gdb/
[deliverable/binutils-gdb.git] / gdb / symtab.c
1 /* Symbol table lookup for the GNU debugger, GDB.
2
3 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2007, 2008, 2009,
5 2010 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "symtab.h"
24 #include "gdbtypes.h"
25 #include "gdbcore.h"
26 #include "frame.h"
27 #include "target.h"
28 #include "value.h"
29 #include "symfile.h"
30 #include "objfiles.h"
31 #include "gdbcmd.h"
32 #include "call-cmds.h"
33 #include "gdb_regex.h"
34 #include "expression.h"
35 #include "language.h"
36 #include "demangle.h"
37 #include "inferior.h"
38 #include "linespec.h"
39 #include "source.h"
40 #include "filenames.h" /* for FILENAME_CMP */
41 #include "objc-lang.h"
42 #include "d-lang.h"
43 #include "ada-lang.h"
44 #include "p-lang.h"
45 #include "addrmap.h"
46
47 #include "hashtab.h"
48
49 #include "gdb_obstack.h"
50 #include "block.h"
51 #include "dictionary.h"
52
53 #include <sys/types.h>
54 #include <fcntl.h>
55 #include "gdb_string.h"
56 #include "gdb_stat.h"
57 #include <ctype.h>
58 #include "cp-abi.h"
59 #include "cp-support.h"
60 #include "observer.h"
61 #include "gdb_assert.h"
62 #include "solist.h"
63 #include "macrotab.h"
64 #include "macroscope.h"
65
66 #include "psymtab.h"
67
68 /* Prototypes for local functions */
69
70 static void completion_list_add_name (char *, char *, int, char *, char *);
71
72 static void rbreak_command (char *, int);
73
74 static void types_info (char *, int);
75
76 static void functions_info (char *, int);
77
78 static void variables_info (char *, int);
79
80 static void sources_info (char *, int);
81
82 static void output_source_filename (const char *, int *);
83
84 static int find_line_common (struct linetable *, int, int *);
85
86 /* This one is used by linespec.c */
87
88 char *operator_chars (char *p, char **end);
89
90 static struct symbol *lookup_symbol_aux (const char *name,
91 const struct block *block,
92 const domain_enum domain,
93 enum language language,
94 int *is_a_field_of_this);
95
96 static
97 struct symbol *lookup_symbol_aux_local (const char *name,
98 const struct block *block,
99 const domain_enum domain,
100 enum language language);
101
102 static
103 struct symbol *lookup_symbol_aux_symtabs (int block_index,
104 const char *name,
105 const domain_enum domain);
106
107 static
108 struct symbol *lookup_symbol_aux_quick (struct objfile *objfile,
109 int block_index,
110 const char *name,
111 const domain_enum domain);
112
113 static void print_symbol_info (domain_enum,
114 struct symtab *, struct symbol *, int, char *);
115
116 static void print_msymbol_info (struct minimal_symbol *);
117
118 static void symtab_symbol_info (char *, domain_enum, int);
119
120 void _initialize_symtab (void);
121
122 /* */
123
124 /* Allow the user to configure the debugger behavior with respect
125 to multiple-choice menus when more than one symbol matches during
126 a symbol lookup. */
127
128 const char multiple_symbols_ask[] = "ask";
129 const char multiple_symbols_all[] = "all";
130 const char multiple_symbols_cancel[] = "cancel";
131 static const char *multiple_symbols_modes[] =
132 {
133 multiple_symbols_ask,
134 multiple_symbols_all,
135 multiple_symbols_cancel,
136 NULL
137 };
138 static const char *multiple_symbols_mode = multiple_symbols_all;
139
140 /* Read-only accessor to AUTO_SELECT_MODE. */
141
142 const char *
143 multiple_symbols_select_mode (void)
144 {
145 return multiple_symbols_mode;
146 }
147
148 /* Block in which the most recently searched-for symbol was found.
149 Might be better to make this a parameter to lookup_symbol and
150 value_of_this. */
151
152 const struct block *block_found;
153
154 /* Check for a symtab of a specific name; first in symtabs, then in
155 psymtabs. *If* there is no '/' in the name, a match after a '/'
156 in the symtab filename will also work. */
157
158 struct symtab *
159 lookup_symtab (const char *name)
160 {
161 int found;
162 struct symtab *s = NULL;
163 struct objfile *objfile;
164 char *real_path = NULL;
165 char *full_path = NULL;
166
167 /* Here we are interested in canonicalizing an absolute path, not
168 absolutizing a relative path. */
169 if (IS_ABSOLUTE_PATH (name))
170 {
171 full_path = xfullpath (name);
172 make_cleanup (xfree, full_path);
173 real_path = gdb_realpath (name);
174 make_cleanup (xfree, real_path);
175 }
176
177 got_symtab:
178
179 /* First, search for an exact match */
180
181 ALL_SYMTABS (objfile, s)
182 {
183 if (FILENAME_CMP (name, s->filename) == 0)
184 {
185 return s;
186 }
187
188 /* If the user gave us an absolute path, try to find the file in
189 this symtab and use its absolute path. */
190
191 if (full_path != NULL)
192 {
193 const char *fp = symtab_to_fullname (s);
194
195 if (fp != NULL && FILENAME_CMP (full_path, fp) == 0)
196 {
197 return s;
198 }
199 }
200
201 if (real_path != NULL)
202 {
203 char *fullname = symtab_to_fullname (s);
204
205 if (fullname != NULL)
206 {
207 char *rp = gdb_realpath (fullname);
208
209 make_cleanup (xfree, rp);
210 if (FILENAME_CMP (real_path, rp) == 0)
211 {
212 return s;
213 }
214 }
215 }
216 }
217
218 /* Now, search for a matching tail (only if name doesn't have any dirs) */
219
220 if (lbasename (name) == name)
221 ALL_SYMTABS (objfile, s)
222 {
223 if (FILENAME_CMP (lbasename (s->filename), name) == 0)
224 return s;
225 }
226
227 /* Same search rules as above apply here, but now we look thru the
228 psymtabs. */
229
230 found = 0;
231 ALL_OBJFILES (objfile)
232 {
233 if (objfile->sf
234 && objfile->sf->qf->lookup_symtab (objfile, name, full_path, real_path,
235 &s))
236 {
237 found = 1;
238 break;
239 }
240 }
241
242 if (s != NULL)
243 return s;
244 if (!found)
245 return NULL;
246
247 /* At this point, we have located the psymtab for this file, but
248 the conversion to a symtab has failed. This usually happens
249 when we are looking up an include file. In this case,
250 PSYMTAB_TO_SYMTAB doesn't return a symtab, even though one has
251 been created. So, we need to run through the symtabs again in
252 order to find the file.
253 XXX - This is a crock, and should be fixed inside of the the
254 symbol parsing routines. */
255 goto got_symtab;
256 }
257 \f
258 /* Mangle a GDB method stub type. This actually reassembles the pieces of the
259 full method name, which consist of the class name (from T), the unadorned
260 method name from METHOD_ID, and the signature for the specific overload,
261 specified by SIGNATURE_ID. Note that this function is g++ specific. */
262
263 char *
264 gdb_mangle_name (struct type *type, int method_id, int signature_id)
265 {
266 int mangled_name_len;
267 char *mangled_name;
268 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
269 struct fn_field *method = &f[signature_id];
270 char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
271 char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
272 char *newname = type_name_no_tag (type);
273
274 /* Does the form of physname indicate that it is the full mangled name
275 of a constructor (not just the args)? */
276 int is_full_physname_constructor;
277
278 int is_constructor;
279 int is_destructor = is_destructor_name (physname);
280 /* Need a new type prefix. */
281 char *const_prefix = method->is_const ? "C" : "";
282 char *volatile_prefix = method->is_volatile ? "V" : "";
283 char buf[20];
284 int len = (newname == NULL ? 0 : strlen (newname));
285
286 /* Nothing to do if physname already contains a fully mangled v3 abi name
287 or an operator name. */
288 if ((physname[0] == '_' && physname[1] == 'Z')
289 || is_operator_name (field_name))
290 return xstrdup (physname);
291
292 is_full_physname_constructor = is_constructor_name (physname);
293
294 is_constructor =
295 is_full_physname_constructor || (newname && strcmp (field_name, newname) == 0);
296
297 if (!is_destructor)
298 is_destructor = (strncmp (physname, "__dt", 4) == 0);
299
300 if (is_destructor || is_full_physname_constructor)
301 {
302 mangled_name = (char *) xmalloc (strlen (physname) + 1);
303 strcpy (mangled_name, physname);
304 return mangled_name;
305 }
306
307 if (len == 0)
308 {
309 sprintf (buf, "__%s%s", const_prefix, volatile_prefix);
310 }
311 else if (physname[0] == 't' || physname[0] == 'Q')
312 {
313 /* The physname for template and qualified methods already includes
314 the class name. */
315 sprintf (buf, "__%s%s", const_prefix, volatile_prefix);
316 newname = NULL;
317 len = 0;
318 }
319 else
320 {
321 sprintf (buf, "__%s%s%d", const_prefix, volatile_prefix, len);
322 }
323 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
324 + strlen (buf) + len + strlen (physname) + 1);
325
326 mangled_name = (char *) xmalloc (mangled_name_len);
327 if (is_constructor)
328 mangled_name[0] = '\0';
329 else
330 strcpy (mangled_name, field_name);
331
332 strcat (mangled_name, buf);
333 /* If the class doesn't have a name, i.e. newname NULL, then we just
334 mangle it using 0 for the length of the class. Thus it gets mangled
335 as something starting with `::' rather than `classname::'. */
336 if (newname != NULL)
337 strcat (mangled_name, newname);
338
339 strcat (mangled_name, physname);
340 return (mangled_name);
341 }
342
343 \f
344 /* Initialize the language dependent portion of a symbol
345 depending upon the language for the symbol. */
346 void
347 symbol_init_language_specific (struct general_symbol_info *gsymbol,
348 enum language language)
349 {
350 gsymbol->language = language;
351 if (gsymbol->language == language_cplus
352 || gsymbol->language == language_d
353 || gsymbol->language == language_java
354 || gsymbol->language == language_objc
355 || gsymbol->language == language_fortran)
356 {
357 gsymbol->language_specific.cplus_specific.demangled_name = NULL;
358 }
359 else
360 {
361 memset (&gsymbol->language_specific, 0,
362 sizeof (gsymbol->language_specific));
363 }
364 }
365
366 /* Functions to initialize a symbol's mangled name. */
367
368 /* Objects of this type are stored in the demangled name hash table. */
369 struct demangled_name_entry
370 {
371 char *mangled;
372 char demangled[1];
373 };
374
375 /* Hash function for the demangled name hash. */
376 static hashval_t
377 hash_demangled_name_entry (const void *data)
378 {
379 const struct demangled_name_entry *e = data;
380
381 return htab_hash_string (e->mangled);
382 }
383
384 /* Equality function for the demangled name hash. */
385 static int
386 eq_demangled_name_entry (const void *a, const void *b)
387 {
388 const struct demangled_name_entry *da = a;
389 const struct demangled_name_entry *db = b;
390
391 return strcmp (da->mangled, db->mangled) == 0;
392 }
393
394 /* Create the hash table used for demangled names. Each hash entry is
395 a pair of strings; one for the mangled name and one for the demangled
396 name. The entry is hashed via just the mangled name. */
397
398 static void
399 create_demangled_names_hash (struct objfile *objfile)
400 {
401 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
402 The hash table code will round this up to the next prime number.
403 Choosing a much larger table size wastes memory, and saves only about
404 1% in symbol reading. */
405
406 objfile->demangled_names_hash = htab_create_alloc
407 (256, hash_demangled_name_entry, eq_demangled_name_entry,
408 NULL, xcalloc, xfree);
409 }
410
411 /* Try to determine the demangled name for a symbol, based on the
412 language of that symbol. If the language is set to language_auto,
413 it will attempt to find any demangling algorithm that works and
414 then set the language appropriately. The returned name is allocated
415 by the demangler and should be xfree'd. */
416
417 static char *
418 symbol_find_demangled_name (struct general_symbol_info *gsymbol,
419 const char *mangled)
420 {
421 char *demangled = NULL;
422
423 if (gsymbol->language == language_unknown)
424 gsymbol->language = language_auto;
425
426 if (gsymbol->language == language_objc
427 || gsymbol->language == language_auto)
428 {
429 demangled =
430 objc_demangle (mangled, 0);
431 if (demangled != NULL)
432 {
433 gsymbol->language = language_objc;
434 return demangled;
435 }
436 }
437 if (gsymbol->language == language_cplus
438 || gsymbol->language == language_auto)
439 {
440 demangled =
441 cplus_demangle (mangled, DMGL_PARAMS | DMGL_ANSI | DMGL_VERBOSE);
442 if (demangled != NULL)
443 {
444 gsymbol->language = language_cplus;
445 return demangled;
446 }
447 }
448 if (gsymbol->language == language_java)
449 {
450 demangled =
451 cplus_demangle (mangled,
452 DMGL_PARAMS | DMGL_ANSI | DMGL_JAVA);
453 if (demangled != NULL)
454 {
455 gsymbol->language = language_java;
456 return demangled;
457 }
458 }
459 if (gsymbol->language == language_d
460 || gsymbol->language == language_auto)
461 {
462 demangled = d_demangle(mangled, 0);
463 if (demangled != NULL)
464 {
465 gsymbol->language = language_d;
466 return demangled;
467 }
468 }
469 /* We could support `gsymbol->language == language_fortran' here to provide
470 module namespaces also for inferiors with only minimal symbol table (ELF
471 symbols). Just the mangling standard is not standardized across compilers
472 and there is no DW_AT_producer available for inferiors with only the ELF
473 symbols to check the mangling kind. */
474 return NULL;
475 }
476
477 /* Set both the mangled and demangled (if any) names for GSYMBOL based
478 on LINKAGE_NAME and LEN. Ordinarily, NAME is copied onto the
479 objfile's obstack; but if COPY_NAME is 0 and if NAME is
480 NUL-terminated, then this function assumes that NAME is already
481 correctly saved (either permanently or with a lifetime tied to the
482 objfile), and it will not be copied.
483
484 The hash table corresponding to OBJFILE is used, and the memory
485 comes from that objfile's objfile_obstack. LINKAGE_NAME is copied,
486 so the pointer can be discarded after calling this function. */
487
488 /* We have to be careful when dealing with Java names: when we run
489 into a Java minimal symbol, we don't know it's a Java symbol, so it
490 gets demangled as a C++ name. This is unfortunate, but there's not
491 much we can do about it: but when demangling partial symbols and
492 regular symbols, we'd better not reuse the wrong demangled name.
493 (See PR gdb/1039.) We solve this by putting a distinctive prefix
494 on Java names when storing them in the hash table. */
495
496 /* FIXME: carlton/2003-03-13: This is an unfortunate situation. I
497 don't mind the Java prefix so much: different languages have
498 different demangling requirements, so it's only natural that we
499 need to keep language data around in our demangling cache. But
500 it's not good that the minimal symbol has the wrong demangled name.
501 Unfortunately, I can't think of any easy solution to that
502 problem. */
503
504 #define JAVA_PREFIX "##JAVA$$"
505 #define JAVA_PREFIX_LEN 8
506
507 void
508 symbol_set_names (struct general_symbol_info *gsymbol,
509 const char *linkage_name, int len, int copy_name,
510 struct objfile *objfile)
511 {
512 struct demangled_name_entry **slot;
513 /* A 0-terminated copy of the linkage name. */
514 const char *linkage_name_copy;
515 /* A copy of the linkage name that might have a special Java prefix
516 added to it, for use when looking names up in the hash table. */
517 const char *lookup_name;
518 /* The length of lookup_name. */
519 int lookup_len;
520 struct demangled_name_entry entry;
521
522 if (gsymbol->language == language_ada)
523 {
524 /* In Ada, we do the symbol lookups using the mangled name, so
525 we can save some space by not storing the demangled name.
526
527 As a side note, we have also observed some overlap between
528 the C++ mangling and Ada mangling, similarly to what has
529 been observed with Java. Because we don't store the demangled
530 name with the symbol, we don't need to use the same trick
531 as Java. */
532 if (!copy_name)
533 gsymbol->name = (char *) linkage_name;
534 else
535 {
536 gsymbol->name = obstack_alloc (&objfile->objfile_obstack, len + 1);
537 memcpy (gsymbol->name, linkage_name, len);
538 gsymbol->name[len] = '\0';
539 }
540 gsymbol->language_specific.cplus_specific.demangled_name = NULL;
541
542 return;
543 }
544
545 if (objfile->demangled_names_hash == NULL)
546 create_demangled_names_hash (objfile);
547
548 /* The stabs reader generally provides names that are not
549 NUL-terminated; most of the other readers don't do this, so we
550 can just use the given copy, unless we're in the Java case. */
551 if (gsymbol->language == language_java)
552 {
553 char *alloc_name;
554
555 lookup_len = len + JAVA_PREFIX_LEN;
556 alloc_name = alloca (lookup_len + 1);
557 memcpy (alloc_name, JAVA_PREFIX, JAVA_PREFIX_LEN);
558 memcpy (alloc_name + JAVA_PREFIX_LEN, linkage_name, len);
559 alloc_name[lookup_len] = '\0';
560
561 lookup_name = alloc_name;
562 linkage_name_copy = alloc_name + JAVA_PREFIX_LEN;
563 }
564 else if (linkage_name[len] != '\0')
565 {
566 char *alloc_name;
567
568 lookup_len = len;
569 alloc_name = alloca (lookup_len + 1);
570 memcpy (alloc_name, linkage_name, len);
571 alloc_name[lookup_len] = '\0';
572
573 lookup_name = alloc_name;
574 linkage_name_copy = alloc_name;
575 }
576 else
577 {
578 lookup_len = len;
579 lookup_name = linkage_name;
580 linkage_name_copy = linkage_name;
581 }
582
583 entry.mangled = (char *) lookup_name;
584 slot = ((struct demangled_name_entry **)
585 htab_find_slot (objfile->demangled_names_hash,
586 &entry, INSERT));
587
588 /* If this name is not in the hash table, add it. */
589 if (*slot == NULL)
590 {
591 char *demangled_name = symbol_find_demangled_name (gsymbol,
592 linkage_name_copy);
593 int demangled_len = demangled_name ? strlen (demangled_name) : 0;
594
595 /* Suppose we have demangled_name==NULL, copy_name==0, and
596 lookup_name==linkage_name. In this case, we already have the
597 mangled name saved, and we don't have a demangled name. So,
598 you might think we could save a little space by not recording
599 this in the hash table at all.
