 {
3403 symtab_symbol_info (regexp, VARIABLES_DOMAIN, from_tty);
3404 }
3405
3406 static void
3407 functions_info (char *regexp, int from_tty)
3408 {
3409 symtab_symbol_info (regexp, FUNCTIONS_DOMAIN, from_tty);
3410 }
3411
3412
3413 static void
3414 types_info (char *regexp, int from_tty)
3415 {
3416 symtab_symbol_info (regexp, TYPES_DOMAIN, from_tty);
3417 }
3418
3419 /* Breakpoint all functions matching regular expression. */
3420
3421 void
3422 rbreak_command_wrapper (char *regexp, int from_tty)
3423 {
3424 rbreak_command (regexp, from_tty);
3425 }
3426
3427 static void
3428 rbreak_command (char *regexp, int from_tty)
3429 {
3430 struct symbol_search *ss;
3431 struct symbol_search *p;
3432 struct cleanup *old_chain;
3433
3434 search_symbols (regexp, FUNCTIONS_DOMAIN, 0, (char **) NULL, &ss);
3435 old_chain = make_cleanup_free_search_symbols (ss);
3436
3437 for (p = ss; p != NULL; p = p->next)
3438 {
3439 if (p->msymbol == NULL)
3440 {
3441 char *string = alloca (strlen (p->symtab->filename)
3442 + strlen (SYMBOL_LINKAGE_NAME (p->symbol))
3443 + 4);
3444 strcpy (string, p->symtab->filename);
3445 strcat (string, ":'");
3446 strcat (string, SYMBOL_LINKAGE_NAME (p->symbol));
3447 strcat (string, "'");
3448 break_command (string, from_tty);
3449 print_symbol_info (FUNCTIONS_DOMAIN,
3450 p->symtab,
3451 p->symbol,
3452 p->block,
3453 p->symtab->filename);
3454 }
3455 else
3456 {
3457 char *string = alloca (strlen (SYMBOL_LINKAGE_NAME (p->msymbol))
3458 + 3);
3459 strcpy (string, "'");
3460 strcat (string, SYMBOL_LINKAGE_NAME (p->msymbol));
3461 strcat (string, "'");
3462
3463 break_command (string, from_tty);
3464 printf_filtered ("<function, no debug info> %s;\n",
3465 SYMBOL_PRINT_NAME (p->msymbol));
3466 }
3467 }
3468
3469 do_cleanups (old_chain);
3470 }
3471 \f
3472
3473 /* Helper routine for make_symbol_completion_list. */
3474
3475 static int return_val_size;
3476 static int return_val_index;
3477 static char **return_val;
3478
3479 #define COMPLETION_LIST_ADD_SYMBOL(symbol, sym_text, len, text, word) \
3480 completion_list_add_name \
3481 (SYMBOL_NATURAL_NAME (symbol), (sym_text), (len), (text), (word))
3482
3483 /* Test to see if the symbol specified by SYMNAME (which is already
3484 demangled for C++ symbols) matches SYM_TEXT in the first SYM_TEXT_LEN
3485 characters. If so, add it to the current completion list. */
3486
3487 static void
3488 completion_list_add_name (char *symname, char *sym_text, int sym_text_len,
3489 char *text, char *word)
3490 {
3491 int newsize;
3492 int i;
3493
3494 /* clip symbols that cannot match */
3495
3496 if (strncmp (symname, sym_text, sym_text_len) != 0)
3497 {
3498 return;
3499 }
3500
3501 /* We have a match for a completion, so add SYMNAME to the current list
3502 of matches. Note that the name is moved to freshly malloc'd space. */
3503
3504 {
3505 char *new;
3506 if (word == sym_text)
3507 {
3508 new = xmalloc (strlen (symname) + 5);
3509 strcpy (new, symname);
3510 }
3511 else if (word > sym_text)
3512 {
3513 /* Return some portion of symname. */
3514 new = xmalloc (strlen (symname) + 5);
3515 strcpy (new, symname + (word - sym_text));
3516 }
3517 else
3518 {
3519 /* Return some of SYM_TEXT plus symname. */
3520 new = xmalloc (strlen (symname) + (sym_text - word) + 5);
3521 strncpy (new, word, sym_text - word);
3522 new[sym_text - word] = '\0';
3523 strcat (new, symname);
3524 }
3525
3526 if (return_val_index + 3 > return_val_size)
3527 {
3528 newsize = (return_val_size *= 2) * sizeof (char *);
3529 return_val = (char **) xrealloc ((char *) return_val, newsize);
3530 }
3531 return_val[return_val_index++] = new;
3532 return_val[return_val_index] = NULL;
3533 }
3534 }
3535
3536 /* ObjC: In case we are completing on a selector, look as the msymbol
3537 again and feed all the selectors into the mill. */
3538
3539 static void
3540 completion_list_objc_symbol (struct minimal_symbol *msymbol, char *sym_text,
3541 int sym_text_len, char *text, char *word)
3542 {
3543 static char *tmp = NULL;
3544 static unsigned int tmplen = 0;
3545
3546 char *method, *category, *selector;
3547 char *tmp2 = NULL;
3548
3549 method = SYMBOL_NATURAL_NAME (msymbol);
3550
3551 /* Is it a method? */
3552 if ((method[0] != '-') && (method[0] != '+'))
3553 return;
3554
3555 if (sym_text[0] == '[')
3556 /* Complete on shortened method method. */
