move sparc-sol-thread.c back into sol-thread.c.
[deliverable/binutils-gdb.git] / gdb / symtab.c
1 /* Symbol table lookup for the GNU debugger, GDB.
2
3 Copyright (C) 1986-2013 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "gdbcore.h"
24 #include "frame.h"
25 #include "target.h"
26 #include "value.h"
27 #include "symfile.h"
28 #include "objfiles.h"
29 #include "gdbcmd.h"
30 #include "gdb_regex.h"
31 #include "expression.h"
32 #include "language.h"
33 #include "demangle.h"
34 #include "inferior.h"
35 #include "source.h"
36 #include "filenames.h" /* for FILENAME_CMP */
37 #include "objc-lang.h"
38 #include "d-lang.h"
39 #include "ada-lang.h"
40 #include "go-lang.h"
41 #include "p-lang.h"
42 #include "addrmap.h"
43 #include "cli/cli-utils.h"
44
45 #include "hashtab.h"
46
47 #include "gdb_obstack.h"
48 #include "block.h"
49 #include "dictionary.h"
50
51 #include <sys/types.h>
52 #include <fcntl.h>
53 #include "gdb_string.h"
54 #include "gdb_stat.h"
55 #include <ctype.h>
56 #include "cp-abi.h"
57 #include "cp-support.h"
58 #include "observer.h"
59 #include "gdb_assert.h"
60 #include "solist.h"
61 #include "macrotab.h"
62 #include "macroscope.h"
63
64 #include "psymtab.h"
65 #include "parser-defs.h"
66
67 /* Prototypes for local functions */
68
69 static void rbreak_command (char *, int);
70
71 static void types_info (char *, int);
72
73 static void functions_info (char *, int);
74
75 static void variables_info (char *, int);
76
77 static void sources_info (char *, int);
78
79 static int find_line_common (struct linetable *, int, int *, int);
80
81 static struct symbol *lookup_symbol_aux (const char *name,
82 const struct block *block,
83 const domain_enum domain,
84 enum language language,
85 struct field_of_this_result *is_a_field_of_this);
86
87 static
88 struct symbol *lookup_symbol_aux_local (const char *name,
89 const struct block *block,
90 const domain_enum domain,
91 enum language language);
92
93 static
94 struct symbol *lookup_symbol_aux_symtabs (int block_index,
95 const char *name,
96 const domain_enum domain);
97
98 static
99 struct symbol *lookup_symbol_aux_quick (struct objfile *objfile,
100 int block_index,
101 const char *name,
102 const domain_enum domain);
103
104 static void print_msymbol_info (struct minimal_symbol *);
105
106 void _initialize_symtab (void);
107
108 /* */
109
110 /* When non-zero, print debugging messages related to symtab creation. */
111 int symtab_create_debug = 0;
112
113 /* Non-zero if a file may be known by two different basenames.
114 This is the uncommon case, and significantly slows down gdb.
115 Default set to "off" to not slow down the common case. */
116 int basenames_may_differ = 0;
117
118 /* Allow the user to configure the debugger behavior with respect
119 to multiple-choice menus when more than one symbol matches during
120 a symbol lookup. */
121
122 const char multiple_symbols_ask[] = "ask";
123 const char multiple_symbols_all[] = "all";
124 const char multiple_symbols_cancel[] = "cancel";
125 static const char *const multiple_symbols_modes[] =
126 {
127 multiple_symbols_ask,
128 multiple_symbols_all,
129 multiple_symbols_cancel,
130 NULL
131 };
132 static const char *multiple_symbols_mode = multiple_symbols_all;
133
134 /* Read-only accessor to AUTO_SELECT_MODE. */
135
136 const char *
137 multiple_symbols_select_mode (void)
138 {
139 return multiple_symbols_mode;
140 }
141
142 /* Block in which the most recently searched-for symbol was found.
143 Might be better to make this a parameter to lookup_symbol and
144 value_of_this. */
145
146 const struct block *block_found;
147
148 /* See whether FILENAME matches SEARCH_NAME using the rule that we
149 advertise to the user. (The manual's description of linespecs
150 describes what we advertise). Returns true if they match, false
151 otherwise. */
152
153 int
154 compare_filenames_for_search (const char *filename, const char *search_name)
155 {
156 int len = strlen (filename);
157 size_t search_len = strlen (search_name);
158
159 if (len < search_len)
160 return 0;
161
162 /* The tail of FILENAME must match. */
163 if (FILENAME_CMP (filename + len - search_len, search_name) != 0)
164 return 0;
165
166 /* Either the names must completely match, or the character
167 preceding the trailing SEARCH_NAME segment of FILENAME must be a
168 directory separator.
169
170 The check !IS_ABSOLUTE_PATH ensures SEARCH_NAME "/dir/file.c"
171 cannot match FILENAME "/path//dir/file.c" - as user has requested
172 absolute path. The sama applies for "c:\file.c" possibly
173 incorrectly hypothetically matching "d:\dir\c:\file.c".
174
175 The HAS_DRIVE_SPEC purpose is to make FILENAME "c:file.c"
176 compatible with SEARCH_NAME "file.c". In such case a compiler had
177 to put the "c:file.c" name into debug info. Such compatibility
178 works only on GDB built for DOS host. */
179 return (len == search_len
180 || (!IS_ABSOLUTE_PATH (search_name)
181 && IS_DIR_SEPARATOR (filename[len - search_len - 1]))
182 || (HAS_DRIVE_SPEC (filename)
183 && STRIP_DRIVE_SPEC (filename) == &filename[len - search_len]));
184 }
185
186 /* Check for a symtab of a specific name by searching some symtabs.
187 This is a helper function for callbacks of iterate_over_symtabs.
188
189 The return value, NAME, REAL_PATH, CALLBACK, and DATA
190 are identical to the `map_symtabs_matching_filename' method of
191 quick_symbol_functions.
192
193 FIRST and AFTER_LAST indicate the range of symtabs to search.
194 AFTER_LAST is one past the last symtab to search; NULL means to
195 search until the end of the list. */
196
197 int
198 iterate_over_some_symtabs (const char *name,
199 const char *real_path,
200 int (*callback) (struct symtab *symtab,
201 void *data),
202 void *data,
203 struct symtab *first,
204 struct symtab *after_last)
205 {
206 struct symtab *s = NULL;
207 const char* base_name = lbasename (name);
208
209 for (s = first; s != NULL && s != after_last; s = s->next)
210 {
211 if (compare_filenames_for_search (s->filename, name))
212 {
213 if (callback (s, data))
214 return 1;
215 continue;
216 }
217
218 /* Before we invoke realpath, which can get expensive when many
219 files are involved, do a quick comparison of the basenames. */
220 if (! basenames_may_differ
221 && FILENAME_CMP (base_name, lbasename (s->filename)) != 0)
222 continue;
223
224 if (compare_filenames_for_search (symtab_to_fullname (s), name))
225 {
226 if (callback (s, data))
227 return 1;
228 continue;
229 }
230
231 /* If the user gave us an absolute path, try to find the file in
232 this symtab and use its absolute path. */
233
234 if (real_path != NULL)
235 {
236 const char *fullname = symtab_to_fullname (s);
237
238 gdb_assert (IS_ABSOLUTE_PATH (real_path));
239 gdb_assert (IS_ABSOLUTE_PATH (name));
240 if (FILENAME_CMP (real_path, fullname) == 0)
241 {
242 if (callback (s, data))
243 return 1;
244 continue;
245 }
246 }
247 }
248
249 return 0;
250 }
251
252 /* Check for a symtab of a specific name; first in symtabs, then in
253 psymtabs. *If* there is no '/' in the name, a match after a '/'
254 in the symtab filename will also work.
255
256 Calls CALLBACK with each symtab that is found and with the supplied
257 DATA. If CALLBACK returns true, the search stops. */
258
259 void
260 iterate_over_symtabs (const char *name,
261 int (*callback) (struct symtab *symtab,
262 void *data),
263 void *data)
264 {
265 struct objfile *objfile;
266 char *real_path = NULL;
267 struct cleanup *cleanups = make_cleanup (null_cleanup, NULL);
268
269 /* Here we are interested in canonicalizing an absolute path, not
270 absolutizing a relative path. */
271 if (IS_ABSOLUTE_PATH (name))
272 {
273 real_path = gdb_realpath (name);
274 make_cleanup (xfree, real_path);
275 gdb_assert (IS_ABSOLUTE_PATH (real_path));
276 }
277
278 ALL_OBJFILES (objfile)
279 {
280 if (iterate_over_some_symtabs (name, real_path, callback, data,
281 objfile->symtabs, NULL))
282 {
283 do_cleanups (cleanups);
284 return;
285 }
286 }
287
288 /* Same search rules as above apply here, but now we look thru the
289 psymtabs. */
290
291 ALL_OBJFILES (objfile)
292 {
293 if (objfile->sf
294 && objfile->sf->qf->map_symtabs_matching_filename (objfile,
295 name,
296 real_path,
297 callback,
298 data))
299 {
300 do_cleanups (cleanups);
301 return;
302 }
303 }
304
305 do_cleanups (cleanups);
306 }
307
308 /* The callback function used by lookup_symtab. */
309
310 static int
311 lookup_symtab_callback (struct symtab *symtab, void *data)
312 {
313 struct symtab **result_ptr = data;
314
315 *result_ptr = symtab;
316 return 1;
317 }
318
319 /* A wrapper for iterate_over_symtabs that returns the first matching
320 symtab, or NULL. */
321
322 struct symtab *
323 lookup_symtab (const char *name)
324 {
325 struct symtab *result = NULL;
326
327 iterate_over_symtabs (name, lookup_symtab_callback, &result);
328 return result;
329 }
330
331 \f
332 /* Mangle a GDB method stub type. This actually reassembles the pieces of the
333 full method name, which consist of the class name (from T), the unadorned
334 method name from METHOD_ID, and the signature for the specific overload,
335 specified by SIGNATURE_ID. Note that this function is g++ specific. */
336
337 char *
338 gdb_mangle_name (struct type *type, int method_id, int signature_id)
339 {
340 int mangled_name_len;
341 char *mangled_name;
342 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
343 struct fn_field *method = &f[signature_id];
344 const char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
345 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
346 const char *newname = type_name_no_tag (type);
347
348 /* Does the form of physname indicate that it is the full mangled name
349 of a constructor (not just the args)? */
350 int is_full_physname_constructor;
351
352 int is_constructor;
353 int is_destructor = is_destructor_name (physname);
354 /* Need a new type prefix. */
355 char *const_prefix = method->is_const ? "C" : "";
356 char *volatile_prefix = method->is_volatile ? "V" : "";
357 char buf[20];
358 int len = (newname == NULL ? 0 : strlen (newname));
359
360 /* Nothing to do if physname already contains a fully mangled v3 abi name
361 or an operator name. */
362 if ((physname[0] == '_' && physname[1] == 'Z')
363 || is_operator_name (field_name))
364 return xstrdup (physname);
365
366 is_full_physname_constructor = is_constructor_name (physname);
367
368 is_constructor = is_full_physname_constructor
369 || (newname && strcmp (field_name, newname) == 0);
370
371 if (!is_destructor)
372 is_destructor = (strncmp (physname, "__dt", 4) == 0);
373
374 if (is_destructor || is_full_physname_constructor)
375 {
376 mangled_name = (char *) xmalloc (strlen (physname) + 1);
377 strcpy (mangled_name, physname);
378 return mangled_name;
379 }
380
381 if (len == 0)
382 {
383 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
384 }
385 else if (physname[0] == 't' || physname[0] == 'Q')
386 {
387 /* The physname for template and qualified methods already includes
388 the class name. */
389 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
390 newname = NULL;
391 len = 0;
392 }
393 else
394 {
395 xsnprintf (buf, sizeof (buf), "__%s%s%d", const_prefix,
396 volatile_prefix, len);
397 }
398 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
399 + strlen (buf) + len + strlen (physname) + 1);
400
401 mangled_name = (char *) xmalloc (mangled_name_len);
402 if (is_constructor)
403 mangled_name[0] = '\0';
404 else
405 strcpy (mangled_name, field_name);
406
407 strcat (mangled_name, buf);
408 /* If the class doesn't have a name, i.e. newname NULL, then we just
409 mangle it using 0 for the length of the class. Thus it gets mangled
410 as something starting with `::' rather than `classname::'. */
411 if (newname != NULL)
412 strcat (mangled_name, newname);
413
414 strcat (mangled_name, physname);
415 return (mangled_name);
416 }
417
418 /* Initialize the cplus_specific structure. 'cplus_specific' should
419 only be allocated for use with cplus symbols. */
420
421 static void
422 symbol_init_cplus_specific (struct general_symbol_info *gsymbol,
423 struct obstack *obstack)
424 {
425 /* A language_specific structure should not have been previously
426 initialized. */
427 gdb_assert (gsymbol->language_specific.cplus_specific == NULL);
428 gdb_assert (obstack != NULL);
429
430 gsymbol->language_specific.cplus_specific =
431 OBSTACK_ZALLOC (obstack, struct cplus_specific);
432 }
433
434 /* Set the demangled name of GSYMBOL to NAME. NAME must be already
435 correctly allocated. For C++ symbols a cplus_specific struct is
436 allocated so OBJFILE must not be NULL. If this is a non C++ symbol
437 OBJFILE can be NULL. */
438
439 void
440 symbol_set_demangled_name (struct general_symbol_info *gsymbol,
441 const char *name,
442 struct obstack *obstack)
443 {
444 if (gsymbol->language == language_cplus)
445 {
446 if (gsymbol->language_specific.cplus_specific == NULL)
447 symbol_init_cplus_specific (gsymbol, obstack);
448
449 gsymbol->language_specific.cplus_specific->demangled_name = name;
450 }
451 else if (gsymbol->language == language_ada)
452 {
453 if (name == NULL)
454 {
455 gsymbol->ada_mangled = 0;
456 gsymbol->language_specific.obstack = obstack;
457 }
458 else
459 {
460 gsymbol->ada_mangled = 1;
461 gsymbol->language_specific.mangled_lang.demangled_name = name;
462 }
463 }
464 else
465 gsymbol->language_specific.mangled_lang.demangled_name = name;
466 }
467
468 /* Return the demangled name of GSYMBOL. */
469
470 const char *
471 symbol_get_demangled_name (const struct general_symbol_info *gsymbol)
472 {
473 if (gsymbol->language == language_cplus)
474 {
475 if (gsymbol->language_specific.cplus_specific != NULL)
476 return gsymbol->language_specific.cplus_specific->demangled_name;
477 else
478 return NULL;
479 }
480 else if (gsymbol->language == language_ada)
481 {
482 if (!gsymbol->ada_mangled)
483 return NULL;
484 /* Fall through. */
485 }
486
487 return gsymbol->language_specific.mangled_lang.demangled_name;
488 }
489
490 \f
491 /* Initialize the language dependent portion of a symbol
492 depending upon the language for the symbol. */
493
494 void
495 symbol_set_language (struct general_symbol_info *gsymbol,
496 enum language language,
497 struct obstack *obstack)
498 {
499 gsymbol->language = language;
500 if (gsymbol->language == language_d
501 || gsymbol->language == language_go
502 || gsymbol->language == language_java
503 || gsymbol->language == language_objc
504 || gsymbol->language == language_fortran)
505 {
506 symbol_set_demangled_name (gsymbol, NULL, obstack);
507 }
508 else if (gsymbol->language == language_ada)
509 {
510 gdb_assert (gsymbol->ada_mangled == 0);
511 gsymbol->language_specific.obstack = obstack;
512 }
513 else if (gsymbol->language == language_cplus)
514 gsymbol->language_specific.cplus_specific = NULL;
515 else
516 {
517 memset (&gsymbol->language_specific, 0,
518 sizeof (gsymbol->language_specific));
519 }
520 }
521
522 /* Functions to initialize a symbol's mangled name. */
523
524 /* Objects of this type are stored in the demangled name hash table. */
525 struct demangled_name_entry
526 {
527 const char *mangled;
528 char demangled[1];
529 };
530
531 /* Hash function for the demangled name hash. */
532
533 static hashval_t
534 hash_demangled_name_entry (const void *data)
535 {
536 const struct demangled_name_entry *e = data;
537
538 return htab_hash_string (e->mangled);
539 }
540
541 /* Equality function for the demangled name hash. */
542
543 static int
544 eq_demangled_name_entry (const void *a, const void *b)
545 {
546 const struct demangled_name_entry *da = a;
547 const struct demangled_name_entry *db = b;
548
549 return strcmp (da->mangled, db->mangled) == 0;
550 }
551
552 /* Create the hash table used for demangled names. Each hash entry is
553 a pair of strings; one for the mangled name and one for the demangled
554 name. The entry is hashed via just the mangled name. */
555
556 static void
557 create_demangled_names_hash (struct objfile *objfile)
558 {
559 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
560 The hash table code will round this up to the next prime number.
561 Choosing a much larger table size wastes memory, and saves only about
562 1% in symbol reading. */
563
564 objfile->demangled_names_hash = htab_create_alloc
565 (256, hash_demangled_name_entry, eq_demangled_name_entry,
566 NULL, xcalloc, xfree);
567 }
568
569 /* Try to determine the demangled name for a symbol, based on the
570 language of that symbol. If the language is set to language_auto,
571 it will attempt to find any demangling algorithm that works and
572 then set the language appropriately. The returned name is allocated
573 by the demangler and should be xfree'd. */
574
575 static char *
576 symbol_find_demangled_name (struct general_symbol_info *gsymbol,
577 const char *mangled)
578 {
579 char *demangled = NULL;
580
581 if (gsymbol->language == language_unknown)
582 gsymbol->language = language_auto;
583
584 if (gsymbol->language == language_objc
585 || gsymbol->language == language_auto)
586 {
587 demangled =
588 objc_demangle (mangled, 0);
589 if (demangled != NULL)
590 {
591 gsymbol->language = language_objc;
592 return demangled;
593 }
594 }
595 if (gsymbol->language == language_cplus
596 || gsymbol->language == language_auto)
597 {
598 demangled =
599 gdb_demangle (mangled, DMGL_PARAMS | DMGL_ANSI);
600 if (demangled != NULL)
601 {
602 gsymbol->language = language_cplus;
603 return demangled;
604 }
605 }
606 if (gsymbol->language == language_java)
607 {
608 demangled =
609 gdb_demangle (mangled,
610 DMGL_PARAMS | DMGL_ANSI | DMGL_JAVA);
611 if (demangled != NULL)
612 {
613 gsymbol->language = language_java;
614 return demangled;
615 }
616 }
617 if (gsymbol->language == language_d
618 || gsymbol->language == language_auto)
619 {
620 demangled = d_demangle(mangled, 0);
621 if (demangled != NULL)
622 {
623 gsymbol->language = language_d;
624 return demangled;
625 }
626 }
627 /* FIXME(dje): Continually adding languages here is clumsy.
628 Better to just call la_demangle if !auto, and if auto then call
629 a utility routine that tries successive languages in turn and reports
630 which one it finds. I realize the la_demangle options may be different
631 for different languages but there's already a FIXME for that. */
632 if (gsymbol->language == language_go
633 || gsymbol->language == language_auto)
634 {
635 demangled = go_demangle (mangled, 0);
636 if (demangled != NULL)
637 {
638 gsymbol->language = language_go;
639 return demangled;
640 }
641 }
642
643 /* We could support `gsymbol->language == language_fortran' here to provide
644 module namespaces also for inferiors with only minimal symbol table (ELF
645 symbols). Just the mangling standard is not standardized across compilers
646 and there is no DW_AT_producer available for inferiors with only the ELF
647 symbols to check the mangling kind. */
648 return NULL;
649 }
650
651 /* Set both the mangled and demangled (if any) names for GSYMBOL based
652 on LINKAGE_NAME and LEN. Ordinarily, NAME is copied onto the
653 objfile's obstack; but if COPY_NAME is 0 and if NAME is
654 NUL-terminated, then this function assumes that NAME is already
655 correctly saved (either permanently or with a lifetime tied to the
656 objfile), and it will not be copied.
657
658 The hash table corresponding to OBJFILE is used, and the memory
659 comes from that objfile's objfile_obstack. LINKAGE_NAME is copied,
660 so the pointer can be discarded after calling this function. */
661
662 /* We have to be careful when dealing with Java names: when we run
663 into a Java minimal symbol, we don't know it's a Java symbol, so it
664 gets demangled as a C++ name. This is unfortunate, but there's not
665 much we can do about it: but when demangling partial symbols and
666 regular symbols, we'd better not reuse the wrong demangled name.
667 (See PR gdb/1039.) We solve this by putting a distinctive prefix
668 on Java names when storing them in the hash table. */
669
670 /* FIXME: carlton/2003-03-13: This is an unfortunate situation. I
671 don't mind the Java prefix so much: different languages have
672 different demangling requirements, so it's only natural that we
673 need to keep language data around in our demangling cache. But
674 it's not good that the minimal symbol has the wrong demangled name.
675 Unfortunately, I can't think of any easy solution to that
676 problem. */
677
678 #define JAVA_PREFIX "##JAVA$$"
679 #define JAVA_PREFIX_LEN 8
680
681 void
682 symbol_set_names (struct general_symbol_info *gsymbol,
683 const char *linkage_name, int len, int copy_name,
684 struct objfile *objfile)
685 {
686 struct demangled_name_entry **slot;
687 /* A 0-terminated copy of the linkage name. */
688 const char *linkage_name_copy;
689 /* A copy of the linkage name that might have a special Java prefix
690 added to it, for use when looking names up in the hash table. */
691 const char *lookup_name;
692 /* The length of lookup_name. */
693 int lookup_len;
694 struct demangled_name_entry entry;
695
696 if (gsymbol->language == language_ada)
697 {
698 /* In Ada, we do the symbol lookups using the mangled name, so
699 we can save some space by not storing the demangled name.
