*** empty log message ***
[deliverable/binutils-gdb.git] / gdb / symtab.c
1 /* Symbol table lookup for the GNU debugger, GDB.
2
3 Copyright (C) 1986-2013 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "gdbcore.h"
24 #include "frame.h"
25 #include "target.h"
26 #include "value.h"
27 #include "symfile.h"
28 #include "objfiles.h"
29 #include "gdbcmd.h"
30 #include "gdb_regex.h"
31 #include "expression.h"
32 #include "language.h"
33 #include "demangle.h"
34 #include "inferior.h"
35 #include "source.h"
36 #include "filenames.h" /* for FILENAME_CMP */
37 #include "objc-lang.h"
38 #include "d-lang.h"
39 #include "ada-lang.h"
40 #include "go-lang.h"
41 #include "p-lang.h"
42 #include "addrmap.h"
43
44 #include "hashtab.h"
45
46 #include "gdb_obstack.h"
47 #include "block.h"
48 #include "dictionary.h"
49
50 #include <sys/types.h>
51 #include <fcntl.h>
52 #include "gdb_string.h"
53 #include "gdb_stat.h"
54 #include <ctype.h>
55 #include "cp-abi.h"
56 #include "cp-support.h"
57 #include "observer.h"
58 #include "gdb_assert.h"
59 #include "solist.h"
60 #include "macrotab.h"
61 #include "macroscope.h"
62
63 #include "psymtab.h"
64 #include "parser-defs.h"
65
66 /* Prototypes for local functions */
67
68 static void rbreak_command (char *, int);
69
70 static void types_info (char *, int);
71
72 static void functions_info (char *, int);
73
74 static void variables_info (char *, int);
75
76 static void sources_info (char *, int);
77
78 static int find_line_common (struct linetable *, int, int *, int);
79
80 static struct symbol *lookup_symbol_aux (const char *name,
81 const struct block *block,
82 const domain_enum domain,
83 enum language language,
84 struct field_of_this_result *is_a_field_of_this);
85
86 static
87 struct symbol *lookup_symbol_aux_local (const char *name,
88 const struct block *block,
89 const domain_enum domain,
90 enum language language);
91
92 static
93 struct symbol *lookup_symbol_aux_symtabs (int block_index,
94 const char *name,
95 const domain_enum domain);
96
97 static
98 struct symbol *lookup_symbol_aux_quick (struct objfile *objfile,
99 int block_index,
100 const char *name,
101 const domain_enum domain);
102
103 static void print_msymbol_info (struct minimal_symbol *);
104
105 void _initialize_symtab (void);
106
107 /* */
108
109 /* When non-zero, print debugging messages related to symtab creation. */
110 int symtab_create_debug = 0;
111
112 /* Non-zero if a file may be known by two different basenames.
113 This is the uncommon case, and significantly slows down gdb.
114 Default set to "off" to not slow down the common case. */
115 int basenames_may_differ = 0;
116
117 /* Allow the user to configure the debugger behavior with respect
118 to multiple-choice menus when more than one symbol matches during
119 a symbol lookup. */
120
121 const char multiple_symbols_ask[] = "ask";
122 const char multiple_symbols_all[] = "all";
123 const char multiple_symbols_cancel[] = "cancel";
124 static const char *const multiple_symbols_modes[] =
125 {
126 multiple_symbols_ask,
127 multiple_symbols_all,
128 multiple_symbols_cancel,
129 NULL
130 };
131 static const char *multiple_symbols_mode = multiple_symbols_all;
132
133 /* Read-only accessor to AUTO_SELECT_MODE. */
134
135 const char *
136 multiple_symbols_select_mode (void)
137 {
138 return multiple_symbols_mode;
139 }
140
141 /* Block in which the most recently searched-for symbol was found.
142 Might be better to make this a parameter to lookup_symbol and
143 value_of_this. */
144
145 const struct block *block_found;
146
147 /* See whether FILENAME matches SEARCH_NAME using the rule that we
148 advertise to the user. (The manual's description of linespecs
149 describes what we advertise). Returns true if they match, false
150 otherwise. */
151
152 int
153 compare_filenames_for_search (const char *filename, const char *search_name)
154 {
155 int len = strlen (filename);
156 size_t search_len = strlen (search_name);
157
158 if (len < search_len)
159 return 0;
160
161 /* The tail of FILENAME must match. */
162 if (FILENAME_CMP (filename + len - search_len, search_name) != 0)
163 return 0;
164
165 /* Either the names must completely match, or the character
166 preceding the trailing SEARCH_NAME segment of FILENAME must be a
167 directory separator.
168
169 The check !IS_ABSOLUTE_PATH ensures SEARCH_NAME "/dir/file.c"
170 cannot match FILENAME "/path//dir/file.c" - as user has requested
171 absolute path. The sama applies for "c:\file.c" possibly
172 incorrectly hypothetically matching "d:\dir\c:\file.c".
173
174 The HAS_DRIVE_SPEC purpose is to make FILENAME "c:file.c"
175 compatible with SEARCH_NAME "file.c". In such case a compiler had
176 to put the "c:file.c" name into debug info. Such compatibility
177 works only on GDB built for DOS host. */
178 return (len == search_len
179 || (!IS_ABSOLUTE_PATH (search_name)
180 && IS_DIR_SEPARATOR (filename[len - search_len - 1]))
181 || (HAS_DRIVE_SPEC (filename)
182 && STRIP_DRIVE_SPEC (filename) == &filename[len - search_len]));
183 }
184
185 /* Check for a symtab of a specific name by searching some symtabs.
186 This is a helper function for callbacks of iterate_over_symtabs.
187
188 The return value, NAME, REAL_PATH, CALLBACK, and DATA
189 are identical to the `map_symtabs_matching_filename' method of
190 quick_symbol_functions.
191
192 FIRST and AFTER_LAST indicate the range of symtabs to search.
193 AFTER_LAST is one past the last symtab to search; NULL means to
194 search until the end of the list. */
195
196 int
197 iterate_over_some_symtabs (const char *name,
198 const char *real_path,
199 int (*callback) (struct symtab *symtab,
200 void *data),
201 void *data,
202 struct symtab *first,
203 struct symtab *after_last)
204 {
205 struct symtab *s = NULL;
206 const char* base_name = lbasename (name);
207
208 for (s = first; s != NULL && s != after_last; s = s->next)
209 {
210 if (compare_filenames_for_search (s->filename, name))
211 {
212 if (callback (s, data))
213 return 1;
214 }
215
216 /* Before we invoke realpath, which can get expensive when many
217 files are involved, do a quick comparison of the basenames. */
218 if (! basenames_may_differ
219 && FILENAME_CMP (base_name, lbasename (s->filename)) != 0)
220 continue;
221
222 if (compare_filenames_for_search (symtab_to_fullname (s), name))
223 {
224 if (callback (s, data))
225 return 1;
226 }
227
228 /* If the user gave us an absolute path, try to find the file in
229 this symtab and use its absolute path. */
230
231 if (real_path != NULL)
232 {
233 const char *fullname = symtab_to_fullname (s);
234
235 gdb_assert (IS_ABSOLUTE_PATH (real_path));
236 gdb_assert (IS_ABSOLUTE_PATH (name));
237 if (FILENAME_CMP (real_path, fullname) == 0)
238 {
239 if (callback (s, data))
240 return 1;
241 }
242 }
243 }
244
245 return 0;
246 }
247
248 /* Check for a symtab of a specific name; first in symtabs, then in
249 psymtabs. *If* there is no '/' in the name, a match after a '/'
250 in the symtab filename will also work.
251
252 Calls CALLBACK with each symtab that is found and with the supplied
253 DATA. If CALLBACK returns true, the search stops. */
254
255 void
256 iterate_over_symtabs (const char *name,
257 int (*callback) (struct symtab *symtab,
258 void *data),
259 void *data)
260 {
261 struct objfile *objfile;
262 char *real_path = NULL;
263 struct cleanup *cleanups = make_cleanup (null_cleanup, NULL);
264
265 /* Here we are interested in canonicalizing an absolute path, not
266 absolutizing a relative path. */
267 if (IS_ABSOLUTE_PATH (name))
268 {
269 real_path = gdb_realpath (name);
270 make_cleanup (xfree, real_path);
271 gdb_assert (IS_ABSOLUTE_PATH (real_path));
272 }
273
274 ALL_OBJFILES (objfile)
275 {
276 if (iterate_over_some_symtabs (name, real_path, callback, data,
277 objfile->symtabs, NULL))
278 {
279 do_cleanups (cleanups);
280 return;
281 }
282 }
283
284 /* Same search rules as above apply here, but now we look thru the
285 psymtabs. */
286
287 ALL_OBJFILES (objfile)
288 {
289 if (objfile->sf
290 && objfile->sf->qf->map_symtabs_matching_filename (objfile,
291 name,
292 real_path,
293 callback,
294 data))
295 {
296 do_cleanups (cleanups);
297 return;
298 }
299 }
300
301 do_cleanups (cleanups);
302 }
303
304 /* The callback function used by lookup_symtab. */
305
306 static int
307 lookup_symtab_callback (struct symtab *symtab, void *data)
308 {
309 struct symtab **result_ptr = data;
310
311 *result_ptr = symtab;
312 return 1;
313 }
314
315 /* A wrapper for iterate_over_symtabs that returns the first matching
316 symtab, or NULL. */
317
318 struct symtab *
319 lookup_symtab (const char *name)
320 {
321 struct symtab *result = NULL;
322
323 iterate_over_symtabs (name, lookup_symtab_callback, &result);
324 return result;
325 }
326
327 \f
328 /* Mangle a GDB method stub type. This actually reassembles the pieces of the
329 full method name, which consist of the class name (from T), the unadorned
330 method name from METHOD_ID, and the signature for the specific overload,
331 specified by SIGNATURE_ID. Note that this function is g++ specific. */
332
333 char *
334 gdb_mangle_name (struct type *type, int method_id, int signature_id)
335 {
336 int mangled_name_len;
337 char *mangled_name;
338 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
339 struct fn_field *method = &f[signature_id];
340 const char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
341 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
342 const char *newname = type_name_no_tag (type);
343
344 /* Does the form of physname indicate that it is the full mangled name
345 of a constructor (not just the args)? */
346 int is_full_physname_constructor;
347
348 int is_constructor;
349 int is_destructor = is_destructor_name (physname);
350 /* Need a new type prefix. */
351 char *const_prefix = method->is_const ? "C" : "";
352 char *volatile_prefix = method->is_volatile ? "V" : "";
353 char buf[20];
354 int len = (newname == NULL ? 0 : strlen (newname));
355
356 /* Nothing to do if physname already contains a fully mangled v3 abi name
357 or an operator name. */
358 if ((physname[0] == '_' && physname[1] == 'Z')
359 || is_operator_name (field_name))
360 return xstrdup (physname);
361
362 is_full_physname_constructor = is_constructor_name (physname);
363
364 is_constructor = is_full_physname_constructor
365 || (newname && strcmp (field_name, newname) == 0);
366
367 if (!is_destructor)
368 is_destructor = (strncmp (physname, "__dt", 4) == 0);
369
370 if (is_destructor || is_full_physname_constructor)
371 {
372 mangled_name = (char *) xmalloc (strlen (physname) + 1);
373 strcpy (mangled_name, physname);
374 return mangled_name;
375 }
376
377 if (len == 0)
378 {
379 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
380 }
381 else if (physname[0] == 't' || physname[0] == 'Q')
382 {
383 /* The physname for template and qualified methods already includes
384 the class name. */
385 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
386 newname = NULL;
387 len = 0;
388 }
389 else
390 {
391 xsnprintf (buf, sizeof (buf), "__%s%s%d", const_prefix,
392 volatile_prefix, len);
393 }
394 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
395 + strlen (buf) + len + strlen (physname) + 1);
396
397 mangled_name = (char *) xmalloc (mangled_name_len);
398 if (is_constructor)
399 mangled_name[0] = '\0';
400 else
401 strcpy (mangled_name, field_name);
402
403 strcat (mangled_name, buf);
404 /* If the class doesn't have a name, i.e. newname NULL, then we just
405 mangle it using 0 for the length of the class. Thus it gets mangled
406 as something starting with `::' rather than `classname::'. */
407 if (newname != NULL)
408 strcat (mangled_name, newname);
409
410 strcat (mangled_name, physname);
411 return (mangled_name);
412 }
413
414 /* Initialize the cplus_specific structure. 'cplus_specific' should
415 only be allocated for use with cplus symbols. */
416
417 static void
418 symbol_init_cplus_specific (struct general_symbol_info *gsymbol,
419 struct objfile *objfile)
420 {
421 /* A language_specific structure should not have been previously
422 initialized. */
423 gdb_assert (gsymbol->language_specific.cplus_specific == NULL);
424 gdb_assert (objfile != NULL);
425
426 gsymbol->language_specific.cplus_specific =
427 OBSTACK_ZALLOC (&objfile->objfile_obstack, struct cplus_specific);
428 }
429
430 /* Set the demangled name of GSYMBOL to NAME. NAME must be already
431 correctly allocated. For C++ symbols a cplus_specific struct is
432 allocated so OBJFILE must not be NULL. If this is a non C++ symbol
433 OBJFILE can be NULL. */
434
435 void
436 symbol_set_demangled_name (struct general_symbol_info *gsymbol,
437 const char *name,
438 struct objfile *objfile)
439 {
440 if (gsymbol->language == language_cplus)
441 {
442 if (gsymbol->language_specific.cplus_specific == NULL)
443 symbol_init_cplus_specific (gsymbol, objfile);
444
445 gsymbol->language_specific.cplus_specific->demangled_name = name;
446 }
447 else
448 gsymbol->language_specific.mangled_lang.demangled_name = name;
449 }
450
451 /* Return the demangled name of GSYMBOL. */
452
453 const char *
454 symbol_get_demangled_name (const struct general_symbol_info *gsymbol)
455 {
456 if (gsymbol->language == language_cplus)
457 {
458 if (gsymbol->language_specific.cplus_specific != NULL)
459 return gsymbol->language_specific.cplus_specific->demangled_name;
460 else
461 return NULL;
462 }
463 else
464 return gsymbol->language_specific.mangled_lang.demangled_name;
465 }
466
467 \f
468 /* Initialize the language dependent portion of a symbol
469 depending upon the language for the symbol. */
470
471 void
472 symbol_set_language (struct general_symbol_info *gsymbol,
473 enum language language)
474 {
475 gsymbol->language = language;
476 if (gsymbol->language == language_d
477 || gsymbol->language == language_go
478 || gsymbol->language == language_java
479 || gsymbol->language == language_objc
480 || gsymbol->language == language_fortran)
481 {
482 symbol_set_demangled_name (gsymbol, NULL, NULL);
483 }
484 else if (gsymbol->language == language_cplus)
485 gsymbol->language_specific.cplus_specific = NULL;
486 else
487 {
488 memset (&gsymbol->language_specific, 0,
489 sizeof (gsymbol->language_specific));
490 }
491 }
492
493 /* Functions to initialize a symbol's mangled name. */
494
495 /* Objects of this type are stored in the demangled name hash table. */
496 struct demangled_name_entry
497 {
498 const char *mangled;
499 char demangled[1];
500 };
501
502 /* Hash function for the demangled name hash. */
503
504 static hashval_t
505 hash_demangled_name_entry (const void *data)
506 {
507 const struct demangled_name_entry *e = data;
508
509 return htab_hash_string (e->mangled);
510 }
511
512 /* Equality function for the demangled name hash. */
513
514 static int
515 eq_demangled_name_entry (const void *a, const void *b)
516 {
517 const struct demangled_name_entry *da = a;
518 const struct demangled_name_entry *db = b;
519
520 return strcmp (da->mangled, db->mangled) == 0;
521 }
522
523 /* Create the hash table used for demangled names. Each hash entry is
524 a pair of strings; one for the mangled name and one for the demangled
525 name. The entry is hashed via just the mangled name. */
526
527 static void
528 create_demangled_names_hash (struct objfile *objfile)
529 {
530 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
531 The hash table code will round this up to the next prime number.
532 Choosing a much larger table size wastes memory, and saves only about
533 1% in symbol reading. */
534
535 objfile->demangled_names_hash = htab_create_alloc
536 (256, hash_demangled_name_entry, eq_demangled_name_entry,
537 NULL, xcalloc, xfree);
538 }
539
540 /* Try to determine the demangled name for a symbol, based on the
541 language of that symbol. If the language is set to language_auto,
542 it will attempt to find any demangling algorithm that works and
543 then set the language appropriately. The returned name is allocated
544 by the demangler and should be xfree'd. */
545
546 static char *
547 symbol_find_demangled_name (struct general_symbol_info *gsymbol,
548 const char *mangled)
549 {
550 char *demangled = NULL;
551
552 if (gsymbol->language == language_unknown)
553 gsymbol->language = language_auto;
554
555 if (gsymbol->language == language_objc
556 || gsymbol->language == language_auto)
557 {
558 demangled =
559 objc_demangle (mangled, 0);
560 if (demangled != NULL)
561 {
562 gsymbol->language = language_objc;
563 return demangled;
564 }
565 }
566 if (gsymbol->language == language_cplus
567 || gsymbol->language == language_auto)
568 {
569 demangled =
570 cplus_demangle (mangled, DMGL_PARAMS | DMGL_ANSI);
571 if (demangled != NULL)
572 {
573 gsymbol->language = language_cplus;
574 return demangled;
575 }
576 }
577 if (gsymbol->language == language_java)
578 {
579 demangled =
580 cplus_demangle (mangled,
581 DMGL_PARAMS | DMGL_ANSI | DMGL_JAVA);
582 if (demangled != NULL)
583 {
584 gsymbol->language = language_java;
585 return demangled;
586 }
587 }
588 if (gsymbol->language == language_d
589 || gsymbol->language == language_auto)
590 {
591 demangled = d_demangle(mangled, 0);
592 if (demangled != NULL)
593 {
594 gsymbol->language = language_d;
595 return demangled;
596 }
597 }
598 /* FIXME(dje): Continually adding languages here is clumsy.
599 Better to just call la_demangle if !auto, and if auto then call
600 a utility routine that tries successive languages in turn and reports
601 which one it finds. I realize the la_demangle options may be different
602 for different languages but there's already a FIXME for that. */
603 if (gsymbol->language == language_go
604 || gsymbol->language == language_auto)
605 {
606 demangled = go_demangle (mangled, 0);
607 if (demangled != NULL)
608 {
609 gsymbol->language = language_go;
610 return demangled;
611 }
612 }
613
614 /* We could support `gsymbol->language == language_fortran' here to provide
615 module namespaces also for inferiors with only minimal symbol table (ELF
616 symbols). Just the mangling standard is not standardized across compilers
617 and there is no DW_AT_producer available for inferiors with only the ELF
618 symbols to check the mangling kind. */
619 return NULL;
620 }
621
622 /* Set both the mangled and demangled (if any) names for GSYMBOL based
623 on LINKAGE_NAME and LEN. Ordinarily, NAME is copied onto the
624 objfile's obstack; but if COPY_NAME is 0 and if NAME is
625 NUL-terminated, then this function assumes that NAME is already
626 correctly saved (either permanently or with a lifetime tied to the
627 objfile), and it will not be copied.
628
629 The hash table corresponding to OBJFILE is used, and the memory
630 comes from that objfile's objfile_obstack. LINKAGE_NAME is copied,
631 so the pointer can be discarded after calling this function. */
632
633 /* We have to be careful when dealing with Java names: when we run
634 into a Java minimal symbol, we don't know it's a Java symbol, so it
635 gets demangled as a C++ name. This is unfortunate, but there's not
636 much we can do about it: but when demangling partial symbols and
637 regular symbols, we'd better not reuse the wrong demangled name.
638 (See PR gdb/1039.) We solve this by putting a distinctive prefix
639 on Java names when storing them in the hash table. */
640
641 /* FIXME: carlton/2003-03-13: This is an unfortunate situation. I
642 don't mind the Java prefix so much: different languages have
643 different demangling requirements, so it's only natural that we
644 need to keep language data around in our demangling cache. But
645 it's not good that the minimal symbol has the wrong demangled name.
646 Unfortunately, I can't think of any easy solution to that
647 problem. */
648
649 #define JAVA_PREFIX "##JAVA$$"
650 #define JAVA_PREFIX_LEN 8
651
652 void
653 symbol_set_names (struct general_symbol_info *gsymbol,
654 const char *linkage_name, int len, int copy_name,
655 struct objfile *objfile)
656 {
657 struct demangled_name_entry **slot;
658 /* A 0-terminated copy of the linkage name. */
659 const char *linkage_name_copy;
660 /* A copy of the linkage name that might have a special Java prefix
661 added to it, for use when looking names up in the hash table. */
662 const char *lookup_name;
663 /* The length of lookup_name. */
664 int lookup_len;
665 struct demangled_name_entry entry;
666
667 if (gsymbol->language == language_ada)
668 {
669 /* In Ada, we do the symbol lookups using the mangled name, so
670 we can save some space by not storing the demangled name.
