2007-01-21 Jan Kratochvil <jan.kratochvil@redhat.com>
[deliverable/binutils-gdb.git] / gdb / symtab.c
1 /* Symbol table lookup for the GNU debugger, GDB.
2
3 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2007
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin Street, Fifth Floor,
22 Boston, MA 02110-1301, USA. */
23
24 #include "defs.h"
25 #include "symtab.h"
26 #include "gdbtypes.h"
27 #include "gdbcore.h"
28 #include "frame.h"
29 #include "target.h"
30 #include "value.h"
31 #include "symfile.h"
32 #include "objfiles.h"
33 #include "gdbcmd.h"
34 #include "call-cmds.h"
35 #include "gdb_regex.h"
36 #include "expression.h"
37 #include "language.h"
38 #include "demangle.h"
39 #include "inferior.h"
40 #include "linespec.h"
41 #include "source.h"
42 #include "filenames.h" /* for FILENAME_CMP */
43 #include "objc-lang.h"
44 #include "ada-lang.h"
45
46 #include "hashtab.h"
47
48 #include "gdb_obstack.h"
49 #include "block.h"
50 #include "dictionary.h"
51
52 #include <sys/types.h>
53 #include <fcntl.h>
54 #include "gdb_string.h"
55 #include "gdb_stat.h"
56 #include <ctype.h>
57 #include "cp-abi.h"
58 #include "observer.h"
59 #include "gdb_assert.h"
60
61 /* Prototypes for local functions */
62
63 static void completion_list_add_name (char *, char *, int, char *, char *);
64
65 static void rbreak_command (char *, int);
66
67 static void types_info (char *, int);
68
69 static void functions_info (char *, int);
70
71 static void variables_info (char *, int);
72
73 static void sources_info (char *, int);
74
75 static void output_source_filename (const char *, int *);
76
77 static int find_line_common (struct linetable *, int, int *);
78
79 /* This one is used by linespec.c */
80
81 char *operator_chars (char *p, char **end);
82
83 static struct symbol *lookup_symbol_aux (const char *name,
84 const char *linkage_name,
85 const struct block *block,
86 const domain_enum domain,
87 int *is_a_field_of_this,
88 struct symtab **symtab);
89
90 static
91 struct symbol *lookup_symbol_aux_local (const char *name,
92 const char *linkage_name,
93 const struct block *block,
94 const domain_enum domain,
95 struct symtab **symtab);
96
97 static
98 struct symbol *lookup_symbol_aux_symtabs (int block_index,
99 const char *name,
100 const char *linkage_name,
101 const domain_enum domain,
102 struct symtab **symtab);
103
104 static
105 struct symbol *lookup_symbol_aux_psymtabs (int block_index,
106 const char *name,
107 const char *linkage_name,
108 const domain_enum domain,
109 struct symtab **symtab);
110
111 #if 0
112 static
113 struct symbol *lookup_symbol_aux_minsyms (const char *name,
114 const char *linkage_name,
115 const domain_enum domain,
116 int *is_a_field_of_this,
117 struct symtab **symtab);
118 #endif
119
120 /* This flag is used in hppa-tdep.c, and set in hp-symtab-read.c.
121 Signals the presence of objects compiled by HP compilers. */
122 int deprecated_hp_som_som_object_present = 0;
123
124 static void fixup_section (struct general_symbol_info *, struct objfile *);
125
126 static int file_matches (char *, char **, int);
127
128 static void print_symbol_info (domain_enum,
129 struct symtab *, struct symbol *, int, char *);
130
131 static void print_msymbol_info (struct minimal_symbol *);
132
133 static void symtab_symbol_info (char *, domain_enum, int);
134
135 void _initialize_symtab (void);
136
137 /* */
138
139 /* The single non-language-specific builtin type */
140 struct type *builtin_type_error;
141
142 /* Block in which the most recently searched-for symbol was found.
143 Might be better to make this a parameter to lookup_symbol and
144 value_of_this. */
145
146 const struct block *block_found;
147
148 /* Check for a symtab of a specific name; first in symtabs, then in
149 psymtabs. *If* there is no '/' in the name, a match after a '/'
150 in the symtab filename will also work. */
151
152 struct symtab *
153 lookup_symtab (const char *name)
154 {
155 struct symtab *s;
156 struct partial_symtab *ps;
157 struct objfile *objfile;
158 char *real_path = NULL;
159 char *full_path = NULL;
160
161 /* Here we are interested in canonicalizing an absolute path, not
162 absolutizing a relative path. */
163 if (IS_ABSOLUTE_PATH (name))
164 {
165 full_path = xfullpath (name);
166 make_cleanup (xfree, full_path);
167 real_path = gdb_realpath (name);
168 make_cleanup (xfree, real_path);
169 }
170
171 got_symtab:
172
173 /* First, search for an exact match */
174
175 ALL_SYMTABS (objfile, s)
176 {
177 if (FILENAME_CMP (name, s->filename) == 0)
178 {
179 return s;
180 }
181
182 /* If the user gave us an absolute path, try to find the file in
183 this symtab and use its absolute path. */
184
185 if (full_path != NULL)
186 {
187 const char *fp = symtab_to_fullname (s);
188 if (fp != NULL && FILENAME_CMP (full_path, fp) == 0)
189 {
190 return s;
191 }
192 }
193
194 if (real_path != NULL)
195 {
196 char *fullname = symtab_to_fullname (s);
197 if (fullname != NULL)
198 {
199 char *rp = gdb_realpath (fullname);
200 make_cleanup (xfree, rp);
201 if (FILENAME_CMP (real_path, rp) == 0)
202 {
203 return s;
204 }
205 }
206 }
207 }
208
209 /* Now, search for a matching tail (only if name doesn't have any dirs) */
210
211 if (lbasename (name) == name)
212 ALL_SYMTABS (objfile, s)
213 {
214 if (FILENAME_CMP (lbasename (s->filename), name) == 0)
215 return s;
216 }
217
218 /* Same search rules as above apply here, but now we look thru the
219 psymtabs. */
220
221 ps = lookup_partial_symtab (name);
222 if (!ps)
223 return (NULL);
224
225 if (ps->readin)
226 error (_("Internal: readin %s pst for `%s' found when no symtab found."),
227 ps->filename, name);
228
229 s = PSYMTAB_TO_SYMTAB (ps);
230
231 if (s)
232 return s;
233
234 /* At this point, we have located the psymtab for this file, but
235 the conversion to a symtab has failed. This usually happens
236 when we are looking up an include file. In this case,
237 PSYMTAB_TO_SYMTAB doesn't return a symtab, even though one has
238 been created. So, we need to run through the symtabs again in
239 order to find the file.
240 XXX - This is a crock, and should be fixed inside of the the
241 symbol parsing routines. */
242 goto got_symtab;
243 }
244
245 /* Lookup the partial symbol table of a source file named NAME.
246 *If* there is no '/' in the name, a match after a '/'
247 in the psymtab filename will also work. */
248
249 struct partial_symtab *
250 lookup_partial_symtab (const char *name)
251 {
252 struct partial_symtab *pst;
253 struct objfile *objfile;
254 char *full_path = NULL;
255 char *real_path = NULL;
256
257 /* Here we are interested in canonicalizing an absolute path, not
258 absolutizing a relative path. */
259 if (IS_ABSOLUTE_PATH (name))
260 {
261 full_path = xfullpath (name);
262 make_cleanup (xfree, full_path);
263 real_path = gdb_realpath (name);
264 make_cleanup (xfree, real_path);
265 }
266
267 ALL_PSYMTABS (objfile, pst)
268 {
269 if (FILENAME_CMP (name, pst->filename) == 0)
270 {
271 return (pst);
272 }
273
274 /* If the user gave us an absolute path, try to find the file in
275 this symtab and use its absolute path. */
276 if (full_path != NULL)
277 {
278 psymtab_to_fullname (pst);
279 if (pst->fullname != NULL
280 && FILENAME_CMP (full_path, pst->fullname) == 0)
281 {
282 return pst;
283 }
284 }
285
286 if (real_path != NULL)
287 {
288 char *rp = NULL;
289 psymtab_to_fullname (pst);
290 if (pst->fullname != NULL)
291 {
292 rp = gdb_realpath (pst->fullname);
293 make_cleanup (xfree, rp);
294 }
295 if (rp != NULL && FILENAME_CMP (real_path, rp) == 0)
296 {
297 return pst;
298 }
299 }
300 }
301
302 /* Now, search for a matching tail (only if name doesn't have any dirs) */
303
304 if (lbasename (name) == name)
305 ALL_PSYMTABS (objfile, pst)
306 {
307 if (FILENAME_CMP (lbasename (pst->filename), name) == 0)
308 return (pst);
309 }
310
311 return (NULL);
312 }
313 \f
314 /* Mangle a GDB method stub type. This actually reassembles the pieces of the
315 full method name, which consist of the class name (from T), the unadorned
316 method name from METHOD_ID, and the signature for the specific overload,
317 specified by SIGNATURE_ID. Note that this function is g++ specific. */
318
319 char *
320 gdb_mangle_name (struct type *type, int method_id, int signature_id)
321 {
322 int mangled_name_len;
323 char *mangled_name;
324 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
325 struct fn_field *method = &f[signature_id];
326 char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
327 char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
328 char *newname = type_name_no_tag (type);
329
330 /* Does the form of physname indicate that it is the full mangled name
331 of a constructor (not just the args)? */
332 int is_full_physname_constructor;
333
334 int is_constructor;
335 int is_destructor = is_destructor_name (physname);
336 /* Need a new type prefix. */
337 char *const_prefix = method->is_const ? "C" : "";
338 char *volatile_prefix = method->is_volatile ? "V" : "";
339 char buf[20];
340 int len = (newname == NULL ? 0 : strlen (newname));
341
342 /* Nothing to do if physname already contains a fully mangled v3 abi name
343 or an operator name. */
344 if ((physname[0] == '_' && physname[1] == 'Z')
345 || is_operator_name (field_name))
346 return xstrdup (physname);
347
348 is_full_physname_constructor = is_constructor_name (physname);
349
350 is_constructor =
351 is_full_physname_constructor || (newname && strcmp (field_name, newname) == 0);
352
353 if (!is_destructor)
354 is_destructor = (strncmp (physname, "__dt", 4) == 0);
355
356 if (is_destructor || is_full_physname_constructor)
357 {
358 mangled_name = (char *) xmalloc (strlen (physname) + 1);
359 strcpy (mangled_name, physname);
360 return mangled_name;
361 }
362
363 if (len == 0)
364 {
365 sprintf (buf, "__%s%s", const_prefix, volatile_prefix);
366 }
367 else if (physname[0] == 't' || physname[0] == 'Q')
368 {
369 /* The physname for template and qualified methods already includes
370 the class name. */
371 sprintf (buf, "__%s%s", const_prefix, volatile_prefix);
372 newname = NULL;
373 len = 0;
374 }
375 else
376 {
377 sprintf (buf, "__%s%s%d", const_prefix, volatile_prefix, len);
378 }
379 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
380 + strlen (buf) + len + strlen (physname) + 1);
381
382 {
383 mangled_name = (char *) xmalloc (mangled_name_len);
384 if (is_constructor)
385 mangled_name[0] = '\0';
386 else
387 strcpy (mangled_name, field_name);
388 }
389 strcat (mangled_name, buf);
390 /* If the class doesn't have a name, i.e. newname NULL, then we just
391 mangle it using 0 for the length of the class. Thus it gets mangled
392 as something starting with `::' rather than `classname::'. */
393 if (newname != NULL)
394 strcat (mangled_name, newname);
395
396 strcat (mangled_name, physname);
397 return (mangled_name);
398 }
399
400 \f
401 /* Initialize the language dependent portion of a symbol
402 depending upon the language for the symbol. */
403 void
404 symbol_init_language_specific (struct general_symbol_info *gsymbol,
405 enum language language)
406 {
407 gsymbol->language = language;
408 if (gsymbol->language == language_cplus
409 || gsymbol->language == language_java
410 || gsymbol->language == language_objc)
411 {
412 gsymbol->language_specific.cplus_specific.demangled_name = NULL;
413 }
414 else
415 {
416 memset (&gsymbol->language_specific, 0,
417 sizeof (gsymbol->language_specific));
418 }
419 }
420
421 /* Functions to initialize a symbol's mangled name. */
422
423 /* Create the hash table used for demangled names. Each hash entry is
424 a pair of strings; one for the mangled name and one for the demangled
425 name. The entry is hashed via just the mangled name. */
426
427 static void
428 create_demangled_names_hash (struct objfile *objfile)
429 {
430 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
431 The hash table code will round this up to the next prime number.
432 Choosing a much larger table size wastes memory, and saves only about
433 1% in symbol reading. */
434
435 objfile->demangled_names_hash = htab_create_alloc
436 (256, htab_hash_string, (int (*) (const void *, const void *)) streq,
437 NULL, xcalloc, xfree);
438 }
439
440 /* Try to determine the demangled name for a symbol, based on the
441 language of that symbol. If the language is set to language_auto,
442 it will attempt to find any demangling algorithm that works and
443 then set the language appropriately. The returned name is allocated
444 by the demangler and should be xfree'd. */
445
446 static char *
447 symbol_find_demangled_name (struct general_symbol_info *gsymbol,
448 const char *mangled)
449 {
450 char *demangled = NULL;
451
452 if (gsymbol->language == language_unknown)
453 gsymbol->language = language_auto;
454
455 if (gsymbol->language == language_objc
456 || gsymbol->language == language_auto)
457 {
458 demangled =
459 objc_demangle (mangled, 0);
460 if (demangled != NULL)
461 {
462 gsymbol->language = language_objc;
463 return demangled;
464 }
465 }
466 if (gsymbol->language == language_cplus
467 || gsymbol->language == language_auto)
468 {
469 demangled =
470 cplus_demangle (mangled, DMGL_PARAMS | DMGL_ANSI);
471 if (demangled != NULL)
472 {
473 gsymbol->language = language_cplus;
474 return demangled;
475 }
476 }
477 if (gsymbol->language == language_java)
478 {
479 demangled =
480 cplus_demangle (mangled,
481 DMGL_PARAMS | DMGL_ANSI | DMGL_JAVA);
482 if (demangled != NULL)
483 {
484 gsymbol->language = language_java;
485 return demangled;
486 }
487 }
488 return NULL;
489 }
490
491 /* Set both the mangled and demangled (if any) names for GSYMBOL based
492 on LINKAGE_NAME and LEN. The hash table corresponding to OBJFILE
493 is used, and the memory comes from that objfile's objfile_obstack.
494 LINKAGE_NAME is copied, so the pointer can be discarded after
495 calling this function. */
496
497 /* We have to be careful when dealing with Java names: when we run
498 into a Java minimal symbol, we don't know it's a Java symbol, so it
499 gets demangled as a C++ name. This is unfortunate, but there's not
500 much we can do about it: but when demangling partial symbols and
501 regular symbols, we'd better not reuse the wrong demangled name.
502 (See PR gdb/1039.) We solve this by putting a distinctive prefix
503 on Java names when storing them in the hash table. */
504
505 /* FIXME: carlton/2003-03-13: This is an unfortunate situation. I
506 don't mind the Java prefix so much: different languages have
507 different demangling requirements, so it's only natural that we
508 need to keep language data around in our demangling cache. But
509 it's not good that the minimal symbol has the wrong demangled name.
510 Unfortunately, I can't think of any easy solution to that
511 problem. */
512
513 #define JAVA_PREFIX "##JAVA$$"
514 #define JAVA_PREFIX_LEN 8
515
516 void
517 symbol_set_names (struct general_symbol_info *gsymbol,
518 const char *linkage_name, int len, struct objfile *objfile)
519 {
520 char **slot;
521 /* A 0-terminated copy of the linkage name. */
522 const char *linkage_name_copy;
523 /* A copy of the linkage name that might have a special Java prefix
524 added to it, for use when looking names up in the hash table. */
525 const char *lookup_name;
526 /* The length of lookup_name. */
527 int lookup_len;
528
529 if (objfile->demangled_names_hash == NULL)
530 create_demangled_names_hash (objfile);
531
532 /* The stabs reader generally provides names that are not
533 NUL-terminated; most of the other readers don't do this, so we
534 can just use the given copy, unless we're in the Java case. */
535 if (gsymbol->language == language_java)
536 {
537 char *alloc_name;
538 lookup_len = len + JAVA_PREFIX_LEN;
539
540 alloc_name = alloca (lookup_len + 1);
541 memcpy (alloc_name, JAVA_PREFIX, JAVA_PREFIX_LEN);
542 memcpy (alloc_name + JAVA_PREFIX_LEN, linkage_name, len);
543 alloc_name[lookup_len] = '\0';
544
545 lookup_name = alloc_name;
546 linkage_name_copy = alloc_name + JAVA_PREFIX_LEN;
547 }
548 else if (linkage_name[len] != '\0')
549 {
550 char *alloc_name;
551 lookup_len = len;
552
553 alloc_name = alloca (lookup_len + 1);
554 memcpy (alloc_name, linkage_name, len);
555 alloc_name[lookup_len] = '\0';
556
557 lookup_name = alloc_name;
558 linkage_name_copy = alloc_name;
559 }
560 else
561 {
562 lookup_len = len;
563 lookup_name = linkage_name;
564 linkage_name_copy = linkage_name;
565 }
566
567 slot = (char **) htab_find_slot (objfile->demangled_names_hash,
568 lookup_name, INSERT);
569
570 /* If this name is not in the hash table, add it. */
571 if (*slot == NULL)
572 {
573 char *demangled_name = symbol_find_demangled_name (gsymbol,
574 linkage_name_copy);
575 int demangled_len = demangled_name ? strlen (demangled_name) : 0;
576
577 /* If there is a demangled name, place it right after the mangled name.
