Extend "skip" command to support -file, -gfile, -function, -rfunction.
[deliverable/binutils-gdb.git] / gdb / symtab.c
1 /* Symbol table lookup for the GNU debugger, GDB.
2
3 Copyright (C) 1986-2016 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "gdbcore.h"
24 #include "frame.h"
25 #include "target.h"
26 #include "value.h"
27 #include "symfile.h"
28 #include "objfiles.h"
29 #include "gdbcmd.h"
30 #include "gdb_regex.h"
31 #include "expression.h"
32 #include "language.h"
33 #include "demangle.h"
34 #include "inferior.h"
35 #include "source.h"
36 #include "filenames.h" /* for FILENAME_CMP */
37 #include "objc-lang.h"
38 #include "d-lang.h"
39 #include "ada-lang.h"
40 #include "go-lang.h"
41 #include "p-lang.h"
42 #include "addrmap.h"
43 #include "cli/cli-utils.h"
44 #include "fnmatch.h"
45 #include "hashtab.h"
46
47 #include "gdb_obstack.h"
48 #include "block.h"
49 #include "dictionary.h"
50
51 #include <sys/types.h>
52 #include <fcntl.h>
53 #include <sys/stat.h>
54 #include <ctype.h>
55 #include "cp-abi.h"
56 #include "cp-support.h"
57 #include "observer.h"
58 #include "solist.h"
59 #include "macrotab.h"
60 #include "macroscope.h"
61
62 #include "parser-defs.h"
63 #include "completer.h"
64
65 /* Forward declarations for local functions. */
66
67 static void rbreak_command (char *, int);
68
69 static int find_line_common (struct linetable *, int, int *, int);
70
71 static struct block_symbol
72 lookup_symbol_aux (const char *name,
73 const struct block *block,
74 const domain_enum domain,
75 enum language language,
76 struct field_of_this_result *);
77
78 static
79 struct block_symbol lookup_local_symbol (const char *name,
80 const struct block *block,
81 const domain_enum domain,
82 enum language language);
83
84 static struct block_symbol
85 lookup_symbol_in_objfile (struct objfile *objfile, int block_index,
86 const char *name, const domain_enum domain);
87
88 /* See symtab.h. */
89 const struct block_symbol null_block_symbol = { NULL, NULL };
90
91 extern initialize_file_ftype _initialize_symtab;
92
93 /* Program space key for finding name and language of "main". */
94
95 static const struct program_space_data *main_progspace_key;
96
97 /* Type of the data stored on the program space. */
98
99 struct main_info
100 {
101 /* Name of "main". */
102
103 char *name_of_main;
104
105 /* Language of "main". */
106
107 enum language language_of_main;
108 };
109
110 /* Program space key for finding its symbol cache. */
111
112 static const struct program_space_data *symbol_cache_key;
113
114 /* The default symbol cache size.
115 There is no extra cpu cost for large N (except when flushing the cache,
116 which is rare). The value here is just a first attempt. A better default
117 value may be higher or lower. A prime number can make up for a bad hash
118 computation, so that's why the number is what it is. */
119 #define DEFAULT_SYMBOL_CACHE_SIZE 1021
120
121 /* The maximum symbol cache size.
122 There's no method to the decision of what value to use here, other than
123 there's no point in allowing a user typo to make gdb consume all memory. */
124 #define MAX_SYMBOL_CACHE_SIZE (1024*1024)
125
126 /* symbol_cache_lookup returns this if a previous lookup failed to find the
127 symbol in any objfile. */
128 #define SYMBOL_LOOKUP_FAILED \
129 ((struct block_symbol) {(struct symbol *) 1, NULL})
130 #define SYMBOL_LOOKUP_FAILED_P(SIB) (SIB.symbol == (struct symbol *) 1)
131
132 /* Recording lookups that don't find the symbol is just as important, if not
133 more so, than recording found symbols. */
134
135 enum symbol_cache_slot_state
136 {
137 SYMBOL_SLOT_UNUSED,
138 SYMBOL_SLOT_NOT_FOUND,
139 SYMBOL_SLOT_FOUND
140 };
141
142 struct symbol_cache_slot
143 {
144 enum symbol_cache_slot_state state;
145
146 /* The objfile that was current when the symbol was looked up.
147 This is only needed for global blocks, but for simplicity's sake
148 we allocate the space for both. If data shows the extra space used
149 for static blocks is a problem, we can split things up then.
150
151 Global blocks need cache lookup to include the objfile context because
152 we need to account for gdbarch_iterate_over_objfiles_in_search_order
153 which can traverse objfiles in, effectively, any order, depending on
154 the current objfile, thus affecting which symbol is found. Normally,
155 only the current objfile is searched first, and then the rest are
156 searched in recorded order; but putting cache lookup inside
157 gdbarch_iterate_over_objfiles_in_search_order would be awkward.
158 Instead we just make the current objfile part of the context of
159 cache lookup. This means we can record the same symbol multiple times,
160 each with a different "current objfile" that was in effect when the
161 lookup was saved in the cache, but cache space is pretty cheap. */
162 const struct objfile *objfile_context;
163
164 union
165 {
166 struct block_symbol found;
167 struct
168 {
169 char *name;
170 domain_enum domain;
171 } not_found;
172 } value;
173 };
174
175 /* Symbols don't specify global vs static block.
176 So keep them in separate caches. */
177
178 struct block_symbol_cache
179 {
180 unsigned int hits;
181 unsigned int misses;
182 unsigned int collisions;
183
184 /* SYMBOLS is a variable length array of this size.
185 One can imagine that in general one cache (global/static) should be a
186 fraction of the size of the other, but there's no data at the moment
187 on which to decide. */
188 unsigned int size;
189
190 struct symbol_cache_slot symbols[1];
191 };
192
193 /* The symbol cache.
194
195 Searching for symbols in the static and global blocks over multiple objfiles
196 again and again can be slow, as can searching very big objfiles. This is a
197 simple cache to improve symbol lookup performance, which is critical to
198 overall gdb performance.
199
200 Symbols are hashed on the name, its domain, and block.
201 They are also hashed on their objfile for objfile-specific lookups. */
202
203 struct symbol_cache
204 {
205 struct block_symbol_cache *global_symbols;
206 struct block_symbol_cache *static_symbols;
207 };
208
209 /* When non-zero, print debugging messages related to symtab creation. */
210 unsigned int symtab_create_debug = 0;
211
212 /* When non-zero, print debugging messages related to symbol lookup. */
213 unsigned int symbol_lookup_debug = 0;
214
215 /* The size of the cache is staged here. */
216 static unsigned int new_symbol_cache_size = DEFAULT_SYMBOL_CACHE_SIZE;
217
218 /* The current value of the symbol cache size.
219 This is saved so that if the user enters a value too big we can restore
220 the original value from here. */
221 static unsigned int symbol_cache_size = DEFAULT_SYMBOL_CACHE_SIZE;
222
223 /* Non-zero if a file may be known by two different basenames.
224 This is the uncommon case, and significantly slows down gdb.
225 Default set to "off" to not slow down the common case. */
226 int basenames_may_differ = 0;
227
228 /* Allow the user to configure the debugger behavior with respect
229 to multiple-choice menus when more than one symbol matches during
230 a symbol lookup. */
231
232 const char multiple_symbols_ask[] = "ask";
233 const char multiple_symbols_all[] = "all";
234 const char multiple_symbols_cancel[] = "cancel";
235 static const char *const multiple_symbols_modes[] =
236 {
237 multiple_symbols_ask,
238 multiple_symbols_all,
239 multiple_symbols_cancel,
240 NULL
241 };
242 static const char *multiple_symbols_mode = multiple_symbols_all;
243
244 /* Read-only accessor to AUTO_SELECT_MODE. */
245
246 const char *
247 multiple_symbols_select_mode (void)
248 {
249 return multiple_symbols_mode;
250 }
251
252 /* Return the name of a domain_enum. */
253
254 const char *
255 domain_name (domain_enum e)
256 {
257 switch (e)
258 {
259 case UNDEF_DOMAIN: return "UNDEF_DOMAIN";
260 case VAR_DOMAIN: return "VAR_DOMAIN";
261 case STRUCT_DOMAIN: return "STRUCT_DOMAIN";
262 case MODULE_DOMAIN: return "MODULE_DOMAIN";
263 case LABEL_DOMAIN: return "LABEL_DOMAIN";
264 case COMMON_BLOCK_DOMAIN: return "COMMON_BLOCK_DOMAIN";
265 default: gdb_assert_not_reached ("bad domain_enum");
266 }
267 }
268
269 /* Return the name of a search_domain . */
270
271 const char *
272 search_domain_name (enum search_domain e)
273 {
274 switch (e)
275 {
276 case VARIABLES_DOMAIN: return "VARIABLES_DOMAIN";
277 case FUNCTIONS_DOMAIN: return "FUNCTIONS_DOMAIN";
278 case TYPES_DOMAIN: return "TYPES_DOMAIN";
279 case ALL_DOMAIN: return "ALL_DOMAIN";
280 default: gdb_assert_not_reached ("bad search_domain");
281 }
282 }
283
284 /* See symtab.h. */
285
286 struct symtab *
287 compunit_primary_filetab (const struct compunit_symtab *cust)
288 {
289 gdb_assert (COMPUNIT_FILETABS (cust) != NULL);
290
291 /* The primary file symtab is the first one in the list. */
292 return COMPUNIT_FILETABS (cust);
293 }
294
295 /* See symtab.h. */
296
297 enum language
298 compunit_language (const struct compunit_symtab *cust)
299 {
300 struct symtab *symtab = compunit_primary_filetab (cust);
301
302 /* The language of the compunit symtab is the language of its primary
303 source file. */
304 return SYMTAB_LANGUAGE (symtab);
305 }
306
307 /* See whether FILENAME matches SEARCH_NAME using the rule that we
308 advertise to the user. (The manual's description of linespecs
309 describes what we advertise). Returns true if they match, false
310 otherwise. */
311
312 int
313 compare_filenames_for_search (const char *filename, const char *search_name)
314 {
315 int len = strlen (filename);
316 size_t search_len = strlen (search_name);
317
318 if (len < search_len)
319 return 0;
320
321 /* The tail of FILENAME must match. */
322 if (FILENAME_CMP (filename + len - search_len, search_name) != 0)
323 return 0;
324
325 /* Either the names must completely match, or the character
326 preceding the trailing SEARCH_NAME segment of FILENAME must be a
327 directory separator.
328
329 The check !IS_ABSOLUTE_PATH ensures SEARCH_NAME "/dir/file.c"
330 cannot match FILENAME "/path//dir/file.c" - as user has requested
331 absolute path. The sama applies for "c:\file.c" possibly
332 incorrectly hypothetically matching "d:\dir\c:\file.c".
333
334 The HAS_DRIVE_SPEC purpose is to make FILENAME "c:file.c"
335 compatible with SEARCH_NAME "file.c". In such case a compiler had
336 to put the "c:file.c" name into debug info. Such compatibility
337 works only on GDB built for DOS host. */
338 return (len == search_len
339 || (!IS_ABSOLUTE_PATH (search_name)
340 && IS_DIR_SEPARATOR (filename[len - search_len - 1]))
341 || (HAS_DRIVE_SPEC (filename)
342 && STRIP_DRIVE_SPEC (filename) == &filename[len - search_len]));
343 }
344
345 /* Same as compare_filenames_for_search, but for glob-style patterns.
346 Heads up on the order of the arguments. They match the order of
347 compare_filenames_for_search, but it's the opposite of the order of
348 arguments to gdb_filename_fnmatch. */
349
350 int
351 compare_glob_filenames_for_search (const char *filename,
352 const char *search_name)
353 {
354 /* We rely on the property of glob-style patterns with FNM_FILE_NAME that
355 all /s have to be explicitly specified. */
356 int file_path_elements = count_path_elements (filename);
357 int search_path_elements = count_path_elements (search_name);
358
359 if (search_path_elements > file_path_elements)
360 return 0;
361
362 if (IS_ABSOLUTE_PATH (search_name))
363 {
364 return (search_path_elements == file_path_elements
365 && gdb_filename_fnmatch (search_name, filename,
366 FNM_FILE_NAME | FNM_NOESCAPE) == 0);
367 }
368
369 {
370 const char *file_to_compare
371 = strip_leading_path_elements (filename,
372 file_path_elements - search_path_elements);
373
374 return gdb_filename_fnmatch (search_name, file_to_compare,
375 FNM_FILE_NAME | FNM_NOESCAPE) == 0;
376 }
377 }
378
379 /* Check for a symtab of a specific name by searching some symtabs.
380 This is a helper function for callbacks of iterate_over_symtabs.
381
382 If NAME is not absolute, then REAL_PATH is NULL
383 If NAME is absolute, then REAL_PATH is the gdb_realpath form of NAME.
384
385 The return value, NAME, REAL_PATH, CALLBACK, and DATA
386 are identical to the `map_symtabs_matching_filename' method of
387 quick_symbol_functions.
388
389 FIRST and AFTER_LAST indicate the range of compunit symtabs to search.
390 Each symtab within the specified compunit symtab is also searched.
391 AFTER_LAST is one past the last compunit symtab to search; NULL means to
392 search until the end of the list. */
393
394 int
395 iterate_over_some_symtabs (const char *name,
396 const char *real_path,
397 int (*callback) (struct symtab *symtab,
398 void *data),
399 void *data,
400 struct compunit_symtab *first,
401 struct compunit_symtab *after_last)
402 {
403 struct compunit_symtab *cust;
404 struct symtab *s;
405 const char* base_name = lbasename (name);
406
407 for (cust = first; cust != NULL && cust != after_last; cust = cust->next)
408 {
409 ALL_COMPUNIT_FILETABS (cust, s)
410 {
411 if (compare_filenames_for_search (s->filename, name))
412 {
413 if (callback (s, data))
414 return 1;
415 continue;
416 }
417
418 /* Before we invoke realpath, which can get expensive when many
419 files are involved, do a quick comparison of the basenames. */
420 if (! basenames_may_differ
421 && FILENAME_CMP (base_name, lbasename (s->filename)) != 0)
422 continue;
423
424 if (compare_filenames_for_search (symtab_to_fullname (s), name))
425 {
426 if (callback (s, data))
427 return 1;
428 continue;
429 }
430
431 /* If the user gave us an absolute path, try to find the file in
432 this symtab and use its absolute path. */
433 if (real_path != NULL)
434 {
435 const char *fullname = symtab_to_fullname (s);
436
437 gdb_assert (IS_ABSOLUTE_PATH (real_path));
438 gdb_assert (IS_ABSOLUTE_PATH (name));
439 if (FILENAME_CMP (real_path, fullname) == 0)
440 {
441 if (callback (s, data))
442 return 1;
443 continue;
444 }
445 }
446 }
447 }
448
449 return 0;
450 }
451
452 /* Check for a symtab of a specific name; first in symtabs, then in
453 psymtabs. *If* there is no '/' in the name, a match after a '/'
454 in the symtab filename will also work.
455
456 Calls CALLBACK with each symtab that is found and with the supplied
457 DATA. If CALLBACK returns true, the search stops. */
458
459 void
460 iterate_over_symtabs (const char *name,
461 int (*callback) (struct symtab *symtab,
462 void *data),
463 void *data)
464 {
465 struct objfile *objfile;
466 char *real_path = NULL;
467 struct cleanup *cleanups = make_cleanup (null_cleanup, NULL);
468
469 /* Here we are interested in canonicalizing an absolute path, not
470 absolutizing a relative path. */
471 if (IS_ABSOLUTE_PATH (name))
472 {
473 real_path = gdb_realpath (name);
474 make_cleanup (xfree, real_path);
475 gdb_assert (IS_ABSOLUTE_PATH (real_path));
476 }
477
478 ALL_OBJFILES (objfile)
479 {
480 if (iterate_over_some_symtabs (name, real_path, callback, data,
481 objfile->compunit_symtabs, NULL))
482 {
483 do_cleanups (cleanups);
484 return;
485 }
486 }
487
488 /* Same search rules as above apply here, but now we look thru the
489 psymtabs. */
490
491 ALL_OBJFILES (objfile)
492 {
493 if (objfile->sf
494 && objfile->sf->qf->map_symtabs_matching_filename (objfile,
495 name,
496 real_path,
497 callback,
498 data))
499 {
500 do_cleanups (cleanups);
501 return;
502 }
503 }
504
505 do_cleanups (cleanups);
506 }
507
508 /* The callback function used by lookup_symtab. */
509
510 static int
511 lookup_symtab_callback (struct symtab *symtab, void *data)
512 {
513 struct symtab **result_ptr = (struct symtab **) data;
514
515 *result_ptr = symtab;
516 return 1;
517 }
518
519 /* A wrapper for iterate_over_symtabs that returns the first matching
520 symtab, or NULL. */
521
522 struct symtab *
523 lookup_symtab (const char *name)
524 {
525 struct symtab *result = NULL;
526
527 iterate_over_symtabs (name, lookup_symtab_callback, &result);
528 return result;
529 }
530
531 \f
532 /* Mangle a GDB method stub type. This actually reassembles the pieces of the
533 full method name, which consist of the class name (from T), the unadorned
534 method name from METHOD_ID, and the signature for the specific overload,
535 specified by SIGNATURE_ID. Note that this function is g++ specific. */
536
537 char *
538 gdb_mangle_name (struct type *type, int method_id, int signature_id)
539 {
540 int mangled_name_len;
541 char *mangled_name;
542 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
543 struct fn_field *method = &f[signature_id];
544 const char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
545 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
546 const char *newname = type_name_no_tag (type);
547
548 /* Does the form of physname indicate that it is the full mangled name
549 of a constructor (not just the args)? */
550 int is_full_physname_constructor;
551
552 int is_constructor;
553 int is_destructor = is_destructor_name (physname);
554 /* Need a new type prefix. */
555 const char *const_prefix = method->is_const ? "C" : "";
556 const char *volatile_prefix = method->is_volatile ? "V" : "";
557 char buf[20];
558 int len = (newname == NULL ? 0 : strlen (newname));
559
560 /* Nothing to do if physname already contains a fully mangled v3 abi name
561 or an operator name. */
562 if ((physname[0] == '_' && physname[1] == 'Z')
563 || is_operator_name (field_name))
564 return xstrdup (physname);
565
566 is_full_physname_constructor = is_constructor_name (physname);
567
568 is_constructor = is_full_physname_constructor
569 || (newname && strcmp (field_name, newname) == 0);
570
571 if (!is_destructor)
572 is_destructor = (startswith (physname, "__dt"));
573
574 if (is_destructor || is_full_physname_constructor)
575 {
576 mangled_name = (char *) xmalloc (strlen (physname) + 1);
577 strcpy (mangled_name, physname);
578 return mangled_name;
579 }
580
581 if (len == 0)
582 {
583 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
584 }
585 else if (physname[0] == 't' || physname[0] == 'Q')
586 {
587 /* The physname for template and qualified methods already includes
588 the class name. */
589 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
590 newname = NULL;
591 len = 0;
592 }
593 else
594 {
595 xsnprintf (buf, sizeof (buf), "__%s%s%d", const_prefix,
596 volatile_prefix, len);
597 }
598 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
599 + strlen (buf) + len + strlen (physname) + 1);
600
601 mangled_name = (char *) xmalloc (mangled_name_len);
602 if (is_constructor)
603 mangled_name[0] = '\0';
604 else
605 strcpy (mangled_name, field_name);
606
607 strcat (mangled_name, buf);
608 /* If the class doesn't have a name, i.e. newname NULL, then we just
609 mangle it using 0 for the length of the class. Thus it gets mangled
610 as something starting with `::' rather than `classname::'. */
611 if (newname != NULL)
612 strcat (mangled_name, newname);
613
614 strcat (mangled_name, physname);
615 return (mangled_name);
616 }
617
618 /* Set the demangled name of GSYMBOL to NAME. NAME must be already
619 correctly allocated. */
620
621 void
622 symbol_set_demangled_name (struct general_symbol_info *gsymbol,
623 const char *name,
624 struct obstack *obstack)
625 {
626 if (gsymbol->language == language_ada)
627 {
628 if (name == NULL)
629 {
630 gsymbol->ada_mangled = 0;
631 gsymbol->language_specific.obstack = obstack;
632 }
633 else
634 {
635 gsymbol->ada_mangled = 1;
636 gsymbol->language_specific.demangled_name = name;
637 }
638 }
639 else
640 gsymbol->language_specific.demangled_name = name;
641 }
642
643 /* Return the demangled name of GSYMBOL. */
644
645 const char *
646 symbol_get_demangled_name (const struct general_symbol_info *gsymbol)
647 {
648 if (gsymbol->language == language_ada)
649 {
650 if (!gsymbol->ada_mangled)
651 return NULL;
652 /* Fall through. */
653 }
654
655 return gsymbol->language_specific.demangled_name;
656 }
657
658 \f
659 /* Initialize the language dependent portion of a symbol
660 depending upon the language for the symbol. */
661
662 void
663 symbol_set_language (struct general_symbol_info *gsymbol,
664 enum language language,
665 struct obstack *obstack)
666 {
667 gsymbol->language = language;
668 if (gsymbol->language == language_cplus
669 || gsymbol->language == language_d
670 || gsymbol->language == language_go
671 || gsymbol->language == language_java
672 || gsymbol->language == language_objc
673 || gsymbol->language == language_fortran)
674 {
675 symbol_set_demangled_name (gsymbol, NULL, obstack);
676 }
677 else if (gsymbol->language == language_ada)
678 {
679 gdb_assert (gsymbol->ada_mangled == 0);
680 gsymbol->language_specific.obstack = obstack;
681 }
682 else
683 {
684 memset (&gsymbol->language_specific, 0,
685 sizeof (gsymbol->language_specific));
686 }
687 }
688
689 /* Functions to initialize a symbol's mangled name. */
690
691 /* Objects of this type are stored in the demangled name hash table. */
692 struct demangled_name_entry
693 {
694 const char *mangled;
695 char demangled[1];
696 };
697
698 /* Hash function for the demangled name hash. */
699
700 static hashval_t
701 hash_demangled_name_entry (const void *data)
702 {
703 const struct demangled_name_entry *e
704 = (const struct demangled_name_entry *) data;
705
706 return htab_hash_string (e->mangled);
707 }
708
709 /* Equality function for the demangled name hash. */
710
711 static int
712 eq_demangled_name_entry (const void *a, const void *b)
713 {
714 const struct demangled_name_entry *da
715 = (const struct demangled_name_entry *) a;
716 const struct demangled_name_entry *db
717 = (const struct demangled_name_entry *) b;
718
719 return strcmp (da->mangled, db->mangled) == 0;
720 }
721
722 /* Create the hash table used for demangled names. Each hash entry is
723 a pair of strings; one for the mangled name and one for the demangled
724 name. The entry is hashed via just the mangled name. */
725
726 static void
727 create_demangled_names_hash (struct objfile *objfile)
728 {
729 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
730 The hash table code will round this up to the next prime number.
731 Choosing a much larger table size wastes memory, and saves only about
732 1% in symbol reading. */
733
734 objfile->per_bfd->demangled_names_hash = htab_create_alloc
735 (256, hash_demangled_name_entry, eq_demangled_name_entry,
736 NULL, xcalloc, xfree);
737 }
738
739 /* Try to determine the demangled name for a symbol, based on the
740 language of that symbol. If the language is set to language_auto,
741 it will attempt to find any demangling algorithm that works and
742 then set the language appropriately. The returned name is allocated
743 by the demangler and should be xfree'd. */
744
745 static char *
746 symbol_find_demangled_name (struct general_symbol_info *gsymbol,
747 const char *mangled)
748 {
749 char *demangled = NULL;
750
751 if (gsymbol->language == language_unknown)
752 gsymbol->language = language_auto;
753
754 if (gsymbol->language == language_objc
755 || gsymbol->language == language_auto)
756 {
757 demangled =
758 objc_demangle (mangled, 0);
759 if (demangled != NULL)
760 {
761 gsymbol->language = language_objc;
762 return demangled;
763 }
764 }
765 if (gsymbol->language == language_cplus
766 || gsymbol->language == language_auto)
767 {
768 demangled =
769 gdb_demangle (mangled, DMGL_PARAMS | DMGL_ANSI);
770 if (demangled != NULL)
771 {
772 gsymbol->language = language_cplus;
773 return demangled;
774 }
775 }
776 if (gsymbol->language == language_java)
777 {
778 demangled =
779 gdb_demangle (mangled,
780 DMGL_PARAMS | DMGL_ANSI | DMGL_JAVA);
781 if (demangled != NULL)
782 {
783 gsymbol->language = language_java;
784 return demangled;
785 }
786 }
787 if (gsymbol->language == language_d
788 || gsymbol->language == language_auto)
789 {
790 demangled = d_demangle(mangled, 0);
791 if (demangled != NULL)
792 {
793 gsymbol->language = language_d;
794 return demangled;
795 }
796 }
797 /* FIXME(dje): Continually adding languages here is clumsy.
798 Better to just call la_demangle if !auto, and if auto then call
799 a utility routine that tries successive languages in turn and reports
800 which one it finds. I realize the la_demangle options may be different
801 for different languages but there's already a FIXME for that. */
802 if (gsymbol->language == language_go
803 || gsymbol->language == language_auto)
804 {
805 demangled = go_demangle (mangled, 0);
806 if (demangled != NULL)
807 {
808 gsymbol->language = language_go;
809 return demangled;
810 }
811 }
812
813 /* We could support `gsymbol->language == language_fortran' here to provide
814 module namespaces also for inferiors with only minimal symbol table (ELF
815 symbols). Just the mangling standard is not standardized across compilers
816 and there is no DW_AT_producer available for inferiors with only the ELF
817 symbols to check the mangling kind. */
818
819 /* Check for Ada symbols last. See comment below explaining why. */
820
821 if (gsymbol->language == language_auto)
822 {
823 const char *demangled = ada_decode (mangled);
824
825 if (demangled != mangled && demangled != NULL && demangled[0] != '<')
826 {
827 /* Set the gsymbol language to Ada, but still return NULL.
828 Two reasons for that:
829
830 1. For Ada, we prefer computing the symbol's decoded name
831 on the fly rather than pre-compute it, in order to save
832 memory (Ada projects are typically very large).
833
834 2. There are some areas in the definition of the GNAT
835 encoding where, with a bit of bad luck, we might be able
836 to decode a non-Ada symbol, generating an incorrect
837 demangled name (Eg: names ending with "TB" for instance
838 are identified as task bodies and so stripped from
839 the decoded name returned).
840
841 Returning NULL, here, helps us get a little bit of
842 the best of both worlds. Because we're last, we should
843 not affect any of the other languages that were able to
844 demangle the symbol before us; we get to correctly tag
845 Ada symbols as such; and even if we incorrectly tagged
846 a non-Ada symbol, which should be rare, any routing
847 through the Ada language should be transparent (Ada
848 tries to behave much like C/C++ with non-Ada symbols). */
849 gsymbol->language = language_ada;
850 return NULL;
851 }
852 }
853
854 return NULL;
855 }
856
857 /* Set both the mangled and demangled (if any) names for GSYMBOL based
858 on LINKAGE_NAME and LEN. Ordinarily, NAME is copied onto the
859 objfile's obstack; but if COPY_NAME is 0 and if NAME is
860 NUL-terminated, then this function assumes that NAME is already
861 correctly saved (either permanently or with a lifetime tied to the
862 objfile), and it will not be copied.