671
672 As a side note, we have also observed some overlap between
673 the C++ mangling and Ada mangling, similarly to what has
674 been observed with Java. Because we don't store the demangled
675 name with the symbol, we don't need to use the same trick
676 as Java. */
677 if (!copy_name)
678 gsymbol->name = linkage_name;
679 else
680 {
681 char *name = obstack_alloc (&objfile->objfile_obstack, len + 1);
682
683 memcpy (name, linkage_name, len);
684 name[len] = '\0';
685 gsymbol->name = name;
686 }
687 symbol_set_demangled_name (gsymbol, NULL, NULL);
688
689 return;
690 }
691
692 if (objfile->demangled_names_hash == NULL)
693 create_demangled_names_hash (objfile);
694
695 /* The stabs reader generally provides names that are not
696 NUL-terminated; most of the other readers don't do this, so we
697 can just use the given copy, unless we're in the Java case. */
698 if (gsymbol->language == language_java)
699 {
700 char *alloc_name;
701
702 lookup_len = len + JAVA_PREFIX_LEN;
703 alloc_name = alloca (lookup_len + 1);
704 memcpy (alloc_name, JAVA_PREFIX, JAVA_PREFIX_LEN);
705 memcpy (alloc_name + JAVA_PREFIX_LEN, linkage_name, len);
706 alloc_name[lookup_len] = '\0';
707
708 lookup_name = alloc_name;
709 linkage_name_copy = alloc_name + JAVA_PREFIX_LEN;
710 }
711 else if (linkage_name[len] != '\0')
712 {
713 char *alloc_name;
714
715 lookup_len = len;
716 alloc_name = alloca (lookup_len + 1);
717 memcpy (alloc_name, linkage_name, len);
718 alloc_name[lookup_len] = '\0';
719
720 lookup_name = alloc_name;
721 linkage_name_copy = alloc_name;
722 }
723 else
724 {
725 lookup_len = len;
726 lookup_name = linkage_name;
727 linkage_name_copy = linkage_name;
728 }
729
730 entry.mangled = lookup_name;
731 slot = ((struct demangled_name_entry **)
732 htab_find_slot (objfile->demangled_names_hash,
733 &entry, INSERT));
734
735 /* If this name is not in the hash table, add it. */
736 if (*slot == NULL
737 /* A C version of the symbol may have already snuck into the table.
738 This happens to, e.g., main.init (__go_init_main). Cope. */
739 || (gsymbol->language == language_go
740 && (*slot)->demangled[0] == '\0'))
741 {
742 char *demangled_name = symbol_find_demangled_name (gsymbol,
743 linkage_name_copy);
744 int demangled_len = demangled_name ? strlen (demangled_name) : 0;
745
746 /* Suppose we have demangled_name==NULL, copy_name==0, and
747 lookup_name==linkage_name. In this case, we already have the
748 mangled name saved, and we don't have a demangled name. So,
749 you might think we could save a little space by not recording
750 this in the hash table at all.
751
752 It turns out that it is actually important to still save such
753 an entry in the hash table, because storing this name gives
754 us better bcache hit rates for partial symbols. */
755 if (!copy_name && lookup_name == linkage_name)
756 {
757 *slot = obstack_alloc (&objfile->objfile_obstack,
758 offsetof (struct demangled_name_entry,
759 demangled)
760 + demangled_len + 1);
761 (*slot)->mangled = lookup_name;
762 }
763 else
764 {
765 char *mangled_ptr;
766
767 /* If we must copy the mangled name, put it directly after
768 the demangled name so we can have a single
769 allocation. */
770 *slot = obstack_alloc (&objfile->objfile_obstack,
771 offsetof (struct demangled_name_entry,
772 demangled)
773 + lookup_len + demangled_len + 2);
774 mangled_ptr = &((*slot)->demangled[demangled_len + 1]);
775 strcpy (mangled_ptr, lookup_name);
776 (*slot)->mangled = mangled_ptr;
777 }
778
779 if (demangled_name != NULL)
780 {
781 strcpy ((*slot)->demangled, demangled_name);
782 xfree (demangled_name);
783 }
784 else
785 (*slot)->demangled[0] = '\0';
786 }
787
788 gsymbol->name = (*slot)->mangled + lookup_len - len;
789 if ((*slot)->demangled[0] != '\0')
790 symbol_set_demangled_name (gsymbol, (*slot)->demangled, objfile);
791 else
792 symbol_set_demangled_name (gsymbol, NULL, objfile);
793 }
794
795 /* Return the source code name of a symbol. In languages where
796 demangling is necessary, this is the demangled name. */
797
798 const char *
799 symbol_natural_name (const struct general_symbol_info *gsymbol)
800 {
801 switch (gsymbol->language)
802 {
803 case language_cplus:
804 case language_d:
805 case language_go:
806 case language_java:
807 case language_objc:
808 case language_fortran:
809 if (symbol_get_demangled_name (gsymbol) != NULL)
810 return symbol_get_demangled_name (gsymbol);
811 break;
812 case language_ada:
813 if (symbol_get_demangled_name (gsymbol) != NULL)
814 return symbol_get_demangled_name (gsymbol);
815 else
816 return ada_decode_symbol (gsymbol);
817 break;
818 default:
819 break;
820 }
821 return gsymbol->name;
822 }
823
824 /* Return the demangled name for a symbol based on the language for
825 that symbol. If no demangled name exists, return NULL. */
826
827 const char *
828 symbol_demangled_name (const struct general_symbol_info *gsymbol)
829 {
830 const char *dem_name = NULL;
831
832 switch (gsymbol->language)
833 {
834 case language_cplus:
835 case language_d:
836 case language_go:
837 case language_java:
838 case language_objc:
839 case language_fortran:
840 dem_name = symbol_get_demangled_name (gsymbol);
841 break;
842 case language_ada:
843 dem_name = symbol_get_demangled_name (gsymbol);
844 if (dem_name == NULL)
845 dem_name = ada_decode_symbol (gsymbol);
846 break;
847 default:
848 break;
849 }
850 return dem_name;
851 }
852
853 /* Return the search name of a symbol---generally the demangled or
854 linkage name of the symbol, depending on how it will be searched for.
855 If there is no distinct demangled name, then returns the same value
856 (same pointer) as SYMBOL_LINKAGE_NAME. */
857
858 const char *
859 symbol_search_name (const struct general_symbol_info *gsymbol)
860 {
861 if (gsymbol->language == language_ada)
862 return gsymbol->name;
863 else
864 return symbol_natural_name (gsymbol);
865 }
866
867 /* Initialize the structure fields to zero values. */
868
869 void
870 init_sal (struct symtab_and_line *sal)
871 {
872 sal->pspace = NULL;
873 sal->symtab = 0;
874 sal->section = 0;
875 sal->line = 0;
876 sal->pc = 0;
877 sal->end = 0;
878 sal->explicit_pc = 0;
879 sal->explicit_line = 0;
880 sal->probe = NULL;
881 }
882 \f
883
884 /* Return 1 if the two sections are the same, or if they could
885 plausibly be copies of each other, one in an original object
886 file and another in a separated debug file. */
887
888 int
889 matching_obj_sections (struct obj_section *obj_first,
890 struct obj_section *obj_second)
891 {
892 asection *first = obj_first? obj_first->the_bfd_section : NULL;
893 asection *second = obj_second? obj_second->the_bfd_section : NULL;
894 struct objfile *obj;
895
896 /* If they're the same section, then they match. */
897 if (first == second)
898 return 1;
899
900 /* If either is NULL, give up. */
901 if (first == NULL || second == NULL)
902 return 0;
903
904 /* This doesn't apply to absolute symbols. */
905 if (first->owner == NULL || second->owner == NULL)
906 return 0;
907
908 /* If they're in the same object file, they must be different sections. */
909 if (first->owner == second->owner)
910 return 0;
911
912 /* Check whether the two sections are potentially corresponding. They must
913 have the same size, address, and name. We can't compare section indexes,
914 which would be more reliable, because some sections may have been
915 stripped. */
916 if (bfd_get_section_size (first) != bfd_get_section_size (second))
917 return 0;
918
919 /* In-memory addresses may start at a different offset, relativize them. */
920 if (bfd_get_section_vma (first->owner, first)
921 - bfd_get_start_address (first->owner)
922 != bfd_get_section_vma (second->owner, second)
923 - bfd_get_start_address (second->owner))
924 return 0;
925
926 if (bfd_get_section_name (first->owner, first) == NULL
927 || bfd_get_section_name (second->owner, second) == NULL
928 || strcmp (bfd_get_section_name (first->owner, first),
929 bfd_get_section_name (second->owner, second)) != 0)
930 return 0;
931
932 /* Otherwise check that they are in corresponding objfiles. */
933
934 ALL_OBJFILES (obj)
935 if (obj->obfd == first->owner)
936 break;
937 gdb_assert (obj != NULL);
938
939 if (obj->separate_debug_objfile != NULL
940 && obj->separate_debug_objfile->obfd == second->owner)
941 return 1;
942 if (obj->separate_debug_objfile_backlink != NULL
943 && obj->separate_debug_objfile_backlink->obfd == second->owner)
944 return 1;
945
946 return 0;
947 }
948
949 struct symtab *
950 find_pc_sect_symtab_via_partial (CORE_ADDR pc, struct obj_section *section)
951 {
952 struct objfile *objfile;
953 struct minimal_symbol *msymbol;
954
955 /* If we know that this is not a text address, return failure. This is
956 necessary because we loop based on texthigh and textlow, which do
957 not include the data ranges. */
958 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
959 if (msymbol
960 && (MSYMBOL_TYPE (msymbol) == mst_data
961 || MSYMBOL_TYPE (msymbol) == mst_bss
962 || MSYMBOL_TYPE (msymbol) == mst_abs
963 || MSYMBOL_TYPE (msymbol) == mst_file_data
964 || MSYMBOL_TYPE (msymbol) == mst_file_bss))
965 return NULL;
966
967 ALL_OBJFILES (objfile)
968 {
969 struct symtab *result = NULL;
970
971 if (objfile->sf)
972 result = objfile->sf->qf->find_pc_sect_symtab (objfile, msymbol,
973 pc, section, 0);
974 if (result)
975 return result;
976 }
977
978 return NULL;
979 }
980 \f
981 /* Debug symbols usually don't have section information. We need to dig that
982 out of the minimal symbols and stash that in the debug symbol. */
983
984 void
985 fixup_section (struct general_symbol_info *ginfo,
986 CORE_ADDR addr, struct objfile *objfile)
987 {
988 struct minimal_symbol *msym;
989
990 /* First, check whether a minimal symbol with the same name exists
991 and points to the same address. The address check is required
992 e.g. on PowerPC64, where the minimal symbol for a function will
993 point to the function descriptor, while the debug symbol will
994 point to the actual function code. */
995 msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->name, objfile);
996 if (msym)
997 {
998 ginfo->obj_section = SYMBOL_OBJ_SECTION (msym);
999 ginfo->section = SYMBOL_SECTION (msym);
1000 }
1001 else
1002 {
1003 /* Static, function-local variables do appear in the linker
1004 (minimal) symbols, but are frequently given names that won't
1005 be found via lookup_minimal_symbol(). E.g., it has been
1006 observed in frv-uclinux (ELF) executables that a static,
1007 function-local variable named "foo" might appear in the
1008 linker symbols as "foo.6" or "foo.3". Thus, there is no
1009 point in attempting to extend the lookup-by-name mechanism to
1010 handle this case due to the fact that there can be multiple
1011 names.
1012
1013 So, instead, search the section table when lookup by name has
1014 failed. The ``addr'' and ``endaddr'' fields may have already
1015 been relocated. If so, the relocation offset (i.e. the
1016 ANOFFSET value) needs to be subtracted from these values when
1017 performing the comparison. We unconditionally subtract it,
1018 because, when no relocation has been performed, the ANOFFSET
1019 value will simply be zero.
1020
1021 The address of the symbol whose section we're fixing up HAS
1022 NOT BEEN adjusted (relocated) yet. It can't have been since
1023 the section isn't yet known and knowing the section is
1024 necessary in order to add the correct relocation value. In
1025 other words, we wouldn't even be in this function (attempting
1026 to compute the section) if it were already known.
1027
1028 Note that it is possible to search the minimal symbols
1029 (subtracting the relocation value if necessary) to find the
1030 matching minimal symbol, but this is overkill and much less
1031 efficient. It is not necessary to find the matching minimal
1032 symbol, only its section.
1033
1034 Note that this technique (of doing a section table search)
1035 can fail when unrelocated section addresses overlap. For
1036 this reason, we still attempt a lookup by name prior to doing
1037 a search of the section table. */
1038
1039 struct obj_section *s;
1040
1041 ALL_OBJFILE_OSECTIONS (objfile, s)
1042 {
1043 int idx = s->the_bfd_section->index;
1044 CORE_ADDR offset = ANOFFSET (objfile->section_offsets, idx);
1045
1046 if (obj_section_addr (s) - offset <= addr
1047 && addr < obj_section_endaddr (s) - offset)
1048 {
1049 ginfo->obj_section = s;
1050 ginfo->section = idx;
1051 return;
1052 }
1053 }
1054 }
1055 }
1056
1057 struct symbol *
1058 fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
1059 {
1060 CORE_ADDR addr;
1061
1062 if (!sym)
1063 return NULL;
1064
1065 if (SYMBOL_OBJ_SECTION (sym))
1066 return sym;
1067
1068 /* We either have an OBJFILE, or we can get at it from the sym's
1069 symtab. Anything else is a bug. */
1070 gdb_assert (objfile || SYMBOL_SYMTAB (sym));
1071
1072 if (objfile == NULL)
1073 objfile = SYMBOL_SYMTAB (sym)->objfile;
1074
1075 /* We should have an objfile by now. */
1076 gdb_assert (objfile);
1077
1078 switch (SYMBOL_CLASS (sym))
1079 {
1080 case LOC_STATIC:
1081 case LOC_LABEL:
1082 addr = SYMBOL_VALUE_ADDRESS (sym);
1083 break;
1084 case LOC_BLOCK:
1085 addr = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
1086 break;
1087
1088 default:
1089 /* Nothing else will be listed in the minsyms -- no use looking
1090 it up. */
1091 return sym;
1092 }
1093
1094 fixup_section (&sym->ginfo, addr, objfile);
1095
1096 return sym;
1097 }
1098
1099 /* Compute the demangled form of NAME as used by the various symbol
1100 lookup functions. The result is stored in *RESULT_NAME. Returns a
1101 cleanup which can be used to clean up the result.
1102
1103 For Ada, this function just sets *RESULT_NAME to NAME, unmodified.
1104 Normally, Ada symbol lookups are performed using the encoded name
1105 rather than the demangled name, and so it might seem to make sense
1106 for this function to return an encoded version of NAME.
1107 Unfortunately, we cannot do this, because this function is used in
1108 circumstances where it is not appropriate to try to encode NAME.
1109 For instance, when displaying the frame info, we demangle the name
1110 of each parameter, and then perform a symbol lookup inside our
1111 function using that demangled name. In Ada, certain functions
1112 have internally-generated parameters whose name contain uppercase
1113 characters. Encoding those name would result in those uppercase
1114 characters to become lowercase, and thus cause the symbol lookup
1115 to fail. */
1116
1117 struct cleanup *
1118 demangle_for_lookup (const char *name, enum language lang,
1119 const char **result_name)
1120 {
1121 char *demangled_name = NULL;
1122 const char *modified_name = NULL;
1123 struct cleanup *cleanup = make_cleanup (null_cleanup, 0);
1124
1125 modified_name = name;
1126
1127 /* If we are using C++, D, Go, or Java, demangle the name before doing a
1128 lookup, so we can always binary search. */
1129 if (lang == language_cplus)
1130 {
1131 demangled_name = cplus_demangle (name, DMGL_ANSI | DMGL_PARAMS);
1132 if (demangled_name)
1133 {
1134 modified_name = demangled_name;
1135 make_cleanup (xfree, demangled_name);
1136 }
1137 else
1138 {
1139 /* If we were given a non-mangled name, canonicalize it
1140 according to the language (so far only for C++). */
1141 demangled_name = cp_canonicalize_string (name);
1142 if (demangled_name)
1143 {
1144 modified_name = demangled_name;
1145 make_cleanup (xfree, demangled_name);
1146 }
1147 }
1148 }
1149 else if (lang == language_java)
1150 {
1151 demangled_name = cplus_demangle (name,
1152 DMGL_ANSI | DMGL_PARAMS | DMGL_JAVA);
1153 if (demangled_name)
1154 {
1155 modified_name = demangled_name;
1156 make_cleanup (xfree, demangled_name);
1157 }
1158 }
1159 else if (lang == language_d)
1160 {
1161 demangled_name = d_demangle (name, 0);
1162 if (demangled_name)
1163 {
1164 modified_name = demangled_name;
1165 make_cleanup (xfree, demangled_name);
1166 }
1167 }
1168 else if (lang == language_go)
1169 {
1170 demangled_name = go_demangle (name, 0);
1171 if (demangled_name)
1172 {
1173 modified_name = demangled_name;
1174 make_cleanup (xfree, demangled_name);
1175 }
1176 }
1177
1178 *result_name = modified_name;
1179 return cleanup;
1180 }
1181
1182 /* Find the definition for a specified symbol name NAME
1183 in domain DOMAIN, visible from lexical block BLOCK.
1184 Returns the struct symbol pointer, or zero if no symbol is found.
1185 C++: if IS_A_FIELD_OF_THIS is nonzero on entry, check to see if
1186 NAME is a field of the current implied argument `this'. If so set
1187 *IS_A_FIELD_OF_THIS to 1, otherwise set it to zero.
1188 BLOCK_FOUND is set to the block in which NAME is found (in the case of
1189 a field of `this', value_of_this sets BLOCK_FOUND to the proper value.) */
1190
1191 /* This function (or rather its subordinates) have a bunch of loops and
1192 it would seem to be attractive to put in some QUIT's (though I'm not really
1193 sure whether it can run long enough to be really important). But there
1194 are a few calls for which it would appear to be bad news to quit
1195 out of here: e.g., find_proc_desc in alpha-mdebug-tdep.c. (Note
1196 that there is C++ code below which can error(), but that probably
1197 doesn't affect these calls since they are looking for a known
1198 variable and thus can probably assume it will never hit the C++
1199 code). */
1200
1201 struct symbol *
1202 lookup_symbol_in_language (const char *name, const struct block *block,
1203 const domain_enum domain, enum language lang,
1204 struct field_of_this_result *is_a_field_of_this)
1205 {
1206 const char *modified_name;
1207 struct symbol *returnval;
1208 struct cleanup *cleanup = demangle_for_lookup (name, lang, &modified_name);
1209
1210 returnval = lookup_symbol_aux (modified_name, block, domain, lang,
1211 is_a_field_of_this);
1212 do_cleanups (cleanup);
1213
1214 return returnval;
1215 }
1216
1217 /* Behave like lookup_symbol_in_language, but performed with the
1218 current language. */
1219
1220 struct symbol *
1221 lookup_symbol (const char *name, const struct block *block,
1222 domain_enum domain,
1223 struct field_of_this_result *is_a_field_of_this)
1224 {
1225 return lookup_symbol_in_language (name, block, domain,
1226 current_language->la_language,
1227 is_a_field_of_this);
1228 }
1229
1230 /* Look up the `this' symbol for LANG in BLOCK. Return the symbol if
1231 found, or NULL if not found. */
1232
1233 struct symbol *
1234 lookup_language_this (const struct language_defn *lang,
1235 const struct block *block)
1236 {
1237 if (lang->la_name_of_this == NULL || block == NULL)
1238 return NULL;
1239
1240 while (block)
1241 {
1242 struct symbol *sym;
1243
1244 sym = lookup_block_symbol (block, lang->la_name_of_this, VAR_DOMAIN);
1245 if (sym != NULL)
1246 {
1247 block_found = block;
1248 return sym;
1249 }
1250 if (BLOCK_FUNCTION (block))
1251 break;
1252 block = BLOCK_SUPERBLOCK (block);
1253 }
1254
1255 return NULL;
1256 }
1257
1258 /* Given TYPE, a structure/union,
1259 return 1 if the component named NAME from the ultimate target
1260 structure/union is defined, otherwise, return 0. */
1261
1262 static int
1263 check_field (struct type *type, const char *name,
1264 struct field_of_this_result *is_a_field_of_this)
1265 {
1266 int i;
1267
1268 /* The type may be a stub. */
1269 CHECK_TYPEDEF (type);
1270
1271 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1272 {
1273 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1274
1275 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1276 {
1277 is_a_field_of_this->type = type;
1278 is_a_field_of_this->field = &TYPE_FIELD (type, i);
1279 return 1;
1280 }
1281 }
1282
1283 /* C++: If it was not found as a data field, then try to return it
1284 as a pointer to a method. */
1285
1286 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
1287 {
1288 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
1289 {
1290 is_a_field_of_this->type = type;
1291 is_a_field_of_this->fn_field = &TYPE_FN_FIELDLIST (type, i);
1292 return 1;
1293 }
1294 }
1295
1296 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1297 if (check_field (TYPE_BASECLASS (type, i), name, is_a_field_of_this))
1298 return 1;
1299
1300 return 0;
1301 }
1302
1303 /* Behave like lookup_symbol except that NAME is the natural name
1304 (e.g., demangled name) of the symbol that we're looking for. */
1305
1306 static struct symbol *
1307 lookup_symbol_aux (const char *name, const struct block *block,
1308 const domain_enum domain, enum language language,
1309 struct field_of_this_result *is_a_field_of_this)
1310 {
1311 struct symbol *sym;
1312 const struct language_defn *langdef;
1313
1314 /* Make sure we do something sensible with is_a_field_of_this, since
1315 the callers that set this parameter to some non-null value will
1316 certainly use it later. If we don't set it, the contents of
1317 is_a_field_of_this are undefined. */
1318 if (is_a_field_of_this != NULL)
1319 memset (is_a_field_of_this, 0, sizeof (*is_a_field_of_this));
1320
1321 /* Search specified block and its superiors. Don't search
1322 STATIC_BLOCK or GLOBAL_BLOCK. */
1323
1324 sym = lookup_symbol_aux_local (name, block, domain, language);
1325 if (sym != NULL)
1326 return sym;
1327
1328 /* If requested to do so by the caller and if appropriate for LANGUAGE,
1329 check to see if NAME is a field of `this'. */
1330
1331 langdef = language_def (language);
1332
1333 /* Don't do this check if we are searching for a struct. It will
1334 not be found by check_field, but will be found by other
1335 means. */
1336 if (is_a_field_of_this != NULL && domain != STRUCT_DOMAIN)
1337 {
1338 struct symbol *sym = lookup_language_this (langdef, block);
1339
1340 if (sym)
1341 {
1342 struct type *t = sym->type;
1343
1344 /* I'm not really sure that type of this can ever
1345 be typedefed; just be safe. */
1346 CHECK_TYPEDEF (t);
1347 if (TYPE_CODE (t) == TYPE_CODE_PTR
1348 || TYPE_CODE (t) == TYPE_CODE_REF)
1349 t = TYPE_TARGET_TYPE (t);
1350
1351 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
1352 && TYPE_CODE (t) != TYPE_CODE_UNION)
1353 error (_("Internal error: `%s' is not an aggregate"),
1354 langdef->la_name_of_this);
1355
1356 if (check_field (t, name, is_a_field_of_this))
1357 return NULL;
1358 }
1359 }
1360
1361 /* Now do whatever is appropriate for LANGUAGE to look
1362 up static and global variables. */
1363
1364 sym = langdef->la_lookup_symbol_nonlocal (name, block, domain);
1365 if (sym != NULL)
1366 return sym;
1367
1368 /* Now search all static file-level symbols. Not strictly correct,
1369 but more useful than an error. */
1370
1371 return lookup_static_symbol_aux (name, domain);
1372 }
1373
1374 /* Search all static file-level symbols for NAME from DOMAIN. Do the symtabs
1375 first, then check the psymtabs. If a psymtab indicates the existence of the
1376 desired name as a file-level static, then do psymtab-to-symtab conversion on
1377 the fly and return the found symbol. */
1378
1379 struct symbol *
1380 lookup_static_symbol_aux (const char *name, const domain_enum domain)
1381 {
1382 struct objfile *objfile;
1383 struct symbol *sym;
1384
1385 sym = lookup_symbol_aux_symtabs (STATIC_BLOCK, name, domain);
1386 if (sym != NULL)
1387 return sym;
1388
1389 ALL_OBJFILES (objfile)
1390 {
1391 sym = lookup_symbol_aux_quick (objfile, STATIC_BLOCK, name, domain);
1392 if (sym != NULL)
1393 return sym;
1394 }
1395
1396 return NULL;
1397 }
1398
1399 /* Check to see if the symbol is defined in BLOCK or its superiors.
