Change ints to bools around thread_info executing/resumed
[deliverable/binutils-gdb.git] / gdb / symtab.c
1 /* Symbol table lookup for the GNU debugger, GDB.
2
3 Copyright (C) 1986-2020 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "gdbcore.h"
24 #include "frame.h"
25 #include "target.h"
26 #include "value.h"
27 #include "symfile.h"
28 #include "objfiles.h"
29 #include "gdbcmd.h"
30 #include "gdb_regex.h"
31 #include "expression.h"
32 #include "language.h"
33 #include "demangle.h"
34 #include "inferior.h"
35 #include "source.h"
36 #include "filenames.h" /* for FILENAME_CMP */
37 #include "objc-lang.h"
38 #include "d-lang.h"
39 #include "ada-lang.h"
40 #include "go-lang.h"
41 #include "p-lang.h"
42 #include "addrmap.h"
43 #include "cli/cli-utils.h"
44 #include "cli/cli-style.h"
45 #include "fnmatch.h"
46 #include "hashtab.h"
47 #include "typeprint.h"
48
49 #include "gdb_obstack.h"
50 #include "block.h"
51 #include "dictionary.h"
52
53 #include <sys/types.h>
54 #include <fcntl.h>
55 #include <sys/stat.h>
56 #include <ctype.h>
57 #include "cp-abi.h"
58 #include "cp-support.h"
59 #include "observable.h"
60 #include "solist.h"
61 #include "macrotab.h"
62 #include "macroscope.h"
63
64 #include "parser-defs.h"
65 #include "completer.h"
66 #include "progspace-and-thread.h"
67 #include "gdbsupport/gdb_optional.h"
68 #include "filename-seen-cache.h"
69 #include "arch-utils.h"
70 #include <algorithm>
71 #include "gdbsupport/gdb_string_view.h"
72 #include "gdbsupport/pathstuff.h"
73 #include "gdbsupport/common-utils.h"
74
75 /* Forward declarations for local functions. */
76
77 static void rbreak_command (const char *, int);
78
79 static int find_line_common (struct linetable *, int, int *, int);
80
81 static struct block_symbol
82 lookup_symbol_aux (const char *name,
83 symbol_name_match_type match_type,
84 const struct block *block,
85 const domain_enum domain,
86 enum language language,
87 struct field_of_this_result *);
88
89 static
90 struct block_symbol lookup_local_symbol (const char *name,
91 symbol_name_match_type match_type,
92 const struct block *block,
93 const domain_enum domain,
94 enum language language);
95
96 static struct block_symbol
97 lookup_symbol_in_objfile (struct objfile *objfile,
98 enum block_enum block_index,
99 const char *name, const domain_enum domain);
100
101 /* Type of the data stored on the program space. */
102
103 struct main_info
104 {
105 main_info () = default;
106
107 ~main_info ()
108 {
109 xfree (name_of_main);
110 }
111
112 /* Name of "main". */
113
114 char *name_of_main = nullptr;
115
116 /* Language of "main". */
117
118 enum language language_of_main = language_unknown;
119 };
120
121 /* Program space key for finding name and language of "main". */
122
123 static const program_space_key<main_info> main_progspace_key;
124
125 /* The default symbol cache size.
126 There is no extra cpu cost for large N (except when flushing the cache,
127 which is rare). The value here is just a first attempt. A better default
128 value may be higher or lower. A prime number can make up for a bad hash
129 computation, so that's why the number is what it is. */
130 #define DEFAULT_SYMBOL_CACHE_SIZE 1021
131
132 /* The maximum symbol cache size.
133 There's no method to the decision of what value to use here, other than
134 there's no point in allowing a user typo to make gdb consume all memory. */
135 #define MAX_SYMBOL_CACHE_SIZE (1024*1024)
136
137 /* symbol_cache_lookup returns this if a previous lookup failed to find the
138 symbol in any objfile. */
139 #define SYMBOL_LOOKUP_FAILED \
140 ((struct block_symbol) {(struct symbol *) 1, NULL})
141 #define SYMBOL_LOOKUP_FAILED_P(SIB) (SIB.symbol == (struct symbol *) 1)
142
143 /* Recording lookups that don't find the symbol is just as important, if not
144 more so, than recording found symbols. */
145
146 enum symbol_cache_slot_state
147 {
148 SYMBOL_SLOT_UNUSED,
149 SYMBOL_SLOT_NOT_FOUND,
150 SYMBOL_SLOT_FOUND
151 };
152
153 struct symbol_cache_slot
154 {
155 enum symbol_cache_slot_state state;
156
157 /* The objfile that was current when the symbol was looked up.
158 This is only needed for global blocks, but for simplicity's sake
159 we allocate the space for both. If data shows the extra space used
160 for static blocks is a problem, we can split things up then.
161
162 Global blocks need cache lookup to include the objfile context because
163 we need to account for gdbarch_iterate_over_objfiles_in_search_order
164 which can traverse objfiles in, effectively, any order, depending on
165 the current objfile, thus affecting which symbol is found. Normally,
166 only the current objfile is searched first, and then the rest are
167 searched in recorded order; but putting cache lookup inside
168 gdbarch_iterate_over_objfiles_in_search_order would be awkward.
169 Instead we just make the current objfile part of the context of
170 cache lookup. This means we can record the same symbol multiple times,
171 each with a different "current objfile" that was in effect when the
172 lookup was saved in the cache, but cache space is pretty cheap. */
173 const struct objfile *objfile_context;
174
175 union
176 {
177 struct block_symbol found;
178 struct
179 {
180 char *name;
181 domain_enum domain;
182 } not_found;
183 } value;
184 };
185
186 /* Clear out SLOT. */
187
188 static void
189 symbol_cache_clear_slot (struct symbol_cache_slot *slot)
190 {
191 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
192 xfree (slot->value.not_found.name);
193 slot->state = SYMBOL_SLOT_UNUSED;
194 }
195
196 /* Symbols don't specify global vs static block.
197 So keep them in separate caches. */
198
199 struct block_symbol_cache
200 {
201 unsigned int hits;
202 unsigned int misses;
203 unsigned int collisions;
204
205 /* SYMBOLS is a variable length array of this size.
206 One can imagine that in general one cache (global/static) should be a
207 fraction of the size of the other, but there's no data at the moment
208 on which to decide. */
209 unsigned int size;
210
211 struct symbol_cache_slot symbols[1];
212 };
213
214 /* Clear all slots of BSC and free BSC. */
215
216 static void
217 destroy_block_symbol_cache (struct block_symbol_cache *bsc)
218 {
219 if (bsc != nullptr)
220 {
221 for (unsigned int i = 0; i < bsc->size; i++)
222 symbol_cache_clear_slot (&bsc->symbols[i]);
223 xfree (bsc);
224 }
225 }
226
227 /* The symbol cache.
228
229 Searching for symbols in the static and global blocks over multiple objfiles
230 again and again can be slow, as can searching very big objfiles. This is a
231 simple cache to improve symbol lookup performance, which is critical to
232 overall gdb performance.
233
234 Symbols are hashed on the name, its domain, and block.
235 They are also hashed on their objfile for objfile-specific lookups. */
236
237 struct symbol_cache
238 {
239 symbol_cache () = default;
240
241 ~symbol_cache ()
242 {
243 destroy_block_symbol_cache (global_symbols);
244 destroy_block_symbol_cache (static_symbols);
245 }
246
247 struct block_symbol_cache *global_symbols = nullptr;
248 struct block_symbol_cache *static_symbols = nullptr;
249 };
250
251 /* Program space key for finding its symbol cache. */
252
253 static const program_space_key<symbol_cache> symbol_cache_key;
254
255 /* When non-zero, print debugging messages related to symtab creation. */
256 unsigned int symtab_create_debug = 0;
257
258 /* When non-zero, print debugging messages related to symbol lookup. */
259 unsigned int symbol_lookup_debug = 0;
260
261 /* The size of the cache is staged here. */
262 static unsigned int new_symbol_cache_size = DEFAULT_SYMBOL_CACHE_SIZE;
263
264 /* The current value of the symbol cache size.
265 This is saved so that if the user enters a value too big we can restore
266 the original value from here. */
267 static unsigned int symbol_cache_size = DEFAULT_SYMBOL_CACHE_SIZE;
268
269 /* True if a file may be known by two different basenames.
270 This is the uncommon case, and significantly slows down gdb.
271 Default set to "off" to not slow down the common case. */
272 bool basenames_may_differ = false;
273
274 /* Allow the user to configure the debugger behavior with respect
275 to multiple-choice menus when more than one symbol matches during
276 a symbol lookup. */
277
278 const char multiple_symbols_ask[] = "ask";
279 const char multiple_symbols_all[] = "all";
280 const char multiple_symbols_cancel[] = "cancel";
281 static const char *const multiple_symbols_modes[] =
282 {
283 multiple_symbols_ask,
284 multiple_symbols_all,
285 multiple_symbols_cancel,
286 NULL
287 };
288 static const char *multiple_symbols_mode = multiple_symbols_all;
289
290 /* Read-only accessor to AUTO_SELECT_MODE. */
291
292 const char *
293 multiple_symbols_select_mode (void)
294 {
295 return multiple_symbols_mode;
296 }
297
298 /* Return the name of a domain_enum. */
299
300 const char *
301 domain_name (domain_enum e)
302 {
303 switch (e)
304 {
305 case UNDEF_DOMAIN: return "UNDEF_DOMAIN";
306 case VAR_DOMAIN: return "VAR_DOMAIN";
307 case STRUCT_DOMAIN: return "STRUCT_DOMAIN";
308 case MODULE_DOMAIN: return "MODULE_DOMAIN";
309 case LABEL_DOMAIN: return "LABEL_DOMAIN";
310 case COMMON_BLOCK_DOMAIN: return "COMMON_BLOCK_DOMAIN";
311 default: gdb_assert_not_reached ("bad domain_enum");
312 }
313 }
314
315 /* Return the name of a search_domain . */
316
317 const char *
318 search_domain_name (enum search_domain e)
319 {
320 switch (e)
321 {
322 case VARIABLES_DOMAIN: return "VARIABLES_DOMAIN";
323 case FUNCTIONS_DOMAIN: return "FUNCTIONS_DOMAIN";
324 case TYPES_DOMAIN: return "TYPES_DOMAIN";
325 case MODULES_DOMAIN: return "MODULES_DOMAIN";
326 case ALL_DOMAIN: return "ALL_DOMAIN";
327 default: gdb_assert_not_reached ("bad search_domain");
328 }
329 }
330
331 /* See symtab.h. */
332
333 struct symtab *
334 compunit_primary_filetab (const struct compunit_symtab *cust)
335 {
336 gdb_assert (COMPUNIT_FILETABS (cust) != NULL);
337
338 /* The primary file symtab is the first one in the list. */
339 return COMPUNIT_FILETABS (cust);
340 }
341
342 /* See symtab.h. */
343
344 enum language
345 compunit_language (const struct compunit_symtab *cust)
346 {
347 struct symtab *symtab = compunit_primary_filetab (cust);
348
349 /* The language of the compunit symtab is the language of its primary
350 source file. */
351 return SYMTAB_LANGUAGE (symtab);
352 }
353
354 /* See symtab.h. */
355
356 bool
357 minimal_symbol::data_p () const
358 {
359 return type == mst_data
360 || type == mst_bss
361 || type == mst_abs
362 || type == mst_file_data
363 || type == mst_file_bss;
364 }
365
366 /* See symtab.h. */
367
368 bool
369 minimal_symbol::text_p () const
370 {
371 return type == mst_text
372 || type == mst_text_gnu_ifunc
373 || type == mst_data_gnu_ifunc
374 || type == mst_slot_got_plt
375 || type == mst_solib_trampoline
376 || type == mst_file_text;
377 }
378
379 /* See whether FILENAME matches SEARCH_NAME using the rule that we
380 advertise to the user. (The manual's description of linespecs
381 describes what we advertise). Returns true if they match, false
382 otherwise. */
383
384 bool
385 compare_filenames_for_search (const char *filename, const char *search_name)
386 {
387 int len = strlen (filename);
388 size_t search_len = strlen (search_name);
389
390 if (len < search_len)
391 return false;
392
393 /* The tail of FILENAME must match. */
394 if (FILENAME_CMP (filename + len - search_len, search_name) != 0)
395 return false;
396
397 /* Either the names must completely match, or the character
398 preceding the trailing SEARCH_NAME segment of FILENAME must be a
399 directory separator.
400
401 The check !IS_ABSOLUTE_PATH ensures SEARCH_NAME "/dir/file.c"
402 cannot match FILENAME "/path//dir/file.c" - as user has requested
403 absolute path. The sama applies for "c:\file.c" possibly
404 incorrectly hypothetically matching "d:\dir\c:\file.c".
405
406 The HAS_DRIVE_SPEC purpose is to make FILENAME "c:file.c"
407 compatible with SEARCH_NAME "file.c". In such case a compiler had
408 to put the "c:file.c" name into debug info. Such compatibility
409 works only on GDB built for DOS host. */
410 return (len == search_len
411 || (!IS_ABSOLUTE_PATH (search_name)
412 && IS_DIR_SEPARATOR (filename[len - search_len - 1]))
413 || (HAS_DRIVE_SPEC (filename)
414 && STRIP_DRIVE_SPEC (filename) == &filename[len - search_len]));
415 }
416
417 /* Same as compare_filenames_for_search, but for glob-style patterns.
418 Heads up on the order of the arguments. They match the order of
419 compare_filenames_for_search, but it's the opposite of the order of
420 arguments to gdb_filename_fnmatch. */
421
422 bool
423 compare_glob_filenames_for_search (const char *filename,
424 const char *search_name)
425 {
426 /* We rely on the property of glob-style patterns with FNM_FILE_NAME that
427 all /s have to be explicitly specified. */
428 int file_path_elements = count_path_elements (filename);
429 int search_path_elements = count_path_elements (search_name);
430
431 if (search_path_elements > file_path_elements)
432 return false;
433
434 if (IS_ABSOLUTE_PATH (search_name))
435 {
436 return (search_path_elements == file_path_elements
437 && gdb_filename_fnmatch (search_name, filename,
438 FNM_FILE_NAME | FNM_NOESCAPE) == 0);
439 }
440
441 {
442 const char *file_to_compare
443 = strip_leading_path_elements (filename,
444 file_path_elements - search_path_elements);
445
446 return gdb_filename_fnmatch (search_name, file_to_compare,
447 FNM_FILE_NAME | FNM_NOESCAPE) == 0;
448 }
449 }
450
451 /* Check for a symtab of a specific name by searching some symtabs.
452 This is a helper function for callbacks of iterate_over_symtabs.
453
454 If NAME is not absolute, then REAL_PATH is NULL
455 If NAME is absolute, then REAL_PATH is the gdb_realpath form of NAME.
456
457 The return value, NAME, REAL_PATH and CALLBACK are identical to the
458 `map_symtabs_matching_filename' method of quick_symbol_functions.
459
460 FIRST and AFTER_LAST indicate the range of compunit symtabs to search.
461 Each symtab within the specified compunit symtab is also searched.
462 AFTER_LAST is one past the last compunit symtab to search; NULL means to
463 search until the end of the list. */
464
465 bool
466 iterate_over_some_symtabs (const char *name,
467 const char *real_path,
468 struct compunit_symtab *first,
469 struct compunit_symtab *after_last,
470 gdb::function_view<bool (symtab *)> callback)
471 {
472 struct compunit_symtab *cust;
473 const char* base_name = lbasename (name);
474
475 for (cust = first; cust != NULL && cust != after_last; cust = cust->next)
476 {
477 for (symtab *s : compunit_filetabs (cust))
478 {
479 if (compare_filenames_for_search (s->filename, name))
480 {
481 if (callback (s))
482 return true;
483 continue;
484 }
485
486 /* Before we invoke realpath, which can get expensive when many
487 files are involved, do a quick comparison of the basenames. */
488 if (! basenames_may_differ
489 && FILENAME_CMP (base_name, lbasename (s->filename)) != 0)
490 continue;
491
492 if (compare_filenames_for_search (symtab_to_fullname (s), name))
493 {
494 if (callback (s))
495 return true;
496 continue;
497 }
498
499 /* If the user gave us an absolute path, try to find the file in
500 this symtab and use its absolute path. */
501 if (real_path != NULL)
502 {
503 const char *fullname = symtab_to_fullname (s);
504
505 gdb_assert (IS_ABSOLUTE_PATH (real_path));
506 gdb_assert (IS_ABSOLUTE_PATH (name));
507 gdb::unique_xmalloc_ptr<char> fullname_real_path
508 = gdb_realpath (fullname);
509 fullname = fullname_real_path.get ();
510 if (FILENAME_CMP (real_path, fullname) == 0)
511 {
512 if (callback (s))
513 return true;
514 continue;
515 }
516 }
517 }
518 }
519
520 return false;
521 }
522
523 /* Check for a symtab of a specific name; first in symtabs, then in
524 psymtabs. *If* there is no '/' in the name, a match after a '/'
525 in the symtab filename will also work.
526
527 Calls CALLBACK with each symtab that is found. If CALLBACK returns
528 true, the search stops. */
529
530 void
531 iterate_over_symtabs (const char *name,
532 gdb::function_view<bool (symtab *)> callback)
533 {
534 gdb::unique_xmalloc_ptr<char> real_path;
535
536 /* Here we are interested in canonicalizing an absolute path, not
537 absolutizing a relative path. */
538 if (IS_ABSOLUTE_PATH (name))
539 {
540 real_path = gdb_realpath (name);
541 gdb_assert (IS_ABSOLUTE_PATH (real_path.get ()));
542 }
543
544 for (objfile *objfile : current_program_space->objfiles ())
545 {
546 if (iterate_over_some_symtabs (name, real_path.get (),
547 objfile->compunit_symtabs, NULL,
548 callback))
549 return;
550 }
551
552 /* Same search rules as above apply here, but now we look thru the
553 psymtabs. */
554
555 for (objfile *objfile : current_program_space->objfiles ())
556 {
557 if (objfile->sf
558 && objfile->sf->qf->map_symtabs_matching_filename (objfile,
559 name,
560 real_path.get (),
561 callback))
562 return;
563 }
564 }
565
566 /* A wrapper for iterate_over_symtabs that returns the first matching
567 symtab, or NULL. */
568
569 struct symtab *
570 lookup_symtab (const char *name)
571 {
572 struct symtab *result = NULL;
573
574 iterate_over_symtabs (name, [&] (symtab *symtab)
575 {
576 result = symtab;
577 return true;
578 });
579
580 return result;
581 }
582
583 \f
584 /* Mangle a GDB method stub type. This actually reassembles the pieces of the
585 full method name, which consist of the class name (from T), the unadorned
586 method name from METHOD_ID, and the signature for the specific overload,
587 specified by SIGNATURE_ID. Note that this function is g++ specific. */
588
589 char *
590 gdb_mangle_name (struct type *type, int method_id, int signature_id)
591 {
592 int mangled_name_len;
593 char *mangled_name;
594 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
595 struct fn_field *method = &f[signature_id];
596 const char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
597 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
598 const char *newname = TYPE_NAME (type);
599
600 /* Does the form of physname indicate that it is the full mangled name
601 of a constructor (not just the args)? */
602 int is_full_physname_constructor;
603
604 int is_constructor;
605 int is_destructor = is_destructor_name (physname);
606 /* Need a new type prefix. */
607 const char *const_prefix = method->is_const ? "C" : "";
608 const char *volatile_prefix = method->is_volatile ? "V" : "";
609 char buf[20];
610 int len = (newname == NULL ? 0 : strlen (newname));
611
612 /* Nothing to do if physname already contains a fully mangled v3 abi name
613 or an operator name. */
614 if ((physname[0] == '_' && physname[1] == 'Z')
615 || is_operator_name (field_name))
616 return xstrdup (physname);
617
618 is_full_physname_constructor = is_constructor_name (physname);
619
620 is_constructor = is_full_physname_constructor
621 || (newname && strcmp (field_name, newname) == 0);
622
623 if (!is_destructor)
624 is_destructor = (startswith (physname, "__dt"));
625
626 if (is_destructor || is_full_physname_constructor)
627 {
628 mangled_name = (char *) xmalloc (strlen (physname) + 1);
629 strcpy (mangled_name, physname);
630 return mangled_name;
631 }
632
633 if (len == 0)
634 {
635 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
636 }
637 else if (physname[0] == 't' || physname[0] == 'Q')
638 {
639 /* The physname for template and qualified methods already includes
640 the class name. */
641 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
642 newname = NULL;
643 len = 0;
644 }
645 else
646 {
647 xsnprintf (buf, sizeof (buf), "__%s%s%d", const_prefix,
648 volatile_prefix, len);
649 }
650 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
651 + strlen (buf) + len + strlen (physname) + 1);
652
653 mangled_name = (char *) xmalloc (mangled_name_len);
654 if (is_constructor)
655 mangled_name[0] = '\0';
656 else
657 strcpy (mangled_name, field_name);
658
659 strcat (mangled_name, buf);
660 /* If the class doesn't have a name, i.e. newname NULL, then we just
661 mangle it using 0 for the length of the class. Thus it gets mangled
662 as something starting with `::' rather than `classname::'. */
663 if (newname != NULL)
664 strcat (mangled_name, newname);
665
666 strcat (mangled_name, physname);
667 return (mangled_name);
668 }
669
670 /* Set the demangled name of GSYMBOL to NAME. NAME must be already
671 correctly allocated. */
672
673 void
674 symbol_set_demangled_name (struct general_symbol_info *gsymbol,
675 const char *name,
676 struct obstack *obstack)
677 {
678 if (gsymbol->language () == language_ada)
679 {
680 if (name == NULL)
681 {
682 gsymbol->ada_mangled = 0;
683 gsymbol->language_specific.obstack = obstack;
684 }
685 else
686 {
687 gsymbol->ada_mangled = 1;
688 gsymbol->language_specific.demangled_name = name;
689 }
690 }
691 else
692 gsymbol->language_specific.demangled_name = name;
693 }
694
695 /* Return the demangled name of GSYMBOL. */
696
697 const char *
698 symbol_get_demangled_name (const struct general_symbol_info *gsymbol)
699 {
700 if (gsymbol->language () == language_ada)
701 {
702 if (!gsymbol->ada_mangled)
703 return NULL;
704 /* Fall through. */
705 }
706
707 return gsymbol->language_specific.demangled_name;
708 }
709
710 \f
711 /* Initialize the language dependent portion of a symbol
712 depending upon the language for the symbol. */
713
714 void
715 general_symbol_info::set_language (enum language language,
716 struct obstack *obstack)
717 {
718 m_language = language;
719 if (language == language_cplus
720 || language == language_d
721 || language == language_go
722 || language == language_objc
723 || language == language_fortran)
724 {
725 symbol_set_demangled_name (this, NULL, obstack);
726 }
727 else if (language == language_ada)
728 {
729 gdb_assert (ada_mangled == 0);
730 language_specific.obstack = obstack;
731 }
732 else
733 {
734 memset (&language_specific, 0, sizeof (language_specific));
735 }
736 }
737
738 /* Functions to initialize a symbol's mangled name. */
739
740 /* Objects of this type are stored in the demangled name hash table. */
741 struct demangled_name_entry
742 {
743 demangled_name_entry (gdb::string_view mangled_name)
744 : mangled (mangled_name) {}
745
746 gdb::string_view mangled;
747 enum language language;
748 gdb::unique_xmalloc_ptr<char> demangled;
749 };
750
751 /* Hash function for the demangled name hash. */
752
753 static hashval_t
754 hash_demangled_name_entry (const void *data)
755 {
756 const struct demangled_name_entry *e
757 = (const struct demangled_name_entry *) data;
758
759 return fast_hash (e->mangled.data (), e->mangled.length ());
760 }
761
762 /* Equality function for the demangled name hash. */
763
764 static int
765 eq_demangled_name_entry (const void *a, const void *b)
766 {
767 const struct demangled_name_entry *da
768 = (const struct demangled_name_entry *) a;
769 const struct demangled_name_entry *db
770 = (const struct demangled_name_entry *) b;
771
772 return da->mangled == db->mangled;
773 }
774
775 static void
776 free_demangled_name_entry (void *data)
777 {
778 struct demangled_name_entry *e
779 = (struct demangled_name_entry *) data;
780
781 e->~demangled_name_entry();
782 }
783
784 /* Create the hash table used for demangled names. Each hash entry is
785 a pair of strings; one for the mangled name and one for the demangled
786 name. The entry is hashed via just the mangled name. */
787
788 static void
789 create_demangled_names_hash (struct objfile_per_bfd_storage *per_bfd)
790 {
791 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
792 The hash table code will round this up to the next prime number.
793 Choosing a much larger table size wastes memory, and saves only about
794 1% in symbol reading. However, if the minsym count is already
795 initialized (e.g. because symbol name setting was deferred to
796 a background thread) we can initialize the hashtable with a count
797 based on that, because we will almost certainly have at least that
798 many entries. If we have a nonzero number but less than 256,
799 we still stay with 256 to have some space for psymbols, etc. */
800
801 /* htab will expand the table when it is 3/4th full, so we account for that
802 here. +2 to round up. */
803 int minsym_based_count = (per_bfd->minimal_symbol_count + 2) / 3 * 4;
804 int count = std::max (per_bfd->minimal_symbol_count, minsym_based_count);
805
806 per_bfd->demangled_names_hash.reset (htab_create_alloc
807 (count, hash_demangled_name_entry, eq_demangled_name_entry,
808 free_demangled_name_entry, xcalloc, xfree));
809 }
810
811 /* See symtab.h */
812
813 char *
814 symbol_find_demangled_name (struct general_symbol_info *gsymbol,
815 const char *mangled)
816 {
817 char *demangled = NULL;
818 int i;
819
820 if (gsymbol->language () == language_unknown)
821 gsymbol->m_language = language_auto;
822
823 if (gsymbol->language () != language_auto)
824 {
825 const struct language_defn *lang = language_def (gsymbol->language ());
826
827 language_sniff_from_mangled_name (lang, mangled, &demangled);
828 return demangled;
829 }
830
831 for (i = language_unknown; i < nr_languages; ++i)
832 {
833 enum language l = (enum language) i;
834 const struct language_defn *lang = language_def (l);
835
836 if (language_sniff_from_mangled_name (lang, mangled, &demangled))
837 {
838 gsymbol->m_language = l;
839 return demangled;
840 }
841 }
842
843 return NULL;
844 }
845
846 /* Set both the mangled and demangled (if any) names for GSYMBOL based
847 on LINKAGE_NAME and LEN. Ordinarily, NAME is copied onto the
848 objfile's obstack; but if COPY_NAME is 0 and if NAME is
849 NUL-terminated, then this function assumes that NAME is already
850 correctly saved (either permanently or with a lifetime tied to the
851 objfile), and it will not be copied.
852
853 The hash table corresponding to OBJFILE is used, and the memory
854 comes from the per-BFD storage_obstack. LINKAGE_NAME is copied,
855 so the pointer can be discarded after calling this function. */
856
857 void
858 general_symbol_info::compute_and_set_names (gdb::string_view linkage_name,
859 bool copy_name,
860 objfile_per_bfd_storage *per_bfd,
861 gdb::optional<hashval_t> hash)
862 {
863 struct demangled_name_entry **slot;
864
865 if (language () == language_ada)
866 {
867 /* In Ada, we do the symbol lookups using the mangled name, so
868 we can save some space by not storing the demangled name. */
869 if (!copy_name)
870 m_name = linkage_name.data ();
871 else
872 {
873 char *name = (char *) obstack_alloc (&per_bfd->storage_obstack,
874 linkage_name.length () + 1);
875
876 memcpy (name, linkage_name.data (), linkage_name.length ());
877 name[linkage_name.length ()] = '\0';
878 m_name = name;
879 }
880 symbol_set_demangled_name (this, NULL, &per_bfd->storage_obstack);
881
882 return;
883 }
884
885 if (per_bfd->demangled_names_hash == NULL)
886 create_demangled_names_hash (per_bfd);
887
888 struct demangled_name_entry entry (linkage_name);
889 if (!hash.has_value ())
890 hash = hash_demangled_name_entry (&entry);
891 slot = ((struct demangled_name_entry **)
892 htab_find_slot_with_hash (per_bfd->demangled_names_hash.get (),
893 &entry, *hash, INSERT));
894
895 /* The const_cast is safe because the only reason it is already
896 initialized is if we purposefully set it from a background
897 thread to avoid doing the work here. However, it is still
898 allocated from the heap and needs to be freed by us, just
899 like if we called symbol_find_demangled_name here. If this is
900 nullptr, we call symbol_find_demangled_name below, but we put
901 this smart pointer here to be sure that we don't leak this name. */
902 gdb::unique_xmalloc_ptr<char> demangled_name
903 (const_cast<char *> (language_specific.demangled_name));
904
905 /* If this name is not in the hash table, add it. */
906 if (*slot == NULL
907 /* A C version of the symbol may have already snuck into the table.