700
701 As a side note, we have also observed some overlap between
702 the C++ mangling and Ada mangling, similarly to what has
703 been observed with Java. Because we don't store the demangled
704 name with the symbol, we don't need to use the same trick
705 as Java. */
706 if (!copy_name)
707 gsymbol->name = linkage_name;
708 else
709 {
710 char *name = obstack_alloc (&objfile->objfile_obstack, len + 1);
711
712 memcpy (name, linkage_name, len);
713 name[len] = '\0';
714 gsymbol->name = name;
715 }
716 symbol_set_demangled_name (gsymbol, NULL, &objfile->objfile_obstack);
717
718 return;
719 }
720
721 if (objfile->demangled_names_hash == NULL)
722 create_demangled_names_hash (objfile);
723
724 /* The stabs reader generally provides names that are not
725 NUL-terminated; most of the other readers don't do this, so we
726 can just use the given copy, unless we're in the Java case. */
727 if (gsymbol->language == language_java)
728 {
729 char *alloc_name;
730
731 lookup_len = len + JAVA_PREFIX_LEN;
732 alloc_name = alloca (lookup_len + 1);
733 memcpy (alloc_name, JAVA_PREFIX, JAVA_PREFIX_LEN);
734 memcpy (alloc_name + JAVA_PREFIX_LEN, linkage_name, len);
735 alloc_name[lookup_len] = '\0';
736
737 lookup_name = alloc_name;
738 linkage_name_copy = alloc_name + JAVA_PREFIX_LEN;
739 }
740 else if (linkage_name[len] != '\0')
741 {
742 char *alloc_name;
743
744 lookup_len = len;
745 alloc_name = alloca (lookup_len + 1);
746 memcpy (alloc_name, linkage_name, len);
747 alloc_name[lookup_len] = '\0';
748
749 lookup_name = alloc_name;
750 linkage_name_copy = alloc_name;
751 }
752 else
753 {
754 lookup_len = len;
755 lookup_name = linkage_name;
756 linkage_name_copy = linkage_name;
757 }
758
759 entry.mangled = lookup_name;
760 slot = ((struct demangled_name_entry **)
761 htab_find_slot (objfile->demangled_names_hash,
762 &entry, INSERT));
763
764 /* If this name is not in the hash table, add it. */
765 if (*slot == NULL
766 /* A C version of the symbol may have already snuck into the table.
767 This happens to, e.g., main.init (__go_init_main). Cope. */
768 || (gsymbol->language == language_go
769 && (*slot)->demangled[0] == '\0'))
770 {
771 char *demangled_name = symbol_find_demangled_name (gsymbol,
772 linkage_name_copy);
773 int demangled_len = demangled_name ? strlen (demangled_name) : 0;
774
775 /* Suppose we have demangled_name==NULL, copy_name==0, and
776 lookup_name==linkage_name. In this case, we already have the
777 mangled name saved, and we don't have a demangled name. So,
778 you might think we could save a little space by not recording
779 this in the hash table at all.
780
781 It turns out that it is actually important to still save such
782 an entry in the hash table, because storing this name gives
783 us better bcache hit rates for partial symbols. */
784 if (!copy_name && lookup_name == linkage_name)
785 {
786 *slot = obstack_alloc (&objfile->objfile_obstack,
787 offsetof (struct demangled_name_entry,
788 demangled)
789 + demangled_len + 1);
790 (*slot)->mangled = lookup_name;
791 }
792 else
793 {
794 char *mangled_ptr;
795
796 /* If we must copy the mangled name, put it directly after
797 the demangled name so we can have a single
798 allocation. */
799 *slot = obstack_alloc (&objfile->objfile_obstack,
800 offsetof (struct demangled_name_entry,
801 demangled)
802 + lookup_len + demangled_len + 2);
803 mangled_ptr = &((*slot)->demangled[demangled_len + 1]);
804 strcpy (mangled_ptr, lookup_name);
805 (*slot)->mangled = mangled_ptr;
806 }
807
808 if (demangled_name != NULL)
809 {
810 strcpy ((*slot)->demangled, demangled_name);
811 xfree (demangled_name);
812 }
813 else
814 (*slot)->demangled[0] = '\0';
815 }
816
817 gsymbol->name = (*slot)->mangled + lookup_len - len;
818 if ((*slot)->demangled[0] != '\0')
819 symbol_set_demangled_name (gsymbol, (*slot)->demangled,
820 &objfile->objfile_obstack);
821 else
822 symbol_set_demangled_name (gsymbol, NULL, &objfile->objfile_obstack);
823 }
824
825 /* Return the source code name of a symbol. In languages where
826 demangling is necessary, this is the demangled name. */
827
828 const char *
829 symbol_natural_name (const struct general_symbol_info *gsymbol)
830 {
831 switch (gsymbol->language)
832 {
833 case language_cplus:
834 case language_d:
835 case language_go:
836 case language_java:
837 case language_objc:
838 case language_fortran:
839 if (symbol_get_demangled_name (gsymbol) != NULL)
840 return symbol_get_demangled_name (gsymbol);
841 break;
842 case language_ada:
843 return ada_decode_symbol (gsymbol);
844 default:
845 break;
846 }
847 return gsymbol->name;
848 }
849
850 /* Return the demangled name for a symbol based on the language for
851 that symbol. If no demangled name exists, return NULL. */
852
853 const char *
854 symbol_demangled_name (const struct general_symbol_info *gsymbol)
855 {
856 const char *dem_name = NULL;
857
858 switch (gsymbol->language)
859 {
860 case language_cplus:
861 case language_d:
862 case language_go:
863 case language_java:
864 case language_objc:
865 case language_fortran:
866 dem_name = symbol_get_demangled_name (gsymbol);
867 break;
868 case language_ada:
869 dem_name = ada_decode_symbol (gsymbol);
870 break;
871 default:
872 break;
873 }
874 return dem_name;
875 }
876
877 /* Return the search name of a symbol---generally the demangled or
878 linkage name of the symbol, depending on how it will be searched for.
879 If there is no distinct demangled name, then returns the same value
880 (same pointer) as SYMBOL_LINKAGE_NAME. */
881
882 const char *
883 symbol_search_name (const struct general_symbol_info *gsymbol)
884 {
885 if (gsymbol->language == language_ada)
886 return gsymbol->name;
887 else
888 return symbol_natural_name (gsymbol);
889 }
890
891 /* Initialize the structure fields to zero values. */
892
893 void
894 init_sal (struct symtab_and_line *sal)
895 {
896 sal->pspace = NULL;
897 sal->symtab = 0;
898 sal->section = 0;
899 sal->line = 0;
900 sal->pc = 0;
901 sal->end = 0;
902 sal->explicit_pc = 0;
903 sal->explicit_line = 0;
904 sal->probe = NULL;
905 }
906 \f
907
908 /* Return 1 if the two sections are the same, or if they could
909 plausibly be copies of each other, one in an original object
910 file and another in a separated debug file. */
911
912 int
913 matching_obj_sections (struct obj_section *obj_first,
914 struct obj_section *obj_second)
915 {
916 asection *first = obj_first? obj_first->the_bfd_section : NULL;
917 asection *second = obj_second? obj_second->the_bfd_section : NULL;
918 struct objfile *obj;
919
920 /* If they're the same section, then they match. */
921 if (first == second)
922 return 1;
923
924 /* If either is NULL, give up. */
925 if (first == NULL || second == NULL)
926 return 0;
927
928 /* This doesn't apply to absolute symbols. */
929 if (first->owner == NULL || second->owner == NULL)
930 return 0;
931
932 /* If they're in the same object file, they must be different sections. */
933 if (first->owner == second->owner)
934 return 0;
935
936 /* Check whether the two sections are potentially corresponding. They must
937 have the same size, address, and name. We can't compare section indexes,
938 which would be more reliable, because some sections may have been
939 stripped. */
940 if (bfd_get_section_size (first) != bfd_get_section_size (second))
941 return 0;
942
943 /* In-memory addresses may start at a different offset, relativize them. */
944 if (bfd_get_section_vma (first->owner, first)
945 - bfd_get_start_address (first->owner)
946 != bfd_get_section_vma (second->owner, second)
947 - bfd_get_start_address (second->owner))
948 return 0;
949
950 if (bfd_get_section_name (first->owner, first) == NULL
951 || bfd_get_section_name (second->owner, second) == NULL
952 || strcmp (bfd_get_section_name (first->owner, first),
953 bfd_get_section_name (second->owner, second)) != 0)
954 return 0;
955
956 /* Otherwise check that they are in corresponding objfiles. */
957
958 ALL_OBJFILES (obj)
959 if (obj->obfd == first->owner)
960 break;
961 gdb_assert (obj != NULL);
962
963 if (obj->separate_debug_objfile != NULL
964 && obj->separate_debug_objfile->obfd == second->owner)
965 return 1;
966 if (obj->separate_debug_objfile_backlink != NULL
967 && obj->separate_debug_objfile_backlink->obfd == second->owner)
968 return 1;
969
970 return 0;
971 }
972
973 struct symtab *
974 find_pc_sect_symtab_via_partial (CORE_ADDR pc, struct obj_section *section)
975 {
976 struct objfile *objfile;
977 struct minimal_symbol *msymbol;
978
979 /* If we know that this is not a text address, return failure. This is
980 necessary because we loop based on texthigh and textlow, which do
981 not include the data ranges. */
982 msymbol = lookup_minimal_symbol_by_pc_section (pc, section).minsym;
983 if (msymbol
984 && (MSYMBOL_TYPE (msymbol) == mst_data
985 || MSYMBOL_TYPE (msymbol) == mst_bss
986 || MSYMBOL_TYPE (msymbol) == mst_abs
987 || MSYMBOL_TYPE (msymbol) == mst_file_data
988 || MSYMBOL_TYPE (msymbol) == mst_file_bss))
989 return NULL;
990
991 ALL_OBJFILES (objfile)
992 {
993 struct symtab *result = NULL;
994
995 if (objfile->sf)
996 result = objfile->sf->qf->find_pc_sect_symtab (objfile, msymbol,
997 pc, section, 0);
998 if (result)
999 return result;
1000 }
1001
1002 return NULL;
1003 }
1004 \f
1005 /* Debug symbols usually don't have section information. We need to dig that
1006 out of the minimal symbols and stash that in the debug symbol. */
1007
1008 void
1009 fixup_section (struct general_symbol_info *ginfo,
1010 CORE_ADDR addr, struct objfile *objfile)
1011 {
1012 struct minimal_symbol *msym;
1013
1014 /* First, check whether a minimal symbol with the same name exists
1015 and points to the same address. The address check is required
1016 e.g. on PowerPC64, where the minimal symbol for a function will
1017 point to the function descriptor, while the debug symbol will
1018 point to the actual function code. */
1019 msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->name, objfile);
1020 if (msym)
1021 ginfo->section = SYMBOL_SECTION (msym);
1022 else
1023 {
1024 /* Static, function-local variables do appear in the linker
1025 (minimal) symbols, but are frequently given names that won't
1026 be found via lookup_minimal_symbol(). E.g., it has been
1027 observed in frv-uclinux (ELF) executables that a static,
1028 function-local variable named "foo" might appear in the
1029 linker symbols as "foo.6" or "foo.3". Thus, there is no
1030 point in attempting to extend the lookup-by-name mechanism to
1031 handle this case due to the fact that there can be multiple
1032 names.
1033
1034 So, instead, search the section table when lookup by name has
1035 failed. The ``addr'' and ``endaddr'' fields may have already
1036 been relocated. If so, the relocation offset (i.e. the
1037 ANOFFSET value) needs to be subtracted from these values when
1038 performing the comparison. We unconditionally subtract it,
1039 because, when no relocation has been performed, the ANOFFSET
1040 value will simply be zero.
1041
1042 The address of the symbol whose section we're fixing up HAS
1043 NOT BEEN adjusted (relocated) yet. It can't have been since
1044 the section isn't yet known and knowing the section is
1045 necessary in order to add the correct relocation value. In
1046 other words, we wouldn't even be in this function (attempting
1047 to compute the section) if it were already known.
1048
1049 Note that it is possible to search the minimal symbols
1050 (subtracting the relocation value if necessary) to find the
1051 matching minimal symbol, but this is overkill and much less
1052 efficient. It is not necessary to find the matching minimal
1053 symbol, only its section.
1054
1055 Note that this technique (of doing a section table search)
1056 can fail when unrelocated section addresses overlap. For
1057 this reason, we still attempt a lookup by name prior to doing
1058 a search of the section table. */
1059
1060 struct obj_section *s;
1061 int fallback = -1;
1062
1063 ALL_OBJFILE_OSECTIONS (objfile, s)
1064 {
1065 int idx = s - objfile->sections;
1066 CORE_ADDR offset = ANOFFSET (objfile->section_offsets, idx);
1067
1068 if (fallback == -1)
1069 fallback = idx;
1070
1071 if (obj_section_addr (s) - offset <= addr
1072 && addr < obj_section_endaddr (s) - offset)
1073 {
1074 ginfo->section = idx;
1075 return;
1076 }
1077 }
1078
1079 /* If we didn't find the section, assume it is in the first
1080 section. If there is no allocated section, then it hardly
1081 matters what we pick, so just pick zero. */
1082 if (fallback == -1)
1083 ginfo->section = 0;
1084 else
1085 ginfo->section = fallback;
1086 }
1087 }
1088
1089 struct symbol *
1090 fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
1091 {
1092 CORE_ADDR addr;
1093
1094 if (!sym)
1095 return NULL;
1096
1097 /* We either have an OBJFILE, or we can get at it from the sym's
1098 symtab. Anything else is a bug. */
1099 gdb_assert (objfile || SYMBOL_SYMTAB (sym));
1100
1101 if (objfile == NULL)
1102 objfile = SYMBOL_SYMTAB (sym)->objfile;
1103
1104 if (SYMBOL_OBJ_SECTION (objfile, sym))
1105 return sym;
1106
1107 /* We should have an objfile by now. */
1108 gdb_assert (objfile);
1109
1110 switch (SYMBOL_CLASS (sym))
1111 {
1112 case LOC_STATIC:
1113 case LOC_LABEL:
1114 addr = SYMBOL_VALUE_ADDRESS (sym);
1115 break;
1116 case LOC_BLOCK:
1117 addr = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
1118 break;
1119
1120 default:
1121 /* Nothing else will be listed in the minsyms -- no use looking
1122 it up. */
1123 return sym;
1124 }
1125
1126 fixup_section (&sym->ginfo, addr, objfile);
1127
1128 return sym;
1129 }
1130
1131 /* Compute the demangled form of NAME as used by the various symbol
1132 lookup functions. The result is stored in *RESULT_NAME. Returns a
1133 cleanup which can be used to clean up the result.
1134
1135 For Ada, this function just sets *RESULT_NAME to NAME, unmodified.
1136 Normally, Ada symbol lookups are performed using the encoded name
1137 rather than the demangled name, and so it might seem to make sense
1138 for this function to return an encoded version of NAME.
1139 Unfortunately, we cannot do this, because this function is used in
1140 circumstances where it is not appropriate to try to encode NAME.
1141 For instance, when displaying the frame info, we demangle the name
1142 of each parameter, and then perform a symbol lookup inside our
1143 function using that demangled name. In Ada, certain functions
1144 have internally-generated parameters whose name contain uppercase
1145 characters. Encoding those name would result in those uppercase
1146 characters to become lowercase, and thus cause the symbol lookup
1147 to fail. */
1148
1149 struct cleanup *
1150 demangle_for_lookup (const char *name, enum language lang,
1151 const char **result_name)
1152 {
1153 char *demangled_name = NULL;
1154 const char *modified_name = NULL;
1155 struct cleanup *cleanup = make_cleanup (null_cleanup, 0);
1156
1157 modified_name = name;
1158
1159 /* If we are using C++, D, Go, or Java, demangle the name before doing a
1160 lookup, so we can always binary search. */
1161 if (lang == language_cplus)
1162 {
1163 demangled_name = gdb_demangle (name, DMGL_ANSI | DMGL_PARAMS);
1164 if (demangled_name)
1165 {
1166 modified_name = demangled_name;
1167 make_cleanup (xfree, demangled_name);
1168 }
1169 else
1170 {
1171 /* If we were given a non-mangled name, canonicalize it
1172 according to the language (so far only for C++). */
1173 demangled_name = cp_canonicalize_string (name);
1174 if (demangled_name)
1175 {
1176 modified_name = demangled_name;
1177 make_cleanup (xfree, demangled_name);
1178 }
1179 }
1180 }
1181 else if (lang == language_java)
1182 {
1183 demangled_name = gdb_demangle (name,
1184 DMGL_ANSI | DMGL_PARAMS | DMGL_JAVA);
1185 if (demangled_name)
1186 {
1187 modified_name = demangled_name;
1188 make_cleanup (xfree, demangled_name);
1189 }
1190 }
1191 else if (lang == language_d)
1192 {
1193 demangled_name = d_demangle (name, 0);
1194 if (demangled_name)
1195 {
1196 modified_name = demangled_name;
1197 make_cleanup (xfree, demangled_name);
1198 }
1199 }
1200 else if (lang == language_go)
1201 {
1202 demangled_name = go_demangle (name, 0);
1203 if (demangled_name)
1204 {
1205 modified_name = demangled_name;
1206 make_cleanup (xfree, demangled_name);
1207 }
1208 }
1209
1210 *result_name = modified_name;
1211 return cleanup;
1212 }
1213
1214 /* Find the definition for a specified symbol name NAME
1215 in domain DOMAIN, visible from lexical block BLOCK.
1216 Returns the struct symbol pointer, or zero if no symbol is found.
1217 C++: if IS_A_FIELD_OF_THIS is nonzero on entry, check to see if
1218 NAME is a field of the current implied argument `this'. If so set
1219 *IS_A_FIELD_OF_THIS to 1, otherwise set it to zero.
1220 BLOCK_FOUND is set to the block in which NAME is found (in the case of
1221 a field of `this', value_of_this sets BLOCK_FOUND to the proper value.) */
1222
1223 /* This function (or rather its subordinates) have a bunch of loops and
1224 it would seem to be attractive to put in some QUIT's (though I'm not really
1225 sure whether it can run long enough to be really important). But there
1226 are a few calls for which it would appear to be bad news to quit
1227 out of here: e.g., find_proc_desc in alpha-mdebug-tdep.c. (Note
1228 that there is C++ code below which can error(), but that probably
1229 doesn't affect these calls since they are looking for a known
1230 variable and thus can probably assume it will never hit the C++
1231 code). */
1232
1233 struct symbol *
1234 lookup_symbol_in_language (const char *name, const struct block *block,
1235 const domain_enum domain, enum language lang,
1236 struct field_of_this_result *is_a_field_of_this)
1237 {
1238 const char *modified_name;
1239 struct symbol *returnval;
1240 struct cleanup *cleanup = demangle_for_lookup (name, lang, &modified_name);
1241
1242 returnval = lookup_symbol_aux (modified_name, block, domain, lang,
1243 is_a_field_of_this);
1244 do_cleanups (cleanup);
1245
1246 return returnval;
1247 }
1248
1249 /* Behave like lookup_symbol_in_language, but performed with the
1250 current language. */
1251
1252 struct symbol *
1253 lookup_symbol (const char *name, const struct block *block,
1254 domain_enum domain,
1255 struct field_of_this_result *is_a_field_of_this)
1256 {
1257 return lookup_symbol_in_language (name, block, domain,
1258 current_language->la_language,
1259 is_a_field_of_this);
1260 }
1261
1262 /* Look up the `this' symbol for LANG in BLOCK. Return the symbol if
1263 found, or NULL if not found. */
1264
1265 struct symbol *
1266 lookup_language_this (const struct language_defn *lang,
1267 const struct block *block)
1268 {
1269 if (lang->la_name_of_this == NULL || block == NULL)
1270 return NULL;
1271
1272 while (block)
1273 {
1274 struct symbol *sym;
1275
1276 sym = lookup_block_symbol (block, lang->la_name_of_this, VAR_DOMAIN);
1277 if (sym != NULL)
1278 {
1279 block_found = block;
1280 return sym;
1281 }
1282 if (BLOCK_FUNCTION (block))
1283 break;
1284 block = BLOCK_SUPERBLOCK (block);
1285 }
1286
1287 return NULL;
1288 }
1289
1290 /* Given TYPE, a structure/union,
1291 return 1 if the component named NAME from the ultimate target
1292 structure/union is defined, otherwise, return 0. */
1293
1294 static int
1295 check_field (struct type *type, const char *name,
1296 struct field_of_this_result *is_a_field_of_this)
1297 {
1298 int i;
1299
1300 /* The type may be a stub. */
1301 CHECK_TYPEDEF (type);
1302
1303 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1304 {
1305 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1306
1307 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1308 {
1309 is_a_field_of_this->type = type;
1310 is_a_field_of_this->field = &TYPE_FIELD (type, i);
1311 return 1;
1312 }
1313 }
1314
1315 /* C++: If it was not found as a data field, then try to return it
1316 as a pointer to a method. */
1317
1318 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
1319 {
1320 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
1321 {
1322 is_a_field_of_this->type = type;
1323 is_a_field_of_this->fn_field = &TYPE_FN_FIELDLIST (type, i);
1324 return 1;
1325 }
1326 }
1327
1328 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1329 if (check_field (TYPE_BASECLASS (type, i), name, is_a_field_of_this))
1330 return 1;
1331
1332 return 0;
1333 }
1334
1335 /* Behave like lookup_symbol except that NAME is the natural name
1336 (e.g., demangled name) of the symbol that we're looking for. */
1337
1338 static struct symbol *
1339 lookup_symbol_aux (const char *name, const struct block *block,
1340 const domain_enum domain, enum language language,
1341 struct field_of_this_result *is_a_field_of_this)
1342 {
1343 struct symbol *sym;
1344 const struct language_defn *langdef;
1345
1346 /* Make sure we do something sensible with is_a_field_of_this, since
1347 the callers that set this parameter to some non-null value will
1348 certainly use it later. If we don't set it, the contents of
1349 is_a_field_of_this are undefined. */
1350 if (is_a_field_of_this != NULL)
1351 memset (is_a_field_of_this, 0, sizeof (*is_a_field_of_this));
1352
1353 /* Search specified block and its superiors. Don't search
1354 STATIC_BLOCK or GLOBAL_BLOCK. */
1355
1356 sym = lookup_symbol_aux_local (name, block, domain, language);
1357 if (sym != NULL)
1358 return sym;
1359
1360 /* If requested to do so by the caller and if appropriate for LANGUAGE,
1361 check to see if NAME is a field of `this'. */
1362
1363 langdef = language_def (language);
1364
1365 /* Don't do this check if we are searching for a struct. It will
1366 not be found by check_field, but will be found by other
1367 means. */
1368 if (is_a_field_of_this != NULL && domain != STRUCT_DOMAIN)
1369 {
1370 struct symbol *sym = lookup_language_this (langdef, block);
1371
1372 if (sym)
1373 {
1374 struct type *t = sym->type;
1375
1376 /* I'm not really sure that type of this can ever
1377 be typedefed; just be safe. */
1378 CHECK_TYPEDEF (t);
1379 if (TYPE_CODE (t) == TYPE_CODE_PTR
1380 || TYPE_CODE (t) == TYPE_CODE_REF)
1381 t = TYPE_TARGET_TYPE (t);
1382
1383 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
1384 && TYPE_CODE (t) != TYPE_CODE_UNION)
1385 error (_("Internal error: `%s' is not an aggregate"),
1386 langdef->la_name_of_this);
1387
1388 if (check_field (t, name, is_a_field_of_this))
1389 return NULL;
1390 }
1391 }
1392
1393 /* Now do whatever is appropriate for LANGUAGE to look
1394 up static and global variables. */
1395
1396 sym = langdef->la_lookup_symbol_nonlocal (name, block, domain);
1397 if (sym != NULL)
1398 return sym;
1399
1400 /* Now search all static file-level symbols. Not strictly correct,
1401 but more useful than an error. */
1402
1403 return lookup_static_symbol_aux (name, domain);
1404 }
1405
1406 /* Search all static file-level symbols for NAME from DOMAIN. Do the symtabs
1407 first, then check the psymtabs. If a psymtab indicates the existence of the
1408 desired name as a file-level static, then do psymtab-to-symtab conversion on
1409 the fly and return the found symbol. */
1410
1411 struct symbol *
1412 lookup_static_symbol_aux (const char *name, const domain_enum domain)
1413 {
1414 struct objfile *objfile;
1415 struct symbol *sym;
1416
1417 sym = lookup_symbol_aux_symtabs (STATIC_BLOCK, name, domain);
1418 if (sym != NULL)
1419 return sym;
1420
1421 ALL_OBJFILES (objfile)
1422 {
1423 sym = lookup_symbol_aux_quick (objfile, STATIC_BLOCK, name, domain);
1424 if (sym != NULL)
1425 return sym;
1426 }
1427
1428 return NULL;
1429 }
1430
1431 /* Check to see if the symbol is defined in BLOCK or its superiors.