600
601 It turns out that it is actually important to still save such
602 an entry in the hash table, because storing this name gives
603 us better bcache hit rates for partial symbols. */
604 if (!copy_name && lookup_name == linkage_name)
605 {
606 *slot = obstack_alloc (&objfile->objfile_obstack,
607 offsetof (struct demangled_name_entry,
608 demangled)
609 + demangled_len + 1);
610 (*slot)->mangled = (char *) lookup_name;
611 }
612 else
613 {
614 /* If we must copy the mangled name, put it directly after
615 the demangled name so we can have a single
616 allocation. */
617 *slot = obstack_alloc (&objfile->objfile_obstack,
618 offsetof (struct demangled_name_entry,
619 demangled)
620 + lookup_len + demangled_len + 2);
621 (*slot)->mangled = &((*slot)->demangled[demangled_len + 1]);
622 strcpy ((*slot)->mangled, lookup_name);
623 }
624
625 if (demangled_name != NULL)
626 {
627 strcpy ((*slot)->demangled, demangled_name);
628 xfree (demangled_name);
629 }
630 else
631 (*slot)->demangled[0] = '\0';
632 }
633
634 gsymbol->name = (*slot)->mangled + lookup_len - len;
635 if ((*slot)->demangled[0] != '\0')
636 gsymbol->language_specific.cplus_specific.demangled_name
637 = (*slot)->demangled;
638 else
639 gsymbol->language_specific.cplus_specific.demangled_name = NULL;
640 }
641
642 /* Return the source code name of a symbol. In languages where
643 demangling is necessary, this is the demangled name. */
644
645 char *
646 symbol_natural_name (const struct general_symbol_info *gsymbol)
647 {
648 switch (gsymbol->language)
649 {
650 case language_cplus:
651 case language_d:
652 case language_java:
653 case language_objc:
654 case language_fortran:
655 if (gsymbol->language_specific.cplus_specific.demangled_name != NULL)
656 return gsymbol->language_specific.cplus_specific.demangled_name;
657 break;
658 case language_ada:
659 if (gsymbol->language_specific.cplus_specific.demangled_name != NULL)
660 return gsymbol->language_specific.cplus_specific.demangled_name;
661 else
662 return ada_decode_symbol (gsymbol);
663 break;
664 default:
665 break;
666 }
667 return gsymbol->name;
668 }
669
670 /* Return the demangled name for a symbol based on the language for
671 that symbol. If no demangled name exists, return NULL. */
672 char *
673 symbol_demangled_name (const struct general_symbol_info *gsymbol)
674 {
675 switch (gsymbol->language)
676 {
677 case language_cplus:
678 case language_d:
679 case language_java:
680 case language_objc:
681 case language_fortran:
682 if (gsymbol->language_specific.cplus_specific.demangled_name != NULL)
683 return gsymbol->language_specific.cplus_specific.demangled_name;
684 break;
685 case language_ada:
686 if (gsymbol->language_specific.cplus_specific.demangled_name != NULL)
687 return gsymbol->language_specific.cplus_specific.demangled_name;
688 else
689 return ada_decode_symbol (gsymbol);
690 break;
691 default:
692 break;
693 }
694 return NULL;
695 }
696
697 /* Return the search name of a symbol---generally the demangled or
698 linkage name of the symbol, depending on how it will be searched for.
699 If there is no distinct demangled name, then returns the same value
700 (same pointer) as SYMBOL_LINKAGE_NAME. */
701 char *
702 symbol_search_name (const struct general_symbol_info *gsymbol)
703 {
704 if (gsymbol->language == language_ada)
705 return gsymbol->name;
706 else
707 return symbol_natural_name (gsymbol);
708 }
709
710 /* Initialize the structure fields to zero values. */
711 void
712 init_sal (struct symtab_and_line *sal)
713 {
714 sal->pspace = NULL;
715 sal->symtab = 0;
716 sal->section = 0;
717 sal->line = 0;
718 sal->pc = 0;
719 sal->end = 0;
720 sal->explicit_pc = 0;
721 sal->explicit_line = 0;
722 }
723 \f
724
725 /* Return 1 if the two sections are the same, or if they could
726 plausibly be copies of each other, one in an original object
727 file and another in a separated debug file. */
728
729 int
730 matching_obj_sections (struct obj_section *obj_first,
731 struct obj_section *obj_second)
732 {
733 asection *first = obj_first? obj_first->the_bfd_section : NULL;
734 asection *second = obj_second? obj_second->the_bfd_section : NULL;
735 struct objfile *obj;
736
737 /* If they're the same section, then they match. */
738 if (first == second)
739 return 1;
740
741 /* If either is NULL, give up. */
742 if (first == NULL || second == NULL)
743 return 0;
744
745 /* This doesn't apply to absolute symbols. */
746 if (first->owner == NULL || second->owner == NULL)
747 return 0;
748
749 /* If they're in the same object file, they must be different sections. */
750 if (first->owner == second->owner)
751 return 0;
752
753 /* Check whether the two sections are potentially corresponding. They must
754 have the same size, address, and name. We can't compare section indexes,
755 which would be more reliable, because some sections may have been
756 stripped. */
757 if (bfd_get_section_size (first) != bfd_get_section_size (second))
758 return 0;
759
760 /* In-memory addresses may start at a different offset, relativize them. */
761 if (bfd_get_section_vma (first->owner, first)
762 - bfd_get_start_address (first->owner)
763 != bfd_get_section_vma (second->owner, second)
764 - bfd_get_start_address (second->owner))
765 return 0;
766
767 if (bfd_get_section_name (first->owner, first) == NULL
768 || bfd_get_section_name (second->owner, second) == NULL
769 || strcmp (bfd_get_section_name (first->owner, first),
770 bfd_get_section_name (second->owner, second)) != 0)
771 return 0;
772
773 /* Otherwise check that they are in corresponding objfiles. */
774
775 ALL_OBJFILES (obj)
776 if (obj->obfd == first->owner)
777 break;
778 gdb_assert (obj != NULL);
779
780 if (obj->separate_debug_objfile != NULL
781 && obj->separate_debug_objfile->obfd == second->owner)
782 return 1;
783 if (obj->separate_debug_objfile_backlink != NULL
784 && obj->separate_debug_objfile_backlink->obfd == second->owner)
785 return 1;
786
787 return 0;
788 }
789
790 struct symtab *
791 find_pc_sect_symtab_via_partial (CORE_ADDR pc, struct obj_section *section)
792 {
793 struct objfile *objfile;
794 struct minimal_symbol *msymbol;
795
796 /* If we know that this is not a text address, return failure. This is
797 necessary because we loop based on texthigh and textlow, which do
798 not include the data ranges. */
799 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
800 if (msymbol
801 && (MSYMBOL_TYPE (msymbol) == mst_data
802 || MSYMBOL_TYPE (msymbol) == mst_bss
803 || MSYMBOL_TYPE (msymbol) == mst_abs
804 || MSYMBOL_TYPE (msymbol) == mst_file_data
805 || MSYMBOL_TYPE (msymbol) == mst_file_bss))
806 return NULL;
807
808 ALL_OBJFILES (objfile)
809 {
810 struct symtab *result = NULL;
811
812 if (objfile->sf)
813 result = objfile->sf->qf->find_pc_sect_symtab (objfile, msymbol,
814 pc, section, 0);
815 if (result)
816 return result;
817 }
818
819 return NULL;
820 }
821 \f
822 /* Debug symbols usually don't have section information. We need to dig that
823 out of the minimal symbols and stash that in the debug symbol. */
824
825 void
826 fixup_section (struct general_symbol_info *ginfo,
827 CORE_ADDR addr, struct objfile *objfile)
828 {
829 struct minimal_symbol *msym;
830
831 /* First, check whether a minimal symbol with the same name exists
832 and points to the same address. The address check is required
833 e.g. on PowerPC64, where the minimal symbol for a function will
834 point to the function descriptor, while the debug symbol will
835 point to the actual function code. */
836 msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->name, objfile);
837 if (msym)
838 {
839 ginfo->obj_section = SYMBOL_OBJ_SECTION (msym);
840 ginfo->section = SYMBOL_SECTION (msym);
841 }
842 else
843 {
844 /* Static, function-local variables do appear in the linker
845 (minimal) symbols, but are frequently given names that won't
846 be found via lookup_minimal_symbol(). E.g., it has been
847 observed in frv-uclinux (ELF) executables that a static,
848 function-local variable named "foo" might appear in the
849 linker symbols as "foo.6" or "foo.3". Thus, there is no
850 point in attempting to extend the lookup-by-name mechanism to
851 handle this case due to the fact that there can be multiple
852 names.
853
854 So, instead, search the section table when lookup by name has
855 failed. The ``addr'' and ``endaddr'' fields may have already
856 been relocated. If so, the relocation offset (i.e. the
857 ANOFFSET value) needs to be subtracted from these values when
858 performing the comparison. We unconditionally subtract it,
859 because, when no relocation has been performed, the ANOFFSET
860 value will simply be zero.
861
862 The address of the symbol whose section we're fixing up HAS
863 NOT BEEN adjusted (relocated) yet. It can't have been since
864 the section isn't yet known and knowing the section is
865 necessary in order to add the correct relocation value. In
866 other words, we wouldn't even be in this function (attempting
867 to compute the section) if it were already known.
868
869 Note that it is possible to search the minimal symbols
870 (subtracting the relocation value if necessary) to find the
871 matching minimal symbol, but this is overkill and much less
872 efficient. It is not necessary to find the matching minimal
873 symbol, only its section.
874
875 Note that this technique (of doing a section table search)
876 can fail when unrelocated section addresses overlap. For
877 this reason, we still attempt a lookup by name prior to doing
878 a search of the section table. */
879
880 struct obj_section *s;
881
882 ALL_OBJFILE_OSECTIONS (objfile, s)
883 {
884 int idx = s->the_bfd_section->index;
885 CORE_ADDR offset = ANOFFSET (objfile->section_offsets, idx);
886
887 if (obj_section_addr (s) - offset <= addr
888 && addr < obj_section_endaddr (s) - offset)
889 {
890 ginfo->obj_section = s;
891 ginfo->section = idx;
892 return;
893 }
894 }
895 }
896 }
897
898 struct symbol *
899 fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
900 {
901 CORE_ADDR addr;
902
903 if (!sym)
904 return NULL;
905
906 if (SYMBOL_OBJ_SECTION (sym))
907 return sym;
908
909 /* We either have an OBJFILE, or we can get at it from the sym's
910 symtab. Anything else is a bug. */
911 gdb_assert (objfile || SYMBOL_SYMTAB (sym));
912
913 if (objfile == NULL)
914 objfile = SYMBOL_SYMTAB (sym)->objfile;
915
916 /* We should have an objfile by now. */
917 gdb_assert (objfile);
918
919 switch (SYMBOL_CLASS (sym))
920 {
921 case LOC_STATIC:
922 case LOC_LABEL:
923 addr = SYMBOL_VALUE_ADDRESS (sym);
924 break;
925 case LOC_BLOCK:
926 addr = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
927 break;
928
929 default:
930 /* Nothing else will be listed in the minsyms -- no use looking
931 it up. */
932 return sym;
933 }
934
935 fixup_section (&sym->ginfo, addr, objfile);
936
937 return sym;
938 }
939
940 /* Find the definition for a specified symbol name NAME
941 in domain DOMAIN, visible from lexical block BLOCK.
942 Returns the struct symbol pointer, or zero if no symbol is found.
943 C++: if IS_A_FIELD_OF_THIS is nonzero on entry, check to see if
944 NAME is a field of the current implied argument `this'. If so set
945 *IS_A_FIELD_OF_THIS to 1, otherwise set it to zero.
946 BLOCK_FOUND is set to the block in which NAME is found (in the case of
947 a field of `this', value_of_this sets BLOCK_FOUND to the proper value.) */
948
949 /* This function has a bunch of loops in it and it would seem to be
950 attractive to put in some QUIT's (though I'm not really sure
951 whether it can run long enough to be really important). But there
952 are a few calls for which it would appear to be bad news to quit
953 out of here: find_proc_desc in alpha-tdep.c and mips-tdep.c. (Note
954 that there is C++ code below which can error(), but that probably
955 doesn't affect these calls since they are looking for a known
956 variable and thus can probably assume it will never hit the C++
957 code). */
958
959 struct symbol *
960 lookup_symbol_in_language (const char *name, const struct block *block,
961 const domain_enum domain, enum language lang,
962 int *is_a_field_of_this)
963 {
964 char *demangled_name = NULL;
965 const char *modified_name = NULL;
966 struct symbol *returnval;
967 struct cleanup *cleanup = make_cleanup (null_cleanup, 0);
968
969 modified_name = name;
970
971 /* If we are using C++, D, or Java, demangle the name before doing a
972 lookup, so we can always binary search. */
973 if (lang == language_cplus)
974 {
975 demangled_name = cplus_demangle (name, DMGL_ANSI | DMGL_PARAMS);
976 if (demangled_name)
977 {
978 modified_name = demangled_name;
979 make_cleanup (xfree, demangled_name);
980 }
981 else
982 {
983 /* If we were given a non-mangled name, canonicalize it
984 according to the language (so far only for C++). */
985 demangled_name = cp_canonicalize_string (name);
986 if (demangled_name)
987 {
988 modified_name = demangled_name;
989 make_cleanup (xfree, demangled_name);
990 }
991 }
992 }
993 else if (lang == language_java)
994 {
995 demangled_name = cplus_demangle (name,
996 DMGL_ANSI | DMGL_PARAMS | DMGL_JAVA);
997 if (demangled_name)
998 {
999 modified_name = demangled_name;
1000 make_cleanup (xfree, demangled_name);
1001 }
1002 }
1003 else if (lang == language_d)
1004 {
1005 demangled_name = d_demangle (name, 0);
1006 if (demangled_name)
1007 {
1008 modified_name = demangled_name;
1009 make_cleanup (xfree, demangled_name);
1010 }
1011 }
1012
1013 if (case_sensitivity == case_sensitive_off)
1014 {
1015 char *copy;
1016 int len, i;
1017
1018 len = strlen (name);
1019 copy = (char *) alloca (len + 1);
1020 for (i= 0; i < len; i++)
1021 copy[i] = tolower (name[i]);
1022 copy[len] = 0;
1023 modified_name = copy;
1024 }
1025
1026 returnval = lookup_symbol_aux (modified_name, block, domain, lang,
1027 is_a_field_of_this);
1028 do_cleanups (cleanup);
1029
1030 return returnval;
1031 }
1032
1033 /* Behave like lookup_symbol_in_language, but performed with the
1034 current language. */
1035
1036 struct symbol *
1037 lookup_symbol (const char *name, const struct block *block,
1038 domain_enum domain, int *is_a_field_of_this)
1039 {
1040 return lookup_symbol_in_language (name, block, domain,
1041 current_language->la_language,
1042 is_a_field_of_this);
1043 }
1044
1045 /* Behave like lookup_symbol except that NAME is the natural name
1046 of the symbol that we're looking for and, if LINKAGE_NAME is
1047 non-NULL, ensure that the symbol's linkage name matches as
1048 well. */
1049
1050 static struct symbol *
1051 lookup_symbol_aux (const char *name, const struct block *block,
1052 const domain_enum domain, enum language language,
1053 int *is_a_field_of_this)
1054 {
1055 struct symbol *sym;
1056 const struct language_defn *langdef;
1057
1058 /* Make sure we do something sensible with is_a_field_of_this, since
1059 the callers that set this parameter to some non-null value will
1060 certainly use it later and expect it to be either 0 or 1.
1061 If we don't set it, the contents of is_a_field_of_this are
1062 undefined. */
1063 if (is_a_field_of_this != NULL)
1064 *is_a_field_of_this = 0;
1065
1066 /* Search specified block and its superiors. Don't search
1067 STATIC_BLOCK or GLOBAL_BLOCK. */
1068
1069 sym = lookup_symbol_aux_local (name, block, domain, language);
1070 if (sym != NULL)
1071 return sym;
1072
1073 /* If requested to do so by the caller and if appropriate for LANGUAGE,
1074 check to see if NAME is a field of `this'. */
1075
1076 langdef = language_def (language);
1077
1078 if (langdef->la_name_of_this != NULL && is_a_field_of_this != NULL
1079 && block != NULL)
1080 {
1081 struct symbol *sym = NULL;
1082 const struct block *function_block = block;
1083
1084 /* 'this' is only defined in the function's block, so find the
1085 enclosing function block. */
1086 for (; function_block && !BLOCK_FUNCTION (function_block);
1087 function_block = BLOCK_SUPERBLOCK (function_block));
1088
1089 if (function_block && !dict_empty (BLOCK_DICT (function_block)))
1090 sym = lookup_block_symbol (function_block, langdef->la_name_of_this,
1091 VAR_DOMAIN);
1092 if (sym)
1093 {
1094 struct type *t = sym->type;
1095
1096 /* I'm not really sure that type of this can ever
1097 be typedefed; just be safe. */
1098 CHECK_TYPEDEF (t);
1099 if (TYPE_CODE (t) == TYPE_CODE_PTR
1100 || TYPE_CODE (t) == TYPE_CODE_REF)
1101 t = TYPE_TARGET_TYPE (t);
1102
1103 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
1104 && TYPE_CODE (t) != TYPE_CODE_UNION)
1105 error (_("Internal error: `%s' is not an aggregate"),
1106 langdef->la_name_of_this);
1107
1108 if (check_field (t, name))
1109 {
1110 *is_a_field_of_this = 1;
1111 return NULL;
1112 }
1113 }
1114 }
1115
1116 /* Now do whatever is appropriate for LANGUAGE to look
1117 up static and global variables. */
1118
1119 sym = langdef->la_lookup_symbol_nonlocal (name, block, domain);
1120 if (sym != NULL)
1121 return sym;
1122
1123 /* Now search all static file-level symbols. Not strictly correct,
1124 but more useful than an error. */
1125
1126 return lookup_static_symbol_aux (name, domain);
1127 }
1128
1129 /* Search all static file-level symbols for NAME from DOMAIN. Do the symtabs
1130 first, then check the psymtabs. If a psymtab indicates the existence of the
1131 desired name as a file-level static, then do psymtab-to-symtab conversion on
1132 the fly and return the found symbol. */
1133
1134 struct symbol *
1135 lookup_static_symbol_aux (const char *name, const domain_enum domain)
1136 {
1137 struct objfile *objfile;
1138 struct symbol *sym;
1139
1140 sym = lookup_symbol_aux_symtabs (STATIC_BLOCK, name, domain);
1141 if (sym != NULL)
1142 return sym;
1143
1144 ALL_OBJFILES (objfile)
1145 {
1146 sym = lookup_symbol_aux_quick (objfile, STATIC_BLOCK, name, domain);
1147 if (sym != NULL)
1148 return sym;
1149 }
1150
1151 return NULL;
1152 }
1153
1154 /* Check to see if the symbol is defined in BLOCK or its superiors.