908 This happens to, e.g., main.init (__go_init_main). Cope. */
909 || (language () == language_go && (*slot)->demangled == nullptr))
910 {
911 /* A 0-terminated copy of the linkage name. Callers must set COPY_NAME
912 to true if the string might not be nullterminated. We have to make
913 this copy because demangling needs a nullterminated string. */
914 gdb::string_view linkage_name_copy;
915 if (copy_name)
916 {
917 char *alloc_name = (char *) alloca (linkage_name.length () + 1);
918 memcpy (alloc_name, linkage_name.data (), linkage_name.length ());
919 alloc_name[linkage_name.length ()] = '\0';
920
921 linkage_name_copy = gdb::string_view (alloc_name,
922 linkage_name.length ());
923 }
924 else
925 linkage_name_copy = linkage_name;
926
927 if (demangled_name.get () == nullptr)
928 demangled_name.reset
929 (symbol_find_demangled_name (this, linkage_name_copy.data ()));
930
931 /* Suppose we have demangled_name==NULL, copy_name==0, and
932 linkage_name_copy==linkage_name. In this case, we already have the
933 mangled name saved, and we don't have a demangled name. So,
934 you might think we could save a little space by not recording
935 this in the hash table at all.
936
937 It turns out that it is actually important to still save such
938 an entry in the hash table, because storing this name gives
939 us better bcache hit rates for partial symbols. */
940 if (!copy_name)
941 {
942 *slot
943 = ((struct demangled_name_entry *)
944 obstack_alloc (&per_bfd->storage_obstack,
945 sizeof (demangled_name_entry)));
946 new (*slot) demangled_name_entry (linkage_name);
947 }
948 else
949 {
950 /* If we must copy the mangled name, put it directly after
951 the struct so we can have a single allocation. */
952 *slot
953 = ((struct demangled_name_entry *)
954 obstack_alloc (&per_bfd->storage_obstack,
955 sizeof (demangled_name_entry)
956 + linkage_name.length () + 1));
957 char *mangled_ptr = reinterpret_cast<char *> (*slot + 1);
958 memcpy (mangled_ptr, linkage_name.data (), linkage_name.length ());
959 mangled_ptr [linkage_name.length ()] = '\0';
960 new (*slot) demangled_name_entry
961 (gdb::string_view (mangled_ptr, linkage_name.length ()));
962 }
963 (*slot)->demangled = std::move (demangled_name);
964 (*slot)->language = language ();
965 }
966 else if (language () == language_unknown || language () == language_auto)
967 m_language = (*slot)->language;
968
969 m_name = (*slot)->mangled.data ();
970 if ((*slot)->demangled != nullptr)
971 symbol_set_demangled_name (this, (*slot)->demangled.get (),
972 &per_bfd->storage_obstack);
973 else
974 symbol_set_demangled_name (this, NULL, &per_bfd->storage_obstack);
975 }
976
977 /* See symtab.h. */
978
979 const char *
980 general_symbol_info::natural_name () const
981 {
982 switch (language ())
983 {
984 case language_cplus:
985 case language_d:
986 case language_go:
987 case language_objc:
988 case language_fortran:
989 if (symbol_get_demangled_name (this) != NULL)
990 return symbol_get_demangled_name (this);
991 break;
992 case language_ada:
993 return ada_decode_symbol (this);
994 default:
995 break;
996 }
997 return linkage_name ();
998 }
999
1000 /* See symtab.h. */
1001
1002 const char *
1003 general_symbol_info::demangled_name () const
1004 {
1005 const char *dem_name = NULL;
1006
1007 switch (language ())
1008 {
1009 case language_cplus:
1010 case language_d:
1011 case language_go:
1012 case language_objc:
1013 case language_fortran:
1014 dem_name = symbol_get_demangled_name (this);
1015 break;
1016 case language_ada:
1017 dem_name = ada_decode_symbol (this);
1018 break;
1019 default:
1020 break;
1021 }
1022 return dem_name;
1023 }
1024
1025 /* See symtab.h. */
1026
1027 const char *
1028 general_symbol_info::search_name () const
1029 {
1030 if (language () == language_ada)
1031 return linkage_name ();
1032 else
1033 return natural_name ();
1034 }
1035
1036 /* See symtab.h. */
1037
1038 bool
1039 symbol_matches_search_name (const struct general_symbol_info *gsymbol,
1040 const lookup_name_info &name)
1041 {
1042 symbol_name_matcher_ftype *name_match
1043 = get_symbol_name_matcher (language_def (gsymbol->language ()), name);
1044 return name_match (gsymbol->search_name (), name, NULL);
1045 }
1046
1047 \f
1048
1049 /* Return true if the two sections are the same, or if they could
1050 plausibly be copies of each other, one in an original object
1051 file and another in a separated debug file. */
1052
1053 bool
1054 matching_obj_sections (struct obj_section *obj_first,
1055 struct obj_section *obj_second)
1056 {
1057 asection *first = obj_first? obj_first->the_bfd_section : NULL;
1058 asection *second = obj_second? obj_second->the_bfd_section : NULL;
1059
1060 /* If they're the same section, then they match. */
1061 if (first == second)
1062 return true;
1063
1064 /* If either is NULL, give up. */
1065 if (first == NULL || second == NULL)
1066 return false;
1067
1068 /* This doesn't apply to absolute symbols. */
1069 if (first->owner == NULL || second->owner == NULL)
1070 return false;
1071
1072 /* If they're in the same object file, they must be different sections. */
1073 if (first->owner == second->owner)
1074 return false;
1075
1076 /* Check whether the two sections are potentially corresponding. They must
1077 have the same size, address, and name. We can't compare section indexes,
1078 which would be more reliable, because some sections may have been
1079 stripped. */
1080 if (bfd_section_size (first) != bfd_section_size (second))
1081 return false;
1082
1083 /* In-memory addresses may start at a different offset, relativize them. */
1084 if (bfd_section_vma (first) - bfd_get_start_address (first->owner)
1085 != bfd_section_vma (second) - bfd_get_start_address (second->owner))
1086 return false;
1087
1088 if (bfd_section_name (first) == NULL
1089 || bfd_section_name (second) == NULL
1090 || strcmp (bfd_section_name (first), bfd_section_name (second)) != 0)
1091 return false;
1092
1093 /* Otherwise check that they are in corresponding objfiles. */
1094
1095 struct objfile *obj = NULL;
1096 for (objfile *objfile : current_program_space->objfiles ())
1097 if (objfile->obfd == first->owner)
1098 {
1099 obj = objfile;
1100 break;
1101 }
1102 gdb_assert (obj != NULL);
1103
1104 if (obj->separate_debug_objfile != NULL
1105 && obj->separate_debug_objfile->obfd == second->owner)
1106 return true;
1107 if (obj->separate_debug_objfile_backlink != NULL
1108 && obj->separate_debug_objfile_backlink->obfd == second->owner)
1109 return true;
1110
1111 return false;
1112 }
1113
1114 /* See symtab.h. */
1115
1116 void
1117 expand_symtab_containing_pc (CORE_ADDR pc, struct obj_section *section)
1118 {
1119 struct bound_minimal_symbol msymbol;
1120
1121 /* If we know that this is not a text address, return failure. This is
1122 necessary because we loop based on texthigh and textlow, which do
1123 not include the data ranges. */
1124 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
1125 if (msymbol.minsym && msymbol.minsym->data_p ())
1126 return;
1127
1128 for (objfile *objfile : current_program_space->objfiles ())
1129 {
1130 struct compunit_symtab *cust = NULL;
1131
1132 if (objfile->sf)
1133 cust = objfile->sf->qf->find_pc_sect_compunit_symtab (objfile, msymbol,
1134 pc, section, 0);
1135 if (cust)
1136 return;
1137 }
1138 }
1139 \f
1140 /* Hash function for the symbol cache. */
1141
1142 static unsigned int
1143 hash_symbol_entry (const struct objfile *objfile_context,
1144 const char *name, domain_enum domain)
1145 {
1146 unsigned int hash = (uintptr_t) objfile_context;
1147
1148 if (name != NULL)
1149 hash += htab_hash_string (name);
1150
1151 /* Because of symbol_matches_domain we need VAR_DOMAIN and STRUCT_DOMAIN
1152 to map to the same slot. */
1153 if (domain == STRUCT_DOMAIN)
1154 hash += VAR_DOMAIN * 7;
1155 else
1156 hash += domain * 7;
1157
1158 return hash;
1159 }
1160
1161 /* Equality function for the symbol cache. */
1162
1163 static int
1164 eq_symbol_entry (const struct symbol_cache_slot *slot,
1165 const struct objfile *objfile_context,
1166 const char *name, domain_enum domain)
1167 {
1168 const char *slot_name;
1169 domain_enum slot_domain;
1170
1171 if (slot->state == SYMBOL_SLOT_UNUSED)
1172 return 0;
1173
1174 if (slot->objfile_context != objfile_context)
1175 return 0;
1176
1177 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1178 {
1179 slot_name = slot->value.not_found.name;
1180 slot_domain = slot->value.not_found.domain;
1181 }
1182 else
1183 {
1184 slot_name = slot->value.found.symbol->search_name ();
1185 slot_domain = SYMBOL_DOMAIN (slot->value.found.symbol);
1186 }
1187
1188 /* NULL names match. */
1189 if (slot_name == NULL && name == NULL)
1190 {
1191 /* But there's no point in calling symbol_matches_domain in the
1192 SYMBOL_SLOT_FOUND case. */
1193 if (slot_domain != domain)
1194 return 0;
1195 }
1196 else if (slot_name != NULL && name != NULL)
1197 {
1198 /* It's important that we use the same comparison that was done
1199 the first time through. If the slot records a found symbol,
1200 then this means using the symbol name comparison function of
1201 the symbol's language with symbol->search_name (). See
1202 dictionary.c. It also means using symbol_matches_domain for
1203 found symbols. See block.c.
1204
1205 If the slot records a not-found symbol, then require a precise match.
1206 We could still be lax with whitespace like strcmp_iw though. */
1207
1208 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1209 {
1210 if (strcmp (slot_name, name) != 0)
1211 return 0;
1212 if (slot_domain != domain)
1213 return 0;
1214 }
1215 else
1216 {
1217 struct symbol *sym = slot->value.found.symbol;
1218 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
1219
1220 if (!SYMBOL_MATCHES_SEARCH_NAME (sym, lookup_name))
1221 return 0;
1222
1223 if (!symbol_matches_domain (sym->language (), slot_domain, domain))
1224 return 0;
1225 }
1226 }
1227 else
1228 {
1229 /* Only one name is NULL. */
1230 return 0;
1231 }
1232
1233 return 1;
1234 }
1235
1236 /* Given a cache of size SIZE, return the size of the struct (with variable
1237 length array) in bytes. */
1238
1239 static size_t
1240 symbol_cache_byte_size (unsigned int size)
1241 {
1242 return (sizeof (struct block_symbol_cache)
1243 + ((size - 1) * sizeof (struct symbol_cache_slot)));
1244 }
1245
1246 /* Resize CACHE. */
1247
1248 static void
1249 resize_symbol_cache (struct symbol_cache *cache, unsigned int new_size)
1250 {
1251 /* If there's no change in size, don't do anything.
1252 All caches have the same size, so we can just compare with the size
1253 of the global symbols cache. */
1254 if ((cache->global_symbols != NULL
1255 && cache->global_symbols->size == new_size)
1256 || (cache->global_symbols == NULL
1257 && new_size == 0))
1258 return;
1259
1260 destroy_block_symbol_cache (cache->global_symbols);
1261 destroy_block_symbol_cache (cache->static_symbols);
1262
1263 if (new_size == 0)
1264 {
1265 cache->global_symbols = NULL;
1266 cache->static_symbols = NULL;
1267 }
1268 else
1269 {
1270 size_t total_size = symbol_cache_byte_size (new_size);
1271
1272 cache->global_symbols
1273 = (struct block_symbol_cache *) xcalloc (1, total_size);
1274 cache->static_symbols
1275 = (struct block_symbol_cache *) xcalloc (1, total_size);
1276 cache->global_symbols->size = new_size;
1277 cache->static_symbols->size = new_size;
1278 }
1279 }
1280
1281 /* Return the symbol cache of PSPACE.
1282 Create one if it doesn't exist yet. */
1283
1284 static struct symbol_cache *
1285 get_symbol_cache (struct program_space *pspace)
1286 {
1287 struct symbol_cache *cache = symbol_cache_key.get (pspace);
1288
1289 if (cache == NULL)
1290 {
1291 cache = symbol_cache_key.emplace (pspace);
1292 resize_symbol_cache (cache, symbol_cache_size);
1293 }
1294
1295 return cache;
1296 }
1297
1298 /* Set the size of the symbol cache in all program spaces. */
1299
1300 static void
1301 set_symbol_cache_size (unsigned int new_size)
1302 {
1303 struct program_space *pspace;
1304
1305 ALL_PSPACES (pspace)
1306 {
1307 struct symbol_cache *cache = symbol_cache_key.get (pspace);
1308
1309 /* The pspace could have been created but not have a cache yet. */
1310 if (cache != NULL)
1311 resize_symbol_cache (cache, new_size);
1312 }
1313 }
1314
1315 /* Called when symbol-cache-size is set. */
1316
1317 static void
1318 set_symbol_cache_size_handler (const char *args, int from_tty,
1319 struct cmd_list_element *c)
1320 {
1321 if (new_symbol_cache_size > MAX_SYMBOL_CACHE_SIZE)
1322 {
1323 /* Restore the previous value.
1324 This is the value the "show" command prints. */
1325 new_symbol_cache_size = symbol_cache_size;
1326
1327 error (_("Symbol cache size is too large, max is %u."),
1328 MAX_SYMBOL_CACHE_SIZE);
1329 }
1330 symbol_cache_size = new_symbol_cache_size;
1331
1332 set_symbol_cache_size (symbol_cache_size);
1333 }
1334
1335 /* Lookup symbol NAME,DOMAIN in BLOCK in the symbol cache of PSPACE.
1336 OBJFILE_CONTEXT is the current objfile, which may be NULL.
1337 The result is the symbol if found, SYMBOL_LOOKUP_FAILED if a previous lookup
1338 failed (and thus this one will too), or NULL if the symbol is not present
1339 in the cache.
1340 *BSC_PTR and *SLOT_PTR are set to the cache and slot of the symbol, which
1341 can be used to save the result of a full lookup attempt. */
1342
1343 static struct block_symbol
1344 symbol_cache_lookup (struct symbol_cache *cache,
1345 struct objfile *objfile_context, enum block_enum block,
1346 const char *name, domain_enum domain,
1347 struct block_symbol_cache **bsc_ptr,
1348 struct symbol_cache_slot **slot_ptr)
1349 {
1350 struct block_symbol_cache *bsc;
1351 unsigned int hash;
1352 struct symbol_cache_slot *slot;
1353
1354 if (block == GLOBAL_BLOCK)
1355 bsc = cache->global_symbols;
1356 else
1357 bsc = cache->static_symbols;
1358 if (bsc == NULL)
1359 {
1360 *bsc_ptr = NULL;
1361 *slot_ptr = NULL;
1362 return {};
1363 }
1364
1365 hash = hash_symbol_entry (objfile_context, name, domain);
1366 slot = bsc->symbols + hash % bsc->size;
1367
1368 *bsc_ptr = bsc;
1369 *slot_ptr = slot;
1370
1371 if (eq_symbol_entry (slot, objfile_context, name, domain))
1372 {
1373 if (symbol_lookup_debug)
1374 fprintf_unfiltered (gdb_stdlog,
1375 "%s block symbol cache hit%s for %s, %s\n",
1376 block == GLOBAL_BLOCK ? "Global" : "Static",
1377 slot->state == SYMBOL_SLOT_NOT_FOUND
1378 ? " (not found)" : "",
1379 name, domain_name (domain));
1380 ++bsc->hits;
1381 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1382 return SYMBOL_LOOKUP_FAILED;
1383 return slot->value.found;
1384 }
1385
1386 /* Symbol is not present in the cache. */
1387
1388 if (symbol_lookup_debug)
1389 {
1390 fprintf_unfiltered (gdb_stdlog,
1391 "%s block symbol cache miss for %s, %s\n",
1392 block == GLOBAL_BLOCK ? "Global" : "Static",
1393 name, domain_name (domain));
1394 }
1395 ++bsc->misses;
1396 return {};
1397 }
1398
1399 /* Mark SYMBOL as found in SLOT.
1400 OBJFILE_CONTEXT is the current objfile when the lookup was done, or NULL
1401 if it's not needed to distinguish lookups (STATIC_BLOCK). It is *not*
1402 necessarily the objfile the symbol was found in. */
1403
1404 static void
1405 symbol_cache_mark_found (struct block_symbol_cache *bsc,
1406 struct symbol_cache_slot *slot,
1407 struct objfile *objfile_context,
1408 struct symbol *symbol,
1409 const struct block *block)
1410 {
1411 if (bsc == NULL)
1412 return;
1413 if (slot->state != SYMBOL_SLOT_UNUSED)
1414 {
1415 ++bsc->collisions;
1416 symbol_cache_clear_slot (slot);
1417 }
1418 slot->state = SYMBOL_SLOT_FOUND;
1419 slot->objfile_context = objfile_context;
1420 slot->value.found.symbol = symbol;
1421 slot->value.found.block = block;
1422 }
1423
1424 /* Mark symbol NAME, DOMAIN as not found in SLOT.
1425 OBJFILE_CONTEXT is the current objfile when the lookup was done, or NULL
1426 if it's not needed to distinguish lookups (STATIC_BLOCK). */
1427
1428 static void
1429 symbol_cache_mark_not_found (struct block_symbol_cache *bsc,
1430 struct symbol_cache_slot *slot,
1431 struct objfile *objfile_context,
1432 const char *name, domain_enum domain)
1433 {
1434 if (bsc == NULL)
1435 return;
1436 if (slot->state != SYMBOL_SLOT_UNUSED)
1437 {
1438 ++bsc->collisions;
1439 symbol_cache_clear_slot (slot);
1440 }
1441 slot->state = SYMBOL_SLOT_NOT_FOUND;
1442 slot->objfile_context = objfile_context;
1443 slot->value.not_found.name = xstrdup (name);
1444 slot->value.not_found.domain = domain;
1445 }
1446
1447 /* Flush the symbol cache of PSPACE. */
1448
1449 static void
1450 symbol_cache_flush (struct program_space *pspace)
1451 {
1452 struct symbol_cache *cache = symbol_cache_key.get (pspace);
1453 int pass;
1454
1455 if (cache == NULL)
1456 return;
1457 if (cache->global_symbols == NULL)
1458 {
1459 gdb_assert (symbol_cache_size == 0);
1460 gdb_assert (cache->static_symbols == NULL);
1461 return;
1462 }
1463
1464 /* If the cache is untouched since the last flush, early exit.
1465 This is important for performance during the startup of a program linked
1466 with 100s (or 1000s) of shared libraries. */
1467 if (cache->global_symbols->misses == 0
1468 && cache->static_symbols->misses == 0)
1469 return;
1470
1471 gdb_assert (cache->global_symbols->size == symbol_cache_size);
1472 gdb_assert (cache->static_symbols->size == symbol_cache_size);
1473
1474 for (pass = 0; pass < 2; ++pass)
1475 {
1476 struct block_symbol_cache *bsc
1477 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1478 unsigned int i;
1479
1480 for (i = 0; i < bsc->size; ++i)
1481 symbol_cache_clear_slot (&bsc->symbols[i]);
1482 }
1483
1484 cache->global_symbols->hits = 0;
1485 cache->global_symbols->misses = 0;
1486 cache->global_symbols->collisions = 0;
1487 cache->static_symbols->hits = 0;
1488 cache->static_symbols->misses = 0;
1489 cache->static_symbols->collisions = 0;
1490 }
1491
1492 /* Dump CACHE. */
1493
1494 static void
1495 symbol_cache_dump (const struct symbol_cache *cache)
1496 {
1497 int pass;
1498
1499 if (cache->global_symbols == NULL)
1500 {
1501 printf_filtered (" <disabled>\n");
1502 return;
1503 }
1504
1505 for (pass = 0; pass < 2; ++pass)
1506 {
1507 const struct block_symbol_cache *bsc
1508 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1509 unsigned int i;
1510
1511 if (pass == 0)
1512 printf_filtered ("Global symbols:\n");
1513 else
1514 printf_filtered ("Static symbols:\n");
1515
1516 for (i = 0; i < bsc->size; ++i)
1517 {
1518 const struct symbol_cache_slot *slot = &bsc->symbols[i];
1519
1520 QUIT;
1521
1522 switch (slot->state)
1523 {
1524 case SYMBOL_SLOT_UNUSED:
1525 break;
1526 case SYMBOL_SLOT_NOT_FOUND:
1527 printf_filtered (" [%4u] = %s, %s %s (not found)\n", i,
1528 host_address_to_string (slot->objfile_context),
1529 slot->value.not_found.name,
1530 domain_name (slot->value.not_found.domain));
1531 break;
1532 case SYMBOL_SLOT_FOUND:
1533 {
1534 struct symbol *found = slot->value.found.symbol;
1535 const struct objfile *context = slot->objfile_context;
1536
1537 printf_filtered (" [%4u] = %s, %s %s\n", i,
1538 host_address_to_string (context),
1539 found->print_name (),
1540 domain_name (SYMBOL_DOMAIN (found)));
1541 break;
1542 }
1543 }
1544 }
1545 }
1546 }
1547
1548 /* The "mt print symbol-cache" command. */
1549
1550 static void
1551 maintenance_print_symbol_cache (const char *args, int from_tty)
1552 {
1553 struct program_space *pspace;
1554
1555 ALL_PSPACES (pspace)
1556 {
1557 struct symbol_cache *cache;
1558
1559 printf_filtered (_("Symbol cache for pspace %d\n%s:\n"),
1560 pspace->num,
1561 pspace->symfile_object_file != NULL
1562 ? objfile_name (pspace->symfile_object_file)
1563 : "(no object file)");
1564
1565 /* If the cache hasn't been created yet, avoid creating one. */
1566 cache = symbol_cache_key.get (pspace);
1567 if (cache == NULL)
1568 printf_filtered (" <empty>\n");
1569 else
1570 symbol_cache_dump (cache);
1571 }
1572 }
1573
1574 /* The "mt flush-symbol-cache" command. */
1575
1576 static void
1577 maintenance_flush_symbol_cache (const char *args, int from_tty)
1578 {
1579 struct program_space *pspace;
1580
1581 ALL_PSPACES (pspace)
1582 {
1583 symbol_cache_flush (pspace);
1584 }
1585 }
1586
1587 /* Print usage statistics of CACHE. */
1588
1589 static void
1590 symbol_cache_stats (struct symbol_cache *cache)
1591 {
1592 int pass;
1593
1594 if (cache->global_symbols == NULL)
1595 {
1596 printf_filtered (" <disabled>\n");
1597 return;
1598 }
1599
1600 for (pass = 0; pass < 2; ++pass)
1601 {
1602 const struct block_symbol_cache *bsc
1603 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1604
1605 QUIT;
1606
1607 if (pass == 0)
1608 printf_filtered ("Global block cache stats:\n");
1609 else
1610 printf_filtered ("Static block cache stats:\n");
1611
1612 printf_filtered (" size: %u\n", bsc->size);
1613 printf_filtered (" hits: %u\n", bsc->hits);
1614 printf_filtered (" misses: %u\n", bsc->misses);
1615 printf_filtered (" collisions: %u\n", bsc->collisions);
1616 }
1617 }
1618
1619 /* The "mt print symbol-cache-statistics" command. */
1620
1621 static void
1622 maintenance_print_symbol_cache_statistics (const char *args, int from_tty)
1623 {
1624 struct program_space *pspace;
1625
1626 ALL_PSPACES (pspace)
1627 {
1628 struct symbol_cache *cache;
1629
1630 printf_filtered (_("Symbol cache statistics for pspace %d\n%s:\n"),
1631 pspace->num,
1632 pspace->symfile_object_file != NULL
1633 ? objfile_name (pspace->symfile_object_file)
1634 : "(no object file)");
1635
1636 /* If the cache hasn't been created yet, avoid creating one. */
1637 cache = symbol_cache_key.get (pspace);
1638 if (cache == NULL)
1639 printf_filtered (" empty, no stats available\n");
1640 else
1641 symbol_cache_stats (cache);
1642 }
1643 }
1644
1645 /* This module's 'new_objfile' observer. */
1646
1647 static void
1648 symtab_new_objfile_observer (struct objfile *objfile)
1649 {
1650 /* Ideally we'd use OBJFILE->pspace, but OBJFILE may be NULL. */
1651 symbol_cache_flush (current_program_space);
1652 }
1653
1654 /* This module's 'free_objfile' observer. */
1655
1656 static void
1657 symtab_free_objfile_observer (struct objfile *objfile)
1658 {
1659 symbol_cache_flush (objfile->pspace);
1660 }
1661 \f
1662 /* Debug symbols usually don't have section information. We need to dig that
1663 out of the minimal symbols and stash that in the debug symbol. */
1664
1665 void
1666 fixup_section (struct general_symbol_info *ginfo,
1667 CORE_ADDR addr, struct objfile *objfile)
1668 {
1669 struct minimal_symbol *msym;
1670
1671 /* First, check whether a minimal symbol with the same name exists
1672 and points to the same address. The address check is required
1673 e.g. on PowerPC64, where the minimal symbol for a function will
1674 point to the function descriptor, while the debug symbol will
1675 point to the actual function code. */
1676 msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->linkage_name (),
1677 objfile);
1678 if (msym)
1679 ginfo->section = MSYMBOL_SECTION (msym);
1680 else
1681 {
1682 /* Static, function-local variables do appear in the linker
1683 (minimal) symbols, but are frequently given names that won't
1684 be found via lookup_minimal_symbol(). E.g., it has been
1685 observed in frv-uclinux (ELF) executables that a static,
1686 function-local variable named "foo" might appear in the
1687 linker symbols as "foo.6" or "foo.3". Thus, there is no
1688 point in attempting to extend the lookup-by-name mechanism to
1689 handle this case due to the fact that there can be multiple
1690 names.
1691
1692 So, instead, search the section table when lookup by name has
1693 failed. The ``addr'' and ``endaddr'' fields may have already
1694 been relocated. If so, the relocation offset needs to be
1695 subtracted from these values when performing the comparison.
1696 We unconditionally subtract it, because, when no relocation
1697 has been performed, the value will simply be zero.
1698
1699 The address of the symbol whose section we're fixing up HAS
1700 NOT BEEN adjusted (relocated) yet. It can't have been since
1701 the section isn't yet known and knowing the section is
1702 necessary in order to add the correct relocation value. In
1703 other words, we wouldn't even be in this function (attempting
1704 to compute the section) if it were already known.
1705
1706 Note that it is possible to search the minimal symbols
1707 (subtracting the relocation value if necessary) to find the
1708 matching minimal symbol, but this is overkill and much less
1709 efficient. It is not necessary to find the matching minimal
1710 symbol, only its section.
