Add support for the Rust language
[deliverable/binutils-gdb.git] / gdb / symtab.c
1 /* Symbol table lookup for the GNU debugger, GDB.
2
3 Copyright (C) 1986-2016 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "gdbcore.h"
24 #include "frame.h"
25 #include "target.h"
26 #include "value.h"
27 #include "symfile.h"
28 #include "objfiles.h"
29 #include "gdbcmd.h"
30 #include "gdb_regex.h"
31 #include "expression.h"
32 #include "language.h"
33 #include "demangle.h"
34 #include "inferior.h"
35 #include "source.h"
36 #include "filenames.h" /* for FILENAME_CMP */
37 #include "objc-lang.h"
38 #include "d-lang.h"
39 #include "ada-lang.h"
40 #include "go-lang.h"
41 #include "p-lang.h"
42 #include "addrmap.h"
43 #include "cli/cli-utils.h"
44 #include "fnmatch.h"
45 #include "hashtab.h"
46
47 #include "gdb_obstack.h"
48 #include "block.h"
49 #include "dictionary.h"
50
51 #include <sys/types.h>
52 #include <fcntl.h>
53 #include <sys/stat.h>
54 #include <ctype.h>
55 #include "cp-abi.h"
56 #include "cp-support.h"
57 #include "observer.h"
58 #include "solist.h"
59 #include "macrotab.h"
60 #include "macroscope.h"
61
62 #include "parser-defs.h"
63 #include "completer.h"
64
65 /* Forward declarations for local functions. */
66
67 static void rbreak_command (char *, int);
68
69 static int find_line_common (struct linetable *, int, int *, int);
70
71 static struct block_symbol
72 lookup_symbol_aux (const char *name,
73 const struct block *block,
74 const domain_enum domain,
75 enum language language,
76 struct field_of_this_result *);
77
78 static
79 struct block_symbol lookup_local_symbol (const char *name,
80 const struct block *block,
81 const domain_enum domain,
82 enum language language);
83
84 static struct block_symbol
85 lookup_symbol_in_objfile (struct objfile *objfile, int block_index,
86 const char *name, const domain_enum domain);
87
88 /* See symtab.h. */
89 const struct block_symbol null_block_symbol = { NULL, NULL };
90
91 extern initialize_file_ftype _initialize_symtab;
92
93 /* Program space key for finding name and language of "main". */
94
95 static const struct program_space_data *main_progspace_key;
96
97 /* Type of the data stored on the program space. */
98
99 struct main_info
100 {
101 /* Name of "main". */
102
103 char *name_of_main;
104
105 /* Language of "main". */
106
107 enum language language_of_main;
108 };
109
110 /* Program space key for finding its symbol cache. */
111
112 static const struct program_space_data *symbol_cache_key;
113
114 /* The default symbol cache size.
115 There is no extra cpu cost for large N (except when flushing the cache,
116 which is rare). The value here is just a first attempt. A better default
117 value may be higher or lower. A prime number can make up for a bad hash
118 computation, so that's why the number is what it is. */
119 #define DEFAULT_SYMBOL_CACHE_SIZE 1021
120
121 /* The maximum symbol cache size.
122 There's no method to the decision of what value to use here, other than
123 there's no point in allowing a user typo to make gdb consume all memory. */
124 #define MAX_SYMBOL_CACHE_SIZE (1024*1024)
125
126 /* symbol_cache_lookup returns this if a previous lookup failed to find the
127 symbol in any objfile. */
128 #define SYMBOL_LOOKUP_FAILED \
129 ((struct block_symbol) {(struct symbol *) 1, NULL})
130 #define SYMBOL_LOOKUP_FAILED_P(SIB) (SIB.symbol == (struct symbol *) 1)
131
132 /* Recording lookups that don't find the symbol is just as important, if not
133 more so, than recording found symbols. */
134
135 enum symbol_cache_slot_state
136 {
137 SYMBOL_SLOT_UNUSED,
138 SYMBOL_SLOT_NOT_FOUND,
139 SYMBOL_SLOT_FOUND
140 };
141
142 struct symbol_cache_slot
143 {
144 enum symbol_cache_slot_state state;
145
146 /* The objfile that was current when the symbol was looked up.
147 This is only needed for global blocks, but for simplicity's sake
148 we allocate the space for both. If data shows the extra space used
149 for static blocks is a problem, we can split things up then.
150
151 Global blocks need cache lookup to include the objfile context because
152 we need to account for gdbarch_iterate_over_objfiles_in_search_order
153 which can traverse objfiles in, effectively, any order, depending on
154 the current objfile, thus affecting which symbol is found. Normally,
155 only the current objfile is searched first, and then the rest are
156 searched in recorded order; but putting cache lookup inside
157 gdbarch_iterate_over_objfiles_in_search_order would be awkward.
158 Instead we just make the current objfile part of the context of
159 cache lookup. This means we can record the same symbol multiple times,
160 each with a different "current objfile" that was in effect when the
161 lookup was saved in the cache, but cache space is pretty cheap. */
162 const struct objfile *objfile_context;
163
164 union
165 {
166 struct block_symbol found;
167 struct
168 {
169 char *name;
170 domain_enum domain;
171 } not_found;
172 } value;
173 };
174
175 /* Symbols don't specify global vs static block.
176 So keep them in separate caches. */
177
178 struct block_symbol_cache
179 {
180 unsigned int hits;
181 unsigned int misses;
182 unsigned int collisions;
183
184 /* SYMBOLS is a variable length array of this size.
185 One can imagine that in general one cache (global/static) should be a
186 fraction of the size of the other, but there's no data at the moment
187 on which to decide. */
188 unsigned int size;
189
190 struct symbol_cache_slot symbols[1];
191 };
192
193 /* The symbol cache.
194
195 Searching for symbols in the static and global blocks over multiple objfiles
196 again and again can be slow, as can searching very big objfiles. This is a
197 simple cache to improve symbol lookup performance, which is critical to
198 overall gdb performance.
199
200 Symbols are hashed on the name, its domain, and block.
201 They are also hashed on their objfile for objfile-specific lookups. */
202
203 struct symbol_cache
204 {
205 struct block_symbol_cache *global_symbols;
206 struct block_symbol_cache *static_symbols;
207 };
208
209 /* When non-zero, print debugging messages related to symtab creation. */
210 unsigned int symtab_create_debug = 0;
211
212 /* When non-zero, print debugging messages related to symbol lookup. */
213 unsigned int symbol_lookup_debug = 0;
214
215 /* The size of the cache is staged here. */
216 static unsigned int new_symbol_cache_size = DEFAULT_SYMBOL_CACHE_SIZE;
217
218 /* The current value of the symbol cache size.
219 This is saved so that if the user enters a value too big we can restore
220 the original value from here. */
221 static unsigned int symbol_cache_size = DEFAULT_SYMBOL_CACHE_SIZE;
222
223 /* Non-zero if a file may be known by two different basenames.
224 This is the uncommon case, and significantly slows down gdb.
225 Default set to "off" to not slow down the common case. */
226 int basenames_may_differ = 0;
227
228 /* Allow the user to configure the debugger behavior with respect
229 to multiple-choice menus when more than one symbol matches during
230 a symbol lookup. */
231
232 const char multiple_symbols_ask[] = "ask";
233 const char multiple_symbols_all[] = "all";
234 const char multiple_symbols_cancel[] = "cancel";
235 static const char *const multiple_symbols_modes[] =
236 {
237 multiple_symbols_ask,
238 multiple_symbols_all,
239 multiple_symbols_cancel,
240 NULL
241 };
242 static const char *multiple_symbols_mode = multiple_symbols_all;
243
244 /* Read-only accessor to AUTO_SELECT_MODE. */
245
246 const char *
247 multiple_symbols_select_mode (void)
248 {
249 return multiple_symbols_mode;
250 }
251
252 /* Return the name of a domain_enum. */
253
254 const char *
255 domain_name (domain_enum e)
256 {
257 switch (e)
258 {
259 case UNDEF_DOMAIN: return "UNDEF_DOMAIN";
260 case VAR_DOMAIN: return "VAR_DOMAIN";
261 case STRUCT_DOMAIN: return "STRUCT_DOMAIN";
262 case MODULE_DOMAIN: return "MODULE_DOMAIN";
263 case LABEL_DOMAIN: return "LABEL_DOMAIN";
264 case COMMON_BLOCK_DOMAIN: return "COMMON_BLOCK_DOMAIN";
265 default: gdb_assert_not_reached ("bad domain_enum");
266 }
267 }
268
269 /* Return the name of a search_domain . */
270
271 const char *
272 search_domain_name (enum search_domain e)
273 {
274 switch (e)
275 {
276 case VARIABLES_DOMAIN: return "VARIABLES_DOMAIN";
277 case FUNCTIONS_DOMAIN: return "FUNCTIONS_DOMAIN";
278 case TYPES_DOMAIN: return "TYPES_DOMAIN";
279 case ALL_DOMAIN: return "ALL_DOMAIN";
280 default: gdb_assert_not_reached ("bad search_domain");
281 }
282 }
283
284 /* See symtab.h. */
285
286 struct symtab *
287 compunit_primary_filetab (const struct compunit_symtab *cust)
288 {
289 gdb_assert (COMPUNIT_FILETABS (cust) != NULL);
290
291 /* The primary file symtab is the first one in the list. */
292 return COMPUNIT_FILETABS (cust);
293 }
294
295 /* See symtab.h. */
296
297 enum language
298 compunit_language (const struct compunit_symtab *cust)
299 {
300 struct symtab *symtab = compunit_primary_filetab (cust);
301
302 /* The language of the compunit symtab is the language of its primary
303 source file. */
304 return SYMTAB_LANGUAGE (symtab);
305 }
306
307 /* See whether FILENAME matches SEARCH_NAME using the rule that we
308 advertise to the user. (The manual's description of linespecs
309 describes what we advertise). Returns true if they match, false
310 otherwise. */
311
312 int
313 compare_filenames_for_search (const char *filename, const char *search_name)
314 {
315 int len = strlen (filename);
316 size_t search_len = strlen (search_name);
317
318 if (len < search_len)
319 return 0;
320
321 /* The tail of FILENAME must match. */
322 if (FILENAME_CMP (filename + len - search_len, search_name) != 0)
323 return 0;
324
325 /* Either the names must completely match, or the character
326 preceding the trailing SEARCH_NAME segment of FILENAME must be a
327 directory separator.
328
329 The check !IS_ABSOLUTE_PATH ensures SEARCH_NAME "/dir/file.c"
330 cannot match FILENAME "/path//dir/file.c" - as user has requested
331 absolute path. The sama applies for "c:\file.c" possibly
332 incorrectly hypothetically matching "d:\dir\c:\file.c".
333
334 The HAS_DRIVE_SPEC purpose is to make FILENAME "c:file.c"
335 compatible with SEARCH_NAME "file.c". In such case a compiler had
336 to put the "c:file.c" name into debug info. Such compatibility
337 works only on GDB built for DOS host. */
338 return (len == search_len
339 || (!IS_ABSOLUTE_PATH (search_name)
340 && IS_DIR_SEPARATOR (filename[len - search_len - 1]))
341 || (HAS_DRIVE_SPEC (filename)
342 && STRIP_DRIVE_SPEC (filename) == &filename[len - search_len]));
343 }
344
345 /* Same as compare_filenames_for_search, but for glob-style patterns.
346 Heads up on the order of the arguments. They match the order of
347 compare_filenames_for_search, but it's the opposite of the order of
348 arguments to gdb_filename_fnmatch. */
349
350 int
351 compare_glob_filenames_for_search (const char *filename,
352 const char *search_name)
353 {
354 /* We rely on the property of glob-style patterns with FNM_FILE_NAME that
355 all /s have to be explicitly specified. */
356 int file_path_elements = count_path_elements (filename);
357 int search_path_elements = count_path_elements (search_name);
358
359 if (search_path_elements > file_path_elements)
360 return 0;
361
362 if (IS_ABSOLUTE_PATH (search_name))
363 {
364 return (search_path_elements == file_path_elements
365 && gdb_filename_fnmatch (search_name, filename,
366 FNM_FILE_NAME | FNM_NOESCAPE) == 0);
367 }
368
369 {
370 const char *file_to_compare
371 = strip_leading_path_elements (filename,
372 file_path_elements - search_path_elements);
373
374 return gdb_filename_fnmatch (search_name, file_to_compare,
375 FNM_FILE_NAME | FNM_NOESCAPE) == 0;
376 }
377 }
378
379 /* Check for a symtab of a specific name by searching some symtabs.
380 This is a helper function for callbacks of iterate_over_symtabs.
381
382 If NAME is not absolute, then REAL_PATH is NULL
383 If NAME is absolute, then REAL_PATH is the gdb_realpath form of NAME.
384
385 The return value, NAME, REAL_PATH, CALLBACK, and DATA
386 are identical to the `map_symtabs_matching_filename' method of
387 quick_symbol_functions.
388
389 FIRST and AFTER_LAST indicate the range of compunit symtabs to search.
390 Each symtab within the specified compunit symtab is also searched.
391 AFTER_LAST is one past the last compunit symtab to search; NULL means to
392 search until the end of the list. */
393
394 int
395 iterate_over_some_symtabs (const char *name,
396 const char *real_path,
397 int (*callback) (struct symtab *symtab,
398 void *data),
399 void *data,
400 struct compunit_symtab *first,
401 struct compunit_symtab *after_last)
402 {
403 struct compunit_symtab *cust;
404 struct symtab *s;
405 const char* base_name = lbasename (name);
406
407 for (cust = first; cust != NULL && cust != after_last; cust = cust->next)
408 {
409 ALL_COMPUNIT_FILETABS (cust, s)
410 {
411 if (compare_filenames_for_search (s->filename, name))
412 {
413 if (callback (s, data))
414 return 1;
415 continue;
416 }
417
418 /* Before we invoke realpath, which can get expensive when many
419 files are involved, do a quick comparison of the basenames. */
420 if (! basenames_may_differ
421 && FILENAME_CMP (base_name, lbasename (s->filename)) != 0)
422 continue;
423
424 if (compare_filenames_for_search (symtab_to_fullname (s), name))
425 {
426 if (callback (s, data))
427 return 1;
428 continue;
429 }
430
431 /* If the user gave us an absolute path, try to find the file in
432 this symtab and use its absolute path. */
433 if (real_path != NULL)
434 {
435 const char *fullname = symtab_to_fullname (s);
436
437 gdb_assert (IS_ABSOLUTE_PATH (real_path));
438 gdb_assert (IS_ABSOLUTE_PATH (name));
439 if (FILENAME_CMP (real_path, fullname) == 0)
440 {
441 if (callback (s, data))
442 return 1;
443 continue;
444 }
445 }
446 }
447 }
448
449 return 0;
450 }
451
452 /* Check for a symtab of a specific name; first in symtabs, then in
453 psymtabs. *If* there is no '/' in the name, a match after a '/'
454 in the symtab filename will also work.
455
456 Calls CALLBACK with each symtab that is found and with the supplied
457 DATA. If CALLBACK returns true, the search stops. */
458
459 void
460 iterate_over_symtabs (const char *name,
461 int (*callback) (struct symtab *symtab,
462 void *data),
463 void *data)
464 {
465 struct objfile *objfile;
466 char *real_path = NULL;
467 struct cleanup *cleanups = make_cleanup (null_cleanup, NULL);
468
469 /* Here we are interested in canonicalizing an absolute path, not
470 absolutizing a relative path. */
471 if (IS_ABSOLUTE_PATH (name))
472 {
473 real_path = gdb_realpath (name);
474 make_cleanup (xfree, real_path);
475 gdb_assert (IS_ABSOLUTE_PATH (real_path));
476 }
477
478 ALL_OBJFILES (objfile)
479 {
480 if (iterate_over_some_symtabs (name, real_path, callback, data,
481 objfile->compunit_symtabs, NULL))
482 {
483 do_cleanups (cleanups);
484 return;
485 }
486 }
487
488 /* Same search rules as above apply here, but now we look thru the
489 psymtabs. */
490
491 ALL_OBJFILES (objfile)
492 {
493 if (objfile->sf
494 && objfile->sf->qf->map_symtabs_matching_filename (objfile,
495 name,
496 real_path,
497 callback,
498 data))
499 {
500 do_cleanups (cleanups);
501 return;
502 }
503 }
504
505 do_cleanups (cleanups);
506 }
507
508 /* The callback function used by lookup_symtab. */
509
510 static int
511 lookup_symtab_callback (struct symtab *symtab, void *data)
512 {
513 struct symtab **result_ptr = (struct symtab **) data;
514
515 *result_ptr = symtab;
516 return 1;
517 }
518
519 /* A wrapper for iterate_over_symtabs that returns the first matching
520 symtab, or NULL. */
521
522 struct symtab *
523 lookup_symtab (const char *name)
524 {
525 struct symtab *result = NULL;
526
527 iterate_over_symtabs (name, lookup_symtab_callback, &result);
528 return result;
529 }
530
531 \f
532 /* Mangle a GDB method stub type. This actually reassembles the pieces of the
533 full method name, which consist of the class name (from T), the unadorned
534 method name from METHOD_ID, and the signature for the specific overload,
535 specified by SIGNATURE_ID. Note that this function is g++ specific. */
536
537 char *
538 gdb_mangle_name (struct type *type, int method_id, int signature_id)
539 {
540 int mangled_name_len;
541 char *mangled_name;
542 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
543 struct fn_field *method = &f[signature_id];
544 const char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
545 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
546 const char *newname = type_name_no_tag (type);
547
548 /* Does the form of physname indicate that it is the full mangled name
549 of a constructor (not just the args)? */
550 int is_full_physname_constructor;
551
552 int is_constructor;
553 int is_destructor = is_destructor_name (physname);
554 /* Need a new type prefix. */
555 const char *const_prefix = method->is_const ? "C" : "";
556 const char *volatile_prefix = method->is_volatile ? "V" : "";
557 char buf[20];
558 int len = (newname == NULL ? 0 : strlen (newname));
559
560 /* Nothing to do if physname already contains a fully mangled v3 abi name
561 or an operator name. */
562 if ((physname[0] == '_' && physname[1] == 'Z')
563 || is_operator_name (field_name))
564 return xstrdup (physname);
565
566 is_full_physname_constructor = is_constructor_name (physname);
567
568 is_constructor = is_full_physname_constructor
569 || (newname && strcmp (field_name, newname) == 0);
570
571 if (!is_destructor)
572 is_destructor = (startswith (physname, "__dt"));
573
574 if (is_destructor || is_full_physname_constructor)
575 {
576 mangled_name = (char *) xmalloc (strlen (physname) + 1);
577 strcpy (mangled_name, physname);
578 return mangled_name;
579 }
580
581 if (len == 0)
582 {
583 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
584 }
585 else if (physname[0] == 't' || physname[0] == 'Q')
586 {
587 /* The physname for template and qualified methods already includes
588 the class name. */
589 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
590 newname = NULL;
591 len = 0;
592 }
593 else
594 {
595 xsnprintf (buf, sizeof (buf), "__%s%s%d", const_prefix,
596 volatile_prefix, len);
597 }
598 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
599 + strlen (buf) + len + strlen (physname) + 1);
600
601 mangled_name = (char *) xmalloc (mangled_name_len);
602 if (is_constructor)
603 mangled_name[0] = '\0';
604 else
605 strcpy (mangled_name, field_name);
606
607 strcat (mangled_name, buf);
608 /* If the class doesn't have a name, i.e. newname NULL, then we just
609 mangle it using 0 for the length of the class. Thus it gets mangled
610 as something starting with `::' rather than `classname::'. */
611 if (newname != NULL)
612 strcat (mangled_name, newname);
613
614 strcat (mangled_name, physname);
615 return (mangled_name);
616 }
617
618 /* Set the demangled name of GSYMBOL to NAME. NAME must be already
619 correctly allocated. */
620
621 void
622 symbol_set_demangled_name (struct general_symbol_info *gsymbol,
623 const char *name,
624 struct obstack *obstack)
625 {
626 if (gsymbol->language == language_ada)
627 {
628 if (name == NULL)
629 {
630 gsymbol->ada_mangled = 0;
631 gsymbol->language_specific.obstack = obstack;
632 }
633 else
634 {
635 gsymbol->ada_mangled = 1;
636 gsymbol->language_specific.demangled_name = name;
637 }
638 }
639 else
640 gsymbol->language_specific.demangled_name = name;
641 }
642
643 /* Return the demangled name of GSYMBOL. */
644
645 const char *
646 symbol_get_demangled_name (const struct general_symbol_info *gsymbol)
647 {
648 if (gsymbol->language == language_ada)
649 {
650 if (!gsymbol->ada_mangled)
651 return NULL;
652 /* Fall through. */
653 }
654
655 return gsymbol->language_specific.demangled_name;
656 }
657
658 \f
659 /* Initialize the language dependent portion of a symbol
660 depending upon the language for the symbol. */
661
662 void
663 symbol_set_language (struct general_symbol_info *gsymbol,
664 enum language language,
665 struct obstack *obstack)
666 {
667 gsymbol->language = language;
668 if (gsymbol->language == language_cplus
669 || gsymbol->language == language_d
670 || gsymbol->language == language_go
671 || gsymbol->language == language_java
672 || gsymbol->language == language_objc
673 || gsymbol->language == language_fortran)
674 {
675 symbol_set_demangled_name (gsymbol, NULL, obstack);
676 }
677 else if (gsymbol->language == language_ada)
678 {
679 gdb_assert (gsymbol->ada_mangled == 0);
680 gsymbol->language_specific.obstack = obstack;
681 }
682 else
683 {
684 memset (&gsymbol->language_specific, 0,
685 sizeof (gsymbol->language_specific));
686 }
687 }
688
689 /* Functions to initialize a symbol's mangled name. */
690
691 /* Objects of this type are stored in the demangled name hash table. */
692 struct demangled_name_entry
693 {
694 const char *mangled;
695 char demangled[1];
696 };
697
698 /* Hash function for the demangled name hash. */
699
700 static hashval_t
701 hash_demangled_name_entry (const void *data)
702 {
703 const struct demangled_name_entry *e
704 = (const struct demangled_name_entry *) data;
705
706 return htab_hash_string (e->mangled);
707 }
708
709 /* Equality function for the demangled name hash. */
710
711 static int
712 eq_demangled_name_entry (const void *a, const void *b)
713 {
714 const struct demangled_name_entry *da
715 = (const struct demangled_name_entry *) a;
716 const struct demangled_name_entry *db
717 = (const struct demangled_name_entry *) b;
718
719 return strcmp (da->mangled, db->mangled) == 0;
720 }
721
722 /* Create the hash table used for demangled names. Each hash entry is
723 a pair of strings; one for the mangled name and one for the demangled
724 name. The entry is hashed via just the mangled name. */
725
726 static void
727 create_demangled_names_hash (struct objfile *objfile)
728 {
729 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
730 The hash table code will round this up to the next prime number.
731 Choosing a much larger table size wastes memory, and saves only about
732 1% in symbol reading. */
733
734 objfile->per_bfd->demangled_names_hash = htab_create_alloc
735 (256, hash_demangled_name_entry, eq_demangled_name_entry,
736 NULL, xcalloc, xfree);
737 }
738
739 /* Try to determine the demangled name for a symbol, based on the
740 language of that symbol. If the language is set to language_auto,
741 it will attempt to find any demangling algorithm that works and
742 then set the language appropriately. The returned name is allocated
743 by the demangler and should be xfree'd. */
744
745 static char *
746 symbol_find_demangled_name (struct general_symbol_info *gsymbol,
747 const char *mangled)
748 {
749 char *demangled = NULL;
750
751 if (gsymbol->language == language_unknown)
752 gsymbol->language = language_auto;
753
754 if (gsymbol->language == language_objc
755 || gsymbol->language == language_auto)
756 {
757 demangled =
758 objc_demangle (mangled, 0);
759 if (demangled != NULL)
760 {
761 gsymbol->language = language_objc;
762 return demangled;
763 }
764 }
765 if (gsymbol->language == language_cplus
766 || gsymbol->language == language_rust
767 || gsymbol->language == language_auto)
768 {
769 demangled =
770 gdb_demangle (mangled, DMGL_PARAMS | DMGL_ANSI);
771 if (demangled != NULL)
772 {
773 gsymbol->language = language_cplus;
774 return demangled;
775 }
776 }
777 if (gsymbol->language == language_java)
778 {
779 demangled =
780 gdb_demangle (mangled,
781 DMGL_PARAMS | DMGL_ANSI | DMGL_JAVA);
782 if (demangled != NULL)
783 {
784 gsymbol->language = language_java;
785 return demangled;
786 }
787 }
788 if (gsymbol->language == language_d
789 || gsymbol->language == language_auto)
790 {
791 demangled = d_demangle(mangled, 0);
792 if (demangled != NULL)
793 {
794 gsymbol->language = language_d;
795 return demangled;
796 }
797 }
798 /* FIXME(dje): Continually adding languages here is clumsy.
799 Better to just call la_demangle if !auto, and if auto then call
800 a utility routine that tries successive languages in turn and reports
801 which one it finds. I realize the la_demangle options may be different
802 for different languages but there's already a FIXME for that. */
803 if (gsymbol->language == language_go
804 || gsymbol->language == language_auto)
805 {
806 demangled = go_demangle (mangled, 0);
807 if (demangled != NULL)
808 {
809 gsymbol->language = language_go;
810 return demangled;
811 }
812 }
813
814 /* We could support `gsymbol->language == language_fortran' here to provide
815 module namespaces also for inferiors with only minimal symbol table (ELF
816 symbols). Just the mangling standard is not standardized across compilers
817 and there is no DW_AT_producer available for inferiors with only the ELF
818 symbols to check the mangling kind. */
819
820 /* Check for Ada symbols last. See comment below explaining why. */
821
822 if (gsymbol->language == language_auto)
823 {
824 const char *demangled = ada_decode (mangled);
825
826 if (demangled != mangled && demangled != NULL && demangled[0] != '<')
827 {
828 /* Set the gsymbol language to Ada, but still return NULL.
829 Two reasons for that:
830
831 1. For Ada, we prefer computing the symbol's decoded name
832 on the fly rather than pre-compute it, in order to save
833 memory (Ada projects are typically very large).
834
835 2. There are some areas in the definition of the GNAT
836 encoding where, with a bit of bad luck, we might be able
837 to decode a non-Ada symbol, generating an incorrect
838 demangled name (Eg: names ending with "TB" for instance
839 are identified as task bodies and so stripped from
840 the decoded name returned).
841
842 Returning NULL, here, helps us get a little bit of
843 the best of both worlds. Because we're last, we should
844 not affect any of the other languages that were able to
845 demangle the symbol before us; we get to correctly tag
846 Ada symbols as such; and even if we incorrectly tagged
847 a non-Ada symbol, which should be rare, any routing
848 through the Ada language should be transparent (Ada
849 tries to behave much like C/C++ with non-Ada symbols). */
850 gsymbol->language = language_ada;
851 return NULL;
852 }
853 }
854
855 return NULL;
856 }
857
858 /* Set both the mangled and demangled (if any) names for GSYMBOL based
859 on LINKAGE_NAME and LEN. Ordinarily, NAME is copied onto the
860 objfile's obstack; but if COPY_NAME is 0 and if NAME is
861 NUL-terminated, then this function assumes that NAME is already
862 correctly saved (either permanently or with a lifetime tied to the
863 objfile), and it will not be copied.