1432 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
1433
1434 static struct symbol *
1435 lookup_symbol_aux_local (const char *name, const struct block *block,
1436 const domain_enum domain,
1437 enum language language)
1438 {
1439 struct symbol *sym;
1440 const struct block *static_block = block_static_block (block);
1441 const char *scope = block_scope (block);
1442
1443 /* Check if either no block is specified or it's a global block. */
1444
1445 if (static_block == NULL)
1446 return NULL;
1447
1448 while (block != static_block)
1449 {
1450 sym = lookup_symbol_aux_block (name, block, domain);
1451 if (sym != NULL)
1452 return sym;
1453
1454 if (language == language_cplus || language == language_fortran)
1455 {
1456 sym = cp_lookup_symbol_imports_or_template (scope, name, block,
1457 domain);
1458 if (sym != NULL)
1459 return sym;
1460 }
1461
1462 if (BLOCK_FUNCTION (block) != NULL && block_inlined_p (block))
1463 break;
1464 block = BLOCK_SUPERBLOCK (block);
1465 }
1466
1467 /* We've reached the edge of the function without finding a result. */
1468
1469 return NULL;
1470 }
1471
1472 /* Look up OBJFILE to BLOCK. */
1473
1474 struct objfile *
1475 lookup_objfile_from_block (const struct block *block)
1476 {
1477 struct objfile *obj;
1478 struct symtab *s;
1479
1480 if (block == NULL)
1481 return NULL;
1482
1483 block = block_global_block (block);
1484 /* Go through SYMTABS. */
1485 ALL_SYMTABS (obj, s)
1486 if (block == BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK))
1487 {
1488 if (obj->separate_debug_objfile_backlink)
1489 obj = obj->separate_debug_objfile_backlink;
1490
1491 return obj;
1492 }
1493
1494 return NULL;
1495 }
1496
1497 /* Look up a symbol in a block; if found, fixup the symbol, and set
1498 block_found appropriately. */
1499
1500 struct symbol *
1501 lookup_symbol_aux_block (const char *name, const struct block *block,
1502 const domain_enum domain)
1503 {
1504 struct symbol *sym;
1505
1506 sym = lookup_block_symbol (block, name, domain);
1507 if (sym)
1508 {
1509 block_found = block;
1510 return fixup_symbol_section (sym, NULL);
1511 }
1512
1513 return NULL;
1514 }
1515
1516 /* Check all global symbols in OBJFILE in symtabs and
1517 psymtabs. */
1518
1519 struct symbol *
1520 lookup_global_symbol_from_objfile (const struct objfile *main_objfile,
1521 const char *name,
1522 const domain_enum domain)
1523 {
1524 const struct objfile *objfile;
1525 struct symbol *sym;
1526 struct blockvector *bv;
1527 const struct block *block;
1528 struct symtab *s;
1529
1530 for (objfile = main_objfile;
1531 objfile;
1532 objfile = objfile_separate_debug_iterate (main_objfile, objfile))
1533 {
1534 /* Go through symtabs. */
1535 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
1536 {
1537 bv = BLOCKVECTOR (s);
1538 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1539 sym = lookup_block_symbol (block, name, domain);
1540 if (sym)
1541 {
1542 block_found = block;
1543 return fixup_symbol_section (sym, (struct objfile *)objfile);
1544 }
1545 }
1546
1547 sym = lookup_symbol_aux_quick ((struct objfile *) objfile, GLOBAL_BLOCK,
1548 name, domain);
1549 if (sym)
1550 return sym;
1551 }
1552
1553 return NULL;
1554 }
1555
1556 /* Check to see if the symbol is defined in one of the OBJFILE's
1557 symtabs. BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
1558 depending on whether or not we want to search global symbols or
1559 static symbols. */
1560
1561 static struct symbol *
1562 lookup_symbol_aux_objfile (struct objfile *objfile, int block_index,
1563 const char *name, const domain_enum domain)
1564 {
1565 struct symbol *sym = NULL;
1566 struct blockvector *bv;
1567 const struct block *block;
1568 struct symtab *s;
1569
1570 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
1571 {
1572 bv = BLOCKVECTOR (s);
1573 block = BLOCKVECTOR_BLOCK (bv, block_index);
1574 sym = lookup_block_symbol (block, name, domain);
1575 if (sym)
1576 {
1577 block_found = block;
1578 return fixup_symbol_section (sym, objfile);
1579 }
1580 }
1581
1582 return NULL;
1583 }
1584
1585 /* Same as lookup_symbol_aux_objfile, except that it searches all
1586 objfiles. Return the first match found. */
1587
1588 static struct symbol *
1589 lookup_symbol_aux_symtabs (int block_index, const char *name,
1590 const domain_enum domain)
1591 {
1592 struct symbol *sym;
1593 struct objfile *objfile;
1594
1595 ALL_OBJFILES (objfile)
1596 {
1597 sym = lookup_symbol_aux_objfile (objfile, block_index, name, domain);
1598 if (sym)
1599 return sym;
1600 }
1601
1602 return NULL;
1603 }
1604
1605 /* Wrapper around lookup_symbol_aux_objfile for search_symbols.
1606 Look up LINKAGE_NAME in DOMAIN in the global and static blocks of OBJFILE
1607 and all related objfiles. */
1608
1609 static struct symbol *
1610 lookup_symbol_in_objfile_from_linkage_name (struct objfile *objfile,
1611 const char *linkage_name,
1612 domain_enum domain)
1613 {
1614 enum language lang = current_language->la_language;
1615 const char *modified_name;
1616 struct cleanup *cleanup = demangle_for_lookup (linkage_name, lang,
1617 &modified_name);
1618 struct objfile *main_objfile, *cur_objfile;
1619
1620 if (objfile->separate_debug_objfile_backlink)
1621 main_objfile = objfile->separate_debug_objfile_backlink;
1622 else
1623 main_objfile = objfile;
1624
1625 for (cur_objfile = main_objfile;
1626 cur_objfile;
1627 cur_objfile = objfile_separate_debug_iterate (main_objfile, cur_objfile))
1628 {
1629 struct symbol *sym;
1630
1631 sym = lookup_symbol_aux_objfile (cur_objfile, GLOBAL_BLOCK,
1632 modified_name, domain);
1633 if (sym == NULL)
1634 sym = lookup_symbol_aux_objfile (cur_objfile, STATIC_BLOCK,
1635 modified_name, domain);
1636 if (sym != NULL)
1637 {
1638 do_cleanups (cleanup);
1639 return sym;
1640 }
1641 }
1642
1643 do_cleanups (cleanup);
1644 return NULL;
1645 }
1646
1647 /* A helper function that throws an exception when a symbol was found
1648 in a psymtab but not in a symtab. */
1649
1650 static void ATTRIBUTE_NORETURN
1651 error_in_psymtab_expansion (int kind, const char *name, struct symtab *symtab)
1652 {
1653 error (_("\
1654 Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n\
1655 %s may be an inlined function, or may be a template function\n \
1656 (if a template, try specifying an instantiation: %s<type>)."),
1657 kind == GLOBAL_BLOCK ? "global" : "static",
1658 name, symtab_to_filename_for_display (symtab), name, name);
1659 }
1660
1661 /* A helper function for lookup_symbol_aux that interfaces with the
1662 "quick" symbol table functions. */
1663
1664 static struct symbol *
1665 lookup_symbol_aux_quick (struct objfile *objfile, int kind,
1666 const char *name, const domain_enum domain)
1667 {
1668 struct symtab *symtab;
1669 struct blockvector *bv;
1670 const struct block *block;
1671 struct symbol *sym;
1672
1673 if (!objfile->sf)
1674 return NULL;
1675 symtab = objfile->sf->qf->lookup_symbol (objfile, kind, name, domain);
1676 if (!symtab)
1677 return NULL;
1678
1679 bv = BLOCKVECTOR (symtab);
1680 block = BLOCKVECTOR_BLOCK (bv, kind);
1681 sym = lookup_block_symbol (block, name, domain);
1682 if (!sym)
1683 error_in_psymtab_expansion (kind, name, symtab);
1684 return fixup_symbol_section (sym, objfile);
1685 }
1686
1687 /* A default version of lookup_symbol_nonlocal for use by languages
1688 that can't think of anything better to do. This implements the C
1689 lookup rules. */
1690
1691 struct symbol *
1692 basic_lookup_symbol_nonlocal (const char *name,
1693 const struct block *block,
1694 const domain_enum domain)
1695 {
1696 struct symbol *sym;
1697
1698 /* NOTE: carlton/2003-05-19: The comments below were written when
1699 this (or what turned into this) was part of lookup_symbol_aux;
1700 I'm much less worried about these questions now, since these
1701 decisions have turned out well, but I leave these comments here
1702 for posterity. */
1703
1704 /* NOTE: carlton/2002-12-05: There is a question as to whether or
1705 not it would be appropriate to search the current global block
1706 here as well. (That's what this code used to do before the
1707 is_a_field_of_this check was moved up.) On the one hand, it's
1708 redundant with the lookup_symbol_aux_symtabs search that happens
1709 next. On the other hand, if decode_line_1 is passed an argument
1710 like filename:var, then the user presumably wants 'var' to be
1711 searched for in filename. On the third hand, there shouldn't be
1712 multiple global variables all of which are named 'var', and it's
1713 not like decode_line_1 has ever restricted its search to only
1714 global variables in a single filename. All in all, only
1715 searching the static block here seems best: it's correct and it's
1716 cleanest. */
1717
1718 /* NOTE: carlton/2002-12-05: There's also a possible performance
1719 issue here: if you usually search for global symbols in the
1720 current file, then it would be slightly better to search the
1721 current global block before searching all the symtabs. But there
1722 are other factors that have a much greater effect on performance
1723 than that one, so I don't think we should worry about that for
1724 now. */
1725
1726 sym = lookup_symbol_static (name, block, domain);
1727 if (sym != NULL)
1728 return sym;
1729
1730 return lookup_symbol_global (name, block, domain);
1731 }
1732
1733 /* Lookup a symbol in the static block associated to BLOCK, if there
1734 is one; do nothing if BLOCK is NULL or a global block. */
1735
1736 struct symbol *
1737 lookup_symbol_static (const char *name,
1738 const struct block *block,
1739 const domain_enum domain)
1740 {
1741 const struct block *static_block = block_static_block (block);
1742
1743 if (static_block != NULL)
1744 return lookup_symbol_aux_block (name, static_block, domain);
1745 else
1746 return NULL;
1747 }
1748
1749 /* Private data to be used with lookup_symbol_global_iterator_cb. */
1750
1751 struct global_sym_lookup_data
1752 {
1753 /* The name of the symbol we are searching for. */
1754 const char *name;
1755
1756 /* The domain to use for our search. */
1757 domain_enum domain;
1758
1759 /* The field where the callback should store the symbol if found.
1760 It should be initialized to NULL before the search is started. */
1761 struct symbol *result;
1762 };
1763
1764 /* A callback function for gdbarch_iterate_over_objfiles_in_search_order.
1765 It searches by name for a symbol in the GLOBAL_BLOCK of the given
1766 OBJFILE. The arguments for the search are passed via CB_DATA,
1767 which in reality is a pointer to struct global_sym_lookup_data. */
1768
1769 static int
1770 lookup_symbol_global_iterator_cb (struct objfile *objfile,
1771 void *cb_data)
1772 {
1773 struct global_sym_lookup_data *data =
1774 (struct global_sym_lookup_data *) cb_data;
1775
1776 gdb_assert (data->result == NULL);
1777
1778 data->result = lookup_symbol_aux_objfile (objfile, GLOBAL_BLOCK,
1779 data->name, data->domain);
1780 if (data->result == NULL)
1781 data->result = lookup_symbol_aux_quick (objfile, GLOBAL_BLOCK,
1782 data->name, data->domain);
1783
1784 /* If we found a match, tell the iterator to stop. Otherwise,
1785 keep going. */
1786 return (data->result != NULL);
1787 }
1788
1789 /* Lookup a symbol in all files' global blocks (searching psymtabs if
1790 necessary). */
1791
1792 struct symbol *
1793 lookup_symbol_global (const char *name,
1794 const struct block *block,
1795 const domain_enum domain)
1796 {
1797 struct symbol *sym = NULL;
1798 struct objfile *objfile = NULL;
1799 struct global_sym_lookup_data lookup_data;
1800
1801 /* Call library-specific lookup procedure. */
1802 objfile = lookup_objfile_from_block (block);
1803 if (objfile != NULL)
1804 sym = solib_global_lookup (objfile, name, domain);
1805 if (sym != NULL)
1806 return sym;
1807
1808 memset (&lookup_data, 0, sizeof (lookup_data));
1809 lookup_data.name = name;
1810 lookup_data.domain = domain;
1811 gdbarch_iterate_over_objfiles_in_search_order
1812 (objfile != NULL ? get_objfile_arch (objfile) : target_gdbarch (),
1813 lookup_symbol_global_iterator_cb, &lookup_data, objfile);
1814
1815 return lookup_data.result;
1816 }
1817
1818 int
1819 symbol_matches_domain (enum language symbol_language,
1820 domain_enum symbol_domain,
1821 domain_enum domain)
1822 {
1823 /* For C++ "struct foo { ... }" also defines a typedef for "foo".
1824 A Java class declaration also defines a typedef for the class.
1825 Similarly, any Ada type declaration implicitly defines a typedef. */
1826 if (symbol_language == language_cplus
1827 || symbol_language == language_d
1828 || symbol_language == language_java
1829 || symbol_language == language_ada)
1830 {
1831 if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN)
1832 && symbol_domain == STRUCT_DOMAIN)
1833 return 1;
1834 }
1835 /* For all other languages, strict match is required. */
1836 return (symbol_domain == domain);
1837 }
1838
1839 /* Look up a type named NAME in the struct_domain. The type returned
1840 must not be opaque -- i.e., must have at least one field
1841 defined. */
1842
1843 struct type *
1844 lookup_transparent_type (const char *name)
1845 {
1846 return current_language->la_lookup_transparent_type (name);
1847 }
1848
1849 /* A helper for basic_lookup_transparent_type that interfaces with the
1850 "quick" symbol table functions. */
1851
1852 static struct type *
1853 basic_lookup_transparent_type_quick (struct objfile *objfile, int kind,
1854 const char *name)
1855 {
1856 struct symtab *symtab;
1857 struct blockvector *bv;
1858 struct block *block;
1859 struct symbol *sym;
1860
1861 if (!objfile->sf)
1862 return NULL;
1863 symtab = objfile->sf->qf->lookup_symbol (objfile, kind, name, STRUCT_DOMAIN);
1864 if (!symtab)
1865 return NULL;
1866
1867 bv = BLOCKVECTOR (symtab);
1868 block = BLOCKVECTOR_BLOCK (bv, kind);
1869 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1870 if (!sym)
1871 error_in_psymtab_expansion (kind, name, symtab);
1872
1873 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1874 return SYMBOL_TYPE (sym);
1875
1876 return NULL;
1877 }
1878
1879 /* The standard implementation of lookup_transparent_type. This code
1880 was modeled on lookup_symbol -- the parts not relevant to looking
1881 up types were just left out. In particular it's assumed here that
1882 types are available in struct_domain and only at file-static or
1883 global blocks. */
1884
1885 struct type *
1886 basic_lookup_transparent_type (const char *name)
1887 {
1888 struct symbol *sym;
1889 struct symtab *s = NULL;
1890 struct blockvector *bv;
1891 struct objfile *objfile;
1892 struct block *block;
1893 struct type *t;
1894
1895 /* Now search all the global symbols. Do the symtab's first, then
1896 check the psymtab's. If a psymtab indicates the existence
1897 of the desired name as a global, then do psymtab-to-symtab
1898 conversion on the fly and return the found symbol. */
1899
1900 ALL_OBJFILES (objfile)
1901 {
1902 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
1903 {
1904 bv = BLOCKVECTOR (s);
1905 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1906 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1907 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1908 {
1909 return SYMBOL_TYPE (sym);
1910 }
1911 }
1912 }
1913
1914 ALL_OBJFILES (objfile)
1915 {
1916 t = basic_lookup_transparent_type_quick (objfile, GLOBAL_BLOCK, name);
1917 if (t)
1918 return t;
1919 }
1920
1921 /* Now search the static file-level symbols.
1922 Not strictly correct, but more useful than an error.
1923 Do the symtab's first, then
1924 check the psymtab's. If a psymtab indicates the existence
1925 of the desired name as a file-level static, then do psymtab-to-symtab
1926 conversion on the fly and return the found symbol. */
1927
1928 ALL_OBJFILES (objfile)
1929 {
1930 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
1931 {
1932 bv = BLOCKVECTOR (s);
1933 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
1934 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1935 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1936 {
1937 return SYMBOL_TYPE (sym);
1938 }
1939 }
1940 }
1941
1942 ALL_OBJFILES (objfile)
1943 {
1944 t = basic_lookup_transparent_type_quick (objfile, STATIC_BLOCK, name);
1945 if (t)
1946 return t;
1947 }
1948
1949 return (struct type *) 0;
1950 }
1951
1952 /* Find the name of the file containing main(). */
1953 /* FIXME: What about languages without main() or specially linked
1954 executables that have no main() ? */
1955
1956 const char *
1957 find_main_filename (void)
1958 {
1959 struct objfile *objfile;
1960 char *name = main_name ();
1961
1962 ALL_OBJFILES (objfile)
1963 {
1964 const char *result;
1965
1966 if (!objfile->sf)
1967 continue;
1968 result = objfile->sf->qf->find_symbol_file (objfile, name);
1969 if (result)
1970 return result;
1971 }
1972 return (NULL);
1973 }
1974
1975 /* Search BLOCK for symbol NAME in DOMAIN.
1976
1977 Note that if NAME is the demangled form of a C++ symbol, we will fail
1978 to find a match during the binary search of the non-encoded names, but
1979 for now we don't worry about the slight inefficiency of looking for
1980 a match we'll never find, since it will go pretty quick. Once the
1981 binary search terminates, we drop through and do a straight linear
1982 search on the symbols. Each symbol which is marked as being a ObjC/C++
1983 symbol (language_cplus or language_objc set) has both the encoded and
1984 non-encoded names tested for a match. */
1985
1986 struct symbol *
1987 lookup_block_symbol (const struct block *block, const char *name,
1988 const domain_enum domain)
1989 {
1990 struct block_iterator iter;
1991 struct symbol *sym;
1992
1993 if (!BLOCK_FUNCTION (block))
1994 {
1995 for (sym = block_iter_name_first (block, name, &iter);
1996 sym != NULL;
1997 sym = block_iter_name_next (name, &iter))
1998 {
1999 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
2000 SYMBOL_DOMAIN (sym), domain))
2001 return sym;
2002 }
2003 return NULL;
2004 }
2005 else
2006 {
2007 /* Note that parameter symbols do not always show up last in the
2008 list; this loop makes sure to take anything else other than
2009 parameter symbols first; it only uses parameter symbols as a
2010 last resort. Note that this only takes up extra computation
2011 time on a match. */
2012
2013 struct symbol *sym_found = NULL;
2014
2015 for (sym = block_iter_name_first (block, name, &iter);
2016 sym != NULL;
2017 sym = block_iter_name_next (name, &iter))
2018 {
2019 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
2020 SYMBOL_DOMAIN (sym), domain))
2021 {
2022 sym_found = sym;
2023 if (!SYMBOL_IS_ARGUMENT (sym))
2024 {
2025 break;
2026 }
2027 }
2028 }
2029 return (sym_found); /* Will be NULL if not found. */
2030 }
2031 }
2032
2033 /* Iterate over the symbols named NAME, matching DOMAIN, in BLOCK.
