constify complete_line
[deliverable/binutils-gdb.git] / gdb / symtab.c
1 /* Symbol table lookup for the GNU debugger, GDB.
2
3 Copyright (C) 1986-2014 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "gdbcore.h"
24 #include "frame.h"
25 #include "target.h"
26 #include "value.h"
27 #include "symfile.h"
28 #include "objfiles.h"
29 #include "gdbcmd.h"
30 #include "gdb_regex.h"
31 #include "expression.h"
32 #include "language.h"
33 #include "demangle.h"
34 #include "inferior.h"
35 #include "source.h"
36 #include "filenames.h" /* for FILENAME_CMP */
37 #include "objc-lang.h"
38 #include "d-lang.h"
39 #include "ada-lang.h"
40 #include "go-lang.h"
41 #include "p-lang.h"
42 #include "addrmap.h"
43 #include "cli/cli-utils.h"
44
45 #include "hashtab.h"
46
47 #include "gdb_obstack.h"
48 #include "block.h"
49 #include "dictionary.h"
50
51 #include <sys/types.h>
52 #include <fcntl.h>
53 #include <string.h>
54 #include <sys/stat.h>
55 #include <ctype.h>
56 #include "cp-abi.h"
57 #include "cp-support.h"
58 #include "observer.h"
59 #include "gdb_assert.h"
60 #include "solist.h"
61 #include "macrotab.h"
62 #include "macroscope.h"
63
64 #include "parser-defs.h"
65
66 /* Prototypes for local functions */
67
68 static void rbreak_command (char *, int);
69
70 static void types_info (char *, int);
71
72 static void functions_info (char *, int);
73
74 static void variables_info (char *, int);
75
76 static void sources_info (char *, int);
77
78 static int find_line_common (struct linetable *, int, int *, int);
79
80 static struct symbol *lookup_symbol_aux (const char *name,
81 const struct block *block,
82 const domain_enum domain,
83 enum language language,
84 struct field_of_this_result *is_a_field_of_this);
85
86 static
87 struct symbol *lookup_symbol_aux_local (const char *name,
88 const struct block *block,
89 const domain_enum domain,
90 enum language language);
91
92 static
93 struct symbol *lookup_symbol_aux_symtabs (int block_index,
94 const char *name,
95 const domain_enum domain);
96
97 static
98 struct symbol *lookup_symbol_aux_quick (struct objfile *objfile,
99 int block_index,
100 const char *name,
101 const domain_enum domain);
102
103 void _initialize_symtab (void);
104
105 /* */
106
107 /* Program space key for finding name and language of "main". */
108
109 static const struct program_space_data *main_progspace_key;
110
111 /* Type of the data stored on the program space. */
112
113 struct main_info
114 {
115 /* Name of "main". */
116
117 char *name_of_main;
118
119 /* Language of "main". */
120
121 enum language language_of_main;
122 };
123
124 /* When non-zero, print debugging messages related to symtab creation. */
125 unsigned int symtab_create_debug = 0;
126
127 /* Non-zero if a file may be known by two different basenames.
128 This is the uncommon case, and significantly slows down gdb.
129 Default set to "off" to not slow down the common case. */
130 int basenames_may_differ = 0;
131
132 /* Allow the user to configure the debugger behavior with respect
133 to multiple-choice menus when more than one symbol matches during
134 a symbol lookup. */
135
136 const char multiple_symbols_ask[] = "ask";
137 const char multiple_symbols_all[] = "all";
138 const char multiple_symbols_cancel[] = "cancel";
139 static const char *const multiple_symbols_modes[] =
140 {
141 multiple_symbols_ask,
142 multiple_symbols_all,
143 multiple_symbols_cancel,
144 NULL
145 };
146 static const char *multiple_symbols_mode = multiple_symbols_all;
147
148 /* Read-only accessor to AUTO_SELECT_MODE. */
149
150 const char *
151 multiple_symbols_select_mode (void)
152 {
153 return multiple_symbols_mode;
154 }
155
156 /* Block in which the most recently searched-for symbol was found.
