gdb/
[deliverable/binutils-gdb.git] / gdb / symtab.c
1 /* Symbol table lookup for the GNU debugger, GDB.
2
3 Copyright (C) 1986-2013 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "gdbcore.h"
24 #include "frame.h"
25 #include "target.h"
26 #include "value.h"
27 #include "symfile.h"
28 #include "objfiles.h"
29 #include "gdbcmd.h"
30 #include "gdb_regex.h"
31 #include "expression.h"
32 #include "language.h"
33 #include "demangle.h"
34 #include "inferior.h"
35 #include "source.h"
36 #include "filenames.h" /* for FILENAME_CMP */
37 #include "objc-lang.h"
38 #include "d-lang.h"
39 #include "ada-lang.h"
40 #include "go-lang.h"
41 #include "p-lang.h"
42 #include "addrmap.h"
43
44 #include "hashtab.h"
45
46 #include "gdb_obstack.h"
47 #include "block.h"
48 #include "dictionary.h"
49
50 #include <sys/types.h>
51 #include <fcntl.h>
52 #include "gdb_string.h"
53 #include "gdb_stat.h"
54 #include <ctype.h>
55 #include "cp-abi.h"
56 #include "cp-support.h"
57 #include "observer.h"
58 #include "gdb_assert.h"
59 #include "solist.h"
60 #include "macrotab.h"
61 #include "macroscope.h"
62
63 #include "psymtab.h"
64 #include "parser-defs.h"
65
66 /* Prototypes for local functions */
67
68 static void rbreak_command (char *, int);
69
70 static void types_info (char *, int);
71
72 static void functions_info (char *, int);
73
74 static void variables_info (char *, int);
75
76 static void sources_info (char *, int);
77
78 static int find_line_common (struct linetable *, int, int *, int);
79
80 static struct symbol *lookup_symbol_aux (const char *name,
81 const struct block *block,
82 const domain_enum domain,
83 enum language language,
84 struct field_of_this_result *is_a_field_of_this);
85
86 static
87 struct symbol *lookup_symbol_aux_local (const char *name,
88 const struct block *block,
89 const domain_enum domain,
90 enum language language);
91
92 static
93 struct symbol *lookup_symbol_aux_symtabs (int block_index,
94 const char *name,
95 const domain_enum domain);
96
97 static
98 struct symbol *lookup_symbol_aux_quick (struct objfile *objfile,
99 int block_index,
100 const char *name,
101 const domain_enum domain);
102
103 static void print_msymbol_info (struct minimal_symbol *);
104
105 void _initialize_symtab (void);
106
107 /* */
108
109 /* When non-zero, print debugging messages related to symtab creation. */
110 int symtab_create_debug = 0;
111
112 /* Non-zero if a file may be known by two different basenames.
113 This is the uncommon case, and significantly slows down gdb.
114 Default set to "off" to not slow down the common case. */
115 int basenames_may_differ = 0;
116
117 /* Allow the user to configure the debugger behavior with respect
118 to multiple-choice menus when more than one symbol matches during
119 a symbol lookup. */
120
121 const char multiple_symbols_ask[] = "ask";
122 const char multiple_symbols_all[] = "all";
123 const char multiple_symbols_cancel[] = "cancel";
124 static const char *const multiple_symbols_modes[] =
125 {
126 multiple_symbols_ask,
127 multiple_symbols_all,
128 multiple_symbols_cancel,
129 NULL
130 };
131 static const char *multiple_symbols_mode = multiple_symbols_all;
132
133 /* Read-only accessor to AUTO_SELECT_MODE. */
134
135 const char *
136 multiple_symbols_select_mode (void)
137 {
138 return multiple_symbols_mode;
139 }
140
141 /* Block in which the most recently searched-for symbol was found.
142 Might be better to make this a parameter to lookup_symbol and
143 value_of_this. */
144
145 const struct block *block_found;
146
147 /* See whether FILENAME matches SEARCH_NAME using the rule that we
148 advertise to the user. (The manual's description of linespecs
149 describes what we advertise). We assume that SEARCH_NAME is
150 a relative path. Returns true if they match, false otherwise. */
151
152 int
153 compare_filenames_for_search (const char *filename, const char *search_name)
154 {
155 int len = strlen (filename);
156 size_t search_len = strlen (search_name);
157
158 if (len < search_len)
159 return 0;
160
161 /* The tail of FILENAME must match. */
162 if (FILENAME_CMP (filename + len - search_len, search_name) != 0)
163 return 0;
164
165 /* Either the names must completely match, or the character
166 preceding the trailing SEARCH_NAME segment of FILENAME must be a
167 directory separator. */
168 return (len == search_len
169 || IS_DIR_SEPARATOR (filename[len - search_len - 1])
170 || (HAS_DRIVE_SPEC (filename)
171 && STRIP_DRIVE_SPEC (filename) == &filename[len - search_len]));
172 }
173
174 /* Check for a symtab of a specific name by searching some symtabs.
175 This is a helper function for callbacks of iterate_over_symtabs.
176
177 The return value, NAME, FULL_PATH, REAL_PATH, CALLBACK, and DATA
178 are identical to the `map_symtabs_matching_filename' method of
179 quick_symbol_functions.
180
181 FIRST and AFTER_LAST indicate the range of symtabs to search.
182 AFTER_LAST is one past the last symtab to search; NULL means to
183 search until the end of the list. */
184
185 int
186 iterate_over_some_symtabs (const char *name,
187 const char *full_path,
188 const char *real_path,
189 int (*callback) (struct symtab *symtab,
190 void *data),
191 void *data,
192 struct symtab *first,
193 struct symtab *after_last)
194 {
195 struct symtab *s = NULL;
196 const char* base_name = lbasename (name);
197 int is_abs = IS_ABSOLUTE_PATH (name);
198
199 for (s = first; s != NULL && s != after_last; s = s->next)
200 {
201 /* Exact match is always ok. */
202 if (FILENAME_CMP (name, s->filename) == 0)
203 {
204 if (callback (s, data))
205 return 1;
206 }
207
208 if (!is_abs && compare_filenames_for_search (s->filename, name))
209 {
210 if (callback (s, data))
211 return 1;
212 }
213
214 /* Before we invoke realpath, which can get expensive when many
215 files are involved, do a quick comparison of the basenames. */
216 if (! basenames_may_differ
217 && FILENAME_CMP (base_name, lbasename (s->filename)) != 0)
218 continue;
219
220 /* If the user gave us an absolute path, try to find the file in
221 this symtab and use its absolute path. */
222
223 if (full_path != NULL)
224 {
225 const char *fp = symtab_to_fullname (s);
226
227 if (FILENAME_CMP (full_path, fp) == 0)
228 {
229 if (callback (s, data))
230 return 1;
231 }
232
233 if (!is_abs && compare_filenames_for_search (fp, name))
234 {
235 if (callback (s, data))
236 return 1;
237 }
238 }
239
240 if (real_path != NULL)
241 {
242 const char *fullname = symtab_to_fullname (s);
243 char *rp = gdb_realpath (fullname);
244
245 make_cleanup (xfree, rp);
246 if (FILENAME_CMP (real_path, rp) == 0)
247 {
248 if (callback (s, data))
249 return 1;
250 }
251
252 if (!is_abs && compare_filenames_for_search (rp, name))
253 {
254 if (callback (s, data))
255 return 1;
256 }
257 }
258 }
259
260 return 0;
261 }
262
263 /* Check for a symtab of a specific name; first in symtabs, then in
264 psymtabs. *If* there is no '/' in the name, a match after a '/'
265 in the symtab filename will also work.
266
267 Calls CALLBACK with each symtab that is found and with the supplied
268 DATA. If CALLBACK returns true, the search stops. */
269
270 void
271 iterate_over_symtabs (const char *name,
272 int (*callback) (struct symtab *symtab,
273 void *data),
274 void *data)
275 {
276 struct symtab *s = NULL;
277 struct objfile *objfile;
278 char *real_path = NULL;
279 char *full_path = NULL;
280 struct cleanup *cleanups = make_cleanup (null_cleanup, NULL);
281
282 /* Here we are interested in canonicalizing an absolute path, not
283 absolutizing a relative path. */
284 if (IS_ABSOLUTE_PATH (name))
285 {
286 full_path = xfullpath (name);
287 make_cleanup (xfree, full_path);
288 real_path = gdb_realpath (name);
289 make_cleanup (xfree, real_path);
290 }
291
292 ALL_OBJFILES (objfile)
293 {
294 if (iterate_over_some_symtabs (name, full_path, real_path, callback, data,
295 objfile->symtabs, NULL))
296 {
297 do_cleanups (cleanups);
298 return;
299 }
300 }
301
302 /* Same search rules as above apply here, but now we look thru the
303 psymtabs. */
304
305 ALL_OBJFILES (objfile)
306 {
307 if (objfile->sf
308 && objfile->sf->qf->map_symtabs_matching_filename (objfile,
309 name,
310 full_path,
311 real_path,
312 callback,
313 data))
314 {
315 do_cleanups (cleanups);
316 return;
317 }
318 }
319
320 do_cleanups (cleanups);
321 }
322
323 /* The callback function used by lookup_symtab. */
324
325 static int
326 lookup_symtab_callback (struct symtab *symtab, void *data)
327 {
328 struct symtab **result_ptr = data;
329
330 *result_ptr = symtab;
331 return 1;
332 }
333
334 /* A wrapper for iterate_over_symtabs that returns the first matching
335 symtab, or NULL. */
336
337 struct symtab *
338 lookup_symtab (const char *name)
339 {
340 struct symtab *result = NULL;
341
342 iterate_over_symtabs (name, lookup_symtab_callback, &result);
343 return result;
344 }
345
346 \f
347 /* Mangle a GDB method stub type. This actually reassembles the pieces of the
348 full method name, which consist of the class name (from T), the unadorned
349 method name from METHOD_ID, and the signature for the specific overload,
350 specified by SIGNATURE_ID. Note that this function is g++ specific. */
351
352 char *
353 gdb_mangle_name (struct type *type, int method_id, int signature_id)
354 {
355 int mangled_name_len;
356 char *mangled_name;
357 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
358 struct fn_field *method = &f[signature_id];
359 const char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
360 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
361 const char *newname = type_name_no_tag (type);
362
363 /* Does the form of physname indicate that it is the full mangled name
364 of a constructor (not just the args)? */
365 int is_full_physname_constructor;
366
367 int is_constructor;
368 int is_destructor = is_destructor_name (physname);
369 /* Need a new type prefix. */
370 char *const_prefix = method->is_const ? "C" : "";
371 char *volatile_prefix = method->is_volatile ? "V" : "";
372 char buf[20];
373 int len = (newname == NULL ? 0 : strlen (newname));
374
375 /* Nothing to do if physname already contains a fully mangled v3 abi name
376 or an operator name. */
377 if ((physname[0] == '_' && physname[1] == 'Z')
378 || is_operator_name (field_name))
379 return xstrdup (physname);
380
381 is_full_physname_constructor = is_constructor_name (physname);
382
383 is_constructor = is_full_physname_constructor
384 || (newname && strcmp (field_name, newname) == 0);
385
386 if (!is_destructor)
387 is_destructor = (strncmp (physname, "__dt", 4) == 0);
388
389 if (is_destructor || is_full_physname_constructor)
390 {
391 mangled_name = (char *) xmalloc (strlen (physname) + 1);
392 strcpy (mangled_name, physname);
393 return mangled_name;
394 }
395
396 if (len == 0)
397 {
398 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
399 }
400 else if (physname[0] == 't' || physname[0] == 'Q')
401 {
402 /* The physname for template and qualified methods already includes
403 the class name. */
404 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
405 newname = NULL;
406 len = 0;
407 }
408 else
409 {
410 xsnprintf (buf, sizeof (buf), "__%s%s%d", const_prefix,
411 volatile_prefix, len);
412 }
413 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
414 + strlen (buf) + len + strlen (physname) + 1);
415
416 mangled_name = (char *) xmalloc (mangled_name_len);
417 if (is_constructor)
418 mangled_name[0] = '\0';
419 else
420 strcpy (mangled_name, field_name);
421
422 strcat (mangled_name, buf);
423 /* If the class doesn't have a name, i.e. newname NULL, then we just
424 mangle it using 0 for the length of the class. Thus it gets mangled
425 as something starting with `::' rather than `classname::'. */
426 if (newname != NULL)
427 strcat (mangled_name, newname);
428
429 strcat (mangled_name, physname);
430 return (mangled_name);
431 }
432
433 /* Initialize the cplus_specific structure. 'cplus_specific' should
434 only be allocated for use with cplus symbols. */
435
436 static void
437 symbol_init_cplus_specific (struct general_symbol_info *gsymbol,
438 struct objfile *objfile)
439 {
440 /* A language_specific structure should not have been previously
441 initialized. */
442 gdb_assert (gsymbol->language_specific.cplus_specific == NULL);
443 gdb_assert (objfile != NULL);
444
445 gsymbol->language_specific.cplus_specific =
446 OBSTACK_ZALLOC (&objfile->objfile_obstack, struct cplus_specific);
447 }
448
449 /* Set the demangled name of GSYMBOL to NAME. NAME must be already
450 correctly allocated. For C++ symbols a cplus_specific struct is
451 allocated so OBJFILE must not be NULL. If this is a non C++ symbol
452 OBJFILE can be NULL. */
453
454 void
455 symbol_set_demangled_name (struct general_symbol_info *gsymbol,
456 char *name,
457 struct objfile *objfile)
458 {
459 if (gsymbol->language == language_cplus)
460 {
461 if (gsymbol->language_specific.cplus_specific == NULL)
462 symbol_init_cplus_specific (gsymbol, objfile);
463
464 gsymbol->language_specific.cplus_specific->demangled_name = name;
465 }
466 else
467 gsymbol->language_specific.mangled_lang.demangled_name = name;
468 }
469
470 /* Return the demangled name of GSYMBOL. */
471
472 const char *
473 symbol_get_demangled_name (const struct general_symbol_info *gsymbol)
474 {
475 if (gsymbol->language == language_cplus)
476 {
477 if (gsymbol->language_specific.cplus_specific != NULL)
478 return gsymbol->language_specific.cplus_specific->demangled_name;
479 else
480 return NULL;
481 }
482 else
483 return gsymbol->language_specific.mangled_lang.demangled_name;
484 }
485
486 \f
487 /* Initialize the language dependent portion of a symbol
488 depending upon the language for the symbol. */
489
490 void
491 symbol_set_language (struct general_symbol_info *gsymbol,
492 enum language language)
493 {
494 gsymbol->language = language;
495 if (gsymbol->language == language_d
496 || gsymbol->language == language_go
497 || gsymbol->language == language_java
498 || gsymbol->language == language_objc
499 || gsymbol->language == language_fortran)
500 {
501 symbol_set_demangled_name (gsymbol, NULL, NULL);
502 }
503 else if (gsymbol->language == language_cplus)
504 gsymbol->language_specific.cplus_specific = NULL;
505 else
506 {
507 memset (&gsymbol->language_specific, 0,
508 sizeof (gsymbol->language_specific));
509 }
510 }
511
512 /* Functions to initialize a symbol's mangled name. */
513
514 /* Objects of this type are stored in the demangled name hash table. */
515 struct demangled_name_entry
516 {
517 char *mangled;
518 char demangled[1];
519 };
520
521 /* Hash function for the demangled name hash. */
522
523 static hashval_t
524 hash_demangled_name_entry (const void *data)
525 {
526 const struct demangled_name_entry *e = data;
527
528 return htab_hash_string (e->mangled);
529 }
530
531 /* Equality function for the demangled name hash. */
532
533 static int
534 eq_demangled_name_entry (const void *a, const void *b)
535 {
536 const struct demangled_name_entry *da = a;
537 const struct demangled_name_entry *db = b;
538
539 return strcmp (da->mangled, db->mangled) == 0;
540 }
541
542 /* Create the hash table used for demangled names. Each hash entry is
543 a pair of strings; one for the mangled name and one for the demangled
544 name. The entry is hashed via just the mangled name. */
545
546 static void
547 create_demangled_names_hash (struct objfile *objfile)
548 {
549 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
550 The hash table code will round this up to the next prime number.
551 Choosing a much larger table size wastes memory, and saves only about
552 1% in symbol reading. */
553
554 objfile->demangled_names_hash = htab_create_alloc
555 (256, hash_demangled_name_entry, eq_demangled_name_entry,
556 NULL, xcalloc, xfree);
557 }
558
559 /* Try to determine the demangled name for a symbol, based on the
560 language of that symbol. If the language is set to language_auto,
561 it will attempt to find any demangling algorithm that works and
562 then set the language appropriately. The returned name is allocated
563 by the demangler and should be xfree'd. */
564
565 static char *
566 symbol_find_demangled_name (struct general_symbol_info *gsymbol,
567 const char *mangled)
568 {
569 char *demangled = NULL;
570
571 if (gsymbol->language == language_unknown)
572 gsymbol->language = language_auto;
573
574 if (gsymbol->language == language_objc
575 || gsymbol->language == language_auto)
576 {
577 demangled =
578 objc_demangle (mangled, 0);
579 if (demangled != NULL)
580 {
581 gsymbol->language = language_objc;
582 return demangled;
583 }
584 }
585 if (gsymbol->language == language_cplus
586 || gsymbol->language == language_auto)
587 {
588 demangled =
589 cplus_demangle (mangled, DMGL_PARAMS | DMGL_ANSI);
590 if (demangled != NULL)
591 {
592 gsymbol->language = language_cplus;
593 return demangled;
594 }
595 }
596 if (gsymbol->language == language_java)
597 {
598 demangled =
599 cplus_demangle (mangled,
600 DMGL_PARAMS | DMGL_ANSI | DMGL_JAVA);
601 if (demangled != NULL)
602 {
603 gsymbol->language = language_java;
604 return demangled;
605 }
606 }
607 if (gsymbol->language == language_d
608 || gsymbol->language == language_auto)
609 {
610 demangled = d_demangle(mangled, 0);
611 if (demangled != NULL)
612 {
613 gsymbol->language = language_d;
614 return demangled;
615 }
616 }
617 /* FIXME(dje): Continually adding languages here is clumsy.
618 Better to just call la_demangle if !auto, and if auto then call
619 a utility routine that tries successive languages in turn and reports
620 which one it finds. I realize the la_demangle options may be different
621 for different languages but there's already a FIXME for that. */
622 if (gsymbol->language == language_go
623 || gsymbol->language == language_auto)
624 {
625 demangled = go_demangle (mangled, 0);
626 if (demangled != NULL)
627 {
628 gsymbol->language = language_go;
629 return demangled;
630 }
631 }
632
633 /* We could support `gsymbol->language == language_fortran' here to provide
634 module namespaces also for inferiors with only minimal symbol table (ELF
635 symbols). Just the mangling standard is not standardized across compilers
636 and there is no DW_AT_producer available for inferiors with only the ELF
637 symbols to check the mangling kind. */
638 return NULL;
639 }
640
641 /* Set both the mangled and demangled (if any) names for GSYMBOL based
642 on LINKAGE_NAME and LEN. Ordinarily, NAME is copied onto the
643 objfile's obstack; but if COPY_NAME is 0 and if NAME is
644 NUL-terminated, then this function assumes that NAME is already
645 correctly saved (either permanently or with a lifetime tied to the
646 objfile), and it will not be copied.
647
648 The hash table corresponding to OBJFILE is used, and the memory
649 comes from that objfile's objfile_obstack. LINKAGE_NAME is copied,
650 so the pointer can be discarded after calling this function. */
651
652 /* We have to be careful when dealing with Java names: when we run
653 into a Java minimal symbol, we don't know it's a Java symbol, so it
654 gets demangled as a C++ name. This is unfortunate, but there's not
655 much we can do about it: but when demangling partial symbols and
656 regular symbols, we'd better not reuse the wrong demangled name.
657 (See PR gdb/1039.) We solve this by putting a distinctive prefix
658 on Java names when storing them in the hash table. */
659
660 /* FIXME: carlton/2003-03-13: This is an unfortunate situation. I
661 don't mind the Java prefix so much: different languages have
662 different demangling requirements, so it's only natural that we
663 need to keep language data around in our demangling cache. But
664 it's not good that the minimal symbol has the wrong demangled name.
665 Unfortunately, I can't think of any easy solution to that
666 problem. */
667
668 #define JAVA_PREFIX "##JAVA$$"
669 #define JAVA_PREFIX_LEN 8
670
671 void
672 symbol_set_names (struct general_symbol_info *gsymbol,
673 const char *linkage_name, int len, int copy_name,
674 struct objfile *objfile)
675 {
676 struct demangled_name_entry **slot;
677 /* A 0-terminated copy of the linkage name. */
678 const char *linkage_name_copy;
679 /* A copy of the linkage name that might have a special Java prefix
680 added to it, for use when looking names up in the hash table. */
681 const char *lookup_name;
682 /* The length of lookup_name. */
683 int lookup_len;
684 struct demangled_name_entry entry;
685
686 if (gsymbol->language == language_ada)
687 {
688 /* In Ada, we do the symbol lookups using the mangled name, so
689 we can save some space by not storing the demangled name.