1400 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
1401
1402 static struct symbol *
1403 lookup_symbol_aux_local (const char *name, const struct block *block,
1404 const domain_enum domain,
1405 enum language language)
1406 {
1407 struct symbol *sym;
1408 const struct block *static_block = block_static_block (block);
1409 const char *scope = block_scope (block);
1410
1411 /* Check if either no block is specified or it's a global block. */
1412
1413 if (static_block == NULL)
1414 return NULL;
1415
1416 while (block != static_block)
1417 {
1418 sym = lookup_symbol_aux_block (name, block, domain);
1419 if (sym != NULL)
1420 return sym;
1421
1422 if (language == language_cplus || language == language_fortran)
1423 {
1424 sym = cp_lookup_symbol_imports_or_template (scope, name, block,
1425 domain);
1426 if (sym != NULL)
1427 return sym;
1428 }
1429
1430 if (BLOCK_FUNCTION (block) != NULL && block_inlined_p (block))
1431 break;
1432 block = BLOCK_SUPERBLOCK (block);
1433 }
1434
1435 /* We've reached the edge of the function without finding a result. */
1436
1437 return NULL;
1438 }
1439
1440 /* Look up OBJFILE to BLOCK. */
1441
1442 struct objfile *
1443 lookup_objfile_from_block (const struct block *block)
1444 {
1445 struct objfile *obj;
1446 struct symtab *s;
1447
1448 if (block == NULL)
1449 return NULL;
1450
1451 block = block_global_block (block);
1452 /* Go through SYMTABS. */
1453 ALL_SYMTABS (obj, s)
1454 if (block == BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK))
1455 {
1456 if (obj->separate_debug_objfile_backlink)
1457 obj = obj->separate_debug_objfile_backlink;
1458
1459 return obj;
1460 }
1461
1462 return NULL;
1463 }
1464
1465 /* Look up a symbol in a block; if found, fixup the symbol, and set
1466 block_found appropriately. */
1467
1468 struct symbol *
1469 lookup_symbol_aux_block (const char *name, const struct block *block,
1470 const domain_enum domain)
1471 {
1472 struct symbol *sym;
1473
1474 sym = lookup_block_symbol (block, name, domain);
1475 if (sym)
1476 {
1477 block_found = block;
1478 return fixup_symbol_section (sym, NULL);
1479 }
1480
1481 return NULL;
1482 }
1483
1484 /* Check all global symbols in OBJFILE in symtabs and
1485 psymtabs. */
1486
1487 struct symbol *
1488 lookup_global_symbol_from_objfile (const struct objfile *main_objfile,
1489 const char *name,
1490 const domain_enum domain)
1491 {
1492 const struct objfile *objfile;
1493 struct symbol *sym;
1494 struct blockvector *bv;
1495 const struct block *block;
1496 struct symtab *s;
1497
1498 for (objfile = main_objfile;
1499 objfile;
1500 objfile = objfile_separate_debug_iterate (main_objfile, objfile))
1501 {
1502 /* Go through symtabs. */
1503 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
1504 {
1505 bv = BLOCKVECTOR (s);
1506 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1507 sym = lookup_block_symbol (block, name, domain);
1508 if (sym)
1509 {
1510 block_found = block;
1511 return fixup_symbol_section (sym, (struct objfile *)objfile);
1512 }
1513 }
1514
1515 sym = lookup_symbol_aux_quick ((struct objfile *) objfile, GLOBAL_BLOCK,
1516 name, domain);
1517 if (sym)
1518 return sym;
1519 }
1520
1521 return NULL;
1522 }
1523
1524 /* Check to see if the symbol is defined in one of the OBJFILE's
1525 symtabs. BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
1526 depending on whether or not we want to search global symbols or
1527 static symbols. */
1528
1529 static struct symbol *
1530 lookup_symbol_aux_objfile (struct objfile *objfile, int block_index,
1531 const char *name, const domain_enum domain)
1532 {
1533 struct symbol *sym = NULL;
1534 struct blockvector *bv;
1535 const struct block *block;
1536 struct symtab *s;
1537
1538 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
1539 {
1540 bv = BLOCKVECTOR (s);
1541 block = BLOCKVECTOR_BLOCK (bv, block_index);
1542 sym = lookup_block_symbol (block, name, domain);
1543 if (sym)
1544 {
1545 block_found = block;
1546 return fixup_symbol_section (sym, objfile);
1547 }
1548 }
1549
1550 return NULL;
1551 }
1552
1553 /* Same as lookup_symbol_aux_objfile, except that it searches all
1554 objfiles. Return the first match found. */
1555
1556 static struct symbol *
1557 lookup_symbol_aux_symtabs (int block_index, const char *name,
1558 const domain_enum domain)
1559 {
1560 struct symbol *sym;
1561 struct objfile *objfile;
1562
1563 ALL_OBJFILES (objfile)
1564 {
1565 sym = lookup_symbol_aux_objfile (objfile, block_index, name, domain);
1566 if (sym)
1567 return sym;
1568 }
1569
1570 return NULL;
1571 }
1572
1573 /* Wrapper around lookup_symbol_aux_objfile for search_symbols.
1574 Look up LINKAGE_NAME in DOMAIN in the global and static blocks of OBJFILE
1575 and all related objfiles. */
1576
1577 static struct symbol *
1578 lookup_symbol_in_objfile_from_linkage_name (struct objfile *objfile,
1579 const char *linkage_name,
1580 domain_enum domain)
1581 {
1582 enum language lang = current_language->la_language;
1583 const char *modified_name;
1584 struct cleanup *cleanup = demangle_for_lookup (linkage_name, lang,
1585 &modified_name);
1586 struct objfile *main_objfile, *cur_objfile;
1587
1588 if (objfile->separate_debug_objfile_backlink)
1589 main_objfile = objfile->separate_debug_objfile_backlink;
1590 else
1591 main_objfile = objfile;
1592
1593 for (cur_objfile = main_objfile;
1594 cur_objfile;
1595 cur_objfile = objfile_separate_debug_iterate (main_objfile, cur_objfile))
1596 {
1597 struct symbol *sym;
1598
1599 sym = lookup_symbol_aux_objfile (cur_objfile, GLOBAL_BLOCK,
1600 modified_name, domain);
1601 if (sym == NULL)
1602 sym = lookup_symbol_aux_objfile (cur_objfile, STATIC_BLOCK,
1603 modified_name, domain);
1604 if (sym != NULL)
1605 {
1606 do_cleanups (cleanup);
1607 return sym;
1608 }
1609 }
1610
1611 do_cleanups (cleanup);
1612 return NULL;
1613 }
1614
1615 /* A helper function for lookup_symbol_aux that interfaces with the
1616 "quick" symbol table functions. */
1617
1618 static struct symbol *
1619 lookup_symbol_aux_quick (struct objfile *objfile, int kind,
1620 const char *name, const domain_enum domain)
1621 {
1622 struct symtab *symtab;
1623 struct blockvector *bv;
1624 const struct block *block;
1625 struct symbol *sym;
1626
1627 if (!objfile->sf)
1628 return NULL;
1629 symtab = objfile->sf->qf->lookup_symbol (objfile, kind, name, domain);
1630 if (!symtab)
1631 return NULL;
1632
1633 bv = BLOCKVECTOR (symtab);
1634 block = BLOCKVECTOR_BLOCK (bv, kind);
1635 sym = lookup_block_symbol (block, name, domain);
1636 if (!sym)
1637 {
1638 /* This shouldn't be necessary, but as a last resort try
1639 looking in the statics even though the psymtab claimed
1640 the symbol was global, or vice-versa. It's possible
1641 that the psymtab gets it wrong in some cases. */
1642
1643 /* FIXME: carlton/2002-09-30: Should we really do that?
1644 If that happens, isn't it likely to be a GDB error, in
1645 which case we should fix the GDB error rather than
1646 silently dealing with it here? So I'd vote for
1647 removing the check for the symbol in the other
1648 block. */
1649 block = BLOCKVECTOR_BLOCK (bv,
1650 kind == GLOBAL_BLOCK ?
1651 STATIC_BLOCK : GLOBAL_BLOCK);
1652 sym = lookup_block_symbol (block, name, domain);
1653 if (!sym)
1654 error (_("\
1655 Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n\
1656 %s may be an inlined function, or may be a template function\n\
1657 (if a template, try specifying an instantiation: %s<type>)."),
1658 kind == GLOBAL_BLOCK ? "global" : "static",
1659 name, symtab_to_filename_for_display (symtab), name, name);
1660 }
1661 return fixup_symbol_section (sym, objfile);
1662 }
1663
1664 /* A default version of lookup_symbol_nonlocal for use by languages
1665 that can't think of anything better to do. This implements the C
1666 lookup rules. */
1667
1668 struct symbol *
1669 basic_lookup_symbol_nonlocal (const char *name,
1670 const struct block *block,
1671 const domain_enum domain)
1672 {
1673 struct symbol *sym;
1674
1675 /* NOTE: carlton/2003-05-19: The comments below were written when
1676 this (or what turned into this) was part of lookup_symbol_aux;
1677 I'm much less worried about these questions now, since these
1678 decisions have turned out well, but I leave these comments here
1679 for posterity. */
1680
1681 /* NOTE: carlton/2002-12-05: There is a question as to whether or
1682 not it would be appropriate to search the current global block
1683 here as well. (That's what this code used to do before the
1684 is_a_field_of_this check was moved up.) On the one hand, it's
1685 redundant with the lookup_symbol_aux_symtabs search that happens
1686 next. On the other hand, if decode_line_1 is passed an argument
1687 like filename:var, then the user presumably wants 'var' to be
1688 searched for in filename. On the third hand, there shouldn't be
1689 multiple global variables all of which are named 'var', and it's
1690 not like decode_line_1 has ever restricted its search to only
1691 global variables in a single filename. All in all, only
1692 searching the static block here seems best: it's correct and it's
1693 cleanest. */
1694
1695 /* NOTE: carlton/2002-12-05: There's also a possible performance
1696 issue here: if you usually search for global symbols in the
1697 current file, then it would be slightly better to search the
1698 current global block before searching all the symtabs. But there
1699 are other factors that have a much greater effect on performance
1700 than that one, so I don't think we should worry about that for
1701 now. */
1702
1703 sym = lookup_symbol_static (name, block, domain);
1704 if (sym != NULL)
1705 return sym;
1706
1707 return lookup_symbol_global (name, block, domain);
1708 }
1709
1710 /* Lookup a symbol in the static block associated to BLOCK, if there
1711 is one; do nothing if BLOCK is NULL or a global block. */
1712
1713 struct symbol *
1714 lookup_symbol_static (const char *name,
1715 const struct block *block,
1716 const domain_enum domain)
1717 {
1718 const struct block *static_block = block_static_block (block);
1719
1720 if (static_block != NULL)
1721 return lookup_symbol_aux_block (name, static_block, domain);
1722 else
1723 return NULL;
1724 }
1725
1726 /* Private data to be used with lookup_symbol_global_iterator_cb. */
1727
1728 struct global_sym_lookup_data
1729 {
1730 /* The name of the symbol we are searching for. */
1731 const char *name;
1732
1733 /* The domain to use for our search. */
1734 domain_enum domain;
1735
1736 /* The field where the callback should store the symbol if found.
1737 It should be initialized to NULL before the search is started. */
1738 struct symbol *result;
1739 };
1740
1741 /* A callback function for gdbarch_iterate_over_objfiles_in_search_order.
1742 It searches by name for a symbol in the GLOBAL_BLOCK of the given
1743 OBJFILE. The arguments for the search are passed via CB_DATA,
1744 which in reality is a pointer to struct global_sym_lookup_data. */
1745
1746 static int
1747 lookup_symbol_global_iterator_cb (struct objfile *objfile,
1748 void *cb_data)
1749 {
1750 struct global_sym_lookup_data *data =
1751 (struct global_sym_lookup_data *) cb_data;
1752
1753 gdb_assert (data->result == NULL);
1754
1755 data->result = lookup_symbol_aux_objfile (objfile, GLOBAL_BLOCK,
1756 data->name, data->domain);
1757 if (data->result == NULL)
1758 data->result = lookup_symbol_aux_quick (objfile, GLOBAL_BLOCK,
1759 data->name, data->domain);
1760
1761 /* If we found a match, tell the iterator to stop. Otherwise,
1762 keep going. */
1763 return (data->result != NULL);
1764 }
1765
1766 /* Lookup a symbol in all files' global blocks (searching psymtabs if
1767 necessary). */
1768
1769 struct symbol *
1770 lookup_symbol_global (const char *name,
1771 const struct block *block,
1772 const domain_enum domain)
1773 {
1774 struct symbol *sym = NULL;
1775 struct objfile *objfile = NULL;
1776 struct global_sym_lookup_data lookup_data;
1777
1778 /* Call library-specific lookup procedure. */
1779 objfile = lookup_objfile_from_block (block);
1780 if (objfile != NULL)
1781 sym = solib_global_lookup (objfile, name, domain);
1782 if (sym != NULL)
1783 return sym;
1784
1785 memset (&lookup_data, 0, sizeof (lookup_data));
1786 lookup_data.name = name;
1787 lookup_data.domain = domain;
1788 gdbarch_iterate_over_objfiles_in_search_order
1789 (objfile != NULL ? get_objfile_arch (objfile) : target_gdbarch (),
1790 lookup_symbol_global_iterator_cb, &lookup_data, objfile);
1791
1792 return lookup_data.result;
1793 }
1794
1795 int
1796 symbol_matches_domain (enum language symbol_language,
1797 domain_enum symbol_domain,
1798 domain_enum domain)
1799 {
1800 /* For C++ "struct foo { ... }" also defines a typedef for "foo".
1801 A Java class declaration also defines a typedef for the class.
1802 Similarly, any Ada type declaration implicitly defines a typedef. */
1803 if (symbol_language == language_cplus
1804 || symbol_language == language_d
1805 || symbol_language == language_java
1806 || symbol_language == language_ada)
1807 {
1808 if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN)
1809 && symbol_domain == STRUCT_DOMAIN)
1810 return 1;
1811 }
1812 /* For all other languages, strict match is required. */
1813 return (symbol_domain == domain);
1814 }
1815
1816 /* Look up a type named NAME in the struct_domain. The type returned
1817 must not be opaque -- i.e., must have at least one field
1818 defined. */
1819
1820 struct type *
1821 lookup_transparent_type (const char *name)
1822 {
1823 return current_language->la_lookup_transparent_type (name);
1824 }
1825
1826 /* A helper for basic_lookup_transparent_type that interfaces with the
1827 "quick" symbol table functions. */
1828
1829 static struct type *
1830 basic_lookup_transparent_type_quick (struct objfile *objfile, int kind,
1831 const char *name)
1832 {
1833 struct symtab *symtab;
1834 struct blockvector *bv;
1835 struct block *block;
1836 struct symbol *sym;
1837
1838 if (!objfile->sf)
1839 return NULL;
1840 symtab = objfile->sf->qf->lookup_symbol (objfile, kind, name, STRUCT_DOMAIN);
1841 if (!symtab)
1842 return NULL;
1843
1844 bv = BLOCKVECTOR (symtab);
1845 block = BLOCKVECTOR_BLOCK (bv, kind);
1846 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1847 if (!sym)
1848 {
1849 int other_kind = kind == GLOBAL_BLOCK ? STATIC_BLOCK : GLOBAL_BLOCK;
1850
1851 /* This shouldn't be necessary, but as a last resort
1852 * try looking in the 'other kind' even though the psymtab
1853 * claimed the symbol was one thing. It's possible that
1854 * the psymtab gets it wrong in some cases.
1855 */
1856 block = BLOCKVECTOR_BLOCK (bv, other_kind);
1857 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1858 if (!sym)
1859 /* FIXME; error is wrong in one case. */
1860 error (_("\
1861 Internal: global symbol `%s' found in %s psymtab but not in symtab.\n\
1862 %s may be an inlined function, or may be a template function\n\
1863 (if a template, try specifying an instantiation: %s<type>)."),
1864 name, symtab_to_filename_for_display (symtab), name, name);
1865 }
1866 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1867 return SYMBOL_TYPE (sym);
1868
1869 return NULL;
1870 }
1871
1872 /* The standard implementation of lookup_transparent_type. This code
1873 was modeled on lookup_symbol -- the parts not relevant to looking
1874 up types were just left out. In particular it's assumed here that
1875 types are available in struct_domain and only at file-static or
1876 global blocks. */
1877
1878 struct type *
1879 basic_lookup_transparent_type (const char *name)
1880 {
1881 struct symbol *sym;
1882 struct symtab *s = NULL;
1883 struct blockvector *bv;
1884 struct objfile *objfile;
1885 struct block *block;
1886 struct type *t;
1887
1888 /* Now search all the global symbols. Do the symtab's first, then
1889 check the psymtab's. If a psymtab indicates the existence
1890 of the desired name as a global, then do psymtab-to-symtab
1891 conversion on the fly and return the found symbol. */
1892
1893 ALL_OBJFILES (objfile)
1894 {
1895 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
1896 {
1897 bv = BLOCKVECTOR (s);
1898 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1899 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1900 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1901 {
1902 return SYMBOL_TYPE (sym);
1903 }
1904 }
1905 }
1906
1907 ALL_OBJFILES (objfile)
1908 {
1909 t = basic_lookup_transparent_type_quick (objfile, GLOBAL_BLOCK, name);
1910 if (t)
1911 return t;
1912 }
1913
1914 /* Now search the static file-level symbols.