863
864 The hash table corresponding to OBJFILE is used, and the memory
865 comes from the per-BFD storage_obstack. LINKAGE_NAME is copied,
866 so the pointer can be discarded after calling this function. */
867
868 /* We have to be careful when dealing with Java names: when we run
869 into a Java minimal symbol, we don't know it's a Java symbol, so it
870 gets demangled as a C++ name. This is unfortunate, but there's not
871 much we can do about it: but when demangling partial symbols and
872 regular symbols, we'd better not reuse the wrong demangled name.
873 (See PR gdb/1039.) We solve this by putting a distinctive prefix
874 on Java names when storing them in the hash table. */
875
876 /* FIXME: carlton/2003-03-13: This is an unfortunate situation. I
877 don't mind the Java prefix so much: different languages have
878 different demangling requirements, so it's only natural that we
879 need to keep language data around in our demangling cache. But
880 it's not good that the minimal symbol has the wrong demangled name.
881 Unfortunately, I can't think of any easy solution to that
882 problem. */
883
884 #define JAVA_PREFIX "##JAVA$$"
885 #define JAVA_PREFIX_LEN 8
886
887 void
888 symbol_set_names (struct general_symbol_info *gsymbol,
889 const char *linkage_name, int len, int copy_name,
890 struct objfile *objfile)
891 {
892 struct demangled_name_entry **slot;
893 /* A 0-terminated copy of the linkage name. */
894 const char *linkage_name_copy;
895 /* A copy of the linkage name that might have a special Java prefix
896 added to it, for use when looking names up in the hash table. */
897 const char *lookup_name;
898 /* The length of lookup_name. */
899 int lookup_len;
900 struct demangled_name_entry entry;
901 struct objfile_per_bfd_storage *per_bfd = objfile->per_bfd;
902
903 if (gsymbol->language == language_ada)
904 {
905 /* In Ada, we do the symbol lookups using the mangled name, so
906 we can save some space by not storing the demangled name.
907
908 As a side note, we have also observed some overlap between
909 the C++ mangling and Ada mangling, similarly to what has
910 been observed with Java. Because we don't store the demangled
911 name with the symbol, we don't need to use the same trick
912 as Java. */
913 if (!copy_name)
914 gsymbol->name = linkage_name;
915 else
916 {
917 char *name = (char *) obstack_alloc (&per_bfd->storage_obstack,
918 len + 1);
919
920 memcpy (name, linkage_name, len);
921 name[len] = '\0';
922 gsymbol->name = name;
923 }
924 symbol_set_demangled_name (gsymbol, NULL, &per_bfd->storage_obstack);
925
926 return;
927 }
928
929 if (per_bfd->demangled_names_hash == NULL)
930 create_demangled_names_hash (objfile);
931
932 /* The stabs reader generally provides names that are not
933 NUL-terminated; most of the other readers don't do this, so we
934 can just use the given copy, unless we're in the Java case. */
935 if (gsymbol->language == language_java)
936 {
937 char *alloc_name;
938
939 lookup_len = len + JAVA_PREFIX_LEN;
940 alloc_name = (char *) alloca (lookup_len + 1);
941 memcpy (alloc_name, JAVA_PREFIX, JAVA_PREFIX_LEN);
942 memcpy (alloc_name + JAVA_PREFIX_LEN, linkage_name, len);
943 alloc_name[lookup_len] = '\0';
944
945 lookup_name = alloc_name;
946 linkage_name_copy = alloc_name + JAVA_PREFIX_LEN;
947 }
948 else if (linkage_name[len] != '\0')
949 {
950 char *alloc_name;
951
952 lookup_len = len;
953 alloc_name = (char *) alloca (lookup_len + 1);
954 memcpy (alloc_name, linkage_name, len);
955 alloc_name[lookup_len] = '\0';
956
957 lookup_name = alloc_name;
958 linkage_name_copy = alloc_name;
959 }
960 else
961 {
962 lookup_len = len;
963 lookup_name = linkage_name;
964 linkage_name_copy = linkage_name;
965 }
966
967 entry.mangled = lookup_name;
968 slot = ((struct demangled_name_entry **)
969 htab_find_slot (per_bfd->demangled_names_hash,
970 &entry, INSERT));
971
972 /* If this name is not in the hash table, add it. */
973 if (*slot == NULL
974 /* A C version of the symbol may have already snuck into the table.
975 This happens to, e.g., main.init (__go_init_main). Cope. */
976 || (gsymbol->language == language_go
977 && (*slot)->demangled[0] == '\0'))
978 {
979 char *demangled_name = symbol_find_demangled_name (gsymbol,
980 linkage_name_copy);
981 int demangled_len = demangled_name ? strlen (demangled_name) : 0;
982
983 /* Suppose we have demangled_name==NULL, copy_name==0, and
984 lookup_name==linkage_name. In this case, we already have the
985 mangled name saved, and we don't have a demangled name. So,
986 you might think we could save a little space by not recording
987 this in the hash table at all.
988
989 It turns out that it is actually important to still save such
990 an entry in the hash table, because storing this name gives
991 us better bcache hit rates for partial symbols. */
992 if (!copy_name && lookup_name == linkage_name)
993 {
994 *slot
995 = ((struct demangled_name_entry *)
996 obstack_alloc (&per_bfd->storage_obstack,
997 offsetof (struct demangled_name_entry, demangled)
998 + demangled_len + 1));
999 (*slot)->mangled = lookup_name;
1000 }
1001 else
1002 {
1003 char *mangled_ptr;
1004
1005 /* If we must copy the mangled name, put it directly after
1006 the demangled name so we can have a single
1007 allocation. */
1008 *slot
1009 = ((struct demangled_name_entry *)
1010 obstack_alloc (&per_bfd->storage_obstack,
1011 offsetof (struct demangled_name_entry, demangled)
1012 + lookup_len + demangled_len + 2));
1013 mangled_ptr = &((*slot)->demangled[demangled_len + 1]);
1014 strcpy (mangled_ptr, lookup_name);
1015 (*slot)->mangled = mangled_ptr;
1016 }
1017
1018 if (demangled_name != NULL)
1019 {
1020 strcpy ((*slot)->demangled, demangled_name);
1021 xfree (demangled_name);
1022 }
1023 else
1024 (*slot)->demangled[0] = '\0';
1025 }
1026
1027 gsymbol->name = (*slot)->mangled + lookup_len - len;
1028 if ((*slot)->demangled[0] != '\0')
1029 symbol_set_demangled_name (gsymbol, (*slot)->demangled,
1030 &per_bfd->storage_obstack);
1031 else
1032 symbol_set_demangled_name (gsymbol, NULL, &per_bfd->storage_obstack);
1033 }
1034
1035 /* Return the source code name of a symbol. In languages where
1036 demangling is necessary, this is the demangled name. */
1037
1038 const char *
1039 symbol_natural_name (const struct general_symbol_info *gsymbol)
1040 {
1041 switch (gsymbol->language)
1042 {
1043 case language_cplus:
1044 case language_d:
1045 case language_go:
1046 case language_java:
1047 case language_objc:
1048 case language_fortran:
1049 if (symbol_get_demangled_name (gsymbol) != NULL)
1050 return symbol_get_demangled_name (gsymbol);
1051 break;
1052 case language_ada:
1053 return ada_decode_symbol (gsymbol);
1054 default:
1055 break;
1056 }
1057 return gsymbol->name;
1058 }
1059
1060 /* Return the demangled name for a symbol based on the language for
1061 that symbol. If no demangled name exists, return NULL. */
1062
1063 const char *
1064 symbol_demangled_name (const struct general_symbol_info *gsymbol)
1065 {
1066 const char *dem_name = NULL;
1067
1068 switch (gsymbol->language)
1069 {
1070 case language_cplus:
1071 case language_d:
1072 case language_go:
1073 case language_java:
1074 case language_objc:
1075 case language_fortran:
1076 dem_name = symbol_get_demangled_name (gsymbol);
1077 break;
1078 case language_ada:
1079 dem_name = ada_decode_symbol (gsymbol);
1080 break;
1081 default:
1082 break;
1083 }
1084 return dem_name;
1085 }
1086
1087 /* Return the search name of a symbol---generally the demangled or
1088 linkage name of the symbol, depending on how it will be searched for.
1089 If there is no distinct demangled name, then returns the same value
1090 (same pointer) as SYMBOL_LINKAGE_NAME. */
1091
1092 const char *
1093 symbol_search_name (const struct general_symbol_info *gsymbol)
1094 {
1095 if (gsymbol->language == language_ada)
1096 return gsymbol->name;
1097 else
1098 return symbol_natural_name (gsymbol);
1099 }
1100
1101 /* Initialize the structure fields to zero values. */
1102
1103 void
1104 init_sal (struct symtab_and_line *sal)
1105 {
1106 memset (sal, 0, sizeof (*sal));
1107 }
1108 \f
1109
1110 /* Return 1 if the two sections are the same, or if they could
1111 plausibly be copies of each other, one in an original object
1112 file and another in a separated debug file. */
1113
1114 int
1115 matching_obj_sections (struct obj_section *obj_first,
1116 struct obj_section *obj_second)
1117 {
1118 asection *first = obj_first? obj_first->the_bfd_section : NULL;
1119 asection *second = obj_second? obj_second->the_bfd_section : NULL;
1120 struct objfile *obj;
1121
1122 /* If they're the same section, then they match. */
1123 if (first == second)
1124 return 1;
1125
1126 /* If either is NULL, give up. */
1127 if (first == NULL || second == NULL)
1128 return 0;
1129
1130 /* This doesn't apply to absolute symbols. */
1131 if (first->owner == NULL || second->owner == NULL)
1132 return 0;
1133
1134 /* If they're in the same object file, they must be different sections. */
1135 if (first->owner == second->owner)
1136 return 0;
1137
1138 /* Check whether the two sections are potentially corresponding. They must
1139 have the same size, address, and name. We can't compare section indexes,
1140 which would be more reliable, because some sections may have been
1141 stripped. */
1142 if (bfd_get_section_size (first) != bfd_get_section_size (second))
1143 return 0;
1144
1145 /* In-memory addresses may start at a different offset, relativize them. */
1146 if (bfd_get_section_vma (first->owner, first)
1147 - bfd_get_start_address (first->owner)
1148 != bfd_get_section_vma (second->owner, second)
1149 - bfd_get_start_address (second->owner))
1150 return 0;
1151
1152 if (bfd_get_section_name (first->owner, first) == NULL
1153 || bfd_get_section_name (second->owner, second) == NULL
1154 || strcmp (bfd_get_section_name (first->owner, first),
1155 bfd_get_section_name (second->owner, second)) != 0)
1156 return 0;
1157
1158 /* Otherwise check that they are in corresponding objfiles. */
1159
1160 ALL_OBJFILES (obj)
1161 if (obj->obfd == first->owner)
1162 break;
1163 gdb_assert (obj != NULL);
1164
1165 if (obj->separate_debug_objfile != NULL
1166 && obj->separate_debug_objfile->obfd == second->owner)
1167 return 1;
1168 if (obj->separate_debug_objfile_backlink != NULL
1169 && obj->separate_debug_objfile_backlink->obfd == second->owner)
1170 return 1;
1171
1172 return 0;
1173 }
1174
1175 /* See symtab.h. */
1176
1177 void
1178 expand_symtab_containing_pc (CORE_ADDR pc, struct obj_section *section)
1179 {
1180 struct objfile *objfile;
1181 struct bound_minimal_symbol msymbol;
1182
1183 /* If we know that this is not a text address, return failure. This is
1184 necessary because we loop based on texthigh and textlow, which do
1185 not include the data ranges. */
1186 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
1187 if (msymbol.minsym
1188 && (MSYMBOL_TYPE (msymbol.minsym) == mst_data
1189 || MSYMBOL_TYPE (msymbol.minsym) == mst_bss
1190 || MSYMBOL_TYPE (msymbol.minsym) == mst_abs
1191 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_data
1192 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_bss))
1193 return;
1194
1195 ALL_OBJFILES (objfile)
1196 {
1197 struct compunit_symtab *cust = NULL;
1198
1199 if (objfile->sf)
1200 cust = objfile->sf->qf->find_pc_sect_compunit_symtab (objfile, msymbol,
1201 pc, section, 0);
1202 if (cust)
1203 return;
1204 }
1205 }
1206 \f
1207 /* Hash function for the symbol cache. */
1208
1209 static unsigned int
1210 hash_symbol_entry (const struct objfile *objfile_context,
1211 const char *name, domain_enum domain)
1212 {
1213 unsigned int hash = (uintptr_t) objfile_context;
1214
1215 if (name != NULL)
1216 hash += htab_hash_string (name);
1217
1218 /* Because of symbol_matches_domain we need VAR_DOMAIN and STRUCT_DOMAIN
1219 to map to the same slot. */
1220 if (domain == STRUCT_DOMAIN)
1221 hash += VAR_DOMAIN * 7;
1222 else
1223 hash += domain * 7;
1224
1225 return hash;
1226 }
1227
1228 /* Equality function for the symbol cache. */
1229
1230 static int
1231 eq_symbol_entry (const struct symbol_cache_slot *slot,
1232 const struct objfile *objfile_context,
1233 const char *name, domain_enum domain)
1234 {
1235 const char *slot_name;
1236 domain_enum slot_domain;
1237
1238 if (slot->state == SYMBOL_SLOT_UNUSED)
1239 return 0;
1240
1241 if (slot->objfile_context != objfile_context)
1242 return 0;
1243
1244 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1245 {
1246 slot_name = slot->value.not_found.name;
1247 slot_domain = slot->value.not_found.domain;
1248 }
1249 else
1250 {
1251 slot_name = SYMBOL_SEARCH_NAME (slot->value.found.symbol);
1252 slot_domain = SYMBOL_DOMAIN (slot->value.found.symbol);
1253 }
1254
1255 /* NULL names match. */
1256 if (slot_name == NULL && name == NULL)
1257 {
1258 /* But there's no point in calling symbol_matches_domain in the
1259 SYMBOL_SLOT_FOUND case. */
1260 if (slot_domain != domain)
1261 return 0;
1262 }
1263 else if (slot_name != NULL && name != NULL)
1264 {
1265 /* It's important that we use the same comparison that was done the
1266 first time through. If the slot records a found symbol, then this
1267 means using strcmp_iw on SYMBOL_SEARCH_NAME. See dictionary.c.
1268 It also means using symbol_matches_domain for found symbols.
1269 See block.c.
1270
1271 If the slot records a not-found symbol, then require a precise match.
1272 We could still be lax with whitespace like strcmp_iw though. */
1273
1274 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1275 {
1276 if (strcmp (slot_name, name) != 0)
1277 return 0;
1278 if (slot_domain != domain)
1279 return 0;
1280 }
1281 else
1282 {
1283 struct symbol *sym = slot->value.found.symbol;
1284
1285 if (strcmp_iw (slot_name, name) != 0)
1286 return 0;
1287 if (!symbol_matches_domain (SYMBOL_LANGUAGE (sym),
1288 slot_domain, domain))
1289 return 0;
1290 }
1291 }
1292 else
1293 {
1294 /* Only one name is NULL. */
1295 return 0;
1296 }
1297
1298 return 1;
1299 }
1300
1301 /* Given a cache of size SIZE, return the size of the struct (with variable
1302 length array) in bytes. */
1303
1304 static size_t
1305 symbol_cache_byte_size (unsigned int size)
1306 {
1307 return (sizeof (struct block_symbol_cache)
1308 + ((size - 1) * sizeof (struct symbol_cache_slot)));
1309 }
1310
1311 /* Resize CACHE. */
1312
1313 static void
1314 resize_symbol_cache (struct symbol_cache *cache, unsigned int new_size)
1315 {
1316 /* If there's no change in size, don't do anything.
1317 All caches have the same size, so we can just compare with the size
1318 of the global symbols cache. */
1319 if ((cache->global_symbols != NULL
1320 && cache->global_symbols->size == new_size)
1321 || (cache->global_symbols == NULL
1322 && new_size == 0))
1323 return;
1324
1325 xfree (cache->global_symbols);
1326 xfree (cache->static_symbols);
1327
1328 if (new_size == 0)
1329 {
1330 cache->global_symbols = NULL;
1331 cache->static_symbols = NULL;
1332 }
1333 else
1334 {
1335 size_t total_size = symbol_cache_byte_size (new_size);
1336
1337 cache->global_symbols
1338 = (struct block_symbol_cache *) xcalloc (1, total_size);
1339 cache->static_symbols
1340 = (struct block_symbol_cache *) xcalloc (1, total_size);
1341 cache->global_symbols->size = new_size;
1342 cache->static_symbols->size = new_size;
1343 }
1344 }
1345
1346 /* Make a symbol cache of size SIZE. */
1347
1348 static struct symbol_cache *
1349 make_symbol_cache (unsigned int size)
1350 {
1351 struct symbol_cache *cache;
1352
1353 cache = XCNEW (struct symbol_cache);
1354 resize_symbol_cache (cache, symbol_cache_size);
1355 return cache;
1356 }
1357
1358 /* Free the space used by CACHE. */
1359
1360 static void
1361 free_symbol_cache (struct symbol_cache *cache)
1362 {
1363 xfree (cache->global_symbols);
1364 xfree (cache->static_symbols);
1365 xfree (cache);
1366 }
1367
1368 /* Return the symbol cache of PSPACE.
1369 Create one if it doesn't exist yet. */
1370
1371 static struct symbol_cache *
1372 get_symbol_cache (struct program_space *pspace)
1373 {
1374 struct symbol_cache *cache
1375 = (struct symbol_cache *) program_space_data (pspace, symbol_cache_key);
1376
1377 if (cache == NULL)
1378 {
1379 cache = make_symbol_cache (symbol_cache_size);
1380 set_program_space_data (pspace, symbol_cache_key, cache);
1381 }
1382
1383 return cache;
1384 }
1385
1386 /* Delete the symbol cache of PSPACE.
1387 Called when PSPACE is destroyed. */
1388
1389 static void
1390 symbol_cache_cleanup (struct program_space *pspace, void *data)
1391 {
1392 struct symbol_cache *cache = (struct symbol_cache *) data;
1393
1394 free_symbol_cache (cache);
1395 }
1396
1397 /* Set the size of the symbol cache in all program spaces. */
1398
1399 static void
1400 set_symbol_cache_size (unsigned int new_size)
1401 {
1402 struct program_space *pspace;
1403
1404 ALL_PSPACES (pspace)
1405 {
1406 struct symbol_cache *cache
1407 = (struct symbol_cache *) program_space_data (pspace, symbol_cache_key);
1408
1409 /* The pspace could have been created but not have a cache yet. */
1410 if (cache != NULL)
1411 resize_symbol_cache (cache, new_size);
1412 }
1413 }
1414
1415 /* Called when symbol-cache-size is set. */
1416
1417 static void
1418 set_symbol_cache_size_handler (char *args, int from_tty,
1419 struct cmd_list_element *c)
1420 {
1421 if (new_symbol_cache_size > MAX_SYMBOL_CACHE_SIZE)
1422 {
1423 /* Restore the previous value.
1424 This is the value the "show" command prints. */
1425 new_symbol_cache_size = symbol_cache_size;
1426
1427 error (_("Symbol cache size is too large, max is %u."),
1428 MAX_SYMBOL_CACHE_SIZE);
1429 }
1430 symbol_cache_size = new_symbol_cache_size;
1431
1432 set_symbol_cache_size (symbol_cache_size);
1433 }
1434
1435 /* Lookup symbol NAME,DOMAIN in BLOCK in the symbol cache of PSPACE.
1436 OBJFILE_CONTEXT is the current objfile, which may be NULL.
1437 The result is the symbol if found, SYMBOL_LOOKUP_FAILED if a previous lookup
1438 failed (and thus this one will too), or NULL if the symbol is not present
1439 in the cache.
1440 If the symbol is not present in the cache, then *BSC_PTR and *SLOT_PTR are
1441 set to the cache and slot of the symbol to save the result of a full lookup
1442 attempt. */
1443
1444 static struct block_symbol
1445 symbol_cache_lookup (struct symbol_cache *cache,
1446 struct objfile *objfile_context, int block,
1447 const char *name, domain_enum domain,
1448 struct block_symbol_cache **bsc_ptr,
1449 struct symbol_cache_slot **slot_ptr)
1450 {
1451 struct block_symbol_cache *bsc;
1452 unsigned int hash;
1453 struct symbol_cache_slot *slot;
1454
1455 if (block == GLOBAL_BLOCK)
1456 bsc = cache->global_symbols;
1457 else
1458 bsc = cache->static_symbols;
1459 if (bsc == NULL)
1460 {
1461 *bsc_ptr = NULL;
1462 *slot_ptr = NULL;
1463 return (struct block_symbol) {NULL, NULL};
1464 }
1465
1466 hash = hash_symbol_entry (objfile_context, name, domain);
1467 slot = bsc->symbols + hash % bsc->size;
1468
1469 if (eq_symbol_entry (slot, objfile_context, name, domain))
1470 {
1471 if (symbol_lookup_debug)
1472 fprintf_unfiltered (gdb_stdlog,
1473 "%s block symbol cache hit%s for %s, %s\n",
1474 block == GLOBAL_BLOCK ? "Global" : "Static",
1475 slot->state == SYMBOL_SLOT_NOT_FOUND
1476 ? " (not found)" : "",
1477 name, domain_name (domain));
1478 ++bsc->hits;
1479 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1480 return SYMBOL_LOOKUP_FAILED;
1481 return slot->value.found;
1482 }
1483
1484 /* Symbol is not present in the cache. */
1485
1486 *bsc_ptr = bsc;
1487 *slot_ptr = slot;
1488
1489 if (symbol_lookup_debug)
1490 {
1491 fprintf_unfiltered (gdb_stdlog,
1492 "%s block symbol cache miss for %s, %s\n",
1493 block == GLOBAL_BLOCK ? "Global" : "Static",
1494 name, domain_name (domain));
1495 }
1496 ++bsc->misses;
1497 return (struct block_symbol) {NULL, NULL};
1498 }
1499
1500 /* Clear out SLOT. */
1501
1502 static void
1503 symbol_cache_clear_slot (struct symbol_cache_slot *slot)
1504 {
1505 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1506 xfree (slot->value.not_found.name);
1507 slot->state = SYMBOL_SLOT_UNUSED;
1508 }
1509
1510 /* Mark SYMBOL as found in SLOT.
1511 OBJFILE_CONTEXT is the current objfile when the lookup was done, or NULL
1512 if it's not needed to distinguish lookups (STATIC_BLOCK). It is *not*
1513 necessarily the objfile the symbol was found in. */
1514
1515 static void
1516 symbol_cache_mark_found (struct block_symbol_cache *bsc,
1517 struct symbol_cache_slot *slot,
1518 struct objfile *objfile_context,
1519 struct symbol *symbol,
1520 const struct block *block)
1521 {
1522 if (bsc == NULL)
1523 return;
1524 if (slot->state != SYMBOL_SLOT_UNUSED)
1525 {
1526 ++bsc->collisions;
1527 symbol_cache_clear_slot (slot);
1528 }
1529 slot->state = SYMBOL_SLOT_FOUND;
1530 slot->objfile_context = objfile_context;
1531 slot->value.found.symbol = symbol;
1532 slot->value.found.block = block;
1533 }
1534
1535 /* Mark symbol NAME, DOMAIN as not found in SLOT.
1536 OBJFILE_CONTEXT is the current objfile when the lookup was done, or NULL
1537 if it's not needed to distinguish lookups (STATIC_BLOCK). */
1538
1539 static void
1540 symbol_cache_mark_not_found (struct block_symbol_cache *bsc,
1541 struct symbol_cache_slot *slot,
1542 struct objfile *objfile_context,
1543 const char *name, domain_enum domain)
1544 {
1545 if (bsc == NULL)
1546 return;
1547 if (slot->state != SYMBOL_SLOT_UNUSED)
1548 {
1549 ++bsc->collisions;
1550 symbol_cache_clear_slot (slot);
1551 }
1552 slot->state = SYMBOL_SLOT_NOT_FOUND;
1553 slot->objfile_context = objfile_context;
1554 slot->value.not_found.name = xstrdup (name);
1555 slot->value.not_found.domain = domain;
1556 }
1557
1558 /* Flush the symbol cache of PSPACE. */
1559
1560 static void
1561 symbol_cache_flush (struct program_space *pspace)
1562 {
1563 struct symbol_cache *cache
1564 = (struct symbol_cache *) program_space_data (pspace, symbol_cache_key);
1565 int pass;
1566 size_t total_size;
1567
1568 if (cache == NULL)
1569 return;
1570 if (cache->global_symbols == NULL)
1571 {
1572 gdb_assert (symbol_cache_size == 0);
1573 gdb_assert (cache->static_symbols == NULL);
1574 return;
1575 }
1576
1577 /* If the cache is untouched since the last flush, early exit.