864
865 The hash table corresponding to OBJFILE is used, and the memory
866 comes from the per-BFD storage_obstack. LINKAGE_NAME is copied,
867 so the pointer can be discarded after calling this function. */
868
869 /* We have to be careful when dealing with Java names: when we run
870 into a Java minimal symbol, we don't know it's a Java symbol, so it
871 gets demangled as a C++ name. This is unfortunate, but there's not
872 much we can do about it: but when demangling partial symbols and
873 regular symbols, we'd better not reuse the wrong demangled name.
874 (See PR gdb/1039.) We solve this by putting a distinctive prefix
875 on Java names when storing them in the hash table. */
876
877 /* FIXME: carlton/2003-03-13: This is an unfortunate situation. I
878 don't mind the Java prefix so much: different languages have
879 different demangling requirements, so it's only natural that we
880 need to keep language data around in our demangling cache. But
881 it's not good that the minimal symbol has the wrong demangled name.
882 Unfortunately, I can't think of any easy solution to that
883 problem. */
884
885 #define JAVA_PREFIX "##JAVA$$"
886 #define JAVA_PREFIX_LEN 8
887
888 void
889 symbol_set_names (struct general_symbol_info *gsymbol,
890 const char *linkage_name, int len, int copy_name,
891 struct objfile *objfile)
892 {
893 struct demangled_name_entry **slot;
894 /* A 0-terminated copy of the linkage name. */
895 const char *linkage_name_copy;
896 /* A copy of the linkage name that might have a special Java prefix
897 added to it, for use when looking names up in the hash table. */
898 const char *lookup_name;
899 /* The length of lookup_name. */
900 int lookup_len;
901 struct demangled_name_entry entry;
902 struct objfile_per_bfd_storage *per_bfd = objfile->per_bfd;
903
904 if (gsymbol->language == language_ada)
905 {
906 /* In Ada, we do the symbol lookups using the mangled name, so
907 we can save some space by not storing the demangled name.
908
909 As a side note, we have also observed some overlap between
910 the C++ mangling and Ada mangling, similarly to what has
911 been observed with Java. Because we don't store the demangled
912 name with the symbol, we don't need to use the same trick
913 as Java. */
914 if (!copy_name)
915 gsymbol->name = linkage_name;
916 else
917 {
918 char *name = (char *) obstack_alloc (&per_bfd->storage_obstack,
919 len + 1);
920
921 memcpy (name, linkage_name, len);
922 name[len] = '\0';
923 gsymbol->name = name;
924 }
925 symbol_set_demangled_name (gsymbol, NULL, &per_bfd->storage_obstack);
926
927 return;
928 }
929
930 if (per_bfd->demangled_names_hash == NULL)
931 create_demangled_names_hash (objfile);
932
933 /* The stabs reader generally provides names that are not
934 NUL-terminated; most of the other readers don't do this, so we
935 can just use the given copy, unless we're in the Java case. */
936 if (gsymbol->language == language_java)
937 {
938 char *alloc_name;
939
940 lookup_len = len + JAVA_PREFIX_LEN;
941 alloc_name = (char *) alloca (lookup_len + 1);
942 memcpy (alloc_name, JAVA_PREFIX, JAVA_PREFIX_LEN);
943 memcpy (alloc_name + JAVA_PREFIX_LEN, linkage_name, len);
944 alloc_name[lookup_len] = '\0';
945
946 lookup_name = alloc_name;
947 linkage_name_copy = alloc_name + JAVA_PREFIX_LEN;
948 }
949 else if (linkage_name[len] != '\0')
950 {
951 char *alloc_name;
952
953 lookup_len = len;
954 alloc_name = (char *) alloca (lookup_len + 1);
955 memcpy (alloc_name, linkage_name, len);
956 alloc_name[lookup_len] = '\0';
957
958 lookup_name = alloc_name;
959 linkage_name_copy = alloc_name;
960 }
961 else
962 {
963 lookup_len = len;
964 lookup_name = linkage_name;
965 linkage_name_copy = linkage_name;
966 }
967
968 entry.mangled = lookup_name;
969 slot = ((struct demangled_name_entry **)
970 htab_find_slot (per_bfd->demangled_names_hash,
971 &entry, INSERT));
972
973 /* If this name is not in the hash table, add it. */
974 if (*slot == NULL
975 /* A C version of the symbol may have already snuck into the table.
976 This happens to, e.g., main.init (__go_init_main). Cope. */
977 || (gsymbol->language == language_go
978 && (*slot)->demangled[0] == '\0'))
979 {
980 char *demangled_name = symbol_find_demangled_name (gsymbol,
981 linkage_name_copy);
982 int demangled_len = demangled_name ? strlen (demangled_name) : 0;
983
984 /* Suppose we have demangled_name==NULL, copy_name==0, and
985 lookup_name==linkage_name. In this case, we already have the
986 mangled name saved, and we don't have a demangled name. So,
987 you might think we could save a little space by not recording
988 this in the hash table at all.
989
990 It turns out that it is actually important to still save such
991 an entry in the hash table, because storing this name gives
992 us better bcache hit rates for partial symbols. */
993 if (!copy_name && lookup_name == linkage_name)
994 {
995 *slot
996 = ((struct demangled_name_entry *)
997 obstack_alloc (&per_bfd->storage_obstack,
998 offsetof (struct demangled_name_entry, demangled)
999 + demangled_len + 1));
1000 (*slot)->mangled = lookup_name;
1001 }
1002 else
1003 {
1004 char *mangled_ptr;
1005
1006 /* If we must copy the mangled name, put it directly after
1007 the demangled name so we can have a single
1008 allocation. */
1009 *slot
1010 = ((struct demangled_name_entry *)
1011 obstack_alloc (&per_bfd->storage_obstack,
1012 offsetof (struct demangled_name_entry, demangled)
1013 + lookup_len + demangled_len + 2));
1014 mangled_ptr = &((*slot)->demangled[demangled_len + 1]);
1015 strcpy (mangled_ptr, lookup_name);
1016 (*slot)->mangled = mangled_ptr;
1017 }
1018
1019 if (demangled_name != NULL)
1020 {
1021 strcpy ((*slot)->demangled, demangled_name);
1022 xfree (demangled_name);
1023 }
1024 else
1025 (*slot)->demangled[0] = '\0';
1026 }
1027
1028 gsymbol->name = (*slot)->mangled + lookup_len - len;
1029 if ((*slot)->demangled[0] != '\0')
1030 symbol_set_demangled_name (gsymbol, (*slot)->demangled,
1031 &per_bfd->storage_obstack);
1032 else
1033 symbol_set_demangled_name (gsymbol, NULL, &per_bfd->storage_obstack);
1034 }
1035
1036 /* Return the source code name of a symbol. In languages where
1037 demangling is necessary, this is the demangled name. */
1038
1039 const char *
1040 symbol_natural_name (const struct general_symbol_info *gsymbol)
1041 {
1042 switch (gsymbol->language)
1043 {
1044 case language_cplus:
1045 case language_d:
1046 case language_go:
1047 case language_java:
1048 case language_objc:
1049 case language_fortran:
1050 if (symbol_get_demangled_name (gsymbol) != NULL)
1051 return symbol_get_demangled_name (gsymbol);
1052 break;
1053 case language_ada:
1054 return ada_decode_symbol (gsymbol);
1055 default:
1056 break;
1057 }
1058 return gsymbol->name;
1059 }
1060
1061 /* Return the demangled name for a symbol based on the language for
1062 that symbol. If no demangled name exists, return NULL. */
1063
1064 const char *
1065 symbol_demangled_name (const struct general_symbol_info *gsymbol)
1066 {
1067 const char *dem_name = NULL;
1068
1069 switch (gsymbol->language)
1070 {
1071 case language_cplus:
1072 case language_d:
1073 case language_go:
1074 case language_java:
1075 case language_objc:
1076 case language_fortran:
1077 dem_name = symbol_get_demangled_name (gsymbol);
1078 break;
1079 case language_ada:
1080 dem_name = ada_decode_symbol (gsymbol);
1081 break;
1082 default:
1083 break;
1084 }
1085 return dem_name;
1086 }
1087
1088 /* Return the search name of a symbol---generally the demangled or
1089 linkage name of the symbol, depending on how it will be searched for.
1090 If there is no distinct demangled name, then returns the same value
1091 (same pointer) as SYMBOL_LINKAGE_NAME. */
1092
1093 const char *
1094 symbol_search_name (const struct general_symbol_info *gsymbol)
1095 {
1096 if (gsymbol->language == language_ada)
1097 return gsymbol->name;
1098 else
1099 return symbol_natural_name (gsymbol);
1100 }
1101
1102 /* Initialize the structure fields to zero values. */
1103
1104 void
1105 init_sal (struct symtab_and_line *sal)
1106 {
1107 memset (sal, 0, sizeof (*sal));
1108 }
1109 \f
1110
1111 /* Return 1 if the two sections are the same, or if they could
1112 plausibly be copies of each other, one in an original object
1113 file and another in a separated debug file. */
1114
1115 int
1116 matching_obj_sections (struct obj_section *obj_first,
1117 struct obj_section *obj_second)
1118 {
1119 asection *first = obj_first? obj_first->the_bfd_section : NULL;
1120 asection *second = obj_second? obj_second->the_bfd_section : NULL;
1121 struct objfile *obj;
1122
1123 /* If they're the same section, then they match. */
1124 if (first == second)
1125 return 1;
1126
1127 /* If either is NULL, give up. */
1128 if (first == NULL || second == NULL)
1129 return 0;
1130
1131 /* This doesn't apply to absolute symbols. */
1132 if (first->owner == NULL || second->owner == NULL)
1133 return 0;
1134
1135 /* If they're in the same object file, they must be different sections. */
1136 if (first->owner == second->owner)
1137 return 0;
1138
1139 /* Check whether the two sections are potentially corresponding. They must
1140 have the same size, address, and name. We can't compare section indexes,
1141 which would be more reliable, because some sections may have been
1142 stripped. */
1143 if (bfd_get_section_size (first) != bfd_get_section_size (second))
1144 return 0;
1145
1146 /* In-memory addresses may start at a different offset, relativize them. */
1147 if (bfd_get_section_vma (first->owner, first)
1148 - bfd_get_start_address (first->owner)
1149 != bfd_get_section_vma (second->owner, second)
1150 - bfd_get_start_address (second->owner))
1151 return 0;
1152
1153 if (bfd_get_section_name (first->owner, first) == NULL
1154 || bfd_get_section_name (second->owner, second) == NULL
1155 || strcmp (bfd_get_section_name (first->owner, first),
1156 bfd_get_section_name (second->owner, second)) != 0)
1157 return 0;
1158
1159 /* Otherwise check that they are in corresponding objfiles. */
1160
1161 ALL_OBJFILES (obj)
1162 if (obj->obfd == first->owner)
1163 break;
1164 gdb_assert (obj != NULL);
1165
1166 if (obj->separate_debug_objfile != NULL
1167 && obj->separate_debug_objfile->obfd == second->owner)
1168 return 1;
1169 if (obj->separate_debug_objfile_backlink != NULL
1170 && obj->separate_debug_objfile_backlink->obfd == second->owner)
1171 return 1;
1172
1173 return 0;
1174 }
1175
1176 /* See symtab.h. */
1177
1178 void
1179 expand_symtab_containing_pc (CORE_ADDR pc, struct obj_section *section)
1180 {
1181 struct objfile *objfile;
1182 struct bound_minimal_symbol msymbol;
1183
1184 /* If we know that this is not a text address, return failure. This is
1185 necessary because we loop based on texthigh and textlow, which do
1186 not include the data ranges. */
1187 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
1188 if (msymbol.minsym
1189 && (MSYMBOL_TYPE (msymbol.minsym) == mst_data
1190 || MSYMBOL_TYPE (msymbol.minsym) == mst_bss
1191 || MSYMBOL_TYPE (msymbol.minsym) == mst_abs
1192 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_data
1193 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_bss))
1194 return;
1195
1196 ALL_OBJFILES (objfile)
1197 {
1198 struct compunit_symtab *cust = NULL;
1199
1200 if (objfile->sf)
1201 cust = objfile->sf->qf->find_pc_sect_compunit_symtab (objfile, msymbol,
1202 pc, section, 0);
1203 if (cust)
1204 return;
1205 }
1206 }
1207 \f
1208 /* Hash function for the symbol cache. */
1209
1210 static unsigned int
1211 hash_symbol_entry (const struct objfile *objfile_context,
1212 const char *name, domain_enum domain)
1213 {
1214 unsigned int hash = (uintptr_t) objfile_context;
1215
1216 if (name != NULL)
1217 hash += htab_hash_string (name);
1218
1219 /* Because of symbol_matches_domain we need VAR_DOMAIN and STRUCT_DOMAIN
1220 to map to the same slot. */
1221 if (domain == STRUCT_DOMAIN)
1222 hash += VAR_DOMAIN * 7;
1223 else
1224 hash += domain * 7;
1225
1226 return hash;
1227 }
1228
1229 /* Equality function for the symbol cache. */
1230
1231 static int
1232 eq_symbol_entry (const struct symbol_cache_slot *slot,
1233 const struct objfile *objfile_context,
1234 const char *name, domain_enum domain)
1235 {
1236 const char *slot_name;
1237 domain_enum slot_domain;
1238
1239 if (slot->state == SYMBOL_SLOT_UNUSED)
1240 return 0;
1241
1242 if (slot->objfile_context != objfile_context)
1243 return 0;
1244
1245 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1246 {
1247 slot_name = slot->value.not_found.name;
1248 slot_domain = slot->value.not_found.domain;
1249 }
1250 else
1251 {
1252 slot_name = SYMBOL_SEARCH_NAME (slot->value.found.symbol);
1253 slot_domain = SYMBOL_DOMAIN (slot->value.found.symbol);
1254 }
1255
1256 /* NULL names match. */
1257 if (slot_name == NULL && name == NULL)
1258 {
1259 /* But there's no point in calling symbol_matches_domain in the
1260 SYMBOL_SLOT_FOUND case. */
1261 if (slot_domain != domain)
1262 return 0;
1263 }
1264 else if (slot_name != NULL && name != NULL)
1265 {
1266 /* It's important that we use the same comparison that was done the
1267 first time through. If the slot records a found symbol, then this
1268 means using strcmp_iw on SYMBOL_SEARCH_NAME. See dictionary.c.
1269 It also means using symbol_matches_domain for found symbols.
1270 See block.c.
1271
1272 If the slot records a not-found symbol, then require a precise match.
1273 We could still be lax with whitespace like strcmp_iw though. */
1274
1275 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1276 {
1277 if (strcmp (slot_name, name) != 0)
1278 return 0;
1279 if (slot_domain != domain)
1280 return 0;
1281 }
1282 else
1283 {
1284 struct symbol *sym = slot->value.found.symbol;
1285
1286 if (strcmp_iw (slot_name, name) != 0)
1287 return 0;
1288 if (!symbol_matches_domain (SYMBOL_LANGUAGE (sym),
1289 slot_domain, domain))
1290 return 0;
1291 }
1292 }
1293 else
1294 {
1295 /* Only one name is NULL. */
1296 return 0;
1297 }
1298
1299 return 1;
1300 }
1301
1302 /* Given a cache of size SIZE, return the size of the struct (with variable
1303 length array) in bytes. */
1304
1305 static size_t
1306 symbol_cache_byte_size (unsigned int size)
1307 {
1308 return (sizeof (struct block_symbol_cache)
1309 + ((size - 1) * sizeof (struct symbol_cache_slot)));
1310 }
1311
1312 /* Resize CACHE. */
1313
1314 static void
1315 resize_symbol_cache (struct symbol_cache *cache, unsigned int new_size)
1316 {
1317 /* If there's no change in size, don't do anything.
1318 All caches have the same size, so we can just compare with the size
1319 of the global symbols cache. */
1320 if ((cache->global_symbols != NULL
1321 && cache->global_symbols->size == new_size)
1322 || (cache->global_symbols == NULL
1323 && new_size == 0))
1324 return;
1325
1326 xfree (cache->global_symbols);
1327 xfree (cache->static_symbols);
1328
1329 if (new_size == 0)
1330 {
1331 cache->global_symbols = NULL;
1332 cache->static_symbols = NULL;
1333 }
1334 else
1335 {
1336 size_t total_size = symbol_cache_byte_size (new_size);
1337
1338 cache->global_symbols
1339 = (struct block_symbol_cache *) xcalloc (1, total_size);
1340 cache->static_symbols
1341 = (struct block_symbol_cache *) xcalloc (1, total_size);
1342 cache->global_symbols->size = new_size;
1343 cache->static_symbols->size = new_size;
1344 }
1345 }
1346
1347 /* Make a symbol cache of size SIZE. */
1348
1349 static struct symbol_cache *
1350 make_symbol_cache (unsigned int size)
1351 {
1352 struct symbol_cache *cache;
1353
1354 cache = XCNEW (struct symbol_cache);
1355 resize_symbol_cache (cache, symbol_cache_size);
1356 return cache;
1357 }
1358
1359 /* Free the space used by CACHE. */
1360
1361 static void
1362 free_symbol_cache (struct symbol_cache *cache)
1363 {
1364 xfree (cache->global_symbols);
1365 xfree (cache->static_symbols);
1366 xfree (cache);
1367 }
1368
1369 /* Return the symbol cache of PSPACE.
1370 Create one if it doesn't exist yet. */
1371
1372 static struct symbol_cache *
1373 get_symbol_cache (struct program_space *pspace)
1374 {
1375 struct symbol_cache *cache
1376 = (struct symbol_cache *) program_space_data (pspace, symbol_cache_key);
1377
1378 if (cache == NULL)
1379 {
1380 cache = make_symbol_cache (symbol_cache_size);
1381 set_program_space_data (pspace, symbol_cache_key, cache);
1382 }
1383
1384 return cache;
1385 }
1386
1387 /* Delete the symbol cache of PSPACE.
1388 Called when PSPACE is destroyed. */
1389
1390 static void
1391 symbol_cache_cleanup (struct program_space *pspace, void *data)
1392 {
1393 struct symbol_cache *cache = (struct symbol_cache *) data;
1394
1395 free_symbol_cache (cache);
1396 }
1397
1398 /* Set the size of the symbol cache in all program spaces. */
1399
1400 static void
1401 set_symbol_cache_size (unsigned int new_size)
1402 {
1403 struct program_space *pspace;
1404
1405 ALL_PSPACES (pspace)
1406 {
1407 struct symbol_cache *cache
1408 = (struct symbol_cache *) program_space_data (pspace, symbol_cache_key);
1409
1410 /* The pspace could have been created but not have a cache yet. */
1411 if (cache != NULL)
1412 resize_symbol_cache (cache, new_size);
1413 }
1414 }
1415
1416 /* Called when symbol-cache-size is set. */
1417
1418 static void
1419 set_symbol_cache_size_handler (char *args, int from_tty,
1420 struct cmd_list_element *c)
1421 {
1422 if (new_symbol_cache_size > MAX_SYMBOL_CACHE_SIZE)
1423 {
1424 /* Restore the previous value.
1425 This is the value the "show" command prints. */
1426 new_symbol_cache_size = symbol_cache_size;
1427
1428 error (_("Symbol cache size is too large, max is %u."),
1429 MAX_SYMBOL_CACHE_SIZE);
1430 }
1431 symbol_cache_size = new_symbol_cache_size;
1432
1433 set_symbol_cache_size (symbol_cache_size);
1434 }
1435
1436 /* Lookup symbol NAME,DOMAIN in BLOCK in the symbol cache of PSPACE.
1437 OBJFILE_CONTEXT is the current objfile, which may be NULL.
1438 The result is the symbol if found, SYMBOL_LOOKUP_FAILED if a previous lookup
1439 failed (and thus this one will too), or NULL if the symbol is not present
1440 in the cache.
1441 If the symbol is not present in the cache, then *BSC_PTR and *SLOT_PTR are
1442 set to the cache and slot of the symbol to save the result of a full lookup
1443 attempt. */
1444
1445 static struct block_symbol
1446 symbol_cache_lookup (struct symbol_cache *cache,
1447 struct objfile *objfile_context, int block,
1448 const char *name, domain_enum domain,
1449 struct block_symbol_cache **bsc_ptr,
1450 struct symbol_cache_slot **slot_ptr)
1451 {
1452 struct block_symbol_cache *bsc;
1453 unsigned int hash;
1454 struct symbol_cache_slot *slot;
1455
1456 if (block == GLOBAL_BLOCK)
1457 bsc = cache->global_symbols;
1458 else
1459 bsc = cache->static_symbols;
1460 if (bsc == NULL)
1461 {
1462 *bsc_ptr = NULL;
1463 *slot_ptr = NULL;
1464 return (struct block_symbol) {NULL, NULL};
1465 }
1466
1467 hash = hash_symbol_entry (objfile_context, name, domain);
1468 slot = bsc->symbols + hash % bsc->size;
1469
1470 if (eq_symbol_entry (slot, objfile_context, name, domain))
1471 {
1472 if (symbol_lookup_debug)
1473 fprintf_unfiltered (gdb_stdlog,
1474 "%s block symbol cache hit%s for %s, %s\n",
1475 block == GLOBAL_BLOCK ? "Global" : "Static",
1476 slot->state == SYMBOL_SLOT_NOT_FOUND
1477 ? " (not found)" : "",
1478 name, domain_name (domain));
1479 ++bsc->hits;
1480 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1481 return SYMBOL_LOOKUP_FAILED;
1482 return slot->value.found;
1483 }
1484
1485 /* Symbol is not present in the cache. */
1486
1487 *bsc_ptr = bsc;
1488 *slot_ptr = slot;
1489
1490 if (symbol_lookup_debug)
1491 {
1492 fprintf_unfiltered (gdb_stdlog,
1493 "%s block symbol cache miss for %s, %s\n",
1494 block == GLOBAL_BLOCK ? "Global" : "Static",
1495 name, domain_name (domain));
1496 }
1497 ++bsc->misses;
1498 return (struct block_symbol) {NULL, NULL};
1499 }
1500
1501 /* Clear out SLOT. */
1502
1503 static void
1504 symbol_cache_clear_slot (struct symbol_cache_slot *slot)
1505 {
1506 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1507 xfree (slot->value.not_found.name);
1508 slot->state = SYMBOL_SLOT_UNUSED;
1509 }
1510
1511 /* Mark SYMBOL as found in SLOT.
1512 OBJFILE_CONTEXT is the current objfile when the lookup was done, or NULL
1513 if it's not needed to distinguish lookups (STATIC_BLOCK). It is *not*
1514 necessarily the objfile the symbol was found in. */
1515
1516 static void
1517 symbol_cache_mark_found (struct block_symbol_cache *bsc,
1518 struct symbol_cache_slot *slot,
1519 struct objfile *objfile_context,
1520 struct symbol *symbol,
1521 const struct block *block)
1522 {
1523 if (bsc == NULL)
1524 return;
1525 if (slot->state != SYMBOL_SLOT_UNUSED)
1526 {
1527 ++bsc->collisions;
1528 symbol_cache_clear_slot (slot);
1529 }
1530 slot->state = SYMBOL_SLOT_FOUND;
1531 slot->objfile_context = objfile_context;
1532 slot->value.found.symbol = symbol;
1533 slot->value.found.block = block;
1534 }
1535
1536 /* Mark symbol NAME, DOMAIN as not found in SLOT.
1537 OBJFILE_CONTEXT is the current objfile when the lookup was done, or NULL
1538 if it's not needed to distinguish lookups (STATIC_BLOCK). */
1539
1540 static void
1541 symbol_cache_mark_not_found (struct block_symbol_cache *bsc,
1542 struct symbol_cache_slot *slot,
1543 struct objfile *objfile_context,
1544 const char *name, domain_enum domain)
1545 {
1546 if (bsc == NULL)
1547 return;
1548 if (slot->state != SYMBOL_SLOT_UNUSED)
1549 {
1550 ++bsc->collisions;
1551 symbol_cache_clear_slot (slot);
1552 }
1553 slot->state = SYMBOL_SLOT_NOT_FOUND;
1554 slot->objfile_context = objfile_context;
1555 slot->value.not_found.name = xstrdup (name);
1556 slot->value.not_found.domain = domain;
1557 }
1558
1559 /* Flush the symbol cache of PSPACE. */
1560
1561 static void
1562 symbol_cache_flush (struct program_space *pspace)
1563 {
1564 struct symbol_cache *cache
1565 = (struct symbol_cache *) program_space_data (pspace, symbol_cache_key);
1566 int pass;
1567
1568 if (cache == NULL)
1569 return;
1570 if (cache->global_symbols == NULL)
1571 {
1572 gdb_assert (symbol_cache_size == 0);
1573 gdb_assert (cache->static_symbols == NULL);
1574 return;
1575 }
1576
1577 /* If the cache is untouched since the last flush, early exit.