1711
1712 Note that this technique (of doing a section table search)
1713 can fail when unrelocated section addresses overlap. For
1714 this reason, we still attempt a lookup by name prior to doing
1715 a search of the section table. */
1716
1717 struct obj_section *s;
1718 int fallback = -1;
1719
1720 ALL_OBJFILE_OSECTIONS (objfile, s)
1721 {
1722 int idx = s - objfile->sections;
1723 CORE_ADDR offset = objfile->section_offsets[idx];
1724
1725 if (fallback == -1)
1726 fallback = idx;
1727
1728 if (obj_section_addr (s) - offset <= addr
1729 && addr < obj_section_endaddr (s) - offset)
1730 {
1731 ginfo->section = idx;
1732 return;
1733 }
1734 }
1735
1736 /* If we didn't find the section, assume it is in the first
1737 section. If there is no allocated section, then it hardly
1738 matters what we pick, so just pick zero. */
1739 if (fallback == -1)
1740 ginfo->section = 0;
1741 else
1742 ginfo->section = fallback;
1743 }
1744 }
1745
1746 struct symbol *
1747 fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
1748 {
1749 CORE_ADDR addr;
1750
1751 if (!sym)
1752 return NULL;
1753
1754 if (!SYMBOL_OBJFILE_OWNED (sym))
1755 return sym;
1756
1757 /* We either have an OBJFILE, or we can get at it from the sym's
1758 symtab. Anything else is a bug. */
1759 gdb_assert (objfile || symbol_symtab (sym));
1760
1761 if (objfile == NULL)
1762 objfile = symbol_objfile (sym);
1763
1764 if (SYMBOL_OBJ_SECTION (objfile, sym))
1765 return sym;
1766
1767 /* We should have an objfile by now. */
1768 gdb_assert (objfile);
1769
1770 switch (SYMBOL_CLASS (sym))
1771 {
1772 case LOC_STATIC:
1773 case LOC_LABEL:
1774 addr = SYMBOL_VALUE_ADDRESS (sym);
1775 break;
1776 case LOC_BLOCK:
1777 addr = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym));
1778 break;
1779
1780 default:
1781 /* Nothing else will be listed in the minsyms -- no use looking
1782 it up. */
1783 return sym;
1784 }
1785
1786 fixup_section (sym, addr, objfile);
1787
1788 return sym;
1789 }
1790
1791 /* See symtab.h. */
1792
1793 demangle_for_lookup_info::demangle_for_lookup_info
1794 (const lookup_name_info &lookup_name, language lang)
1795 {
1796 demangle_result_storage storage;
1797
1798 if (lookup_name.ignore_parameters () && lang == language_cplus)
1799 {
1800 gdb::unique_xmalloc_ptr<char> without_params
1801 = cp_remove_params_if_any (lookup_name.name ().c_str (),
1802 lookup_name.completion_mode ());
1803
1804 if (without_params != NULL)
1805 {
1806 if (lookup_name.match_type () != symbol_name_match_type::SEARCH_NAME)
1807 m_demangled_name = demangle_for_lookup (without_params.get (),
1808 lang, storage);
1809 return;
1810 }
1811 }
1812
1813 if (lookup_name.match_type () == symbol_name_match_type::SEARCH_NAME)
1814 m_demangled_name = lookup_name.name ();
1815 else
1816 m_demangled_name = demangle_for_lookup (lookup_name.name ().c_str (),
1817 lang, storage);
1818 }
1819
1820 /* See symtab.h. */
1821
1822 const lookup_name_info &
1823 lookup_name_info::match_any ()
1824 {
1825 /* Lookup any symbol that "" would complete. I.e., this matches all
1826 symbol names. */
1827 static const lookup_name_info lookup_name ({}, symbol_name_match_type::FULL,
1828 true);
1829
1830 return lookup_name;
1831 }
1832
1833 /* Compute the demangled form of NAME as used by the various symbol
1834 lookup functions. The result can either be the input NAME
1835 directly, or a pointer to a buffer owned by the STORAGE object.
1836
1837 For Ada, this function just returns NAME, unmodified.
1838 Normally, Ada symbol lookups are performed using the encoded name
1839 rather than the demangled name, and so it might seem to make sense
1840 for this function to return an encoded version of NAME.
1841 Unfortunately, we cannot do this, because this function is used in
1842 circumstances where it is not appropriate to try to encode NAME.
1843 For instance, when displaying the frame info, we demangle the name
1844 of each parameter, and then perform a symbol lookup inside our
1845 function using that demangled name. In Ada, certain functions
1846 have internally-generated parameters whose name contain uppercase
1847 characters. Encoding those name would result in those uppercase
1848 characters to become lowercase, and thus cause the symbol lookup
1849 to fail. */
1850
1851 const char *
1852 demangle_for_lookup (const char *name, enum language lang,
1853 demangle_result_storage &storage)
1854 {
1855 /* If we are using C++, D, or Go, demangle the name before doing a
1856 lookup, so we can always binary search. */
1857 if (lang == language_cplus)
1858 {
1859 char *demangled_name = gdb_demangle (name, DMGL_ANSI | DMGL_PARAMS);
1860 if (demangled_name != NULL)
1861 return storage.set_malloc_ptr (demangled_name);
1862
1863 /* If we were given a non-mangled name, canonicalize it
1864 according to the language (so far only for C++). */
1865 std::string canon = cp_canonicalize_string (name);
1866 if (!canon.empty ())
1867 return storage.swap_string (canon);
1868 }
1869 else if (lang == language_d)
1870 {
1871 char *demangled_name = d_demangle (name, 0);
1872 if (demangled_name != NULL)
1873 return storage.set_malloc_ptr (demangled_name);
1874 }
1875 else if (lang == language_go)
1876 {
1877 char *demangled_name = go_demangle (name, 0);
1878 if (demangled_name != NULL)
1879 return storage.set_malloc_ptr (demangled_name);
1880 }
1881
1882 return name;
1883 }
1884
1885 /* See symtab.h. */
1886
1887 unsigned int
1888 search_name_hash (enum language language, const char *search_name)
1889 {
1890 return language_def (language)->la_search_name_hash (search_name);
1891 }
1892
1893 /* See symtab.h.
1894
1895 This function (or rather its subordinates) have a bunch of loops and
1896 it would seem to be attractive to put in some QUIT's (though I'm not really
1897 sure whether it can run long enough to be really important). But there
1898 are a few calls for which it would appear to be bad news to quit
1899 out of here: e.g., find_proc_desc in alpha-mdebug-tdep.c. (Note
1900 that there is C++ code below which can error(), but that probably
1901 doesn't affect these calls since they are looking for a known
1902 variable and thus can probably assume it will never hit the C++
1903 code). */
1904
1905 struct block_symbol
1906 lookup_symbol_in_language (const char *name, const struct block *block,
1907 const domain_enum domain, enum language lang,
1908 struct field_of_this_result *is_a_field_of_this)
1909 {
1910 demangle_result_storage storage;
1911 const char *modified_name = demangle_for_lookup (name, lang, storage);
1912
1913 return lookup_symbol_aux (modified_name,
1914 symbol_name_match_type::FULL,
1915 block, domain, lang,
1916 is_a_field_of_this);
1917 }
1918
1919 /* See symtab.h. */
1920
1921 struct block_symbol
1922 lookup_symbol (const char *name, const struct block *block,
1923 domain_enum domain,
1924 struct field_of_this_result *is_a_field_of_this)
1925 {
1926 return lookup_symbol_in_language (name, block, domain,
1927 current_language->la_language,
1928 is_a_field_of_this);
1929 }
1930
1931 /* See symtab.h. */
1932
1933 struct block_symbol
1934 lookup_symbol_search_name (const char *search_name, const struct block *block,
1935 domain_enum domain)
1936 {
1937 return lookup_symbol_aux (search_name, symbol_name_match_type::SEARCH_NAME,
1938 block, domain, language_asm, NULL);
1939 }
1940
1941 /* See symtab.h. */
1942
1943 struct block_symbol
1944 lookup_language_this (const struct language_defn *lang,
1945 const struct block *block)
1946 {
1947 if (lang->la_name_of_this == NULL || block == NULL)
1948 return {};
1949
1950 if (symbol_lookup_debug > 1)
1951 {
1952 struct objfile *objfile = lookup_objfile_from_block (block);
1953
1954 fprintf_unfiltered (gdb_stdlog,
1955 "lookup_language_this (%s, %s (objfile %s))",
1956 lang->la_name, host_address_to_string (block),
1957 objfile_debug_name (objfile));
1958 }
1959
1960 while (block)
1961 {
1962 struct symbol *sym;
1963
1964 sym = block_lookup_symbol (block, lang->la_name_of_this,
1965 symbol_name_match_type::SEARCH_NAME,
1966 VAR_DOMAIN);
1967 if (sym != NULL)
1968 {
1969 if (symbol_lookup_debug > 1)
1970 {
1971 fprintf_unfiltered (gdb_stdlog, " = %s (%s, block %s)\n",
1972 sym->print_name (),
1973 host_address_to_string (sym),
1974 host_address_to_string (block));
1975 }
1976 return (struct block_symbol) {sym, block};
1977 }
1978 if (BLOCK_FUNCTION (block))
1979 break;
1980 block = BLOCK_SUPERBLOCK (block);
1981 }
1982
1983 if (symbol_lookup_debug > 1)
1984 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
1985 return {};
1986 }
1987
1988 /* Given TYPE, a structure/union,
1989 return 1 if the component named NAME from the ultimate target
1990 structure/union is defined, otherwise, return 0. */
1991
1992 static int
1993 check_field (struct type *type, const char *name,
1994 struct field_of_this_result *is_a_field_of_this)
1995 {
1996 int i;
1997
1998 /* The type may be a stub. */
1999 type = check_typedef (type);
2000
2001 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
2002 {
2003 const char *t_field_name = TYPE_FIELD_NAME (type, i);
2004
2005 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2006 {
2007 is_a_field_of_this->type = type;
2008 is_a_field_of_this->field = &TYPE_FIELD (type, i);
2009 return 1;
2010 }
2011 }
2012
2013 /* C++: If it was not found as a data field, then try to return it
2014 as a pointer to a method. */
2015
2016 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
2017 {
2018 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
2019 {
2020 is_a_field_of_this->type = type;
2021 is_a_field_of_this->fn_field = &TYPE_FN_FIELDLIST (type, i);
2022 return 1;
2023 }
2024 }
2025
2026 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2027 if (check_field (TYPE_BASECLASS (type, i), name, is_a_field_of_this))
2028 return 1;
2029
2030 return 0;
2031 }
2032
2033 /* Behave like lookup_symbol except that NAME is the natural name
2034 (e.g., demangled name) of the symbol that we're looking for. */
2035
2036 static struct block_symbol
2037 lookup_symbol_aux (const char *name, symbol_name_match_type match_type,
2038 const struct block *block,
2039 const domain_enum domain, enum language language,
2040 struct field_of_this_result *is_a_field_of_this)
2041 {
2042 struct block_symbol result;
2043 const struct language_defn *langdef;
2044
2045 if (symbol_lookup_debug)
2046 {
2047 struct objfile *objfile = lookup_objfile_from_block (block);
2048
2049 fprintf_unfiltered (gdb_stdlog,
2050 "lookup_symbol_aux (%s, %s (objfile %s), %s, %s)\n",
2051 name, host_address_to_string (block),
2052 objfile != NULL
2053 ? objfile_debug_name (objfile) : "NULL",
2054 domain_name (domain), language_str (language));
2055 }
2056
2057 /* Make sure we do something sensible with is_a_field_of_this, since
2058 the callers that set this parameter to some non-null value will
2059 certainly use it later. If we don't set it, the contents of
2060 is_a_field_of_this are undefined. */
2061 if (is_a_field_of_this != NULL)
2062 memset (is_a_field_of_this, 0, sizeof (*is_a_field_of_this));
2063
2064 /* Search specified block and its superiors. Don't search
2065 STATIC_BLOCK or GLOBAL_BLOCK. */
2066
2067 result = lookup_local_symbol (name, match_type, block, domain, language);
2068 if (result.symbol != NULL)
2069 {
2070 if (symbol_lookup_debug)
2071 {
2072 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2073 host_address_to_string (result.symbol));
2074 }
2075 return result;
2076 }
2077
2078 /* If requested to do so by the caller and if appropriate for LANGUAGE,
2079 check to see if NAME is a field of `this'. */
2080
2081 langdef = language_def (language);
2082
2083 /* Don't do this check if we are searching for a struct. It will
2084 not be found by check_field, but will be found by other
2085 means. */
2086 if (is_a_field_of_this != NULL && domain != STRUCT_DOMAIN)
2087 {
2088 result = lookup_language_this (langdef, block);
2089
2090 if (result.symbol)
2091 {
2092 struct type *t = result.symbol->type;
2093
2094 /* I'm not really sure that type of this can ever
2095 be typedefed; just be safe. */
2096 t = check_typedef (t);
2097 if (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_IS_REFERENCE (t))
2098 t = TYPE_TARGET_TYPE (t);
2099
2100 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2101 && TYPE_CODE (t) != TYPE_CODE_UNION)
2102 error (_("Internal error: `%s' is not an aggregate"),
2103 langdef->la_name_of_this);
2104
2105 if (check_field (t, name, is_a_field_of_this))
2106 {
2107 if (symbol_lookup_debug)
2108 {
2109 fprintf_unfiltered (gdb_stdlog,
2110 "lookup_symbol_aux (...) = NULL\n");
2111 }
2112 return {};
2113 }
2114 }
2115 }
2116
2117 /* Now do whatever is appropriate for LANGUAGE to look
2118 up static and global variables. */
2119
2120 result = langdef->la_lookup_symbol_nonlocal (langdef, name, block, domain);
2121 if (result.symbol != NULL)
2122 {
2123 if (symbol_lookup_debug)
2124 {
2125 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2126 host_address_to_string (result.symbol));
2127 }
2128 return result;
2129 }
2130
2131 /* Now search all static file-level symbols. Not strictly correct,
2132 but more useful than an error. */
2133
2134 result = lookup_static_symbol (name, domain);
2135 if (symbol_lookup_debug)
2136 {
2137 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2138 result.symbol != NULL
2139 ? host_address_to_string (result.symbol)
2140 : "NULL");
2141 }
2142 return result;
2143 }
2144
2145 /* Check to see if the symbol is defined in BLOCK or its superiors.
2146 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
2147
2148 static struct block_symbol
2149 lookup_local_symbol (const char *name,
2150 symbol_name_match_type match_type,
2151 const struct block *block,
2152 const domain_enum domain,
2153 enum language language)
2154 {
2155 struct symbol *sym;
2156 const struct block *static_block = block_static_block (block);
2157 const char *scope = block_scope (block);
2158
2159 /* Check if either no block is specified or it's a global block. */
2160
2161 if (static_block == NULL)
2162 return {};
2163
2164 while (block != static_block)
2165 {
2166 sym = lookup_symbol_in_block (name, match_type, block, domain);
2167 if (sym != NULL)
2168 return (struct block_symbol) {sym, block};
2169
2170 if (language == language_cplus || language == language_fortran)
2171 {
2172 struct block_symbol blocksym
2173 = cp_lookup_symbol_imports_or_template (scope, name, block,
2174 domain);
2175
2176 if (blocksym.symbol != NULL)
2177 return blocksym;
2178 }
2179
2180 if (BLOCK_FUNCTION (block) != NULL && block_inlined_p (block))
2181 break;
2182 block = BLOCK_SUPERBLOCK (block);
2183 }
2184
2185 /* We've reached the end of the function without finding a result. */
2186
2187 return {};
2188 }
2189
2190 /* See symtab.h. */
2191
2192 struct objfile *
2193 lookup_objfile_from_block (const struct block *block)
2194 {
2195 if (block == NULL)
2196 return NULL;
2197
2198 block = block_global_block (block);
2199 /* Look through all blockvectors. */
2200 for (objfile *obj : current_program_space->objfiles ())
2201 {
2202 for (compunit_symtab *cust : obj->compunits ())
2203 if (block == BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust),
2204 GLOBAL_BLOCK))
2205 {
2206 if (obj->separate_debug_objfile_backlink)
2207 obj = obj->separate_debug_objfile_backlink;
2208
2209 return obj;
2210 }
2211 }
2212
2213 return NULL;
2214 }
2215
2216 /* See symtab.h. */
2217
2218 struct symbol *
2219 lookup_symbol_in_block (const char *name, symbol_name_match_type match_type,
2220 const struct block *block,
2221 const domain_enum domain)
2222 {
2223 struct symbol *sym;
2224
2225 if (symbol_lookup_debug > 1)
2226 {
2227 struct objfile *objfile = lookup_objfile_from_block (block);
2228
2229 fprintf_unfiltered (gdb_stdlog,
2230 "lookup_symbol_in_block (%s, %s (objfile %s), %s)",
2231 name, host_address_to_string (block),
2232 objfile_debug_name (objfile),
2233 domain_name (domain));
2234 }
2235
2236 sym = block_lookup_symbol (block, name, match_type, domain);
2237 if (sym)
2238 {
2239 if (symbol_lookup_debug > 1)
2240 {
2241 fprintf_unfiltered (gdb_stdlog, " = %s\n",
2242 host_address_to_string (sym));
2243 }
2244 return fixup_symbol_section (sym, NULL);
2245 }
2246
2247 if (symbol_lookup_debug > 1)
2248 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
2249 return NULL;
2250 }
2251
2252 /* See symtab.h. */
2253
2254 struct block_symbol
2255 lookup_global_symbol_from_objfile (struct objfile *main_objfile,
2256 enum block_enum block_index,
2257 const char *name,
2258 const domain_enum domain)
2259 {
2260 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2261
2262 for (objfile *objfile : main_objfile->separate_debug_objfiles ())
2263 {
2264 struct block_symbol result
2265 = lookup_symbol_in_objfile (objfile, block_index, name, domain);
2266
2267 if (result.symbol != nullptr)
2268 return result;
2269 }
2270
2271 return {};
2272 }
2273
2274 /* Check to see if the symbol is defined in one of the OBJFILE's
2275 symtabs. BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
2276 depending on whether or not we want to search global symbols or
2277 static symbols. */
2278
2279 static struct block_symbol
2280 lookup_symbol_in_objfile_symtabs (struct objfile *objfile,
2281 enum block_enum block_index, const char *name,
2282 const domain_enum domain)
2283 {
2284 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2285
2286 if (symbol_lookup_debug > 1)
2287 {
2288 fprintf_unfiltered (gdb_stdlog,
2289 "lookup_symbol_in_objfile_symtabs (%s, %s, %s, %s)",
2290 objfile_debug_name (objfile),
2291 block_index == GLOBAL_BLOCK
2292 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2293 name, domain_name (domain));
2294 }
2295
2296 for (compunit_symtab *cust : objfile->compunits ())
2297 {
2298 const struct blockvector *bv;
2299 const struct block *block;
2300 struct block_symbol result;
2301
2302 bv = COMPUNIT_BLOCKVECTOR (cust);
2303 block = BLOCKVECTOR_BLOCK (bv, block_index);
2304 result.symbol = block_lookup_symbol_primary (block, name, domain);
2305 result.block = block;
2306 if (result.symbol != NULL)
2307 {
2308 if (symbol_lookup_debug > 1)
2309 {
2310 fprintf_unfiltered (gdb_stdlog, " = %s (block %s)\n",
2311 host_address_to_string (result.symbol),
2312 host_address_to_string (block));
2313 }
2314 result.symbol = fixup_symbol_section (result.symbol, objfile);
2315 return result;
2316
2317 }
2318 }
2319
2320 if (symbol_lookup_debug > 1)
2321 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
2322 return {};
2323 }
2324
2325 /* Wrapper around lookup_symbol_in_objfile_symtabs for search_symbols.
2326 Look up LINKAGE_NAME in DOMAIN in the global and static blocks of OBJFILE
2327 and all associated separate debug objfiles.
2328
2329 Normally we only look in OBJFILE, and not any separate debug objfiles
2330 because the outer loop will cause them to be searched too. This case is
2331 different. Here we're called from search_symbols where it will only
2332 call us for the objfile that contains a matching minsym. */
2333
2334 static struct block_symbol
2335 lookup_symbol_in_objfile_from_linkage_name (struct objfile *objfile,
2336 const char *linkage_name,
2337 domain_enum domain)
2338 {
2339 enum language lang = current_language->la_language;
2340 struct objfile *main_objfile;
2341
2342 demangle_result_storage storage;
2343 const char *modified_name = demangle_for_lookup (linkage_name, lang, storage);
2344
2345 if (objfile->separate_debug_objfile_backlink)
2346 main_objfile = objfile->separate_debug_objfile_backlink;
2347 else
2348 main_objfile = objfile;
2349
2350 for (::objfile *cur_objfile : main_objfile->separate_debug_objfiles ())
2351 {
2352 struct block_symbol result;
2353
2354 result = lookup_symbol_in_objfile_symtabs (cur_objfile, GLOBAL_BLOCK,
2355 modified_name, domain);
2356 if (result.symbol == NULL)
2357 result = lookup_symbol_in_objfile_symtabs (cur_objfile, STATIC_BLOCK,
2358 modified_name, domain);
2359 if (result.symbol != NULL)
2360 return result;
2361 }
2362
2363 return {};
2364 }
2365
2366 /* A helper function that throws an exception when a symbol was found
2367 in a psymtab but not in a symtab. */
2368
2369 static void ATTRIBUTE_NORETURN
2370 error_in_psymtab_expansion (enum block_enum block_index, const char *name,
2371 struct compunit_symtab *cust)
2372 {
2373 error (_("\
2374 Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n\
2375 %s may be an inlined function, or may be a template function\n \
2376 (if a template, try specifying an instantiation: %s<type>)."),
2377 block_index == GLOBAL_BLOCK ? "global" : "static",
2378 name,
2379 symtab_to_filename_for_display (compunit_primary_filetab (cust)),
2380 name, name);
2381 }
2382
2383 /* A helper function for various lookup routines that interfaces with
2384 the "quick" symbol table functions. */
2385
2386 static struct block_symbol
2387 lookup_symbol_via_quick_fns (struct objfile *objfile,
2388 enum block_enum block_index, const char *name,
2389 const domain_enum domain)
2390 {
2391 struct compunit_symtab *cust;
2392 const struct blockvector *bv;
2393 const struct block *block;
2394 struct block_symbol result;
2395
2396 if (!objfile->sf)
2397 return {};
2398
2399 if (symbol_lookup_debug > 1)
2400 {
2401 fprintf_unfiltered (gdb_stdlog,
2402 "lookup_symbol_via_quick_fns (%s, %s, %s, %s)\n",
2403 objfile_debug_name (objfile),
2404 block_index == GLOBAL_BLOCK
2405 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2406 name, domain_name (domain));
2407 }
2408
2409 cust = objfile->sf->qf->lookup_symbol (objfile, block_index, name, domain);
2410 if (cust == NULL)
2411 {
2412 if (symbol_lookup_debug > 1)
2413 {
2414 fprintf_unfiltered (gdb_stdlog,
2415 "lookup_symbol_via_quick_fns (...) = NULL\n");
2416 }
2417 return {};
2418 }
2419
2420 bv = COMPUNIT_BLOCKVECTOR (cust);
2421 block = BLOCKVECTOR_BLOCK (bv, block_index);
2422 result.symbol = block_lookup_symbol (block, name,
2423 symbol_name_match_type::FULL, domain);
2424 if (result.symbol == NULL)
2425 error_in_psymtab_expansion (block_index, name, cust);
2426
2427 if (symbol_lookup_debug > 1)
2428 {
2429 fprintf_unfiltered (gdb_stdlog,
2430 "lookup_symbol_via_quick_fns (...) = %s (block %s)\n",
2431 host_address_to_string (result.symbol),
2432 host_address_to_string (block));
2433 }
2434
2435 result.symbol = fixup_symbol_section (result.symbol, objfile);
2436 result.block = block;
2437 return result;
2438 }
2439
2440 /* See symtab.h. */
2441
2442 struct block_symbol
2443 basic_lookup_symbol_nonlocal (const struct language_defn *langdef,
2444 const char *name,
2445 const struct block *block,
2446 const domain_enum domain)
2447 {
2448 struct block_symbol result;
2449
2450 /* NOTE: dje/2014-10-26: The lookup in all objfiles search could skip
2451 the current objfile. Searching the current objfile first is useful
2452 for both matching user expectations as well as performance. */
2453
2454 result = lookup_symbol_in_static_block (name, block, domain);
2455 if (result.symbol != NULL)
2456 return result;
2457
2458 /* If we didn't find a definition for a builtin type in the static block,
2459 search for it now. This is actually the right thing to do and can be
2460 a massive performance win. E.g., when debugging a program with lots of
2461 shared libraries we could search all of them only to find out the
2462 builtin type isn't defined in any of them. This is common for types
2463 like "void". */
2464 if (domain == VAR_DOMAIN)
2465 {
2466 struct gdbarch *gdbarch;
2467
2468 if (block == NULL)
2469 gdbarch = target_gdbarch ();
2470 else
2471 gdbarch = block_gdbarch (block);
2472 result.symbol = language_lookup_primitive_type_as_symbol (langdef,
2473 gdbarch, name);
2474 result.block = NULL;
2475 if (result.symbol != NULL)
2476 return result;
2477 }
2478
2479 return lookup_global_symbol (name, block, domain);
2480 }
2481
2482 /* See symtab.h. */
2483
2484 struct block_symbol
2485 lookup_symbol_in_static_block (const char *name,
2486 const struct block *block,
2487 const domain_enum domain)
2488 {
2489 const struct block *static_block = block_static_block (block);
2490 struct symbol *sym;
2491
2492 if (static_block == NULL)
2493 return {};
2494
2495 if (symbol_lookup_debug)
2496 {
2497 struct objfile *objfile = lookup_objfile_from_block (static_block);
2498
2499 fprintf_unfiltered (gdb_stdlog,
2500 "lookup_symbol_in_static_block (%s, %s (objfile %s),"
2501 " %s)\n",
2502 name,
2503 host_address_to_string (block),
2504 objfile_debug_name (objfile),
2505 domain_name (domain));
2506 }
2507
2508 sym = lookup_symbol_in_block (name,
2509 symbol_name_match_type::FULL,
2510 static_block, domain);
2511 if (symbol_lookup_debug)
2512 {
2513 fprintf_unfiltered (gdb_stdlog,
2514 "lookup_symbol_in_static_block (...) = %s\n",
2515 sym != NULL ? host_address_to_string (sym) : "NULL");
2516 }
2517 return (struct block_symbol) {sym, static_block};
2518 }
2519
2520 /* Perform the standard symbol lookup of NAME in OBJFILE:
2521 1) First search expanded symtabs, and if not found
2522 2) Search the "quick" symtabs (partial or .gdb_index).
2523 BLOCK_INDEX is one of GLOBAL_BLOCK or STATIC_BLOCK. */
2524
2525 static struct block_symbol
2526 lookup_symbol_in_objfile (struct objfile *objfile, enum block_enum block_index,
2527 const char *name, const domain_enum domain)
2528 {
2529 struct block_symbol result;
2530
2531 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2532
2533 if (symbol_lookup_debug)
2534 {
2535 fprintf_unfiltered (gdb_stdlog,
2536 "lookup_symbol_in_objfile (%s, %s, %s, %s)\n",
2537 objfile_debug_name (objfile),
2538 block_index == GLOBAL_BLOCK
2539 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2540 name, domain_name (domain));
2541 }
2542
2543 result = lookup_symbol_in_objfile_symtabs (objfile, block_index,
2544 name, domain);
2545 if (result.symbol != NULL)
2546 {
2547 if (symbol_lookup_debug)
2548 {
2549 fprintf_unfiltered (gdb_stdlog,
2550 "lookup_symbol_in_objfile (...) = %s"
2551 " (in symtabs)\n",
2552 host_address_to_string (result.symbol));
2553 }
2554 return result;
2555 }
2556
2557 result = lookup_symbol_via_quick_fns (objfile, block_index,
2558 name, domain);
2559 if (symbol_lookup_debug)
2560 {
2561 fprintf_unfiltered (gdb_stdlog,
2562 "lookup_symbol_in_objfile (...) = %s%s\n",
2563 result.symbol != NULL
2564 ? host_address_to_string (result.symbol)
2565 : "NULL",
2566 result.symbol != NULL ? " (via quick fns)" : "");
2567 }
2568 return result;
2569 }
2570
2571 /* Private data to be used with lookup_symbol_global_iterator_cb. */
2572
2573 struct global_or_static_sym_lookup_data
2574 {
2575 /* The name of the symbol we are searching for. */
2576 const char *name;
2577
2578 /* The domain to use for our search. */
2579 domain_enum domain;
2580
2581 /* The block index in which to search. */
2582 enum block_enum block_index;
2583
2584 /* The field where the callback should store the symbol if found.
2585 It should be initialized to {NULL, NULL} before the search is started. */
2586 struct block_symbol result;
2587 };
2588
2589 /* A callback function for gdbarch_iterate_over_objfiles_in_search_order.
2590 It searches by name for a symbol in the block given by BLOCK_INDEX of the
2591 given OBJFILE. The arguments for the search are passed via CB_DATA, which
2592 in reality is a pointer to struct global_or_static_sym_lookup_data. */
2593
2594 static int
2595 lookup_symbol_global_or_static_iterator_cb (struct objfile *objfile,
2596 void *cb_data)
2597 {
2598 struct global_or_static_sym_lookup_data *data =
2599 (struct global_or_static_sym_lookup_data *) cb_data;
2600
2601 gdb_assert (data->result.symbol == NULL
2602 && data->result.block == NULL);
2603
2604 data->result = lookup_symbol_in_objfile (objfile, data->block_index,
2605 data->name, data->domain);
2606
2607 /* If we found a match, tell the iterator to stop. Otherwise,
2608 keep going. */
2609 return (data->result.symbol != NULL);
2610 }
2611
2612 /* This function contains the common code of lookup_{global,static}_symbol.
2613 OBJFILE is only used if BLOCK_INDEX is GLOBAL_SCOPE, in which case it is
2614 the objfile to start the lookup in. */
2615
2616 static struct block_symbol
2617 lookup_global_or_static_symbol (const char *name,
2618 enum block_enum block_index,
2619 struct objfile *objfile,
2620 const domain_enum domain)
2621 {
2622 struct symbol_cache *cache = get_symbol_cache (current_program_space);
2623 struct block_symbol result;
2624 struct global_or_static_sym_lookup_data lookup_data;
2625 struct block_symbol_cache *bsc;
2626 struct symbol_cache_slot *slot;
2627
2628 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2629 gdb_assert (objfile == nullptr || block_index == GLOBAL_BLOCK);
2630
2631 /* First see if we can find the symbol in the cache.