690
691 As a side note, we have also observed some overlap between
692 the C++ mangling and Ada mangling, similarly to what has
693 been observed with Java. Because we don't store the demangled
694 name with the symbol, we don't need to use the same trick
695 as Java. */
696 if (!copy_name)
697 gsymbol->name = linkage_name;
698 else
699 {
700 char *name = obstack_alloc (&objfile->objfile_obstack, len + 1);
701
702 memcpy (name, linkage_name, len);
703 name[len] = '\0';
704 gsymbol->name = name;
705 }
706 symbol_set_demangled_name (gsymbol, NULL, NULL);
707
708 return;
709 }
710
711 if (objfile->demangled_names_hash == NULL)
712 create_demangled_names_hash (objfile);
713
714 /* The stabs reader generally provides names that are not
715 NUL-terminated; most of the other readers don't do this, so we
716 can just use the given copy, unless we're in the Java case. */
717 if (gsymbol->language == language_java)
718 {
719 char *alloc_name;
720
721 lookup_len = len + JAVA_PREFIX_LEN;
722 alloc_name = alloca (lookup_len + 1);
723 memcpy (alloc_name, JAVA_PREFIX, JAVA_PREFIX_LEN);
724 memcpy (alloc_name + JAVA_PREFIX_LEN, linkage_name, len);
725 alloc_name[lookup_len] = '\0';
726
727 lookup_name = alloc_name;
728 linkage_name_copy = alloc_name + JAVA_PREFIX_LEN;
729 }
730 else if (linkage_name[len] != '\0')
731 {
732 char *alloc_name;
733
734 lookup_len = len;
735 alloc_name = alloca (lookup_len + 1);
736 memcpy (alloc_name, linkage_name, len);
737 alloc_name[lookup_len] = '\0';
738
739 lookup_name = alloc_name;
740 linkage_name_copy = alloc_name;
741 }
742 else
743 {
744 lookup_len = len;
745 lookup_name = linkage_name;
746 linkage_name_copy = linkage_name;
747 }
748
749 entry.mangled = (char *) lookup_name;
750 slot = ((struct demangled_name_entry **)
751 htab_find_slot (objfile->demangled_names_hash,
752 &entry, INSERT));
753
754 /* If this name is not in the hash table, add it. */
755 if (*slot == NULL
756 /* A C version of the symbol may have already snuck into the table.
757 This happens to, e.g., main.init (__go_init_main). Cope. */
758 || (gsymbol->language == language_go
759 && (*slot)->demangled[0] == '\0'))
760 {
761 char *demangled_name = symbol_find_demangled_name (gsymbol,
762 linkage_name_copy);
763 int demangled_len = demangled_name ? strlen (demangled_name) : 0;
764
765 /* Suppose we have demangled_name==NULL, copy_name==0, and
766 lookup_name==linkage_name. In this case, we already have the
767 mangled name saved, and we don't have a demangled name. So,
768 you might think we could save a little space by not recording
769 this in the hash table at all.
770
771 It turns out that it is actually important to still save such
772 an entry in the hash table, because storing this name gives
773 us better bcache hit rates for partial symbols. */
774 if (!copy_name && lookup_name == linkage_name)
775 {
776 *slot = obstack_alloc (&objfile->objfile_obstack,
777 offsetof (struct demangled_name_entry,
778 demangled)
779 + demangled_len + 1);
780 (*slot)->mangled = (char *) lookup_name;
781 }
782 else
783 {
784 /* If we must copy the mangled name, put it directly after
785 the demangled name so we can have a single
786 allocation. */
787 *slot = obstack_alloc (&objfile->objfile_obstack,
788 offsetof (struct demangled_name_entry,
789 demangled)
790 + lookup_len + demangled_len + 2);
791 (*slot)->mangled = &((*slot)->demangled[demangled_len + 1]);
792 strcpy ((*slot)->mangled, lookup_name);
793 }
794
795 if (demangled_name != NULL)
796 {
797 strcpy ((*slot)->demangled, demangled_name);
798 xfree (demangled_name);
799 }
800 else
801 (*slot)->demangled[0] = '\0';
802 }
803
804 gsymbol->name = (*slot)->mangled + lookup_len - len;
805 if ((*slot)->demangled[0] != '\0')
806 symbol_set_demangled_name (gsymbol, (*slot)->demangled, objfile);
807 else
808 symbol_set_demangled_name (gsymbol, NULL, objfile);
809 }
810
811 /* Return the source code name of a symbol. In languages where
812 demangling is necessary, this is the demangled name. */
813
814 const char *
815 symbol_natural_name (const struct general_symbol_info *gsymbol)
816 {
817 switch (gsymbol->language)
818 {
819 case language_cplus:
820 case language_d:
821 case language_go:
822 case language_java:
823 case language_objc:
824 case language_fortran:
825 if (symbol_get_demangled_name (gsymbol) != NULL)
826 return symbol_get_demangled_name (gsymbol);
827 break;
828 case language_ada:
829 if (symbol_get_demangled_name (gsymbol) != NULL)
830 return symbol_get_demangled_name (gsymbol);
831 else
832 return ada_decode_symbol (gsymbol);
833 break;
834 default:
835 break;
836 }
837 return gsymbol->name;
838 }
839
840 /* Return the demangled name for a symbol based on the language for
841 that symbol. If no demangled name exists, return NULL. */
842
843 const char *
844 symbol_demangled_name (const struct general_symbol_info *gsymbol)
845 {
846 const char *dem_name = NULL;
847
848 switch (gsymbol->language)
849 {
850 case language_cplus:
851 case language_d:
852 case language_go:
853 case language_java:
854 case language_objc:
855 case language_fortran:
856 dem_name = symbol_get_demangled_name (gsymbol);
857 break;
858 case language_ada:
859 dem_name = symbol_get_demangled_name (gsymbol);
860 if (dem_name == NULL)
861 dem_name = ada_decode_symbol (gsymbol);
862 break;
863 default:
864 break;
865 }
866 return dem_name;
867 }
868
869 /* Return the search name of a symbol---generally the demangled or
870 linkage name of the symbol, depending on how it will be searched for.
871 If there is no distinct demangled name, then returns the same value
872 (same pointer) as SYMBOL_LINKAGE_NAME. */
873
874 const char *
875 symbol_search_name (const struct general_symbol_info *gsymbol)
876 {
877 if (gsymbol->language == language_ada)
878 return gsymbol->name;
879 else
880 return symbol_natural_name (gsymbol);
881 }
882
883 /* Initialize the structure fields to zero values. */
884
885 void
886 init_sal (struct symtab_and_line *sal)
887 {
888 sal->pspace = NULL;
889 sal->symtab = 0;
890 sal->section = 0;
891 sal->line = 0;
892 sal->pc = 0;
893 sal->end = 0;
894 sal->explicit_pc = 0;
895 sal->explicit_line = 0;
896 sal->probe = NULL;
897 }
898 \f
899
900 /* Return 1 if the two sections are the same, or if they could
901 plausibly be copies of each other, one in an original object
902 file and another in a separated debug file. */
903
904 int
905 matching_obj_sections (struct obj_section *obj_first,
906 struct obj_section *obj_second)
907 {
908 asection *first = obj_first? obj_first->the_bfd_section : NULL;
909 asection *second = obj_second? obj_second->the_bfd_section : NULL;
910 struct objfile *obj;
911
912 /* If they're the same section, then they match. */
913 if (first == second)
914 return 1;
915
916 /* If either is NULL, give up. */
917 if (first == NULL || second == NULL)
918 return 0;
919
920 /* This doesn't apply to absolute symbols. */
921 if (first->owner == NULL || second->owner == NULL)
922 return 0;
923
924 /* If they're in the same object file, they must be different sections. */
925 if (first->owner == second->owner)
926 return 0;
927
928 /* Check whether the two sections are potentially corresponding. They must
929 have the same size, address, and name. We can't compare section indexes,
930 which would be more reliable, because some sections may have been
931 stripped. */
932 if (bfd_get_section_size (first) != bfd_get_section_size (second))
933 return 0;
934
935 /* In-memory addresses may start at a different offset, relativize them. */
936 if (bfd_get_section_vma (first->owner, first)
937 - bfd_get_start_address (first->owner)
938 != bfd_get_section_vma (second->owner, second)
939 - bfd_get_start_address (second->owner))
940 return 0;
941
942 if (bfd_get_section_name (first->owner, first) == NULL
943 || bfd_get_section_name (second->owner, second) == NULL
944 || strcmp (bfd_get_section_name (first->owner, first),
945 bfd_get_section_name (second->owner, second)) != 0)
946 return 0;
947
948 /* Otherwise check that they are in corresponding objfiles. */
949
950 ALL_OBJFILES (obj)
951 if (obj->obfd == first->owner)
952 break;
953 gdb_assert (obj != NULL);
954
955 if (obj->separate_debug_objfile != NULL
956 && obj->separate_debug_objfile->obfd == second->owner)
957 return 1;
958 if (obj->separate_debug_objfile_backlink != NULL
959 && obj->separate_debug_objfile_backlink->obfd == second->owner)
960 return 1;
961
962 return 0;
963 }
964
965 struct symtab *
966 find_pc_sect_symtab_via_partial (CORE_ADDR pc, struct obj_section *section)
967 {
968 struct objfile *objfile;
969 struct minimal_symbol *msymbol;
970
971 /* If we know that this is not a text address, return failure. This is
972 necessary because we loop based on texthigh and textlow, which do
973 not include the data ranges. */
974 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
975 if (msymbol
976 && (MSYMBOL_TYPE (msymbol) == mst_data
977 || MSYMBOL_TYPE (msymbol) == mst_bss
978 || MSYMBOL_TYPE (msymbol) == mst_abs
979 || MSYMBOL_TYPE (msymbol) == mst_file_data
980 || MSYMBOL_TYPE (msymbol) == mst_file_bss))
981 return NULL;
982
983 ALL_OBJFILES (objfile)
984 {
985 struct symtab *result = NULL;
986
987 if (objfile->sf)
988 result = objfile->sf->qf->find_pc_sect_symtab (objfile, msymbol,
989 pc, section, 0);
990 if (result)
991 return result;
992 }
993
994 return NULL;
995 }
996 \f
997 /* Debug symbols usually don't have section information. We need to dig that
998 out of the minimal symbols and stash that in the debug symbol. */
999
1000 void
1001 fixup_section (struct general_symbol_info *ginfo,
1002 CORE_ADDR addr, struct objfile *objfile)
1003 {
1004 struct minimal_symbol *msym;
1005
1006 /* First, check whether a minimal symbol with the same name exists
1007 and points to the same address. The address check is required
1008 e.g. on PowerPC64, where the minimal symbol for a function will
1009 point to the function descriptor, while the debug symbol will
1010 point to the actual function code. */
1011 msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->name, objfile);
1012 if (msym)
1013 {
1014 ginfo->obj_section = SYMBOL_OBJ_SECTION (msym);
1015 ginfo->section = SYMBOL_SECTION (msym);
1016 }
1017 else
1018 {
1019 /* Static, function-local variables do appear in the linker
1020 (minimal) symbols, but are frequently given names that won't
1021 be found via lookup_minimal_symbol(). E.g., it has been
1022 observed in frv-uclinux (ELF) executables that a static,
1023 function-local variable named "foo" might appear in the
1024 linker symbols as "foo.6" or "foo.3". Thus, there is no
1025 point in attempting to extend the lookup-by-name mechanism to
1026 handle this case due to the fact that there can be multiple
1027 names.
1028
1029 So, instead, search the section table when lookup by name has
1030 failed. The ``addr'' and ``endaddr'' fields may have already
1031 been relocated. If so, the relocation offset (i.e. the
1032 ANOFFSET value) needs to be subtracted from these values when
1033 performing the comparison. We unconditionally subtract it,
1034 because, when no relocation has been performed, the ANOFFSET
1035 value will simply be zero.
1036
1037 The address of the symbol whose section we're fixing up HAS
1038 NOT BEEN adjusted (relocated) yet. It can't have been since
1039 the section isn't yet known and knowing the section is
1040 necessary in order to add the correct relocation value. In
1041 other words, we wouldn't even be in this function (attempting
1042 to compute the section) if it were already known.
1043
1044 Note that it is possible to search the minimal symbols
1045 (subtracting the relocation value if necessary) to find the
1046 matching minimal symbol, but this is overkill and much less
1047 efficient. It is not necessary to find the matching minimal
1048 symbol, only its section.
1049
1050 Note that this technique (of doing a section table search)
1051 can fail when unrelocated section addresses overlap. For
1052 this reason, we still attempt a lookup by name prior to doing
1053 a search of the section table. */
1054
1055 struct obj_section *s;
1056
1057 ALL_OBJFILE_OSECTIONS (objfile, s)
1058 {
1059 int idx = s->the_bfd_section->index;
1060 CORE_ADDR offset = ANOFFSET (objfile->section_offsets, idx);
1061
1062 if (obj_section_addr (s) - offset <= addr
1063 && addr < obj_section_endaddr (s) - offset)
1064 {
1065 ginfo->obj_section = s;
1066 ginfo->section = idx;
1067 return;
1068 }
1069 }
1070 }
1071 }
1072
1073 struct symbol *
1074 fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
1075 {
1076 CORE_ADDR addr;
1077
1078 if (!sym)
1079 return NULL;
1080
1081 if (SYMBOL_OBJ_SECTION (sym))
1082 return sym;
1083
1084 /* We either have an OBJFILE, or we can get at it from the sym's
1085 symtab. Anything else is a bug. */
1086 gdb_assert (objfile || SYMBOL_SYMTAB (sym));
1087
1088 if (objfile == NULL)
1089 objfile = SYMBOL_SYMTAB (sym)->objfile;
1090
1091 /* We should have an objfile by now. */
1092 gdb_assert (objfile);
1093
1094 switch (SYMBOL_CLASS (sym))
1095 {
1096 case LOC_STATIC:
1097 case LOC_LABEL:
1098 addr = SYMBOL_VALUE_ADDRESS (sym);
1099 break;
1100 case LOC_BLOCK:
1101 addr = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
1102 break;
1103
1104 default:
1105 /* Nothing else will be listed in the minsyms -- no use looking
1106 it up. */
1107 return sym;
1108 }
1109
1110 fixup_section (&sym->ginfo, addr, objfile);
1111
1112 return sym;
1113 }
1114
1115 /* Compute the demangled form of NAME as used by the various symbol
1116 lookup functions. The result is stored in *RESULT_NAME. Returns a
1117 cleanup which can be used to clean up the result.
1118
1119 For Ada, this function just sets *RESULT_NAME to NAME, unmodified.
1120 Normally, Ada symbol lookups are performed using the encoded name
1121 rather than the demangled name, and so it might seem to make sense
1122 for this function to return an encoded version of NAME.
1123 Unfortunately, we cannot do this, because this function is used in
1124 circumstances where it is not appropriate to try to encode NAME.
1125 For instance, when displaying the frame info, we demangle the name
1126 of each parameter, and then perform a symbol lookup inside our
1127 function using that demangled name. In Ada, certain functions
1128 have internally-generated parameters whose name contain uppercase
1129 characters. Encoding those name would result in those uppercase
1130 characters to become lowercase, and thus cause the symbol lookup
1131 to fail. */
1132
1133 struct cleanup *
1134 demangle_for_lookup (const char *name, enum language lang,
1135 const char **result_name)
1136 {
1137 char *demangled_name = NULL;
1138 const char *modified_name = NULL;
1139 struct cleanup *cleanup = make_cleanup (null_cleanup, 0);
1140
1141 modified_name = name;
1142
1143 /* If we are using C++, D, Go, or Java, demangle the name before doing a
1144 lookup, so we can always binary search. */
1145 if (lang == language_cplus)
1146 {
1147 demangled_name = cplus_demangle (name, DMGL_ANSI | DMGL_PARAMS);
1148 if (demangled_name)
1149 {
1150 modified_name = demangled_name;
1151 make_cleanup (xfree, demangled_name);
1152 }
1153 else
1154 {
1155 /* If we were given a non-mangled name, canonicalize it
1156 according to the language (so far only for C++). */
1157 demangled_name = cp_canonicalize_string (name);
1158 if (demangled_name)
1159 {
1160 modified_name = demangled_name;
1161 make_cleanup (xfree, demangled_name);
1162 }
1163 }
1164 }
1165 else if (lang == language_java)
1166 {
1167 demangled_name = cplus_demangle (name,
1168 DMGL_ANSI | DMGL_PARAMS | DMGL_JAVA);
1169 if (demangled_name)
1170 {
1171 modified_name = demangled_name;
1172 make_cleanup (xfree, demangled_name);
1173 }
1174 }
1175 else if (lang == language_d)
1176 {
1177 demangled_name = d_demangle (name, 0);
1178 if (demangled_name)
1179 {
1180 modified_name = demangled_name;
1181 make_cleanup (xfree, demangled_name);
1182 }
1183 }
1184 else if (lang == language_go)
1185 {
1186 demangled_name = go_demangle (name, 0);
1187 if (demangled_name)
1188 {
1189 modified_name = demangled_name;
1190 make_cleanup (xfree, demangled_name);
1191 }
1192 }
1193
1194 *result_name = modified_name;
1195 return cleanup;
1196 }
1197
1198 /* Find the definition for a specified symbol name NAME
1199 in domain DOMAIN, visible from lexical block BLOCK.
1200 Returns the struct symbol pointer, or zero if no symbol is found.
1201 C++: if IS_A_FIELD_OF_THIS is nonzero on entry, check to see if
1202 NAME is a field of the current implied argument `this'. If so set
1203 *IS_A_FIELD_OF_THIS to 1, otherwise set it to zero.
1204 BLOCK_FOUND is set to the block in which NAME is found (in the case of
1205 a field of `this', value_of_this sets BLOCK_FOUND to the proper value.) */
1206
1207 /* This function (or rather its subordinates) have a bunch of loops and
1208 it would seem to be attractive to put in some QUIT's (though I'm not really
1209 sure whether it can run long enough to be really important). But there
1210 are a few calls for which it would appear to be bad news to quit
1211 out of here: e.g., find_proc_desc in alpha-mdebug-tdep.c. (Note
1212 that there is C++ code below which can error(), but that probably
1213 doesn't affect these calls since they are looking for a known
1214 variable and thus can probably assume it will never hit the C++
1215 code). */
1216
1217 struct symbol *
1218 lookup_symbol_in_language (const char *name, const struct block *block,
1219 const domain_enum domain, enum language lang,
1220 struct field_of_this_result *is_a_field_of_this)
1221 {
1222 const char *modified_name;
1223 struct symbol *returnval;
1224 struct cleanup *cleanup = demangle_for_lookup (name, lang, &modified_name);
1225
1226 returnval = lookup_symbol_aux (modified_name, block, domain, lang,
1227 is_a_field_of_this);
1228 do_cleanups (cleanup);
1229
1230 return returnval;
1231 }
1232
1233 /* Behave like lookup_symbol_in_language, but performed with the
1234 current language. */
1235
1236 struct symbol *
1237 lookup_symbol (const char *name, const struct block *block,
1238 domain_enum domain,
1239 struct field_of_this_result *is_a_field_of_this)
1240 {
1241 return lookup_symbol_in_language (name, block, domain,
1242 current_language->la_language,
1243 is_a_field_of_this);
1244 }
1245
1246 /* Look up the `this' symbol for LANG in BLOCK. Return the symbol if
1247 found, or NULL if not found. */
1248
1249 struct symbol *
1250 lookup_language_this (const struct language_defn *lang,
1251 const struct block *block)
1252 {
1253 if (lang->la_name_of_this == NULL || block == NULL)
1254 return NULL;
1255
1256 while (block)
1257 {
1258 struct symbol *sym;
1259
1260 sym = lookup_block_symbol (block, lang->la_name_of_this, VAR_DOMAIN);
1261 if (sym != NULL)
1262 {
1263 block_found = block;
1264 return sym;
1265 }
1266 if (BLOCK_FUNCTION (block))
1267 break;
1268 block = BLOCK_SUPERBLOCK (block);
1269 }
1270
1271 return NULL;
1272 }
1273
1274 /* Given TYPE, a structure/union,
1275 return 1 if the component named NAME from the ultimate target
1276 structure/union is defined, otherwise, return 0. */
1277
1278 static int
1279 check_field (struct type *type, const char *name,
1280 struct field_of_this_result *is_a_field_of_this)
1281 {
1282 int i;
1283
1284 /* The type may be a stub. */
1285 CHECK_TYPEDEF (type);
1286
1287 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1288 {
1289 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1290
1291 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1292 {
1293 is_a_field_of_this->type = type;
1294 is_a_field_of_this->field = &TYPE_FIELD (type, i);
1295 return 1;
1296 }
1297 }
1298
1299 /* C++: If it was not found as a data field, then try to return it
1300 as a pointer to a method. */
1301
1302 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
1303 {
1304 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
1305 {
1306 is_a_field_of_this->type = type;
1307 is_a_field_of_this->fn_field = &TYPE_FN_FIELDLIST (type, i);
1308 return 1;
1309 }
1310 }
1311
1312 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1313 if (check_field (TYPE_BASECLASS (type, i), name, is_a_field_of_this))
1314 return 1;
1315
1316 return 0;
1317 }
1318
1319 /* Behave like lookup_symbol except that NAME is the natural name
1320 (e.g., demangled name) of the symbol that we're looking for. */
1321
1322 static struct symbol *
1323 lookup_symbol_aux (const char *name, const struct block *block,
1324 const domain_enum domain, enum language language,
1325 struct field_of_this_result *is_a_field_of_this)
1326 {
1327 struct symbol *sym;
1328 const struct language_defn *langdef;
1329
1330 /* Make sure we do something sensible with is_a_field_of_this, since
1331 the callers that set this parameter to some non-null value will
1332 certainly use it later. If we don't set it, the contents of
1333 is_a_field_of_this are undefined. */
1334 if (is_a_field_of_this != NULL)
1335 memset (is_a_field_of_this, 0, sizeof (*is_a_field_of_this));
1336
1337 /* Search specified block and its superiors. Don't search
1338 STATIC_BLOCK or GLOBAL_BLOCK. */
1339
1340 sym = lookup_symbol_aux_local (name, block, domain, language);
1341 if (sym != NULL)
1342 return sym;
1343
1344 /* If requested to do so by the caller and if appropriate for LANGUAGE,
1345 check to see if NAME is a field of `this'. */
1346
1347 langdef = language_def (language);
1348
1349 /* Don't do this check if we are searching for a struct. It will
1350 not be found by check_field, but will be found by other
1351 means. */
1352 if (is_a_field_of_this != NULL && domain != STRUCT_DOMAIN)
1353 {
1354 struct symbol *sym = lookup_language_this (langdef, block);
1355
1356 if (sym)
1357 {
1358 struct type *t = sym->type;
1359
1360 /* I'm not really sure that type of this can ever
1361 be typedefed; just be safe. */
1362 CHECK_TYPEDEF (t);
1363 if (TYPE_CODE (t) == TYPE_CODE_PTR
1364 || TYPE_CODE (t) == TYPE_CODE_REF)
1365 t = TYPE_TARGET_TYPE (t);
1366
1367 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
1368 && TYPE_CODE (t) != TYPE_CODE_UNION)
1369 error (_("Internal error: `%s' is not an aggregate"),
1370 langdef->la_name_of_this);
1371
1372 if (check_field (t, name, is_a_field_of_this))
1373 return NULL;
1374 }
1375 }
1376
1377 /* Now do whatever is appropriate for LANGUAGE to look
1378 up static and global variables. */
1379
1380 sym = langdef->la_lookup_symbol_nonlocal (name, block, domain);
1381 if (sym != NULL)
1382 return sym;
1383
1384 /* Now search all static file-level symbols. Not strictly correct,
1385 but more useful than an error. */
1386
1387 return lookup_static_symbol_aux (name, domain);
1388 }
1389
1390 /* Search all static file-level symbols for NAME from DOMAIN. Do the symtabs
1391 first, then check the psymtabs. If a psymtab indicates the existence of the
1392 desired name as a file-level static, then do psymtab-to-symtab conversion on
1393 the fly and return the found symbol. */
1394
1395 struct symbol *
1396 lookup_static_symbol_aux (const char *name, const domain_enum domain)
1397 {
1398 struct objfile *objfile;
1399 struct symbol *sym;
1400
1401 sym = lookup_symbol_aux_symtabs (STATIC_BLOCK, name, domain);
1402 if (sym != NULL)
1403 return sym;
1404
1405 ALL_OBJFILES (objfile)
1406 {
1407 sym = lookup_symbol_aux_quick (objfile, STATIC_BLOCK, name, domain);
1408 if (sym != NULL)
1409 return sym;
1410 }
1411
1412 return NULL;
1413 }
1414
1415 /* Check to see if the symbol is defined in BLOCK or its superiors.