578 Otherwise, just place a second zero byte after the end of the mangled
579 name. */
580 *slot = obstack_alloc (&objfile->objfile_obstack,
581 lookup_len + demangled_len + 2);
582 memcpy (*slot, lookup_name, lookup_len + 1);
583 if (demangled_name != NULL)
584 {
585 memcpy (*slot + lookup_len + 1, demangled_name, demangled_len + 1);
586 xfree (demangled_name);
587 }
588 else
589 (*slot)[lookup_len + 1] = '\0';
590 }
591
592 gsymbol->name = *slot + lookup_len - len;
593 if ((*slot)[lookup_len + 1] != '\0')
594 gsymbol->language_specific.cplus_specific.demangled_name
595 = &(*slot)[lookup_len + 1];
596 else
597 gsymbol->language_specific.cplus_specific.demangled_name = NULL;
598 }
599
600 /* Initialize the demangled name of GSYMBOL if possible. Any required space
601 to store the name is obtained from the specified obstack. The function
602 symbol_set_names, above, should be used instead where possible for more
603 efficient memory usage. */
604
605 void
606 symbol_init_demangled_name (struct general_symbol_info *gsymbol,
607 struct obstack *obstack)
608 {
609 char *mangled = gsymbol->name;
610 char *demangled = NULL;
611
612 demangled = symbol_find_demangled_name (gsymbol, mangled);
613 if (gsymbol->language == language_cplus
614 || gsymbol->language == language_java
615 || gsymbol->language == language_objc)
616 {
617 if (demangled)
618 {
619 gsymbol->language_specific.cplus_specific.demangled_name
620 = obsavestring (demangled, strlen (demangled), obstack);
621 xfree (demangled);
622 }
623 else
624 gsymbol->language_specific.cplus_specific.demangled_name = NULL;
625 }
626 else
627 {
628 /* Unknown language; just clean up quietly. */
629 if (demangled)
630 xfree (demangled);
631 }
632 }
633
634 /* Return the source code name of a symbol. In languages where
635 demangling is necessary, this is the demangled name. */
636
637 char *
638 symbol_natural_name (const struct general_symbol_info *gsymbol)
639 {
640 switch (gsymbol->language)
641 {
642 case language_cplus:
643 case language_java:
644 case language_objc:
645 if (gsymbol->language_specific.cplus_specific.demangled_name != NULL)
646 return gsymbol->language_specific.cplus_specific.demangled_name;
647 break;
648 case language_ada:
649 if (gsymbol->language_specific.cplus_specific.demangled_name != NULL)
650 return gsymbol->language_specific.cplus_specific.demangled_name;
651 else
652 return ada_decode_symbol (gsymbol);
653 break;
654 default:
655 break;
656 }
657 return gsymbol->name;
658 }
659
660 /* Return the demangled name for a symbol based on the language for
661 that symbol. If no demangled name exists, return NULL. */
662 char *
663 symbol_demangled_name (struct general_symbol_info *gsymbol)
664 {
665 switch (gsymbol->language)
666 {
667 case language_cplus:
668 case language_java:
669 case language_objc:
670 if (gsymbol->language_specific.cplus_specific.demangled_name != NULL)
671 return gsymbol->language_specific.cplus_specific.demangled_name;
672 break;
673 case language_ada:
674 if (gsymbol->language_specific.cplus_specific.demangled_name != NULL)
675 return gsymbol->language_specific.cplus_specific.demangled_name;
676 else
677 return ada_decode_symbol (gsymbol);
678 break;
679 default:
680 break;
681 }
682 return NULL;
683 }
684
685 /* Return the search name of a symbol---generally the demangled or
686 linkage name of the symbol, depending on how it will be searched for.
687 If there is no distinct demangled name, then returns the same value
688 (same pointer) as SYMBOL_LINKAGE_NAME. */
689 char *
690 symbol_search_name (const struct general_symbol_info *gsymbol)
691 {
692 if (gsymbol->language == language_ada)
693 return gsymbol->name;
694 else
695 return symbol_natural_name (gsymbol);
696 }
697
698 /* Initialize the structure fields to zero values. */
699 void
700 init_sal (struct symtab_and_line *sal)
701 {
702 sal->symtab = 0;
703 sal->section = 0;
704 sal->line = 0;
705 sal->pc = 0;
706 sal->end = 0;
707 }
708 \f
709
710 /* Return 1 if the two sections are the same, or if they could
711 plausibly be copies of each other, one in an original object
712 file and another in a separated debug file. */
713
714 int
715 matching_bfd_sections (asection *first, asection *second)
716 {
717 struct objfile *obj;
718
719 /* If they're the same section, then they match. */
720 if (first == second)
721 return 1;
722
723 /* If either is NULL, give up. */
724 if (first == NULL || second == NULL)
725 return 0;
726
727 /* This doesn't apply to absolute symbols. */
728 if (first->owner == NULL || second->owner == NULL)
729 return 0;
730
731 /* If they're in the same object file, they must be different sections. */
732 if (first->owner == second->owner)
733 return 0;
734
735 /* Check whether the two sections are potentially corresponding. They must
736 have the same size, address, and name. We can't compare section indexes,
737 which would be more reliable, because some sections may have been
738 stripped. */
739 if (bfd_get_section_size (first) != bfd_get_section_size (second))
740 return 0;
741
742 /* In-memory addresses may start at a different offset, relativize them. */
743 if (bfd_get_section_vma (first->owner, first)
744 - bfd_get_start_address (first->owner)
745 != bfd_get_section_vma (second->owner, second)
746 - bfd_get_start_address (second->owner))
747 return 0;
748
749 if (bfd_get_section_name (first->owner, first) == NULL
750 || bfd_get_section_name (second->owner, second) == NULL
751 || strcmp (bfd_get_section_name (first->owner, first),
752 bfd_get_section_name (second->owner, second)) != 0)
753 return 0;
754
755 /* Otherwise check that they are in corresponding objfiles. */
756
757 ALL_OBJFILES (obj)
758 if (obj->obfd == first->owner)
759 break;
760 gdb_assert (obj != NULL);
761
762 if (obj->separate_debug_objfile != NULL
763 && obj->separate_debug_objfile->obfd == second->owner)
764 return 1;
765 if (obj->separate_debug_objfile_backlink != NULL
766 && obj->separate_debug_objfile_backlink->obfd == second->owner)
767 return 1;
768
769 return 0;
770 }
771
772 /* Find which partial symtab contains PC and SECTION. Return 0 if
773 none. We return the psymtab that contains a symbol whose address
774 exactly matches PC, or, if we cannot find an exact match, the
775 psymtab that contains a symbol whose address is closest to PC. */
776 struct partial_symtab *
777 find_pc_sect_psymtab (CORE_ADDR pc, asection *section)
778 {
779 struct partial_symtab *pst;
780 struct objfile *objfile;
781 struct minimal_symbol *msymbol;
782
783 /* If we know that this is not a text address, return failure. This is
784 necessary because we loop based on texthigh and textlow, which do
785 not include the data ranges. */
786 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
787 if (msymbol
788 && (msymbol->type == mst_data
789 || msymbol->type == mst_bss
790 || msymbol->type == mst_abs
791 || msymbol->type == mst_file_data
792 || msymbol->type == mst_file_bss))
793 return NULL;
794
795 ALL_PSYMTABS (objfile, pst)
796 {
797 if (pc >= pst->textlow && pc < pst->texthigh)
798 {
799 struct partial_symtab *tpst;
800 struct partial_symtab *best_pst = pst;
801 CORE_ADDR best_addr = pst->textlow;
802
803 /* An objfile that has its functions reordered might have
804 many partial symbol tables containing the PC, but
805 we want the partial symbol table that contains the
806 function containing the PC. */
807 if (!(objfile->flags & OBJF_REORDERED) &&
808 section == 0) /* can't validate section this way */
809 return (pst);
810
811 if (msymbol == NULL)
812 return (pst);
813
814 /* The code range of partial symtabs sometimes overlap, so, in
815 the loop below, we need to check all partial symtabs and
816 find the one that fits better for the given PC address. We
817 select the partial symtab that contains a symbol whose
818 address is closest to the PC address. By closest we mean
819 that find_pc_sect_symbol returns the symbol with address
820 that is closest and still less than the given PC. */
821 for (tpst = pst; tpst != NULL; tpst = tpst->next)
822 {
823 if (pc >= tpst->textlow && pc < tpst->texthigh)
824 {
825 struct partial_symbol *p;
826 CORE_ADDR this_addr;
827
828 /* NOTE: This assumes that every psymbol has a
829 corresponding msymbol, which is not necessarily
830 true; the debug info might be much richer than the
831 object's symbol table. */
832 p = find_pc_sect_psymbol (tpst, pc, section);
833 if (p != NULL
834 && SYMBOL_VALUE_ADDRESS (p)
835 == SYMBOL_VALUE_ADDRESS (msymbol))
836 return (tpst);
837
838 /* Also accept the textlow value of a psymtab as a
839 "symbol", to provide some support for partial
840 symbol tables with line information but no debug
841 symbols (e.g. those produced by an assembler). */
842 if (p != NULL)
843 this_addr = SYMBOL_VALUE_ADDRESS (p);
844 else
845 this_addr = tpst->textlow;
846
847 /* Check whether it is closer than our current
848 BEST_ADDR. Since this symbol address is
849 necessarily lower or equal to PC, the symbol closer
850 to PC is the symbol which address is the highest.
851 This way we return the psymtab which contains such
852 best match symbol. This can help in cases where the
853 symbol information/debuginfo is not complete, like
854 for instance on IRIX6 with gcc, where no debug info
855 is emitted for statics. (See also the nodebug.exp
856 testcase.) */
857 if (this_addr > best_addr)
858 {
859 best_addr = this_addr;
860 best_pst = tpst;
861 }
862 }
863 }
864 return (best_pst);
865 }
866 }
867 return (NULL);
868 }
869
870 /* Find which partial symtab contains PC. Return 0 if none.
871 Backward compatibility, no section */
872
873 struct partial_symtab *
874 find_pc_psymtab (CORE_ADDR pc)
875 {
876 return find_pc_sect_psymtab (pc, find_pc_mapped_section (pc));
877 }
878
879 /* Find which partial symbol within a psymtab matches PC and SECTION.
880 Return 0 if none. Check all psymtabs if PSYMTAB is 0. */
881
882 struct partial_symbol *
883 find_pc_sect_psymbol (struct partial_symtab *psymtab, CORE_ADDR pc,
884 asection *section)
885 {
886 struct partial_symbol *best = NULL, *p, **pp;
887 CORE_ADDR best_pc;
888
889 if (!psymtab)
890 psymtab = find_pc_sect_psymtab (pc, section);
891 if (!psymtab)
892 return 0;
893
894 /* Cope with programs that start at address 0 */
895 best_pc = (psymtab->textlow != 0) ? psymtab->textlow - 1 : 0;
896
897 /* Search the global symbols as well as the static symbols, so that
898 find_pc_partial_function doesn't use a minimal symbol and thus
899 cache a bad endaddr. */
900 for (pp = psymtab->objfile->global_psymbols.list + psymtab->globals_offset;
901 (pp - (psymtab->objfile->global_psymbols.list + psymtab->globals_offset)
902 < psymtab->n_global_syms);
903 pp++)
904 {
905 p = *pp;
906 if (SYMBOL_DOMAIN (p) == VAR_DOMAIN
907 && SYMBOL_CLASS (p) == LOC_BLOCK
908 && pc >= SYMBOL_VALUE_ADDRESS (p)
909 && (SYMBOL_VALUE_ADDRESS (p) > best_pc
910 || (psymtab->textlow == 0
911 && best_pc == 0 && SYMBOL_VALUE_ADDRESS (p) == 0)))
912 {
913 if (section) /* match on a specific section */
914 {
915 fixup_psymbol_section (p, psymtab->objfile);
916 if (!matching_bfd_sections (SYMBOL_BFD_SECTION (p), section))
917 continue;
918 }
919 best_pc = SYMBOL_VALUE_ADDRESS (p);
920 best = p;
921 }
922 }
923
924 for (pp = psymtab->objfile->static_psymbols.list + psymtab->statics_offset;
925 (pp - (psymtab->objfile->static_psymbols.list + psymtab->statics_offset)
926 < psymtab->n_static_syms);
927 pp++)
928 {
929 p = *pp;
930 if (SYMBOL_DOMAIN (p) == VAR_DOMAIN
931 && SYMBOL_CLASS (p) == LOC_BLOCK
932 && pc >= SYMBOL_VALUE_ADDRESS (p)
933 && (SYMBOL_VALUE_ADDRESS (p) > best_pc
934 || (psymtab->textlow == 0
935 && best_pc == 0 && SYMBOL_VALUE_ADDRESS (p) == 0)))
936 {
937 if (section) /* match on a specific section */
938 {
939 fixup_psymbol_section (p, psymtab->objfile);
940 if (!matching_bfd_sections (SYMBOL_BFD_SECTION (p), section))
941 continue;
942 }
943 best_pc = SYMBOL_VALUE_ADDRESS (p);
944 best = p;
945 }
946 }
947
948 return best;
949 }
950
951 /* Find which partial symbol within a psymtab matches PC. Return 0 if none.
952 Check all psymtabs if PSYMTAB is 0. Backwards compatibility, no section. */
953
954 struct partial_symbol *
955 find_pc_psymbol (struct partial_symtab *psymtab, CORE_ADDR pc)
956 {
957 return find_pc_sect_psymbol (psymtab, pc, find_pc_mapped_section (pc));
958 }
959 \f
960 /* Debug symbols usually don't have section information. We need to dig that
961 out of the minimal symbols and stash that in the debug symbol. */
962
963 static void
964 fixup_section (struct general_symbol_info *ginfo, struct objfile *objfile)
965 {
966 struct minimal_symbol *msym;
967 msym = lookup_minimal_symbol (ginfo->name, NULL, objfile);
968
969 if (msym)
970 {
971 ginfo->bfd_section = SYMBOL_BFD_SECTION (msym);
972 ginfo->section = SYMBOL_SECTION (msym);
973 }
974 else if (objfile)
975 {
976 /* Static, function-local variables do appear in the linker
977 (minimal) symbols, but are frequently given names that won't
978 be found via lookup_minimal_symbol(). E.g., it has been
979 observed in frv-uclinux (ELF) executables that a static,
980 function-local variable named "foo" might appear in the
981 linker symbols as "foo.6" or "foo.3". Thus, there is no
982 point in attempting to extend the lookup-by-name mechanism to
983 handle this case due to the fact that there can be multiple
984 names.
985
986 So, instead, search the section table when lookup by name has
987 failed. The ``addr'' and ``endaddr'' fields may have already
988 been relocated. If so, the relocation offset (i.e. the
989 ANOFFSET value) needs to be subtracted from these values when
990 performing the comparison. We unconditionally subtract it,
991 because, when no relocation has been performed, the ANOFFSET
992 value will simply be zero.
993
994 The address of the symbol whose section we're fixing up HAS
995 NOT BEEN adjusted (relocated) yet. It can't have been since
996 the section isn't yet known and knowing the section is
997 necessary in order to add the correct relocation value. In
998 other words, we wouldn't even be in this function (attempting
999 to compute the section) if it were already known.
1000
1001 Note that it is possible to search the minimal symbols
1002 (subtracting the relocation value if necessary) to find the
1003 matching minimal symbol, but this is overkill and much less
1004 efficient. It is not necessary to find the matching minimal
1005 symbol, only its section.
1006
1007 Note that this technique (of doing a section table search)
1008 can fail when unrelocated section addresses overlap. For
1009 this reason, we still attempt a lookup by name prior to doing
1010 a search of the section table. */
1011
1012 CORE_ADDR addr;
1013 struct obj_section *s;
1014
1015 addr = ginfo->value.address;
1016
1017 ALL_OBJFILE_OSECTIONS (objfile, s)
1018 {
1019 int idx = s->the_bfd_section->index;
1020 CORE_ADDR offset = ANOFFSET (objfile->section_offsets, idx);
1021
1022 if (s->addr - offset <= addr && addr < s->endaddr - offset)
1023 {
1024 ginfo->bfd_section = s->the_bfd_section;
1025 ginfo->section = idx;
1026 return;
1027 }
1028 }
1029 }
1030 }
1031
1032 struct symbol *
1033 fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
1034 {
1035 if (!sym)
1036 return NULL;
1037
1038 if (SYMBOL_BFD_SECTION (sym))
1039 return sym;
1040
1041 fixup_section (&sym->ginfo, objfile);
1042
1043 return sym;
1044 }
1045
1046 struct partial_symbol *
1047 fixup_psymbol_section (struct partial_symbol *psym, struct objfile *objfile)
1048 {
1049 if (!psym)
1050 return NULL;
1051
1052 if (SYMBOL_BFD_SECTION (psym))
1053 return psym;
1054
1055 fixup_section (&psym->ginfo, objfile);
1056
1057 return psym;
1058 }
1059
1060 /* Find the definition for a specified symbol name NAME
1061 in domain DOMAIN, visible from lexical block BLOCK.
1062 Returns the struct symbol pointer, or zero if no symbol is found.
1063 If SYMTAB is non-NULL, store the symbol table in which the
1064 symbol was found there, or NULL if not found.
1065 C++: if IS_A_FIELD_OF_THIS is nonzero on entry, check to see if
1066 NAME is a field of the current implied argument `this'. If so set
1067 *IS_A_FIELD_OF_THIS to 1, otherwise set it to zero.