3557 completion_list_add_name (method + 1, sym_text, sym_text_len, text, word);
3558
3559 while ((strlen (method) + 1) >= tmplen)
3560 {
3561 if (tmplen == 0)
3562 tmplen = 1024;
3563 else
3564 tmplen *= 2;
3565 tmp = xrealloc (tmp, tmplen);
3566 }
3567 selector = strchr (method, ' ');
3568 if (selector != NULL)
3569 selector++;
3570
3571 category = strchr (method, '(');
3572
3573 if ((category != NULL) && (selector != NULL))
3574 {
3575 memcpy (tmp, method, (category - method));
3576 tmp[category - method] = ' ';
3577 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
3578 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
3579 if (sym_text[0] == '[')
3580 completion_list_add_name (tmp + 1, sym_text, sym_text_len, text, word);
3581 }
3582
3583 if (selector != NULL)
3584 {
3585 /* Complete on selector only. */
3586 strcpy (tmp, selector);
3587 tmp2 = strchr (tmp, ']');
3588 if (tmp2 != NULL)
3589 *tmp2 = '\0';
3590
3591 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
3592 }
3593 }
3594
3595 /* Break the non-quoted text based on the characters which are in
3596 symbols. FIXME: This should probably be language-specific. */
3597
3598 static char *
3599 language_search_unquoted_string (char *text, char *p)
3600 {
3601 for (; p > text; --p)
3602 {
3603 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
3604 continue;
3605 else
3606 {
3607 if ((current_language->la_language == language_objc))
3608 {
3609 if (p[-1] == ':') /* might be part of a method name */
3610 continue;
3611 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
3612 p -= 2; /* beginning of a method name */
3613 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
3614 { /* might be part of a method name */
3615 char *t = p;
3616
3617 /* Seeing a ' ' or a '(' is not conclusive evidence
3618 that we are in the middle of a method name. However,
3619 finding "-[" or "+[" should be pretty un-ambiguous.
3620 Unfortunately we have to find it now to decide. */
3621
3622 while (t > text)
3623 if (isalnum (t[-1]) || t[-1] == '_' ||
3624 t[-1] == ' ' || t[-1] == ':' ||
3625 t[-1] == '(' || t[-1] == ')')
3626 --t;
3627 else
3628 break;
3629
3630 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
3631 p = t - 2; /* method name detected */
3632 /* else we leave with p unchanged */
3633 }
3634 }
3635 break;
3636 }
3637 }
3638 return p;
3639 }
3640
3641 char **
3642 default_make_symbol_completion_list (char *text, char *word)
3643 {
3644 /* Problem: All of the symbols have to be copied because readline
3645 frees them. I'm not going to worry about this; hopefully there
3646 won't be that many. */
3647
3648 struct symbol *sym;
3649 struct symtab *s;
3650 struct partial_symtab *ps;
3651 struct minimal_symbol *msymbol;
3652 struct objfile *objfile;
3653 struct block *b, *surrounding_static_block = 0;
3654 struct dict_iterator iter;
3655 int j;
3656 struct partial_symbol **psym;
3657 /* The symbol we are completing on. Points in same buffer as text. */
3658 char *sym_text;
3659 /* Length of sym_text. */
3660 int sym_text_len;
3661
3662 /* Now look for the symbol we are supposed to complete on. */
3663 {
3664 char *p;
3665 char quote_found;
3666 char *quote_pos = NULL;
3667
3668 /* First see if this is a quoted string. */
3669 quote_found = '\0';
3670 for (p = text; *p != '\0'; ++p)
3671 {
3672 if (quote_found != '\0')
3673 {
3674 if (*p == quote_found)
3675 /* Found close quote. */
3676 quote_found = '\0';
3677 else if (*p == '\\' && p[1] == quote_found)
3678 /* A backslash followed by the quote character
3679 doesn't end the string. */
3680 ++p;
3681 }
3682 else if (*p == '\'' || *p == '"')
3683 {
3684 quote_found = *p;
3685 quote_pos = p;
3686 }
3687 }
3688 if (quote_found == '\'')
3689 /* A string within single quotes can be a symbol, so complete on it. */
3690 sym_text = quote_pos + 1;
3691 else if (quote_found == '"')
3692 /* A double-quoted string is never a symbol, nor does it make sense
3693 to complete it any other way. */
3694 {
3695 return_val = (char **) xmalloc (sizeof (char *));
3696 return_val[0] = NULL;
3697 return return_val;
3698 }
3699 else
3700 {
3701 /* It is not a quoted string. Break it based on the characters
3702 which are in symbols. */
3703 while (p > text)
3704 {
3705 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
3706 --p;
3707 else