2632 This works because we use the current objfile to qualify the lookup. */
2633 result = symbol_cache_lookup (cache, objfile, block_index, name, domain,
2634 &bsc, &slot);
2635 if (result.symbol != NULL)
2636 {
2637 if (SYMBOL_LOOKUP_FAILED_P (result))
2638 return {};
2639 return result;
2640 }
2641
2642 /* Do a global search (of global blocks, heh). */
2643 if (result.symbol == NULL)
2644 {
2645 memset (&lookup_data, 0, sizeof (lookup_data));
2646 lookup_data.name = name;
2647 lookup_data.block_index = block_index;
2648 lookup_data.domain = domain;
2649 gdbarch_iterate_over_objfiles_in_search_order
2650 (objfile != NULL ? get_objfile_arch (objfile) : target_gdbarch (),
2651 lookup_symbol_global_or_static_iterator_cb, &lookup_data, objfile);
2652 result = lookup_data.result;
2653 }
2654
2655 if (result.symbol != NULL)
2656 symbol_cache_mark_found (bsc, slot, objfile, result.symbol, result.block);
2657 else
2658 symbol_cache_mark_not_found (bsc, slot, objfile, name, domain);
2659
2660 return result;
2661 }
2662
2663 /* See symtab.h. */
2664
2665 struct block_symbol
2666 lookup_static_symbol (const char *name, const domain_enum domain)
2667 {
2668 return lookup_global_or_static_symbol (name, STATIC_BLOCK, nullptr, domain);
2669 }
2670
2671 /* See symtab.h. */
2672
2673 struct block_symbol
2674 lookup_global_symbol (const char *name,
2675 const struct block *block,
2676 const domain_enum domain)
2677 {
2678 /* If a block was passed in, we want to search the corresponding
2679 global block first. This yields "more expected" behavior, and is
2680 needed to support 'FILENAME'::VARIABLE lookups. */
2681 const struct block *global_block = block_global_block (block);
2682 if (global_block != nullptr)
2683 {
2684 symbol *sym = lookup_symbol_in_block (name,
2685 symbol_name_match_type::FULL,
2686 global_block, domain);
2687 if (sym != nullptr)
2688 return { sym, global_block };
2689 }
2690
2691 struct objfile *objfile = lookup_objfile_from_block (block);
2692 return lookup_global_or_static_symbol (name, GLOBAL_BLOCK, objfile, domain);
2693 }
2694
2695 bool
2696 symbol_matches_domain (enum language symbol_language,
2697 domain_enum symbol_domain,
2698 domain_enum domain)
2699 {
2700 /* For C++ "struct foo { ... }" also defines a typedef for "foo".
2701 Similarly, any Ada type declaration implicitly defines a typedef. */
2702 if (symbol_language == language_cplus
2703 || symbol_language == language_d
2704 || symbol_language == language_ada
2705 || symbol_language == language_rust)
2706 {
2707 if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN)
2708 && symbol_domain == STRUCT_DOMAIN)
2709 return true;
2710 }
2711 /* For all other languages, strict match is required. */
2712 return (symbol_domain == domain);
2713 }
2714
2715 /* See symtab.h. */
2716
2717 struct type *
2718 lookup_transparent_type (const char *name)
2719 {
2720 return current_language->la_lookup_transparent_type (name);
2721 }
2722
2723 /* A helper for basic_lookup_transparent_type that interfaces with the
2724 "quick" symbol table functions. */
2725
2726 static struct type *
2727 basic_lookup_transparent_type_quick (struct objfile *objfile,
2728 enum block_enum block_index,
2729 const char *name)
2730 {
2731 struct compunit_symtab *cust;
2732 const struct blockvector *bv;
2733 const struct block *block;
2734 struct symbol *sym;
2735
2736 if (!objfile->sf)
2737 return NULL;
2738 cust = objfile->sf->qf->lookup_symbol (objfile, block_index, name,
2739 STRUCT_DOMAIN);
2740 if (cust == NULL)
2741 return NULL;
2742
2743 bv = COMPUNIT_BLOCKVECTOR (cust);
2744 block = BLOCKVECTOR_BLOCK (bv, block_index);
2745 sym = block_find_symbol (block, name, STRUCT_DOMAIN,
2746 block_find_non_opaque_type, NULL);
2747 if (sym == NULL)
2748 error_in_psymtab_expansion (block_index, name, cust);
2749 gdb_assert (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)));
2750 return SYMBOL_TYPE (sym);
2751 }
2752
2753 /* Subroutine of basic_lookup_transparent_type to simplify it.
2754 Look up the non-opaque definition of NAME in BLOCK_INDEX of OBJFILE.
2755 BLOCK_INDEX is either GLOBAL_BLOCK or STATIC_BLOCK. */
2756
2757 static struct type *
2758 basic_lookup_transparent_type_1 (struct objfile *objfile,
2759 enum block_enum block_index,
2760 const char *name)
2761 {
2762 const struct blockvector *bv;
2763 const struct block *block;
2764 const struct symbol *sym;
2765
2766 for (compunit_symtab *cust : objfile->compunits ())
2767 {
2768 bv = COMPUNIT_BLOCKVECTOR (cust);
2769 block = BLOCKVECTOR_BLOCK (bv, block_index);
2770 sym = block_find_symbol (block, name, STRUCT_DOMAIN,
2771 block_find_non_opaque_type, NULL);
2772 if (sym != NULL)
2773 {
2774 gdb_assert (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)));
2775 return SYMBOL_TYPE (sym);
2776 }
2777 }
2778
2779 return NULL;
2780 }
2781
2782 /* The standard implementation of lookup_transparent_type. This code
2783 was modeled on lookup_symbol -- the parts not relevant to looking
2784 up types were just left out. In particular it's assumed here that
2785 types are available in STRUCT_DOMAIN and only in file-static or
2786 global blocks. */
2787
2788 struct type *
2789 basic_lookup_transparent_type (const char *name)
2790 {
2791 struct type *t;
2792
2793 /* Now search all the global symbols. Do the symtab's first, then
2794 check the psymtab's. If a psymtab indicates the existence
2795 of the desired name as a global, then do psymtab-to-symtab
2796 conversion on the fly and return the found symbol. */
2797
2798 for (objfile *objfile : current_program_space->objfiles ())
2799 {
2800 t = basic_lookup_transparent_type_1 (objfile, GLOBAL_BLOCK, name);
2801 if (t)
2802 return t;
2803 }
2804
2805 for (objfile *objfile : current_program_space->objfiles ())
2806 {
2807 t = basic_lookup_transparent_type_quick (objfile, GLOBAL_BLOCK, name);
2808 if (t)
2809 return t;
2810 }
2811
2812 /* Now search the static file-level symbols.
2813 Not strictly correct, but more useful than an error.
2814 Do the symtab's first, then
2815 check the psymtab's. If a psymtab indicates the existence
2816 of the desired name as a file-level static, then do psymtab-to-symtab
2817 conversion on the fly and return the found symbol. */
2818
2819 for (objfile *objfile : current_program_space->objfiles ())
2820 {
2821 t = basic_lookup_transparent_type_1 (objfile, STATIC_BLOCK, name);
2822 if (t)
2823 return t;
2824 }
2825
2826 for (objfile *objfile : current_program_space->objfiles ())
2827 {
2828 t = basic_lookup_transparent_type_quick (objfile, STATIC_BLOCK, name);
2829 if (t)
2830 return t;
2831 }
2832
2833 return (struct type *) 0;
2834 }
2835
2836 /* See symtab.h. */
2837
2838 bool
2839 iterate_over_symbols (const struct block *block,
2840 const lookup_name_info &name,
2841 const domain_enum domain,
2842 gdb::function_view<symbol_found_callback_ftype> callback)
2843 {
2844 struct block_iterator iter;
2845 struct symbol *sym;
2846
2847 ALL_BLOCK_SYMBOLS_WITH_NAME (block, name, iter, sym)
2848 {
2849 if (symbol_matches_domain (sym->language (), SYMBOL_DOMAIN (sym), domain))
2850 {
2851 struct block_symbol block_sym = {sym, block};
2852
2853 if (!callback (&block_sym))
2854 return false;
2855 }
2856 }
2857 return true;
2858 }
2859
2860 /* See symtab.h. */
2861
2862 bool
2863 iterate_over_symbols_terminated
2864 (const struct block *block,
2865 const lookup_name_info &name,
2866 const domain_enum domain,
2867 gdb::function_view<symbol_found_callback_ftype> callback)
2868 {
2869 if (!iterate_over_symbols (block, name, domain, callback))
2870 return false;
2871 struct block_symbol block_sym = {nullptr, block};
2872 return callback (&block_sym);
2873 }
2874
2875 /* Find the compunit symtab associated with PC and SECTION.
2876 This will read in debug info as necessary. */
2877
2878 struct compunit_symtab *
2879 find_pc_sect_compunit_symtab (CORE_ADDR pc, struct obj_section *section)
2880 {
2881 struct compunit_symtab *best_cust = NULL;
2882 CORE_ADDR distance = 0;
2883 struct bound_minimal_symbol msymbol;
2884
2885 /* If we know that this is not a text address, return failure. This is
2886 necessary because we loop based on the block's high and low code
2887 addresses, which do not include the data ranges, and because
2888 we call find_pc_sect_psymtab which has a similar restriction based
2889 on the partial_symtab's texthigh and textlow. */
2890 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
2891 if (msymbol.minsym && msymbol.minsym->data_p ())
2892 return NULL;
2893
2894 /* Search all symtabs for the one whose file contains our address, and which
2895 is the smallest of all the ones containing the address. This is designed
2896 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
2897 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
2898 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
2899
2900 This happens for native ecoff format, where code from included files
2901 gets its own symtab. The symtab for the included file should have
2902 been read in already via the dependency mechanism.
2903 It might be swifter to create several symtabs with the same name
2904 like xcoff does (I'm not sure).
2905
2906 It also happens for objfiles that have their functions reordered.
2907 For these, the symtab we are looking for is not necessarily read in. */
2908
2909 for (objfile *obj_file : current_program_space->objfiles ())
2910 {
2911 for (compunit_symtab *cust : obj_file->compunits ())
2912 {
2913 const struct block *b;
2914 const struct blockvector *bv;
2915
2916 bv = COMPUNIT_BLOCKVECTOR (cust);
2917 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
2918
2919 if (BLOCK_START (b) <= pc
2920 && BLOCK_END (b) > pc
2921 && (distance == 0
2922 || BLOCK_END (b) - BLOCK_START (b) < distance))
2923 {
2924 /* For an objfile that has its functions reordered,
2925 find_pc_psymtab will find the proper partial symbol table
2926 and we simply return its corresponding symtab. */
2927 /* In order to better support objfiles that contain both
2928 stabs and coff debugging info, we continue on if a psymtab
2929 can't be found. */
2930 if ((obj_file->flags & OBJF_REORDERED) && obj_file->sf)
2931 {
2932 struct compunit_symtab *result;
2933
2934 result
2935 = obj_file->sf->qf->find_pc_sect_compunit_symtab (obj_file,
2936 msymbol,
2937 pc,
2938 section,
2939 0);
2940 if (result != NULL)
2941 return result;
2942 }
2943 if (section != 0)
2944 {
2945 struct block_iterator iter;
2946 struct symbol *sym = NULL;
2947
2948 ALL_BLOCK_SYMBOLS (b, iter, sym)
2949 {
2950 fixup_symbol_section (sym, obj_file);
2951 if (matching_obj_sections (SYMBOL_OBJ_SECTION (obj_file,
2952 sym),
2953 section))
2954 break;
2955 }
2956 if (sym == NULL)
2957 continue; /* No symbol in this symtab matches
2958 section. */
2959 }
2960 distance = BLOCK_END (b) - BLOCK_START (b);
2961 best_cust = cust;
2962 }
2963 }
2964 }
2965
2966 if (best_cust != NULL)
2967 return best_cust;
2968
2969 /* Not found in symtabs, search the "quick" symtabs (e.g. psymtabs). */
2970
2971 for (objfile *objf : current_program_space->objfiles ())
2972 {
2973 struct compunit_symtab *result;
2974
2975 if (!objf->sf)
2976 continue;
2977 result = objf->sf->qf->find_pc_sect_compunit_symtab (objf,
2978 msymbol,
2979 pc, section,
2980 1);
2981 if (result != NULL)
2982 return result;
2983 }
2984
2985 return NULL;
2986 }
2987
2988 /* Find the compunit symtab associated with PC.
2989 This will read in debug info as necessary.
2990 Backward compatibility, no section. */
2991
2992 struct compunit_symtab *
2993 find_pc_compunit_symtab (CORE_ADDR pc)
2994 {
2995 return find_pc_sect_compunit_symtab (pc, find_pc_mapped_section (pc));
2996 }
2997
2998 /* See symtab.h. */
2999
3000 struct symbol *
3001 find_symbol_at_address (CORE_ADDR address)
3002 {
3003 for (objfile *objfile : current_program_space->objfiles ())
3004 {
3005 if (objfile->sf == NULL
3006 || objfile->sf->qf->find_compunit_symtab_by_address == NULL)
3007 continue;
3008
3009 struct compunit_symtab *symtab
3010 = objfile->sf->qf->find_compunit_symtab_by_address (objfile, address);
3011 if (symtab != NULL)
3012 {
3013 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (symtab);
3014
3015 for (int i = GLOBAL_BLOCK; i <= STATIC_BLOCK; ++i)
3016 {
3017 const struct block *b = BLOCKVECTOR_BLOCK (bv, i);
3018 struct block_iterator iter;
3019 struct symbol *sym;
3020
3021 ALL_BLOCK_SYMBOLS (b, iter, sym)
3022 {
3023 if (SYMBOL_CLASS (sym) == LOC_STATIC
3024 && SYMBOL_VALUE_ADDRESS (sym) == address)
3025 return sym;
3026 }
3027 }
3028 }
3029 }
3030
3031 return NULL;
3032 }
3033
3034 \f
3035
3036 /* Find the source file and line number for a given PC value and SECTION.
3037 Return a structure containing a symtab pointer, a line number,
3038 and a pc range for the entire source line.
3039 The value's .pc field is NOT the specified pc.
3040 NOTCURRENT nonzero means, if specified pc is on a line boundary,
3041 use the line that ends there. Otherwise, in that case, the line
3042 that begins there is used. */
3043
3044 /* The big complication here is that a line may start in one file, and end just
3045 before the start of another file. This usually occurs when you #include
3046 code in the middle of a subroutine. To properly find the end of a line's PC
3047 range, we must search all symtabs associated with this compilation unit, and
3048 find the one whose first PC is closer than that of the next line in this
3049 symtab. */
3050
3051 struct symtab_and_line
3052 find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent)
3053 {
3054 struct compunit_symtab *cust;
3055 struct linetable *l;
3056 int len;
3057 struct linetable_entry *item;
3058 const struct blockvector *bv;
3059 struct bound_minimal_symbol msymbol;
3060
3061 /* Info on best line seen so far, and where it starts, and its file. */
3062
3063 struct linetable_entry *best = NULL;
3064 CORE_ADDR best_end = 0;
3065 struct symtab *best_symtab = 0;
3066
3067 /* Store here the first line number
3068 of a file which contains the line at the smallest pc after PC.
3069 If we don't find a line whose range contains PC,
3070 we will use a line one less than this,
3071 with a range from the start of that file to the first line's pc. */
3072 struct linetable_entry *alt = NULL;
3073
3074 /* Info on best line seen in this file. */
3075
3076 struct linetable_entry *prev;
3077
3078 /* If this pc is not from the current frame,
3079 it is the address of the end of a call instruction.
3080 Quite likely that is the start of the following statement.
3081 But what we want is the statement containing the instruction.
3082 Fudge the pc to make sure we get that. */
3083
3084 /* It's tempting to assume that, if we can't find debugging info for
3085 any function enclosing PC, that we shouldn't search for line
3086 number info, either. However, GAS can emit line number info for
3087 assembly files --- very helpful when debugging hand-written
3088 assembly code. In such a case, we'd have no debug info for the
3089 function, but we would have line info. */
3090
3091 if (notcurrent)
3092 pc -= 1;
3093
3094 /* elz: added this because this function returned the wrong
3095 information if the pc belongs to a stub (import/export)
3096 to call a shlib function. This stub would be anywhere between
3097 two functions in the target, and the line info was erroneously
3098 taken to be the one of the line before the pc. */
3099
3100 /* RT: Further explanation:
3101
3102 * We have stubs (trampolines) inserted between procedures.
3103 *
3104 * Example: "shr1" exists in a shared library, and a "shr1" stub also
3105 * exists in the main image.
3106 *
3107 * In the minimal symbol table, we have a bunch of symbols
3108 * sorted by start address. The stubs are marked as "trampoline",
3109 * the others appear as text. E.g.:
3110 *
3111 * Minimal symbol table for main image
3112 * main: code for main (text symbol)
3113 * shr1: stub (trampoline symbol)
3114 * foo: code for foo (text symbol)
3115 * ...
3116 * Minimal symbol table for "shr1" image:
3117 * ...
3118 * shr1: code for shr1 (text symbol)
3119 * ...
3120 *
3121 * So the code below is trying to detect if we are in the stub
3122 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
3123 * and if found, do the symbolization from the real-code address
3124 * rather than the stub address.
3125 *
3126 * Assumptions being made about the minimal symbol table:
3127 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
3128 * if we're really in the trampoline.s If we're beyond it (say
3129 * we're in "foo" in the above example), it'll have a closer
3130 * symbol (the "foo" text symbol for example) and will not
3131 * return the trampoline.
3132 * 2. lookup_minimal_symbol_text() will find a real text symbol
3133 * corresponding to the trampoline, and whose address will
3134 * be different than the trampoline address. I put in a sanity
3135 * check for the address being the same, to avoid an
3136 * infinite recursion.
3137 */
3138 msymbol = lookup_minimal_symbol_by_pc (pc);
3139 if (msymbol.minsym != NULL)
3140 if (MSYMBOL_TYPE (msymbol.minsym) == mst_solib_trampoline)
3141 {
3142 struct bound_minimal_symbol mfunsym
3143 = lookup_minimal_symbol_text (msymbol.minsym->linkage_name (),
3144 NULL);
3145
3146 if (mfunsym.minsym == NULL)
3147 /* I eliminated this warning since it is coming out
3148 * in the following situation:
3149 * gdb shmain // test program with shared libraries
3150 * (gdb) break shr1 // function in shared lib
3151 * Warning: In stub for ...
3152 * In the above situation, the shared lib is not loaded yet,
3153 * so of course we can't find the real func/line info,
3154 * but the "break" still works, and the warning is annoying.
3155 * So I commented out the warning. RT */
3156 /* warning ("In stub for %s; unable to find real function/line info",
3157 msymbol->linkage_name ()); */
3158 ;
3159 /* fall through */
3160 else if (BMSYMBOL_VALUE_ADDRESS (mfunsym)
3161 == BMSYMBOL_VALUE_ADDRESS (msymbol))
3162 /* Avoid infinite recursion */
3163 /* See above comment about why warning is commented out. */
3164 /* warning ("In stub for %s; unable to find real function/line info",
3165 msymbol->linkage_name ()); */
3166 ;
3167 /* fall through */
3168 else
3169 return find_pc_line (BMSYMBOL_VALUE_ADDRESS (mfunsym), 0);
3170 }
3171
3172 symtab_and_line val;
3173 val.pspace = current_program_space;
3174
3175 cust = find_pc_sect_compunit_symtab (pc, section);
3176 if (cust == NULL)
3177 {
3178 /* If no symbol information, return previous pc. */
3179 if (notcurrent)
3180 pc++;
3181 val.pc = pc;
3182 return val;
3183 }
3184
3185 bv = COMPUNIT_BLOCKVECTOR (cust);
3186
3187 /* Look at all the symtabs that share this blockvector.
3188 They all have the same apriori range, that we found was right;
3189 but they have different line tables. */
3190
3191 for (symtab *iter_s : compunit_filetabs (cust))
3192 {
3193 /* Find the best line in this symtab. */
3194 l = SYMTAB_LINETABLE (iter_s);
3195 if (!l)
3196 continue;
3197 len = l->nitems;
3198 if (len <= 0)
3199 {
3200 /* I think len can be zero if the symtab lacks line numbers
3201 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
3202 I'm not sure which, and maybe it depends on the symbol
3203 reader). */
3204 continue;
3205 }
3206
3207 prev = NULL;
3208 item = l->item; /* Get first line info. */
3209
3210 /* Is this file's first line closer than the first lines of other files?
3211 If so, record this file, and its first line, as best alternate. */
3212 if (item->pc > pc && (!alt || item->pc < alt->pc))
3213 alt = item;
3214
3215 auto pc_compare = [](const CORE_ADDR & comp_pc,
3216 const struct linetable_entry & lhs)->bool
3217 {
3218 return comp_pc < lhs.pc;
3219 };
3220
3221 struct linetable_entry *first = item;
3222 struct linetable_entry *last = item + len;
3223 item = std::upper_bound (first, last, pc, pc_compare);
3224 if (item != first)
3225 {
3226 /* Found a matching item. Skip backwards over any end of
3227 sequence markers. */
3228 for (prev = item - 1; prev->line == 0 && prev != first; prev--)
3229 /* Nothing. */;
3230 }
3231
3232 /* At this point, prev points at the line whose start addr is <= pc, and
3233 item points at the next line. If we ran off the end of the linetable
3234 (pc >= start of the last line), then prev == item. If pc < start of
3235 the first line, prev will not be set. */
3236
3237 /* Is this file's best line closer than the best in the other files?
3238 If so, record this file, and its best line, as best so far. Don't
3239 save prev if it represents the end of a function (i.e. line number
3240 0) instead of a real line. */
3241
3242 if (prev && prev->line && (!best || prev->pc > best->pc))
3243 {
3244 best = prev;
3245 best_symtab = iter_s;
3246
3247 /* Discard BEST_END if it's before the PC of the current BEST. */
3248 if (best_end <= best->pc)
3249 best_end = 0;
3250 }
3251
3252 /* If another line (denoted by ITEM) is in the linetable and its
3253 PC is after BEST's PC, but before the current BEST_END, then
3254 use ITEM's PC as the new best_end. */
3255 if (best && item < last && item->pc > best->pc
3256 && (best_end == 0 || best_end > item->pc))
3257 best_end = item->pc;
3258 }
3259
3260 if (!best_symtab)
3261 {
3262 /* If we didn't find any line number info, just return zeros.
3263 We used to return alt->line - 1 here, but that could be
3264 anywhere; if we don't have line number info for this PC,
3265 don't make some up. */
3266 val.pc = pc;
3267 }
3268 else if (best->line == 0)
3269 {
3270 /* If our best fit is in a range of PC's for which no line
3271 number info is available (line number is zero) then we didn't
3272 find any valid line information. */
3273 val.pc = pc;
3274 }
3275 else
3276 {
3277 val.symtab = best_symtab;
3278 val.line = best->line;
3279 val.pc = best->pc;
3280 if (best_end && (!alt || best_end < alt->pc))
3281 val.end = best_end;
3282 else if (alt)
3283 val.end = alt->pc;
3284 else
3285 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
3286 }
3287 val.section = section;
3288 return val;
3289 }
3290
3291 /* Backward compatibility (no section). */
3292
3293 struct symtab_and_line
3294 find_pc_line (CORE_ADDR pc, int notcurrent)
3295 {
3296 struct obj_section *section;
3297
3298 section = find_pc_overlay (pc);
3299 if (pc_in_unmapped_range (pc, section))
3300 pc = overlay_mapped_address (pc, section);
3301 return find_pc_sect_line (pc, section, notcurrent);
3302 }
3303
3304 /* See symtab.h. */
3305
3306 struct symtab *
3307 find_pc_line_symtab (CORE_ADDR pc)
3308 {
3309 struct symtab_and_line sal;
3310
3311 /* This always passes zero for NOTCURRENT to find_pc_line.
3312 There are currently no callers that ever pass non-zero. */
3313 sal = find_pc_line (pc, 0);
3314 return sal.symtab;
3315 }
3316 \f
3317 /* Find line number LINE in any symtab whose name is the same as
3318 SYMTAB.
3319
3320 If found, return the symtab that contains the linetable in which it was
3321 found, set *INDEX to the index in the linetable of the best entry
3322 found, and set *EXACT_MATCH to true if the value returned is an
3323 exact match.
3324
3325 If not found, return NULL. */
3326
3327 struct symtab *
3328 find_line_symtab (struct symtab *sym_tab, int line,
3329 int *index, bool *exact_match)
3330 {
3331 int exact = 0; /* Initialized here to avoid a compiler warning. */
3332
3333 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
3334 so far seen. */
3335
3336 int best_index;
3337 struct linetable *best_linetable;
3338 struct symtab *best_symtab;
3339
3340 /* First try looking it up in the given symtab. */
3341 best_linetable = SYMTAB_LINETABLE (sym_tab);
3342 best_symtab = sym_tab;
3343 best_index = find_line_common (best_linetable, line, &exact, 0);
3344 if (best_index < 0 || !exact)
3345 {
3346 /* Didn't find an exact match. So we better keep looking for
3347 another symtab with the same name. In the case of xcoff,
3348 multiple csects for one source file (produced by IBM's FORTRAN
3349 compiler) produce multiple symtabs (this is unavoidable
3350 assuming csects can be at arbitrary places in memory and that
3351 the GLOBAL_BLOCK of a symtab has a begin and end address). */
3352
3353 /* BEST is the smallest linenumber > LINE so far seen,
3354 or 0 if none has been seen so far.
3355 BEST_INDEX and BEST_LINETABLE identify the item for it. */
3356 int best;
3357
3358 if (best_index >= 0)
3359 best = best_linetable->item[best_index].line;
3360 else
3361 best = 0;
3362
3363 for (objfile *objfile : current_program_space->objfiles ())
3364 {
3365 if (objfile->sf)
3366 objfile->sf->qf->expand_symtabs_with_fullname
3367 (objfile, symtab_to_fullname (sym_tab));
3368 }
3369
3370 for (objfile *objfile : current_program_space->objfiles ())
3371 {
3372 for (compunit_symtab *cu : objfile->compunits ())
3373 {
3374 for (symtab *s : compunit_filetabs (cu))
3375 {
3376 struct linetable *l;
3377 int ind;
3378
3379 if (FILENAME_CMP (sym_tab->filename, s->filename) != 0)
3380 continue;
3381 if (FILENAME_CMP (symtab_to_fullname (sym_tab),
3382 symtab_to_fullname (s)) != 0)
3383 continue;
3384 l = SYMTAB_LINETABLE (s);
3385 ind = find_line_common (l, line, &exact, 0);
3386 if (ind >= 0)
3387 {
3388 if (exact)
3389 {
3390 best_index = ind;
3391 best_linetable = l;
3392 best_symtab = s;
3393 goto done;
3394 }
3395 if (best == 0 || l->item[ind].line < best)
3396 {
3397 best = l->item[ind].line;
3398 best_index = ind;
3399 best_linetable = l;
3400 best_symtab = s;
3401 }
3402 }
3403 }
3404 }
3405 }
3406 }
3407 done:
3408 if (best_index < 0)
3409 return NULL;
3410
3411 if (index)
3412 *index = best_index;
3413 if (exact_match)
3414 *exact_match = (exact != 0);
3415
3416 return best_symtab;
3417 }
3418
3419 /* Given SYMTAB, returns all the PCs function in the symtab that
3420 exactly match LINE. Returns an empty vector if there are no exact
3421 matches, but updates BEST_ITEM in this case. */
3422
3423 std::vector<CORE_ADDR>
3424 find_pcs_for_symtab_line (struct symtab *symtab, int line,
3425 struct linetable_entry **best_item)
3426 {
3427 int start = 0;
3428 std::vector<CORE_ADDR> result;
3429
3430 /* First, collect all the PCs that are at this line. */
3431 while (1)
3432 {
3433 int was_exact;
3434 int idx;
3435
3436 idx = find_line_common (SYMTAB_LINETABLE (symtab), line, &was_exact,
3437 start);
3438 if (idx < 0)
3439 break;
3440
3441 if (!was_exact)
3442 {
3443 struct linetable_entry *item = &SYMTAB_LINETABLE (symtab)->item[idx];
3444
3445 if (*best_item == NULL || item->line < (*best_item)->line)
3446 *best_item = item;
3447
3448 break;
3449 }
3450
3451 result.push_back (SYMTAB_LINETABLE (symtab)->item[idx].pc);
3452 start = idx + 1;
3453 }
3454
3455 return result;
3456 }
3457
3458 \f
3459 /* Set the PC value for a given source file and line number and return true.
3460 Returns false for invalid line number (and sets the PC to 0).
3461 The source file is specified with a struct symtab. */
3462
3463 bool
3464 find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
3465 {
3466 struct linetable *l;
3467 int ind;
3468
3469 *pc = 0;
3470 if (symtab == 0)
3471 return false;
3472
3473 symtab = find_line_symtab (symtab, line, &ind, NULL);
3474 if (symtab != NULL)
3475 {
3476 l = SYMTAB_LINETABLE (symtab);
3477 *pc = l->item[ind].pc;
3478 return true;
3479 }
3480 else
3481 return false;
3482 }
3483
3484 /* Find the range of pc values in a line.