1068 BLOCK_FOUND is set to the block in which NAME is found (in the case of
1069 a field of `this', value_of_this sets BLOCK_FOUND to the proper value.) */
1070
1071 /* This function has a bunch of loops in it and it would seem to be
1072 attractive to put in some QUIT's (though I'm not really sure
1073 whether it can run long enough to be really important). But there
1074 are a few calls for which it would appear to be bad news to quit
1075 out of here: find_proc_desc in alpha-tdep.c and mips-tdep.c. (Note
1076 that there is C++ code below which can error(), but that probably
1077 doesn't affect these calls since they are looking for a known
1078 variable and thus can probably assume it will never hit the C++
1079 code). */
1080
1081 struct symbol *
1082 lookup_symbol (const char *name, const struct block *block,
1083 const domain_enum domain, int *is_a_field_of_this,
1084 struct symtab **symtab)
1085 {
1086 char *demangled_name = NULL;
1087 const char *modified_name = NULL;
1088 const char *mangled_name = NULL;
1089 int needtofreename = 0;
1090 struct symbol *returnval;
1091
1092 modified_name = name;
1093
1094 /* If we are using C++ or Java, demangle the name before doing a lookup, so
1095 we can always binary search. */
1096 if (current_language->la_language == language_cplus)
1097 {
1098 demangled_name = cplus_demangle (name, DMGL_ANSI | DMGL_PARAMS);
1099 if (demangled_name)
1100 {
1101 mangled_name = name;
1102 modified_name = demangled_name;
1103 needtofreename = 1;
1104 }
1105 }
1106 else if (current_language->la_language == language_java)
1107 {
1108 demangled_name = cplus_demangle (name,
1109 DMGL_ANSI | DMGL_PARAMS | DMGL_JAVA);
1110 if (demangled_name)
1111 {
1112 mangled_name = name;
1113 modified_name = demangled_name;
1114 needtofreename = 1;
1115 }
1116 }
1117
1118 if (case_sensitivity == case_sensitive_off)
1119 {
1120 char *copy;
1121 int len, i;
1122
1123 len = strlen (name);
1124 copy = (char *) alloca (len + 1);
1125 for (i= 0; i < len; i++)
1126 copy[i] = tolower (name[i]);
1127 copy[len] = 0;
1128 modified_name = copy;
1129 }
1130
1131 returnval = lookup_symbol_aux (modified_name, mangled_name, block,
1132 domain, is_a_field_of_this, symtab);
1133 if (needtofreename)
1134 xfree (demangled_name);
1135
1136 /* Override the returned symtab with the symbol's specific one. */
1137 if (returnval != NULL && symtab != NULL)
1138 *symtab = SYMBOL_SYMTAB (returnval);
1139
1140 return returnval;
1141 }
1142
1143 /* Behave like lookup_symbol_aux except that NAME is the natural name
1144 of the symbol that we're looking for and, if LINKAGE_NAME is
1145 non-NULL, ensure that the symbol's linkage name matches as
1146 well. */
1147
1148 static struct symbol *
1149 lookup_symbol_aux (const char *name, const char *linkage_name,
1150 const struct block *block, const domain_enum domain,
1151 int *is_a_field_of_this, struct symtab **symtab)
1152 {
1153 struct symbol *sym;
1154
1155 /* Make sure we do something sensible with is_a_field_of_this, since
1156 the callers that set this parameter to some non-null value will
1157 certainly use it later and expect it to be either 0 or 1.
1158 If we don't set it, the contents of is_a_field_of_this are
1159 undefined. */
1160 if (is_a_field_of_this != NULL)
1161 *is_a_field_of_this = 0;
1162
1163 /* Search specified block and its superiors. Don't search
1164 STATIC_BLOCK or GLOBAL_BLOCK. */
1165
1166 sym = lookup_symbol_aux_local (name, linkage_name, block, domain,
1167 symtab);
1168 if (sym != NULL)
1169 return sym;
1170
1171 /* If requested to do so by the caller and if appropriate for the
1172 current language, check to see if NAME is a field of `this'. */
1173
1174 if (current_language->la_value_of_this != NULL
1175 && is_a_field_of_this != NULL)
1176 {
1177 struct value *v = current_language->la_value_of_this (0);
1178
1179 if (v && check_field (v, name))
1180 {
1181 *is_a_field_of_this = 1;
1182 if (symtab != NULL)
1183 *symtab = NULL;
1184 return NULL;
1185 }
1186 }
1187
1188 /* Now do whatever is appropriate for the current language to look
1189 up static and global variables. */
1190
1191 sym = current_language->la_lookup_symbol_nonlocal (name, linkage_name,
1192 block, domain,
1193 symtab);
1194 if (sym != NULL)
1195 return sym;
1196
1197 /* Now search all static file-level symbols. Not strictly correct,
1198 but more useful than an error. Do the symtabs first, then check
1199 the psymtabs. If a psymtab indicates the existence of the
1200 desired name as a file-level static, then do psymtab-to-symtab
1201 conversion on the fly and return the found symbol. */
1202
1203 sym = lookup_symbol_aux_symtabs (STATIC_BLOCK, name, linkage_name,
1204 domain, symtab);
1205 if (sym != NULL)
1206 return sym;
1207
1208 sym = lookup_symbol_aux_psymtabs (STATIC_BLOCK, name, linkage_name,
1209 domain, symtab);
1210 if (sym != NULL)
1211 return sym;
1212
1213 if (symtab != NULL)
1214 *symtab = NULL;
1215 return NULL;
1216 }
1217
1218 /* Check to see if the symbol is defined in BLOCK or its superiors.
1219 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
1220
1221 static struct symbol *
1222 lookup_symbol_aux_local (const char *name, const char *linkage_name,
1223 const struct block *block,
1224 const domain_enum domain,
1225 struct symtab **symtab)
1226 {
1227 struct symbol *sym;
1228 const struct block *static_block = block_static_block (block);
1229
1230 /* Check if either no block is specified or it's a global block. */
1231
1232 if (static_block == NULL)
1233 return NULL;
1234
1235 while (block != static_block)
1236 {
1237 sym = lookup_symbol_aux_block (name, linkage_name, block, domain,
1238 symtab);
1239 if (sym != NULL)
1240 return sym;
1241 block = BLOCK_SUPERBLOCK (block);
1242 }
1243
1244 /* We've reached the static block without finding a result. */
1245
1246 return NULL;
1247 }
1248
1249 /* Look up a symbol in a block; if found, locate its symtab, fixup the
1250 symbol, and set block_found appropriately. */
1251
1252 struct symbol *
1253 lookup_symbol_aux_block (const char *name, const char *linkage_name,
1254 const struct block *block,
1255 const domain_enum domain,
1256 struct symtab **symtab)
1257 {
1258 struct symbol *sym;
1259 struct objfile *objfile = NULL;
1260 struct blockvector *bv;
1261 struct block *b;
1262 struct symtab *s = NULL;
1263
1264 sym = lookup_block_symbol (block, name, linkage_name, domain);
1265 if (sym)
1266 {
1267 block_found = block;
1268 if (symtab != NULL)
1269 {
1270 /* Search the list of symtabs for one which contains the
1271 address of the start of this block. */
1272 ALL_SYMTABS (objfile, s)
1273 {
1274 bv = BLOCKVECTOR (s);
1275 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1276 if (BLOCK_START (b) <= BLOCK_START (block)
1277 && BLOCK_END (b) > BLOCK_START (block))
1278 goto found;
1279 }
1280 found:
1281 *symtab = s;
1282 }
1283
1284 return fixup_symbol_section (sym, objfile);
1285 }
1286
1287 return NULL;
1288 }
1289
1290 /* Check to see if the symbol is defined in one of the symtabs.
1291 BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
1292 depending on whether or not we want to search global symbols or
1293 static symbols. */
1294
1295 static struct symbol *
1296 lookup_symbol_aux_symtabs (int block_index,
1297 const char *name, const char *linkage_name,
1298 const domain_enum domain,
1299 struct symtab **symtab)
1300 {
1301 struct symbol *sym;
1302 struct objfile *objfile;
1303 struct blockvector *bv;
1304 const struct block *block;
1305 struct symtab *s;
1306
1307 ALL_SYMTABS (objfile, s)
1308 {
1309 bv = BLOCKVECTOR (s);
1310 block = BLOCKVECTOR_BLOCK (bv, block_index);
1311 sym = lookup_block_symbol (block, name, linkage_name, domain);
1312 if (sym)
1313 {
1314 block_found = block;
1315 if (symtab != NULL)
1316 *symtab = s;
1317 return fixup_symbol_section (sym, objfile);
1318 }
1319 }
1320
1321 return NULL;
1322 }
1323
1324 /* Check to see if the symbol is defined in one of the partial
1325 symtabs. BLOCK_INDEX should be either GLOBAL_BLOCK or
1326 STATIC_BLOCK, depending on whether or not we want to search global
1327 symbols or static symbols. */
1328
1329 static struct symbol *
1330 lookup_symbol_aux_psymtabs (int block_index, const char *name,
1331 const char *linkage_name,
1332 const domain_enum domain,
1333 struct symtab **symtab)
1334 {
1335 struct symbol *sym;
1336 struct objfile *objfile;
1337 struct blockvector *bv;
1338 const struct block *block;
1339 struct partial_symtab *ps;
1340 struct symtab *s;
1341 const int psymtab_index = (block_index == GLOBAL_BLOCK ? 1 : 0);
1342
1343 ALL_PSYMTABS (objfile, ps)
1344 {
1345 if (!ps->readin
1346 && lookup_partial_symbol (ps, name, linkage_name,
1347 psymtab_index, domain))
1348 {
1349 s = PSYMTAB_TO_SYMTAB (ps);
1350 bv = BLOCKVECTOR (s);
1351 block = BLOCKVECTOR_BLOCK (bv, block_index);
1352 sym = lookup_block_symbol (block, name, linkage_name, domain);
1353 if (!sym)
1354 {
1355 /* This shouldn't be necessary, but as a last resort try
1356 looking in the statics even though the psymtab claimed
1357 the symbol was global, or vice-versa. It's possible
1358 that the psymtab gets it wrong in some cases. */
1359
1360 /* FIXME: carlton/2002-09-30: Should we really do that?
1361 If that happens, isn't it likely to be a GDB error, in
1362 which case we should fix the GDB error rather than
1363 silently dealing with it here? So I'd vote for
1364 removing the check for the symbol in the other
1365 block. */
1366 block = BLOCKVECTOR_BLOCK (bv,
1367 block_index == GLOBAL_BLOCK ?
1368 STATIC_BLOCK : GLOBAL_BLOCK);
1369 sym = lookup_block_symbol (block, name, linkage_name, domain);
1370 if (!sym)
1371 error (_("Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n%s may be an inlined function, or may be a template function\n(if a template, try specifying an instantiation: %s<type>)."),
1372 block_index == GLOBAL_BLOCK ? "global" : "static",
1373 name, ps->filename, name, name);
1374 }
1375 if (symtab != NULL)
1376 *symtab = s;
1377 return fixup_symbol_section (sym, objfile);
1378 }
1379 }
1380
1381 return NULL;
1382 }
1383
1384 #if 0
1385 /* Check for the possibility of the symbol being a function or a
1386 mangled variable that is stored in one of the minimal symbol
1387 tables. Eventually, all global symbols might be resolved in this
1388 way. */
1389
1390 /* NOTE: carlton/2002-12-05: At one point, this function was part of
1391 lookup_symbol_aux, and what are now 'return' statements within
1392 lookup_symbol_aux_minsyms returned from lookup_symbol_aux, even if
1393 sym was NULL. As far as I can tell, this was basically accidental;
1394 it didn't happen every time that msymbol was non-NULL, but only if
1395 some additional conditions held as well, and it caused problems
1396 with HP-generated symbol tables. */
1397
1398 /* NOTE: carlton/2003-05-14: This function was once used as part of
1399 lookup_symbol. It is currently unnecessary for correctness
1400 reasons, however, and using it doesn't seem to be any faster than
1401 using lookup_symbol_aux_psymtabs, so I'm commenting it out. */
1402
1403 static struct symbol *
1404 lookup_symbol_aux_minsyms (const char *name,
1405 const char *linkage_name,
1406 const domain_enum domain,
1407 int *is_a_field_of_this,
1408 struct symtab **symtab)
1409 {
1410 struct symbol *sym;
1411 struct blockvector *bv;
1412 const struct block *block;
1413 struct minimal_symbol *msymbol;
1414 struct symtab *s;
1415
1416 if (domain == VAR_DOMAIN)
1417 {
1418 msymbol = lookup_minimal_symbol (name, NULL, NULL);
1419
1420 if (msymbol != NULL)
1421 {
1422 /* OK, we found a minimal symbol in spite of not finding any
1423 symbol. There are various possible explanations for
1424 this. One possibility is the symbol exists in code not
1425 compiled -g. Another possibility is that the 'psymtab'
1426 isn't doing its job. A third possibility, related to #2,
1427 is that we were confused by name-mangling. For instance,
1428 maybe the psymtab isn't doing its job because it only
1429 know about demangled names, but we were given a mangled
1430 name... */
1431
1432 /* We first use the address in the msymbol to try to locate
1433 the appropriate symtab. Note that find_pc_sect_symtab()
1434 has a side-effect of doing psymtab-to-symtab expansion,
1435 for the found symtab. */
1436 s = find_pc_sect_symtab (SYMBOL_VALUE_ADDRESS (msymbol),
1437 SYMBOL_BFD_SECTION (msymbol));
1438 if (s != NULL)
1439 {
1440 /* This is a function which has a symtab for its address. */
1441 bv = BLOCKVECTOR (s);
1442 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1443
1444 /* This call used to pass `SYMBOL_LINKAGE_NAME (msymbol)' as the
1445 `name' argument to lookup_block_symbol. But the name
1446 of a minimal symbol is always mangled, so that seems
1447 to be clearly the wrong thing to pass as the
1448 unmangled name. */
1449 sym =
1450 lookup_block_symbol (block, name, linkage_name, domain);
1451 /* We kept static functions in minimal symbol table as well as
1452 in static scope. We want to find them in the symbol table. */
1453 if (!sym)
1454 {
1455 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
1456 sym = lookup_block_symbol (block, name,
1457 linkage_name, domain);
1458 }
1459
1460 /* NOTE: carlton/2002-12-04: The following comment was
1461 taken from a time when two versions of this function
1462 were part of the body of lookup_symbol_aux: this
1463 comment was taken from the version of the function
1464 that was #ifdef HPUXHPPA, and the comment was right
1465 before the 'return NULL' part of lookup_symbol_aux.
1466 (Hence the "Fall through and return 0" comment.)
1467 Elena did some digging into the situation for
1468 Fortran, and she reports:
1469
1470 "I asked around (thanks to Jeff Knaggs), and I think
1471 the story for Fortran goes like this:
1472
1473 "Apparently, in older Fortrans, '_' was not part of
1474 the user namespace. g77 attached a final '_' to
1475 procedure names as the exported symbols for linkage
1476 (foo_) , but the symbols went in the debug info just
1477 like 'foo'. The rationale behind this is not
1478 completely clear, and maybe it was done to other
1479 symbols as well, not just procedures." */
1480
1481 /* If we get here with sym == 0, the symbol was
1482 found in the minimal symbol table
1483 but not in the symtab.
1484 Fall through and return 0 to use the msymbol
1485 definition of "foo_".
1486 (Note that outer code generally follows up a call
1487 to this routine with a call to lookup_minimal_symbol(),
1488 so a 0 return means we'll just flow into that other routine).
1489
1490 This happens for Fortran "foo_" symbols,
1491 which are "foo" in the symtab.
1492
1493 This can also happen if "asm" is used to make a
1494 regular symbol but not a debugging symbol, e.g.
1495 asm(".globl _main");
1496 asm("_main:");
1497 */
1498
1499 if (symtab != NULL && sym != NULL)
1500 *symtab = s;
1501 return fixup_symbol_section (sym, s->objfile);
1502 }
1503 }
1504 }
1505
1506 return NULL;
1507 }
1508 #endif /* 0 */
1509
1510 /* A default version of lookup_symbol_nonlocal for use by languages
1511 that can't think of anything better to do. This implements the C
1512 lookup rules. */
1513
1514 struct symbol *
1515 basic_lookup_symbol_nonlocal (const char *name,
1516 const char *linkage_name,
1517 const struct block *block,
1518 const domain_enum domain,
1519 struct symtab **symtab)
1520 {
1521 struct symbol *sym;
1522
1523 /* NOTE: carlton/2003-05-19: The comments below were written when
1524 this (or what turned into this) was part of lookup_symbol_aux;
1525 I'm much less worried about these questions now, since these
1526 decisions have turned out well, but I leave these comments here
1527 for posterity. */
1528
1529 /* NOTE: carlton/2002-12-05: There is a question as to whether or
1530 not it would be appropriate to search the current global block
1531 here as well. (That's what this code used to do before the
1532 is_a_field_of_this check was moved up.) On the one hand, it's
1533 redundant with the lookup_symbol_aux_symtabs search that happens
1534 next. On the other hand, if decode_line_1 is passed an argument
1535 like filename:var, then the user presumably wants 'var' to be
1536 searched for in filename. On the third hand, there shouldn't be
1537 multiple global variables all of which are named 'var', and it's
1538 not like decode_line_1 has ever restricted its search to only
1539 global variables in a single filename. All in all, only
1540 searching the static block here seems best: it's correct and it's
1541 cleanest. */
1542
1543 /* NOTE: carlton/2002-12-05: There's also a possible performance
1544 issue here: if you usually search for global symbols in the
1545 current file, then it would be slightly better to search the
1546 current global block before searching all the symtabs. But there
1547 are other factors that have a much greater effect on performance
1548 than that one, so I don't think we should worry about that for
1549 now. */
1550
1551 sym = lookup_symbol_static (name, linkage_name, block, domain, symtab);
1552 if (sym != NULL)
1553 return sym;
1554
1555 return lookup_symbol_global (name, linkage_name, domain, symtab);
1556 }
1557
1558 /* Lookup a symbol in the static block associated to BLOCK, if there
1559 is one; do nothing if BLOCK is NULL or a global block. */
1560
1561 struct symbol *
1562 lookup_symbol_static (const char *name,
1563 const char *linkage_name,
1564 const struct block *block,
1565 const domain_enum domain,
1566 struct symtab **symtab)
1567 {
1568 const struct block *static_block = block_static_block (block);
1569
1570 if (static_block != NULL)
1571 return lookup_symbol_aux_block (name, linkage_name, static_block,
1572 domain, symtab);
1573 else
1574 return NULL;
1575 }
1576
1577 /* Lookup a symbol in all files' global blocks (searching psymtabs if
1578 necessary). */
1579
1580 struct symbol *
1581 lookup_symbol_global (const char *name,
1582 const char *linkage_name,
1583 const domain_enum domain,
1584 struct symtab **symtab)
1585 {
1586 struct symbol *sym;
1587
1588 sym = lookup_symbol_aux_symtabs (GLOBAL_BLOCK, name, linkage_name,
1589 domain, symtab);
1590 if (sym != NULL)
1591 return sym;
1592
1593 return lookup_symbol_aux_psymtabs (GLOBAL_BLOCK, name, linkage_name,
1594 domain, symtab);
1595 }
1596
1597 /* Look, in partial_symtab PST, for symbol whose natural name is NAME.