1578 This is important for performance during the startup of a program linked
1579 with 100s (or 1000s) of shared libraries. */
1580 if (cache->global_symbols->misses == 0
1581 && cache->static_symbols->misses == 0)
1582 return;
1583
1584 gdb_assert (cache->global_symbols->size == symbol_cache_size);
1585 gdb_assert (cache->static_symbols->size == symbol_cache_size);
1586
1587 for (pass = 0; pass < 2; ++pass)
1588 {
1589 struct block_symbol_cache *bsc
1590 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1591 unsigned int i;
1592
1593 for (i = 0; i < bsc->size; ++i)
1594 symbol_cache_clear_slot (&bsc->symbols[i]);
1595 }
1596
1597 cache->global_symbols->hits = 0;
1598 cache->global_symbols->misses = 0;
1599 cache->global_symbols->collisions = 0;
1600 cache->static_symbols->hits = 0;
1601 cache->static_symbols->misses = 0;
1602 cache->static_symbols->collisions = 0;
1603 }
1604
1605 /* Dump CACHE. */
1606
1607 static void
1608 symbol_cache_dump (const struct symbol_cache *cache)
1609 {
1610 int pass;
1611
1612 if (cache->global_symbols == NULL)
1613 {
1614 printf_filtered (" <disabled>\n");
1615 return;
1616 }
1617
1618 for (pass = 0; pass < 2; ++pass)
1619 {
1620 const struct block_symbol_cache *bsc
1621 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1622 unsigned int i;
1623
1624 if (pass == 0)
1625 printf_filtered ("Global symbols:\n");
1626 else
1627 printf_filtered ("Static symbols:\n");
1628
1629 for (i = 0; i < bsc->size; ++i)
1630 {
1631 const struct symbol_cache_slot *slot = &bsc->symbols[i];
1632
1633 QUIT;
1634
1635 switch (slot->state)
1636 {
1637 case SYMBOL_SLOT_UNUSED:
1638 break;
1639 case SYMBOL_SLOT_NOT_FOUND:
1640 printf_filtered (" [%4u] = %s, %s %s (not found)\n", i,
1641 host_address_to_string (slot->objfile_context),
1642 slot->value.not_found.name,
1643 domain_name (slot->value.not_found.domain));
1644 break;
1645 case SYMBOL_SLOT_FOUND:
1646 {
1647 struct symbol *found = slot->value.found.symbol;
1648 const struct objfile *context = slot->objfile_context;
1649
1650 printf_filtered (" [%4u] = %s, %s %s\n", i,
1651 host_address_to_string (context),
1652 SYMBOL_PRINT_NAME (found),
1653 domain_name (SYMBOL_DOMAIN (found)));
1654 break;
1655 }
1656 }
1657 }
1658 }
1659 }
1660
1661 /* The "mt print symbol-cache" command. */
1662
1663 static void
1664 maintenance_print_symbol_cache (char *args, int from_tty)
1665 {
1666 struct program_space *pspace;
1667
1668 ALL_PSPACES (pspace)
1669 {
1670 struct symbol_cache *cache;
1671
1672 printf_filtered (_("Symbol cache for pspace %d\n%s:\n"),
1673 pspace->num,
1674 pspace->symfile_object_file != NULL
1675 ? objfile_name (pspace->symfile_object_file)
1676 : "(no object file)");
1677
1678 /* If the cache hasn't been created yet, avoid creating one. */
1679 cache
1680 = (struct symbol_cache *) program_space_data (pspace, symbol_cache_key);
1681 if (cache == NULL)
1682 printf_filtered (" <empty>\n");
1683 else
1684 symbol_cache_dump (cache);
1685 }
1686 }
1687
1688 /* The "mt flush-symbol-cache" command. */
1689
1690 static void
1691 maintenance_flush_symbol_cache (char *args, int from_tty)
1692 {
1693 struct program_space *pspace;
1694
1695 ALL_PSPACES (pspace)
1696 {
1697 symbol_cache_flush (pspace);
1698 }
1699 }
1700
1701 /* Print usage statistics of CACHE. */
1702
1703 static void
1704 symbol_cache_stats (struct symbol_cache *cache)
1705 {
1706 int pass;
1707
1708 if (cache->global_symbols == NULL)
1709 {
1710 printf_filtered (" <disabled>\n");
1711 return;
1712 }
1713
1714 for (pass = 0; pass < 2; ++pass)
1715 {
1716 const struct block_symbol_cache *bsc
1717 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1718
1719 QUIT;
1720
1721 if (pass == 0)
1722 printf_filtered ("Global block cache stats:\n");
1723 else
1724 printf_filtered ("Static block cache stats:\n");
1725
1726 printf_filtered (" size: %u\n", bsc->size);
1727 printf_filtered (" hits: %u\n", bsc->hits);
1728 printf_filtered (" misses: %u\n", bsc->misses);
1729 printf_filtered (" collisions: %u\n", bsc->collisions);
1730 }
1731 }
1732
1733 /* The "mt print symbol-cache-statistics" command. */
1734
1735 static void
1736 maintenance_print_symbol_cache_statistics (char *args, int from_tty)
1737 {
1738 struct program_space *pspace;
1739
1740 ALL_PSPACES (pspace)
1741 {
1742 struct symbol_cache *cache;
1743
1744 printf_filtered (_("Symbol cache statistics for pspace %d\n%s:\n"),
1745 pspace->num,
1746 pspace->symfile_object_file != NULL
1747 ? objfile_name (pspace->symfile_object_file)
1748 : "(no object file)");
1749
1750 /* If the cache hasn't been created yet, avoid creating one. */
1751 cache
1752 = (struct symbol_cache *) program_space_data (pspace, symbol_cache_key);
1753 if (cache == NULL)
1754 printf_filtered (" empty, no stats available\n");
1755 else
1756 symbol_cache_stats (cache);
1757 }
1758 }
1759
1760 /* This module's 'new_objfile' observer. */
1761
1762 static void
1763 symtab_new_objfile_observer (struct objfile *objfile)
1764 {
1765 /* Ideally we'd use OBJFILE->pspace, but OBJFILE may be NULL. */
1766 symbol_cache_flush (current_program_space);
1767 }
1768
1769 /* This module's 'free_objfile' observer. */
1770
1771 static void
1772 symtab_free_objfile_observer (struct objfile *objfile)
1773 {
1774 symbol_cache_flush (objfile->pspace);
1775 }
1776 \f
1777 /* Debug symbols usually don't have section information. We need to dig that
1778 out of the minimal symbols and stash that in the debug symbol. */
1779
1780 void
1781 fixup_section (struct general_symbol_info *ginfo,
1782 CORE_ADDR addr, struct objfile *objfile)
1783 {
1784 struct minimal_symbol *msym;
1785
1786 /* First, check whether a minimal symbol with the same name exists
1787 and points to the same address. The address check is required
1788 e.g. on PowerPC64, where the minimal symbol for a function will
1789 point to the function descriptor, while the debug symbol will
1790 point to the actual function code. */
1791 msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->name, objfile);
1792 if (msym)
1793 ginfo->section = MSYMBOL_SECTION (msym);
1794 else
1795 {
1796 /* Static, function-local variables do appear in the linker
1797 (minimal) symbols, but are frequently given names that won't
1798 be found via lookup_minimal_symbol(). E.g., it has been
1799 observed in frv-uclinux (ELF) executables that a static,
1800 function-local variable named "foo" might appear in the
1801 linker symbols as "foo.6" or "foo.3". Thus, there is no
1802 point in attempting to extend the lookup-by-name mechanism to
1803 handle this case due to the fact that there can be multiple
1804 names.
1805
1806 So, instead, search the section table when lookup by name has
1807 failed. The ``addr'' and ``endaddr'' fields may have already
1808 been relocated. If so, the relocation offset (i.e. the
1809 ANOFFSET value) needs to be subtracted from these values when
1810 performing the comparison. We unconditionally subtract it,
1811 because, when no relocation has been performed, the ANOFFSET
1812 value will simply be zero.
1813
1814 The address of the symbol whose section we're fixing up HAS
1815 NOT BEEN adjusted (relocated) yet. It can't have been since
1816 the section isn't yet known and knowing the section is
1817 necessary in order to add the correct relocation value. In
1818 other words, we wouldn't even be in this function (attempting
1819 to compute the section) if it were already known.
1820
1821 Note that it is possible to search the minimal symbols
1822 (subtracting the relocation value if necessary) to find the
1823 matching minimal symbol, but this is overkill and much less
1824 efficient. It is not necessary to find the matching minimal
1825 symbol, only its section.
1826
1827 Note that this technique (of doing a section table search)
1828 can fail when unrelocated section addresses overlap. For
1829 this reason, we still attempt a lookup by name prior to doing
1830 a search of the section table. */
1831
1832 struct obj_section *s;
1833 int fallback = -1;
1834
1835 ALL_OBJFILE_OSECTIONS (objfile, s)
1836 {
1837 int idx = s - objfile->sections;
1838 CORE_ADDR offset = ANOFFSET (objfile->section_offsets, idx);
1839
1840 if (fallback == -1)
1841 fallback = idx;
1842
1843 if (obj_section_addr (s) - offset <= addr
1844 && addr < obj_section_endaddr (s) - offset)
1845 {
1846 ginfo->section = idx;
1847 return;
1848 }
1849 }
1850
1851 /* If we didn't find the section, assume it is in the first
1852 section. If there is no allocated section, then it hardly
1853 matters what we pick, so just pick zero. */
1854 if (fallback == -1)
1855 ginfo->section = 0;
1856 else
1857 ginfo->section = fallback;
1858 }
1859 }
1860
1861 struct symbol *
1862 fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
1863 {
1864 CORE_ADDR addr;
1865
1866 if (!sym)
1867 return NULL;
1868
1869 if (!SYMBOL_OBJFILE_OWNED (sym))
1870 return sym;
1871
1872 /* We either have an OBJFILE, or we can get at it from the sym's
1873 symtab. Anything else is a bug. */
1874 gdb_assert (objfile || symbol_symtab (sym));
1875
1876 if (objfile == NULL)
1877 objfile = symbol_objfile (sym);
1878
1879 if (SYMBOL_OBJ_SECTION (objfile, sym))
1880 return sym;
1881
1882 /* We should have an objfile by now. */
1883 gdb_assert (objfile);
1884
1885 switch (SYMBOL_CLASS (sym))
1886 {
1887 case LOC_STATIC:
1888 case LOC_LABEL:
1889 addr = SYMBOL_VALUE_ADDRESS (sym);
1890 break;
1891 case LOC_BLOCK:
1892 addr = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
1893 break;
1894
1895 default:
1896 /* Nothing else will be listed in the minsyms -- no use looking
1897 it up. */
1898 return sym;
1899 }
1900
1901 fixup_section (&sym->ginfo, addr, objfile);
1902
1903 return sym;
1904 }
1905
1906 /* Compute the demangled form of NAME as used by the various symbol
1907 lookup functions. The result is stored in *RESULT_NAME. Returns a
1908 cleanup which can be used to clean up the result.
1909
1910 For Ada, this function just sets *RESULT_NAME to NAME, unmodified.
1911 Normally, Ada symbol lookups are performed using the encoded name
1912 rather than the demangled name, and so it might seem to make sense
1913 for this function to return an encoded version of NAME.
1914 Unfortunately, we cannot do this, because this function is used in
1915 circumstances where it is not appropriate to try to encode NAME.
1916 For instance, when displaying the frame info, we demangle the name
1917 of each parameter, and then perform a symbol lookup inside our
1918 function using that demangled name. In Ada, certain functions
1919 have internally-generated parameters whose name contain uppercase
1920 characters. Encoding those name would result in those uppercase
1921 characters to become lowercase, and thus cause the symbol lookup
1922 to fail. */
1923
1924 struct cleanup *
1925 demangle_for_lookup (const char *name, enum language lang,
1926 const char **result_name)
1927 {
1928 char *demangled_name = NULL;
1929 const char *modified_name = NULL;
1930 struct cleanup *cleanup = make_cleanup (null_cleanup, 0);
1931
1932 modified_name = name;
1933
1934 /* If we are using C++, D, Go, or Java, demangle the name before doing a
1935 lookup, so we can always binary search. */
1936 if (lang == language_cplus)
1937 {
1938 demangled_name = gdb_demangle (name, DMGL_ANSI | DMGL_PARAMS);
1939 if (demangled_name)
1940 {
1941 modified_name = demangled_name;
1942 make_cleanup (xfree, demangled_name);
1943 }
1944 else
1945 {
1946 /* If we were given a non-mangled name, canonicalize it
1947 according to the language (so far only for C++). */
1948 demangled_name = cp_canonicalize_string (name);
1949 if (demangled_name)
1950 {
1951 modified_name = demangled_name;
1952 make_cleanup (xfree, demangled_name);
1953 }
1954 }
1955 }
1956 else if (lang == language_java)
1957 {
1958 demangled_name = gdb_demangle (name,
1959 DMGL_ANSI | DMGL_PARAMS | DMGL_JAVA);
1960 if (demangled_name)
1961 {
1962 modified_name = demangled_name;
1963 make_cleanup (xfree, demangled_name);
1964 }
1965 }
1966 else if (lang == language_d)
1967 {
1968 demangled_name = d_demangle (name, 0);
1969 if (demangled_name)
1970 {
1971 modified_name = demangled_name;
1972 make_cleanup (xfree, demangled_name);
1973 }
1974 }
1975 else if (lang == language_go)
1976 {
1977 demangled_name = go_demangle (name, 0);
1978 if (demangled_name)
1979 {
1980 modified_name = demangled_name;
1981 make_cleanup (xfree, demangled_name);
1982 }
1983 }
1984
1985 *result_name = modified_name;
1986 return cleanup;
1987 }
1988
1989 /* See symtab.h.
1990
1991 This function (or rather its subordinates) have a bunch of loops and
1992 it would seem to be attractive to put in some QUIT's (though I'm not really
1993 sure whether it can run long enough to be really important). But there
1994 are a few calls for which it would appear to be bad news to quit
1995 out of here: e.g., find_proc_desc in alpha-mdebug-tdep.c. (Note
1996 that there is C++ code below which can error(), but that probably
1997 doesn't affect these calls since they are looking for a known
1998 variable and thus can probably assume it will never hit the C++
1999 code). */
2000
2001 struct block_symbol
2002 lookup_symbol_in_language (const char *name, const struct block *block,
2003 const domain_enum domain, enum language lang,
2004 struct field_of_this_result *is_a_field_of_this)
2005 {
2006 const char *modified_name;
2007 struct block_symbol returnval;
2008 struct cleanup *cleanup = demangle_for_lookup (name, lang, &modified_name);
2009
2010 returnval = lookup_symbol_aux (modified_name, block, domain, lang,
2011 is_a_field_of_this);
2012 do_cleanups (cleanup);
2013
2014 return returnval;
2015 }
2016
2017 /* See symtab.h. */
2018
2019 struct block_symbol
2020 lookup_symbol (const char *name, const struct block *block,
2021 domain_enum domain,
2022 struct field_of_this_result *is_a_field_of_this)
2023 {
2024 return lookup_symbol_in_language (name, block, domain,
2025 current_language->la_language,
2026 is_a_field_of_this);
2027 }
2028
2029 /* See symtab.h. */
2030
2031 struct block_symbol
2032 lookup_language_this (const struct language_defn *lang,
2033 const struct block *block)
2034 {
2035 if (lang->la_name_of_this == NULL || block == NULL)
2036 return (struct block_symbol) {NULL, NULL};
2037
2038 if (symbol_lookup_debug > 1)
2039 {
2040 struct objfile *objfile = lookup_objfile_from_block (block);
2041
2042 fprintf_unfiltered (gdb_stdlog,
2043 "lookup_language_this (%s, %s (objfile %s))",
2044 lang->la_name, host_address_to_string (block),
2045 objfile_debug_name (objfile));
2046 }
2047
2048 while (block)
2049 {
2050 struct symbol *sym;
2051
2052 sym = block_lookup_symbol (block, lang->la_name_of_this, VAR_DOMAIN);
2053 if (sym != NULL)
2054 {
2055 if (symbol_lookup_debug > 1)
2056 {
2057 fprintf_unfiltered (gdb_stdlog, " = %s (%s, block %s)\n",
2058 SYMBOL_PRINT_NAME (sym),
2059 host_address_to_string (sym),
2060 host_address_to_string (block));
2061 }
2062 return (struct block_symbol) {sym, block};
2063 }
2064 if (BLOCK_FUNCTION (block))
2065 break;
2066 block = BLOCK_SUPERBLOCK (block);
2067 }
2068
2069 if (symbol_lookup_debug > 1)
2070 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
2071 return (struct block_symbol) {NULL, NULL};
2072 }
2073
2074 /* Given TYPE, a structure/union,
2075 return 1 if the component named NAME from the ultimate target
2076 structure/union is defined, otherwise, return 0. */
2077
2078 static int
2079 check_field (struct type *type, const char *name,
2080 struct field_of_this_result *is_a_field_of_this)
2081 {
2082 int i;
2083
2084 /* The type may be a stub. */
2085 type = check_typedef (type);
2086
2087 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
2088 {
2089 const char *t_field_name = TYPE_FIELD_NAME (type, i);
2090
2091 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2092 {
2093 is_a_field_of_this->type = type;
2094 is_a_field_of_this->field = &TYPE_FIELD (type, i);
2095 return 1;
2096 }
2097 }
2098
2099 /* C++: If it was not found as a data field, then try to return it
2100 as a pointer to a method. */
2101
2102 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
2103 {
2104 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
2105 {
2106 is_a_field_of_this->type = type;
2107 is_a_field_of_this->fn_field = &TYPE_FN_FIELDLIST (type, i);
2108 return 1;
2109 }
2110 }
2111
2112 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2113 if (check_field (TYPE_BASECLASS (type, i), name, is_a_field_of_this))
2114 return 1;
2115
2116 return 0;
2117 }
2118
2119 /* Behave like lookup_symbol except that NAME is the natural name
2120 (e.g., demangled name) of the symbol that we're looking for. */
2121
2122 static struct block_symbol
2123 lookup_symbol_aux (const char *name, const struct block *block,
2124 const domain_enum domain, enum language language,
2125 struct field_of_this_result *is_a_field_of_this)
2126 {
2127 struct block_symbol result;
2128 const struct language_defn *langdef;
2129
2130 if (symbol_lookup_debug)
2131 {
2132 struct objfile *objfile = lookup_objfile_from_block (block);
2133
2134 fprintf_unfiltered (gdb_stdlog,
2135 "lookup_symbol_aux (%s, %s (objfile %s), %s, %s)\n",
2136 name, host_address_to_string (block),
2137 objfile != NULL
2138 ? objfile_debug_name (objfile) : "NULL",
2139 domain_name (domain), language_str (language));
2140 }
2141
2142 /* Make sure we do something sensible with is_a_field_of_this, since
2143 the callers that set this parameter to some non-null value will
2144 certainly use it later. If we don't set it, the contents of
2145 is_a_field_of_this are undefined. */
2146 if (is_a_field_of_this != NULL)
2147 memset (is_a_field_of_this, 0, sizeof (*is_a_field_of_this));
2148
2149 /* Search specified block and its superiors. Don't search
2150 STATIC_BLOCK or GLOBAL_BLOCK. */
2151
2152 result = lookup_local_symbol (name, block, domain, language);
2153 if (result.symbol != NULL)
2154 {
2155 if (symbol_lookup_debug)
2156 {
2157 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2158 host_address_to_string (result.symbol));
2159 }
2160 return result;
2161 }
2162
2163 /* If requested to do so by the caller and if appropriate for LANGUAGE,
2164 check to see if NAME is a field of `this'. */
2165
2166 langdef = language_def (language);
2167
2168 /* Don't do this check if we are searching for a struct. It will
2169 not be found by check_field, but will be found by other
2170 means. */
2171 if (is_a_field_of_this != NULL && domain != STRUCT_DOMAIN)
2172 {
2173 result = lookup_language_this (langdef, block);
2174
2175 if (result.symbol)
2176 {
2177 struct type *t = result.symbol->type;
2178
2179 /* I'm not really sure that type of this can ever
2180 be typedefed; just be safe. */
2181 t = check_typedef (t);
2182 if (TYPE_CODE (t) == TYPE_CODE_PTR
2183 || TYPE_CODE (t) == TYPE_CODE_REF)
2184 t = TYPE_TARGET_TYPE (t);
2185
2186 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2187 && TYPE_CODE (t) != TYPE_CODE_UNION)
2188 error (_("Internal error: `%s' is not an aggregate"),
2189 langdef->la_name_of_this);
2190
2191 if (check_field (t, name, is_a_field_of_this))
2192 {
2193 if (symbol_lookup_debug)
2194 {
2195 fprintf_unfiltered (gdb_stdlog,
2196 "lookup_symbol_aux (...) = NULL\n");
2197 }
2198 return (struct block_symbol) {NULL, NULL};
2199 }
2200 }
2201 }
2202
2203 /* Now do whatever is appropriate for LANGUAGE to look
2204 up static and global variables. */
2205
2206 result = langdef->la_lookup_symbol_nonlocal (langdef, name, block, domain);
2207 if (result.symbol != NULL)
2208 {
2209 if (symbol_lookup_debug)
2210 {
2211 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2212 host_address_to_string (result.symbol));
2213 }
2214 return result;
2215 }
2216
2217 /* Now search all static file-level symbols. Not strictly correct,
2218 but more useful than an error. */
2219
2220 result = lookup_static_symbol (name, domain);
2221 if (symbol_lookup_debug)
2222 {
2223 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2224 result.symbol != NULL
2225 ? host_address_to_string (result.symbol)
2226 : "NULL");
2227 }
2228 return result;
2229 }
2230
2231 /* Check to see if the symbol is defined in BLOCK or its superiors.
2232 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
2233
2234 static struct block_symbol
2235 lookup_local_symbol (const char *name, const struct block *block,
2236 const domain_enum domain,
2237 enum language language)
2238 {
2239 struct symbol *sym;
2240 const struct block *static_block = block_static_block (block);
2241 const char *scope = block_scope (block);
2242
2243 /* Check if either no block is specified or it's a global block. */
2244
2245 if (static_block == NULL)
2246 return (struct block_symbol) {NULL, NULL};
2247
2248 while (block != static_block)
2249 {
2250 sym = lookup_symbol_in_block (name, block, domain);
2251 if (sym != NULL)
2252 return (struct block_symbol) {sym, block};
2253
2254 if (language == language_cplus || language == language_fortran)
2255 {
2256 struct block_symbol sym
2257 = cp_lookup_symbol_imports_or_template (scope, name, block,
2258 domain);
2259
2260 if (sym.symbol != NULL)
2261 return sym;
2262 }
2263
2264 if (BLOCK_FUNCTION (block) != NULL && block_inlined_p (block))
2265 break;
2266 block = BLOCK_SUPERBLOCK (block);
2267 }
2268
2269 /* We've reached the end of the function without finding a result. */
2270
2271 return (struct block_symbol) {NULL, NULL};
2272 }
2273
2274 /* See symtab.h. */
2275
2276 struct objfile *
2277 lookup_objfile_from_block (const struct block *block)
2278 {
2279 struct objfile *obj;
2280 struct compunit_symtab *cust;
2281
2282 if (block == NULL)
2283 return NULL;
2284
2285 block = block_global_block (block);
2286 /* Look through all blockvectors. */
2287 ALL_COMPUNITS (obj, cust)
2288 if (block == BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust),
2289 GLOBAL_BLOCK))
2290 {
2291 if (obj->separate_debug_objfile_backlink)
2292 obj = obj->separate_debug_objfile_backlink;
2293
2294 return obj;
2295 }
2296
2297 return NULL;
2298 }
2299
2300 /* See symtab.h. */
2301
2302 struct symbol *
2303 lookup_symbol_in_block (const char *name, const struct block *block,
2304 const domain_enum domain)
2305 {
2306 struct symbol *sym;
2307
2308 if (symbol_lookup_debug > 1)
2309 {
2310 struct objfile *objfile = lookup_objfile_from_block (block);
2311
2312 fprintf_unfiltered (gdb_stdlog,
2313 "lookup_symbol_in_block (%s, %s (objfile %s), %s)",
2314 name, host_address_to_string (block),
2315 objfile_debug_name (objfile),
2316 domain_name (domain));
2317 }
2318
2319 sym = block_lookup_symbol (block, name, domain);
2320 if (sym)
2321 {
2322 if (symbol_lookup_debug > 1)
2323 {
2324 fprintf_unfiltered (gdb_stdlog, " = %s\n",
2325 host_address_to_string (sym));
2326 }
2327 return fixup_symbol_section (sym, NULL);
2328 }
2329
2330 if (symbol_lookup_debug > 1)
2331 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
2332 return NULL;
2333 }
2334
2335 /* See symtab.h. */
2336
2337 struct block_symbol
2338 lookup_global_symbol_from_objfile (struct objfile *main_objfile,
2339 const char *name,
2340 const domain_enum domain)
2341 {
2342 struct objfile *objfile;
2343
2344 for (objfile = main_objfile;
2345 objfile;
2346 objfile = objfile_separate_debug_iterate (main_objfile, objfile))
2347 {
2348 struct block_symbol result
2349 = lookup_symbol_in_objfile (objfile, GLOBAL_BLOCK, name, domain);
2350
2351 if (result.symbol != NULL)
2352 return result;
2353 }
2354
2355 return (struct block_symbol) {NULL, NULL};
2356 }
2357
2358 /* Check to see if the symbol is defined in one of the OBJFILE's
2359 symtabs. BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
2360 depending on whether or not we want to search global symbols or
2361 static symbols. */
2362
2363 static struct block_symbol
2364 lookup_symbol_in_objfile_symtabs (struct objfile *objfile, int block_index,
2365 const char *name, const domain_enum domain)
2366 {
2367 struct compunit_symtab *cust;
2368
2369 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2370
2371 if (symbol_lookup_debug > 1)
2372 {
2373 fprintf_unfiltered (gdb_stdlog,
2374 "lookup_symbol_in_objfile_symtabs (%s, %s, %s, %s)",
2375 objfile_debug_name (objfile),
2376 block_index == GLOBAL_BLOCK
2377 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2378 name, domain_name (domain));
2379 }
2380
2381 ALL_OBJFILE_COMPUNITS (objfile, cust)
2382 {
2383 const struct blockvector *bv;
2384 const struct block *block;
2385 struct block_symbol result;
2386
2387 bv = COMPUNIT_BLOCKVECTOR (cust);
2388 block = BLOCKVECTOR_BLOCK (bv, block_index);
2389 result.symbol = block_lookup_symbol_primary (block, name, domain);
2390 result.block = block;
2391 if (result.symbol != NULL)
2392 {
2393 if (symbol_lookup_debug > 1)
2394 {
2395 fprintf_unfiltered (gdb_stdlog, " = %s (block %s)\n",
2396 host_address_to_string (result.symbol),
2397 host_address_to_string (block));
2398 }
2399 result.symbol = fixup_symbol_section (result.symbol, objfile);
2400 return result;
2401
2402 }
2403 }
2404
2405 if (symbol_lookup_debug > 1)
2406 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
2407 return (struct block_symbol) {NULL, NULL};
2408 }
2409
2410 /* Wrapper around lookup_symbol_in_objfile_symtabs for search_symbols.
2411 Look up LINKAGE_NAME in DOMAIN in the global and static blocks of OBJFILE
2412 and all associated separate debug objfiles.