3708 break;
3709 }
3710 sym_text = p;
3711 }
3712 }
3713
3714 sym_text_len = strlen (sym_text);
3715
3716 return_val_size = 100;
3717 return_val_index = 0;
3718 return_val = (char **) xmalloc ((return_val_size + 1) * sizeof (char *));
3719 return_val[0] = NULL;
3720
3721 /* Look through the partial symtabs for all symbols which begin
3722 by matching SYM_TEXT. Add each one that you find to the list. */
3723
3724 ALL_PSYMTABS (objfile, ps)
3725 {
3726 /* If the psymtab's been read in we'll get it when we search
3727 through the blockvector. */
3728 if (ps->readin)
3729 continue;
3730
3731 for (psym = objfile->global_psymbols.list + ps->globals_offset;
3732 psym < (objfile->global_psymbols.list + ps->globals_offset
3733 + ps->n_global_syms);
3734 psym++)
3735 {
3736 /* If interrupted, then quit. */
3737 QUIT;
3738 COMPLETION_LIST_ADD_SYMBOL (*psym, sym_text, sym_text_len, text, word);
3739 }
3740
3741 for (psym = objfile->static_psymbols.list + ps->statics_offset;
3742 psym < (objfile->static_psymbols.list + ps->statics_offset
3743 + ps->n_static_syms);
3744 psym++)
3745 {
3746 QUIT;
3747 COMPLETION_LIST_ADD_SYMBOL (*psym, sym_text, sym_text_len, text, word);
3748 }
3749 }
3750
3751 /* At this point scan through the misc symbol vectors and add each
3752 symbol you find to the list. Eventually we want to ignore
3753 anything that isn't a text symbol (everything else will be
3754 handled by the psymtab code above). */
3755
3756 ALL_MSYMBOLS (objfile, msymbol)
3757 {
3758 QUIT;
3759 COMPLETION_LIST_ADD_SYMBOL (msymbol, sym_text, sym_text_len, text, word);
3760
3761 completion_list_objc_symbol (msymbol, sym_text, sym_text_len, text, word);
3762 }
3763
3764 /* Search upwards from currently selected frame (so that we can
3765 complete on local vars. */
3766
3767 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
3768 {
3769 if (!BLOCK_SUPERBLOCK (b))
3770 {
3771 surrounding_static_block = b; /* For elmin of dups */
3772 }
3773
3774 /* Also catch fields of types defined in this places which match our
3775 text string. Only complete on types visible from current context. */
3776
3777 ALL_BLOCK_SYMBOLS (b, iter, sym)
3778 {
3779 QUIT;
3780 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
3781 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
3782 {
3783 struct type *t = SYMBOL_TYPE (sym);
3784 enum type_code c = TYPE_CODE (t);
3785
3786 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
3787 {
3788 for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++)
3789 {
3790 if (TYPE_FIELD_NAME (t, j))
3791 {
3792 completion_list_add_name (TYPE_FIELD_NAME (t, j),
3793 sym_text, sym_text_len, text, word);
3794 }
3795 }
3796 }
3797 }
3798 }
3799 }
3800
3801 /* Go through the symtabs and check the externs and statics for
3802 symbols which match. */
3803
3804 ALL_PRIMARY_SYMTABS (objfile, s)
3805 {
3806 QUIT;
3807 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
3808 ALL_BLOCK_SYMBOLS (b, iter, sym)
3809 {
3810 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
3811 }
3812 }
3813
3814 ALL_PRIMARY_SYMTABS (objfile, s)
3815 {
3816 QUIT;
3817 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
3818 /* Don't do this block twice. */
3819 if (b == surrounding_static_block)
3820 continue;
3821 ALL_BLOCK_SYMBOLS (b, iter, sym)
3822 {
3823 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
3824 }
3825 }
3826
3827 return (return_val);
3828 }
3829
3830 /* Return a NULL terminated array of all symbols (regardless of class)
3831 which begin by matching TEXT. If the answer is no symbols, then
3832 the return value is an array which contains only a NULL pointer. */
3833
3834 char **
3835 make_symbol_completion_list (char *text, char *word)
3836 {
3837 return current_language->la_make_symbol_completion_list (text, word);
3838 }
3839
3840 /* Like make_symbol_completion_list, but returns a list of symbols
3841 defined in a source file FILE. */
3842
3843 char **
3844 make_file_symbol_completion_list (char *text, char *word, char *srcfile)
3845 {
3846 struct symbol *sym;
3847 struct symtab *s;
3848 struct block *b;
3849 struct dict_iterator iter;
3850 /* The symbol we are completing on. Points in same buffer as text. */
3851 char *sym_text;
3852 /* Length of sym_text. */
3853 int sym_text_len;
3854
3855 /* Now look for the symbol we are supposed to complete on.