2034
2035 For each symbol that matches, CALLBACK is called. The symbol and
2036 DATA are passed to the callback.
2037
2038 If CALLBACK returns zero, the iteration ends. Otherwise, the
2039 search continues. */
2040
2041 void
2042 iterate_over_symbols (const struct block *block, const char *name,
2043 const domain_enum domain,
2044 symbol_found_callback_ftype *callback,
2045 void *data)
2046 {
2047 struct block_iterator iter;
2048 struct symbol *sym;
2049
2050 for (sym = block_iter_name_first (block, name, &iter);
2051 sym != NULL;
2052 sym = block_iter_name_next (name, &iter))
2053 {
2054 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
2055 SYMBOL_DOMAIN (sym), domain))
2056 {
2057 if (!callback (sym, data))
2058 return;
2059 }
2060 }
2061 }
2062
2063 /* Find the symtab associated with PC and SECTION. Look through the
2064 psymtabs and read in another symtab if necessary. */
2065
2066 struct symtab *
2067 find_pc_sect_symtab (CORE_ADDR pc, struct obj_section *section)
2068 {
2069 struct block *b;
2070 struct blockvector *bv;
2071 struct symtab *s = NULL;
2072 struct symtab *best_s = NULL;
2073 struct objfile *objfile;
2074 CORE_ADDR distance = 0;
2075 struct minimal_symbol *msymbol;
2076
2077 /* If we know that this is not a text address, return failure. This is
2078 necessary because we loop based on the block's high and low code
2079 addresses, which do not include the data ranges, and because
2080 we call find_pc_sect_psymtab which has a similar restriction based
2081 on the partial_symtab's texthigh and textlow. */
2082 msymbol = lookup_minimal_symbol_by_pc_section (pc, section).minsym;
2083 if (msymbol
2084 && (MSYMBOL_TYPE (msymbol) == mst_data
2085 || MSYMBOL_TYPE (msymbol) == mst_bss
2086 || MSYMBOL_TYPE (msymbol) == mst_abs
2087 || MSYMBOL_TYPE (msymbol) == mst_file_data
2088 || MSYMBOL_TYPE (msymbol) == mst_file_bss))
2089 return NULL;
2090
2091 /* Search all symtabs for the one whose file contains our address, and which
2092 is the smallest of all the ones containing the address. This is designed
2093 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
2094 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
2095 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
2096
2097 This happens for native ecoff format, where code from included files
2098 gets its own symtab. The symtab for the included file should have
2099 been read in already via the dependency mechanism.
2100 It might be swifter to create several symtabs with the same name
2101 like xcoff does (I'm not sure).
2102
2103 It also happens for objfiles that have their functions reordered.
2104 For these, the symtab we are looking for is not necessarily read in. */
2105
2106 ALL_PRIMARY_SYMTABS (objfile, s)
2107 {
2108 bv = BLOCKVECTOR (s);
2109 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
2110
2111 if (BLOCK_START (b) <= pc
2112 && BLOCK_END (b) > pc
2113 && (distance == 0
2114 || BLOCK_END (b) - BLOCK_START (b) < distance))
2115 {
2116 /* For an objfile that has its functions reordered,
2117 find_pc_psymtab will find the proper partial symbol table
2118 and we simply return its corresponding symtab. */
2119 /* In order to better support objfiles that contain both
2120 stabs and coff debugging info, we continue on if a psymtab
2121 can't be found. */
2122 if ((objfile->flags & OBJF_REORDERED) && objfile->sf)
2123 {
2124 struct symtab *result;
2125
2126 result
2127 = objfile->sf->qf->find_pc_sect_symtab (objfile,
2128 msymbol,
2129 pc, section,
2130 0);
2131 if (result)
2132 return result;
2133 }
2134 if (section != 0)
2135 {
2136 struct block_iterator iter;
2137 struct symbol *sym = NULL;
2138
2139 ALL_BLOCK_SYMBOLS (b, iter, sym)
2140 {
2141 fixup_symbol_section (sym, objfile);
2142 if (matching_obj_sections (SYMBOL_OBJ_SECTION (objfile, sym),
2143 section))
2144 break;
2145 }
2146 if (sym == NULL)
2147 continue; /* No symbol in this symtab matches
2148 section. */
2149 }
2150 distance = BLOCK_END (b) - BLOCK_START (b);
2151 best_s = s;
2152 }
2153 }
2154
2155 if (best_s != NULL)
2156 return (best_s);
2157
2158 /* Not found in symtabs, search the "quick" symtabs (e.g. psymtabs). */
2159
2160 ALL_OBJFILES (objfile)
2161 {
2162 struct symtab *result;
2163
2164 if (!objfile->sf)
2165 continue;
2166 result = objfile->sf->qf->find_pc_sect_symtab (objfile,
2167 msymbol,
2168 pc, section,
2169 1);
2170 if (result)
2171 return result;
2172 }
2173
2174 return NULL;
2175 }
2176
2177 /* Find the symtab associated with PC. Look through the psymtabs and read
2178 in another symtab if necessary. Backward compatibility, no section. */
2179
2180 struct symtab *
2181 find_pc_symtab (CORE_ADDR pc)
2182 {
2183 return find_pc_sect_symtab (pc, find_pc_mapped_section (pc));
2184 }
2185 \f
2186
2187 /* Find the source file and line number for a given PC value and SECTION.
2188 Return a structure containing a symtab pointer, a line number,
2189 and a pc range for the entire source line.
2190 The value's .pc field is NOT the specified pc.
2191 NOTCURRENT nonzero means, if specified pc is on a line boundary,
2192 use the line that ends there. Otherwise, in that case, the line
2193 that begins there is used. */
2194
2195 /* The big complication here is that a line may start in one file, and end just
2196 before the start of another file. This usually occurs when you #include
2197 code in the middle of a subroutine. To properly find the end of a line's PC
2198 range, we must search all symtabs associated with this compilation unit, and
2199 find the one whose first PC is closer than that of the next line in this
2200 symtab. */
2201
2202 /* If it's worth the effort, we could be using a binary search. */
2203
2204 struct symtab_and_line
2205 find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent)
2206 {
2207 struct symtab *s;
2208 struct linetable *l;
2209 int len;
2210 int i;
2211 struct linetable_entry *item;
2212 struct symtab_and_line val;
2213 struct blockvector *bv;
2214 struct bound_minimal_symbol msymbol;
2215 struct minimal_symbol *mfunsym;
2216 struct objfile *objfile;
2217
2218 /* Info on best line seen so far, and where it starts, and its file. */
2219
2220 struct linetable_entry *best = NULL;
2221 CORE_ADDR best_end = 0;
2222 struct symtab *best_symtab = 0;
2223
2224 /* Store here the first line number
2225 of a file which contains the line at the smallest pc after PC.
2226 If we don't find a line whose range contains PC,
2227 we will use a line one less than this,
2228 with a range from the start of that file to the first line's pc. */
2229 struct linetable_entry *alt = NULL;
2230
2231 /* Info on best line seen in this file. */
2232
2233 struct linetable_entry *prev;
2234
2235 /* If this pc is not from the current frame,
2236 it is the address of the end of a call instruction.
2237 Quite likely that is the start of the following statement.
2238 But what we want is the statement containing the instruction.
2239 Fudge the pc to make sure we get that. */
2240
2241 init_sal (&val); /* initialize to zeroes */
2242
2243 val.pspace = current_program_space;
2244
2245 /* It's tempting to assume that, if we can't find debugging info for
2246 any function enclosing PC, that we shouldn't search for line
2247 number info, either. However, GAS can emit line number info for
2248 assembly files --- very helpful when debugging hand-written
2249 assembly code. In such a case, we'd have no debug info for the
2250 function, but we would have line info. */
2251
2252 if (notcurrent)
2253 pc -= 1;
2254
2255 /* elz: added this because this function returned the wrong
2256 information if the pc belongs to a stub (import/export)
2257 to call a shlib function. This stub would be anywhere between
2258 two functions in the target, and the line info was erroneously
2259 taken to be the one of the line before the pc. */
2260
2261 /* RT: Further explanation:
2262
2263 * We have stubs (trampolines) inserted between procedures.
2264 *
2265 * Example: "shr1" exists in a shared library, and a "shr1" stub also
2266 * exists in the main image.
2267 *
2268 * In the minimal symbol table, we have a bunch of symbols
2269 * sorted by start address. The stubs are marked as "trampoline",
2270 * the others appear as text. E.g.:
2271 *
2272 * Minimal symbol table for main image
2273 * main: code for main (text symbol)
2274 * shr1: stub (trampoline symbol)
2275 * foo: code for foo (text symbol)
2276 * ...
2277 * Minimal symbol table for "shr1" image:
2278 * ...
2279 * shr1: code for shr1 (text symbol)
2280 * ...
2281 *
2282 * So the code below is trying to detect if we are in the stub
2283 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
2284 * and if found, do the symbolization from the real-code address
2285 * rather than the stub address.
2286 *
2287 * Assumptions being made about the minimal symbol table:
2288 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
2289 * if we're really in the trampoline.s If we're beyond it (say
2290 * we're in "foo" in the above example), it'll have a closer
2291 * symbol (the "foo" text symbol for example) and will not
2292 * return the trampoline.
2293 * 2. lookup_minimal_symbol_text() will find a real text symbol
2294 * corresponding to the trampoline, and whose address will
2295 * be different than the trampoline address. I put in a sanity
2296 * check for the address being the same, to avoid an
2297 * infinite recursion.
2298 */
2299 msymbol = lookup_minimal_symbol_by_pc (pc);
2300 if (msymbol.minsym != NULL)
2301 if (MSYMBOL_TYPE (msymbol.minsym) == mst_solib_trampoline)
2302 {
2303 mfunsym
2304 = lookup_minimal_symbol_text (SYMBOL_LINKAGE_NAME (msymbol.minsym),
2305 NULL);
2306 if (mfunsym == NULL)
2307 /* I eliminated this warning since it is coming out
2308 * in the following situation:
2309 * gdb shmain // test program with shared libraries
2310 * (gdb) break shr1 // function in shared lib
2311 * Warning: In stub for ...
2312 * In the above situation, the shared lib is not loaded yet,
2313 * so of course we can't find the real func/line info,
2314 * but the "break" still works, and the warning is annoying.
2315 * So I commented out the warning. RT */
2316 /* warning ("In stub for %s; unable to find real function/line info",
2317 SYMBOL_LINKAGE_NAME (msymbol)); */
2318 ;
2319 /* fall through */
2320 else if (SYMBOL_VALUE_ADDRESS (mfunsym)
2321 == SYMBOL_VALUE_ADDRESS (msymbol.minsym))
2322 /* Avoid infinite recursion */
2323 /* See above comment about why warning is commented out. */
2324 /* warning ("In stub for %s; unable to find real function/line info",
2325 SYMBOL_LINKAGE_NAME (msymbol)); */
2326 ;
2327 /* fall through */
2328 else
2329 return find_pc_line (SYMBOL_VALUE_ADDRESS (mfunsym), 0);
2330 }
2331
2332
2333 s = find_pc_sect_symtab (pc, section);
2334 if (!s)
2335 {
2336 /* If no symbol information, return previous pc. */
2337 if (notcurrent)
2338 pc++;
2339 val.pc = pc;
2340 return val;
2341 }
2342
2343 bv = BLOCKVECTOR (s);
2344 objfile = s->objfile;
2345
2346 /* Look at all the symtabs that share this blockvector.
2347 They all have the same apriori range, that we found was right;
2348 but they have different line tables. */
2349
2350 ALL_OBJFILE_SYMTABS (objfile, s)
2351 {
2352 if (BLOCKVECTOR (s) != bv)
2353 continue;
2354
2355 /* Find the best line in this symtab. */
2356 l = LINETABLE (s);
2357 if (!l)
2358 continue;
2359 len = l->nitems;
2360 if (len <= 0)
2361 {
2362 /* I think len can be zero if the symtab lacks line numbers
2363 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
2364 I'm not sure which, and maybe it depends on the symbol
2365 reader). */
2366 continue;
2367 }
2368
2369 prev = NULL;
2370 item = l->item; /* Get first line info. */
2371
2372 /* Is this file's first line closer than the first lines of other files?
2373 If so, record this file, and its first line, as best alternate. */
2374 if (item->pc > pc && (!alt || item->pc < alt->pc))
2375 alt = item;
2376
2377 for (i = 0; i < len; i++, item++)
2378 {
2379 /* Leave prev pointing to the linetable entry for the last line
2380 that started at or before PC. */
2381 if (item->pc > pc)
2382 break;
2383
2384 prev = item;
2385 }
2386
2387 /* At this point, prev points at the line whose start addr is <= pc, and
2388 item points at the next line. If we ran off the end of the linetable
2389 (pc >= start of the last line), then prev == item. If pc < start of
2390 the first line, prev will not be set. */
2391
2392 /* Is this file's best line closer than the best in the other files?
2393 If so, record this file, and its best line, as best so far. Don't
2394 save prev if it represents the end of a function (i.e. line number
2395 0) instead of a real line. */
2396
2397 if (prev && prev->line && (!best || prev->pc > best->pc))
2398 {
2399 best = prev;
2400 best_symtab = s;
2401
2402 /* Discard BEST_END if it's before the PC of the current BEST. */
2403 if (best_end <= best->pc)
2404 best_end = 0;
2405 }
2406
2407 /* If another line (denoted by ITEM) is in the linetable and its
2408 PC is after BEST's PC, but before the current BEST_END, then
2409 use ITEM's PC as the new best_end. */
2410 if (best && i < len && item->pc > best->pc
2411 && (best_end == 0 || best_end > item->pc))
2412 best_end = item->pc;
2413 }
2414
2415 if (!best_symtab)
2416 {
2417 /* If we didn't find any line number info, just return zeros.
2418 We used to return alt->line - 1 here, but that could be
2419 anywhere; if we don't have line number info for this PC,
2420 don't make some up. */
2421 val.pc = pc;
2422 }
2423 else if (best->line == 0)
2424 {
2425 /* If our best fit is in a range of PC's for which no line
2426 number info is available (line number is zero) then we didn't
2427 find any valid line information. */
2428 val.pc = pc;
2429 }
2430 else
2431 {
2432 val.symtab = best_symtab;
2433 val.line = best->line;
2434 val.pc = best->pc;
2435 if (best_end && (!alt || best_end < alt->pc))
2436 val.end = best_end;
2437 else if (alt)
2438 val.end = alt->pc;
2439 else
2440 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
2441 }
2442 val.section = section;
2443 return val;
2444 }
2445
2446 /* Backward compatibility (no section). */
2447
2448 struct symtab_and_line
2449 find_pc_line (CORE_ADDR pc, int notcurrent)
2450 {
2451 struct obj_section *section;
2452
2453 section = find_pc_overlay (pc);
2454 if (pc_in_unmapped_range (pc, section))
2455 pc = overlay_mapped_address (pc, section);
2456 return find_pc_sect_line (pc, section, notcurrent);
2457 }
2458 \f
2459 /* Find line number LINE in any symtab whose name is the same as
2460 SYMTAB.
2461
2462 If found, return the symtab that contains the linetable in which it was
2463 found, set *INDEX to the index in the linetable of the best entry
2464 found, and set *EXACT_MATCH nonzero if the value returned is an
2465 exact match.
2466
2467 If not found, return NULL. */
2468
2469 struct symtab *
2470 find_line_symtab (struct symtab *symtab, int line,
2471 int *index, int *exact_match)
2472 {
2473 int exact = 0; /* Initialized here to avoid a compiler warning. */
2474
2475 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
2476 so far seen. */
2477
2478 int best_index;
2479 struct linetable *best_linetable;
2480 struct symtab *best_symtab;
2481
2482 /* First try looking it up in the given symtab. */
2483 best_linetable = LINETABLE (symtab);
2484 best_symtab = symtab;
2485 best_index = find_line_common (best_linetable, line, &exact, 0);
2486 if (best_index < 0 || !exact)
2487 {
2488 /* Didn't find an exact match. So we better keep looking for
2489 another symtab with the same name. In the case of xcoff,
2490 multiple csects for one source file (produced by IBM's FORTRAN
2491 compiler) produce multiple symtabs (this is unavoidable
2492 assuming csects can be at arbitrary places in memory and that
2493 the GLOBAL_BLOCK of a symtab has a begin and end address). */
2494
2495 /* BEST is the smallest linenumber > LINE so far seen,
2496 or 0 if none has been seen so far.
2497 BEST_INDEX and BEST_LINETABLE identify the item for it. */
2498 int best;
2499
2500 struct objfile *objfile;
2501 struct symtab *s;
2502
2503 if (best_index >= 0)
2504 best = best_linetable->item[best_index].line;
2505 else
2506 best = 0;
2507
2508 ALL_OBJFILES (objfile)
2509 {
2510 if (objfile->sf)
2511 objfile->sf->qf->expand_symtabs_with_fullname (objfile,
2512 symtab_to_fullname (symtab));
2513 }
2514
2515 ALL_SYMTABS (objfile, s)
2516 {
2517 struct linetable *l;
2518 int ind;
2519
2520 if (FILENAME_CMP (symtab->filename, s->filename) != 0)
2521 continue;
2522 if (FILENAME_CMP (symtab_to_fullname (symtab),
2523 symtab_to_fullname (s)) != 0)
2524 continue;
2525 l = LINETABLE (s);
2526 ind = find_line_common (l, line, &exact, 0);
2527 if (ind >= 0)
2528 {
2529 if (exact)
2530 {
2531 best_index = ind;
2532 best_linetable = l;
2533 best_symtab = s;
2534 goto done;
2535 }
2536 if (best == 0 || l->item[ind].line < best)
2537 {
2538 best = l->item[ind].line;
2539 best_index = ind;
2540 best_linetable = l;
2541 best_symtab = s;
2542 }
2543 }
2544 }
2545 }
2546 done:
2547 if (best_index < 0)
2548 return NULL;
2549
2550 if (index)
2551 *index = best_index;
2552 if (exact_match)
2553 *exact_match = exact;
2554
2555 return best_symtab;
2556 }
2557
2558 /* Given SYMTAB, returns all the PCs function in the symtab that
2559 exactly match LINE. Returns NULL if there are no exact matches,
2560 but updates BEST_ITEM in this case. */
2561
2562 VEC (CORE_ADDR) *
2563 find_pcs_for_symtab_line (struct symtab *symtab, int line,
2564 struct linetable_entry **best_item)
2565 {
2566 int start = 0;
2567 VEC (CORE_ADDR) *result = NULL;
2568
2569 /* First, collect all the PCs that are at this line. */
2570 while (1)
2571 {
2572 int was_exact;
2573 int idx;
2574
2575 idx = find_line_common (LINETABLE (symtab), line, &was_exact, start);
2576 if (idx < 0)
2577 break;
2578
2579 if (!was_exact)
2580 {
2581 struct linetable_entry *item = &LINETABLE (symtab)->item[idx];
2582
2583 if (*best_item == NULL || item->line < (*best_item)->line)
2584 *best_item = item;
2585
2586 break;
2587 }
2588
2589 VEC_safe_push (CORE_ADDR, result, LINETABLE (symtab)->item[idx].pc);
2590 start = idx + 1;
2591 }
2592
2593 return result;
2594 }
2595
2596 \f
2597 /* Set the PC value for a given source file and line number and return true.
2598 Returns zero for invalid line number (and sets the PC to 0).
2599 The source file is specified with a struct symtab. */
2600
2601 int
2602 find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
2603 {
2604 struct linetable *l;
2605 int ind;
2606
2607 *pc = 0;
2608 if (symtab == 0)
2609 return 0;
2610
2611 symtab = find_line_symtab (symtab, line, &ind, NULL);
2612 if (symtab != NULL)
2613 {
2614 l = LINETABLE (symtab);
2615 *pc = l->item[ind].pc;
2616 return 1;
2617 }
2618 else
2619 return 0;
2620 }
2621
2622 /* Find the range of pc values in a line.
2623 Store the starting pc of the line into *STARTPTR
2624 and the ending pc (start of next line) into *ENDPTR.
2625 Returns 1 to indicate success.
2626 Returns 0 if could not find the specified line. */
2627
2628 int
2629 find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
2630 CORE_ADDR *endptr)
2631 {
2632 CORE_ADDR startaddr;
2633 struct symtab_and_line found_sal;
2634
2635 startaddr = sal.pc;
2636 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
2637 return 0;
2638
2639 /* This whole function is based on address. For example, if line 10 has
2640 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
2641 "info line *0x123" should say the line goes from 0x100 to 0x200
2642 and "info line *0x355" should say the line goes from 0x300 to 0x400.
2643 This also insures that we never give a range like "starts at 0x134
2644 and ends at 0x12c". */
2645
2646 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
2647 if (found_sal.line != sal.line)
2648 {
2649 /* The specified line (sal) has zero bytes. */
2650 *startptr = found_sal.pc;
2651 *endptr = found_sal.pc;
2652 }
2653 else
2654 {
2655 *startptr = found_sal.pc;
2656 *endptr = found_sal.end;
2657 }
2658 return 1;
2659 }
2660
2661 /* Given a line table and a line number, return the index into the line
2662 table for the pc of the nearest line whose number is >= the specified one.