1598 If LINKAGE_NAME is non-NULL, check in addition that the symbol's
1599 linkage name matches it. Check the global symbols if GLOBAL, the
1600 static symbols if not */
1601
1602 struct partial_symbol *
1603 lookup_partial_symbol (struct partial_symtab *pst, const char *name,
1604 const char *linkage_name, int global,
1605 domain_enum domain)
1606 {
1607 struct partial_symbol *temp;
1608 struct partial_symbol **start, **psym;
1609 struct partial_symbol **top, **real_top, **bottom, **center;
1610 int length = (global ? pst->n_global_syms : pst->n_static_syms);
1611 int do_linear_search = 1;
1612
1613 if (length == 0)
1614 {
1615 return (NULL);
1616 }
1617 start = (global ?
1618 pst->objfile->global_psymbols.list + pst->globals_offset :
1619 pst->objfile->static_psymbols.list + pst->statics_offset);
1620
1621 if (global) /* This means we can use a binary search. */
1622 {
1623 do_linear_search = 0;
1624
1625 /* Binary search. This search is guaranteed to end with center
1626 pointing at the earliest partial symbol whose name might be
1627 correct. At that point *all* partial symbols with an
1628 appropriate name will be checked against the correct
1629 domain. */
1630
1631 bottom = start;
1632 top = start + length - 1;
1633 real_top = top;
1634 while (top > bottom)
1635 {
1636 center = bottom + (top - bottom) / 2;
1637 if (!(center < top))
1638 internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
1639 if (!do_linear_search
1640 && (SYMBOL_LANGUAGE (*center) == language_java))
1641 {
1642 do_linear_search = 1;
1643 }
1644 if (strcmp_iw_ordered (SYMBOL_SEARCH_NAME (*center), name) >= 0)
1645 {
1646 top = center;
1647 }
1648 else
1649 {
1650 bottom = center + 1;
1651 }
1652 }
1653 if (!(top == bottom))
1654 internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
1655
1656 while (top <= real_top
1657 && (linkage_name != NULL
1658 ? strcmp (SYMBOL_LINKAGE_NAME (*top), linkage_name) == 0
1659 : SYMBOL_MATCHES_SEARCH_NAME (*top,name)))
1660 {
1661 if (SYMBOL_DOMAIN (*top) == domain)
1662 {
1663 return (*top);
1664 }
1665 top++;
1666 }
1667 }
1668
1669 /* Can't use a binary search or else we found during the binary search that
1670 we should also do a linear search. */
1671
1672 if (do_linear_search)
1673 {
1674 for (psym = start; psym < start + length; psym++)
1675 {
1676 if (domain == SYMBOL_DOMAIN (*psym))
1677 {
1678 if (linkage_name != NULL
1679 ? strcmp (SYMBOL_LINKAGE_NAME (*psym), linkage_name) == 0
1680 : SYMBOL_MATCHES_SEARCH_NAME (*psym, name))
1681 {
1682 return (*psym);
1683 }
1684 }
1685 }
1686 }
1687
1688 return (NULL);
1689 }
1690
1691 /* Look up a type named NAME in the struct_domain. The type returned
1692 must not be opaque -- i.e., must have at least one field
1693 defined. */
1694
1695 struct type *
1696 lookup_transparent_type (const char *name)
1697 {
1698 return current_language->la_lookup_transparent_type (name);
1699 }
1700
1701 /* The standard implementation of lookup_transparent_type. This code
1702 was modeled on lookup_symbol -- the parts not relevant to looking
1703 up types were just left out. In particular it's assumed here that
1704 types are available in struct_domain and only at file-static or
1705 global blocks. */
1706
1707 struct type *
1708 basic_lookup_transparent_type (const char *name)
1709 {
1710 struct symbol *sym;
1711 struct symtab *s = NULL;
1712 struct partial_symtab *ps;
1713 struct blockvector *bv;
1714 struct objfile *objfile;
1715 struct block *block;
1716
1717 /* Now search all the global symbols. Do the symtab's first, then
1718 check the psymtab's. If a psymtab indicates the existence
1719 of the desired name as a global, then do psymtab-to-symtab
1720 conversion on the fly and return the found symbol. */
1721
1722 ALL_SYMTABS (objfile, s)
1723 {
1724 bv = BLOCKVECTOR (s);
1725 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1726 sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN);
1727 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1728 {
1729 return SYMBOL_TYPE (sym);
1730 }
1731 }
1732
1733 ALL_PSYMTABS (objfile, ps)
1734 {
1735 if (!ps->readin && lookup_partial_symbol (ps, name, NULL,
1736 1, STRUCT_DOMAIN))
1737 {
1738 s = PSYMTAB_TO_SYMTAB (ps);
1739 bv = BLOCKVECTOR (s);
1740 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1741 sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN);
1742 if (!sym)
1743 {
1744 /* This shouldn't be necessary, but as a last resort
1745 * try looking in the statics even though the psymtab
1746 * claimed the symbol was global. It's possible that
1747 * the psymtab gets it wrong in some cases.
1748 */
1749 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
1750 sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN);
1751 if (!sym)
1752 error (_("Internal: global symbol `%s' found in %s psymtab but not in symtab.\n\
1753 %s may be an inlined function, or may be a template function\n\
1754 (if a template, try specifying an instantiation: %s<type>)."),
1755 name, ps->filename, name, name);
1756 }
1757 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1758 return SYMBOL_TYPE (sym);
1759 }
1760 }
1761
1762 /* Now search the static file-level symbols.
1763 Not strictly correct, but more useful than an error.
1764 Do the symtab's first, then
1765 check the psymtab's. If a psymtab indicates the existence
1766 of the desired name as a file-level static, then do psymtab-to-symtab
1767 conversion on the fly and return the found symbol.
1768 */
1769
1770 ALL_SYMTABS (objfile, s)
1771 {
1772 bv = BLOCKVECTOR (s);
1773 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
1774 sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN);
1775 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1776 {
1777 return SYMBOL_TYPE (sym);
1778 }
1779 }
1780
1781 ALL_PSYMTABS (objfile, ps)
1782 {
1783 if (!ps->readin && lookup_partial_symbol (ps, name, NULL, 0, STRUCT_DOMAIN))
1784 {
1785 s = PSYMTAB_TO_SYMTAB (ps);
1786 bv = BLOCKVECTOR (s);
1787 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
1788 sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN);
1789 if (!sym)
1790 {
1791 /* This shouldn't be necessary, but as a last resort
1792 * try looking in the globals even though the psymtab
1793 * claimed the symbol was static. It's possible that
1794 * the psymtab gets it wrong in some cases.
1795 */
1796 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1797 sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN);
1798 if (!sym)
1799 error (_("Internal: static symbol `%s' found in %s psymtab but not in symtab.\n\
1800 %s may be an inlined function, or may be a template function\n\
1801 (if a template, try specifying an instantiation: %s<type>)."),
1802 name, ps->filename, name, name);
1803 }
1804 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1805 return SYMBOL_TYPE (sym);
1806 }
1807 }
1808 return (struct type *) 0;
1809 }
1810
1811
1812 /* Find the psymtab containing main(). */
1813 /* FIXME: What about languages without main() or specially linked
1814 executables that have no main() ? */
1815
1816 struct partial_symtab *
1817 find_main_psymtab (void)
1818 {
1819 struct partial_symtab *pst;
1820 struct objfile *objfile;
1821
1822 ALL_PSYMTABS (objfile, pst)
1823 {
1824 if (lookup_partial_symbol (pst, main_name (), NULL, 1, VAR_DOMAIN))
1825 {
1826 return (pst);
1827 }
1828 }
1829 return (NULL);
1830 }
1831
1832 /* Search BLOCK for symbol NAME in DOMAIN.
1833
1834 Note that if NAME is the demangled form of a C++ symbol, we will fail
1835 to find a match during the binary search of the non-encoded names, but
1836 for now we don't worry about the slight inefficiency of looking for
1837 a match we'll never find, since it will go pretty quick. Once the
1838 binary search terminates, we drop through and do a straight linear
1839 search on the symbols. Each symbol which is marked as being a ObjC/C++
1840 symbol (language_cplus or language_objc set) has both the encoded and
1841 non-encoded names tested for a match.
1842
1843 If LINKAGE_NAME is non-NULL, verify that any symbol we find has this
1844 particular mangled name.
1845 */
1846
1847 struct symbol *
1848 lookup_block_symbol (const struct block *block, const char *name,
1849 const char *linkage_name,
1850 const domain_enum domain)
1851 {
1852 struct dict_iterator iter;
1853 struct symbol *sym;
1854
1855 if (!BLOCK_FUNCTION (block))
1856 {
1857 for (sym = dict_iter_name_first (BLOCK_DICT (block), name, &iter);
1858 sym != NULL;
1859 sym = dict_iter_name_next (name, &iter))
1860 {
1861 if (SYMBOL_DOMAIN (sym) == domain
1862 && (linkage_name != NULL
1863 ? strcmp (SYMBOL_LINKAGE_NAME (sym), linkage_name) == 0 : 1))
1864 return sym;
1865 }
1866 return NULL;
1867 }
1868 else
1869 {
1870 /* Note that parameter symbols do not always show up last in the
1871 list; this loop makes sure to take anything else other than
1872 parameter symbols first; it only uses parameter symbols as a
1873 last resort. Note that this only takes up extra computation
1874 time on a match. */
1875
1876 struct symbol *sym_found = NULL;
1877
1878 for (sym = dict_iter_name_first (BLOCK_DICT (block), name, &iter);
1879 sym != NULL;
1880 sym = dict_iter_name_next (name, &iter))
1881 {
1882 if (SYMBOL_DOMAIN (sym) == domain
1883 && (linkage_name != NULL
1884 ? strcmp (SYMBOL_LINKAGE_NAME (sym), linkage_name) == 0 : 1))
1885 {
1886 sym_found = sym;
1887 if (SYMBOL_CLASS (sym) != LOC_ARG &&
1888 SYMBOL_CLASS (sym) != LOC_LOCAL_ARG &&
1889 SYMBOL_CLASS (sym) != LOC_REF_ARG &&
1890 SYMBOL_CLASS (sym) != LOC_REGPARM &&
1891 SYMBOL_CLASS (sym) != LOC_REGPARM_ADDR &&
1892 SYMBOL_CLASS (sym) != LOC_BASEREG_ARG &&
1893 SYMBOL_CLASS (sym) != LOC_COMPUTED_ARG)
1894 {
1895 break;
1896 }
1897 }
1898 }
1899 return (sym_found); /* Will be NULL if not found. */
1900 }
1901 }
1902
1903 /* Find the symtab associated with PC and SECTION. Look through the
1904 psymtabs and read in another symtab if necessary. */
1905
1906 struct symtab *
1907 find_pc_sect_symtab (CORE_ADDR pc, asection *section)
1908 {
1909 struct block *b;
1910 struct blockvector *bv;
1911 struct symtab *s = NULL;
1912 struct symtab *best_s = NULL;
1913 struct partial_symtab *ps;
1914 struct objfile *objfile;
1915 CORE_ADDR distance = 0;
1916 struct minimal_symbol *msymbol;
1917
1918 /* If we know that this is not a text address, return failure. This is
1919 necessary because we loop based on the block's high and low code
1920 addresses, which do not include the data ranges, and because
1921 we call find_pc_sect_psymtab which has a similar restriction based
1922 on the partial_symtab's texthigh and textlow. */
1923 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
1924 if (msymbol
1925 && (msymbol->type == mst_data
1926 || msymbol->type == mst_bss
1927 || msymbol->type == mst_abs
1928 || msymbol->type == mst_file_data
1929 || msymbol->type == mst_file_bss))
1930 return NULL;
1931
1932 /* Search all symtabs for the one whose file contains our address, and which
1933 is the smallest of all the ones containing the address. This is designed
1934 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
1935 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
1936 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
1937
1938 This happens for native ecoff format, where code from included files
1939 gets its own symtab. The symtab for the included file should have
1940 been read in already via the dependency mechanism.
1941 It might be swifter to create several symtabs with the same name
1942 like xcoff does (I'm not sure).
1943
1944 It also happens for objfiles that have their functions reordered.
1945 For these, the symtab we are looking for is not necessarily read in. */
1946
1947 ALL_SYMTABS (objfile, s)
1948 {
1949 bv = BLOCKVECTOR (s);
1950 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1951
1952 if (BLOCK_START (b) <= pc
1953 && BLOCK_END (b) > pc
1954 && (distance == 0
1955 || BLOCK_END (b) - BLOCK_START (b) < distance))
1956 {
1957 /* For an objfile that has its functions reordered,
1958 find_pc_psymtab will find the proper partial symbol table
1959 and we simply return its corresponding symtab. */
1960 /* In order to better support objfiles that contain both
1961 stabs and coff debugging info, we continue on if a psymtab
1962 can't be found. */
1963 if ((objfile->flags & OBJF_REORDERED) && objfile->psymtabs)
1964 {
1965 ps = find_pc_sect_psymtab (pc, section);
1966 if (ps)
1967 return PSYMTAB_TO_SYMTAB (ps);
1968 }
1969 if (section != 0)
1970 {
1971 struct dict_iterator iter;
1972 struct symbol *sym = NULL;
1973
1974 ALL_BLOCK_SYMBOLS (b, iter, sym)
1975 {
1976 fixup_symbol_section (sym, objfile);
1977 if (matching_bfd_sections (SYMBOL_BFD_SECTION (sym), section))
1978 break;
1979 }
1980 if (sym == NULL)
1981 continue; /* no symbol in this symtab matches section */
1982 }
1983 distance = BLOCK_END (b) - BLOCK_START (b);
1984 best_s = s;
1985 }
1986 }
1987
1988 if (best_s != NULL)
1989 return (best_s);
1990
1991 s = NULL;
1992 ps = find_pc_sect_psymtab (pc, section);
1993 if (ps)
1994 {
1995 if (ps->readin)
1996 /* Might want to error() here (in case symtab is corrupt and
1997 will cause a core dump), but maybe we can successfully
1998 continue, so let's not. */
1999 warning (_("\
2000 (Internal error: pc 0x%s in read in psymtab, but not in symtab.)\n"),
2001 paddr_nz (pc));
2002 s = PSYMTAB_TO_SYMTAB (ps);
2003 }
2004 return (s);
2005 }
2006
2007 /* Find the symtab associated with PC. Look through the psymtabs and
2008 read in another symtab if necessary. Backward compatibility, no section */
2009
2010 struct symtab *
2011 find_pc_symtab (CORE_ADDR pc)
2012 {
2013 return find_pc_sect_symtab (pc, find_pc_mapped_section (pc));
2014 }
2015 \f
2016
2017 /* Find the source file and line number for a given PC value and SECTION.
2018 Return a structure containing a symtab pointer, a line number,
2019 and a pc range for the entire source line.
2020 The value's .pc field is NOT the specified pc.
2021 NOTCURRENT nonzero means, if specified pc is on a line boundary,
2022 use the line that ends there. Otherwise, in that case, the line
2023 that begins there is used. */
2024
2025 /* The big complication here is that a line may start in one file, and end just
2026 before the start of another file. This usually occurs when you #include
2027 code in the middle of a subroutine. To properly find the end of a line's PC
2028 range, we must search all symtabs associated with this compilation unit, and
2029 find the one whose first PC is closer than that of the next line in this
2030 symtab. */
2031
2032 /* If it's worth the effort, we could be using a binary search. */
2033
2034 struct symtab_and_line
2035 find_pc_sect_line (CORE_ADDR pc, struct bfd_section *section, int notcurrent)
2036 {
2037 struct symtab *s;
2038 struct linetable *l;
2039 int len;
2040 int i;
2041 struct linetable_entry *item;
2042 struct symtab_and_line val;
2043 struct blockvector *bv;
2044 struct minimal_symbol *msymbol;
2045 struct minimal_symbol *mfunsym;
2046
2047 /* Info on best line seen so far, and where it starts, and its file. */
2048
2049 struct linetable_entry *best = NULL;
2050 CORE_ADDR best_end = 0;
2051 struct symtab *best_symtab = 0;
2052
2053 /* Store here the first line number
2054 of a file which contains the line at the smallest pc after PC.
2055 If we don't find a line whose range contains PC,
2056 we will use a line one less than this,
2057 with a range from the start of that file to the first line's pc. */
2058 struct linetable_entry *alt = NULL;
2059 struct symtab *alt_symtab = 0;
2060
2061 /* Info on best line seen in this file. */
2062
2063 struct linetable_entry *prev;
2064
2065 /* If this pc is not from the current frame,
2066 it is the address of the end of a call instruction.
2067 Quite likely that is the start of the following statement.
2068 But what we want is the statement containing the instruction.
2069 Fudge the pc to make sure we get that. */
2070
2071 init_sal (&val); /* initialize to zeroes */
2072
2073 /* It's tempting to assume that, if we can't find debugging info for
2074 any function enclosing PC, that we shouldn't search for line
2075 number info, either. However, GAS can emit line number info for
2076 assembly files --- very helpful when debugging hand-written
2077 assembly code. In such a case, we'd have no debug info for the
2078 function, but we would have line info. */
2079
2080 if (notcurrent)
2081 pc -= 1;
2082
2083 /* elz: added this because this function returned the wrong
2084 information if the pc belongs to a stub (import/export)
2085 to call a shlib function. This stub would be anywhere between
2086 two functions in the target, and the line info was erroneously
2087 taken to be the one of the line before the pc.
2088 */
2089 /* RT: Further explanation:
2090
2091 * We have stubs (trampolines) inserted between procedures.