1915 Not strictly correct, but more useful than an error.
1916 Do the symtab's first, then
1917 check the psymtab's. If a psymtab indicates the existence
1918 of the desired name as a file-level static, then do psymtab-to-symtab
1919 conversion on the fly and return the found symbol. */
1920
1921 ALL_OBJFILES (objfile)
1922 {
1923 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
1924 {
1925 bv = BLOCKVECTOR (s);
1926 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
1927 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1928 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1929 {
1930 return SYMBOL_TYPE (sym);
1931 }
1932 }
1933 }
1934
1935 ALL_OBJFILES (objfile)
1936 {
1937 t = basic_lookup_transparent_type_quick (objfile, STATIC_BLOCK, name);
1938 if (t)
1939 return t;
1940 }
1941
1942 return (struct type *) 0;
1943 }
1944
1945 /* Find the name of the file containing main(). */
1946 /* FIXME: What about languages without main() or specially linked
1947 executables that have no main() ? */
1948
1949 const char *
1950 find_main_filename (void)
1951 {
1952 struct objfile *objfile;
1953 char *name = main_name ();
1954
1955 ALL_OBJFILES (objfile)
1956 {
1957 const char *result;
1958
1959 if (!objfile->sf)
1960 continue;
1961 result = objfile->sf->qf->find_symbol_file (objfile, name);
1962 if (result)
1963 return result;
1964 }
1965 return (NULL);
1966 }
1967
1968 /* Search BLOCK for symbol NAME in DOMAIN.
1969
1970 Note that if NAME is the demangled form of a C++ symbol, we will fail
1971 to find a match during the binary search of the non-encoded names, but
1972 for now we don't worry about the slight inefficiency of looking for
1973 a match we'll never find, since it will go pretty quick. Once the
1974 binary search terminates, we drop through and do a straight linear
1975 search on the symbols. Each symbol which is marked as being a ObjC/C++
1976 symbol (language_cplus or language_objc set) has both the encoded and
1977 non-encoded names tested for a match. */
1978
1979 struct symbol *
1980 lookup_block_symbol (const struct block *block, const char *name,
1981 const domain_enum domain)
1982 {
1983 struct block_iterator iter;
1984 struct symbol *sym;
1985
1986 if (!BLOCK_FUNCTION (block))
1987 {
1988 for (sym = block_iter_name_first (block, name, &iter);
1989 sym != NULL;
1990 sym = block_iter_name_next (name, &iter))
1991 {
1992 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
1993 SYMBOL_DOMAIN (sym), domain))
1994 return sym;
1995 }
1996 return NULL;
1997 }
1998 else
1999 {
2000 /* Note that parameter symbols do not always show up last in the
2001 list; this loop makes sure to take anything else other than
2002 parameter symbols first; it only uses parameter symbols as a
2003 last resort. Note that this only takes up extra computation
2004 time on a match. */
2005
2006 struct symbol *sym_found = NULL;
2007
2008 for (sym = block_iter_name_first (block, name, &iter);
2009 sym != NULL;
2010 sym = block_iter_name_next (name, &iter))
2011 {
2012 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
2013 SYMBOL_DOMAIN (sym), domain))
2014 {
2015 sym_found = sym;
2016 if (!SYMBOL_IS_ARGUMENT (sym))
2017 {
2018 break;
2019 }
2020 }
2021 }
2022 return (sym_found); /* Will be NULL if not found. */
2023 }
2024 }
2025
2026 /* Iterate over the symbols named NAME, matching DOMAIN, in BLOCK.
2027
2028 For each symbol that matches, CALLBACK is called. The symbol and
2029 DATA are passed to the callback.
2030
2031 If CALLBACK returns zero, the iteration ends. Otherwise, the
2032 search continues. */
2033
2034 void
2035 iterate_over_symbols (const struct block *block, const char *name,
2036 const domain_enum domain,
2037 symbol_found_callback_ftype *callback,
2038 void *data)
2039 {
2040 struct block_iterator iter;
2041 struct symbol *sym;
2042
2043 for (sym = block_iter_name_first (block, name, &iter);
2044 sym != NULL;
2045 sym = block_iter_name_next (name, &iter))
2046 {
2047 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
2048 SYMBOL_DOMAIN (sym), domain))
2049 {
2050 if (!callback (sym, data))
2051 return;
2052 }
2053 }
2054 }
2055
2056 /* Find the symtab associated with PC and SECTION. Look through the
2057 psymtabs and read in another symtab if necessary. */
2058
2059 struct symtab *
2060 find_pc_sect_symtab (CORE_ADDR pc, struct obj_section *section)
2061 {
2062 struct block *b;
2063 struct blockvector *bv;
2064 struct symtab *s = NULL;
2065 struct symtab *best_s = NULL;
2066 struct objfile *objfile;
2067 CORE_ADDR distance = 0;
2068 struct minimal_symbol *msymbol;
2069
2070 /* If we know that this is not a text address, return failure. This is
2071 necessary because we loop based on the block's high and low code
2072 addresses, which do not include the data ranges, and because
2073 we call find_pc_sect_psymtab which has a similar restriction based
2074 on the partial_symtab's texthigh and textlow. */
2075 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
2076 if (msymbol
2077 && (MSYMBOL_TYPE (msymbol) == mst_data
2078 || MSYMBOL_TYPE (msymbol) == mst_bss
2079 || MSYMBOL_TYPE (msymbol) == mst_abs
2080 || MSYMBOL_TYPE (msymbol) == mst_file_data
2081 || MSYMBOL_TYPE (msymbol) == mst_file_bss))
2082 return NULL;
2083
2084 /* Search all symtabs for the one whose file contains our address, and which
2085 is the smallest of all the ones containing the address. This is designed
2086 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
2087 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
2088 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
2089
2090 This happens for native ecoff format, where code from included files
2091 gets its own symtab. The symtab for the included file should have
2092 been read in already via the dependency mechanism.
2093 It might be swifter to create several symtabs with the same name
2094 like xcoff does (I'm not sure).
2095
2096 It also happens for objfiles that have their functions reordered.
2097 For these, the symtab we are looking for is not necessarily read in. */
2098
2099 ALL_PRIMARY_SYMTABS (objfile, s)
2100 {
2101 bv = BLOCKVECTOR (s);
2102 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
2103
2104 if (BLOCK_START (b) <= pc
2105 && BLOCK_END (b) > pc
2106 && (distance == 0
2107 || BLOCK_END (b) - BLOCK_START (b) < distance))
2108 {
2109 /* For an objfile that has its functions reordered,
2110 find_pc_psymtab will find the proper partial symbol table
2111 and we simply return its corresponding symtab. */
2112 /* In order to better support objfiles that contain both
2113 stabs and coff debugging info, we continue on if a psymtab
2114 can't be found. */
2115 if ((objfile->flags & OBJF_REORDERED) && objfile->sf)
2116 {
2117 struct symtab *result;
2118
2119 result
2120 = objfile->sf->qf->find_pc_sect_symtab (objfile,
2121 msymbol,
2122 pc, section,
2123 0);
2124 if (result)
2125 return result;
2126 }
2127 if (section != 0)
2128 {
2129 struct block_iterator iter;
2130 struct symbol *sym = NULL;
2131
2132 ALL_BLOCK_SYMBOLS (b, iter, sym)
2133 {
2134 fixup_symbol_section (sym, objfile);
2135 if (matching_obj_sections (SYMBOL_OBJ_SECTION (sym), section))
2136 break;
2137 }
2138 if (sym == NULL)
2139 continue; /* No symbol in this symtab matches
2140 section. */
2141 }
2142 distance = BLOCK_END (b) - BLOCK_START (b);
2143 best_s = s;
2144 }
2145 }
2146
2147 if (best_s != NULL)
2148 return (best_s);
2149
2150 /* Not found in symtabs, search the "quick" symtabs (e.g. psymtabs). */
2151
2152 ALL_OBJFILES (objfile)
2153 {
2154 struct symtab *result;
2155
2156 if (!objfile->sf)
2157 continue;
2158 result = objfile->sf->qf->find_pc_sect_symtab (objfile,
2159 msymbol,
2160 pc, section,
2161 1);
2162 if (result)
2163 return result;
2164 }
2165
2166 return NULL;
2167 }
2168
2169 /* Find the symtab associated with PC. Look through the psymtabs and read
2170 in another symtab if necessary. Backward compatibility, no section. */
2171
2172 struct symtab *
2173 find_pc_symtab (CORE_ADDR pc)
2174 {
2175 return find_pc_sect_symtab (pc, find_pc_mapped_section (pc));
2176 }
2177 \f
2178
2179 /* Find the source file and line number for a given PC value and SECTION.
2180 Return a structure containing a symtab pointer, a line number,
2181 and a pc range for the entire source line.
2182 The value's .pc field is NOT the specified pc.
2183 NOTCURRENT nonzero means, if specified pc is on a line boundary,
2184 use the line that ends there. Otherwise, in that case, the line
2185 that begins there is used. */
2186
2187 /* The big complication here is that a line may start in one file, and end just
2188 before the start of another file. This usually occurs when you #include
2189 code in the middle of a subroutine. To properly find the end of a line's PC
2190 range, we must search all symtabs associated with this compilation unit, and
2191 find the one whose first PC is closer than that of the next line in this
2192 symtab. */
2193
2194 /* If it's worth the effort, we could be using a binary search. */
2195
2196 struct symtab_and_line
2197 find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent)
2198 {
2199 struct symtab *s;
2200 struct linetable *l;
2201 int len;
2202 int i;
2203 struct linetable_entry *item;
2204 struct symtab_and_line val;
2205 struct blockvector *bv;
2206 struct minimal_symbol *msymbol;
2207 struct minimal_symbol *mfunsym;
2208 struct objfile *objfile;
2209
2210 /* Info on best line seen so far, and where it starts, and its file. */
2211
2212 struct linetable_entry *best = NULL;
2213 CORE_ADDR best_end = 0;
2214 struct symtab *best_symtab = 0;
2215
2216 /* Store here the first line number
2217 of a file which contains the line at the smallest pc after PC.
2218 If we don't find a line whose range contains PC,
2219 we will use a line one less than this,
2220 with a range from the start of that file to the first line's pc. */
2221 struct linetable_entry *alt = NULL;
2222
2223 /* Info on best line seen in this file. */
2224
2225 struct linetable_entry *prev;
2226
2227 /* If this pc is not from the current frame,
2228 it is the address of the end of a call instruction.
2229 Quite likely that is the start of the following statement.
2230 But what we want is the statement containing the instruction.
2231 Fudge the pc to make sure we get that. */
2232
2233 init_sal (&val); /* initialize to zeroes */
2234
2235 val.pspace = current_program_space;
2236
2237 /* It's tempting to assume that, if we can't find debugging info for
2238 any function enclosing PC, that we shouldn't search for line
2239 number info, either. However, GAS can emit line number info for
2240 assembly files --- very helpful when debugging hand-written
2241 assembly code. In such a case, we'd have no debug info for the
2242 function, but we would have line info. */
2243
2244 if (notcurrent)
2245 pc -= 1;
2246
2247 /* elz: added this because this function returned the wrong
2248 information if the pc belongs to a stub (import/export)
2249 to call a shlib function. This stub would be anywhere between
2250 two functions in the target, and the line info was erroneously
2251 taken to be the one of the line before the pc. */
2252
2253 /* RT: Further explanation:
2254
2255 * We have stubs (trampolines) inserted between procedures.
2256 *
2257 * Example: "shr1" exists in a shared library, and a "shr1" stub also
2258 * exists in the main image.
2259 *
2260 * In the minimal symbol table, we have a bunch of symbols
2261 * sorted by start address. The stubs are marked as "trampoline",
2262 * the others appear as text. E.g.:
2263 *
2264 * Minimal symbol table for main image
2265 * main: code for main (text symbol)
2266 * shr1: stub (trampoline symbol)
2267 * foo: code for foo (text symbol)
2268 * ...
2269 * Minimal symbol table for "shr1" image:
2270 * ...
2271 * shr1: code for shr1 (text symbol)
2272 * ...
2273 *
2274 * So the code below is trying to detect if we are in the stub
2275 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
2276 * and if found, do the symbolization from the real-code address
2277 * rather than the stub address.
2278 *
2279 * Assumptions being made about the minimal symbol table:
2280 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
2281 * if we're really in the trampoline.s If we're beyond it (say
2282 * we're in "foo" in the above example), it'll have a closer
2283 * symbol (the "foo" text symbol for example) and will not
2284 * return the trampoline.
2285 * 2. lookup_minimal_symbol_text() will find a real text symbol
2286 * corresponding to the trampoline, and whose address will
2287 * be different than the trampoline address. I put in a sanity
2288 * check for the address being the same, to avoid an
2289 * infinite recursion.
2290 */
2291 msymbol = lookup_minimal_symbol_by_pc (pc);
2292 if (msymbol != NULL)
2293 if (MSYMBOL_TYPE (msymbol) == mst_solib_trampoline)
2294 {
2295 mfunsym = lookup_minimal_symbol_text (SYMBOL_LINKAGE_NAME (msymbol),
2296 NULL);
2297 if (mfunsym == NULL)
2298 /* I eliminated this warning since it is coming out
2299 * in the following situation:
2300 * gdb shmain // test program with shared libraries
2301 * (gdb) break shr1 // function in shared lib
2302 * Warning: In stub for ...
2303 * In the above situation, the shared lib is not loaded yet,
2304 * so of course we can't find the real func/line info,
2305 * but the "break" still works, and the warning is annoying.
2306 * So I commented out the warning. RT */
2307 /* warning ("In stub for %s; unable to find real function/line info",
2308 SYMBOL_LINKAGE_NAME (msymbol)); */
2309 ;
2310 /* fall through */
2311 else if (SYMBOL_VALUE_ADDRESS (mfunsym)
2312 == SYMBOL_VALUE_ADDRESS (msymbol))
2313 /* Avoid infinite recursion */
2314 /* See above comment about why warning is commented out. */
2315 /* warning ("In stub for %s; unable to find real function/line info",
2316 SYMBOL_LINKAGE_NAME (msymbol)); */
2317 ;
2318 /* fall through */
2319 else
2320 return find_pc_line (SYMBOL_VALUE_ADDRESS (mfunsym), 0);
2321 }
2322
2323
2324 s = find_pc_sect_symtab (pc, section);
2325 if (!s)
2326 {
2327 /* If no symbol information, return previous pc. */
2328 if (notcurrent)
2329 pc++;
2330 val.pc = pc;
2331 return val;
2332 }
2333
2334 bv = BLOCKVECTOR (s);
2335 objfile = s->objfile;
2336
2337 /* Look at all the symtabs that share this blockvector.
2338 They all have the same apriori range, that we found was right;
2339 but they have different line tables. */
2340
2341 ALL_OBJFILE_SYMTABS (objfile, s)
2342 {
2343 if (BLOCKVECTOR (s) != bv)
2344 continue;
2345
2346 /* Find the best line in this symtab. */
2347 l = LINETABLE (s);
2348 if (!l)
2349 continue;
2350 len = l->nitems;
2351 if (len <= 0)
2352 {
2353 /* I think len can be zero if the symtab lacks line numbers
2354 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
2355 I'm not sure which, and maybe it depends on the symbol
2356 reader). */
2357 continue;
2358 }
2359
2360 prev = NULL;
2361 item = l->item; /* Get first line info. */
2362
2363 /* Is this file's first line closer than the first lines of other files?
2364 If so, record this file, and its first line, as best alternate. */
2365 if (item->pc > pc && (!alt || item->pc < alt->pc))
2366 alt = item;
2367
2368 for (i = 0; i < len; i++, item++)
2369 {
2370 /* Leave prev pointing to the linetable entry for the last line
2371 that started at or before PC. */
2372 if (item->pc > pc)
2373 break;
2374
2375 prev = item;
2376 }
2377
2378 /* At this point, prev points at the line whose start addr is <= pc, and
2379 item points at the next line. If we ran off the end of the linetable
2380 (pc >= start of the last line), then prev == item. If pc < start of
2381 the first line, prev will not be set. */
2382
2383 /* Is this file's best line closer than the best in the other files?
2384 If so, record this file, and its best line, as best so far. Don't
2385 save prev if it represents the end of a function (i.e. line number
2386 0) instead of a real line. */
2387
2388 if (prev && prev->line && (!best || prev->pc > best->pc))
2389 {
2390 best = prev;
2391 best_symtab = s;
2392
2393 /* Discard BEST_END if it's before the PC of the current BEST. */
2394 if (best_end <= best->pc)
2395 best_end = 0;
2396 }
2397
2398 /* If another line (denoted by ITEM) is in the linetable and its
2399 PC is after BEST's PC, but before the current BEST_END, then
2400 use ITEM's PC as the new best_end. */
2401 if (best && i < len && item->pc > best->pc
2402 && (best_end == 0 || best_end > item->pc))
2403 best_end = item->pc;
2404 }
2405
2406 if (!best_symtab)
2407 {
2408 /* If we didn't find any line number info, just return zeros.
2409 We used to return alt->line - 1 here, but that could be
2410 anywhere; if we don't have line number info for this PC,
2411 don't make some up. */
2412 val.pc = pc;
2413 }
2414 else if (best->line == 0)
2415 {
2416 /* If our best fit is in a range of PC's for which no line
2417 number info is available (line number is zero) then we didn't
2418 find any valid line information. */
2419 val.pc = pc;
2420 }
2421 else
2422 {
2423 val.symtab = best_symtab;
2424 val.line = best->line;
2425 val.pc = best->pc;
2426 if (best_end && (!alt || best_end < alt->pc))
2427 val.end = best_end;
2428 else if (alt)
2429 val.end = alt->pc;
2430 else
2431 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
2432 }
2433 val.section = section;
2434 return val;
2435 }
2436
2437 /* Backward compatibility (no section). */
2438
2439 struct symtab_and_line
2440 find_pc_line (CORE_ADDR pc, int notcurrent)
2441 {
2442 struct obj_section *section;
2443
2444 section = find_pc_overlay (pc);
2445 if (pc_in_unmapped_range (pc, section))
2446 pc = overlay_mapped_address (pc, section);
2447 return find_pc_sect_line (pc, section, notcurrent);
2448 }
2449 \f
2450 /* Find line number LINE in any symtab whose name is the same as
2451 SYMTAB.
2452
2453 If found, return the symtab that contains the linetable in which it was
2454 found, set *INDEX to the index in the linetable of the best entry
2455 found, and set *EXACT_MATCH nonzero if the value returned is an
2456 exact match.
2457
2458 If not found, return NULL. */
2459
2460 struct symtab *
2461 find_line_symtab (struct symtab *symtab, int line,
2462 int *index, int *exact_match)
2463 {
2464 int exact = 0; /* Initialized here to avoid a compiler warning. */
2465
2466 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
2467 so far seen. */
2468
2469 int best_index;
2470 struct linetable *best_linetable;
2471 struct symtab *best_symtab;
2472
2473 /* First try looking it up in the given symtab. */
2474 best_linetable = LINETABLE (symtab);
2475 best_symtab = symtab;
2476 best_index = find_line_common (best_linetable, line, &exact, 0);
2477 if (best_index < 0 || !exact)
2478 {
2479 /* Didn't find an exact match. So we better keep looking for
2480 another symtab with the same name. In the case of xcoff,
2481 multiple csects for one source file (produced by IBM's FORTRAN
2482 compiler) produce multiple symtabs (this is unavoidable
2483 assuming csects can be at arbitrary places in memory and that
2484 the GLOBAL_BLOCK of a symtab has a begin and end address). */
2485
2486 /* BEST is the smallest linenumber > LINE so far seen,
2487 or 0 if none has been seen so far.
2488 BEST_INDEX and BEST_LINETABLE identify the item for it. */
2489 int best;
2490
2491 struct objfile *objfile;
2492 struct symtab *s;
2493
2494 if (best_index >= 0)
2495 best = best_linetable->item[best_index].line;
2496 else
2497 best = 0;
2498
2499 ALL_OBJFILES (objfile)
2500 {
2501 if (objfile->sf)
2502 objfile->sf->qf->expand_symtabs_with_fullname (objfile,
2503 symtab_to_fullname (symtab));
2504 }
2505
2506 ALL_SYMTABS (objfile, s)
2507 {
2508 struct linetable *l;
2509 int ind;
2510
2511 if (FILENAME_CMP (symtab->filename, s->filename) != 0)
2512 continue;
2513 if (FILENAME_CMP (symtab_to_fullname (symtab),
2514 symtab_to_fullname (s)) != 0)
2515 continue;
2516 l = LINETABLE (s);
2517 ind = find_line_common (l, line, &exact, 0);
2518 if (ind >= 0)
2519 {
2520 if (exact)
2521 {
2522 best_index = ind;
2523 best_linetable = l;
2524 best_symtab = s;
2525 goto done;
2526 }
2527 if (best == 0 || l->item[ind].line < best)
2528 {
2529 best = l->item[ind].line;
2530 best_index = ind;
2531 best_linetable = l;
2532 best_symtab = s;
2533 }
2534 }
2535 }
2536 }
2537 done:
2538 if (best_index < 0)
2539 return NULL;
2540
2541 if (index)
2542 *index = best_index;
2543 if (exact_match)
2544 *exact_match = exact;
2545
2546 return best_symtab;
2547 }
2548
2549 /* Given SYMTAB, returns all the PCs function in the symtab that
2550 exactly match LINE. Returns NULL if there are no exact matches,
2551 but updates BEST_ITEM in this case. */
2552
2553 VEC (CORE_ADDR) *
2554 find_pcs_for_symtab_line (struct symtab *symtab, int line,
2555 struct linetable_entry **best_item)
2556 {
2557 int start = 0;
2558 VEC (CORE_ADDR) *result = NULL;
2559
2560 /* First, collect all the PCs that are at this line. */
2561 while (1)
2562 {
2563 int was_exact;
2564 int idx;
2565
2566 idx = find_line_common (LINETABLE (symtab), line, &was_exact, start);
2567 if (idx < 0)
2568 break;
2569
2570 if (!was_exact)
2571 {
2572 struct linetable_entry *item = &LINETABLE (symtab)->item[idx];
2573
2574 if (*best_item == NULL || item->line < (*best_item)->line)
2575 *best_item = item;
2576
2577 break;
2578 }
2579
2580 VEC_safe_push (CORE_ADDR, result, LINETABLE (symtab)->item[idx].pc);
2581 start = idx + 1;
2582 }
2583
2584 return result;
2585 }
2586
2587 \f
2588 /* Set the PC value for a given source file and line number and return true.