3485 Store the starting pc of the line into *STARTPTR
3486 and the ending pc (start of next line) into *ENDPTR.
3487 Returns true to indicate success.
3488 Returns false if could not find the specified line. */
3489
3490 bool
3491 find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
3492 CORE_ADDR *endptr)
3493 {
3494 CORE_ADDR startaddr;
3495 struct symtab_and_line found_sal;
3496
3497 startaddr = sal.pc;
3498 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
3499 return false;
3500
3501 /* This whole function is based on address. For example, if line 10 has
3502 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
3503 "info line *0x123" should say the line goes from 0x100 to 0x200
3504 and "info line *0x355" should say the line goes from 0x300 to 0x400.
3505 This also insures that we never give a range like "starts at 0x134
3506 and ends at 0x12c". */
3507
3508 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
3509 if (found_sal.line != sal.line)
3510 {
3511 /* The specified line (sal) has zero bytes. */
3512 *startptr = found_sal.pc;
3513 *endptr = found_sal.pc;
3514 }
3515 else
3516 {
3517 *startptr = found_sal.pc;
3518 *endptr = found_sal.end;
3519 }
3520 return true;
3521 }
3522
3523 /* Given a line table and a line number, return the index into the line
3524 table for the pc of the nearest line whose number is >= the specified one.
3525 Return -1 if none is found. The value is >= 0 if it is an index.
3526 START is the index at which to start searching the line table.
3527
3528 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
3529
3530 static int
3531 find_line_common (struct linetable *l, int lineno,
3532 int *exact_match, int start)
3533 {
3534 int i;
3535 int len;
3536
3537 /* BEST is the smallest linenumber > LINENO so far seen,
3538 or 0 if none has been seen so far.
3539 BEST_INDEX identifies the item for it. */
3540
3541 int best_index = -1;
3542 int best = 0;
3543
3544 *exact_match = 0;
3545
3546 if (lineno <= 0)
3547 return -1;
3548 if (l == 0)
3549 return -1;
3550
3551 len = l->nitems;
3552 for (i = start; i < len; i++)
3553 {
3554 struct linetable_entry *item = &(l->item[i]);
3555
3556 if (item->line == lineno)
3557 {
3558 /* Return the first (lowest address) entry which matches. */
3559 *exact_match = 1;
3560 return i;
3561 }
3562
3563 if (item->line > lineno && (best == 0 || item->line < best))
3564 {
3565 best = item->line;
3566 best_index = i;
3567 }
3568 }
3569
3570 /* If we got here, we didn't get an exact match. */
3571 return best_index;
3572 }
3573
3574 bool
3575 find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
3576 {
3577 struct symtab_and_line sal;
3578
3579 sal = find_pc_line (pc, 0);
3580 *startptr = sal.pc;
3581 *endptr = sal.end;
3582 return sal.symtab != 0;
3583 }
3584
3585 /* Helper for find_function_start_sal. Does most of the work, except
3586 setting the sal's symbol. */
3587
3588 static symtab_and_line
3589 find_function_start_sal_1 (CORE_ADDR func_addr, obj_section *section,
3590 bool funfirstline)
3591 {
3592 symtab_and_line sal = find_pc_sect_line (func_addr, section, 0);
3593
3594 if (funfirstline && sal.symtab != NULL
3595 && (COMPUNIT_LOCATIONS_VALID (SYMTAB_COMPUNIT (sal.symtab))
3596 || SYMTAB_LANGUAGE (sal.symtab) == language_asm))
3597 {
3598 struct gdbarch *gdbarch = get_objfile_arch (SYMTAB_OBJFILE (sal.symtab));
3599
3600 sal.pc = func_addr;
3601 if (gdbarch_skip_entrypoint_p (gdbarch))
3602 sal.pc = gdbarch_skip_entrypoint (gdbarch, sal.pc);
3603 return sal;
3604 }
3605
3606 /* We always should have a line for the function start address.
3607 If we don't, something is odd. Create a plain SAL referring
3608 just the PC and hope that skip_prologue_sal (if requested)
3609 can find a line number for after the prologue. */
3610 if (sal.pc < func_addr)
3611 {
3612 sal = {};
3613 sal.pspace = current_program_space;
3614 sal.pc = func_addr;
3615 sal.section = section;
3616 }
3617
3618 if (funfirstline)
3619 skip_prologue_sal (&sal);
3620
3621 return sal;
3622 }
3623
3624 /* See symtab.h. */
3625
3626 symtab_and_line
3627 find_function_start_sal (CORE_ADDR func_addr, obj_section *section,
3628 bool funfirstline)
3629 {
3630 symtab_and_line sal
3631 = find_function_start_sal_1 (func_addr, section, funfirstline);
3632
3633 /* find_function_start_sal_1 does a linetable search, so it finds
3634 the symtab and linenumber, but not a symbol. Fill in the
3635 function symbol too. */
3636 sal.symbol = find_pc_sect_containing_function (sal.pc, sal.section);
3637
3638 return sal;
3639 }
3640
3641 /* See symtab.h. */
3642
3643 symtab_and_line
3644 find_function_start_sal (symbol *sym, bool funfirstline)
3645 {
3646 fixup_symbol_section (sym, NULL);
3647 symtab_and_line sal
3648 = find_function_start_sal_1 (BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)),
3649 SYMBOL_OBJ_SECTION (symbol_objfile (sym), sym),
3650 funfirstline);
3651 sal.symbol = sym;
3652 return sal;
3653 }
3654
3655
3656 /* Given a function start address FUNC_ADDR and SYMTAB, find the first
3657 address for that function that has an entry in SYMTAB's line info
3658 table. If such an entry cannot be found, return FUNC_ADDR
3659 unaltered. */
3660
3661 static CORE_ADDR
3662 skip_prologue_using_lineinfo (CORE_ADDR func_addr, struct symtab *symtab)
3663 {
3664 CORE_ADDR func_start, func_end;
3665 struct linetable *l;
3666 int i;
3667
3668 /* Give up if this symbol has no lineinfo table. */
3669 l = SYMTAB_LINETABLE (symtab);
3670 if (l == NULL)
3671 return func_addr;
3672
3673 /* Get the range for the function's PC values, or give up if we
3674 cannot, for some reason. */
3675 if (!find_pc_partial_function (func_addr, NULL, &func_start, &func_end))
3676 return func_addr;
3677
3678 /* Linetable entries are ordered by PC values, see the commentary in
3679 symtab.h where `struct linetable' is defined. Thus, the first
3680 entry whose PC is in the range [FUNC_START..FUNC_END[ is the
3681 address we are looking for. */
3682 for (i = 0; i < l->nitems; i++)
3683 {
3684 struct linetable_entry *item = &(l->item[i]);
3685
3686 /* Don't use line numbers of zero, they mark special entries in
3687 the table. See the commentary on symtab.h before the
3688 definition of struct linetable. */
3689 if (item->line > 0 && func_start <= item->pc && item->pc < func_end)
3690 return item->pc;
3691 }
3692
3693 return func_addr;
3694 }
3695
3696 /* Adjust SAL to the first instruction past the function prologue.
3697 If the PC was explicitly specified, the SAL is not changed.
3698 If the line number was explicitly specified then the SAL can still be
3699 updated, unless the language for SAL is assembler, in which case the SAL
3700 will be left unchanged.
3701 If SAL is already past the prologue, then do nothing. */
3702
3703 void
3704 skip_prologue_sal (struct symtab_and_line *sal)
3705 {
3706 struct symbol *sym;
3707 struct symtab_and_line start_sal;
3708 CORE_ADDR pc, saved_pc;
3709 struct obj_section *section;
3710 const char *name;
3711 struct objfile *objfile;
3712 struct gdbarch *gdbarch;
3713 const struct block *b, *function_block;
3714 int force_skip, skip;
3715
3716 /* Do not change the SAL if PC was specified explicitly. */
3717 if (sal->explicit_pc)
3718 return;
3719
3720 /* In assembly code, if the user asks for a specific line then we should
3721 not adjust the SAL. The user already has instruction level
3722 visibility in this case, so selecting a line other than one requested
3723 is likely to be the wrong choice. */
3724 if (sal->symtab != nullptr
3725 && sal->explicit_line
3726 && SYMTAB_LANGUAGE (sal->symtab) == language_asm)
3727 return;
3728
3729 scoped_restore_current_pspace_and_thread restore_pspace_thread;
3730
3731 switch_to_program_space_and_thread (sal->pspace);
3732
3733 sym = find_pc_sect_function (sal->pc, sal->section);
3734 if (sym != NULL)
3735 {
3736 fixup_symbol_section (sym, NULL);
3737
3738 objfile = symbol_objfile (sym);
3739 pc = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym));
3740 section = SYMBOL_OBJ_SECTION (objfile, sym);
3741 name = sym->linkage_name ();
3742 }
3743 else
3744 {
3745 struct bound_minimal_symbol msymbol
3746 = lookup_minimal_symbol_by_pc_section (sal->pc, sal->section);
3747
3748 if (msymbol.minsym == NULL)
3749 return;
3750
3751 objfile = msymbol.objfile;
3752 pc = BMSYMBOL_VALUE_ADDRESS (msymbol);
3753 section = MSYMBOL_OBJ_SECTION (objfile, msymbol.minsym);
3754 name = msymbol.minsym->linkage_name ();
3755 }
3756
3757 gdbarch = get_objfile_arch (objfile);
3758
3759 /* Process the prologue in two passes. In the first pass try to skip the
3760 prologue (SKIP is true) and verify there is a real need for it (indicated
3761 by FORCE_SKIP). If no such reason was found run a second pass where the
3762 prologue is not skipped (SKIP is false). */
3763
3764 skip = 1;
3765 force_skip = 1;
3766
3767 /* Be conservative - allow direct PC (without skipping prologue) only if we
3768 have proven the CU (Compilation Unit) supports it. sal->SYMTAB does not
3769 have to be set by the caller so we use SYM instead. */
3770 if (sym != NULL
3771 && COMPUNIT_LOCATIONS_VALID (SYMTAB_COMPUNIT (symbol_symtab (sym))))
3772 force_skip = 0;
3773
3774 saved_pc = pc;
3775 do
3776 {
3777 pc = saved_pc;
3778
3779 /* If the function is in an unmapped overlay, use its unmapped LMA address,
3780 so that gdbarch_skip_prologue has something unique to work on. */
3781 if (section_is_overlay (section) && !section_is_mapped (section))
3782 pc = overlay_unmapped_address (pc, section);
3783
3784 /* Skip "first line" of function (which is actually its prologue). */
3785 pc += gdbarch_deprecated_function_start_offset (gdbarch);
3786 if (gdbarch_skip_entrypoint_p (gdbarch))
3787 pc = gdbarch_skip_entrypoint (gdbarch, pc);
3788 if (skip)
3789 pc = gdbarch_skip_prologue_noexcept (gdbarch, pc);
3790
3791 /* For overlays, map pc back into its mapped VMA range. */
3792 pc = overlay_mapped_address (pc, section);
3793
3794 /* Calculate line number. */
3795 start_sal = find_pc_sect_line (pc, section, 0);
3796
3797 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
3798 line is still part of the same function. */
3799 if (skip && start_sal.pc != pc
3800 && (sym ? (BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)) <= start_sal.end
3801 && start_sal.end < BLOCK_END (SYMBOL_BLOCK_VALUE (sym)))
3802 : (lookup_minimal_symbol_by_pc_section (start_sal.end, section).minsym
3803 == lookup_minimal_symbol_by_pc_section (pc, section).minsym)))
3804 {
3805 /* First pc of next line */
3806 pc = start_sal.end;
3807 /* Recalculate the line number (might not be N+1). */
3808 start_sal = find_pc_sect_line (pc, section, 0);
3809 }
3810
3811 /* On targets with executable formats that don't have a concept of
3812 constructors (ELF with .init has, PE doesn't), gcc emits a call
3813 to `__main' in `main' between the prologue and before user
3814 code. */
3815 if (gdbarch_skip_main_prologue_p (gdbarch)
3816 && name && strcmp_iw (name, "main") == 0)
3817 {
3818 pc = gdbarch_skip_main_prologue (gdbarch, pc);
3819 /* Recalculate the line number (might not be N+1). */
3820 start_sal = find_pc_sect_line (pc, section, 0);
3821 force_skip = 1;
3822 }
3823 }
3824 while (!force_skip && skip--);
3825
3826 /* If we still don't have a valid source line, try to find the first
3827 PC in the lineinfo table that belongs to the same function. This
3828 happens with COFF debug info, which does not seem to have an
3829 entry in lineinfo table for the code after the prologue which has
3830 no direct relation to source. For example, this was found to be
3831 the case with the DJGPP target using "gcc -gcoff" when the
3832 compiler inserted code after the prologue to make sure the stack
3833 is aligned. */
3834 if (!force_skip && sym && start_sal.symtab == NULL)
3835 {
3836 pc = skip_prologue_using_lineinfo (pc, symbol_symtab (sym));
3837 /* Recalculate the line number. */
3838 start_sal = find_pc_sect_line (pc, section, 0);
3839 }
3840
3841 /* If we're already past the prologue, leave SAL unchanged. Otherwise
3842 forward SAL to the end of the prologue. */
3843 if (sal->pc >= pc)
3844 return;
3845
3846 sal->pc = pc;
3847 sal->section = section;
3848 sal->symtab = start_sal.symtab;
3849 sal->line = start_sal.line;
3850 sal->end = start_sal.end;
3851
3852 /* Check if we are now inside an inlined function. If we can,
3853 use the call site of the function instead. */
3854 b = block_for_pc_sect (sal->pc, sal->section);
3855 function_block = NULL;
3856 while (b != NULL)
3857 {
3858 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
3859 function_block = b;
3860 else if (BLOCK_FUNCTION (b) != NULL)
3861 break;
3862 b = BLOCK_SUPERBLOCK (b);
3863 }
3864 if (function_block != NULL
3865 && SYMBOL_LINE (BLOCK_FUNCTION (function_block)) != 0)
3866 {
3867 sal->line = SYMBOL_LINE (BLOCK_FUNCTION (function_block));
3868 sal->symtab = symbol_symtab (BLOCK_FUNCTION (function_block));
3869 }
3870 }
3871
3872 /* Given PC at the function's start address, attempt to find the
3873 prologue end using SAL information. Return zero if the skip fails.
3874
3875 A non-optimized prologue traditionally has one SAL for the function
3876 and a second for the function body. A single line function has
3877 them both pointing at the same line.
3878
3879 An optimized prologue is similar but the prologue may contain
3880 instructions (SALs) from the instruction body. Need to skip those
3881 while not getting into the function body.
3882
3883 The functions end point and an increasing SAL line are used as
3884 indicators of the prologue's endpoint.
3885
3886 This code is based on the function refine_prologue_limit
3887 (found in ia64). */
3888
3889 CORE_ADDR
3890 skip_prologue_using_sal (struct gdbarch *gdbarch, CORE_ADDR func_addr)
3891 {
3892 struct symtab_and_line prologue_sal;
3893 CORE_ADDR start_pc;
3894 CORE_ADDR end_pc;
3895 const struct block *bl;
3896
3897 /* Get an initial range for the function. */
3898 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
3899 start_pc += gdbarch_deprecated_function_start_offset (gdbarch);
3900
3901 prologue_sal = find_pc_line (start_pc, 0);
3902 if (prologue_sal.line != 0)
3903 {
3904 /* For languages other than assembly, treat two consecutive line
3905 entries at the same address as a zero-instruction prologue.
3906 The GNU assembler emits separate line notes for each instruction
3907 in a multi-instruction macro, but compilers generally will not
3908 do this. */
3909 if (prologue_sal.symtab->language != language_asm)
3910 {
3911 struct linetable *linetable = SYMTAB_LINETABLE (prologue_sal.symtab);
3912 int idx = 0;
3913
3914 /* Skip any earlier lines, and any end-of-sequence marker
3915 from a previous function. */
3916 while (linetable->item[idx].pc != prologue_sal.pc
3917 || linetable->item[idx].line == 0)
3918 idx++;
3919
3920 if (idx+1 < linetable->nitems
3921 && linetable->item[idx+1].line != 0
3922 && linetable->item[idx+1].pc == start_pc)
3923 return start_pc;
3924 }
3925
3926 /* If there is only one sal that covers the entire function,
3927 then it is probably a single line function, like
3928 "foo(){}". */
3929 if (prologue_sal.end >= end_pc)
3930 return 0;
3931
3932 while (prologue_sal.end < end_pc)
3933 {
3934 struct symtab_and_line sal;
3935
3936 sal = find_pc_line (prologue_sal.end, 0);
3937 if (sal.line == 0)
3938 break;
3939 /* Assume that a consecutive SAL for the same (or larger)
3940 line mark the prologue -> body transition. */
3941 if (sal.line >= prologue_sal.line)
3942 break;
3943 /* Likewise if we are in a different symtab altogether
3944 (e.g. within a file included via #include).  */
3945 if (sal.symtab != prologue_sal.symtab)
3946 break;
3947
3948 /* The line number is smaller. Check that it's from the
3949 same function, not something inlined. If it's inlined,
3950 then there is no point comparing the line numbers. */
3951 bl = block_for_pc (prologue_sal.end);
3952 while (bl)
3953 {
3954 if (block_inlined_p (bl))
3955 break;
3956 if (BLOCK_FUNCTION (bl))
3957 {
3958 bl = NULL;
3959 break;
3960 }
3961 bl = BLOCK_SUPERBLOCK (bl);
3962 }
3963 if (bl != NULL)
3964 break;
3965
3966 /* The case in which compiler's optimizer/scheduler has
3967 moved instructions into the prologue. We look ahead in
3968 the function looking for address ranges whose
3969 corresponding line number is less the first one that we
3970 found for the function. This is more conservative then
3971 refine_prologue_limit which scans a large number of SALs
3972 looking for any in the prologue. */
3973 prologue_sal = sal;
3974 }
3975 }
3976
3977 if (prologue_sal.end < end_pc)
3978 /* Return the end of this line, or zero if we could not find a
3979 line. */
3980 return prologue_sal.end;
3981 else
3982 /* Don't return END_PC, which is past the end of the function. */
3983 return prologue_sal.pc;
3984 }
3985
3986 /* See symtab.h. */
3987
3988 symbol *
3989 find_function_alias_target (bound_minimal_symbol msymbol)
3990 {
3991 CORE_ADDR func_addr;
3992 if (!msymbol_is_function (msymbol.objfile, msymbol.minsym, &func_addr))
3993 return NULL;
3994
3995 symbol *sym = find_pc_function (func_addr);
3996 if (sym != NULL
3997 && SYMBOL_CLASS (sym) == LOC_BLOCK
3998 && BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)) == func_addr)
3999 return sym;
4000
4001 return NULL;
4002 }
4003
4004 \f
4005 /* If P is of the form "operator[ \t]+..." where `...' is
4006 some legitimate operator text, return a pointer to the
4007 beginning of the substring of the operator text.
4008 Otherwise, return "". */
4009
4010 static const char *
4011 operator_chars (const char *p, const char **end)
4012 {
4013 *end = "";
4014 if (!startswith (p, CP_OPERATOR_STR))
4015 return *end;
4016 p += CP_OPERATOR_LEN;
4017
4018 /* Don't get faked out by `operator' being part of a longer
4019 identifier. */
4020 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
4021 return *end;
4022
4023 /* Allow some whitespace between `operator' and the operator symbol. */
4024 while (*p == ' ' || *p == '\t')
4025 p++;
4026
4027 /* Recognize 'operator TYPENAME'. */
4028
4029 if (isalpha (*p) || *p == '_' || *p == '$')
4030 {
4031 const char *q = p + 1;
4032
4033 while (isalnum (*q) || *q == '_' || *q == '$')
4034 q++;
4035 *end = q;
4036 return p;
4037 }
4038
4039 while (*p)
4040 switch (*p)
4041 {
4042 case '\\': /* regexp quoting */
4043 if (p[1] == '*')
4044 {
4045 if (p[2] == '=') /* 'operator\*=' */
4046 *end = p + 3;
4047 else /* 'operator\*' */
4048 *end = p + 2;
4049 return p;
4050 }
4051 else if (p[1] == '[')
4052 {
4053 if (p[2] == ']')
4054 error (_("mismatched quoting on brackets, "
4055 "try 'operator\\[\\]'"));
4056 else if (p[2] == '\\' && p[3] == ']')
4057 {
4058 *end = p + 4; /* 'operator\[\]' */
4059 return p;
4060 }
4061 else
4062 error (_("nothing is allowed between '[' and ']'"));
4063 }
4064 else
4065 {
4066 /* Gratuitous quote: skip it and move on. */
4067 p++;
4068 continue;
4069 }
4070 break;
4071 case '!':
4072 case '=':
4073 case '*':
4074 case '/':
4075 case '%':
4076 case '^':
4077 if (p[1] == '=')
4078 *end = p + 2;
4079 else
4080 *end = p + 1;
4081 return p;
4082 case '<':
4083 case '>':
4084 case '+':
4085 case '-':
4086 case '&':
4087 case '|':
4088 if (p[0] == '-' && p[1] == '>')
4089 {
4090 /* Struct pointer member operator 'operator->'. */
4091 if (p[2] == '*')
4092 {
4093 *end = p + 3; /* 'operator->*' */
4094 return p;
4095 }
4096 else if (p[2] == '\\')
4097 {
4098 *end = p + 4; /* Hopefully 'operator->\*' */
4099 return p;
4100 }
4101 else
4102 {
4103 *end = p + 2; /* 'operator->' */
4104 return p;
4105 }
4106 }
4107 if (p[1] == '=' || p[1] == p[0])
4108 *end = p + 2;
4109 else
4110 *end = p + 1;
4111 return p;
4112 case '~':
4113 case ',':
4114 *end = p + 1;
4115 return p;
4116 case '(':
4117 if (p[1] != ')')
4118 error (_("`operator ()' must be specified "
4119 "without whitespace in `()'"));
4120 *end = p + 2;
4121 return p;
4122 case '?':
4123 if (p[1] != ':')
4124 error (_("`operator ?:' must be specified "
4125 "without whitespace in `?:'"));
4126 *end = p + 2;
4127 return p;
4128 case '[':
4129 if (p[1] != ']')
4130 error (_("`operator []' must be specified "
4131 "without whitespace in `[]'"));
4132 *end = p + 2;
4133 return p;
4134 default:
4135 error (_("`operator %s' not supported"), p);
4136 break;
4137 }
4138
4139 *end = "";
4140 return *end;
4141 }
4142 \f
4143
4144 /* What part to match in a file name. */
4145
4146 struct filename_partial_match_opts
4147 {
4148 /* Only match the directory name part. */
4149 bool dirname = false;
4150
4151 /* Only match the basename part. */
4152 bool basename = false;
4153 };
4154
4155 /* Data structure to maintain printing state for output_source_filename. */
4156
4157 struct output_source_filename_data
4158 {
4159 /* Output only filenames matching REGEXP. */
4160 std::string regexp;
4161 gdb::optional<compiled_regex> c_regexp;
4162 /* Possibly only match a part of the filename. */
4163 filename_partial_match_opts partial_match;
4164
4165
4166 /* Cache of what we've seen so far. */
4167 struct filename_seen_cache *filename_seen_cache;
4168
4169 /* Flag of whether we're printing the first one. */
4170 int first;
4171 };
4172
4173 /* Slave routine for sources_info. Force line breaks at ,'s.
4174 NAME is the name to print.
4175 DATA contains the state for printing and watching for duplicates. */
4176
4177 static void
4178 output_source_filename (const char *name,
4179 struct output_source_filename_data *data)
4180 {
4181 /* Since a single source file can result in several partial symbol
4182 tables, we need to avoid printing it more than once. Note: if
4183 some of the psymtabs are read in and some are not, it gets
4184 printed both under "Source files for which symbols have been
4185 read" and "Source files for which symbols will be read in on
4186 demand". I consider this a reasonable way to deal with the
4187 situation. I'm not sure whether this can also happen for
4188 symtabs; it doesn't hurt to check. */
4189
4190 /* Was NAME already seen? */
4191 if (data->filename_seen_cache->seen (name))
4192 {
4193 /* Yes; don't print it again. */
4194 return;
4195 }
4196
4197 /* Does it match data->regexp? */
4198 if (data->c_regexp.has_value ())
4199 {
4200 const char *to_match;
4201 std::string dirname;
4202
4203 if (data->partial_match.dirname)
4204 {
4205 dirname = ldirname (name);
4206 to_match = dirname.c_str ();
4207 }
4208 else if (data->partial_match.basename)
4209 to_match = lbasename (name);
4210 else
4211 to_match = name;
4212
4213 if (data->c_regexp->exec (to_match, 0, NULL, 0) != 0)
4214 return;
4215 }
4216
4217 /* Print it and reset *FIRST. */
4218 if (! data->first)
4219 printf_filtered (", ");
4220 data->first = 0;
4221
4222 wrap_here ("");
4223 fputs_styled (name, file_name_style.style (), gdb_stdout);
4224 }
4225
4226 /* A callback for map_partial_symbol_filenames. */
4227
4228 static void
4229 output_partial_symbol_filename (const char *filename, const char *fullname,
4230 void *data)
4231 {
4232 output_source_filename (fullname ? fullname : filename,
4233 (struct output_source_filename_data *) data);
4234 }
4235
4236 using isrc_flag_option_def
4237 = gdb::option::flag_option_def<filename_partial_match_opts>;
4238
4239 static const gdb::option::option_def info_sources_option_defs[] = {
4240
4241 isrc_flag_option_def {
4242 "dirname",
4243 [] (filename_partial_match_opts *opts) { return &opts->dirname; },
4244 N_("Show only the files having a dirname matching REGEXP."),
4245 },
4246
4247 isrc_flag_option_def {
4248 "basename",
4249 [] (filename_partial_match_opts *opts) { return &opts->basename; },
4250 N_("Show only the files having a basename matching REGEXP."),
4251 },
4252
4253 };
4254
4255 /* Create an option_def_group for the "info sources" options, with
4256 ISRC_OPTS as context. */
4257
4258 static inline gdb::option::option_def_group
4259 make_info_sources_options_def_group (filename_partial_match_opts *isrc_opts)
4260 {
4261 return {{info_sources_option_defs}, isrc_opts};
4262 }
4263
4264 /* Prints the header message for the source files that will be printed
4265 with the matching info present in DATA. SYMBOL_MSG is a message
4266 that tells what will or has been done with the symbols of the
4267 matching source files. */
4268
4269 static void
4270 print_info_sources_header (const char *symbol_msg,
4271 const struct output_source_filename_data *data)
4272 {
4273 puts_filtered (symbol_msg);
4274 if (!data->regexp.empty ())
4275 {
4276 if (data->partial_match.dirname)
4277 printf_filtered (_("(dirname matching regular expression \"%s\")"),
4278 data->regexp.c_str ());
4279 else if (data->partial_match.basename)
4280 printf_filtered (_("(basename matching regular expression \"%s\")"),
4281 data->regexp.c_str ());
4282 else
4283 printf_filtered (_("(filename matching regular expression \"%s\")"),
4284 data->regexp.c_str ());
4285 }
4286 puts_filtered ("\n");
4287 }
4288
4289 /* Completer for "info sources". */
4290
4291 static void
4292 info_sources_command_completer (cmd_list_element *ignore,
4293 completion_tracker &tracker,
4294 const char *text, const char *word)
4295 {
4296 const auto group = make_info_sources_options_def_group (nullptr);
4297 if (gdb::option::complete_options
4298 (tracker, &text, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, group))
4299 return;
4300 }
4301
4302 static void
4303 info_sources_command (const char *args, int from_tty)
4304 {
4305 struct output_source_filename_data data;
4306
4307 if (!have_full_symbols () && !have_partial_symbols ())
4308 {
4309 error (_("No symbol table is loaded. Use the \"file\" command."));
4310 }
4311
4312 filename_seen_cache filenames_seen;
4313
4314 auto group = make_info_sources_options_def_group (&data.partial_match);
4315
4316 gdb::option::process_options
4317 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_ERROR, group);
4318
4319 if (args != NULL && *args != '\000')
4320 data.regexp = args;
4321
4322 data.filename_seen_cache = &filenames_seen;
4323 data.first = 1;
4324
4325 if (data.partial_match.dirname && data.partial_match.basename)
4326 error (_("You cannot give both -basename and -dirname to 'info sources'."));
4327 if ((data.partial_match.dirname || data.partial_match.basename)
4328 && data.regexp.empty ())
4329 error (_("Missing REGEXP for 'info sources'."));
4330
4331 if (data.regexp.empty ())
4332 data.c_regexp.reset ();
4333 else
4334 {
4335 int cflags = REG_NOSUB;
4336 #ifdef HAVE_CASE_INSENSITIVE_FILE_SYSTEM
4337 cflags |= REG_ICASE;
4338 #endif
4339 data.c_regexp.emplace (data.regexp.c_str (), cflags,
4340 _("Invalid regexp"));
4341 }
4342
4343 print_info_sources_header
4344 (_("Source files for which symbols have been read in:\n"), &data);
4345
4346 for (objfile *objfile : current_program_space->objfiles ())
4347 {
4348 for (compunit_symtab *cu : objfile->compunits ())
4349 {
4350 for (symtab *s : compunit_filetabs (cu))
4351 {
4352 const char *fullname = symtab_to_fullname (s);
4353
4354 output_source_filename (fullname, &data);
4355 }
4356 }
4357 }
4358 printf_filtered ("\n\n");
4359
4360 print_info_sources_header
4361 (_("Source files for which symbols will be read in on demand:\n"), &data);
4362
4363 filenames_seen.clear ();
4364 data.first = 1;
4365 map_symbol_filenames (output_partial_symbol_filename, &data,
4366 1 /*need_fullname*/);
4367 printf_filtered ("\n");
4368 }
4369
4370 /* Compare FILE against all the entries of FILENAMES. If BASENAMES is
4371 true compare only lbasename of FILENAMES. */
4372
4373 static bool
4374 file_matches (const char *file, const std::vector<const char *> &filenames,
4375 bool basenames)
4376 {
4377 if (filenames.empty ())
4378 return true;
4379
4380 for (const char *name : filenames)
4381 {
4382 name = (basenames ? lbasename (name) : name);
4383 if (compare_filenames_for_search (file, name))
4384 return true;
4385 }
4386
4387 return false;
4388 }
4389
4390 /* Helper function for std::sort on symbol_search objects. Can only sort
4391 symbols, not minimal symbols. */
4392
4393 int
4394 symbol_search::compare_search_syms (const symbol_search &sym_a,
4395 const symbol_search &sym_b)
4396 {
4397 int c;
4398
4399 c = FILENAME_CMP (symbol_symtab (sym_a.symbol)->filename,
4400 symbol_symtab (sym_b.symbol)->filename);
4401 if (c != 0)
4402 return c;
4403
4404 if (sym_a.block != sym_b.block)
4405 return sym_a.block - sym_b.block;
4406
4407 return strcmp (sym_a.symbol->print_name (), sym_b.symbol->print_name ());
4408 }
4409
4410 /* Returns true if the type_name of symbol_type of SYM matches TREG.