1416 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
1417
1418 static struct symbol *
1419 lookup_symbol_aux_local (const char *name, const struct block *block,
1420 const domain_enum domain,
1421 enum language language)
1422 {
1423 struct symbol *sym;
1424 const struct block *static_block = block_static_block (block);
1425 const char *scope = block_scope (block);
1426
1427 /* Check if either no block is specified or it's a global block. */
1428
1429 if (static_block == NULL)
1430 return NULL;
1431
1432 while (block != static_block)
1433 {
1434 sym = lookup_symbol_aux_block (name, block, domain);
1435 if (sym != NULL)
1436 return sym;
1437
1438 if (language == language_cplus || language == language_fortran)
1439 {
1440 sym = cp_lookup_symbol_imports_or_template (scope, name, block,
1441 domain);
1442 if (sym != NULL)
1443 return sym;
1444 }
1445
1446 if (BLOCK_FUNCTION (block) != NULL && block_inlined_p (block))
1447 break;
1448 block = BLOCK_SUPERBLOCK (block);
1449 }
1450
1451 /* We've reached the edge of the function without finding a result. */
1452
1453 return NULL;
1454 }
1455
1456 /* Look up OBJFILE to BLOCK. */
1457
1458 struct objfile *
1459 lookup_objfile_from_block (const struct block *block)
1460 {
1461 struct objfile *obj;
1462 struct symtab *s;
1463
1464 if (block == NULL)
1465 return NULL;
1466
1467 block = block_global_block (block);
1468 /* Go through SYMTABS. */
1469 ALL_SYMTABS (obj, s)
1470 if (block == BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK))
1471 {
1472 if (obj->separate_debug_objfile_backlink)
1473 obj = obj->separate_debug_objfile_backlink;
1474
1475 return obj;
1476 }
1477
1478 return NULL;
1479 }
1480
1481 /* Look up a symbol in a block; if found, fixup the symbol, and set
1482 block_found appropriately. */
1483
1484 struct symbol *
1485 lookup_symbol_aux_block (const char *name, const struct block *block,
1486 const domain_enum domain)
1487 {
1488 struct symbol *sym;
1489
1490 sym = lookup_block_symbol (block, name, domain);
1491 if (sym)
1492 {
1493 block_found = block;
1494 return fixup_symbol_section (sym, NULL);
1495 }
1496
1497 return NULL;
1498 }
1499
1500 /* Check all global symbols in OBJFILE in symtabs and
1501 psymtabs. */
1502
1503 struct symbol *
1504 lookup_global_symbol_from_objfile (const struct objfile *main_objfile,
1505 const char *name,
1506 const domain_enum domain)
1507 {
1508 const struct objfile *objfile;
1509 struct symbol *sym;
1510 struct blockvector *bv;
1511 const struct block *block;
1512 struct symtab *s;
1513
1514 for (objfile = main_objfile;
1515 objfile;
1516 objfile = objfile_separate_debug_iterate (main_objfile, objfile))
1517 {
1518 /* Go through symtabs. */
1519 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
1520 {
1521 bv = BLOCKVECTOR (s);
1522 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1523 sym = lookup_block_symbol (block, name, domain);
1524 if (sym)
1525 {
1526 block_found = block;
1527 return fixup_symbol_section (sym, (struct objfile *)objfile);
1528 }
1529 }
1530
1531 sym = lookup_symbol_aux_quick ((struct objfile *) objfile, GLOBAL_BLOCK,
1532 name, domain);
1533 if (sym)
1534 return sym;
1535 }
1536
1537 return NULL;
1538 }
1539
1540 /* Check to see if the symbol is defined in one of the OBJFILE's
1541 symtabs. BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
1542 depending on whether or not we want to search global symbols or
1543 static symbols. */
1544
1545 static struct symbol *
1546 lookup_symbol_aux_objfile (struct objfile *objfile, int block_index,
1547 const char *name, const domain_enum domain)
1548 {
1549 struct symbol *sym = NULL;
1550 struct blockvector *bv;
1551 const struct block *block;
1552 struct symtab *s;
1553
1554 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
1555 {
1556 bv = BLOCKVECTOR (s);
1557 block = BLOCKVECTOR_BLOCK (bv, block_index);
1558 sym = lookup_block_symbol (block, name, domain);
1559 if (sym)
1560 {
1561 block_found = block;
1562 return fixup_symbol_section (sym, objfile);
1563 }
1564 }
1565
1566 return NULL;
1567 }
1568
1569 /* Same as lookup_symbol_aux_objfile, except that it searches all
1570 objfiles. Return the first match found. */
1571
1572 static struct symbol *
1573 lookup_symbol_aux_symtabs (int block_index, const char *name,
1574 const domain_enum domain)
1575 {
1576 struct symbol *sym;
1577 struct objfile *objfile;
1578
1579 ALL_OBJFILES (objfile)
1580 {
1581 sym = lookup_symbol_aux_objfile (objfile, block_index, name, domain);
1582 if (sym)
1583 return sym;
1584 }
1585
1586 return NULL;
1587 }
1588
1589 /* Wrapper around lookup_symbol_aux_objfile for search_symbols.
1590 Look up LINKAGE_NAME in DOMAIN in the global and static blocks of OBJFILE
1591 and all related objfiles. */
1592
1593 static struct symbol *
1594 lookup_symbol_in_objfile_from_linkage_name (struct objfile *objfile,
1595 const char *linkage_name,
1596 domain_enum domain)
1597 {
1598 enum language lang = current_language->la_language;
1599 const char *modified_name;
1600 struct cleanup *cleanup = demangle_for_lookup (linkage_name, lang,
1601 &modified_name);
1602 struct objfile *main_objfile, *cur_objfile;
1603
1604 if (objfile->separate_debug_objfile_backlink)
1605 main_objfile = objfile->separate_debug_objfile_backlink;
1606 else
1607 main_objfile = objfile;
1608
1609 for (cur_objfile = main_objfile;
1610 cur_objfile;
1611 cur_objfile = objfile_separate_debug_iterate (main_objfile, cur_objfile))
1612 {
1613 struct symbol *sym;
1614
1615 sym = lookup_symbol_aux_objfile (cur_objfile, GLOBAL_BLOCK,
1616 modified_name, domain);
1617 if (sym == NULL)
1618 sym = lookup_symbol_aux_objfile (cur_objfile, STATIC_BLOCK,
1619 modified_name, domain);
1620 if (sym != NULL)
1621 {
1622 do_cleanups (cleanup);
1623 return sym;
1624 }
1625 }
1626
1627 do_cleanups (cleanup);
1628 return NULL;
1629 }
1630
1631 /* A helper function for lookup_symbol_aux that interfaces with the
1632 "quick" symbol table functions. */
1633
1634 static struct symbol *
1635 lookup_symbol_aux_quick (struct objfile *objfile, int kind,
1636 const char *name, const domain_enum domain)
1637 {
1638 struct symtab *symtab;
1639 struct blockvector *bv;
1640 const struct block *block;
1641 struct symbol *sym;
1642
1643 if (!objfile->sf)
1644 return NULL;
1645 symtab = objfile->sf->qf->lookup_symbol (objfile, kind, name, domain);
1646 if (!symtab)
1647 return NULL;
1648
1649 bv = BLOCKVECTOR (symtab);
1650 block = BLOCKVECTOR_BLOCK (bv, kind);
1651 sym = lookup_block_symbol (block, name, domain);
1652 if (!sym)
1653 {
1654 /* This shouldn't be necessary, but as a last resort try
1655 looking in the statics even though the psymtab claimed
1656 the symbol was global, or vice-versa. It's possible
1657 that the psymtab gets it wrong in some cases. */
1658
1659 /* FIXME: carlton/2002-09-30: Should we really do that?
1660 If that happens, isn't it likely to be a GDB error, in
1661 which case we should fix the GDB error rather than
1662 silently dealing with it here? So I'd vote for
1663 removing the check for the symbol in the other
1664 block. */
1665 block = BLOCKVECTOR_BLOCK (bv,
1666 kind == GLOBAL_BLOCK ?
1667 STATIC_BLOCK : GLOBAL_BLOCK);
1668 sym = lookup_block_symbol (block, name, domain);
1669 if (!sym)
1670 error (_("\
1671 Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n\
1672 %s may be an inlined function, or may be a template function\n\
1673 (if a template, try specifying an instantiation: %s<type>)."),
1674 kind == GLOBAL_BLOCK ? "global" : "static",
1675 name, symtab->filename, name, name);
1676 }
1677 return fixup_symbol_section (sym, objfile);
1678 }
1679
1680 /* A default version of lookup_symbol_nonlocal for use by languages
1681 that can't think of anything better to do. This implements the C
1682 lookup rules. */
1683
1684 struct symbol *
1685 basic_lookup_symbol_nonlocal (const char *name,
1686 const struct block *block,
1687 const domain_enum domain)
1688 {
1689 struct symbol *sym;
1690
1691 /* NOTE: carlton/2003-05-19: The comments below were written when
1692 this (or what turned into this) was part of lookup_symbol_aux;
1693 I'm much less worried about these questions now, since these
1694 decisions have turned out well, but I leave these comments here
1695 for posterity. */
1696
1697 /* NOTE: carlton/2002-12-05: There is a question as to whether or
1698 not it would be appropriate to search the current global block
1699 here as well. (That's what this code used to do before the
1700 is_a_field_of_this check was moved up.) On the one hand, it's
1701 redundant with the lookup_symbol_aux_symtabs search that happens
1702 next. On the other hand, if decode_line_1 is passed an argument
1703 like filename:var, then the user presumably wants 'var' to be
1704 searched for in filename. On the third hand, there shouldn't be
1705 multiple global variables all of which are named 'var', and it's
1706 not like decode_line_1 has ever restricted its search to only
1707 global variables in a single filename. All in all, only
1708 searching the static block here seems best: it's correct and it's
1709 cleanest. */
1710
1711 /* NOTE: carlton/2002-12-05: There's also a possible performance
1712 issue here: if you usually search for global symbols in the
1713 current file, then it would be slightly better to search the
1714 current global block before searching all the symtabs. But there
1715 are other factors that have a much greater effect on performance
1716 than that one, so I don't think we should worry about that for
1717 now. */
1718
1719 sym = lookup_symbol_static (name, block, domain);
1720 if (sym != NULL)
1721 return sym;
1722
1723 return lookup_symbol_global (name, block, domain);
1724 }
1725
1726 /* Lookup a symbol in the static block associated to BLOCK, if there
1727 is one; do nothing if BLOCK is NULL or a global block. */
1728
1729 struct symbol *
1730 lookup_symbol_static (const char *name,
1731 const struct block *block,
1732 const domain_enum domain)
1733 {
1734 const struct block *static_block = block_static_block (block);
1735
1736 if (static_block != NULL)
1737 return lookup_symbol_aux_block (name, static_block, domain);
1738 else
1739 return NULL;
1740 }
1741
1742 /* Private data to be used with lookup_symbol_global_iterator_cb. */
1743
1744 struct global_sym_lookup_data
1745 {
1746 /* The name of the symbol we are searching for. */
1747 const char *name;
1748
1749 /* The domain to use for our search. */
1750 domain_enum domain;
1751
1752 /* The field where the callback should store the symbol if found.
1753 It should be initialized to NULL before the search is started. */
1754 struct symbol *result;
1755 };
1756
1757 /* A callback function for gdbarch_iterate_over_objfiles_in_search_order.
1758 It searches by name for a symbol in the GLOBAL_BLOCK of the given
1759 OBJFILE. The arguments for the search are passed via CB_DATA,
1760 which in reality is a pointer to struct global_sym_lookup_data. */
1761
1762 static int
1763 lookup_symbol_global_iterator_cb (struct objfile *objfile,
1764 void *cb_data)
1765 {
1766 struct global_sym_lookup_data *data =
1767 (struct global_sym_lookup_data *) cb_data;
1768
1769 gdb_assert (data->result == NULL);
1770
1771 data->result = lookup_symbol_aux_objfile (objfile, GLOBAL_BLOCK,
1772 data->name, data->domain);
1773 if (data->result == NULL)
1774 data->result = lookup_symbol_aux_quick (objfile, GLOBAL_BLOCK,
1775 data->name, data->domain);
1776
1777 /* If we found a match, tell the iterator to stop. Otherwise,
1778 keep going. */
1779 return (data->result != NULL);
1780 }
1781
1782 /* Lookup a symbol in all files' global blocks (searching psymtabs if
1783 necessary). */
1784
1785 struct symbol *
1786 lookup_symbol_global (const char *name,
1787 const struct block *block,
1788 const domain_enum domain)
1789 {
1790 struct symbol *sym = NULL;
1791 struct objfile *objfile = NULL;
1792 struct global_sym_lookup_data lookup_data;
1793
1794 /* Call library-specific lookup procedure. */
1795 objfile = lookup_objfile_from_block (block);
1796 if (objfile != NULL)
1797 sym = solib_global_lookup (objfile, name, domain);
1798 if (sym != NULL)
1799 return sym;
1800
1801 memset (&lookup_data, 0, sizeof (lookup_data));
1802 lookup_data.name = name;
1803 lookup_data.domain = domain;
1804 gdbarch_iterate_over_objfiles_in_search_order
1805 (objfile != NULL ? get_objfile_arch (objfile) : target_gdbarch (),
1806 lookup_symbol_global_iterator_cb, &lookup_data, objfile);
1807
1808 return lookup_data.result;
1809 }
1810
1811 int
1812 symbol_matches_domain (enum language symbol_language,
1813 domain_enum symbol_domain,
1814 domain_enum domain)
1815 {
1816 /* For C++ "struct foo { ... }" also defines a typedef for "foo".
1817 A Java class declaration also defines a typedef for the class.
1818 Similarly, any Ada type declaration implicitly defines a typedef. */
1819 if (symbol_language == language_cplus
1820 || symbol_language == language_d
1821 || symbol_language == language_java
1822 || symbol_language == language_ada)
1823 {
1824 if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN)
1825 && symbol_domain == STRUCT_DOMAIN)
1826 return 1;
1827 }
1828 /* For all other languages, strict match is required. */
1829 return (symbol_domain == domain);
1830 }
1831
1832 /* Look up a type named NAME in the struct_domain. The type returned
1833 must not be opaque -- i.e., must have at least one field
1834 defined. */
1835
1836 struct type *
1837 lookup_transparent_type (const char *name)
1838 {
1839 return current_language->la_lookup_transparent_type (name);
1840 }
1841
1842 /* A helper for basic_lookup_transparent_type that interfaces with the
1843 "quick" symbol table functions. */
1844
1845 static struct type *
1846 basic_lookup_transparent_type_quick (struct objfile *objfile, int kind,
1847 const char *name)
1848 {
1849 struct symtab *symtab;
1850 struct blockvector *bv;
1851 struct block *block;
1852 struct symbol *sym;
1853
1854 if (!objfile->sf)
1855 return NULL;
1856 symtab = objfile->sf->qf->lookup_symbol (objfile, kind, name, STRUCT_DOMAIN);
1857 if (!symtab)
1858 return NULL;
1859
1860 bv = BLOCKVECTOR (symtab);
1861 block = BLOCKVECTOR_BLOCK (bv, kind);
1862 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1863 if (!sym)
1864 {
1865 int other_kind = kind == GLOBAL_BLOCK ? STATIC_BLOCK : GLOBAL_BLOCK;
1866
1867 /* This shouldn't be necessary, but as a last resort
1868 * try looking in the 'other kind' even though the psymtab
1869 * claimed the symbol was one thing. It's possible that
1870 * the psymtab gets it wrong in some cases.
1871 */
1872 block = BLOCKVECTOR_BLOCK (bv, other_kind);
1873 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1874 if (!sym)
1875 /* FIXME; error is wrong in one case. */
1876 error (_("\
1877 Internal: global symbol `%s' found in %s psymtab but not in symtab.\n\
1878 %s may be an inlined function, or may be a template function\n\
1879 (if a template, try specifying an instantiation: %s<type>)."),
1880 name, symtab->filename, name, name);
1881 }
1882 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1883 return SYMBOL_TYPE (sym);
1884
1885 return NULL;
1886 }
1887
1888 /* The standard implementation of lookup_transparent_type. This code
1889 was modeled on lookup_symbol -- the parts not relevant to looking
1890 up types were just left out. In particular it's assumed here that
1891 types are available in struct_domain and only at file-static or
1892 global blocks. */
1893
1894 struct type *
1895 basic_lookup_transparent_type (const char *name)
1896 {
1897 struct symbol *sym;
1898 struct symtab *s = NULL;
1899 struct blockvector *bv;
1900 struct objfile *objfile;
1901 struct block *block;
1902 struct type *t;
1903
1904 /* Now search all the global symbols. Do the symtab's first, then
1905 check the psymtab's. If a psymtab indicates the existence
1906 of the desired name as a global, then do psymtab-to-symtab
1907 conversion on the fly and return the found symbol. */
1908
1909 ALL_OBJFILES (objfile)
1910 {
1911 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
1912 {
1913 bv = BLOCKVECTOR (s);
1914 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1915 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1916 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1917 {
1918 return SYMBOL_TYPE (sym);
1919 }
1920 }
1921 }
1922
1923 ALL_OBJFILES (objfile)
1924 {
1925 t = basic_lookup_transparent_type_quick (objfile, GLOBAL_BLOCK, name);
1926 if (t)
1927 return t;
1928 }
1929
1930 /* Now search the static file-level symbols.