2413
2414 Normally we only look in OBJFILE, and not any separate debug objfiles
2415 because the outer loop will cause them to be searched too. This case is
2416 different. Here we're called from search_symbols where it will only
2417 call us for the the objfile that contains a matching minsym. */
2418
2419 static struct block_symbol
2420 lookup_symbol_in_objfile_from_linkage_name (struct objfile *objfile,
2421 const char *linkage_name,
2422 domain_enum domain)
2423 {
2424 enum language lang = current_language->la_language;
2425 const char *modified_name;
2426 struct cleanup *cleanup = demangle_for_lookup (linkage_name, lang,
2427 &modified_name);
2428 struct objfile *main_objfile, *cur_objfile;
2429
2430 if (objfile->separate_debug_objfile_backlink)
2431 main_objfile = objfile->separate_debug_objfile_backlink;
2432 else
2433 main_objfile = objfile;
2434
2435 for (cur_objfile = main_objfile;
2436 cur_objfile;
2437 cur_objfile = objfile_separate_debug_iterate (main_objfile, cur_objfile))
2438 {
2439 struct block_symbol result;
2440
2441 result = lookup_symbol_in_objfile_symtabs (cur_objfile, GLOBAL_BLOCK,
2442 modified_name, domain);
2443 if (result.symbol == NULL)
2444 result = lookup_symbol_in_objfile_symtabs (cur_objfile, STATIC_BLOCK,
2445 modified_name, domain);
2446 if (result.symbol != NULL)
2447 {
2448 do_cleanups (cleanup);
2449 return result;
2450 }
2451 }
2452
2453 do_cleanups (cleanup);
2454 return (struct block_symbol) {NULL, NULL};
2455 }
2456
2457 /* A helper function that throws an exception when a symbol was found
2458 in a psymtab but not in a symtab. */
2459
2460 static void ATTRIBUTE_NORETURN
2461 error_in_psymtab_expansion (int block_index, const char *name,
2462 struct compunit_symtab *cust)
2463 {
2464 error (_("\
2465 Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n\
2466 %s may be an inlined function, or may be a template function\n \
2467 (if a template, try specifying an instantiation: %s<type>)."),
2468 block_index == GLOBAL_BLOCK ? "global" : "static",
2469 name,
2470 symtab_to_filename_for_display (compunit_primary_filetab (cust)),
2471 name, name);
2472 }
2473
2474 /* A helper function for various lookup routines that interfaces with
2475 the "quick" symbol table functions. */
2476
2477 static struct block_symbol
2478 lookup_symbol_via_quick_fns (struct objfile *objfile, int block_index,
2479 const char *name, const domain_enum domain)
2480 {
2481 struct compunit_symtab *cust;
2482 const struct blockvector *bv;
2483 const struct block *block;
2484 struct block_symbol result;
2485
2486 if (!objfile->sf)
2487 return (struct block_symbol) {NULL, NULL};
2488
2489 if (symbol_lookup_debug > 1)
2490 {
2491 fprintf_unfiltered (gdb_stdlog,
2492 "lookup_symbol_via_quick_fns (%s, %s, %s, %s)\n",
2493 objfile_debug_name (objfile),
2494 block_index == GLOBAL_BLOCK
2495 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2496 name, domain_name (domain));
2497 }
2498
2499 cust = objfile->sf->qf->lookup_symbol (objfile, block_index, name, domain);
2500 if (cust == NULL)
2501 {
2502 if (symbol_lookup_debug > 1)
2503 {
2504 fprintf_unfiltered (gdb_stdlog,
2505 "lookup_symbol_via_quick_fns (...) = NULL\n");
2506 }
2507 return (struct block_symbol) {NULL, NULL};
2508 }
2509
2510 bv = COMPUNIT_BLOCKVECTOR (cust);
2511 block = BLOCKVECTOR_BLOCK (bv, block_index);
2512 result.symbol = block_lookup_symbol (block, name, domain);
2513 if (result.symbol == NULL)
2514 error_in_psymtab_expansion (block_index, name, cust);
2515
2516 if (symbol_lookup_debug > 1)
2517 {
2518 fprintf_unfiltered (gdb_stdlog,
2519 "lookup_symbol_via_quick_fns (...) = %s (block %s)\n",
2520 host_address_to_string (result.symbol),
2521 host_address_to_string (block));
2522 }
2523
2524 result.symbol = fixup_symbol_section (result.symbol, objfile);
2525 result.block = block;
2526 return result;
2527 }
2528
2529 /* See symtab.h. */
2530
2531 struct block_symbol
2532 basic_lookup_symbol_nonlocal (const struct language_defn *langdef,
2533 const char *name,
2534 const struct block *block,
2535 const domain_enum domain)
2536 {
2537 struct block_symbol result;
2538
2539 /* NOTE: carlton/2003-05-19: The comments below were written when
2540 this (or what turned into this) was part of lookup_symbol_aux;
2541 I'm much less worried about these questions now, since these
2542 decisions have turned out well, but I leave these comments here
2543 for posterity. */
2544
2545 /* NOTE: carlton/2002-12-05: There is a question as to whether or
2546 not it would be appropriate to search the current global block
2547 here as well. (That's what this code used to do before the
2548 is_a_field_of_this check was moved up.) On the one hand, it's
2549 redundant with the lookup in all objfiles search that happens
2550 next. On the other hand, if decode_line_1 is passed an argument
2551 like filename:var, then the user presumably wants 'var' to be
2552 searched for in filename. On the third hand, there shouldn't be
2553 multiple global variables all of which are named 'var', and it's
2554 not like decode_line_1 has ever restricted its search to only
2555 global variables in a single filename. All in all, only
2556 searching the static block here seems best: it's correct and it's
2557 cleanest. */
2558
2559 /* NOTE: carlton/2002-12-05: There's also a possible performance
2560 issue here: if you usually search for global symbols in the
2561 current file, then it would be slightly better to search the
2562 current global block before searching all the symtabs. But there
2563 are other factors that have a much greater effect on performance
2564 than that one, so I don't think we should worry about that for
2565 now. */
2566
2567 /* NOTE: dje/2014-10-26: The lookup in all objfiles search could skip
2568 the current objfile. Searching the current objfile first is useful
2569 for both matching user expectations as well as performance. */
2570
2571 result = lookup_symbol_in_static_block (name, block, domain);
2572 if (result.symbol != NULL)
2573 return result;
2574
2575 /* If we didn't find a definition for a builtin type in the static block,
2576 search for it now. This is actually the right thing to do and can be
2577 a massive performance win. E.g., when debugging a program with lots of
2578 shared libraries we could search all of them only to find out the
2579 builtin type isn't defined in any of them. This is common for types
2580 like "void". */
2581 if (domain == VAR_DOMAIN)
2582 {
2583 struct gdbarch *gdbarch;
2584
2585 if (block == NULL)
2586 gdbarch = target_gdbarch ();
2587 else
2588 gdbarch = block_gdbarch (block);
2589 result.symbol = language_lookup_primitive_type_as_symbol (langdef,
2590 gdbarch, name);
2591 result.block = NULL;
2592 if (result.symbol != NULL)
2593 return result;
2594 }
2595
2596 return lookup_global_symbol (name, block, domain);
2597 }
2598
2599 /* See symtab.h. */
2600
2601 struct block_symbol
2602 lookup_symbol_in_static_block (const char *name,
2603 const struct block *block,
2604 const domain_enum domain)
2605 {
2606 const struct block *static_block = block_static_block (block);
2607 struct symbol *sym;
2608
2609 if (static_block == NULL)
2610 return (struct block_symbol) {NULL, NULL};
2611
2612 if (symbol_lookup_debug)
2613 {
2614 struct objfile *objfile = lookup_objfile_from_block (static_block);
2615
2616 fprintf_unfiltered (gdb_stdlog,
2617 "lookup_symbol_in_static_block (%s, %s (objfile %s),"
2618 " %s)\n",
2619 name,
2620 host_address_to_string (block),
2621 objfile_debug_name (objfile),
2622 domain_name (domain));
2623 }
2624
2625 sym = lookup_symbol_in_block (name, static_block, domain);
2626 if (symbol_lookup_debug)
2627 {
2628 fprintf_unfiltered (gdb_stdlog,
2629 "lookup_symbol_in_static_block (...) = %s\n",
2630 sym != NULL ? host_address_to_string (sym) : "NULL");
2631 }
2632 return (struct block_symbol) {sym, static_block};
2633 }
2634
2635 /* Perform the standard symbol lookup of NAME in OBJFILE:
2636 1) First search expanded symtabs, and if not found
2637 2) Search the "quick" symtabs (partial or .gdb_index).
2638 BLOCK_INDEX is one of GLOBAL_BLOCK or STATIC_BLOCK. */
2639
2640 static struct block_symbol
2641 lookup_symbol_in_objfile (struct objfile *objfile, int block_index,
2642 const char *name, const domain_enum domain)
2643 {
2644 struct block_symbol result;
2645
2646 if (symbol_lookup_debug)
2647 {
2648 fprintf_unfiltered (gdb_stdlog,
2649 "lookup_symbol_in_objfile (%s, %s, %s, %s)\n",
2650 objfile_debug_name (objfile),
2651 block_index == GLOBAL_BLOCK
2652 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2653 name, domain_name (domain));
2654 }
2655
2656 result = lookup_symbol_in_objfile_symtabs (objfile, block_index,
2657 name, domain);
2658 if (result.symbol != NULL)
2659 {
2660 if (symbol_lookup_debug)
2661 {
2662 fprintf_unfiltered (gdb_stdlog,
2663 "lookup_symbol_in_objfile (...) = %s"
2664 " (in symtabs)\n",
2665 host_address_to_string (result.symbol));
2666 }
2667 return result;
2668 }
2669
2670 result = lookup_symbol_via_quick_fns (objfile, block_index,
2671 name, domain);
2672 if (symbol_lookup_debug)
2673 {
2674 fprintf_unfiltered (gdb_stdlog,
2675 "lookup_symbol_in_objfile (...) = %s%s\n",
2676 result.symbol != NULL
2677 ? host_address_to_string (result.symbol)
2678 : "NULL",
2679 result.symbol != NULL ? " (via quick fns)" : "");
2680 }
2681 return result;
2682 }
2683
2684 /* See symtab.h. */
2685
2686 struct block_symbol
2687 lookup_static_symbol (const char *name, const domain_enum domain)
2688 {
2689 struct symbol_cache *cache = get_symbol_cache (current_program_space);
2690 struct objfile *objfile;
2691 struct block_symbol result;
2692 struct block_symbol_cache *bsc;
2693 struct symbol_cache_slot *slot;
2694
2695 /* Lookup in STATIC_BLOCK is not current-objfile-dependent, so just pass
2696 NULL for OBJFILE_CONTEXT. */
2697 result = symbol_cache_lookup (cache, NULL, STATIC_BLOCK, name, domain,
2698 &bsc, &slot);
2699 if (result.symbol != NULL)
2700 {
2701 if (SYMBOL_LOOKUP_FAILED_P (result))
2702 return (struct block_symbol) {NULL, NULL};
2703 return result;
2704 }
2705
2706 ALL_OBJFILES (objfile)
2707 {
2708 result = lookup_symbol_in_objfile (objfile, STATIC_BLOCK, name, domain);
2709 if (result.symbol != NULL)
2710 {
2711 /* Still pass NULL for OBJFILE_CONTEXT here. */
2712 symbol_cache_mark_found (bsc, slot, NULL, result.symbol,
2713 result.block);
2714 return result;
2715 }
2716 }
2717
2718 /* Still pass NULL for OBJFILE_CONTEXT here. */
2719 symbol_cache_mark_not_found (bsc, slot, NULL, name, domain);
2720 return (struct block_symbol) {NULL, NULL};
2721 }
2722
2723 /* Private data to be used with lookup_symbol_global_iterator_cb. */
2724
2725 struct global_sym_lookup_data
2726 {
2727 /* The name of the symbol we are searching for. */
2728 const char *name;
2729
2730 /* The domain to use for our search. */
2731 domain_enum domain;
2732
2733 /* The field where the callback should store the symbol if found.
2734 It should be initialized to {NULL, NULL} before the search is started. */
2735 struct block_symbol result;
2736 };
2737
2738 /* A callback function for gdbarch_iterate_over_objfiles_in_search_order.
2739 It searches by name for a symbol in the GLOBAL_BLOCK of the given
2740 OBJFILE. The arguments for the search are passed via CB_DATA,
2741 which in reality is a pointer to struct global_sym_lookup_data. */
2742
2743 static int
2744 lookup_symbol_global_iterator_cb (struct objfile *objfile,
2745 void *cb_data)
2746 {
2747 struct global_sym_lookup_data *data =
2748 (struct global_sym_lookup_data *) cb_data;
2749
2750 gdb_assert (data->result.symbol == NULL
2751 && data->result.block == NULL);
2752
2753 data->result = lookup_symbol_in_objfile (objfile, GLOBAL_BLOCK,
2754 data->name, data->domain);
2755
2756 /* If we found a match, tell the iterator to stop. Otherwise,
2757 keep going. */
2758 return (data->result.symbol != NULL);
2759 }
2760
2761 /* See symtab.h. */
2762
2763 struct block_symbol
2764 lookup_global_symbol (const char *name,
2765 const struct block *block,
2766 const domain_enum domain)
2767 {
2768 struct symbol_cache *cache = get_symbol_cache (current_program_space);
2769 struct block_symbol result;
2770 struct objfile *objfile;
2771 struct global_sym_lookup_data lookup_data;
2772 struct block_symbol_cache *bsc;
2773 struct symbol_cache_slot *slot;
2774
2775 objfile = lookup_objfile_from_block (block);
2776
2777 /* First see if we can find the symbol in the cache.
2778 This works because we use the current objfile to qualify the lookup. */
2779 result = symbol_cache_lookup (cache, objfile, GLOBAL_BLOCK, name, domain,
2780 &bsc, &slot);
2781 if (result.symbol != NULL)
2782 {
2783 if (SYMBOL_LOOKUP_FAILED_P (result))
2784 return (struct block_symbol) {NULL, NULL};
2785 return result;
2786 }
2787
2788 /* Call library-specific lookup procedure. */
2789 if (objfile != NULL)
2790 result = solib_global_lookup (objfile, name, domain);
2791
2792 /* If that didn't work go a global search (of global blocks, heh). */
2793 if (result.symbol == NULL)
2794 {
2795 memset (&lookup_data, 0, sizeof (lookup_data));
2796 lookup_data.name = name;
2797 lookup_data.domain = domain;
2798 gdbarch_iterate_over_objfiles_in_search_order
2799 (objfile != NULL ? get_objfile_arch (objfile) : target_gdbarch (),
2800 lookup_symbol_global_iterator_cb, &lookup_data, objfile);
2801 result = lookup_data.result;
2802 }
2803
2804 if (result.symbol != NULL)
2805 symbol_cache_mark_found (bsc, slot, objfile, result.symbol, result.block);
2806 else
2807 symbol_cache_mark_not_found (bsc, slot, objfile, name, domain);
2808
2809 return result;
2810 }
2811
2812 int
2813 symbol_matches_domain (enum language symbol_language,
2814 domain_enum symbol_domain,
2815 domain_enum domain)
2816 {
2817 /* For C++ "struct foo { ... }" also defines a typedef for "foo".
2818 A Java class declaration also defines a typedef for the class.
2819 Similarly, any Ada type declaration implicitly defines a typedef. */
2820 if (symbol_language == language_cplus
2821 || symbol_language == language_d
2822 || symbol_language == language_java
2823 || symbol_language == language_ada)
2824 {
2825 if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN)
2826 && symbol_domain == STRUCT_DOMAIN)
2827 return 1;
2828 }
2829 /* For all other languages, strict match is required. */
2830 return (symbol_domain == domain);
2831 }
2832
2833 /* See symtab.h. */
2834
2835 struct type *
2836 lookup_transparent_type (const char *name)
2837 {
2838 return current_language->la_lookup_transparent_type (name);
2839 }
2840
2841 /* A helper for basic_lookup_transparent_type that interfaces with the
2842 "quick" symbol table functions. */
2843
2844 static struct type *
2845 basic_lookup_transparent_type_quick (struct objfile *objfile, int block_index,
2846 const char *name)
2847 {
2848 struct compunit_symtab *cust;
2849 const struct blockvector *bv;
2850 struct block *block;
2851 struct symbol *sym;
2852
2853 if (!objfile->sf)
2854 return NULL;
2855 cust = objfile->sf->qf->lookup_symbol (objfile, block_index, name,
2856 STRUCT_DOMAIN);
2857 if (cust == NULL)
2858 return NULL;
2859
2860 bv = COMPUNIT_BLOCKVECTOR (cust);
2861 block = BLOCKVECTOR_BLOCK (bv, block_index);
2862 sym = block_find_symbol (block, name, STRUCT_DOMAIN,
2863 block_find_non_opaque_type, NULL);
2864 if (sym == NULL)
2865 error_in_psymtab_expansion (block_index, name, cust);
2866 gdb_assert (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)));
2867 return SYMBOL_TYPE (sym);
2868 }
2869
2870 /* Subroutine of basic_lookup_transparent_type to simplify it.
2871 Look up the non-opaque definition of NAME in BLOCK_INDEX of OBJFILE.
2872 BLOCK_INDEX is either GLOBAL_BLOCK or STATIC_BLOCK. */
2873
2874 static struct type *
2875 basic_lookup_transparent_type_1 (struct objfile *objfile, int block_index,
2876 const char *name)
2877 {
2878 const struct compunit_symtab *cust;
2879 const struct blockvector *bv;
2880 const struct block *block;
2881 const struct symbol *sym;
2882
2883 ALL_OBJFILE_COMPUNITS (objfile, cust)
2884 {
2885 bv = COMPUNIT_BLOCKVECTOR (cust);
2886 block = BLOCKVECTOR_BLOCK (bv, block_index);
2887 sym = block_find_symbol (block, name, STRUCT_DOMAIN,
2888 block_find_non_opaque_type, NULL);
2889 if (sym != NULL)
2890 {
2891 gdb_assert (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)));
2892 return SYMBOL_TYPE (sym);
2893 }
2894 }
2895
2896 return NULL;
2897 }
2898
2899 /* The standard implementation of lookup_transparent_type. This code
2900 was modeled on lookup_symbol -- the parts not relevant to looking
2901 up types were just left out. In particular it's assumed here that
2902 types are available in STRUCT_DOMAIN and only in file-static or
2903 global blocks. */
2904
2905 struct type *
2906 basic_lookup_transparent_type (const char *name)
2907 {
2908 struct symbol *sym;
2909 struct compunit_symtab *cust;
2910 const struct blockvector *bv;
2911 struct objfile *objfile;
2912 struct block *block;
2913 struct type *t;
2914
2915 /* Now search all the global symbols. Do the symtab's first, then
2916 check the psymtab's. If a psymtab indicates the existence
2917 of the desired name as a global, then do psymtab-to-symtab
2918 conversion on the fly and return the found symbol. */
2919
2920 ALL_OBJFILES (objfile)
2921 {
2922 t = basic_lookup_transparent_type_1 (objfile, GLOBAL_BLOCK, name);
2923 if (t)
2924 return t;
2925 }
2926
2927 ALL_OBJFILES (objfile)
2928 {
2929 t = basic_lookup_transparent_type_quick (objfile, GLOBAL_BLOCK, name);
2930 if (t)
2931 return t;
2932 }
2933
2934 /* Now search the static file-level symbols.
2935 Not strictly correct, but more useful than an error.
2936 Do the symtab's first, then
2937 check the psymtab's. If a psymtab indicates the existence
2938 of the desired name as a file-level static, then do psymtab-to-symtab
2939 conversion on the fly and return the found symbol. */
2940
2941 ALL_OBJFILES (objfile)
2942 {
2943 t = basic_lookup_transparent_type_1 (objfile, STATIC_BLOCK, name);
2944 if (t)
2945 return t;
2946 }
2947
2948 ALL_OBJFILES (objfile)
2949 {
2950 t = basic_lookup_transparent_type_quick (objfile, STATIC_BLOCK, name);
2951 if (t)
2952 return t;
2953 }
2954
2955 return (struct type *) 0;
2956 }
2957
2958 /* Iterate over the symbols named NAME, matching DOMAIN, in BLOCK.
2959
2960 For each symbol that matches, CALLBACK is called. The symbol and
2961 DATA are passed to the callback.
2962
2963 If CALLBACK returns zero, the iteration ends. Otherwise, the
2964 search continues. */
2965
2966 void
2967 iterate_over_symbols (const struct block *block, const char *name,
2968 const domain_enum domain,
2969 symbol_found_callback_ftype *callback,
2970 void *data)
2971 {
2972 struct block_iterator iter;
2973 struct symbol *sym;
2974
2975 ALL_BLOCK_SYMBOLS_WITH_NAME (block, name, iter, sym)
2976 {
2977 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
2978 SYMBOL_DOMAIN (sym), domain))
2979 {
2980 if (!callback (sym, data))
2981 return;
2982 }
2983 }
2984 }
2985
2986 /* Find the compunit symtab associated with PC and SECTION.
2987 This will read in debug info as necessary. */
2988
2989 struct compunit_symtab *
2990 find_pc_sect_compunit_symtab (CORE_ADDR pc, struct obj_section *section)
2991 {
2992 struct compunit_symtab *cust;
2993 struct compunit_symtab *best_cust = NULL;
2994 struct objfile *objfile;
2995 CORE_ADDR distance = 0;
2996 struct bound_minimal_symbol msymbol;
2997
2998 /* If we know that this is not a text address, return failure. This is
2999 necessary because we loop based on the block's high and low code
3000 addresses, which do not include the data ranges, and because
3001 we call find_pc_sect_psymtab which has a similar restriction based
3002 on the partial_symtab's texthigh and textlow. */
3003 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
3004 if (msymbol.minsym
3005 && (MSYMBOL_TYPE (msymbol.minsym) == mst_data
3006 || MSYMBOL_TYPE (msymbol.minsym) == mst_bss
3007 || MSYMBOL_TYPE (msymbol.minsym) == mst_abs
3008 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_data
3009 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_bss))
3010 return NULL;
3011
3012 /* Search all symtabs for the one whose file contains our address, and which
3013 is the smallest of all the ones containing the address. This is designed
3014 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
3015 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
3016 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
3017
3018 This happens for native ecoff format, where code from included files
3019 gets its own symtab. The symtab for the included file should have
3020 been read in already via the dependency mechanism.
3021 It might be swifter to create several symtabs with the same name
3022 like xcoff does (I'm not sure).
3023
3024 It also happens for objfiles that have their functions reordered.
3025 For these, the symtab we are looking for is not necessarily read in. */
3026
3027 ALL_COMPUNITS (objfile, cust)
3028 {
3029 struct block *b;
3030 const struct blockvector *bv;
3031
3032 bv = COMPUNIT_BLOCKVECTOR (cust);
3033 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
3034
3035 if (BLOCK_START (b) <= pc
3036 && BLOCK_END (b) > pc
3037 && (distance == 0
3038 || BLOCK_END (b) - BLOCK_START (b) < distance))
3039 {
3040 /* For an objfile that has its functions reordered,
3041 find_pc_psymtab will find the proper partial symbol table
3042 and we simply return its corresponding symtab. */
3043 /* In order to better support objfiles that contain both
3044 stabs and coff debugging info, we continue on if a psymtab
3045 can't be found. */
3046 if ((objfile->flags & OBJF_REORDERED) && objfile->sf)
3047 {
3048 struct compunit_symtab *result;
3049
3050 result
3051 = objfile->sf->qf->find_pc_sect_compunit_symtab (objfile,
3052 msymbol,
3053 pc, section,
3054 0);
3055 if (result != NULL)
3056 return result;
3057 }
3058 if (section != 0)
3059 {
3060 struct block_iterator iter;
3061 struct symbol *sym = NULL;
3062
3063 ALL_BLOCK_SYMBOLS (b, iter, sym)
3064 {
3065 fixup_symbol_section (sym, objfile);
3066 if (matching_obj_sections (SYMBOL_OBJ_SECTION (objfile, sym),
3067 section))
3068 break;
3069 }
3070 if (sym == NULL)
3071 continue; /* No symbol in this symtab matches
3072 section. */
3073 }
3074 distance = BLOCK_END (b) - BLOCK_START (b);
3075 best_cust = cust;
3076 }
3077 }
3078
3079 if (best_cust != NULL)
3080 return best_cust;
3081
3082 /* Not found in symtabs, search the "quick" symtabs (e.g. psymtabs). */
3083
3084 ALL_OBJFILES (objfile)
3085 {
3086 struct compunit_symtab *result;
3087
3088 if (!objfile->sf)
3089 continue;
3090 result = objfile->sf->qf->find_pc_sect_compunit_symtab (objfile,
3091 msymbol,
3092 pc, section,
3093 1);
3094 if (result != NULL)
3095 return result;
3096 }
3097
3098 return NULL;
3099 }
3100
3101 /* Find the compunit symtab associated with PC.
3102 This will read in debug info as necessary.
3103 Backward compatibility, no section. */
3104
3105 struct compunit_symtab *
3106 find_pc_compunit_symtab (CORE_ADDR pc)
3107 {
3108 return find_pc_sect_compunit_symtab (pc, find_pc_mapped_section (pc));
3109 }
3110 \f
3111
3112 /* Find the source file and line number for a given PC value and SECTION.
3113 Return a structure containing a symtab pointer, a line number,
3114 and a pc range for the entire source line.
3115 The value's .pc field is NOT the specified pc.
3116 NOTCURRENT nonzero means, if specified pc is on a line boundary,
3117 use the line that ends there. Otherwise, in that case, the line
3118 that begins there is used. */
3119
3120 /* The big complication here is that a line may start in one file, and end just
3121 before the start of another file. This usually occurs when you #include
3122 code in the middle of a subroutine. To properly find the end of a line's PC
3123 range, we must search all symtabs associated with this compilation unit, and
3124 find the one whose first PC is closer than that of the next line in this
3125 symtab. */
3126
3127 /* If it's worth the effort, we could be using a binary search. */
3128
3129 struct symtab_and_line
3130 find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent)
3131 {
3132 struct compunit_symtab *cust;
3133 struct symtab *iter_s;
3134 struct linetable *l;
3135 int len;
3136 int i;
3137 struct linetable_entry *item;
3138 struct symtab_and_line val;
3139 const struct blockvector *bv;
3140 struct bound_minimal_symbol msymbol;
3141
3142 /* Info on best line seen so far, and where it starts, and its file. */
3143
3144 struct linetable_entry *best = NULL;
3145 CORE_ADDR best_end = 0;
3146 struct symtab *best_symtab = 0;
3147
3148 /* Store here the first line number
3149 of a file which contains the line at the smallest pc after PC.
3150 If we don't find a line whose range contains PC,
3151 we will use a line one less than this,
3152 with a range from the start of that file to the first line's pc. */
3153 struct linetable_entry *alt = NULL;
3154
3155 /* Info on best line seen in this file. */
3156
3157 struct linetable_entry *prev;
3158
3159 /* If this pc is not from the current frame,
3160 it is the address of the end of a call instruction.
3161 Quite likely that is the start of the following statement.
3162 But what we want is the statement containing the instruction.
3163 Fudge the pc to make sure we get that. */
3164
3165 init_sal (&val); /* initialize to zeroes */
3166
3167 val.pspace = current_program_space;
3168
3169 /* It's tempting to assume that, if we can't find debugging info for
3170 any function enclosing PC, that we shouldn't search for line
3171 number info, either. However, GAS can emit line number info for
3172 assembly files --- very helpful when debugging hand-written
3173 assembly code. In such a case, we'd have no debug info for the
3174 function, but we would have line info. */
3175
3176 if (notcurrent)
3177 pc -= 1;
3178
3179 /* elz: added this because this function returned the wrong
3180 information if the pc belongs to a stub (import/export)
3181 to call a shlib function. This stub would be anywhere between
3182 two functions in the target, and the line info was erroneously
3183 taken to be the one of the line before the pc. */
3184
3185 /* RT: Further explanation:
3186
3187 * We have stubs (trampolines) inserted between procedures.
3188 *
3189 * Example: "shr1" exists in a shared library, and a "shr1" stub also
3190 * exists in the main image.
3191 *
3192 * In the minimal symbol table, we have a bunch of symbols
3193 * sorted by start address. The stubs are marked as "trampoline",
3194 * the others appear as text. E.g.:
3195 *
3196 * Minimal symbol table for main image
3197 * main: code for main (text symbol)
3198 * shr1: stub (trampoline symbol)
3199 * foo: code for foo (text symbol)
3200 * ...
3201 * Minimal symbol table for "shr1" image:
3202 * ...
3203 * shr1: code for shr1 (text symbol)
3204 * ...
3205 *
3206 * So the code below is trying to detect if we are in the stub
3207 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
3208 * and if found, do the symbolization from the real-code address
3209 * rather than the stub address.
3210 *
3211 * Assumptions being made about the minimal symbol table:
3212 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
3213 * if we're really in the trampoline.s If we're beyond it (say
3214 * we're in "foo" in the above example), it'll have a closer
3215 * symbol (the "foo" text symbol for example) and will not
3216 * return the trampoline.
3217 * 2. lookup_minimal_symbol_text() will find a real text symbol
3218 * corresponding to the trampoline, and whose address will
3219 * be different than the trampoline address. I put in a sanity
3220 * check for the address being the same, to avoid an
3221 * infinite recursion.