4411 If SYM has no symbol_type or symbol_name, returns false. */
4412
4413 bool
4414 treg_matches_sym_type_name (const compiled_regex &treg,
4415 const struct symbol *sym)
4416 {
4417 struct type *sym_type;
4418 std::string printed_sym_type_name;
4419
4420 if (symbol_lookup_debug > 1)
4421 {
4422 fprintf_unfiltered (gdb_stdlog,
4423 "treg_matches_sym_type_name\n sym %s\n",
4424 sym->natural_name ());
4425 }
4426
4427 sym_type = SYMBOL_TYPE (sym);
4428 if (sym_type == NULL)
4429 return false;
4430
4431 {
4432 scoped_switch_to_sym_language_if_auto l (sym);
4433
4434 printed_sym_type_name = type_to_string (sym_type);
4435 }
4436
4437
4438 if (symbol_lookup_debug > 1)
4439 {
4440 fprintf_unfiltered (gdb_stdlog,
4441 " sym_type_name %s\n",
4442 printed_sym_type_name.c_str ());
4443 }
4444
4445
4446 if (printed_sym_type_name.empty ())
4447 return false;
4448
4449 return treg.exec (printed_sym_type_name.c_str (), 0, NULL, 0) == 0;
4450 }
4451
4452 /* See symtab.h. */
4453
4454 bool
4455 global_symbol_searcher::is_suitable_msymbol
4456 (const enum search_domain kind, const minimal_symbol *msymbol)
4457 {
4458 switch (MSYMBOL_TYPE (msymbol))
4459 {
4460 case mst_data:
4461 case mst_bss:
4462 case mst_file_data:
4463 case mst_file_bss:
4464 return kind == VARIABLES_DOMAIN;
4465 case mst_text:
4466 case mst_file_text:
4467 case mst_solib_trampoline:
4468 case mst_text_gnu_ifunc:
4469 return kind == FUNCTIONS_DOMAIN;
4470 default:
4471 return false;
4472 }
4473 }
4474
4475 /* See symtab.h. */
4476
4477 bool
4478 global_symbol_searcher::expand_symtabs
4479 (objfile *objfile, const gdb::optional<compiled_regex> &preg) const
4480 {
4481 enum search_domain kind = m_kind;
4482 bool found_msymbol = false;
4483
4484 if (objfile->sf)
4485 objfile->sf->qf->expand_symtabs_matching
4486 (objfile,
4487 [&] (const char *filename, bool basenames)
4488 {
4489 return file_matches (filename, filenames, basenames);
4490 },
4491 lookup_name_info::match_any (),
4492 [&] (const char *symname)
4493 {
4494 return (!preg.has_value ()
4495 || preg->exec (symname, 0, NULL, 0) == 0);
4496 },
4497 NULL,
4498 kind);
4499
4500 /* Here, we search through the minimal symbol tables for functions and
4501 variables that match, and force their symbols to be read. This is in
4502 particular necessary for demangled variable names, which are no longer
4503 put into the partial symbol tables. The symbol will then be found
4504 during the scan of symtabs later.
4505
4506 For functions, find_pc_symtab should succeed if we have debug info for
4507 the function, for variables we have to call
4508 lookup_symbol_in_objfile_from_linkage_name to determine if the
4509 variable has debug info. If the lookup fails, set found_msymbol so
4510 that we will rescan to print any matching symbols without debug info.
4511 We only search the objfile the msymbol came from, we no longer search
4512 all objfiles. In large programs (1000s of shared libs) searching all
4513 objfiles is not worth the pain. */
4514 if (filenames.empty ()
4515 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
4516 {
4517 for (minimal_symbol *msymbol : objfile->msymbols ())
4518 {
4519 QUIT;
4520
4521 if (msymbol->created_by_gdb)
4522 continue;
4523
4524 if (is_suitable_msymbol (kind, msymbol))
4525 {
4526 if (!preg.has_value ()
4527 || preg->exec (msymbol->natural_name (), 0,
4528 NULL, 0) == 0)
4529 {
4530 /* An important side-effect of these lookup functions is
4531 to expand the symbol table if msymbol is found, later
4532 in the process we will add matching symbols or
4533 msymbols to the results list, and that requires that
4534 the symbols tables are expanded. */
4535 if (kind == FUNCTIONS_DOMAIN
4536 ? (find_pc_compunit_symtab
4537 (MSYMBOL_VALUE_ADDRESS (objfile, msymbol))
4538 == NULL)
4539 : (lookup_symbol_in_objfile_from_linkage_name
4540 (objfile, msymbol->linkage_name (),
4541 VAR_DOMAIN)
4542 .symbol == NULL))
4543 found_msymbol = true;
4544 }
4545 }
4546 }
4547 }
4548
4549 return found_msymbol;
4550 }
4551
4552 /* See symtab.h. */
4553
4554 bool
4555 global_symbol_searcher::add_matching_symbols
4556 (objfile *objfile,
4557 const gdb::optional<compiled_regex> &preg,
4558 const gdb::optional<compiled_regex> &treg,
4559 std::set<symbol_search> *result_set) const
4560 {
4561 enum search_domain kind = m_kind;
4562
4563 /* Add matching symbols (if not already present). */
4564 for (compunit_symtab *cust : objfile->compunits ())
4565 {
4566 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (cust);
4567
4568 for (block_enum block : { GLOBAL_BLOCK, STATIC_BLOCK })
4569 {
4570 struct block_iterator iter;
4571 struct symbol *sym;
4572 const struct block *b = BLOCKVECTOR_BLOCK (bv, block);
4573
4574 ALL_BLOCK_SYMBOLS (b, iter, sym)
4575 {
4576 struct symtab *real_symtab = symbol_symtab (sym);
4577
4578 QUIT;
4579
4580 /* Check first sole REAL_SYMTAB->FILENAME. It does
4581 not need to be a substring of symtab_to_fullname as
4582 it may contain "./" etc. */
4583 if ((file_matches (real_symtab->filename, filenames, false)
4584 || ((basenames_may_differ
4585 || file_matches (lbasename (real_symtab->filename),
4586 filenames, true))
4587 && file_matches (symtab_to_fullname (real_symtab),
4588 filenames, false)))
4589 && ((!preg.has_value ()
4590 || preg->exec (sym->natural_name (), 0,
4591 NULL, 0) == 0)
4592 && ((kind == VARIABLES_DOMAIN
4593 && SYMBOL_CLASS (sym) != LOC_TYPEDEF
4594 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
4595 && SYMBOL_CLASS (sym) != LOC_BLOCK
4596 /* LOC_CONST can be used for more than
4597 just enums, e.g., c++ static const
4598 members. We only want to skip enums
4599 here. */
4600 && !(SYMBOL_CLASS (sym) == LOC_CONST
4601 && (TYPE_CODE (SYMBOL_TYPE (sym))
4602 == TYPE_CODE_ENUM))
4603 && (!treg.has_value ()
4604 || treg_matches_sym_type_name (*treg, sym)))
4605 || (kind == FUNCTIONS_DOMAIN
4606 && SYMBOL_CLASS (sym) == LOC_BLOCK
4607 && (!treg.has_value ()
4608 || treg_matches_sym_type_name (*treg,
4609 sym)))
4610 || (kind == TYPES_DOMAIN
4611 && SYMBOL_CLASS (sym) == LOC_TYPEDEF
4612 && SYMBOL_DOMAIN (sym) != MODULE_DOMAIN)
4613 || (kind == MODULES_DOMAIN
4614 && SYMBOL_DOMAIN (sym) == MODULE_DOMAIN
4615 && SYMBOL_LINE (sym) != 0))))
4616 {
4617 if (result_set->size () < m_max_search_results)
4618 {
4619 /* Match, insert if not already in the results. */
4620 symbol_search ss (block, sym);
4621 if (result_set->find (ss) == result_set->end ())
4622 result_set->insert (ss);
4623 }
4624 else
4625 return false;
4626 }
4627 }
4628 }
4629 }
4630
4631 return true;
4632 }
4633
4634 /* See symtab.h. */
4635
4636 bool
4637 global_symbol_searcher::add_matching_msymbols
4638 (objfile *objfile, const gdb::optional<compiled_regex> &preg,
4639 std::vector<symbol_search> *results) const
4640 {
4641 enum search_domain kind = m_kind;
4642
4643 for (minimal_symbol *msymbol : objfile->msymbols ())
4644 {
4645 QUIT;
4646
4647 if (msymbol->created_by_gdb)
4648 continue;
4649
4650 if (is_suitable_msymbol (kind, msymbol))
4651 {
4652 if (!preg.has_value ()
4653 || preg->exec (msymbol->natural_name (), 0,
4654 NULL, 0) == 0)
4655 {
4656 /* For functions we can do a quick check of whether the
4657 symbol might be found via find_pc_symtab. */
4658 if (kind != FUNCTIONS_DOMAIN
4659 || (find_pc_compunit_symtab
4660 (MSYMBOL_VALUE_ADDRESS (objfile, msymbol))
4661 == NULL))
4662 {
4663 if (lookup_symbol_in_objfile_from_linkage_name
4664 (objfile, msymbol->linkage_name (),
4665 VAR_DOMAIN).symbol == NULL)
4666 {
4667 /* Matching msymbol, add it to the results list. */
4668 if (results->size () < m_max_search_results)
4669 results->emplace_back (GLOBAL_BLOCK, msymbol, objfile);
4670 else
4671 return false;
4672 }
4673 }
4674 }
4675 }
4676 }
4677
4678 return true;
4679 }
4680
4681 /* See symtab.h. */
4682
4683 std::vector<symbol_search>
4684 global_symbol_searcher::search () const
4685 {
4686 gdb::optional<compiled_regex> preg;
4687 gdb::optional<compiled_regex> treg;
4688
4689 gdb_assert (m_kind != ALL_DOMAIN);
4690
4691 if (m_symbol_name_regexp != NULL)
4692 {
4693 const char *symbol_name_regexp = m_symbol_name_regexp;
4694
4695 /* Make sure spacing is right for C++ operators.
4696 This is just a courtesy to make the matching less sensitive
4697 to how many spaces the user leaves between 'operator'
4698 and <TYPENAME> or <OPERATOR>. */
4699 const char *opend;
4700 const char *opname = operator_chars (symbol_name_regexp, &opend);
4701
4702 if (*opname)
4703 {
4704 int fix = -1; /* -1 means ok; otherwise number of
4705 spaces needed. */
4706
4707 if (isalpha (*opname) || *opname == '_' || *opname == '$')
4708 {
4709 /* There should 1 space between 'operator' and 'TYPENAME'. */
4710 if (opname[-1] != ' ' || opname[-2] == ' ')
4711 fix = 1;
4712 }
4713 else
4714 {
4715 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
4716 if (opname[-1] == ' ')
4717 fix = 0;
4718 }
4719 /* If wrong number of spaces, fix it. */
4720 if (fix >= 0)
4721 {
4722 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
4723
4724 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
4725 symbol_name_regexp = tmp;
4726 }
4727 }
4728
4729 int cflags = REG_NOSUB | (case_sensitivity == case_sensitive_off
4730 ? REG_ICASE : 0);
4731 preg.emplace (symbol_name_regexp, cflags,
4732 _("Invalid regexp"));
4733 }
4734
4735 if (m_symbol_type_regexp != NULL)
4736 {
4737 int cflags = REG_NOSUB | (case_sensitivity == case_sensitive_off
4738 ? REG_ICASE : 0);
4739 treg.emplace (m_symbol_type_regexp, cflags,
4740 _("Invalid regexp"));
4741 }
4742
4743 bool found_msymbol = false;
4744 std::set<symbol_search> result_set;
4745 for (objfile *objfile : current_program_space->objfiles ())
4746 {
4747 /* Expand symtabs within objfile that possibly contain matching
4748 symbols. */
4749 found_msymbol |= expand_symtabs (objfile, preg);
4750
4751 /* Find matching symbols within OBJFILE and add them in to the
4752 RESULT_SET set. Use a set here so that we can easily detect
4753 duplicates as we go, and can therefore track how many unique
4754 matches we have found so far. */
4755 if (!add_matching_symbols (objfile, preg, treg, &result_set))
4756 break;
4757 }
4758
4759 /* Convert the result set into a sorted result list, as std::set is
4760 defined to be sorted then no explicit call to std::sort is needed. */
4761 std::vector<symbol_search> result (result_set.begin (), result_set.end ());
4762
4763 /* If there are no debug symbols, then add matching minsyms. But if the
4764 user wants to see symbols matching a type regexp, then never give a
4765 minimal symbol, as we assume that a minimal symbol does not have a
4766 type. */
4767 if ((found_msymbol || (filenames.empty () && m_kind == VARIABLES_DOMAIN))
4768 && !m_exclude_minsyms
4769 && !treg.has_value ())
4770 {
4771 gdb_assert (m_kind == VARIABLES_DOMAIN || m_kind == FUNCTIONS_DOMAIN);
4772 for (objfile *objfile : current_program_space->objfiles ())
4773 if (!add_matching_msymbols (objfile, preg, &result))
4774 break;
4775 }
4776
4777 return result;
4778 }
4779
4780 /* See symtab.h. */
4781
4782 std::string
4783 symbol_to_info_string (struct symbol *sym, int block,
4784 enum search_domain kind)
4785 {
4786 std::string str;
4787
4788 gdb_assert (block == GLOBAL_BLOCK || block == STATIC_BLOCK);
4789
4790 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
4791 str += "static ";
4792
4793 /* Typedef that is not a C++ class. */
4794 if (kind == TYPES_DOMAIN
4795 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
4796 {
4797 string_file tmp_stream;
4798
4799 /* FIXME: For C (and C++) we end up with a difference in output here
4800 between how a typedef is printed, and non-typedefs are printed.
4801 The TYPEDEF_PRINT code places a ";" at the end in an attempt to
4802 appear C-like, while TYPE_PRINT doesn't.
4803
4804 For the struct printing case below, things are worse, we force
4805 printing of the ";" in this function, which is going to be wrong
4806 for languages that don't require a ";" between statements. */
4807 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_TYPEDEF)
4808 typedef_print (SYMBOL_TYPE (sym), sym, &tmp_stream);
4809 else
4810 type_print (SYMBOL_TYPE (sym), "", &tmp_stream, -1);
4811 str += tmp_stream.string ();
4812 }
4813 /* variable, func, or typedef-that-is-c++-class. */
4814 else if (kind < TYPES_DOMAIN
4815 || (kind == TYPES_DOMAIN
4816 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
4817 {
4818 string_file tmp_stream;
4819
4820 type_print (SYMBOL_TYPE (sym),
4821 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
4822 ? "" : sym->print_name ()),
4823 &tmp_stream, 0);
4824
4825 str += tmp_stream.string ();
4826 str += ";";
4827 }
4828 /* Printing of modules is currently done here, maybe at some future
4829 point we might want a language specific method to print the module
4830 symbol so that we can customise the output more. */
4831 else if (kind == MODULES_DOMAIN)
4832 str += sym->print_name ();
4833
4834 return str;
4835 }
4836
4837 /* Helper function for symbol info commands, for example 'info functions',
4838 'info variables', etc. KIND is the kind of symbol we searched for, and
4839 BLOCK is the type of block the symbols was found in, either GLOBAL_BLOCK
4840 or STATIC_BLOCK. SYM is the symbol we found. If LAST is not NULL,
4841 print file and line number information for the symbol as well. Skip
4842 printing the filename if it matches LAST. */
4843
4844 static void
4845 print_symbol_info (enum search_domain kind,
4846 struct symbol *sym,
4847 int block, const char *last)
4848 {
4849 scoped_switch_to_sym_language_if_auto l (sym);
4850 struct symtab *s = symbol_symtab (sym);
4851
4852 if (last != NULL)
4853 {
4854 const char *s_filename = symtab_to_filename_for_display (s);
4855
4856 if (filename_cmp (last, s_filename) != 0)
4857 {
4858 printf_filtered (_("\nFile %ps:\n"),
4859 styled_string (file_name_style.style (),
4860 s_filename));
4861 }
4862
4863 if (SYMBOL_LINE (sym) != 0)
4864 printf_filtered ("%d:\t", SYMBOL_LINE (sym));
4865 else
4866 puts_filtered ("\t");
4867 }
4868
4869 std::string str = symbol_to_info_string (sym, block, kind);
4870 printf_filtered ("%s\n", str.c_str ());
4871 }
4872
4873 /* This help function for symtab_symbol_info() prints information
4874 for non-debugging symbols to gdb_stdout. */
4875
4876 static void
4877 print_msymbol_info (struct bound_minimal_symbol msymbol)
4878 {
4879 struct gdbarch *gdbarch = get_objfile_arch (msymbol.objfile);
4880 char *tmp;
4881
4882 if (gdbarch_addr_bit (gdbarch) <= 32)
4883 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol)
4884 & (CORE_ADDR) 0xffffffff,
4885 8);
4886 else
4887 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol),
4888 16);
4889
4890 ui_file_style sym_style = (msymbol.minsym->text_p ()
4891 ? function_name_style.style ()
4892 : ui_file_style ());
4893
4894 printf_filtered (_("%ps %ps\n"),
4895 styled_string (address_style.style (), tmp),
4896 styled_string (sym_style, msymbol.minsym->print_name ()));
4897 }
4898
4899 /* This is the guts of the commands "info functions", "info types", and
4900 "info variables". It calls search_symbols to find all matches and then
4901 print_[m]symbol_info to print out some useful information about the
4902 matches. */
4903
4904 static void
4905 symtab_symbol_info (bool quiet, bool exclude_minsyms,
4906 const char *regexp, enum search_domain kind,
4907 const char *t_regexp, int from_tty)
4908 {
4909 static const char * const classnames[] =
4910 {"variable", "function", "type", "module"};
4911 const char *last_filename = "";
4912 int first = 1;
4913
4914 gdb_assert (kind != ALL_DOMAIN);
4915
4916 if (regexp != nullptr && *regexp == '\0')
4917 regexp = nullptr;
4918
4919 global_symbol_searcher spec (kind, regexp);
4920 spec.set_symbol_type_regexp (t_regexp);
4921 spec.set_exclude_minsyms (exclude_minsyms);
4922 std::vector<symbol_search> symbols = spec.search ();
4923
4924 if (!quiet)
4925 {
4926 if (regexp != NULL)
4927 {
4928 if (t_regexp != NULL)
4929 printf_filtered
4930 (_("All %ss matching regular expression \"%s\""
4931 " with type matching regular expression \"%s\":\n"),
4932 classnames[kind], regexp, t_regexp);
4933 else
4934 printf_filtered (_("All %ss matching regular expression \"%s\":\n"),
4935 classnames[kind], regexp);
4936 }
4937 else
4938 {
4939 if (t_regexp != NULL)
4940 printf_filtered
4941 (_("All defined %ss"
4942 " with type matching regular expression \"%s\" :\n"),
4943 classnames[kind], t_regexp);
4944 else
4945 printf_filtered (_("All defined %ss:\n"), classnames[kind]);
4946 }
4947 }
4948
4949 for (const symbol_search &p : symbols)
4950 {
4951 QUIT;
4952
4953 if (p.msymbol.minsym != NULL)
4954 {
4955 if (first)
4956 {
4957 if (!quiet)
4958 printf_filtered (_("\nNon-debugging symbols:\n"));
4959 first = 0;
4960 }
4961 print_msymbol_info (p.msymbol);
4962 }
4963 else
4964 {
4965 print_symbol_info (kind,
4966 p.symbol,
4967 p.block,
4968 last_filename);
4969 last_filename
4970 = symtab_to_filename_for_display (symbol_symtab (p.symbol));
4971 }
4972 }
4973 }
4974
4975 /* Structure to hold the values of the options used by the 'info variables'
4976 and 'info functions' commands. These correspond to the -q, -t, and -n
4977 options. */
4978
4979 struct info_print_options
4980 {
4981 bool quiet = false;
4982 bool exclude_minsyms = false;
4983 char *type_regexp = nullptr;
4984
4985 ~info_print_options ()
4986 {
4987 xfree (type_regexp);
4988 }
4989 };
4990
4991 /* The options used by the 'info variables' and 'info functions'
4992 commands. */
4993
4994 static const gdb::option::option_def info_print_options_defs[] = {
4995 gdb::option::boolean_option_def<info_print_options> {
4996 "q",
4997 [] (info_print_options *opt) { return &opt->quiet; },
4998 nullptr, /* show_cmd_cb */
4999 nullptr /* set_doc */
5000 },
5001
5002 gdb::option::boolean_option_def<info_print_options> {
5003 "n",
5004 [] (info_print_options *opt) { return &opt->exclude_minsyms; },
5005 nullptr, /* show_cmd_cb */
5006 nullptr /* set_doc */
5007 },
5008
5009 gdb::option::string_option_def<info_print_options> {
5010 "t",
5011 [] (info_print_options *opt) { return &opt->type_regexp; },
5012 nullptr, /* show_cmd_cb */
5013 nullptr /* set_doc */
5014 }
5015 };
5016
5017 /* Returns the option group used by 'info variables' and 'info
5018 functions'. */
5019
5020 static gdb::option::option_def_group
5021 make_info_print_options_def_group (info_print_options *opts)
5022 {
5023 return {{info_print_options_defs}, opts};
5024 }
5025
5026 /* Command completer for 'info variables' and 'info functions'. */
5027
5028 static void
5029 info_print_command_completer (struct cmd_list_element *ignore,
5030 completion_tracker &tracker,
5031 const char *text, const char * /* word */)
5032 {
5033 const auto group
5034 = make_info_print_options_def_group (nullptr);
5035 if (gdb::option::complete_options
5036 (tracker, &text, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, group))
5037 return;
5038
5039 const char *word = advance_to_expression_complete_word_point (tracker, text);
5040 symbol_completer (ignore, tracker, text, word);
5041 }
5042
5043 /* Implement the 'info variables' command. */
5044
5045 static void
5046 info_variables_command (const char *args, int from_tty)
5047 {
5048 info_print_options opts;
5049 auto grp = make_info_print_options_def_group (&opts);
5050 gdb::option::process_options
5051 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
5052 if (args != nullptr && *args == '\0')
5053 args = nullptr;
5054
5055 symtab_symbol_info (opts.quiet, opts.exclude_minsyms, args, VARIABLES_DOMAIN,
5056 opts.type_regexp, from_tty);
5057 }
5058
5059 /* Implement the 'info functions' command. */
5060
5061 static void
5062 info_functions_command (const char *args, int from_tty)
5063 {
5064 info_print_options opts;
5065 auto grp = make_info_print_options_def_group (&opts);
5066 gdb::option::process_options
5067 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
5068 if (args != nullptr && *args == '\0')
5069 args = nullptr;
5070
5071 symtab_symbol_info (opts.quiet, opts.exclude_minsyms, args,
5072 FUNCTIONS_DOMAIN, opts.type_regexp, from_tty);
5073 }
5074
5075 /* Holds the -q option for the 'info types' command. */
5076
5077 struct info_types_options
5078 {
5079 bool quiet = false;
5080 };
5081
5082 /* The options used by the 'info types' command. */
5083
5084 static const gdb::option::option_def info_types_options_defs[] = {
5085 gdb::option::boolean_option_def<info_types_options> {
5086 "q",
5087 [] (info_types_options *opt) { return &opt->quiet; },
5088 nullptr, /* show_cmd_cb */
5089 nullptr /* set_doc */
5090 }
5091 };
5092
5093 /* Returns the option group used by 'info types'. */
5094
5095 static gdb::option::option_def_group
5096 make_info_types_options_def_group (info_types_options *opts)
5097 {
5098 return {{info_types_options_defs}, opts};
5099 }
5100
5101 /* Implement the 'info types' command. */
5102
5103 static void
5104 info_types_command (const char *args, int from_tty)
5105 {
5106 info_types_options opts;
5107
5108 auto grp = make_info_types_options_def_group (&opts);
5109 gdb::option::process_options
5110 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
5111 if (args != nullptr && *args == '\0')
5112 args = nullptr;
5113 symtab_symbol_info (opts.quiet, false, args, TYPES_DOMAIN, NULL, from_tty);
5114 }
5115
5116 /* Command completer for 'info types' command. */
5117
5118 static void
5119 info_types_command_completer (struct cmd_list_element *ignore,
5120 completion_tracker &tracker,
5121 const char *text, const char * /* word */)
5122 {
5123 const auto group
5124 = make_info_types_options_def_group (nullptr);
5125 if (gdb::option::complete_options
5126 (tracker, &text, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, group))
5127 return;
5128
5129 const char *word = advance_to_expression_complete_word_point (tracker, text);
5130 symbol_completer (ignore, tracker, text, word);
5131 }
5132
5133 /* Implement the 'info modules' command. */
5134
5135 static void
5136 info_modules_command (const char *args, int from_tty)
5137 {
5138 info_types_options opts;
5139
5140 auto grp = make_info_types_options_def_group (&opts);
5141 gdb::option::process_options
5142 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
5143 if (args != nullptr && *args == '\0')
5144 args = nullptr;
5145 symtab_symbol_info (opts.quiet, true, args, MODULES_DOMAIN, NULL,
5146 from_tty);
5147 }
5148
5149 static void
5150 rbreak_command (const char *regexp, int from_tty)
5151 {
5152 std::string string;
5153 const char *file_name = nullptr;
5154
5155 if (regexp != nullptr)
5156 {
5157 const char *colon = strchr (regexp, ':');
5158
5159 if (colon && *(colon + 1) != ':')
5160 {
5161 int colon_index;
5162 char *local_name;
5163
5164 colon_index = colon - regexp;
5165 local_name = (char *) alloca (colon_index + 1);
5166 memcpy (local_name, regexp, colon_index);
5167 local_name[colon_index--] = 0;
5168 while (isspace (local_name[colon_index]))
5169 local_name[colon_index--] = 0;
5170 file_name = local_name;
5171 regexp = skip_spaces (colon + 1);
5172 }
5173 }
5174
5175 global_symbol_searcher spec (FUNCTIONS_DOMAIN, regexp);
5176 if (file_name != nullptr)
5177 spec.filenames.push_back (file_name);
5178 std::vector<symbol_search> symbols = spec.search ();
5179
5180 scoped_rbreak_breakpoints finalize;
5181 for (const symbol_search &p : symbols)
5182 {
5183 if (p.msymbol.minsym == NULL)
5184 {
5185 struct symtab *symtab = symbol_symtab (p.symbol);
5186 const char *fullname = symtab_to_fullname (symtab);
5187
5188 string = string_printf ("%s:'%s'", fullname,
5189 p.symbol->linkage_name ());
5190 break_command (&string[0], from_tty);
5191 print_symbol_info (FUNCTIONS_DOMAIN, p.symbol, p.block, NULL);
5192 }
5193 else
5194 {
5195 string = string_printf ("'%s'",
5196 p.msymbol.minsym->linkage_name ());
5197
5198 break_command (&string[0], from_tty);
5199 printf_filtered ("<function, no debug info> %s;\n",
5200 p.msymbol.minsym->print_name ());
5201 }
5202 }
5203 }
5204 \f
5205
5206 /* Evaluate if SYMNAME matches LOOKUP_NAME. */
5207
5208 static int
5209 compare_symbol_name (const char *symbol_name, language symbol_language,
5210 const lookup_name_info &lookup_name,
5211 completion_match_result &match_res)
5212 {
5213 const language_defn *lang = language_def (symbol_language);
5214
5215 symbol_name_matcher_ftype *name_match
5216 = get_symbol_name_matcher (lang, lookup_name);
5217
5218 return name_match (symbol_name, lookup_name, &match_res);
5219 }
5220
5221 /* See symtab.h. */
5222
5223 void
5224 completion_list_add_name (completion_tracker &tracker,
5225 language symbol_language,
5226 const char *symname,
5227 const lookup_name_info &lookup_name,
5228 const char *text, const char *word)
5229 {
5230 completion_match_result &match_res
5231 = tracker.reset_completion_match_result ();
5232
5233 /* Clip symbols that cannot match. */
5234 if (!compare_symbol_name (symname, symbol_language, lookup_name, match_res))
5235 return;
5236
5237 /* Refresh SYMNAME from the match string. It's potentially
5238 different depending on language. (E.g., on Ada, the match may be
5239 the encoded symbol name wrapped in "<>"). */
5240 symname = match_res.match.match ();
5241 gdb_assert (symname != NULL);
5242
5243 /* We have a match for a completion, so add SYMNAME to the current list
5244 of matches. Note that the name is moved to freshly malloc'd space. */
5245
5246 {
5247 gdb::unique_xmalloc_ptr<char> completion
5248 = make_completion_match_str (symname, text, word);
5249
5250 /* Here we pass the match-for-lcd object to add_completion. Some
5251 languages match the user text against substrings of symbol
5252 names in some cases. E.g., in C++, "b push_ba" completes to
5253 "std::vector::push_back", "std::string::push_back", etc., and
5254 in this case we want the completion lowest common denominator
5255 to be "push_back" instead of "std::". */
5256 tracker.add_completion (std::move (completion),
5257 &match_res.match_for_lcd, text, word);
5258 }
5259 }
5260
5261 /* completion_list_add_name wrapper for struct symbol. */
5262
5263 static void
5264 completion_list_add_symbol (completion_tracker &tracker,
5265 symbol *sym,
5266 const lookup_name_info &lookup_name,
5267 const char *text, const char *word)
5268 {
5269 completion_list_add_name (tracker, sym->language (),
5270 sym->natural_name (),
5271 lookup_name, text, word);
5272 }
5273
5274 /* completion_list_add_name wrapper for struct minimal_symbol. */
5275
5276 static void
5277 completion_list_add_msymbol (completion_tracker &tracker,
5278 minimal_symbol *sym,
5279 const lookup_name_info &lookup_name,
5280 const char *text, const char *word)
5281 {
5282 completion_list_add_name (tracker, sym->language (),
5283 sym->natural_name (),
5284 lookup_name, text, word);
5285 }
5286
5287
5288 /* ObjC: In case we are completing on a selector, look as the msymbol
5289 again and feed all the selectors into the mill. */
5290
5291 static void
5292 completion_list_objc_symbol (completion_tracker &tracker,
5293 struct minimal_symbol *msymbol,
5294 const lookup_name_info &lookup_name,
5295 const char *text, const char *word)
5296 {
5297 static char *tmp = NULL;
5298 static unsigned int tmplen = 0;
5299
5300 const char *method, *category, *selector;
5301 char *tmp2 = NULL;
5302
5303 method = msymbol->natural_name ();
5304
5305 /* Is it a method? */
5306 if ((method[0] != '-') && (method[0] != '+'))
5307 return;
5308
5309 if (text[0] == '[')
5310 /* Complete on shortened method method. */
5311 completion_list_add_name (tracker, language_objc,
5312 method + 1,
5313 lookup_name,
5314 text, word);
5315
5316 while ((strlen (method) + 1) >= tmplen)
5317 {
5318 if (tmplen == 0)
5319 tmplen = 1024;
5320 else
5321 tmplen *= 2;
5322 tmp = (char *) xrealloc (tmp, tmplen);
5323 }
5324 selector = strchr (method, ' ');
5325 if (selector != NULL)
5326 selector++;
5327
5328 category = strchr (method, '(');
5329
5330 if ((category != NULL) && (selector != NULL))
5331 {
5332 memcpy (tmp, method, (category - method));
5333 tmp[category - method] = ' ';
5334 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
5335 completion_list_add_name (tracker, language_objc, tmp,
5336 lookup_name, text, word);
5337 if (text[0] == '[')
5338 completion_list_add_name (tracker, language_objc, tmp + 1,
5339 lookup_name, text, word);
5340 }
5341
5342 if (selector != NULL)
5343 {
5344 /* Complete on selector only. */
5345 strcpy (tmp, selector);
5346 tmp2 = strchr (tmp, ']');
5347 if (tmp2 != NULL)
5348 *tmp2 = '\0';
5349
5350 completion_list_add_name (tracker, language_objc, tmp,
5351 lookup_name, text, word);
5352 }
5353 }
5354
5355 /* Break the non-quoted text based on the characters which are in
5356 symbols. FIXME: This should probably be language-specific. */
5357
5358 static const char *
5359 language_search_unquoted_string (const char *text, const char *p)
5360 {
5361 for (; p > text; --p)
5362 {
5363 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
5364 continue;
5365 else
5366 {
5367 if ((current_language->la_language == language_objc))
5368 {
5369 if (p[-1] == ':') /* Might be part of a method name. */
5370 continue;
5371 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
5372 p -= 2; /* Beginning of a method name. */
5373 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
5374 { /* Might be part of a method name. */
5375 const char *t = p;
5376
5377 /* Seeing a ' ' or a '(' is not conclusive evidence
5378 that we are in the middle of a method name. However,
5379 finding "-[" or "+[" should be pretty un-ambiguous.