1931 Not strictly correct, but more useful than an error.
1932 Do the symtab's first, then
1933 check the psymtab's. If a psymtab indicates the existence
1934 of the desired name as a file-level static, then do psymtab-to-symtab
1935 conversion on the fly and return the found symbol. */
1936
1937 ALL_OBJFILES (objfile)
1938 {
1939 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
1940 {
1941 bv = BLOCKVECTOR (s);
1942 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
1943 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1944 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1945 {
1946 return SYMBOL_TYPE (sym);
1947 }
1948 }
1949 }
1950
1951 ALL_OBJFILES (objfile)
1952 {
1953 t = basic_lookup_transparent_type_quick (objfile, STATIC_BLOCK, name);
1954 if (t)
1955 return t;
1956 }
1957
1958 return (struct type *) 0;
1959 }
1960
1961 /* Find the name of the file containing main(). */
1962 /* FIXME: What about languages without main() or specially linked
1963 executables that have no main() ? */
1964
1965 const char *
1966 find_main_filename (void)
1967 {
1968 struct objfile *objfile;
1969 char *name = main_name ();
1970
1971 ALL_OBJFILES (objfile)
1972 {
1973 const char *result;
1974
1975 if (!objfile->sf)
1976 continue;
1977 result = objfile->sf->qf->find_symbol_file (objfile, name);
1978 if (result)
1979 return result;
1980 }
1981 return (NULL);
1982 }
1983
1984 /* Search BLOCK for symbol NAME in DOMAIN.
1985
1986 Note that if NAME is the demangled form of a C++ symbol, we will fail
1987 to find a match during the binary search of the non-encoded names, but
1988 for now we don't worry about the slight inefficiency of looking for
1989 a match we'll never find, since it will go pretty quick. Once the
1990 binary search terminates, we drop through and do a straight linear
1991 search on the symbols. Each symbol which is marked as being a ObjC/C++
1992 symbol (language_cplus or language_objc set) has both the encoded and
1993 non-encoded names tested for a match. */
1994
1995 struct symbol *
1996 lookup_block_symbol (const struct block *block, const char *name,
1997 const domain_enum domain)
1998 {
1999 struct block_iterator iter;
2000 struct symbol *sym;
2001
2002 if (!BLOCK_FUNCTION (block))
2003 {
2004 for (sym = block_iter_name_first (block, name, &iter);
2005 sym != NULL;
2006 sym = block_iter_name_next (name, &iter))
2007 {
2008 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
2009 SYMBOL_DOMAIN (sym), domain))
2010 return sym;
2011 }
2012 return NULL;
2013 }
2014 else
2015 {
2016 /* Note that parameter symbols do not always show up last in the
2017 list; this loop makes sure to take anything else other than
2018 parameter symbols first; it only uses parameter symbols as a
2019 last resort. Note that this only takes up extra computation
2020 time on a match. */
2021
2022 struct symbol *sym_found = NULL;
2023
2024 for (sym = block_iter_name_first (block, name, &iter);
2025 sym != NULL;
2026 sym = block_iter_name_next (name, &iter))
2027 {
2028 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
2029 SYMBOL_DOMAIN (sym), domain))
2030 {
2031 sym_found = sym;
2032 if (!SYMBOL_IS_ARGUMENT (sym))
2033 {
2034 break;
2035 }
2036 }
2037 }
2038 return (sym_found); /* Will be NULL if not found. */
2039 }
2040 }
2041
2042 /* Iterate over the symbols named NAME, matching DOMAIN, starting with
2043 BLOCK.
2044
2045 For each symbol that matches, CALLBACK is called. The symbol and
2046 DATA are passed to the callback.
2047
2048 If CALLBACK returns zero, the iteration ends. Otherwise, the
2049 search continues. This function iterates upward through blocks.
2050 When the outermost block has been finished, the function
2051 returns. */
2052
2053 void
2054 iterate_over_symbols (const struct block *block, const char *name,
2055 const domain_enum domain,
2056 symbol_found_callback_ftype *callback,
2057 void *data)
2058 {
2059 while (block)
2060 {
2061 struct block_iterator iter;
2062 struct symbol *sym;
2063
2064 for (sym = block_iter_name_first (block, name, &iter);
2065 sym != NULL;
2066 sym = block_iter_name_next (name, &iter))
2067 {
2068 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
2069 SYMBOL_DOMAIN (sym), domain))
2070 {
2071 if (!callback (sym, data))
2072 return;
2073 }
2074 }
2075
2076 block = BLOCK_SUPERBLOCK (block);
2077 }
2078 }
2079
2080 /* Find the symtab associated with PC and SECTION. Look through the
2081 psymtabs and read in another symtab if necessary. */
2082
2083 struct symtab *
2084 find_pc_sect_symtab (CORE_ADDR pc, struct obj_section *section)
2085 {
2086 struct block *b;
2087 struct blockvector *bv;
2088 struct symtab *s = NULL;
2089 struct symtab *best_s = NULL;
2090 struct objfile *objfile;
2091 struct program_space *pspace;
2092 CORE_ADDR distance = 0;
2093 struct minimal_symbol *msymbol;
2094
2095 pspace = current_program_space;
2096
2097 /* If we know that this is not a text address, return failure. This is
2098 necessary because we loop based on the block's high and low code
2099 addresses, which do not include the data ranges, and because
2100 we call find_pc_sect_psymtab which has a similar restriction based
2101 on the partial_symtab's texthigh and textlow. */
2102 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
2103 if (msymbol
2104 && (MSYMBOL_TYPE (msymbol) == mst_data
2105 || MSYMBOL_TYPE (msymbol) == mst_bss
2106 || MSYMBOL_TYPE (msymbol) == mst_abs
2107 || MSYMBOL_TYPE (msymbol) == mst_file_data
2108 || MSYMBOL_TYPE (msymbol) == mst_file_bss))
2109 return NULL;
2110
2111 /* Search all symtabs for the one whose file contains our address, and which
2112 is the smallest of all the ones containing the address. This is designed
2113 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
2114 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
2115 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
2116
2117 This happens for native ecoff format, where code from included files
2118 gets its own symtab. The symtab for the included file should have
2119 been read in already via the dependency mechanism.
2120 It might be swifter to create several symtabs with the same name
2121 like xcoff does (I'm not sure).
2122
2123 It also happens for objfiles that have their functions reordered.
2124 For these, the symtab we are looking for is not necessarily read in. */
2125
2126 ALL_PRIMARY_SYMTABS (objfile, s)
2127 {
2128 bv = BLOCKVECTOR (s);
2129 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
2130
2131 if (BLOCK_START (b) <= pc
2132 && BLOCK_END (b) > pc
2133 && (distance == 0
2134 || BLOCK_END (b) - BLOCK_START (b) < distance))
2135 {
2136 /* For an objfile that has its functions reordered,
2137 find_pc_psymtab will find the proper partial symbol table
2138 and we simply return its corresponding symtab. */
2139 /* In order to better support objfiles that contain both
2140 stabs and coff debugging info, we continue on if a psymtab
2141 can't be found. */
2142 if ((objfile->flags & OBJF_REORDERED) && objfile->sf)
2143 {
2144 struct symtab *result;
2145
2146 result
2147 = objfile->sf->qf->find_pc_sect_symtab (objfile,
2148 msymbol,
2149 pc, section,
2150 0);
2151 if (result)
2152 return result;
2153 }
2154 if (section != 0)
2155 {
2156 struct block_iterator iter;
2157 struct symbol *sym = NULL;
2158
2159 ALL_BLOCK_SYMBOLS (b, iter, sym)
2160 {
2161 fixup_symbol_section (sym, objfile);
2162 if (matching_obj_sections (SYMBOL_OBJ_SECTION (sym), section))
2163 break;
2164 }
2165 if (sym == NULL)
2166 continue; /* No symbol in this symtab matches
2167 section. */
2168 }
2169 distance = BLOCK_END (b) - BLOCK_START (b);
2170 best_s = s;
2171 }
2172 }
2173
2174 if (best_s != NULL)
2175 return (best_s);
2176
2177 /* Not found in symtabs, search the "quick" symtabs (e.g. psymtabs). */
2178
2179 ALL_OBJFILES (objfile)
2180 {
2181 struct symtab *result;
2182
2183 if (!objfile->sf)
2184 continue;
2185 result = objfile->sf->qf->find_pc_sect_symtab (objfile,
2186 msymbol,
2187 pc, section,
2188 1);
2189 if (result)
2190 return result;
2191 }
2192
2193 return NULL;
2194 }
2195
2196 /* Find the symtab associated with PC. Look through the psymtabs and read
2197 in another symtab if necessary. Backward compatibility, no section. */
2198
2199 struct symtab *
2200 find_pc_symtab (CORE_ADDR pc)
2201 {
2202 return find_pc_sect_symtab (pc, find_pc_mapped_section (pc));
2203 }
2204 \f
2205
2206 /* Find the source file and line number for a given PC value and SECTION.
2207 Return a structure containing a symtab pointer, a line number,
2208 and a pc range for the entire source line.
2209 The value's .pc field is NOT the specified pc.
2210 NOTCURRENT nonzero means, if specified pc is on a line boundary,
2211 use the line that ends there. Otherwise, in that case, the line
2212 that begins there is used. */
2213
2214 /* The big complication here is that a line may start in one file, and end just
2215 before the start of another file. This usually occurs when you #include
2216 code in the middle of a subroutine. To properly find the end of a line's PC
2217 range, we must search all symtabs associated with this compilation unit, and
2218 find the one whose first PC is closer than that of the next line in this
2219 symtab. */
2220
2221 /* If it's worth the effort, we could be using a binary search. */
2222
2223 struct symtab_and_line
2224 find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent)
2225 {
2226 struct symtab *s;
2227 struct linetable *l;
2228 int len;
2229 int i;
2230 struct linetable_entry *item;
2231 struct symtab_and_line val;
2232 struct blockvector *bv;
2233 struct minimal_symbol *msymbol;
2234 struct minimal_symbol *mfunsym;
2235 struct objfile *objfile;
2236
2237 /* Info on best line seen so far, and where it starts, and its file. */
2238
2239 struct linetable_entry *best = NULL;
2240 CORE_ADDR best_end = 0;
2241 struct symtab *best_symtab = 0;
2242
2243 /* Store here the first line number
2244 of a file which contains the line at the smallest pc after PC.
2245 If we don't find a line whose range contains PC,
2246 we will use a line one less than this,
2247 with a range from the start of that file to the first line's pc. */
2248 struct linetable_entry *alt = NULL;
2249 struct symtab *alt_symtab = 0;
2250
2251 /* Info on best line seen in this file. */
2252
2253 struct linetable_entry *prev;
2254
2255 /* If this pc is not from the current frame,
2256 it is the address of the end of a call instruction.
2257 Quite likely that is the start of the following statement.
2258 But what we want is the statement containing the instruction.
2259 Fudge the pc to make sure we get that. */
2260
2261 init_sal (&val); /* initialize to zeroes */
2262
2263 val.pspace = current_program_space;
2264
2265 /* It's tempting to assume that, if we can't find debugging info for
2266 any function enclosing PC, that we shouldn't search for line
2267 number info, either. However, GAS can emit line number info for
2268 assembly files --- very helpful when debugging hand-written
2269 assembly code. In such a case, we'd have no debug info for the
2270 function, but we would have line info. */
2271
2272 if (notcurrent)
2273 pc -= 1;
2274
2275 /* elz: added this because this function returned the wrong
2276 information if the pc belongs to a stub (import/export)
2277 to call a shlib function. This stub would be anywhere between
2278 two functions in the target, and the line info was erroneously
2279 taken to be the one of the line before the pc. */
2280
2281 /* RT: Further explanation:
2282
2283 * We have stubs (trampolines) inserted between procedures.
2284 *
2285 * Example: "shr1" exists in a shared library, and a "shr1" stub also
2286 * exists in the main image.
2287 *
2288 * In the minimal symbol table, we have a bunch of symbols
2289 * sorted by start address. The stubs are marked as "trampoline",
2290 * the others appear as text. E.g.:
2291 *
2292 * Minimal symbol table for main image
2293 * main: code for main (text symbol)
2294 * shr1: stub (trampoline symbol)
2295 * foo: code for foo (text symbol)
2296 * ...
2297 * Minimal symbol table for "shr1" image:
2298 * ...
2299 * shr1: code for shr1 (text symbol)
2300 * ...
2301 *
2302 * So the code below is trying to detect if we are in the stub
2303 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
2304 * and if found, do the symbolization from the real-code address
2305 * rather than the stub address.
2306 *
2307 * Assumptions being made about the minimal symbol table:
2308 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
2309 * if we're really in the trampoline.s If we're beyond it (say
2310 * we're in "foo" in the above example), it'll have a closer
2311 * symbol (the "foo" text symbol for example) and will not
2312 * return the trampoline.
2313 * 2. lookup_minimal_symbol_text() will find a real text symbol
2314 * corresponding to the trampoline, and whose address will
2315 * be different than the trampoline address. I put in a sanity
2316 * check for the address being the same, to avoid an
2317 * infinite recursion.
2318 */
2319 msymbol = lookup_minimal_symbol_by_pc (pc);
2320 if (msymbol != NULL)
2321 if (MSYMBOL_TYPE (msymbol) == mst_solib_trampoline)
2322 {
2323 mfunsym = lookup_minimal_symbol_text (SYMBOL_LINKAGE_NAME (msymbol),
2324 NULL);
2325 if (mfunsym == NULL)
2326 /* I eliminated this warning since it is coming out
2327 * in the following situation:
2328 * gdb shmain // test program with shared libraries
2329 * (gdb) break shr1 // function in shared lib
2330 * Warning: In stub for ...
2331 * In the above situation, the shared lib is not loaded yet,
2332 * so of course we can't find the real func/line info,
2333 * but the "break" still works, and the warning is annoying.
2334 * So I commented out the warning. RT */
2335 /* warning ("In stub for %s; unable to find real function/line info",
2336 SYMBOL_LINKAGE_NAME (msymbol)); */
2337 ;
2338 /* fall through */
2339 else if (SYMBOL_VALUE_ADDRESS (mfunsym)
2340 == SYMBOL_VALUE_ADDRESS (msymbol))
2341 /* Avoid infinite recursion */
2342 /* See above comment about why warning is commented out. */
2343 /* warning ("In stub for %s; unable to find real function/line info",
2344 SYMBOL_LINKAGE_NAME (msymbol)); */
2345 ;
2346 /* fall through */
2347 else
2348 return find_pc_line (SYMBOL_VALUE_ADDRESS (mfunsym), 0);
2349 }
2350
2351
2352 s = find_pc_sect_symtab (pc, section);
2353 if (!s)
2354 {
2355 /* If no symbol information, return previous pc. */
2356 if (notcurrent)
2357 pc++;
2358 val.pc = pc;
2359 return val;
2360 }
2361
2362 bv = BLOCKVECTOR (s);
2363 objfile = s->objfile;
2364
2365 /* Look at all the symtabs that share this blockvector.
2366 They all have the same apriori range, that we found was right;
2367 but they have different line tables. */
2368
2369 ALL_OBJFILE_SYMTABS (objfile, s)
2370 {
2371 if (BLOCKVECTOR (s) != bv)
2372 continue;
2373
2374 /* Find the best line in this symtab. */
2375 l = LINETABLE (s);
2376 if (!l)
2377 continue;
2378 len = l->nitems;
2379 if (len <= 0)
2380 {
2381 /* I think len can be zero if the symtab lacks line numbers
2382 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
2383 I'm not sure which, and maybe it depends on the symbol
2384 reader). */
2385 continue;
2386 }
2387
2388 prev = NULL;
2389 item = l->item; /* Get first line info. */
2390
2391 /* Is this file's first line closer than the first lines of other files?
2392 If so, record this file, and its first line, as best alternate. */
2393 if (item->pc > pc && (!alt || item->pc < alt->pc))
2394 {
2395 alt = item;
2396 alt_symtab = s;
2397 }
2398
2399 for (i = 0; i < len; i++, item++)
2400 {
2401 /* Leave prev pointing to the linetable entry for the last line
2402 that started at or before PC. */
2403 if (item->pc > pc)
2404 break;
2405
2406 prev = item;
2407 }
2408
2409 /* At this point, prev points at the line whose start addr is <= pc, and
2410 item points at the next line. If we ran off the end of the linetable
2411 (pc >= start of the last line), then prev == item. If pc < start of
2412 the first line, prev will not be set. */
2413
2414 /* Is this file's best line closer than the best in the other files?
2415 If so, record this file, and its best line, as best so far. Don't
2416 save prev if it represents the end of a function (i.e. line number
2417 0) instead of a real line. */
2418
2419 if (prev && prev->line && (!best || prev->pc > best->pc))
2420 {
2421 best = prev;
2422 best_symtab = s;
2423
2424 /* Discard BEST_END if it's before the PC of the current BEST. */
2425 if (best_end <= best->pc)
2426 best_end = 0;
2427 }
2428
2429 /* If another line (denoted by ITEM) is in the linetable and its
2430 PC is after BEST's PC, but before the current BEST_END, then
2431 use ITEM's PC as the new best_end. */
2432 if (best && i < len && item->pc > best->pc
2433 && (best_end == 0 || best_end > item->pc))
2434 best_end = item->pc;
2435 }
2436
2437 if (!best_symtab)
2438 {
2439 /* If we didn't find any line number info, just return zeros.
2440 We used to return alt->line - 1 here, but that could be
2441 anywhere; if we don't have line number info for this PC,
2442 don't make some up. */
2443 val.pc = pc;
2444 }
2445 else if (best->line == 0)
2446 {
2447 /* If our best fit is in a range of PC's for which no line
2448 number info is available (line number is zero) then we didn't
2449 find any valid line information. */
2450 val.pc = pc;
2451 }
2452 else
2453 {
2454 val.symtab = best_symtab;
2455 val.line = best->line;
2456 val.pc = best->pc;
2457 if (best_end && (!alt || best_end < alt->pc))
2458 val.end = best_end;
2459 else if (alt)
2460 val.end = alt->pc;
2461 else
2462 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
2463 }
2464 val.section = section;
2465 return val;
2466 }
2467
2468 /* Backward compatibility (no section). */
2469
2470 struct symtab_and_line
2471 find_pc_line (CORE_ADDR pc, int notcurrent)
2472 {
2473 struct obj_section *section;
2474
2475 section = find_pc_overlay (pc);
2476 if (pc_in_unmapped_range (pc, section))
2477 pc = overlay_mapped_address (pc, section);
2478 return find_pc_sect_line (pc, section, notcurrent);
2479 }
2480 \f
2481 /* Find line number LINE in any symtab whose name is the same as
2482 SYMTAB.
2483
2484 If found, return the symtab that contains the linetable in which it was
2485 found, set *INDEX to the index in the linetable of the best entry
2486 found, and set *EXACT_MATCH nonzero if the value returned is an
2487 exact match.
2488
2489 If not found, return NULL. */
2490
2491 struct symtab *
2492 find_line_symtab (struct symtab *symtab, int line,
2493 int *index, int *exact_match)
2494 {
2495 int exact = 0; /* Initialized here to avoid a compiler warning. */
2496
2497 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
2498 so far seen. */
2499
2500 int best_index;
2501 struct linetable *best_linetable;
2502 struct symtab *best_symtab;
2503
2504 /* First try looking it up in the given symtab. */
2505 best_linetable = LINETABLE (symtab);
2506 best_symtab = symtab;
2507 best_index = find_line_common (best_linetable, line, &exact, 0);
2508 if (best_index < 0 || !exact)
2509 {
2510 /* Didn't find an exact match. So we better keep looking for
2511 another symtab with the same name. In the case of xcoff,
2512 multiple csects for one source file (produced by IBM's FORTRAN
2513 compiler) produce multiple symtabs (this is unavoidable
2514 assuming csects can be at arbitrary places in memory and that
2515 the GLOBAL_BLOCK of a symtab has a begin and end address). */
2516
2517 /* BEST is the smallest linenumber > LINE so far seen,
2518 or 0 if none has been seen so far.
2519 BEST_INDEX and BEST_LINETABLE identify the item for it. */
2520 int best;
2521
2522 struct objfile *objfile;
2523 struct symtab *s;
2524
2525 if (best_index >= 0)
2526 best = best_linetable->item[best_index].line;
2527 else
2528 best = 0;
2529
2530 ALL_OBJFILES (objfile)
2531 {
2532 if (objfile->sf)
2533 objfile->sf->qf->expand_symtabs_with_filename (objfile,
2534 symtab->filename);
2535 }
2536
2537 ALL_SYMTABS (objfile, s)
2538 {
2539 struct linetable *l;
2540 int ind;
2541
2542 if (FILENAME_CMP (symtab->filename, s->filename) != 0)
2543 continue;
2544 if (FILENAME_CMP (symtab_to_fullname (symtab),
2545 symtab_to_fullname (s)) != 0)
2546 continue;
2547 l = LINETABLE (s);
2548 ind = find_line_common (l, line, &exact, 0);
2549 if (ind >= 0)
2550 {
2551 if (exact)
2552 {
2553 best_index = ind;
2554 best_linetable = l;
2555 best_symtab = s;
2556 goto done;
2557 }
2558 if (best == 0 || l->item[ind].line < best)
2559 {
2560 best = l->item[ind].line;
2561 best_index = ind;
2562 best_linetable = l;
2563 best_symtab = s;
2564 }
2565 }
2566 }
2567 }
2568 done:
2569 if (best_index < 0)
2570 return NULL;
2571
2572 if (index)
2573 *index = best_index;
2574 if (exact_match)
2575 *exact_match = exact;
2576
2577 return best_symtab;
2578 }
2579
2580 /* Given SYMTAB, returns all the PCs function in the symtab that
2581 exactly match LINE. Returns NULL if there are no exact matches,
2582 but updates BEST_ITEM in this case. */
2583
2584 VEC (CORE_ADDR) *
2585 find_pcs_for_symtab_line (struct symtab *symtab, int line,
2586 struct linetable_entry **best_item)
2587 {
2588 int start = 0, ix;
2589 struct symbol *previous_function = NULL;
2590 VEC (CORE_ADDR) *result = NULL;
2591
2592 /* First, collect all the PCs that are at this line. */
2593 while (1)
2594 {
2595 int was_exact;
2596 int idx;
2597
2598 idx = find_line_common (LINETABLE (symtab), line, &was_exact, start);
2599 if (idx < 0)
2600 break;
2601
2602 if (!was_exact)
2603 {
2604 struct linetable_entry *item = &LINETABLE (symtab)->item[idx];
2605
2606 if (*best_item == NULL || item->line < (*best_item)->line)
2607 *best_item = item;
2608
2609 break;
2610 }
2611
2612 VEC_safe_push (CORE_ADDR, result, LINETABLE (symtab)->item[idx].pc);
2613 start = idx + 1;
2614 }
2615
2616 return result;
2617 }
2618
2619 \f
2620 /* Set the PC value for a given source file and line number and return true.