1155 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
1156
1157 static struct symbol *
1158 lookup_symbol_aux_local (const char *name, const struct block *block,
1159 const domain_enum domain,
1160 enum language language)
1161 {
1162 struct symbol *sym;
1163 const struct block *static_block = block_static_block (block);
1164 const char *scope = block_scope (block);
1165
1166 /* Check if either no block is specified or it's a global block. */
1167
1168 if (static_block == NULL)
1169 return NULL;
1170
1171 while (block != static_block)
1172 {
1173 sym = lookup_symbol_aux_block (name, block, domain);
1174 if (sym != NULL)
1175 return sym;
1176
1177 if (language == language_cplus || language == language_fortran)
1178 {
1179 sym = cp_lookup_symbol_imports (scope,
1180 name,
1181 block,
1182 domain,
1183 1,
1184 1);
1185 if (sym != NULL)
1186 return sym;
1187 }
1188
1189 if (BLOCK_FUNCTION (block) != NULL && block_inlined_p (block))
1190 break;
1191 block = BLOCK_SUPERBLOCK (block);
1192 }
1193
1194 /* We've reached the edge of the function without finding a result. */
1195
1196 return NULL;
1197 }
1198
1199 /* Look up OBJFILE to BLOCK. */
1200
1201 struct objfile *
1202 lookup_objfile_from_block (const struct block *block)
1203 {
1204 struct objfile *obj;
1205 struct symtab *s;
1206
1207 if (block == NULL)
1208 return NULL;
1209
1210 block = block_global_block (block);
1211 /* Go through SYMTABS. */
1212 ALL_SYMTABS (obj, s)
1213 if (block == BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK))
1214 {
1215 if (obj->separate_debug_objfile_backlink)
1216 obj = obj->separate_debug_objfile_backlink;
1217
1218 return obj;
1219 }
1220
1221 return NULL;
1222 }
1223
1224 /* Look up a symbol in a block; if found, fixup the symbol, and set
1225 block_found appropriately. */
1226
1227 struct symbol *
1228 lookup_symbol_aux_block (const char *name, const struct block *block,
1229 const domain_enum domain)
1230 {
1231 struct symbol *sym;
1232
1233 sym = lookup_block_symbol (block, name, domain);
1234 if (sym)
1235 {
1236 block_found = block;
1237 return fixup_symbol_section (sym, NULL);
1238 }
1239
1240 return NULL;
1241 }
1242
1243 /* Check all global symbols in OBJFILE in symtabs and
1244 psymtabs. */
1245
1246 struct symbol *
1247 lookup_global_symbol_from_objfile (const struct objfile *main_objfile,
1248 const char *name,
1249 const domain_enum domain)
1250 {
1251 const struct objfile *objfile;
1252 struct symbol *sym;
1253 struct blockvector *bv;
1254 const struct block *block;
1255 struct symtab *s;
1256
1257 for (objfile = main_objfile;
1258 objfile;
1259 objfile = objfile_separate_debug_iterate (main_objfile, objfile))
1260 {
1261 /* Go through symtabs. */
1262 ALL_OBJFILE_SYMTABS (objfile, s)
1263 {
1264 bv = BLOCKVECTOR (s);
1265 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1266 sym = lookup_block_symbol (block, name, domain);
1267 if (sym)
1268 {
1269 block_found = block;
1270 return fixup_symbol_section (sym, (struct objfile *)objfile);
1271 }
1272 }
1273
1274 sym = lookup_symbol_aux_quick ((struct objfile *) objfile, GLOBAL_BLOCK,
1275 name, domain);
1276 if (sym)
1277 return sym;
1278 }
1279
1280 return NULL;
1281 }
1282
1283 /* Check to see if the symbol is defined in one of the symtabs.
1284 BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
1285 depending on whether or not we want to search global symbols or
1286 static symbols. */
1287
1288 static struct symbol *
1289 lookup_symbol_aux_symtabs (int block_index, const char *name,
1290 const domain_enum domain)
1291 {
1292 struct symbol *sym;
1293 struct objfile *objfile;
1294 struct blockvector *bv;
1295 const struct block *block;
1296 struct symtab *s;
1297
1298 ALL_PRIMARY_SYMTABS (objfile, s)
1299 {
1300 bv = BLOCKVECTOR (s);
1301 block = BLOCKVECTOR_BLOCK (bv, block_index);
1302 sym = lookup_block_symbol (block, name, domain);
1303 if (sym)
1304 {
1305 block_found = block;
1306 return fixup_symbol_section (sym, objfile);
1307 }
1308 }
1309
1310 return NULL;
1311 }
1312
1313 /* A helper function for lookup_symbol_aux that interfaces with the
1314 "quick" symbol table functions. */
1315
1316 static struct symbol *
1317 lookup_symbol_aux_quick (struct objfile *objfile, int kind,
1318 const char *name, const domain_enum domain)
1319 {
1320 struct symtab *symtab;
1321 struct blockvector *bv;
1322 const struct block *block;
1323 struct symbol *sym;
1324
1325 if (!objfile->sf)
1326 return NULL;
1327 symtab = objfile->sf->qf->lookup_symbol (objfile, kind, name, domain);
1328 if (!symtab)
1329 return NULL;
1330
1331 bv = BLOCKVECTOR (symtab);
1332 block = BLOCKVECTOR_BLOCK (bv, kind);
1333 sym = lookup_block_symbol (block, name, domain);
1334 if (!sym)
1335 {
1336 /* This shouldn't be necessary, but as a last resort try
1337 looking in the statics even though the psymtab claimed
1338 the symbol was global, or vice-versa. It's possible
1339 that the psymtab gets it wrong in some cases. */
1340
1341 /* FIXME: carlton/2002-09-30: Should we really do that?
1342 If that happens, isn't it likely to be a GDB error, in
1343 which case we should fix the GDB error rather than
1344 silently dealing with it here? So I'd vote for
1345 removing the check for the symbol in the other
1346 block. */
1347 block = BLOCKVECTOR_BLOCK (bv,
1348 kind == GLOBAL_BLOCK ?
1349 STATIC_BLOCK : GLOBAL_BLOCK);
1350 sym = lookup_block_symbol (block, name, domain);
1351 if (!sym)
1352 error (_("Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n%s may be an inlined function, or may be a template function\n(if a template, try specifying an instantiation: %s<type>)."),
1353 kind == GLOBAL_BLOCK ? "global" : "static",
1354 name, symtab->filename, name, name);
1355 }
1356 return fixup_symbol_section (sym, objfile);
1357 }
1358
1359 /* A default version of lookup_symbol_nonlocal for use by languages
1360 that can't think of anything better to do. This implements the C
1361 lookup rules. */
1362
1363 struct symbol *
1364 basic_lookup_symbol_nonlocal (const char *name,
1365 const struct block *block,
1366 const domain_enum domain)
1367 {
1368 struct symbol *sym;
1369
1370 /* NOTE: carlton/2003-05-19: The comments below were written when
1371 this (or what turned into this) was part of lookup_symbol_aux;
1372 I'm much less worried about these questions now, since these
1373 decisions have turned out well, but I leave these comments here
1374 for posterity. */
1375
1376 /* NOTE: carlton/2002-12-05: There is a question as to whether or
1377 not it would be appropriate to search the current global block
1378 here as well. (That's what this code used to do before the
1379 is_a_field_of_this check was moved up.) On the one hand, it's
1380 redundant with the lookup_symbol_aux_symtabs search that happens
1381 next. On the other hand, if decode_line_1 is passed an argument
1382 like filename:var, then the user presumably wants 'var' to be
1383 searched for in filename. On the third hand, there shouldn't be
1384 multiple global variables all of which are named 'var', and it's
1385 not like decode_line_1 has ever restricted its search to only
1386 global variables in a single filename. All in all, only
1387 searching the static block here seems best: it's correct and it's
1388 cleanest. */
1389
1390 /* NOTE: carlton/2002-12-05: There's also a possible performance
1391 issue here: if you usually search for global symbols in the
1392 current file, then it would be slightly better to search the
1393 current global block before searching all the symtabs. But there
1394 are other factors that have a much greater effect on performance
1395 than that one, so I don't think we should worry about that for
1396 now. */
1397
1398 sym = lookup_symbol_static (name, block, domain);
1399 if (sym != NULL)
1400 return sym;
1401
1402 return lookup_symbol_global (name, block, domain);
1403 }
1404
1405 /* Lookup a symbol in the static block associated to BLOCK, if there
1406 is one; do nothing if BLOCK is NULL or a global block. */
1407
1408 struct symbol *
1409 lookup_symbol_static (const char *name,
1410 const struct block *block,
1411 const domain_enum domain)
1412 {
1413 const struct block *static_block = block_static_block (block);
1414
1415 if (static_block != NULL)
1416 return lookup_symbol_aux_block (name, static_block, domain);
1417 else
1418 return NULL;
1419 }
1420
1421 /* Lookup a symbol in all files' global blocks (searching psymtabs if
1422 necessary). */
1423
1424 struct symbol *
1425 lookup_symbol_global (const char *name,
1426 const struct block *block,
1427 const domain_enum domain)
1428 {
1429 struct symbol *sym = NULL;
1430 struct objfile *objfile = NULL;
1431
1432 /* Call library-specific lookup procedure. */
1433 objfile = lookup_objfile_from_block (block);
1434 if (objfile != NULL)
1435 sym = solib_global_lookup (objfile, name, domain);
1436 if (sym != NULL)
1437 return sym;
1438
1439 sym = lookup_symbol_aux_symtabs (GLOBAL_BLOCK, name, domain);
1440 if (sym != NULL)
1441 return sym;
1442
1443 ALL_OBJFILES (objfile)
1444 {
1445 sym = lookup_symbol_aux_quick (objfile, GLOBAL_BLOCK, name, domain);
1446 if (sym)
1447 return sym;
1448 }
1449
1450 return NULL;
1451 }
1452
1453 int
1454 symbol_matches_domain (enum language symbol_language,
1455 domain_enum symbol_domain,
1456 domain_enum domain)
1457 {
1458 /* For C++ "struct foo { ... }" also defines a typedef for "foo".
1459 A Java class declaration also defines a typedef for the class.
1460 Similarly, any Ada type declaration implicitly defines a typedef. */
1461 if (symbol_language == language_cplus
1462 || symbol_language == language_d
1463 || symbol_language == language_java
1464 || symbol_language == language_ada)
1465 {
1466 if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN)
1467 && symbol_domain == STRUCT_DOMAIN)
1468 return 1;
1469 }
1470 /* For all other languages, strict match is required. */
1471 return (symbol_domain == domain);
1472 }
1473
1474 /* Look up a type named NAME in the struct_domain. The type returned
1475 must not be opaque -- i.e., must have at least one field
1476 defined. */
1477
1478 struct type *
1479 lookup_transparent_type (const char *name)
1480 {
1481 return current_language->la_lookup_transparent_type (name);
1482 }
1483
1484 /* A helper for basic_lookup_transparent_type that interfaces with the
1485 "quick" symbol table functions. */
1486
1487 static struct type *
1488 basic_lookup_transparent_type_quick (struct objfile *objfile, int kind,
1489 const char *name)
1490 {
1491 struct symtab *symtab;
1492 struct blockvector *bv;
1493 struct block *block;
1494 struct symbol *sym;
1495
1496 if (!objfile->sf)
1497 return NULL;
1498 symtab = objfile->sf->qf->lookup_symbol (objfile, kind, name, STRUCT_DOMAIN);
1499 if (!symtab)
1500 return NULL;
1501
1502 bv = BLOCKVECTOR (symtab);
1503 block = BLOCKVECTOR_BLOCK (bv, kind);
1504 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1505 if (!sym)
1506 {
1507 int other_kind = kind == GLOBAL_BLOCK ? STATIC_BLOCK : GLOBAL_BLOCK;
1508
1509 /* This shouldn't be necessary, but as a last resort
1510 * try looking in the 'other kind' even though the psymtab
1511 * claimed the symbol was one thing. It's possible that
1512 * the psymtab gets it wrong in some cases.
1513 */
1514 block = BLOCKVECTOR_BLOCK (bv, other_kind);
1515 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1516 if (!sym)
1517 /* FIXME; error is wrong in one case */
1518 error (_("Internal: global symbol `%s' found in %s psymtab but not in symtab.\n\
1519 %s may be an inlined function, or may be a template function\n\
1520 (if a template, try specifying an instantiation: %s<type>)."),
1521 name, symtab->filename, name, name);
1522 }
1523 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1524 return SYMBOL_TYPE (sym);
1525
1526 return NULL;
1527 }
1528
1529 /* The standard implementation of lookup_transparent_type. This code
1530 was modeled on lookup_symbol -- the parts not relevant to looking
1531 up types were just left out. In particular it's assumed here that
1532 types are available in struct_domain and only at file-static or
1533 global blocks. */
1534
1535 struct type *
1536 basic_lookup_transparent_type (const char *name)
1537 {
1538 struct symbol *sym;
1539 struct symtab *s = NULL;
1540 struct blockvector *bv;
1541 struct objfile *objfile;
1542 struct block *block;
1543 struct type *t;
1544
1545 /* Now search all the global symbols. Do the symtab's first, then
1546 check the psymtab's. If a psymtab indicates the existence
1547 of the desired name as a global, then do psymtab-to-symtab
1548 conversion on the fly and return the found symbol. */
1549
1550 ALL_PRIMARY_SYMTABS (objfile, s)
1551 {
1552 bv = BLOCKVECTOR (s);
1553 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1554 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1555 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1556 {
1557 return SYMBOL_TYPE (sym);
1558 }
1559 }
1560
1561 ALL_OBJFILES (objfile)
1562 {
1563 t = basic_lookup_transparent_type_quick (objfile, GLOBAL_BLOCK, name);
1564 if (t)
1565 return t;
1566 }
1567
1568 /* Now search the static file-level symbols.
1569 Not strictly correct, but more useful than an error.
1570 Do the symtab's first, then
1571 check the psymtab's. If a psymtab indicates the existence
1572 of the desired name as a file-level static, then do psymtab-to-symtab
1573 conversion on the fly and return the found symbol.
1574 */
1575
1576 ALL_PRIMARY_SYMTABS (objfile, s)
1577 {
1578 bv = BLOCKVECTOR (s);
1579 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
1580 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1581 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1582 {
1583 return SYMBOL_TYPE (sym);
1584 }
1585 }
1586
1587 ALL_OBJFILES (objfile)
1588 {
1589 t = basic_lookup_transparent_type_quick (objfile, STATIC_BLOCK, name);
1590 if (t)
1591 return t;
1592 }
1593
1594 return (struct type *) 0;
1595 }
1596
1597
1598 /* Find the name of the file containing main(). */
1599 /* FIXME: What about languages without main() or specially linked
1600 executables that have no main() ? */
1601
1602 char *
1603 find_main_filename (void)
1604 {
1605 struct objfile *objfile;
1606 char *result, *name = main_name ();
1607
1608 ALL_OBJFILES (objfile)
1609 {
1610 if (!objfile->sf)
1611 continue;
1612 result = objfile->sf->qf->find_symbol_file (objfile, name);
1613 if (result)
1614 return result;
1615 }
1616 return (NULL);
1617 }
1618
1619 /* Search BLOCK for symbol NAME in DOMAIN.
1620
1621 Note that if NAME is the demangled form of a C++ symbol, we will fail
1622 to find a match during the binary search of the non-encoded names, but
1623 for now we don't worry about the slight inefficiency of looking for
1624 a match we'll never find, since it will go pretty quick. Once the
1625 binary search terminates, we drop through and do a straight linear
1626 search on the symbols. Each symbol which is marked as being a ObjC/C++
1627 symbol (language_cplus or language_objc set) has both the encoded and
1628 non-encoded names tested for a match.
1629 */
1630
1631 struct symbol *
1632 lookup_block_symbol (const struct block *block, const char *name,
1633 const domain_enum domain)
1634 {
1635 struct dict_iterator iter;
1636 struct symbol *sym;
1637
1638 if (!BLOCK_FUNCTION (block))
1639 {
1640 for (sym = dict_iter_name_first (BLOCK_DICT (block), name, &iter);
1641 sym != NULL;
1642 sym = dict_iter_name_next (name, &iter))
1643 {
1644 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
1645 SYMBOL_DOMAIN (sym), domain))
1646 return sym;
1647 }
1648 return NULL;
1649 }
1650 else
1651 {
1652 /* Note that parameter symbols do not always show up last in the
1653 list; this loop makes sure to take anything else other than
1654 parameter symbols first; it only uses parameter symbols as a
1655 last resort. Note that this only takes up extra computation
1656 time on a match. */
1657
1658 struct symbol *sym_found = NULL;
1659
1660 for (sym = dict_iter_name_first (BLOCK_DICT (block), name, &iter);
1661 sym != NULL;
1662 sym = dict_iter_name_next (name, &iter))
1663 {
1664 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
1665 SYMBOL_DOMAIN (sym), domain))
1666 {
1667 sym_found = sym;
1668 if (!SYMBOL_IS_ARGUMENT (sym))
1669 {
1670 break;
1671 }
1672 }
1673 }
1674 return (sym_found); /* Will be NULL if not found. */
1675 }
1676 }
1677
1678 /* Find the symtab associated with PC and SECTION. Look through the
1679 psymtabs and read in another symtab if necessary. */
1680
1681 struct symtab *
1682 find_pc_sect_symtab (CORE_ADDR pc, struct obj_section *section)
1683 {
1684 struct block *b;
1685 struct blockvector *bv;
1686 struct symtab *s = NULL;
1687 struct symtab *best_s = NULL;
1688 struct objfile *objfile;
1689 struct program_space *pspace;
1690 CORE_ADDR distance = 0;
1691 struct minimal_symbol *msymbol;
1692
1693 pspace = current_program_space;
1694
1695 /* If we know that this is not a text address, return failure. This is
1696 necessary because we loop based on the block's high and low code
1697 addresses, which do not include the data ranges, and because
1698 we call find_pc_sect_psymtab which has a similar restriction based
1699 on the partial_symtab's texthigh and textlow. */
1700 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
1701 if (msymbol
1702 && (MSYMBOL_TYPE (msymbol) == mst_data
1703 || MSYMBOL_TYPE (msymbol) == mst_bss
1704 || MSYMBOL_TYPE (msymbol) == mst_abs
1705 || MSYMBOL_TYPE (msymbol) == mst_file_data
1706 || MSYMBOL_TYPE (msymbol) == mst_file_bss))
1707 return NULL;
1708
1709 /* Search all symtabs for the one whose file contains our address, and which
1710 is the smallest of all the ones containing the address. This is designed
1711 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
1712 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
1713 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
1714
1715 This happens for native ecoff format, where code from included files
1716 gets its own symtab. The symtab for the included file should have
1717 been read in already via the dependency mechanism.
1718 It might be swifter to create several symtabs with the same name
1719 like xcoff does (I'm not sure).
1720
1721 It also happens for objfiles that have their functions reordered.
1722 For these, the symtab we are looking for is not necessarily read in. */
1723
1724 ALL_PRIMARY_SYMTABS (objfile, s)
1725 {
1726 bv = BLOCKVECTOR (s);
1727 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1728
1729 if (BLOCK_START (b) <= pc
1730 && BLOCK_END (b) > pc
1731 && (distance == 0
1732 || BLOCK_END (b) - BLOCK_START (b) < distance))
1733 {
1734 /* For an objfile that has its functions reordered,
1735 find_pc_psymtab will find the proper partial symbol table
1736 and we simply return its corresponding symtab. */
1737 /* In order to better support objfiles that contain both
1738 stabs and coff debugging info, we continue on if a psymtab
1739 can't be found. */
1740 if ((objfile->flags & OBJF_REORDERED) && objfile->sf)
1741 {
1742 struct symtab *result;
1743
1744 result
1745 = objfile->sf->qf->find_pc_sect_symtab (objfile,
1746 msymbol,
1747 pc, section,
1748 0);
1749 if (result)
1750 return result;
1751 }
1752 if (section != 0)
1753 {
1754 struct dict_iterator iter;
1755 struct symbol *sym = NULL;
1756
1757 ALL_BLOCK_SYMBOLS (b, iter, sym)
1758 {
1759 fixup_symbol_section (sym, objfile);
1760 if (matching_obj_sections (SYMBOL_OBJ_SECTION (sym), section))
1761 break;
1762 }
1763 if (sym == NULL)
1764 continue; /* no symbol in this symtab matches section */
1765 }
1766 distance = BLOCK_END (b) - BLOCK_START (b);
1767 best_s = s;
1768 }
1769 }
1770
1771 if (best_s != NULL)
1772 return (best_s);
1773
1774 ALL_OBJFILES (objfile)
1775 {
1776 struct symtab *result;
1777
1778 if (!objfile->sf)
1779 continue;
1780 result = objfile->sf->qf->find_pc_sect_symtab (objfile,
1781 msymbol,
1782 pc, section,
1783 1);
1784 if (result)
1785 return result;
1786 }
1787
1788 return NULL;
1789 }
1790
1791 /* Find the symtab associated with PC. Look through the psymtabs and
1792 read in another symtab if necessary. Backward compatibility, no section */
1793
1794 struct symtab *
1795 find_pc_symtab (CORE_ADDR pc)
1796 {
1797 return find_pc_sect_symtab (pc, find_pc_mapped_section (pc));
1798 }
1799 \f
1800
1801 /* Find the source file and line number for a given PC value and SECTION.