1578 This is important for performance during the startup of a program linked
1579 with 100s (or 1000s) of shared libraries. */
1580 if (cache->global_symbols->misses == 0
1581 && cache->static_symbols->misses == 0)
1582 return;
1583
1584 gdb_assert (cache->global_symbols->size == symbol_cache_size);
1585 gdb_assert (cache->static_symbols->size == symbol_cache_size);
1586
1587 for (pass = 0; pass < 2; ++pass)
1588 {
1589 struct block_symbol_cache *bsc
1590 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1591 unsigned int i;
1592
1593 for (i = 0; i < bsc->size; ++i)
1594 symbol_cache_clear_slot (&bsc->symbols[i]);
1595 }
1596
1597 cache->global_symbols->hits = 0;
1598 cache->global_symbols->misses = 0;
1599 cache->global_symbols->collisions = 0;
1600 cache->static_symbols->hits = 0;
1601 cache->static_symbols->misses = 0;
1602 cache->static_symbols->collisions = 0;
1603 }
1604
1605 /* Dump CACHE. */
1606
1607 static void
1608 symbol_cache_dump (const struct symbol_cache *cache)
1609 {
1610 int pass;
1611
1612 if (cache->global_symbols == NULL)
1613 {
1614 printf_filtered (" <disabled>\n");
1615 return;
1616 }
1617
1618 for (pass = 0; pass < 2; ++pass)
1619 {
1620 const struct block_symbol_cache *bsc
1621 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1622 unsigned int i;
1623
1624 if (pass == 0)
1625 printf_filtered ("Global symbols:\n");
1626 else
1627 printf_filtered ("Static symbols:\n");
1628
1629 for (i = 0; i < bsc->size; ++i)
1630 {
1631 const struct symbol_cache_slot *slot = &bsc->symbols[i];
1632
1633 QUIT;
1634
1635 switch (slot->state)
1636 {
1637 case SYMBOL_SLOT_UNUSED:
1638 break;
1639 case SYMBOL_SLOT_NOT_FOUND:
1640 printf_filtered (" [%4u] = %s, %s %s (not found)\n", i,
1641 host_address_to_string (slot->objfile_context),
1642 slot->value.not_found.name,
1643 domain_name (slot->value.not_found.domain));
1644 break;
1645 case SYMBOL_SLOT_FOUND:
1646 {
1647 struct symbol *found = slot->value.found.symbol;
1648 const struct objfile *context = slot->objfile_context;
1649
1650 printf_filtered (" [%4u] = %s, %s %s\n", i,
1651 host_address_to_string (context),
1652 SYMBOL_PRINT_NAME (found),
1653 domain_name (SYMBOL_DOMAIN (found)));
1654 break;
1655 }
1656 }
1657 }
1658 }
1659 }
1660
1661 /* The "mt print symbol-cache" command. */
1662
1663 static void
1664 maintenance_print_symbol_cache (char *args, int from_tty)
1665 {
1666 struct program_space *pspace;
1667
1668 ALL_PSPACES (pspace)
1669 {
1670 struct symbol_cache *cache;
1671
1672 printf_filtered (_("Symbol cache for pspace %d\n%s:\n"),
1673 pspace->num,
1674 pspace->symfile_object_file != NULL
1675 ? objfile_name (pspace->symfile_object_file)
1676 : "(no object file)");
1677
1678 /* If the cache hasn't been created yet, avoid creating one. */
1679 cache
1680 = (struct symbol_cache *) program_space_data (pspace, symbol_cache_key);
1681 if (cache == NULL)
1682 printf_filtered (" <empty>\n");
1683 else
1684 symbol_cache_dump (cache);
1685 }
1686 }
1687
1688 /* The "mt flush-symbol-cache" command. */
1689
1690 static void
1691 maintenance_flush_symbol_cache (char *args, int from_tty)
1692 {
1693 struct program_space *pspace;
1694
1695 ALL_PSPACES (pspace)
1696 {
1697 symbol_cache_flush (pspace);
1698 }
1699 }
1700
1701 /* Print usage statistics of CACHE. */
1702
1703 static void
1704 symbol_cache_stats (struct symbol_cache *cache)
1705 {
1706 int pass;
1707
1708 if (cache->global_symbols == NULL)
1709 {
1710 printf_filtered (" <disabled>\n");
1711 return;
1712 }
1713
1714 for (pass = 0; pass < 2; ++pass)
1715 {
1716 const struct block_symbol_cache *bsc
1717 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1718
1719 QUIT;
1720
1721 if (pass == 0)
1722 printf_filtered ("Global block cache stats:\n");
1723 else
1724 printf_filtered ("Static block cache stats:\n");
1725
1726 printf_filtered (" size: %u\n", bsc->size);
1727 printf_filtered (" hits: %u\n", bsc->hits);
1728 printf_filtered (" misses: %u\n", bsc->misses);
1729 printf_filtered (" collisions: %u\n", bsc->collisions);
1730 }
1731 }
1732
1733 /* The "mt print symbol-cache-statistics" command. */
1734
1735 static void
1736 maintenance_print_symbol_cache_statistics (char *args, int from_tty)
1737 {
1738 struct program_space *pspace;
1739
1740 ALL_PSPACES (pspace)
1741 {
1742 struct symbol_cache *cache;
1743
1744 printf_filtered (_("Symbol cache statistics for pspace %d\n%s:\n"),
1745 pspace->num,
1746 pspace->symfile_object_file != NULL
1747 ? objfile_name (pspace->symfile_object_file)
1748 : "(no object file)");
1749
1750 /* If the cache hasn't been created yet, avoid creating one. */
1751 cache
1752 = (struct symbol_cache *) program_space_data (pspace, symbol_cache_key);
1753 if (cache == NULL)
1754 printf_filtered (" empty, no stats available\n");
1755 else
1756 symbol_cache_stats (cache);
1757 }
1758 }
1759
1760 /* This module's 'new_objfile' observer. */
1761
1762 static void
1763 symtab_new_objfile_observer (struct objfile *objfile)
1764 {
1765 /* Ideally we'd use OBJFILE->pspace, but OBJFILE may be NULL. */
1766 symbol_cache_flush (current_program_space);
1767 }
1768
1769 /* This module's 'free_objfile' observer. */
1770
1771 static void
1772 symtab_free_objfile_observer (struct objfile *objfile)
1773 {
1774 symbol_cache_flush (objfile->pspace);
1775 }
1776 \f
1777 /* Debug symbols usually don't have section information. We need to dig that
1778 out of the minimal symbols and stash that in the debug symbol. */
1779
1780 void
1781 fixup_section (struct general_symbol_info *ginfo,
1782 CORE_ADDR addr, struct objfile *objfile)
1783 {
1784 struct minimal_symbol *msym;
1785
1786 /* First, check whether a minimal symbol with the same name exists
1787 and points to the same address. The address check is required
1788 e.g. on PowerPC64, where the minimal symbol for a function will
1789 point to the function descriptor, while the debug symbol will
1790 point to the actual function code. */
1791 msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->name, objfile);
1792 if (msym)
1793 ginfo->section = MSYMBOL_SECTION (msym);
1794 else
1795 {
1796 /* Static, function-local variables do appear in the linker
1797 (minimal) symbols, but are frequently given names that won't
1798 be found via lookup_minimal_symbol(). E.g., it has been
1799 observed in frv-uclinux (ELF) executables that a static,
1800 function-local variable named "foo" might appear in the
1801 linker symbols as "foo.6" or "foo.3". Thus, there is no
1802 point in attempting to extend the lookup-by-name mechanism to
1803 handle this case due to the fact that there can be multiple
1804 names.
1805
1806 So, instead, search the section table when lookup by name has
1807 failed. The ``addr'' and ``endaddr'' fields may have already
1808 been relocated. If so, the relocation offset (i.e. the
1809 ANOFFSET value) needs to be subtracted from these values when
1810 performing the comparison. We unconditionally subtract it,
1811 because, when no relocation has been performed, the ANOFFSET
1812 value will simply be zero.
1813
1814 The address of the symbol whose section we're fixing up HAS
1815 NOT BEEN adjusted (relocated) yet. It can't have been since
1816 the section isn't yet known and knowing the section is
1817 necessary in order to add the correct relocation value. In
1818 other words, we wouldn't even be in this function (attempting
1819 to compute the section) if it were already known.
1820
1821 Note that it is possible to search the minimal symbols
1822 (subtracting the relocation value if necessary) to find the
1823 matching minimal symbol, but this is overkill and much less
1824 efficient. It is not necessary to find the matching minimal
1825 symbol, only its section.
1826
1827 Note that this technique (of doing a section table search)
1828 can fail when unrelocated section addresses overlap. For
1829 this reason, we still attempt a lookup by name prior to doing
1830 a search of the section table. */
1831
1832 struct obj_section *s;
1833 int fallback = -1;
1834
1835 ALL_OBJFILE_OSECTIONS (objfile, s)
1836 {
1837 int idx = s - objfile->sections;
1838 CORE_ADDR offset = ANOFFSET (objfile->section_offsets, idx);
1839
1840 if (fallback == -1)
1841 fallback = idx;
1842
1843 if (obj_section_addr (s) - offset <= addr
1844 && addr < obj_section_endaddr (s) - offset)
1845 {
1846 ginfo->section = idx;
1847 return;
1848 }
1849 }
1850
1851 /* If we didn't find the section, assume it is in the first
1852 section. If there is no allocated section, then it hardly
1853 matters what we pick, so just pick zero. */
1854 if (fallback == -1)
1855 ginfo->section = 0;
1856 else
1857 ginfo->section = fallback;
1858 }
1859 }
1860
1861 struct symbol *
1862 fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
1863 {
1864 CORE_ADDR addr;
1865
1866 if (!sym)
1867 return NULL;
1868
1869 if (!SYMBOL_OBJFILE_OWNED (sym))
1870 return sym;
1871
1872 /* We either have an OBJFILE, or we can get at it from the sym's
1873 symtab. Anything else is a bug. */
1874 gdb_assert (objfile || symbol_symtab (sym));
1875
1876 if (objfile == NULL)
1877 objfile = symbol_objfile (sym);
1878
1879 if (SYMBOL_OBJ_SECTION (objfile, sym))
1880 return sym;
1881
1882 /* We should have an objfile by now. */
1883 gdb_assert (objfile);
1884
1885 switch (SYMBOL_CLASS (sym))
1886 {
1887 case LOC_STATIC:
1888 case LOC_LABEL:
1889 addr = SYMBOL_VALUE_ADDRESS (sym);
1890 break;
1891 case LOC_BLOCK:
1892 addr = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
1893 break;
1894
1895 default:
1896 /* Nothing else will be listed in the minsyms -- no use looking
1897 it up. */
1898 return sym;
1899 }
1900
1901 fixup_section (&sym->ginfo, addr, objfile);
1902
1903 return sym;
1904 }
1905
1906 /* Compute the demangled form of NAME as used by the various symbol
1907 lookup functions. The result is stored in *RESULT_NAME. Returns a
1908 cleanup which can be used to clean up the result.
1909
1910 For Ada, this function just sets *RESULT_NAME to NAME, unmodified.
1911 Normally, Ada symbol lookups are performed using the encoded name
1912 rather than the demangled name, and so it might seem to make sense
1913 for this function to return an encoded version of NAME.
1914 Unfortunately, we cannot do this, because this function is used in
1915 circumstances where it is not appropriate to try to encode NAME.
1916 For instance, when displaying the frame info, we demangle the name
1917 of each parameter, and then perform a symbol lookup inside our
1918 function using that demangled name. In Ada, certain functions
1919 have internally-generated parameters whose name contain uppercase
1920 characters. Encoding those name would result in those uppercase
1921 characters to become lowercase, and thus cause the symbol lookup
1922 to fail. */
1923
1924 struct cleanup *
1925 demangle_for_lookup (const char *name, enum language lang,
1926 const char **result_name)
1927 {
1928 char *demangled_name = NULL;
1929 const char *modified_name = NULL;
1930 struct cleanup *cleanup = make_cleanup (null_cleanup, 0);
1931
1932 modified_name = name;
1933
1934 /* If we are using C++, D, Go, or Java, demangle the name before doing a
1935 lookup, so we can always binary search. */
1936 if (lang == language_cplus)
1937 {
1938 demangled_name = gdb_demangle (name, DMGL_ANSI | DMGL_PARAMS);
1939 if (demangled_name)
1940 {
1941 modified_name = demangled_name;
1942 make_cleanup (xfree, demangled_name);
1943 }
1944 else
1945 {
1946 /* If we were given a non-mangled name, canonicalize it
1947 according to the language (so far only for C++). */
1948 demangled_name = cp_canonicalize_string (name);
1949 if (demangled_name)
1950 {
1951 modified_name = demangled_name;
1952 make_cleanup (xfree, demangled_name);
1953 }
1954 }
1955 }
1956 else if (lang == language_java)
1957 {
1958 demangled_name = gdb_demangle (name,
1959 DMGL_ANSI | DMGL_PARAMS | DMGL_JAVA);
1960 if (demangled_name)
1961 {
1962 modified_name = demangled_name;
1963 make_cleanup (xfree, demangled_name);
1964 }
1965 }
1966 else if (lang == language_d)
1967 {
1968 demangled_name = d_demangle (name, 0);
1969 if (demangled_name)
1970 {
1971 modified_name = demangled_name;
1972 make_cleanup (xfree, demangled_name);
1973 }
1974 }
1975 else if (lang == language_go)
1976 {
1977 demangled_name = go_demangle (name, 0);
1978 if (demangled_name)
1979 {
1980 modified_name = demangled_name;
1981 make_cleanup (xfree, demangled_name);
1982 }
1983 }
1984
1985 *result_name = modified_name;
1986 return cleanup;
1987 }
1988
1989 /* See symtab.h.
1990
1991 This function (or rather its subordinates) have a bunch of loops and
1992 it would seem to be attractive to put in some QUIT's (though I'm not really
1993 sure whether it can run long enough to be really important). But there
1994 are a few calls for which it would appear to be bad news to quit
1995 out of here: e.g., find_proc_desc in alpha-mdebug-tdep.c. (Note
1996 that there is C++ code below which can error(), but that probably
1997 doesn't affect these calls since they are looking for a known
1998 variable and thus can probably assume it will never hit the C++
1999 code). */
2000
2001 struct block_symbol
2002 lookup_symbol_in_language (const char *name, const struct block *block,
2003 const domain_enum domain, enum language lang,
2004 struct field_of_this_result *is_a_field_of_this)
2005 {
2006 const char *modified_name;
2007 struct block_symbol returnval;
2008 struct cleanup *cleanup = demangle_for_lookup (name, lang, &modified_name);
2009
2010 returnval = lookup_symbol_aux (modified_name, block, domain, lang,
2011 is_a_field_of_this);
2012 do_cleanups (cleanup);
2013
2014 return returnval;
2015 }
2016
2017 /* See symtab.h. */
2018
2019 struct block_symbol
2020 lookup_symbol (const char *name, const struct block *block,
2021 domain_enum domain,
2022 struct field_of_this_result *is_a_field_of_this)
2023 {
2024 return lookup_symbol_in_language (name, block, domain,
2025 current_language->la_language,
2026 is_a_field_of_this);
2027 }
2028
2029 /* See symtab.h. */
2030
2031 struct block_symbol
2032 lookup_language_this (const struct language_defn *lang,
2033 const struct block *block)
2034 {
2035 if (lang->la_name_of_this == NULL || block == NULL)
2036 return (struct block_symbol) {NULL, NULL};
2037
2038 if (symbol_lookup_debug > 1)
2039 {
2040 struct objfile *objfile = lookup_objfile_from_block (block);
2041
2042 fprintf_unfiltered (gdb_stdlog,
2043 "lookup_language_this (%s, %s (objfile %s))",
2044 lang->la_name, host_address_to_string (block),
2045 objfile_debug_name (objfile));
2046 }
2047
2048 while (block)
2049 {
2050 struct symbol *sym;
2051
2052 sym = block_lookup_symbol (block, lang->la_name_of_this, VAR_DOMAIN);
2053 if (sym != NULL)
2054 {
2055 if (symbol_lookup_debug > 1)
2056 {
2057 fprintf_unfiltered (gdb_stdlog, " = %s (%s, block %s)\n",
2058 SYMBOL_PRINT_NAME (sym),
2059 host_address_to_string (sym),
2060 host_address_to_string (block));
2061 }
2062 return (struct block_symbol) {sym, block};
2063 }
2064 if (BLOCK_FUNCTION (block))
2065 break;
2066 block = BLOCK_SUPERBLOCK (block);
2067 }
2068
2069 if (symbol_lookup_debug > 1)
2070 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
2071 return (struct block_symbol) {NULL, NULL};
2072 }
2073
2074 /* Given TYPE, a structure/union,
2075 return 1 if the component named NAME from the ultimate target
2076 structure/union is defined, otherwise, return 0. */
2077
2078 static int
2079 check_field (struct type *type, const char *name,
2080 struct field_of_this_result *is_a_field_of_this)
2081 {
2082 int i;
2083
2084 /* The type may be a stub. */
2085 type = check_typedef (type);
2086
2087 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
2088 {
2089 const char *t_field_name = TYPE_FIELD_NAME (type, i);
2090
2091 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2092 {
2093 is_a_field_of_this->type = type;
2094 is_a_field_of_this->field = &TYPE_FIELD (type, i);
2095 return 1;
2096 }
2097 }
2098
2099 /* C++: If it was not found as a data field, then try to return it
2100 as a pointer to a method. */
2101
2102 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
2103 {
2104 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
2105 {
2106 is_a_field_of_this->type = type;
2107 is_a_field_of_this->fn_field = &TYPE_FN_FIELDLIST (type, i);
2108 return 1;
2109 }
2110 }
2111
2112 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2113 if (check_field (TYPE_BASECLASS (type, i), name, is_a_field_of_this))
2114 return 1;
2115
2116 return 0;
2117 }
2118
2119 /* Behave like lookup_symbol except that NAME is the natural name
2120 (e.g., demangled name) of the symbol that we're looking for. */
2121
2122 static struct block_symbol
2123 lookup_symbol_aux (const char *name, const struct block *block,
2124 const domain_enum domain, enum language language,
2125 struct field_of_this_result *is_a_field_of_this)
2126 {
2127 struct block_symbol result;
2128 const struct language_defn *langdef;
2129
2130 if (symbol_lookup_debug)
2131 {
2132 struct objfile *objfile = lookup_objfile_from_block (block);
2133
2134 fprintf_unfiltered (gdb_stdlog,
2135 "lookup_symbol_aux (%s, %s (objfile %s), %s, %s)\n",
2136 name, host_address_to_string (block),
2137 objfile != NULL
2138 ? objfile_debug_name (objfile) : "NULL",
2139 domain_name (domain), language_str (language));
2140 }
2141
2142 /* Make sure we do something sensible with is_a_field_of_this, since
2143 the callers that set this parameter to some non-null value will
2144 certainly use it later. If we don't set it, the contents of
2145 is_a_field_of_this are undefined. */
2146 if (is_a_field_of_this != NULL)
2147 memset (is_a_field_of_this, 0, sizeof (*is_a_field_of_this));
2148
2149 /* Search specified block and its superiors. Don't search
2150 STATIC_BLOCK or GLOBAL_BLOCK. */
2151
2152 result = lookup_local_symbol (name, block, domain, language);
2153 if (result.symbol != NULL)
2154 {
2155 if (symbol_lookup_debug)
2156 {
2157 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2158 host_address_to_string (result.symbol));
2159 }
2160 return result;
2161 }
2162
2163 /* If requested to do so by the caller and if appropriate for LANGUAGE,
2164 check to see if NAME is a field of `this'. */
2165
2166 langdef = language_def (language);
2167
2168 /* Don't do this check if we are searching for a struct. It will
2169 not be found by check_field, but will be found by other
2170 means. */
2171 if (is_a_field_of_this != NULL && domain != STRUCT_DOMAIN)
2172 {
2173 result = lookup_language_this (langdef, block);
2174
2175 if (result.symbol)
2176 {
2177 struct type *t = result.symbol->type;
2178
2179 /* I'm not really sure that type of this can ever
2180 be typedefed; just be safe. */
2181 t = check_typedef (t);
2182 if (TYPE_CODE (t) == TYPE_CODE_PTR
2183 || TYPE_CODE (t) == TYPE_CODE_REF)
2184 t = TYPE_TARGET_TYPE (t);
2185
2186 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2187 && TYPE_CODE (t) != TYPE_CODE_UNION)
2188 error (_("Internal error: `%s' is not an aggregate"),
2189 langdef->la_name_of_this);
2190
2191 if (check_field (t, name, is_a_field_of_this))
2192 {
2193 if (symbol_lookup_debug)
2194 {
2195 fprintf_unfiltered (gdb_stdlog,
2196 "lookup_symbol_aux (...) = NULL\n");
2197 }
2198 return (struct block_symbol) {NULL, NULL};
2199 }
2200 }
2201 }
2202
2203 /* Now do whatever is appropriate for LANGUAGE to look
2204 up static and global variables. */
2205
2206 result = langdef->la_lookup_symbol_nonlocal (langdef, name, block, domain);
2207 if (result.symbol != NULL)
2208 {
2209 if (symbol_lookup_debug)
2210 {
2211 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2212 host_address_to_string (result.symbol));
2213 }
2214 return result;
2215 }
2216
2217 /* Now search all static file-level symbols. Not strictly correct,
2218 but more useful than an error. */
2219
2220 result = lookup_static_symbol (name, domain);
2221 if (symbol_lookup_debug)
2222 {
2223 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2224 result.symbol != NULL
2225 ? host_address_to_string (result.symbol)
2226 : "NULL");
2227 }
2228 return result;
2229 }
2230
2231 /* Check to see if the symbol is defined in BLOCK or its superiors.
2232 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
2233
2234 static struct block_symbol
2235 lookup_local_symbol (const char *name, const struct block *block,
2236 const domain_enum domain,
2237 enum language language)
2238 {
2239 struct symbol *sym;
2240 const struct block *static_block = block_static_block (block);
2241 const char *scope = block_scope (block);
2242
2243 /* Check if either no block is specified or it's a global block. */
2244
2245 if (static_block == NULL)
2246 return (struct block_symbol) {NULL, NULL};
2247
2248 while (block != static_block)
2249 {
2250 sym = lookup_symbol_in_block (name, block, domain);
2251 if (sym != NULL)
2252 return (struct block_symbol) {sym, block};
2253
2254 if (language == language_cplus || language == language_fortran)
2255 {
2256 struct block_symbol sym
2257 = cp_lookup_symbol_imports_or_template (scope, name, block,
2258 domain);
2259
2260 if (sym.symbol != NULL)
2261 return sym;
2262 }
2263
2264 if (BLOCK_FUNCTION (block) != NULL && block_inlined_p (block))
2265 break;
2266 block = BLOCK_SUPERBLOCK (block);
2267 }
2268
2269 /* We've reached the end of the function without finding a result. */
2270
2271 return (struct block_symbol) {NULL, NULL};
2272 }
2273
2274 /* See symtab.h. */
2275
2276 struct objfile *
2277 lookup_objfile_from_block (const struct block *block)
2278 {
2279 struct objfile *obj;
2280 struct compunit_symtab *cust;
2281
2282 if (block == NULL)
2283 return NULL;
2284
2285 block = block_global_block (block);
2286 /* Look through all blockvectors. */
2287 ALL_COMPUNITS (obj, cust)
2288 if (block == BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust),
2289 GLOBAL_BLOCK))
2290 {
2291 if (obj->separate_debug_objfile_backlink)
2292 obj = obj->separate_debug_objfile_backlink;
2293
2294 return obj;
2295 }
2296
2297 return NULL;
2298 }
2299
2300 /* See symtab.h. */
2301
2302 struct symbol *
2303 lookup_symbol_in_block (const char *name, const struct block *block,
2304 const domain_enum domain)
2305 {
2306 struct symbol *sym;
2307
2308 if (symbol_lookup_debug > 1)
2309 {
2310 struct objfile *objfile = lookup_objfile_from_block (block);
2311
2312 fprintf_unfiltered (gdb_stdlog,
2313 "lookup_symbol_in_block (%s, %s (objfile %s), %s)",
2314 name, host_address_to_string (block),
2315 objfile_debug_name (objfile),
2316 domain_name (domain));
2317 }
2318
2319 sym = block_lookup_symbol (block, name, domain);
2320 if (sym)
2321 {
2322 if (symbol_lookup_debug > 1)
2323 {
2324 fprintf_unfiltered (gdb_stdlog, " = %s\n",
2325 host_address_to_string (sym));
2326 }
2327 return fixup_symbol_section (sym, NULL);
2328 }
2329
2330 if (symbol_lookup_debug > 1)
2331 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
2332 return NULL;
2333 }
2334
2335 /* See symtab.h. */
2336
2337 struct block_symbol
2338 lookup_global_symbol_from_objfile (struct objfile *main_objfile,
2339 const char *name,
2340 const domain_enum domain)
2341 {
2342 struct objfile *objfile;
2343
2344 for (objfile = main_objfile;
2345 objfile;
2346 objfile = objfile_separate_debug_iterate (main_objfile, objfile))
2347 {
2348 struct block_symbol result
2349 = lookup_symbol_in_objfile (objfile, GLOBAL_BLOCK, name, domain);
2350
2351 if (result.symbol != NULL)
2352 return result;
2353 }
2354
2355 return (struct block_symbol) {NULL, NULL};
2356 }
2357
2358 /* Check to see if the symbol is defined in one of the OBJFILE's
2359 symtabs. BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
2360 depending on whether or not we want to search global symbols or
2361 static symbols. */
2362
2363 static struct block_symbol
2364 lookup_symbol_in_objfile_symtabs (struct objfile *objfile, int block_index,
2365 const char *name, const domain_enum domain)
2366 {
2367 struct compunit_symtab *cust;
2368
2369 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2370
2371 if (symbol_lookup_debug > 1)
2372 {
2373 fprintf_unfiltered (gdb_stdlog,
2374 "lookup_symbol_in_objfile_symtabs (%s, %s, %s, %s)",
2375 objfile_debug_name (objfile),
2376 block_index == GLOBAL_BLOCK
2377 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2378 name, domain_name (domain));
2379 }
2380
2381 ALL_OBJFILE_COMPUNITS (objfile, cust)
2382 {
2383 const struct blockvector *bv;
2384 const struct block *block;
2385 struct block_symbol result;
2386
2387 bv = COMPUNIT_BLOCKVECTOR (cust);
2388 block = BLOCKVECTOR_BLOCK (bv, block_index);
2389 result.symbol = block_lookup_symbol_primary (block, name, domain);
2390 result.block = block;
2391 if (result.symbol != NULL)
2392 {
2393 if (symbol_lookup_debug > 1)
2394 {
2395 fprintf_unfiltered (gdb_stdlog, " = %s (block %s)\n",
2396 host_address_to_string (result.symbol),
2397 host_address_to_string (block));
2398 }
2399 result.symbol = fixup_symbol_section (result.symbol, objfile);
2400 return result;
2401
2402 }
2403 }
2404
2405 if (symbol_lookup_debug > 1)
2406 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
2407 return (struct block_symbol) {NULL, NULL};
2408 }
2409
2410 /* Wrapper around lookup_symbol_in_objfile_symtabs for search_symbols.
2411 Look up LINKAGE_NAME in DOMAIN in the global and static blocks of OBJFILE
2412 and all associated separate debug objfiles.