2621 Returns zero for invalid line number (and sets the PC to 0).
2622 The source file is specified with a struct symtab. */
2623
2624 int
2625 find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
2626 {
2627 struct linetable *l;
2628 int ind;
2629
2630 *pc = 0;
2631 if (symtab == 0)
2632 return 0;
2633
2634 symtab = find_line_symtab (symtab, line, &ind, NULL);
2635 if (symtab != NULL)
2636 {
2637 l = LINETABLE (symtab);
2638 *pc = l->item[ind].pc;
2639 return 1;
2640 }
2641 else
2642 return 0;
2643 }
2644
2645 /* Find the range of pc values in a line.
2646 Store the starting pc of the line into *STARTPTR
2647 and the ending pc (start of next line) into *ENDPTR.
2648 Returns 1 to indicate success.
2649 Returns 0 if could not find the specified line. */
2650
2651 int
2652 find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
2653 CORE_ADDR *endptr)
2654 {
2655 CORE_ADDR startaddr;
2656 struct symtab_and_line found_sal;
2657
2658 startaddr = sal.pc;
2659 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
2660 return 0;
2661
2662 /* This whole function is based on address. For example, if line 10 has
2663 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
2664 "info line *0x123" should say the line goes from 0x100 to 0x200
2665 and "info line *0x355" should say the line goes from 0x300 to 0x400.
2666 This also insures that we never give a range like "starts at 0x134
2667 and ends at 0x12c". */
2668
2669 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
2670 if (found_sal.line != sal.line)
2671 {
2672 /* The specified line (sal) has zero bytes. */
2673 *startptr = found_sal.pc;
2674 *endptr = found_sal.pc;
2675 }
2676 else
2677 {
2678 *startptr = found_sal.pc;
2679 *endptr = found_sal.end;
2680 }
2681 return 1;
2682 }
2683
2684 /* Given a line table and a line number, return the index into the line
2685 table for the pc of the nearest line whose number is >= the specified one.
2686 Return -1 if none is found. The value is >= 0 if it is an index.
2687 START is the index at which to start searching the line table.
2688
2689 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
2690
2691 static int
2692 find_line_common (struct linetable *l, int lineno,
2693 int *exact_match, int start)
2694 {
2695 int i;
2696 int len;
2697
2698 /* BEST is the smallest linenumber > LINENO so far seen,
2699 or 0 if none has been seen so far.
2700 BEST_INDEX identifies the item for it. */
2701
2702 int best_index = -1;
2703 int best = 0;
2704
2705 *exact_match = 0;
2706
2707 if (lineno <= 0)
2708 return -1;
2709 if (l == 0)
2710 return -1;
2711
2712 len = l->nitems;
2713 for (i = start; i < len; i++)
2714 {
2715 struct linetable_entry *item = &(l->item[i]);
2716
2717 if (item->line == lineno)
2718 {
2719 /* Return the first (lowest address) entry which matches. */
2720 *exact_match = 1;
2721 return i;
2722 }
2723
2724 if (item->line > lineno && (best == 0 || item->line < best))
2725 {
2726 best = item->line;
2727 best_index = i;
2728 }
2729 }
2730
2731 /* If we got here, we didn't get an exact match. */
2732 return best_index;
2733 }
2734
2735 int
2736 find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
2737 {
2738 struct symtab_and_line sal;
2739
2740 sal = find_pc_line (pc, 0);
2741 *startptr = sal.pc;
2742 *endptr = sal.end;
2743 return sal.symtab != 0;
2744 }
2745
2746 /* Given a function start address FUNC_ADDR and SYMTAB, find the first
2747 address for that function that has an entry in SYMTAB's line info
2748 table. If such an entry cannot be found, return FUNC_ADDR
2749 unaltered. */
2750
2751 static CORE_ADDR
2752 skip_prologue_using_lineinfo (CORE_ADDR func_addr, struct symtab *symtab)
2753 {
2754 CORE_ADDR func_start, func_end;
2755 struct linetable *l;
2756 int i;
2757
2758 /* Give up if this symbol has no lineinfo table. */
2759 l = LINETABLE (symtab);
2760 if (l == NULL)
2761 return func_addr;
2762
2763 /* Get the range for the function's PC values, or give up if we
2764 cannot, for some reason. */
2765 if (!find_pc_partial_function (func_addr, NULL, &func_start, &func_end))
2766 return func_addr;
2767
2768 /* Linetable entries are ordered by PC values, see the commentary in
2769 symtab.h where `struct linetable' is defined. Thus, the first
2770 entry whose PC is in the range [FUNC_START..FUNC_END[ is the
2771 address we are looking for. */
2772 for (i = 0; i < l->nitems; i++)
2773 {
2774 struct linetable_entry *item = &(l->item[i]);
2775
2776 /* Don't use line numbers of zero, they mark special entries in
2777 the table. See the commentary on symtab.h before the
2778 definition of struct linetable. */
2779 if (item->line > 0 && func_start <= item->pc && item->pc < func_end)
2780 return item->pc;
2781 }
2782
2783 return func_addr;
2784 }
2785
2786 /* Given a function symbol SYM, find the symtab and line for the start
2787 of the function.
2788 If the argument FUNFIRSTLINE is nonzero, we want the first line
2789 of real code inside the function. */
2790
2791 struct symtab_and_line
2792 find_function_start_sal (struct symbol *sym, int funfirstline)
2793 {
2794 struct symtab_and_line sal;
2795
2796 fixup_symbol_section (sym, NULL);
2797 sal = find_pc_sect_line (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)),
2798 SYMBOL_OBJ_SECTION (sym), 0);
2799
2800 /* We always should have a line for the function start address.
2801 If we don't, something is odd. Create a plain SAL refering
2802 just the PC and hope that skip_prologue_sal (if requested)
2803 can find a line number for after the prologue. */
2804 if (sal.pc < BLOCK_START (SYMBOL_BLOCK_VALUE (sym)))
2805 {
2806 init_sal (&sal);
2807 sal.pspace = current_program_space;
2808 sal.pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
2809 sal.section = SYMBOL_OBJ_SECTION (sym);
2810 }
2811
2812 if (funfirstline)
2813 skip_prologue_sal (&sal);
2814
2815 return sal;
2816 }
2817
2818 /* Adjust SAL to the first instruction past the function prologue.
2819 If the PC was explicitly specified, the SAL is not changed.
2820 If the line number was explicitly specified, at most the SAL's PC
2821 is updated. If SAL is already past the prologue, then do nothing. */
2822
2823 void
2824 skip_prologue_sal (struct symtab_and_line *sal)
2825 {
2826 struct symbol *sym;
2827 struct symtab_and_line start_sal;
2828 struct cleanup *old_chain;
2829 CORE_ADDR pc, saved_pc;
2830 struct obj_section *section;
2831 const char *name;
2832 struct objfile *objfile;
2833 struct gdbarch *gdbarch;
2834 struct block *b, *function_block;
2835 int force_skip, skip;
2836
2837 /* Do not change the SAL if PC was specified explicitly. */
2838 if (sal->explicit_pc)
2839 return;
2840
2841 old_chain = save_current_space_and_thread ();
2842 switch_to_program_space_and_thread (sal->pspace);
2843
2844 sym = find_pc_sect_function (sal->pc, sal->section);
2845 if (sym != NULL)
2846 {
2847 fixup_symbol_section (sym, NULL);
2848
2849 pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
2850 section = SYMBOL_OBJ_SECTION (sym);
2851 name = SYMBOL_LINKAGE_NAME (sym);
2852 objfile = SYMBOL_SYMTAB (sym)->objfile;
2853 }
2854 else
2855 {
2856 struct minimal_symbol *msymbol
2857 = lookup_minimal_symbol_by_pc_section (sal->pc, sal->section);
2858
2859 if (msymbol == NULL)
2860 {
2861 do_cleanups (old_chain);
2862 return;
2863 }
2864
2865 pc = SYMBOL_VALUE_ADDRESS (msymbol);
2866 section = SYMBOL_OBJ_SECTION (msymbol);
2867 name = SYMBOL_LINKAGE_NAME (msymbol);
2868 objfile = msymbol_objfile (msymbol);
2869 }
2870
2871 gdbarch = get_objfile_arch (objfile);
2872
2873 /* Process the prologue in two passes. In the first pass try to skip the
2874 prologue (SKIP is true) and verify there is a real need for it (indicated
2875 by FORCE_SKIP). If no such reason was found run a second pass where the
2876 prologue is not skipped (SKIP is false). */
2877
2878 skip = 1;
2879 force_skip = 1;
2880
2881 /* Be conservative - allow direct PC (without skipping prologue) only if we
2882 have proven the CU (Compilation Unit) supports it. sal->SYMTAB does not
2883 have to be set by the caller so we use SYM instead. */
2884 if (sym && SYMBOL_SYMTAB (sym)->locations_valid)
2885 force_skip = 0;
2886
2887 saved_pc = pc;
2888 do
2889 {
2890 pc = saved_pc;
2891
2892 /* If the function is in an unmapped overlay, use its unmapped LMA address,
2893 so that gdbarch_skip_prologue has something unique to work on. */
2894 if (section_is_overlay (section) && !section_is_mapped (section))
2895 pc = overlay_unmapped_address (pc, section);
2896
2897 /* Skip "first line" of function (which is actually its prologue). */
2898 pc += gdbarch_deprecated_function_start_offset (gdbarch);
2899 if (skip)
2900 pc = gdbarch_skip_prologue (gdbarch, pc);
2901
2902 /* For overlays, map pc back into its mapped VMA range. */
2903 pc = overlay_mapped_address (pc, section);
2904
2905 /* Calculate line number. */
2906 start_sal = find_pc_sect_line (pc, section, 0);
2907
2908 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
2909 line is still part of the same function. */
2910 if (skip && start_sal.pc != pc
2911 && (sym ? (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) <= start_sal.end
2912 && start_sal.end < BLOCK_END (SYMBOL_BLOCK_VALUE (sym)))
2913 : (lookup_minimal_symbol_by_pc_section (start_sal.end, section)
2914 == lookup_minimal_symbol_by_pc_section (pc, section))))
2915 {
2916 /* First pc of next line */
2917 pc = start_sal.end;
2918 /* Recalculate the line number (might not be N+1). */
2919 start_sal = find_pc_sect_line (pc, section, 0);
2920 }
2921
2922 /* On targets with executable formats that don't have a concept of
2923 constructors (ELF with .init has, PE doesn't), gcc emits a call
2924 to `__main' in `main' between the prologue and before user
2925 code. */
2926 if (gdbarch_skip_main_prologue_p (gdbarch)
2927 && name && strcmp_iw (name, "main") == 0)
2928 {
2929 pc = gdbarch_skip_main_prologue (gdbarch, pc);
2930 /* Recalculate the line number (might not be N+1). */
2931 start_sal = find_pc_sect_line (pc, section, 0);
2932 force_skip = 1;
2933 }
2934 }
2935 while (!force_skip && skip--);
2936
2937 /* If we still don't have a valid source line, try to find the first
2938 PC in the lineinfo table that belongs to the same function. This
2939 happens with COFF debug info, which does not seem to have an
2940 entry in lineinfo table for the code after the prologue which has
2941 no direct relation to source. For example, this was found to be
2942 the case with the DJGPP target using "gcc -gcoff" when the
2943 compiler inserted code after the prologue to make sure the stack
2944 is aligned. */
2945 if (!force_skip && sym && start_sal.symtab == NULL)
2946 {
2947 pc = skip_prologue_using_lineinfo (pc, SYMBOL_SYMTAB (sym));
2948 /* Recalculate the line number. */
2949 start_sal = find_pc_sect_line (pc, section, 0);
2950 }
2951
2952 do_cleanups (old_chain);
2953
2954 /* If we're already past the prologue, leave SAL unchanged. Otherwise
2955 forward SAL to the end of the prologue. */
2956 if (sal->pc >= pc)
2957 return;
2958
2959 sal->pc = pc;
2960 sal->section = section;
2961
2962 /* Unless the explicit_line flag was set, update the SAL line
2963 and symtab to correspond to the modified PC location. */
2964 if (sal->explicit_line)
2965 return;
2966
2967 sal->symtab = start_sal.symtab;
2968 sal->line = start_sal.line;
2969 sal->end = start_sal.end;
2970
2971 /* Check if we are now inside an inlined function. If we can,
2972 use the call site of the function instead. */
2973 b = block_for_pc_sect (sal->pc, sal->section);
2974 function_block = NULL;
2975 while (b != NULL)
2976 {
2977 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
2978 function_block = b;
2979 else if (BLOCK_FUNCTION (b) != NULL)
2980 break;
2981 b = BLOCK_SUPERBLOCK (b);
2982 }
2983 if (function_block != NULL
2984 && SYMBOL_LINE (BLOCK_FUNCTION (function_block)) != 0)
2985 {
2986 sal->line = SYMBOL_LINE (BLOCK_FUNCTION (function_block));
2987 sal->symtab = SYMBOL_SYMTAB (BLOCK_FUNCTION (function_block));
2988 }
2989 }
2990
2991 /* If P is of the form "operator[ \t]+..." where `...' is
2992 some legitimate operator text, return a pointer to the
2993 beginning of the substring of the operator text.
2994 Otherwise, return "". */
2995
2996 static char *
2997 operator_chars (char *p, char **end)
2998 {
2999 *end = "";
3000 if (strncmp (p, "operator", 8))
3001 return *end;
3002 p += 8;
3003
3004 /* Don't get faked out by `operator' being part of a longer
3005 identifier. */
3006 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
3007 return *end;
3008
3009 /* Allow some whitespace between `operator' and the operator symbol. */
3010 while (*p == ' ' || *p == '\t')
3011 p++;
3012
3013 /* Recognize 'operator TYPENAME'. */
3014
3015 if (isalpha (*p) || *p == '_' || *p == '$')
3016 {
3017 char *q = p + 1;
3018
3019 while (isalnum (*q) || *q == '_' || *q == '$')
3020 q++;
3021 *end = q;
3022 return p;
3023 }
3024
3025 while (*p)
3026 switch (*p)
3027 {
3028 case '\\': /* regexp quoting */
3029 if (p[1] == '*')
3030 {
3031 if (p[2] == '=') /* 'operator\*=' */
3032 *end = p + 3;
3033 else /* 'operator\*' */
3034 *end = p + 2;
3035 return p;
3036 }
3037 else if (p[1] == '[')
3038 {
3039 if (p[2] == ']')
3040 error (_("mismatched quoting on brackets, "
3041 "try 'operator\\[\\]'"));
3042 else if (p[2] == '\\' && p[3] == ']')
3043 {
3044 *end = p + 4; /* 'operator\[\]' */
3045 return p;
3046 }
3047 else
3048 error (_("nothing is allowed between '[' and ']'"));
3049 }
3050 else
3051 {
3052 /* Gratuitous qoute: skip it and move on. */
3053 p++;
3054 continue;
3055 }
3056 break;
3057 case '!':
3058 case '=':
3059 case '*':
3060 case '/':
3061 case '%':
3062 case '^':
3063 if (p[1] == '=')
3064 *end = p + 2;
3065 else
3066 *end = p + 1;
3067 return p;
3068 case '<':
3069 case '>':
3070 case '+':
3071 case '-':
3072 case '&':
3073 case '|':
3074 if (p[0] == '-' && p[1] == '>')
3075 {
3076 /* Struct pointer member operator 'operator->'. */
3077 if (p[2] == '*')
3078 {
3079 *end = p + 3; /* 'operator->*' */
3080 return p;
3081 }
3082 else if (p[2] == '\\')
3083 {
3084 *end = p + 4; /* Hopefully 'operator->\*' */
3085 return p;
3086 }
3087 else
3088 {
3089 *end = p + 2; /* 'operator->' */
3090 return p;
3091 }
3092 }
3093 if (p[1] == '=' || p[1] == p[0])
3094 *end = p + 2;
3095 else
3096 *end = p + 1;
3097 return p;
3098 case '~':
3099 case ',':
3100 *end = p + 1;
3101 return p;
3102 case '(':
3103 if (p[1] != ')')
3104 error (_("`operator ()' must be specified "
3105 "without whitespace in `()'"));
3106 *end = p + 2;
3107 return p;
3108 case '?':
3109 if (p[1] != ':')
3110 error (_("`operator ?:' must be specified "
3111 "without whitespace in `?:'"));
3112 *end = p + 2;
3113 return p;
3114 case '[':
3115 if (p[1] != ']')
3116 error (_("`operator []' must be specified "
3117 "without whitespace in `[]'"));
3118 *end = p + 2;
3119 return p;
3120 default:
3121 error (_("`operator %s' not supported"), p);
3122 break;
3123 }
3124
3125 *end = "";
3126 return *end;
3127 }
3128 \f
3129
3130 /* Cache to watch for file names already seen by filename_seen. */
3131
3132 struct filename_seen_cache
3133 {
3134 /* Table of files seen so far. */
3135 htab_t tab;
3136 /* Initial size of the table. It automagically grows from here. */
3137 #define INITIAL_FILENAME_SEEN_CACHE_SIZE 100
3138 };
3139
3140 /* filename_seen_cache constructor. */
3141
3142 static struct filename_seen_cache *
3143 create_filename_seen_cache (void)
3144 {
3145 struct filename_seen_cache *cache;
3146
3147 cache = XNEW (struct filename_seen_cache);
3148 cache->tab = htab_create_alloc (INITIAL_FILENAME_SEEN_CACHE_SIZE,
3149 filename_hash, filename_eq,
3150 NULL, xcalloc, xfree);
3151
3152 return cache;
3153 }
3154
3155 /* Empty the cache, but do not delete it. */
3156
3157 static void
3158 clear_filename_seen_cache (struct filename_seen_cache *cache)
3159 {
3160 htab_empty (cache->tab);
3161 }
3162
3163 /* filename_seen_cache destructor.
3164 This takes a void * argument as it is generally used as a cleanup. */
3165
3166 static void
3167 delete_filename_seen_cache (void *ptr)
3168 {
3169 struct filename_seen_cache *cache = ptr;
3170
3171 htab_delete (cache->tab);
3172 xfree (cache);
3173 }
3174
3175 /* If FILE is not already in the table of files in CACHE, return zero;
3176 otherwise return non-zero. Optionally add FILE to the table if ADD
3177 is non-zero.
3178
3179 NOTE: We don't manage space for FILE, we assume FILE lives as long
3180 as the caller needs. */
3181
3182 static int
3183 filename_seen (struct filename_seen_cache *cache, const char *file, int add)
3184 {
3185 void **slot;
3186
3187 /* Is FILE in tab? */
3188 slot = htab_find_slot (cache->tab, file, add ? INSERT : NO_INSERT);
3189 if (*slot != NULL)
3190 return 1;
3191
3192 /* No; maybe add it to tab. */
3193 if (add)
3194 *slot = (char *) file;
3195
3196 return 0;
3197 }
3198
3199 /* Data structure to maintain printing state for output_source_filename. */
3200
3201 struct output_source_filename_data
3202 {
3203 /* Cache of what we've seen so far. */
3204 struct filename_seen_cache *filename_seen_cache;
3205
3206 /* Flag of whether we're printing the first one. */
3207 int first;
3208 };
3209
3210 /* Slave routine for sources_info. Force line breaks at ,'s.