2663 Return -1 if none is found. The value is >= 0 if it is an index.
2664 START is the index at which to start searching the line table.
2665
2666 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
2667
2668 static int
2669 find_line_common (struct linetable *l, int lineno,
2670 int *exact_match, int start)
2671 {
2672 int i;
2673 int len;
2674
2675 /* BEST is the smallest linenumber > LINENO so far seen,
2676 or 0 if none has been seen so far.
2677 BEST_INDEX identifies the item for it. */
2678
2679 int best_index = -1;
2680 int best = 0;
2681
2682 *exact_match = 0;
2683
2684 if (lineno <= 0)
2685 return -1;
2686 if (l == 0)
2687 return -1;
2688
2689 len = l->nitems;
2690 for (i = start; i < len; i++)
2691 {
2692 struct linetable_entry *item = &(l->item[i]);
2693
2694 if (item->line == lineno)
2695 {
2696 /* Return the first (lowest address) entry which matches. */
2697 *exact_match = 1;
2698 return i;
2699 }
2700
2701 if (item->line > lineno && (best == 0 || item->line < best))
2702 {
2703 best = item->line;
2704 best_index = i;
2705 }
2706 }
2707
2708 /* If we got here, we didn't get an exact match. */
2709 return best_index;
2710 }
2711
2712 int
2713 find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
2714 {
2715 struct symtab_and_line sal;
2716
2717 sal = find_pc_line (pc, 0);
2718 *startptr = sal.pc;
2719 *endptr = sal.end;
2720 return sal.symtab != 0;
2721 }
2722
2723 /* Given a function start address FUNC_ADDR and SYMTAB, find the first
2724 address for that function that has an entry in SYMTAB's line info
2725 table. If such an entry cannot be found, return FUNC_ADDR
2726 unaltered. */
2727
2728 static CORE_ADDR
2729 skip_prologue_using_lineinfo (CORE_ADDR func_addr, struct symtab *symtab)
2730 {
2731 CORE_ADDR func_start, func_end;
2732 struct linetable *l;
2733 int i;
2734
2735 /* Give up if this symbol has no lineinfo table. */
2736 l = LINETABLE (symtab);
2737 if (l == NULL)
2738 return func_addr;
2739
2740 /* Get the range for the function's PC values, or give up if we
2741 cannot, for some reason. */
2742 if (!find_pc_partial_function (func_addr, NULL, &func_start, &func_end))
2743 return func_addr;
2744
2745 /* Linetable entries are ordered by PC values, see the commentary in
2746 symtab.h where `struct linetable' is defined. Thus, the first
2747 entry whose PC is in the range [FUNC_START..FUNC_END[ is the
2748 address we are looking for. */
2749 for (i = 0; i < l->nitems; i++)
2750 {
2751 struct linetable_entry *item = &(l->item[i]);
2752
2753 /* Don't use line numbers of zero, they mark special entries in
2754 the table. See the commentary on symtab.h before the
2755 definition of struct linetable. */
2756 if (item->line > 0 && func_start <= item->pc && item->pc < func_end)
2757 return item->pc;
2758 }
2759
2760 return func_addr;
2761 }
2762
2763 /* Given a function symbol SYM, find the symtab and line for the start
2764 of the function.
2765 If the argument FUNFIRSTLINE is nonzero, we want the first line
2766 of real code inside the function. */
2767
2768 struct symtab_and_line
2769 find_function_start_sal (struct symbol *sym, int funfirstline)
2770 {
2771 struct symtab_and_line sal;
2772
2773 fixup_symbol_section (sym, NULL);
2774 sal = find_pc_sect_line (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)),
2775 SYMBOL_OBJ_SECTION (SYMBOL_OBJFILE (sym), sym), 0);
2776
2777 /* We always should have a line for the function start address.
2778 If we don't, something is odd. Create a plain SAL refering
2779 just the PC and hope that skip_prologue_sal (if requested)
2780 can find a line number for after the prologue. */
2781 if (sal.pc < BLOCK_START (SYMBOL_BLOCK_VALUE (sym)))
2782 {
2783 init_sal (&sal);
2784 sal.pspace = current_program_space;
2785 sal.pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
2786 sal.section = SYMBOL_OBJ_SECTION (SYMBOL_OBJFILE (sym), sym);
2787 }
2788
2789 if (funfirstline)
2790 skip_prologue_sal (&sal);
2791
2792 return sal;
2793 }
2794
2795 /* Adjust SAL to the first instruction past the function prologue.
2796 If the PC was explicitly specified, the SAL is not changed.
2797 If the line number was explicitly specified, at most the SAL's PC
2798 is updated. If SAL is already past the prologue, then do nothing. */
2799
2800 void
2801 skip_prologue_sal (struct symtab_and_line *sal)
2802 {
2803 struct symbol *sym;
2804 struct symtab_and_line start_sal;
2805 struct cleanup *old_chain;
2806 CORE_ADDR pc, saved_pc;
2807 struct obj_section *section;
2808 const char *name;
2809 struct objfile *objfile;
2810 struct gdbarch *gdbarch;
2811 struct block *b, *function_block;
2812 int force_skip, skip;
2813
2814 /* Do not change the SAL if PC was specified explicitly. */
2815 if (sal->explicit_pc)
2816 return;
2817
2818 old_chain = save_current_space_and_thread ();
2819 switch_to_program_space_and_thread (sal->pspace);
2820
2821 sym = find_pc_sect_function (sal->pc, sal->section);
2822 if (sym != NULL)
2823 {
2824 fixup_symbol_section (sym, NULL);
2825
2826 pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
2827 section = SYMBOL_OBJ_SECTION (SYMBOL_OBJFILE (sym), sym);
2828 name = SYMBOL_LINKAGE_NAME (sym);
2829 objfile = SYMBOL_SYMTAB (sym)->objfile;
2830 }
2831 else
2832 {
2833 struct minimal_symbol *msymbol
2834 = lookup_minimal_symbol_by_pc_section (sal->pc, sal->section).minsym;
2835
2836 if (msymbol == NULL)
2837 {
2838 do_cleanups (old_chain);
2839 return;
2840 }
2841
2842 objfile = msymbol_objfile (msymbol);
2843 pc = SYMBOL_VALUE_ADDRESS (msymbol);
2844 section = SYMBOL_OBJ_SECTION (objfile, msymbol);
2845 name = SYMBOL_LINKAGE_NAME (msymbol);
2846 }
2847
2848 gdbarch = get_objfile_arch (objfile);
2849
2850 /* Process the prologue in two passes. In the first pass try to skip the
2851 prologue (SKIP is true) and verify there is a real need for it (indicated
2852 by FORCE_SKIP). If no such reason was found run a second pass where the
2853 prologue is not skipped (SKIP is false). */
2854
2855 skip = 1;
2856 force_skip = 1;
2857
2858 /* Be conservative - allow direct PC (without skipping prologue) only if we
2859 have proven the CU (Compilation Unit) supports it. sal->SYMTAB does not
2860 have to be set by the caller so we use SYM instead. */
2861 if (sym && SYMBOL_SYMTAB (sym)->locations_valid)
2862 force_skip = 0;
2863
2864 saved_pc = pc;
2865 do
2866 {
2867 pc = saved_pc;
2868
2869 /* If the function is in an unmapped overlay, use its unmapped LMA address,
2870 so that gdbarch_skip_prologue has something unique to work on. */
2871 if (section_is_overlay (section) && !section_is_mapped (section))
2872 pc = overlay_unmapped_address (pc, section);
2873
2874 /* Skip "first line" of function (which is actually its prologue). */
2875 pc += gdbarch_deprecated_function_start_offset (gdbarch);
2876 if (skip)
2877 pc = gdbarch_skip_prologue (gdbarch, pc);
2878
2879 /* For overlays, map pc back into its mapped VMA range. */
2880 pc = overlay_mapped_address (pc, section);
2881
2882 /* Calculate line number. */
2883 start_sal = find_pc_sect_line (pc, section, 0);
2884
2885 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
2886 line is still part of the same function. */
2887 if (skip && start_sal.pc != pc
2888 && (sym ? (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) <= start_sal.end
2889 && start_sal.end < BLOCK_END (SYMBOL_BLOCK_VALUE (sym)))
2890 : (lookup_minimal_symbol_by_pc_section (start_sal.end, section).minsym
2891 == lookup_minimal_symbol_by_pc_section (pc, section).minsym)))
2892 {
2893 /* First pc of next line */
2894 pc = start_sal.end;
2895 /* Recalculate the line number (might not be N+1). */
2896 start_sal = find_pc_sect_line (pc, section, 0);
2897 }
2898
2899 /* On targets with executable formats that don't have a concept of
2900 constructors (ELF with .init has, PE doesn't), gcc emits a call
2901 to `__main' in `main' between the prologue and before user
2902 code. */
2903 if (gdbarch_skip_main_prologue_p (gdbarch)
2904 && name && strcmp_iw (name, "main") == 0)
2905 {
2906 pc = gdbarch_skip_main_prologue (gdbarch, pc);
2907 /* Recalculate the line number (might not be N+1). */
2908 start_sal = find_pc_sect_line (pc, section, 0);
2909 force_skip = 1;
2910 }
2911 }
2912 while (!force_skip && skip--);
2913
2914 /* If we still don't have a valid source line, try to find the first
2915 PC in the lineinfo table that belongs to the same function. This
2916 happens with COFF debug info, which does not seem to have an
2917 entry in lineinfo table for the code after the prologue which has
2918 no direct relation to source. For example, this was found to be
2919 the case with the DJGPP target using "gcc -gcoff" when the
2920 compiler inserted code after the prologue to make sure the stack
2921 is aligned. */
2922 if (!force_skip && sym && start_sal.symtab == NULL)
2923 {
2924 pc = skip_prologue_using_lineinfo (pc, SYMBOL_SYMTAB (sym));
2925 /* Recalculate the line number. */
2926 start_sal = find_pc_sect_line (pc, section, 0);
2927 }
2928
2929 do_cleanups (old_chain);
2930
2931 /* If we're already past the prologue, leave SAL unchanged. Otherwise
2932 forward SAL to the end of the prologue. */
2933 if (sal->pc >= pc)
2934 return;
2935
2936 sal->pc = pc;
2937 sal->section = section;
2938
2939 /* Unless the explicit_line flag was set, update the SAL line
2940 and symtab to correspond to the modified PC location. */
2941 if (sal->explicit_line)
2942 return;
2943
2944 sal->symtab = start_sal.symtab;
2945 sal->line = start_sal.line;
2946 sal->end = start_sal.end;
2947
2948 /* Check if we are now inside an inlined function. If we can,
2949 use the call site of the function instead. */
2950 b = block_for_pc_sect (sal->pc, sal->section);
2951 function_block = NULL;
2952 while (b != NULL)
2953 {
2954 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
2955 function_block = b;
2956 else if (BLOCK_FUNCTION (b) != NULL)
2957 break;
2958 b = BLOCK_SUPERBLOCK (b);
2959 }
2960 if (function_block != NULL
2961 && SYMBOL_LINE (BLOCK_FUNCTION (function_block)) != 0)
2962 {
2963 sal->line = SYMBOL_LINE (BLOCK_FUNCTION (function_block));
2964 sal->symtab = SYMBOL_SYMTAB (BLOCK_FUNCTION (function_block));
2965 }
2966 }
2967
2968 /* If P is of the form "operator[ \t]+..." where `...' is
2969 some legitimate operator text, return a pointer to the
2970 beginning of the substring of the operator text.
2971 Otherwise, return "". */
2972
2973 static char *
2974 operator_chars (char *p, char **end)
2975 {
2976 *end = "";
2977 if (strncmp (p, "operator", 8))
2978 return *end;
2979 p += 8;
2980
2981 /* Don't get faked out by `operator' being part of a longer
2982 identifier. */
2983 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
2984 return *end;
2985
2986 /* Allow some whitespace between `operator' and the operator symbol. */
2987 while (*p == ' ' || *p == '\t')
2988 p++;
2989
2990 /* Recognize 'operator TYPENAME'. */
2991
2992 if (isalpha (*p) || *p == '_' || *p == '$')
2993 {
2994 char *q = p + 1;
2995
2996 while (isalnum (*q) || *q == '_' || *q == '$')
2997 q++;
2998 *end = q;
2999 return p;
3000 }
3001
3002 while (*p)
3003 switch (*p)
3004 {
3005 case '\\': /* regexp quoting */
3006 if (p[1] == '*')
3007 {
3008 if (p[2] == '=') /* 'operator\*=' */
3009 *end = p + 3;
3010 else /* 'operator\*' */
3011 *end = p + 2;
3012 return p;
3013 }
3014 else if (p[1] == '[')
3015 {
3016 if (p[2] == ']')
3017 error (_("mismatched quoting on brackets, "
3018 "try 'operator\\[\\]'"));
3019 else if (p[2] == '\\' && p[3] == ']')
3020 {
3021 *end = p + 4; /* 'operator\[\]' */
3022 return p;
3023 }
3024 else
3025 error (_("nothing is allowed between '[' and ']'"));
3026 }
3027 else
3028 {
3029 /* Gratuitous qoute: skip it and move on. */
3030 p++;
3031 continue;
3032 }
3033 break;
3034 case '!':
3035 case '=':
3036 case '*':
3037 case '/':
3038 case '%':
3039 case '^':
3040 if (p[1] == '=')
3041 *end = p + 2;
3042 else
3043 *end = p + 1;
3044 return p;
3045 case '<':
3046 case '>':
3047 case '+':
3048 case '-':
3049 case '&':
3050 case '|':
3051 if (p[0] == '-' && p[1] == '>')
3052 {
3053 /* Struct pointer member operator 'operator->'. */
3054 if (p[2] == '*')
3055 {
3056 *end = p + 3; /* 'operator->*' */
3057 return p;
3058 }
3059 else if (p[2] == '\\')
3060 {
3061 *end = p + 4; /* Hopefully 'operator->\*' */
3062 return p;
3063 }
3064 else
3065 {
3066 *end = p + 2; /* 'operator->' */
3067 return p;
3068 }
3069 }
3070 if (p[1] == '=' || p[1] == p[0])
3071 *end = p + 2;
3072 else
3073 *end = p + 1;
3074 return p;
3075 case '~':
3076 case ',':
3077 *end = p + 1;
3078 return p;
3079 case '(':
3080 if (p[1] != ')')
3081 error (_("`operator ()' must be specified "
3082 "without whitespace in `()'"));
3083 *end = p + 2;
3084 return p;
3085 case '?':
3086 if (p[1] != ':')
3087 error (_("`operator ?:' must be specified "
3088 "without whitespace in `?:'"));
3089 *end = p + 2;
3090 return p;
3091 case '[':
3092 if (p[1] != ']')
3093 error (_("`operator []' must be specified "
3094 "without whitespace in `[]'"));
3095 *end = p + 2;
3096 return p;
3097 default:
3098 error (_("`operator %s' not supported"), p);
3099 break;
3100 }
3101
3102 *end = "";
3103 return *end;
3104 }
3105 \f
3106
3107 /* Cache to watch for file names already seen by filename_seen. */
3108
3109 struct filename_seen_cache
3110 {
3111 /* Table of files seen so far. */
3112 htab_t tab;
3113 /* Initial size of the table. It automagically grows from here. */
3114 #define INITIAL_FILENAME_SEEN_CACHE_SIZE 100
3115 };
3116
3117 /* filename_seen_cache constructor. */
3118
3119 static struct filename_seen_cache *
3120 create_filename_seen_cache (void)
3121 {
3122 struct filename_seen_cache *cache;
3123
3124 cache = XNEW (struct filename_seen_cache);
3125 cache->tab = htab_create_alloc (INITIAL_FILENAME_SEEN_CACHE_SIZE,
3126 filename_hash, filename_eq,
3127 NULL, xcalloc, xfree);
3128
3129 return cache;
3130 }
3131
3132 /* Empty the cache, but do not delete it. */
3133
3134 static void
3135 clear_filename_seen_cache (struct filename_seen_cache *cache)
3136 {
3137 htab_empty (cache->tab);
3138 }
3139
3140 /* filename_seen_cache destructor.
3141 This takes a void * argument as it is generally used as a cleanup. */
3142
3143 static void
3144 delete_filename_seen_cache (void *ptr)
3145 {
3146 struct filename_seen_cache *cache = ptr;
3147
3148 htab_delete (cache->tab);
3149 xfree (cache);
3150 }
3151
3152 /* If FILE is not already in the table of files in CACHE, return zero;
3153 otherwise return non-zero. Optionally add FILE to the table if ADD
3154 is non-zero.
3155
3156 NOTE: We don't manage space for FILE, we assume FILE lives as long
3157 as the caller needs. */
3158
3159 static int
3160 filename_seen (struct filename_seen_cache *cache, const char *file, int add)
3161 {
3162 void **slot;
3163
3164 /* Is FILE in tab? */
3165 slot = htab_find_slot (cache->tab, file, add ? INSERT : NO_INSERT);
3166 if (*slot != NULL)
3167 return 1;
3168
3169 /* No; maybe add it to tab. */
3170 if (add)
3171 *slot = (char *) file;
3172
3173 return 0;
3174 }
3175
3176 /* Data structure to maintain printing state for output_source_filename. */
3177
3178 struct output_source_filename_data
3179 {
3180 /* Cache of what we've seen so far. */
3181 struct filename_seen_cache *filename_seen_cache;
3182
3183 /* Flag of whether we're printing the first one. */
3184 int first;
3185 };
3186
3187 /* Slave routine for sources_info. Force line breaks at ,'s.
3188 NAME is the name to print.
3189 DATA contains the state for printing and watching for duplicates. */
3190
3191 static void
3192 output_source_filename (const char *name,
3193 struct output_source_filename_data *data)
3194 {
3195 /* Since a single source file can result in several partial symbol
3196 tables, we need to avoid printing it more than once. Note: if
3197 some of the psymtabs are read in and some are not, it gets
3198 printed both under "Source files for which symbols have been
3199 read" and "Source files for which symbols will be read in on
3200 demand". I consider this a reasonable way to deal with the
3201 situation. I'm not sure whether this can also happen for
3202 symtabs; it doesn't hurt to check. */
3203
3204 /* Was NAME already seen? */
3205 if (filename_seen (data->filename_seen_cache, name, 1))
3206 {
3207 /* Yes; don't print it again. */
3208 return;
3209 }
3210
3211 /* No; print it and reset *FIRST. */
3212 if (! data->first)
3213 printf_filtered (", ");
3214 data->first = 0;
3215
3216 wrap_here ("");
3217 fputs_filtered (name, gdb_stdout);
3218 }
3219
3220 /* A callback for map_partial_symbol_filenames. */
3221
3222 static void
3223 output_partial_symbol_filename (const char *filename, const char *fullname,
3224 void *data)
3225 {
3226 output_source_filename (fullname ? fullname : filename, data);
3227 }
3228
3229 static void
3230 sources_info (char *ignore, int from_tty)
3231 {
3232 struct symtab *s;
3233 struct objfile *objfile;
3234 struct output_source_filename_data data;
3235 struct cleanup *cleanups;
3236
3237 if (!have_full_symbols () && !have_partial_symbols ())
3238 {
3239 error (_("No symbol table is loaded. Use the \"file\" command."));
3240 }
3241
3242 data.filename_seen_cache = create_filename_seen_cache ();
3243 cleanups = make_cleanup (delete_filename_seen_cache,
3244 data.filename_seen_cache);
3245
3246 printf_filtered ("Source files for which symbols have been read in:\n\n");
3247
3248 data.first = 1;
3249 ALL_SYMTABS (objfile, s)
3250 {
3251 const char *fullname = symtab_to_fullname (s);
3252
3253 output_source_filename (fullname, &data);
3254 }
3255 printf_filtered ("\n\n");
3256
3257 printf_filtered ("Source files for which symbols "
3258 "will be read in on demand:\n\n");
3259
3260 clear_filename_seen_cache (data.filename_seen_cache);
3261 data.first = 1;
3262 map_partial_symbol_filenames (output_partial_symbol_filename, &data,
3263 1 /*need_fullname*/);
3264 printf_filtered ("\n");
3265
3266 do_cleanups (cleanups);
3267 }
3268
3269 /* Compare FILE against all the NFILES entries of FILES. If BASENAMES is
3270 non-zero compare only lbasename of FILES. */
3271
3272 static int
3273 file_matches (const char *file, char *files[], int nfiles, int basenames)
3274 {
3275 int i;
3276
3277 if (file != NULL && nfiles != 0)
3278 {
3279 for (i = 0; i < nfiles; i++)
3280 {
3281 if (compare_filenames_for_search (file, (basenames
3282 ? lbasename (files[i])
3283 : files[i])))
3284 return 1;
3285 }
3286 }
3287 else if (nfiles == 0)
3288 return 1;
3289 return 0;
3290 }
3291
3292 /* Free any memory associated with a search. */
3293
3294 void
3295 free_search_symbols (struct symbol_search *symbols)
3296 {
3297 struct symbol_search *p;
3298 struct symbol_search *next;
3299
3300 for (p = symbols; p != NULL; p = next)
3301 {
3302 next = p->next;
3303 xfree (p);
3304 }
3305 }
3306
3307 static void
3308 do_free_search_symbols_cleanup (void *symbols)
3309 {
3310 free_search_symbols (symbols);
3311 }
3312
3313 struct cleanup *
3314 make_cleanup_free_search_symbols (struct symbol_search *symbols)
3315 {
3316 return make_cleanup (do_free_search_symbols_cleanup, symbols);
3317 }
3318
3319 /* Helper function for sort_search_symbols and qsort. Can only
3320 sort symbols, not minimal symbols. */
3321
3322 static int
3323 compare_search_syms (const void *sa, const void *sb)
3324 {
3325 struct symbol_search **sym_a = (struct symbol_search **) sa;
3326 struct symbol_search **sym_b = (struct symbol_search **) sb;
3327
3328 return strcmp (SYMBOL_PRINT_NAME ((*sym_a)->symbol),
3329 SYMBOL_PRINT_NAME ((*sym_b)->symbol));
3330 }
3331
3332 /* Sort the ``nfound'' symbols in the list after prevtail. Leave
3333 prevtail where it is, but update its next pointer to point to
3334 the first of the sorted symbols. */
3335
3336 static struct symbol_search *
3337 sort_search_symbols (struct symbol_search *prevtail, int nfound)
3338 {
3339 struct symbol_search **symbols, *symp, *old_next;
3340 int i;
3341
3342 symbols = (struct symbol_search **) xmalloc (sizeof (struct symbol_search *)
3343 * nfound);
3344 symp = prevtail->next;
3345 for (i = 0; i < nfound; i++)
3346 {
3347 symbols[i] = symp;
3348 symp = symp->next;
3349 }
3350 /* Generally NULL. */
3351 old_next = symp;
3352
3353 qsort (symbols, nfound, sizeof (struct symbol_search *),
3354 compare_search_syms);
3355
3356 symp = prevtail;
3357 for (i = 0; i < nfound; i++)
3358 {
3359 symp->next = symbols[i];
3360 symp = symp->next;
3361 }
3362 symp->next = old_next;
3363
3364 xfree (symbols);
3365 return symp;
3366 }
3367
3368 /* An object of this type is passed as the user_data to the
3369 expand_symtabs_matching method. */
3370 struct search_symbols_data
3371 {
3372 int nfiles;
3373 char **files;
3374
3375 /* It is true if PREG contains valid data, false otherwise. */
3376 unsigned preg_p : 1;
3377 regex_t preg;
3378 };
3379
3380 /* A callback for expand_symtabs_matching. */
3381
3382 static int
3383 search_symbols_file_matches (const char *filename, void *user_data,
3384 int basenames)
3385 {
3386 struct search_symbols_data *data = user_data;
3387
3388 return file_matches (filename, data->files, data->nfiles, basenames);
3389 }
3390
3391 /* A callback for expand_symtabs_matching. */
3392
3393 static int
3394 search_symbols_name_matches (const char *symname, void *user_data)
3395 {
3396 struct search_symbols_data *data = user_data;
3397
3398 return !data->preg_p || regexec (&data->preg, symname, 0, NULL, 0) == 0;
3399 }
3400
3401 /* Search the symbol table for matches to the regular expression REGEXP,
3402 returning the results in *MATCHES.