2413
2414 Normally we only look in OBJFILE, and not any separate debug objfiles
2415 because the outer loop will cause them to be searched too. This case is
2416 different. Here we're called from search_symbols where it will only
2417 call us for the the objfile that contains a matching minsym. */
2418
2419 static struct block_symbol
2420 lookup_symbol_in_objfile_from_linkage_name (struct objfile *objfile,
2421 const char *linkage_name,
2422 domain_enum domain)
2423 {
2424 enum language lang = current_language->la_language;
2425 const char *modified_name;
2426 struct cleanup *cleanup = demangle_for_lookup (linkage_name, lang,
2427 &modified_name);
2428 struct objfile *main_objfile, *cur_objfile;
2429
2430 if (objfile->separate_debug_objfile_backlink)
2431 main_objfile = objfile->separate_debug_objfile_backlink;
2432 else
2433 main_objfile = objfile;
2434
2435 for (cur_objfile = main_objfile;
2436 cur_objfile;
2437 cur_objfile = objfile_separate_debug_iterate (main_objfile, cur_objfile))
2438 {
2439 struct block_symbol result;
2440
2441 result = lookup_symbol_in_objfile_symtabs (cur_objfile, GLOBAL_BLOCK,
2442 modified_name, domain);
2443 if (result.symbol == NULL)
2444 result = lookup_symbol_in_objfile_symtabs (cur_objfile, STATIC_BLOCK,
2445 modified_name, domain);
2446 if (result.symbol != NULL)
2447 {
2448 do_cleanups (cleanup);
2449 return result;
2450 }
2451 }
2452
2453 do_cleanups (cleanup);
2454 return (struct block_symbol) {NULL, NULL};
2455 }
2456
2457 /* A helper function that throws an exception when a symbol was found
2458 in a psymtab but not in a symtab. */
2459
2460 static void ATTRIBUTE_NORETURN
2461 error_in_psymtab_expansion (int block_index, const char *name,
2462 struct compunit_symtab *cust)
2463 {
2464 error (_("\
2465 Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n\
2466 %s may be an inlined function, or may be a template function\n \
2467 (if a template, try specifying an instantiation: %s<type>)."),
2468 block_index == GLOBAL_BLOCK ? "global" : "static",
2469 name,
2470 symtab_to_filename_for_display (compunit_primary_filetab (cust)),
2471 name, name);
2472 }
2473
2474 /* A helper function for various lookup routines that interfaces with
2475 the "quick" symbol table functions. */
2476
2477 static struct block_symbol
2478 lookup_symbol_via_quick_fns (struct objfile *objfile, int block_index,
2479 const char *name, const domain_enum domain)
2480 {
2481 struct compunit_symtab *cust;
2482 const struct blockvector *bv;
2483 const struct block *block;
2484 struct block_symbol result;
2485
2486 if (!objfile->sf)
2487 return (struct block_symbol) {NULL, NULL};
2488
2489 if (symbol_lookup_debug > 1)
2490 {
2491 fprintf_unfiltered (gdb_stdlog,
2492 "lookup_symbol_via_quick_fns (%s, %s, %s, %s)\n",
2493 objfile_debug_name (objfile),
2494 block_index == GLOBAL_BLOCK
2495 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2496 name, domain_name (domain));
2497 }
2498
2499 cust = objfile->sf->qf->lookup_symbol (objfile, block_index, name, domain);
2500 if (cust == NULL)
2501 {
2502 if (symbol_lookup_debug > 1)
2503 {
2504 fprintf_unfiltered (gdb_stdlog,
2505 "lookup_symbol_via_quick_fns (...) = NULL\n");
2506 }
2507 return (struct block_symbol) {NULL, NULL};
2508 }
2509
2510 bv = COMPUNIT_BLOCKVECTOR (cust);
2511 block = BLOCKVECTOR_BLOCK (bv, block_index);
2512 result.symbol = block_lookup_symbol (block, name, domain);
2513 if (result.symbol == NULL)
2514 error_in_psymtab_expansion (block_index, name, cust);
2515
2516 if (symbol_lookup_debug > 1)
2517 {
2518 fprintf_unfiltered (gdb_stdlog,
2519 "lookup_symbol_via_quick_fns (...) = %s (block %s)\n",
2520 host_address_to_string (result.symbol),
2521 host_address_to_string (block));
2522 }
2523
2524 result.symbol = fixup_symbol_section (result.symbol, objfile);
2525 result.block = block;
2526 return result;
2527 }
2528
2529 /* See symtab.h. */
2530
2531 struct block_symbol
2532 basic_lookup_symbol_nonlocal (const struct language_defn *langdef,
2533 const char *name,
2534 const struct block *block,
2535 const domain_enum domain)
2536 {
2537 struct block_symbol result;
2538
2539 /* NOTE: carlton/2003-05-19: The comments below were written when
2540 this (or what turned into this) was part of lookup_symbol_aux;
2541 I'm much less worried about these questions now, since these
2542 decisions have turned out well, but I leave these comments here
2543 for posterity. */
2544
2545 /* NOTE: carlton/2002-12-05: There is a question as to whether or
2546 not it would be appropriate to search the current global block
2547 here as well. (That's what this code used to do before the
2548 is_a_field_of_this check was moved up.) On the one hand, it's
2549 redundant with the lookup in all objfiles search that happens
2550 next. On the other hand, if decode_line_1 is passed an argument
2551 like filename:var, then the user presumably wants 'var' to be
2552 searched for in filename. On the third hand, there shouldn't be
2553 multiple global variables all of which are named 'var', and it's
2554 not like decode_line_1 has ever restricted its search to only
2555 global variables in a single filename. All in all, only
2556 searching the static block here seems best: it's correct and it's
2557 cleanest. */
2558
2559 /* NOTE: carlton/2002-12-05: There's also a possible performance
2560 issue here: if you usually search for global symbols in the
2561 current file, then it would be slightly better to search the
2562 current global block before searching all the symtabs. But there
2563 are other factors that have a much greater effect on performance
2564 than that one, so I don't think we should worry about that for
2565 now. */
2566
2567 /* NOTE: dje/2014-10-26: The lookup in all objfiles search could skip
2568 the current objfile. Searching the current objfile first is useful
2569 for both matching user expectations as well as performance. */
2570
2571 result = lookup_symbol_in_static_block (name, block, domain);
2572 if (result.symbol != NULL)
2573 return result;
2574
2575 /* If we didn't find a definition for a builtin type in the static block,
2576 search for it now. This is actually the right thing to do and can be
2577 a massive performance win. E.g., when debugging a program with lots of
2578 shared libraries we could search all of them only to find out the
2579 builtin type isn't defined in any of them. This is common for types
2580 like "void". */
2581 if (domain == VAR_DOMAIN)
2582 {
2583 struct gdbarch *gdbarch;
2584
2585 if (block == NULL)
2586 gdbarch = target_gdbarch ();
2587 else
2588 gdbarch = block_gdbarch (block);
2589 result.symbol = language_lookup_primitive_type_as_symbol (langdef,
2590 gdbarch, name);
2591 result.block = NULL;
2592 if (result.symbol != NULL)
2593 return result;
2594 }
2595
2596 return lookup_global_symbol (name, block, domain);
2597 }
2598
2599 /* See symtab.h. */
2600
2601 struct block_symbol
2602 lookup_symbol_in_static_block (const char *name,
2603 const struct block *block,
2604 const domain_enum domain)
2605 {
2606 const struct block *static_block = block_static_block (block);
2607 struct symbol *sym;
2608
2609 if (static_block == NULL)
2610 return (struct block_symbol) {NULL, NULL};
2611
2612 if (symbol_lookup_debug)
2613 {
2614 struct objfile *objfile = lookup_objfile_from_block (static_block);
2615
2616 fprintf_unfiltered (gdb_stdlog,
2617 "lookup_symbol_in_static_block (%s, %s (objfile %s),"
2618 " %s)\n",
2619 name,
2620 host_address_to_string (block),
2621 objfile_debug_name (objfile),
2622 domain_name (domain));
2623 }
2624
2625 sym = lookup_symbol_in_block (name, static_block, domain);
2626 if (symbol_lookup_debug)
2627 {
2628 fprintf_unfiltered (gdb_stdlog,
2629 "lookup_symbol_in_static_block (...) = %s\n",
2630 sym != NULL ? host_address_to_string (sym) : "NULL");
2631 }
2632 return (struct block_symbol) {sym, static_block};
2633 }
2634
2635 /* Perform the standard symbol lookup of NAME in OBJFILE:
2636 1) First search expanded symtabs, and if not found
2637 2) Search the "quick" symtabs (partial or .gdb_index).
2638 BLOCK_INDEX is one of GLOBAL_BLOCK or STATIC_BLOCK. */
2639
2640 static struct block_symbol
2641 lookup_symbol_in_objfile (struct objfile *objfile, int block_index,
2642 const char *name, const domain_enum domain)
2643 {
2644 struct block_symbol result;
2645
2646 if (symbol_lookup_debug)
2647 {
2648 fprintf_unfiltered (gdb_stdlog,
2649 "lookup_symbol_in_objfile (%s, %s, %s, %s)\n",
2650 objfile_debug_name (objfile),
2651 block_index == GLOBAL_BLOCK
2652 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2653 name, domain_name (domain));
2654 }
2655
2656 result = lookup_symbol_in_objfile_symtabs (objfile, block_index,
2657 name, domain);
2658 if (result.symbol != NULL)
2659 {
2660 if (symbol_lookup_debug)
2661 {
2662 fprintf_unfiltered (gdb_stdlog,
2663 "lookup_symbol_in_objfile (...) = %s"
2664 " (in symtabs)\n",
2665 host_address_to_string (result.symbol));
2666 }
2667 return result;
2668 }
2669
2670 result = lookup_symbol_via_quick_fns (objfile, block_index,
2671 name, domain);
2672 if (symbol_lookup_debug)
2673 {
2674 fprintf_unfiltered (gdb_stdlog,
2675 "lookup_symbol_in_objfile (...) = %s%s\n",
2676 result.symbol != NULL
2677 ? host_address_to_string (result.symbol)
2678 : "NULL",
2679 result.symbol != NULL ? " (via quick fns)" : "");
2680 }
2681 return result;
2682 }
2683
2684 /* See symtab.h. */
2685
2686 struct block_symbol
2687 lookup_static_symbol (const char *name, const domain_enum domain)
2688 {
2689 struct symbol_cache *cache = get_symbol_cache (current_program_space);
2690 struct objfile *objfile;
2691 struct block_symbol result;
2692 struct block_symbol_cache *bsc;
2693 struct symbol_cache_slot *slot;
2694
2695 /* Lookup in STATIC_BLOCK is not current-objfile-dependent, so just pass
2696 NULL for OBJFILE_CONTEXT. */
2697 result = symbol_cache_lookup (cache, NULL, STATIC_BLOCK, name, domain,
2698 &bsc, &slot);
2699 if (result.symbol != NULL)
2700 {
2701 if (SYMBOL_LOOKUP_FAILED_P (result))
2702 return (struct block_symbol) {NULL, NULL};
2703 return result;
2704 }
2705
2706 ALL_OBJFILES (objfile)
2707 {
2708 result = lookup_symbol_in_objfile (objfile, STATIC_BLOCK, name, domain);
2709 if (result.symbol != NULL)
2710 {
2711 /* Still pass NULL for OBJFILE_CONTEXT here. */
2712 symbol_cache_mark_found (bsc, slot, NULL, result.symbol,
2713 result.block);
2714 return result;
2715 }
2716 }
2717
2718 /* Still pass NULL for OBJFILE_CONTEXT here. */
2719 symbol_cache_mark_not_found (bsc, slot, NULL, name, domain);
2720 return (struct block_symbol) {NULL, NULL};
2721 }
2722
2723 /* Private data to be used with lookup_symbol_global_iterator_cb. */
2724
2725 struct global_sym_lookup_data
2726 {
2727 /* The name of the symbol we are searching for. */
2728 const char *name;
2729
2730 /* The domain to use for our search. */
2731 domain_enum domain;
2732
2733 /* The field where the callback should store the symbol if found.
2734 It should be initialized to {NULL, NULL} before the search is started. */
2735 struct block_symbol result;
2736 };
2737
2738 /* A callback function for gdbarch_iterate_over_objfiles_in_search_order.
2739 It searches by name for a symbol in the GLOBAL_BLOCK of the given
2740 OBJFILE. The arguments for the search are passed via CB_DATA,
2741 which in reality is a pointer to struct global_sym_lookup_data. */
2742
2743 static int
2744 lookup_symbol_global_iterator_cb (struct objfile *objfile,
2745 void *cb_data)
2746 {
2747 struct global_sym_lookup_data *data =
2748 (struct global_sym_lookup_data *) cb_data;
2749
2750 gdb_assert (data->result.symbol == NULL
2751 && data->result.block == NULL);
2752
2753 data->result = lookup_symbol_in_objfile (objfile, GLOBAL_BLOCK,
2754 data->name, data->domain);
2755
2756 /* If we found a match, tell the iterator to stop. Otherwise,
2757 keep going. */
2758 return (data->result.symbol != NULL);
2759 }
2760
2761 /* See symtab.h. */
2762
2763 struct block_symbol
2764 lookup_global_symbol (const char *name,
2765 const struct block *block,
2766 const domain_enum domain)
2767 {
2768 struct symbol_cache *cache = get_symbol_cache (current_program_space);
2769 struct block_symbol result;
2770 struct objfile *objfile;
2771 struct global_sym_lookup_data lookup_data;
2772 struct block_symbol_cache *bsc;
2773 struct symbol_cache_slot *slot;
2774
2775 objfile = lookup_objfile_from_block (block);
2776
2777 /* First see if we can find the symbol in the cache.
2778 This works because we use the current objfile to qualify the lookup. */
2779 result = symbol_cache_lookup (cache, objfile, GLOBAL_BLOCK, name, domain,
2780 &bsc, &slot);
2781 if (result.symbol != NULL)
2782 {
2783 if (SYMBOL_LOOKUP_FAILED_P (result))
2784 return (struct block_symbol) {NULL, NULL};
2785 return result;
2786 }
2787
2788 /* Call library-specific lookup procedure. */
2789 if (objfile != NULL)
2790 result = solib_global_lookup (objfile, name, domain);
2791
2792 /* If that didn't work go a global search (of global blocks, heh). */
2793 if (result.symbol == NULL)
2794 {
2795 memset (&lookup_data, 0, sizeof (lookup_data));
2796 lookup_data.name = name;
2797 lookup_data.domain = domain;
2798 gdbarch_iterate_over_objfiles_in_search_order
2799 (objfile != NULL ? get_objfile_arch (objfile) : target_gdbarch (),
2800 lookup_symbol_global_iterator_cb, &lookup_data, objfile);
2801 result = lookup_data.result;
2802 }
2803
2804 if (result.symbol != NULL)
2805 symbol_cache_mark_found (bsc, slot, objfile, result.symbol, result.block);
2806 else
2807 symbol_cache_mark_not_found (bsc, slot, objfile, name, domain);
2808
2809 return result;
2810 }
2811
2812 int
2813 symbol_matches_domain (enum language symbol_language,
2814 domain_enum symbol_domain,
2815 domain_enum domain)
2816 {
2817 /* For C++ "struct foo { ... }" also defines a typedef for "foo".
2818 A Java class declaration also defines a typedef for the class.
2819 Similarly, any Ada type declaration implicitly defines a typedef. */
2820 if (symbol_language == language_cplus
2821 || symbol_language == language_d
2822 || symbol_language == language_java
2823 || symbol_language == language_ada)
2824 {
2825 if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN)
2826 && symbol_domain == STRUCT_DOMAIN)
2827 return 1;
2828 }
2829 /* For all other languages, strict match is required. */
2830 return (symbol_domain == domain);
2831 }
2832
2833 /* See symtab.h. */
2834
2835 struct type *
2836 lookup_transparent_type (const char *name)
2837 {
2838 return current_language->la_lookup_transparent_type (name);
2839 }
2840
2841 /* A helper for basic_lookup_transparent_type that interfaces with the
2842 "quick" symbol table functions. */
2843
2844 static struct type *
2845 basic_lookup_transparent_type_quick (struct objfile *objfile, int block_index,
2846 const char *name)
2847 {
2848 struct compunit_symtab *cust;
2849 const struct blockvector *bv;
2850 struct block *block;
2851 struct symbol *sym;
2852
2853 if (!objfile->sf)
2854 return NULL;
2855 cust = objfile->sf->qf->lookup_symbol (objfile, block_index, name,
2856 STRUCT_DOMAIN);
2857 if (cust == NULL)
2858 return NULL;
2859
2860 bv = COMPUNIT_BLOCKVECTOR (cust);
2861 block = BLOCKVECTOR_BLOCK (bv, block_index);
2862 sym = block_find_symbol (block, name, STRUCT_DOMAIN,
2863 block_find_non_opaque_type, NULL);
2864 if (sym == NULL)
2865 error_in_psymtab_expansion (block_index, name, cust);
2866 gdb_assert (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)));
2867 return SYMBOL_TYPE (sym);
2868 }
2869
2870 /* Subroutine of basic_lookup_transparent_type to simplify it.
2871 Look up the non-opaque definition of NAME in BLOCK_INDEX of OBJFILE.
2872 BLOCK_INDEX is either GLOBAL_BLOCK or STATIC_BLOCK. */
2873
2874 static struct type *
2875 basic_lookup_transparent_type_1 (struct objfile *objfile, int block_index,
2876 const char *name)
2877 {
2878 const struct compunit_symtab *cust;
2879 const struct blockvector *bv;
2880 const struct block *block;
2881 const struct symbol *sym;
2882
2883 ALL_OBJFILE_COMPUNITS (objfile, cust)
2884 {
2885 bv = COMPUNIT_BLOCKVECTOR (cust);
2886 block = BLOCKVECTOR_BLOCK (bv, block_index);
2887 sym = block_find_symbol (block, name, STRUCT_DOMAIN,
2888 block_find_non_opaque_type, NULL);
2889 if (sym != NULL)
2890 {
2891 gdb_assert (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)));
2892 return SYMBOL_TYPE (sym);
2893 }
2894 }
2895
2896 return NULL;
2897 }
2898
2899 /* The standard implementation of lookup_transparent_type. This code
2900 was modeled on lookup_symbol -- the parts not relevant to looking
2901 up types were just left out. In particular it's assumed here that
2902 types are available in STRUCT_DOMAIN and only in file-static or
2903 global blocks. */
2904
2905 struct type *
2906 basic_lookup_transparent_type (const char *name)
2907 {
2908 struct objfile *objfile;
2909 struct type *t;
2910
2911 /* Now search all the global symbols. Do the symtab's first, then
2912 check the psymtab's. If a psymtab indicates the existence
2913 of the desired name as a global, then do psymtab-to-symtab
2914 conversion on the fly and return the found symbol. */
2915
2916 ALL_OBJFILES (objfile)
2917 {
2918 t = basic_lookup_transparent_type_1 (objfile, GLOBAL_BLOCK, name);
2919 if (t)
2920 return t;
2921 }
2922
2923 ALL_OBJFILES (objfile)
2924 {
2925 t = basic_lookup_transparent_type_quick (objfile, GLOBAL_BLOCK, name);
2926 if (t)
2927 return t;
2928 }
2929
2930 /* Now search the static file-level symbols.
2931 Not strictly correct, but more useful than an error.
2932 Do the symtab's first, then
2933 check the psymtab's. If a psymtab indicates the existence
2934 of the desired name as a file-level static, then do psymtab-to-symtab
2935 conversion on the fly and return the found symbol. */
2936
2937 ALL_OBJFILES (objfile)
2938 {
2939 t = basic_lookup_transparent_type_1 (objfile, STATIC_BLOCK, name);
2940 if (t)
2941 return t;
2942 }
2943
2944 ALL_OBJFILES (objfile)
2945 {
2946 t = basic_lookup_transparent_type_quick (objfile, STATIC_BLOCK, name);
2947 if (t)
2948 return t;
2949 }
2950
2951 return (struct type *) 0;
2952 }
2953
2954 /* Iterate over the symbols named NAME, matching DOMAIN, in BLOCK.
2955
2956 For each symbol that matches, CALLBACK is called. The symbol and
2957 DATA are passed to the callback.
2958
2959 If CALLBACK returns zero, the iteration ends. Otherwise, the
2960 search continues. */
2961
2962 void
2963 iterate_over_symbols (const struct block *block, const char *name,
2964 const domain_enum domain,
2965 symbol_found_callback_ftype *callback,
2966 void *data)
2967 {
2968 struct block_iterator iter;
2969 struct symbol *sym;
2970
2971 ALL_BLOCK_SYMBOLS_WITH_NAME (block, name, iter, sym)
2972 {
2973 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
2974 SYMBOL_DOMAIN (sym), domain))
2975 {
2976 if (!callback (sym, data))
2977 return;
2978 }
2979 }
2980 }
2981
2982 /* Find the compunit symtab associated with PC and SECTION.
2983 This will read in debug info as necessary. */
2984
2985 struct compunit_symtab *
2986 find_pc_sect_compunit_symtab (CORE_ADDR pc, struct obj_section *section)
2987 {
2988 struct compunit_symtab *cust;
2989 struct compunit_symtab *best_cust = NULL;
2990 struct objfile *objfile;
2991 CORE_ADDR distance = 0;
2992 struct bound_minimal_symbol msymbol;
2993
2994 /* If we know that this is not a text address, return failure. This is
2995 necessary because we loop based on the block's high and low code
2996 addresses, which do not include the data ranges, and because
2997 we call find_pc_sect_psymtab which has a similar restriction based
2998 on the partial_symtab's texthigh and textlow. */
2999 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
3000 if (msymbol.minsym
3001 && (MSYMBOL_TYPE (msymbol.minsym) == mst_data
3002 || MSYMBOL_TYPE (msymbol.minsym) == mst_bss
3003 || MSYMBOL_TYPE (msymbol.minsym) == mst_abs
3004 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_data
3005 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_bss))
3006 return NULL;
3007
3008 /* Search all symtabs for the one whose file contains our address, and which
3009 is the smallest of all the ones containing the address. This is designed
3010 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
3011 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
3012 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
3013
3014 This happens for native ecoff format, where code from included files
3015 gets its own symtab. The symtab for the included file should have
3016 been read in already via the dependency mechanism.
3017 It might be swifter to create several symtabs with the same name
3018 like xcoff does (I'm not sure).
3019
3020 It also happens for objfiles that have their functions reordered.
3021 For these, the symtab we are looking for is not necessarily read in. */
3022
3023 ALL_COMPUNITS (objfile, cust)
3024 {
3025 struct block *b;
3026 const struct blockvector *bv;
3027
3028 bv = COMPUNIT_BLOCKVECTOR (cust);
3029 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
3030
3031 if (BLOCK_START (b) <= pc
3032 && BLOCK_END (b) > pc
3033 && (distance == 0
3034 || BLOCK_END (b) - BLOCK_START (b) < distance))
3035 {
3036 /* For an objfile that has its functions reordered,
3037 find_pc_psymtab will find the proper partial symbol table
3038 and we simply return its corresponding symtab. */
3039 /* In order to better support objfiles that contain both
3040 stabs and coff debugging info, we continue on if a psymtab
3041 can't be found. */
3042 if ((objfile->flags & OBJF_REORDERED) && objfile->sf)
3043 {
3044 struct compunit_symtab *result;
3045
3046 result
3047 = objfile->sf->qf->find_pc_sect_compunit_symtab (objfile,
3048 msymbol,
3049 pc, section,
3050 0);
3051 if (result != NULL)
3052 return result;
3053 }
3054 if (section != 0)
3055 {
3056 struct block_iterator iter;
3057 struct symbol *sym = NULL;
3058
3059 ALL_BLOCK_SYMBOLS (b, iter, sym)
3060 {
3061 fixup_symbol_section (sym, objfile);
3062 if (matching_obj_sections (SYMBOL_OBJ_SECTION (objfile, sym),
3063 section))
3064 break;
3065 }
3066 if (sym == NULL)
3067 continue; /* No symbol in this symtab matches
3068 section. */
3069 }
3070 distance = BLOCK_END (b) - BLOCK_START (b);
3071 best_cust = cust;
3072 }
3073 }
3074
3075 if (best_cust != NULL)
3076 return best_cust;
3077
3078 /* Not found in symtabs, search the "quick" symtabs (e.g. psymtabs). */
3079
3080 ALL_OBJFILES (objfile)
3081 {
3082 struct compunit_symtab *result;
3083
3084 if (!objfile->sf)
3085 continue;
3086 result = objfile->sf->qf->find_pc_sect_compunit_symtab (objfile,
3087 msymbol,
3088 pc, section,
3089 1);
3090 if (result != NULL)
3091 return result;
3092 }
3093
3094 return NULL;
3095 }
3096
3097 /* Find the compunit symtab associated with PC.
3098 This will read in debug info as necessary.
3099 Backward compatibility, no section. */
3100
3101 struct compunit_symtab *
3102 find_pc_compunit_symtab (CORE_ADDR pc)
3103 {
3104 return find_pc_sect_compunit_symtab (pc, find_pc_mapped_section (pc));
3105 }
3106 \f
3107
3108 /* Find the source file and line number for a given PC value and SECTION.
3109 Return a structure containing a symtab pointer, a line number,
3110 and a pc range for the entire source line.
3111 The value's .pc field is NOT the specified pc.
3112 NOTCURRENT nonzero means, if specified pc is on a line boundary,
3113 use the line that ends there. Otherwise, in that case, the line
3114 that begins there is used. */
3115
3116 /* The big complication here is that a line may start in one file, and end just
3117 before the start of another file. This usually occurs when you #include
3118 code in the middle of a subroutine. To properly find the end of a line's PC
3119 range, we must search all symtabs associated with this compilation unit, and
3120 find the one whose first PC is closer than that of the next line in this
3121 symtab. */
3122
3123 /* If it's worth the effort, we could be using a binary search. */
3124
3125 struct symtab_and_line
3126 find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent)
3127 {
3128 struct compunit_symtab *cust;
3129 struct symtab *iter_s;
3130 struct linetable *l;
3131 int len;
3132 int i;
3133 struct linetable_entry *item;
3134 struct symtab_and_line val;
3135 const struct blockvector *bv;
3136 struct bound_minimal_symbol msymbol;
3137
3138 /* Info on best line seen so far, and where it starts, and its file. */
3139
3140 struct linetable_entry *best = NULL;
3141 CORE_ADDR best_end = 0;
3142 struct symtab *best_symtab = 0;
3143
3144 /* Store here the first line number
3145 of a file which contains the line at the smallest pc after PC.
3146 If we don't find a line whose range contains PC,
3147 we will use a line one less than this,
3148 with a range from the start of that file to the first line's pc. */
3149 struct linetable_entry *alt = NULL;
3150
3151 /* Info on best line seen in this file. */
3152
3153 struct linetable_entry *prev;
3154
3155 /* If this pc is not from the current frame,
3156 it is the address of the end of a call instruction.
3157 Quite likely that is the start of the following statement.
3158 But what we want is the statement containing the instruction.
3159 Fudge the pc to make sure we get that. */
3160
3161 init_sal (&val); /* initialize to zeroes */
3162
3163 val.pspace = current_program_space;
3164
3165 /* It's tempting to assume that, if we can't find debugging info for
3166 any function enclosing PC, that we shouldn't search for line
3167 number info, either. However, GAS can emit line number info for
3168 assembly files --- very helpful when debugging hand-written
3169 assembly code. In such a case, we'd have no debug info for the
3170 function, but we would have line info. */
3171
3172 if (notcurrent)
3173 pc -= 1;
3174
3175 /* elz: added this because this function returned the wrong
3176 information if the pc belongs to a stub (import/export)
3177 to call a shlib function. This stub would be anywhere between
3178 two functions in the target, and the line info was erroneously
3179 taken to be the one of the line before the pc. */
3180
3181 /* RT: Further explanation:
3182
3183 * We have stubs (trampolines) inserted between procedures.
3184 *
3185 * Example: "shr1" exists in a shared library, and a "shr1" stub also
3186 * exists in the main image.
3187 *
3188 * In the minimal symbol table, we have a bunch of symbols
3189 * sorted by start address. The stubs are marked as "trampoline",
3190 * the others appear as text. E.g.:
3191 *
3192 * Minimal symbol table for main image
3193 * main: code for main (text symbol)
3194 * shr1: stub (trampoline symbol)
3195 * foo: code for foo (text symbol)
3196 * ...
3197 * Minimal symbol table for "shr1" image:
3198 * ...
3199 * shr1: code for shr1 (text symbol)
3200 * ...
3201 *
3202 * So the code below is trying to detect if we are in the stub
3203 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
3204 * and if found, do the symbolization from the real-code address
3205 * rather than the stub address.
3206 *
3207 * Assumptions being made about the minimal symbol table:
3208 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
3209 * if we're really in the trampoline.s If we're beyond it (say
3210 * we're in "foo" in the above example), it'll have a closer
3211 * symbol (the "foo" text symbol for example) and will not
3212 * return the trampoline.
3213 * 2. lookup_minimal_symbol_text() will find a real text symbol
3214 * corresponding to the trampoline, and whose address will
3215 * be different than the trampoline address. I put in a sanity
3216 * check for the address being the same, to avoid an
3217 * infinite recursion.