3222 */
3223 msymbol = lookup_minimal_symbol_by_pc (pc);
3224 if (msymbol.minsym != NULL)
3225 if (MSYMBOL_TYPE (msymbol.minsym) == mst_solib_trampoline)
3226 {
3227 struct bound_minimal_symbol mfunsym
3228 = lookup_minimal_symbol_text (MSYMBOL_LINKAGE_NAME (msymbol.minsym),
3229 NULL);
3230
3231 if (mfunsym.minsym == NULL)
3232 /* I eliminated this warning since it is coming out
3233 * in the following situation:
3234 * gdb shmain // test program with shared libraries
3235 * (gdb) break shr1 // function in shared lib
3236 * Warning: In stub for ...
3237 * In the above situation, the shared lib is not loaded yet,
3238 * so of course we can't find the real func/line info,
3239 * but the "break" still works, and the warning is annoying.
3240 * So I commented out the warning. RT */
3241 /* warning ("In stub for %s; unable to find real function/line info",
3242 SYMBOL_LINKAGE_NAME (msymbol)); */
3243 ;
3244 /* fall through */
3245 else if (BMSYMBOL_VALUE_ADDRESS (mfunsym)
3246 == BMSYMBOL_VALUE_ADDRESS (msymbol))
3247 /* Avoid infinite recursion */
3248 /* See above comment about why warning is commented out. */
3249 /* warning ("In stub for %s; unable to find real function/line info",
3250 SYMBOL_LINKAGE_NAME (msymbol)); */
3251 ;
3252 /* fall through */
3253 else
3254 return find_pc_line (BMSYMBOL_VALUE_ADDRESS (mfunsym), 0);
3255 }
3256
3257
3258 cust = find_pc_sect_compunit_symtab (pc, section);
3259 if (cust == NULL)
3260 {
3261 /* If no symbol information, return previous pc. */
3262 if (notcurrent)
3263 pc++;
3264 val.pc = pc;
3265 return val;
3266 }
3267
3268 bv = COMPUNIT_BLOCKVECTOR (cust);
3269
3270 /* Look at all the symtabs that share this blockvector.
3271 They all have the same apriori range, that we found was right;
3272 but they have different line tables. */
3273
3274 ALL_COMPUNIT_FILETABS (cust, iter_s)
3275 {
3276 /* Find the best line in this symtab. */
3277 l = SYMTAB_LINETABLE (iter_s);
3278 if (!l)
3279 continue;
3280 len = l->nitems;
3281 if (len <= 0)
3282 {
3283 /* I think len can be zero if the symtab lacks line numbers
3284 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
3285 I'm not sure which, and maybe it depends on the symbol
3286 reader). */
3287 continue;
3288 }
3289
3290 prev = NULL;
3291 item = l->item; /* Get first line info. */
3292
3293 /* Is this file's first line closer than the first lines of other files?
3294 If so, record this file, and its first line, as best alternate. */
3295 if (item->pc > pc && (!alt || item->pc < alt->pc))
3296 alt = item;
3297
3298 for (i = 0; i < len; i++, item++)
3299 {
3300 /* Leave prev pointing to the linetable entry for the last line
3301 that started at or before PC. */
3302 if (item->pc > pc)
3303 break;
3304
3305 prev = item;
3306 }
3307
3308 /* At this point, prev points at the line whose start addr is <= pc, and
3309 item points at the next line. If we ran off the end of the linetable
3310 (pc >= start of the last line), then prev == item. If pc < start of
3311 the first line, prev will not be set. */
3312
3313 /* Is this file's best line closer than the best in the other files?
3314 If so, record this file, and its best line, as best so far. Don't
3315 save prev if it represents the end of a function (i.e. line number
3316 0) instead of a real line. */
3317
3318 if (prev && prev->line && (!best || prev->pc > best->pc))
3319 {
3320 best = prev;
3321 best_symtab = iter_s;
3322
3323 /* Discard BEST_END if it's before the PC of the current BEST. */
3324 if (best_end <= best->pc)
3325 best_end = 0;
3326 }
3327
3328 /* If another line (denoted by ITEM) is in the linetable and its
3329 PC is after BEST's PC, but before the current BEST_END, then
3330 use ITEM's PC as the new best_end. */
3331 if (best && i < len && item->pc > best->pc
3332 && (best_end == 0 || best_end > item->pc))
3333 best_end = item->pc;
3334 }
3335
3336 if (!best_symtab)
3337 {
3338 /* If we didn't find any line number info, just return zeros.
3339 We used to return alt->line - 1 here, but that could be
3340 anywhere; if we don't have line number info for this PC,
3341 don't make some up. */
3342 val.pc = pc;
3343 }
3344 else if (best->line == 0)
3345 {
3346 /* If our best fit is in a range of PC's for which no line
3347 number info is available (line number is zero) then we didn't
3348 find any valid line information. */
3349 val.pc = pc;
3350 }
3351 else
3352 {
3353 val.symtab = best_symtab;
3354 val.line = best->line;
3355 val.pc = best->pc;
3356 if (best_end && (!alt || best_end < alt->pc))
3357 val.end = best_end;
3358 else if (alt)
3359 val.end = alt->pc;
3360 else
3361 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
3362 }
3363 val.section = section;
3364 return val;
3365 }
3366
3367 /* Backward compatibility (no section). */
3368
3369 struct symtab_and_line
3370 find_pc_line (CORE_ADDR pc, int notcurrent)
3371 {
3372 struct obj_section *section;
3373
3374 section = find_pc_overlay (pc);
3375 if (pc_in_unmapped_range (pc, section))
3376 pc = overlay_mapped_address (pc, section);
3377 return find_pc_sect_line (pc, section, notcurrent);
3378 }
3379
3380 /* See symtab.h. */
3381
3382 struct symtab *
3383 find_pc_line_symtab (CORE_ADDR pc)
3384 {
3385 struct symtab_and_line sal;
3386
3387 /* This always passes zero for NOTCURRENT to find_pc_line.
3388 There are currently no callers that ever pass non-zero. */
3389 sal = find_pc_line (pc, 0);
3390 return sal.symtab;
3391 }
3392 \f
3393 /* Find line number LINE in any symtab whose name is the same as
3394 SYMTAB.
3395
3396 If found, return the symtab that contains the linetable in which it was
3397 found, set *INDEX to the index in the linetable of the best entry
3398 found, and set *EXACT_MATCH nonzero if the value returned is an
3399 exact match.
3400
3401 If not found, return NULL. */
3402
3403 struct symtab *
3404 find_line_symtab (struct symtab *symtab, int line,
3405 int *index, int *exact_match)
3406 {
3407 int exact = 0; /* Initialized here to avoid a compiler warning. */
3408
3409 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
3410 so far seen. */
3411
3412 int best_index;
3413 struct linetable *best_linetable;
3414 struct symtab *best_symtab;
3415
3416 /* First try looking it up in the given symtab. */
3417 best_linetable = SYMTAB_LINETABLE (symtab);
3418 best_symtab = symtab;
3419 best_index = find_line_common (best_linetable, line, &exact, 0);
3420 if (best_index < 0 || !exact)
3421 {
3422 /* Didn't find an exact match. So we better keep looking for
3423 another symtab with the same name. In the case of xcoff,
3424 multiple csects for one source file (produced by IBM's FORTRAN
3425 compiler) produce multiple symtabs (this is unavoidable
3426 assuming csects can be at arbitrary places in memory and that
3427 the GLOBAL_BLOCK of a symtab has a begin and end address). */
3428
3429 /* BEST is the smallest linenumber > LINE so far seen,
3430 or 0 if none has been seen so far.
3431 BEST_INDEX and BEST_LINETABLE identify the item for it. */
3432 int best;
3433
3434 struct objfile *objfile;
3435 struct compunit_symtab *cu;
3436 struct symtab *s;
3437
3438 if (best_index >= 0)
3439 best = best_linetable->item[best_index].line;
3440 else
3441 best = 0;
3442
3443 ALL_OBJFILES (objfile)
3444 {
3445 if (objfile->sf)
3446 objfile->sf->qf->expand_symtabs_with_fullname (objfile,
3447 symtab_to_fullname (symtab));
3448 }
3449
3450 ALL_FILETABS (objfile, cu, s)
3451 {
3452 struct linetable *l;
3453 int ind;
3454
3455 if (FILENAME_CMP (symtab->filename, s->filename) != 0)
3456 continue;
3457 if (FILENAME_CMP (symtab_to_fullname (symtab),
3458 symtab_to_fullname (s)) != 0)
3459 continue;
3460 l = SYMTAB_LINETABLE (s);
3461 ind = find_line_common (l, line, &exact, 0);
3462 if (ind >= 0)
3463 {
3464 if (exact)
3465 {
3466 best_index = ind;
3467 best_linetable = l;
3468 best_symtab = s;
3469 goto done;
3470 }
3471 if (best == 0 || l->item[ind].line < best)
3472 {
3473 best = l->item[ind].line;
3474 best_index = ind;
3475 best_linetable = l;
3476 best_symtab = s;
3477 }
3478 }
3479 }
3480 }
3481 done:
3482 if (best_index < 0)
3483 return NULL;
3484
3485 if (index)
3486 *index = best_index;
3487 if (exact_match)
3488 *exact_match = exact;
3489
3490 return best_symtab;
3491 }
3492
3493 /* Given SYMTAB, returns all the PCs function in the symtab that
3494 exactly match LINE. Returns NULL if there are no exact matches,
3495 but updates BEST_ITEM in this case. */
3496
3497 VEC (CORE_ADDR) *
3498 find_pcs_for_symtab_line (struct symtab *symtab, int line,
3499 struct linetable_entry **best_item)
3500 {
3501 int start = 0;
3502 VEC (CORE_ADDR) *result = NULL;
3503
3504 /* First, collect all the PCs that are at this line. */
3505 while (1)
3506 {
3507 int was_exact;
3508 int idx;
3509
3510 idx = find_line_common (SYMTAB_LINETABLE (symtab), line, &was_exact,
3511 start);
3512 if (idx < 0)
3513 break;
3514
3515 if (!was_exact)
3516 {
3517 struct linetable_entry *item = &SYMTAB_LINETABLE (symtab)->item[idx];
3518
3519 if (*best_item == NULL || item->line < (*best_item)->line)
3520 *best_item = item;
3521
3522 break;
3523 }
3524
3525 VEC_safe_push (CORE_ADDR, result,
3526 SYMTAB_LINETABLE (symtab)->item[idx].pc);
3527 start = idx + 1;
3528 }
3529
3530 return result;
3531 }
3532
3533 \f
3534 /* Set the PC value for a given source file and line number and return true.
3535 Returns zero for invalid line number (and sets the PC to 0).
3536 The source file is specified with a struct symtab. */
3537
3538 int
3539 find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
3540 {
3541 struct linetable *l;
3542 int ind;
3543
3544 *pc = 0;
3545 if (symtab == 0)
3546 return 0;
3547
3548 symtab = find_line_symtab (symtab, line, &ind, NULL);
3549 if (symtab != NULL)
3550 {
3551 l = SYMTAB_LINETABLE (symtab);
3552 *pc = l->item[ind].pc;
3553 return 1;
3554 }
3555 else
3556 return 0;
3557 }
3558
3559 /* Find the range of pc values in a line.
3560 Store the starting pc of the line into *STARTPTR
3561 and the ending pc (start of next line) into *ENDPTR.
3562 Returns 1 to indicate success.
3563 Returns 0 if could not find the specified line. */
3564
3565 int
3566 find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
3567 CORE_ADDR *endptr)
3568 {
3569 CORE_ADDR startaddr;
3570 struct symtab_and_line found_sal;
3571
3572 startaddr = sal.pc;
3573 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
3574 return 0;
3575
3576 /* This whole function is based on address. For example, if line 10 has
3577 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
3578 "info line *0x123" should say the line goes from 0x100 to 0x200
3579 and "info line *0x355" should say the line goes from 0x300 to 0x400.
3580 This also insures that we never give a range like "starts at 0x134
3581 and ends at 0x12c". */
3582
3583 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
3584 if (found_sal.line != sal.line)
3585 {
3586 /* The specified line (sal) has zero bytes. */
3587 *startptr = found_sal.pc;
3588 *endptr = found_sal.pc;
3589 }
3590 else
3591 {
3592 *startptr = found_sal.pc;
3593 *endptr = found_sal.end;
3594 }
3595 return 1;
3596 }
3597
3598 /* Given a line table and a line number, return the index into the line
3599 table for the pc of the nearest line whose number is >= the specified one.
3600 Return -1 if none is found. The value is >= 0 if it is an index.
3601 START is the index at which to start searching the line table.
3602
3603 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
3604
3605 static int
3606 find_line_common (struct linetable *l, int lineno,
3607 int *exact_match, int start)
3608 {
3609 int i;
3610 int len;
3611
3612 /* BEST is the smallest linenumber > LINENO so far seen,
3613 or 0 if none has been seen so far.
3614 BEST_INDEX identifies the item for it. */
3615
3616 int best_index = -1;
3617 int best = 0;
3618
3619 *exact_match = 0;
3620
3621 if (lineno <= 0)
3622 return -1;
3623 if (l == 0)
3624 return -1;
3625
3626 len = l->nitems;
3627 for (i = start; i < len; i++)
3628 {
3629 struct linetable_entry *item = &(l->item[i]);
3630
3631 if (item->line == lineno)
3632 {
3633 /* Return the first (lowest address) entry which matches. */
3634 *exact_match = 1;
3635 return i;
3636 }
3637
3638 if (item->line > lineno && (best == 0 || item->line < best))
3639 {
3640 best = item->line;
3641 best_index = i;
3642 }
3643 }
3644
3645 /* If we got here, we didn't get an exact match. */
3646 return best_index;
3647 }
3648
3649 int
3650 find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
3651 {
3652 struct symtab_and_line sal;
3653
3654 sal = find_pc_line (pc, 0);
3655 *startptr = sal.pc;
3656 *endptr = sal.end;
3657 return sal.symtab != 0;
3658 }
3659
3660 /* Given a function symbol SYM, find the symtab and line for the start
3661 of the function.
3662 If the argument FUNFIRSTLINE is nonzero, we want the first line
3663 of real code inside the function.
3664 This function should return SALs matching those from minsym_found,
3665 otherwise false multiple-locations breakpoints could be placed. */
3666
3667 struct symtab_and_line
3668 find_function_start_sal (struct symbol *sym, int funfirstline)
3669 {
3670 struct symtab_and_line sal;
3671 struct obj_section *section;
3672
3673 fixup_symbol_section (sym, NULL);
3674 section = SYMBOL_OBJ_SECTION (symbol_objfile (sym), sym);
3675 sal = find_pc_sect_line (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)), section, 0);
3676
3677 if (funfirstline && sal.symtab != NULL
3678 && (COMPUNIT_LOCATIONS_VALID (SYMTAB_COMPUNIT (sal.symtab))
3679 || SYMTAB_LANGUAGE (sal.symtab) == language_asm))
3680 {
3681 struct gdbarch *gdbarch = symbol_arch (sym);
3682
3683 sal.pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
3684 if (gdbarch_skip_entrypoint_p (gdbarch))
3685 sal.pc = gdbarch_skip_entrypoint (gdbarch, sal.pc);
3686 return sal;
3687 }
3688
3689 /* We always should have a line for the function start address.
3690 If we don't, something is odd. Create a plain SAL refering
3691 just the PC and hope that skip_prologue_sal (if requested)
3692 can find a line number for after the prologue. */
3693 if (sal.pc < BLOCK_START (SYMBOL_BLOCK_VALUE (sym)))
3694 {
3695 init_sal (&sal);
3696 sal.pspace = current_program_space;
3697 sal.pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
3698 sal.section = section;
3699 }
3700
3701 if (funfirstline)
3702 skip_prologue_sal (&sal);
3703
3704 return sal;
3705 }
3706
3707 /* Given a function start address FUNC_ADDR and SYMTAB, find the first
3708 address for that function that has an entry in SYMTAB's line info
3709 table. If such an entry cannot be found, return FUNC_ADDR
3710 unaltered. */
3711
3712 static CORE_ADDR
3713 skip_prologue_using_lineinfo (CORE_ADDR func_addr, struct symtab *symtab)
3714 {
3715 CORE_ADDR func_start, func_end;
3716 struct linetable *l;
3717 int i;
3718
3719 /* Give up if this symbol has no lineinfo table. */
3720 l = SYMTAB_LINETABLE (symtab);
3721 if (l == NULL)
3722 return func_addr;
3723
3724 /* Get the range for the function's PC values, or give up if we
3725 cannot, for some reason. */
3726 if (!find_pc_partial_function (func_addr, NULL, &func_start, &func_end))
3727 return func_addr;
3728
3729 /* Linetable entries are ordered by PC values, see the commentary in
3730 symtab.h where `struct linetable' is defined. Thus, the first
3731 entry whose PC is in the range [FUNC_START..FUNC_END[ is the
3732 address we are looking for. */
3733 for (i = 0; i < l->nitems; i++)
3734 {
3735 struct linetable_entry *item = &(l->item[i]);
3736
3737 /* Don't use line numbers of zero, they mark special entries in
3738 the table. See the commentary on symtab.h before the
3739 definition of struct linetable. */
3740 if (item->line > 0 && func_start <= item->pc && item->pc < func_end)
3741 return item->pc;
3742 }
3743
3744 return func_addr;
3745 }
3746
3747 /* Adjust SAL to the first instruction past the function prologue.
3748 If the PC was explicitly specified, the SAL is not changed.
3749 If the line number was explicitly specified, at most the SAL's PC
3750 is updated. If SAL is already past the prologue, then do nothing. */
3751
3752 void
3753 skip_prologue_sal (struct symtab_and_line *sal)
3754 {
3755 struct symbol *sym;
3756 struct symtab_and_line start_sal;
3757 struct cleanup *old_chain;
3758 CORE_ADDR pc, saved_pc;
3759 struct obj_section *section;
3760 const char *name;
3761 struct objfile *objfile;
3762 struct gdbarch *gdbarch;
3763 const struct block *b, *function_block;
3764 int force_skip, skip;
3765
3766 /* Do not change the SAL if PC was specified explicitly. */
3767 if (sal->explicit_pc)
3768 return;
3769
3770 old_chain = save_current_space_and_thread ();
3771 switch_to_program_space_and_thread (sal->pspace);
3772
3773 sym = find_pc_sect_function (sal->pc, sal->section);
3774 if (sym != NULL)
3775 {
3776 fixup_symbol_section (sym, NULL);
3777
3778 objfile = symbol_objfile (sym);
3779 pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
3780 section = SYMBOL_OBJ_SECTION (objfile, sym);
3781 name = SYMBOL_LINKAGE_NAME (sym);
3782 }
3783 else
3784 {
3785 struct bound_minimal_symbol msymbol
3786 = lookup_minimal_symbol_by_pc_section (sal->pc, sal->section);
3787
3788 if (msymbol.minsym == NULL)
3789 {
3790 do_cleanups (old_chain);
3791 return;
3792 }
3793
3794 objfile = msymbol.objfile;
3795 pc = BMSYMBOL_VALUE_ADDRESS (msymbol);
3796 section = MSYMBOL_OBJ_SECTION (objfile, msymbol.minsym);
3797 name = MSYMBOL_LINKAGE_NAME (msymbol.minsym);
3798 }
3799
3800 gdbarch = get_objfile_arch (objfile);
3801
3802 /* Process the prologue in two passes. In the first pass try to skip the
3803 prologue (SKIP is true) and verify there is a real need for it (indicated
3804 by FORCE_SKIP). If no such reason was found run a second pass where the
3805 prologue is not skipped (SKIP is false). */
3806
3807 skip = 1;
3808 force_skip = 1;
3809
3810 /* Be conservative - allow direct PC (without skipping prologue) only if we
3811 have proven the CU (Compilation Unit) supports it. sal->SYMTAB does not
3812 have to be set by the caller so we use SYM instead. */
3813 if (sym != NULL
3814 && COMPUNIT_LOCATIONS_VALID (SYMTAB_COMPUNIT (symbol_symtab (sym))))
3815 force_skip = 0;
3816
3817 saved_pc = pc;
3818 do
3819 {
3820 pc = saved_pc;
3821
3822 /* If the function is in an unmapped overlay, use its unmapped LMA address,
3823 so that gdbarch_skip_prologue has something unique to work on. */
3824 if (section_is_overlay (section) && !section_is_mapped (section))
3825 pc = overlay_unmapped_address (pc, section);
3826
3827 /* Skip "first line" of function (which is actually its prologue). */
3828 pc += gdbarch_deprecated_function_start_offset (gdbarch);
3829 if (gdbarch_skip_entrypoint_p (gdbarch))
3830 pc = gdbarch_skip_entrypoint (gdbarch, pc);
3831 if (skip)
3832 pc = gdbarch_skip_prologue (gdbarch, pc);
3833
3834 /* For overlays, map pc back into its mapped VMA range. */
3835 pc = overlay_mapped_address (pc, section);
3836
3837 /* Calculate line number. */
3838 start_sal = find_pc_sect_line (pc, section, 0);
3839
3840 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
3841 line is still part of the same function. */
3842 if (skip && start_sal.pc != pc
3843 && (sym ? (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) <= start_sal.end
3844 && start_sal.end < BLOCK_END (SYMBOL_BLOCK_VALUE (sym)))
3845 : (lookup_minimal_symbol_by_pc_section (start_sal.end, section).minsym
3846 == lookup_minimal_symbol_by_pc_section (pc, section).minsym)))
3847 {
3848 /* First pc of next line */
3849 pc = start_sal.end;
3850 /* Recalculate the line number (might not be N+1). */
3851 start_sal = find_pc_sect_line (pc, section, 0);
3852 }
3853
3854 /* On targets with executable formats that don't have a concept of
3855 constructors (ELF with .init has, PE doesn't), gcc emits a call
3856 to `__main' in `main' between the prologue and before user
3857 code. */
3858 if (gdbarch_skip_main_prologue_p (gdbarch)
3859 && name && strcmp_iw (name, "main") == 0)
3860 {
3861 pc = gdbarch_skip_main_prologue (gdbarch, pc);
3862 /* Recalculate the line number (might not be N+1). */
3863 start_sal = find_pc_sect_line (pc, section, 0);
3864 force_skip = 1;
3865 }
3866 }
3867 while (!force_skip && skip--);
3868
3869 /* If we still don't have a valid source line, try to find the first
3870 PC in the lineinfo table that belongs to the same function. This
3871 happens with COFF debug info, which does not seem to have an
3872 entry in lineinfo table for the code after the prologue which has
3873 no direct relation to source. For example, this was found to be
3874 the case with the DJGPP target using "gcc -gcoff" when the
3875 compiler inserted code after the prologue to make sure the stack
3876 is aligned. */
3877 if (!force_skip && sym && start_sal.symtab == NULL)
3878 {
3879 pc = skip_prologue_using_lineinfo (pc, symbol_symtab (sym));
3880 /* Recalculate the line number. */
3881 start_sal = find_pc_sect_line (pc, section, 0);
3882 }
3883
3884 do_cleanups (old_chain);
3885
3886 /* If we're already past the prologue, leave SAL unchanged. Otherwise
3887 forward SAL to the end of the prologue. */
3888 if (sal->pc >= pc)
3889 return;
3890
3891 sal->pc = pc;
3892 sal->section = section;
3893
3894 /* Unless the explicit_line flag was set, update the SAL line
3895 and symtab to correspond to the modified PC location. */
3896 if (sal->explicit_line)
3897 return;
3898
3899 sal->symtab = start_sal.symtab;
3900 sal->line = start_sal.line;
3901 sal->end = start_sal.end;
3902
3903 /* Check if we are now inside an inlined function. If we can,
3904 use the call site of the function instead. */
3905 b = block_for_pc_sect (sal->pc, sal->section);
3906 function_block = NULL;
3907 while (b != NULL)
3908 {
3909 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
3910 function_block = b;
3911 else if (BLOCK_FUNCTION (b) != NULL)
3912 break;
3913 b = BLOCK_SUPERBLOCK (b);
3914 }
3915 if (function_block != NULL
3916 && SYMBOL_LINE (BLOCK_FUNCTION (function_block)) != 0)
3917 {
3918 sal->line = SYMBOL_LINE (BLOCK_FUNCTION (function_block));
3919 sal->symtab = symbol_symtab (BLOCK_FUNCTION (function_block));
3920 }
3921 }
3922
3923 /* Given PC at the function's start address, attempt to find the
3924 prologue end using SAL information. Return zero if the skip fails.
3925
3926 A non-optimized prologue traditionally has one SAL for the function
3927 and a second for the function body. A single line function has
3928 them both pointing at the same line.
3929
3930 An optimized prologue is similar but the prologue may contain
3931 instructions (SALs) from the instruction body. Need to skip those
3932 while not getting into the function body.
3933
3934 The functions end point and an increasing SAL line are used as
3935 indicators of the prologue's endpoint.
3936
3937 This code is based on the function refine_prologue_limit
3938 (found in ia64). */
3939
3940 CORE_ADDR
3941 skip_prologue_using_sal (struct gdbarch *gdbarch, CORE_ADDR func_addr)
3942 {
3943 struct symtab_and_line prologue_sal;
3944 CORE_ADDR start_pc;
3945 CORE_ADDR end_pc;
3946 const struct block *bl;
3947
3948 /* Get an initial range for the function. */
3949 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
3950 start_pc += gdbarch_deprecated_function_start_offset (gdbarch);
3951
3952 prologue_sal = find_pc_line (start_pc, 0);
3953 if (prologue_sal.line != 0)
3954 {
3955 /* For languages other than assembly, treat two consecutive line
3956 entries at the same address as a zero-instruction prologue.
3957 The GNU assembler emits separate line notes for each instruction
3958 in a multi-instruction macro, but compilers generally will not
3959 do this. */
3960 if (prologue_sal.symtab->language != language_asm)
3961 {
3962 struct linetable *linetable = SYMTAB_LINETABLE (prologue_sal.symtab);
3963 int idx = 0;
3964
3965 /* Skip any earlier lines, and any end-of-sequence marker
3966 from a previous function. */
3967 while (linetable->item[idx].pc != prologue_sal.pc
3968 || linetable->item[idx].line == 0)
3969 idx++;
3970
3971 if (idx+1 < linetable->nitems
3972 && linetable->item[idx+1].line != 0
3973 && linetable->item[idx+1].pc == start_pc)
3974 return start_pc;
3975 }
3976
3977 /* If there is only one sal that covers the entire function,
3978 then it is probably a single line function, like
3979 "foo(){}". */
3980 if (prologue_sal.end >= end_pc)
3981 return 0;
3982
3983 while (prologue_sal.end < end_pc)
3984 {
3985 struct symtab_and_line sal;
3986
3987 sal = find_pc_line (prologue_sal.end, 0);
3988 if (sal.line == 0)
3989 break;
3990 /* Assume that a consecutive SAL for the same (or larger)
3991 line mark the prologue -> body transition. */
3992 if (sal.line >= prologue_sal.line)
3993 break;
3994 /* Likewise if we are in a different symtab altogether
3995 (e.g. within a file included via #include).  */
3996 if (sal.symtab != prologue_sal.symtab)
3997 break;
3998
3999 /* The line number is smaller. Check that it's from the
4000 same function, not something inlined. If it's inlined,
4001 then there is no point comparing the line numbers. */
4002 bl = block_for_pc (prologue_sal.end);
4003 while (bl)
4004 {
4005 if (block_inlined_p (bl))
4006 break;
4007 if (BLOCK_FUNCTION (bl))
4008 {
4009 bl = NULL;
4010 break;
4011 }
4012 bl = BLOCK_SUPERBLOCK (bl);
4013 }
4014 if (bl != NULL)
4015 break;
4016
4017 /* The case in which compiler's optimizer/scheduler has
4018 moved instructions into the prologue. We look ahead in
4019 the function looking for address ranges whose
4020 corresponding line number is less the first one that we
4021 found for the function. This is more conservative then
4022 refine_prologue_limit which scans a large number of SALs
4023 looking for any in the prologue. */
4024 prologue_sal = sal;
4025 }
4026 }
4027
4028 if (prologue_sal.end < end_pc)
4029 /* Return the end of this line, or zero if we could not find a
4030 line. */
4031 return prologue_sal.end;
4032 else
4033 /* Don't return END_PC, which is past the end of the function. */
4034 return prologue_sal.pc;
4035 }
4036 \f
4037 /* If P is of the form "operator[ \t]+..." where `...' is
4038 some legitimate operator text, return a pointer to the
4039 beginning of the substring of the operator text.