2092 *
2093 * Example: "shr1" exists in a shared library, and a "shr1" stub also
2094 * exists in the main image.
2095 *
2096 * In the minimal symbol table, we have a bunch of symbols
2097 * sorted by start address. The stubs are marked as "trampoline",
2098 * the others appear as text. E.g.:
2099 *
2100 * Minimal symbol table for main image
2101 * main: code for main (text symbol)
2102 * shr1: stub (trampoline symbol)
2103 * foo: code for foo (text symbol)
2104 * ...
2105 * Minimal symbol table for "shr1" image:
2106 * ...
2107 * shr1: code for shr1 (text symbol)
2108 * ...
2109 *
2110 * So the code below is trying to detect if we are in the stub
2111 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
2112 * and if found, do the symbolization from the real-code address
2113 * rather than the stub address.
2114 *
2115 * Assumptions being made about the minimal symbol table:
2116 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
2117 * if we're really in the trampoline. If we're beyond it (say
2118 * we're in "foo" in the above example), it'll have a closer
2119 * symbol (the "foo" text symbol for example) and will not
2120 * return the trampoline.
2121 * 2. lookup_minimal_symbol_text() will find a real text symbol
2122 * corresponding to the trampoline, and whose address will
2123 * be different than the trampoline address. I put in a sanity
2124 * check for the address being the same, to avoid an
2125 * infinite recursion.
2126 */
2127 msymbol = lookup_minimal_symbol_by_pc (pc);
2128 if (msymbol != NULL)
2129 if (MSYMBOL_TYPE (msymbol) == mst_solib_trampoline)
2130 {
2131 mfunsym = lookup_minimal_symbol_text (SYMBOL_LINKAGE_NAME (msymbol),
2132 NULL);
2133 if (mfunsym == NULL)
2134 /* I eliminated this warning since it is coming out
2135 * in the following situation:
2136 * gdb shmain // test program with shared libraries
2137 * (gdb) break shr1 // function in shared lib
2138 * Warning: In stub for ...
2139 * In the above situation, the shared lib is not loaded yet,
2140 * so of course we can't find the real func/line info,
2141 * but the "break" still works, and the warning is annoying.
2142 * So I commented out the warning. RT */
2143 /* warning ("In stub for %s; unable to find real function/line info", SYMBOL_LINKAGE_NAME (msymbol)) */ ;
2144 /* fall through */
2145 else if (SYMBOL_VALUE (mfunsym) == SYMBOL_VALUE (msymbol))
2146 /* Avoid infinite recursion */
2147 /* See above comment about why warning is commented out */
2148 /* warning ("In stub for %s; unable to find real function/line info", SYMBOL_LINKAGE_NAME (msymbol)) */ ;
2149 /* fall through */
2150 else
2151 return find_pc_line (SYMBOL_VALUE (mfunsym), 0);
2152 }
2153
2154
2155 s = find_pc_sect_symtab (pc, section);
2156 if (!s)
2157 {
2158 /* if no symbol information, return previous pc */
2159 if (notcurrent)
2160 pc++;
2161 val.pc = pc;
2162 return val;
2163 }
2164
2165 bv = BLOCKVECTOR (s);
2166
2167 /* Look at all the symtabs that share this blockvector.
2168 They all have the same apriori range, that we found was right;
2169 but they have different line tables. */
2170
2171 for (; s && BLOCKVECTOR (s) == bv; s = s->next)
2172 {
2173 /* Find the best line in this symtab. */
2174 l = LINETABLE (s);
2175 if (!l)
2176 continue;
2177 len = l->nitems;
2178 if (len <= 0)
2179 {
2180 /* I think len can be zero if the symtab lacks line numbers
2181 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
2182 I'm not sure which, and maybe it depends on the symbol
2183 reader). */
2184 continue;
2185 }
2186
2187 prev = NULL;
2188 item = l->item; /* Get first line info */
2189
2190 /* Is this file's first line closer than the first lines of other files?
2191 If so, record this file, and its first line, as best alternate. */
2192 if (item->pc > pc && (!alt || item->pc < alt->pc))
2193 {
2194 alt = item;
2195 alt_symtab = s;
2196 }
2197
2198 for (i = 0; i < len; i++, item++)
2199 {
2200 /* Leave prev pointing to the linetable entry for the last line
2201 that started at or before PC. */
2202 if (item->pc > pc)
2203 break;
2204
2205 prev = item;
2206 }
2207
2208 /* At this point, prev points at the line whose start addr is <= pc, and
2209 item points at the next line. If we ran off the end of the linetable
2210 (pc >= start of the last line), then prev == item. If pc < start of
2211 the first line, prev will not be set. */
2212
2213 /* Is this file's best line closer than the best in the other files?
2214 If so, record this file, and its best line, as best so far. Don't
2215 save prev if it represents the end of a function (i.e. line number
2216 0) instead of a real line. */
2217
2218 if (prev && prev->line && (!best || prev->pc > best->pc))
2219 {
2220 best = prev;
2221 best_symtab = s;
2222
2223 /* Discard BEST_END if it's before the PC of the current BEST. */
2224 if (best_end <= best->pc)
2225 best_end = 0;
2226 }
2227
2228 /* If another line (denoted by ITEM) is in the linetable and its
2229 PC is after BEST's PC, but before the current BEST_END, then
2230 use ITEM's PC as the new best_end. */
2231 if (best && i < len && item->pc > best->pc
2232 && (best_end == 0 || best_end > item->pc))
2233 best_end = item->pc;
2234 }
2235
2236 if (!best_symtab)
2237 {
2238 /* If we didn't find any line number info, just return zeros.
2239 We used to return alt->line - 1 here, but that could be
2240 anywhere; if we don't have line number info for this PC,
2241 don't make some up. */
2242 val.pc = pc;
2243 }
2244 else if (best->line == 0)
2245 {
2246 /* If our best fit is in a range of PC's for which no line
2247 number info is available (line number is zero) then we didn't
2248 find any valid line information. */
2249 val.pc = pc;
2250 }
2251 else
2252 {
2253 val.symtab = best_symtab;
2254 val.line = best->line;
2255 val.pc = best->pc;
2256 if (best_end && (!alt || best_end < alt->pc))
2257 val.end = best_end;
2258 else if (alt)
2259 val.end = alt->pc;
2260 else
2261 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
2262 }
2263 val.section = section;
2264 return val;
2265 }
2266
2267 /* Backward compatibility (no section) */
2268
2269 struct symtab_and_line
2270 find_pc_line (CORE_ADDR pc, int notcurrent)
2271 {
2272 asection *section;
2273
2274 section = find_pc_overlay (pc);
2275 if (pc_in_unmapped_range (pc, section))
2276 pc = overlay_mapped_address (pc, section);
2277 return find_pc_sect_line (pc, section, notcurrent);
2278 }
2279 \f
2280 /* Find line number LINE in any symtab whose name is the same as
2281 SYMTAB.
2282
2283 If found, return the symtab that contains the linetable in which it was
2284 found, set *INDEX to the index in the linetable of the best entry
2285 found, and set *EXACT_MATCH nonzero if the value returned is an
2286 exact match.
2287
2288 If not found, return NULL. */
2289
2290 struct symtab *
2291 find_line_symtab (struct symtab *symtab, int line, int *index, int *exact_match)
2292 {
2293 int exact;
2294
2295 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
2296 so far seen. */
2297
2298 int best_index;
2299 struct linetable *best_linetable;
2300 struct symtab *best_symtab;
2301
2302 /* First try looking it up in the given symtab. */
2303 best_linetable = LINETABLE (symtab);
2304 best_symtab = symtab;
2305 best_index = find_line_common (best_linetable, line, &exact);
2306 if (best_index < 0 || !exact)
2307 {
2308 /* Didn't find an exact match. So we better keep looking for
2309 another symtab with the same name. In the case of xcoff,
2310 multiple csects for one source file (produced by IBM's FORTRAN
2311 compiler) produce multiple symtabs (this is unavoidable
2312 assuming csects can be at arbitrary places in memory and that
2313 the GLOBAL_BLOCK of a symtab has a begin and end address). */
2314
2315 /* BEST is the smallest linenumber > LINE so far seen,
2316 or 0 if none has been seen so far.
2317 BEST_INDEX and BEST_LINETABLE identify the item for it. */
2318 int best;
2319
2320 struct objfile *objfile;
2321 struct symtab *s;
2322
2323 if (best_index >= 0)
2324 best = best_linetable->item[best_index].line;
2325 else
2326 best = 0;
2327
2328 ALL_SYMTABS (objfile, s)
2329 {
2330 struct linetable *l;
2331 int ind;
2332
2333 if (strcmp (symtab->filename, s->filename) != 0)
2334 continue;
2335 l = LINETABLE (s);
2336 ind = find_line_common (l, line, &exact);
2337 if (ind >= 0)
2338 {
2339 if (exact)
2340 {
2341 best_index = ind;
2342 best_linetable = l;
2343 best_symtab = s;
2344 goto done;
2345 }
2346 if (best == 0 || l->item[ind].line < best)
2347 {
2348 best = l->item[ind].line;
2349 best_index = ind;
2350 best_linetable = l;
2351 best_symtab = s;
2352 }
2353 }
2354 }
2355 }
2356 done:
2357 if (best_index < 0)
2358 return NULL;
2359
2360 if (index)
2361 *index = best_index;
2362 if (exact_match)
2363 *exact_match = exact;
2364
2365 return best_symtab;
2366 }
2367 \f
2368 /* Set the PC value for a given source file and line number and return true.
2369 Returns zero for invalid line number (and sets the PC to 0).
2370 The source file is specified with a struct symtab. */
2371
2372 int
2373 find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
2374 {
2375 struct linetable *l;
2376 int ind;
2377
2378 *pc = 0;
2379 if (symtab == 0)
2380 return 0;
2381
2382 symtab = find_line_symtab (symtab, line, &ind, NULL);
2383 if (symtab != NULL)
2384 {
2385 l = LINETABLE (symtab);
2386 *pc = l->item[ind].pc;
2387 return 1;
2388 }
2389 else
2390 return 0;
2391 }
2392
2393 /* Find the range of pc values in a line.
2394 Store the starting pc of the line into *STARTPTR
2395 and the ending pc (start of next line) into *ENDPTR.
2396 Returns 1 to indicate success.
2397 Returns 0 if could not find the specified line. */
2398
2399 int
2400 find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
2401 CORE_ADDR *endptr)
2402 {
2403 CORE_ADDR startaddr;
2404 struct symtab_and_line found_sal;
2405
2406 startaddr = sal.pc;
2407 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
2408 return 0;
2409
2410 /* This whole function is based on address. For example, if line 10 has
2411 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
2412 "info line *0x123" should say the line goes from 0x100 to 0x200
2413 and "info line *0x355" should say the line goes from 0x300 to 0x400.
2414 This also insures that we never give a range like "starts at 0x134
2415 and ends at 0x12c". */
2416
2417 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
2418 if (found_sal.line != sal.line)
2419 {
2420 /* The specified line (sal) has zero bytes. */
2421 *startptr = found_sal.pc;
2422 *endptr = found_sal.pc;
2423 }
2424 else
2425 {
2426 *startptr = found_sal.pc;
2427 *endptr = found_sal.end;
2428 }
2429 return 1;
2430 }
2431
2432 /* Given a line table and a line number, return the index into the line
2433 table for the pc of the nearest line whose number is >= the specified one.
2434 Return -1 if none is found. The value is >= 0 if it is an index.
2435
2436 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
2437
2438 static int
2439 find_line_common (struct linetable *l, int lineno,
2440 int *exact_match)
2441 {
2442 int i;
2443 int len;
2444
2445 /* BEST is the smallest linenumber > LINENO so far seen,
2446 or 0 if none has been seen so far.
2447 BEST_INDEX identifies the item for it. */
2448
2449 int best_index = -1;
2450 int best = 0;
2451
2452 if (lineno <= 0)
2453 return -1;
2454 if (l == 0)
2455 return -1;
2456
2457 len = l->nitems;
2458 for (i = 0; i < len; i++)
2459 {
2460 struct linetable_entry *item = &(l->item[i]);
2461
2462 if (item->line == lineno)
2463 {
2464 /* Return the first (lowest address) entry which matches. */
2465 *exact_match = 1;
2466 return i;
2467 }
2468
2469 if (item->line > lineno && (best == 0 || item->line < best))
2470 {
2471 best = item->line;
2472 best_index = i;
2473 }
2474 }
2475
2476 /* If we got here, we didn't get an exact match. */
2477
2478 *exact_match = 0;
2479 return best_index;
2480 }
2481
2482 int
2483 find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
2484 {
2485 struct symtab_and_line sal;
2486 sal = find_pc_line (pc, 0);
2487 *startptr = sal.pc;
2488 *endptr = sal.end;
2489 return sal.symtab != 0;
2490 }
2491
2492 /* Given a function symbol SYM, find the symtab and line for the start
2493 of the function.
2494 If the argument FUNFIRSTLINE is nonzero, we want the first line
2495 of real code inside the function. */
2496
2497 struct symtab_and_line
2498 find_function_start_sal (struct symbol *sym, int funfirstline)
2499 {
2500 CORE_ADDR pc;
2501 struct symtab_and_line sal;
2502
2503 pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
2504 fixup_symbol_section (sym, NULL);
2505 if (funfirstline)
2506 { /* skip "first line" of function (which is actually its prologue) */
2507 asection *section = SYMBOL_BFD_SECTION (sym);
2508 /* If function is in an unmapped overlay, use its unmapped LMA
2509 address, so that SKIP_PROLOGUE has something unique to work on */
2510 if (section_is_overlay (section) &&
2511 !section_is_mapped (section))
2512 pc = overlay_unmapped_address (pc, section);
2513
2514 pc += DEPRECATED_FUNCTION_START_OFFSET;
2515 pc = SKIP_PROLOGUE (pc);
2516
2517 /* For overlays, map pc back into its mapped VMA range */
2518 pc = overlay_mapped_address (pc, section);
2519 }
2520 sal = find_pc_sect_line (pc, SYMBOL_BFD_SECTION (sym), 0);
2521
2522 /* Check if SKIP_PROLOGUE left us in mid-line, and the next
2523 line is still part of the same function. */
2524 if (sal.pc != pc
2525 && BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) <= sal.end
2526 && sal.end < BLOCK_END (SYMBOL_BLOCK_VALUE (sym)))
2527 {
2528 /* First pc of next line */
2529 pc = sal.end;
2530 /* Recalculate the line number (might not be N+1). */
2531 sal = find_pc_sect_line (pc, SYMBOL_BFD_SECTION (sym), 0);
2532 }
2533 sal.pc = pc;
2534
2535 return sal;
2536 }
2537
2538 /* If P is of the form "operator[ \t]+..." where `...' is
2539 some legitimate operator text, return a pointer to the
2540 beginning of the substring of the operator text.
2541 Otherwise, return "". */
2542 char *
2543 operator_chars (char *p, char **end)
2544 {
2545 *end = "";
2546 if (strncmp (p, "operator", 8))
2547 return *end;
2548 p += 8;
2549
2550 /* Don't get faked out by `operator' being part of a longer
2551 identifier. */
2552 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
2553 return *end;
2554
2555 /* Allow some whitespace between `operator' and the operator symbol. */
2556 while (*p == ' ' || *p == '\t')
2557 p++;
2558
2559 /* Recognize 'operator TYPENAME'. */
2560
2561 if (isalpha (*p) || *p == '_' || *p == '$')
2562 {
2563 char *q = p + 1;
2564 while (isalnum (*q) || *q == '_' || *q == '$')
2565 q++;
2566 *end = q;
2567 return p;
2568 }
2569
2570 while (*p)
2571 switch (*p)
2572 {
2573 case '\\': /* regexp quoting */
2574 if (p[1] == '*')
2575 {
2576 if (p[2] == '=') /* 'operator\*=' */
2577 *end = p + 3;
2578 else /* 'operator\*' */
2579 *end = p + 2;
2580 return p;
2581 }
2582 else if (p[1] == '[')
2583 {
2584 if (p[2] == ']')
2585 error (_("mismatched quoting on brackets, try 'operator\\[\\]'"));
2586 else if (p[2] == '\\' && p[3] == ']')
2587 {
2588 *end = p + 4; /* 'operator\[\]' */
2589 return p;
2590 }
2591 else
2592 error (_("nothing is allowed between '[' and ']'"));
2593 }
2594 else
2595 {
2596 /* Gratuitous qoute: skip it and move on. */
2597 p++;
2598 continue;
2599 }
2600 break;
2601 case '!':
2602 case '=':
2603 case '*':
2604 case '/':
2605 case '%':
2606 case '^':
2607 if (p[1] == '=')
2608 *end = p + 2;
2609 else
2610 *end = p + 1;
2611 return p;
2612 case '<':
2613 case '>':
2614 case '+':
2615 case '-':
2616 case '&':
2617 case '|':
2618 if (p[0] == '-' && p[1] == '>')
2619 {
2620 /* Struct pointer member operator 'operator->'. */
2621 if (p[2] == '*')
2622 {
2623 *end = p + 3; /* 'operator->*' */
2624 return p;
2625 }
2626 else if (p[2] == '\\')
2627 {
2628 *end = p + 4; /* Hopefully 'operator->\*' */
2629 return p;
2630 }
2631 else
2632 {
2633 *end = p + 2; /* 'operator->' */
2634 return p;
2635 }
2636 }
2637 if (p[1] == '=' || p[1] == p[0])
2638 *end = p + 2;
2639 else
2640 *end = p + 1;
2641 return p;
2642 case '~':
2643 case ',':
2644 *end = p + 1;
2645 return p;
2646 case '(':
2647 if (p[1] != ')')
2648 error (_("`operator ()' must be specified without whitespace in `()'"));
2649 *end = p + 2;
2650 return p;
2651 case '?':
2652 if (p[1] != ':')
2653 error (_("`operator ?:' must be specified without whitespace in `?:'"));
2654 *end = p + 2;
2655 return p;
2656 case '[':
2657 if (p[1] != ']')
2658 error (_("`operator []' must be specified without whitespace in `[]'"));
2659 *end = p + 2;
2660 return p;
2661 default:
2662 error (_("`operator %s' not supported"), p);
2663 break;
2664 }
2665
2666 *end = "";
2667 return *end;
2668 }
2669 \f
2670
2671 /* If FILE is not already in the table of files, return zero;
2672 otherwise return non-zero. Optionally add FILE to the table if ADD
2673 is non-zero. If *FIRST is non-zero, forget the old table
2674 contents. */
2675 static int
2676 filename_seen (const char *file, int add, int *first)
2677 {
2678 /* Table of files seen so far. */
2679 static const char **tab = NULL;
2680 /* Allocated size of tab in elements.