3218 */
3219 msymbol = lookup_minimal_symbol_by_pc (pc);
3220 if (msymbol.minsym != NULL)
3221 if (MSYMBOL_TYPE (msymbol.minsym) == mst_solib_trampoline)
3222 {
3223 struct bound_minimal_symbol mfunsym
3224 = lookup_minimal_symbol_text (MSYMBOL_LINKAGE_NAME (msymbol.minsym),
3225 NULL);
3226
3227 if (mfunsym.minsym == NULL)
3228 /* I eliminated this warning since it is coming out
3229 * in the following situation:
3230 * gdb shmain // test program with shared libraries
3231 * (gdb) break shr1 // function in shared lib
3232 * Warning: In stub for ...
3233 * In the above situation, the shared lib is not loaded yet,
3234 * so of course we can't find the real func/line info,
3235 * but the "break" still works, and the warning is annoying.
3236 * So I commented out the warning. RT */
3237 /* warning ("In stub for %s; unable to find real function/line info",
3238 SYMBOL_LINKAGE_NAME (msymbol)); */
3239 ;
3240 /* fall through */
3241 else if (BMSYMBOL_VALUE_ADDRESS (mfunsym)
3242 == BMSYMBOL_VALUE_ADDRESS (msymbol))
3243 /* Avoid infinite recursion */
3244 /* See above comment about why warning is commented out. */
3245 /* warning ("In stub for %s; unable to find real function/line info",
3246 SYMBOL_LINKAGE_NAME (msymbol)); */
3247 ;
3248 /* fall through */
3249 else
3250 return find_pc_line (BMSYMBOL_VALUE_ADDRESS (mfunsym), 0);
3251 }
3252
3253
3254 cust = find_pc_sect_compunit_symtab (pc, section);
3255 if (cust == NULL)
3256 {
3257 /* If no symbol information, return previous pc. */
3258 if (notcurrent)
3259 pc++;
3260 val.pc = pc;
3261 return val;
3262 }
3263
3264 bv = COMPUNIT_BLOCKVECTOR (cust);
3265
3266 /* Look at all the symtabs that share this blockvector.
3267 They all have the same apriori range, that we found was right;
3268 but they have different line tables. */
3269
3270 ALL_COMPUNIT_FILETABS (cust, iter_s)
3271 {
3272 /* Find the best line in this symtab. */
3273 l = SYMTAB_LINETABLE (iter_s);
3274 if (!l)
3275 continue;
3276 len = l->nitems;
3277 if (len <= 0)
3278 {
3279 /* I think len can be zero if the symtab lacks line numbers
3280 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
3281 I'm not sure which, and maybe it depends on the symbol
3282 reader). */
3283 continue;
3284 }
3285
3286 prev = NULL;
3287 item = l->item; /* Get first line info. */
3288
3289 /* Is this file's first line closer than the first lines of other files?
3290 If so, record this file, and its first line, as best alternate. */
3291 if (item->pc > pc && (!alt || item->pc < alt->pc))
3292 alt = item;
3293
3294 for (i = 0; i < len; i++, item++)
3295 {
3296 /* Leave prev pointing to the linetable entry for the last line
3297 that started at or before PC. */
3298 if (item->pc > pc)
3299 break;
3300
3301 prev = item;
3302 }
3303
3304 /* At this point, prev points at the line whose start addr is <= pc, and
3305 item points at the next line. If we ran off the end of the linetable
3306 (pc >= start of the last line), then prev == item. If pc < start of
3307 the first line, prev will not be set. */
3308
3309 /* Is this file's best line closer than the best in the other files?
3310 If so, record this file, and its best line, as best so far. Don't
3311 save prev if it represents the end of a function (i.e. line number
3312 0) instead of a real line. */
3313
3314 if (prev && prev->line && (!best || prev->pc > best->pc))
3315 {
3316 best = prev;
3317 best_symtab = iter_s;
3318
3319 /* Discard BEST_END if it's before the PC of the current BEST. */
3320 if (best_end <= best->pc)
3321 best_end = 0;
3322 }
3323
3324 /* If another line (denoted by ITEM) is in the linetable and its
3325 PC is after BEST's PC, but before the current BEST_END, then
3326 use ITEM's PC as the new best_end. */
3327 if (best && i < len && item->pc > best->pc
3328 && (best_end == 0 || best_end > item->pc))
3329 best_end = item->pc;
3330 }
3331
3332 if (!best_symtab)
3333 {
3334 /* If we didn't find any line number info, just return zeros.
3335 We used to return alt->line - 1 here, but that could be
3336 anywhere; if we don't have line number info for this PC,
3337 don't make some up. */
3338 val.pc = pc;
3339 }
3340 else if (best->line == 0)
3341 {
3342 /* If our best fit is in a range of PC's for which no line
3343 number info is available (line number is zero) then we didn't
3344 find any valid line information. */
3345 val.pc = pc;
3346 }
3347 else
3348 {
3349 val.symtab = best_symtab;
3350 val.line = best->line;
3351 val.pc = best->pc;
3352 if (best_end && (!alt || best_end < alt->pc))
3353 val.end = best_end;
3354 else if (alt)
3355 val.end = alt->pc;
3356 else
3357 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
3358 }
3359 val.section = section;
3360 return val;
3361 }
3362
3363 /* Backward compatibility (no section). */
3364
3365 struct symtab_and_line
3366 find_pc_line (CORE_ADDR pc, int notcurrent)
3367 {
3368 struct obj_section *section;
3369
3370 section = find_pc_overlay (pc);
3371 if (pc_in_unmapped_range (pc, section))
3372 pc = overlay_mapped_address (pc, section);
3373 return find_pc_sect_line (pc, section, notcurrent);
3374 }
3375
3376 /* See symtab.h. */
3377
3378 struct symtab *
3379 find_pc_line_symtab (CORE_ADDR pc)
3380 {
3381 struct symtab_and_line sal;
3382
3383 /* This always passes zero for NOTCURRENT to find_pc_line.
3384 There are currently no callers that ever pass non-zero. */
3385 sal = find_pc_line (pc, 0);
3386 return sal.symtab;
3387 }
3388 \f
3389 /* Find line number LINE in any symtab whose name is the same as
3390 SYMTAB.
3391
3392 If found, return the symtab that contains the linetable in which it was
3393 found, set *INDEX to the index in the linetable of the best entry
3394 found, and set *EXACT_MATCH nonzero if the value returned is an
3395 exact match.
3396
3397 If not found, return NULL. */
3398
3399 struct symtab *
3400 find_line_symtab (struct symtab *symtab, int line,
3401 int *index, int *exact_match)
3402 {
3403 int exact = 0; /* Initialized here to avoid a compiler warning. */
3404
3405 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
3406 so far seen. */
3407
3408 int best_index;
3409 struct linetable *best_linetable;
3410 struct symtab *best_symtab;
3411
3412 /* First try looking it up in the given symtab. */
3413 best_linetable = SYMTAB_LINETABLE (symtab);
3414 best_symtab = symtab;
3415 best_index = find_line_common (best_linetable, line, &exact, 0);
3416 if (best_index < 0 || !exact)
3417 {
3418 /* Didn't find an exact match. So we better keep looking for
3419 another symtab with the same name. In the case of xcoff,
3420 multiple csects for one source file (produced by IBM's FORTRAN
3421 compiler) produce multiple symtabs (this is unavoidable
3422 assuming csects can be at arbitrary places in memory and that
3423 the GLOBAL_BLOCK of a symtab has a begin and end address). */
3424
3425 /* BEST is the smallest linenumber > LINE so far seen,
3426 or 0 if none has been seen so far.
3427 BEST_INDEX and BEST_LINETABLE identify the item for it. */
3428 int best;
3429
3430 struct objfile *objfile;
3431 struct compunit_symtab *cu;
3432 struct symtab *s;
3433
3434 if (best_index >= 0)
3435 best = best_linetable->item[best_index].line;
3436 else
3437 best = 0;
3438
3439 ALL_OBJFILES (objfile)
3440 {
3441 if (objfile->sf)
3442 objfile->sf->qf->expand_symtabs_with_fullname (objfile,
3443 symtab_to_fullname (symtab));
3444 }
3445
3446 ALL_FILETABS (objfile, cu, s)
3447 {
3448 struct linetable *l;
3449 int ind;
3450
3451 if (FILENAME_CMP (symtab->filename, s->filename) != 0)
3452 continue;
3453 if (FILENAME_CMP (symtab_to_fullname (symtab),
3454 symtab_to_fullname (s)) != 0)
3455 continue;
3456 l = SYMTAB_LINETABLE (s);
3457 ind = find_line_common (l, line, &exact, 0);
3458 if (ind >= 0)
3459 {
3460 if (exact)
3461 {
3462 best_index = ind;
3463 best_linetable = l;
3464 best_symtab = s;
3465 goto done;
3466 }
3467 if (best == 0 || l->item[ind].line < best)
3468 {
3469 best = l->item[ind].line;
3470 best_index = ind;
3471 best_linetable = l;
3472 best_symtab = s;
3473 }
3474 }
3475 }
3476 }
3477 done:
3478 if (best_index < 0)
3479 return NULL;
3480
3481 if (index)
3482 *index = best_index;
3483 if (exact_match)
3484 *exact_match = exact;
3485
3486 return best_symtab;
3487 }
3488
3489 /* Given SYMTAB, returns all the PCs function in the symtab that
3490 exactly match LINE. Returns NULL if there are no exact matches,
3491 but updates BEST_ITEM in this case. */
3492
3493 VEC (CORE_ADDR) *
3494 find_pcs_for_symtab_line (struct symtab *symtab, int line,
3495 struct linetable_entry **best_item)
3496 {
3497 int start = 0;
3498 VEC (CORE_ADDR) *result = NULL;
3499
3500 /* First, collect all the PCs that are at this line. */
3501 while (1)
3502 {
3503 int was_exact;
3504 int idx;
3505
3506 idx = find_line_common (SYMTAB_LINETABLE (symtab), line, &was_exact,
3507 start);
3508 if (idx < 0)
3509 break;
3510
3511 if (!was_exact)
3512 {
3513 struct linetable_entry *item = &SYMTAB_LINETABLE (symtab)->item[idx];
3514
3515 if (*best_item == NULL || item->line < (*best_item)->line)
3516 *best_item = item;
3517
3518 break;
3519 }
3520
3521 VEC_safe_push (CORE_ADDR, result,
3522 SYMTAB_LINETABLE (symtab)->item[idx].pc);
3523 start = idx + 1;
3524 }
3525
3526 return result;
3527 }
3528
3529 \f
3530 /* Set the PC value for a given source file and line number and return true.
3531 Returns zero for invalid line number (and sets the PC to 0).
3532 The source file is specified with a struct symtab. */
3533
3534 int
3535 find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
3536 {
3537 struct linetable *l;
3538 int ind;
3539
3540 *pc = 0;
3541 if (symtab == 0)
3542 return 0;
3543
3544 symtab = find_line_symtab (symtab, line, &ind, NULL);
3545 if (symtab != NULL)
3546 {
3547 l = SYMTAB_LINETABLE (symtab);
3548 *pc = l->item[ind].pc;
3549 return 1;
3550 }
3551 else
3552 return 0;
3553 }
3554
3555 /* Find the range of pc values in a line.
3556 Store the starting pc of the line into *STARTPTR
3557 and the ending pc (start of next line) into *ENDPTR.
3558 Returns 1 to indicate success.
3559 Returns 0 if could not find the specified line. */
3560
3561 int
3562 find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
3563 CORE_ADDR *endptr)
3564 {
3565 CORE_ADDR startaddr;
3566 struct symtab_and_line found_sal;
3567
3568 startaddr = sal.pc;
3569 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
3570 return 0;
3571
3572 /* This whole function is based on address. For example, if line 10 has
3573 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
3574 "info line *0x123" should say the line goes from 0x100 to 0x200
3575 and "info line *0x355" should say the line goes from 0x300 to 0x400.
3576 This also insures that we never give a range like "starts at 0x134
3577 and ends at 0x12c". */
3578
3579 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
3580 if (found_sal.line != sal.line)
3581 {
3582 /* The specified line (sal) has zero bytes. */
3583 *startptr = found_sal.pc;
3584 *endptr = found_sal.pc;
3585 }
3586 else
3587 {
3588 *startptr = found_sal.pc;
3589 *endptr = found_sal.end;
3590 }
3591 return 1;
3592 }
3593
3594 /* Given a line table and a line number, return the index into the line
3595 table for the pc of the nearest line whose number is >= the specified one.
3596 Return -1 if none is found. The value is >= 0 if it is an index.
3597 START is the index at which to start searching the line table.
3598
3599 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
3600
3601 static int
3602 find_line_common (struct linetable *l, int lineno,
3603 int *exact_match, int start)
3604 {
3605 int i;
3606 int len;
3607
3608 /* BEST is the smallest linenumber > LINENO so far seen,
3609 or 0 if none has been seen so far.
3610 BEST_INDEX identifies the item for it. */
3611
3612 int best_index = -1;
3613 int best = 0;
3614
3615 *exact_match = 0;
3616
3617 if (lineno <= 0)
3618 return -1;
3619 if (l == 0)
3620 return -1;
3621
3622 len = l->nitems;
3623 for (i = start; i < len; i++)
3624 {
3625 struct linetable_entry *item = &(l->item[i]);
3626
3627 if (item->line == lineno)
3628 {
3629 /* Return the first (lowest address) entry which matches. */
3630 *exact_match = 1;
3631 return i;
3632 }
3633
3634 if (item->line > lineno && (best == 0 || item->line < best))
3635 {
3636 best = item->line;
3637 best_index = i;
3638 }
3639 }
3640
3641 /* If we got here, we didn't get an exact match. */
3642 return best_index;
3643 }
3644
3645 int
3646 find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
3647 {
3648 struct symtab_and_line sal;
3649
3650 sal = find_pc_line (pc, 0);
3651 *startptr = sal.pc;
3652 *endptr = sal.end;
3653 return sal.symtab != 0;
3654 }
3655
3656 /* Given a function symbol SYM, find the symtab and line for the start
3657 of the function.
3658 If the argument FUNFIRSTLINE is nonzero, we want the first line
3659 of real code inside the function.
3660 This function should return SALs matching those from minsym_found,
3661 otherwise false multiple-locations breakpoints could be placed. */
3662
3663 struct symtab_and_line
3664 find_function_start_sal (struct symbol *sym, int funfirstline)
3665 {
3666 struct symtab_and_line sal;
3667 struct obj_section *section;
3668
3669 fixup_symbol_section (sym, NULL);
3670 section = SYMBOL_OBJ_SECTION (symbol_objfile (sym), sym);
3671 sal = find_pc_sect_line (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)), section, 0);
3672
3673 if (funfirstline && sal.symtab != NULL
3674 && (COMPUNIT_LOCATIONS_VALID (SYMTAB_COMPUNIT (sal.symtab))
3675 || SYMTAB_LANGUAGE (sal.symtab) == language_asm))
3676 {
3677 struct gdbarch *gdbarch = symbol_arch (sym);
3678
3679 sal.pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
3680 if (gdbarch_skip_entrypoint_p (gdbarch))
3681 sal.pc = gdbarch_skip_entrypoint (gdbarch, sal.pc);
3682 return sal;
3683 }
3684
3685 /* We always should have a line for the function start address.
3686 If we don't, something is odd. Create a plain SAL refering
3687 just the PC and hope that skip_prologue_sal (if requested)
3688 can find a line number for after the prologue. */
3689 if (sal.pc < BLOCK_START (SYMBOL_BLOCK_VALUE (sym)))
3690 {
3691 init_sal (&sal);
3692 sal.pspace = current_program_space;
3693 sal.pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
3694 sal.section = section;
3695 }
3696
3697 if (funfirstline)
3698 skip_prologue_sal (&sal);
3699
3700 return sal;
3701 }
3702
3703 /* Given a function start address FUNC_ADDR and SYMTAB, find the first
3704 address for that function that has an entry in SYMTAB's line info
3705 table. If such an entry cannot be found, return FUNC_ADDR
3706 unaltered. */
3707
3708 static CORE_ADDR
3709 skip_prologue_using_lineinfo (CORE_ADDR func_addr, struct symtab *symtab)
3710 {
3711 CORE_ADDR func_start, func_end;
3712 struct linetable *l;
3713 int i;
3714
3715 /* Give up if this symbol has no lineinfo table. */
3716 l = SYMTAB_LINETABLE (symtab);
3717 if (l == NULL)
3718 return func_addr;
3719
3720 /* Get the range for the function's PC values, or give up if we
3721 cannot, for some reason. */
3722 if (!find_pc_partial_function (func_addr, NULL, &func_start, &func_end))
3723 return func_addr;
3724
3725 /* Linetable entries are ordered by PC values, see the commentary in
3726 symtab.h where `struct linetable' is defined. Thus, the first
3727 entry whose PC is in the range [FUNC_START..FUNC_END[ is the
3728 address we are looking for. */
3729 for (i = 0; i < l->nitems; i++)
3730 {
3731 struct linetable_entry *item = &(l->item[i]);
3732
3733 /* Don't use line numbers of zero, they mark special entries in
3734 the table. See the commentary on symtab.h before the
3735 definition of struct linetable. */
3736 if (item->line > 0 && func_start <= item->pc && item->pc < func_end)
3737 return item->pc;
3738 }
3739
3740 return func_addr;
3741 }
3742
3743 /* Adjust SAL to the first instruction past the function prologue.
3744 If the PC was explicitly specified, the SAL is not changed.
3745 If the line number was explicitly specified, at most the SAL's PC
3746 is updated. If SAL is already past the prologue, then do nothing. */
3747
3748 void
3749 skip_prologue_sal (struct symtab_and_line *sal)
3750 {
3751 struct symbol *sym;
3752 struct symtab_and_line start_sal;
3753 struct cleanup *old_chain;
3754 CORE_ADDR pc, saved_pc;
3755 struct obj_section *section;
3756 const char *name;
3757 struct objfile *objfile;
3758 struct gdbarch *gdbarch;
3759 const struct block *b, *function_block;
3760 int force_skip, skip;
3761
3762 /* Do not change the SAL if PC was specified explicitly. */
3763 if (sal->explicit_pc)
3764 return;
3765
3766 old_chain = save_current_space_and_thread ();
3767 switch_to_program_space_and_thread (sal->pspace);
3768
3769 sym = find_pc_sect_function (sal->pc, sal->section);
3770 if (sym != NULL)
3771 {
3772 fixup_symbol_section (sym, NULL);
3773
3774 objfile = symbol_objfile (sym);
3775 pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
3776 section = SYMBOL_OBJ_SECTION (objfile, sym);
3777 name = SYMBOL_LINKAGE_NAME (sym);
3778 }
3779 else
3780 {
3781 struct bound_minimal_symbol msymbol
3782 = lookup_minimal_symbol_by_pc_section (sal->pc, sal->section);
3783
3784 if (msymbol.minsym == NULL)
3785 {
3786 do_cleanups (old_chain);
3787 return;
3788 }
3789
3790 objfile = msymbol.objfile;
3791 pc = BMSYMBOL_VALUE_ADDRESS (msymbol);
3792 section = MSYMBOL_OBJ_SECTION (objfile, msymbol.minsym);
3793 name = MSYMBOL_LINKAGE_NAME (msymbol.minsym);
3794 }
3795
3796 gdbarch = get_objfile_arch (objfile);
3797
3798 /* Process the prologue in two passes. In the first pass try to skip the
3799 prologue (SKIP is true) and verify there is a real need for it (indicated
3800 by FORCE_SKIP). If no such reason was found run a second pass where the
3801 prologue is not skipped (SKIP is false). */
3802
3803 skip = 1;
3804 force_skip = 1;
3805
3806 /* Be conservative - allow direct PC (without skipping prologue) only if we
3807 have proven the CU (Compilation Unit) supports it. sal->SYMTAB does not
3808 have to be set by the caller so we use SYM instead. */
3809 if (sym != NULL
3810 && COMPUNIT_LOCATIONS_VALID (SYMTAB_COMPUNIT (symbol_symtab (sym))))
3811 force_skip = 0;
3812
3813 saved_pc = pc;
3814 do
3815 {
3816 pc = saved_pc;
3817
3818 /* If the function is in an unmapped overlay, use its unmapped LMA address,
3819 so that gdbarch_skip_prologue has something unique to work on. */
3820 if (section_is_overlay (section) && !section_is_mapped (section))
3821 pc = overlay_unmapped_address (pc, section);
3822
3823 /* Skip "first line" of function (which is actually its prologue). */
3824 pc += gdbarch_deprecated_function_start_offset (gdbarch);
3825 if (gdbarch_skip_entrypoint_p (gdbarch))
3826 pc = gdbarch_skip_entrypoint (gdbarch, pc);
3827 if (skip)
3828 pc = gdbarch_skip_prologue (gdbarch, pc);
3829
3830 /* For overlays, map pc back into its mapped VMA range. */
3831 pc = overlay_mapped_address (pc, section);
3832
3833 /* Calculate line number. */
3834 start_sal = find_pc_sect_line (pc, section, 0);
3835
3836 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
3837 line is still part of the same function. */
3838 if (skip && start_sal.pc != pc
3839 && (sym ? (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) <= start_sal.end
3840 && start_sal.end < BLOCK_END (SYMBOL_BLOCK_VALUE (sym)))
3841 : (lookup_minimal_symbol_by_pc_section (start_sal.end, section).minsym
3842 == lookup_minimal_symbol_by_pc_section (pc, section).minsym)))
3843 {
3844 /* First pc of next line */
3845 pc = start_sal.end;
3846 /* Recalculate the line number (might not be N+1). */
3847 start_sal = find_pc_sect_line (pc, section, 0);
3848 }
3849
3850 /* On targets with executable formats that don't have a concept of
3851 constructors (ELF with .init has, PE doesn't), gcc emits a call
3852 to `__main' in `main' between the prologue and before user
3853 code. */
3854 if (gdbarch_skip_main_prologue_p (gdbarch)
3855 && name && strcmp_iw (name, "main") == 0)
3856 {
3857 pc = gdbarch_skip_main_prologue (gdbarch, pc);
3858 /* Recalculate the line number (might not be N+1). */
3859 start_sal = find_pc_sect_line (pc, section, 0);
3860 force_skip = 1;
3861 }
3862 }
3863 while (!force_skip && skip--);
3864
3865 /* If we still don't have a valid source line, try to find the first
3866 PC in the lineinfo table that belongs to the same function. This
3867 happens with COFF debug info, which does not seem to have an
3868 entry in lineinfo table for the code after the prologue which has
3869 no direct relation to source. For example, this was found to be
3870 the case with the DJGPP target using "gcc -gcoff" when the
3871 compiler inserted code after the prologue to make sure the stack
3872 is aligned. */
3873 if (!force_skip && sym && start_sal.symtab == NULL)
3874 {
3875 pc = skip_prologue_using_lineinfo (pc, symbol_symtab (sym));
3876 /* Recalculate the line number. */
3877 start_sal = find_pc_sect_line (pc, section, 0);
3878 }
3879
3880 do_cleanups (old_chain);
3881
3882 /* If we're already past the prologue, leave SAL unchanged. Otherwise
3883 forward SAL to the end of the prologue. */
3884 if (sal->pc >= pc)
3885 return;
3886
3887 sal->pc = pc;
3888 sal->section = section;
3889
3890 /* Unless the explicit_line flag was set, update the SAL line
3891 and symtab to correspond to the modified PC location. */
3892 if (sal->explicit_line)
3893 return;
3894
3895 sal->symtab = start_sal.symtab;
3896 sal->line = start_sal.line;
3897 sal->end = start_sal.end;
3898
3899 /* Check if we are now inside an inlined function. If we can,
3900 use the call site of the function instead. */
3901 b = block_for_pc_sect (sal->pc, sal->section);
3902 function_block = NULL;
3903 while (b != NULL)
3904 {
3905 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
3906 function_block = b;
3907 else if (BLOCK_FUNCTION (b) != NULL)
3908 break;
3909 b = BLOCK_SUPERBLOCK (b);
3910 }
3911 if (function_block != NULL
3912 && SYMBOL_LINE (BLOCK_FUNCTION (function_block)) != 0)
3913 {
3914 sal->line = SYMBOL_LINE (BLOCK_FUNCTION (function_block));
3915 sal->symtab = symbol_symtab (BLOCK_FUNCTION (function_block));
3916 }
3917 }
3918
3919 /* Given PC at the function's start address, attempt to find the
3920 prologue end using SAL information. Return zero if the skip fails.
3921
3922 A non-optimized prologue traditionally has one SAL for the function
3923 and a second for the function body. A single line function has
3924 them both pointing at the same line.
3925
3926 An optimized prologue is similar but the prologue may contain
3927 instructions (SALs) from the instruction body. Need to skip those
3928 while not getting into the function body.
3929
3930 The functions end point and an increasing SAL line are used as
3931 indicators of the prologue's endpoint.
3932
3933 This code is based on the function refine_prologue_limit
3934 (found in ia64). */
3935
3936 CORE_ADDR
3937 skip_prologue_using_sal (struct gdbarch *gdbarch, CORE_ADDR func_addr)
3938 {
3939 struct symtab_and_line prologue_sal;
3940 CORE_ADDR start_pc;
3941 CORE_ADDR end_pc;
3942 const struct block *bl;
3943
3944 /* Get an initial range for the function. */
3945 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
3946 start_pc += gdbarch_deprecated_function_start_offset (gdbarch);
3947
3948 prologue_sal = find_pc_line (start_pc, 0);
3949 if (prologue_sal.line != 0)
3950 {
3951 /* For languages other than assembly, treat two consecutive line
3952 entries at the same address as a zero-instruction prologue.
3953 The GNU assembler emits separate line notes for each instruction
3954 in a multi-instruction macro, but compilers generally will not
3955 do this. */
3956 if (prologue_sal.symtab->language != language_asm)
3957 {
3958 struct linetable *linetable = SYMTAB_LINETABLE (prologue_sal.symtab);
3959 int idx = 0;
3960
3961 /* Skip any earlier lines, and any end-of-sequence marker
3962 from a previous function. */
3963 while (linetable->item[idx].pc != prologue_sal.pc
3964 || linetable->item[idx].line == 0)
3965 idx++;
3966
3967 if (idx+1 < linetable->nitems
3968 && linetable->item[idx+1].line != 0
3969 && linetable->item[idx+1].pc == start_pc)
3970 return start_pc;
3971 }
3972
3973 /* If there is only one sal that covers the entire function,
3974 then it is probably a single line function, like
3975 "foo(){}". */
3976 if (prologue_sal.end >= end_pc)
3977 return 0;
3978
3979 while (prologue_sal.end < end_pc)
3980 {
3981 struct symtab_and_line sal;
3982
3983 sal = find_pc_line (prologue_sal.end, 0);
3984 if (sal.line == 0)
3985 break;
3986 /* Assume that a consecutive SAL for the same (or larger)
3987 line mark the prologue -> body transition. */
3988 if (sal.line >= prologue_sal.line)
3989 break;
3990 /* Likewise if we are in a different symtab altogether
3991 (e.g. within a file included via #include).  */
3992 if (sal.symtab != prologue_sal.symtab)
3993 break;
3994
3995 /* The line number is smaller. Check that it's from the
3996 same function, not something inlined. If it's inlined,
3997 then there is no point comparing the line numbers. */
3998 bl = block_for_pc (prologue_sal.end);
3999 while (bl)
4000 {
4001 if (block_inlined_p (bl))
4002 break;
4003 if (BLOCK_FUNCTION (bl))
4004 {
4005 bl = NULL;
4006 break;
4007 }
4008 bl = BLOCK_SUPERBLOCK (bl);
4009 }
4010 if (bl != NULL)
4011 break;
4012
4013 /* The case in which compiler's optimizer/scheduler has
4014 moved instructions into the prologue. We look ahead in
4015 the function looking for address ranges whose
4016 corresponding line number is less the first one that we
4017 found for the function. This is more conservative then
4018 refine_prologue_limit which scans a large number of SALs
4019 looking for any in the prologue. */
4020 prologue_sal = sal;
4021 }
4022 }
4023
4024 if (prologue_sal.end < end_pc)
4025 /* Return the end of this line, or zero if we could not find a
4026 line. */
4027 return prologue_sal.end;
4028 else
4029 /* Don't return END_PC, which is past the end of the function. */
4030 return prologue_sal.pc;
4031 }
4032 \f
4033 /* If P is of the form "operator[ \t]+..." where `...' is
4034 some legitimate operator text, return a pointer to the
4035 beginning of the substring of the operator text.