5380 Unfortunately we have to find it now to decide. */
5381
5382 while (t > text)
5383 if (isalnum (t[-1]) || t[-1] == '_' ||
5384 t[-1] == ' ' || t[-1] == ':' ||
5385 t[-1] == '(' || t[-1] == ')')
5386 --t;
5387 else
5388 break;
5389
5390 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
5391 p = t - 2; /* Method name detected. */
5392 /* Else we leave with p unchanged. */
5393 }
5394 }
5395 break;
5396 }
5397 }
5398 return p;
5399 }
5400
5401 static void
5402 completion_list_add_fields (completion_tracker &tracker,
5403 struct symbol *sym,
5404 const lookup_name_info &lookup_name,
5405 const char *text, const char *word)
5406 {
5407 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5408 {
5409 struct type *t = SYMBOL_TYPE (sym);
5410 enum type_code c = TYPE_CODE (t);
5411 int j;
5412
5413 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
5414 for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++)
5415 if (TYPE_FIELD_NAME (t, j))
5416 completion_list_add_name (tracker, sym->language (),
5417 TYPE_FIELD_NAME (t, j),
5418 lookup_name, text, word);
5419 }
5420 }
5421
5422 /* See symtab.h. */
5423
5424 bool
5425 symbol_is_function_or_method (symbol *sym)
5426 {
5427 switch (TYPE_CODE (SYMBOL_TYPE (sym)))
5428 {
5429 case TYPE_CODE_FUNC:
5430 case TYPE_CODE_METHOD:
5431 return true;
5432 default:
5433 return false;
5434 }
5435 }
5436
5437 /* See symtab.h. */
5438
5439 bool
5440 symbol_is_function_or_method (minimal_symbol *msymbol)
5441 {
5442 switch (MSYMBOL_TYPE (msymbol))
5443 {
5444 case mst_text:
5445 case mst_text_gnu_ifunc:
5446 case mst_solib_trampoline:
5447 case mst_file_text:
5448 return true;
5449 default:
5450 return false;
5451 }
5452 }
5453
5454 /* See symtab.h. */
5455
5456 bound_minimal_symbol
5457 find_gnu_ifunc (const symbol *sym)
5458 {
5459 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
5460 return {};
5461
5462 lookup_name_info lookup_name (sym->search_name (),
5463 symbol_name_match_type::SEARCH_NAME);
5464 struct objfile *objfile = symbol_objfile (sym);
5465
5466 CORE_ADDR address = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym));
5467 minimal_symbol *ifunc = NULL;
5468
5469 iterate_over_minimal_symbols (objfile, lookup_name,
5470 [&] (minimal_symbol *minsym)
5471 {
5472 if (MSYMBOL_TYPE (minsym) == mst_text_gnu_ifunc
5473 || MSYMBOL_TYPE (minsym) == mst_data_gnu_ifunc)
5474 {
5475 CORE_ADDR msym_addr = MSYMBOL_VALUE_ADDRESS (objfile, minsym);
5476 if (MSYMBOL_TYPE (minsym) == mst_data_gnu_ifunc)
5477 {
5478 struct gdbarch *gdbarch = get_objfile_arch (objfile);
5479 msym_addr
5480 = gdbarch_convert_from_func_ptr_addr (gdbarch,
5481 msym_addr,
5482 current_top_target ());
5483 }
5484 if (msym_addr == address)
5485 {
5486 ifunc = minsym;
5487 return true;
5488 }
5489 }
5490 return false;
5491 });
5492
5493 if (ifunc != NULL)
5494 return {ifunc, objfile};
5495 return {};
5496 }
5497
5498 /* Add matching symbols from SYMTAB to the current completion list. */
5499
5500 static void
5501 add_symtab_completions (struct compunit_symtab *cust,
5502 completion_tracker &tracker,
5503 complete_symbol_mode mode,
5504 const lookup_name_info &lookup_name,
5505 const char *text, const char *word,
5506 enum type_code code)
5507 {
5508 struct symbol *sym;
5509 const struct block *b;
5510 struct block_iterator iter;
5511 int i;
5512
5513 if (cust == NULL)
5514 return;
5515
5516 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
5517 {
5518 QUIT;
5519 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust), i);
5520 ALL_BLOCK_SYMBOLS (b, iter, sym)
5521 {
5522 if (completion_skip_symbol (mode, sym))
5523 continue;
5524
5525 if (code == TYPE_CODE_UNDEF
5526 || (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
5527 && TYPE_CODE (SYMBOL_TYPE (sym)) == code))
5528 completion_list_add_symbol (tracker, sym,
5529 lookup_name,
5530 text, word);
5531 }
5532 }
5533 }
5534
5535 void
5536 default_collect_symbol_completion_matches_break_on
5537 (completion_tracker &tracker, complete_symbol_mode mode,
5538 symbol_name_match_type name_match_type,
5539 const char *text, const char *word,
5540 const char *break_on, enum type_code code)
5541 {
5542 /* Problem: All of the symbols have to be copied because readline
5543 frees them. I'm not going to worry about this; hopefully there
5544 won't be that many. */
5545
5546 struct symbol *sym;
5547 const struct block *b;
5548 const struct block *surrounding_static_block, *surrounding_global_block;
5549 struct block_iterator iter;
5550 /* The symbol we are completing on. Points in same buffer as text. */
5551 const char *sym_text;
5552
5553 /* Now look for the symbol we are supposed to complete on. */
5554 if (mode == complete_symbol_mode::LINESPEC)
5555 sym_text = text;
5556 else
5557 {
5558 const char *p;
5559 char quote_found;
5560 const char *quote_pos = NULL;
5561
5562 /* First see if this is a quoted string. */
5563 quote_found = '\0';
5564 for (p = text; *p != '\0'; ++p)
5565 {
5566 if (quote_found != '\0')
5567 {
5568 if (*p == quote_found)
5569 /* Found close quote. */
5570 quote_found = '\0';
5571 else if (*p == '\\' && p[1] == quote_found)
5572 /* A backslash followed by the quote character
5573 doesn't end the string. */
5574 ++p;
5575 }
5576 else if (*p == '\'' || *p == '"')
5577 {
5578 quote_found = *p;
5579 quote_pos = p;
5580 }
5581 }
5582 if (quote_found == '\'')
5583 /* A string within single quotes can be a symbol, so complete on it. */
5584 sym_text = quote_pos + 1;
5585 else if (quote_found == '"')
5586 /* A double-quoted string is never a symbol, nor does it make sense
5587 to complete it any other way. */
5588 {
5589 return;
5590 }
5591 else
5592 {
5593 /* It is not a quoted string. Break it based on the characters
5594 which are in symbols. */
5595 while (p > text)
5596 {
5597 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0'
5598 || p[-1] == ':' || strchr (break_on, p[-1]) != NULL)
5599 --p;
5600 else
5601 break;
5602 }
5603 sym_text = p;
5604 }
5605 }
5606
5607 lookup_name_info lookup_name (sym_text, name_match_type, true);
5608
5609 /* At this point scan through the misc symbol vectors and add each
5610 symbol you find to the list. Eventually we want to ignore
5611 anything that isn't a text symbol (everything else will be
5612 handled by the psymtab code below). */
5613
5614 if (code == TYPE_CODE_UNDEF)
5615 {
5616 for (objfile *objfile : current_program_space->objfiles ())
5617 {
5618 for (minimal_symbol *msymbol : objfile->msymbols ())
5619 {
5620 QUIT;
5621
5622 if (completion_skip_symbol (mode, msymbol))
5623 continue;
5624
5625 completion_list_add_msymbol (tracker, msymbol, lookup_name,
5626 sym_text, word);
5627
5628 completion_list_objc_symbol (tracker, msymbol, lookup_name,
5629 sym_text, word);
5630 }
5631 }
5632 }
5633
5634 /* Add completions for all currently loaded symbol tables. */
5635 for (objfile *objfile : current_program_space->objfiles ())
5636 {
5637 for (compunit_symtab *cust : objfile->compunits ())
5638 add_symtab_completions (cust, tracker, mode, lookup_name,
5639 sym_text, word, code);
5640 }
5641
5642 /* Look through the partial symtabs for all symbols which begin by
5643 matching SYM_TEXT. Expand all CUs that you find to the list. */
5644 expand_symtabs_matching (NULL,
5645 lookup_name,
5646 NULL,
5647 [&] (compunit_symtab *symtab) /* expansion notify */
5648 {
5649 add_symtab_completions (symtab,
5650 tracker, mode, lookup_name,
5651 sym_text, word, code);
5652 },
5653 ALL_DOMAIN);
5654
5655 /* Search upwards from currently selected frame (so that we can
5656 complete on local vars). Also catch fields of types defined in
5657 this places which match our text string. Only complete on types
5658 visible from current context. */
5659
5660 b = get_selected_block (0);
5661 surrounding_static_block = block_static_block (b);
5662 surrounding_global_block = block_global_block (b);
5663 if (surrounding_static_block != NULL)
5664 while (b != surrounding_static_block)
5665 {
5666 QUIT;
5667
5668 ALL_BLOCK_SYMBOLS (b, iter, sym)
5669 {
5670 if (code == TYPE_CODE_UNDEF)
5671 {
5672 completion_list_add_symbol (tracker, sym, lookup_name,
5673 sym_text, word);
5674 completion_list_add_fields (tracker, sym, lookup_name,
5675 sym_text, word);
5676 }
5677 else if (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
5678 && TYPE_CODE (SYMBOL_TYPE (sym)) == code)
5679 completion_list_add_symbol (tracker, sym, lookup_name,
5680 sym_text, word);
5681 }
5682
5683 /* Stop when we encounter an enclosing function. Do not stop for
5684 non-inlined functions - the locals of the enclosing function
5685 are in scope for a nested function. */
5686 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
5687 break;
5688 b = BLOCK_SUPERBLOCK (b);
5689 }
5690
5691 /* Add fields from the file's types; symbols will be added below. */
5692
5693 if (code == TYPE_CODE_UNDEF)
5694 {
5695 if (surrounding_static_block != NULL)
5696 ALL_BLOCK_SYMBOLS (surrounding_static_block, iter, sym)
5697 completion_list_add_fields (tracker, sym, lookup_name,
5698 sym_text, word);
5699
5700 if (surrounding_global_block != NULL)
5701 ALL_BLOCK_SYMBOLS (surrounding_global_block, iter, sym)
5702 completion_list_add_fields (tracker, sym, lookup_name,
5703 sym_text, word);
5704 }
5705
5706 /* Skip macros if we are completing a struct tag -- arguable but
5707 usually what is expected. */
5708 if (current_language->la_macro_expansion == macro_expansion_c
5709 && code == TYPE_CODE_UNDEF)
5710 {
5711 gdb::unique_xmalloc_ptr<struct macro_scope> scope;
5712
5713 /* This adds a macro's name to the current completion list. */
5714 auto add_macro_name = [&] (const char *macro_name,
5715 const macro_definition *,
5716 macro_source_file *,
5717 int)
5718 {
5719 completion_list_add_name (tracker, language_c, macro_name,
5720 lookup_name, sym_text, word);
5721 };
5722
5723 /* Add any macros visible in the default scope. Note that this
5724 may yield the occasional wrong result, because an expression
5725 might be evaluated in a scope other than the default. For
5726 example, if the user types "break file:line if <TAB>", the
5727 resulting expression will be evaluated at "file:line" -- but
5728 at there does not seem to be a way to detect this at
5729 completion time. */
5730 scope = default_macro_scope ();
5731 if (scope)
5732 macro_for_each_in_scope (scope->file, scope->line,
5733 add_macro_name);
5734
5735 /* User-defined macros are always visible. */
5736 macro_for_each (macro_user_macros, add_macro_name);
5737 }
5738 }
5739
5740 void
5741 default_collect_symbol_completion_matches (completion_tracker &tracker,
5742 complete_symbol_mode mode,
5743 symbol_name_match_type name_match_type,
5744 const char *text, const char *word,
5745 enum type_code code)
5746 {
5747 return default_collect_symbol_completion_matches_break_on (tracker, mode,
5748 name_match_type,
5749 text, word, "",
5750 code);
5751 }
5752
5753 /* Collect all symbols (regardless of class) which begin by matching
5754 TEXT. */
5755
5756 void
5757 collect_symbol_completion_matches (completion_tracker &tracker,
5758 complete_symbol_mode mode,
5759 symbol_name_match_type name_match_type,
5760 const char *text, const char *word)
5761 {
5762 current_language->la_collect_symbol_completion_matches (tracker, mode,
5763 name_match_type,
5764 text, word,
5765 TYPE_CODE_UNDEF);
5766 }
5767
5768 /* Like collect_symbol_completion_matches, but only collect
5769 STRUCT_DOMAIN symbols whose type code is CODE. */
5770
5771 void
5772 collect_symbol_completion_matches_type (completion_tracker &tracker,
5773 const char *text, const char *word,
5774 enum type_code code)
5775 {
5776 complete_symbol_mode mode = complete_symbol_mode::EXPRESSION;
5777 symbol_name_match_type name_match_type = symbol_name_match_type::EXPRESSION;
5778
5779 gdb_assert (code == TYPE_CODE_UNION
5780 || code == TYPE_CODE_STRUCT
5781 || code == TYPE_CODE_ENUM);
5782 current_language->la_collect_symbol_completion_matches (tracker, mode,
5783 name_match_type,
5784 text, word, code);
5785 }
5786
5787 /* Like collect_symbol_completion_matches, but collects a list of
5788 symbols defined in all source files named SRCFILE. */
5789
5790 void
5791 collect_file_symbol_completion_matches (completion_tracker &tracker,
5792 complete_symbol_mode mode,
5793 symbol_name_match_type name_match_type,
5794 const char *text, const char *word,
5795 const char *srcfile)
5796 {
5797 /* The symbol we are completing on. Points in same buffer as text. */
5798 const char *sym_text;
5799
5800 /* Now look for the symbol we are supposed to complete on.
5801 FIXME: This should be language-specific. */
5802 if (mode == complete_symbol_mode::LINESPEC)
5803 sym_text = text;
5804 else
5805 {
5806 const char *p;
5807 char quote_found;
5808 const char *quote_pos = NULL;
5809
5810 /* First see if this is a quoted string. */
5811 quote_found = '\0';
5812 for (p = text; *p != '\0'; ++p)
5813 {
5814 if (quote_found != '\0')
5815 {
5816 if (*p == quote_found)
5817 /* Found close quote. */
5818 quote_found = '\0';
5819 else if (*p == '\\' && p[1] == quote_found)
5820 /* A backslash followed by the quote character
5821 doesn't end the string. */
5822 ++p;
5823 }
5824 else if (*p == '\'' || *p == '"')
5825 {
5826 quote_found = *p;
5827 quote_pos = p;
5828 }
5829 }
5830 if (quote_found == '\'')
5831 /* A string within single quotes can be a symbol, so complete on it. */
5832 sym_text = quote_pos + 1;
5833 else if (quote_found == '"')
5834 /* A double-quoted string is never a symbol, nor does it make sense
5835 to complete it any other way. */
5836 {
5837 return;
5838 }
5839 else
5840 {
5841 /* Not a quoted string. */
5842 sym_text = language_search_unquoted_string (text, p);
5843 }
5844 }
5845
5846 lookup_name_info lookup_name (sym_text, name_match_type, true);
5847
5848 /* Go through symtabs for SRCFILE and check the externs and statics
5849 for symbols which match. */
5850 iterate_over_symtabs (srcfile, [&] (symtab *s)
5851 {
5852 add_symtab_completions (SYMTAB_COMPUNIT (s),
5853 tracker, mode, lookup_name,
5854 sym_text, word, TYPE_CODE_UNDEF);
5855 return false;
5856 });
5857 }
5858
5859 /* A helper function for make_source_files_completion_list. It adds
5860 another file name to a list of possible completions, growing the
5861 list as necessary. */
5862
5863 static void
5864 add_filename_to_list (const char *fname, const char *text, const char *word,
5865 completion_list *list)
5866 {
5867 list->emplace_back (make_completion_match_str (fname, text, word));
5868 }
5869
5870 static int
5871 not_interesting_fname (const char *fname)
5872 {
5873 static const char *illegal_aliens[] = {
5874 "_globals_", /* inserted by coff_symtab_read */
5875 NULL
5876 };
5877 int i;
5878
5879 for (i = 0; illegal_aliens[i]; i++)
5880 {
5881 if (filename_cmp (fname, illegal_aliens[i]) == 0)
5882 return 1;
5883 }
5884 return 0;
5885 }
5886
5887 /* An object of this type is passed as the user_data argument to
5888 map_partial_symbol_filenames. */
5889 struct add_partial_filename_data
5890 {
5891 struct filename_seen_cache *filename_seen_cache;
5892 const char *text;
5893 const char *word;
5894 int text_len;
5895 completion_list *list;
5896 };
5897
5898 /* A callback for map_partial_symbol_filenames. */
5899
5900 static void
5901 maybe_add_partial_symtab_filename (const char *filename, const char *fullname,
5902 void *user_data)
5903 {
5904 struct add_partial_filename_data *data
5905 = (struct add_partial_filename_data *) user_data;
5906
5907 if (not_interesting_fname (filename))
5908 return;
5909 if (!data->filename_seen_cache->seen (filename)
5910 && filename_ncmp (filename, data->text, data->text_len) == 0)
5911 {
5912 /* This file matches for a completion; add it to the
5913 current list of matches. */
5914 add_filename_to_list (filename, data->text, data->word, data->list);
5915 }
5916 else
5917 {
5918 const char *base_name = lbasename (filename);
5919
5920 if (base_name != filename
5921 && !data->filename_seen_cache->seen (base_name)
5922 && filename_ncmp (base_name, data->text, data->text_len) == 0)
5923 add_filename_to_list (base_name, data->text, data->word, data->list);
5924 }
5925 }
5926
5927 /* Return a list of all source files whose names begin with matching
5928 TEXT. The file names are looked up in the symbol tables of this
5929 program. */
5930
5931 completion_list
5932 make_source_files_completion_list (const char *text, const char *word)
5933 {
5934 size_t text_len = strlen (text);
5935 completion_list list;
5936 const char *base_name;
5937 struct add_partial_filename_data datum;
5938
5939 if (!have_full_symbols () && !have_partial_symbols ())
5940 return list;
5941
5942 filename_seen_cache filenames_seen;
5943
5944 for (objfile *objfile : current_program_space->objfiles ())
5945 {
5946 for (compunit_symtab *cu : objfile->compunits ())
5947 {
5948 for (symtab *s : compunit_filetabs (cu))
5949 {
5950 if (not_interesting_fname (s->filename))
5951 continue;
5952 if (!filenames_seen.seen (s->filename)
5953 && filename_ncmp (s->filename, text, text_len) == 0)
5954 {
5955 /* This file matches for a completion; add it to the current
5956 list of matches. */
5957 add_filename_to_list (s->filename, text, word, &list);
5958 }
5959 else
5960 {
5961 /* NOTE: We allow the user to type a base name when the
5962 debug info records leading directories, but not the other
5963 way around. This is what subroutines of breakpoint
5964 command do when they parse file names. */
5965 base_name = lbasename (s->filename);
5966 if (base_name != s->filename
5967 && !filenames_seen.seen (base_name)
5968 && filename_ncmp (base_name, text, text_len) == 0)
5969 add_filename_to_list (base_name, text, word, &list);
5970 }
5971 }
5972 }
5973 }
5974
5975 datum.filename_seen_cache = &filenames_seen;
5976 datum.text = text;
5977 datum.word = word;
5978 datum.text_len = text_len;
5979 datum.list = &list;
5980 map_symbol_filenames (maybe_add_partial_symtab_filename, &datum,
5981 0 /*need_fullname*/);
5982
5983 return list;
5984 }
5985 \f
5986 /* Track MAIN */
5987
5988 /* Return the "main_info" object for the current program space. If
5989 the object has not yet been created, create it and fill in some
5990 default values. */
5991
5992 static struct main_info *
5993 get_main_info (void)
5994 {
5995 struct main_info *info = main_progspace_key.get (current_program_space);
5996
5997 if (info == NULL)
5998 {
5999 /* It may seem strange to store the main name in the progspace
6000 and also in whatever objfile happens to see a main name in
6001 its debug info. The reason for this is mainly historical:
6002 gdb returned "main" as the name even if no function named
6003 "main" was defined the program; and this approach lets us
6004 keep compatibility. */
6005 info = main_progspace_key.emplace (current_program_space);
6006 }
6007
6008 return info;
6009 }
6010
6011 static void
6012 set_main_name (const char *name, enum language lang)
6013 {
6014 struct main_info *info = get_main_info ();
6015
6016 if (info->name_of_main != NULL)
6017 {
6018 xfree (info->name_of_main);
6019 info->name_of_main = NULL;
6020 info->language_of_main = language_unknown;
6021 }
6022 if (name != NULL)
6023 {
6024 info->name_of_main = xstrdup (name);
6025 info->language_of_main = lang;
6026 }
6027 }
6028
6029 /* Deduce the name of the main procedure, and set NAME_OF_MAIN
6030 accordingly. */
6031
6032 static void
6033 find_main_name (void)
6034 {
6035 const char *new_main_name;
6036
6037 /* First check the objfiles to see whether a debuginfo reader has
6038 picked up the appropriate main name. Historically the main name
6039 was found in a more or less random way; this approach instead
6040 relies on the order of objfile creation -- which still isn't
6041 guaranteed to get the correct answer, but is just probably more
6042 accurate. */
6043 for (objfile *objfile : current_program_space->objfiles ())
6044 {
6045 if (objfile->per_bfd->name_of_main != NULL)
6046 {
6047 set_main_name (objfile->per_bfd->name_of_main,
6048 objfile->per_bfd->language_of_main);
6049 return;
6050 }
6051 }
6052
6053 /* Try to see if the main procedure is in Ada. */
6054 /* FIXME: brobecker/2005-03-07: Another way of doing this would
6055 be to add a new method in the language vector, and call this
6056 method for each language until one of them returns a non-empty
6057 name. This would allow us to remove this hard-coded call to
6058 an Ada function. It is not clear that this is a better approach
6059 at this point, because all methods need to be written in a way
6060 such that false positives never be returned. For instance, it is
6061 important that a method does not return a wrong name for the main
6062 procedure if the main procedure is actually written in a different
6063 language. It is easy to guaranty this with Ada, since we use a
6064 special symbol generated only when the main in Ada to find the name
6065 of the main procedure. It is difficult however to see how this can
6066 be guarantied for languages such as C, for instance. This suggests
6067 that order of call for these methods becomes important, which means
6068 a more complicated approach. */
6069 new_main_name = ada_main_name ();
6070 if (new_main_name != NULL)
6071 {
6072 set_main_name (new_main_name, language_ada);
6073 return;
6074 }
6075
6076 new_main_name = d_main_name ();
6077 if (new_main_name != NULL)
6078 {
6079 set_main_name (new_main_name, language_d);
6080 return;
6081 }
6082
6083 new_main_name = go_main_name ();
6084 if (new_main_name != NULL)
6085 {
6086 set_main_name (new_main_name, language_go);
6087 return;
6088 }
6089
6090 new_main_name = pascal_main_name ();
6091 if (new_main_name != NULL)
6092 {
6093 set_main_name (new_main_name, language_pascal);
6094 return;
6095 }
6096
6097 /* The languages above didn't identify the name of the main procedure.