2681 Start with one 256-byte block (when using GNU malloc.c).
2682 24 is the malloc overhead when range checking is in effect. */
2683 static int tab_alloc_size = (256 - 24) / sizeof (char *);
2684 /* Current size of tab in elements. */
2685 static int tab_cur_size;
2686 const char **p;
2687
2688 if (*first)
2689 {
2690 if (tab == NULL)
2691 tab = (const char **) xmalloc (tab_alloc_size * sizeof (*tab));
2692 tab_cur_size = 0;
2693 }
2694
2695 /* Is FILE in tab? */
2696 for (p = tab; p < tab + tab_cur_size; p++)
2697 if (strcmp (*p, file) == 0)
2698 return 1;
2699
2700 /* No; maybe add it to tab. */
2701 if (add)
2702 {
2703 if (tab_cur_size == tab_alloc_size)
2704 {
2705 tab_alloc_size *= 2;
2706 tab = (const char **) xrealloc ((char *) tab,
2707 tab_alloc_size * sizeof (*tab));
2708 }
2709 tab[tab_cur_size++] = file;
2710 }
2711
2712 return 0;
2713 }
2714
2715 /* Slave routine for sources_info. Force line breaks at ,'s.
2716 NAME is the name to print and *FIRST is nonzero if this is the first
2717 name printed. Set *FIRST to zero. */
2718 static void
2719 output_source_filename (const char *name, int *first)
2720 {
2721 /* Since a single source file can result in several partial symbol
2722 tables, we need to avoid printing it more than once. Note: if
2723 some of the psymtabs are read in and some are not, it gets
2724 printed both under "Source files for which symbols have been
2725 read" and "Source files for which symbols will be read in on
2726 demand". I consider this a reasonable way to deal with the
2727 situation. I'm not sure whether this can also happen for
2728 symtabs; it doesn't hurt to check. */
2729
2730 /* Was NAME already seen? */
2731 if (filename_seen (name, 1, first))
2732 {
2733 /* Yes; don't print it again. */
2734 return;
2735 }
2736 /* No; print it and reset *FIRST. */
2737 if (*first)
2738 {
2739 *first = 0;
2740 }
2741 else
2742 {
2743 printf_filtered (", ");
2744 }
2745
2746 wrap_here ("");
2747 fputs_filtered (name, gdb_stdout);
2748 }
2749
2750 static void
2751 sources_info (char *ignore, int from_tty)
2752 {
2753 struct symtab *s;
2754 struct partial_symtab *ps;
2755 struct objfile *objfile;
2756 int first;
2757
2758 if (!have_full_symbols () && !have_partial_symbols ())
2759 {
2760 error (_("No symbol table is loaded. Use the \"file\" command."));
2761 }
2762
2763 printf_filtered ("Source files for which symbols have been read in:\n\n");
2764
2765 first = 1;
2766 ALL_SYMTABS (objfile, s)
2767 {
2768 const char *fullname = symtab_to_fullname (s);
2769 output_source_filename (fullname ? fullname : s->filename, &first);
2770 }
2771 printf_filtered ("\n\n");
2772
2773 printf_filtered ("Source files for which symbols will be read in on demand:\n\n");
2774
2775 first = 1;
2776 ALL_PSYMTABS (objfile, ps)
2777 {
2778 if (!ps->readin)
2779 {
2780 const char *fullname = psymtab_to_fullname (ps);
2781 output_source_filename (fullname ? fullname : ps->filename, &first);
2782 }
2783 }
2784 printf_filtered ("\n");
2785 }
2786
2787 static int
2788 file_matches (char *file, char *files[], int nfiles)
2789 {
2790 int i;
2791
2792 if (file != NULL && nfiles != 0)
2793 {
2794 for (i = 0; i < nfiles; i++)
2795 {
2796 if (strcmp (files[i], lbasename (file)) == 0)
2797 return 1;
2798 }
2799 }
2800 else if (nfiles == 0)
2801 return 1;
2802 return 0;
2803 }
2804
2805 /* Free any memory associated with a search. */
2806 void
2807 free_search_symbols (struct symbol_search *symbols)
2808 {
2809 struct symbol_search *p;
2810 struct symbol_search *next;
2811
2812 for (p = symbols; p != NULL; p = next)
2813 {
2814 next = p->next;
2815 xfree (p);
2816 }
2817 }
2818
2819 static void
2820 do_free_search_symbols_cleanup (void *symbols)
2821 {
2822 free_search_symbols (symbols);
2823 }
2824
2825 struct cleanup *
2826 make_cleanup_free_search_symbols (struct symbol_search *symbols)
2827 {
2828 return make_cleanup (do_free_search_symbols_cleanup, symbols);
2829 }
2830
2831 /* Helper function for sort_search_symbols and qsort. Can only
2832 sort symbols, not minimal symbols. */
2833 static int
2834 compare_search_syms (const void *sa, const void *sb)
2835 {
2836 struct symbol_search **sym_a = (struct symbol_search **) sa;
2837 struct symbol_search **sym_b = (struct symbol_search **) sb;
2838
2839 return strcmp (SYMBOL_PRINT_NAME ((*sym_a)->symbol),
2840 SYMBOL_PRINT_NAME ((*sym_b)->symbol));
2841 }
2842
2843 /* Sort the ``nfound'' symbols in the list after prevtail. Leave
2844 prevtail where it is, but update its next pointer to point to
2845 the first of the sorted symbols. */
2846 static struct symbol_search *
2847 sort_search_symbols (struct symbol_search *prevtail, int nfound)
2848 {
2849 struct symbol_search **symbols, *symp, *old_next;
2850 int i;
2851
2852 symbols = (struct symbol_search **) xmalloc (sizeof (struct symbol_search *)
2853 * nfound);
2854 symp = prevtail->next;
2855 for (i = 0; i < nfound; i++)
2856 {
2857 symbols[i] = symp;
2858 symp = symp->next;
2859 }
2860 /* Generally NULL. */
2861 old_next = symp;
2862
2863 qsort (symbols, nfound, sizeof (struct symbol_search *),
2864 compare_search_syms);
2865
2866 symp = prevtail;
2867 for (i = 0; i < nfound; i++)
2868 {
2869 symp->next = symbols[i];
2870 symp = symp->next;
2871 }
2872 symp->next = old_next;
2873
2874 xfree (symbols);
2875 return symp;
2876 }
2877
2878 /* Search the symbol table for matches to the regular expression REGEXP,
2879 returning the results in *MATCHES.
2880
2881 Only symbols of KIND are searched:
2882 FUNCTIONS_DOMAIN - search all functions
2883 TYPES_DOMAIN - search all type names
2884 METHODS_DOMAIN - search all methods NOT IMPLEMENTED
2885 VARIABLES_DOMAIN - search all symbols, excluding functions, type names,
2886 and constants (enums)
2887
2888 free_search_symbols should be called when *MATCHES is no longer needed.
2889
2890 The results are sorted locally; each symtab's global and static blocks are
2891 separately alphabetized.
2892 */
2893 void
2894 search_symbols (char *regexp, domain_enum kind, int nfiles, char *files[],
2895 struct symbol_search **matches)
2896 {
2897 struct symtab *s;
2898 struct partial_symtab *ps;
2899 struct blockvector *bv;
2900 struct blockvector *prev_bv = 0;
2901 struct block *b;
2902 int i = 0;
2903 struct dict_iterator iter;
2904 struct symbol *sym;
2905 struct partial_symbol **psym;
2906 struct objfile *objfile;
2907 struct minimal_symbol *msymbol;
2908 char *val;
2909 int found_misc = 0;
2910 static enum minimal_symbol_type types[]
2911 =
2912 {mst_data, mst_text, mst_abs, mst_unknown};
2913 static enum minimal_symbol_type types2[]
2914 =
2915 {mst_bss, mst_file_text, mst_abs, mst_unknown};
2916 static enum minimal_symbol_type types3[]
2917 =
2918 {mst_file_data, mst_solib_trampoline, mst_abs, mst_unknown};
2919 static enum minimal_symbol_type types4[]
2920 =
2921 {mst_file_bss, mst_text, mst_abs, mst_unknown};
2922 enum minimal_symbol_type ourtype;
2923 enum minimal_symbol_type ourtype2;
2924 enum minimal_symbol_type ourtype3;
2925 enum minimal_symbol_type ourtype4;
2926 struct symbol_search *sr;
2927 struct symbol_search *psr;
2928 struct symbol_search *tail;
2929 struct cleanup *old_chain = NULL;
2930
2931 if (kind < VARIABLES_DOMAIN)
2932 error (_("must search on specific domain"));
2933
2934 ourtype = types[(int) (kind - VARIABLES_DOMAIN)];
2935 ourtype2 = types2[(int) (kind - VARIABLES_DOMAIN)];
2936 ourtype3 = types3[(int) (kind - VARIABLES_DOMAIN)];
2937 ourtype4 = types4[(int) (kind - VARIABLES_DOMAIN)];
2938
2939 sr = *matches = NULL;
2940 tail = NULL;
2941
2942 if (regexp != NULL)
2943 {
2944 /* Make sure spacing is right for C++ operators.
2945 This is just a courtesy to make the matching less sensitive
2946 to how many spaces the user leaves between 'operator'
2947 and <TYPENAME> or <OPERATOR>. */
2948 char *opend;
2949 char *opname = operator_chars (regexp, &opend);
2950 if (*opname)
2951 {
2952 int fix = -1; /* -1 means ok; otherwise number of spaces needed. */
2953 if (isalpha (*opname) || *opname == '_' || *opname == '$')
2954 {
2955 /* There should 1 space between 'operator' and 'TYPENAME'. */
2956 if (opname[-1] != ' ' || opname[-2] == ' ')
2957 fix = 1;
2958 }
2959 else
2960 {
2961 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
2962 if (opname[-1] == ' ')
2963 fix = 0;
2964 }
2965 /* If wrong number of spaces, fix it. */
2966 if (fix >= 0)
2967 {
2968 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
2969 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
2970 regexp = tmp;
2971 }
2972 }
2973
2974 if (0 != (val = re_comp (regexp)))
2975 error (_("Invalid regexp (%s): %s"), val, regexp);
2976 }
2977
2978 /* Search through the partial symtabs *first* for all symbols
2979 matching the regexp. That way we don't have to reproduce all of
2980 the machinery below. */
2981
2982 ALL_PSYMTABS (objfile, ps)
2983 {
2984 struct partial_symbol **bound, **gbound, **sbound;
2985 int keep_going = 1;
2986
2987 if (ps->readin)
2988 continue;
2989
2990 gbound = objfile->global_psymbols.list + ps->globals_offset + ps->n_global_syms;
2991 sbound = objfile->static_psymbols.list + ps->statics_offset + ps->n_static_syms;
2992 bound = gbound;
2993
2994 /* Go through all of the symbols stored in a partial
2995 symtab in one loop. */
2996 psym = objfile->global_psymbols.list + ps->globals_offset;
2997 while (keep_going)
2998 {
2999 if (psym >= bound)
3000 {
3001 if (bound == gbound && ps->n_static_syms != 0)
3002 {
3003 psym = objfile->static_psymbols.list + ps->statics_offset;
3004 bound = sbound;
3005 }
3006 else
3007 keep_going = 0;
3008 continue;
3009 }
3010 else
3011 {
3012 QUIT;
3013
3014 /* If it would match (logic taken from loop below)
3015 load the file and go on to the next one. We check the
3016 filename here, but that's a bit bogus: we don't know
3017 what file it really comes from until we have full
3018 symtabs. The symbol might be in a header file included by
3019 this psymtab. This only affects Insight. */
3020 if (file_matches (ps->filename, files, nfiles)
3021 && ((regexp == NULL
3022 || re_exec (SYMBOL_NATURAL_NAME (*psym)) != 0)
3023 && ((kind == VARIABLES_DOMAIN && SYMBOL_CLASS (*psym) != LOC_TYPEDEF
3024 && SYMBOL_CLASS (*psym) != LOC_BLOCK)
3025 || (kind == FUNCTIONS_DOMAIN && SYMBOL_CLASS (*psym) == LOC_BLOCK)
3026 || (kind == TYPES_DOMAIN && SYMBOL_CLASS (*psym) == LOC_TYPEDEF)
3027 || (kind == METHODS_DOMAIN && SYMBOL_CLASS (*psym) == LOC_BLOCK))))
3028 {
3029 PSYMTAB_TO_SYMTAB (ps);
3030 keep_going = 0;
3031 }
3032 }
3033 psym++;
3034 }
3035 }
3036
3037 /* Here, we search through the minimal symbol tables for functions
3038 and variables that match, and force their symbols to be read.
3039 This is in particular necessary for demangled variable names,
3040 which are no longer put into the partial symbol tables.
3041 The symbol will then be found during the scan of symtabs below.
3042
3043 For functions, find_pc_symtab should succeed if we have debug info
3044 for the function, for variables we have to call lookup_symbol
3045 to determine if the variable has debug info.
3046 If the lookup fails, set found_misc so that we will rescan to print
3047 any matching symbols without debug info.
3048 */
3049
3050 if (nfiles == 0 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
3051 {
3052 ALL_MSYMBOLS (objfile, msymbol)
3053 {
3054 if (MSYMBOL_TYPE (msymbol) == ourtype ||
3055 MSYMBOL_TYPE (msymbol) == ourtype2 ||
3056 MSYMBOL_TYPE (msymbol) == ourtype3 ||
3057 MSYMBOL_TYPE (msymbol) == ourtype4)
3058 {
3059 if (regexp == NULL
3060 || re_exec (SYMBOL_NATURAL_NAME (msymbol)) != 0)
3061 {
3062 if (0 == find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol)))
3063 {
3064 /* FIXME: carlton/2003-02-04: Given that the
3065 semantics of lookup_symbol keeps on changing
3066 slightly, it would be a nice idea if we had a
3067 function lookup_symbol_minsym that found the
3068 symbol associated to a given minimal symbol (if
3069 any). */
3070 if (kind == FUNCTIONS_DOMAIN
3071 || lookup_symbol (SYMBOL_LINKAGE_NAME (msymbol),
3072 (struct block *) NULL,
3073 VAR_DOMAIN,
3074 0, (struct symtab **) NULL) == NULL)
3075 found_misc = 1;
3076 }
3077 }
3078 }
3079 }
3080 }
3081
3082 ALL_SYMTABS (objfile, s)
3083 {
3084 bv = BLOCKVECTOR (s);
3085 /* Often many files share a blockvector.
3086 Scan each blockvector only once so that
3087 we don't get every symbol many times.
3088 It happens that the first symtab in the list
3089 for any given blockvector is the main file. */
3090 if (bv != prev_bv)
3091 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
3092 {
3093 struct symbol_search *prevtail = tail;
3094 int nfound = 0;
3095 b = BLOCKVECTOR_BLOCK (bv, i);
3096 ALL_BLOCK_SYMBOLS (b, iter, sym)
3097 {
3098 struct symtab *real_symtab = SYMBOL_SYMTAB (sym);
3099 QUIT;
3100
3101 if (file_matches (real_symtab->filename, files, nfiles)
3102 && ((regexp == NULL
3103 || re_exec (SYMBOL_NATURAL_NAME (sym)) != 0)
3104 && ((kind == VARIABLES_DOMAIN && SYMBOL_CLASS (sym) != LOC_TYPEDEF
3105 && SYMBOL_CLASS (sym) != LOC_BLOCK
3106 && SYMBOL_CLASS (sym) != LOC_CONST)
3107 || (kind == FUNCTIONS_DOMAIN && SYMBOL_CLASS (sym) == LOC_BLOCK)
3108 || (kind == TYPES_DOMAIN && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
3109 || (kind == METHODS_DOMAIN && SYMBOL_CLASS (sym) == LOC_BLOCK))))
3110 {
3111 /* match */
3112 psr = (struct symbol_search *) xmalloc (sizeof (struct symbol_search));
3113 psr->block = i;
3114 psr->symtab = real_symtab;
3115 psr->symbol = sym;
3116 psr->msymbol = NULL;
3117 psr->next = NULL;
3118 if (tail == NULL)
3119 sr = psr;
3120 else
3121 tail->next = psr;
3122 tail = psr;
3123 nfound ++;
3124 }
3125 }
3126 if (nfound > 0)
3127 {
3128 if (prevtail == NULL)
3129 {
3130 struct symbol_search dummy;
3131
3132 dummy.next = sr;
3133 tail = sort_search_symbols (&dummy, nfound);
3134 sr = dummy.next;
3135
3136 old_chain = make_cleanup_free_search_symbols (sr);
3137 }
3138 else
3139 tail = sort_search_symbols (prevtail, nfound);
3140 }
3141 }
3142 prev_bv = bv;
3143 }
3144
3145 /* If there are no eyes, avoid all contact. I mean, if there are
3146 no debug symbols, then print directly from the msymbol_vector. */
3147
3148 if (found_misc || kind != FUNCTIONS_DOMAIN)
3149 {
3150 ALL_MSYMBOLS (objfile, msymbol)
3151 {
3152 if (MSYMBOL_TYPE (msymbol) == ourtype ||
3153 MSYMBOL_TYPE (msymbol) == ourtype2 ||
3154 MSYMBOL_TYPE (msymbol) == ourtype3 ||
3155 MSYMBOL_TYPE (msymbol) == ourtype4)
3156 {
3157 if (regexp == NULL
3158 || re_exec (SYMBOL_NATURAL_NAME (msymbol)) != 0)
3159 {
3160 /* Functions: Look up by address. */
3161 if (kind != FUNCTIONS_DOMAIN ||
3162 (0 == find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol))))
3163 {
3164 /* Variables/Absolutes: Look up by name */
3165 if (lookup_symbol (SYMBOL_LINKAGE_NAME (msymbol),
3166 (struct block *) NULL, VAR_DOMAIN,
3167 0, (struct symtab **) NULL) == NULL)
3168 {
3169 /* match */
3170 psr = (struct symbol_search *) xmalloc (sizeof (struct symbol_search));
3171 psr->block = i;
3172 psr->msymbol = msymbol;
3173 psr->symtab = NULL;
3174 psr->symbol = NULL;
3175 psr->next = NULL;
3176 if (tail == NULL)
3177 {
3178 sr = psr;
3179 old_chain = make_cleanup_free_search_symbols (sr);
3180 }
3181 else
3182 tail->next = psr;
3183 tail = psr;
3184 }
3185 }
3186 }
3187 }
3188 }
3189 }
3190
3191 *matches = sr;
3192 if (sr != NULL)
3193 discard_cleanups (old_chain);
3194 }
3195
3196 /* Helper function for symtab_symbol_info, this function uses
3197 the data returned from search_symbols() to print information
3198 regarding the match to gdb_stdout.