3856 FIXME: This should be language-specific. */
3857 {
3858 char *p;
3859 char quote_found;
3860 char *quote_pos = NULL;
3861
3862 /* First see if this is a quoted string. */
3863 quote_found = '\0';
3864 for (p = text; *p != '\0'; ++p)
3865 {
3866 if (quote_found != '\0')
3867 {
3868 if (*p == quote_found)
3869 /* Found close quote. */
3870 quote_found = '\0';
3871 else if (*p == '\\' && p[1] == quote_found)
3872 /* A backslash followed by the quote character
3873 doesn't end the string. */
3874 ++p;
3875 }
3876 else if (*p == '\'' || *p == '"')
3877 {
3878 quote_found = *p;
3879 quote_pos = p;
3880 }
3881 }
3882 if (quote_found == '\'')
3883 /* A string within single quotes can be a symbol, so complete on it. */
3884 sym_text = quote_pos + 1;
3885 else if (quote_found == '"')
3886 /* A double-quoted string is never a symbol, nor does it make sense
3887 to complete it any other way. */
3888 {
3889 return_val = (char **) xmalloc (sizeof (char *));
3890 return_val[0] = NULL;
3891 return return_val;
3892 }
3893 else
3894 {
3895 /* Not a quoted string. */
3896 sym_text = language_search_unquoted_string (text, p);
3897 }
3898 }
3899
3900 sym_text_len = strlen (sym_text);
3901
3902 return_val_size = 10;
3903 return_val_index = 0;
3904 return_val = (char **) xmalloc ((return_val_size + 1) * sizeof (char *));
3905 return_val[0] = NULL;
3906
3907 /* Find the symtab for SRCFILE (this loads it if it was not yet read
3908 in). */
3909 s = lookup_symtab (srcfile);
3910 if (s == NULL)
3911 {
3912 /* Maybe they typed the file with leading directories, while the
3913 symbol tables record only its basename. */
3914 const char *tail = lbasename (srcfile);
3915
3916 if (tail > srcfile)
3917 s = lookup_symtab (tail);
3918 }
3919
3920 /* If we have no symtab for that file, return an empty list. */
3921 if (s == NULL)
3922 return (return_val);
3923
3924 /* Go through this symtab and check the externs and statics for
3925 symbols which match. */
3926
3927 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
3928 ALL_BLOCK_SYMBOLS (b, iter, sym)
3929 {
3930 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
3931 }
3932
3933 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
3934 ALL_BLOCK_SYMBOLS (b, iter, sym)
3935 {
3936 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
3937 }
3938
3939 return (return_val);
3940 }
3941
3942 /* A helper function for make_source_files_completion_list. It adds
3943 another file name to a list of possible completions, growing the
3944 list as necessary. */
3945
3946 static void
3947 add_filename_to_list (const char *fname, char *text, char *word,
3948 char ***list, int *list_used, int *list_alloced)
3949 {
3950 char *new;
3951 size_t fnlen = strlen (fname);
3952
3953 if (*list_used + 1 >= *list_alloced)
3954 {
3955 *list_alloced *= 2;
3956 *list = (char **) xrealloc ((char *) *list,
3957 *list_alloced * sizeof (char *));
3958 }
3959
3960 if (word == text)
3961 {
3962 /* Return exactly fname. */
3963 new = xmalloc (fnlen + 5);
3964 strcpy (new, fname);
3965 }
3966 else if (word > text)
3967 {
3968 /* Return some portion of fname. */
3969 new = xmalloc (fnlen + 5);
3970 strcpy (new, fname + (word - text));
3971 }
3972 else
3973 {
3974 /* Return some of TEXT plus fname. */
3975 new = xmalloc (fnlen + (text - word) + 5);
3976 strncpy (new, word, text - word);
3977 new[text - word] = '\0';
3978 strcat (new, fname);
3979 }
3980 (*list)[*list_used] = new;
3981 (*list)[++*list_used] = NULL;
3982 }
3983
3984 static int
3985 not_interesting_fname (const char *fname)
3986 {
3987 static const char *illegal_aliens[] = {
3988 "_globals_", /* inserted by coff_symtab_read */
3989 NULL
3990 };
3991 int i;
3992
3993 for (i = 0; illegal_aliens[i]; i++)
3994 {
3995 if (strcmp (fname, illegal_aliens[i]) == 0)
3996 return 1;
3997 }
3998 return 0;
3999 }
4000
4001 /* Return a NULL terminated array of all source files whose names
4002 begin with matching TEXT. The file names are looked up in the
4003 symbol tables of this program. If the answer is no matchess, then
4004 the return value is an array which contains only a NULL pointer. */
4005
4006 char **
4007 make_source_files_completion_list (char *text, char *word)
4008 {
4009 struct symtab *s;
4010 struct partial_symtab *ps;
4011 struct objfile *objfile;
4012 int first = 1;
4013 int list_alloced = 1;
4014 int list_used = 0;
4015 size_t text_len = strlen (text);
4016 char **list = (char **) xmalloc (list_alloced * sizeof (char *));
4017 const char *base_name;
4018
4019 list[0] = NULL;
4020