4040 Otherwise, return "". */
4041
4042 static const char *
4043 operator_chars (const char *p, const char **end)
4044 {
4045 *end = "";
4046 if (!startswith (p, "operator"))
4047 return *end;
4048 p += 8;
4049
4050 /* Don't get faked out by `operator' being part of a longer
4051 identifier. */
4052 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
4053 return *end;
4054
4055 /* Allow some whitespace between `operator' and the operator symbol. */
4056 while (*p == ' ' || *p == '\t')
4057 p++;
4058
4059 /* Recognize 'operator TYPENAME'. */
4060
4061 if (isalpha (*p) || *p == '_' || *p == '$')
4062 {
4063 const char *q = p + 1;
4064
4065 while (isalnum (*q) || *q == '_' || *q == '$')
4066 q++;
4067 *end = q;
4068 return p;
4069 }
4070
4071 while (*p)
4072 switch (*p)
4073 {
4074 case '\\': /* regexp quoting */
4075 if (p[1] == '*')
4076 {
4077 if (p[2] == '=') /* 'operator\*=' */
4078 *end = p + 3;
4079 else /* 'operator\*' */
4080 *end = p + 2;
4081 return p;
4082 }
4083 else if (p[1] == '[')
4084 {
4085 if (p[2] == ']')
4086 error (_("mismatched quoting on brackets, "
4087 "try 'operator\\[\\]'"));
4088 else if (p[2] == '\\' && p[3] == ']')
4089 {
4090 *end = p + 4; /* 'operator\[\]' */
4091 return p;
4092 }
4093 else
4094 error (_("nothing is allowed between '[' and ']'"));
4095 }
4096 else
4097 {
4098 /* Gratuitous qoute: skip it and move on. */
4099 p++;
4100 continue;
4101 }
4102 break;
4103 case '!':
4104 case '=':
4105 case '*':
4106 case '/':
4107 case '%':
4108 case '^':
4109 if (p[1] == '=')
4110 *end = p + 2;
4111 else
4112 *end = p + 1;
4113 return p;
4114 case '<':
4115 case '>':
4116 case '+':
4117 case '-':
4118 case '&':
4119 case '|':
4120 if (p[0] == '-' && p[1] == '>')
4121 {
4122 /* Struct pointer member operator 'operator->'. */
4123 if (p[2] == '*')
4124 {
4125 *end = p + 3; /* 'operator->*' */
4126 return p;
4127 }
4128 else if (p[2] == '\\')
4129 {
4130 *end = p + 4; /* Hopefully 'operator->\*' */
4131 return p;
4132 }
4133 else
4134 {
4135 *end = p + 2; /* 'operator->' */
4136 return p;
4137 }
4138 }
4139 if (p[1] == '=' || p[1] == p[0])
4140 *end = p + 2;
4141 else
4142 *end = p + 1;
4143 return p;
4144 case '~':
4145 case ',':
4146 *end = p + 1;
4147 return p;
4148 case '(':
4149 if (p[1] != ')')
4150 error (_("`operator ()' must be specified "
4151 "without whitespace in `()'"));
4152 *end = p + 2;
4153 return p;
4154 case '?':
4155 if (p[1] != ':')
4156 error (_("`operator ?:' must be specified "
4157 "without whitespace in `?:'"));
4158 *end = p + 2;
4159 return p;
4160 case '[':
4161 if (p[1] != ']')
4162 error (_("`operator []' must be specified "
4163 "without whitespace in `[]'"));
4164 *end = p + 2;
4165 return p;
4166 default:
4167 error (_("`operator %s' not supported"), p);
4168 break;
4169 }
4170
4171 *end = "";
4172 return *end;
4173 }
4174 \f
4175
4176 /* Cache to watch for file names already seen by filename_seen. */
4177
4178 struct filename_seen_cache
4179 {
4180 /* Table of files seen so far. */
4181 htab_t tab;
4182 /* Initial size of the table. It automagically grows from here. */
4183 #define INITIAL_FILENAME_SEEN_CACHE_SIZE 100
4184 };
4185
4186 /* filename_seen_cache constructor. */
4187
4188 static struct filename_seen_cache *
4189 create_filename_seen_cache (void)
4190 {
4191 struct filename_seen_cache *cache = XNEW (struct filename_seen_cache);
4192
4193 cache->tab = htab_create_alloc (INITIAL_FILENAME_SEEN_CACHE_SIZE,
4194 filename_hash, filename_eq,
4195 NULL, xcalloc, xfree);
4196
4197 return cache;
4198 }
4199
4200 /* Empty the cache, but do not delete it. */
4201
4202 static void
4203 clear_filename_seen_cache (struct filename_seen_cache *cache)
4204 {
4205 htab_empty (cache->tab);
4206 }
4207
4208 /* filename_seen_cache destructor.
4209 This takes a void * argument as it is generally used as a cleanup. */
4210
4211 static void
4212 delete_filename_seen_cache (void *ptr)
4213 {
4214 struct filename_seen_cache *cache = (struct filename_seen_cache *) ptr;
4215
4216 htab_delete (cache->tab);
4217 xfree (cache);
4218 }
4219
4220 /* If FILE is not already in the table of files in CACHE, return zero;
4221 otherwise return non-zero. Optionally add FILE to the table if ADD
4222 is non-zero.
4223
4224 NOTE: We don't manage space for FILE, we assume FILE lives as long
4225 as the caller needs. */
4226
4227 static int
4228 filename_seen (struct filename_seen_cache *cache, const char *file, int add)
4229 {
4230 void **slot;
4231
4232 /* Is FILE in tab? */
4233 slot = htab_find_slot (cache->tab, file, add ? INSERT : NO_INSERT);
4234 if (*slot != NULL)
4235 return 1;
4236
4237 /* No; maybe add it to tab. */
4238 if (add)
4239 *slot = (char *) file;
4240
4241 return 0;
4242 }
4243
4244 /* Data structure to maintain printing state for output_source_filename. */
4245
4246 struct output_source_filename_data
4247 {
4248 /* Cache of what we've seen so far. */
4249 struct filename_seen_cache *filename_seen_cache;
4250
4251 /* Flag of whether we're printing the first one. */
4252 int first;
4253 };
4254
4255 /* Slave routine for sources_info. Force line breaks at ,'s.
4256 NAME is the name to print.
4257 DATA contains the state for printing and watching for duplicates. */
4258
4259 static void
4260 output_source_filename (const char *name,
4261 struct output_source_filename_data *data)
4262 {
4263 /* Since a single source file can result in several partial symbol
4264 tables, we need to avoid printing it more than once. Note: if
4265 some of the psymtabs are read in and some are not, it gets
4266 printed both under "Source files for which symbols have been
4267 read" and "Source files for which symbols will be read in on
4268 demand". I consider this a reasonable way to deal with the
4269 situation. I'm not sure whether this can also happen for
4270 symtabs; it doesn't hurt to check. */
4271
4272 /* Was NAME already seen? */
4273 if (filename_seen (data->filename_seen_cache, name, 1))
4274 {
4275 /* Yes; don't print it again. */
4276 return;
4277 }
4278
4279 /* No; print it and reset *FIRST. */
4280 if (! data->first)
4281 printf_filtered (", ");
4282 data->first = 0;
4283
4284 wrap_here ("");
4285 fputs_filtered (name, gdb_stdout);
4286 }
4287
4288 /* A callback for map_partial_symbol_filenames. */
4289
4290 static void
4291 output_partial_symbol_filename (const char *filename, const char *fullname,
4292 void *data)
4293 {
4294 output_source_filename (fullname ? fullname : filename,
4295 (struct output_source_filename_data *) data);
4296 }
4297
4298 static void
4299 sources_info (char *ignore, int from_tty)
4300 {
4301 struct compunit_symtab *cu;
4302 struct symtab *s;
4303 struct objfile *objfile;
4304 struct output_source_filename_data data;
4305 struct cleanup *cleanups;
4306
4307 if (!have_full_symbols () && !have_partial_symbols ())
4308 {
4309 error (_("No symbol table is loaded. Use the \"file\" command."));
4310 }
4311
4312 data.filename_seen_cache = create_filename_seen_cache ();
4313 cleanups = make_cleanup (delete_filename_seen_cache,
4314 data.filename_seen_cache);
4315
4316 printf_filtered ("Source files for which symbols have been read in:\n\n");
4317
4318 data.first = 1;
4319 ALL_FILETABS (objfile, cu, s)
4320 {
4321 const char *fullname = symtab_to_fullname (s);
4322
4323 output_source_filename (fullname, &data);
4324 }
4325 printf_filtered ("\n\n");
4326
4327 printf_filtered ("Source files for which symbols "
4328 "will be read in on demand:\n\n");
4329
4330 clear_filename_seen_cache (data.filename_seen_cache);
4331 data.first = 1;
4332 map_symbol_filenames (output_partial_symbol_filename, &data,
4333 1 /*need_fullname*/);
4334 printf_filtered ("\n");
4335
4336 do_cleanups (cleanups);
4337 }
4338
4339 /* Compare FILE against all the NFILES entries of FILES. If BASENAMES is
4340 non-zero compare only lbasename of FILES. */
4341
4342 static int
4343 file_matches (const char *file, const char *files[], int nfiles, int basenames)
4344 {
4345 int i;
4346
4347 if (file != NULL && nfiles != 0)
4348 {
4349 for (i = 0; i < nfiles; i++)
4350 {
4351 if (compare_filenames_for_search (file, (basenames
4352 ? lbasename (files[i])
4353 : files[i])))
4354 return 1;
4355 }
4356 }
4357 else if (nfiles == 0)
4358 return 1;
4359 return 0;
4360 }
4361
4362 /* Free any memory associated with a search. */
4363
4364 void
4365 free_search_symbols (struct symbol_search *symbols)
4366 {
4367 struct symbol_search *p;
4368 struct symbol_search *next;
4369
4370 for (p = symbols; p != NULL; p = next)
4371 {
4372 next = p->next;
4373 xfree (p);
4374 }
4375 }
4376
4377 static void
4378 do_free_search_symbols_cleanup (void *symbolsp)
4379 {
4380 struct symbol_search *symbols = *(struct symbol_search **) symbolsp;
4381
4382 free_search_symbols (symbols);
4383 }
4384
4385 struct cleanup *
4386 make_cleanup_free_search_symbols (struct symbol_search **symbolsp)
4387 {
4388 return make_cleanup (do_free_search_symbols_cleanup, symbolsp);
4389 }
4390
4391 /* Helper function for sort_search_symbols_remove_dups and qsort. Can only
4392 sort symbols, not minimal symbols. */
4393
4394 static int
4395 compare_search_syms (const void *sa, const void *sb)
4396 {
4397 struct symbol_search *sym_a = *(struct symbol_search **) sa;
4398 struct symbol_search *sym_b = *(struct symbol_search **) sb;
4399 int c;
4400
4401 c = FILENAME_CMP (symbol_symtab (sym_a->symbol)->filename,
4402 symbol_symtab (sym_b->symbol)->filename);
4403 if (c != 0)
4404 return c;
4405
4406 if (sym_a->block != sym_b->block)
4407 return sym_a->block - sym_b->block;
4408
4409 return strcmp (SYMBOL_PRINT_NAME (sym_a->symbol),
4410 SYMBOL_PRINT_NAME (sym_b->symbol));
4411 }
4412
4413 /* Sort the NFOUND symbols in list FOUND and remove duplicates.
4414 The duplicates are freed, and the new list is returned in
4415 *NEW_HEAD, *NEW_TAIL. */
4416
4417 static void
4418 sort_search_symbols_remove_dups (struct symbol_search *found, int nfound,
4419 struct symbol_search **new_head,
4420 struct symbol_search **new_tail)
4421 {
4422 struct symbol_search **symbols, *symp, *old_next;
4423 int i, j, nunique;
4424
4425 gdb_assert (found != NULL && nfound > 0);
4426
4427 /* Build an array out of the list so we can easily sort them. */
4428 symbols = XNEWVEC (struct symbol_search *, nfound);
4429
4430 symp = found;
4431 for (i = 0; i < nfound; i++)
4432 {
4433 gdb_assert (symp != NULL);
4434 gdb_assert (symp->block >= 0 && symp->block <= 1);
4435 symbols[i] = symp;
4436 symp = symp->next;
4437 }
4438 gdb_assert (symp == NULL);
4439
4440 qsort (symbols, nfound, sizeof (struct symbol_search *),
4441 compare_search_syms);
4442
4443 /* Collapse out the dups. */
4444 for (i = 1, j = 1; i < nfound; ++i)
4445 {
4446 if (compare_search_syms (&symbols[j - 1], &symbols[i]) != 0)
4447 symbols[j++] = symbols[i];
4448 else
4449 xfree (symbols[i]);
4450 }
4451 nunique = j;
4452 symbols[j - 1]->next = NULL;
4453
4454 /* Rebuild the linked list. */
4455 for (i = 0; i < nunique - 1; i++)
4456 symbols[i]->next = symbols[i + 1];
4457 symbols[nunique - 1]->next = NULL;
4458
4459 *new_head = symbols[0];
4460 *new_tail = symbols[nunique - 1];
4461 xfree (symbols);
4462 }
4463
4464 /* An object of this type is passed as the user_data to the
4465 expand_symtabs_matching method. */
4466 struct search_symbols_data
4467 {
4468 int nfiles;
4469 const char **files;
4470
4471 /* It is true if PREG contains valid data, false otherwise. */
4472 unsigned preg_p : 1;
4473 regex_t preg;
4474 };
4475
4476 /* A callback for expand_symtabs_matching. */
4477
4478 static int
4479 search_symbols_file_matches (const char *filename, void *user_data,
4480 int basenames)
4481 {
4482 struct search_symbols_data *data = (struct search_symbols_data *) user_data;
4483
4484 return file_matches (filename, data->files, data->nfiles, basenames);
4485 }
4486
4487 /* A callback for expand_symtabs_matching. */
4488
4489 static int
4490 search_symbols_name_matches (const char *symname, void *user_data)
4491 {
4492 struct search_symbols_data *data = (struct search_symbols_data *) user_data;
4493
4494 return !data->preg_p || regexec (&data->preg, symname, 0, NULL, 0) == 0;
4495 }
4496
4497 /* Search the symbol table for matches to the regular expression REGEXP,
4498 returning the results in *MATCHES.
4499
4500 Only symbols of KIND are searched:
4501 VARIABLES_DOMAIN - search all symbols, excluding functions, type names,
4502 and constants (enums)
4503 FUNCTIONS_DOMAIN - search all functions
4504 TYPES_DOMAIN - search all type names
4505 ALL_DOMAIN - an internal error for this function
4506
4507 free_search_symbols should be called when *MATCHES is no longer needed.
4508
4509 Within each file the results are sorted locally; each symtab's global and
4510 static blocks are separately alphabetized.
4511 Duplicate entries are removed. */
4512
4513 void
4514 search_symbols (const char *regexp, enum search_domain kind,
4515 int nfiles, const char *files[],
4516 struct symbol_search **matches)
4517 {
4518 struct compunit_symtab *cust;
4519 const struct blockvector *bv;
4520 struct block *b;
4521 int i = 0;
4522 struct block_iterator iter;
4523 struct symbol *sym;
4524 struct objfile *objfile;
4525 struct minimal_symbol *msymbol;
4526 int found_misc = 0;
4527 static const enum minimal_symbol_type types[]
4528 = {mst_data, mst_text, mst_abs};
4529 static const enum minimal_symbol_type types2[]
4530 = {mst_bss, mst_file_text, mst_abs};
4531 static const enum minimal_symbol_type types3[]
4532 = {mst_file_data, mst_solib_trampoline, mst_abs};
4533 static const enum minimal_symbol_type types4[]
4534 = {mst_file_bss, mst_text_gnu_ifunc, mst_abs};
4535 enum minimal_symbol_type ourtype;
4536 enum minimal_symbol_type ourtype2;
4537 enum minimal_symbol_type ourtype3;
4538 enum minimal_symbol_type ourtype4;
4539 struct symbol_search *found;
4540 struct symbol_search *tail;
4541 struct search_symbols_data datum;
4542 int nfound;
4543
4544 /* OLD_CHAIN .. RETVAL_CHAIN is always freed, RETVAL_CHAIN .. current
4545 CLEANUP_CHAIN is freed only in the case of an error. */
4546 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
4547 struct cleanup *retval_chain;
4548
4549 gdb_assert (kind <= TYPES_DOMAIN);
4550
4551 ourtype = types[kind];
4552 ourtype2 = types2[kind];
4553 ourtype3 = types3[kind];
4554 ourtype4 = types4[kind];
4555
4556 *matches = NULL;
4557 datum.preg_p = 0;
4558
4559 if (regexp != NULL)
4560 {
4561 /* Make sure spacing is right for C++ operators.
4562 This is just a courtesy to make the matching less sensitive
4563 to how many spaces the user leaves between 'operator'
4564 and <TYPENAME> or <OPERATOR>. */
4565 const char *opend;
4566 const char *opname = operator_chars (regexp, &opend);
4567 int errcode;
4568
4569 if (*opname)
4570 {
4571 int fix = -1; /* -1 means ok; otherwise number of
4572 spaces needed. */
4573
4574 if (isalpha (*opname) || *opname == '_' || *opname == '$')
4575 {
4576 /* There should 1 space between 'operator' and 'TYPENAME'. */
4577 if (opname[-1] != ' ' || opname[-2] == ' ')
4578 fix = 1;
4579 }
4580 else
4581 {
4582 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
4583 if (opname[-1] == ' ')
4584 fix = 0;
4585 }
4586 /* If wrong number of spaces, fix it. */
4587 if (fix >= 0)
4588 {
4589 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
4590
4591 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
4592 regexp = tmp;
4593 }
4594 }
4595
4596 errcode = regcomp (&datum.preg, regexp,
4597 REG_NOSUB | (case_sensitivity == case_sensitive_off
4598 ? REG_ICASE : 0));
4599 if (errcode != 0)
4600 {
4601 char *err = get_regcomp_error (errcode, &datum.preg);
4602
4603 make_cleanup (xfree, err);
4604 error (_("Invalid regexp (%s): %s"), err, regexp);
4605 }
4606 datum.preg_p = 1;
4607 make_regfree_cleanup (&datum.preg);
4608 }
4609
4610 /* Search through the partial symtabs *first* for all symbols
4611 matching the regexp. That way we don't have to reproduce all of
4612 the machinery below. */
4613
4614 datum.nfiles = nfiles;
4615 datum.files = files;
4616 expand_symtabs_matching ((nfiles == 0
4617 ? NULL
4618 : search_symbols_file_matches),
4619 search_symbols_name_matches,
4620 NULL, kind, &datum);
4621
4622 /* Here, we search through the minimal symbol tables for functions
4623 and variables that match, and force their symbols to be read.
4624 This is in particular necessary for demangled variable names,
4625 which are no longer put into the partial symbol tables.
4626 The symbol will then be found during the scan of symtabs below.
4627
4628 For functions, find_pc_symtab should succeed if we have debug info
4629 for the function, for variables we have to call
4630 lookup_symbol_in_objfile_from_linkage_name to determine if the variable
4631 has debug info.
4632 If the lookup fails, set found_misc so that we will rescan to print
4633 any matching symbols without debug info.
4634 We only search the objfile the msymbol came from, we no longer search
4635 all objfiles. In large programs (1000s of shared libs) searching all
4636 objfiles is not worth the pain. */
4637
4638 if (nfiles == 0 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
4639 {
4640 ALL_MSYMBOLS (objfile, msymbol)
4641 {
4642 QUIT;
4643
4644 if (msymbol->created_by_gdb)
4645 continue;
4646
4647 if (MSYMBOL_TYPE (msymbol) == ourtype
4648 || MSYMBOL_TYPE (msymbol) == ourtype2
4649 || MSYMBOL_TYPE (msymbol) == ourtype3
4650 || MSYMBOL_TYPE (msymbol) == ourtype4)
4651 {
4652 if (!datum.preg_p
4653 || regexec (&datum.preg, MSYMBOL_NATURAL_NAME (msymbol), 0,
4654 NULL, 0) == 0)
4655 {
4656 /* Note: An important side-effect of these lookup functions
4657 is to expand the symbol table if msymbol is found, for the
4658 benefit of the next loop on ALL_COMPUNITS. */
4659 if (kind == FUNCTIONS_DOMAIN
4660 ? (find_pc_compunit_symtab
4661 (MSYMBOL_VALUE_ADDRESS (objfile, msymbol)) == NULL)
4662 : (lookup_symbol_in_objfile_from_linkage_name
4663 (objfile, MSYMBOL_LINKAGE_NAME (msymbol), VAR_DOMAIN)
4664 .symbol == NULL))
4665 found_misc = 1;
4666 }
4667 }
4668 }
4669 }
4670
4671 found = NULL;
4672 tail = NULL;
4673 nfound = 0;
4674 retval_chain = make_cleanup_free_search_symbols (&found);
4675
4676 ALL_COMPUNITS (objfile, cust)
4677 {
4678 bv = COMPUNIT_BLOCKVECTOR (cust);
4679 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
4680 {
4681 b = BLOCKVECTOR_BLOCK (bv, i);
4682 ALL_BLOCK_SYMBOLS (b, iter, sym)
4683 {
4684 struct symtab *real_symtab = symbol_symtab (sym);
4685
4686 QUIT;
4687
4688 /* Check first sole REAL_SYMTAB->FILENAME. It does not need to be
4689 a substring of symtab_to_fullname as it may contain "./" etc. */
4690 if ((file_matches (real_symtab->filename, files, nfiles, 0)
4691 || ((basenames_may_differ
4692 || file_matches (lbasename (real_symtab->filename),
4693 files, nfiles, 1))
4694 && file_matches (symtab_to_fullname (real_symtab),
4695 files, nfiles, 0)))
4696 && ((!datum.preg_p
4697 || regexec (&datum.preg, SYMBOL_NATURAL_NAME (sym), 0,
4698 NULL, 0) == 0)
4699 && ((kind == VARIABLES_DOMAIN
4700 && SYMBOL_CLASS (sym) != LOC_TYPEDEF
4701 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
4702 && SYMBOL_CLASS (sym) != LOC_BLOCK
4703 /* LOC_CONST can be used for more than just enums,
4704 e.g., c++ static const members.