4036 Otherwise, return "". */
4037
4038 static const char *
4039 operator_chars (const char *p, const char **end)
4040 {
4041 *end = "";
4042 if (!startswith (p, "operator"))
4043 return *end;
4044 p += 8;
4045
4046 /* Don't get faked out by `operator' being part of a longer
4047 identifier. */
4048 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
4049 return *end;
4050
4051 /* Allow some whitespace between `operator' and the operator symbol. */
4052 while (*p == ' ' || *p == '\t')
4053 p++;
4054
4055 /* Recognize 'operator TYPENAME'. */
4056
4057 if (isalpha (*p) || *p == '_' || *p == '$')
4058 {
4059 const char *q = p + 1;
4060
4061 while (isalnum (*q) || *q == '_' || *q == '$')
4062 q++;
4063 *end = q;
4064 return p;
4065 }
4066
4067 while (*p)
4068 switch (*p)
4069 {
4070 case '\\': /* regexp quoting */
4071 if (p[1] == '*')
4072 {
4073 if (p[2] == '=') /* 'operator\*=' */
4074 *end = p + 3;
4075 else /* 'operator\*' */
4076 *end = p + 2;
4077 return p;
4078 }
4079 else if (p[1] == '[')
4080 {
4081 if (p[2] == ']')
4082 error (_("mismatched quoting on brackets, "
4083 "try 'operator\\[\\]'"));
4084 else if (p[2] == '\\' && p[3] == ']')
4085 {
4086 *end = p + 4; /* 'operator\[\]' */
4087 return p;
4088 }
4089 else
4090 error (_("nothing is allowed between '[' and ']'"));
4091 }
4092 else
4093 {
4094 /* Gratuitous qoute: skip it and move on. */
4095 p++;
4096 continue;
4097 }
4098 break;
4099 case '!':
4100 case '=':
4101 case '*':
4102 case '/':
4103 case '%':
4104 case '^':
4105 if (p[1] == '=')
4106 *end = p + 2;
4107 else
4108 *end = p + 1;
4109 return p;
4110 case '<':
4111 case '>':
4112 case '+':
4113 case '-':
4114 case '&':
4115 case '|':
4116 if (p[0] == '-' && p[1] == '>')
4117 {
4118 /* Struct pointer member operator 'operator->'. */
4119 if (p[2] == '*')
4120 {
4121 *end = p + 3; /* 'operator->*' */
4122 return p;
4123 }
4124 else if (p[2] == '\\')
4125 {
4126 *end = p + 4; /* Hopefully 'operator->\*' */
4127 return p;
4128 }
4129 else
4130 {
4131 *end = p + 2; /* 'operator->' */
4132 return p;
4133 }
4134 }
4135 if (p[1] == '=' || p[1] == p[0])
4136 *end = p + 2;
4137 else
4138 *end = p + 1;
4139 return p;
4140 case '~':
4141 case ',':
4142 *end = p + 1;
4143 return p;
4144 case '(':
4145 if (p[1] != ')')
4146 error (_("`operator ()' must be specified "
4147 "without whitespace in `()'"));
4148 *end = p + 2;
4149 return p;
4150 case '?':
4151 if (p[1] != ':')
4152 error (_("`operator ?:' must be specified "
4153 "without whitespace in `?:'"));
4154 *end = p + 2;
4155 return p;
4156 case '[':
4157 if (p[1] != ']')
4158 error (_("`operator []' must be specified "
4159 "without whitespace in `[]'"));
4160 *end = p + 2;
4161 return p;
4162 default:
4163 error (_("`operator %s' not supported"), p);
4164 break;
4165 }
4166
4167 *end = "";
4168 return *end;
4169 }
4170 \f
4171
4172 /* Cache to watch for file names already seen by filename_seen. */
4173
4174 struct filename_seen_cache
4175 {
4176 /* Table of files seen so far. */
4177 htab_t tab;
4178 /* Initial size of the table. It automagically grows from here. */
4179 #define INITIAL_FILENAME_SEEN_CACHE_SIZE 100
4180 };
4181
4182 /* filename_seen_cache constructor. */
4183
4184 static struct filename_seen_cache *
4185 create_filename_seen_cache (void)
4186 {
4187 struct filename_seen_cache *cache = XNEW (struct filename_seen_cache);
4188
4189 cache->tab = htab_create_alloc (INITIAL_FILENAME_SEEN_CACHE_SIZE,
4190 filename_hash, filename_eq,
4191 NULL, xcalloc, xfree);
4192
4193 return cache;
4194 }
4195
4196 /* Empty the cache, but do not delete it. */
4197
4198 static void
4199 clear_filename_seen_cache (struct filename_seen_cache *cache)
4200 {
4201 htab_empty (cache->tab);
4202 }
4203
4204 /* filename_seen_cache destructor.
4205 This takes a void * argument as it is generally used as a cleanup. */
4206
4207 static void
4208 delete_filename_seen_cache (void *ptr)
4209 {
4210 struct filename_seen_cache *cache = (struct filename_seen_cache *) ptr;
4211
4212 htab_delete (cache->tab);
4213 xfree (cache);
4214 }
4215
4216 /* If FILE is not already in the table of files in CACHE, return zero;
4217 otherwise return non-zero. Optionally add FILE to the table if ADD
4218 is non-zero.
4219
4220 NOTE: We don't manage space for FILE, we assume FILE lives as long
4221 as the caller needs. */
4222
4223 static int
4224 filename_seen (struct filename_seen_cache *cache, const char *file, int add)
4225 {
4226 void **slot;
4227
4228 /* Is FILE in tab? */
4229 slot = htab_find_slot (cache->tab, file, add ? INSERT : NO_INSERT);
4230 if (*slot != NULL)
4231 return 1;
4232
4233 /* No; maybe add it to tab. */
4234 if (add)
4235 *slot = (char *) file;
4236
4237 return 0;
4238 }
4239
4240 /* Data structure to maintain printing state for output_source_filename. */
4241
4242 struct output_source_filename_data
4243 {
4244 /* Cache of what we've seen so far. */
4245 struct filename_seen_cache *filename_seen_cache;
4246
4247 /* Flag of whether we're printing the first one. */
4248 int first;
4249 };
4250
4251 /* Slave routine for sources_info. Force line breaks at ,'s.
4252 NAME is the name to print.
4253 DATA contains the state for printing and watching for duplicates. */
4254
4255 static void
4256 output_source_filename (const char *name,
4257 struct output_source_filename_data *data)
4258 {
4259 /* Since a single source file can result in several partial symbol
4260 tables, we need to avoid printing it more than once. Note: if
4261 some of the psymtabs are read in and some are not, it gets
4262 printed both under "Source files for which symbols have been
4263 read" and "Source files for which symbols will be read in on
4264 demand". I consider this a reasonable way to deal with the
4265 situation. I'm not sure whether this can also happen for
4266 symtabs; it doesn't hurt to check. */
4267
4268 /* Was NAME already seen? */
4269 if (filename_seen (data->filename_seen_cache, name, 1))
4270 {
4271 /* Yes; don't print it again. */
4272 return;
4273 }
4274
4275 /* No; print it and reset *FIRST. */
4276 if (! data->first)
4277 printf_filtered (", ");
4278 data->first = 0;
4279
4280 wrap_here ("");
4281 fputs_filtered (name, gdb_stdout);
4282 }
4283
4284 /* A callback for map_partial_symbol_filenames. */
4285
4286 static void
4287 output_partial_symbol_filename (const char *filename, const char *fullname,
4288 void *data)
4289 {
4290 output_source_filename (fullname ? fullname : filename,
4291 (struct output_source_filename_data *) data);
4292 }
4293
4294 static void
4295 sources_info (char *ignore, int from_tty)
4296 {
4297 struct compunit_symtab *cu;
4298 struct symtab *s;
4299 struct objfile *objfile;
4300 struct output_source_filename_data data;
4301 struct cleanup *cleanups;
4302
4303 if (!have_full_symbols () && !have_partial_symbols ())
4304 {
4305 error (_("No symbol table is loaded. Use the \"file\" command."));
4306 }
4307
4308 data.filename_seen_cache = create_filename_seen_cache ();
4309 cleanups = make_cleanup (delete_filename_seen_cache,
4310 data.filename_seen_cache);
4311
4312 printf_filtered ("Source files for which symbols have been read in:\n\n");
4313
4314 data.first = 1;
4315 ALL_FILETABS (objfile, cu, s)
4316 {
4317 const char *fullname = symtab_to_fullname (s);
4318
4319 output_source_filename (fullname, &data);
4320 }
4321 printf_filtered ("\n\n");
4322
4323 printf_filtered ("Source files for which symbols "
4324 "will be read in on demand:\n\n");
4325
4326 clear_filename_seen_cache (data.filename_seen_cache);
4327 data.first = 1;
4328 map_symbol_filenames (output_partial_symbol_filename, &data,
4329 1 /*need_fullname*/);
4330 printf_filtered ("\n");
4331
4332 do_cleanups (cleanups);
4333 }
4334
4335 /* Compare FILE against all the NFILES entries of FILES. If BASENAMES is
4336 non-zero compare only lbasename of FILES. */
4337
4338 static int
4339 file_matches (const char *file, const char *files[], int nfiles, int basenames)
4340 {
4341 int i;
4342
4343 if (file != NULL && nfiles != 0)
4344 {
4345 for (i = 0; i < nfiles; i++)
4346 {
4347 if (compare_filenames_for_search (file, (basenames
4348 ? lbasename (files[i])
4349 : files[i])))
4350 return 1;
4351 }
4352 }
4353 else if (nfiles == 0)
4354 return 1;
4355 return 0;
4356 }
4357
4358 /* Free any memory associated with a search. */
4359
4360 void
4361 free_search_symbols (struct symbol_search *symbols)
4362 {
4363 struct symbol_search *p;
4364 struct symbol_search *next;
4365
4366 for (p = symbols; p != NULL; p = next)
4367 {
4368 next = p->next;
4369 xfree (p);
4370 }
4371 }
4372
4373 static void
4374 do_free_search_symbols_cleanup (void *symbolsp)
4375 {
4376 struct symbol_search *symbols = *(struct symbol_search **) symbolsp;
4377
4378 free_search_symbols (symbols);
4379 }
4380
4381 struct cleanup *
4382 make_cleanup_free_search_symbols (struct symbol_search **symbolsp)
4383 {
4384 return make_cleanup (do_free_search_symbols_cleanup, symbolsp);
4385 }
4386
4387 /* Helper function for sort_search_symbols_remove_dups and qsort. Can only
4388 sort symbols, not minimal symbols. */
4389
4390 static int
4391 compare_search_syms (const void *sa, const void *sb)
4392 {
4393 struct symbol_search *sym_a = *(struct symbol_search **) sa;
4394 struct symbol_search *sym_b = *(struct symbol_search **) sb;
4395 int c;
4396
4397 c = FILENAME_CMP (symbol_symtab (sym_a->symbol)->filename,
4398 symbol_symtab (sym_b->symbol)->filename);
4399 if (c != 0)
4400 return c;
4401
4402 if (sym_a->block != sym_b->block)
4403 return sym_a->block - sym_b->block;
4404
4405 return strcmp (SYMBOL_PRINT_NAME (sym_a->symbol),
4406 SYMBOL_PRINT_NAME (sym_b->symbol));
4407 }
4408
4409 /* Sort the NFOUND symbols in list FOUND and remove duplicates.
4410 The duplicates are freed, and the new list is returned in
4411 *NEW_HEAD, *NEW_TAIL. */
4412
4413 static void
4414 sort_search_symbols_remove_dups (struct symbol_search *found, int nfound,
4415 struct symbol_search **new_head,
4416 struct symbol_search **new_tail)
4417 {
4418 struct symbol_search **symbols, *symp;
4419 int i, j, nunique;
4420
4421 gdb_assert (found != NULL && nfound > 0);
4422
4423 /* Build an array out of the list so we can easily sort them. */
4424 symbols = XNEWVEC (struct symbol_search *, nfound);
4425
4426 symp = found;
4427 for (i = 0; i < nfound; i++)
4428 {
4429 gdb_assert (symp != NULL);
4430 gdb_assert (symp->block >= 0 && symp->block <= 1);
4431 symbols[i] = symp;
4432 symp = symp->next;
4433 }
4434 gdb_assert (symp == NULL);
4435
4436 qsort (symbols, nfound, sizeof (struct symbol_search *),
4437 compare_search_syms);
4438
4439 /* Collapse out the dups. */
4440 for (i = 1, j = 1; i < nfound; ++i)
4441 {
4442 if (compare_search_syms (&symbols[j - 1], &symbols[i]) != 0)
4443 symbols[j++] = symbols[i];
4444 else
4445 xfree (symbols[i]);
4446 }
4447 nunique = j;
4448 symbols[j - 1]->next = NULL;
4449
4450 /* Rebuild the linked list. */
4451 for (i = 0; i < nunique - 1; i++)
4452 symbols[i]->next = symbols[i + 1];
4453 symbols[nunique - 1]->next = NULL;
4454
4455 *new_head = symbols[0];
4456 *new_tail = symbols[nunique - 1];
4457 xfree (symbols);
4458 }
4459
4460 /* An object of this type is passed as the user_data to the
4461 expand_symtabs_matching method. */
4462 struct search_symbols_data
4463 {
4464 int nfiles;
4465 const char **files;
4466
4467 /* It is true if PREG contains valid data, false otherwise. */
4468 unsigned preg_p : 1;
4469 regex_t preg;
4470 };
4471
4472 /* A callback for expand_symtabs_matching. */
4473
4474 static int
4475 search_symbols_file_matches (const char *filename, void *user_data,
4476 int basenames)
4477 {
4478 struct search_symbols_data *data = (struct search_symbols_data *) user_data;
4479
4480 return file_matches (filename, data->files, data->nfiles, basenames);
4481 }
4482
4483 /* A callback for expand_symtabs_matching. */
4484
4485 static int
4486 search_symbols_name_matches (const char *symname, void *user_data)
4487 {
4488 struct search_symbols_data *data = (struct search_symbols_data *) user_data;
4489
4490 return !data->preg_p || regexec (&data->preg, symname, 0, NULL, 0) == 0;
4491 }
4492
4493 /* Search the symbol table for matches to the regular expression REGEXP,
4494 returning the results in *MATCHES.
4495
4496 Only symbols of KIND are searched:
4497 VARIABLES_DOMAIN - search all symbols, excluding functions, type names,
4498 and constants (enums)
4499 FUNCTIONS_DOMAIN - search all functions
4500 TYPES_DOMAIN - search all type names
4501 ALL_DOMAIN - an internal error for this function
4502
4503 free_search_symbols should be called when *MATCHES is no longer needed.
4504
4505 Within each file the results are sorted locally; each symtab's global and
4506 static blocks are separately alphabetized.
4507 Duplicate entries are removed. */
4508
4509 void
4510 search_symbols (const char *regexp, enum search_domain kind,
4511 int nfiles, const char *files[],
4512 struct symbol_search **matches)
4513 {
4514 struct compunit_symtab *cust;
4515 const struct blockvector *bv;
4516 struct block *b;
4517 int i = 0;
4518 struct block_iterator iter;
4519 struct symbol *sym;
4520 struct objfile *objfile;
4521 struct minimal_symbol *msymbol;
4522 int found_misc = 0;
4523 static const enum minimal_symbol_type types[]
4524 = {mst_data, mst_text, mst_abs};
4525 static const enum minimal_symbol_type types2[]
4526 = {mst_bss, mst_file_text, mst_abs};
4527 static const enum minimal_symbol_type types3[]
4528 = {mst_file_data, mst_solib_trampoline, mst_abs};
4529 static const enum minimal_symbol_type types4[]
4530 = {mst_file_bss, mst_text_gnu_ifunc, mst_abs};
4531 enum minimal_symbol_type ourtype;
4532 enum minimal_symbol_type ourtype2;
4533 enum minimal_symbol_type ourtype3;
4534 enum minimal_symbol_type ourtype4;
4535 struct symbol_search *found;
4536 struct symbol_search *tail;
4537 struct search_symbols_data datum;
4538 int nfound;
4539
4540 /* OLD_CHAIN .. RETVAL_CHAIN is always freed, RETVAL_CHAIN .. current
4541 CLEANUP_CHAIN is freed only in the case of an error. */
4542 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
4543 struct cleanup *retval_chain;
4544
4545 gdb_assert (kind <= TYPES_DOMAIN);
4546
4547 ourtype = types[kind];
4548 ourtype2 = types2[kind];
4549 ourtype3 = types3[kind];
4550 ourtype4 = types4[kind];
4551
4552 *matches = NULL;
4553 datum.preg_p = 0;
4554
4555 if (regexp != NULL)
4556 {
4557 /* Make sure spacing is right for C++ operators.
4558 This is just a courtesy to make the matching less sensitive
4559 to how many spaces the user leaves between 'operator'
4560 and <TYPENAME> or <OPERATOR>. */
4561 const char *opend;
4562 const char *opname = operator_chars (regexp, &opend);
4563 int errcode;
4564
4565 if (*opname)
4566 {
4567 int fix = -1; /* -1 means ok; otherwise number of
4568 spaces needed. */
4569
4570 if (isalpha (*opname) || *opname == '_' || *opname == '$')
4571 {
4572 /* There should 1 space between 'operator' and 'TYPENAME'. */
4573 if (opname[-1] != ' ' || opname[-2] == ' ')
4574 fix = 1;
4575 }
4576 else
4577 {
4578 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
4579 if (opname[-1] == ' ')
4580 fix = 0;
4581 }
4582 /* If wrong number of spaces, fix it. */
4583 if (fix >= 0)
4584 {
4585 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
4586
4587 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
4588 regexp = tmp;
4589 }
4590 }
4591
4592 errcode = regcomp (&datum.preg, regexp,
4593 REG_NOSUB | (case_sensitivity == case_sensitive_off
4594 ? REG_ICASE : 0));
4595 if (errcode != 0)
4596 {
4597 char *err = get_regcomp_error (errcode, &datum.preg);
4598
4599 make_cleanup (xfree, err);
4600 error (_("Invalid regexp (%s): %s"), err, regexp);
4601 }
4602 datum.preg_p = 1;
4603 make_regfree_cleanup (&datum.preg);
4604 }
4605
4606 /* Search through the partial symtabs *first* for all symbols
4607 matching the regexp. That way we don't have to reproduce all of
4608 the machinery below. */
4609
4610 datum.nfiles = nfiles;
4611 datum.files = files;
4612 expand_symtabs_matching ((nfiles == 0
4613 ? NULL
4614 : search_symbols_file_matches),
4615 search_symbols_name_matches,
4616 NULL, kind, &datum);
4617
4618 /* Here, we search through the minimal symbol tables for functions
4619 and variables that match, and force their symbols to be read.
4620 This is in particular necessary for demangled variable names,
4621 which are no longer put into the partial symbol tables.
4622 The symbol will then be found during the scan of symtabs below.
4623
4624 For functions, find_pc_symtab should succeed if we have debug info
4625 for the function, for variables we have to call
4626 lookup_symbol_in_objfile_from_linkage_name to determine if the variable
4627 has debug info.
4628 If the lookup fails, set found_misc so that we will rescan to print
4629 any matching symbols without debug info.
4630 We only search the objfile the msymbol came from, we no longer search
4631 all objfiles. In large programs (1000s of shared libs) searching all
4632 objfiles is not worth the pain. */
4633
4634 if (nfiles == 0 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
4635 {
4636 ALL_MSYMBOLS (objfile, msymbol)
4637 {
4638 QUIT;
4639
4640 if (msymbol->created_by_gdb)
4641 continue;
4642
4643 if (MSYMBOL_TYPE (msymbol) == ourtype
4644 || MSYMBOL_TYPE (msymbol) == ourtype2
4645 || MSYMBOL_TYPE (msymbol) == ourtype3
4646 || MSYMBOL_TYPE (msymbol) == ourtype4)
4647 {
4648 if (!datum.preg_p
4649 || regexec (&datum.preg, MSYMBOL_NATURAL_NAME (msymbol), 0,
4650 NULL, 0) == 0)
4651 {
4652 /* Note: An important side-effect of these lookup functions
4653 is to expand the symbol table if msymbol is found, for the
4654 benefit of the next loop on ALL_COMPUNITS. */
4655 if (kind == FUNCTIONS_DOMAIN
4656 ? (find_pc_compunit_symtab
4657 (MSYMBOL_VALUE_ADDRESS (objfile, msymbol)) == NULL)
4658 : (lookup_symbol_in_objfile_from_linkage_name
4659 (objfile, MSYMBOL_LINKAGE_NAME (msymbol), VAR_DOMAIN)
4660 .symbol == NULL))
4661 found_misc = 1;
4662 }
4663 }
4664 }
4665 }
4666
4667 found = NULL;
4668 tail = NULL;
4669 nfound = 0;
4670 retval_chain = make_cleanup_free_search_symbols (&found);
4671
4672 ALL_COMPUNITS (objfile, cust)
4673 {
4674 bv = COMPUNIT_BLOCKVECTOR (cust);
4675 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
4676 {
4677 b = BLOCKVECTOR_BLOCK (bv, i);
4678 ALL_BLOCK_SYMBOLS (b, iter, sym)
4679 {
4680 struct symtab *real_symtab = symbol_symtab (sym);
4681
4682 QUIT;
4683
4684 /* Check first sole REAL_SYMTAB->FILENAME. It does not need to be
4685 a substring of symtab_to_fullname as it may contain "./" etc. */
4686 if ((file_matches (real_symtab->filename, files, nfiles, 0)
4687 || ((basenames_may_differ
4688 || file_matches (lbasename (real_symtab->filename),
4689 files, nfiles, 1))
4690 && file_matches (symtab_to_fullname (real_symtab),
4691 files, nfiles, 0)))
4692 && ((!datum.preg_p
4693 || regexec (&datum.preg, SYMBOL_NATURAL_NAME (sym), 0,
4694 NULL, 0) == 0)
4695 && ((kind == VARIABLES_DOMAIN
4696 && SYMBOL_CLASS (sym) != LOC_TYPEDEF
4697 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
4698 && SYMBOL_CLASS (sym) != LOC_BLOCK
4699 /* LOC_CONST can be used for more than just enums,
4700 e.g., c++ static const members.