3211 NAME is the name to print.
3212 DATA contains the state for printing and watching for duplicates. */
3213
3214 static void
3215 output_source_filename (const char *name,
3216 struct output_source_filename_data *data)
3217 {
3218 /* Since a single source file can result in several partial symbol
3219 tables, we need to avoid printing it more than once. Note: if
3220 some of the psymtabs are read in and some are not, it gets
3221 printed both under "Source files for which symbols have been
3222 read" and "Source files for which symbols will be read in on
3223 demand". I consider this a reasonable way to deal with the
3224 situation. I'm not sure whether this can also happen for
3225 symtabs; it doesn't hurt to check. */
3226
3227 /* Was NAME already seen? */
3228 if (filename_seen (data->filename_seen_cache, name, 1))
3229 {
3230 /* Yes; don't print it again. */
3231 return;
3232 }
3233
3234 /* No; print it and reset *FIRST. */
3235 if (! data->first)
3236 printf_filtered (", ");
3237 data->first = 0;
3238
3239 wrap_here ("");
3240 fputs_filtered (name, gdb_stdout);
3241 }
3242
3243 /* A callback for map_partial_symbol_filenames. */
3244
3245 static void
3246 output_partial_symbol_filename (const char *filename, const char *fullname,
3247 void *data)
3248 {
3249 output_source_filename (fullname ? fullname : filename, data);
3250 }
3251
3252 static void
3253 sources_info (char *ignore, int from_tty)
3254 {
3255 struct symtab *s;
3256 struct objfile *objfile;
3257 struct output_source_filename_data data;
3258 struct cleanup *cleanups;
3259
3260 if (!have_full_symbols () && !have_partial_symbols ())
3261 {
3262 error (_("No symbol table is loaded. Use the \"file\" command."));
3263 }
3264
3265 data.filename_seen_cache = create_filename_seen_cache ();
3266 cleanups = make_cleanup (delete_filename_seen_cache,
3267 data.filename_seen_cache);
3268
3269 printf_filtered ("Source files for which symbols have been read in:\n\n");
3270
3271 data.first = 1;
3272 ALL_SYMTABS (objfile, s)
3273 {
3274 const char *fullname = symtab_to_fullname (s);
3275
3276 output_source_filename (fullname, &data);
3277 }
3278 printf_filtered ("\n\n");
3279
3280 printf_filtered ("Source files for which symbols "
3281 "will be read in on demand:\n\n");
3282
3283 clear_filename_seen_cache (data.filename_seen_cache);
3284 data.first = 1;
3285 map_partial_symbol_filenames (output_partial_symbol_filename, &data,
3286 1 /*need_fullname*/);
3287 printf_filtered ("\n");
3288
3289 do_cleanups (cleanups);
3290 }
3291
3292 static int
3293 file_matches (const char *file, char *files[], int nfiles)
3294 {
3295 int i;
3296
3297 if (file != NULL && nfiles != 0)
3298 {
3299 for (i = 0; i < nfiles; i++)
3300 {
3301 if (filename_cmp (files[i], lbasename (file)) == 0)
3302 return 1;
3303 }
3304 }
3305 else if (nfiles == 0)
3306 return 1;
3307 return 0;
3308 }
3309
3310 /* Free any memory associated with a search. */
3311
3312 void
3313 free_search_symbols (struct symbol_search *symbols)
3314 {
3315 struct symbol_search *p;
3316 struct symbol_search *next;
3317
3318 for (p = symbols; p != NULL; p = next)
3319 {
3320 next = p->next;
3321 xfree (p);
3322 }
3323 }
3324
3325 static void
3326 do_free_search_symbols_cleanup (void *symbols)
3327 {
3328 free_search_symbols (symbols);
3329 }
3330
3331 struct cleanup *
3332 make_cleanup_free_search_symbols (struct symbol_search *symbols)
3333 {
3334 return make_cleanup (do_free_search_symbols_cleanup, symbols);
3335 }
3336
3337 /* Helper function for sort_search_symbols and qsort. Can only
3338 sort symbols, not minimal symbols. */
3339
3340 static int
3341 compare_search_syms (const void *sa, const void *sb)
3342 {
3343 struct symbol_search **sym_a = (struct symbol_search **) sa;
3344 struct symbol_search **sym_b = (struct symbol_search **) sb;
3345
3346 return strcmp (SYMBOL_PRINT_NAME ((*sym_a)->symbol),
3347 SYMBOL_PRINT_NAME ((*sym_b)->symbol));
3348 }
3349
3350 /* Sort the ``nfound'' symbols in the list after prevtail. Leave
3351 prevtail where it is, but update its next pointer to point to
3352 the first of the sorted symbols. */
3353
3354 static struct symbol_search *
3355 sort_search_symbols (struct symbol_search *prevtail, int nfound)
3356 {
3357 struct symbol_search **symbols, *symp, *old_next;
3358 int i;
3359
3360 symbols = (struct symbol_search **) xmalloc (sizeof (struct symbol_search *)
3361 * nfound);
3362 symp = prevtail->next;
3363 for (i = 0; i < nfound; i++)
3364 {
3365 symbols[i] = symp;
3366 symp = symp->next;
3367 }
3368 /* Generally NULL. */
3369 old_next = symp;
3370
3371 qsort (symbols, nfound, sizeof (struct symbol_search *),
3372 compare_search_syms);
3373
3374 symp = prevtail;
3375 for (i = 0; i < nfound; i++)
3376 {
3377 symp->next = symbols[i];
3378 symp = symp->next;
3379 }
3380 symp->next = old_next;
3381
3382 xfree (symbols);
3383 return symp;
3384 }
3385
3386 /* An object of this type is passed as the user_data to the
3387 expand_symtabs_matching method. */
3388 struct search_symbols_data
3389 {
3390 int nfiles;
3391 char **files;
3392
3393 /* It is true if PREG contains valid data, false otherwise. */
3394 unsigned preg_p : 1;
3395 regex_t preg;
3396 };
3397
3398 /* A callback for expand_symtabs_matching. */
3399
3400 static int
3401 search_symbols_file_matches (const char *filename, void *user_data)
3402 {
3403 struct search_symbols_data *data = user_data;
3404
3405 return file_matches (filename, data->files, data->nfiles);
3406 }
3407
3408 /* A callback for expand_symtabs_matching. */
3409
3410 static int
3411 search_symbols_name_matches (const char *symname, void *user_data)
3412 {
3413 struct search_symbols_data *data = user_data;
3414
3415 return !data->preg_p || regexec (&data->preg, symname, 0, NULL, 0) == 0;
3416 }
3417
3418 /* Search the symbol table for matches to the regular expression REGEXP,
3419 returning the results in *MATCHES.
3420
3421 Only symbols of KIND are searched:
3422 VARIABLES_DOMAIN - search all symbols, excluding functions, type names,
3423 and constants (enums)
3424 FUNCTIONS_DOMAIN - search all functions
3425 TYPES_DOMAIN - search all type names
3426 ALL_DOMAIN - an internal error for this function
3427
3428 free_search_symbols should be called when *MATCHES is no longer needed.
3429
3430 The results are sorted locally; each symtab's global and static blocks are
3431 separately alphabetized. */
3432
3433 void
3434 search_symbols (char *regexp, enum search_domain kind,
3435 int nfiles, char *files[],
3436 struct symbol_search **matches)
3437 {
3438 struct symtab *s;
3439 struct blockvector *bv;
3440 struct block *b;
3441 int i = 0;
3442 struct block_iterator iter;
3443 struct symbol *sym;
3444 struct objfile *objfile;
3445 struct minimal_symbol *msymbol;
3446 int found_misc = 0;
3447 static const enum minimal_symbol_type types[]
3448 = {mst_data, mst_text, mst_abs};
3449 static const enum minimal_symbol_type types2[]
3450 = {mst_bss, mst_file_text, mst_abs};
3451 static const enum minimal_symbol_type types3[]
3452 = {mst_file_data, mst_solib_trampoline, mst_abs};
3453 static const enum minimal_symbol_type types4[]
3454 = {mst_file_bss, mst_text_gnu_ifunc, mst_abs};
3455 enum minimal_symbol_type ourtype;
3456 enum minimal_symbol_type ourtype2;
3457 enum minimal_symbol_type ourtype3;
3458 enum minimal_symbol_type ourtype4;
3459 struct symbol_search *sr;
3460 struct symbol_search *psr;
3461 struct symbol_search *tail;
3462 struct search_symbols_data datum;
3463
3464 /* OLD_CHAIN .. RETVAL_CHAIN is always freed, RETVAL_CHAIN .. current
3465 CLEANUP_CHAIN is freed only in the case of an error. */
3466 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
3467 struct cleanup *retval_chain;
3468
3469 gdb_assert (kind <= TYPES_DOMAIN);
3470
3471 ourtype = types[kind];
3472 ourtype2 = types2[kind];
3473 ourtype3 = types3[kind];
3474 ourtype4 = types4[kind];
3475
3476 sr = *matches = NULL;
3477 tail = NULL;
3478 datum.preg_p = 0;
3479
3480 if (regexp != NULL)
3481 {
3482 /* Make sure spacing is right for C++ operators.
3483 This is just a courtesy to make the matching less sensitive
3484 to how many spaces the user leaves between 'operator'
3485 and <TYPENAME> or <OPERATOR>. */
3486 char *opend;
3487 char *opname = operator_chars (regexp, &opend);
3488 int errcode;
3489
3490 if (*opname)
3491 {
3492 int fix = -1; /* -1 means ok; otherwise number of
3493 spaces needed. */
3494
3495 if (isalpha (*opname) || *opname == '_' || *opname == '$')
3496 {
3497 /* There should 1 space between 'operator' and 'TYPENAME'. */
3498 if (opname[-1] != ' ' || opname[-2] == ' ')
3499 fix = 1;
3500 }
3501 else
3502 {
3503 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
3504 if (opname[-1] == ' ')
3505 fix = 0;
3506 }
3507 /* If wrong number of spaces, fix it. */
3508 if (fix >= 0)
3509 {
3510 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
3511
3512 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
3513 regexp = tmp;
3514 }
3515 }
3516
3517 errcode = regcomp (&datum.preg, regexp,
3518 REG_NOSUB | (case_sensitivity == case_sensitive_off
3519 ? REG_ICASE : 0));
3520 if (errcode != 0)
3521 {
3522 char *err = get_regcomp_error (errcode, &datum.preg);
3523
3524 make_cleanup (xfree, err);
3525 error (_("Invalid regexp (%s): %s"), err, regexp);
3526 }
3527 datum.preg_p = 1;
3528 make_regfree_cleanup (&datum.preg);
3529 }
3530
3531 /* Search through the partial symtabs *first* for all symbols
3532 matching the regexp. That way we don't have to reproduce all of
3533 the machinery below. */
3534
3535 datum.nfiles = nfiles;
3536 datum.files = files;
3537 ALL_OBJFILES (objfile)
3538 {
3539 if (objfile->sf)
3540 objfile->sf->qf->expand_symtabs_matching (objfile,
3541 (nfiles == 0
3542 ? NULL
3543 : search_symbols_file_matches),
3544 search_symbols_name_matches,
3545 kind,
3546 &datum);
3547 }
3548
3549 retval_chain = old_chain;
3550
3551 /* Here, we search through the minimal symbol tables for functions
3552 and variables that match, and force their symbols to be read.
3553 This is in particular necessary for demangled variable names,
3554 which are no longer put into the partial symbol tables.
3555 The symbol will then be found during the scan of symtabs below.
3556
3557 For functions, find_pc_symtab should succeed if we have debug info
3558 for the function, for variables we have to call
3559 lookup_symbol_in_objfile_from_linkage_name to determine if the variable
3560 has debug info.
3561 If the lookup fails, set found_misc so that we will rescan to print
3562 any matching symbols without debug info.
3563 We only search the objfile the msymbol came from, we no longer search
3564 all objfiles. In large programs (1000s of shared libs) searching all
3565 objfiles is not worth the pain. */
3566
3567 if (nfiles == 0 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
3568 {
3569 ALL_MSYMBOLS (objfile, msymbol)
3570 {
3571 QUIT;
3572
3573 if (msymbol->created_by_gdb)
3574 continue;
3575
3576 if (MSYMBOL_TYPE (msymbol) == ourtype
3577 || MSYMBOL_TYPE (msymbol) == ourtype2
3578 || MSYMBOL_TYPE (msymbol) == ourtype3
3579 || MSYMBOL_TYPE (msymbol) == ourtype4)
3580 {
3581 if (!datum.preg_p
3582 || regexec (&datum.preg, SYMBOL_NATURAL_NAME (msymbol), 0,
3583 NULL, 0) == 0)
3584 {
3585 /* Note: An important side-effect of these lookup functions
3586 is to expand the symbol table if msymbol is found, for the
3587 benefit of the next loop on ALL_PRIMARY_SYMTABS. */
3588 if (kind == FUNCTIONS_DOMAIN
3589 ? find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol)) == NULL
3590 : (lookup_symbol_in_objfile_from_linkage_name
3591 (objfile, SYMBOL_LINKAGE_NAME (msymbol), VAR_DOMAIN)
3592 == NULL))
3593 found_misc = 1;
3594 }
3595 }
3596 }
3597 }
3598
3599 ALL_PRIMARY_SYMTABS (objfile, s)
3600 {
3601 bv = BLOCKVECTOR (s);
3602 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
3603 {
3604 struct symbol_search *prevtail = tail;
3605 int nfound = 0;
3606
3607 b = BLOCKVECTOR_BLOCK (bv, i);
3608 ALL_BLOCK_SYMBOLS (b, iter, sym)
3609 {
3610 struct symtab *real_symtab = SYMBOL_SYMTAB (sym);
3611
3612 QUIT;
3613
3614 if (file_matches (real_symtab->filename, files, nfiles)
3615 && ((!datum.preg_p
3616 || regexec (&datum.preg, SYMBOL_NATURAL_NAME (sym), 0,
3617 NULL, 0) == 0)
3618 && ((kind == VARIABLES_DOMAIN
3619 && SYMBOL_CLASS (sym) != LOC_TYPEDEF
3620 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
3621 && SYMBOL_CLASS (sym) != LOC_BLOCK
3622 /* LOC_CONST can be used for more than just enums,
3623 e.g., c++ static const members.
3624 We only want to skip enums here. */
3625 && !(SYMBOL_CLASS (sym) == LOC_CONST
3626 && TYPE_CODE (SYMBOL_TYPE (sym))
3627 == TYPE_CODE_ENUM))
3628 || (kind == FUNCTIONS_DOMAIN
3629 && SYMBOL_CLASS (sym) == LOC_BLOCK)
3630 || (kind == TYPES_DOMAIN
3631 && SYMBOL_CLASS (sym) == LOC_TYPEDEF))))
3632 {
3633 /* match */
3634 psr = (struct symbol_search *)
3635 xmalloc (sizeof (struct symbol_search));
3636 psr->block = i;
3637 psr->symtab = real_symtab;
3638 psr->symbol = sym;
3639 psr->msymbol = NULL;
3640 psr->next = NULL;
3641 if (tail == NULL)
3642 sr = psr;
3643 else
3644 tail->next = psr;
3645 tail = psr;
3646 nfound ++;
3647 }
3648 }
3649 if (nfound > 0)
3650 {
3651 if (prevtail == NULL)
3652 {
3653 struct symbol_search dummy;
3654
3655 dummy.next = sr;
3656 tail = sort_search_symbols (&dummy, nfound);
3657 sr = dummy.next;
3658
3659 make_cleanup_free_search_symbols (sr);
3660 }
3661 else
3662 tail = sort_search_symbols (prevtail, nfound);
3663 }
3664 }
3665 }
3666
3667 /* If there are no eyes, avoid all contact. I mean, if there are
3668 no debug symbols, then print directly from the msymbol_vector. */
3669
3670 if (found_misc || (nfiles == 0 && kind != FUNCTIONS_DOMAIN))
3671 {
3672 ALL_MSYMBOLS (objfile, msymbol)
3673 {
3674 QUIT;
3675
3676 if (msymbol->created_by_gdb)
3677 continue;
3678
3679 if (MSYMBOL_TYPE (msymbol) == ourtype
3680 || MSYMBOL_TYPE (msymbol) == ourtype2
3681 || MSYMBOL_TYPE (msymbol) == ourtype3
3682 || MSYMBOL_TYPE (msymbol) == ourtype4)
3683 {
3684 if (!datum.preg_p
3685 || regexec (&datum.preg, SYMBOL_NATURAL_NAME (msymbol), 0,
3686 NULL, 0) == 0)
3687 {
3688 /* For functions we can do a quick check of whether the
3689 symbol might be found via find_pc_symtab. */
3690 if (kind != FUNCTIONS_DOMAIN
3691 || find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol)) == NULL)
3692 {
3693 if (lookup_symbol_in_objfile_from_linkage_name
3694 (objfile, SYMBOL_LINKAGE_NAME (msymbol), VAR_DOMAIN)
3695 == NULL)
3696 {
3697 /* match */
3698 psr = (struct symbol_search *)
3699 xmalloc (sizeof (struct symbol_search));
3700 psr->block = i;
3701 psr->msymbol = msymbol;
3702 psr->symtab = NULL;
3703 psr->symbol = NULL;
3704 psr->next = NULL;
3705 if (tail == NULL)
3706 {
3707 sr = psr;
3708 make_cleanup_free_search_symbols (sr);
3709 }
3710 else
3711 tail->next = psr;
3712 tail = psr;
3713 }
3714 }
3715 }
3716 }
3717 }
3718 }
3719
3720 discard_cleanups (retval_chain);
3721 do_cleanups (old_chain);
3722 *matches = sr;
3723 }
3724
3725 /* Helper function for symtab_symbol_info, this function uses
3726 the data returned from search_symbols() to print information
3727 regarding the match to gdb_stdout. */
3728
3729 static void
3730 print_symbol_info (enum search_domain kind,
3731 struct symtab *s, struct symbol *sym,
3732 int block, char *last)
3733 {
3734 if (last == NULL || filename_cmp (last, s->filename) != 0)
3735 {
3736 fputs_filtered ("\nFile ", gdb_stdout);
3737 fputs_filtered (s->filename, gdb_stdout);
3738 fputs_filtered (":\n", gdb_stdout);
3739 }
3740
3741 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
3742 printf_filtered ("static ");
3743
3744 /* Typedef that is not a C++ class. */
3745 if (kind == TYPES_DOMAIN
3746 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
3747 typedef_print (SYMBOL_TYPE (sym), sym, gdb_stdout);
3748 /* variable, func, or typedef-that-is-c++-class. */
3749 else if (kind < TYPES_DOMAIN
3750 || (kind == TYPES_DOMAIN
3751 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
3752 {
3753 type_print (SYMBOL_TYPE (sym),
3754 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
3755 ? "" : SYMBOL_PRINT_NAME (sym)),
3756 gdb_stdout, 0);
3757
3758 printf_filtered (";\n");
3759 }
3760 }
3761
3762 /* This help function for symtab_symbol_info() prints information
3763 for non-debugging symbols to gdb_stdout. */
3764
3765 static void
3766 print_msymbol_info (struct minimal_symbol *msymbol)
3767 {
3768 struct gdbarch *gdbarch = get_objfile_arch (msymbol_objfile (msymbol));
3769 char *tmp;
3770
3771 if (gdbarch_addr_bit (gdbarch) <= 32)
3772 tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol)
3773 & (CORE_ADDR) 0xffffffff,
3774 8);
3775 else
3776 tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol),
3777 16);
3778 printf_filtered ("%s %s\n",
3779 tmp, SYMBOL_PRINT_NAME (msymbol));
3780 }
3781
3782 /* This is the guts of the commands "info functions", "info types", and
3783 "info variables". It calls search_symbols to find all matches and then
3784 print_[m]symbol_info to print out some useful information about the
3785 matches. */
3786
3787 static void
3788 symtab_symbol_info (char *regexp, enum search_domain kind, int from_tty)
3789 {
3790 static const char * const classnames[] =
3791 {"variable", "function", "type"};
3792 struct symbol_search *symbols;
3793 struct symbol_search *p;
3794 struct cleanup *old_chain;
3795 char *last_filename = NULL;
3796 int first = 1;
3797
3798 gdb_assert (kind <= TYPES_DOMAIN);
3799
3800 /* Must make sure that if we're interrupted, symbols gets freed. */
3801 search_symbols (regexp, kind, 0, (char **) NULL, &symbols);
3802 old_chain = make_cleanup_free_search_symbols (symbols);
3803
3804 if (regexp != NULL)
3805 printf_filtered (_("All %ss matching regular expression \"%s\":\n"),
3806 classnames[kind], regexp);
3807 else
3808 printf_filtered (_("All defined %ss:\n"), classnames[kind]);
3809
3810 for (p = symbols; p != NULL; p = p->next)
3811 {
3812 QUIT;
3813
3814 if (p->msymbol != NULL)
3815 {
3816 if (first)
3817 {
3818 printf_filtered (_("\nNon-debugging symbols:\n"));
3819 first = 0;
3820 }
3821 print_msymbol_info (p->msymbol);
3822 }
3823 else
3824 {
3825 print_symbol_info (kind,
3826 p->symtab,
3827 p->symbol,
3828 p->block,
3829 last_filename);
3830 last_filename = p->symtab->filename;
3831 }
3832 }
3833
3834 do_cleanups (old_chain);
3835 }
3836
3837 static void
3838 variables_info (char *regexp, int from_tty)
3839 {
3840 symtab_symbol_info (regexp, VARIABLES_DOMAIN, from_tty);
3841 }
3842
3843 static void
3844 functions_info (char *regexp, int from_tty)
3845 {
3846 symtab_symbol_info (regexp, FUNCTIONS_DOMAIN, from_tty);
3847 }
3848
3849
3850 static void
3851 types_info (char *regexp, int from_tty)
3852 {
3853 symtab_symbol_info (regexp, TYPES_DOMAIN, from_tty);
3854 }
3855
3856 /* Breakpoint all functions matching regular expression. */
3857
3858 void
3859 rbreak_command_wrapper (char *regexp, int from_tty)
3860 {
3861 rbreak_command (regexp, from_tty);
3862 }
3863
3864 /* A cleanup function that calls end_rbreak_breakpoints. */
3865
3866 static void
3867 do_end_rbreak_breakpoints (void *ignore)
3868 {
3869 end_rbreak_breakpoints ();
3870 }
3871
3872 static void
3873 rbreak_command (char *regexp, int from_tty)
3874 {
3875 struct symbol_search *ss;
3876 struct symbol_search *p;
3877 struct cleanup *old_chain;
3878 char *string = NULL;
3879 int len = 0;
3880 char **files = NULL, *file_name;
3881 int nfiles = 0;
3882
3883 if (regexp)
3884 {
3885 char *colon = strchr (regexp, ':');
3886
3887 if (colon && *(colon + 1) != ':')
3888 {
3889 int colon_index;
3890
3891 colon_index = colon - regexp;
3892 file_name = alloca (colon_index + 1);
3893 memcpy (file_name, regexp, colon_index);
3894 file_name[colon_index--] = 0;
3895 while (isspace (file_name[colon_index]))
3896 file_name[colon_index--] = 0;
3897 files = &file_name;
3898 nfiles = 1;
3899 regexp = colon + 1;
3900 while (isspace (*regexp)) regexp++;
3901 }
3902 }
3903
3904 search_symbols (regexp, FUNCTIONS_DOMAIN, nfiles, files, &ss);
3905 old_chain = make_cleanup_free_search_symbols (ss);
3906 make_cleanup (free_current_contents, &string);
3907
3908 start_rbreak_breakpoints ();
3909 make_cleanup (do_end_rbreak_breakpoints, NULL);
3910 for (p = ss; p != NULL; p = p->next)
3911 {
3912 if (p->msymbol == NULL)
3913 {
3914 int newlen = (strlen (p->symtab->filename)
3915 + strlen (SYMBOL_LINKAGE_NAME (p->symbol))
3916 + 4);
3917
3918 if (newlen > len)
3919 {
3920 string = xrealloc (string, newlen);
3921 len = newlen;
3922 }
3923 strcpy (string, p->symtab->filename);
3924 strcat (string, ":'");
3925 strcat (string, SYMBOL_LINKAGE_NAME (p->symbol));
3926 strcat (string, "'");
3927 break_command (string, from_tty);
3928 print_symbol_info (FUNCTIONS_DOMAIN,
3929 p->symtab,
3930 p->symbol,
3931 p->block,
3932 p->symtab->filename);
3933 }
3934 else
3935 {
3936 int newlen = (strlen (SYMBOL_LINKAGE_NAME (p->msymbol)) + 3);
3937
3938 if (newlen > len)
3939 {
3940 string = xrealloc (string, newlen);
3941 len = newlen;
3942 }
3943 strcpy (string, "'");
3944 strcat (string, SYMBOL_LINKAGE_NAME (p->msymbol));
3945 strcat (string, "'");
3946
3947 break_command (string, from_tty);
3948 printf_filtered ("<function, no debug info> %s;\n",
3949 SYMBOL_PRINT_NAME (p->msymbol));
3950 }
3951 }
3952
3953 do_cleanups (old_chain);
3954 }
3955 \f
3956
3957 /* Evaluate if NAME matches SYM_TEXT and SYM_TEXT_LEN.