2589 Returns zero for invalid line number (and sets the PC to 0).
2590 The source file is specified with a struct symtab. */
2591
2592 int
2593 find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
2594 {
2595 struct linetable *l;
2596 int ind;
2597
2598 *pc = 0;
2599 if (symtab == 0)
2600 return 0;
2601
2602 symtab = find_line_symtab (symtab, line, &ind, NULL);
2603 if (symtab != NULL)
2604 {
2605 l = LINETABLE (symtab);
2606 *pc = l->item[ind].pc;
2607 return 1;
2608 }
2609 else
2610 return 0;
2611 }
2612
2613 /* Find the range of pc values in a line.
2614 Store the starting pc of the line into *STARTPTR
2615 and the ending pc (start of next line) into *ENDPTR.
2616 Returns 1 to indicate success.
2617 Returns 0 if could not find the specified line. */
2618
2619 int
2620 find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
2621 CORE_ADDR *endptr)
2622 {
2623 CORE_ADDR startaddr;
2624 struct symtab_and_line found_sal;
2625
2626 startaddr = sal.pc;
2627 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
2628 return 0;
2629
2630 /* This whole function is based on address. For example, if line 10 has
2631 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
2632 "info line *0x123" should say the line goes from 0x100 to 0x200
2633 and "info line *0x355" should say the line goes from 0x300 to 0x400.
2634 This also insures that we never give a range like "starts at 0x134
2635 and ends at 0x12c". */
2636
2637 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
2638 if (found_sal.line != sal.line)
2639 {
2640 /* The specified line (sal) has zero bytes. */
2641 *startptr = found_sal.pc;
2642 *endptr = found_sal.pc;
2643 }
2644 else
2645 {
2646 *startptr = found_sal.pc;
2647 *endptr = found_sal.end;
2648 }
2649 return 1;
2650 }
2651
2652 /* Given a line table and a line number, return the index into the line
2653 table for the pc of the nearest line whose number is >= the specified one.
2654 Return -1 if none is found. The value is >= 0 if it is an index.
2655 START is the index at which to start searching the line table.
2656
2657 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
2658
2659 static int
2660 find_line_common (struct linetable *l, int lineno,
2661 int *exact_match, int start)
2662 {
2663 int i;
2664 int len;
2665
2666 /* BEST is the smallest linenumber > LINENO so far seen,
2667 or 0 if none has been seen so far.
2668 BEST_INDEX identifies the item for it. */
2669
2670 int best_index = -1;
2671 int best = 0;
2672
2673 *exact_match = 0;
2674
2675 if (lineno <= 0)
2676 return -1;
2677 if (l == 0)
2678 return -1;
2679
2680 len = l->nitems;
2681 for (i = start; i < len; i++)
2682 {
2683 struct linetable_entry *item = &(l->item[i]);
2684
2685 if (item->line == lineno)
2686 {
2687 /* Return the first (lowest address) entry which matches. */
2688 *exact_match = 1;
2689 return i;
2690 }
2691
2692 if (item->line > lineno && (best == 0 || item->line < best))
2693 {
2694 best = item->line;
2695 best_index = i;
2696 }
2697 }
2698
2699 /* If we got here, we didn't get an exact match. */
2700 return best_index;
2701 }
2702
2703 int
2704 find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
2705 {
2706 struct symtab_and_line sal;
2707
2708 sal = find_pc_line (pc, 0);
2709 *startptr = sal.pc;
2710 *endptr = sal.end;
2711 return sal.symtab != 0;
2712 }
2713
2714 /* Given a function start address FUNC_ADDR and SYMTAB, find the first
2715 address for that function that has an entry in SYMTAB's line info
2716 table. If such an entry cannot be found, return FUNC_ADDR
2717 unaltered. */
2718
2719 static CORE_ADDR
2720 skip_prologue_using_lineinfo (CORE_ADDR func_addr, struct symtab *symtab)
2721 {
2722 CORE_ADDR func_start, func_end;
2723 struct linetable *l;
2724 int i;
2725
2726 /* Give up if this symbol has no lineinfo table. */
2727 l = LINETABLE (symtab);
2728 if (l == NULL)
2729 return func_addr;
2730
2731 /* Get the range for the function's PC values, or give up if we
2732 cannot, for some reason. */
2733 if (!find_pc_partial_function (func_addr, NULL, &func_start, &func_end))
2734 return func_addr;
2735
2736 /* Linetable entries are ordered by PC values, see the commentary in
2737 symtab.h where `struct linetable' is defined. Thus, the first
2738 entry whose PC is in the range [FUNC_START..FUNC_END[ is the
2739 address we are looking for. */
2740 for (i = 0; i < l->nitems; i++)
2741 {
2742 struct linetable_entry *item = &(l->item[i]);
2743
2744 /* Don't use line numbers of zero, they mark special entries in
2745 the table. See the commentary on symtab.h before the
2746 definition of struct linetable. */
2747 if (item->line > 0 && func_start <= item->pc && item->pc < func_end)
2748 return item->pc;
2749 }
2750
2751 return func_addr;
2752 }
2753
2754 /* Given a function symbol SYM, find the symtab and line for the start
2755 of the function.
2756 If the argument FUNFIRSTLINE is nonzero, we want the first line
2757 of real code inside the function. */
2758
2759 struct symtab_and_line
2760 find_function_start_sal (struct symbol *sym, int funfirstline)
2761 {
2762 struct symtab_and_line sal;
2763
2764 fixup_symbol_section (sym, NULL);
2765 sal = find_pc_sect_line (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)),
2766 SYMBOL_OBJ_SECTION (sym), 0);
2767
2768 /* We always should have a line for the function start address.
2769 If we don't, something is odd. Create a plain SAL refering
2770 just the PC and hope that skip_prologue_sal (if requested)
2771 can find a line number for after the prologue. */
2772 if (sal.pc < BLOCK_START (SYMBOL_BLOCK_VALUE (sym)))
2773 {
2774 init_sal (&sal);
2775 sal.pspace = current_program_space;
2776 sal.pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
2777 sal.section = SYMBOL_OBJ_SECTION (sym);
2778 }
2779
2780 if (funfirstline)
2781 skip_prologue_sal (&sal);
2782
2783 return sal;
2784 }
2785
2786 /* Adjust SAL to the first instruction past the function prologue.
2787 If the PC was explicitly specified, the SAL is not changed.
2788 If the line number was explicitly specified, at most the SAL's PC
2789 is updated. If SAL is already past the prologue, then do nothing. */
2790
2791 void
2792 skip_prologue_sal (struct symtab_and_line *sal)
2793 {
2794 struct symbol *sym;
2795 struct symtab_and_line start_sal;
2796 struct cleanup *old_chain;
2797 CORE_ADDR pc, saved_pc;
2798 struct obj_section *section;
2799 const char *name;
2800 struct objfile *objfile;
2801 struct gdbarch *gdbarch;
2802 struct block *b, *function_block;
2803 int force_skip, skip;
2804
2805 /* Do not change the SAL if PC was specified explicitly. */
2806 if (sal->explicit_pc)
2807 return;
2808
2809 old_chain = save_current_space_and_thread ();
2810 switch_to_program_space_and_thread (sal->pspace);
2811
2812 sym = find_pc_sect_function (sal->pc, sal->section);
2813 if (sym != NULL)
2814 {
2815 fixup_symbol_section (sym, NULL);
2816
2817 pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
2818 section = SYMBOL_OBJ_SECTION (sym);
2819 name = SYMBOL_LINKAGE_NAME (sym);
2820 objfile = SYMBOL_SYMTAB (sym)->objfile;
2821 }
2822 else
2823 {
2824 struct minimal_symbol *msymbol
2825 = lookup_minimal_symbol_by_pc_section (sal->pc, sal->section);
2826
2827 if (msymbol == NULL)
2828 {
2829 do_cleanups (old_chain);
2830 return;
2831 }
2832
2833 pc = SYMBOL_VALUE_ADDRESS (msymbol);
2834 section = SYMBOL_OBJ_SECTION (msymbol);
2835 name = SYMBOL_LINKAGE_NAME (msymbol);
2836 objfile = msymbol_objfile (msymbol);
2837 }
2838
2839 gdbarch = get_objfile_arch (objfile);
2840
2841 /* Process the prologue in two passes. In the first pass try to skip the
2842 prologue (SKIP is true) and verify there is a real need for it (indicated
2843 by FORCE_SKIP). If no such reason was found run a second pass where the
2844 prologue is not skipped (SKIP is false). */
2845
2846 skip = 1;
2847 force_skip = 1;
2848
2849 /* Be conservative - allow direct PC (without skipping prologue) only if we
2850 have proven the CU (Compilation Unit) supports it. sal->SYMTAB does not
2851 have to be set by the caller so we use SYM instead. */
2852 if (sym && SYMBOL_SYMTAB (sym)->locations_valid)
2853 force_skip = 0;
2854
2855 saved_pc = pc;
2856 do
2857 {
2858 pc = saved_pc;
2859
2860 /* If the function is in an unmapped overlay, use its unmapped LMA address,
2861 so that gdbarch_skip_prologue has something unique to work on. */
2862 if (section_is_overlay (section) && !section_is_mapped (section))
2863 pc = overlay_unmapped_address (pc, section);
2864
2865 /* Skip "first line" of function (which is actually its prologue). */
2866 pc += gdbarch_deprecated_function_start_offset (gdbarch);
2867 if (skip)
2868 pc = gdbarch_skip_prologue (gdbarch, pc);
2869
2870 /* For overlays, map pc back into its mapped VMA range. */
2871 pc = overlay_mapped_address (pc, section);
2872
2873 /* Calculate line number. */
2874 start_sal = find_pc_sect_line (pc, section, 0);
2875
2876 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
2877 line is still part of the same function. */
2878 if (skip && start_sal.pc != pc
2879 && (sym ? (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) <= start_sal.end
2880 && start_sal.end < BLOCK_END (SYMBOL_BLOCK_VALUE (sym)))
2881 : (lookup_minimal_symbol_by_pc_section (start_sal.end, section)
2882 == lookup_minimal_symbol_by_pc_section (pc, section))))
2883 {
2884 /* First pc of next line */
2885 pc = start_sal.end;
2886 /* Recalculate the line number (might not be N+1). */
2887 start_sal = find_pc_sect_line (pc, section, 0);
2888 }
2889
2890 /* On targets with executable formats that don't have a concept of
2891 constructors (ELF with .init has, PE doesn't), gcc emits a call
2892 to `__main' in `main' between the prologue and before user
2893 code. */
2894 if (gdbarch_skip_main_prologue_p (gdbarch)
2895 && name && strcmp_iw (name, "main") == 0)
2896 {
2897 pc = gdbarch_skip_main_prologue (gdbarch, pc);
2898 /* Recalculate the line number (might not be N+1). */
2899 start_sal = find_pc_sect_line (pc, section, 0);
2900 force_skip = 1;
2901 }
2902 }
2903 while (!force_skip && skip--);
2904
2905 /* If we still don't have a valid source line, try to find the first
2906 PC in the lineinfo table that belongs to the same function. This
2907 happens with COFF debug info, which does not seem to have an
2908 entry in lineinfo table for the code after the prologue which has
2909 no direct relation to source. For example, this was found to be
2910 the case with the DJGPP target using "gcc -gcoff" when the
2911 compiler inserted code after the prologue to make sure the stack
2912 is aligned. */
2913 if (!force_skip && sym && start_sal.symtab == NULL)
2914 {
2915 pc = skip_prologue_using_lineinfo (pc, SYMBOL_SYMTAB (sym));
2916 /* Recalculate the line number. */
2917 start_sal = find_pc_sect_line (pc, section, 0);
2918 }
2919
2920 do_cleanups (old_chain);
2921
2922 /* If we're already past the prologue, leave SAL unchanged. Otherwise
2923 forward SAL to the end of the prologue. */
2924 if (sal->pc >= pc)
2925 return;
2926
2927 sal->pc = pc;
2928 sal->section = section;
2929
2930 /* Unless the explicit_line flag was set, update the SAL line
2931 and symtab to correspond to the modified PC location. */
2932 if (sal->explicit_line)
2933 return;
2934
2935 sal->symtab = start_sal.symtab;
2936 sal->line = start_sal.line;
2937 sal->end = start_sal.end;
2938
2939 /* Check if we are now inside an inlined function. If we can,
2940 use the call site of the function instead. */
2941 b = block_for_pc_sect (sal->pc, sal->section);
2942 function_block = NULL;
2943 while (b != NULL)
2944 {
2945 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
2946 function_block = b;
2947 else if (BLOCK_FUNCTION (b) != NULL)
2948 break;
2949 b = BLOCK_SUPERBLOCK (b);
2950 }
2951 if (function_block != NULL
2952 && SYMBOL_LINE (BLOCK_FUNCTION (function_block)) != 0)
2953 {
2954 sal->line = SYMBOL_LINE (BLOCK_FUNCTION (function_block));
2955 sal->symtab = SYMBOL_SYMTAB (BLOCK_FUNCTION (function_block));
2956 }
2957 }
2958
2959 /* If P is of the form "operator[ \t]+..." where `...' is
2960 some legitimate operator text, return a pointer to the
2961 beginning of the substring of the operator text.
2962 Otherwise, return "". */
2963
2964 static char *
2965 operator_chars (char *p, char **end)
2966 {
2967 *end = "";
2968 if (strncmp (p, "operator", 8))
2969 return *end;
2970 p += 8;
2971
2972 /* Don't get faked out by `operator' being part of a longer
2973 identifier. */
2974 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
2975 return *end;
2976
2977 /* Allow some whitespace between `operator' and the operator symbol. */
2978 while (*p == ' ' || *p == '\t')
2979 p++;
2980
2981 /* Recognize 'operator TYPENAME'. */
2982
2983 if (isalpha (*p) || *p == '_' || *p == '$')
2984 {
2985 char *q = p + 1;
2986
2987 while (isalnum (*q) || *q == '_' || *q == '$')
2988 q++;
2989 *end = q;
2990 return p;
2991 }
2992
2993 while (*p)
2994 switch (*p)
2995 {
2996 case '\\': /* regexp quoting */
2997 if (p[1] == '*')
2998 {
2999 if (p[2] == '=') /* 'operator\*=' */
3000 *end = p + 3;
3001 else /* 'operator\*' */
3002 *end = p + 2;
3003 return p;
3004 }
3005 else if (p[1] == '[')
3006 {
3007 if (p[2] == ']')
3008 error (_("mismatched quoting on brackets, "
3009 "try 'operator\\[\\]'"));
3010 else if (p[2] == '\\' && p[3] == ']')
3011 {
3012 *end = p + 4; /* 'operator\[\]' */
3013 return p;
3014 }
3015 else
3016 error (_("nothing is allowed between '[' and ']'"));
3017 }
3018 else
3019 {
3020 /* Gratuitous qoute: skip it and move on. */
3021 p++;
3022 continue;
3023 }
3024 break;
3025 case '!':
3026 case '=':
3027 case '*':
3028 case '/':
3029 case '%':
3030 case '^':
3031 if (p[1] == '=')
3032 *end = p + 2;
3033 else
3034 *end = p + 1;
3035 return p;
3036 case '<':
3037 case '>':
3038 case '+':
3039 case '-':
3040 case '&':
3041 case '|':
3042 if (p[0] == '-' && p[1] == '>')
3043 {
3044 /* Struct pointer member operator 'operator->'. */
3045 if (p[2] == '*')
3046 {
3047 *end = p + 3; /* 'operator->*' */
3048 return p;
3049 }
3050 else if (p[2] == '\\')
3051 {
3052 *end = p + 4; /* Hopefully 'operator->\*' */
3053 return p;
3054 }
3055 else
3056 {
3057 *end = p + 2; /* 'operator->' */
3058 return p;
3059 }
3060 }
3061 if (p[1] == '=' || p[1] == p[0])
3062 *end = p + 2;
3063 else
3064 *end = p + 1;
3065 return p;
3066 case '~':
3067 case ',':
3068 *end = p + 1;
3069 return p;
3070 case '(':
3071 if (p[1] != ')')
3072 error (_("`operator ()' must be specified "
3073 "without whitespace in `()'"));
3074 *end = p + 2;
3075 return p;
3076 case '?':
3077 if (p[1] != ':')
3078 error (_("`operator ?:' must be specified "
3079 "without whitespace in `?:'"));
3080 *end = p + 2;
3081 return p;
3082 case '[':
3083 if (p[1] != ']')
3084 error (_("`operator []' must be specified "
3085 "without whitespace in `[]'"));
3086 *end = p + 2;
3087 return p;
3088 default:
3089 error (_("`operator %s' not supported"), p);
3090 break;
3091 }
3092
3093 *end = "";
3094 return *end;
3095 }
3096 \f
3097
3098 /* Cache to watch for file names already seen by filename_seen. */
3099
3100 struct filename_seen_cache
3101 {
3102 /* Table of files seen so far. */
3103 htab_t tab;
3104 /* Initial size of the table. It automagically grows from here. */
3105 #define INITIAL_FILENAME_SEEN_CACHE_SIZE 100
3106 };
3107
3108 /* filename_seen_cache constructor. */
3109
3110 static struct filename_seen_cache *
3111 create_filename_seen_cache (void)
3112 {
3113 struct filename_seen_cache *cache;
3114
3115 cache = XNEW (struct filename_seen_cache);
3116 cache->tab = htab_create_alloc (INITIAL_FILENAME_SEEN_CACHE_SIZE,
3117 filename_hash, filename_eq,
3118 NULL, xcalloc, xfree);
3119
3120 return cache;
3121 }
3122
3123 /* Empty the cache, but do not delete it. */
3124
3125 static void
3126 clear_filename_seen_cache (struct filename_seen_cache *cache)
3127 {
3128 htab_empty (cache->tab);
3129 }
3130
3131 /* filename_seen_cache destructor.
3132 This takes a void * argument as it is generally used as a cleanup. */
3133
3134 static void
3135 delete_filename_seen_cache (void *ptr)
3136 {
3137 struct filename_seen_cache *cache = ptr;
3138
3139 htab_delete (cache->tab);
3140 xfree (cache);
3141 }
3142
3143 /* If FILE is not already in the table of files in CACHE, return zero;
3144 otherwise return non-zero. Optionally add FILE to the table if ADD
3145 is non-zero.
3146
3147 NOTE: We don't manage space for FILE, we assume FILE lives as long
3148 as the caller needs. */
3149
3150 static int
3151 filename_seen (struct filename_seen_cache *cache, const char *file, int add)
3152 {
3153 void **slot;
3154
3155 /* Is FILE in tab? */
3156 slot = htab_find_slot (cache->tab, file, add ? INSERT : NO_INSERT);
3157 if (*slot != NULL)
3158 return 1;
3159
3160 /* No; maybe add it to tab. */
3161 if (add)
3162 *slot = (char *) file;
3163
3164 return 0;
3165 }
3166
3167 /* Data structure to maintain printing state for output_source_filename. */
3168
3169 struct output_source_filename_data
3170 {
3171 /* Cache of what we've seen so far. */
3172 struct filename_seen_cache *filename_seen_cache;
3173
3174 /* Flag of whether we're printing the first one. */
3175 int first;
3176 };
3177
3178 /* Slave routine for sources_info. Force line breaks at ,'s.