1802 Return a structure containing a symtab pointer, a line number,
1803 and a pc range for the entire source line.
1804 The value's .pc field is NOT the specified pc.
1805 NOTCURRENT nonzero means, if specified pc is on a line boundary,
1806 use the line that ends there. Otherwise, in that case, the line
1807 that begins there is used. */
1808
1809 /* The big complication here is that a line may start in one file, and end just
1810 before the start of another file. This usually occurs when you #include
1811 code in the middle of a subroutine. To properly find the end of a line's PC
1812 range, we must search all symtabs associated with this compilation unit, and
1813 find the one whose first PC is closer than that of the next line in this
1814 symtab. */
1815
1816 /* If it's worth the effort, we could be using a binary search. */
1817
1818 struct symtab_and_line
1819 find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent)
1820 {
1821 struct symtab *s;
1822 struct linetable *l;
1823 int len;
1824 int i;
1825 struct linetable_entry *item;
1826 struct symtab_and_line val;
1827 struct blockvector *bv;
1828 struct minimal_symbol *msymbol;
1829 struct minimal_symbol *mfunsym;
1830
1831 /* Info on best line seen so far, and where it starts, and its file. */
1832
1833 struct linetable_entry *best = NULL;
1834 CORE_ADDR best_end = 0;
1835 struct symtab *best_symtab = 0;
1836
1837 /* Store here the first line number
1838 of a file which contains the line at the smallest pc after PC.
1839 If we don't find a line whose range contains PC,
1840 we will use a line one less than this,
1841 with a range from the start of that file to the first line's pc. */
1842 struct linetable_entry *alt = NULL;
1843 struct symtab *alt_symtab = 0;
1844
1845 /* Info on best line seen in this file. */
1846
1847 struct linetable_entry *prev;
1848
1849 /* If this pc is not from the current frame,
1850 it is the address of the end of a call instruction.
1851 Quite likely that is the start of the following statement.
1852 But what we want is the statement containing the instruction.
1853 Fudge the pc to make sure we get that. */
1854
1855 init_sal (&val); /* initialize to zeroes */
1856
1857 val.pspace = current_program_space;
1858
1859 /* It's tempting to assume that, if we can't find debugging info for
1860 any function enclosing PC, that we shouldn't search for line
1861 number info, either. However, GAS can emit line number info for
1862 assembly files --- very helpful when debugging hand-written
1863 assembly code. In such a case, we'd have no debug info for the
1864 function, but we would have line info. */
1865
1866 if (notcurrent)
1867 pc -= 1;
1868
1869 /* elz: added this because this function returned the wrong
1870 information if the pc belongs to a stub (import/export)
1871 to call a shlib function. This stub would be anywhere between
1872 two functions in the target, and the line info was erroneously
1873 taken to be the one of the line before the pc.
1874 */
1875 /* RT: Further explanation:
1876
1877 * We have stubs (trampolines) inserted between procedures.
1878 *
1879 * Example: "shr1" exists in a shared library, and a "shr1" stub also
1880 * exists in the main image.
1881 *
1882 * In the minimal symbol table, we have a bunch of symbols
1883 * sorted by start address. The stubs are marked as "trampoline",
1884 * the others appear as text. E.g.:
1885 *
1886 * Minimal symbol table for main image
1887 * main: code for main (text symbol)
1888 * shr1: stub (trampoline symbol)
1889 * foo: code for foo (text symbol)
1890 * ...
1891 * Minimal symbol table for "shr1" image:
1892 * ...
1893 * shr1: code for shr1 (text symbol)
1894 * ...
1895 *
1896 * So the code below is trying to detect if we are in the stub
1897 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
1898 * and if found, do the symbolization from the real-code address
1899 * rather than the stub address.
1900 *
1901 * Assumptions being made about the minimal symbol table:
1902 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
1903 * if we're really in the trampoline. If we're beyond it (say
1904 * we're in "foo" in the above example), it'll have a closer
1905 * symbol (the "foo" text symbol for example) and will not
1906 * return the trampoline.
1907 * 2. lookup_minimal_symbol_text() will find a real text symbol
1908 * corresponding to the trampoline, and whose address will
1909 * be different than the trampoline address. I put in a sanity
1910 * check for the address being the same, to avoid an
1911 * infinite recursion.
1912 */
1913 msymbol = lookup_minimal_symbol_by_pc (pc);
1914 if (msymbol != NULL)
1915 if (MSYMBOL_TYPE (msymbol) == mst_solib_trampoline)
1916 {
1917 mfunsym = lookup_minimal_symbol_text (SYMBOL_LINKAGE_NAME (msymbol),
1918 NULL);
1919 if (mfunsym == NULL)
1920 /* I eliminated this warning since it is coming out
1921 * in the following situation:
1922 * gdb shmain // test program with shared libraries
1923 * (gdb) break shr1 // function in shared lib
1924 * Warning: In stub for ...
1925 * In the above situation, the shared lib is not loaded yet,
1926 * so of course we can't find the real func/line info,
1927 * but the "break" still works, and the warning is annoying.
1928 * So I commented out the warning. RT */
1929 /* warning ("In stub for %s; unable to find real function/line info", SYMBOL_LINKAGE_NAME (msymbol)) */ ;
1930 /* fall through */
1931 else if (SYMBOL_VALUE_ADDRESS (mfunsym) == SYMBOL_VALUE_ADDRESS (msymbol))
1932 /* Avoid infinite recursion */
1933 /* See above comment about why warning is commented out */
1934 /* warning ("In stub for %s; unable to find real function/line info", SYMBOL_LINKAGE_NAME (msymbol)) */ ;
1935 /* fall through */
1936 else
1937 return find_pc_line (SYMBOL_VALUE_ADDRESS (mfunsym), 0);
1938 }
1939
1940
1941 s = find_pc_sect_symtab (pc, section);
1942 if (!s)
1943 {
1944 /* if no symbol information, return previous pc */
1945 if (notcurrent)
1946 pc++;
1947 val.pc = pc;
1948 return val;
1949 }
1950
1951 bv = BLOCKVECTOR (s);
1952
1953 /* Look at all the symtabs that share this blockvector.
1954 They all have the same apriori range, that we found was right;
1955 but they have different line tables. */
1956
1957 for (; s && BLOCKVECTOR (s) == bv; s = s->next)
1958 {
1959 /* Find the best line in this symtab. */
1960 l = LINETABLE (s);
1961 if (!l)
1962 continue;
1963 len = l->nitems;
1964 if (len <= 0)
1965 {
1966 /* I think len can be zero if the symtab lacks line numbers
1967 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
1968 I'm not sure which, and maybe it depends on the symbol
1969 reader). */
1970 continue;
1971 }
1972
1973 prev = NULL;
1974 item = l->item; /* Get first line info */
1975
1976 /* Is this file's first line closer than the first lines of other files?
1977 If so, record this file, and its first line, as best alternate. */
1978 if (item->pc > pc && (!alt || item->pc < alt->pc))
1979 {
1980 alt = item;
1981 alt_symtab = s;
1982 }
1983
1984 for (i = 0; i < len; i++, item++)
1985 {
1986 /* Leave prev pointing to the linetable entry for the last line
1987 that started at or before PC. */
1988 if (item->pc > pc)
1989 break;
1990
1991 prev = item;
1992 }
1993
1994 /* At this point, prev points at the line whose start addr is <= pc, and
1995 item points at the next line. If we ran off the end of the linetable
1996 (pc >= start of the last line), then prev == item. If pc < start of
1997 the first line, prev will not be set. */
1998
1999 /* Is this file's best line closer than the best in the other files?
2000 If so, record this file, and its best line, as best so far. Don't
2001 save prev if it represents the end of a function (i.e. line number
2002 0) instead of a real line. */
2003
2004 if (prev && prev->line && (!best || prev->pc > best->pc))
2005 {
2006 best = prev;
2007 best_symtab = s;
2008
2009 /* Discard BEST_END if it's before the PC of the current BEST. */
2010 if (best_end <= best->pc)
2011 best_end = 0;
2012 }
2013
2014 /* If another line (denoted by ITEM) is in the linetable and its
2015 PC is after BEST's PC, but before the current BEST_END, then
2016 use ITEM's PC as the new best_end. */
2017 if (best && i < len && item->pc > best->pc
2018 && (best_end == 0 || best_end > item->pc))
2019 best_end = item->pc;
2020 }
2021
2022 if (!best_symtab)
2023 {
2024 /* If we didn't find any line number info, just return zeros.
2025 We used to return alt->line - 1 here, but that could be
2026 anywhere; if we don't have line number info for this PC,
2027 don't make some up. */
2028 val.pc = pc;
2029 }
2030 else if (best->line == 0)
2031 {
2032 /* If our best fit is in a range of PC's for which no line
2033 number info is available (line number is zero) then we didn't
2034 find any valid line information. */
2035 val.pc = pc;
2036 }
2037 else
2038 {
2039 val.symtab = best_symtab;
2040 val.line = best->line;
2041 val.pc = best->pc;
2042 if (best_end && (!alt || best_end < alt->pc))
2043 val.end = best_end;
2044 else if (alt)
2045 val.end = alt->pc;
2046 else
2047 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
2048 }
2049 val.section = section;
2050 return val;
2051 }
2052
2053 /* Backward compatibility (no section) */
2054
2055 struct symtab_and_line
2056 find_pc_line (CORE_ADDR pc, int notcurrent)
2057 {
2058 struct obj_section *section;
2059
2060 section = find_pc_overlay (pc);
2061 if (pc_in_unmapped_range (pc, section))
2062 pc = overlay_mapped_address (pc, section);
2063 return find_pc_sect_line (pc, section, notcurrent);
2064 }
2065 \f
2066 /* Find line number LINE in any symtab whose name is the same as
2067 SYMTAB.
2068
2069 If found, return the symtab that contains the linetable in which it was
2070 found, set *INDEX to the index in the linetable of the best entry
2071 found, and set *EXACT_MATCH nonzero if the value returned is an
2072 exact match.
2073
2074 If not found, return NULL. */
2075
2076 struct symtab *
2077 find_line_symtab (struct symtab *symtab, int line,
2078 int *index, int *exact_match)
2079 {
2080 int exact = 0; /* Initialized here to avoid a compiler warning. */
2081
2082 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
2083 so far seen. */
2084
2085 int best_index;
2086 struct linetable *best_linetable;
2087 struct symtab *best_symtab;
2088
2089 /* First try looking it up in the given symtab. */
2090 best_linetable = LINETABLE (symtab);
2091 best_symtab = symtab;
2092 best_index = find_line_common (best_linetable, line, &exact);
2093 if (best_index < 0 || !exact)
2094 {
2095 /* Didn't find an exact match. So we better keep looking for
2096 another symtab with the same name. In the case of xcoff,
2097 multiple csects for one source file (produced by IBM's FORTRAN
2098 compiler) produce multiple symtabs (this is unavoidable
2099 assuming csects can be at arbitrary places in memory and that
2100 the GLOBAL_BLOCK of a symtab has a begin and end address). */
2101
2102 /* BEST is the smallest linenumber > LINE so far seen,
2103 or 0 if none has been seen so far.
2104 BEST_INDEX and BEST_LINETABLE identify the item for it. */
2105 int best;
2106
2107 struct objfile *objfile;
2108 struct symtab *s;
2109
2110 if (best_index >= 0)
2111 best = best_linetable->item[best_index].line;
2112 else
2113 best = 0;
2114
2115 ALL_OBJFILES (objfile)
2116 {
2117 if (objfile->sf)
2118 objfile->sf->qf->expand_symtabs_with_filename (objfile,
2119 symtab->filename);
2120 }
2121
2122 /* Get symbol full file name if possible. */
2123 symtab_to_fullname (symtab);
2124
2125 ALL_SYMTABS (objfile, s)
2126 {
2127 struct linetable *l;
2128 int ind;
2129
2130 if (FILENAME_CMP (symtab->filename, s->filename) != 0)
2131 continue;
2132 if (symtab->fullname != NULL
2133 && symtab_to_fullname (s) != NULL
2134 && FILENAME_CMP (symtab->fullname, s->fullname) != 0)
2135 continue;
2136 l = LINETABLE (s);
2137 ind = find_line_common (l, line, &exact);
2138 if (ind >= 0)
2139 {
2140 if (exact)
2141 {
2142 best_index = ind;
2143 best_linetable = l;
2144 best_symtab = s;
2145 goto done;
2146 }
2147 if (best == 0 || l->item[ind].line < best)
2148 {
2149 best = l->item[ind].line;
2150 best_index = ind;
2151 best_linetable = l;
2152 best_symtab = s;
2153 }
2154 }
2155 }
2156 }
2157 done:
2158 if (best_index < 0)
2159 return NULL;
2160
2161 if (index)
2162 *index = best_index;
2163 if (exact_match)
2164 *exact_match = exact;
2165
2166 return best_symtab;
2167 }
2168 \f
2169 /* Set the PC value for a given source file and line number and return true.
2170 Returns zero for invalid line number (and sets the PC to 0).
2171 The source file is specified with a struct symtab. */
2172
2173 int
2174 find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
2175 {
2176 struct linetable *l;
2177 int ind;
2178
2179 *pc = 0;
2180 if (symtab == 0)
2181 return 0;
2182
2183 symtab = find_line_symtab (symtab, line, &ind, NULL);
2184 if (symtab != NULL)
2185 {
2186 l = LINETABLE (symtab);
2187 *pc = l->item[ind].pc;
2188 return 1;
2189 }
2190 else
2191 return 0;
2192 }
2193
2194 /* Find the range of pc values in a line.
2195 Store the starting pc of the line into *STARTPTR
2196 and the ending pc (start of next line) into *ENDPTR.
2197 Returns 1 to indicate success.
2198 Returns 0 if could not find the specified line. */
2199
2200 int
2201 find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
2202 CORE_ADDR *endptr)
2203 {
2204 CORE_ADDR startaddr;
2205 struct symtab_and_line found_sal;
2206
2207 startaddr = sal.pc;
2208 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
2209 return 0;
2210
2211 /* This whole function is based on address. For example, if line 10 has
2212 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
2213 "info line *0x123" should say the line goes from 0x100 to 0x200
2214 and "info line *0x355" should say the line goes from 0x300 to 0x400.
2215 This also insures that we never give a range like "starts at 0x134
2216 and ends at 0x12c". */
2217
2218 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
2219 if (found_sal.line != sal.line)
2220 {
2221 /* The specified line (sal) has zero bytes. */
2222 *startptr = found_sal.pc;
2223 *endptr = found_sal.pc;
2224 }
2225 else
2226 {
2227 *startptr = found_sal.pc;
2228 *endptr = found_sal.end;
2229 }
2230 return 1;
2231 }
2232
2233 /* Given a line table and a line number, return the index into the line
2234 table for the pc of the nearest line whose number is >= the specified one.
2235 Return -1 if none is found. The value is >= 0 if it is an index.
2236
2237 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
2238
2239 static int
2240 find_line_common (struct linetable *l, int lineno,
2241 int *exact_match)
2242 {
2243 int i;
2244 int len;
2245
2246 /* BEST is the smallest linenumber > LINENO so far seen,
2247 or 0 if none has been seen so far.
2248 BEST_INDEX identifies the item for it. */
2249
2250 int best_index = -1;
2251 int best = 0;
2252
2253 *exact_match = 0;
2254
2255 if (lineno <= 0)
2256 return -1;
2257 if (l == 0)
2258 return -1;
2259
2260 len = l->nitems;
2261 for (i = 0; i < len; i++)
2262 {
2263 struct linetable_entry *item = &(l->item[i]);
2264
2265 if (item->line == lineno)
2266 {
2267 /* Return the first (lowest address) entry which matches. */
2268 *exact_match = 1;
2269 return i;
2270 }
2271
2272 if (item->line > lineno && (best == 0 || item->line < best))
2273 {
2274 best = item->line;
2275 best_index = i;
2276 }
2277 }
2278
2279 /* If we got here, we didn't get an exact match. */
2280 return best_index;
2281 }
2282
2283 int
2284 find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
2285 {
2286 struct symtab_and_line sal;
2287
2288 sal = find_pc_line (pc, 0);
2289 *startptr = sal.pc;
2290 *endptr = sal.end;
2291 return sal.symtab != 0;
2292 }
2293
2294 /* Given a function start address FUNC_ADDR and SYMTAB, find the first
2295 address for that function that has an entry in SYMTAB's line info
2296 table. If such an entry cannot be found, return FUNC_ADDR
2297 unaltered. */
2298 CORE_ADDR
2299 skip_prologue_using_lineinfo (CORE_ADDR func_addr, struct symtab *symtab)
2300 {
2301 CORE_ADDR func_start, func_end;
2302 struct linetable *l;
2303 int i;
2304
2305 /* Give up if this symbol has no lineinfo table. */
2306 l = LINETABLE (symtab);
2307 if (l == NULL)
2308 return func_addr;
2309
2310 /* Get the range for the function's PC values, or give up if we
2311 cannot, for some reason. */
2312 if (!find_pc_partial_function (func_addr, NULL, &func_start, &func_end))
2313 return func_addr;
2314
2315 /* Linetable entries are ordered by PC values, see the commentary in
2316 symtab.h where `struct linetable' is defined. Thus, the first
2317 entry whose PC is in the range [FUNC_START..FUNC_END[ is the
2318 address we are looking for. */
2319 for (i = 0; i < l->nitems; i++)
2320 {
2321 struct linetable_entry *item = &(l->item[i]);
2322
2323 /* Don't use line numbers of zero, they mark special entries in
2324 the table. See the commentary on symtab.h before the
2325 definition of struct linetable. */
2326 if (item->line > 0 && func_start <= item->pc && item->pc < func_end)
2327 return item->pc;
2328 }
2329
2330 return func_addr;
2331 }
2332
2333 /* Given a function symbol SYM, find the symtab and line for the start
2334 of the function.
2335 If the argument FUNFIRSTLINE is nonzero, we want the first line
2336 of real code inside the function. */
2337
2338 struct symtab_and_line
2339 find_function_start_sal (struct symbol *sym, int funfirstline)
2340 {
2341 struct symtab_and_line sal;
2342
2343 fixup_symbol_section (sym, NULL);
2344 sal = find_pc_sect_line (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)),
2345 SYMBOL_OBJ_SECTION (sym), 0);
2346
2347 /* We always should have a line for the function start address.
2348 If we don't, something is odd. Create a plain SAL refering
2349 just the PC and hope that skip_prologue_sal (if requested)
2350 can find a line number for after the prologue. */
2351 if (sal.pc < BLOCK_START (SYMBOL_BLOCK_VALUE (sym)))
2352 {
2353 init_sal (&sal);
2354 sal.pspace = current_program_space;
2355 sal.pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
2356 sal.section = SYMBOL_OBJ_SECTION (sym);
2357 }
2358
2359 if (funfirstline)
2360 skip_prologue_sal (&sal);
2361
2362 return sal;
2363 }
2364
2365 /* Adjust SAL to the first instruction past the function prologue.