6098 Fallback to "main". */
6099 set_main_name ("main", language_unknown);
6100 }
6101
6102 /* See symtab.h. */
6103
6104 const char *
6105 main_name ()
6106 {
6107 struct main_info *info = get_main_info ();
6108
6109 if (info->name_of_main == NULL)
6110 find_main_name ();
6111
6112 return info->name_of_main;
6113 }
6114
6115 /* Return the language of the main function. If it is not known,
6116 return language_unknown. */
6117
6118 enum language
6119 main_language (void)
6120 {
6121 struct main_info *info = get_main_info ();
6122
6123 if (info->name_of_main == NULL)
6124 find_main_name ();
6125
6126 return info->language_of_main;
6127 }
6128
6129 /* Handle ``executable_changed'' events for the symtab module. */
6130
6131 static void
6132 symtab_observer_executable_changed (void)
6133 {
6134 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
6135 set_main_name (NULL, language_unknown);
6136 }
6137
6138 /* Return 1 if the supplied producer string matches the ARM RealView
6139 compiler (armcc). */
6140
6141 bool
6142 producer_is_realview (const char *producer)
6143 {
6144 static const char *const arm_idents[] = {
6145 "ARM C Compiler, ADS",
6146 "Thumb C Compiler, ADS",
6147 "ARM C++ Compiler, ADS",
6148 "Thumb C++ Compiler, ADS",
6149 "ARM/Thumb C/C++ Compiler, RVCT",
6150 "ARM C/C++ Compiler, RVCT"
6151 };
6152 int i;
6153
6154 if (producer == NULL)
6155 return false;
6156
6157 for (i = 0; i < ARRAY_SIZE (arm_idents); i++)
6158 if (startswith (producer, arm_idents[i]))
6159 return true;
6160
6161 return false;
6162 }
6163
6164 \f
6165
6166 /* The next index to hand out in response to a registration request. */
6167
6168 static int next_aclass_value = LOC_FINAL_VALUE;
6169
6170 /* The maximum number of "aclass" registrations we support. This is
6171 constant for convenience. */
6172 #define MAX_SYMBOL_IMPLS (LOC_FINAL_VALUE + 10)
6173
6174 /* The objects representing the various "aclass" values. The elements
6175 from 0 up to LOC_FINAL_VALUE-1 represent themselves, and subsequent
6176 elements are those registered at gdb initialization time. */
6177
6178 static struct symbol_impl symbol_impl[MAX_SYMBOL_IMPLS];
6179
6180 /* The globally visible pointer. This is separate from 'symbol_impl'
6181 so that it can be const. */
6182
6183 const struct symbol_impl *symbol_impls = &symbol_impl[0];
6184
6185 /* Make sure we saved enough room in struct symbol. */
6186
6187 gdb_static_assert (MAX_SYMBOL_IMPLS <= (1 << SYMBOL_ACLASS_BITS));
6188
6189 /* Register a computed symbol type. ACLASS must be LOC_COMPUTED. OPS
6190 is the ops vector associated with this index. This returns the new
6191 index, which should be used as the aclass_index field for symbols
6192 of this type. */
6193
6194 int
6195 register_symbol_computed_impl (enum address_class aclass,
6196 const struct symbol_computed_ops *ops)
6197 {
6198 int result = next_aclass_value++;
6199
6200 gdb_assert (aclass == LOC_COMPUTED);
6201 gdb_assert (result < MAX_SYMBOL_IMPLS);
6202 symbol_impl[result].aclass = aclass;
6203 symbol_impl[result].ops_computed = ops;
6204
6205 /* Sanity check OPS. */
6206 gdb_assert (ops != NULL);
6207 gdb_assert (ops->tracepoint_var_ref != NULL);
6208 gdb_assert (ops->describe_location != NULL);
6209 gdb_assert (ops->get_symbol_read_needs != NULL);
6210 gdb_assert (ops->read_variable != NULL);
6211
6212 return result;
6213 }
6214
6215 /* Register a function with frame base type. ACLASS must be LOC_BLOCK.
6216 OPS is the ops vector associated with this index. This returns the
6217 new index, which should be used as the aclass_index field for symbols
6218 of this type. */
6219
6220 int
6221 register_symbol_block_impl (enum address_class aclass,
6222 const struct symbol_block_ops *ops)
6223 {
6224 int result = next_aclass_value++;
6225
6226 gdb_assert (aclass == LOC_BLOCK);
6227 gdb_assert (result < MAX_SYMBOL_IMPLS);
6228 symbol_impl[result].aclass = aclass;
6229 symbol_impl[result].ops_block = ops;
6230
6231 /* Sanity check OPS. */
6232 gdb_assert (ops != NULL);
6233 gdb_assert (ops->find_frame_base_location != NULL);
6234
6235 return result;
6236 }
6237
6238 /* Register a register symbol type. ACLASS must be LOC_REGISTER or
6239 LOC_REGPARM_ADDR. OPS is the register ops vector associated with
6240 this index. This returns the new index, which should be used as
6241 the aclass_index field for symbols of this type. */
6242
6243 int
6244 register_symbol_register_impl (enum address_class aclass,
6245 const struct symbol_register_ops *ops)
6246 {
6247 int result = next_aclass_value++;
6248
6249 gdb_assert (aclass == LOC_REGISTER || aclass == LOC_REGPARM_ADDR);
6250 gdb_assert (result < MAX_SYMBOL_IMPLS);
6251 symbol_impl[result].aclass = aclass;
6252 symbol_impl[result].ops_register = ops;
6253
6254 return result;
6255 }
6256
6257 /* Initialize elements of 'symbol_impl' for the constants in enum
6258 address_class. */
6259
6260 static void
6261 initialize_ordinary_address_classes (void)
6262 {
6263 int i;
6264
6265 for (i = 0; i < LOC_FINAL_VALUE; ++i)
6266 symbol_impl[i].aclass = (enum address_class) i;
6267 }
6268
6269 \f
6270
6271 /* Initialize the symbol SYM, and mark it as being owned by an objfile. */
6272
6273 void
6274 initialize_objfile_symbol (struct symbol *sym)
6275 {
6276 SYMBOL_OBJFILE_OWNED (sym) = 1;
6277 SYMBOL_SECTION (sym) = -1;
6278 }
6279
6280 /* Allocate and initialize a new 'struct symbol' on OBJFILE's
6281 obstack. */
6282
6283 struct symbol *
6284 allocate_symbol (struct objfile *objfile)
6285 {
6286 struct symbol *result = new (&objfile->objfile_obstack) symbol ();
6287
6288 initialize_objfile_symbol (result);
6289
6290 return result;
6291 }
6292
6293 /* Allocate and initialize a new 'struct template_symbol' on OBJFILE's
6294 obstack. */
6295
6296 struct template_symbol *
6297 allocate_template_symbol (struct objfile *objfile)
6298 {
6299 struct template_symbol *result;
6300
6301 result = new (&objfile->objfile_obstack) template_symbol ();
6302 initialize_objfile_symbol (result);
6303
6304 return result;
6305 }
6306
6307 /* See symtab.h. */
6308
6309 struct objfile *
6310 symbol_objfile (const struct symbol *symbol)
6311 {
6312 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
6313 return SYMTAB_OBJFILE (symbol->owner.symtab);
6314 }
6315
6316 /* See symtab.h. */
6317
6318 struct gdbarch *
6319 symbol_arch (const struct symbol *symbol)
6320 {
6321 if (!SYMBOL_OBJFILE_OWNED (symbol))
6322 return symbol->owner.arch;
6323 return get_objfile_arch (SYMTAB_OBJFILE (symbol->owner.symtab));
6324 }
6325
6326 /* See symtab.h. */
6327
6328 struct symtab *
6329 symbol_symtab (const struct symbol *symbol)
6330 {
6331 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
6332 return symbol->owner.symtab;
6333 }
6334
6335 /* See symtab.h. */
6336
6337 void
6338 symbol_set_symtab (struct symbol *symbol, struct symtab *symtab)
6339 {
6340 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
6341 symbol->owner.symtab = symtab;
6342 }
6343
6344 /* See symtab.h. */
6345
6346 CORE_ADDR
6347 get_symbol_address (const struct symbol *sym)
6348 {
6349 gdb_assert (sym->maybe_copied);
6350 gdb_assert (SYMBOL_CLASS (sym) == LOC_STATIC);
6351
6352 const char *linkage_name = sym->linkage_name ();
6353
6354 for (objfile *objfile : current_program_space->objfiles ())
6355 {
6356 bound_minimal_symbol minsym
6357 = lookup_minimal_symbol_linkage (linkage_name, objfile);
6358 if (minsym.minsym != nullptr)
6359 return BMSYMBOL_VALUE_ADDRESS (minsym);
6360 }
6361 return sym->value.address;
6362 }
6363
6364 /* See symtab.h. */
6365
6366 CORE_ADDR
6367 get_msymbol_address (struct objfile *objf, const struct minimal_symbol *minsym)
6368 {
6369 gdb_assert (minsym->maybe_copied);
6370 gdb_assert ((objf->flags & OBJF_MAINLINE) == 0);
6371
6372 const char *linkage_name = minsym->linkage_name ();
6373
6374 for (objfile *objfile : current_program_space->objfiles ())
6375 {
6376 if ((objfile->flags & OBJF_MAINLINE) != 0)
6377 {
6378 bound_minimal_symbol found
6379 = lookup_minimal_symbol_linkage (linkage_name, objfile);
6380 if (found.minsym != nullptr)
6381 return BMSYMBOL_VALUE_ADDRESS (found);
6382 }
6383 }
6384 return minsym->value.address + objf->section_offsets[minsym->section];
6385 }
6386
6387 \f
6388
6389 /* Hold the sub-commands of 'info module'. */
6390
6391 static struct cmd_list_element *info_module_cmdlist = NULL;
6392
6393 /* Implement the 'info module' command, just displays some help text for
6394 the available sub-commands. */
6395
6396 static void
6397 info_module_command (const char *args, int from_tty)
6398 {
6399 help_list (info_module_cmdlist, "info module ", class_info, gdb_stdout);
6400 }
6401
6402 /* See symtab.h. */
6403
6404 std::vector<module_symbol_search>
6405 search_module_symbols (const char *module_regexp, const char *regexp,
6406 const char *type_regexp, search_domain kind)
6407 {
6408 std::vector<module_symbol_search> results;
6409
6410 /* Search for all modules matching MODULE_REGEXP. */
6411 global_symbol_searcher spec1 (MODULES_DOMAIN, module_regexp);
6412 spec1.set_exclude_minsyms (true);
6413 std::vector<symbol_search> modules = spec1.search ();
6414
6415 /* Now search for all symbols of the required KIND matching the required
6416 regular expressions. We figure out which ones are in which modules
6417 below. */
6418 global_symbol_searcher spec2 (kind, regexp);
6419 spec2.set_symbol_type_regexp (type_regexp);
6420 spec2.set_exclude_minsyms (true);
6421 std::vector<symbol_search> symbols = spec2.search ();
6422
6423 /* Now iterate over all MODULES, checking to see which items from
6424 SYMBOLS are in each module. */
6425 for (const symbol_search &p : modules)
6426 {
6427 QUIT;
6428
6429 /* This is a module. */
6430 gdb_assert (p.symbol != nullptr);
6431
6432 std::string prefix = p.symbol->print_name ();
6433 prefix += "::";
6434
6435 for (const symbol_search &q : symbols)
6436 {
6437 if (q.symbol == nullptr)
6438 continue;
6439
6440 if (strncmp (q.symbol->print_name (), prefix.c_str (),
6441 prefix.size ()) != 0)
6442 continue;
6443
6444 results.push_back ({p, q});
6445 }
6446 }
6447
6448 return results;
6449 }
6450
6451 /* Implement the core of both 'info module functions' and 'info module
6452 variables'. */
6453
6454 static void
6455 info_module_subcommand (bool quiet, const char *module_regexp,
6456 const char *regexp, const char *type_regexp,
6457 search_domain kind)
6458 {
6459 /* Print a header line. Don't build the header line bit by bit as this
6460 prevents internationalisation. */
6461 if (!quiet)
6462 {
6463 if (module_regexp == nullptr)
6464 {
6465 if (type_regexp == nullptr)
6466 {
6467 if (regexp == nullptr)
6468 printf_filtered ((kind == VARIABLES_DOMAIN
6469 ? _("All variables in all modules:")
6470 : _("All functions in all modules:")));
6471 else
6472 printf_filtered
6473 ((kind == VARIABLES_DOMAIN
6474 ? _("All variables matching regular expression"
6475 " \"%s\" in all modules:")
6476 : _("All functions matching regular expression"
6477 " \"%s\" in all modules:")),
6478 regexp);
6479 }
6480 else
6481 {
6482 if (regexp == nullptr)
6483 printf_filtered
6484 ((kind == VARIABLES_DOMAIN
6485 ? _("All variables with type matching regular "
6486 "expression \"%s\" in all modules:")
6487 : _("All functions with type matching regular "
6488 "expression \"%s\" in all modules:")),
6489 type_regexp);
6490 else
6491 printf_filtered
6492 ((kind == VARIABLES_DOMAIN
6493 ? _("All variables matching regular expression "
6494 "\"%s\",\n\twith type matching regular "
6495 "expression \"%s\" in all modules:")
6496 : _("All functions matching regular expression "
6497 "\"%s\",\n\twith type matching regular "
6498 "expression \"%s\" in all modules:")),
6499 regexp, type_regexp);
6500 }
6501 }
6502 else
6503 {
6504 if (type_regexp == nullptr)
6505 {
6506 if (regexp == nullptr)
6507 printf_filtered
6508 ((kind == VARIABLES_DOMAIN
6509 ? _("All variables in all modules matching regular "
6510 "expression \"%s\":")
6511 : _("All functions in all modules matching regular "
6512 "expression \"%s\":")),
6513 module_regexp);
6514 else
6515 printf_filtered
6516 ((kind == VARIABLES_DOMAIN
6517 ? _("All variables matching regular expression "
6518 "\"%s\",\n\tin all modules matching regular "
6519 "expression \"%s\":")
6520 : _("All functions matching regular expression "
6521 "\"%s\",\n\tin all modules matching regular "
6522 "expression \"%s\":")),
6523 regexp, module_regexp);
6524 }
6525 else
6526 {
6527 if (regexp == nullptr)
6528 printf_filtered
6529 ((kind == VARIABLES_DOMAIN
6530 ? _("All variables with type matching regular "
6531 "expression \"%s\"\n\tin all modules matching "
6532 "regular expression \"%s\":")
6533 : _("All functions with type matching regular "
6534 "expression \"%s\"\n\tin all modules matching "
6535 "regular expression \"%s\":")),
6536 type_regexp, module_regexp);
6537 else
6538 printf_filtered
6539 ((kind == VARIABLES_DOMAIN
6540 ? _("All variables matching regular expression "
6541 "\"%s\",\n\twith type matching regular expression "
6542 "\"%s\",\n\tin all modules matching regular "
6543 "expression \"%s\":")
6544 : _("All functions matching regular expression "
6545 "\"%s\",\n\twith type matching regular expression "
6546 "\"%s\",\n\tin all modules matching regular "
6547 "expression \"%s\":")),
6548 regexp, type_regexp, module_regexp);
6549 }
6550 }
6551 printf_filtered ("\n");
6552 }
6553
6554 /* Find all symbols of type KIND matching the given regular expressions
6555 along with the symbols for the modules in which those symbols
6556 reside. */
6557 std::vector<module_symbol_search> module_symbols
6558 = search_module_symbols (module_regexp, regexp, type_regexp, kind);
6559
6560 std::sort (module_symbols.begin (), module_symbols.end (),
6561 [] (const module_symbol_search &a, const module_symbol_search &b)
6562 {
6563 if (a.first < b.first)
6564 return true;
6565 else if (a.first == b.first)
6566 return a.second < b.second;
6567 else
6568 return false;
6569 });
6570
6571 const char *last_filename = "";
6572 const symbol *last_module_symbol = nullptr;
6573 for (const module_symbol_search &ms : module_symbols)
6574 {
6575 const symbol_search &p = ms.first;
6576 const symbol_search &q = ms.second;
6577
6578 gdb_assert (q.symbol != nullptr);
6579
6580 if (last_module_symbol != p.symbol)
6581 {
6582 printf_filtered ("\n");
6583 printf_filtered (_("Module \"%s\":\n"), p.symbol->print_name ());
6584 last_module_symbol = p.symbol;
6585 last_filename = "";
6586 }
6587
6588 print_symbol_info (FUNCTIONS_DOMAIN, q.symbol, q.block,
6589 last_filename);
6590 last_filename
6591 = symtab_to_filename_for_display (symbol_symtab (q.symbol));
6592 }
6593 }
6594
6595 /* Hold the option values for the 'info module .....' sub-commands. */
6596
6597 struct info_modules_var_func_options
6598 {
6599 bool quiet = false;
6600 char *type_regexp = nullptr;
6601 char *module_regexp = nullptr;
6602
6603 ~info_modules_var_func_options ()
6604 {
6605 xfree (type_regexp);
6606 xfree (module_regexp);
6607 }
6608 };
6609
6610 /* The options used by 'info module variables' and 'info module functions'
6611 commands. */
6612
6613 static const gdb::option::option_def info_modules_var_func_options_defs [] = {
6614 gdb::option::boolean_option_def<info_modules_var_func_options> {
6615 "q",
6616 [] (info_modules_var_func_options *opt) { return &opt->quiet; },
6617 nullptr, /* show_cmd_cb */
6618 nullptr /* set_doc */
6619 },
6620
6621 gdb::option::string_option_def<info_modules_var_func_options> {
6622 "t",
6623 [] (info_modules_var_func_options *opt) { return &opt->type_regexp; },
6624 nullptr, /* show_cmd_cb */
6625 nullptr /* set_doc */
6626 },
6627
6628 gdb::option::string_option_def<info_modules_var_func_options> {
6629 "m",
6630 [] (info_modules_var_func_options *opt) { return &opt->module_regexp; },
6631 nullptr, /* show_cmd_cb */
6632 nullptr /* set_doc */
6633 }
6634 };
6635
6636 /* Return the option group used by the 'info module ...' sub-commands. */
6637
6638 static inline gdb::option::option_def_group
6639 make_info_modules_var_func_options_def_group
6640 (info_modules_var_func_options *opts)
6641 {
6642 return {{info_modules_var_func_options_defs}, opts};
6643 }
6644
6645 /* Implements the 'info module functions' command. */
6646
6647 static void
6648 info_module_functions_command (const char *args, int from_tty)
6649 {
6650 info_modules_var_func_options opts;
6651 auto grp = make_info_modules_var_func_options_def_group (&opts);
6652 gdb::option::process_options
6653 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
6654 if (args != nullptr && *args == '\0')
6655 args = nullptr;
6656
6657 info_module_subcommand (opts.quiet, opts.module_regexp, args,
6658 opts.type_regexp, FUNCTIONS_DOMAIN);
6659 }
6660
6661 /* Implements the 'info module variables' command. */
6662
6663 static void
6664 info_module_variables_command (const char *args, int from_tty)
6665 {
6666 info_modules_var_func_options opts;
6667 auto grp = make_info_modules_var_func_options_def_group (&opts);
6668 gdb::option::process_options
6669 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
6670 if (args != nullptr && *args == '\0')
6671 args = nullptr;
6672
6673 info_module_subcommand (opts.quiet, opts.module_regexp, args,
6674 opts.type_regexp, VARIABLES_DOMAIN);
6675 }
6676
6677 /* Command completer for 'info module ...' sub-commands. */
6678
6679 static void
6680 info_module_var_func_command_completer (struct cmd_list_element *ignore,
6681 completion_tracker &tracker,
6682 const char *text,
6683 const char * /* word */)
6684 {
6685
6686 const auto group = make_info_modules_var_func_options_def_group (nullptr);
6687 if (gdb::option::complete_options
6688 (tracker, &text, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, group))
6689 return;
6690
6691 const char *word = advance_to_expression_complete_word_point (tracker, text);
6692 symbol_completer (ignore, tracker, text, word);
6693 }
6694
6695 \f
6696
6697 void _initialize_symtab ();
6698 void
6699 _initialize_symtab ()
6700 {
6701 cmd_list_element *c;
6702
6703 initialize_ordinary_address_classes ();
6704
6705 c = add_info ("variables", info_variables_command,
6706 info_print_args_help (_("\
6707 All global and static variable names or those matching REGEXPs.\n\
6708 Usage: info variables [-q] [-n] [-t TYPEREGEXP] [NAMEREGEXP]\n\
6709 Prints the global and static variables.\n"),
6710 _("global and static variables"),
6711 true));
6712 set_cmd_completer_handle_brkchars (c, info_print_command_completer);
6713 if (dbx_commands)
6714 {
6715 c = add_com ("whereis", class_info, info_variables_command,
6716 info_print_args_help (_("\
6717 All global and static variable names, or those matching REGEXPs.\n\
6718 Usage: whereis [-q] [-n] [-t TYPEREGEXP] [NAMEREGEXP]\n\
6719 Prints the global and static variables.\n"),
6720 _("global and static variables"),
6721 true));
6722 set_cmd_completer_handle_brkchars (c, info_print_command_completer);
6723 }
6724
6725 c = add_info ("functions", info_functions_command,
6726 info_print_args_help (_("\
6727 All function names or those matching REGEXPs.\n\
6728 Usage: info functions [-q] [-n] [-t TYPEREGEXP] [NAMEREGEXP]\n\
6729 Prints the functions.\n"),
6730 _("functions"),
6731 true));
6732 set_cmd_completer_handle_brkchars (c, info_print_command_completer);
6733
6734 c = add_info ("types", info_types_command, _("\
6735 All type names, or those matching REGEXP.\n\
6736 Usage: info types [-q] [REGEXP]\n\
6737 Print information about all types matching REGEXP, or all types if no\n\
6738 REGEXP is given. The optional flag -q disables printing of headers."));
6739 set_cmd_completer_handle_brkchars (c, info_types_command_completer);
6740
6741 const auto info_sources_opts = make_info_sources_options_def_group (nullptr);
6742
6743 static std::string info_sources_help
6744 = gdb::option::build_help (_("\
6745 All source files in the program or those matching REGEXP.\n\
6746 Usage: info sources [OPTION]... [REGEXP]\n\
6747 By default, REGEXP is used to match anywhere in the filename.\n\
6748 \n\
6749 Options:\n\
6750 %OPTIONS%"),
6751 info_sources_opts);
6752
6753 c = add_info ("sources", info_sources_command, info_sources_help.c_str ());
6754 set_cmd_completer_handle_brkchars (c, info_sources_command_completer);
6755
6756 c = add_info ("modules", info_modules_command,
6757 _("All module names, or those matching REGEXP."));
6758 set_cmd_completer_handle_brkchars (c, info_types_command_completer);
6759
6760 add_prefix_cmd ("module", class_info, info_module_command, _("\
6761 Print information about modules."),
6762 &info_module_cmdlist, "info module ",
6763 0, &infolist);
6764
6765 c = add_cmd ("functions", class_info, info_module_functions_command, _("\
6766 Display functions arranged by modules.\n\
6767 Usage: info module functions [-q] [-m MODREGEXP] [-t TYPEREGEXP] [REGEXP]\n\
6768 Print a summary of all functions within each Fortran module, grouped by\n\
6769 module and file. For each function the line on which the function is\n\
6770 defined is given along with the type signature and name of the function.\n\
6771 \n\
6772 If REGEXP is provided then only functions whose name matches REGEXP are\n\
6773 listed. If MODREGEXP is provided then only functions in modules matching\n\
6774 MODREGEXP are listed. If TYPEREGEXP is given then only functions whose\n\
6775 type signature matches TYPEREGEXP are listed.\n\
6776 \n\
6777 The -q flag suppresses printing some header information."),
6778 &info_module_cmdlist);
6779 set_cmd_completer_handle_brkchars
6780 (c, info_module_var_func_command_completer);
6781
6782 c = add_cmd ("variables", class_info, info_module_variables_command, _("\
6783 Display variables arranged by modules.\n\
6784 Usage: info module variables [-q] [-m MODREGEXP] [-t TYPEREGEXP] [REGEXP]\n\
6785 Print a summary of all variables within each Fortran module, grouped by\n\
6786 module and file. For each variable the line on which the variable is\n\
6787 defined is given along with the type and name of the variable.\n\
6788 \n\
6789 If REGEXP is provided then only variables whose name matches REGEXP are\n\
6790 listed. If MODREGEXP is provided then only variables in modules matching\n\
6791 MODREGEXP are listed. If TYPEREGEXP is given then only variables whose\n\
6792 type matches TYPEREGEXP are listed.\n\
6793 \n\
6794 The -q flag suppresses printing some header information."),
6795 &info_module_cmdlist);
6796 set_cmd_completer_handle_brkchars
6797 (c, info_module_var_func_command_completer);
6798
6799 add_com ("rbreak", class_breakpoint, rbreak_command,
6800 _("Set a breakpoint for all functions matching REGEXP."));
6801
6802 add_setshow_enum_cmd ("multiple-symbols", no_class,
6803 multiple_symbols_modes, &multiple_symbols_mode,
6804 _("\
6805 Set how the debugger handles ambiguities in expressions."), _("\
6806 Show how the debugger handles ambiguities in expressions."), _("\
6807 Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
6808 NULL, NULL, &setlist, &showlist);
6809
6810 add_setshow_boolean_cmd ("basenames-may-differ", class_obscure,
6811 &basenames_may_differ, _("\
6812 Set whether a source file may have multiple base names."), _("\
6813 Show whether a source file may have multiple base names."), _("\
6814 (A \"base name\" is the name of a file with the directory part removed.\n\
6815 Example: The base name of \"/home/user/hello.c\" is \"hello.c\".)\n\
6816 If set, GDB will canonicalize file names (e.g., expand symlinks)\n\
6817 before comparing them. Canonicalization is an expensive operation,\n\
6818 but it allows the same file be known by more than one base name.\n\
6819 If not set (the default), all source files are assumed to have just\n\
6820 one base name, and gdb will do file name comparisons more efficiently."),
6821 NULL, NULL,
6822 &setlist, &showlist);
6823
6824 add_setshow_zuinteger_cmd ("symtab-create", no_class, &symtab_create_debug,
6825 _("Set debugging of symbol table creation."),
6826 _("Show debugging of symbol table creation."), _("\
6827 When enabled (non-zero), debugging messages are printed when building\n\
6828 symbol tables. A value of 1 (one) normally provides enough information.\n\
6829 A value greater than 1 provides more verbose information."),
6830 NULL,
6831 NULL,
6832 &setdebuglist, &showdebuglist);
6833
6834 add_setshow_zuinteger_cmd ("symbol-lookup", no_class, &symbol_lookup_debug,
6835 _("\
6836 Set debugging of symbol lookup."), _("\
6837 Show debugging of symbol lookup."), _("\
6838 When enabled (non-zero), symbol lookups are logged."),
6839 NULL, NULL,
6840 &setdebuglist, &showdebuglist);
6841
6842 add_setshow_zuinteger_cmd ("symbol-cache-size", no_class,
6843 &new_symbol_cache_size,
6844 _("Set the size of the symbol cache."),
6845 _("Show the size of the symbol cache."), _("\
6846 The size of the symbol cache.\n\
6847 If zero then the symbol cache is disabled."),
6848 set_symbol_cache_size_handler, NULL,
6849 &maintenance_set_cmdlist,
6850 &maintenance_show_cmdlist);
6851
6852 add_cmd ("symbol-cache", class_maintenance, maintenance_print_symbol_cache,
6853 _("Dump the symbol cache for each program space."),
6854 &maintenanceprintlist);
6855
6856 add_cmd ("symbol-cache-statistics", class_maintenance,
6857 maintenance_print_symbol_cache_statistics,
6858 _("Print symbol cache statistics for each program space."),
6859 &maintenanceprintlist);
6860
6861 add_cmd ("flush-symbol-cache", class_maintenance,
6862 maintenance_flush_symbol_cache,
6863 _("Flush the symbol cache for each program space."),
6864 &maintenancelist);
6865
6866 gdb::observers::executable_changed.attach (symtab_observer_executable_changed);
6867 gdb::observers::new_objfile.attach (symtab_new_objfile_observer);
6868 gdb::observers::free_objfile.attach (symtab_free_objfile_observer);
6869 }
This page took 0.177113 seconds and 4 git commands to generate.