3199 */
3200 static void
3201 print_symbol_info (domain_enum kind, struct symtab *s, struct symbol *sym,
3202 int block, char *last)
3203 {
3204 if (last == NULL || strcmp (last, s->filename) != 0)
3205 {
3206 fputs_filtered ("\nFile ", gdb_stdout);
3207 fputs_filtered (s->filename, gdb_stdout);
3208 fputs_filtered (":\n", gdb_stdout);
3209 }
3210
3211 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
3212 printf_filtered ("static ");
3213
3214 /* Typedef that is not a C++ class */
3215 if (kind == TYPES_DOMAIN
3216 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
3217 typedef_print (SYMBOL_TYPE (sym), sym, gdb_stdout);
3218 /* variable, func, or typedef-that-is-c++-class */
3219 else if (kind < TYPES_DOMAIN ||
3220 (kind == TYPES_DOMAIN &&
3221 SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
3222 {
3223 type_print (SYMBOL_TYPE (sym),
3224 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
3225 ? "" : SYMBOL_PRINT_NAME (sym)),
3226 gdb_stdout, 0);
3227
3228 printf_filtered (";\n");
3229 }
3230 }
3231
3232 /* This help function for symtab_symbol_info() prints information
3233 for non-debugging symbols to gdb_stdout.
3234 */
3235 static void
3236 print_msymbol_info (struct minimal_symbol *msymbol)
3237 {
3238 char *tmp;
3239
3240 if (TARGET_ADDR_BIT <= 32)
3241 tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol)
3242 & (CORE_ADDR) 0xffffffff,
3243 8);
3244 else
3245 tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol),
3246 16);
3247 printf_filtered ("%s %s\n",
3248 tmp, SYMBOL_PRINT_NAME (msymbol));
3249 }
3250
3251 /* This is the guts of the commands "info functions", "info types", and
3252 "info variables". It calls search_symbols to find all matches and then
3253 print_[m]symbol_info to print out some useful information about the
3254 matches.
3255 */
3256 static void
3257 symtab_symbol_info (char *regexp, domain_enum kind, int from_tty)
3258 {
3259 static char *classnames[]
3260 =
3261 {"variable", "function", "type", "method"};
3262 struct symbol_search *symbols;
3263 struct symbol_search *p;
3264 struct cleanup *old_chain;
3265 char *last_filename = NULL;
3266 int first = 1;
3267
3268 /* must make sure that if we're interrupted, symbols gets freed */
3269 search_symbols (regexp, kind, 0, (char **) NULL, &symbols);
3270 old_chain = make_cleanup_free_search_symbols (symbols);
3271
3272 printf_filtered (regexp
3273 ? "All %ss matching regular expression \"%s\":\n"
3274 : "All defined %ss:\n",
3275 classnames[(int) (kind - VARIABLES_DOMAIN)], regexp);
3276
3277 for (p = symbols; p != NULL; p = p->next)
3278 {
3279 QUIT;
3280
3281 if (p->msymbol != NULL)
3282 {
3283 if (first)
3284 {
3285 printf_filtered ("\nNon-debugging symbols:\n");
3286 first = 0;
3287 }
3288 print_msymbol_info (p->msymbol);
3289 }
3290 else
3291 {
3292 print_symbol_info (kind,
3293 p->symtab,
3294 p->symbol,
3295 p->block,
3296 last_filename);
3297 last_filename = p->symtab->filename;
3298 }
3299 }
3300
3301 do_cleanups (old_chain);
3302 }
3303
3304 static void
3305 variables_info (char *regexp, int from_tty)
3306 {
3307 symtab_symbol_info (regexp, VARIABLES_DOMAIN, from_tty);
3308 }
3309
3310 static void
3311 functions_info (char *regexp, int from_tty)
3312 {
3313 symtab_symbol_info (regexp, FUNCTIONS_DOMAIN, from_tty);
3314 }
3315
3316
3317 static void
3318 types_info (char *regexp, int from_tty)
3319 {
3320 symtab_symbol_info (regexp, TYPES_DOMAIN, from_tty);
3321 }
3322
3323 /* Breakpoint all functions matching regular expression. */
3324
3325 void
3326 rbreak_command_wrapper (char *regexp, int from_tty)
3327 {
3328 rbreak_command (regexp, from_tty);
3329 }
3330
3331 static void
3332 rbreak_command (char *regexp, int from_tty)
3333 {
3334 struct symbol_search *ss;
3335 struct symbol_search *p;
3336 struct cleanup *old_chain;
3337
3338 search_symbols (regexp, FUNCTIONS_DOMAIN, 0, (char **) NULL, &ss);
3339 old_chain = make_cleanup_free_search_symbols (ss);
3340
3341 for (p = ss; p != NULL; p = p->next)
3342 {
3343 if (p->msymbol == NULL)
3344 {
3345 char *string = alloca (strlen (p->symtab->filename)
3346 + strlen (SYMBOL_LINKAGE_NAME (p->symbol))
3347 + 4);
3348 strcpy (string, p->symtab->filename);
3349 strcat (string, ":'");
3350 strcat (string, SYMBOL_LINKAGE_NAME (p->symbol));
3351 strcat (string, "'");
3352 break_command (string, from_tty);
3353 print_symbol_info (FUNCTIONS_DOMAIN,
3354 p->symtab,
3355 p->symbol,
3356 p->block,
3357 p->symtab->filename);
3358 }
3359 else
3360 {
3361 break_command (SYMBOL_LINKAGE_NAME (p->msymbol), from_tty);
3362 printf_filtered ("<function, no debug info> %s;\n",
3363 SYMBOL_PRINT_NAME (p->msymbol));
3364 }
3365 }
3366
3367 do_cleanups (old_chain);
3368 }
3369 \f
3370
3371 /* Helper routine for make_symbol_completion_list. */
3372
3373 static int return_val_size;
3374 static int return_val_index;
3375 static char **return_val;
3376
3377 #define COMPLETION_LIST_ADD_SYMBOL(symbol, sym_text, len, text, word) \
3378 completion_list_add_name \
3379 (SYMBOL_NATURAL_NAME (symbol), (sym_text), (len), (text), (word))
3380
3381 /* Test to see if the symbol specified by SYMNAME (which is already
3382 demangled for C++ symbols) matches SYM_TEXT in the first SYM_TEXT_LEN
3383 characters. If so, add it to the current completion list. */
3384
3385 static void
3386 completion_list_add_name (char *symname, char *sym_text, int sym_text_len,
3387 char *text, char *word)
3388 {
3389 int newsize;
3390 int i;
3391
3392 /* clip symbols that cannot match */
3393
3394 if (strncmp (symname, sym_text, sym_text_len) != 0)
3395 {
3396 return;
3397 }
3398
3399 /* We have a match for a completion, so add SYMNAME to the current list
3400 of matches. Note that the name is moved to freshly malloc'd space. */
3401
3402 {
3403 char *new;
3404 if (word == sym_text)
3405 {
3406 new = xmalloc (strlen (symname) + 5);
3407 strcpy (new, symname);
3408 }
3409 else if (word > sym_text)
3410 {
3411 /* Return some portion of symname. */
3412 new = xmalloc (strlen (symname) + 5);
3413 strcpy (new, symname + (word - sym_text));
3414 }
3415 else
3416 {
3417 /* Return some of SYM_TEXT plus symname. */
3418 new = xmalloc (strlen (symname) + (sym_text - word) + 5);
3419 strncpy (new, word, sym_text - word);
3420 new[sym_text - word] = '\0';
3421 strcat (new, symname);
3422 }
3423
3424 if (return_val_index + 3 > return_val_size)
3425 {
3426 newsize = (return_val_size *= 2) * sizeof (char *);
3427 return_val = (char **) xrealloc ((char *) return_val, newsize);
3428 }
3429 return_val[return_val_index++] = new;
3430 return_val[return_val_index] = NULL;
3431 }
3432 }
3433
3434 /* ObjC: In case we are completing on a selector, look as the msymbol
3435 again and feed all the selectors into the mill. */
3436
3437 static void
3438 completion_list_objc_symbol (struct minimal_symbol *msymbol, char *sym_text,
3439 int sym_text_len, char *text, char *word)
3440 {
3441 static char *tmp = NULL;
3442 static unsigned int tmplen = 0;
3443
3444 char *method, *category, *selector;
3445 char *tmp2 = NULL;
3446
3447 method = SYMBOL_NATURAL_NAME (msymbol);
3448
3449 /* Is it a method? */
3450 if ((method[0] != '-') && (method[0] != '+'))
3451 return;
3452
3453 if (sym_text[0] == '[')
3454 /* Complete on shortened method method. */
3455 completion_list_add_name (method + 1, sym_text, sym_text_len, text, word);
3456
3457 while ((strlen (method) + 1) >= tmplen)
3458 {
3459 if (tmplen == 0)
3460 tmplen = 1024;
3461 else
3462 tmplen *= 2;
3463 tmp = xrealloc (tmp, tmplen);
3464 }
3465 selector = strchr (method, ' ');
3466 if (selector != NULL)
3467 selector++;
3468
3469 category = strchr (method, '(');
3470
3471 if ((category != NULL) && (selector != NULL))
3472 {
3473 memcpy (tmp, method, (category - method));
3474 tmp[category - method] = ' ';
3475 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
3476 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
3477 if (sym_text[0] == '[')
3478 completion_list_add_name (tmp + 1, sym_text, sym_text_len, text, word);
3479 }
3480
3481 if (selector != NULL)
3482 {
3483 /* Complete on selector only. */
3484 strcpy (tmp, selector);
3485 tmp2 = strchr (tmp, ']');
3486 if (tmp2 != NULL)
3487 *tmp2 = '\0';
3488
3489 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
3490 }
3491 }
3492
3493 /* Break the non-quoted text based on the characters which are in
3494 symbols. FIXME: This should probably be language-specific. */
3495
3496 static char *
3497 language_search_unquoted_string (char *text, char *p)
3498 {
3499 for (; p > text; --p)
3500 {
3501 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
3502 continue;
3503 else
3504 {
3505 if ((current_language->la_language == language_objc))
3506 {
3507 if (p[-1] == ':') /* might be part of a method name */
3508 continue;
3509 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
3510 p -= 2; /* beginning of a method name */
3511 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
3512 { /* might be part of a method name */
3513 char *t = p;
3514
3515 /* Seeing a ' ' or a '(' is not conclusive evidence
3516 that we are in the middle of a method name. However,
3517 finding "-[" or "+[" should be pretty un-ambiguous.
3518 Unfortunately we have to find it now to decide. */
3519
3520 while (t > text)
3521 if (isalnum (t[-1]) || t[-1] == '_' ||
3522 t[-1] == ' ' || t[-1] == ':' ||
3523 t[-1] == '(' || t[-1] == ')')
3524 --t;
3525 else
3526 break;
3527
3528 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
3529 p = t - 2; /* method name detected */
3530 /* else we leave with p unchanged */
3531 }
3532 }
3533 break;
3534 }
3535 }
3536 return p;
3537 }
3538
3539
3540 /* Return a NULL terminated array of all symbols (regardless of class)
3541 which begin by matching TEXT. If the answer is no symbols, then
3542 the return value is an array which contains only a NULL pointer.
3543
3544 Problem: All of the symbols have to be copied because readline frees them.
3545 I'm not going to worry about this; hopefully there won't be that many. */
3546
3547 char **
3548 make_symbol_completion_list (char *text, char *word)
3549 {
3550 struct symbol *sym;
3551 struct symtab *s;
3552 struct partial_symtab *ps;
3553 struct minimal_symbol *msymbol;
3554 struct objfile *objfile;
3555 struct block *b, *surrounding_static_block = 0;
3556 struct dict_iterator iter;
3557 int j;
3558 struct partial_symbol **psym;
3559 /* The symbol we are completing on. Points in same buffer as text. */
3560 char *sym_text;
3561 /* Length of sym_text. */
3562 int sym_text_len;
3563
3564 /* Now look for the symbol we are supposed to complete on.
3565 FIXME: This should be language-specific. */
3566 {
3567 char *p;
3568 char quote_found;
3569 char *quote_pos = NULL;
3570
3571 /* First see if this is a quoted string. */
3572 quote_found = '\0';
3573 for (p = text; *p != '\0'; ++p)
3574 {
3575 if (quote_found != '\0')
3576 {
3577 if (*p == quote_found)
3578 /* Found close quote. */
3579 quote_found = '\0';
3580 else if (*p == '\\' && p[1] == quote_found)
3581 /* A backslash followed by the quote character
3582 doesn't end the string. */
3583 ++p;
3584 }
3585 else if (*p == '\'' || *p == '"')
3586 {
3587 quote_found = *p;
3588 quote_pos = p;
3589 }
3590 }
3591 if (quote_found == '\'')
3592 /* A string within single quotes can be a symbol, so complete on it. */
3593 sym_text = quote_pos + 1;
3594 else if (quote_found == '"')
3595 /* A double-quoted string is never a symbol, nor does it make sense
3596 to complete it any other way. */
3597 {
3598 return_val = (char **) xmalloc (sizeof (char *));
3599 return_val[0] = NULL;
3600 return return_val;
3601 }
3602 else
3603 {
3604 /* It is not a quoted string. Break it based on the characters
3605 which are in symbols. */
3606 while (p > text)
3607 {
3608 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
3609 --p;
3610 else
3611 break;
3612 }
3613 sym_text = p;
3614 }
3615 }
3616
3617 sym_text_len = strlen (sym_text);
3618
3619 return_val_size = 100;
3620 return_val_index = 0;
3621 return_val = (char **) xmalloc ((return_val_size + 1) * sizeof (char *));
3622 return_val[0] = NULL;
3623
3624 /* Look through the partial symtabs for all symbols which begin
3625 by matching SYM_TEXT. Add each one that you find to the list. */
3626
3627 ALL_PSYMTABS (objfile, ps)
3628 {
3629 /* If the psymtab's been read in we'll get it when we search
3630 through the blockvector. */
3631 if (ps->readin)
3632 continue;
3633
3634 for (psym = objfile->global_psymbols.list + ps->globals_offset;
3635 psym < (objfile->global_psymbols.list + ps->globals_offset
3636 + ps->n_global_syms);
3637 psym++)
3638 {
3639 /* If interrupted, then quit. */
3640 QUIT;
3641 COMPLETION_LIST_ADD_SYMBOL (*psym, sym_text, sym_text_len, text, word);
3642 }
3643
3644 for (psym = objfile->static_psymbols.list + ps->statics_offset;
3645 psym < (objfile->static_psymbols.list + ps->statics_offset
3646 + ps->n_static_syms);
3647 psym++)
3648 {
3649 QUIT;
3650 COMPLETION_LIST_ADD_SYMBOL (*psym, sym_text, sym_text_len, text, word);
3651 }
3652 }
3653
3654 /* At this point scan through the misc symbol vectors and add each
3655 symbol you find to the list. Eventually we want to ignore
3656 anything that isn't a text symbol (everything else will be
3657 handled by the psymtab code above). */
3658
3659 ALL_MSYMBOLS (objfile, msymbol)
3660 {
3661 QUIT;
3662 COMPLETION_LIST_ADD_SYMBOL (msymbol, sym_text, sym_text_len, text, word);
3663
3664 completion_list_objc_symbol (msymbol, sym_text, sym_text_len, text, word);
3665 }
3666
3667 /* Search upwards from currently selected frame (so that we can
3668 complete on local vars. */
3669
3670 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
3671 {
3672 if (!BLOCK_SUPERBLOCK (b))
3673 {
3674 surrounding_static_block = b; /* For elmin of dups */
3675 }
3676
3677 /* Also catch fields of types defined in this places which match our
3678 text string. Only complete on types visible from current context. */
3679
3680 ALL_BLOCK_SYMBOLS (b, iter, sym)
3681 {
3682 QUIT;
3683 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
3684 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
3685 {
3686 struct type *t = SYMBOL_TYPE (sym);
3687 enum type_code c = TYPE_CODE (t);
3688
3689 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
3690 {
3691 for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++)
3692 {
3693 if (TYPE_FIELD_NAME (t, j))
3694 {
3695 completion_list_add_name (TYPE_FIELD_NAME (t, j),
3696 sym_text, sym_text_len, text, word);
3697 }
3698 }
3699 }
3700 }
3701 }
3702 }
3703
3704 /* Go through the symtabs and check the externs and statics for
3705 symbols which match. */
3706
3707 ALL_SYMTABS (objfile, s)
3708 {
3709 QUIT;
3710 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
3711 ALL_BLOCK_SYMBOLS (b, iter, sym)
3712 {
3713 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
3714 }
3715 }
3716
3717 ALL_SYMTABS (objfile, s)
3718 {
3719 QUIT;
3720 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
3721 /* Don't do this block twice. */
3722 if (b == surrounding_static_block)
3723 continue;
3724 ALL_BLOCK_SYMBOLS (b, iter, sym)
3725 {
3726 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
3727 }
3728 }
3729
3730 return (return_val);
3731 }
3732
3733 /* Like make_symbol_completion_list, but returns a list of symbols
3734 defined in a source file FILE. */
3735
3736 char **
3737 make_file_symbol_completion_list (char *text, char *word, char *srcfile)
3738 {
3739 struct symbol *sym;
3740 struct symtab *s;
3741 struct block *b;
3742 struct dict_iterator iter;
3743 /* The symbol we are completing on. Points in same buffer as text. */
3744 char *sym_text;
3745 /* Length of sym_text. */
3746 int sym_text_len;
3747
3748 /* Now look for the symbol we are supposed to complete on.