3403
3404 Only symbols of KIND are searched:
3405 VARIABLES_DOMAIN - search all symbols, excluding functions, type names,
3406 and constants (enums)
3407 FUNCTIONS_DOMAIN - search all functions
3408 TYPES_DOMAIN - search all type names
3409 ALL_DOMAIN - an internal error for this function
3410
3411 free_search_symbols should be called when *MATCHES is no longer needed.
3412
3413 The results are sorted locally; each symtab's global and static blocks are
3414 separately alphabetized. */
3415
3416 void
3417 search_symbols (char *regexp, enum search_domain kind,
3418 int nfiles, char *files[],
3419 struct symbol_search **matches)
3420 {
3421 struct symtab *s;
3422 struct blockvector *bv;
3423 struct block *b;
3424 int i = 0;
3425 struct block_iterator iter;
3426 struct symbol *sym;
3427 struct objfile *objfile;
3428 struct minimal_symbol *msymbol;
3429 int found_misc = 0;
3430 static const enum minimal_symbol_type types[]
3431 = {mst_data, mst_text, mst_abs};
3432 static const enum minimal_symbol_type types2[]
3433 = {mst_bss, mst_file_text, mst_abs};
3434 static const enum minimal_symbol_type types3[]
3435 = {mst_file_data, mst_solib_trampoline, mst_abs};
3436 static const enum minimal_symbol_type types4[]
3437 = {mst_file_bss, mst_text_gnu_ifunc, mst_abs};
3438 enum minimal_symbol_type ourtype;
3439 enum minimal_symbol_type ourtype2;
3440 enum minimal_symbol_type ourtype3;
3441 enum minimal_symbol_type ourtype4;
3442 struct symbol_search *sr;
3443 struct symbol_search *psr;
3444 struct symbol_search *tail;
3445 struct search_symbols_data datum;
3446
3447 /* OLD_CHAIN .. RETVAL_CHAIN is always freed, RETVAL_CHAIN .. current
3448 CLEANUP_CHAIN is freed only in the case of an error. */
3449 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
3450 struct cleanup *retval_chain;
3451
3452 gdb_assert (kind <= TYPES_DOMAIN);
3453
3454 ourtype = types[kind];
3455 ourtype2 = types2[kind];
3456 ourtype3 = types3[kind];
3457 ourtype4 = types4[kind];
3458
3459 sr = *matches = NULL;
3460 tail = NULL;
3461 datum.preg_p = 0;
3462
3463 if (regexp != NULL)
3464 {
3465 /* Make sure spacing is right for C++ operators.
3466 This is just a courtesy to make the matching less sensitive
3467 to how many spaces the user leaves between 'operator'
3468 and <TYPENAME> or <OPERATOR>. */
3469 char *opend;
3470 char *opname = operator_chars (regexp, &opend);
3471 int errcode;
3472
3473 if (*opname)
3474 {
3475 int fix = -1; /* -1 means ok; otherwise number of
3476 spaces needed. */
3477
3478 if (isalpha (*opname) || *opname == '_' || *opname == '$')
3479 {
3480 /* There should 1 space between 'operator' and 'TYPENAME'. */
3481 if (opname[-1] != ' ' || opname[-2] == ' ')
3482 fix = 1;
3483 }
3484 else
3485 {
3486 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
3487 if (opname[-1] == ' ')
3488 fix = 0;
3489 }
3490 /* If wrong number of spaces, fix it. */
3491 if (fix >= 0)
3492 {
3493 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
3494
3495 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
3496 regexp = tmp;
3497 }
3498 }
3499
3500 errcode = regcomp (&datum.preg, regexp,
3501 REG_NOSUB | (case_sensitivity == case_sensitive_off
3502 ? REG_ICASE : 0));
3503 if (errcode != 0)
3504 {
3505 char *err = get_regcomp_error (errcode, &datum.preg);
3506
3507 make_cleanup (xfree, err);
3508 error (_("Invalid regexp (%s): %s"), err, regexp);
3509 }
3510 datum.preg_p = 1;
3511 make_regfree_cleanup (&datum.preg);
3512 }
3513
3514 /* Search through the partial symtabs *first* for all symbols
3515 matching the regexp. That way we don't have to reproduce all of
3516 the machinery below. */
3517
3518 datum.nfiles = nfiles;
3519 datum.files = files;
3520 ALL_OBJFILES (objfile)
3521 {
3522 if (objfile->sf)
3523 objfile->sf->qf->expand_symtabs_matching (objfile,
3524 (nfiles == 0
3525 ? NULL
3526 : search_symbols_file_matches),
3527 search_symbols_name_matches,
3528 kind,
3529 &datum);
3530 }
3531
3532 retval_chain = old_chain;
3533
3534 /* Here, we search through the minimal symbol tables for functions
3535 and variables that match, and force their symbols to be read.
3536 This is in particular necessary for demangled variable names,
3537 which are no longer put into the partial symbol tables.
3538 The symbol will then be found during the scan of symtabs below.
3539
3540 For functions, find_pc_symtab should succeed if we have debug info
3541 for the function, for variables we have to call
3542 lookup_symbol_in_objfile_from_linkage_name to determine if the variable
3543 has debug info.
3544 If the lookup fails, set found_misc so that we will rescan to print
3545 any matching symbols without debug info.
3546 We only search the objfile the msymbol came from, we no longer search
3547 all objfiles. In large programs (1000s of shared libs) searching all
3548 objfiles is not worth the pain. */
3549
3550 if (nfiles == 0 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
3551 {
3552 ALL_MSYMBOLS (objfile, msymbol)
3553 {
3554 QUIT;
3555
3556 if (msymbol->created_by_gdb)
3557 continue;
3558
3559 if (MSYMBOL_TYPE (msymbol) == ourtype
3560 || MSYMBOL_TYPE (msymbol) == ourtype2
3561 || MSYMBOL_TYPE (msymbol) == ourtype3
3562 || MSYMBOL_TYPE (msymbol) == ourtype4)
3563 {
3564 if (!datum.preg_p
3565 || regexec (&datum.preg, SYMBOL_NATURAL_NAME (msymbol), 0,
3566 NULL, 0) == 0)
3567 {
3568 /* Note: An important side-effect of these lookup functions
3569 is to expand the symbol table if msymbol is found, for the
3570 benefit of the next loop on ALL_PRIMARY_SYMTABS. */
3571 if (kind == FUNCTIONS_DOMAIN
3572 ? find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol)) == NULL
3573 : (lookup_symbol_in_objfile_from_linkage_name
3574 (objfile, SYMBOL_LINKAGE_NAME (msymbol), VAR_DOMAIN)
3575 == NULL))
3576 found_misc = 1;
3577 }
3578 }
3579 }
3580 }
3581
3582 ALL_PRIMARY_SYMTABS (objfile, s)
3583 {
3584 bv = BLOCKVECTOR (s);
3585 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
3586 {
3587 struct symbol_search *prevtail = tail;
3588 int nfound = 0;
3589
3590 b = BLOCKVECTOR_BLOCK (bv, i);
3591 ALL_BLOCK_SYMBOLS (b, iter, sym)
3592 {
3593 struct symtab *real_symtab = SYMBOL_SYMTAB (sym);
3594
3595 QUIT;
3596
3597 /* Check first sole REAL_SYMTAB->FILENAME. It does not need to be
3598 a substring of symtab_to_fullname as it may contain "./" etc. */
3599 if ((file_matches (real_symtab->filename, files, nfiles, 0)
3600 || ((basenames_may_differ
3601 || file_matches (lbasename (real_symtab->filename),
3602 files, nfiles, 1))
3603 && file_matches (symtab_to_fullname (real_symtab),
3604 files, nfiles, 0)))
3605 && ((!datum.preg_p
3606 || regexec (&datum.preg, SYMBOL_NATURAL_NAME (sym), 0,
3607 NULL, 0) == 0)
3608 && ((kind == VARIABLES_DOMAIN
3609 && SYMBOL_CLASS (sym) != LOC_TYPEDEF
3610 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
3611 && SYMBOL_CLASS (sym) != LOC_BLOCK
3612 /* LOC_CONST can be used for more than just enums,
3613 e.g., c++ static const members.
3614 We only want to skip enums here. */
3615 && !(SYMBOL_CLASS (sym) == LOC_CONST
3616 && TYPE_CODE (SYMBOL_TYPE (sym))
3617 == TYPE_CODE_ENUM))
3618 || (kind == FUNCTIONS_DOMAIN
3619 && SYMBOL_CLASS (sym) == LOC_BLOCK)
3620 || (kind == TYPES_DOMAIN
3621 && SYMBOL_CLASS (sym) == LOC_TYPEDEF))))
3622 {
3623 /* match */
3624 psr = (struct symbol_search *)
3625 xmalloc (sizeof (struct symbol_search));
3626 psr->block = i;
3627 psr->symtab = real_symtab;
3628 psr->symbol = sym;
3629 psr->msymbol = NULL;
3630 psr->next = NULL;
3631 if (tail == NULL)
3632 sr = psr;
3633 else
3634 tail->next = psr;
3635 tail = psr;
3636 nfound ++;
3637 }
3638 }
3639 if (nfound > 0)
3640 {
3641 if (prevtail == NULL)
3642 {
3643 struct symbol_search dummy;
3644
3645 dummy.next = sr;
3646 tail = sort_search_symbols (&dummy, nfound);
3647 sr = dummy.next;
3648
3649 make_cleanup_free_search_symbols (sr);
3650 }
3651 else
3652 tail = sort_search_symbols (prevtail, nfound);
3653 }
3654 }
3655 }
3656
3657 /* If there are no eyes, avoid all contact. I mean, if there are
3658 no debug symbols, then print directly from the msymbol_vector. */
3659
3660 if (found_misc || (nfiles == 0 && kind != FUNCTIONS_DOMAIN))
3661 {
3662 ALL_MSYMBOLS (objfile, msymbol)
3663 {
3664 QUIT;
3665
3666 if (msymbol->created_by_gdb)
3667 continue;
3668
3669 if (MSYMBOL_TYPE (msymbol) == ourtype
3670 || MSYMBOL_TYPE (msymbol) == ourtype2
3671 || MSYMBOL_TYPE (msymbol) == ourtype3
3672 || MSYMBOL_TYPE (msymbol) == ourtype4)
3673 {
3674 if (!datum.preg_p
3675 || regexec (&datum.preg, SYMBOL_NATURAL_NAME (msymbol), 0,
3676 NULL, 0) == 0)
3677 {
3678 /* For functions we can do a quick check of whether the
3679 symbol might be found via find_pc_symtab. */
3680 if (kind != FUNCTIONS_DOMAIN
3681 || find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol)) == NULL)
3682 {
3683 if (lookup_symbol_in_objfile_from_linkage_name
3684 (objfile, SYMBOL_LINKAGE_NAME (msymbol), VAR_DOMAIN)
3685 == NULL)
3686 {
3687 /* match */
3688 psr = (struct symbol_search *)
3689 xmalloc (sizeof (struct symbol_search));
3690 psr->block = i;
3691 psr->msymbol = msymbol;
3692 psr->symtab = NULL;
3693 psr->symbol = NULL;
3694 psr->next = NULL;
3695 if (tail == NULL)
3696 {
3697 sr = psr;
3698 make_cleanup_free_search_symbols (sr);
3699 }
3700 else
3701 tail->next = psr;
3702 tail = psr;
3703 }
3704 }
3705 }
3706 }
3707 }
3708 }
3709
3710 discard_cleanups (retval_chain);
3711 do_cleanups (old_chain);
3712 *matches = sr;
3713 }
3714
3715 /* Helper function for symtab_symbol_info, this function uses
3716 the data returned from search_symbols() to print information
3717 regarding the match to gdb_stdout. */
3718
3719 static void
3720 print_symbol_info (enum search_domain kind,
3721 struct symtab *s, struct symbol *sym,
3722 int block, const char *last)
3723 {
3724 const char *s_filename = symtab_to_filename_for_display (s);
3725
3726 if (last == NULL || filename_cmp (last, s_filename) != 0)
3727 {
3728 fputs_filtered ("\nFile ", gdb_stdout);
3729 fputs_filtered (s_filename, gdb_stdout);
3730 fputs_filtered (":\n", gdb_stdout);
3731 }
3732
3733 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
3734 printf_filtered ("static ");
3735
3736 /* Typedef that is not a C++ class. */
3737 if (kind == TYPES_DOMAIN
3738 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
3739 typedef_print (SYMBOL_TYPE (sym), sym, gdb_stdout);
3740 /* variable, func, or typedef-that-is-c++-class. */
3741 else if (kind < TYPES_DOMAIN
3742 || (kind == TYPES_DOMAIN
3743 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
3744 {
3745 type_print (SYMBOL_TYPE (sym),
3746 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
3747 ? "" : SYMBOL_PRINT_NAME (sym)),
3748 gdb_stdout, 0);
3749
3750 printf_filtered (";\n");
3751 }
3752 }
3753
3754 /* This help function for symtab_symbol_info() prints information
3755 for non-debugging symbols to gdb_stdout. */
3756
3757 static void
3758 print_msymbol_info (struct minimal_symbol *msymbol)
3759 {
3760 struct gdbarch *gdbarch = get_objfile_arch (msymbol_objfile (msymbol));
3761 char *tmp;
3762
3763 if (gdbarch_addr_bit (gdbarch) <= 32)
3764 tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol)
3765 & (CORE_ADDR) 0xffffffff,
3766 8);
3767 else
3768 tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol),
3769 16);
3770 printf_filtered ("%s %s\n",
3771 tmp, SYMBOL_PRINT_NAME (msymbol));
3772 }
3773
3774 /* This is the guts of the commands "info functions", "info types", and
3775 "info variables". It calls search_symbols to find all matches and then
3776 print_[m]symbol_info to print out some useful information about the
3777 matches. */
3778
3779 static void
3780 symtab_symbol_info (char *regexp, enum search_domain kind, int from_tty)
3781 {
3782 static const char * const classnames[] =
3783 {"variable", "function", "type"};
3784 struct symbol_search *symbols;
3785 struct symbol_search *p;
3786 struct cleanup *old_chain;
3787 const char *last_filename = NULL;
3788 int first = 1;
3789
3790 gdb_assert (kind <= TYPES_DOMAIN);
3791
3792 /* Must make sure that if we're interrupted, symbols gets freed. */
3793 search_symbols (regexp, kind, 0, (char **) NULL, &symbols);
3794 old_chain = make_cleanup_free_search_symbols (symbols);
3795
3796 if (regexp != NULL)
3797 printf_filtered (_("All %ss matching regular expression \"%s\":\n"),
3798 classnames[kind], regexp);
3799 else
3800 printf_filtered (_("All defined %ss:\n"), classnames[kind]);
3801
3802 for (p = symbols; p != NULL; p = p->next)
3803 {
3804 QUIT;
3805
3806 if (p->msymbol != NULL)
3807 {
3808 if (first)
3809 {
3810 printf_filtered (_("\nNon-debugging symbols:\n"));
3811 first = 0;
3812 }
3813 print_msymbol_info (p->msymbol);
3814 }
3815 else
3816 {
3817 print_symbol_info (kind,
3818 p->symtab,
3819 p->symbol,
3820 p->block,
3821 last_filename);
3822 last_filename = symtab_to_filename_for_display (p->symtab);
3823 }
3824 }
3825
3826 do_cleanups (old_chain);
3827 }
3828
3829 static void
3830 variables_info (char *regexp, int from_tty)
3831 {
3832 symtab_symbol_info (regexp, VARIABLES_DOMAIN, from_tty);
3833 }
3834
3835 static void
3836 functions_info (char *regexp, int from_tty)
3837 {
3838 symtab_symbol_info (regexp, FUNCTIONS_DOMAIN, from_tty);
3839 }
3840
3841
3842 static void
3843 types_info (char *regexp, int from_tty)
3844 {
3845 symtab_symbol_info (regexp, TYPES_DOMAIN, from_tty);
3846 }
3847
3848 /* Breakpoint all functions matching regular expression. */
3849
3850 void
3851 rbreak_command_wrapper (char *regexp, int from_tty)
3852 {
3853 rbreak_command (regexp, from_tty);
3854 }
3855
3856 /* A cleanup function that calls end_rbreak_breakpoints. */
3857
3858 static void
3859 do_end_rbreak_breakpoints (void *ignore)
3860 {
3861 end_rbreak_breakpoints ();
3862 }
3863
3864 static void
3865 rbreak_command (char *regexp, int from_tty)
3866 {
3867 struct symbol_search *ss;
3868 struct symbol_search *p;
3869 struct cleanup *old_chain;
3870 char *string = NULL;
3871 int len = 0;
3872 char **files = NULL, *file_name;
3873 int nfiles = 0;
3874
3875 if (regexp)
3876 {
3877 char *colon = strchr (regexp, ':');
3878
3879 if (colon && *(colon + 1) != ':')
3880 {
3881 int colon_index;
3882
3883 colon_index = colon - regexp;
3884 file_name = alloca (colon_index + 1);
3885 memcpy (file_name, regexp, colon_index);
3886 file_name[colon_index--] = 0;
3887 while (isspace (file_name[colon_index]))
3888 file_name[colon_index--] = 0;
3889 files = &file_name;
3890 nfiles = 1;
3891 regexp = skip_spaces (colon + 1);
3892 }
3893 }
3894
3895 search_symbols (regexp, FUNCTIONS_DOMAIN, nfiles, files, &ss);
3896 old_chain = make_cleanup_free_search_symbols (ss);
3897 make_cleanup (free_current_contents, &string);
3898
3899 start_rbreak_breakpoints ();
3900 make_cleanup (do_end_rbreak_breakpoints, NULL);
3901 for (p = ss; p != NULL; p = p->next)
3902 {
3903 if (p->msymbol == NULL)
3904 {
3905 const char *fullname = symtab_to_fullname (p->symtab);
3906
3907 int newlen = (strlen (fullname)
3908 + strlen (SYMBOL_LINKAGE_NAME (p->symbol))
3909 + 4);
3910
3911 if (newlen > len)
3912 {
3913 string = xrealloc (string, newlen);
3914 len = newlen;
3915 }
3916 strcpy (string, fullname);
3917 strcat (string, ":'");
3918 strcat (string, SYMBOL_LINKAGE_NAME (p->symbol));
3919 strcat (string, "'");
3920 break_command (string, from_tty);
3921 print_symbol_info (FUNCTIONS_DOMAIN,
3922 p->symtab,
3923 p->symbol,
3924 p->block,
3925 symtab_to_filename_for_display (p->symtab));
3926 }
3927 else
3928 {
3929 int newlen = (strlen (SYMBOL_LINKAGE_NAME (p->msymbol)) + 3);
3930
3931 if (newlen > len)
3932 {
3933 string = xrealloc (string, newlen);
3934 len = newlen;
3935 }
3936 strcpy (string, "'");
3937 strcat (string, SYMBOL_LINKAGE_NAME (p->msymbol));
3938 strcat (string, "'");
3939
3940 break_command (string, from_tty);
3941 printf_filtered ("<function, no debug info> %s;\n",
3942 SYMBOL_PRINT_NAME (p->msymbol));
3943 }
3944 }
3945
3946 do_cleanups (old_chain);
3947 }
3948 \f
3949
3950 /* Evaluate if NAME matches SYM_TEXT and SYM_TEXT_LEN.
3951
3952 Either sym_text[sym_text_len] != '(' and then we search for any
3953 symbol starting with SYM_TEXT text.
3954
3955 Otherwise sym_text[sym_text_len] == '(' and then we require symbol name to
3956 be terminated at that point. Partial symbol tables do not have parameters
3957 information. */
3958
3959 static int
3960 compare_symbol_name (const char *name, const char *sym_text, int sym_text_len)
3961 {
3962 int (*ncmp) (const char *, const char *, size_t);
3963
3964 ncmp = (case_sensitivity == case_sensitive_on ? strncmp : strncasecmp);
3965
3966 if (ncmp (name, sym_text, sym_text_len) != 0)
3967 return 0;
3968
3969 if (sym_text[sym_text_len] == '(')
3970 {
3971 /* User searches for `name(someth...'. Require NAME to be terminated.