4701 We only want to skip enums here. */
4702 && !(SYMBOL_CLASS (sym) == LOC_CONST
4703 && (TYPE_CODE (SYMBOL_TYPE (sym))
4704 == TYPE_CODE_ENUM)))
4705 || (kind == FUNCTIONS_DOMAIN
4706 && SYMBOL_CLASS (sym) == LOC_BLOCK)
4707 || (kind == TYPES_DOMAIN
4708 && SYMBOL_CLASS (sym) == LOC_TYPEDEF))))
4709 {
4710 /* match */
4711 struct symbol_search *psr = XCNEW (struct symbol_search);
4712
4713 psr->block = i;
4714 psr->symbol = sym;
4715 psr->next = NULL;
4716 if (tail == NULL)
4717 found = psr;
4718 else
4719 tail->next = psr;
4720 tail = psr;
4721 nfound ++;
4722 }
4723 }
4724 }
4725 }
4726
4727 if (found != NULL)
4728 {
4729 sort_search_symbols_remove_dups (found, nfound, &found, &tail);
4730 /* Note: nfound is no longer useful beyond this point. */
4731 }
4732
4733 /* If there are no eyes, avoid all contact. I mean, if there are
4734 no debug symbols, then add matching minsyms. */
4735
4736 if (found_misc || (nfiles == 0 && kind != FUNCTIONS_DOMAIN))
4737 {
4738 ALL_MSYMBOLS (objfile, msymbol)
4739 {
4740 QUIT;
4741
4742 if (msymbol->created_by_gdb)
4743 continue;
4744
4745 if (MSYMBOL_TYPE (msymbol) == ourtype
4746 || MSYMBOL_TYPE (msymbol) == ourtype2
4747 || MSYMBOL_TYPE (msymbol) == ourtype3
4748 || MSYMBOL_TYPE (msymbol) == ourtype4)
4749 {
4750 if (!datum.preg_p
4751 || regexec (&datum.preg, MSYMBOL_NATURAL_NAME (msymbol), 0,
4752 NULL, 0) == 0)
4753 {
4754 /* For functions we can do a quick check of whether the
4755 symbol might be found via find_pc_symtab. */
4756 if (kind != FUNCTIONS_DOMAIN
4757 || (find_pc_compunit_symtab
4758 (MSYMBOL_VALUE_ADDRESS (objfile, msymbol)) == NULL))
4759 {
4760 if (lookup_symbol_in_objfile_from_linkage_name
4761 (objfile, MSYMBOL_LINKAGE_NAME (msymbol), VAR_DOMAIN)
4762 .symbol == NULL)
4763 {
4764 /* match */
4765 struct symbol_search *psr = XNEW (struct symbol_search);
4766 psr->block = i;
4767 psr->msymbol.minsym = msymbol;
4768 psr->msymbol.objfile = objfile;
4769 psr->symbol = NULL;
4770 psr->next = NULL;
4771 if (tail == NULL)
4772 found = psr;
4773 else
4774 tail->next = psr;
4775 tail = psr;
4776 }
4777 }
4778 }
4779 }
4780 }
4781 }
4782
4783 discard_cleanups (retval_chain);
4784 do_cleanups (old_chain);
4785 *matches = found;
4786 }
4787
4788 /* Helper function for symtab_symbol_info, this function uses
4789 the data returned from search_symbols() to print information
4790 regarding the match to gdb_stdout. */
4791
4792 static void
4793 print_symbol_info (enum search_domain kind,
4794 struct symbol *sym,
4795 int block, const char *last)
4796 {
4797 struct symtab *s = symbol_symtab (sym);
4798 const char *s_filename = symtab_to_filename_for_display (s);
4799
4800 if (last == NULL || filename_cmp (last, s_filename) != 0)
4801 {
4802 fputs_filtered ("\nFile ", gdb_stdout);
4803 fputs_filtered (s_filename, gdb_stdout);
4804 fputs_filtered (":\n", gdb_stdout);
4805 }
4806
4807 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
4808 printf_filtered ("static ");
4809
4810 /* Typedef that is not a C++ class. */
4811 if (kind == TYPES_DOMAIN
4812 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
4813 typedef_print (SYMBOL_TYPE (sym), sym, gdb_stdout);
4814 /* variable, func, or typedef-that-is-c++-class. */
4815 else if (kind < TYPES_DOMAIN
4816 || (kind == TYPES_DOMAIN
4817 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
4818 {
4819 type_print (SYMBOL_TYPE (sym),
4820 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
4821 ? "" : SYMBOL_PRINT_NAME (sym)),
4822 gdb_stdout, 0);
4823
4824 printf_filtered (";\n");
4825 }
4826 }
4827
4828 /* This help function for symtab_symbol_info() prints information
4829 for non-debugging symbols to gdb_stdout. */
4830
4831 static void
4832 print_msymbol_info (struct bound_minimal_symbol msymbol)
4833 {
4834 struct gdbarch *gdbarch = get_objfile_arch (msymbol.objfile);
4835 char *tmp;
4836
4837 if (gdbarch_addr_bit (gdbarch) <= 32)
4838 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol)
4839 & (CORE_ADDR) 0xffffffff,
4840 8);
4841 else
4842 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol),
4843 16);
4844 printf_filtered ("%s %s\n",
4845 tmp, MSYMBOL_PRINT_NAME (msymbol.minsym));
4846 }
4847
4848 /* This is the guts of the commands "info functions", "info types", and
4849 "info variables". It calls search_symbols to find all matches and then
4850 print_[m]symbol_info to print out some useful information about the
4851 matches. */
4852
4853 static void
4854 symtab_symbol_info (char *regexp, enum search_domain kind, int from_tty)
4855 {
4856 static const char * const classnames[] =
4857 {"variable", "function", "type"};
4858 struct symbol_search *symbols;
4859 struct symbol_search *p;
4860 struct cleanup *old_chain;
4861 const char *last_filename = NULL;
4862 int first = 1;
4863
4864 gdb_assert (kind <= TYPES_DOMAIN);
4865
4866 /* Must make sure that if we're interrupted, symbols gets freed. */
4867 search_symbols (regexp, kind, 0, NULL, &symbols);
4868 old_chain = make_cleanup_free_search_symbols (&symbols);
4869
4870 if (regexp != NULL)
4871 printf_filtered (_("All %ss matching regular expression \"%s\":\n"),
4872 classnames[kind], regexp);
4873 else
4874 printf_filtered (_("All defined %ss:\n"), classnames[kind]);
4875
4876 for (p = symbols; p != NULL; p = p->next)
4877 {
4878 QUIT;
4879
4880 if (p->msymbol.minsym != NULL)
4881 {
4882 if (first)
4883 {
4884 printf_filtered (_("\nNon-debugging symbols:\n"));
4885 first = 0;
4886 }
4887 print_msymbol_info (p->msymbol);
4888 }
4889 else
4890 {
4891 print_symbol_info (kind,
4892 p->symbol,
4893 p->block,
4894 last_filename);
4895 last_filename
4896 = symtab_to_filename_for_display (symbol_symtab (p->symbol));
4897 }
4898 }
4899
4900 do_cleanups (old_chain);
4901 }
4902
4903 static void
4904 variables_info (char *regexp, int from_tty)
4905 {
4906 symtab_symbol_info (regexp, VARIABLES_DOMAIN, from_tty);
4907 }
4908
4909 static void
4910 functions_info (char *regexp, int from_tty)
4911 {
4912 symtab_symbol_info (regexp, FUNCTIONS_DOMAIN, from_tty);
4913 }
4914
4915
4916 static void
4917 types_info (char *regexp, int from_tty)
4918 {
4919 symtab_symbol_info (regexp, TYPES_DOMAIN, from_tty);
4920 }
4921
4922 /* Breakpoint all functions matching regular expression. */
4923
4924 void
4925 rbreak_command_wrapper (char *regexp, int from_tty)
4926 {
4927 rbreak_command (regexp, from_tty);
4928 }
4929
4930 /* A cleanup function that calls end_rbreak_breakpoints. */
4931
4932 static void
4933 do_end_rbreak_breakpoints (void *ignore)
4934 {
4935 end_rbreak_breakpoints ();
4936 }
4937
4938 static void
4939 rbreak_command (char *regexp, int from_tty)
4940 {
4941 struct symbol_search *ss;
4942 struct symbol_search *p;
4943 struct cleanup *old_chain;
4944 char *string = NULL;
4945 int len = 0;
4946 const char **files = NULL;
4947 const char *file_name;
4948 int nfiles = 0;
4949
4950 if (regexp)
4951 {
4952 char *colon = strchr (regexp, ':');
4953
4954 if (colon && *(colon + 1) != ':')
4955 {
4956 int colon_index;
4957 char *local_name;
4958
4959 colon_index = colon - regexp;
4960 local_name = (char *) alloca (colon_index + 1);
4961 memcpy (local_name, regexp, colon_index);
4962 local_name[colon_index--] = 0;
4963 while (isspace (local_name[colon_index]))
4964 local_name[colon_index--] = 0;
4965 file_name = local_name;
4966 files = &file_name;
4967 nfiles = 1;
4968 regexp = skip_spaces (colon + 1);
4969 }
4970 }
4971
4972 search_symbols (regexp, FUNCTIONS_DOMAIN, nfiles, files, &ss);
4973 old_chain = make_cleanup_free_search_symbols (&ss);
4974 make_cleanup (free_current_contents, &string);
4975
4976 start_rbreak_breakpoints ();
4977 make_cleanup (do_end_rbreak_breakpoints, NULL);
4978 for (p = ss; p != NULL; p = p->next)
4979 {
4980 if (p->msymbol.minsym == NULL)
4981 {
4982 struct symtab *symtab = symbol_symtab (p->symbol);
4983 const char *fullname = symtab_to_fullname (symtab);
4984
4985 int newlen = (strlen (fullname)
4986 + strlen (SYMBOL_LINKAGE_NAME (p->symbol))
4987 + 4);
4988
4989 if (newlen > len)
4990 {
4991 string = (char *) xrealloc (string, newlen);
4992 len = newlen;
4993 }
4994 strcpy (string, fullname);
4995 strcat (string, ":'");
4996 strcat (string, SYMBOL_LINKAGE_NAME (p->symbol));
4997 strcat (string, "'");
4998 break_command (string, from_tty);
4999 print_symbol_info (FUNCTIONS_DOMAIN,
5000 p->symbol,
5001 p->block,
5002 symtab_to_filename_for_display (symtab));
5003 }
5004 else
5005 {
5006 int newlen = (strlen (MSYMBOL_LINKAGE_NAME (p->msymbol.minsym)) + 3);
5007
5008 if (newlen > len)
5009 {
5010 string = (char *) xrealloc (string, newlen);
5011 len = newlen;
5012 }
5013 strcpy (string, "'");
5014 strcat (string, MSYMBOL_LINKAGE_NAME (p->msymbol.minsym));
5015 strcat (string, "'");
5016
5017 break_command (string, from_tty);
5018 printf_filtered ("<function, no debug info> %s;\n",
5019 MSYMBOL_PRINT_NAME (p->msymbol.minsym));
5020 }
5021 }
5022
5023 do_cleanups (old_chain);
5024 }
5025 \f
5026
5027 /* Evaluate if NAME matches SYM_TEXT and SYM_TEXT_LEN.
5028
5029 Either sym_text[sym_text_len] != '(' and then we search for any
5030 symbol starting with SYM_TEXT text.
5031
5032 Otherwise sym_text[sym_text_len] == '(' and then we require symbol name to
5033 be terminated at that point. Partial symbol tables do not have parameters
5034 information. */
5035
5036 static int
5037 compare_symbol_name (const char *name, const char *sym_text, int sym_text_len)
5038 {
5039 int (*ncmp) (const char *, const char *, size_t);
5040
5041 ncmp = (case_sensitivity == case_sensitive_on ? strncmp : strncasecmp);
5042
5043 if (ncmp (name, sym_text, sym_text_len) != 0)
5044 return 0;
5045
5046 if (sym_text[sym_text_len] == '(')
5047 {
5048 /* User searches for `name(someth...'. Require NAME to be terminated.
5049 Normally psymtabs and gdbindex have no parameter types so '\0' will be
5050 present but accept even parameters presence. In this case this
5051 function is in fact strcmp_iw but whitespace skipping is not supported
5052 for tab completion. */
5053
5054 if (name[sym_text_len] != '\0' && name[sym_text_len] != '(')
5055 return 0;
5056 }
5057
5058 return 1;
5059 }
5060
5061 /* Free any memory associated with a completion list. */
5062
5063 static void
5064 free_completion_list (VEC (char_ptr) **list_ptr)
5065 {
5066 int i;
5067 char *p;
5068
5069 for (i = 0; VEC_iterate (char_ptr, *list_ptr, i, p); ++i)
5070 xfree (p);
5071 VEC_free (char_ptr, *list_ptr);
5072 }
5073
5074 /* Callback for make_cleanup. */
5075
5076 static void
5077 do_free_completion_list (void *list)
5078 {
5079 free_completion_list ((VEC (char_ptr) **) list);
5080 }
5081
5082 /* Helper routine for make_symbol_completion_list. */
5083
5084 static VEC (char_ptr) *return_val;
5085
5086 #define COMPLETION_LIST_ADD_SYMBOL(symbol, sym_text, len, text, word) \
5087 completion_list_add_name \
5088 (SYMBOL_NATURAL_NAME (symbol), (sym_text), (len), (text), (word))
5089
5090 #define MCOMPLETION_LIST_ADD_SYMBOL(symbol, sym_text, len, text, word) \
5091 completion_list_add_name \
5092 (MSYMBOL_NATURAL_NAME (symbol), (sym_text), (len), (text), (word))
5093
5094 /* Tracker for how many unique completions have been generated. Used
5095 to terminate completion list generation early if the list has grown
5096 to a size so large as to be useless. This helps avoid GDB seeming
5097 to lock up in the event the user requests to complete on something
5098 vague that necessitates the time consuming expansion of many symbol
5099 tables. */
5100
5101 static completion_tracker_t completion_tracker;
5102
5103 /* Test to see if the symbol specified by SYMNAME (which is already
5104 demangled for C++ symbols) matches SYM_TEXT in the first SYM_TEXT_LEN
5105 characters. If so, add it to the current completion list. */
5106
5107 static void
5108 completion_list_add_name (const char *symname,
5109 const char *sym_text, int sym_text_len,
5110 const char *text, const char *word)
5111 {
5112 /* Clip symbols that cannot match. */
5113 if (!compare_symbol_name (symname, sym_text, sym_text_len))
5114 return;
5115
5116 /* We have a match for a completion, so add SYMNAME to the current list
5117 of matches. Note that the name is moved to freshly malloc'd space. */
5118
5119 {
5120 char *newobj;
5121 enum maybe_add_completion_enum add_status;
5122
5123 if (word == sym_text)
5124 {
5125 newobj = (char *) xmalloc (strlen (symname) + 5);
5126 strcpy (newobj, symname);
5127 }
5128 else if (word > sym_text)
5129 {
5130 /* Return some portion of symname. */
5131 newobj = (char *) xmalloc (strlen (symname) + 5);
5132 strcpy (newobj, symname + (word - sym_text));
5133 }
5134 else
5135 {
5136 /* Return some of SYM_TEXT plus symname. */
5137 newobj = (char *) xmalloc (strlen (symname) + (sym_text - word) + 5);
5138 strncpy (newobj, word, sym_text - word);
5139 newobj[sym_text - word] = '\0';
5140 strcat (newobj, symname);
5141 }
5142
5143 add_status = maybe_add_completion (completion_tracker, newobj);
5144
5145 switch (add_status)
5146 {
5147 case MAYBE_ADD_COMPLETION_OK:
5148 VEC_safe_push (char_ptr, return_val, newobj);
5149 break;
5150 case MAYBE_ADD_COMPLETION_OK_MAX_REACHED:
5151 VEC_safe_push (char_ptr, return_val, newobj);
5152 throw_max_completions_reached_error ();
5153 case MAYBE_ADD_COMPLETION_MAX_REACHED:
5154 xfree (newobj);
5155 throw_max_completions_reached_error ();
5156 case MAYBE_ADD_COMPLETION_DUPLICATE:
5157 xfree (newobj);
5158 break;
5159 }
5160 }
5161 }
5162
5163 /* ObjC: In case we are completing on a selector, look as the msymbol
5164 again and feed all the selectors into the mill. */
5165
5166 static void
5167 completion_list_objc_symbol (struct minimal_symbol *msymbol,
5168 const char *sym_text, int sym_text_len,
5169 const char *text, const char *word)
5170 {
5171 static char *tmp = NULL;
5172 static unsigned int tmplen = 0;
5173
5174 const char *method, *category, *selector;
5175 char *tmp2 = NULL;
5176
5177 method = MSYMBOL_NATURAL_NAME (msymbol);
5178
5179 /* Is it a method? */
5180 if ((method[0] != '-') && (method[0] != '+'))
5181 return;
5182
5183 if (sym_text[0] == '[')
5184 /* Complete on shortened method method. */
5185 completion_list_add_name (method + 1, sym_text, sym_text_len, text, word);
5186
5187 while ((strlen (method) + 1) >= tmplen)
5188 {
5189 if (tmplen == 0)
5190 tmplen = 1024;
5191 else
5192 tmplen *= 2;
5193 tmp = (char *) xrealloc (tmp, tmplen);
5194 }
5195 selector = strchr (method, ' ');
5196 if (selector != NULL)
5197 selector++;
5198
5199 category = strchr (method, '(');
5200
5201 if ((category != NULL) && (selector != NULL))
5202 {
5203 memcpy (tmp, method, (category - method));
5204 tmp[category - method] = ' ';
5205 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
5206 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
5207 if (sym_text[0] == '[')
5208 completion_list_add_name (tmp + 1, sym_text, sym_text_len, text, word);
5209 }
5210
5211 if (selector != NULL)
5212 {
5213 /* Complete on selector only. */
5214 strcpy (tmp, selector);
5215 tmp2 = strchr (tmp, ']');
5216 if (tmp2 != NULL)
5217 *tmp2 = '\0';
5218
5219 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
5220 }
5221 }
5222
5223 /* Break the non-quoted text based on the characters which are in
5224 symbols. FIXME: This should probably be language-specific. */
5225
5226 static const char *
5227 language_search_unquoted_string (const char *text, const char *p)
5228 {
5229 for (; p > text; --p)
5230 {
5231 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
5232 continue;
5233 else
5234 {
5235 if ((current_language->la_language == language_objc))
5236 {
5237 if (p[-1] == ':') /* Might be part of a method name. */
5238 continue;
5239 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
5240 p -= 2; /* Beginning of a method name. */
5241 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
5242 { /* Might be part of a method name. */
5243 const char *t = p;
5244
5245 /* Seeing a ' ' or a '(' is not conclusive evidence
5246 that we are in the middle of a method name. However,
5247 finding "-[" or "+[" should be pretty un-ambiguous.
5248 Unfortunately we have to find it now to decide. */
5249
5250 while (t > text)
5251 if (isalnum (t[-1]) || t[-1] == '_' ||
5252 t[-1] == ' ' || t[-1] == ':' ||
5253 t[-1] == '(' || t[-1] == ')')
5254 --t;
5255 else
5256 break;
5257
5258 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
5259 p = t - 2; /* Method name detected. */
5260 /* Else we leave with p unchanged. */
5261 }
5262 }
5263 break;
5264 }
5265 }
5266 return p;
5267 }
5268
5269 static void
5270 completion_list_add_fields (struct symbol *sym, const char *sym_text,
5271 int sym_text_len, const char *text,
5272 const char *word)
5273 {
5274 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5275 {
5276 struct type *t = SYMBOL_TYPE (sym);
5277 enum type_code c = TYPE_CODE (t);
5278 int j;
5279
5280 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
5281 for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++)
5282 if (TYPE_FIELD_NAME (t, j))
5283 completion_list_add_name (TYPE_FIELD_NAME (t, j),
5284 sym_text, sym_text_len, text, word);
5285 }
5286 }
5287
5288 /* Type of the user_data argument passed to add_macro_name,
5289 symbol_completion_matcher and symtab_expansion_callback. */
5290
5291 struct add_name_data
5292 {
5293 /* Arguments required by completion_list_add_name. */
5294 const char *sym_text;
5295 int sym_text_len;
5296 const char *text;
5297 const char *word;
5298
5299 /* Extra argument required for add_symtab_completions. */
5300 enum type_code code;
5301 };
5302
5303 /* A callback used with macro_for_each and macro_for_each_in_scope.
5304 This adds a macro's name to the current completion list. */
5305
5306 static void
5307 add_macro_name (const char *name, const struct macro_definition *ignore,
5308 struct macro_source_file *ignore2, int ignore3,
5309 void *user_data)
5310 {
5311 struct add_name_data *datum = (struct add_name_data *) user_data;
5312
5313 completion_list_add_name (name,
5314 datum->sym_text, datum->sym_text_len,
5315 datum->text, datum->word);
5316 }
5317
5318 /* A callback for expand_symtabs_matching. */
5319
5320 static int
5321 symbol_completion_matcher (const char *name, void *user_data)
5322 {
5323 struct add_name_data *datum = (struct add_name_data *) user_data;
5324
5325 return compare_symbol_name (name, datum->sym_text, datum->sym_text_len);
5326 }
5327
5328 /* Add matching symbols from SYMTAB to the current completion list. */
5329
5330 static void
5331 add_symtab_completions (struct compunit_symtab *cust,
5332 const char *sym_text, int sym_text_len,
5333 const char *text, const char *word,
5334 enum type_code code)
5335 {
5336 struct symbol *sym;
5337 const struct block *b;
5338 struct block_iterator iter;
5339 int i;
5340
5341 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
5342 {
5343 QUIT;
5344 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust), i);
5345 ALL_BLOCK_SYMBOLS (b, iter, sym)
5346 {
5347 if (code == TYPE_CODE_UNDEF
5348 || (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
5349 && TYPE_CODE (SYMBOL_TYPE (sym)) == code))
5350 COMPLETION_LIST_ADD_SYMBOL (sym,
5351 sym_text, sym_text_len,
5352 text, word);
5353 }
5354 }
5355 }
5356
5357 /* Callback to add completions to the current list when symbol tables
5358 are expanded during completion list generation. */
5359
5360 static void
5361 symtab_expansion_callback (struct compunit_symtab *symtab,
5362 void *user_data)
5363 {
5364 struct add_name_data *datum = (struct add_name_data *) user_data;
5365
5366 add_symtab_completions (symtab,
5367 datum->sym_text, datum->sym_text_len,
5368 datum->text, datum->word,
5369 datum->code);
5370 }
5371
5372 static void
5373 default_make_symbol_completion_list_break_on_1 (const char *text,
5374 const char *word,
5375 const char *break_on,
5376 enum type_code code)
5377 {
5378 /* Problem: All of the symbols have to be copied because readline
5379 frees them. I'm not going to worry about this; hopefully there
5380 won't be that many. */
5381
5382 struct symbol *sym;
5383 struct compunit_symtab *cust;
5384 struct minimal_symbol *msymbol;
5385 struct objfile *objfile;
5386 const struct block *b;
5387 const struct block *surrounding_static_block, *surrounding_global_block;
5388 struct block_iterator iter;
5389 /* The symbol we are completing on. Points in same buffer as text. */
5390 const char *sym_text;
5391 /* Length of sym_text. */
5392 int sym_text_len;
5393 struct add_name_data datum;
5394 struct cleanup *cleanups;
5395
5396 /* Now look for the symbol we are supposed to complete on. */
5397 {
5398 const char *p;
5399 char quote_found;
5400 const char *quote_pos = NULL;
5401
5402 /* First see if this is a quoted string. */
5403 quote_found = '\0';
5404 for (p = text; *p != '\0'; ++p)
5405 {
5406 if (quote_found != '\0')
5407 {
5408 if (*p == quote_found)
5409 /* Found close quote. */
5410 quote_found = '\0';
5411 else if (*p == '\\' && p[1] == quote_found)
5412 /* A backslash followed by the quote character
5413 doesn't end the string. */
5414 ++p;
5415 }
5416 else if (*p == '\'' || *p == '"')
5417 {
5418 quote_found = *p;
5419 quote_pos = p;
5420 }
5421 }
5422 if (quote_found == '\'')
5423 /* A string within single quotes can be a symbol, so complete on it. */
5424 sym_text = quote_pos + 1;
5425 else if (quote_found == '"')
5426 /* A double-quoted string is never a symbol, nor does it make sense
5427 to complete it any other way. */
5428 {
5429 return;
5430 }
5431 else
5432 {
5433 /* It is not a quoted string. Break it based on the characters
5434 which are in symbols. */
5435 while (p > text)
5436 {
5437 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0'
5438 || p[-1] == ':' || strchr (break_on, p[-1]) != NULL)
5439 --p;
5440 else
5441 break;
5442 }
5443 sym_text = p;
5444 }
5445 }
5446
5447 sym_text_len = strlen (sym_text);
5448
5449 /* Prepare SYM_TEXT_LEN for compare_symbol_name. */
5450
5451 if (current_language->la_language == language_cplus
5452 || current_language->la_language == language_java
5453 || current_language->la_language == language_fortran)
5454 {
5455 /* These languages may have parameters entered by user but they are never
5456 present in the partial symbol tables. */
5457
5458 const char *cs = (const char *) memchr (sym_text, '(', sym_text_len);
5459
5460 if (cs)
5461 sym_text_len = cs - sym_text;
5462 }
5463 gdb_assert (sym_text[sym_text_len] == '\0' || sym_text[sym_text_len] == '(');
5464
5465 completion_tracker = new_completion_tracker ();
5466 cleanups = make_cleanup_free_completion_tracker (&completion_tracker);
5467
5468 datum.sym_text = sym_text;
5469 datum.sym_text_len = sym_text_len;
5470 datum.text = text;
5471 datum.word = word;
5472 datum.code = code;
5473
5474 /* At this point scan through the misc symbol vectors and add each
5475 symbol you find to the list. Eventually we want to ignore
5476 anything that isn't a text symbol (everything else will be
5477 handled by the psymtab code below). */
5478
5479 if (code == TYPE_CODE_UNDEF)
5480 {
5481 ALL_MSYMBOLS (objfile, msymbol)
5482 {
5483 QUIT;
5484 MCOMPLETION_LIST_ADD_SYMBOL (msymbol, sym_text, sym_text_len, text,
5485 word);
5486
5487 completion_list_objc_symbol (msymbol, sym_text, sym_text_len, text,
5488 word);
5489 }
5490 }
5491
5492 /* Add completions for all currently loaded symbol tables. */
5493 ALL_COMPUNITS (objfile, cust)
5494 add_symtab_completions (cust, sym_text, sym_text_len, text, word,
5495 code);
5496
5497 /* Look through the partial symtabs for all symbols which begin
5498 by matching SYM_TEXT. Expand all CUs that you find to the list.
5499 symtab_expansion_callback is called for each expanded symtab,
5500 causing those symtab's completions to be added to the list too. */
5501 expand_symtabs_matching (NULL, symbol_completion_matcher,
5502 symtab_expansion_callback, ALL_DOMAIN,
5503 &datum);
5504
5505 /* Search upwards from currently selected frame (so that we can
5506 complete on local vars). Also catch fields of types defined in
5507 this places which match our text string. Only complete on types
5508 visible from current context. */
5509
5510 b = get_selected_block (0);
5511 surrounding_static_block = block_static_block (b);
5512 surrounding_global_block = block_global_block (b);
5513 if (surrounding_static_block != NULL)
5514 while (b != surrounding_static_block)
5515 {
5516 QUIT;
5517
5518 ALL_BLOCK_SYMBOLS (b, iter, sym)
5519 {
5520 if (code == TYPE_CODE_UNDEF)
5521 {
5522 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text,
5523 word);
5524 completion_list_add_fields (sym, sym_text, sym_text_len, text,
5525 word);
5526 }
5527 else if (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
5528 && TYPE_CODE (SYMBOL_TYPE (sym)) == code)
5529 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text,
5530 word);
5531 }
5532
5533 /* Stop when we encounter an enclosing function. Do not stop for
5534 non-inlined functions - the locals of the enclosing function
5535 are in scope for a nested function. */
5536 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
5537 break;
5538 b = BLOCK_SUPERBLOCK (b);
5539 }
5540
5541 /* Add fields from the file's types; symbols will be added below. */
5542
5543 if (code == TYPE_CODE_UNDEF)
5544 {
5545 if (surrounding_static_block != NULL)
5546 ALL_BLOCK_SYMBOLS (surrounding_static_block, iter, sym)
5547 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
5548
5549 if (surrounding_global_block != NULL)
5550 ALL_BLOCK_SYMBOLS (surrounding_global_block, iter, sym)
5551 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
5552 }
5553
5554 /* Skip macros if we are completing a struct tag -- arguable but
5555 usually what is expected. */
5556 if (current_language->la_macro_expansion == macro_expansion_c
5557 && code == TYPE_CODE_UNDEF)
5558 {
5559 struct macro_scope *scope;
5560
5561 /* Add any macros visible in the default scope. Note that this
5562 may yield the occasional wrong result, because an expression
5563 might be evaluated in a scope other than the default. For
5564 example, if the user types "break file:line if <TAB>", the
5565 resulting expression will be evaluated at "file:line" -- but
5566 at there does not seem to be a way to detect this at
5567 completion time. */
5568 scope = default_macro_scope ();
5569 if (scope)
5570 {
5571 macro_for_each_in_scope (scope->file, scope->line,
5572 add_macro_name, &datum);
5573 xfree (scope);
5574 }
5575
5576 /* User-defined macros are always visible. */
5577 macro_for_each (macro_user_macros, add_macro_name, &datum);
5578 }
5579
5580 do_cleanups (cleanups);
5581 }
5582
5583 VEC (char_ptr) *
5584 default_make_symbol_completion_list_break_on (const char *text,
5585 const char *word,
5586 const char *break_on,
5587 enum type_code code)
5588 {
5589 struct cleanup *back_to;
5590
5591 return_val = NULL;
5592 back_to = make_cleanup (do_free_completion_list, &return_val);
5593
5594 TRY
5595 {
5596 default_make_symbol_completion_list_break_on_1 (text, word,
5597 break_on, code);
5598 }
5599 CATCH (except, RETURN_MASK_ERROR)
5600 {
5601 if (except.error != MAX_COMPLETIONS_REACHED_ERROR)
5602 throw_exception (except);
5603 }
5604 END_CATCH
5605
5606 discard_cleanups (back_to);
5607 return return_val;
5608 }
5609
5610 VEC (char_ptr) *
5611 default_make_symbol_completion_list (const char *text, const char *word,
5612 enum type_code code)
5613 {
5614 return default_make_symbol_completion_list_break_on (text, word, "", code);
5615 }
5616
5617 /* Return a vector of all symbols (regardless of class) which begin by
5618 matching TEXT. If the answer is no symbols, then the return value
5619 is NULL. */
5620
5621 VEC (char_ptr) *
5622 make_symbol_completion_list (const char *text, const char *word)
5623 {
5624 return current_language->la_make_symbol_completion_list (text, word,
5625 TYPE_CODE_UNDEF);
5626 }
5627
5628 /* Like make_symbol_completion_list, but only return STRUCT_DOMAIN
5629 symbols whose type code is CODE. */
5630
5631 VEC (char_ptr) *
5632 make_symbol_completion_type (const char *text, const char *word,
5633 enum type_code code)
5634 {
5635 gdb_assert (code == TYPE_CODE_UNION
5636 || code == TYPE_CODE_STRUCT
5637 || code == TYPE_CODE_ENUM);
5638 return current_language->la_make_symbol_completion_list (text, word, code);
5639 }
5640
5641 /* Like make_symbol_completion_list, but suitable for use as a
5642 completion function. */
5643
5644 VEC (char_ptr) *
5645 make_symbol_completion_list_fn (struct cmd_list_element *ignore,
5646 const char *text, const char *word)
5647 {
5648 return make_symbol_completion_list (text, word);
5649 }
5650
5651 /* Like make_symbol_completion_list, but returns a list of symbols
5652 defined in a source file FILE. */
5653
5654 static VEC (char_ptr) *
5655 make_file_symbol_completion_list_1 (const char *text, const char *word,
5656 const char *srcfile)
5657 {
5658 struct symbol *sym;
5659 struct symtab *s;
5660 struct block *b;
5661 struct block_iterator iter;
5662 /* The symbol we are completing on. Points in same buffer as text. */
5663 const char *sym_text;
5664 /* Length of sym_text. */
5665 int sym_text_len;
5666
5667 /* Now look for the symbol we are supposed to complete on.