2366 If the PC was explicitly specified, the SAL is not changed.
2367 If the line number was explicitly specified, at most the SAL's PC
2368 is updated. If SAL is already past the prologue, then do nothing. */
2369 void
2370 skip_prologue_sal (struct symtab_and_line *sal)
2371 {
2372 struct symbol *sym;
2373 struct symtab_and_line start_sal;
2374 struct cleanup *old_chain;
2375 CORE_ADDR pc;
2376 struct obj_section *section;
2377 const char *name;
2378 struct objfile *objfile;
2379 struct gdbarch *gdbarch;
2380 struct block *b, *function_block;
2381
2382 /* Do not change the SAL is PC was specified explicitly. */
2383 if (sal->explicit_pc)
2384 return;
2385
2386 old_chain = save_current_space_and_thread ();
2387 switch_to_program_space_and_thread (sal->pspace);
2388
2389 sym = find_pc_sect_function (sal->pc, sal->section);
2390 if (sym != NULL)
2391 {
2392 fixup_symbol_section (sym, NULL);
2393
2394 pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
2395 section = SYMBOL_OBJ_SECTION (sym);
2396 name = SYMBOL_LINKAGE_NAME (sym);
2397 objfile = SYMBOL_SYMTAB (sym)->objfile;
2398 }
2399 else
2400 {
2401 struct minimal_symbol *msymbol
2402 = lookup_minimal_symbol_by_pc_section (sal->pc, sal->section);
2403
2404 if (msymbol == NULL)
2405 {
2406 do_cleanups (old_chain);
2407 return;
2408 }
2409
2410 pc = SYMBOL_VALUE_ADDRESS (msymbol);
2411 section = SYMBOL_OBJ_SECTION (msymbol);
2412 name = SYMBOL_LINKAGE_NAME (msymbol);
2413 objfile = msymbol_objfile (msymbol);
2414 }
2415
2416 gdbarch = get_objfile_arch (objfile);
2417
2418 /* If the function is in an unmapped overlay, use its unmapped LMA address,
2419 so that gdbarch_skip_prologue has something unique to work on. */
2420 if (section_is_overlay (section) && !section_is_mapped (section))
2421 pc = overlay_unmapped_address (pc, section);
2422
2423 /* Skip "first line" of function (which is actually its prologue). */
2424 pc += gdbarch_deprecated_function_start_offset (gdbarch);
2425 pc = gdbarch_skip_prologue (gdbarch, pc);
2426
2427 /* For overlays, map pc back into its mapped VMA range. */
2428 pc = overlay_mapped_address (pc, section);
2429
2430 /* Calculate line number. */
2431 start_sal = find_pc_sect_line (pc, section, 0);
2432
2433 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
2434 line is still part of the same function. */
2435 if (start_sal.pc != pc
2436 && (sym? (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) <= start_sal.end
2437 && start_sal.end < BLOCK_END (SYMBOL_BLOCK_VALUE (sym)))
2438 : (lookup_minimal_symbol_by_pc_section (start_sal.end, section)
2439 == lookup_minimal_symbol_by_pc_section (pc, section))))
2440 {
2441 /* First pc of next line */
2442 pc = start_sal.end;
2443 /* Recalculate the line number (might not be N+1). */
2444 start_sal = find_pc_sect_line (pc, section, 0);
2445 }
2446
2447 /* On targets with executable formats that don't have a concept of
2448 constructors (ELF with .init has, PE doesn't), gcc emits a call
2449 to `__main' in `main' between the prologue and before user
2450 code. */
2451 if (gdbarch_skip_main_prologue_p (gdbarch)
2452 && name && strcmp (name, "main") == 0)
2453 {
2454 pc = gdbarch_skip_main_prologue (gdbarch, pc);
2455 /* Recalculate the line number (might not be N+1). */
2456 start_sal = find_pc_sect_line (pc, section, 0);
2457 }
2458
2459 /* If we still don't have a valid source line, try to find the first
2460 PC in the lineinfo table that belongs to the same function. This
2461 happens with COFF debug info, which does not seem to have an
2462 entry in lineinfo table for the code after the prologue which has
2463 no direct relation to source. For example, this was found to be
2464 the case with the DJGPP target using "gcc -gcoff" when the
2465 compiler inserted code after the prologue to make sure the stack
2466 is aligned. */
2467 if (sym && start_sal.symtab == NULL)
2468 {
2469 pc = skip_prologue_using_lineinfo (pc, SYMBOL_SYMTAB (sym));
2470 /* Recalculate the line number. */
2471 start_sal = find_pc_sect_line (pc, section, 0);
2472 }
2473
2474 do_cleanups (old_chain);
2475
2476 /* If we're already past the prologue, leave SAL unchanged. Otherwise
2477 forward SAL to the end of the prologue. */
2478 if (sal->pc >= pc)
2479 return;
2480
2481 sal->pc = pc;
2482 sal->section = section;
2483
2484 /* Unless the explicit_line flag was set, update the SAL line
2485 and symtab to correspond to the modified PC location. */
2486 if (sal->explicit_line)
2487 return;
2488
2489 sal->symtab = start_sal.symtab;
2490 sal->line = start_sal.line;
2491 sal->end = start_sal.end;
2492
2493 /* Check if we are now inside an inlined function. If we can,
2494 use the call site of the function instead. */
2495 b = block_for_pc_sect (sal->pc, sal->section);
2496 function_block = NULL;
2497 while (b != NULL)
2498 {
2499 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
2500 function_block = b;
2501 else if (BLOCK_FUNCTION (b) != NULL)
2502 break;
2503 b = BLOCK_SUPERBLOCK (b);
2504 }
2505 if (function_block != NULL
2506 && SYMBOL_LINE (BLOCK_FUNCTION (function_block)) != 0)
2507 {
2508 sal->line = SYMBOL_LINE (BLOCK_FUNCTION (function_block));
2509 sal->symtab = SYMBOL_SYMTAB (BLOCK_FUNCTION (function_block));
2510 }
2511 }
2512
2513 /* If P is of the form "operator[ \t]+..." where `...' is
2514 some legitimate operator text, return a pointer to the
2515 beginning of the substring of the operator text.
2516 Otherwise, return "". */
2517 char *
2518 operator_chars (char *p, char **end)
2519 {
2520 *end = "";
2521 if (strncmp (p, "operator", 8))
2522 return *end;
2523 p += 8;
2524
2525 /* Don't get faked out by `operator' being part of a longer
2526 identifier. */
2527 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
2528 return *end;
2529
2530 /* Allow some whitespace between `operator' and the operator symbol. */
2531 while (*p == ' ' || *p == '\t')
2532 p++;
2533
2534 /* Recognize 'operator TYPENAME'. */
2535
2536 if (isalpha (*p) || *p == '_' || *p == '$')
2537 {
2538 char *q = p + 1;
2539
2540 while (isalnum (*q) || *q == '_' || *q == '$')
2541 q++;
2542 *end = q;
2543 return p;
2544 }
2545
2546 while (*p)
2547 switch (*p)
2548 {
2549 case '\\': /* regexp quoting */
2550 if (p[1] == '*')
2551 {
2552 if (p[2] == '=') /* 'operator\*=' */
2553 *end = p + 3;
2554 else /* 'operator\*' */
2555 *end = p + 2;
2556 return p;
2557 }
2558 else if (p[1] == '[')
2559 {
2560 if (p[2] == ']')
2561 error (_("mismatched quoting on brackets, try 'operator\\[\\]'"));
2562 else if (p[2] == '\\' && p[3] == ']')
2563 {
2564 *end = p + 4; /* 'operator\[\]' */
2565 return p;
2566 }
2567 else
2568 error (_("nothing is allowed between '[' and ']'"));
2569 }
2570 else
2571 {
2572 /* Gratuitous qoute: skip it and move on. */
2573 p++;
2574 continue;
2575 }
2576 break;
2577 case '!':
2578 case '=':
2579 case '*':
2580 case '/':
2581 case '%':
2582 case '^':
2583 if (p[1] == '=')
2584 *end = p + 2;
2585 else
2586 *end = p + 1;
2587 return p;
2588 case '<':
2589 case '>':
2590 case '+':
2591 case '-':
2592 case '&':
2593 case '|':
2594 if (p[0] == '-' && p[1] == '>')
2595 {
2596 /* Struct pointer member operator 'operator->'. */
2597 if (p[2] == '*')
2598 {
2599 *end = p + 3; /* 'operator->*' */
2600 return p;
2601 }
2602 else if (p[2] == '\\')
2603 {
2604 *end = p + 4; /* Hopefully 'operator->\*' */
2605 return p;
2606 }
2607 else
2608 {
2609 *end = p + 2; /* 'operator->' */
2610 return p;
2611 }
2612 }
2613 if (p[1] == '=' || p[1] == p[0])
2614 *end = p + 2;
2615 else
2616 *end = p + 1;
2617 return p;
2618 case '~':
2619 case ',':
2620 *end = p + 1;
2621 return p;
2622 case '(':
2623 if (p[1] != ')')
2624 error (_("`operator ()' must be specified without whitespace in `()'"));
2625 *end = p + 2;
2626 return p;
2627 case '?':
2628 if (p[1] != ':')
2629 error (_("`operator ?:' must be specified without whitespace in `?:'"));
2630 *end = p + 2;
2631 return p;
2632 case '[':
2633 if (p[1] != ']')
2634 error (_("`operator []' must be specified without whitespace in `[]'"));
2635 *end = p + 2;
2636 return p;
2637 default:
2638 error (_("`operator %s' not supported"), p);
2639 break;
2640 }
2641
2642 *end = "";
2643 return *end;
2644 }
2645 \f
2646
2647 /* If FILE is not already in the table of files, return zero;
2648 otherwise return non-zero. Optionally add FILE to the table if ADD
2649 is non-zero. If *FIRST is non-zero, forget the old table
2650 contents. */
2651 static int
2652 filename_seen (const char *file, int add, int *first)
2653 {
2654 /* Table of files seen so far. */
2655 static const char **tab = NULL;
2656 /* Allocated size of tab in elements.
2657 Start with one 256-byte block (when using GNU malloc.c).
2658 24 is the malloc overhead when range checking is in effect. */
2659 static int tab_alloc_size = (256 - 24) / sizeof (char *);
2660 /* Current size of tab in elements. */
2661 static int tab_cur_size;
2662 const char **p;
2663
2664 if (*first)
2665 {
2666 if (tab == NULL)
2667 tab = (const char **) xmalloc (tab_alloc_size * sizeof (*tab));
2668 tab_cur_size = 0;
2669 }
2670
2671 /* Is FILE in tab? */
2672 for (p = tab; p < tab + tab_cur_size; p++)
2673 if (strcmp (*p, file) == 0)
2674 return 1;
2675
2676 /* No; maybe add it to tab. */
2677 if (add)
2678 {
2679 if (tab_cur_size == tab_alloc_size)
2680 {
2681 tab_alloc_size *= 2;
2682 tab = (const char **) xrealloc ((char *) tab,
2683 tab_alloc_size * sizeof (*tab));
2684 }
2685 tab[tab_cur_size++] = file;
2686 }
2687
2688 return 0;
2689 }
2690
2691 /* Slave routine for sources_info. Force line breaks at ,'s.
2692 NAME is the name to print and *FIRST is nonzero if this is the first
2693 name printed. Set *FIRST to zero. */
2694 static void
2695 output_source_filename (const char *name, int *first)
2696 {
2697 /* Since a single source file can result in several partial symbol
2698 tables, we need to avoid printing it more than once. Note: if
2699 some of the psymtabs are read in and some are not, it gets
2700 printed both under "Source files for which symbols have been
2701 read" and "Source files for which symbols will be read in on
2702 demand". I consider this a reasonable way to deal with the
2703 situation. I'm not sure whether this can also happen for
2704 symtabs; it doesn't hurt to check. */
2705
2706 /* Was NAME already seen? */
2707 if (filename_seen (name, 1, first))
2708 {
2709 /* Yes; don't print it again. */
2710 return;
2711 }
2712 /* No; print it and reset *FIRST. */
2713 if (*first)
2714 {
2715 *first = 0;
2716 }
2717 else
2718 {
2719 printf_filtered (", ");
2720 }
2721
2722 wrap_here ("");
2723 fputs_filtered (name, gdb_stdout);
2724 }
2725
2726 /* A callback for map_partial_symbol_filenames. */
2727 static void
2728 output_partial_symbol_filename (const char *fullname, const char *filename,
2729 void *data)
2730 {
2731 output_source_filename (fullname ? fullname : filename, data);
2732 }
2733
2734 static void
2735 sources_info (char *ignore, int from_tty)
2736 {
2737 struct symtab *s;
2738 struct objfile *objfile;
2739 int first;
2740
2741 if (!have_full_symbols () && !have_partial_symbols ())
2742 {
2743 error (_("No symbol table is loaded. Use the \"file\" command."));
2744 }
2745
2746 printf_filtered ("Source files for which symbols have been read in:\n\n");
2747
2748 first = 1;
2749 ALL_SYMTABS (objfile, s)
2750 {
2751 const char *fullname = symtab_to_fullname (s);
2752
2753 output_source_filename (fullname ? fullname : s->filename, &first);
2754 }
2755 printf_filtered ("\n\n");
2756
2757 printf_filtered ("Source files for which symbols will be read in on demand:\n\n");
2758
2759 first = 1;
2760 map_partial_symbol_filenames (output_partial_symbol_filename, &first);
2761 printf_filtered ("\n");
2762 }
2763
2764 static int
2765 file_matches (const char *file, char *files[], int nfiles)
2766 {
2767 int i;
2768
2769 if (file != NULL && nfiles != 0)
2770 {
2771 for (i = 0; i < nfiles; i++)
2772 {
2773 if (strcmp (files[i], lbasename (file)) == 0)
2774 return 1;
2775 }
2776 }
2777 else if (nfiles == 0)
2778 return 1;
2779 return 0;
2780 }
2781
2782 /* Free any memory associated with a search. */
2783 void
2784 free_search_symbols (struct symbol_search *symbols)
2785 {
2786 struct symbol_search *p;
2787 struct symbol_search *next;
2788
2789 for (p = symbols; p != NULL; p = next)
2790 {
2791 next = p->next;
2792 xfree (p);
2793 }
2794 }
2795
2796 static void
2797 do_free_search_symbols_cleanup (void *symbols)
2798 {
2799 free_search_symbols (symbols);
2800 }
2801
2802 struct cleanup *
2803 make_cleanup_free_search_symbols (struct symbol_search *symbols)
2804 {
2805 return make_cleanup (do_free_search_symbols_cleanup, symbols);
2806 }
2807
2808 /* Helper function for sort_search_symbols and qsort. Can only
2809 sort symbols, not minimal symbols. */
2810 static int
2811 compare_search_syms (const void *sa, const void *sb)
2812 {
2813 struct symbol_search **sym_a = (struct symbol_search **) sa;
2814 struct symbol_search **sym_b = (struct symbol_search **) sb;
2815
2816 return strcmp (SYMBOL_PRINT_NAME ((*sym_a)->symbol),
2817 SYMBOL_PRINT_NAME ((*sym_b)->symbol));
2818 }
2819
2820 /* Sort the ``nfound'' symbols in the list after prevtail. Leave
2821 prevtail where it is, but update its next pointer to point to
2822 the first of the sorted symbols. */
2823 static struct symbol_search *
2824 sort_search_symbols (struct symbol_search *prevtail, int nfound)
2825 {
2826 struct symbol_search **symbols, *symp, *old_next;
2827 int i;
2828
2829 symbols = (struct symbol_search **) xmalloc (sizeof (struct symbol_search *)
2830 * nfound);
2831 symp = prevtail->next;
2832 for (i = 0; i < nfound; i++)
2833 {
2834 symbols[i] = symp;
2835 symp = symp->next;
2836 }
2837 /* Generally NULL. */
2838 old_next = symp;
2839
2840 qsort (symbols, nfound, sizeof (struct symbol_search *),
2841 compare_search_syms);
2842
2843 symp = prevtail;
2844 for (i = 0; i < nfound; i++)
2845 {
2846 symp->next = symbols[i];
2847 symp = symp->next;
2848 }
2849 symp->next = old_next;
2850
2851 xfree (symbols);
2852 return symp;
2853 }
2854
2855 /* An object of this type is passed as the user_data to the
2856 expand_symtabs_matching method. */
2857 struct search_symbols_data
2858 {
2859 int nfiles;
2860 char **files;
2861 char *regexp;
2862 };
2863
2864 /* A callback for expand_symtabs_matching. */
2865 static int
2866 search_symbols_file_matches (const char *filename, void *user_data)
2867 {
2868 struct search_symbols_data *data = user_data;
2869
2870 return file_matches (filename, data->files, data->nfiles);
2871 }
2872
2873 /* A callback for expand_symtabs_matching. */
2874 static int
2875 search_symbols_name_matches (const char *symname, void *user_data)
2876 {
2877 struct search_symbols_data *data = user_data;
2878
2879 return data->regexp == NULL || re_exec (symname);
2880 }
2881
2882 /* Search the symbol table for matches to the regular expression REGEXP,
2883 returning the results in *MATCHES.
2884
2885 Only symbols of KIND are searched:
2886 FUNCTIONS_DOMAIN - search all functions
2887 TYPES_DOMAIN - search all type names
2888 VARIABLES_DOMAIN - search all symbols, excluding functions, type names,
2889 and constants (enums)
2890
2891 free_search_symbols should be called when *MATCHES is no longer needed.
2892
2893 The results are sorted locally; each symtab's global and static blocks are
2894 separately alphabetized.
2895 */
2896 void
2897 search_symbols (char *regexp, domain_enum kind, int nfiles, char *files[],
2898 struct symbol_search **matches)
2899 {
2900 struct symtab *s;
2901 struct blockvector *bv;
2902 struct block *b;
2903 int i = 0;
2904 struct dict_iterator iter;
2905 struct symbol *sym;
2906 struct objfile *objfile;
2907 struct minimal_symbol *msymbol;
2908 char *val;
2909 int found_misc = 0;
2910 static enum minimal_symbol_type types[]
2911 = {mst_data, mst_text, mst_abs, mst_unknown};
2912 static enum minimal_symbol_type types2[]
2913 = {mst_bss, mst_file_text, mst_abs, mst_unknown};
2914 static enum minimal_symbol_type types3[]
2915 = {mst_file_data, mst_solib_trampoline, mst_abs, mst_unknown};
2916 static enum minimal_symbol_type types4[]
2917 = {mst_file_bss, mst_text, mst_abs, mst_unknown};
2918 enum minimal_symbol_type ourtype;
2919 enum minimal_symbol_type ourtype2;
2920 enum minimal_symbol_type ourtype3;
2921 enum minimal_symbol_type ourtype4;
2922 struct symbol_search *sr;
2923 struct symbol_search *psr;
2924 struct symbol_search *tail;
2925 struct cleanup *old_chain = NULL;
2926 struct search_symbols_data datum;
2927
2928 if (kind < VARIABLES_DOMAIN)
2929 error (_("must search on specific domain"));
2930
2931 ourtype = types[(int) (kind - VARIABLES_DOMAIN)];
2932 ourtype2 = types2[(int) (kind - VARIABLES_DOMAIN)];
2933 ourtype3 = types3[(int) (kind - VARIABLES_DOMAIN)];
2934 ourtype4 = types4[(int) (kind - VARIABLES_DOMAIN)];
2935
2936 sr = *matches = NULL;
2937 tail = NULL;
2938
2939 if (regexp != NULL)
2940 {
2941 /* Make sure spacing is right for C++ operators.