3972 Normally psymtabs and gdbindex have no parameter types so '\0' will be
3973 present but accept even parameters presence. In this case this
3974 function is in fact strcmp_iw but whitespace skipping is not supported
3975 for tab completion. */
3976
3977 if (name[sym_text_len] != '\0' && name[sym_text_len] != '(')
3978 return 0;
3979 }
3980
3981 return 1;
3982 }
3983
3984 /* Free any memory associated with a completion list. */
3985
3986 static void
3987 free_completion_list (VEC (char_ptr) **list_ptr)
3988 {
3989 int i;
3990 char *p;
3991
3992 for (i = 0; VEC_iterate (char_ptr, *list_ptr, i, p); ++i)
3993 xfree (p);
3994 VEC_free (char_ptr, *list_ptr);
3995 }
3996
3997 /* Callback for make_cleanup. */
3998
3999 static void
4000 do_free_completion_list (void *list)
4001 {
4002 free_completion_list (list);
4003 }
4004
4005 /* Helper routine for make_symbol_completion_list. */
4006
4007 static VEC (char_ptr) *return_val;
4008
4009 #define COMPLETION_LIST_ADD_SYMBOL(symbol, sym_text, len, text, word) \
4010 completion_list_add_name \
4011 (SYMBOL_NATURAL_NAME (symbol), (sym_text), (len), (text), (word))
4012
4013 /* Test to see if the symbol specified by SYMNAME (which is already
4014 demangled for C++ symbols) matches SYM_TEXT in the first SYM_TEXT_LEN
4015 characters. If so, add it to the current completion list. */
4016
4017 static void
4018 completion_list_add_name (const char *symname,
4019 const char *sym_text, int sym_text_len,
4020 const char *text, const char *word)
4021 {
4022 /* Clip symbols that cannot match. */
4023 if (!compare_symbol_name (symname, sym_text, sym_text_len))
4024 return;
4025
4026 /* We have a match for a completion, so add SYMNAME to the current list
4027 of matches. Note that the name is moved to freshly malloc'd space. */
4028
4029 {
4030 char *new;
4031
4032 if (word == sym_text)
4033 {
4034 new = xmalloc (strlen (symname) + 5);
4035 strcpy (new, symname);
4036 }
4037 else if (word > sym_text)
4038 {
4039 /* Return some portion of symname. */
4040 new = xmalloc (strlen (symname) + 5);
4041 strcpy (new, symname + (word - sym_text));
4042 }
4043 else
4044 {
4045 /* Return some of SYM_TEXT plus symname. */
4046 new = xmalloc (strlen (symname) + (sym_text - word) + 5);
4047 strncpy (new, word, sym_text - word);
4048 new[sym_text - word] = '\0';
4049 strcat (new, symname);
4050 }
4051
4052 VEC_safe_push (char_ptr, return_val, new);
4053 }
4054 }
4055
4056 /* ObjC: In case we are completing on a selector, look as the msymbol
4057 again and feed all the selectors into the mill. */
4058
4059 static void
4060 completion_list_objc_symbol (struct minimal_symbol *msymbol,
4061 const char *sym_text, int sym_text_len,
4062 const char *text, const char *word)
4063 {
4064 static char *tmp = NULL;
4065 static unsigned int tmplen = 0;
4066
4067 const char *method, *category, *selector;
4068 char *tmp2 = NULL;
4069
4070 method = SYMBOL_NATURAL_NAME (msymbol);
4071
4072 /* Is it a method? */
4073 if ((method[0] != '-') && (method[0] != '+'))
4074 return;
4075
4076 if (sym_text[0] == '[')
4077 /* Complete on shortened method method. */
4078 completion_list_add_name (method + 1, sym_text, sym_text_len, text, word);
4079
4080 while ((strlen (method) + 1) >= tmplen)
4081 {
4082 if (tmplen == 0)
4083 tmplen = 1024;
4084 else
4085 tmplen *= 2;
4086 tmp = xrealloc (tmp, tmplen);
4087 }
4088 selector = strchr (method, ' ');
4089 if (selector != NULL)
4090 selector++;
4091
4092 category = strchr (method, '(');
4093
4094 if ((category != NULL) && (selector != NULL))
4095 {
4096 memcpy (tmp, method, (category - method));
4097 tmp[category - method] = ' ';
4098 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
4099 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
4100 if (sym_text[0] == '[')
4101 completion_list_add_name (tmp + 1, sym_text, sym_text_len, text, word);
4102 }
4103
4104 if (selector != NULL)
4105 {
4106 /* Complete on selector only. */
4107 strcpy (tmp, selector);
4108 tmp2 = strchr (tmp, ']');
4109 if (tmp2 != NULL)
4110 *tmp2 = '\0';
4111
4112 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
4113 }
4114 }
4115
4116 /* Break the non-quoted text based on the characters which are in
4117 symbols. FIXME: This should probably be language-specific. */
4118
4119 static const char *
4120 language_search_unquoted_string (const char *text, const char *p)
4121 {
4122 for (; p > text; --p)
4123 {
4124 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
4125 continue;
4126 else
4127 {
4128 if ((current_language->la_language == language_objc))
4129 {
4130 if (p[-1] == ':') /* Might be part of a method name. */
4131 continue;
4132 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
4133 p -= 2; /* Beginning of a method name. */
4134 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
4135 { /* Might be part of a method name. */
4136 const char *t = p;
4137
4138 /* Seeing a ' ' or a '(' is not conclusive evidence
4139 that we are in the middle of a method name. However,
4140 finding "-[" or "+[" should be pretty un-ambiguous.
4141 Unfortunately we have to find it now to decide. */
4142
4143 while (t > text)
4144 if (isalnum (t[-1]) || t[-1] == '_' ||
4145 t[-1] == ' ' || t[-1] == ':' ||
4146 t[-1] == '(' || t[-1] == ')')
4147 --t;
4148 else
4149 break;
4150
4151 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
4152 p = t - 2; /* Method name detected. */
4153 /* Else we leave with p unchanged. */
4154 }
4155 }
4156 break;
4157 }
4158 }
4159 return p;
4160 }
4161
4162 static void
4163 completion_list_add_fields (struct symbol *sym, const char *sym_text,
4164 int sym_text_len, const char *text,
4165 const char *word)
4166 {
4167 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4168 {
4169 struct type *t = SYMBOL_TYPE (sym);
4170 enum type_code c = TYPE_CODE (t);
4171 int j;
4172
4173 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
4174 for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++)
4175 if (TYPE_FIELD_NAME (t, j))
4176 completion_list_add_name (TYPE_FIELD_NAME (t, j),
4177 sym_text, sym_text_len, text, word);
4178 }
4179 }
4180
4181 /* Type of the user_data argument passed to add_macro_name or
4182 expand_partial_symbol_name. The contents are simply whatever is
4183 needed by completion_list_add_name. */
4184 struct add_name_data
4185 {
4186 const char *sym_text;
4187 int sym_text_len;
4188 const char *text;
4189 const char *word;
4190 };
4191
4192 /* A callback used with macro_for_each and macro_for_each_in_scope.
4193 This adds a macro's name to the current completion list. */
4194
4195 static void
4196 add_macro_name (const char *name, const struct macro_definition *ignore,
4197 struct macro_source_file *ignore2, int ignore3,
4198 void *user_data)
4199 {
4200 struct add_name_data *datum = (struct add_name_data *) user_data;
4201
4202 completion_list_add_name ((char *) name,
4203 datum->sym_text, datum->sym_text_len,
4204 datum->text, datum->word);
4205 }
4206
4207 /* A callback for expand_partial_symbol_names. */
4208
4209 static int
4210 expand_partial_symbol_name (const char *name, void *user_data)
4211 {
4212 struct add_name_data *datum = (struct add_name_data *) user_data;
4213
4214 return compare_symbol_name (name, datum->sym_text, datum->sym_text_len);
4215 }
4216
4217 VEC (char_ptr) *
4218 default_make_symbol_completion_list_break_on (const char *text,
4219 const char *word,
4220 const char *break_on,
4221 enum type_code code)
4222 {
4223 /* Problem: All of the symbols have to be copied because readline
4224 frees them. I'm not going to worry about this; hopefully there
4225 won't be that many. */
4226
4227 struct symbol *sym;
4228 struct symtab *s;
4229 struct minimal_symbol *msymbol;
4230 struct objfile *objfile;
4231 struct block *b;
4232 const struct block *surrounding_static_block, *surrounding_global_block;
4233 struct block_iterator iter;
4234 /* The symbol we are completing on. Points in same buffer as text. */
4235 const char *sym_text;
4236 /* Length of sym_text. */
4237 int sym_text_len;
4238 struct add_name_data datum;
4239 struct cleanup *back_to;
4240
4241 /* Now look for the symbol we are supposed to complete on. */
4242 {
4243 const char *p;
4244 char quote_found;
4245 const char *quote_pos = NULL;
4246
4247 /* First see if this is a quoted string. */
4248 quote_found = '\0';
4249 for (p = text; *p != '\0'; ++p)
4250 {
4251 if (quote_found != '\0')
4252 {
4253 if (*p == quote_found)
4254 /* Found close quote. */
4255 quote_found = '\0';
4256 else if (*p == '\\' && p[1] == quote_found)
4257 /* A backslash followed by the quote character
4258 doesn't end the string. */
4259 ++p;
4260 }
4261 else if (*p == '\'' || *p == '"')
4262 {
4263 quote_found = *p;
4264 quote_pos = p;
4265 }
4266 }
4267 if (quote_found == '\'')
4268 /* A string within single quotes can be a symbol, so complete on it. */
4269 sym_text = quote_pos + 1;
4270 else if (quote_found == '"')
4271 /* A double-quoted string is never a symbol, nor does it make sense
4272 to complete it any other way. */
4273 {
4274 return NULL;
4275 }
4276 else
4277 {
4278 /* It is not a quoted string. Break it based on the characters
4279 which are in symbols. */
4280 while (p > text)
4281 {
4282 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0'
4283 || p[-1] == ':' || strchr (break_on, p[-1]) != NULL)
4284 --p;
4285 else
4286 break;
4287 }
4288 sym_text = p;
4289 }
4290 }
4291
4292 sym_text_len = strlen (sym_text);
4293
4294 /* Prepare SYM_TEXT_LEN for compare_symbol_name. */
4295
4296 if (current_language->la_language == language_cplus
4297 || current_language->la_language == language_java
4298 || current_language->la_language == language_fortran)
4299 {
4300 /* These languages may have parameters entered by user but they are never
4301 present in the partial symbol tables. */
4302
4303 const char *cs = memchr (sym_text, '(', sym_text_len);
4304
4305 if (cs)
4306 sym_text_len = cs - sym_text;
4307 }
4308 gdb_assert (sym_text[sym_text_len] == '\0' || sym_text[sym_text_len] == '(');
4309
4310 return_val = NULL;
4311 back_to = make_cleanup (do_free_completion_list, &return_val);
4312
4313 datum.sym_text = sym_text;
4314 datum.sym_text_len = sym_text_len;
4315 datum.text = text;
4316 datum.word = word;
4317
4318 /* Look through the partial symtabs for all symbols which begin
4319 by matching SYM_TEXT. Expand all CUs that you find to the list.
4320 The real names will get added by COMPLETION_LIST_ADD_SYMBOL below. */
4321 expand_partial_symbol_names (expand_partial_symbol_name, &datum);
4322
4323 /* At this point scan through the misc symbol vectors and add each
4324 symbol you find to the list. Eventually we want to ignore
4325 anything that isn't a text symbol (everything else will be
4326 handled by the psymtab code above). */
4327
4328 if (code == TYPE_CODE_UNDEF)
4329 {
4330 ALL_MSYMBOLS (objfile, msymbol)
4331 {
4332 QUIT;
4333 COMPLETION_LIST_ADD_SYMBOL (msymbol, sym_text, sym_text_len, text,
4334 word);
4335
4336 completion_list_objc_symbol (msymbol, sym_text, sym_text_len, text,
4337 word);
4338 }
4339 }
4340
4341 /* Search upwards from currently selected frame (so that we can
4342 complete on local vars). Also catch fields of types defined in
4343 this places which match our text string. Only complete on types
4344 visible from current context. */
4345
4346 b = get_selected_block (0);
4347 surrounding_static_block = block_static_block (b);
4348 surrounding_global_block = block_global_block (b);
4349 if (surrounding_static_block != NULL)
4350 while (b != surrounding_static_block)
4351 {
4352 QUIT;
4353
4354 ALL_BLOCK_SYMBOLS (b, iter, sym)
4355 {
4356 if (code == TYPE_CODE_UNDEF)
4357 {
4358 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text,
4359 word);
4360 completion_list_add_fields (sym, sym_text, sym_text_len, text,
4361 word);
4362 }
4363 else if (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4364 && TYPE_CODE (SYMBOL_TYPE (sym)) == code)
4365 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text,
4366 word);
4367 }
4368
4369 /* Stop when we encounter an enclosing function. Do not stop for
4370 non-inlined functions - the locals of the enclosing function
4371 are in scope for a nested function. */
4372 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
4373 break;
4374 b = BLOCK_SUPERBLOCK (b);
4375 }
4376
4377 /* Add fields from the file's types; symbols will be added below. */
4378
4379 if (code == TYPE_CODE_UNDEF)
4380 {
4381 if (surrounding_static_block != NULL)
4382 ALL_BLOCK_SYMBOLS (surrounding_static_block, iter, sym)
4383 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
4384
4385 if (surrounding_global_block != NULL)
4386 ALL_BLOCK_SYMBOLS (surrounding_global_block, iter, sym)
4387 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
4388 }
4389
4390 /* Go through the symtabs and check the externs and statics for
4391 symbols which match. */
4392
4393 ALL_PRIMARY_SYMTABS (objfile, s)
4394 {
4395 QUIT;
4396 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
4397 ALL_BLOCK_SYMBOLS (b, iter, sym)
4398 {
4399 if (code == TYPE_CODE_UNDEF
4400 || (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4401 && TYPE_CODE (SYMBOL_TYPE (sym)) == code))
4402 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4403 }
4404 }
4405
4406 ALL_PRIMARY_SYMTABS (objfile, s)
4407 {
4408 QUIT;
4409 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
4410 ALL_BLOCK_SYMBOLS (b, iter, sym)
4411 {
4412 if (code == TYPE_CODE_UNDEF
4413 || (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4414 && TYPE_CODE (SYMBOL_TYPE (sym)) == code))
4415 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4416 }
4417 }
4418
4419 /* Skip macros if we are completing a struct tag -- arguable but
4420 usually what is expected. */
4421 if (current_language->la_macro_expansion == macro_expansion_c
4422 && code == TYPE_CODE_UNDEF)
4423 {
4424 struct macro_scope *scope;
4425
4426 /* Add any macros visible in the default scope. Note that this
4427 may yield the occasional wrong result, because an expression
4428 might be evaluated in a scope other than the default. For
4429 example, if the user types "break file:line if <TAB>", the
4430 resulting expression will be evaluated at "file:line" -- but
4431 at there does not seem to be a way to detect this at
4432 completion time. */
4433 scope = default_macro_scope ();
4434 if (scope)
4435 {
4436 macro_for_each_in_scope (scope->file, scope->line,
4437 add_macro_name, &datum);
4438 xfree (scope);
4439 }
4440
4441 /* User-defined macros are always visible. */
4442 macro_for_each (macro_user_macros, add_macro_name, &datum);
4443 }
4444
4445 discard_cleanups (back_to);
4446 return (return_val);
4447 }
4448
4449 VEC (char_ptr) *
4450 default_make_symbol_completion_list (const char *text, const char *word,
4451 enum type_code code)
4452 {
4453 return default_make_symbol_completion_list_break_on (text, word, "", code);
4454 }
4455
4456 /* Return a vector of all symbols (regardless of class) which begin by
4457 matching TEXT. If the answer is no symbols, then the return value
4458 is NULL. */
4459
4460 VEC (char_ptr) *
4461 make_symbol_completion_list (const char *text, const char *word)
4462 {
4463 return current_language->la_make_symbol_completion_list (text, word,
4464 TYPE_CODE_UNDEF);
4465 }
4466
4467 /* Like make_symbol_completion_list, but only return STRUCT_DOMAIN
4468 symbols whose type code is CODE. */
4469
4470 VEC (char_ptr) *
4471 make_symbol_completion_type (const char *text, const char *word,
4472 enum type_code code)
4473 {
4474 gdb_assert (code == TYPE_CODE_UNION
4475 || code == TYPE_CODE_STRUCT
4476 || code == TYPE_CODE_CLASS
4477 || code == TYPE_CODE_ENUM);
4478 return current_language->la_make_symbol_completion_list (text, word, code);
4479 }
4480
4481 /* Like make_symbol_completion_list, but suitable for use as a
4482 completion function. */
4483
4484 VEC (char_ptr) *
4485 make_symbol_completion_list_fn (struct cmd_list_element *ignore,
4486 const char *text, const char *word)
4487 {
4488 return make_symbol_completion_list (text, word);
4489 }
4490
4491 /* Like make_symbol_completion_list, but returns a list of symbols
4492 defined in a source file FILE. */
4493
4494 VEC (char_ptr) *
4495 make_file_symbol_completion_list (const char *text, const char *word,
4496 const char *srcfile)
4497 {
4498 struct symbol *sym;
4499 struct symtab *s;
4500 struct block *b;
4501 struct block_iterator iter;
4502 /* The symbol we are completing on. Points in same buffer as text. */
4503 const char *sym_text;
4504 /* Length of sym_text. */
4505 int sym_text_len;
4506
4507 /* Now look for the symbol we are supposed to complete on.
4508 FIXME: This should be language-specific. */
4509 {
4510 const char *p;
4511 char quote_found;
4512 const char *quote_pos = NULL;
4513
4514 /* First see if this is a quoted string. */
4515 quote_found = '\0';
4516 for (p = text; *p != '\0'; ++p)
4517 {
4518 if (quote_found != '\0')
4519 {
4520 if (*p == quote_found)
4521 /* Found close quote. */
4522 quote_found = '\0';
4523 else if (*p == '\\' && p[1] == quote_found)
4524 /* A backslash followed by the quote character
4525 doesn't end the string. */
4526 ++p;
4527 }
4528 else if (*p == '\'' || *p == '"')
4529 {
4530 quote_found = *p;
4531 quote_pos = p;
4532 }
4533 }
4534 if (quote_found == '\'')
4535 /* A string within single quotes can be a symbol, so complete on it. */
4536 sym_text = quote_pos + 1;
4537 else if (quote_found == '"')
4538 /* A double-quoted string is never a symbol, nor does it make sense
4539 to complete it any other way. */
4540 {
4541 return NULL;
4542 }
4543 else
4544 {
4545 /* Not a quoted string. */
4546 sym_text = language_search_unquoted_string (text, p);
4547 }
4548 }
4549
4550 sym_text_len = strlen (sym_text);
4551
4552 return_val = NULL;
4553
4554 /* Find the symtab for SRCFILE (this loads it if it was not yet read
4555 in). */
4556 s = lookup_symtab (srcfile);
4557 if (s == NULL)
4558 {
4559 /* Maybe they typed the file with leading directories, while the
4560 symbol tables record only its basename. */
4561 const char *tail = lbasename (srcfile);
4562
4563 if (tail > srcfile)
4564 s = lookup_symtab (tail);
4565 }
4566
4567 /* If we have no symtab for that file, return an empty list. */
4568 if (s == NULL)
4569 return (return_val);
4570
4571 /* Go through this symtab and check the externs and statics for
4572 symbols which match. */
4573
4574 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
4575 ALL_BLOCK_SYMBOLS (b, iter, sym)
4576 {
4577 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4578 }
4579
4580 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
4581 ALL_BLOCK_SYMBOLS (b, iter, sym)
4582 {
4583 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4584 }
4585
4586 return (return_val);
4587 }
4588
4589 /* A helper function for make_source_files_completion_list. It adds
4590 another file name to a list of possible completions, growing the
4591 list as necessary. */
4592
4593 static void
4594 add_filename_to_list (const char *fname, const char *text, const char *word,
4595 VEC (char_ptr) **list)
4596 {
4597 char *new;
4598 size_t fnlen = strlen (fname);
4599
4600 if (word == text)
4601 {
4602 /* Return exactly fname. */
4603 new = xmalloc (fnlen + 5);
4604 strcpy (new, fname);
4605 }
4606 else if (word > text)
4607 {
4608 /* Return some portion of fname. */
4609 new = xmalloc (fnlen + 5);
4610 strcpy (new, fname + (word - text));
4611 }
4612 else
4613 {
4614 /* Return some of TEXT plus fname. */
4615 new = xmalloc (fnlen + (text - word) + 5);
4616 strncpy (new, word, text - word);
4617 new[text - word] = '\0';
4618 strcat (new, fname);
4619 }
4620 VEC_safe_push (char_ptr, *list, new);
4621 }
4622
4623 static int
4624 not_interesting_fname (const char *fname)
4625 {
4626 static const char *illegal_aliens[] = {
4627 "_globals_", /* inserted by coff_symtab_read */
4628 NULL
4629 };
4630 int i;
4631
4632 for (i = 0; illegal_aliens[i]; i++)
4633 {
4634 if (filename_cmp (fname, illegal_aliens[i]) == 0)
4635 return 1;
4636 }
4637 return 0;
4638 }
4639
4640 /* An object of this type is passed as the user_data argument to
4641 map_partial_symbol_filenames. */
4642 struct add_partial_filename_data
4643 {
4644 struct filename_seen_cache *filename_seen_cache;
4645 const char *text;
4646 const char *word;
4647 int text_len;
4648 VEC (char_ptr) **list;
4649 };
4650
4651 /* A callback for map_partial_symbol_filenames. */
4652
4653 static void
4654 maybe_add_partial_symtab_filename (const char *filename, const char *fullname,
4655 void *user_data)
4656 {
4657 struct add_partial_filename_data *data = user_data;
4658
4659 if (not_interesting_fname (filename))
4660 return;
4661 if (!filename_seen (data->filename_seen_cache, filename, 1)
4662 && filename_ncmp (filename, data->text, data->text_len) == 0)
4663 {
4664 /* This file matches for a completion; add it to the
4665 current list of matches. */
4666 add_filename_to_list (filename, data->text, data->word, data->list);
4667 }
4668 else
4669 {
4670 const char *base_name = lbasename (filename);
4671
4672 if (base_name != filename
4673 && !filename_seen (data->filename_seen_cache, base_name, 1)
4674 && filename_ncmp (base_name, data->text, data->text_len) == 0)
4675 add_filename_to_list (base_name, data->text, data->word, data->list);
4676 }
4677 }
4678
4679 /* Return a vector of all source files whose names begin with matching
4680 TEXT. The file names are looked up in the symbol tables of this
4681 program. If the answer is no matchess, then the return value is
4682 NULL. */
4683
4684 VEC (char_ptr) *
4685 make_source_files_completion_list (const char *text, const char *word)
4686 {
4687 struct symtab *s;
4688 struct objfile *objfile;
4689 size_t text_len = strlen (text);
4690 VEC (char_ptr) *list = NULL;
4691 const char *base_name;
4692 struct add_partial_filename_data datum;
4693 struct filename_seen_cache *filename_seen_cache;
4694 struct cleanup *back_to, *cache_cleanup;
4695
4696 if (!have_full_symbols () && !have_partial_symbols ())
4697 return list;
4698
4699 back_to = make_cleanup (do_free_completion_list, &list);
4700
4701 filename_seen_cache = create_filename_seen_cache ();
4702 cache_cleanup = make_cleanup (delete_filename_seen_cache,
4703 filename_seen_cache);
4704
4705 ALL_SYMTABS (objfile, s)
4706 {
4707 if (not_interesting_fname (s->filename))
4708 continue;
4709 if (!filename_seen (filename_seen_cache, s->filename, 1)
4710 && filename_ncmp (s->filename, text, text_len) == 0)
4711 {
4712 /* This file matches for a completion; add it to the current
4713 list of matches. */
4714 add_filename_to_list (s->filename, text, word, &list);
4715 }
4716 else
4717 {
4718 /* NOTE: We allow the user to type a base name when the
4719 debug info records leading directories, but not the other
4720 way around. This is what subroutines of breakpoint
4721 command do when they parse file names. */
4722 base_name = lbasename (s->filename);
4723 if (base_name != s->filename
4724 && !filename_seen (filename_seen_cache, base_name, 1)
4725 && filename_ncmp (base_name, text, text_len) == 0)
4726 add_filename_to_list (base_name, text, word, &list);
4727 }
4728 }
4729
4730 datum.filename_seen_cache = filename_seen_cache;
4731 datum.text = text;
4732 datum.word = word;
4733 datum.text_len = text_len;
4734 datum.list = &list;
4735 map_partial_symbol_filenames (maybe_add_partial_symtab_filename, &datum,
4736 0 /*need_fullname*/);
4737
4738 do_cleanups (cache_cleanup);
4739 discard_cleanups (back_to);
4740
4741 return list;
4742 }
4743
4744 /* Determine if PC is in the prologue of a function. The prologue is the area
4745 between the first instruction of a function, and the first executable line.