3179 NAME is the name to print.
3180 DATA contains the state for printing and watching for duplicates. */
3181
3182 static void
3183 output_source_filename (const char *name,
3184 struct output_source_filename_data *data)
3185 {
3186 /* Since a single source file can result in several partial symbol
3187 tables, we need to avoid printing it more than once. Note: if
3188 some of the psymtabs are read in and some are not, it gets
3189 printed both under "Source files for which symbols have been
3190 read" and "Source files for which symbols will be read in on
3191 demand". I consider this a reasonable way to deal with the
3192 situation. I'm not sure whether this can also happen for
3193 symtabs; it doesn't hurt to check. */
3194
3195 /* Was NAME already seen? */
3196 if (filename_seen (data->filename_seen_cache, name, 1))
3197 {
3198 /* Yes; don't print it again. */
3199 return;
3200 }
3201
3202 /* No; print it and reset *FIRST. */
3203 if (! data->first)
3204 printf_filtered (", ");
3205 data->first = 0;
3206
3207 wrap_here ("");
3208 fputs_filtered (name, gdb_stdout);
3209 }
3210
3211 /* A callback for map_partial_symbol_filenames. */
3212
3213 static void
3214 output_partial_symbol_filename (const char *filename, const char *fullname,
3215 void *data)
3216 {
3217 output_source_filename (fullname ? fullname : filename, data);
3218 }
3219
3220 static void
3221 sources_info (char *ignore, int from_tty)
3222 {
3223 struct symtab *s;
3224 struct objfile *objfile;
3225 struct output_source_filename_data data;
3226 struct cleanup *cleanups;
3227
3228 if (!have_full_symbols () && !have_partial_symbols ())
3229 {
3230 error (_("No symbol table is loaded. Use the \"file\" command."));
3231 }
3232
3233 data.filename_seen_cache = create_filename_seen_cache ();
3234 cleanups = make_cleanup (delete_filename_seen_cache,
3235 data.filename_seen_cache);
3236
3237 printf_filtered ("Source files for which symbols have been read in:\n\n");
3238
3239 data.first = 1;
3240 ALL_SYMTABS (objfile, s)
3241 {
3242 const char *fullname = symtab_to_fullname (s);
3243
3244 output_source_filename (fullname, &data);
3245 }
3246 printf_filtered ("\n\n");
3247
3248 printf_filtered ("Source files for which symbols "
3249 "will be read in on demand:\n\n");
3250
3251 clear_filename_seen_cache (data.filename_seen_cache);
3252 data.first = 1;
3253 map_partial_symbol_filenames (output_partial_symbol_filename, &data,
3254 1 /*need_fullname*/);
3255 printf_filtered ("\n");
3256
3257 do_cleanups (cleanups);
3258 }
3259
3260 /* Compare FILE against all the NFILES entries of FILES. If BASENAMES is
3261 non-zero compare only lbasename of FILES. */
3262
3263 static int
3264 file_matches (const char *file, char *files[], int nfiles, int basenames)
3265 {
3266 int i;
3267
3268 if (file != NULL && nfiles != 0)
3269 {
3270 for (i = 0; i < nfiles; i++)
3271 {
3272 if (compare_filenames_for_search (file, (basenames
3273 ? lbasename (files[i])
3274 : files[i])))
3275 return 1;
3276 }
3277 }
3278 else if (nfiles == 0)
3279 return 1;
3280 return 0;
3281 }
3282
3283 /* Free any memory associated with a search. */
3284
3285 void
3286 free_search_symbols (struct symbol_search *symbols)
3287 {
3288 struct symbol_search *p;
3289 struct symbol_search *next;
3290
3291 for (p = symbols; p != NULL; p = next)
3292 {
3293 next = p->next;
3294 xfree (p);
3295 }
3296 }
3297
3298 static void
3299 do_free_search_symbols_cleanup (void *symbols)
3300 {
3301 free_search_symbols (symbols);
3302 }
3303
3304 struct cleanup *
3305 make_cleanup_free_search_symbols (struct symbol_search *symbols)
3306 {
3307 return make_cleanup (do_free_search_symbols_cleanup, symbols);
3308 }
3309
3310 /* Helper function for sort_search_symbols and qsort. Can only
3311 sort symbols, not minimal symbols. */
3312
3313 static int
3314 compare_search_syms (const void *sa, const void *sb)
3315 {
3316 struct symbol_search **sym_a = (struct symbol_search **) sa;
3317 struct symbol_search **sym_b = (struct symbol_search **) sb;
3318
3319 return strcmp (SYMBOL_PRINT_NAME ((*sym_a)->symbol),
3320 SYMBOL_PRINT_NAME ((*sym_b)->symbol));
3321 }
3322
3323 /* Sort the ``nfound'' symbols in the list after prevtail. Leave
3324 prevtail where it is, but update its next pointer to point to
3325 the first of the sorted symbols. */
3326
3327 static struct symbol_search *
3328 sort_search_symbols (struct symbol_search *prevtail, int nfound)
3329 {
3330 struct symbol_search **symbols, *symp, *old_next;
3331 int i;
3332
3333 symbols = (struct symbol_search **) xmalloc (sizeof (struct symbol_search *)
3334 * nfound);
3335 symp = prevtail->next;
3336 for (i = 0; i < nfound; i++)
3337 {
3338 symbols[i] = symp;
3339 symp = symp->next;
3340 }
3341 /* Generally NULL. */
3342 old_next = symp;
3343
3344 qsort (symbols, nfound, sizeof (struct symbol_search *),
3345 compare_search_syms);
3346
3347 symp = prevtail;
3348 for (i = 0; i < nfound; i++)
3349 {
3350 symp->next = symbols[i];
3351 symp = symp->next;
3352 }
3353 symp->next = old_next;
3354
3355 xfree (symbols);
3356 return symp;
3357 }
3358
3359 /* An object of this type is passed as the user_data to the
3360 expand_symtabs_matching method. */
3361 struct search_symbols_data
3362 {
3363 int nfiles;
3364 char **files;
3365
3366 /* It is true if PREG contains valid data, false otherwise. */
3367 unsigned preg_p : 1;
3368 regex_t preg;
3369 };
3370
3371 /* A callback for expand_symtabs_matching. */
3372
3373 static int
3374 search_symbols_file_matches (const char *filename, void *user_data,
3375 int basenames)
3376 {
3377 struct search_symbols_data *data = user_data;
3378
3379 return file_matches (filename, data->files, data->nfiles, basenames);
3380 }
3381
3382 /* A callback for expand_symtabs_matching. */
3383
3384 static int
3385 search_symbols_name_matches (const char *symname, void *user_data)
3386 {
3387 struct search_symbols_data *data = user_data;
3388
3389 return !data->preg_p || regexec (&data->preg, symname, 0, NULL, 0) == 0;
3390 }
3391
3392 /* Search the symbol table for matches to the regular expression REGEXP,
3393 returning the results in *MATCHES.
3394
3395 Only symbols of KIND are searched:
3396 VARIABLES_DOMAIN - search all symbols, excluding functions, type names,
3397 and constants (enums)
3398 FUNCTIONS_DOMAIN - search all functions
3399 TYPES_DOMAIN - search all type names
3400 ALL_DOMAIN - an internal error for this function
3401
3402 free_search_symbols should be called when *MATCHES is no longer needed.
3403
3404 The results are sorted locally; each symtab's global and static blocks are
3405 separately alphabetized. */
3406
3407 void
3408 search_symbols (char *regexp, enum search_domain kind,
3409 int nfiles, char *files[],
3410 struct symbol_search **matches)
3411 {
3412 struct symtab *s;
3413 struct blockvector *bv;
3414 struct block *b;
3415 int i = 0;
3416 struct block_iterator iter;
3417 struct symbol *sym;
3418 struct objfile *objfile;
3419 struct minimal_symbol *msymbol;
3420 int found_misc = 0;
3421 static const enum minimal_symbol_type types[]
3422 = {mst_data, mst_text, mst_abs};
3423 static const enum minimal_symbol_type types2[]
3424 = {mst_bss, mst_file_text, mst_abs};
3425 static const enum minimal_symbol_type types3[]
3426 = {mst_file_data, mst_solib_trampoline, mst_abs};
3427 static const enum minimal_symbol_type types4[]
3428 = {mst_file_bss, mst_text_gnu_ifunc, mst_abs};
3429 enum minimal_symbol_type ourtype;
3430 enum minimal_symbol_type ourtype2;
3431 enum minimal_symbol_type ourtype3;
3432 enum minimal_symbol_type ourtype4;
3433 struct symbol_search *sr;
3434 struct symbol_search *psr;
3435 struct symbol_search *tail;
3436 struct search_symbols_data datum;
3437
3438 /* OLD_CHAIN .. RETVAL_CHAIN is always freed, RETVAL_CHAIN .. current
3439 CLEANUP_CHAIN is freed only in the case of an error. */
3440 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
3441 struct cleanup *retval_chain;
3442
3443 gdb_assert (kind <= TYPES_DOMAIN);
3444
3445 ourtype = types[kind];
3446 ourtype2 = types2[kind];
3447 ourtype3 = types3[kind];
3448 ourtype4 = types4[kind];
3449
3450 sr = *matches = NULL;
3451 tail = NULL;
3452 datum.preg_p = 0;
3453
3454 if (regexp != NULL)
3455 {
3456 /* Make sure spacing is right for C++ operators.
3457 This is just a courtesy to make the matching less sensitive
3458 to how many spaces the user leaves between 'operator'
3459 and <TYPENAME> or <OPERATOR>. */
3460 char *opend;
3461 char *opname = operator_chars (regexp, &opend);
3462 int errcode;
3463
3464 if (*opname)
3465 {
3466 int fix = -1; /* -1 means ok; otherwise number of
3467 spaces needed. */
3468
3469 if (isalpha (*opname) || *opname == '_' || *opname == '$')
3470 {
3471 /* There should 1 space between 'operator' and 'TYPENAME'. */
3472 if (opname[-1] != ' ' || opname[-2] == ' ')
3473 fix = 1;
3474 }
3475 else
3476 {
3477 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
3478 if (opname[-1] == ' ')
3479 fix = 0;
3480 }
3481 /* If wrong number of spaces, fix it. */
3482 if (fix >= 0)
3483 {
3484 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
3485
3486 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
3487 regexp = tmp;
3488 }
3489 }
3490
3491 errcode = regcomp (&datum.preg, regexp,
3492 REG_NOSUB | (case_sensitivity == case_sensitive_off
3493 ? REG_ICASE : 0));
3494 if (errcode != 0)
3495 {
3496 char *err = get_regcomp_error (errcode, &datum.preg);
3497
3498 make_cleanup (xfree, err);
3499 error (_("Invalid regexp (%s): %s"), err, regexp);
3500 }
3501 datum.preg_p = 1;
3502 make_regfree_cleanup (&datum.preg);
3503 }
3504
3505 /* Search through the partial symtabs *first* for all symbols
3506 matching the regexp. That way we don't have to reproduce all of
3507 the machinery below. */
3508
3509 datum.nfiles = nfiles;
3510 datum.files = files;
3511 ALL_OBJFILES (objfile)
3512 {
3513 if (objfile->sf)
3514 objfile->sf->qf->expand_symtabs_matching (objfile,
3515 (nfiles == 0
3516 ? NULL
3517 : search_symbols_file_matches),
3518 search_symbols_name_matches,
3519 kind,
3520 &datum);
3521 }
3522
3523 retval_chain = old_chain;
3524
3525 /* Here, we search through the minimal symbol tables for functions
3526 and variables that match, and force their symbols to be read.
3527 This is in particular necessary for demangled variable names,
3528 which are no longer put into the partial symbol tables.
3529 The symbol will then be found during the scan of symtabs below.
3530
3531 For functions, find_pc_symtab should succeed if we have debug info
3532 for the function, for variables we have to call
3533 lookup_symbol_in_objfile_from_linkage_name to determine if the variable
3534 has debug info.
3535 If the lookup fails, set found_misc so that we will rescan to print
3536 any matching symbols without debug info.
3537 We only search the objfile the msymbol came from, we no longer search
3538 all objfiles. In large programs (1000s of shared libs) searching all
3539 objfiles is not worth the pain. */
3540
3541 if (nfiles == 0 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
3542 {
3543 ALL_MSYMBOLS (objfile, msymbol)
3544 {
3545 QUIT;
3546
3547 if (msymbol->created_by_gdb)
3548 continue;
3549
3550 if (MSYMBOL_TYPE (msymbol) == ourtype
3551 || MSYMBOL_TYPE (msymbol) == ourtype2
3552 || MSYMBOL_TYPE (msymbol) == ourtype3
3553 || MSYMBOL_TYPE (msymbol) == ourtype4)
3554 {
3555 if (!datum.preg_p
3556 || regexec (&datum.preg, SYMBOL_NATURAL_NAME (msymbol), 0,
3557 NULL, 0) == 0)
3558 {
3559 /* Note: An important side-effect of these lookup functions
3560 is to expand the symbol table if msymbol is found, for the
3561 benefit of the next loop on ALL_PRIMARY_SYMTABS. */
3562 if (kind == FUNCTIONS_DOMAIN
3563 ? find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol)) == NULL
3564 : (lookup_symbol_in_objfile_from_linkage_name
3565 (objfile, SYMBOL_LINKAGE_NAME (msymbol), VAR_DOMAIN)
3566 == NULL))
3567 found_misc = 1;
3568 }
3569 }
3570 }
3571 }
3572
3573 ALL_PRIMARY_SYMTABS (objfile, s)
3574 {
3575 bv = BLOCKVECTOR (s);
3576 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
3577 {
3578 struct symbol_search *prevtail = tail;
3579 int nfound = 0;
3580
3581 b = BLOCKVECTOR_BLOCK (bv, i);
3582 ALL_BLOCK_SYMBOLS (b, iter, sym)
3583 {
3584 struct symtab *real_symtab = SYMBOL_SYMTAB (sym);
3585
3586 QUIT;
3587
3588 /* Check first sole REAL_SYMTAB->FILENAME. It does not need to be
3589 a substring of symtab_to_fullname as it may contain "./" etc. */
3590 if ((file_matches (real_symtab->filename, files, nfiles, 0)
3591 || ((basenames_may_differ
3592 || file_matches (lbasename (real_symtab->filename),
3593 files, nfiles, 1))
3594 && file_matches (symtab_to_fullname (real_symtab),
3595 files, nfiles, 0)))
3596 && ((!datum.preg_p
3597 || regexec (&datum.preg, SYMBOL_NATURAL_NAME (sym), 0,
3598 NULL, 0) == 0)
3599 && ((kind == VARIABLES_DOMAIN
3600 && SYMBOL_CLASS (sym) != LOC_TYPEDEF
3601 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
3602 && SYMBOL_CLASS (sym) != LOC_BLOCK
3603 /* LOC_CONST can be used for more than just enums,
3604 e.g., c++ static const members.
3605 We only want to skip enums here. */
3606 && !(SYMBOL_CLASS (sym) == LOC_CONST
3607 && TYPE_CODE (SYMBOL_TYPE (sym))
3608 == TYPE_CODE_ENUM))
3609 || (kind == FUNCTIONS_DOMAIN
3610 && SYMBOL_CLASS (sym) == LOC_BLOCK)
3611 || (kind == TYPES_DOMAIN
3612 && SYMBOL_CLASS (sym) == LOC_TYPEDEF))))
3613 {
3614 /* match */
3615 psr = (struct symbol_search *)
3616 xmalloc (sizeof (struct symbol_search));
3617 psr->block = i;
3618 psr->symtab = real_symtab;
3619 psr->symbol = sym;
3620 psr->msymbol = NULL;
3621 psr->next = NULL;
3622 if (tail == NULL)
3623 sr = psr;
3624 else
3625 tail->next = psr;
3626 tail = psr;
3627 nfound ++;
3628 }
3629 }
3630 if (nfound > 0)
3631 {
3632 if (prevtail == NULL)
3633 {
3634 struct symbol_search dummy;
3635
3636 dummy.next = sr;
3637 tail = sort_search_symbols (&dummy, nfound);
3638 sr = dummy.next;
3639
3640 make_cleanup_free_search_symbols (sr);
3641 }
3642 else
3643 tail = sort_search_symbols (prevtail, nfound);
3644 }
3645 }
3646 }
3647
3648 /* If there are no eyes, avoid all contact. I mean, if there are
3649 no debug symbols, then print directly from the msymbol_vector. */
3650
3651 if (found_misc || (nfiles == 0 && kind != FUNCTIONS_DOMAIN))
3652 {
3653 ALL_MSYMBOLS (objfile, msymbol)
3654 {
3655 QUIT;
3656
3657 if (msymbol->created_by_gdb)
3658 continue;
3659
3660 if (MSYMBOL_TYPE (msymbol) == ourtype
3661 || MSYMBOL_TYPE (msymbol) == ourtype2
3662 || MSYMBOL_TYPE (msymbol) == ourtype3
3663 || MSYMBOL_TYPE (msymbol) == ourtype4)
3664 {
3665 if (!datum.preg_p
3666 || regexec (&datum.preg, SYMBOL_NATURAL_NAME (msymbol), 0,
3667 NULL, 0) == 0)
3668 {
3669 /* For functions we can do a quick check of whether the
3670 symbol might be found via find_pc_symtab. */
3671 if (kind != FUNCTIONS_DOMAIN
3672 || find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol)) == NULL)
3673 {
3674 if (lookup_symbol_in_objfile_from_linkage_name
3675 (objfile, SYMBOL_LINKAGE_NAME (msymbol), VAR_DOMAIN)
3676 == NULL)
3677 {
3678 /* match */
3679 psr = (struct symbol_search *)
3680 xmalloc (sizeof (struct symbol_search));
3681 psr->block = i;
3682 psr->msymbol = msymbol;
3683 psr->symtab = NULL;
3684 psr->symbol = NULL;
3685 psr->next = NULL;
3686 if (tail == NULL)
3687 {
3688 sr = psr;
3689 make_cleanup_free_search_symbols (sr);
3690 }
3691 else
3692 tail->next = psr;
3693 tail = psr;
3694 }
3695 }
3696 }
3697 }
3698 }
3699 }
3700
3701 discard_cleanups (retval_chain);
3702 do_cleanups (old_chain);
3703 *matches = sr;
3704 }
3705
3706 /* Helper function for symtab_symbol_info, this function uses
3707 the data returned from search_symbols() to print information
3708 regarding the match to gdb_stdout. */
3709
3710 static void
3711 print_symbol_info (enum search_domain kind,
3712 struct symtab *s, struct symbol *sym,
3713 int block, const char *last)
3714 {
3715 const char *s_filename = symtab_to_filename_for_display (s);
3716
3717 if (last == NULL || filename_cmp (last, s_filename) != 0)
3718 {
3719 fputs_filtered ("\nFile ", gdb_stdout);
3720 fputs_filtered (s_filename, gdb_stdout);
3721 fputs_filtered (":\n", gdb_stdout);
3722 }
3723
3724 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
3725 printf_filtered ("static ");
3726
3727 /* Typedef that is not a C++ class. */
3728 if (kind == TYPES_DOMAIN
3729 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
3730 typedef_print (SYMBOL_TYPE (sym), sym, gdb_stdout);
3731 /* variable, func, or typedef-that-is-c++-class. */
3732 else if (kind < TYPES_DOMAIN
3733 || (kind == TYPES_DOMAIN
3734 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
3735 {
3736 type_print (SYMBOL_TYPE (sym),
3737 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
3738 ? "" : SYMBOL_PRINT_NAME (sym)),
3739 gdb_stdout, 0);
3740
3741 printf_filtered (";\n");
3742 }
3743 }
3744
3745 /* This help function for symtab_symbol_info() prints information
3746 for non-debugging symbols to gdb_stdout. */
3747
3748 static void
3749 print_msymbol_info (struct minimal_symbol *msymbol)
3750 {
3751 struct gdbarch *gdbarch = get_objfile_arch (msymbol_objfile (msymbol));
3752 char *tmp;
3753
3754 if (gdbarch_addr_bit (gdbarch) <= 32)
3755 tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol)
3756 & (CORE_ADDR) 0xffffffff,
3757 8);
3758 else
3759 tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol),
3760 16);
3761 printf_filtered ("%s %s\n",
3762 tmp, SYMBOL_PRINT_NAME (msymbol));
3763 }
3764
3765 /* This is the guts of the commands "info functions", "info types", and
3766 "info variables". It calls search_symbols to find all matches and then
3767 print_[m]symbol_info to print out some useful information about the
3768 matches. */
3769
3770 static void
3771 symtab_symbol_info (char *regexp, enum search_domain kind, int from_tty)
3772 {
3773 static const char * const classnames[] =
3774 {"variable", "function", "type"};
3775 struct symbol_search *symbols;
3776 struct symbol_search *p;
3777 struct cleanup *old_chain;
3778 const char *last_filename = NULL;
3779 int first = 1;
3780
3781 gdb_assert (kind <= TYPES_DOMAIN);
3782
3783 /* Must make sure that if we're interrupted, symbols gets freed. */
3784 search_symbols (regexp, kind, 0, (char **) NULL, &symbols);
3785 old_chain = make_cleanup_free_search_symbols (symbols);
3786
3787 if (regexp != NULL)
3788 printf_filtered (_("All %ss matching regular expression \"%s\":\n"),
3789 classnames[kind], regexp);
3790 else
3791 printf_filtered (_("All defined %ss:\n"), classnames[kind]);
3792
3793 for (p = symbols; p != NULL; p = p->next)
3794 {
3795 QUIT;
3796
3797 if (p->msymbol != NULL)
3798 {
3799 if (first)
3800 {
3801 printf_filtered (_("\nNon-debugging symbols:\n"));
3802 first = 0;
3803 }
3804 print_msymbol_info (p->msymbol);
3805 }
3806 else
3807 {
3808 print_symbol_info (kind,
3809 p->symtab,
3810 p->symbol,
3811 p->block,
3812 last_filename);
3813 last_filename = symtab_to_filename_for_display (p->symtab);
3814 }
3815 }
3816
3817 do_cleanups (old_chain);
3818 }
3819
3820 static void
3821 variables_info (char *regexp, int from_tty)
3822 {
3823 symtab_symbol_info (regexp, VARIABLES_DOMAIN, from_tty);
3824 }
3825
3826 static void
3827 functions_info (char *regexp, int from_tty)
3828 {
3829 symtab_symbol_info (regexp, FUNCTIONS_DOMAIN, from_tty);
3830 }
3831
3832
3833 static void
3834 types_info (char *regexp, int from_tty)
3835 {
3836 symtab_symbol_info (regexp, TYPES_DOMAIN, from_tty);
3837 }
3838
3839 /* Breakpoint all functions matching regular expression. */
3840
3841 void
3842 rbreak_command_wrapper (char *regexp, int from_tty)
3843 {
3844 rbreak_command (regexp, from_tty);
3845 }
3846
3847 /* A cleanup function that calls end_rbreak_breakpoints. */
3848
3849 static void
3850 do_end_rbreak_breakpoints (void *ignore)
3851 {
3852 end_rbreak_breakpoints ();
3853 }
3854
3855 static void
3856 rbreak_command (char *regexp, int from_tty)
3857 {
3858 struct symbol_search *ss;
3859 struct symbol_search *p;
3860 struct cleanup *old_chain;
3861 char *string = NULL;
3862 int len = 0;
3863 char **files = NULL, *file_name;
3864 int nfiles = 0;
3865
3866 if (regexp)
3867 {
3868 char *colon = strchr (regexp, ':');
3869
3870 if (colon && *(colon + 1) != ':')
3871 {
3872 int colon_index;
3873
3874 colon_index = colon - regexp;
3875 file_name = alloca (colon_index + 1);
3876 memcpy (file_name, regexp, colon_index);
3877 file_name[colon_index--] = 0;
3878 while (isspace (file_name[colon_index]))
3879 file_name[colon_index--] = 0;
3880 files = &file_name;
3881 nfiles = 1;
3882 regexp = colon + 1;
3883 while (isspace (*regexp)) regexp++;
3884 }
3885 }
3886
3887 search_symbols (regexp, FUNCTIONS_DOMAIN, nfiles, files, &ss);
3888 old_chain = make_cleanup_free_search_symbols (ss);
3889 make_cleanup (free_current_contents, &string);
3890
3891 start_rbreak_breakpoints ();
3892 make_cleanup (do_end_rbreak_breakpoints, NULL);
3893 for (p = ss; p != NULL; p = p->next)
3894 {
3895 if (p->msymbol == NULL)
3896 {
3897 const char *fullname = symtab_to_fullname (p->symtab);
3898
3899 int newlen = (strlen (fullname)
3900 + strlen (SYMBOL_LINKAGE_NAME (p->symbol))
3901 + 4);
3902
3903 if (newlen > len)
3904 {
3905 string = xrealloc (string, newlen);
3906 len = newlen;
3907 }
3908 strcpy (string, fullname);
3909 strcat (string, ":'");
3910 strcat (string, SYMBOL_LINKAGE_NAME (p->symbol));
3911 strcat (string, "'");
3912 break_command (string, from_tty);
3913 print_symbol_info (FUNCTIONS_DOMAIN,
3914 p->symtab,
3915 p->symbol,
3916 p->block,
3917 symtab_to_filename_for_display (p->symtab));
3918 }
3919 else
3920 {
3921 int newlen = (strlen (SYMBOL_LINKAGE_NAME (p->msymbol)) + 3);
3922
3923 if (newlen > len)
3924 {
3925 string = xrealloc (string, newlen);
3926 len = newlen;
3927 }
3928 strcpy (string, "'");
3929 strcat (string, SYMBOL_LINKAGE_NAME (p->msymbol));
3930 strcat (string, "'");
3931
3932 break_command (string, from_tty);
3933 printf_filtered ("<function, no debug info> %s;\n",
3934 SYMBOL_PRINT_NAME (p->msymbol));
3935 }
3936 }
3937
3938 do_cleanups (old_chain);
3939 }
3940 \f
3941
3942 /* Evaluate if NAME matches SYM_TEXT and SYM_TEXT_LEN.