4705 We only want to skip enums here. */
4706 && !(SYMBOL_CLASS (sym) == LOC_CONST
4707 && (TYPE_CODE (SYMBOL_TYPE (sym))
4708 == TYPE_CODE_ENUM)))
4709 || (kind == FUNCTIONS_DOMAIN
4710 && SYMBOL_CLASS (sym) == LOC_BLOCK)
4711 || (kind == TYPES_DOMAIN
4712 && SYMBOL_CLASS (sym) == LOC_TYPEDEF))))
4713 {
4714 /* match */
4715 struct symbol_search *psr = XCNEW (struct symbol_search);
4716
4717 psr->block = i;
4718 psr->symbol = sym;
4719 psr->next = NULL;
4720 if (tail == NULL)
4721 found = psr;
4722 else
4723 tail->next = psr;
4724 tail = psr;
4725 nfound ++;
4726 }
4727 }
4728 }
4729 }
4730
4731 if (found != NULL)
4732 {
4733 sort_search_symbols_remove_dups (found, nfound, &found, &tail);
4734 /* Note: nfound is no longer useful beyond this point. */
4735 }
4736
4737 /* If there are no eyes, avoid all contact. I mean, if there are
4738 no debug symbols, then add matching minsyms. */
4739
4740 if (found_misc || (nfiles == 0 && kind != FUNCTIONS_DOMAIN))
4741 {
4742 ALL_MSYMBOLS (objfile, msymbol)
4743 {
4744 QUIT;
4745
4746 if (msymbol->created_by_gdb)
4747 continue;
4748
4749 if (MSYMBOL_TYPE (msymbol) == ourtype
4750 || MSYMBOL_TYPE (msymbol) == ourtype2
4751 || MSYMBOL_TYPE (msymbol) == ourtype3
4752 || MSYMBOL_TYPE (msymbol) == ourtype4)
4753 {
4754 if (!datum.preg_p
4755 || regexec (&datum.preg, MSYMBOL_NATURAL_NAME (msymbol), 0,
4756 NULL, 0) == 0)
4757 {
4758 /* For functions we can do a quick check of whether the
4759 symbol might be found via find_pc_symtab. */
4760 if (kind != FUNCTIONS_DOMAIN
4761 || (find_pc_compunit_symtab
4762 (MSYMBOL_VALUE_ADDRESS (objfile, msymbol)) == NULL))
4763 {
4764 if (lookup_symbol_in_objfile_from_linkage_name
4765 (objfile, MSYMBOL_LINKAGE_NAME (msymbol), VAR_DOMAIN)
4766 .symbol == NULL)
4767 {
4768 /* match */
4769 struct symbol_search *psr = XNEW (struct symbol_search);
4770 psr->block = i;
4771 psr->msymbol.minsym = msymbol;
4772 psr->msymbol.objfile = objfile;
4773 psr->symbol = NULL;
4774 psr->next = NULL;
4775 if (tail == NULL)
4776 found = psr;
4777 else
4778 tail->next = psr;
4779 tail = psr;
4780 }
4781 }
4782 }
4783 }
4784 }
4785 }
4786
4787 discard_cleanups (retval_chain);
4788 do_cleanups (old_chain);
4789 *matches = found;
4790 }
4791
4792 /* Helper function for symtab_symbol_info, this function uses
4793 the data returned from search_symbols() to print information
4794 regarding the match to gdb_stdout. */
4795
4796 static void
4797 print_symbol_info (enum search_domain kind,
4798 struct symbol *sym,
4799 int block, const char *last)
4800 {
4801 struct symtab *s = symbol_symtab (sym);
4802 const char *s_filename = symtab_to_filename_for_display (s);
4803
4804 if (last == NULL || filename_cmp (last, s_filename) != 0)
4805 {
4806 fputs_filtered ("\nFile ", gdb_stdout);
4807 fputs_filtered (s_filename, gdb_stdout);
4808 fputs_filtered (":\n", gdb_stdout);
4809 }
4810
4811 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
4812 printf_filtered ("static ");
4813
4814 /* Typedef that is not a C++ class. */
4815 if (kind == TYPES_DOMAIN
4816 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
4817 typedef_print (SYMBOL_TYPE (sym), sym, gdb_stdout);
4818 /* variable, func, or typedef-that-is-c++-class. */
4819 else if (kind < TYPES_DOMAIN
4820 || (kind == TYPES_DOMAIN
4821 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
4822 {
4823 type_print (SYMBOL_TYPE (sym),
4824 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
4825 ? "" : SYMBOL_PRINT_NAME (sym)),
4826 gdb_stdout, 0);
4827
4828 printf_filtered (";\n");
4829 }
4830 }
4831
4832 /* This help function for symtab_symbol_info() prints information
4833 for non-debugging symbols to gdb_stdout. */
4834
4835 static void
4836 print_msymbol_info (struct bound_minimal_symbol msymbol)
4837 {
4838 struct gdbarch *gdbarch = get_objfile_arch (msymbol.objfile);
4839 char *tmp;
4840
4841 if (gdbarch_addr_bit (gdbarch) <= 32)
4842 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol)
4843 & (CORE_ADDR) 0xffffffff,
4844 8);
4845 else
4846 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol),
4847 16);
4848 printf_filtered ("%s %s\n",
4849 tmp, MSYMBOL_PRINT_NAME (msymbol.minsym));
4850 }
4851
4852 /* This is the guts of the commands "info functions", "info types", and
4853 "info variables". It calls search_symbols to find all matches and then
4854 print_[m]symbol_info to print out some useful information about the
4855 matches. */
4856
4857 static void
4858 symtab_symbol_info (char *regexp, enum search_domain kind, int from_tty)
4859 {
4860 static const char * const classnames[] =
4861 {"variable", "function", "type"};
4862 struct symbol_search *symbols;
4863 struct symbol_search *p;
4864 struct cleanup *old_chain;
4865 const char *last_filename = NULL;
4866 int first = 1;
4867
4868 gdb_assert (kind <= TYPES_DOMAIN);
4869
4870 /* Must make sure that if we're interrupted, symbols gets freed. */
4871 search_symbols (regexp, kind, 0, NULL, &symbols);
4872 old_chain = make_cleanup_free_search_symbols (&symbols);
4873
4874 if (regexp != NULL)
4875 printf_filtered (_("All %ss matching regular expression \"%s\":\n"),
4876 classnames[kind], regexp);
4877 else
4878 printf_filtered (_("All defined %ss:\n"), classnames[kind]);
4879
4880 for (p = symbols; p != NULL; p = p->next)
4881 {
4882 QUIT;
4883
4884 if (p->msymbol.minsym != NULL)
4885 {
4886 if (first)
4887 {
4888 printf_filtered (_("\nNon-debugging symbols:\n"));
4889 first = 0;
4890 }
4891 print_msymbol_info (p->msymbol);
4892 }
4893 else
4894 {
4895 print_symbol_info (kind,
4896 p->symbol,
4897 p->block,
4898 last_filename);
4899 last_filename
4900 = symtab_to_filename_for_display (symbol_symtab (p->symbol));
4901 }
4902 }
4903
4904 do_cleanups (old_chain);
4905 }
4906
4907 static void
4908 variables_info (char *regexp, int from_tty)
4909 {
4910 symtab_symbol_info (regexp, VARIABLES_DOMAIN, from_tty);
4911 }
4912
4913 static void
4914 functions_info (char *regexp, int from_tty)
4915 {
4916 symtab_symbol_info (regexp, FUNCTIONS_DOMAIN, from_tty);
4917 }
4918
4919
4920 static void
4921 types_info (char *regexp, int from_tty)
4922 {
4923 symtab_symbol_info (regexp, TYPES_DOMAIN, from_tty);
4924 }
4925
4926 /* Breakpoint all functions matching regular expression. */
4927
4928 void
4929 rbreak_command_wrapper (char *regexp, int from_tty)
4930 {
4931 rbreak_command (regexp, from_tty);
4932 }
4933
4934 /* A cleanup function that calls end_rbreak_breakpoints. */
4935
4936 static void
4937 do_end_rbreak_breakpoints (void *ignore)
4938 {
4939 end_rbreak_breakpoints ();
4940 }
4941
4942 static void
4943 rbreak_command (char *regexp, int from_tty)
4944 {
4945 struct symbol_search *ss;
4946 struct symbol_search *p;
4947 struct cleanup *old_chain;
4948 char *string = NULL;
4949 int len = 0;
4950 const char **files = NULL;
4951 const char *file_name;
4952 int nfiles = 0;
4953
4954 if (regexp)
4955 {
4956 char *colon = strchr (regexp, ':');
4957
4958 if (colon && *(colon + 1) != ':')
4959 {
4960 int colon_index;
4961 char *local_name;
4962
4963 colon_index = colon - regexp;
4964 local_name = (char *) alloca (colon_index + 1);
4965 memcpy (local_name, regexp, colon_index);
4966 local_name[colon_index--] = 0;
4967 while (isspace (local_name[colon_index]))
4968 local_name[colon_index--] = 0;
4969 file_name = local_name;
4970 files = &file_name;
4971 nfiles = 1;
4972 regexp = skip_spaces (colon + 1);
4973 }
4974 }
4975
4976 search_symbols (regexp, FUNCTIONS_DOMAIN, nfiles, files, &ss);
4977 old_chain = make_cleanup_free_search_symbols (&ss);
4978 make_cleanup (free_current_contents, &string);
4979
4980 start_rbreak_breakpoints ();
4981 make_cleanup (do_end_rbreak_breakpoints, NULL);
4982 for (p = ss; p != NULL; p = p->next)
4983 {
4984 if (p->msymbol.minsym == NULL)
4985 {
4986 struct symtab *symtab = symbol_symtab (p->symbol);
4987 const char *fullname = symtab_to_fullname (symtab);
4988
4989 int newlen = (strlen (fullname)
4990 + strlen (SYMBOL_LINKAGE_NAME (p->symbol))
4991 + 4);
4992
4993 if (newlen > len)
4994 {
4995 string = (char *) xrealloc (string, newlen);
4996 len = newlen;
4997 }
4998 strcpy (string, fullname);
4999 strcat (string, ":'");
5000 strcat (string, SYMBOL_LINKAGE_NAME (p->symbol));
5001 strcat (string, "'");
5002 break_command (string, from_tty);
5003 print_symbol_info (FUNCTIONS_DOMAIN,
5004 p->symbol,
5005 p->block,
5006 symtab_to_filename_for_display (symtab));
5007 }
5008 else
5009 {
5010 int newlen = (strlen (MSYMBOL_LINKAGE_NAME (p->msymbol.minsym)) + 3);
5011
5012 if (newlen > len)
5013 {
5014 string = (char *) xrealloc (string, newlen);
5015 len = newlen;
5016 }
5017 strcpy (string, "'");
5018 strcat (string, MSYMBOL_LINKAGE_NAME (p->msymbol.minsym));
5019 strcat (string, "'");
5020
5021 break_command (string, from_tty);
5022 printf_filtered ("<function, no debug info> %s;\n",
5023 MSYMBOL_PRINT_NAME (p->msymbol.minsym));
5024 }
5025 }
5026
5027 do_cleanups (old_chain);
5028 }
5029 \f
5030
5031 /* Evaluate if NAME matches SYM_TEXT and SYM_TEXT_LEN.
5032
5033 Either sym_text[sym_text_len] != '(' and then we search for any
5034 symbol starting with SYM_TEXT text.
5035
5036 Otherwise sym_text[sym_text_len] == '(' and then we require symbol name to
5037 be terminated at that point. Partial symbol tables do not have parameters
5038 information. */
5039
5040 static int
5041 compare_symbol_name (const char *name, const char *sym_text, int sym_text_len)
5042 {
5043 int (*ncmp) (const char *, const char *, size_t);
5044
5045 ncmp = (case_sensitivity == case_sensitive_on ? strncmp : strncasecmp);
5046
5047 if (ncmp (name, sym_text, sym_text_len) != 0)
5048 return 0;
5049
5050 if (sym_text[sym_text_len] == '(')
5051 {
5052 /* User searches for `name(someth...'. Require NAME to be terminated.
5053 Normally psymtabs and gdbindex have no parameter types so '\0' will be
5054 present but accept even parameters presence. In this case this
5055 function is in fact strcmp_iw but whitespace skipping is not supported
5056 for tab completion. */
5057
5058 if (name[sym_text_len] != '\0' && name[sym_text_len] != '(')
5059 return 0;
5060 }
5061
5062 return 1;
5063 }
5064
5065 /* Free any memory associated with a completion list. */
5066
5067 static void
5068 free_completion_list (VEC (char_ptr) **list_ptr)
5069 {
5070 int i;
5071 char *p;
5072
5073 for (i = 0; VEC_iterate (char_ptr, *list_ptr, i, p); ++i)
5074 xfree (p);
5075 VEC_free (char_ptr, *list_ptr);
5076 }
5077
5078 /* Callback for make_cleanup. */
5079
5080 static void
5081 do_free_completion_list (void *list)
5082 {
5083 free_completion_list ((VEC (char_ptr) **) list);
5084 }
5085
5086 /* Helper routine for make_symbol_completion_list. */
5087
5088 static VEC (char_ptr) *return_val;
5089
5090 #define COMPLETION_LIST_ADD_SYMBOL(symbol, sym_text, len, text, word) \
5091 completion_list_add_name \
5092 (SYMBOL_NATURAL_NAME (symbol), (sym_text), (len), (text), (word))
5093
5094 #define MCOMPLETION_LIST_ADD_SYMBOL(symbol, sym_text, len, text, word) \
5095 completion_list_add_name \
5096 (MSYMBOL_NATURAL_NAME (symbol), (sym_text), (len), (text), (word))
5097
5098 /* Tracker for how many unique completions have been generated. Used
5099 to terminate completion list generation early if the list has grown
5100 to a size so large as to be useless. This helps avoid GDB seeming
5101 to lock up in the event the user requests to complete on something
5102 vague that necessitates the time consuming expansion of many symbol
5103 tables. */
5104
5105 static completion_tracker_t completion_tracker;
5106
5107 /* Test to see if the symbol specified by SYMNAME (which is already
5108 demangled for C++ symbols) matches SYM_TEXT in the first SYM_TEXT_LEN
5109 characters. If so, add it to the current completion list. */
5110
5111 static void
5112 completion_list_add_name (const char *symname,
5113 const char *sym_text, int sym_text_len,
5114 const char *text, const char *word)
5115 {
5116 /* Clip symbols that cannot match. */
5117 if (!compare_symbol_name (symname, sym_text, sym_text_len))
5118 return;
5119
5120 /* We have a match for a completion, so add SYMNAME to the current list
5121 of matches. Note that the name is moved to freshly malloc'd space. */
5122
5123 {
5124 char *newobj;
5125 enum maybe_add_completion_enum add_status;
5126
5127 if (word == sym_text)
5128 {
5129 newobj = (char *) xmalloc (strlen (symname) + 5);
5130 strcpy (newobj, symname);
5131 }
5132 else if (word > sym_text)
5133 {
5134 /* Return some portion of symname. */
5135 newobj = (char *) xmalloc (strlen (symname) + 5);
5136 strcpy (newobj, symname + (word - sym_text));
5137 }
5138 else
5139 {
5140 /* Return some of SYM_TEXT plus symname. */
5141 newobj = (char *) xmalloc (strlen (symname) + (sym_text - word) + 5);
5142 strncpy (newobj, word, sym_text - word);
5143 newobj[sym_text - word] = '\0';
5144 strcat (newobj, symname);
5145 }
5146
5147 add_status = maybe_add_completion (completion_tracker, newobj);
5148
5149 switch (add_status)
5150 {
5151 case MAYBE_ADD_COMPLETION_OK:
5152 VEC_safe_push (char_ptr, return_val, newobj);
5153 break;
5154 case MAYBE_ADD_COMPLETION_OK_MAX_REACHED:
5155 VEC_safe_push (char_ptr, return_val, newobj);
5156 throw_max_completions_reached_error ();
5157 case MAYBE_ADD_COMPLETION_MAX_REACHED:
5158 xfree (newobj);
5159 throw_max_completions_reached_error ();
5160 case MAYBE_ADD_COMPLETION_DUPLICATE:
5161 xfree (newobj);
5162 break;
5163 }
5164 }
5165 }
5166
5167 /* ObjC: In case we are completing on a selector, look as the msymbol
5168 again and feed all the selectors into the mill. */
5169
5170 static void
5171 completion_list_objc_symbol (struct minimal_symbol *msymbol,
5172 const char *sym_text, int sym_text_len,
5173 const char *text, const char *word)
5174 {
5175 static char *tmp = NULL;
5176 static unsigned int tmplen = 0;
5177
5178 const char *method, *category, *selector;
5179 char *tmp2 = NULL;
5180
5181 method = MSYMBOL_NATURAL_NAME (msymbol);
5182
5183 /* Is it a method? */
5184 if ((method[0] != '-') && (method[0] != '+'))
5185 return;
5186
5187 if (sym_text[0] == '[')
5188 /* Complete on shortened method method. */
5189 completion_list_add_name (method + 1, sym_text, sym_text_len, text, word);
5190
5191 while ((strlen (method) + 1) >= tmplen)
5192 {
5193 if (tmplen == 0)
5194 tmplen = 1024;
5195 else
5196 tmplen *= 2;
5197 tmp = (char *) xrealloc (tmp, tmplen);
5198 }
5199 selector = strchr (method, ' ');
5200 if (selector != NULL)
5201 selector++;
5202
5203 category = strchr (method, '(');
5204
5205 if ((category != NULL) && (selector != NULL))
5206 {
5207 memcpy (tmp, method, (category - method));
5208 tmp[category - method] = ' ';
5209 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
5210 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
5211 if (sym_text[0] == '[')
5212 completion_list_add_name (tmp + 1, sym_text, sym_text_len, text, word);
5213 }
5214
5215 if (selector != NULL)
5216 {
5217 /* Complete on selector only. */
5218 strcpy (tmp, selector);
5219 tmp2 = strchr (tmp, ']');
5220 if (tmp2 != NULL)
5221 *tmp2 = '\0';
5222
5223 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
5224 }
5225 }
5226
5227 /* Break the non-quoted text based on the characters which are in
5228 symbols. FIXME: This should probably be language-specific. */
5229
5230 static const char *
5231 language_search_unquoted_string (const char *text, const char *p)
5232 {
5233 for (; p > text; --p)
5234 {
5235 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
5236 continue;
5237 else
5238 {
5239 if ((current_language->la_language == language_objc))
5240 {
5241 if (p[-1] == ':') /* Might be part of a method name. */
5242 continue;
5243 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
5244 p -= 2; /* Beginning of a method name. */
5245 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
5246 { /* Might be part of a method name. */
5247 const char *t = p;
5248
5249 /* Seeing a ' ' or a '(' is not conclusive evidence
5250 that we are in the middle of a method name. However,
5251 finding "-[" or "+[" should be pretty un-ambiguous.
5252 Unfortunately we have to find it now to decide. */
5253
5254 while (t > text)
5255 if (isalnum (t[-1]) || t[-1] == '_' ||
5256 t[-1] == ' ' || t[-1] == ':' ||
5257 t[-1] == '(' || t[-1] == ')')
5258 --t;
5259 else
5260 break;
5261
5262 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
5263 p = t - 2; /* Method name detected. */
5264 /* Else we leave with p unchanged. */
5265 }
5266 }
5267 break;
5268 }
5269 }
5270 return p;
5271 }
5272
5273 static void
5274 completion_list_add_fields (struct symbol *sym, const char *sym_text,
5275 int sym_text_len, const char *text,
5276 const char *word)
5277 {
5278 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5279 {
5280 struct type *t = SYMBOL_TYPE (sym);
5281 enum type_code c = TYPE_CODE (t);
5282 int j;
5283
5284 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
5285 for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++)
5286 if (TYPE_FIELD_NAME (t, j))
5287 completion_list_add_name (TYPE_FIELD_NAME (t, j),
5288 sym_text, sym_text_len, text, word);
5289 }
5290 }
5291
5292 /* Type of the user_data argument passed to add_macro_name,
5293 symbol_completion_matcher and symtab_expansion_callback. */
5294
5295 struct add_name_data
5296 {
5297 /* Arguments required by completion_list_add_name. */
5298 const char *sym_text;
5299 int sym_text_len;
5300 const char *text;
5301 const char *word;
5302
5303 /* Extra argument required for add_symtab_completions. */
5304 enum type_code code;
5305 };
5306
5307 /* A callback used with macro_for_each and macro_for_each_in_scope.
5308 This adds a macro's name to the current completion list. */
5309
5310 static void
5311 add_macro_name (const char *name, const struct macro_definition *ignore,
5312 struct macro_source_file *ignore2, int ignore3,
5313 void *user_data)
5314 {
5315 struct add_name_data *datum = (struct add_name_data *) user_data;
5316
5317 completion_list_add_name (name,
5318 datum->sym_text, datum->sym_text_len,
5319 datum->text, datum->word);
5320 }
5321
5322 /* A callback for expand_symtabs_matching. */
5323
5324 static int
5325 symbol_completion_matcher (const char *name, void *user_data)
5326 {
5327 struct add_name_data *datum = (struct add_name_data *) user_data;
5328
5329 return compare_symbol_name (name, datum->sym_text, datum->sym_text_len);
5330 }
5331
5332 /* Add matching symbols from SYMTAB to the current completion list. */
5333
5334 static void
5335 add_symtab_completions (struct compunit_symtab *cust,
5336 const char *sym_text, int sym_text_len,
5337 const char *text, const char *word,
5338 enum type_code code)
5339 {
5340 struct symbol *sym;
5341 const struct block *b;
5342 struct block_iterator iter;
5343 int i;
5344
5345 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
5346 {
5347 QUIT;
5348 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust), i);
5349 ALL_BLOCK_SYMBOLS (b, iter, sym)
5350 {
5351 if (code == TYPE_CODE_UNDEF
5352 || (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
5353 && TYPE_CODE (SYMBOL_TYPE (sym)) == code))
5354 COMPLETION_LIST_ADD_SYMBOL (sym,
5355 sym_text, sym_text_len,
5356 text, word);
5357 }
5358 }
5359 }
5360
5361 /* Callback to add completions to the current list when symbol tables
5362 are expanded during completion list generation. */
5363
5364 static void
5365 symtab_expansion_callback (struct compunit_symtab *symtab,
5366 void *user_data)
5367 {
5368 struct add_name_data *datum = (struct add_name_data *) user_data;
5369
5370 add_symtab_completions (symtab,
5371 datum->sym_text, datum->sym_text_len,
5372 datum->text, datum->word,
5373 datum->code);
5374 }
5375
5376 static void
5377 default_make_symbol_completion_list_break_on_1 (const char *text,
5378 const char *word,
5379 const char *break_on,
5380 enum type_code code)
5381 {
5382 /* Problem: All of the symbols have to be copied because readline
5383 frees them. I'm not going to worry about this; hopefully there
5384 won't be that many. */
5385
5386 struct symbol *sym;
5387 struct compunit_symtab *cust;
5388 struct minimal_symbol *msymbol;
5389 struct objfile *objfile;
5390 const struct block *b;
5391 const struct block *surrounding_static_block, *surrounding_global_block;
5392 struct block_iterator iter;
5393 /* The symbol we are completing on. Points in same buffer as text. */
5394 const char *sym_text;
5395 /* Length of sym_text. */
5396 int sym_text_len;
5397 struct add_name_data datum;
5398 struct cleanup *cleanups;
5399
5400 /* Now look for the symbol we are supposed to complete on. */
5401 {
5402 const char *p;
5403 char quote_found;
5404 const char *quote_pos = NULL;
5405
5406 /* First see if this is a quoted string. */
5407 quote_found = '\0';
5408 for (p = text; *p != '\0'; ++p)
5409 {
5410 if (quote_found != '\0')
5411 {
5412 if (*p == quote_found)
5413 /* Found close quote. */
5414 quote_found = '\0';
5415 else if (*p == '\\' && p[1] == quote_found)
5416 /* A backslash followed by the quote character
5417 doesn't end the string. */
5418 ++p;
5419 }
5420 else if (*p == '\'' || *p == '"')
5421 {
5422 quote_found = *p;
5423 quote_pos = p;
5424 }
5425 }
5426 if (quote_found == '\'')
5427 /* A string within single quotes can be a symbol, so complete on it. */
5428 sym_text = quote_pos + 1;
5429 else if (quote_found == '"')
5430 /* A double-quoted string is never a symbol, nor does it make sense
5431 to complete it any other way. */
5432 {
5433 return;
5434 }
5435 else
5436 {
5437 /* It is not a quoted string. Break it based on the characters
5438 which are in symbols. */
5439 while (p > text)
5440 {
5441 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0'
5442 || p[-1] == ':' || strchr (break_on, p[-1]) != NULL)
5443 --p;
5444 else
5445 break;
5446 }
5447 sym_text = p;
5448 }
5449 }
5450
5451 sym_text_len = strlen (sym_text);
5452
5453 /* Prepare SYM_TEXT_LEN for compare_symbol_name. */
5454
5455 if (current_language->la_language == language_cplus
5456 || current_language->la_language == language_java
5457 || current_language->la_language == language_fortran)
5458 {
5459 /* These languages may have parameters entered by user but they are never
5460 present in the partial symbol tables. */
5461
5462 const char *cs = (const char *) memchr (sym_text, '(', sym_text_len);
5463
5464 if (cs)
5465 sym_text_len = cs - sym_text;
5466 }
5467 gdb_assert (sym_text[sym_text_len] == '\0' || sym_text[sym_text_len] == '(');
5468
5469 completion_tracker = new_completion_tracker ();
5470 cleanups = make_cleanup_free_completion_tracker (&completion_tracker);
5471
5472 datum.sym_text = sym_text;
5473 datum.sym_text_len = sym_text_len;
5474 datum.text = text;
5475 datum.word = word;
5476 datum.code = code;
5477
5478 /* At this point scan through the misc symbol vectors and add each
5479 symbol you find to the list. Eventually we want to ignore
5480 anything that isn't a text symbol (everything else will be
5481 handled by the psymtab code below). */
5482
5483 if (code == TYPE_CODE_UNDEF)
5484 {
5485 ALL_MSYMBOLS (objfile, msymbol)
5486 {
5487 QUIT;
5488 MCOMPLETION_LIST_ADD_SYMBOL (msymbol, sym_text, sym_text_len, text,
5489 word);
5490
5491 completion_list_objc_symbol (msymbol, sym_text, sym_text_len, text,
5492 word);
5493 }
5494 }
5495
5496 /* Add completions for all currently loaded symbol tables. */
5497 ALL_COMPUNITS (objfile, cust)
5498 add_symtab_completions (cust, sym_text, sym_text_len, text, word,
5499 code);
5500
5501 /* Look through the partial symtabs for all symbols which begin
5502 by matching SYM_TEXT. Expand all CUs that you find to the list.
5503 symtab_expansion_callback is called for each expanded symtab,
5504 causing those symtab's completions to be added to the list too. */
5505 expand_symtabs_matching (NULL, symbol_completion_matcher,
5506 symtab_expansion_callback, ALL_DOMAIN,
5507 &datum);
5508
5509 /* Search upwards from currently selected frame (so that we can
5510 complete on local vars). Also catch fields of types defined in
5511 this places which match our text string. Only complete on types
5512 visible from current context. */
5513
5514 b = get_selected_block (0);
5515 surrounding_static_block = block_static_block (b);
5516 surrounding_global_block = block_global_block (b);
5517 if (surrounding_static_block != NULL)
5518 while (b != surrounding_static_block)
5519 {
5520 QUIT;
5521
5522 ALL_BLOCK_SYMBOLS (b, iter, sym)
5523 {
5524 if (code == TYPE_CODE_UNDEF)
5525 {
5526 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text,
5527 word);
5528 completion_list_add_fields (sym, sym_text, sym_text_len, text,
5529 word);
5530 }
5531 else if (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
5532 && TYPE_CODE (SYMBOL_TYPE (sym)) == code)
5533 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text,
5534 word);
5535 }
5536
5537 /* Stop when we encounter an enclosing function. Do not stop for
5538 non-inlined functions - the locals of the enclosing function
5539 are in scope for a nested function. */
5540 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
5541 break;
5542 b = BLOCK_SUPERBLOCK (b);
5543 }
5544
5545 /* Add fields from the file's types; symbols will be added below. */
5546
5547 if (code == TYPE_CODE_UNDEF)
5548 {
5549 if (surrounding_static_block != NULL)
5550 ALL_BLOCK_SYMBOLS (surrounding_static_block, iter, sym)
5551 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
5552
5553 if (surrounding_global_block != NULL)
5554 ALL_BLOCK_SYMBOLS (surrounding_global_block, iter, sym)
5555 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
5556 }
5557
5558 /* Skip macros if we are completing a struct tag -- arguable but
5559 usually what is expected. */
5560 if (current_language->la_macro_expansion == macro_expansion_c
5561 && code == TYPE_CODE_UNDEF)
5562 {
5563 struct macro_scope *scope;
5564
5565 /* Add any macros visible in the default scope. Note that this
5566 may yield the occasional wrong result, because an expression
5567 might be evaluated in a scope other than the default. For
5568 example, if the user types "break file:line if <TAB>", the
5569 resulting expression will be evaluated at "file:line" -- but
5570 at there does not seem to be a way to detect this at
5571 completion time. */
5572 scope = default_macro_scope ();
5573 if (scope)
5574 {
5575 macro_for_each_in_scope (scope->file, scope->line,
5576 add_macro_name, &datum);
5577 xfree (scope);
5578 }
5579
5580 /* User-defined macros are always visible. */
5581 macro_for_each (macro_user_macros, add_macro_name, &datum);
5582 }
5583
5584 do_cleanups (cleanups);
5585 }
5586
5587 VEC (char_ptr) *
5588 default_make_symbol_completion_list_break_on (const char *text,
5589 const char *word,
5590 const char *break_on,
5591 enum type_code code)
5592 {
5593 struct cleanup *back_to;
5594
5595 return_val = NULL;
5596 back_to = make_cleanup (do_free_completion_list, &return_val);
5597
5598 TRY
5599 {
5600 default_make_symbol_completion_list_break_on_1 (text, word,
5601 break_on, code);
5602 }
5603 CATCH (except, RETURN_MASK_ERROR)
5604 {
5605 if (except.error != MAX_COMPLETIONS_REACHED_ERROR)
5606 throw_exception (except);
5607 }
5608 END_CATCH
5609
5610 discard_cleanups (back_to);
5611 return return_val;
5612 }
5613
5614 VEC (char_ptr) *
5615 default_make_symbol_completion_list (const char *text, const char *word,
5616 enum type_code code)
5617 {
5618 return default_make_symbol_completion_list_break_on (text, word, "", code);
5619 }
5620
5621 /* Return a vector of all symbols (regardless of class) which begin by
5622 matching TEXT. If the answer is no symbols, then the return value
5623 is NULL. */
5624
5625 VEC (char_ptr) *
5626 make_symbol_completion_list (const char *text, const char *word)
5627 {
5628 return current_language->la_make_symbol_completion_list (text, word,
5629 TYPE_CODE_UNDEF);
5630 }
5631
5632 /* Like make_symbol_completion_list, but only return STRUCT_DOMAIN
5633 symbols whose type code is CODE. */
5634
5635 VEC (char_ptr) *
5636 make_symbol_completion_type (const char *text, const char *word,
5637 enum type_code code)
5638 {
5639 gdb_assert (code == TYPE_CODE_UNION
5640 || code == TYPE_CODE_STRUCT
5641 || code == TYPE_CODE_ENUM);
5642 return current_language->la_make_symbol_completion_list (text, word, code);
5643 }
5644
5645 /* Like make_symbol_completion_list, but suitable for use as a
5646 completion function. */
5647
5648 VEC (char_ptr) *
5649 make_symbol_completion_list_fn (struct cmd_list_element *ignore,
5650 const char *text, const char *word)
5651 {
5652 return make_symbol_completion_list (text, word);
5653 }
5654
5655 /* Like make_symbol_completion_list, but returns a list of symbols
5656 defined in a source file FILE. */
5657
5658 static VEC (char_ptr) *
5659 make_file_symbol_completion_list_1 (const char *text, const char *word,
5660 const char *srcfile)
5661 {
5662 struct symbol *sym;
5663 struct symtab *s;
5664 struct block *b;
5665 struct block_iterator iter;
5666 /* The symbol we are completing on. Points in same buffer as text. */
5667 const char *sym_text;
5668 /* Length of sym_text. */
5669 int sym_text_len;
5670
5671 /* Now look for the symbol we are supposed to complete on.