4746 Returns 1 if PC *might* be in prologue, 0 if definately *not* in prologue.
4747
4748 If non-zero, func_start is where we think the prologue starts, possibly
4749 by previous examination of symbol table information. */
4750
4751 int
4752 in_prologue (struct gdbarch *gdbarch, CORE_ADDR pc, CORE_ADDR func_start)
4753 {
4754 struct symtab_and_line sal;
4755 CORE_ADDR func_addr, func_end;
4756
4757 /* We have several sources of information we can consult to figure
4758 this out.
4759 - Compilers usually emit line number info that marks the prologue
4760 as its own "source line". So the ending address of that "line"
4761 is the end of the prologue. If available, this is the most
4762 reliable method.
4763 - The minimal symbols and partial symbols, which can usually tell
4764 us the starting and ending addresses of a function.
4765 - If we know the function's start address, we can call the
4766 architecture-defined gdbarch_skip_prologue function to analyze the
4767 instruction stream and guess where the prologue ends.
4768 - Our `func_start' argument; if non-zero, this is the caller's
4769 best guess as to the function's entry point. At the time of
4770 this writing, handle_inferior_event doesn't get this right, so
4771 it should be our last resort. */
4772
4773 /* Consult the partial symbol table, to find which function
4774 the PC is in. */
4775 if (! find_pc_partial_function (pc, NULL, &func_addr, &func_end))
4776 {
4777 CORE_ADDR prologue_end;
4778
4779 /* We don't even have minsym information, so fall back to using
4780 func_start, if given. */
4781 if (! func_start)
4782 return 1; /* We *might* be in a prologue. */
4783
4784 prologue_end = gdbarch_skip_prologue (gdbarch, func_start);
4785
4786 return func_start <= pc && pc < prologue_end;
4787 }
4788
4789 /* If we have line number information for the function, that's
4790 usually pretty reliable. */
4791 sal = find_pc_line (func_addr, 0);
4792
4793 /* Now sal describes the source line at the function's entry point,
4794 which (by convention) is the prologue. The end of that "line",
4795 sal.end, is the end of the prologue.
4796
4797 Note that, for functions whose source code is all on a single
4798 line, the line number information doesn't always end up this way.
4799 So we must verify that our purported end-of-prologue address is
4800 *within* the function, not at its start or end. */
4801 if (sal.line == 0
4802 || sal.end <= func_addr
4803 || func_end <= sal.end)
4804 {
4805 /* We don't have any good line number info, so use the minsym
4806 information, together with the architecture-specific prologue
4807 scanning code. */
4808 CORE_ADDR prologue_end = gdbarch_skip_prologue (gdbarch, func_addr);
4809
4810 return func_addr <= pc && pc < prologue_end;
4811 }
4812
4813 /* We have line number info, and it looks good. */
4814 return func_addr <= pc && pc < sal.end;
4815 }
4816
4817 /* Given PC at the function's start address, attempt to find the
4818 prologue end using SAL information. Return zero if the skip fails.
4819
4820 A non-optimized prologue traditionally has one SAL for the function
4821 and a second for the function body. A single line function has
4822 them both pointing at the same line.
4823
4824 An optimized prologue is similar but the prologue may contain
4825 instructions (SALs) from the instruction body. Need to skip those
4826 while not getting into the function body.
4827
4828 The functions end point and an increasing SAL line are used as
4829 indicators of the prologue's endpoint.
4830
4831 This code is based on the function refine_prologue_limit
4832 (found in ia64). */
4833
4834 CORE_ADDR
4835 skip_prologue_using_sal (struct gdbarch *gdbarch, CORE_ADDR func_addr)
4836 {
4837 struct symtab_and_line prologue_sal;
4838 CORE_ADDR start_pc;
4839 CORE_ADDR end_pc;
4840 struct block *bl;
4841
4842 /* Get an initial range for the function. */
4843 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
4844 start_pc += gdbarch_deprecated_function_start_offset (gdbarch);
4845
4846 prologue_sal = find_pc_line (start_pc, 0);
4847 if (prologue_sal.line != 0)
4848 {
4849 /* For languages other than assembly, treat two consecutive line
4850 entries at the same address as a zero-instruction prologue.
4851 The GNU assembler emits separate line notes for each instruction
4852 in a multi-instruction macro, but compilers generally will not
4853 do this. */
4854 if (prologue_sal.symtab->language != language_asm)
4855 {
4856 struct linetable *linetable = LINETABLE (prologue_sal.symtab);
4857 int idx = 0;
4858
4859 /* Skip any earlier lines, and any end-of-sequence marker
4860 from a previous function. */
4861 while (linetable->item[idx].pc != prologue_sal.pc
4862 || linetable->item[idx].line == 0)
4863 idx++;
4864
4865 if (idx+1 < linetable->nitems
4866 && linetable->item[idx+1].line != 0
4867 && linetable->item[idx+1].pc == start_pc)
4868 return start_pc;
4869 }
4870
4871 /* If there is only one sal that covers the entire function,
4872 then it is probably a single line function, like
4873 "foo(){}". */
4874 if (prologue_sal.end >= end_pc)
4875 return 0;
4876
4877 while (prologue_sal.end < end_pc)
4878 {
4879 struct symtab_and_line sal;
4880
4881 sal = find_pc_line (prologue_sal.end, 0);
4882 if (sal.line == 0)
4883 break;
4884 /* Assume that a consecutive SAL for the same (or larger)
4885 line mark the prologue -> body transition. */
4886 if (sal.line >= prologue_sal.line)
4887 break;
4888 /* Likewise if we are in a different symtab altogether
4889 (e.g. within a file included via #include).  */
4890 if (sal.symtab != prologue_sal.symtab)
4891 break;
4892
4893 /* The line number is smaller. Check that it's from the
4894 same function, not something inlined. If it's inlined,
4895 then there is no point comparing the line numbers. */
4896 bl = block_for_pc (prologue_sal.end);
4897 while (bl)
4898 {
4899 if (block_inlined_p (bl))
4900 break;
4901 if (BLOCK_FUNCTION (bl))
4902 {
4903 bl = NULL;
4904 break;
4905 }
4906 bl = BLOCK_SUPERBLOCK (bl);
4907 }
4908 if (bl != NULL)
4909 break;
4910
4911 /* The case in which compiler's optimizer/scheduler has
4912 moved instructions into the prologue. We look ahead in
4913 the function looking for address ranges whose
4914 corresponding line number is less the first one that we
4915 found for the function. This is more conservative then
4916 refine_prologue_limit which scans a large number of SALs
4917 looking for any in the prologue. */
4918 prologue_sal = sal;
4919 }
4920 }
4921
4922 if (prologue_sal.end < end_pc)
4923 /* Return the end of this line, or zero if we could not find a
4924 line. */
4925 return prologue_sal.end;
4926 else
4927 /* Don't return END_PC, which is past the end of the function. */
4928 return prologue_sal.pc;
4929 }
4930 \f
4931 /* Track MAIN */
4932 static char *name_of_main;
4933 enum language language_of_main = language_unknown;
4934
4935 void
4936 set_main_name (const char *name)
4937 {
4938 if (name_of_main != NULL)
4939 {
4940 xfree (name_of_main);
4941 name_of_main = NULL;
4942 language_of_main = language_unknown;
4943 }
4944 if (name != NULL)
4945 {
4946 name_of_main = xstrdup (name);
4947 language_of_main = language_unknown;
4948 }
4949 }
4950
4951 /* Deduce the name of the main procedure, and set NAME_OF_MAIN
4952 accordingly. */
4953
4954 static void
4955 find_main_name (void)
4956 {
4957 const char *new_main_name;
4958
4959 /* Try to see if the main procedure is in Ada. */
4960 /* FIXME: brobecker/2005-03-07: Another way of doing this would
4961 be to add a new method in the language vector, and call this
4962 method for each language until one of them returns a non-empty
4963 name. This would allow us to remove this hard-coded call to
4964 an Ada function. It is not clear that this is a better approach
4965 at this point, because all methods need to be written in a way
4966 such that false positives never be returned. For instance, it is
4967 important that a method does not return a wrong name for the main
4968 procedure if the main procedure is actually written in a different
4969 language. It is easy to guaranty this with Ada, since we use a
4970 special symbol generated only when the main in Ada to find the name
4971 of the main procedure. It is difficult however to see how this can
4972 be guarantied for languages such as C, for instance. This suggests
4973 that order of call for these methods becomes important, which means
4974 a more complicated approach. */
4975 new_main_name = ada_main_name ();
4976 if (new_main_name != NULL)
4977 {
4978 set_main_name (new_main_name);
4979 return;
4980 }
4981
4982 new_main_name = go_main_name ();
4983 if (new_main_name != NULL)
4984 {
4985 set_main_name (new_main_name);
4986 return;
4987 }
4988
4989 new_main_name = pascal_main_name ();
4990 if (new_main_name != NULL)
4991 {
4992 set_main_name (new_main_name);
4993 return;
4994 }
4995
4996 /* The languages above didn't identify the name of the main procedure.
4997 Fallback to "main". */
4998 set_main_name ("main");
4999 }
5000
5001 char *
5002 main_name (void)
5003 {
5004 if (name_of_main == NULL)
5005 find_main_name ();
5006
5007 return name_of_main;
5008 }
5009
5010 /* Handle ``executable_changed'' events for the symtab module. */
5011
5012 static void
5013 symtab_observer_executable_changed (void)
5014 {
5015 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
5016 set_main_name (NULL);
5017 }
5018
5019 /* Return 1 if the supplied producer string matches the ARM RealView
5020 compiler (armcc). */
5021
5022 int
5023 producer_is_realview (const char *producer)
5024 {
5025 static const char *const arm_idents[] = {
5026 "ARM C Compiler, ADS",
5027 "Thumb C Compiler, ADS",
5028 "ARM C++ Compiler, ADS",
5029 "Thumb C++ Compiler, ADS",
5030 "ARM/Thumb C/C++ Compiler, RVCT",
5031 "ARM C/C++ Compiler, RVCT"
5032 };
5033 int i;
5034
5035 if (producer == NULL)
5036 return 0;
5037
5038 for (i = 0; i < ARRAY_SIZE (arm_idents); i++)
5039 if (strncmp (producer, arm_idents[i], strlen (arm_idents[i])) == 0)
5040 return 1;
5041
5042 return 0;
5043 }
5044
5045 \f
5046
5047 /* The next index to hand out in response to a registration request. */
5048
5049 static int next_aclass_value = LOC_FINAL_VALUE;
5050
5051 /* The maximum number of "aclass" registrations we support. This is
5052 constant for convenience. */
5053 #define MAX_SYMBOL_IMPLS (LOC_FINAL_VALUE + 10)
5054
5055 /* The objects representing the various "aclass" values. The elements
5056 from 0 up to LOC_FINAL_VALUE-1 represent themselves, and subsequent
5057 elements are those registered at gdb initialization time. */
5058
5059 static struct symbol_impl symbol_impl[MAX_SYMBOL_IMPLS];
5060
5061 /* The globally visible pointer. This is separate from 'symbol_impl'
5062 so that it can be const. */
5063
5064 const struct symbol_impl *symbol_impls = &symbol_impl[0];
5065
5066 /* Make sure we saved enough room in struct symbol. */
5067
5068 gdb_static_assert (MAX_SYMBOL_IMPLS <= (1 << SYMBOL_ACLASS_BITS));
5069
5070 /* Register a computed symbol type. ACLASS must be LOC_COMPUTED. OPS
5071 is the ops vector associated with this index. This returns the new
5072 index, which should be used as the aclass_index field for symbols
5073 of this type. */
5074
5075 int
5076 register_symbol_computed_impl (enum address_class aclass,
5077 const struct symbol_computed_ops *ops)
5078 {
5079 int result = next_aclass_value++;
5080
5081 gdb_assert (aclass == LOC_COMPUTED);
5082 gdb_assert (result < MAX_SYMBOL_IMPLS);
5083 symbol_impl[result].aclass = aclass;
5084 symbol_impl[result].ops_computed = ops;
5085
5086 /* Sanity check OPS. */
5087 gdb_assert (ops != NULL);
5088 gdb_assert (ops->tracepoint_var_ref != NULL);
5089 gdb_assert (ops->describe_location != NULL);
5090 gdb_assert (ops->read_needs_frame != NULL);
5091 gdb_assert (ops->read_variable != NULL);
5092
5093 return result;
5094 }
5095
5096 /* Register a function with frame base type. ACLASS must be LOC_BLOCK.
5097 OPS is the ops vector associated with this index. This returns the
5098 new index, which should be used as the aclass_index field for symbols
5099 of this type. */
5100
5101 int
5102 register_symbol_block_impl (enum address_class aclass,
5103 const struct symbol_block_ops *ops)
5104 {
5105 int result = next_aclass_value++;
5106
5107 gdb_assert (aclass == LOC_BLOCK);
5108 gdb_assert (result < MAX_SYMBOL_IMPLS);
5109 symbol_impl[result].aclass = aclass;
5110 symbol_impl[result].ops_block = ops;
5111
5112 /* Sanity check OPS. */
5113 gdb_assert (ops != NULL);
5114 gdb_assert (ops->find_frame_base_location != NULL);
5115
5116 return result;
5117 }
5118
5119 /* Register a register symbol type. ACLASS must be LOC_REGISTER or
5120 LOC_REGPARM_ADDR. OPS is the register ops vector associated with
5121 this index. This returns the new index, which should be used as
5122 the aclass_index field for symbols of this type. */
5123
5124 int
5125 register_symbol_register_impl (enum address_class aclass,
5126 const struct symbol_register_ops *ops)
5127 {
5128 int result = next_aclass_value++;
5129
5130 gdb_assert (aclass == LOC_REGISTER || aclass == LOC_REGPARM_ADDR);
5131 gdb_assert (result < MAX_SYMBOL_IMPLS);
5132 symbol_impl[result].aclass = aclass;
5133 symbol_impl[result].ops_register = ops;
5134
5135 return result;
5136 }
5137
5138 /* Initialize elements of 'symbol_impl' for the constants in enum
5139 address_class. */
5140
5141 static void
5142 initialize_ordinary_address_classes (void)
5143 {
5144 int i;
5145
5146 for (i = 0; i < LOC_FINAL_VALUE; ++i)
5147 symbol_impl[i].aclass = i;
5148 }
5149
5150 \f
5151
5152 /* Initialize the symbol SYM. */
5153
5154 void
5155 initialize_symbol (struct symbol *sym)
5156 {
5157 memset (sym, 0, sizeof (*sym));
5158 SYMBOL_SECTION (sym) = -1;
5159 }
5160
5161 /* Allocate and initialize a new 'struct symbol' on OBJFILE's
5162 obstack. */
5163
5164 struct symbol *
5165 allocate_symbol (struct objfile *objfile)
5166 {
5167 struct symbol *result;
5168
5169 result = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symbol);
5170 SYMBOL_SECTION (result) = -1;
5171
5172 return result;
5173 }
5174
5175 /* Allocate and initialize a new 'struct template_symbol' on OBJFILE's
5176 obstack. */
5177
5178 struct template_symbol *
5179 allocate_template_symbol (struct objfile *objfile)
5180 {
5181 struct template_symbol *result;
5182
5183 result = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct template_symbol);
5184 SYMBOL_SECTION (&result->base) = -1;
5185
5186 return result;
5187 }
5188
5189 \f
5190
5191 void
5192 _initialize_symtab (void)
5193 {
5194 initialize_ordinary_address_classes ();
5195
5196 add_info ("variables", variables_info, _("\
5197 All global and static variable names, or those matching REGEXP."));
5198 if (dbx_commands)
5199 add_com ("whereis", class_info, variables_info, _("\
5200 All global and static variable names, or those matching REGEXP."));
5201
5202 add_info ("functions", functions_info,
5203 _("All function names, or those matching REGEXP."));
5204
5205 /* FIXME: This command has at least the following problems:
5206 1. It prints builtin types (in a very strange and confusing fashion).
5207 2. It doesn't print right, e.g. with
5208 typedef struct foo *FOO
5209 type_print prints "FOO" when we want to make it (in this situation)
5210 print "struct foo *".
5211 I also think "ptype" or "whatis" is more likely to be useful (but if
5212 there is much disagreement "info types" can be fixed). */
5213 add_info ("types", types_info,
5214 _("All type names, or those matching REGEXP."));
5215
5216 add_info ("sources", sources_info,
5217 _("Source files in the program."));
5218
5219 add_com ("rbreak", class_breakpoint, rbreak_command,
5220 _("Set a breakpoint for all functions matching REGEXP."));
5221
5222 if (xdb_commands)
5223 {
5224 add_com ("lf", class_info, sources_info,
5225 _("Source files in the program"));
5226 add_com ("lg", class_info, variables_info, _("\
5227 All global and static variable names, or those matching REGEXP."));
5228 }
5229
5230 add_setshow_enum_cmd ("multiple-symbols", no_class,
5231 multiple_symbols_modes, &multiple_symbols_mode,
5232 _("\
5233 Set the debugger behavior when more than one symbol are possible matches\n\
5234 in an expression."), _("\
5235 Show how the debugger handles ambiguities in expressions."), _("\
5236 Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
5237 NULL, NULL, &setlist, &showlist);
5238
5239 add_setshow_boolean_cmd ("basenames-may-differ", class_obscure,
5240 &basenames_may_differ, _("\
5241 Set whether a source file may have multiple base names."), _("\
5242 Show whether a source file may have multiple base names."), _("\
5243 (A \"base name\" is the name of a file with the directory part removed.\n\
5244 Example: The base name of \"/home/user/hello.c\" is \"hello.c\".)\n\
5245 If set, GDB will canonicalize file names (e.g., expand symlinks)\n\
5246 before comparing them. Canonicalization is an expensive operation,\n\
5247 but it allows the same file be known by more than one base name.\n\
5248 If not set (the default), all source files are assumed to have just\n\
5249 one base name, and gdb will do file name comparisons more efficiently."),
5250 NULL, NULL,
5251 &setlist, &showlist);
5252
5253 add_setshow_boolean_cmd ("symtab-create", no_class, &symtab_create_debug,
5254 _("Set debugging of symbol table creation."),
5255 _("Show debugging of symbol table creation."), _("\
5256 When enabled, debugging messages are printed when building symbol tables."),
5257 NULL,
5258 NULL,
5259 &setdebuglist, &showdebuglist);
5260
5261 observer_attach_executable_changed (symtab_observer_executable_changed);
5262 }
This page took 0.211099 seconds and 4 git commands to generate.