3749 FIXME: This should be language-specific. */
3750 {
3751 char *p;
3752 char quote_found;
3753 char *quote_pos = NULL;
3754
3755 /* First see if this is a quoted string. */
3756 quote_found = '\0';
3757 for (p = text; *p != '\0'; ++p)
3758 {
3759 if (quote_found != '\0')
3760 {
3761 if (*p == quote_found)
3762 /* Found close quote. */
3763 quote_found = '\0';
3764 else if (*p == '\\' && p[1] == quote_found)
3765 /* A backslash followed by the quote character
3766 doesn't end the string. */
3767 ++p;
3768 }
3769 else if (*p == '\'' || *p == '"')
3770 {
3771 quote_found = *p;
3772 quote_pos = p;
3773 }
3774 }
3775 if (quote_found == '\'')
3776 /* A string within single quotes can be a symbol, so complete on it. */
3777 sym_text = quote_pos + 1;
3778 else if (quote_found == '"')
3779 /* A double-quoted string is never a symbol, nor does it make sense
3780 to complete it any other way. */
3781 {
3782 return_val = (char **) xmalloc (sizeof (char *));
3783 return_val[0] = NULL;
3784 return return_val;
3785 }
3786 else
3787 {
3788 /* Not a quoted string. */
3789 sym_text = language_search_unquoted_string (text, p);
3790 }
3791 }
3792
3793 sym_text_len = strlen (sym_text);
3794
3795 return_val_size = 10;
3796 return_val_index = 0;
3797 return_val = (char **) xmalloc ((return_val_size + 1) * sizeof (char *));
3798 return_val[0] = NULL;
3799
3800 /* Find the symtab for SRCFILE (this loads it if it was not yet read
3801 in). */
3802 s = lookup_symtab (srcfile);
3803 if (s == NULL)
3804 {
3805 /* Maybe they typed the file with leading directories, while the
3806 symbol tables record only its basename. */
3807 const char *tail = lbasename (srcfile);
3808
3809 if (tail > srcfile)
3810 s = lookup_symtab (tail);
3811 }
3812
3813 /* If we have no symtab for that file, return an empty list. */
3814 if (s == NULL)
3815 return (return_val);
3816
3817 /* Go through this symtab and check the externs and statics for
3818 symbols which match. */
3819
3820 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
3821 ALL_BLOCK_SYMBOLS (b, iter, sym)
3822 {
3823 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
3824 }
3825
3826 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
3827 ALL_BLOCK_SYMBOLS (b, iter, sym)
3828 {
3829 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
3830 }
3831
3832 return (return_val);
3833 }
3834
3835 /* A helper function for make_source_files_completion_list. It adds
3836 another file name to a list of possible completions, growing the
3837 list as necessary. */
3838
3839 static void
3840 add_filename_to_list (const char *fname, char *text, char *word,
3841 char ***list, int *list_used, int *list_alloced)
3842 {
3843 char *new;
3844 size_t fnlen = strlen (fname);
3845
3846 if (*list_used + 1 >= *list_alloced)
3847 {
3848 *list_alloced *= 2;
3849 *list = (char **) xrealloc ((char *) *list,
3850 *list_alloced * sizeof (char *));
3851 }
3852
3853 if (word == text)
3854 {
3855 /* Return exactly fname. */
3856 new = xmalloc (fnlen + 5);
3857 strcpy (new, fname);
3858 }
3859 else if (word > text)
3860 {
3861 /* Return some portion of fname. */
3862 new = xmalloc (fnlen + 5);
3863 strcpy (new, fname + (word - text));
3864 }
3865 else
3866 {
3867 /* Return some of TEXT plus fname. */
3868 new = xmalloc (fnlen + (text - word) + 5);
3869 strncpy (new, word, text - word);
3870 new[text - word] = '\0';
3871 strcat (new, fname);
3872 }
3873 (*list)[*list_used] = new;
3874 (*list)[++*list_used] = NULL;
3875 }
3876
3877 static int
3878 not_interesting_fname (const char *fname)
3879 {
3880 static const char *illegal_aliens[] = {
3881 "_globals_", /* inserted by coff_symtab_read */
3882 NULL
3883 };
3884 int i;
3885
3886 for (i = 0; illegal_aliens[i]; i++)
3887 {
3888 if (strcmp (fname, illegal_aliens[i]) == 0)
3889 return 1;
3890 }
3891 return 0;
3892 }
3893
3894 /* Return a NULL terminated array of all source files whose names
3895 begin with matching TEXT. The file names are looked up in the
3896 symbol tables of this program. If the answer is no matchess, then
3897 the return value is an array which contains only a NULL pointer. */
3898
3899 char **
3900 make_source_files_completion_list (char *text, char *word)
3901 {
3902 struct symtab *s;
3903 struct partial_symtab *ps;
3904 struct objfile *objfile;
3905 int first = 1;
3906 int list_alloced = 1;
3907 int list_used = 0;
3908 size_t text_len = strlen (text);
3909 char **list = (char **) xmalloc (list_alloced * sizeof (char *));
3910 const char *base_name;
3911
3912 list[0] = NULL;
3913
3914 if (!have_full_symbols () && !have_partial_symbols ())
3915 return list;
3916
3917 ALL_SYMTABS (objfile, s)
3918 {
3919 if (not_interesting_fname (s->filename))
3920 continue;
3921 if (!filename_seen (s->filename, 1, &first)
3922 #if HAVE_DOS_BASED_FILE_SYSTEM
3923 && strncasecmp (s->filename, text, text_len) == 0
3924 #else
3925 && strncmp (s->filename, text, text_len) == 0
3926 #endif
3927 )
3928 {
3929 /* This file matches for a completion; add it to the current
3930 list of matches. */
3931 add_filename_to_list (s->filename, text, word,
3932 &list, &list_used, &list_alloced);
3933 }
3934 else
3935 {
3936 /* NOTE: We allow the user to type a base name when the
3937 debug info records leading directories, but not the other
3938 way around. This is what subroutines of breakpoint
3939 command do when they parse file names. */
3940 base_name = lbasename (s->filename);
3941 if (base_name != s->filename
3942 && !filename_seen (base_name, 1, &first)
3943 #if HAVE_DOS_BASED_FILE_SYSTEM
3944 && strncasecmp (base_name, text, text_len) == 0
3945 #else
3946 && strncmp (base_name, text, text_len) == 0
3947 #endif
3948 )
3949 add_filename_to_list (base_name, text, word,
3950 &list, &list_used, &list_alloced);
3951 }
3952 }
3953
3954 ALL_PSYMTABS (objfile, ps)
3955 {
3956 if (not_interesting_fname (ps->filename))
3957 continue;
3958 if (!ps->readin)
3959 {
3960 if (!filename_seen (ps->filename, 1, &first)
3961 #if HAVE_DOS_BASED_FILE_SYSTEM
3962 && strncasecmp (ps->filename, text, text_len) == 0
3963 #else
3964 && strncmp (ps->filename, text, text_len) == 0
3965 #endif
3966 )
3967 {
3968 /* This file matches for a completion; add it to the
3969 current list of matches. */
3970 add_filename_to_list (ps->filename, text, word,
3971 &list, &list_used, &list_alloced);
3972
3973 }
3974 else
3975 {
3976 base_name = lbasename (ps->filename);
3977 if (base_name != ps->filename
3978 && !filename_seen (base_name, 1, &first)
3979 #if HAVE_DOS_BASED_FILE_SYSTEM
3980 && strncasecmp (base_name, text, text_len) == 0
3981 #else
3982 && strncmp (base_name, text, text_len) == 0
3983 #endif
3984 )
3985 add_filename_to_list (base_name, text, word,
3986 &list, &list_used, &list_alloced);
3987 }
3988 }
3989 }
3990
3991 return list;
3992 }
3993
3994 /* Determine if PC is in the prologue of a function. The prologue is the area
3995 between the first instruction of a function, and the first executable line.
3996 Returns 1 if PC *might* be in prologue, 0 if definately *not* in prologue.
3997
3998 If non-zero, func_start is where we think the prologue starts, possibly
3999 by previous examination of symbol table information.
4000 */
4001
4002 int
4003 in_prologue (CORE_ADDR pc, CORE_ADDR func_start)
4004 {
4005 struct symtab_and_line sal;
4006 CORE_ADDR func_addr, func_end;
4007
4008 /* We have several sources of information we can consult to figure
4009 this out.
4010 - Compilers usually emit line number info that marks the prologue
4011 as its own "source line". So the ending address of that "line"
4012 is the end of the prologue. If available, this is the most
4013 reliable method.
4014 - The minimal symbols and partial symbols, which can usually tell
4015 us the starting and ending addresses of a function.
4016 - If we know the function's start address, we can call the
4017 architecture-defined SKIP_PROLOGUE function to analyze the
4018 instruction stream and guess where the prologue ends.
4019 - Our `func_start' argument; if non-zero, this is the caller's
4020 best guess as to the function's entry point. At the time of
4021 this writing, handle_inferior_event doesn't get this right, so
4022 it should be our last resort. */
4023
4024 /* Consult the partial symbol table, to find which function
4025 the PC is in. */
4026 if (! find_pc_partial_function (pc, NULL, &func_addr, &func_end))
4027 {
4028 CORE_ADDR prologue_end;
4029
4030 /* We don't even have minsym information, so fall back to using
4031 func_start, if given. */
4032 if (! func_start)
4033 return 1; /* We *might* be in a prologue. */
4034
4035 prologue_end = SKIP_PROLOGUE (func_start);
4036
4037 return func_start <= pc && pc < prologue_end;
4038 }
4039
4040 /* If we have line number information for the function, that's
4041 usually pretty reliable. */
4042 sal = find_pc_line (func_addr, 0);
4043
4044 /* Now sal describes the source line at the function's entry point,
4045 which (by convention) is the prologue. The end of that "line",
4046 sal.end, is the end of the prologue.
4047
4048 Note that, for functions whose source code is all on a single
4049 line, the line number information doesn't always end up this way.
4050 So we must verify that our purported end-of-prologue address is
4051 *within* the function, not at its start or end. */
4052 if (sal.line == 0
4053 || sal.end <= func_addr
4054 || func_end <= sal.end)
4055 {
4056 /* We don't have any good line number info, so use the minsym
4057 information, together with the architecture-specific prologue
4058 scanning code. */
4059 CORE_ADDR prologue_end = SKIP_PROLOGUE (func_addr);
4060
4061 return func_addr <= pc && pc < prologue_end;
4062 }
4063
4064 /* We have line number info, and it looks good. */
4065 return func_addr <= pc && pc < sal.end;
4066 }
4067
4068 /* Given PC at the function's start address, attempt to find the
4069 prologue end using SAL information. Return zero if the skip fails.
4070
4071 A non-optimized prologue traditionally has one SAL for the function
4072 and a second for the function body. A single line function has
4073 them both pointing at the same line.
4074
4075 An optimized prologue is similar but the prologue may contain
4076 instructions (SALs) from the instruction body. Need to skip those
4077 while not getting into the function body.
4078
4079 The functions end point and an increasing SAL line are used as
4080 indicators of the prologue's endpoint.
4081
4082 This code is based on the function refine_prologue_limit (versions
4083 found in both ia64 and ppc). */
4084
4085 CORE_ADDR
4086 skip_prologue_using_sal (CORE_ADDR func_addr)
4087 {
4088 struct symtab_and_line prologue_sal;
4089 CORE_ADDR start_pc;
4090 CORE_ADDR end_pc;
4091
4092 /* Get an initial range for the function. */
4093 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
4094 start_pc += DEPRECATED_FUNCTION_START_OFFSET;
4095
4096 prologue_sal = find_pc_line (start_pc, 0);
4097 if (prologue_sal.line != 0)
4098 {
4099 /* If there is only one sal that covers the entire function,
4100 then it is probably a single line function, like
4101 "foo(){}". */
4102 if (prologue_sal.end == end_pc)
4103 return start_pc;
4104 while (prologue_sal.end < end_pc)
4105 {
4106 struct symtab_and_line sal;
4107
4108 sal = find_pc_line (prologue_sal.end, 0);
4109 if (sal.line == 0)
4110 break;
4111 /* Assume that a consecutive SAL for the same (or larger)
4112 line mark the prologue -> body transition. */
4113 if (sal.line >= prologue_sal.line)
4114 break;
4115 /* The case in which compiler's optimizer/scheduler has
4116 moved instructions into the prologue. We look ahead in
4117 the function looking for address ranges whose
4118 corresponding line number is less the first one that we
4119 found for the function. This is more conservative then
4120 refine_prologue_limit which scans a large number of SALs
4121 looking for any in the prologue */
4122 prologue_sal = sal;
4123 }
4124 }
4125 return prologue_sal.end;
4126 }
4127 \f
4128 struct symtabs_and_lines
4129 decode_line_spec (char *string, int funfirstline)
4130 {
4131 struct symtabs_and_lines sals;
4132 struct symtab_and_line cursal;
4133
4134 if (string == 0)
4135 error (_("Empty line specification."));
4136
4137 /* We use whatever is set as the current source line. We do not try
4138 and get a default or it will recursively call us! */
4139 cursal = get_current_source_symtab_and_line ();
4140
4141 sals = decode_line_1 (&string, funfirstline,
4142 cursal.symtab, cursal.line,
4143 (char ***) NULL, NULL);
4144
4145 if (*string)
4146 error (_("Junk at end of line specification: %s"), string);
4147 return sals;
4148 }
4149
4150 /* Track MAIN */
4151 static char *name_of_main;
4152
4153 void
4154 set_main_name (const char *name)
4155 {
4156 if (name_of_main != NULL)
4157 {
4158 xfree (name_of_main);
4159 name_of_main = NULL;
4160 }
4161 if (name != NULL)
4162 {
4163 name_of_main = xstrdup (name);
4164 }
4165 }
4166
4167 /* Deduce the name of the main procedure, and set NAME_OF_MAIN
4168 accordingly. */
4169
4170 static void
4171 find_main_name (void)
4172 {
4173 char *new_main_name;
4174
4175 /* Try to see if the main procedure is in Ada. */
4176 /* FIXME: brobecker/2005-03-07: Another way of doing this would
4177 be to add a new method in the language vector, and call this
4178 method for each language until one of them returns a non-empty
4179 name. This would allow us to remove this hard-coded call to
4180 an Ada function. It is not clear that this is a better approach
4181 at this point, because all methods need to be written in a way
4182 such that false positives never be returned. For instance, it is
4183 important that a method does not return a wrong name for the main
4184 procedure if the main procedure is actually written in a different
4185 language. It is easy to guaranty this with Ada, since we use a
4186 special symbol generated only when the main in Ada to find the name
4187 of the main procedure. It is difficult however to see how this can
4188 be guarantied for languages such as C, for instance. This suggests
4189 that order of call for these methods becomes important, which means
4190 a more complicated approach. */
4191 new_main_name = ada_main_name ();
4192 if (new_main_name != NULL)
4193 {
4194 set_main_name (new_main_name);
4195 return;
4196 }
4197
4198 /* The languages above didn't identify the name of the main procedure.
4199 Fallback to "main". */
4200 set_main_name ("main");
4201 }
4202
4203 char *
4204 main_name (void)
4205 {
4206 if (name_of_main == NULL)
4207 find_main_name ();
4208
4209 return name_of_main;
4210 }
4211
4212 /* Handle ``executable_changed'' events for the symtab module. */
4213
4214 static void
4215 symtab_observer_executable_changed (void *unused)
4216 {
4217 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
4218 set_main_name (NULL);
4219 }
4220
4221 void
4222 _initialize_symtab (void)
4223 {
4224 add_info ("variables", variables_info, _("\
4225 All global and static variable names, or those matching REGEXP."));
4226 if (dbx_commands)
4227 add_com ("whereis", class_info, variables_info, _("\
4228 All global and static variable names, or those matching REGEXP."));
4229
4230 add_info ("functions", functions_info,
4231 _("All function names, or those matching REGEXP."));
4232
4233
4234 /* FIXME: This command has at least the following problems:
4235 1. It prints builtin types (in a very strange and confusing fashion).
4236 2. It doesn't print right, e.g. with
4237 typedef struct foo *FOO
4238 type_print prints "FOO" when we want to make it (in this situation)
4239 print "struct foo *".
4240 I also think "ptype" or "whatis" is more likely to be useful (but if
4241 there is much disagreement "info types" can be fixed). */
4242 add_info ("types", types_info,
4243 _("All type names, or those matching REGEXP."));
4244
4245 add_info ("sources", sources_info,
4246 _("Source files in the program."));
4247
4248 add_com ("rbreak", class_breakpoint, rbreak_command,
4249 _("Set a breakpoint for all functions matching REGEXP."));
4250
4251 if (xdb_commands)
4252 {
4253 add_com ("lf", class_info, sources_info,
4254 _("Source files in the program"));
4255 add_com ("lg", class_info, variables_info, _("\
4256 All global and static variable names, or those matching REGEXP."));
4257 }
4258
4259 /* Initialize the one built-in type that isn't language dependent... */
4260 builtin_type_error = init_type (TYPE_CODE_ERROR, 0, 0,
4261 "<unknown type>", (struct objfile *) NULL);
4262
4263 observer_attach_executable_changed (symtab_observer_executable_changed);
4264 }
This page took 0.165461 seconds and 4 git commands to generate.