5672 FIXME: This should be language-specific. */
5673 {
5674 const char *p;
5675 char quote_found;
5676 const char *quote_pos = NULL;
5677
5678 /* First see if this is a quoted string. */
5679 quote_found = '\0';
5680 for (p = text; *p != '\0'; ++p)
5681 {
5682 if (quote_found != '\0')
5683 {
5684 if (*p == quote_found)
5685 /* Found close quote. */
5686 quote_found = '\0';
5687 else if (*p == '\\' && p[1] == quote_found)
5688 /* A backslash followed by the quote character
5689 doesn't end the string. */
5690 ++p;
5691 }
5692 else if (*p == '\'' || *p == '"')
5693 {
5694 quote_found = *p;
5695 quote_pos = p;
5696 }
5697 }
5698 if (quote_found == '\'')
5699 /* A string within single quotes can be a symbol, so complete on it. */
5700 sym_text = quote_pos + 1;
5701 else if (quote_found == '"')
5702 /* A double-quoted string is never a symbol, nor does it make sense
5703 to complete it any other way. */
5704 {
5705 return NULL;
5706 }
5707 else
5708 {
5709 /* Not a quoted string. */
5710 sym_text = language_search_unquoted_string (text, p);
5711 }
5712 }
5713
5714 sym_text_len = strlen (sym_text);
5715
5716 /* Find the symtab for SRCFILE (this loads it if it was not yet read
5717 in). */
5718 s = lookup_symtab (srcfile);
5719 if (s == NULL)
5720 {
5721 /* Maybe they typed the file with leading directories, while the
5722 symbol tables record only its basename. */
5723 const char *tail = lbasename (srcfile);
5724
5725 if (tail > srcfile)
5726 s = lookup_symtab (tail);
5727 }
5728
5729 /* If we have no symtab for that file, return an empty list. */
5730 if (s == NULL)
5731 return (return_val);
5732
5733 /* Go through this symtab and check the externs and statics for
5734 symbols which match. */
5735
5736 b = BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (s), GLOBAL_BLOCK);
5737 ALL_BLOCK_SYMBOLS (b, iter, sym)
5738 {
5739 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
5740 }
5741
5742 b = BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (s), STATIC_BLOCK);
5743 ALL_BLOCK_SYMBOLS (b, iter, sym)
5744 {
5745 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
5746 }
5747
5748 return (return_val);
5749 }
5750
5751 /* Wrapper around make_file_symbol_completion_list_1
5752 to handle MAX_COMPLETIONS_REACHED_ERROR. */
5753
5754 VEC (char_ptr) *
5755 make_file_symbol_completion_list (const char *text, const char *word,
5756 const char *srcfile)
5757 {
5758 struct cleanup *back_to, *cleanups;
5759
5760 completion_tracker = new_completion_tracker ();
5761 cleanups = make_cleanup_free_completion_tracker (&completion_tracker);
5762 return_val = NULL;
5763 back_to = make_cleanup (do_free_completion_list, &return_val);
5764
5765 TRY
5766 {
5767 make_file_symbol_completion_list_1 (text, word, srcfile);
5768 }
5769 CATCH (except, RETURN_MASK_ERROR)
5770 {
5771 if (except.error != MAX_COMPLETIONS_REACHED_ERROR)
5772 throw_exception (except);
5773 }
5774 END_CATCH
5775
5776 discard_cleanups (back_to);
5777 do_cleanups (cleanups);
5778 return return_val;
5779 }
5780
5781 /* A helper function for make_source_files_completion_list. It adds
5782 another file name to a list of possible completions, growing the
5783 list as necessary. */
5784
5785 static void
5786 add_filename_to_list (const char *fname, const char *text, const char *word,
5787 VEC (char_ptr) **list)
5788 {
5789 char *newobj;
5790 size_t fnlen = strlen (fname);
5791
5792 if (word == text)
5793 {
5794 /* Return exactly fname. */
5795 newobj = (char *) xmalloc (fnlen + 5);
5796 strcpy (newobj, fname);
5797 }
5798 else if (word > text)
5799 {
5800 /* Return some portion of fname. */
5801 newobj = (char *) xmalloc (fnlen + 5);
5802 strcpy (newobj, fname + (word - text));
5803 }
5804 else
5805 {
5806 /* Return some of TEXT plus fname. */
5807 newobj = (char *) xmalloc (fnlen + (text - word) + 5);
5808 strncpy (newobj, word, text - word);
5809 newobj[text - word] = '\0';
5810 strcat (newobj, fname);
5811 }
5812 VEC_safe_push (char_ptr, *list, newobj);
5813 }
5814
5815 static int
5816 not_interesting_fname (const char *fname)
5817 {
5818 static const char *illegal_aliens[] = {
5819 "_globals_", /* inserted by coff_symtab_read */
5820 NULL
5821 };
5822 int i;
5823
5824 for (i = 0; illegal_aliens[i]; i++)
5825 {
5826 if (filename_cmp (fname, illegal_aliens[i]) == 0)
5827 return 1;
5828 }
5829 return 0;
5830 }
5831
5832 /* An object of this type is passed as the user_data argument to
5833 map_partial_symbol_filenames. */
5834 struct add_partial_filename_data
5835 {
5836 struct filename_seen_cache *filename_seen_cache;
5837 const char *text;
5838 const char *word;
5839 int text_len;
5840 VEC (char_ptr) **list;
5841 };
5842
5843 /* A callback for map_partial_symbol_filenames. */
5844
5845 static void
5846 maybe_add_partial_symtab_filename (const char *filename, const char *fullname,
5847 void *user_data)
5848 {
5849 struct add_partial_filename_data *data
5850 = (struct add_partial_filename_data *) user_data;
5851
5852 if (not_interesting_fname (filename))
5853 return;
5854 if (!filename_seen (data->filename_seen_cache, filename, 1)
5855 && filename_ncmp (filename, data->text, data->text_len) == 0)
5856 {
5857 /* This file matches for a completion; add it to the
5858 current list of matches. */
5859 add_filename_to_list (filename, data->text, data->word, data->list);
5860 }
5861 else
5862 {
5863 const char *base_name = lbasename (filename);
5864
5865 if (base_name != filename
5866 && !filename_seen (data->filename_seen_cache, base_name, 1)
5867 && filename_ncmp (base_name, data->text, data->text_len) == 0)
5868 add_filename_to_list (base_name, data->text, data->word, data->list);
5869 }
5870 }
5871
5872 /* Return a vector of all source files whose names begin with matching
5873 TEXT. The file names are looked up in the symbol tables of this
5874 program. If the answer is no matchess, then the return value is
5875 NULL. */
5876
5877 VEC (char_ptr) *
5878 make_source_files_completion_list (const char *text, const char *word)
5879 {
5880 struct compunit_symtab *cu;
5881 struct symtab *s;
5882 struct objfile *objfile;
5883 size_t text_len = strlen (text);
5884 VEC (char_ptr) *list = NULL;
5885 const char *base_name;
5886 struct add_partial_filename_data datum;
5887 struct filename_seen_cache *filename_seen_cache;
5888 struct cleanup *back_to, *cache_cleanup;
5889
5890 if (!have_full_symbols () && !have_partial_symbols ())
5891 return list;
5892
5893 back_to = make_cleanup (do_free_completion_list, &list);
5894
5895 filename_seen_cache = create_filename_seen_cache ();
5896 cache_cleanup = make_cleanup (delete_filename_seen_cache,
5897 filename_seen_cache);
5898
5899 ALL_FILETABS (objfile, cu, s)
5900 {
5901 if (not_interesting_fname (s->filename))
5902 continue;
5903 if (!filename_seen (filename_seen_cache, s->filename, 1)
5904 && filename_ncmp (s->filename, text, text_len) == 0)
5905 {
5906 /* This file matches for a completion; add it to the current
5907 list of matches. */
5908 add_filename_to_list (s->filename, text, word, &list);
5909 }
5910 else
5911 {
5912 /* NOTE: We allow the user to type a base name when the
5913 debug info records leading directories, but not the other
5914 way around. This is what subroutines of breakpoint
5915 command do when they parse file names. */
5916 base_name = lbasename (s->filename);
5917 if (base_name != s->filename
5918 && !filename_seen (filename_seen_cache, base_name, 1)
5919 && filename_ncmp (base_name, text, text_len) == 0)
5920 add_filename_to_list (base_name, text, word, &list);
5921 }
5922 }
5923
5924 datum.filename_seen_cache = filename_seen_cache;
5925 datum.text = text;
5926 datum.word = word;
5927 datum.text_len = text_len;
5928 datum.list = &list;
5929 map_symbol_filenames (maybe_add_partial_symtab_filename, &datum,
5930 0 /*need_fullname*/);
5931
5932 do_cleanups (cache_cleanup);
5933 discard_cleanups (back_to);
5934
5935 return list;
5936 }
5937 \f
5938 /* Track MAIN */
5939
5940 /* Return the "main_info" object for the current program space. If
5941 the object has not yet been created, create it and fill in some
5942 default values. */
5943
5944 static struct main_info *
5945 get_main_info (void)
5946 {
5947 struct main_info *info
5948 = (struct main_info *) program_space_data (current_program_space,
5949 main_progspace_key);
5950
5951 if (info == NULL)
5952 {
5953 /* It may seem strange to store the main name in the progspace
5954 and also in whatever objfile happens to see a main name in
5955 its debug info. The reason for this is mainly historical:
5956 gdb returned "main" as the name even if no function named
5957 "main" was defined the program; and this approach lets us
5958 keep compatibility. */
5959 info = XCNEW (struct main_info);
5960 info->language_of_main = language_unknown;
5961 set_program_space_data (current_program_space, main_progspace_key,
5962 info);
5963 }
5964
5965 return info;
5966 }
5967
5968 /* A cleanup to destroy a struct main_info when a progspace is
5969 destroyed. */
5970
5971 static void
5972 main_info_cleanup (struct program_space *pspace, void *data)
5973 {
5974 struct main_info *info = (struct main_info *) data;
5975
5976 if (info != NULL)
5977 xfree (info->name_of_main);
5978 xfree (info);
5979 }
5980
5981 static void
5982 set_main_name (const char *name, enum language lang)
5983 {
5984 struct main_info *info = get_main_info ();
5985
5986 if (info->name_of_main != NULL)
5987 {
5988 xfree (info->name_of_main);
5989 info->name_of_main = NULL;
5990 info->language_of_main = language_unknown;
5991 }
5992 if (name != NULL)
5993 {
5994 info->name_of_main = xstrdup (name);
5995 info->language_of_main = lang;
5996 }
5997 }
5998
5999 /* Deduce the name of the main procedure, and set NAME_OF_MAIN
6000 accordingly. */
6001
6002 static void
6003 find_main_name (void)
6004 {
6005 const char *new_main_name;
6006 struct objfile *objfile;
6007
6008 /* First check the objfiles to see whether a debuginfo reader has
6009 picked up the appropriate main name. Historically the main name
6010 was found in a more or less random way; this approach instead
6011 relies on the order of objfile creation -- which still isn't
6012 guaranteed to get the correct answer, but is just probably more
6013 accurate. */
6014 ALL_OBJFILES (objfile)
6015 {
6016 if (objfile->per_bfd->name_of_main != NULL)
6017 {
6018 set_main_name (objfile->per_bfd->name_of_main,
6019 objfile->per_bfd->language_of_main);
6020 return;
6021 }
6022 }
6023
6024 /* Try to see if the main procedure is in Ada. */
6025 /* FIXME: brobecker/2005-03-07: Another way of doing this would
6026 be to add a new method in the language vector, and call this
6027 method for each language until one of them returns a non-empty
6028 name. This would allow us to remove this hard-coded call to
6029 an Ada function. It is not clear that this is a better approach
6030 at this point, because all methods need to be written in a way
6031 such that false positives never be returned. For instance, it is
6032 important that a method does not return a wrong name for the main
6033 procedure if the main procedure is actually written in a different
6034 language. It is easy to guaranty this with Ada, since we use a
6035 special symbol generated only when the main in Ada to find the name
6036 of the main procedure. It is difficult however to see how this can
6037 be guarantied for languages such as C, for instance. This suggests
6038 that order of call for these methods becomes important, which means
6039 a more complicated approach. */
6040 new_main_name = ada_main_name ();
6041 if (new_main_name != NULL)
6042 {
6043 set_main_name (new_main_name, language_ada);
6044 return;
6045 }
6046
6047 new_main_name = d_main_name ();
6048 if (new_main_name != NULL)
6049 {
6050 set_main_name (new_main_name, language_d);
6051 return;
6052 }
6053
6054 new_main_name = go_main_name ();
6055 if (new_main_name != NULL)
6056 {
6057 set_main_name (new_main_name, language_go);
6058 return;
6059 }
6060
6061 new_main_name = pascal_main_name ();
6062 if (new_main_name != NULL)
6063 {
6064 set_main_name (new_main_name, language_pascal);
6065 return;
6066 }
6067
6068 /* The languages above didn't identify the name of the main procedure.
6069 Fallback to "main". */
6070 set_main_name ("main", language_unknown);
6071 }
6072
6073 char *
6074 main_name (void)
6075 {
6076 struct main_info *info = get_main_info ();
6077
6078 if (info->name_of_main == NULL)
6079 find_main_name ();
6080
6081 return info->name_of_main;
6082 }
6083
6084 /* Return the language of the main function. If it is not known,
6085 return language_unknown. */
6086
6087 enum language
6088 main_language (void)
6089 {
6090 struct main_info *info = get_main_info ();
6091
6092 if (info->name_of_main == NULL)
6093 find_main_name ();
6094
6095 return info->language_of_main;
6096 }
6097
6098 /* Handle ``executable_changed'' events for the symtab module. */
6099
6100 static void
6101 symtab_observer_executable_changed (void)
6102 {
6103 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
6104 set_main_name (NULL, language_unknown);
6105 }
6106
6107 /* Return 1 if the supplied producer string matches the ARM RealView
6108 compiler (armcc). */
6109
6110 int
6111 producer_is_realview (const char *producer)
6112 {
6113 static const char *const arm_idents[] = {
6114 "ARM C Compiler, ADS",
6115 "Thumb C Compiler, ADS",
6116 "ARM C++ Compiler, ADS",
6117 "Thumb C++ Compiler, ADS",
6118 "ARM/Thumb C/C++ Compiler, RVCT",
6119 "ARM C/C++ Compiler, RVCT"
6120 };
6121 int i;
6122
6123 if (producer == NULL)
6124 return 0;
6125
6126 for (i = 0; i < ARRAY_SIZE (arm_idents); i++)
6127 if (startswith (producer, arm_idents[i]))
6128 return 1;
6129
6130 return 0;
6131 }
6132
6133 \f
6134
6135 /* The next index to hand out in response to a registration request. */
6136
6137 static int next_aclass_value = LOC_FINAL_VALUE;
6138
6139 /* The maximum number of "aclass" registrations we support. This is
6140 constant for convenience. */
6141 #define MAX_SYMBOL_IMPLS (LOC_FINAL_VALUE + 10)
6142
6143 /* The objects representing the various "aclass" values. The elements
6144 from 0 up to LOC_FINAL_VALUE-1 represent themselves, and subsequent
6145 elements are those registered at gdb initialization time. */
6146
6147 static struct symbol_impl symbol_impl[MAX_SYMBOL_IMPLS];
6148
6149 /* The globally visible pointer. This is separate from 'symbol_impl'
6150 so that it can be const. */
6151
6152 const struct symbol_impl *symbol_impls = &symbol_impl[0];
6153
6154 /* Make sure we saved enough room in struct symbol. */
6155
6156 gdb_static_assert (MAX_SYMBOL_IMPLS <= (1 << SYMBOL_ACLASS_BITS));
6157
6158 /* Register a computed symbol type. ACLASS must be LOC_COMPUTED. OPS
6159 is the ops vector associated with this index. This returns the new
6160 index, which should be used as the aclass_index field for symbols
6161 of this type. */
6162
6163 int
6164 register_symbol_computed_impl (enum address_class aclass,
6165 const struct symbol_computed_ops *ops)
6166 {
6167 int result = next_aclass_value++;
6168
6169 gdb_assert (aclass == LOC_COMPUTED);
6170 gdb_assert (result < MAX_SYMBOL_IMPLS);
6171 symbol_impl[result].aclass = aclass;
6172 symbol_impl[result].ops_computed = ops;
6173
6174 /* Sanity check OPS. */
6175 gdb_assert (ops != NULL);
6176 gdb_assert (ops->tracepoint_var_ref != NULL);
6177 gdb_assert (ops->describe_location != NULL);
6178 gdb_assert (ops->read_needs_frame != NULL);
6179 gdb_assert (ops->read_variable != NULL);
6180
6181 return result;
6182 }
6183
6184 /* Register a function with frame base type. ACLASS must be LOC_BLOCK.
6185 OPS is the ops vector associated with this index. This returns the
6186 new index, which should be used as the aclass_index field for symbols
6187 of this type. */
6188
6189 int
6190 register_symbol_block_impl (enum address_class aclass,
6191 const struct symbol_block_ops *ops)
6192 {
6193 int result = next_aclass_value++;
6194
6195 gdb_assert (aclass == LOC_BLOCK);
6196 gdb_assert (result < MAX_SYMBOL_IMPLS);
6197 symbol_impl[result].aclass = aclass;
6198 symbol_impl[result].ops_block = ops;
6199
6200 /* Sanity check OPS. */
6201 gdb_assert (ops != NULL);
6202 gdb_assert (ops->find_frame_base_location != NULL);
6203
6204 return result;
6205 }
6206
6207 /* Register a register symbol type. ACLASS must be LOC_REGISTER or
6208 LOC_REGPARM_ADDR. OPS is the register ops vector associated with
6209 this index. This returns the new index, which should be used as
6210 the aclass_index field for symbols of this type. */
6211
6212 int
6213 register_symbol_register_impl (enum address_class aclass,
6214 const struct symbol_register_ops *ops)
6215 {
6216 int result = next_aclass_value++;
6217
6218 gdb_assert (aclass == LOC_REGISTER || aclass == LOC_REGPARM_ADDR);
6219 gdb_assert (result < MAX_SYMBOL_IMPLS);
6220 symbol_impl[result].aclass = aclass;
6221 symbol_impl[result].ops_register = ops;
6222
6223 return result;
6224 }
6225
6226 /* Initialize elements of 'symbol_impl' for the constants in enum
6227 address_class. */
6228
6229 static void
6230 initialize_ordinary_address_classes (void)
6231 {
6232 int i;
6233
6234 for (i = 0; i < LOC_FINAL_VALUE; ++i)
6235 symbol_impl[i].aclass = (enum address_class) i;
6236 }
6237
6238 \f
6239
6240 /* Helper function to initialize the fields of an objfile-owned symbol.
6241 It assumed that *SYM is already all zeroes. */
6242
6243 static void
6244 initialize_objfile_symbol_1 (struct symbol *sym)
6245 {
6246 SYMBOL_OBJFILE_OWNED (sym) = 1;
6247 SYMBOL_SECTION (sym) = -1;
6248 }
6249
6250 /* Initialize the symbol SYM, and mark it as being owned by an objfile. */
6251
6252 void
6253 initialize_objfile_symbol (struct symbol *sym)
6254 {
6255 memset (sym, 0, sizeof (*sym));
6256 initialize_objfile_symbol_1 (sym);
6257 }
6258
6259 /* Allocate and initialize a new 'struct symbol' on OBJFILE's
6260 obstack. */
6261
6262 struct symbol *
6263 allocate_symbol (struct objfile *objfile)
6264 {
6265 struct symbol *result;
6266
6267 result = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symbol);
6268 initialize_objfile_symbol_1 (result);
6269
6270 return result;
6271 }
6272
6273 /* Allocate and initialize a new 'struct template_symbol' on OBJFILE's
6274 obstack. */
6275
6276 struct template_symbol *
6277 allocate_template_symbol (struct objfile *objfile)
6278 {
6279 struct template_symbol *result;
6280
6281 result = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct template_symbol);
6282 initialize_objfile_symbol_1 (&result->base);
6283
6284 return result;
6285 }
6286
6287 /* See symtab.h. */
6288
6289 struct objfile *
6290 symbol_objfile (const struct symbol *symbol)
6291 {
6292 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
6293 return SYMTAB_OBJFILE (symbol->owner.symtab);
6294 }
6295
6296 /* See symtab.h. */
6297
6298 struct gdbarch *
6299 symbol_arch (const struct symbol *symbol)
6300 {
6301 if (!SYMBOL_OBJFILE_OWNED (symbol))
6302 return symbol->owner.arch;
6303 return get_objfile_arch (SYMTAB_OBJFILE (symbol->owner.symtab));
6304 }
6305
6306 /* See symtab.h. */
6307
6308 struct symtab *
6309 symbol_symtab (const struct symbol *symbol)
6310 {
6311 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
6312 return symbol->owner.symtab;
6313 }
6314
6315 /* See symtab.h. */
6316
6317 void
6318 symbol_set_symtab (struct symbol *symbol, struct symtab *symtab)
6319 {
6320 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
6321 symbol->owner.symtab = symtab;
6322 }
6323
6324 \f
6325
6326 void
6327 _initialize_symtab (void)
6328 {
6329 initialize_ordinary_address_classes ();
6330
6331 main_progspace_key
6332 = register_program_space_data_with_cleanup (NULL, main_info_cleanup);
6333
6334 symbol_cache_key
6335 = register_program_space_data_with_cleanup (NULL, symbol_cache_cleanup);
6336
6337 add_info ("variables", variables_info, _("\
6338 All global and static variable names, or those matching REGEXP."));
6339 if (dbx_commands)
6340 add_com ("whereis", class_info, variables_info, _("\
6341 All global and static variable names, or those matching REGEXP."));
6342
6343 add_info ("functions", functions_info,
6344 _("All function names, or those matching REGEXP."));
6345
6346 /* FIXME: This command has at least the following problems:
6347 1. It prints builtin types (in a very strange and confusing fashion).
6348 2. It doesn't print right, e.g. with
6349 typedef struct foo *FOO
6350 type_print prints "FOO" when we want to make it (in this situation)
6351 print "struct foo *".
6352 I also think "ptype" or "whatis" is more likely to be useful (but if
6353 there is much disagreement "info types" can be fixed). */
6354 add_info ("types", types_info,
6355 _("All type names, or those matching REGEXP."));
6356
6357 add_info ("sources", sources_info,
6358 _("Source files in the program."));
6359
6360 add_com ("rbreak", class_breakpoint, rbreak_command,
6361 _("Set a breakpoint for all functions matching REGEXP."));
6362
6363 add_setshow_enum_cmd ("multiple-symbols", no_class,
6364 multiple_symbols_modes, &multiple_symbols_mode,
6365 _("\
6366 Set the debugger behavior when more than one symbol are possible matches\n\
6367 in an expression."), _("\
6368 Show how the debugger handles ambiguities in expressions."), _("\
6369 Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
6370 NULL, NULL, &setlist, &showlist);
6371
6372 add_setshow_boolean_cmd ("basenames-may-differ", class_obscure,
6373 &basenames_may_differ, _("\
6374 Set whether a source file may have multiple base names."), _("\
6375 Show whether a source file may have multiple base names."), _("\
6376 (A \"base name\" is the name of a file with the directory part removed.\n\
6377 Example: The base name of \"/home/user/hello.c\" is \"hello.c\".)\n\
6378 If set, GDB will canonicalize file names (e.g., expand symlinks)\n\
6379 before comparing them. Canonicalization is an expensive operation,\n\
6380 but it allows the same file be known by more than one base name.\n\
6381 If not set (the default), all source files are assumed to have just\n\
6382 one base name, and gdb will do file name comparisons more efficiently."),
6383 NULL, NULL,
6384 &setlist, &showlist);
6385
6386 add_setshow_zuinteger_cmd ("symtab-create", no_class, &symtab_create_debug,
6387 _("Set debugging of symbol table creation."),
6388 _("Show debugging of symbol table creation."), _("\
6389 When enabled (non-zero), debugging messages are printed when building\n\
6390 symbol tables. A value of 1 (one) normally provides enough information.\n\
6391 A value greater than 1 provides more verbose information."),
6392 NULL,
6393 NULL,
6394 &setdebuglist, &showdebuglist);
6395
6396 add_setshow_zuinteger_cmd ("symbol-lookup", no_class, &symbol_lookup_debug,
6397 _("\
6398 Set debugging of symbol lookup."), _("\
6399 Show debugging of symbol lookup."), _("\
6400 When enabled (non-zero), symbol lookups are logged."),
6401 NULL, NULL,
6402 &setdebuglist, &showdebuglist);
6403
6404 add_setshow_zuinteger_cmd ("symbol-cache-size", no_class,
6405 &new_symbol_cache_size,
6406 _("Set the size of the symbol cache."),
6407 _("Show the size of the symbol cache."), _("\
6408 The size of the symbol cache.\n\
6409 If zero then the symbol cache is disabled."),
6410 set_symbol_cache_size_handler, NULL,
6411 &maintenance_set_cmdlist,
6412 &maintenance_show_cmdlist);
6413
6414 add_cmd ("symbol-cache", class_maintenance, maintenance_print_symbol_cache,
6415 _("Dump the symbol cache for each program space."),
6416 &maintenanceprintlist);
6417
6418 add_cmd ("symbol-cache-statistics", class_maintenance,
6419 maintenance_print_symbol_cache_statistics,
6420 _("Print symbol cache statistics for each program space."),
6421 &maintenanceprintlist);
6422
6423 add_cmd ("flush-symbol-cache", class_maintenance,
6424 maintenance_flush_symbol_cache,
6425 _("Flush the symbol cache for each program space."),
6426 &maintenancelist);
6427
6428 observer_attach_executable_changed (symtab_observer_executable_changed);
6429 observer_attach_new_objfile (symtab_new_objfile_observer);
6430 observer_attach_free_objfile (symtab_free_objfile_observer);
6431 }
This page took 0.18671 seconds and 4 git commands to generate.