5668 FIXME: This should be language-specific. */
5669 {
5670 const char *p;
5671 char quote_found;
5672 const char *quote_pos = NULL;
5673
5674 /* First see if this is a quoted string. */
5675 quote_found = '\0';
5676 for (p = text; *p != '\0'; ++p)
5677 {
5678 if (quote_found != '\0')
5679 {
5680 if (*p == quote_found)
5681 /* Found close quote. */
5682 quote_found = '\0';
5683 else if (*p == '\\' && p[1] == quote_found)
5684 /* A backslash followed by the quote character
5685 doesn't end the string. */
5686 ++p;
5687 }
5688 else if (*p == '\'' || *p == '"')
5689 {
5690 quote_found = *p;
5691 quote_pos = p;
5692 }
5693 }
5694 if (quote_found == '\'')
5695 /* A string within single quotes can be a symbol, so complete on it. */
5696 sym_text = quote_pos + 1;
5697 else if (quote_found == '"')
5698 /* A double-quoted string is never a symbol, nor does it make sense
5699 to complete it any other way. */
5700 {
5701 return NULL;
5702 }
5703 else
5704 {
5705 /* Not a quoted string. */
5706 sym_text = language_search_unquoted_string (text, p);
5707 }
5708 }
5709
5710 sym_text_len = strlen (sym_text);
5711
5712 /* Find the symtab for SRCFILE (this loads it if it was not yet read
5713 in). */
5714 s = lookup_symtab (srcfile);
5715 if (s == NULL)
5716 {
5717 /* Maybe they typed the file with leading directories, while the
5718 symbol tables record only its basename. */
5719 const char *tail = lbasename (srcfile);
5720
5721 if (tail > srcfile)
5722 s = lookup_symtab (tail);
5723 }
5724
5725 /* If we have no symtab for that file, return an empty list. */
5726 if (s == NULL)
5727 return (return_val);
5728
5729 /* Go through this symtab and check the externs and statics for
5730 symbols which match. */
5731
5732 b = BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (s), GLOBAL_BLOCK);
5733 ALL_BLOCK_SYMBOLS (b, iter, sym)
5734 {
5735 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
5736 }
5737
5738 b = BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (s), STATIC_BLOCK);
5739 ALL_BLOCK_SYMBOLS (b, iter, sym)
5740 {
5741 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
5742 }
5743
5744 return (return_val);
5745 }
5746
5747 /* Wrapper around make_file_symbol_completion_list_1
5748 to handle MAX_COMPLETIONS_REACHED_ERROR. */
5749
5750 VEC (char_ptr) *
5751 make_file_symbol_completion_list (const char *text, const char *word,
5752 const char *srcfile)
5753 {
5754 struct cleanup *back_to, *cleanups;
5755
5756 completion_tracker = new_completion_tracker ();
5757 cleanups = make_cleanup_free_completion_tracker (&completion_tracker);
5758 return_val = NULL;
5759 back_to = make_cleanup (do_free_completion_list, &return_val);
5760
5761 TRY
5762 {
5763 make_file_symbol_completion_list_1 (text, word, srcfile);
5764 }
5765 CATCH (except, RETURN_MASK_ERROR)
5766 {
5767 if (except.error != MAX_COMPLETIONS_REACHED_ERROR)
5768 throw_exception (except);
5769 }
5770 END_CATCH
5771
5772 discard_cleanups (back_to);
5773 do_cleanups (cleanups);
5774 return return_val;
5775 }
5776
5777 /* A helper function for make_source_files_completion_list. It adds
5778 another file name to a list of possible completions, growing the
5779 list as necessary. */
5780
5781 static void
5782 add_filename_to_list (const char *fname, const char *text, const char *word,
5783 VEC (char_ptr) **list)
5784 {
5785 char *newobj;
5786 size_t fnlen = strlen (fname);
5787
5788 if (word == text)
5789 {
5790 /* Return exactly fname. */
5791 newobj = (char *) xmalloc (fnlen + 5);
5792 strcpy (newobj, fname);
5793 }
5794 else if (word > text)
5795 {
5796 /* Return some portion of fname. */
5797 newobj = (char *) xmalloc (fnlen + 5);
5798 strcpy (newobj, fname + (word - text));
5799 }
5800 else
5801 {
5802 /* Return some of TEXT plus fname. */
5803 newobj = (char *) xmalloc (fnlen + (text - word) + 5);
5804 strncpy (newobj, word, text - word);
5805 newobj[text - word] = '\0';
5806 strcat (newobj, fname);
5807 }
5808 VEC_safe_push (char_ptr, *list, newobj);
5809 }
5810
5811 static int
5812 not_interesting_fname (const char *fname)
5813 {
5814 static const char *illegal_aliens[] = {
5815 "_globals_", /* inserted by coff_symtab_read */
5816 NULL
5817 };
5818 int i;
5819
5820 for (i = 0; illegal_aliens[i]; i++)
5821 {
5822 if (filename_cmp (fname, illegal_aliens[i]) == 0)
5823 return 1;
5824 }
5825 return 0;
5826 }
5827
5828 /* An object of this type is passed as the user_data argument to
5829 map_partial_symbol_filenames. */
5830 struct add_partial_filename_data
5831 {
5832 struct filename_seen_cache *filename_seen_cache;
5833 const char *text;
5834 const char *word;
5835 int text_len;
5836 VEC (char_ptr) **list;
5837 };
5838
5839 /* A callback for map_partial_symbol_filenames. */
5840
5841 static void
5842 maybe_add_partial_symtab_filename (const char *filename, const char *fullname,
5843 void *user_data)
5844 {
5845 struct add_partial_filename_data *data
5846 = (struct add_partial_filename_data *) user_data;
5847
5848 if (not_interesting_fname (filename))
5849 return;
5850 if (!filename_seen (data->filename_seen_cache, filename, 1)
5851 && filename_ncmp (filename, data->text, data->text_len) == 0)
5852 {
5853 /* This file matches for a completion; add it to the
5854 current list of matches. */
5855 add_filename_to_list (filename, data->text, data->word, data->list);
5856 }
5857 else
5858 {
5859 const char *base_name = lbasename (filename);
5860
5861 if (base_name != filename
5862 && !filename_seen (data->filename_seen_cache, base_name, 1)
5863 && filename_ncmp (base_name, data->text, data->text_len) == 0)
5864 add_filename_to_list (base_name, data->text, data->word, data->list);
5865 }
5866 }
5867
5868 /* Return a vector of all source files whose names begin with matching
5869 TEXT. The file names are looked up in the symbol tables of this
5870 program. If the answer is no matchess, then the return value is
5871 NULL. */
5872
5873 VEC (char_ptr) *
5874 make_source_files_completion_list (const char *text, const char *word)
5875 {
5876 struct compunit_symtab *cu;
5877 struct symtab *s;
5878 struct objfile *objfile;
5879 size_t text_len = strlen (text);
5880 VEC (char_ptr) *list = NULL;
5881 const char *base_name;
5882 struct add_partial_filename_data datum;
5883 struct filename_seen_cache *filename_seen_cache;
5884 struct cleanup *back_to, *cache_cleanup;
5885
5886 if (!have_full_symbols () && !have_partial_symbols ())
5887 return list;
5888
5889 back_to = make_cleanup (do_free_completion_list, &list);
5890
5891 filename_seen_cache = create_filename_seen_cache ();
5892 cache_cleanup = make_cleanup (delete_filename_seen_cache,
5893 filename_seen_cache);
5894
5895 ALL_FILETABS (objfile, cu, s)
5896 {
5897 if (not_interesting_fname (s->filename))
5898 continue;
5899 if (!filename_seen (filename_seen_cache, s->filename, 1)
5900 && filename_ncmp (s->filename, text, text_len) == 0)
5901 {
5902 /* This file matches for a completion; add it to the current
5903 list of matches. */
5904 add_filename_to_list (s->filename, text, word, &list);
5905 }
5906 else
5907 {
5908 /* NOTE: We allow the user to type a base name when the
5909 debug info records leading directories, but not the other
5910 way around. This is what subroutines of breakpoint
5911 command do when they parse file names. */
5912 base_name = lbasename (s->filename);
5913 if (base_name != s->filename
5914 && !filename_seen (filename_seen_cache, base_name, 1)
5915 && filename_ncmp (base_name, text, text_len) == 0)
5916 add_filename_to_list (base_name, text, word, &list);
5917 }
5918 }
5919
5920 datum.filename_seen_cache = filename_seen_cache;
5921 datum.text = text;
5922 datum.word = word;
5923 datum.text_len = text_len;
5924 datum.list = &list;
5925 map_symbol_filenames (maybe_add_partial_symtab_filename, &datum,
5926 0 /*need_fullname*/);
5927
5928 do_cleanups (cache_cleanup);
5929 discard_cleanups (back_to);
5930
5931 return list;
5932 }
5933 \f
5934 /* Track MAIN */
5935
5936 /* Return the "main_info" object for the current program space. If
5937 the object has not yet been created, create it and fill in some
5938 default values. */
5939
5940 static struct main_info *
5941 get_main_info (void)
5942 {
5943 struct main_info *info
5944 = (struct main_info *) program_space_data (current_program_space,
5945 main_progspace_key);
5946
5947 if (info == NULL)
5948 {
5949 /* It may seem strange to store the main name in the progspace
5950 and also in whatever objfile happens to see a main name in
5951 its debug info. The reason for this is mainly historical:
5952 gdb returned "main" as the name even if no function named
5953 "main" was defined the program; and this approach lets us
5954 keep compatibility. */
5955 info = XCNEW (struct main_info);
5956 info->language_of_main = language_unknown;
5957 set_program_space_data (current_program_space, main_progspace_key,
5958 info);
5959 }
5960
5961 return info;
5962 }
5963
5964 /* A cleanup to destroy a struct main_info when a progspace is
5965 destroyed. */
5966
5967 static void
5968 main_info_cleanup (struct program_space *pspace, void *data)
5969 {
5970 struct main_info *info = (struct main_info *) data;
5971
5972 if (info != NULL)
5973 xfree (info->name_of_main);
5974 xfree (info);
5975 }
5976
5977 static void
5978 set_main_name (const char *name, enum language lang)
5979 {
5980 struct main_info *info = get_main_info ();
5981
5982 if (info->name_of_main != NULL)
5983 {
5984 xfree (info->name_of_main);
5985 info->name_of_main = NULL;
5986 info->language_of_main = language_unknown;
5987 }
5988 if (name != NULL)
5989 {
5990 info->name_of_main = xstrdup (name);
5991 info->language_of_main = lang;
5992 }
5993 }
5994
5995 /* Deduce the name of the main procedure, and set NAME_OF_MAIN
5996 accordingly. */
5997
5998 static void
5999 find_main_name (void)
6000 {
6001 const char *new_main_name;
6002 struct objfile *objfile;
6003
6004 /* First check the objfiles to see whether a debuginfo reader has
6005 picked up the appropriate main name. Historically the main name
6006 was found in a more or less random way; this approach instead
6007 relies on the order of objfile creation -- which still isn't
6008 guaranteed to get the correct answer, but is just probably more
6009 accurate. */
6010 ALL_OBJFILES (objfile)
6011 {
6012 if (objfile->per_bfd->name_of_main != NULL)
6013 {
6014 set_main_name (objfile->per_bfd->name_of_main,
6015 objfile->per_bfd->language_of_main);
6016 return;
6017 }
6018 }
6019
6020 /* Try to see if the main procedure is in Ada. */
6021 /* FIXME: brobecker/2005-03-07: Another way of doing this would
6022 be to add a new method in the language vector, and call this
6023 method for each language until one of them returns a non-empty
6024 name. This would allow us to remove this hard-coded call to
6025 an Ada function. It is not clear that this is a better approach
6026 at this point, because all methods need to be written in a way
6027 such that false positives never be returned. For instance, it is
6028 important that a method does not return a wrong name for the main
6029 procedure if the main procedure is actually written in a different
6030 language. It is easy to guaranty this with Ada, since we use a
6031 special symbol generated only when the main in Ada to find the name
6032 of the main procedure. It is difficult however to see how this can
6033 be guarantied for languages such as C, for instance. This suggests
6034 that order of call for these methods becomes important, which means
6035 a more complicated approach. */
6036 new_main_name = ada_main_name ();
6037 if (new_main_name != NULL)
6038 {
6039 set_main_name (new_main_name, language_ada);
6040 return;
6041 }
6042
6043 new_main_name = d_main_name ();
6044 if (new_main_name != NULL)
6045 {
6046 set_main_name (new_main_name, language_d);
6047 return;
6048 }
6049
6050 new_main_name = go_main_name ();
6051 if (new_main_name != NULL)
6052 {
6053 set_main_name (new_main_name, language_go);
6054 return;
6055 }
6056
6057 new_main_name = pascal_main_name ();
6058 if (new_main_name != NULL)
6059 {
6060 set_main_name (new_main_name, language_pascal);
6061 return;
6062 }
6063
6064 /* The languages above didn't identify the name of the main procedure.
6065 Fallback to "main". */
6066 set_main_name ("main", language_unknown);
6067 }
6068
6069 char *
6070 main_name (void)
6071 {
6072 struct main_info *info = get_main_info ();
6073
6074 if (info->name_of_main == NULL)
6075 find_main_name ();
6076
6077 return info->name_of_main;
6078 }
6079
6080 /* Return the language of the main function. If it is not known,
6081 return language_unknown. */
6082
6083 enum language
6084 main_language (void)
6085 {
6086 struct main_info *info = get_main_info ();
6087
6088 if (info->name_of_main == NULL)
6089 find_main_name ();
6090
6091 return info->language_of_main;
6092 }
6093
6094 /* Handle ``executable_changed'' events for the symtab module. */
6095
6096 static void
6097 symtab_observer_executable_changed (void)
6098 {
6099 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
6100 set_main_name (NULL, language_unknown);
6101 }
6102
6103 /* Return 1 if the supplied producer string matches the ARM RealView
6104 compiler (armcc). */
6105
6106 int
6107 producer_is_realview (const char *producer)
6108 {
6109 static const char *const arm_idents[] = {
6110 "ARM C Compiler, ADS",
6111 "Thumb C Compiler, ADS",
6112 "ARM C++ Compiler, ADS",
6113 "Thumb C++ Compiler, ADS",
6114 "ARM/Thumb C/C++ Compiler, RVCT",
6115 "ARM C/C++ Compiler, RVCT"
6116 };
6117 int i;
6118
6119 if (producer == NULL)
6120 return 0;
6121
6122 for (i = 0; i < ARRAY_SIZE (arm_idents); i++)
6123 if (startswith (producer, arm_idents[i]))
6124 return 1;
6125
6126 return 0;
6127 }
6128
6129 \f
6130
6131 /* The next index to hand out in response to a registration request. */
6132
6133 static int next_aclass_value = LOC_FINAL_VALUE;
6134
6135 /* The maximum number of "aclass" registrations we support. This is
6136 constant for convenience. */
6137 #define MAX_SYMBOL_IMPLS (LOC_FINAL_VALUE + 10)
6138
6139 /* The objects representing the various "aclass" values. The elements
6140 from 0 up to LOC_FINAL_VALUE-1 represent themselves, and subsequent
6141 elements are those registered at gdb initialization time. */
6142
6143 static struct symbol_impl symbol_impl[MAX_SYMBOL_IMPLS];
6144
6145 /* The globally visible pointer. This is separate from 'symbol_impl'
6146 so that it can be const. */
6147
6148 const struct symbol_impl *symbol_impls = &symbol_impl[0];
6149
6150 /* Make sure we saved enough room in struct symbol. */
6151
6152 gdb_static_assert (MAX_SYMBOL_IMPLS <= (1 << SYMBOL_ACLASS_BITS));
6153
6154 /* Register a computed symbol type. ACLASS must be LOC_COMPUTED. OPS
6155 is the ops vector associated with this index. This returns the new
6156 index, which should be used as the aclass_index field for symbols
6157 of this type. */
6158
6159 int
6160 register_symbol_computed_impl (enum address_class aclass,
6161 const struct symbol_computed_ops *ops)
6162 {
6163 int result = next_aclass_value++;
6164
6165 gdb_assert (aclass == LOC_COMPUTED);
6166 gdb_assert (result < MAX_SYMBOL_IMPLS);
6167 symbol_impl[result].aclass = aclass;
6168 symbol_impl[result].ops_computed = ops;
6169
6170 /* Sanity check OPS. */
6171 gdb_assert (ops != NULL);
6172 gdb_assert (ops->tracepoint_var_ref != NULL);
6173 gdb_assert (ops->describe_location != NULL);
6174 gdb_assert (ops->read_needs_frame != NULL);
6175 gdb_assert (ops->read_variable != NULL);
6176
6177 return result;
6178 }
6179
6180 /* Register a function with frame base type. ACLASS must be LOC_BLOCK.
6181 OPS is the ops vector associated with this index. This returns the
6182 new index, which should be used as the aclass_index field for symbols
6183 of this type. */
6184
6185 int
6186 register_symbol_block_impl (enum address_class aclass,
6187 const struct symbol_block_ops *ops)
6188 {
6189 int result = next_aclass_value++;
6190
6191 gdb_assert (aclass == LOC_BLOCK);
6192 gdb_assert (result < MAX_SYMBOL_IMPLS);
6193 symbol_impl[result].aclass = aclass;
6194 symbol_impl[result].ops_block = ops;
6195
6196 /* Sanity check OPS. */
6197 gdb_assert (ops != NULL);
6198 gdb_assert (ops->find_frame_base_location != NULL);
6199
6200 return result;
6201 }
6202
6203 /* Register a register symbol type. ACLASS must be LOC_REGISTER or
6204 LOC_REGPARM_ADDR. OPS is the register ops vector associated with
6205 this index. This returns the new index, which should be used as
6206 the aclass_index field for symbols of this type. */
6207
6208 int
6209 register_symbol_register_impl (enum address_class aclass,
6210 const struct symbol_register_ops *ops)
6211 {
6212 int result = next_aclass_value++;
6213
6214 gdb_assert (aclass == LOC_REGISTER || aclass == LOC_REGPARM_ADDR);
6215 gdb_assert (result < MAX_SYMBOL_IMPLS);
6216 symbol_impl[result].aclass = aclass;
6217 symbol_impl[result].ops_register = ops;
6218
6219 return result;
6220 }
6221
6222 /* Initialize elements of 'symbol_impl' for the constants in enum
6223 address_class. */
6224
6225 static void
6226 initialize_ordinary_address_classes (void)
6227 {
6228 int i;
6229
6230 for (i = 0; i < LOC_FINAL_VALUE; ++i)
6231 symbol_impl[i].aclass = (enum address_class) i;
6232 }
6233
6234 \f
6235
6236 /* Helper function to initialize the fields of an objfile-owned symbol.
6237 It assumed that *SYM is already all zeroes. */
6238
6239 static void
6240 initialize_objfile_symbol_1 (struct symbol *sym)
6241 {
6242 SYMBOL_OBJFILE_OWNED (sym) = 1;
6243 SYMBOL_SECTION (sym) = -1;
6244 }
6245
6246 /* Initialize the symbol SYM, and mark it as being owned by an objfile. */
6247
6248 void
6249 initialize_objfile_symbol (struct symbol *sym)
6250 {
6251 memset (sym, 0, sizeof (*sym));
6252 initialize_objfile_symbol_1 (sym);
6253 }
6254
6255 /* Allocate and initialize a new 'struct symbol' on OBJFILE's
6256 obstack. */
6257
6258 struct symbol *
6259 allocate_symbol (struct objfile *objfile)
6260 {
6261 struct symbol *result;
6262
6263 result = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symbol);
6264 initialize_objfile_symbol_1 (result);
6265
6266 return result;
6267 }
6268
6269 /* Allocate and initialize a new 'struct template_symbol' on OBJFILE's
6270 obstack. */
6271
6272 struct template_symbol *
6273 allocate_template_symbol (struct objfile *objfile)
6274 {
6275 struct template_symbol *result;
6276
6277 result = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct template_symbol);
6278 initialize_objfile_symbol_1 (&result->base);
6279
6280 return result;
6281 }
6282
6283 /* See symtab.h. */
6284
6285 struct objfile *
6286 symbol_objfile (const struct symbol *symbol)
6287 {
6288 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
6289 return SYMTAB_OBJFILE (symbol->owner.symtab);
6290 }
6291
6292 /* See symtab.h. */
6293
6294 struct gdbarch *
6295 symbol_arch (const struct symbol *symbol)
6296 {
6297 if (!SYMBOL_OBJFILE_OWNED (symbol))
6298 return symbol->owner.arch;
6299 return get_objfile_arch (SYMTAB_OBJFILE (symbol->owner.symtab));
6300 }
6301
6302 /* See symtab.h. */
6303
6304 struct symtab *
6305 symbol_symtab (const struct symbol *symbol)
6306 {
6307 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
6308 return symbol->owner.symtab;
6309 }
6310
6311 /* See symtab.h. */
6312
6313 void
6314 symbol_set_symtab (struct symbol *symbol, struct symtab *symtab)
6315 {
6316 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
6317 symbol->owner.symtab = symtab;
6318 }
6319
6320 \f
6321
6322 void
6323 _initialize_symtab (void)
6324 {
6325 initialize_ordinary_address_classes ();
6326
6327 main_progspace_key
6328 = register_program_space_data_with_cleanup (NULL, main_info_cleanup);
6329
6330 symbol_cache_key
6331 = register_program_space_data_with_cleanup (NULL, symbol_cache_cleanup);
6332
6333 add_info ("variables", variables_info, _("\
6334 All global and static variable names, or those matching REGEXP."));
6335 if (dbx_commands)
6336 add_com ("whereis", class_info, variables_info, _("\
6337 All global and static variable names, or those matching REGEXP."));
6338
6339 add_info ("functions", functions_info,
6340 _("All function names, or those matching REGEXP."));
6341
6342 /* FIXME: This command has at least the following problems:
6343 1. It prints builtin types (in a very strange and confusing fashion).
6344 2. It doesn't print right, e.g. with
6345 typedef struct foo *FOO
6346 type_print prints "FOO" when we want to make it (in this situation)
6347 print "struct foo *".
6348 I also think "ptype" or "whatis" is more likely to be useful (but if
6349 there is much disagreement "info types" can be fixed). */
6350 add_info ("types", types_info,
6351 _("All type names, or those matching REGEXP."));
6352
6353 add_info ("sources", sources_info,
6354 _("Source files in the program."));
6355
6356 add_com ("rbreak", class_breakpoint, rbreak_command,
6357 _("Set a breakpoint for all functions matching REGEXP."));
6358
6359 add_setshow_enum_cmd ("multiple-symbols", no_class,
6360 multiple_symbols_modes, &multiple_symbols_mode,
6361 _("\
6362 Set the debugger behavior when more than one symbol are possible matches\n\
6363 in an expression."), _("\
6364 Show how the debugger handles ambiguities in expressions."), _("\
6365 Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
6366 NULL, NULL, &setlist, &showlist);
6367
6368 add_setshow_boolean_cmd ("basenames-may-differ", class_obscure,
6369 &basenames_may_differ, _("\
6370 Set whether a source file may have multiple base names."), _("\
6371 Show whether a source file may have multiple base names."), _("\
6372 (A \"base name\" is the name of a file with the directory part removed.\n\
6373 Example: The base name of \"/home/user/hello.c\" is \"hello.c\".)\n\
6374 If set, GDB will canonicalize file names (e.g., expand symlinks)\n\
6375 before comparing them. Canonicalization is an expensive operation,\n\
6376 but it allows the same file be known by more than one base name.\n\
6377 If not set (the default), all source files are assumed to have just\n\
6378 one base name, and gdb will do file name comparisons more efficiently."),
6379 NULL, NULL,
6380 &setlist, &showlist);
6381
6382 add_setshow_zuinteger_cmd ("symtab-create", no_class, &symtab_create_debug,
6383 _("Set debugging of symbol table creation."),
6384 _("Show debugging of symbol table creation."), _("\
6385 When enabled (non-zero), debugging messages are printed when building\n\
6386 symbol tables. A value of 1 (one) normally provides enough information.\n\
6387 A value greater than 1 provides more verbose information."),
6388 NULL,
6389 NULL,
6390 &setdebuglist, &showdebuglist);
6391
6392 add_setshow_zuinteger_cmd ("symbol-lookup", no_class, &symbol_lookup_debug,
6393 _("\
6394 Set debugging of symbol lookup."), _("\
6395 Show debugging of symbol lookup."), _("\
6396 When enabled (non-zero), symbol lookups are logged."),
6397 NULL, NULL,
6398 &setdebuglist, &showdebuglist);
6399
6400 add_setshow_zuinteger_cmd ("symbol-cache-size", no_class,
6401 &new_symbol_cache_size,
6402 _("Set the size of the symbol cache."),
6403 _("Show the size of the symbol cache."), _("\
6404 The size of the symbol cache.\n\
6405 If zero then the symbol cache is disabled."),
6406 set_symbol_cache_size_handler, NULL,
6407 &maintenance_set_cmdlist,
6408 &maintenance_show_cmdlist);
6409
6410 add_cmd ("symbol-cache", class_maintenance, maintenance_print_symbol_cache,
6411 _("Dump the symbol cache for each program space."),
6412 &maintenanceprintlist);
6413
6414 add_cmd ("symbol-cache-statistics", class_maintenance,
6415 maintenance_print_symbol_cache_statistics,
6416 _("Print symbol cache statistics for each program space."),
6417 &maintenanceprintlist);
6418
6419 add_cmd ("flush-symbol-cache", class_maintenance,
6420 maintenance_flush_symbol_cache,
6421 _("Flush the symbol cache for each program space."),
6422 &maintenancelist);
6423
6424 observer_attach_executable_changed (symtab_observer_executable_changed);
6425 observer_attach_new_objfile (symtab_new_objfile_observer);
6426 observer_attach_free_objfile (symtab_free_objfile_observer);
6427 }
This page took 0.285758 seconds and 4 git commands to generate.