4021 if (!have_full_symbols () && !have_partial_symbols ())
4022 return list;
4023
4024 ALL_SYMTABS (objfile, s)
4025 {
4026 if (not_interesting_fname (s->filename))
4027 continue;
4028 if (!filename_seen (s->filename, 1, &first)
4029 #if HAVE_DOS_BASED_FILE_SYSTEM
4030 && strncasecmp (s->filename, text, text_len) == 0
4031 #else
4032 && strncmp (s->filename, text, text_len) == 0
4033 #endif
4034 )
4035 {
4036 /* This file matches for a completion; add it to the current
4037 list of matches. */
4038 add_filename_to_list (s->filename, text, word,
4039 &list, &list_used, &list_alloced);
4040 }
4041 else
4042 {
4043 /* NOTE: We allow the user to type a base name when the
4044 debug info records leading directories, but not the other
4045 way around. This is what subroutines of breakpoint
4046 command do when they parse file names. */
4047 base_name = lbasename (s->filename);
4048 if (base_name != s->filename
4049 && !filename_seen (base_name, 1, &first)
4050 #if HAVE_DOS_BASED_FILE_SYSTEM
4051 && strncasecmp (base_name, text, text_len) == 0
4052 #else
4053 && strncmp (base_name, text, text_len) == 0
4054 #endif
4055 )
4056 add_filename_to_list (base_name, text, word,
4057 &list, &list_used, &list_alloced);
4058 }
4059 }
4060
4061 ALL_PSYMTABS (objfile, ps)
4062 {
4063 if (not_interesting_fname (ps->filename))
4064 continue;
4065 if (!ps->readin)
4066 {
4067 if (!filename_seen (ps->filename, 1, &first)
4068 #if HAVE_DOS_BASED_FILE_SYSTEM
4069 && strncasecmp (ps->filename, text, text_len) == 0
4070 #else
4071 && strncmp (ps->filename, text, text_len) == 0
4072 #endif
4073 )
4074 {
4075 /* This file matches for a completion; add it to the
4076 current list of matches. */
4077 add_filename_to_list (ps->filename, text, word,
4078 &list, &list_used, &list_alloced);
4079
4080 }
4081 else
4082 {
4083 base_name = lbasename (ps->filename);
4084 if (base_name != ps->filename
4085 && !filename_seen (base_name, 1, &first)
4086 #if HAVE_DOS_BASED_FILE_SYSTEM
4087 && strncasecmp (base_name, text, text_len) == 0
4088 #else
4089 && strncmp (base_name, text, text_len) == 0
4090 #endif
4091 )
4092 add_filename_to_list (base_name, text, word,
4093 &list, &list_used, &list_alloced);
4094 }
4095 }
4096 }
4097
4098 return list;
4099 }
4100
4101 /* Determine if PC is in the prologue of a function. The prologue is the area
4102 between the first instruction of a function, and the first executable line.
4103 Returns 1 if PC *might* be in prologue, 0 if definately *not* in prologue.
4104
4105 If non-zero, func_start is where we think the prologue starts, possibly
4106 by previous examination of symbol table information.
4107 */
4108
4109 int
4110 in_prologue (CORE_ADDR pc, CORE_ADDR func_start)
4111 {
4112 struct symtab_and_line sal;
4113 CORE_ADDR func_addr, func_end;
4114
4115 /* We have several sources of information we can consult to figure
4116 this out.
4117 - Compilers usually emit line number info that marks the prologue
4118 as its own "source line". So the ending address of that "line"
4119 is the end of the prologue. If available, this is the most
4120 reliable method.
4121 - The minimal symbols and partial symbols, which can usually tell
4122 us the starting and ending addresses of a function.
4123 - If we know the function's start address, we can call the
4124 architecture-defined gdbarch_skip_prologue function to analyze the
4125 instruction stream and guess where the prologue ends.
4126 - Our `func_start' argument; if non-zero, this is the caller's
4127 best guess as to the function's entry point. At the time of
4128 this writing, handle_inferior_event doesn't get this right, so
4129 it should be our last resort. */
4130
4131 /* Consult the partial symbol table, to find which function
4132 the PC is in. */
4133 if (! find_pc_partial_function (pc, NULL, &func_addr, &func_end))
4134 {
4135 CORE_ADDR prologue_end;
4136
4137 /* We don't even have minsym information, so fall back to using
4138 func_start, if given. */
4139 if (! func_start)
4140 return 1; /* We *might* be in a prologue. */
4141
4142 prologue_end = gdbarch_skip_prologue (current_gdbarch, func_start);
4143
4144 return func_start <= pc && pc < prologue_end;
4145 }
4146
4147 /* If we have line number information for the function, that's
4148 usually pretty reliable. */
4149 sal = find_pc_line (func_addr, 0);
4150
4151 /* Now sal describes the source line at the function's entry point,
4152 which (by convention) is the prologue. The end of that "line",
4153 sal.end, is the end of the prologue.