2942 This is just a courtesy to make the matching less sensitive
2943 to how many spaces the user leaves between 'operator'
2944 and <TYPENAME> or <OPERATOR>. */
2945 char *opend;
2946 char *opname = operator_chars (regexp, &opend);
2947
2948 if (*opname)
2949 {
2950 int fix = -1; /* -1 means ok; otherwise number of spaces needed. */
2951
2952 if (isalpha (*opname) || *opname == '_' || *opname == '$')
2953 {
2954 /* There should 1 space between 'operator' and 'TYPENAME'. */
2955 if (opname[-1] != ' ' || opname[-2] == ' ')
2956 fix = 1;
2957 }
2958 else
2959 {
2960 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
2961 if (opname[-1] == ' ')
2962 fix = 0;
2963 }
2964 /* If wrong number of spaces, fix it. */
2965 if (fix >= 0)
2966 {
2967 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
2968
2969 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
2970 regexp = tmp;
2971 }
2972 }
2973
2974 if (0 != (val = re_comp (regexp)))
2975 error (_("Invalid regexp (%s): %s"), val, regexp);
2976 }
2977
2978 /* Search through the partial symtabs *first* for all symbols
2979 matching the regexp. That way we don't have to reproduce all of
2980 the machinery below. */
2981
2982 datum.nfiles = nfiles;
2983 datum.files = files;
2984 datum.regexp = regexp;
2985 ALL_OBJFILES (objfile)
2986 {
2987 if (objfile->sf)
2988 objfile->sf->qf->expand_symtabs_matching (objfile,
2989 search_symbols_file_matches,
2990 search_symbols_name_matches,
2991 kind,
2992 &datum);
2993 }
2994
2995 /* Here, we search through the minimal symbol tables for functions
2996 and variables that match, and force their symbols to be read.
2997 This is in particular necessary for demangled variable names,
2998 which are no longer put into the partial symbol tables.
2999 The symbol will then be found during the scan of symtabs below.
3000
3001 For functions, find_pc_symtab should succeed if we have debug info
3002 for the function, for variables we have to call lookup_symbol
3003 to determine if the variable has debug info.
3004 If the lookup fails, set found_misc so that we will rescan to print
3005 any matching symbols without debug info.
3006 */
3007
3008 if (nfiles == 0 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
3009 {
3010 ALL_MSYMBOLS (objfile, msymbol)
3011 {
3012 QUIT;
3013
3014 if (MSYMBOL_TYPE (msymbol) == ourtype ||
3015 MSYMBOL_TYPE (msymbol) == ourtype2 ||
3016 MSYMBOL_TYPE (msymbol) == ourtype3 ||
3017 MSYMBOL_TYPE (msymbol) == ourtype4)
3018 {
3019 if (regexp == NULL
3020 || re_exec (SYMBOL_NATURAL_NAME (msymbol)) != 0)
3021 {
3022 if (0 == find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol)))
3023 {
3024 /* FIXME: carlton/2003-02-04: Given that the
3025 semantics of lookup_symbol keeps on changing
3026 slightly, it would be a nice idea if we had a
3027 function lookup_symbol_minsym that found the
3028 symbol associated to a given minimal symbol (if
3029 any). */
3030 if (kind == FUNCTIONS_DOMAIN
3031 || lookup_symbol (SYMBOL_LINKAGE_NAME (msymbol),
3032 (struct block *) NULL,
3033 VAR_DOMAIN, 0)
3034 == NULL)
3035 found_misc = 1;
3036 }
3037 }
3038 }
3039 }
3040 }
3041
3042 ALL_PRIMARY_SYMTABS (objfile, s)
3043 {
3044 bv = BLOCKVECTOR (s);
3045 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
3046 {
3047 struct symbol_search *prevtail = tail;
3048 int nfound = 0;
3049
3050 b = BLOCKVECTOR_BLOCK (bv, i);
3051 ALL_BLOCK_SYMBOLS (b, iter, sym)
3052 {
3053 struct symtab *real_symtab = SYMBOL_SYMTAB (sym);
3054
3055 QUIT;
3056
3057 if (file_matches (real_symtab->filename, files, nfiles)
3058 && ((regexp == NULL
3059 || re_exec (SYMBOL_NATURAL_NAME (sym)) != 0)
3060 && ((kind == VARIABLES_DOMAIN && SYMBOL_CLASS (sym) != LOC_TYPEDEF
3061 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
3062 && SYMBOL_CLASS (sym) != LOC_BLOCK
3063 && SYMBOL_CLASS (sym) != LOC_CONST)
3064 || (kind == FUNCTIONS_DOMAIN && SYMBOL_CLASS (sym) == LOC_BLOCK)
3065 || (kind == TYPES_DOMAIN && SYMBOL_CLASS (sym) == LOC_TYPEDEF))))
3066 {
3067 /* match */
3068 psr = (struct symbol_search *) xmalloc (sizeof (struct symbol_search));
3069 psr->block = i;
3070 psr->symtab = real_symtab;
3071 psr->symbol = sym;
3072 psr->msymbol = NULL;
3073 psr->next = NULL;
3074 if (tail == NULL)
3075 sr = psr;
3076 else
3077 tail->next = psr;
3078 tail = psr;
3079 nfound ++;
3080 }
3081 }
3082 if (nfound > 0)
3083 {
3084 if (prevtail == NULL)
3085 {
3086 struct symbol_search dummy;
3087
3088 dummy.next = sr;
3089 tail = sort_search_symbols (&dummy, nfound);
3090 sr = dummy.next;
3091
3092 old_chain = make_cleanup_free_search_symbols (sr);
3093 }
3094 else
3095 tail = sort_search_symbols (prevtail, nfound);
3096 }
3097 }
3098 }
3099
3100 /* If there are no eyes, avoid all contact. I mean, if there are
3101 no debug symbols, then print directly from the msymbol_vector. */
3102
3103 if (found_misc || kind != FUNCTIONS_DOMAIN)
3104 {
3105 ALL_MSYMBOLS (objfile, msymbol)
3106 {
3107 QUIT;
3108
3109 if (MSYMBOL_TYPE (msymbol) == ourtype ||
3110 MSYMBOL_TYPE (msymbol) == ourtype2 ||
3111 MSYMBOL_TYPE (msymbol) == ourtype3 ||
3112 MSYMBOL_TYPE (msymbol) == ourtype4)
3113 {
3114 if (regexp == NULL
3115 || re_exec (SYMBOL_NATURAL_NAME (msymbol)) != 0)
3116 {
3117 /* Functions: Look up by address. */
3118 if (kind != FUNCTIONS_DOMAIN ||
3119 (0 == find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol))))
3120 {
3121 /* Variables/Absolutes: Look up by name */
3122 if (lookup_symbol (SYMBOL_LINKAGE_NAME (msymbol),
3123 (struct block *) NULL, VAR_DOMAIN, 0)
3124 == NULL)
3125 {
3126 /* match */
3127 psr = (struct symbol_search *) xmalloc (sizeof (struct symbol_search));
3128 psr->block = i;
3129 psr->msymbol = msymbol;
3130 psr->symtab = NULL;
3131 psr->symbol = NULL;
3132 psr->next = NULL;
3133 if (tail == NULL)
3134 {
3135 sr = psr;
3136 old_chain = make_cleanup_free_search_symbols (sr);
3137 }
3138 else
3139 tail->next = psr;
3140 tail = psr;
3141 }
3142 }
3143 }
3144 }
3145 }
3146 }
3147
3148 *matches = sr;
3149 if (sr != NULL)
3150 discard_cleanups (old_chain);
3151 }
3152
3153 /* Helper function for symtab_symbol_info, this function uses
3154 the data returned from search_symbols() to print information
3155 regarding the match to gdb_stdout.
3156 */
3157 static void
3158 print_symbol_info (domain_enum kind, struct symtab *s, struct symbol *sym,
3159 int block, char *last)
3160 {
3161 if (last == NULL || strcmp (last, s->filename) != 0)
3162 {
3163 fputs_filtered ("\nFile ", gdb_stdout);
3164 fputs_filtered (s->filename, gdb_stdout);
3165 fputs_filtered (":\n", gdb_stdout);
3166 }
3167
3168 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
3169 printf_filtered ("static ");
3170
3171 /* Typedef that is not a C++ class */
3172 if (kind == TYPES_DOMAIN
3173 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
3174 typedef_print (SYMBOL_TYPE (sym), sym, gdb_stdout);
3175 /* variable, func, or typedef-that-is-c++-class */
3176 else if (kind < TYPES_DOMAIN ||
3177 (kind == TYPES_DOMAIN &&
3178 SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
3179 {
3180 type_print (SYMBOL_TYPE (sym),
3181 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
3182 ? "" : SYMBOL_PRINT_NAME (sym)),
3183 gdb_stdout, 0);
3184
3185 printf_filtered (";\n");
3186 }
3187 }
3188
3189 /* This help function for symtab_symbol_info() prints information
3190 for non-debugging symbols to gdb_stdout.
3191 */
3192 static void
3193 print_msymbol_info (struct minimal_symbol *msymbol)
3194 {
3195 struct gdbarch *gdbarch = get_objfile_arch (msymbol_objfile (msymbol));
3196 char *tmp;
3197
3198 if (gdbarch_addr_bit (gdbarch) <= 32)
3199 tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol)
3200 & (CORE_ADDR) 0xffffffff,
3201 8);
3202 else
3203 tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol),
3204 16);
3205 printf_filtered ("%s %s\n",
3206 tmp, SYMBOL_PRINT_NAME (msymbol));
3207 }
3208
3209 /* This is the guts of the commands "info functions", "info types", and
3210 "info variables". It calls search_symbols to find all matches and then
3211 print_[m]symbol_info to print out some useful information about the
3212 matches.
3213 */
3214 static void
3215 symtab_symbol_info (char *regexp, domain_enum kind, int from_tty)
3216 {
3217 static char *classnames[] = {"variable", "function", "type", "method"};
3218 struct symbol_search *symbols;
3219 struct symbol_search *p;
3220 struct cleanup *old_chain;
3221 char *last_filename = NULL;
3222 int first = 1;
3223
3224 /* must make sure that if we're interrupted, symbols gets freed */
3225 search_symbols (regexp, kind, 0, (char **) NULL, &symbols);
3226 old_chain = make_cleanup_free_search_symbols (symbols);
3227
3228 printf_filtered (regexp
3229 ? "All %ss matching regular expression \"%s\":\n"
3230 : "All defined %ss:\n",
3231 classnames[(int) (kind - VARIABLES_DOMAIN)], regexp);
3232
3233 for (p = symbols; p != NULL; p = p->next)
3234 {
3235 QUIT;
3236
3237 if (p->msymbol != NULL)
3238 {
3239 if (first)
3240 {
3241 printf_filtered ("\nNon-debugging symbols:\n");
3242 first = 0;
3243 }
3244 print_msymbol_info (p->msymbol);
3245 }
3246 else
3247 {
3248 print_symbol_info (kind,
3249 p->symtab,
3250 p->symbol,
3251 p->block,
3252 last_filename);
3253 last_filename = p->symtab->filename;
3254 }
3255 }
3256
3257 do_cleanups (old_chain);
3258 }
3259
3260 static void
3261 variables_info (char *regexp, int from_tty)
3262 {
3263 symtab_symbol_info (regexp, VARIABLES_DOMAIN, from_tty);
3264 }
3265
3266 static void
3267 functions_info (char *regexp, int from_tty)
3268 {
3269 symtab_symbol_info (regexp, FUNCTIONS_DOMAIN, from_tty);
3270 }
3271
3272
3273 static void
3274 types_info (char *regexp, int from_tty)
3275 {
3276 symtab_symbol_info (regexp, TYPES_DOMAIN, from_tty);
3277 }
3278
3279 /* Breakpoint all functions matching regular expression. */
3280
3281 void
3282 rbreak_command_wrapper (char *regexp, int from_tty)
3283 {
3284 rbreak_command (regexp, from_tty);
3285 }
3286
3287 /* A cleanup function that calls end_rbreak_breakpoints. */
3288
3289 static void
3290 do_end_rbreak_breakpoints (void *ignore)
3291 {
3292 end_rbreak_breakpoints ();
3293 }
3294
3295 static void
3296 rbreak_command (char *regexp, int from_tty)
3297 {
3298 struct symbol_search *ss;
3299 struct symbol_search *p;
3300 struct cleanup *old_chain;
3301 char *string = NULL;
3302 int len = 0;
3303 char **files = NULL;
3304 int nfiles = 0;
3305
3306 if (regexp)
3307 {
3308 char *colon = strchr (regexp, ':');
3309
3310 if (colon && *(colon + 1) != ':')
3311 {
3312 int colon_index;
3313 char * file_name;
3314
3315 colon_index = colon - regexp;
3316 file_name = alloca (colon_index + 1);
3317 memcpy (file_name, regexp, colon_index);
3318 file_name[colon_index--] = 0;
3319 while (isspace (file_name[colon_index]))
3320 file_name[colon_index--] = 0;
3321 files = &file_name;
3322 nfiles = 1;
3323 regexp = colon + 1;
3324 while (isspace (*regexp)) regexp++;
3325 }
3326 }
3327
3328 search_symbols (regexp, FUNCTIONS_DOMAIN, nfiles, files, &ss);
3329 old_chain = make_cleanup_free_search_symbols (ss);
3330 make_cleanup (free_current_contents, &string);
3331
3332 start_rbreak_breakpoints ();
3333 make_cleanup (do_end_rbreak_breakpoints, NULL);
3334 for (p = ss; p != NULL; p = p->next)
3335 {
3336 if (p->msymbol == NULL)
3337 {
3338 int newlen = (strlen (p->symtab->filename)
3339 + strlen (SYMBOL_LINKAGE_NAME (p->symbol))
3340 + 4);
3341
3342 if (newlen > len)
3343 {
3344 string = xrealloc (string, newlen);
3345 len = newlen;
3346 }
3347 strcpy (string, p->symtab->filename);
3348 strcat (string, ":'");
3349 strcat (string, SYMBOL_LINKAGE_NAME (p->symbol));
3350 strcat (string, "'");
3351 break_command (string, from_tty);
3352 print_symbol_info (FUNCTIONS_DOMAIN,
3353 p->symtab,
3354 p->symbol,
3355 p->block,
3356 p->symtab->filename);
3357 }
3358 else
3359 {
3360 int newlen = (strlen (SYMBOL_LINKAGE_NAME (p->msymbol)) + 3);
3361
3362 if (newlen > len)
3363 {
3364 string = xrealloc (string, newlen);
3365 len = newlen;
3366 }
3367 strcpy (string, "'");
3368 strcat (string, SYMBOL_LINKAGE_NAME (p->msymbol));
3369 strcat (string, "'");
3370
3371 break_command (string, from_tty);
3372 printf_filtered ("<function, no debug info> %s;\n",
3373 SYMBOL_PRINT_NAME (p->msymbol));
3374 }
3375 }
3376
3377 do_cleanups (old_chain);
3378 }
3379 \f
3380
3381 /* Helper routine for make_symbol_completion_list. */
3382
3383 static int return_val_size;
3384 static int return_val_index;
3385 static char **return_val;
3386
3387 #define COMPLETION_LIST_ADD_SYMBOL(symbol, sym_text, len, text, word) \
3388 completion_list_add_name \
3389 (SYMBOL_NATURAL_NAME (symbol), (sym_text), (len), (text), (word))
3390
3391 /* Test to see if the symbol specified by SYMNAME (which is already
3392 demangled for C++ symbols) matches SYM_TEXT in the first SYM_TEXT_LEN
3393 characters. If so, add it to the current completion list. */
3394
3395 static void
3396 completion_list_add_name (char *symname, char *sym_text, int sym_text_len,
3397 char *text, char *word)
3398 {
3399 int newsize;
3400
3401 /* clip symbols that cannot match */
3402
3403 if (strncmp (symname, sym_text, sym_text_len) != 0)
3404 {
3405 return;
3406 }
3407
3408 /* We have a match for a completion, so add SYMNAME to the current list
3409 of matches. Note that the name is moved to freshly malloc'd space. */
3410
3411 {
3412 char *new;
3413
3414 if (word == sym_text)
3415 {
3416 new = xmalloc (strlen (symname) + 5);
3417 strcpy (new, symname);
3418 }
3419 else if (word > sym_text)
3420 {
3421 /* Return some portion of symname. */
3422 new = xmalloc (strlen (symname) + 5);
3423 strcpy (new, symname + (word - sym_text));
3424 }
3425 else
3426 {
3427 /* Return some of SYM_TEXT plus symname. */
3428 new = xmalloc (strlen (symname) + (sym_text - word) + 5);
3429 strncpy (new, word, sym_text - word);
3430 new[sym_text - word] = '\0';
3431 strcat (new, symname);
3432 }
3433
3434 if (return_val_index + 3 > return_val_size)
3435 {
3436 newsize = (return_val_size *= 2) * sizeof (char *);
3437 return_val = (char **) xrealloc ((char *) return_val, newsize);
3438 }
3439 return_val[return_val_index++] = new;
3440 return_val[return_val_index] = NULL;
3441 }
3442 }
3443
3444 /* ObjC: In case we are completing on a selector, look as the msymbol
3445 again and feed all the selectors into the mill. */
3446
3447 static void
3448 completion_list_objc_symbol (struct minimal_symbol *msymbol, char *sym_text,
3449 int sym_text_len, char *text, char *word)
3450 {
3451 static char *tmp = NULL;
3452 static unsigned int tmplen = 0;
3453
3454 char *method, *category, *selector;
3455 char *tmp2 = NULL;
3456
3457 method = SYMBOL_NATURAL_NAME (msymbol);
3458
3459 /* Is it a method? */
3460 if ((method[0] != '-') && (method[0] != '+'))
3461 return;
3462
3463 if (sym_text[0] == '[')
3464 /* Complete on shortened method method. */
3465 completion_list_add_name (method + 1, sym_text, sym_text_len, text, word);
3466
3467 while ((strlen (method) + 1) >= tmplen)
3468 {
3469 if (tmplen == 0)
3470 tmplen = 1024;
3471 else
3472 tmplen *= 2;
3473 tmp = xrealloc (tmp, tmplen);
3474 }
3475 selector = strchr (method, ' ');
3476 if (selector != NULL)
3477 selector++;
3478
3479 category = strchr (method, '(');
3480
3481 if ((category != NULL) && (selector != NULL))
3482 {
3483 memcpy (tmp, method, (category - method));
3484 tmp[category - method] = ' ';
3485 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
3486 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
3487 if (sym_text[0] == '[')
3488 completion_list_add_name (tmp + 1, sym_text, sym_text_len, text, word);
3489 }
3490
3491 if (selector != NULL)
3492 {
3493 /* Complete on selector only. */
3494 strcpy (tmp, selector);
3495 tmp2 = strchr (tmp, ']');
3496 if (tmp2 != NULL)
3497 *tmp2 = '\0';
3498
3499 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
3500 }
3501 }
3502
3503 /* Break the non-quoted text based on the characters which are in
3504 symbols. FIXME: This should probably be language-specific. */
3505
3506 static char *
3507 language_search_unquoted_string (char *text, char *p)
3508 {
3509 for (; p > text; --p)
3510 {
3511 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
3512 continue;
3513 else
3514 {
3515 if ((current_language->la_language == language_objc))
3516 {
3517 if (p[-1] == ':') /* might be part of a method name */
3518 continue;
3519 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
3520 p -= 2; /* beginning of a method name */
3521 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
3522 { /* might be part of a method name */
3523 char *t = p;
3524
3525 /* Seeing a ' ' or a '(' is not conclusive evidence
3526 that we are in the middle of a method name. However,
3527 finding "-[" or "+[" should be pretty un-ambiguous.