3958
3959 Either sym_text[sym_text_len] != '(' and then we search for any
3960 symbol starting with SYM_TEXT text.
3961
3962 Otherwise sym_text[sym_text_len] == '(' and then we require symbol name to
3963 be terminated at that point. Partial symbol tables do not have parameters
3964 information. */
3965
3966 static int
3967 compare_symbol_name (const char *name, const char *sym_text, int sym_text_len)
3968 {
3969 int (*ncmp) (const char *, const char *, size_t);
3970
3971 ncmp = (case_sensitivity == case_sensitive_on ? strncmp : strncasecmp);
3972
3973 if (ncmp (name, sym_text, sym_text_len) != 0)
3974 return 0;
3975
3976 if (sym_text[sym_text_len] == '(')
3977 {
3978 /* User searches for `name(someth...'. Require NAME to be terminated.
3979 Normally psymtabs and gdbindex have no parameter types so '\0' will be
3980 present but accept even parameters presence. In this case this
3981 function is in fact strcmp_iw but whitespace skipping is not supported
3982 for tab completion. */
3983
3984 if (name[sym_text_len] != '\0' && name[sym_text_len] != '(')
3985 return 0;
3986 }
3987
3988 return 1;
3989 }
3990
3991 /* Free any memory associated with a completion list. */
3992
3993 static void
3994 free_completion_list (VEC (char_ptr) **list_ptr)
3995 {
3996 int i;
3997 char *p;
3998
3999 for (i = 0; VEC_iterate (char_ptr, *list_ptr, i, p); ++i)
4000 xfree (p);
4001 VEC_free (char_ptr, *list_ptr);
4002 }
4003
4004 /* Callback for make_cleanup. */
4005
4006 static void
4007 do_free_completion_list (void *list)
4008 {
4009 free_completion_list (list);
4010 }
4011
4012 /* Helper routine for make_symbol_completion_list. */
4013
4014 static VEC (char_ptr) *return_val;
4015
4016 #define COMPLETION_LIST_ADD_SYMBOL(symbol, sym_text, len, text, word) \
4017 completion_list_add_name \
4018 (SYMBOL_NATURAL_NAME (symbol), (sym_text), (len), (text), (word))
4019
4020 /* Test to see if the symbol specified by SYMNAME (which is already
4021 demangled for C++ symbols) matches SYM_TEXT in the first SYM_TEXT_LEN
4022 characters. If so, add it to the current completion list. */
4023
4024 static void
4025 completion_list_add_name (const char *symname,
4026 const char *sym_text, int sym_text_len,
4027 const char *text, const char *word)
4028 {
4029 int newsize;
4030
4031 /* Clip symbols that cannot match. */
4032 if (!compare_symbol_name (symname, sym_text, sym_text_len))
4033 return;
4034
4035 /* We have a match for a completion, so add SYMNAME to the current list
4036 of matches. Note that the name is moved to freshly malloc'd space. */
4037
4038 {
4039 char *new;
4040
4041 if (word == sym_text)
4042 {
4043 new = xmalloc (strlen (symname) + 5);
4044 strcpy (new, symname);
4045 }
4046 else if (word > sym_text)
4047 {
4048 /* Return some portion of symname. */
4049 new = xmalloc (strlen (symname) + 5);
4050 strcpy (new, symname + (word - sym_text));
4051 }
4052 else
4053 {
4054 /* Return some of SYM_TEXT plus symname. */
4055 new = xmalloc (strlen (symname) + (sym_text - word) + 5);
4056 strncpy (new, word, sym_text - word);
4057 new[sym_text - word] = '\0';
4058 strcat (new, symname);
4059 }
4060
4061 VEC_safe_push (char_ptr, return_val, new);
4062 }
4063 }
4064
4065 /* ObjC: In case we are completing on a selector, look as the msymbol
4066 again and feed all the selectors into the mill. */
4067
4068 static void
4069 completion_list_objc_symbol (struct minimal_symbol *msymbol,
4070 const char *sym_text, int sym_text_len,
4071 const char *text, const char *word)
4072 {
4073 static char *tmp = NULL;
4074 static unsigned int tmplen = 0;
4075
4076 const char *method, *category, *selector;
4077 char *tmp2 = NULL;
4078
4079 method = SYMBOL_NATURAL_NAME (msymbol);
4080
4081 /* Is it a method? */
4082 if ((method[0] != '-') && (method[0] != '+'))
4083 return;
4084
4085 if (sym_text[0] == '[')
4086 /* Complete on shortened method method. */
4087 completion_list_add_name (method + 1, sym_text, sym_text_len, text, word);
4088
4089 while ((strlen (method) + 1) >= tmplen)
4090 {
4091 if (tmplen == 0)
4092 tmplen = 1024;
4093 else
4094 tmplen *= 2;
4095 tmp = xrealloc (tmp, tmplen);
4096 }
4097 selector = strchr (method, ' ');
4098 if (selector != NULL)
4099 selector++;
4100
4101 category = strchr (method, '(');
4102
4103 if ((category != NULL) && (selector != NULL))
4104 {
4105 memcpy (tmp, method, (category - method));
4106 tmp[category - method] = ' ';
4107 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
4108 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
4109 if (sym_text[0] == '[')
4110 completion_list_add_name (tmp + 1, sym_text, sym_text_len, text, word);
4111 }
4112
4113 if (selector != NULL)
4114 {
4115 /* Complete on selector only. */
4116 strcpy (tmp, selector);
4117 tmp2 = strchr (tmp, ']');
4118 if (tmp2 != NULL)
4119 *tmp2 = '\0';
4120
4121 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
4122 }
4123 }
4124
4125 /* Break the non-quoted text based on the characters which are in
4126 symbols. FIXME: This should probably be language-specific. */
4127
4128 static char *
4129 language_search_unquoted_string (char *text, char *p)
4130 {
4131 for (; p > text; --p)
4132 {
4133 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
4134 continue;
4135 else
4136 {
4137 if ((current_language->la_language == language_objc))
4138 {
4139 if (p[-1] == ':') /* Might be part of a method name. */
4140 continue;
4141 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
4142 p -= 2; /* Beginning of a method name. */
4143 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
4144 { /* Might be part of a method name. */
4145 char *t = p;
4146
4147 /* Seeing a ' ' or a '(' is not conclusive evidence
4148 that we are in the middle of a method name. However,
4149 finding "-[" or "+[" should be pretty un-ambiguous.
4150 Unfortunately we have to find it now to decide. */
4151
4152 while (t > text)
4153 if (isalnum (t[-1]) || t[-1] == '_' ||
4154 t[-1] == ' ' || t[-1] == ':' ||
4155 t[-1] == '(' || t[-1] == ')')
4156 --t;
4157 else
4158 break;
4159
4160 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
4161 p = t - 2; /* Method name detected. */
4162 /* Else we leave with p unchanged. */
4163 }
4164 }
4165 break;
4166 }
4167 }
4168 return p;
4169 }
4170
4171 static void
4172 completion_list_add_fields (struct symbol *sym, char *sym_text,
4173 int sym_text_len, char *text, char *word)
4174 {
4175 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4176 {
4177 struct type *t = SYMBOL_TYPE (sym);
4178 enum type_code c = TYPE_CODE (t);
4179 int j;
4180
4181 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
4182 for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++)
4183 if (TYPE_FIELD_NAME (t, j))
4184 completion_list_add_name (TYPE_FIELD_NAME (t, j),
4185 sym_text, sym_text_len, text, word);
4186 }
4187 }
4188
4189 /* Type of the user_data argument passed to add_macro_name or
4190 expand_partial_symbol_name. The contents are simply whatever is
4191 needed by completion_list_add_name. */
4192 struct add_name_data
4193 {
4194 char *sym_text;
4195 int sym_text_len;
4196 char *text;
4197 char *word;
4198 };
4199
4200 /* A callback used with macro_for_each and macro_for_each_in_scope.
4201 This adds a macro's name to the current completion list. */
4202
4203 static void
4204 add_macro_name (const char *name, const struct macro_definition *ignore,
4205 struct macro_source_file *ignore2, int ignore3,
4206 void *user_data)
4207 {
4208 struct add_name_data *datum = (struct add_name_data *) user_data;
4209
4210 completion_list_add_name ((char *) name,
4211 datum->sym_text, datum->sym_text_len,
4212 datum->text, datum->word);
4213 }
4214
4215 /* A callback for expand_partial_symbol_names. */
4216
4217 static int
4218 expand_partial_symbol_name (const char *name, void *user_data)
4219 {
4220 struct add_name_data *datum = (struct add_name_data *) user_data;
4221
4222 return compare_symbol_name (name, datum->sym_text, datum->sym_text_len);
4223 }
4224
4225 VEC (char_ptr) *
4226 default_make_symbol_completion_list_break_on (char *text, char *word,
4227 const char *break_on,
4228 enum type_code code)
4229 {
4230 /* Problem: All of the symbols have to be copied because readline
4231 frees them. I'm not going to worry about this; hopefully there
4232 won't be that many. */
4233
4234 struct symbol *sym;
4235 struct symtab *s;
4236 struct minimal_symbol *msymbol;
4237 struct objfile *objfile;
4238 struct block *b;
4239 const struct block *surrounding_static_block, *surrounding_global_block;
4240 struct block_iterator iter;
4241 /* The symbol we are completing on. Points in same buffer as text. */
4242 char *sym_text;
4243 /* Length of sym_text. */
4244 int sym_text_len;
4245 struct add_name_data datum;
4246 struct cleanup *back_to;
4247
4248 /* Now look for the symbol we are supposed to complete on. */
4249 {
4250 char *p;
4251 char quote_found;
4252 char *quote_pos = NULL;
4253
4254 /* First see if this is a quoted string. */
4255 quote_found = '\0';
4256 for (p = text; *p != '\0'; ++p)
4257 {
4258 if (quote_found != '\0')
4259 {
4260 if (*p == quote_found)
4261 /* Found close quote. */
4262 quote_found = '\0';
4263 else if (*p == '\\' && p[1] == quote_found)
4264 /* A backslash followed by the quote character
4265 doesn't end the string. */
4266 ++p;
4267 }
4268 else if (*p == '\'' || *p == '"')
4269 {
4270 quote_found = *p;
4271 quote_pos = p;
4272 }
4273 }
4274 if (quote_found == '\'')
4275 /* A string within single quotes can be a symbol, so complete on it. */
4276 sym_text = quote_pos + 1;
4277 else if (quote_found == '"')
4278 /* A double-quoted string is never a symbol, nor does it make sense
4279 to complete it any other way. */
4280 {
4281 return NULL;
4282 }
4283 else
4284 {
4285 /* It is not a quoted string. Break it based on the characters
4286 which are in symbols. */
4287 while (p > text)
4288 {
4289 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0'
4290 || p[-1] == ':' || strchr (break_on, p[-1]) != NULL)
4291 --p;
4292 else
4293 break;
4294 }
4295 sym_text = p;
4296 }
4297 }
4298
4299 sym_text_len = strlen (sym_text);
4300
4301 /* Prepare SYM_TEXT_LEN for compare_symbol_name. */
4302
4303 if (current_language->la_language == language_cplus
4304 || current_language->la_language == language_java
4305 || current_language->la_language == language_fortran)
4306 {
4307 /* These languages may have parameters entered by user but they are never
4308 present in the partial symbol tables. */
4309
4310 const char *cs = memchr (sym_text, '(', sym_text_len);
4311
4312 if (cs)
4313 sym_text_len = cs - sym_text;
4314 }
4315 gdb_assert (sym_text[sym_text_len] == '\0' || sym_text[sym_text_len] == '(');
4316
4317 return_val = NULL;
4318 back_to = make_cleanup (do_free_completion_list, &return_val);
4319
4320 datum.sym_text = sym_text;
4321 datum.sym_text_len = sym_text_len;
4322 datum.text = text;
4323 datum.word = word;
4324
4325 /* Look through the partial symtabs for all symbols which begin
4326 by matching SYM_TEXT. Expand all CUs that you find to the list.
4327 The real names will get added by COMPLETION_LIST_ADD_SYMBOL below. */
4328 expand_partial_symbol_names (expand_partial_symbol_name, &datum);
4329
4330 /* At this point scan through the misc symbol vectors and add each
4331 symbol you find to the list. Eventually we want to ignore
4332 anything that isn't a text symbol (everything else will be
4333 handled by the psymtab code above). */
4334
4335 if (code == TYPE_CODE_UNDEF)
4336 {
4337 ALL_MSYMBOLS (objfile, msymbol)
4338 {
4339 QUIT;
4340 COMPLETION_LIST_ADD_SYMBOL (msymbol, sym_text, sym_text_len, text,
4341 word);
4342
4343 completion_list_objc_symbol (msymbol, sym_text, sym_text_len, text,
4344 word);
4345 }
4346 }
4347
4348 /* Search upwards from currently selected frame (so that we can
4349 complete on local vars). Also catch fields of types defined in
4350 this places which match our text string. Only complete on types
4351 visible from current context. */
4352
4353 b = get_selected_block (0);
4354 surrounding_static_block = block_static_block (b);
4355 surrounding_global_block = block_global_block (b);
4356 if (surrounding_static_block != NULL)
4357 while (b != surrounding_static_block)
4358 {
4359 QUIT;
4360
4361 ALL_BLOCK_SYMBOLS (b, iter, sym)
4362 {
4363 if (code == TYPE_CODE_UNDEF)
4364 {
4365 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text,
4366 word);
4367 completion_list_add_fields (sym, sym_text, sym_text_len, text,
4368 word);
4369 }
4370 else if (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4371 && TYPE_CODE (SYMBOL_TYPE (sym)) == code)
4372 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text,
4373 word);
4374 }
4375
4376 /* Stop when we encounter an enclosing function. Do not stop for
4377 non-inlined functions - the locals of the enclosing function
4378 are in scope for a nested function. */
4379 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
4380 break;
4381 b = BLOCK_SUPERBLOCK (b);
4382 }
4383
4384 /* Add fields from the file's types; symbols will be added below. */
4385
4386 if (code == TYPE_CODE_UNDEF)
4387 {
4388 if (surrounding_static_block != NULL)
4389 ALL_BLOCK_SYMBOLS (surrounding_static_block, iter, sym)
4390 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
4391
4392 if (surrounding_global_block != NULL)
4393 ALL_BLOCK_SYMBOLS (surrounding_global_block, iter, sym)
4394 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
4395 }
4396
4397 /* Go through the symtabs and check the externs and statics for
4398 symbols which match. */
4399
4400 ALL_PRIMARY_SYMTABS (objfile, s)
4401 {
4402 QUIT;
4403 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
4404 ALL_BLOCK_SYMBOLS (b, iter, sym)
4405 {
4406 if (code == TYPE_CODE_UNDEF
4407 || (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4408 && TYPE_CODE (SYMBOL_TYPE (sym)) == code))
4409 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4410 }
4411 }
4412
4413 ALL_PRIMARY_SYMTABS (objfile, s)
4414 {
4415 QUIT;
4416 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
4417 ALL_BLOCK_SYMBOLS (b, iter, sym)
4418 {
4419 if (code == TYPE_CODE_UNDEF
4420 || (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4421 && TYPE_CODE (SYMBOL_TYPE (sym)) == code))
4422 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4423 }
4424 }
4425
4426 /* Skip macros if we are completing a struct tag -- arguable but
4427 usually what is expected. */
4428 if (current_language->la_macro_expansion == macro_expansion_c
4429 && code == TYPE_CODE_UNDEF)
4430 {
4431 struct macro_scope *scope;
4432
4433 /* Add any macros visible in the default scope. Note that this
4434 may yield the occasional wrong result, because an expression
4435 might be evaluated in a scope other than the default. For
4436 example, if the user types "break file:line if <TAB>", the
4437 resulting expression will be evaluated at "file:line" -- but
4438 at there does not seem to be a way to detect this at
4439 completion time. */
4440 scope = default_macro_scope ();
4441 if (scope)
4442 {
4443 macro_for_each_in_scope (scope->file, scope->line,
4444 add_macro_name, &datum);
4445 xfree (scope);
4446 }
4447
4448 /* User-defined macros are always visible. */
4449 macro_for_each (macro_user_macros, add_macro_name, &datum);
4450 }
4451
4452 discard_cleanups (back_to);
4453 return (return_val);
4454 }
4455
4456 VEC (char_ptr) *
4457 default_make_symbol_completion_list (char *text, char *word,
4458 enum type_code code)
4459 {
4460 return default_make_symbol_completion_list_break_on (text, word, "", code);
4461 }
4462
4463 /* Return a vector of all symbols (regardless of class) which begin by
4464 matching TEXT. If the answer is no symbols, then the return value
4465 is NULL. */
4466
4467 VEC (char_ptr) *
4468 make_symbol_completion_list (char *text, char *word)
4469 {
4470 return current_language->la_make_symbol_completion_list (text, word,
4471 TYPE_CODE_UNDEF);
4472 }
4473
4474 /* Like make_symbol_completion_list, but only return STRUCT_DOMAIN
4475 symbols whose type code is CODE. */
4476
4477 VEC (char_ptr) *
4478 make_symbol_completion_type (char *text, char *word, enum type_code code)
4479 {
4480 gdb_assert (code == TYPE_CODE_UNION
4481 || code == TYPE_CODE_STRUCT
4482 || code == TYPE_CODE_CLASS
4483 || code == TYPE_CODE_ENUM);
4484 return current_language->la_make_symbol_completion_list (text, word, code);
4485 }
4486
4487 /* Like make_symbol_completion_list, but suitable for use as a
4488 completion function. */
4489
4490 VEC (char_ptr) *
4491 make_symbol_completion_list_fn (struct cmd_list_element *ignore,
4492 char *text, char *word)
4493 {
4494 return make_symbol_completion_list (text, word);
4495 }
4496
4497 /* Like make_symbol_completion_list, but returns a list of symbols
4498 defined in a source file FILE. */
4499
4500 VEC (char_ptr) *
4501 make_file_symbol_completion_list (char *text, char *word, char *srcfile)
4502 {
4503 struct symbol *sym;
4504 struct symtab *s;
4505 struct block *b;
4506 struct block_iterator iter;
4507 /* The symbol we are completing on. Points in same buffer as text. */
4508 char *sym_text;
4509 /* Length of sym_text. */
4510 int sym_text_len;
4511
4512 /* Now look for the symbol we are supposed to complete on.