4154
4155 Note that, for functions whose source code is all on a single
4156 line, the line number information doesn't always end up this way.
4157 So we must verify that our purported end-of-prologue address is
4158 *within* the function, not at its start or end. */
4159 if (sal.line == 0
4160 || sal.end <= func_addr
4161 || func_end <= sal.end)
4162 {
4163 /* We don't have any good line number info, so use the minsym
4164 information, together with the architecture-specific prologue
4165 scanning code. */
4166 CORE_ADDR prologue_end = gdbarch_skip_prologue
4167 (current_gdbarch, func_addr);
4168
4169 return func_addr <= pc && pc < prologue_end;
4170 }
4171
4172 /* We have line number info, and it looks good. */
4173 return func_addr <= pc && pc < sal.end;
4174 }
4175
4176 /* Given PC at the function's start address, attempt to find the
4177 prologue end using SAL information. Return zero if the skip fails.
4178
4179 A non-optimized prologue traditionally has one SAL for the function
4180 and a second for the function body. A single line function has
4181 them both pointing at the same line.
4182
4183 An optimized prologue is similar but the prologue may contain
4184 instructions (SALs) from the instruction body. Need to skip those
4185 while not getting into the function body.
4186
4187 The functions end point and an increasing SAL line are used as
4188 indicators of the prologue's endpoint.
4189
4190 This code is based on the function refine_prologue_limit (versions
4191 found in both ia64 and ppc). */
4192
4193 CORE_ADDR
4194 skip_prologue_using_sal (CORE_ADDR func_addr)
4195 {
4196 struct symtab_and_line prologue_sal;
4197 CORE_ADDR start_pc;
4198 CORE_ADDR end_pc;
4199
4200 /* Get an initial range for the function. */
4201 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
4202 start_pc += gdbarch_deprecated_function_start_offset (current_gdbarch);
4203
4204 prologue_sal = find_pc_line (start_pc, 0);
4205 if (prologue_sal.line != 0)
4206 {
4207 /* If there is only one sal that covers the entire function,
4208 then it is probably a single line function, like
4209 "foo(){}". */
4210 if (prologue_sal.end >= end_pc)
4211 return 0;
4212 while (prologue_sal.end < end_pc)
4213 {
4214 struct symtab_and_line sal;
4215
4216 sal = find_pc_line (prologue_sal.end, 0);
4217 if (sal.line == 0)
4218 break;
4219 /* Assume that a consecutive SAL for the same (or larger)
4220 line mark the prologue -> body transition. */
4221 if (sal.line >= prologue_sal.line)
4222 break;
4223 /* The case in which compiler's optimizer/scheduler has
4224 moved instructions into the prologue. We look ahead in
4225 the function looking for address ranges whose
4226 corresponding line number is less the first one that we
4227 found for the function. This is more conservative then
4228 refine_prologue_limit which scans a large number of SALs
4229 looking for any in the prologue */
4230 prologue_sal = sal;
4231 }
4232 }
4233 return prologue_sal.end;
4234 }
4235 \f
4236 struct symtabs_and_lines
4237 decode_line_spec (char *string, int funfirstline)
4238 {
4239 struct symtabs_and_lines sals;
4240 struct symtab_and_line cursal;
4241
4242 if (string == 0)
4243 error (_("Empty line specification."));
4244
4245 /* We use whatever is set as the current source line. We do not try
4246 and get a default or it will recursively call us! */
4247 cursal = get_current_source_symtab_and_line ();
4248
4249 sals = decode_line_1 (&string, funfirstline,
4250 cursal.symtab, cursal.line,
4251 (char ***) NULL, NULL);
4252
4253 if (*string)
4254 error (_("Junk at end of line specification: %s"), string);
4255 return sals;
4256 }
4257
4258 /* Track MAIN */
4259 static char *name_of_main;
4260
4261 void
4262 set_main_name (const char *name)
4263 {
4264 if (name_of_main != NULL)
4265 {
4266 xfree (name_of_main);
4267 name_of_main = NULL;
4268 }
4269 if (name != NULL)
4270 {
4271 name_of_main = xstrdup (name);
4272 }
4273 }
4274
4275 /* Deduce the name of the main procedure, and set NAME_OF_MAIN
4276 accordingly. */
4277
4278 static void
4279 find_main_name (void)
4280 {
4281 const char *new_main_name;
4282
4283 /* Try to see if the main procedure is in Ada. */
4284 /* FIXME: brobecker/2005-03-07: Another way of doing this would
4285 be to add a new method in the language vector, and call this
4286 method for each language until one of them returns a non-empty
4287 name. This would allow us to remove this hard-coded call to
4288 an Ada function. It is not clear that this is a better approach
4289 at this point, because all methods need to be written in a way
4290 such that false positives never be returned. For instance, it is
4291 important that a method does not return a wrong name for the main
4292 procedure if the main procedure is actually written in a different
4293 language. It is easy to guaranty this with Ada, since we use a
4294 special symbol generated only when the main in Ada to find the name
4295 of the main procedure. It is difficult however to see how this can
4296 be guarantied for languages such as C, for instance. This suggests
4297 that order of call for these methods becomes important, which means
4298 a more complicated approach. */
4299 new_main_name = ada_main_name ();
4300 if (new_main_name != NULL)
4301 {
4302 set_main_name (new_main_name);
4303 return;
4304 }
4305
4306 new_main_name = pascal_main_name ();
4307 if (new_main_name != NULL)
4308 {
4309 set_main_name (new_main_name);
4310 return;
4311 }
4312
4313 /* The languages above didn't identify the name of the main procedure.