3943
3944 Either sym_text[sym_text_len] != '(' and then we search for any
3945 symbol starting with SYM_TEXT text.
3946
3947 Otherwise sym_text[sym_text_len] == '(' and then we require symbol name to
3948 be terminated at that point. Partial symbol tables do not have parameters
3949 information. */
3950
3951 static int
3952 compare_symbol_name (const char *name, const char *sym_text, int sym_text_len)
3953 {
3954 int (*ncmp) (const char *, const char *, size_t);
3955
3956 ncmp = (case_sensitivity == case_sensitive_on ? strncmp : strncasecmp);
3957
3958 if (ncmp (name, sym_text, sym_text_len) != 0)
3959 return 0;
3960
3961 if (sym_text[sym_text_len] == '(')
3962 {
3963 /* User searches for `name(someth...'. Require NAME to be terminated.
3964 Normally psymtabs and gdbindex have no parameter types so '\0' will be
3965 present but accept even parameters presence. In this case this
3966 function is in fact strcmp_iw but whitespace skipping is not supported
3967 for tab completion. */
3968
3969 if (name[sym_text_len] != '\0' && name[sym_text_len] != '(')
3970 return 0;
3971 }
3972
3973 return 1;
3974 }
3975
3976 /* Free any memory associated with a completion list. */
3977
3978 static void
3979 free_completion_list (VEC (char_ptr) **list_ptr)
3980 {
3981 int i;
3982 char *p;
3983
3984 for (i = 0; VEC_iterate (char_ptr, *list_ptr, i, p); ++i)
3985 xfree (p);
3986 VEC_free (char_ptr, *list_ptr);
3987 }
3988
3989 /* Callback for make_cleanup. */
3990
3991 static void
3992 do_free_completion_list (void *list)
3993 {
3994 free_completion_list (list);
3995 }
3996
3997 /* Helper routine for make_symbol_completion_list. */
3998
3999 static VEC (char_ptr) *return_val;
4000
4001 #define COMPLETION_LIST_ADD_SYMBOL(symbol, sym_text, len, text, word) \
4002 completion_list_add_name \
4003 (SYMBOL_NATURAL_NAME (symbol), (sym_text), (len), (text), (word))
4004
4005 /* Test to see if the symbol specified by SYMNAME (which is already
4006 demangled for C++ symbols) matches SYM_TEXT in the first SYM_TEXT_LEN
4007 characters. If so, add it to the current completion list. */
4008
4009 static void
4010 completion_list_add_name (const char *symname,
4011 const char *sym_text, int sym_text_len,
4012 const char *text, const char *word)
4013 {
4014 /* Clip symbols that cannot match. */
4015 if (!compare_symbol_name (symname, sym_text, sym_text_len))
4016 return;
4017
4018 /* We have a match for a completion, so add SYMNAME to the current list
4019 of matches. Note that the name is moved to freshly malloc'd space. */
4020
4021 {
4022 char *new;
4023
4024 if (word == sym_text)
4025 {
4026 new = xmalloc (strlen (symname) + 5);
4027 strcpy (new, symname);
4028 }
4029 else if (word > sym_text)
4030 {
4031 /* Return some portion of symname. */
4032 new = xmalloc (strlen (symname) + 5);
4033 strcpy (new, symname + (word - sym_text));
4034 }
4035 else
4036 {
4037 /* Return some of SYM_TEXT plus symname. */
4038 new = xmalloc (strlen (symname) + (sym_text - word) + 5);
4039 strncpy (new, word, sym_text - word);
4040 new[sym_text - word] = '\0';
4041 strcat (new, symname);
4042 }
4043
4044 VEC_safe_push (char_ptr, return_val, new);
4045 }
4046 }
4047
4048 /* ObjC: In case we are completing on a selector, look as the msymbol
4049 again and feed all the selectors into the mill. */
4050
4051 static void
4052 completion_list_objc_symbol (struct minimal_symbol *msymbol,
4053 const char *sym_text, int sym_text_len,
4054 const char *text, const char *word)
4055 {
4056 static char *tmp = NULL;
4057 static unsigned int tmplen = 0;
4058
4059 const char *method, *category, *selector;
4060 char *tmp2 = NULL;
4061
4062 method = SYMBOL_NATURAL_NAME (msymbol);
4063
4064 /* Is it a method? */
4065 if ((method[0] != '-') && (method[0] != '+'))
4066 return;
4067
4068 if (sym_text[0] == '[')
4069 /* Complete on shortened method method. */
4070 completion_list_add_name (method + 1, sym_text, sym_text_len, text, word);
4071
4072 while ((strlen (method) + 1) >= tmplen)
4073 {
4074 if (tmplen == 0)
4075 tmplen = 1024;
4076 else
4077 tmplen *= 2;
4078 tmp = xrealloc (tmp, tmplen);
4079 }
4080 selector = strchr (method, ' ');
4081 if (selector != NULL)
4082 selector++;
4083
4084 category = strchr (method, '(');
4085
4086 if ((category != NULL) && (selector != NULL))
4087 {
4088 memcpy (tmp, method, (category - method));
4089 tmp[category - method] = ' ';
4090 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
4091 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
4092 if (sym_text[0] == '[')
4093 completion_list_add_name (tmp + 1, sym_text, sym_text_len, text, word);
4094 }
4095
4096 if (selector != NULL)
4097 {
4098 /* Complete on selector only. */
4099 strcpy (tmp, selector);
4100 tmp2 = strchr (tmp, ']');
4101 if (tmp2 != NULL)
4102 *tmp2 = '\0';
4103
4104 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
4105 }
4106 }
4107
4108 /* Break the non-quoted text based on the characters which are in
4109 symbols. FIXME: This should probably be language-specific. */
4110
4111 static char *
4112 language_search_unquoted_string (char *text, char *p)
4113 {
4114 for (; p > text; --p)
4115 {
4116 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
4117 continue;
4118 else
4119 {
4120 if ((current_language->la_language == language_objc))
4121 {
4122 if (p[-1] == ':') /* Might be part of a method name. */
4123 continue;
4124 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
4125 p -= 2; /* Beginning of a method name. */
4126 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
4127 { /* Might be part of a method name. */
4128 char *t = p;
4129
4130 /* Seeing a ' ' or a '(' is not conclusive evidence
4131 that we are in the middle of a method name. However,
4132 finding "-[" or "+[" should be pretty un-ambiguous.
4133 Unfortunately we have to find it now to decide. */
4134
4135 while (t > text)
4136 if (isalnum (t[-1]) || t[-1] == '_' ||
4137 t[-1] == ' ' || t[-1] == ':' ||
4138 t[-1] == '(' || t[-1] == ')')
4139 --t;
4140 else
4141 break;
4142
4143 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
4144 p = t - 2; /* Method name detected. */
4145 /* Else we leave with p unchanged. */
4146 }
4147 }
4148 break;
4149 }
4150 }
4151 return p;
4152 }
4153
4154 static void
4155 completion_list_add_fields (struct symbol *sym, char *sym_text,
4156 int sym_text_len, char *text, char *word)
4157 {
4158 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4159 {
4160 struct type *t = SYMBOL_TYPE (sym);
4161 enum type_code c = TYPE_CODE (t);
4162 int j;
4163
4164 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
4165 for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++)
4166 if (TYPE_FIELD_NAME (t, j))
4167 completion_list_add_name (TYPE_FIELD_NAME (t, j),
4168 sym_text, sym_text_len, text, word);
4169 }
4170 }
4171
4172 /* Type of the user_data argument passed to add_macro_name or
4173 expand_partial_symbol_name. The contents are simply whatever is
4174 needed by completion_list_add_name. */
4175 struct add_name_data
4176 {
4177 char *sym_text;
4178 int sym_text_len;
4179 char *text;
4180 char *word;
4181 };
4182
4183 /* A callback used with macro_for_each and macro_for_each_in_scope.
4184 This adds a macro's name to the current completion list. */
4185
4186 static void
4187 add_macro_name (const char *name, const struct macro_definition *ignore,
4188 struct macro_source_file *ignore2, int ignore3,
4189 void *user_data)
4190 {
4191 struct add_name_data *datum = (struct add_name_data *) user_data;
4192
4193 completion_list_add_name ((char *) name,
4194 datum->sym_text, datum->sym_text_len,
4195 datum->text, datum->word);
4196 }
4197
4198 /* A callback for expand_partial_symbol_names. */
4199
4200 static int
4201 expand_partial_symbol_name (const char *name, void *user_data)
4202 {
4203 struct add_name_data *datum = (struct add_name_data *) user_data;
4204
4205 return compare_symbol_name (name, datum->sym_text, datum->sym_text_len);
4206 }
4207
4208 VEC (char_ptr) *
4209 default_make_symbol_completion_list_break_on (char *text, char *word,
4210 const char *break_on,
4211 enum type_code code)
4212 {
4213 /* Problem: All of the symbols have to be copied because readline
4214 frees them. I'm not going to worry about this; hopefully there
4215 won't be that many. */
4216
4217 struct symbol *sym;
4218 struct symtab *s;
4219 struct minimal_symbol *msymbol;
4220 struct objfile *objfile;
4221 struct block *b;
4222 const struct block *surrounding_static_block, *surrounding_global_block;
4223 struct block_iterator iter;
4224 /* The symbol we are completing on. Points in same buffer as text. */
4225 char *sym_text;
4226 /* Length of sym_text. */
4227 int sym_text_len;
4228 struct add_name_data datum;
4229 struct cleanup *back_to;
4230
4231 /* Now look for the symbol we are supposed to complete on. */
4232 {
4233 char *p;
4234 char quote_found;
4235 char *quote_pos = NULL;
4236
4237 /* First see if this is a quoted string. */
4238 quote_found = '\0';
4239 for (p = text; *p != '\0'; ++p)
4240 {
4241 if (quote_found != '\0')
4242 {
4243 if (*p == quote_found)
4244 /* Found close quote. */
4245 quote_found = '\0';
4246 else if (*p == '\\' && p[1] == quote_found)
4247 /* A backslash followed by the quote character
4248 doesn't end the string. */
4249 ++p;
4250 }
4251 else if (*p == '\'' || *p == '"')
4252 {
4253 quote_found = *p;
4254 quote_pos = p;
4255 }
4256 }
4257 if (quote_found == '\'')
4258 /* A string within single quotes can be a symbol, so complete on it. */
4259 sym_text = quote_pos + 1;
4260 else if (quote_found == '"')
4261 /* A double-quoted string is never a symbol, nor does it make sense
4262 to complete it any other way. */
4263 {
4264 return NULL;
4265 }
4266 else
4267 {
4268 /* It is not a quoted string. Break it based on the characters
4269 which are in symbols. */
4270 while (p > text)
4271 {
4272 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0'
4273 || p[-1] == ':' || strchr (break_on, p[-1]) != NULL)
4274 --p;
4275 else
4276 break;
4277 }
4278 sym_text = p;
4279 }
4280 }
4281
4282 sym_text_len = strlen (sym_text);
4283
4284 /* Prepare SYM_TEXT_LEN for compare_symbol_name. */
4285
4286 if (current_language->la_language == language_cplus
4287 || current_language->la_language == language_java
4288 || current_language->la_language == language_fortran)
4289 {
4290 /* These languages may have parameters entered by user but they are never
4291 present in the partial symbol tables. */
4292
4293 const char *cs = memchr (sym_text, '(', sym_text_len);
4294
4295 if (cs)
4296 sym_text_len = cs - sym_text;
4297 }
4298 gdb_assert (sym_text[sym_text_len] == '\0' || sym_text[sym_text_len] == '(');
4299
4300 return_val = NULL;
4301 back_to = make_cleanup (do_free_completion_list, &return_val);
4302
4303 datum.sym_text = sym_text;
4304 datum.sym_text_len = sym_text_len;
4305 datum.text = text;
4306 datum.word = word;
4307
4308 /* Look through the partial symtabs for all symbols which begin
4309 by matching SYM_TEXT. Expand all CUs that you find to the list.
4310 The real names will get added by COMPLETION_LIST_ADD_SYMBOL below. */
4311 expand_partial_symbol_names (expand_partial_symbol_name, &datum);
4312
4313 /* At this point scan through the misc symbol vectors and add each
4314 symbol you find to the list. Eventually we want to ignore
4315 anything that isn't a text symbol (everything else will be
4316 handled by the psymtab code above). */
4317
4318 if (code == TYPE_CODE_UNDEF)
4319 {
4320 ALL_MSYMBOLS (objfile, msymbol)
4321 {
4322 QUIT;
4323 COMPLETION_LIST_ADD_SYMBOL (msymbol, sym_text, sym_text_len, text,
4324 word);
4325
4326 completion_list_objc_symbol (msymbol, sym_text, sym_text_len, text,
4327 word);
4328 }
4329 }
4330
4331 /* Search upwards from currently selected frame (so that we can
4332 complete on local vars). Also catch fields of types defined in
4333 this places which match our text string. Only complete on types
4334 visible from current context. */
4335
4336 b = get_selected_block (0);
4337 surrounding_static_block = block_static_block (b);
4338 surrounding_global_block = block_global_block (b);
4339 if (surrounding_static_block != NULL)
4340 while (b != surrounding_static_block)
4341 {
4342 QUIT;
4343
4344 ALL_BLOCK_SYMBOLS (b, iter, sym)
4345 {
4346 if (code == TYPE_CODE_UNDEF)
4347 {
4348 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text,
4349 word);
4350 completion_list_add_fields (sym, sym_text, sym_text_len, text,
4351 word);
4352 }
4353 else if (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4354 && TYPE_CODE (SYMBOL_TYPE (sym)) == code)
4355 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text,
4356 word);
4357 }
4358
4359 /* Stop when we encounter an enclosing function. Do not stop for
4360 non-inlined functions - the locals of the enclosing function
4361 are in scope for a nested function. */
4362 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
4363 break;
4364 b = BLOCK_SUPERBLOCK (b);
4365 }
4366
4367 /* Add fields from the file's types; symbols will be added below. */
4368
4369 if (code == TYPE_CODE_UNDEF)
4370 {
4371 if (surrounding_static_block != NULL)
4372 ALL_BLOCK_SYMBOLS (surrounding_static_block, iter, sym)
4373 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
4374
4375 if (surrounding_global_block != NULL)
4376 ALL_BLOCK_SYMBOLS (surrounding_global_block, iter, sym)
4377 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
4378 }
4379
4380 /* Go through the symtabs and check the externs and statics for
4381 symbols which match. */
4382
4383 ALL_PRIMARY_SYMTABS (objfile, s)
4384 {
4385 QUIT;
4386 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
4387 ALL_BLOCK_SYMBOLS (b, iter, sym)
4388 {
4389 if (code == TYPE_CODE_UNDEF
4390 || (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4391 && TYPE_CODE (SYMBOL_TYPE (sym)) == code))
4392 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4393 }
4394 }
4395
4396 ALL_PRIMARY_SYMTABS (objfile, s)
4397 {
4398 QUIT;
4399 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
4400 ALL_BLOCK_SYMBOLS (b, iter, sym)
4401 {
4402 if (code == TYPE_CODE_UNDEF
4403 || (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4404 && TYPE_CODE (SYMBOL_TYPE (sym)) == code))
4405 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4406 }
4407 }
4408
4409 /* Skip macros if we are completing a struct tag -- arguable but
4410 usually what is expected. */
4411 if (current_language->la_macro_expansion == macro_expansion_c
4412 && code == TYPE_CODE_UNDEF)
4413 {
4414 struct macro_scope *scope;
4415
4416 /* Add any macros visible in the default scope. Note that this
4417 may yield the occasional wrong result, because an expression
4418 might be evaluated in a scope other than the default. For
4419 example, if the user types "break file:line if <TAB>", the
4420 resulting expression will be evaluated at "file:line" -- but
4421 at there does not seem to be a way to detect this at
4422 completion time. */
4423 scope = default_macro_scope ();
4424 if (scope)
4425 {
4426 macro_for_each_in_scope (scope->file, scope->line,
4427 add_macro_name, &datum);
4428 xfree (scope);
4429 }
4430
4431 /* User-defined macros are always visible. */
4432 macro_for_each (macro_user_macros, add_macro_name, &datum);
4433 }
4434
4435 discard_cleanups (back_to);
4436 return (return_val);
4437 }
4438
4439 VEC (char_ptr) *
4440 default_make_symbol_completion_list (char *text, char *word,
4441 enum type_code code)
4442 {
4443 return default_make_symbol_completion_list_break_on (text, word, "", code);
4444 }
4445
4446 /* Return a vector of all symbols (regardless of class) which begin by
4447 matching TEXT. If the answer is no symbols, then the return value
4448 is NULL. */
4449
4450 VEC (char_ptr) *
4451 make_symbol_completion_list (char *text, char *word)
4452 {
4453 return current_language->la_make_symbol_completion_list (text, word,
4454 TYPE_CODE_UNDEF);
4455 }
4456
4457 /* Like make_symbol_completion_list, but only return STRUCT_DOMAIN
4458 symbols whose type code is CODE. */
4459
4460 VEC (char_ptr) *
4461 make_symbol_completion_type (char *text, char *word, enum type_code code)
4462 {
4463 gdb_assert (code == TYPE_CODE_UNION
4464 || code == TYPE_CODE_STRUCT
4465 || code == TYPE_CODE_CLASS
4466 || code == TYPE_CODE_ENUM);
4467 return current_language->la_make_symbol_completion_list (text, word, code);
4468 }
4469
4470 /* Like make_symbol_completion_list, but suitable for use as a
4471 completion function. */
4472
4473 VEC (char_ptr) *
4474 make_symbol_completion_list_fn (struct cmd_list_element *ignore,
4475 char *text, char *word)
4476 {
4477 return make_symbol_completion_list (text, word);
4478 }
4479
4480 /* Like make_symbol_completion_list, but returns a list of symbols
4481 defined in a source file FILE. */
4482
4483 VEC (char_ptr) *
4484 make_file_symbol_completion_list (char *text, char *word, char *srcfile)
4485 {
4486 struct symbol *sym;
4487 struct symtab *s;
4488 struct block *b;
4489 struct block_iterator iter;
4490 /* The symbol we are completing on. Points in same buffer as text. */
4491 char *sym_text;
4492 /* Length of sym_text. */
4493 int sym_text_len;
4494
4495 /* Now look for the symbol we are supposed to complete on.