3528 Unfortunately we have to find it now to decide. */
3529
3530 while (t > text)
3531 if (isalnum (t[-1]) || t[-1] == '_' ||
3532 t[-1] == ' ' || t[-1] == ':' ||
3533 t[-1] == '(' || t[-1] == ')')
3534 --t;
3535 else
3536 break;
3537
3538 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
3539 p = t - 2; /* method name detected */
3540 /* else we leave with p unchanged */
3541 }
3542 }
3543 break;
3544 }
3545 }
3546 return p;
3547 }
3548
3549 static void
3550 completion_list_add_fields (struct symbol *sym, char *sym_text,
3551 int sym_text_len, char *text, char *word)
3552 {
3553 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
3554 {
3555 struct type *t = SYMBOL_TYPE (sym);
3556 enum type_code c = TYPE_CODE (t);
3557 int j;
3558
3559 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
3560 for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++)
3561 if (TYPE_FIELD_NAME (t, j))
3562 completion_list_add_name (TYPE_FIELD_NAME (t, j),
3563 sym_text, sym_text_len, text, word);
3564 }
3565 }
3566
3567 /* Type of the user_data argument passed to add_macro_name or
3568 add_partial_symbol_name. The contents are simply whatever is
3569 needed by completion_list_add_name. */
3570 struct add_name_data
3571 {
3572 char *sym_text;
3573 int sym_text_len;
3574 char *text;
3575 char *word;
3576 };
3577
3578 /* A callback used with macro_for_each and macro_for_each_in_scope.
3579 This adds a macro's name to the current completion list. */
3580 static void
3581 add_macro_name (const char *name, const struct macro_definition *ignore,
3582 void *user_data)
3583 {
3584 struct add_name_data *datum = (struct add_name_data *) user_data;
3585
3586 completion_list_add_name ((char *) name,
3587 datum->sym_text, datum->sym_text_len,
3588 datum->text, datum->word);
3589 }
3590
3591 /* A callback for map_partial_symbol_names. */
3592 static void
3593 add_partial_symbol_name (const char *name, void *user_data)
3594 {
3595 struct add_name_data *datum = (struct add_name_data *) user_data;
3596
3597 completion_list_add_name ((char *) name,
3598 datum->sym_text, datum->sym_text_len,
3599 datum->text, datum->word);
3600 }
3601
3602 char **
3603 default_make_symbol_completion_list_break_on (char *text, char *word,
3604 const char *break_on)
3605 {
3606 /* Problem: All of the symbols have to be copied because readline
3607 frees them. I'm not going to worry about this; hopefully there
3608 won't be that many. */
3609
3610 struct symbol *sym;
3611 struct symtab *s;
3612 struct minimal_symbol *msymbol;
3613 struct objfile *objfile;
3614 struct block *b;
3615 const struct block *surrounding_static_block, *surrounding_global_block;
3616 struct dict_iterator iter;
3617 /* The symbol we are completing on. Points in same buffer as text. */
3618 char *sym_text;
3619 /* Length of sym_text. */
3620 int sym_text_len;
3621 struct add_name_data datum;
3622
3623 /* Now look for the symbol we are supposed to complete on. */
3624 {
3625 char *p;
3626 char quote_found;
3627 char *quote_pos = NULL;
3628
3629 /* First see if this is a quoted string. */
3630 quote_found = '\0';
3631 for (p = text; *p != '\0'; ++p)
3632 {
3633 if (quote_found != '\0')
3634 {
3635 if (*p == quote_found)
3636 /* Found close quote. */
3637 quote_found = '\0';
3638 else if (*p == '\\' && p[1] == quote_found)
3639 /* A backslash followed by the quote character
3640 doesn't end the string. */
3641 ++p;
3642 }
3643 else if (*p == '\'' || *p == '"')
3644 {
3645 quote_found = *p;
3646 quote_pos = p;
3647 }
3648 }
3649 if (quote_found == '\'')
3650 /* A string within single quotes can be a symbol, so complete on it. */
3651 sym_text = quote_pos + 1;
3652 else if (quote_found == '"')
3653 /* A double-quoted string is never a symbol, nor does it make sense
3654 to complete it any other way. */
3655 {
3656 return_val = (char **) xmalloc (sizeof (char *));
3657 return_val[0] = NULL;
3658 return return_val;
3659 }
3660 else
3661 {
3662 /* It is not a quoted string. Break it based on the characters
3663 which are in symbols. */
3664 while (p > text)
3665 {
3666 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0'
3667 || p[-1] == ':' || strchr (break_on, p[-1]) != NULL)
3668 --p;
3669 else
3670 break;
3671 }
3672 sym_text = p;
3673 }
3674 }
3675
3676 sym_text_len = strlen (sym_text);
3677
3678 return_val_size = 100;
3679 return_val_index = 0;
3680 return_val = (char **) xmalloc ((return_val_size + 1) * sizeof (char *));
3681 return_val[0] = NULL;
3682
3683 datum.sym_text = sym_text;
3684 datum.sym_text_len = sym_text_len;
3685 datum.text = text;
3686 datum.word = word;
3687
3688 /* Look through the partial symtabs for all symbols which begin
3689 by matching SYM_TEXT. Add each one that you find to the list. */
3690 map_partial_symbol_names (add_partial_symbol_name, &datum);
3691
3692 /* At this point scan through the misc symbol vectors and add each
3693 symbol you find to the list. Eventually we want to ignore
3694 anything that isn't a text symbol (everything else will be
3695 handled by the psymtab code above). */
3696
3697 ALL_MSYMBOLS (objfile, msymbol)
3698 {
3699 QUIT;
3700 COMPLETION_LIST_ADD_SYMBOL (msymbol, sym_text, sym_text_len, text, word);
3701
3702 completion_list_objc_symbol (msymbol, sym_text, sym_text_len, text, word);
3703 }
3704
3705 /* Search upwards from currently selected frame (so that we can
3706 complete on local vars). Also catch fields of types defined in
3707 this places which match our text string. Only complete on types
3708 visible from current context. */
3709
3710 b = get_selected_block (0);
3711 surrounding_static_block = block_static_block (b);
3712 surrounding_global_block = block_global_block (b);
3713 if (surrounding_static_block != NULL)
3714 while (b != surrounding_static_block)
3715 {
3716 QUIT;
3717
3718 ALL_BLOCK_SYMBOLS (b, iter, sym)
3719 {
3720 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text,
3721 word);
3722 completion_list_add_fields (sym, sym_text, sym_text_len, text,
3723 word);
3724 }
3725
3726 /* Stop when we encounter an enclosing function. Do not stop for
3727 non-inlined functions - the locals of the enclosing function
3728 are in scope for a nested function. */
3729 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
3730 break;
3731 b = BLOCK_SUPERBLOCK (b);
3732 }
3733
3734 /* Add fields from the file's types; symbols will be added below. */
3735
3736 if (surrounding_static_block != NULL)
3737 ALL_BLOCK_SYMBOLS (surrounding_static_block, iter, sym)
3738 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
3739
3740 if (surrounding_global_block != NULL)
3741 ALL_BLOCK_SYMBOLS (surrounding_global_block, iter, sym)
3742 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
3743
3744 /* Go through the symtabs and check the externs and statics for
3745 symbols which match. */
3746
3747 ALL_PRIMARY_SYMTABS (objfile, s)
3748 {
3749 QUIT;
3750 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
3751 ALL_BLOCK_SYMBOLS (b, iter, sym)
3752 {
3753 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
3754 }
3755 }
3756
3757 ALL_PRIMARY_SYMTABS (objfile, s)
3758 {
3759 QUIT;
3760 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
3761 ALL_BLOCK_SYMBOLS (b, iter, sym)
3762 {
3763 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
3764 }
3765 }
3766
3767 if (current_language->la_macro_expansion == macro_expansion_c)
3768 {
3769 struct macro_scope *scope;
3770
3771 /* Add any macros visible in the default scope. Note that this
3772 may yield the occasional wrong result, because an expression
3773 might be evaluated in a scope other than the default. For
3774 example, if the user types "break file:line if <TAB>", the
3775 resulting expression will be evaluated at "file:line" -- but
3776 at there does not seem to be a way to detect this at
3777 completion time. */
3778 scope = default_macro_scope ();
3779 if (scope)
3780 {
3781 macro_for_each_in_scope (scope->file, scope->line,
3782 add_macro_name, &datum);
3783 xfree (scope);
3784 }
3785
3786 /* User-defined macros are always visible. */
3787 macro_for_each (macro_user_macros, add_macro_name, &datum);
3788 }
3789
3790 return (return_val);
3791 }
3792
3793 char **
3794 default_make_symbol_completion_list (char *text, char *word)
3795 {
3796 return default_make_symbol_completion_list_break_on (text, word, "");
3797 }
3798
3799 /* Return a NULL terminated array of all symbols (regardless of class)
3800 which begin by matching TEXT. If the answer is no symbols, then
3801 the return value is an array which contains only a NULL pointer. */
3802
3803 char **
3804 make_symbol_completion_list (char *text, char *word)
3805 {
3806 return current_language->la_make_symbol_completion_list (text, word);
3807 }
3808
3809 /* Like make_symbol_completion_list, but suitable for use as a
3810 completion function. */
3811
3812 char **
3813 make_symbol_completion_list_fn (struct cmd_list_element *ignore,
3814 char *text, char *word)
3815 {
3816 return make_symbol_completion_list (text, word);
3817 }
3818
3819 /* Like make_symbol_completion_list, but returns a list of symbols
3820 defined in a source file FILE. */
3821
3822 char **
3823 make_file_symbol_completion_list (char *text, char *word, char *srcfile)
3824 {
3825 struct symbol *sym;
3826 struct symtab *s;
3827 struct block *b;
3828 struct dict_iterator iter;
3829 /* The symbol we are completing on. Points in same buffer as text. */
3830 char *sym_text;
3831 /* Length of sym_text. */
3832 int sym_text_len;
3833
3834 /* Now look for the symbol we are supposed to complete on.
3835 FIXME: This should be language-specific. */
3836 {
3837 char *p;
3838 char quote_found;
3839 char *quote_pos = NULL;
3840
3841 /* First see if this is a quoted string. */
3842 quote_found = '\0';
3843 for (p = text; *p != '\0'; ++p)
3844 {
3845 if (quote_found != '\0')
3846 {
3847 if (*p == quote_found)
3848 /* Found close quote. */
3849 quote_found = '\0';
3850 else if (*p == '\\' && p[1] == quote_found)
3851 /* A backslash followed by the quote character
3852 doesn't end the string. */
3853 ++p;
3854 }
3855 else if (*p == '\'' || *p == '"')
3856 {
3857 quote_found = *p;
3858 quote_pos = p;
3859 }
3860 }
3861 if (quote_found == '\'')
3862 /* A string within single quotes can be a symbol, so complete on it. */
3863 sym_text = quote_pos + 1;
3864 else if (quote_found == '"')
3865 /* A double-quoted string is never a symbol, nor does it make sense
3866 to complete it any other way. */
3867 {
3868 return_val = (char **) xmalloc (sizeof (char *));
3869 return_val[0] = NULL;
3870 return return_val;
3871 }
3872 else
3873 {
3874 /* Not a quoted string. */
3875 sym_text = language_search_unquoted_string (text, p);
3876 }
3877 }
3878
3879 sym_text_len = strlen (sym_text);
3880
3881 return_val_size = 10;
3882 return_val_index = 0;
3883 return_val = (char **) xmalloc ((return_val_size + 1) * sizeof (char *));
3884 return_val[0] = NULL;
3885
3886 /* Find the symtab for SRCFILE (this loads it if it was not yet read
3887 in). */
3888 s = lookup_symtab (srcfile);
3889 if (s == NULL)
3890 {
3891 /* Maybe they typed the file with leading directories, while the
3892 symbol tables record only its basename. */
3893 const char *tail = lbasename (srcfile);
3894
3895 if (tail > srcfile)
3896 s = lookup_symtab (tail);
3897 }
3898
3899 /* If we have no symtab for that file, return an empty list. */
3900 if (s == NULL)
3901 return (return_val);
3902
3903 /* Go through this symtab and check the externs and statics for
3904 symbols which match. */
3905
3906 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
3907 ALL_BLOCK_SYMBOLS (b, iter, sym)
3908 {
3909 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
3910 }
3911
3912 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
3913 ALL_BLOCK_SYMBOLS (b, iter, sym)
3914 {
3915 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
3916 }
3917
3918 return (return_val);
3919 }
3920
3921 /* A helper function for make_source_files_completion_list. It adds
3922 another file name to a list of possible completions, growing the
3923 list as necessary. */
3924
3925 static void
3926 add_filename_to_list (const char *fname, char *text, char *word,
3927 char ***list, int *list_used, int *list_alloced)
3928 {
3929 char *new;
3930 size_t fnlen = strlen (fname);
3931
3932 if (*list_used + 1 >= *list_alloced)
3933 {
3934 *list_alloced *= 2;
3935 *list = (char **) xrealloc ((char *) *list,
3936 *list_alloced * sizeof (char *));
3937 }
3938
3939 if (word == text)
3940 {
3941 /* Return exactly fname. */
3942 new = xmalloc (fnlen + 5);
3943 strcpy (new, fname);
3944 }
3945 else if (word > text)
3946 {
3947 /* Return some portion of fname. */
3948 new = xmalloc (fnlen + 5);
3949 strcpy (new, fname + (word - text));
3950 }
3951 else
3952 {
3953 /* Return some of TEXT plus fname. */
3954 new = xmalloc (fnlen + (text - word) + 5);
3955 strncpy (new, word, text - word);
3956 new[text - word] = '\0';
3957 strcat (new, fname);
3958 }
3959 (*list)[*list_used] = new;
3960 (*list)[++*list_used] = NULL;
3961 }
3962
3963 static int
3964 not_interesting_fname (const char *fname)
3965 {
3966 static const char *illegal_aliens[] = {
3967 "_globals_", /* inserted by coff_symtab_read */
3968 NULL
3969 };
3970 int i;
3971
3972 for (i = 0; illegal_aliens[i]; i++)
3973 {
3974 if (strcmp (fname, illegal_aliens[i]) == 0)
3975 return 1;
3976 }
3977 return 0;
3978 }
3979
3980 /* An object of this type is passed as the user_data argument to
3981 map_partial_symbol_filenames. */
3982 struct add_partial_filename_data
3983 {
3984 int *first;
3985 char *text;
3986 char *word;
3987 int text_len;
3988 char ***list;
3989 int *list_used;
3990 int *list_alloced;
3991 };
3992
3993 /* A callback for map_partial_symbol_filenames. */
3994 static void
3995 maybe_add_partial_symtab_filename (const char *fullname, const char *filename,
3996 void *user_data)
3997 {
3998 struct add_partial_filename_data *data = user_data;
3999
4000 if (not_interesting_fname (filename))
4001 return;
4002 if (!filename_seen (filename, 1, data->first)
4003 #if HAVE_DOS_BASED_FILE_SYSTEM
4004 && strncasecmp (filename, data->text, data->text_len) == 0
4005 #else
4006 && strncmp (filename, data->text, data->text_len) == 0
4007 #endif
4008 )
4009 {
4010 /* This file matches for a completion; add it to the
4011 current list of matches. */
4012 add_filename_to_list (filename, data->text, data->word,
4013 data->list, data->list_used, data->list_alloced);
4014 }
4015 else
4016 {
4017 const char *base_name = lbasename (filename);
4018
4019 if (base_name != filename
4020 && !filename_seen (base_name, 1, data->first)
4021 #if HAVE_DOS_BASED_FILE_SYSTEM
4022 && strncasecmp (base_name, data->text, data->text_len) == 0
4023 #else
4024 && strncmp (base_name, data->text, data->text_len) == 0
4025 #endif
4026 )
4027 add_filename_to_list (base_name, data->text, data->word,
4028 data->list, data->list_used, data->list_alloced);
4029 }
4030 }
4031
4032 /* Return a NULL terminated array of all source files whose names
4033 begin with matching TEXT. The file names are looked up in the
4034 symbol tables of this program. If the answer is no matchess, then
4035 the return value is an array which contains only a NULL pointer. */
4036
4037 char **
4038 make_source_files_completion_list (char *text, char *word)
4039 {
4040 struct symtab *s;
4041 struct objfile *objfile;
4042 int first = 1;
4043 int list_alloced = 1;
4044 int list_used = 0;
4045 size_t text_len = strlen (text);
4046 char **list = (char **) xmalloc (list_alloced * sizeof (char *));
4047 const char *base_name;
4048 struct add_partial_filename_data datum;
4049
4050 list[0] = NULL;
4051
4052 if (!have_full_symbols () && !have_partial_symbols ())
4053 return list;
4054
4055 ALL_SYMTABS (objfile, s)
4056 {
4057 if (not_interesting_fname (s->filename))
4058 continue;
4059 if (!filename_seen (s->filename, 1, &first)
4060 #if HAVE_DOS_BASED_FILE_SYSTEM
4061 && strncasecmp (s->filename, text, text_len) == 0
4062 #else
4063 && strncmp (s->filename, text, text_len) == 0
4064 #endif
4065 )
4066 {
4067 /* This file matches for a completion; add it to the current
4068 list of matches. */
4069 add_filename_to_list (s->filename, text, word,
4070 &list, &list_used, &list_alloced);
4071 }
4072 else
4073 {
4074 /* NOTE: We allow the user to type a base name when the
4075 debug info records leading directories, but not the other
4076 way around. This is what subroutines of breakpoint
4077 command do when they parse file names. */
4078 base_name = lbasename (s->filename);
4079 if (base_name != s->filename
4080 && !filename_seen (base_name, 1, &first)
4081 #if HAVE_DOS_BASED_FILE_SYSTEM
4082 && strncasecmp (base_name, text, text_len) == 0
4083 #else
4084 && strncmp (base_name, text, text_len) == 0
4085 #endif
4086 )
4087 add_filename_to_list (base_name, text, word,
4088 &list, &list_used, &list_alloced);
4089 }
4090 }
4091
4092 datum.first = &first;
4093 datum.text = text;
4094 datum.word = word;
4095 datum.text_len = text_len;
4096 datum.list = &list;
4097 datum.list_used = &list_used;
4098 datum.list_alloced = &list_alloced;
4099 map_partial_symbol_filenames (maybe_add_partial_symtab_filename, &datum);
4100
4101 return list;
4102 }
4103
4104 /* Determine if PC is in the prologue of a function. The prologue is the area
4105 between the first instruction of a function, and the first executable line.
4106 Returns 1 if PC *might* be in prologue, 0 if definately *not* in prologue.
4107
4108 If non-zero, func_start is where we think the prologue starts, possibly
4109 by previous examination of symbol table information.
4110 */
4111
4112 int
4113 in_prologue (struct gdbarch *gdbarch, CORE_ADDR pc, CORE_ADDR func_start)
4114 {
4115 struct symtab_and_line sal;
4116 CORE_ADDR func_addr, func_end;
4117
4118 /* We have several sources of information we can consult to figure
4119 this out.