4314 Fallback to "main". */
4315 set_main_name ("main");
4316 }
4317
4318 char *
4319 main_name (void)
4320 {
4321 if (name_of_main == NULL)
4322 find_main_name ();
4323
4324 return name_of_main;
4325 }
4326
4327 /* Handle ``executable_changed'' events for the symtab module. */
4328
4329 static void
4330 symtab_observer_executable_changed (void *unused)
4331 {
4332 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
4333 set_main_name (NULL);
4334 }
4335
4336 /* Helper to expand_line_sal below. Appends new sal to SAL,
4337 initializing it from SYMTAB, LINENO and PC. */
4338 static void
4339 append_expanded_sal (struct symtabs_and_lines *sal,
4340 struct symtab *symtab,
4341 int lineno, CORE_ADDR pc)
4342 {
4343 CORE_ADDR func_addr, func_end;
4344
4345 sal->sals = xrealloc (sal->sals,
4346 sizeof (sal->sals[0])
4347 * (sal->nelts + 1));
4348 init_sal (sal->sals + sal->nelts);
4349 sal->sals[sal->nelts].symtab = symtab;
4350 sal->sals[sal->nelts].section = NULL;
4351 sal->sals[sal->nelts].end = 0;
4352 sal->sals[sal->nelts].line = lineno;
4353 sal->sals[sal->nelts].pc = pc;
4354 ++sal->nelts;
4355 }
4356
4357 /* Compute a set of all sals in
4358 the entire program that correspond to same file
4359 and line as SAL and return those. If there
4360 are several sals that belong to the same block,
4361 only one sal for the block is included in results. */
4362
4363 struct symtabs_and_lines
4364 expand_line_sal (struct symtab_and_line sal)
4365 {
4366 struct symtabs_and_lines ret, this_line;
4367 int i, j;
4368 struct objfile *objfile;
4369 struct partial_symtab *psymtab;
4370 struct symtab *symtab;
4371 int lineno;
4372 int deleted = 0;
4373 struct block **blocks = NULL;
4374 int *filter;
4375
4376 ret.nelts = 0;
4377 ret.sals = NULL;
4378
4379 if (sal.symtab == NULL || sal.line == 0 || sal.pc != 0)
4380 {
4381 ret.sals = xmalloc (sizeof (struct symtab_and_line));
4382 ret.sals[0] = sal;
4383 ret.nelts = 1;
4384 return ret;
4385 }
4386 else
4387 {
4388 struct linetable_entry *best_item = 0;
4389 struct symtab *best_symtab = 0;
4390 int exact = 0;
4391
4392 lineno = sal.line;
4393
4394 /* We meed to find all symtabs for a file which name
4395 is described by sal. We cannot just directly
4396 iterate over symtabs, since a symtab might not be
4397 yet created. We also cannot iterate over psymtabs,
4398 calling PSYMTAB_TO_SYMTAB and working on that symtab,
4399 since PSYMTAB_TO_SYMTAB will return NULL for psymtab
4400 corresponding to an included file. Therefore, we do
4401 first pass over psymtabs, reading in those with
4402 the right name. Then, we iterate over symtabs, knowing
4403 that all symtabs we're interested in are loaded. */
4404
4405 ALL_PSYMTABS (objfile, psymtab)
4406 {
4407 if (strcmp (sal.symtab->filename,
4408 psymtab->filename) == 0)
4409 PSYMTAB_TO_SYMTAB (psymtab);
4410 }
4411
4412
4413 /* For each symtab, we add all pcs to ret.sals. I'm actually
4414 not sure what to do if we have exact match in one symtab,
4415 and non-exact match on another symtab.