4513 FIXME: This should be language-specific. */
4514 {
4515 char *p;
4516 char quote_found;
4517 char *quote_pos = NULL;
4518
4519 /* First see if this is a quoted string. */
4520 quote_found = '\0';
4521 for (p = text; *p != '\0'; ++p)
4522 {
4523 if (quote_found != '\0')
4524 {
4525 if (*p == quote_found)
4526 /* Found close quote. */
4527 quote_found = '\0';
4528 else if (*p == '\\' && p[1] == quote_found)
4529 /* A backslash followed by the quote character
4530 doesn't end the string. */
4531 ++p;
4532 }
4533 else if (*p == '\'' || *p == '"')
4534 {
4535 quote_found = *p;
4536 quote_pos = p;
4537 }
4538 }
4539 if (quote_found == '\'')
4540 /* A string within single quotes can be a symbol, so complete on it. */
4541 sym_text = quote_pos + 1;
4542 else if (quote_found == '"')
4543 /* A double-quoted string is never a symbol, nor does it make sense
4544 to complete it any other way. */
4545 {
4546 return NULL;
4547 }
4548 else
4549 {
4550 /* Not a quoted string. */
4551 sym_text = language_search_unquoted_string (text, p);
4552 }
4553 }
4554
4555 sym_text_len = strlen (sym_text);
4556
4557 return_val = NULL;
4558
4559 /* Find the symtab for SRCFILE (this loads it if it was not yet read
4560 in). */
4561 s = lookup_symtab (srcfile);
4562 if (s == NULL)
4563 {
4564 /* Maybe they typed the file with leading directories, while the
4565 symbol tables record only its basename. */
4566 const char *tail = lbasename (srcfile);
4567
4568 if (tail > srcfile)
4569 s = lookup_symtab (tail);
4570 }
4571
4572 /* If we have no symtab for that file, return an empty list. */
4573 if (s == NULL)
4574 return (return_val);
4575
4576 /* Go through this symtab and check the externs and statics for
4577 symbols which match. */
4578
4579 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
4580 ALL_BLOCK_SYMBOLS (b, iter, sym)
4581 {
4582 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4583 }
4584
4585 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
4586 ALL_BLOCK_SYMBOLS (b, iter, sym)
4587 {
4588 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4589 }
4590
4591 return (return_val);
4592 }
4593
4594 /* A helper function for make_source_files_completion_list. It adds
4595 another file name to a list of possible completions, growing the
4596 list as necessary. */
4597
4598 static void
4599 add_filename_to_list (const char *fname, char *text, char *word,
4600 VEC (char_ptr) **list)
4601 {
4602 char *new;
4603 size_t fnlen = strlen (fname);
4604
4605 if (word == text)
4606 {
4607 /* Return exactly fname. */
4608 new = xmalloc (fnlen + 5);
4609 strcpy (new, fname);
4610 }
4611 else if (word > text)
4612 {
4613 /* Return some portion of fname. */
4614 new = xmalloc (fnlen + 5);
4615 strcpy (new, fname + (word - text));
4616 }
4617 else
4618 {
4619 /* Return some of TEXT plus fname. */
4620 new = xmalloc (fnlen + (text - word) + 5);
4621 strncpy (new, word, text - word);
4622 new[text - word] = '\0';
4623 strcat (new, fname);
4624 }
4625 VEC_safe_push (char_ptr, *list, new);
4626 }
4627
4628 static int
4629 not_interesting_fname (const char *fname)
4630 {
4631 static const char *illegal_aliens[] = {
4632 "_globals_", /* inserted by coff_symtab_read */
4633 NULL
4634 };
4635 int i;
4636
4637 for (i = 0; illegal_aliens[i]; i++)
4638 {
4639 if (filename_cmp (fname, illegal_aliens[i]) == 0)
4640 return 1;
4641 }
4642 return 0;
4643 }
4644
4645 /* An object of this type is passed as the user_data argument to
4646 map_partial_symbol_filenames. */
4647 struct add_partial_filename_data
4648 {
4649 struct filename_seen_cache *filename_seen_cache;
4650 char *text;
4651 char *word;
4652 int text_len;
4653 VEC (char_ptr) **list;
4654 };
4655
4656 /* A callback for map_partial_symbol_filenames. */
4657
4658 static void
4659 maybe_add_partial_symtab_filename (const char *filename, const char *fullname,
4660 void *user_data)
4661 {
4662 struct add_partial_filename_data *data = user_data;
4663
4664 if (not_interesting_fname (filename))
4665 return;
4666 if (!filename_seen (data->filename_seen_cache, filename, 1)
4667 && filename_ncmp (filename, data->text, data->text_len) == 0)
4668 {
4669 /* This file matches for a completion; add it to the
4670 current list of matches. */
4671 add_filename_to_list (filename, data->text, data->word, data->list);
4672 }
4673 else
4674 {
4675 const char *base_name = lbasename (filename);
4676
4677 if (base_name != filename
4678 && !filename_seen (data->filename_seen_cache, base_name, 1)
4679 && filename_ncmp (base_name, data->text, data->text_len) == 0)
4680 add_filename_to_list (base_name, data->text, data->word, data->list);
4681 }
4682 }
4683
4684 /* Return a vector of all source files whose names begin with matching
4685 TEXT. The file names are looked up in the symbol tables of this
4686 program. If the answer is no matchess, then the return value is
4687 NULL. */
4688
4689 VEC (char_ptr) *
4690 make_source_files_completion_list (char *text, char *word)
4691 {
4692 struct symtab *s;
4693 struct objfile *objfile;
4694 size_t text_len = strlen (text);
4695 VEC (char_ptr) *list = NULL;
4696 const char *base_name;
4697 struct add_partial_filename_data datum;
4698 struct filename_seen_cache *filename_seen_cache;
4699 struct cleanup *back_to, *cache_cleanup;
4700
4701 if (!have_full_symbols () && !have_partial_symbols ())
4702 return list;
4703
4704 back_to = make_cleanup (do_free_completion_list, &list);
4705
4706 filename_seen_cache = create_filename_seen_cache ();
4707 cache_cleanup = make_cleanup (delete_filename_seen_cache,
4708 filename_seen_cache);
4709
4710 ALL_SYMTABS (objfile, s)
4711 {
4712 if (not_interesting_fname (s->filename))
4713 continue;
4714 if (!filename_seen (filename_seen_cache, s->filename, 1)
4715 && filename_ncmp (s->filename, text, text_len) == 0)
4716 {
4717 /* This file matches for a completion; add it to the current
4718 list of matches. */
4719 add_filename_to_list (s->filename, text, word, &list);
4720 }
4721 else
4722 {
4723 /* NOTE: We allow the user to type a base name when the
4724 debug info records leading directories, but not the other
4725 way around. This is what subroutines of breakpoint
4726 command do when they parse file names. */
4727 base_name = lbasename (s->filename);
4728 if (base_name != s->filename
4729 && !filename_seen (filename_seen_cache, base_name, 1)
4730 && filename_ncmp (base_name, text, text_len) == 0)
4731 add_filename_to_list (base_name, text, word, &list);
4732 }
4733 }
4734
4735 datum.filename_seen_cache = filename_seen_cache;
4736 datum.text = text;
4737 datum.word = word;
4738 datum.text_len = text_len;
4739 datum.list = &list;
4740 map_partial_symbol_filenames (maybe_add_partial_symtab_filename, &datum,
4741 0 /*need_fullname*/);
4742
4743 do_cleanups (cache_cleanup);
4744 discard_cleanups (back_to);
4745
4746 return list;
4747 }
4748
4749 /* Determine if PC is in the prologue of a function. The prologue is the area
4750 between the first instruction of a function, and the first executable line.
4751 Returns 1 if PC *might* be in prologue, 0 if definately *not* in prologue.
4752
4753 If non-zero, func_start is where we think the prologue starts, possibly
4754 by previous examination of symbol table information. */
4755
4756 int
4757 in_prologue (struct gdbarch *gdbarch, CORE_ADDR pc, CORE_ADDR func_start)
4758 {
4759 struct symtab_and_line sal;
4760 CORE_ADDR func_addr, func_end;
4761
4762 /* We have several sources of information we can consult to figure
4763 this out.
4764 - Compilers usually emit line number info that marks the prologue
4765 as its own "source line". So the ending address of that "line"
4766 is the end of the prologue. If available, this is the most
4767 reliable method.
4768 - The minimal symbols and partial symbols, which can usually tell
4769 us the starting and ending addresses of a function.
4770 - If we know the function's start address, we can call the
4771 architecture-defined gdbarch_skip_prologue function to analyze the
4772 instruction stream and guess where the prologue ends.
4773 - Our `func_start' argument; if non-zero, this is the caller's
4774 best guess as to the function's entry point. At the time of
4775 this writing, handle_inferior_event doesn't get this right, so
4776 it should be our last resort. */
4777
4778 /* Consult the partial symbol table, to find which function
4779 the PC is in. */
4780 if (! find_pc_partial_function (pc, NULL, &func_addr, &func_end))
4781 {
4782 CORE_ADDR prologue_end;
4783
4784 /* We don't even have minsym information, so fall back to using
4785 func_start, if given. */
4786 if (! func_start)
4787 return 1; /* We *might* be in a prologue. */
4788
4789 prologue_end = gdbarch_skip_prologue (gdbarch, func_start);
4790
4791 return func_start <= pc && pc < prologue_end;
4792 }
4793
4794 /* If we have line number information for the function, that's
4795 usually pretty reliable. */
4796 sal = find_pc_line (func_addr, 0);
4797
4798 /* Now sal describes the source line at the function's entry point,
4799 which (by convention) is the prologue. The end of that "line",
4800 sal.end, is the end of the prologue.
4801
4802 Note that, for functions whose source code is all on a single
4803 line, the line number information doesn't always end up this way.
4804 So we must verify that our purported end-of-prologue address is
4805 *within* the function, not at its start or end. */
4806 if (sal.line == 0
4807 || sal.end <= func_addr
4808 || func_end <= sal.end)
4809 {
4810 /* We don't have any good line number info, so use the minsym
4811 information, together with the architecture-specific prologue
4812 scanning code. */
4813 CORE_ADDR prologue_end = gdbarch_skip_prologue (gdbarch, func_addr);
4814
4815 return func_addr <= pc && pc < prologue_end;
4816 }
4817
4818 /* We have line number info, and it looks good. */
4819 return func_addr <= pc && pc < sal.end;
4820 }
4821
4822 /* Given PC at the function's start address, attempt to find the
4823 prologue end using SAL information. Return zero if the skip fails.
4824
4825 A non-optimized prologue traditionally has one SAL for the function
4826 and a second for the function body. A single line function has
4827 them both pointing at the same line.
4828
4829 An optimized prologue is similar but the prologue may contain
4830 instructions (SALs) from the instruction body. Need to skip those
4831 while not getting into the function body.
4832
4833 The functions end point and an increasing SAL line are used as
4834 indicators of the prologue's endpoint.
4835
4836 This code is based on the function refine_prologue_limit
4837 (found in ia64). */
4838
4839 CORE_ADDR
4840 skip_prologue_using_sal (struct gdbarch *gdbarch, CORE_ADDR func_addr)
4841 {
4842 struct symtab_and_line prologue_sal;
4843 CORE_ADDR start_pc;
4844 CORE_ADDR end_pc;
4845 struct block *bl;
4846
4847 /* Get an initial range for the function. */
4848 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
4849 start_pc += gdbarch_deprecated_function_start_offset (gdbarch);
4850
4851 prologue_sal = find_pc_line (start_pc, 0);
4852 if (prologue_sal.line != 0)
4853 {
4854 /* For languages other than assembly, treat two consecutive line
4855 entries at the same address as a zero-instruction prologue.
4856 The GNU assembler emits separate line notes for each instruction
4857 in a multi-instruction macro, but compilers generally will not
4858 do this. */
4859 if (prologue_sal.symtab->language != language_asm)
4860 {
4861 struct linetable *linetable = LINETABLE (prologue_sal.symtab);
4862 int idx = 0;
4863
4864 /* Skip any earlier lines, and any end-of-sequence marker
4865 from a previous function. */
4866 while (linetable->item[idx].pc != prologue_sal.pc
4867 || linetable->item[idx].line == 0)
4868 idx++;
4869
4870 if (idx+1 < linetable->nitems
4871 && linetable->item[idx+1].line != 0
4872 && linetable->item[idx+1].pc == start_pc)
4873 return start_pc;
4874 }
4875
4876 /* If there is only one sal that covers the entire function,
4877 then it is probably a single line function, like
4878 "foo(){}". */
4879 if (prologue_sal.end >= end_pc)
4880 return 0;
4881
4882 while (prologue_sal.end < end_pc)
4883 {
4884 struct symtab_and_line sal;
4885
4886 sal = find_pc_line (prologue_sal.end, 0);
4887 if (sal.line == 0)
4888 break;
4889 /* Assume that a consecutive SAL for the same (or larger)
4890 line mark the prologue -> body transition. */
4891 if (sal.line >= prologue_sal.line)
4892 break;
4893
4894 /* The line number is smaller. Check that it's from the
4895 same function, not something inlined. If it's inlined,
4896 then there is no point comparing the line numbers. */
4897 bl = block_for_pc (prologue_sal.end);
4898 while (bl)
4899 {
4900 if (block_inlined_p (bl))
4901 break;
4902 if (BLOCK_FUNCTION (bl))
4903 {
4904 bl = NULL;
4905 break;
4906 }
4907 bl = BLOCK_SUPERBLOCK (bl);
4908 }
4909 if (bl != NULL)
4910 break;
4911
4912 /* The case in which compiler's optimizer/scheduler has
4913 moved instructions into the prologue. We look ahead in
4914 the function looking for address ranges whose
4915 corresponding line number is less the first one that we
4916 found for the function. This is more conservative then
4917 refine_prologue_limit which scans a large number of SALs
4918 looking for any in the prologue. */
4919 prologue_sal = sal;
4920 }
4921 }
4922
4923 if (prologue_sal.end < end_pc)
4924 /* Return the end of this line, or zero if we could not find a
4925 line. */
4926 return prologue_sal.end;
4927 else
4928 /* Don't return END_PC, which is past the end of the function. */
4929 return prologue_sal.pc;
4930 }
4931 \f
4932 /* Track MAIN */
4933 static char *name_of_main;
4934 enum language language_of_main = language_unknown;
4935
4936 void
4937 set_main_name (const char *name)
4938 {
4939 if (name_of_main != NULL)
4940 {
4941 xfree (name_of_main);
4942 name_of_main = NULL;
4943 language_of_main = language_unknown;
4944 }
4945 if (name != NULL)
4946 {
4947 name_of_main = xstrdup (name);
4948 language_of_main = language_unknown;
4949 }
4950 }
4951
4952 /* Deduce the name of the main procedure, and set NAME_OF_MAIN
4953 accordingly. */
4954
4955 static void
4956 find_main_name (void)
4957 {
4958 const char *new_main_name;
4959
4960 /* Try to see if the main procedure is in Ada. */
4961 /* FIXME: brobecker/2005-03-07: Another way of doing this would
4962 be to add a new method in the language vector, and call this
4963 method for each language until one of them returns a non-empty
4964 name. This would allow us to remove this hard-coded call to
4965 an Ada function. It is not clear that this is a better approach
4966 at this point, because all methods need to be written in a way
4967 such that false positives never be returned. For instance, it is
4968 important that a method does not return a wrong name for the main
4969 procedure if the main procedure is actually written in a different
4970 language. It is easy to guaranty this with Ada, since we use a
4971 special symbol generated only when the main in Ada to find the name
4972 of the main procedure. It is difficult however to see how this can
4973 be guarantied for languages such as C, for instance. This suggests
4974 that order of call for these methods becomes important, which means
4975 a more complicated approach. */
4976 new_main_name = ada_main_name ();
4977 if (new_main_name != NULL)
4978 {
4979 set_main_name (new_main_name);
4980 return;
4981 }
4982
4983 new_main_name = go_main_name ();
4984 if (new_main_name != NULL)
4985 {
4986 set_main_name (new_main_name);
4987 return;
4988 }
4989
4990 new_main_name = pascal_main_name ();
4991 if (new_main_name != NULL)
4992 {
4993 set_main_name (new_main_name);
4994 return;
4995 }
4996
4997 /* The languages above didn't identify the name of the main procedure.
4998 Fallback to "main". */
4999 set_main_name ("main");
5000 }
5001
5002 char *
5003 main_name (void)
5004 {
5005 if (name_of_main == NULL)
5006 find_main_name ();
5007
5008 return name_of_main;
5009 }
5010
5011 /* Handle ``executable_changed'' events for the symtab module. */
5012
5013 static void
5014 symtab_observer_executable_changed (void)
5015 {
5016 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
5017 set_main_name (NULL);
5018 }
5019
5020 /* Return 1 if the supplied producer string matches the ARM RealView
5021 compiler (armcc). */
5022
5023 int
5024 producer_is_realview (const char *producer)
5025 {
5026 static const char *const arm_idents[] = {
5027 "ARM C Compiler, ADS",
5028 "Thumb C Compiler, ADS",
5029 "ARM C++ Compiler, ADS",
5030 "Thumb C++ Compiler, ADS",
5031 "ARM/Thumb C/C++ Compiler, RVCT",
5032 "ARM C/C++ Compiler, RVCT"
5033 };
5034 int i;
5035
5036 if (producer == NULL)
5037 return 0;
5038
5039 for (i = 0; i < ARRAY_SIZE (arm_idents); i++)
5040 if (strncmp (producer, arm_idents[i], strlen (arm_idents[i])) == 0)
5041 return 1;
5042
5043 return 0;
5044 }
5045
5046 void
5047 _initialize_symtab (void)
5048 {
5049 add_info ("variables", variables_info, _("\
5050 All global and static variable names, or those matching REGEXP."));
5051 if (dbx_commands)
5052 add_com ("whereis", class_info, variables_info, _("\
5053 All global and static variable names, or those matching REGEXP."));
5054
5055 add_info ("functions", functions_info,
5056 _("All function names, or those matching REGEXP."));
5057
5058 /* FIXME: This command has at least the following problems:
5059 1. It prints builtin types (in a very strange and confusing fashion).
5060 2. It doesn't print right, e.g. with
5061 typedef struct foo *FOO
5062 type_print prints "FOO" when we want to make it (in this situation)
5063 print "struct foo *".
5064 I also think "ptype" or "whatis" is more likely to be useful (but if
5065 there is much disagreement "info types" can be fixed). */
5066 add_info ("types", types_info,
5067 _("All type names, or those matching REGEXP."));
5068
5069 add_info ("sources", sources_info,
5070 _("Source files in the program."));
5071
5072 add_com ("rbreak", class_breakpoint, rbreak_command,
5073 _("Set a breakpoint for all functions matching REGEXP."));
5074
5075 if (xdb_commands)
5076 {
5077 add_com ("lf", class_info, sources_info,
5078 _("Source files in the program"));
5079 add_com ("lg", class_info, variables_info, _("\
5080 All global and static variable names, or those matching REGEXP."));
5081 }
5082
5083 add_setshow_enum_cmd ("multiple-symbols", no_class,
5084 multiple_symbols_modes, &multiple_symbols_mode,
5085 _("\
5086 Set the debugger behavior when more than one symbol are possible matches\n\
5087 in an expression."), _("\
5088 Show how the debugger handles ambiguities in expressions."), _("\
5089 Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
5090 NULL, NULL, &setlist, &showlist);
5091
5092 add_setshow_boolean_cmd ("basenames-may-differ", class_obscure,
5093 &basenames_may_differ, _("\
5094 Set whether a source file may have multiple base names."), _("\
5095 Show whether a source file may have multiple base names."), _("\
5096 (A \"base name\" is the name of a file with the directory part removed.\n\
5097 Example: The base name of \"/home/user/hello.c\" is \"hello.c\".)\n\
5098 If set, GDB will canonicalize file names (e.g., expand symlinks)\n\
5099 before comparing them. Canonicalization is an expensive operation,\n\
5100 but it allows the same file be known by more than one base name.\n\
5101 If not set (the default), all source files are assumed to have just\n\
5102 one base name, and gdb will do file name comparisons more efficiently."),
5103 NULL, NULL,
5104 &setlist, &showlist);
5105
5106 add_setshow_boolean_cmd ("symtab-create", no_class, &symtab_create_debug,
5107 _("Set debugging of symbol table creation."),
5108 _("Show debugging of symbol table creation."), _("\
5109 When enabled, debugging messages are printed when building symbol tables."),
5110 NULL,
5111 NULL,
5112 &setdebuglist, &showdebuglist);
5113
5114 observer_attach_executable_changed (symtab_observer_executable_changed);
5115 }
This page took 0.234694 seconds and 4 git commands to generate.