4120 - Compilers usually emit line number info that marks the prologue
4121 as its own "source line". So the ending address of that "line"
4122 is the end of the prologue. If available, this is the most
4123 reliable method.
4124 - The minimal symbols and partial symbols, which can usually tell
4125 us the starting and ending addresses of a function.
4126 - If we know the function's start address, we can call the
4127 architecture-defined gdbarch_skip_prologue function to analyze the
4128 instruction stream and guess where the prologue ends.
4129 - Our `func_start' argument; if non-zero, this is the caller's
4130 best guess as to the function's entry point. At the time of
4131 this writing, handle_inferior_event doesn't get this right, so
4132 it should be our last resort. */
4133
4134 /* Consult the partial symbol table, to find which function
4135 the PC is in. */
4136 if (! find_pc_partial_function (pc, NULL, &func_addr, &func_end))
4137 {
4138 CORE_ADDR prologue_end;
4139
4140 /* We don't even have minsym information, so fall back to using
4141 func_start, if given. */
4142 if (! func_start)
4143 return 1; /* We *might* be in a prologue. */
4144
4145 prologue_end = gdbarch_skip_prologue (gdbarch, func_start);
4146
4147 return func_start <= pc && pc < prologue_end;
4148 }
4149
4150 /* If we have line number information for the function, that's
4151 usually pretty reliable. */
4152 sal = find_pc_line (func_addr, 0);
4153
4154 /* Now sal describes the source line at the function's entry point,
4155 which (by convention) is the prologue. The end of that "line",
4156 sal.end, is the end of the prologue.
4157
4158 Note that, for functions whose source code is all on a single
4159 line, the line number information doesn't always end up this way.
4160 So we must verify that our purported end-of-prologue address is
4161 *within* the function, not at its start or end. */
4162 if (sal.line == 0
4163 || sal.end <= func_addr
4164 || func_end <= sal.end)
4165 {
4166 /* We don't have any good line number info, so use the minsym
4167 information, together with the architecture-specific prologue
4168 scanning code. */
4169 CORE_ADDR prologue_end = gdbarch_skip_prologue (gdbarch, func_addr);
4170
4171 return func_addr <= pc && pc < prologue_end;
4172 }
4173
4174 /* We have line number info, and it looks good. */
4175 return func_addr <= pc && pc < sal.end;
4176 }
4177
4178 /* Given PC at the function's start address, attempt to find the
4179 prologue end using SAL information. Return zero if the skip fails.
4180
4181 A non-optimized prologue traditionally has one SAL for the function
4182 and a second for the function body. A single line function has
4183 them both pointing at the same line.
4184
4185 An optimized prologue is similar but the prologue may contain
4186 instructions (SALs) from the instruction body. Need to skip those
4187 while not getting into the function body.
4188
4189 The functions end point and an increasing SAL line are used as
4190 indicators of the prologue's endpoint.
4191
4192 This code is based on the function refine_prologue_limit (versions
4193 found in both ia64 and ppc). */
4194
4195 CORE_ADDR
4196 skip_prologue_using_sal (struct gdbarch *gdbarch, CORE_ADDR func_addr)
4197 {
4198 struct symtab_and_line prologue_sal;
4199 CORE_ADDR start_pc;
4200 CORE_ADDR end_pc;
4201 struct block *bl;
4202
4203 /* Get an initial range for the function. */
4204 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
4205 start_pc += gdbarch_deprecated_function_start_offset (gdbarch);
4206
4207 prologue_sal = find_pc_line (start_pc, 0);
4208 if (prologue_sal.line != 0)
4209 {
4210 /* For langauges other than assembly, treat two consecutive line
4211 entries at the same address as a zero-instruction prologue.
4212 The GNU assembler emits separate line notes for each instruction
4213 in a multi-instruction macro, but compilers generally will not
4214 do this. */
4215 if (prologue_sal.symtab->language != language_asm)
4216 {
4217 struct linetable *linetable = LINETABLE (prologue_sal.symtab);
4218 int idx = 0;
4219
4220 /* Skip any earlier lines, and any end-of-sequence marker
4221 from a previous function. */
4222 while (linetable->item[idx].pc != prologue_sal.pc
4223 || linetable->item[idx].line == 0)
4224 idx++;
4225
4226 if (idx+1 < linetable->nitems
4227 && linetable->item[idx+1].line != 0
4228 && linetable->item[idx+1].pc == start_pc)
4229 return start_pc;
4230 }
4231
4232 /* If there is only one sal that covers the entire function,
4233 then it is probably a single line function, like
4234 "foo(){}". */
4235 if (prologue_sal.end >= end_pc)
4236 return 0;
4237
4238 while (prologue_sal.end < end_pc)
4239 {
4240 struct symtab_and_line sal;
4241
4242 sal = find_pc_line (prologue_sal.end, 0);
4243 if (sal.line == 0)
4244 break;
4245 /* Assume that a consecutive SAL for the same (or larger)
4246 line mark the prologue -> body transition. */
4247 if (sal.line >= prologue_sal.line)
4248 break;
4249
4250 /* The line number is smaller. Check that it's from the
4251 same function, not something inlined. If it's inlined,
4252 then there is no point comparing the line numbers. */
4253 bl = block_for_pc (prologue_sal.end);
4254 while (bl)
4255 {
4256 if (block_inlined_p (bl))
4257 break;
4258 if (BLOCK_FUNCTION (bl))
4259 {
4260 bl = NULL;
4261 break;
4262 }
4263 bl = BLOCK_SUPERBLOCK (bl);
4264 }
4265 if (bl != NULL)
4266 break;
4267
4268 /* The case in which compiler's optimizer/scheduler has
4269 moved instructions into the prologue. We look ahead in
4270 the function looking for address ranges whose
4271 corresponding line number is less the first one that we
4272 found for the function. This is more conservative then
4273 refine_prologue_limit which scans a large number of SALs
4274 looking for any in the prologue */
4275 prologue_sal = sal;
4276 }
4277 }
4278
4279 if (prologue_sal.end < end_pc)
4280 /* Return the end of this line, or zero if we could not find a
4281 line. */
4282 return prologue_sal.end;
4283 else
4284 /* Don't return END_PC, which is past the end of the function. */
4285 return prologue_sal.pc;
4286 }
4287 \f
4288 struct symtabs_and_lines
4289 decode_line_spec (char *string, int funfirstline)
4290 {
4291 struct symtabs_and_lines sals;
4292 struct symtab_and_line cursal;
4293
4294 if (string == 0)
4295 error (_("Empty line specification."));
4296
4297 /* We use whatever is set as the current source line. We do not try
4298 and get a default or it will recursively call us! */
4299 cursal = get_current_source_symtab_and_line ();
4300
4301 sals = decode_line_1 (&string, funfirstline,
4302 cursal.symtab, cursal.line,
4303 (char ***) NULL, NULL);
4304
4305 if (*string)
4306 error (_("Junk at end of line specification: %s"), string);
4307 return sals;
4308 }
4309
4310 /* Track MAIN */
4311 static char *name_of_main;
4312
4313 void
4314 set_main_name (const char *name)
4315 {
4316 if (name_of_main != NULL)
4317 {
4318 xfree (name_of_main);
4319 name_of_main = NULL;
4320 }
4321 if (name != NULL)
4322 {
4323 name_of_main = xstrdup (name);
4324 }
4325 }
4326
4327 /* Deduce the name of the main procedure, and set NAME_OF_MAIN
4328 accordingly. */
4329
4330 static void
4331 find_main_name (void)
4332 {
4333 const char *new_main_name;
4334
4335 /* Try to see if the main procedure is in Ada. */
4336 /* FIXME: brobecker/2005-03-07: Another way of doing this would
4337 be to add a new method in the language vector, and call this
4338 method for each language until one of them returns a non-empty
4339 name. This would allow us to remove this hard-coded call to
4340 an Ada function. It is not clear that this is a better approach
4341 at this point, because all methods need to be written in a way
4342 such that false positives never be returned. For instance, it is
4343 important that a method does not return a wrong name for the main
4344 procedure if the main procedure is actually written in a different
4345 language. It is easy to guaranty this with Ada, since we use a
4346 special symbol generated only when the main in Ada to find the name
4347 of the main procedure. It is difficult however to see how this can
4348 be guarantied for languages such as C, for instance. This suggests
4349 that order of call for these methods becomes important, which means
4350 a more complicated approach. */
4351 new_main_name = ada_main_name ();
4352 if (new_main_name != NULL)
4353 {
4354 set_main_name (new_main_name);
4355 return;
4356 }
4357
4358 new_main_name = pascal_main_name ();
4359 if (new_main_name != NULL)
4360 {
4361 set_main_name (new_main_name);
4362 return;
4363 }
4364
4365 /* The languages above didn't identify the name of the main procedure.
4366 Fallback to "main". */
4367 set_main_name ("main");
4368 }
4369
4370 char *
4371 main_name (void)
4372 {
4373 if (name_of_main == NULL)
4374 find_main_name ();
4375
4376 return name_of_main;
4377 }
4378
4379 /* Handle ``executable_changed'' events for the symtab module. */
4380
4381 static void
4382 symtab_observer_executable_changed (void)
4383 {
4384 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
4385 set_main_name (NULL);
4386 }
4387
4388 /* Helper to expand_line_sal below. Appends new sal to SAL,
4389 initializing it from SYMTAB, LINENO and PC. */
4390 static void
4391 append_expanded_sal (struct symtabs_and_lines *sal,
4392 struct program_space *pspace,
4393 struct symtab *symtab,
4394 int lineno, CORE_ADDR pc)
4395 {
4396 sal->sals = xrealloc (sal->sals,
4397 sizeof (sal->sals[0])
4398 * (sal->nelts + 1));
4399 init_sal (sal->sals + sal->nelts);
4400 sal->sals[sal->nelts].pspace = pspace;
4401 sal->sals[sal->nelts].symtab = symtab;
4402 sal->sals[sal->nelts].section = NULL;
4403 sal->sals[sal->nelts].end = 0;
4404 sal->sals[sal->nelts].line = lineno;
4405 sal->sals[sal->nelts].pc = pc;
4406 ++sal->nelts;
4407 }
4408
4409 /* Helper to expand_line_sal below. Search in the symtabs for any
4410 linetable entry that exactly matches FULLNAME and LINENO and append
4411 them to RET. If FULLNAME is NULL or if a symtab has no full name,
4412 use FILENAME and LINENO instead. If there is at least one match,
4413 return 1; otherwise, return 0, and return the best choice in BEST_ITEM
4414 and BEST_SYMTAB. */
4415
4416 static int
4417 append_exact_match_to_sals (char *filename, char *fullname, int lineno,
4418 struct symtabs_and_lines *ret,
4419 struct linetable_entry **best_item,
4420 struct symtab **best_symtab)
4421 {
4422 struct program_space *pspace;
4423 struct objfile *objfile;
4424 struct symtab *symtab;
4425 int exact = 0;
4426 int j;
4427 *best_item = 0;
4428 *best_symtab = 0;
4429
4430 ALL_PSPACES (pspace)
4431 ALL_PSPACE_SYMTABS (pspace, objfile, symtab)
4432 {
4433 if (FILENAME_CMP (filename, symtab->filename) == 0)
4434 {
4435 struct linetable *l;
4436 int len;
4437
4438 if (fullname != NULL
4439 && symtab_to_fullname (symtab) != NULL
4440 && FILENAME_CMP (fullname, symtab->fullname) != 0)
4441 continue;
4442 l = LINETABLE (symtab);
4443 if (!l)
4444 continue;
4445 len = l->nitems;
4446
4447 for (j = 0; j < len; j++)
4448 {
4449 struct linetable_entry *item = &(l->item[j]);
4450
4451 if (item->line == lineno)
4452 {
4453 exact = 1;
4454 append_expanded_sal (ret, objfile->pspace,
4455 symtab, lineno, item->pc);
4456 }
4457 else if (!exact && item->line > lineno
4458 && (*best_item == NULL
4459 || item->line < (*best_item)->line))
4460 {
4461 *best_item = item;
4462 *best_symtab = symtab;
4463 }
4464 }
4465 }
4466 }
4467 return exact;
4468 }
4469
4470 /* Compute a set of all sals in all program spaces that correspond to
4471 same file and line as SAL and return those. If there are several
4472 sals that belong to the same block, only one sal for the block is
4473 included in results. */
4474
4475 struct symtabs_and_lines
4476 expand_line_sal (struct symtab_and_line sal)
4477 {
4478 struct symtabs_and_lines ret;
4479 int i, j;
4480 struct objfile *objfile;
4481 int lineno;
4482 int deleted = 0;
4483 struct block **blocks = NULL;
4484 int *filter;
4485 struct cleanup *old_chain;
4486
4487 ret.nelts = 0;
4488 ret.sals = NULL;
4489
4490 /* Only expand sals that represent file.c:line. */
4491 if (sal.symtab == NULL || sal.line == 0 || sal.pc != 0)
4492 {
4493 ret.sals = xmalloc (sizeof (struct symtab_and_line));
4494 ret.sals[0] = sal;
4495 ret.nelts = 1;
4496 return ret;
4497 }
4498 else
4499 {
4500 struct program_space *pspace;
4501 struct linetable_entry *best_item = 0;
4502 struct symtab *best_symtab = 0;
4503 int exact = 0;
4504 char *match_filename;
4505
4506 lineno = sal.line;
4507 match_filename = sal.symtab->filename;
4508
4509 /* We need to find all symtabs for a file which name
4510 is described by sal. We cannot just directly
4511 iterate over symtabs, since a symtab might not be
4512 yet created. We also cannot iterate over psymtabs,
4513 calling PSYMTAB_TO_SYMTAB and working on that symtab,
4514 since PSYMTAB_TO_SYMTAB will return NULL for psymtab
4515 corresponding to an included file. Therefore, we do
4516 first pass over psymtabs, reading in those with
4517 the right name. Then, we iterate over symtabs, knowing
4518 that all symtabs we're interested in are loaded. */
4519
4520 old_chain = save_current_program_space ();
4521 ALL_PSPACES (pspace)
4522 {
4523 set_current_program_space (pspace);
4524 ALL_PSPACE_OBJFILES (pspace, objfile)
4525 {
4526 if (objfile->sf)
4527 objfile->sf->qf->expand_symtabs_with_filename (objfile,
4528 sal.symtab->filename);
4529 }
4530 }
4531 do_cleanups (old_chain);
4532
4533 /* Now search the symtab for exact matches and append them. If
4534 none is found, append the best_item and all its exact
4535 matches. */
4536 symtab_to_fullname (sal.symtab);
4537 exact = append_exact_match_to_sals (sal.symtab->filename,
4538 sal.symtab->fullname, lineno,
4539 &ret, &best_item, &best_symtab);
4540 if (!exact && best_item)
4541 append_exact_match_to_sals (best_symtab->filename,
4542 best_symtab->fullname, best_item->line,
4543 &ret, &best_item, &best_symtab);
4544 }
4545
4546 /* For optimized code, compiler can scatter one source line accross
4547 disjoint ranges of PC values, even when no duplicate functions
4548 or inline functions are involved. For example, 'for (;;)' inside
4549 non-template non-inline non-ctor-or-dtor function can result
4550 in two PC ranges. In this case, we don't want to set breakpoint
4551 on first PC of each range. To filter such cases, we use containing
4552 blocks -- for each PC found above we see if there are other PCs
4553 that are in the same block. If yes, the other PCs are filtered out. */
4554
4555 old_chain = save_current_program_space ();
4556 filter = alloca (ret.nelts * sizeof (int));
4557 blocks = alloca (ret.nelts * sizeof (struct block *));
4558 for (i = 0; i < ret.nelts; ++i)
4559 {
4560 set_current_program_space (ret.sals[i].pspace);
4561
4562 filter[i] = 1;
4563 blocks[i] = block_for_pc_sect (ret.sals[i].pc, ret.sals[i].section);
4564
4565 }
4566 do_cleanups (old_chain);
4567
4568 for (i = 0; i < ret.nelts; ++i)
4569 if (blocks[i] != NULL)
4570 for (j = i+1; j < ret.nelts; ++j)
4571 if (blocks[j] == blocks[i])
4572 {
4573 filter[j] = 0;
4574 ++deleted;
4575 break;
4576 }
4577
4578 {
4579 struct symtab_and_line *final =
4580 xmalloc (sizeof (struct symtab_and_line) * (ret.nelts-deleted));
4581
4582 for (i = 0, j = 0; i < ret.nelts; ++i)
4583 if (filter[i])
4584 final[j++] = ret.sals[i];
4585
4586 ret.nelts -= deleted;
4587 xfree (ret.sals);
4588 ret.sals = final;
4589 }
4590
4591 return ret;
4592 }
4593
4594 /* Return 1 if the supplied producer string matches the ARM RealView
4595 compiler (armcc). */
4596
4597 int
4598 producer_is_realview (const char *producer)
4599 {
4600 static const char *const arm_idents[] = {
4601 "ARM C Compiler, ADS",
4602 "Thumb C Compiler, ADS",
4603 "ARM C++ Compiler, ADS",
4604 "Thumb C++ Compiler, ADS",
4605 "ARM/Thumb C/C++ Compiler, RVCT",
4606 "ARM C/C++ Compiler, RVCT"
4607 };
4608 int i;
4609
4610 if (producer == NULL)
4611 return 0;
4612
4613 for (i = 0; i < ARRAY_SIZE (arm_idents); i++)
4614 if (strncmp (producer, arm_idents[i], strlen (arm_idents[i])) == 0)
4615 return 1;
4616
4617 return 0;
4618 }
4619
4620 void
4621 _initialize_symtab (void)
4622 {
4623 add_info ("variables", variables_info, _("\
4624 All global and static variable names, or those matching REGEXP."));
4625 if (dbx_commands)
4626 add_com ("whereis", class_info, variables_info, _("\
4627 All global and static variable names, or those matching REGEXP."));
4628
4629 add_info ("functions", functions_info,
4630 _("All function names, or those matching REGEXP."));
4631
4632 /* FIXME: This command has at least the following problems:
4633 1. It prints builtin types (in a very strange and confusing fashion).
4634 2. It doesn't print right, e.g. with
4635 typedef struct foo *FOO
4636 type_print prints "FOO" when we want to make it (in this situation)
4637 print "struct foo *".
4638 I also think "ptype" or "whatis" is more likely to be useful (but if
4639 there is much disagreement "info types" can be fixed). */
4640 add_info ("types", types_info,
4641 _("All type names, or those matching REGEXP."));
4642
4643 add_info ("sources", sources_info,
4644 _("Source files in the program."));
4645
4646 add_com ("rbreak", class_breakpoint, rbreak_command,
4647 _("Set a breakpoint for all functions matching REGEXP."));
4648
4649 if (xdb_commands)
4650 {
4651 add_com ("lf", class_info, sources_info,
4652 _("Source files in the program"));
4653 add_com ("lg", class_info, variables_info, _("\
4654 All global and static variable names, or those matching REGEXP."));
4655 }
4656
4657 add_setshow_enum_cmd ("multiple-symbols", no_class,
4658 multiple_symbols_modes, &multiple_symbols_mode,
4659 _("\
4660 Set the debugger behavior when more than one symbol are possible matches\n\
4661 in an expression."), _("\
4662 Show how the debugger handles ambiguities in expressions."), _("\
4663 Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
4664 NULL, NULL, &setlist, &showlist);
4665
4666 observer_attach_executable_changed (symtab_observer_executable_changed);
4667 }
This page took 0.201323 seconds and 4 git commands to generate.