4416 */
4417 ALL_SYMTABS (objfile, symtab)
4418 {
4419 if (strcmp (sal.symtab->filename,
4420 symtab->filename) == 0)
4421 {
4422 struct linetable *l;
4423 int len;
4424 l = LINETABLE (symtab);
4425 if (!l)
4426 continue;
4427 len = l->nitems;
4428
4429 for (j = 0; j < len; j++)
4430 {
4431 struct linetable_entry *item = &(l->item[j]);
4432
4433 if (item->line == lineno)
4434 {
4435 exact = 1;
4436 append_expanded_sal (&ret, symtab, lineno, item->pc);
4437 }
4438 else if (!exact && item->line > lineno
4439 && (best_item == NULL || item->line < best_item->line))
4440
4441 {
4442 best_item = item;
4443 best_symtab = symtab;
4444 }
4445 }
4446 }
4447 }
4448 if (!exact && best_item)
4449 append_expanded_sal (&ret, best_symtab, lineno, best_item->pc);
4450 }
4451
4452 /* For optimized code, compiler can scatter one source line accross
4453 disjoint ranges of PC values, even when no duplicate functions
4454 or inline functions are involved. For example, 'for (;;)' inside
4455 non-template non-inline non-ctor-or-dtor function can result
4456 in two PC ranges. In this case, we don't want to set breakpoint
4457 on first PC of each range. To filter such cases, we use containing
4458 blocks -- for each PC found above we see if there are other PCs
4459 that are in the same block. If yes, the other PCs are filtered out. */
4460
4461 filter = xmalloc (ret.nelts * sizeof (int));
4462 blocks = xmalloc (ret.nelts * sizeof (struct block *));
4463 for (i = 0; i < ret.nelts; ++i)
4464 {
4465 filter[i] = 1;
4466 blocks[i] = block_for_pc (ret.sals[i].pc);
4467 }
4468
4469 for (i = 0; i < ret.nelts; ++i)
4470 if (blocks[i] != NULL)
4471 for (j = i+1; j < ret.nelts; ++j)
4472 if (blocks[j] == blocks[i])
4473 {
4474 filter[j] = 0;
4475 ++deleted;
4476 break;
4477 }
4478
4479 {
4480 struct symtab_and_line *final =
4481 xmalloc (sizeof (struct symtab_and_line) * (ret.nelts-deleted));
4482
4483 for (i = 0, j = 0; i < ret.nelts; ++i)
4484 if (filter[i])
4485 final[j++] = ret.sals[i];
4486
4487 ret.nelts -= deleted;
4488 xfree (ret.sals);
4489 ret.sals = final;
4490 }
4491
4492 return ret;
4493 }
4494
4495
4496 void
4497 _initialize_symtab (void)
4498 {
4499 add_info ("variables", variables_info, _("\
4500 All global and static variable names, or those matching REGEXP."));
4501 if (dbx_commands)
4502 add_com ("whereis", class_info, variables_info, _("\
4503 All global and static variable names, or those matching REGEXP."));
4504
4505 add_info ("functions", functions_info,
4506 _("All function names, or those matching REGEXP."));
4507
4508
4509 /* FIXME: This command has at least the following problems:
4510 1. It prints builtin types (in a very strange and confusing fashion).
4511 2. It doesn't print right, e.g. with
4512 typedef struct foo *FOO
4513 type_print prints "FOO" when we want to make it (in this situation)
4514 print "struct foo *".
4515 I also think "ptype" or "whatis" is more likely to be useful (but if
4516 there is much disagreement "info types" can be fixed). */
4517 add_info ("types", types_info,
4518 _("All type names, or those matching REGEXP."));
4519
4520 add_info ("sources", sources_info,
4521 _("Source files in the program."));
4522
4523 add_com ("rbreak", class_breakpoint, rbreak_command,
4524 _("Set a breakpoint for all functions matching REGEXP."));
4525
4526 if (xdb_commands)
4527 {
4528 add_com ("lf", class_info, sources_info,
4529 _("Source files in the program"));
4530 add_com ("lg", class_info, variables_info, _("\
4531 All global and static variable names, or those matching REGEXP."));
4532 }
4533
4534 add_setshow_enum_cmd ("multiple-symbols", no_class,
4535 multiple_symbols_modes, &multiple_symbols_mode,
4536 _("\
4537 Set the debugger behavior when more than one symbol are possible matches\n\
4538 in an expression."), _("\
4539 Show how the debugger handles ambiguities in expressions."), _("\
4540 Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
4541 NULL, NULL, &setlist, &showlist);
4542
4543 /* Initialize the one built-in type that isn't language dependent... */
4544 builtin_type_error = init_type (TYPE_CODE_ERROR, 0, 0,
4545 "<unknown type>", (struct objfile *) NULL);
4546
4547 observer_attach_executable_changed (symtab_observer_executable_changed);
4548 }
This page took 0.123153 seconds and 4 git commands to generate.