4496 FIXME: This should be language-specific. */
4497 {
4498 char *p;
4499 char quote_found;
4500 char *quote_pos = NULL;
4501
4502 /* First see if this is a quoted string. */
4503 quote_found = '\0';
4504 for (p = text; *p != '\0'; ++p)
4505 {
4506 if (quote_found != '\0')
4507 {
4508 if (*p == quote_found)
4509 /* Found close quote. */
4510 quote_found = '\0';
4511 else if (*p == '\\' && p[1] == quote_found)
4512 /* A backslash followed by the quote character
4513 doesn't end the string. */
4514 ++p;
4515 }
4516 else if (*p == '\'' || *p == '"')
4517 {
4518 quote_found = *p;
4519 quote_pos = p;
4520 }
4521 }
4522 if (quote_found == '\'')
4523 /* A string within single quotes can be a symbol, so complete on it. */
4524 sym_text = quote_pos + 1;
4525 else if (quote_found == '"')
4526 /* A double-quoted string is never a symbol, nor does it make sense
4527 to complete it any other way. */
4528 {
4529 return NULL;
4530 }
4531 else
4532 {
4533 /* Not a quoted string. */
4534 sym_text = language_search_unquoted_string (text, p);
4535 }
4536 }
4537
4538 sym_text_len = strlen (sym_text);
4539
4540 return_val = NULL;
4541
4542 /* Find the symtab for SRCFILE (this loads it if it was not yet read
4543 in). */
4544 s = lookup_symtab (srcfile);
4545 if (s == NULL)
4546 {
4547 /* Maybe they typed the file with leading directories, while the
4548 symbol tables record only its basename. */
4549 const char *tail = lbasename (srcfile);
4550
4551 if (tail > srcfile)
4552 s = lookup_symtab (tail);
4553 }
4554
4555 /* If we have no symtab for that file, return an empty list. */
4556 if (s == NULL)
4557 return (return_val);
4558
4559 /* Go through this symtab and check the externs and statics for
4560 symbols which match. */
4561
4562 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
4563 ALL_BLOCK_SYMBOLS (b, iter, sym)
4564 {
4565 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4566 }
4567
4568 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
4569 ALL_BLOCK_SYMBOLS (b, iter, sym)
4570 {
4571 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4572 }
4573
4574 return (return_val);
4575 }
4576
4577 /* A helper function for make_source_files_completion_list. It adds
4578 another file name to a list of possible completions, growing the
4579 list as necessary. */
4580
4581 static void
4582 add_filename_to_list (const char *fname, char *text, char *word,
4583 VEC (char_ptr) **list)
4584 {
4585 char *new;
4586 size_t fnlen = strlen (fname);
4587
4588 if (word == text)
4589 {
4590 /* Return exactly fname. */
4591 new = xmalloc (fnlen + 5);
4592 strcpy (new, fname);
4593 }
4594 else if (word > text)
4595 {
4596 /* Return some portion of fname. */
4597 new = xmalloc (fnlen + 5);
4598 strcpy (new, fname + (word - text));
4599 }
4600 else
4601 {
4602 /* Return some of TEXT plus fname. */
4603 new = xmalloc (fnlen + (text - word) + 5);
4604 strncpy (new, word, text - word);
4605 new[text - word] = '\0';
4606 strcat (new, fname);
4607 }
4608 VEC_safe_push (char_ptr, *list, new);
4609 }
4610
4611 static int
4612 not_interesting_fname (const char *fname)
4613 {
4614 static const char *illegal_aliens[] = {
4615 "_globals_", /* inserted by coff_symtab_read */
4616 NULL
4617 };
4618 int i;
4619
4620 for (i = 0; illegal_aliens[i]; i++)
4621 {
4622 if (filename_cmp (fname, illegal_aliens[i]) == 0)
4623 return 1;
4624 }
4625 return 0;
4626 }
4627
4628 /* An object of this type is passed as the user_data argument to
4629 map_partial_symbol_filenames. */
4630 struct add_partial_filename_data
4631 {
4632 struct filename_seen_cache *filename_seen_cache;
4633 char *text;
4634 char *word;
4635 int text_len;
4636 VEC (char_ptr) **list;
4637 };
4638
4639 /* A callback for map_partial_symbol_filenames. */
4640
4641 static void
4642 maybe_add_partial_symtab_filename (const char *filename, const char *fullname,
4643 void *user_data)
4644 {
4645 struct add_partial_filename_data *data = user_data;
4646
4647 if (not_interesting_fname (filename))
4648 return;
4649 if (!filename_seen (data->filename_seen_cache, filename, 1)
4650 && filename_ncmp (filename, data->text, data->text_len) == 0)
4651 {
4652 /* This file matches for a completion; add it to the
4653 current list of matches. */
4654 add_filename_to_list (filename, data->text, data->word, data->list);
4655 }
4656 else
4657 {
4658 const char *base_name = lbasename (filename);
4659
4660 if (base_name != filename
4661 && !filename_seen (data->filename_seen_cache, base_name, 1)
4662 && filename_ncmp (base_name, data->text, data->text_len) == 0)
4663 add_filename_to_list (base_name, data->text, data->word, data->list);
4664 }
4665 }
4666
4667 /* Return a vector of all source files whose names begin with matching
4668 TEXT. The file names are looked up in the symbol tables of this
4669 program. If the answer is no matchess, then the return value is
4670 NULL. */
4671
4672 VEC (char_ptr) *
4673 make_source_files_completion_list (char *text, char *word)
4674 {
4675 struct symtab *s;
4676 struct objfile *objfile;
4677 size_t text_len = strlen (text);
4678 VEC (char_ptr) *list = NULL;
4679 const char *base_name;
4680 struct add_partial_filename_data datum;
4681 struct filename_seen_cache *filename_seen_cache;
4682 struct cleanup *back_to, *cache_cleanup;
4683
4684 if (!have_full_symbols () && !have_partial_symbols ())
4685 return list;
4686
4687 back_to = make_cleanup (do_free_completion_list, &list);
4688
4689 filename_seen_cache = create_filename_seen_cache ();
4690 cache_cleanup = make_cleanup (delete_filename_seen_cache,
4691 filename_seen_cache);
4692
4693 ALL_SYMTABS (objfile, s)
4694 {
4695 if (not_interesting_fname (s->filename))
4696 continue;
4697 if (!filename_seen (filename_seen_cache, s->filename, 1)
4698 && filename_ncmp (s->filename, text, text_len) == 0)
4699 {
4700 /* This file matches for a completion; add it to the current
4701 list of matches. */
4702 add_filename_to_list (s->filename, text, word, &list);
4703 }
4704 else
4705 {
4706 /* NOTE: We allow the user to type a base name when the
4707 debug info records leading directories, but not the other
4708 way around. This is what subroutines of breakpoint
4709 command do when they parse file names. */
4710 base_name = lbasename (s->filename);
4711 if (base_name != s->filename
4712 && !filename_seen (filename_seen_cache, base_name, 1)
4713 && filename_ncmp (base_name, text, text_len) == 0)
4714 add_filename_to_list (base_name, text, word, &list);
4715 }
4716 }
4717
4718 datum.filename_seen_cache = filename_seen_cache;
4719 datum.text = text;
4720 datum.word = word;
4721 datum.text_len = text_len;
4722 datum.list = &list;
4723 map_partial_symbol_filenames (maybe_add_partial_symtab_filename, &datum,
4724 0 /*need_fullname*/);
4725
4726 do_cleanups (cache_cleanup);
4727 discard_cleanups (back_to);
4728
4729 return list;
4730 }
4731
4732 /* Determine if PC is in the prologue of a function. The prologue is the area
4733 between the first instruction of a function, and the first executable line.
4734 Returns 1 if PC *might* be in prologue, 0 if definately *not* in prologue.
4735
4736 If non-zero, func_start is where we think the prologue starts, possibly
4737 by previous examination of symbol table information. */
4738
4739 int
4740 in_prologue (struct gdbarch *gdbarch, CORE_ADDR pc, CORE_ADDR func_start)
4741 {
4742 struct symtab_and_line sal;
4743 CORE_ADDR func_addr, func_end;
4744
4745 /* We have several sources of information we can consult to figure
4746 this out.
4747 - Compilers usually emit line number info that marks the prologue
4748 as its own "source line". So the ending address of that "line"
4749 is the end of the prologue. If available, this is the most
4750 reliable method.
4751 - The minimal symbols and partial symbols, which can usually tell
4752 us the starting and ending addresses of a function.
4753 - If we know the function's start address, we can call the
4754 architecture-defined gdbarch_skip_prologue function to analyze the
4755 instruction stream and guess where the prologue ends.
4756 - Our `func_start' argument; if non-zero, this is the caller's
4757 best guess as to the function's entry point. At the time of
4758 this writing, handle_inferior_event doesn't get this right, so
4759 it should be our last resort. */
4760
4761 /* Consult the partial symbol table, to find which function
4762 the PC is in. */
4763 if (! find_pc_partial_function (pc, NULL, &func_addr, &func_end))
4764 {
4765 CORE_ADDR prologue_end;
4766
4767 /* We don't even have minsym information, so fall back to using
4768 func_start, if given. */
4769 if (! func_start)
4770 return 1; /* We *might* be in a prologue. */
4771
4772 prologue_end = gdbarch_skip_prologue (gdbarch, func_start);
4773
4774 return func_start <= pc && pc < prologue_end;
4775 }
4776
4777 /* If we have line number information for the function, that's
4778 usually pretty reliable. */
4779 sal = find_pc_line (func_addr, 0);
4780
4781 /* Now sal describes the source line at the function's entry point,
4782 which (by convention) is the prologue. The end of that "line",
4783 sal.end, is the end of the prologue.
4784
4785 Note that, for functions whose source code is all on a single
4786 line, the line number information doesn't always end up this way.
4787 So we must verify that our purported end-of-prologue address is
4788 *within* the function, not at its start or end. */
4789 if (sal.line == 0
4790 || sal.end <= func_addr
4791 || func_end <= sal.end)
4792 {
4793 /* We don't have any good line number info, so use the minsym
4794 information, together with the architecture-specific prologue
4795 scanning code. */
4796 CORE_ADDR prologue_end = gdbarch_skip_prologue (gdbarch, func_addr);
4797
4798 return func_addr <= pc && pc < prologue_end;
4799 }
4800
4801 /* We have line number info, and it looks good. */
4802 return func_addr <= pc && pc < sal.end;
4803 }
4804
4805 /* Given PC at the function's start address, attempt to find the
4806 prologue end using SAL information. Return zero if the skip fails.
4807
4808 A non-optimized prologue traditionally has one SAL for the function
4809 and a second for the function body. A single line function has
4810 them both pointing at the same line.
4811
4812 An optimized prologue is similar but the prologue may contain
4813 instructions (SALs) from the instruction body. Need to skip those
4814 while not getting into the function body.
4815
4816 The functions end point and an increasing SAL line are used as
4817 indicators of the prologue's endpoint.
4818
4819 This code is based on the function refine_prologue_limit
4820 (found in ia64). */
4821
4822 CORE_ADDR
4823 skip_prologue_using_sal (struct gdbarch *gdbarch, CORE_ADDR func_addr)
4824 {
4825 struct symtab_and_line prologue_sal;
4826 CORE_ADDR start_pc;
4827 CORE_ADDR end_pc;
4828 struct block *bl;
4829
4830 /* Get an initial range for the function. */
4831 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
4832 start_pc += gdbarch_deprecated_function_start_offset (gdbarch);
4833
4834 prologue_sal = find_pc_line (start_pc, 0);
4835 if (prologue_sal.line != 0)
4836 {
4837 /* For languages other than assembly, treat two consecutive line
4838 entries at the same address as a zero-instruction prologue.
4839 The GNU assembler emits separate line notes for each instruction
4840 in a multi-instruction macro, but compilers generally will not
4841 do this. */
4842 if (prologue_sal.symtab->language != language_asm)
4843 {
4844 struct linetable *linetable = LINETABLE (prologue_sal.symtab);
4845 int idx = 0;
4846
4847 /* Skip any earlier lines, and any end-of-sequence marker
4848 from a previous function. */
4849 while (linetable->item[idx].pc != prologue_sal.pc
4850 || linetable->item[idx].line == 0)
4851 idx++;
4852
4853 if (idx+1 < linetable->nitems
4854 && linetable->item[idx+1].line != 0
4855 && linetable->item[idx+1].pc == start_pc)
4856 return start_pc;
4857 }
4858
4859 /* If there is only one sal that covers the entire function,
4860 then it is probably a single line function, like
4861 "foo(){}". */
4862 if (prologue_sal.end >= end_pc)
4863 return 0;
4864
4865 while (prologue_sal.end < end_pc)
4866 {
4867 struct symtab_and_line sal;
4868
4869 sal = find_pc_line (prologue_sal.end, 0);
4870 if (sal.line == 0)
4871 break;
4872 /* Assume that a consecutive SAL for the same (or larger)
4873 line mark the prologue -> body transition. */
4874 if (sal.line >= prologue_sal.line)
4875 break;
4876 /* Likewise if we are in a different symtab altogether
4877 (e.g. within a file included via #include).  */
4878 if (sal.symtab != prologue_sal.symtab)
4879 break;
4880
4881 /* The line number is smaller. Check that it's from the
4882 same function, not something inlined. If it's inlined,
4883 then there is no point comparing the line numbers. */
4884 bl = block_for_pc (prologue_sal.end);
4885 while (bl)
4886 {
4887 if (block_inlined_p (bl))
4888 break;
4889 if (BLOCK_FUNCTION (bl))
4890 {
4891 bl = NULL;
4892 break;
4893 }
4894 bl = BLOCK_SUPERBLOCK (bl);
4895 }
4896 if (bl != NULL)
4897 break;
4898
4899 /* The case in which compiler's optimizer/scheduler has
4900 moved instructions into the prologue. We look ahead in
4901 the function looking for address ranges whose
4902 corresponding line number is less the first one that we
4903 found for the function. This is more conservative then
4904 refine_prologue_limit which scans a large number of SALs
4905 looking for any in the prologue. */
4906 prologue_sal = sal;
4907 }
4908 }
4909
4910 if (prologue_sal.end < end_pc)
4911 /* Return the end of this line, or zero if we could not find a
4912 line. */
4913 return prologue_sal.end;
4914 else
4915 /* Don't return END_PC, which is past the end of the function. */
4916 return prologue_sal.pc;
4917 }
4918 \f
4919 /* Track MAIN */
4920 static char *name_of_main;
4921 enum language language_of_main = language_unknown;
4922
4923 void
4924 set_main_name (const char *name)
4925 {
4926 if (name_of_main != NULL)
4927 {
4928 xfree (name_of_main);
4929 name_of_main = NULL;
4930 language_of_main = language_unknown;
4931 }
4932 if (name != NULL)
4933 {
4934 name_of_main = xstrdup (name);
4935 language_of_main = language_unknown;
4936 }
4937 }
4938
4939 /* Deduce the name of the main procedure, and set NAME_OF_MAIN
4940 accordingly. */
4941
4942 static void
4943 find_main_name (void)
4944 {
4945 const char *new_main_name;
4946
4947 /* Try to see if the main procedure is in Ada. */
4948 /* FIXME: brobecker/2005-03-07: Another way of doing this would
4949 be to add a new method in the language vector, and call this
4950 method for each language until one of them returns a non-empty
4951 name. This would allow us to remove this hard-coded call to
4952 an Ada function. It is not clear that this is a better approach
4953 at this point, because all methods need to be written in a way
4954 such that false positives never be returned. For instance, it is
4955 important that a method does not return a wrong name for the main
4956 procedure if the main procedure is actually written in a different
4957 language. It is easy to guaranty this with Ada, since we use a
4958 special symbol generated only when the main in Ada to find the name
4959 of the main procedure. It is difficult however to see how this can
4960 be guarantied for languages such as C, for instance. This suggests
4961 that order of call for these methods becomes important, which means
4962 a more complicated approach. */
4963 new_main_name = ada_main_name ();
4964 if (new_main_name != NULL)
4965 {
4966 set_main_name (new_main_name);
4967 return;
4968 }
4969
4970 new_main_name = go_main_name ();
4971 if (new_main_name != NULL)
4972 {
4973 set_main_name (new_main_name);
4974 return;
4975 }
4976
4977 new_main_name = pascal_main_name ();
4978 if (new_main_name != NULL)
4979 {
4980 set_main_name (new_main_name);
4981 return;
4982 }
4983
4984 /* The languages above didn't identify the name of the main procedure.
4985 Fallback to "main". */
4986 set_main_name ("main");
4987 }
4988
4989 char *
4990 main_name (void)
4991 {
4992 if (name_of_main == NULL)
4993 find_main_name ();
4994
4995 return name_of_main;
4996 }
4997
4998 /* Handle ``executable_changed'' events for the symtab module. */
4999
5000 static void
5001 symtab_observer_executable_changed (void)
5002 {
5003 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
5004 set_main_name (NULL);
5005 }
5006
5007 /* Return 1 if the supplied producer string matches the ARM RealView
5008 compiler (armcc). */
5009
5010 int
5011 producer_is_realview (const char *producer)
5012 {
5013 static const char *const arm_idents[] = {
5014 "ARM C Compiler, ADS",
5015 "Thumb C Compiler, ADS",
5016 "ARM C++ Compiler, ADS",
5017 "Thumb C++ Compiler, ADS",
5018 "ARM/Thumb C/C++ Compiler, RVCT",
5019 "ARM C/C++ Compiler, RVCT"
5020 };
5021 int i;
5022
5023 if (producer == NULL)
5024 return 0;
5025
5026 for (i = 0; i < ARRAY_SIZE (arm_idents); i++)
5027 if (strncmp (producer, arm_idents[i], strlen (arm_idents[i])) == 0)
5028 return 1;
5029
5030 return 0;
5031 }
5032
5033 void
5034 _initialize_symtab (void)
5035 {
5036 add_info ("variables", variables_info, _("\
5037 All global and static variable names, or those matching REGEXP."));
5038 if (dbx_commands)
5039 add_com ("whereis", class_info, variables_info, _("\
5040 All global and static variable names, or those matching REGEXP."));
5041
5042 add_info ("functions", functions_info,
5043 _("All function names, or those matching REGEXP."));
5044
5045 /* FIXME: This command has at least the following problems:
5046 1. It prints builtin types (in a very strange and confusing fashion).
5047 2. It doesn't print right, e.g. with
5048 typedef struct foo *FOO
5049 type_print prints "FOO" when we want to make it (in this situation)
5050 print "struct foo *".
5051 I also think "ptype" or "whatis" is more likely to be useful (but if
5052 there is much disagreement "info types" can be fixed). */
5053 add_info ("types", types_info,
5054 _("All type names, or those matching REGEXP."));
5055
5056 add_info ("sources", sources_info,
5057 _("Source files in the program."));
5058
5059 add_com ("rbreak", class_breakpoint, rbreak_command,
5060 _("Set a breakpoint for all functions matching REGEXP."));
5061
5062 if (xdb_commands)
5063 {
5064 add_com ("lf", class_info, sources_info,
5065 _("Source files in the program"));
5066 add_com ("lg", class_info, variables_info, _("\
5067 All global and static variable names, or those matching REGEXP."));
5068 }
5069
5070 add_setshow_enum_cmd ("multiple-symbols", no_class,
5071 multiple_symbols_modes, &multiple_symbols_mode,
5072 _("\
5073 Set the debugger behavior when more than one symbol are possible matches\n\
5074 in an expression."), _("\
5075 Show how the debugger handles ambiguities in expressions."), _("\
5076 Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
5077 NULL, NULL, &setlist, &showlist);
5078
5079 add_setshow_boolean_cmd ("basenames-may-differ", class_obscure,
5080 &basenames_may_differ, _("\
5081 Set whether a source file may have multiple base names."), _("\
5082 Show whether a source file may have multiple base names."), _("\
5083 (A \"base name\" is the name of a file with the directory part removed.\n\
5084 Example: The base name of \"/home/user/hello.c\" is \"hello.c\".)\n\
5085 If set, GDB will canonicalize file names (e.g., expand symlinks)\n\
5086 before comparing them. Canonicalization is an expensive operation,\n\
5087 but it allows the same file be known by more than one base name.\n\
5088 If not set (the default), all source files are assumed to have just\n\
5089 one base name, and gdb will do file name comparisons more efficiently."),
5090 NULL, NULL,
5091 &setlist, &showlist);
5092
5093 add_setshow_boolean_cmd ("symtab-create", no_class, &symtab_create_debug,
5094 _("Set debugging of symbol table creation."),
5095 _("Show debugging of symbol table creation."), _("\
5096 When enabled, debugging messages are printed when building symbol tables."),
5097 NULL,
5098 NULL,
5099 &setdebuglist, &showdebuglist);
5100
5101 observer_attach_executable_changed (symtab_observer_executable_changed);
5102 }
This page took 0.13384 seconds and 4 git commands to generate.