157 Might be better to make this a parameter to lookup_symbol and
158 value_of_this. */
159
160 const struct block *block_found;
161
162 /* Return the name of a domain_enum. */
163
164 const char *
165 domain_name (domain_enum e)
166 {
167 switch (e)
168 {
169 case UNDEF_DOMAIN: return "UNDEF_DOMAIN";
170 case VAR_DOMAIN: return "VAR_DOMAIN";
171 case STRUCT_DOMAIN: return "STRUCT_DOMAIN";
172 case LABEL_DOMAIN: return "LABEL_DOMAIN";
173 case COMMON_BLOCK_DOMAIN: return "COMMON_BLOCK_DOMAIN";
174 default: gdb_assert_not_reached ("bad domain_enum");
175 }
176 }
177
178 /* Return the name of a search_domain . */
179
180 const char *
181 search_domain_name (enum search_domain e)
182 {
183 switch (e)
184 {
185 case VARIABLES_DOMAIN: return "VARIABLES_DOMAIN";
186 case FUNCTIONS_DOMAIN: return "FUNCTIONS_DOMAIN";
187 case TYPES_DOMAIN: return "TYPES_DOMAIN";
188 case ALL_DOMAIN: return "ALL_DOMAIN";
189 default: gdb_assert_not_reached ("bad search_domain");
190 }
191 }
192
193 /* Set the primary field in SYMTAB. */
194
195 void
196 set_symtab_primary (struct symtab *symtab, int primary)
197 {
198 symtab->primary = primary;
199
200 if (symtab_create_debug && primary)
201 {
202 fprintf_unfiltered (gdb_stdlog,
203 "Created primary symtab %s for %s.\n",
204 host_address_to_string (symtab),
205 symtab_to_filename_for_display (symtab));
206 }
207 }
208
209 /* See whether FILENAME matches SEARCH_NAME using the rule that we
210 advertise to the user. (The manual's description of linespecs
211 describes what we advertise). Returns true if they match, false
212 otherwise. */
213
214 int
215 compare_filenames_for_search (const char *filename, const char *search_name)
216 {
217 int len = strlen (filename);
218 size_t search_len = strlen (search_name);
219
220 if (len < search_len)
221 return 0;
222
223 /* The tail of FILENAME must match. */
224 if (FILENAME_CMP (filename + len - search_len, search_name) != 0)
225 return 0;
226
227 /* Either the names must completely match, or the character
228 preceding the trailing SEARCH_NAME segment of FILENAME must be a
229 directory separator.
230
231 The check !IS_ABSOLUTE_PATH ensures SEARCH_NAME "/dir/file.c"
232 cannot match FILENAME "/path//dir/file.c" - as user has requested
233 absolute path. The sama applies for "c:\file.c" possibly
234 incorrectly hypothetically matching "d:\dir\c:\file.c".
235
236 The HAS_DRIVE_SPEC purpose is to make FILENAME "c:file.c"
237 compatible with SEARCH_NAME "file.c". In such case a compiler had
238 to put the "c:file.c" name into debug info. Such compatibility
239 works only on GDB built for DOS host. */
240 return (len == search_len
241 || (!IS_ABSOLUTE_PATH (search_name)
242 && IS_DIR_SEPARATOR (filename[len - search_len - 1]))
243 || (HAS_DRIVE_SPEC (filename)
244 && STRIP_DRIVE_SPEC (filename) == &filename[len - search_len]));
245 }
246
247 /* Check for a symtab of a specific name by searching some symtabs.
248 This is a helper function for callbacks of iterate_over_symtabs.
249
250 If NAME is not absolute, then REAL_PATH is NULL
251 If NAME is absolute, then REAL_PATH is the gdb_realpath form of NAME.
252
253 The return value, NAME, REAL_PATH, CALLBACK, and DATA
254 are identical to the `map_symtabs_matching_filename' method of
255 quick_symbol_functions.
256
257 FIRST and AFTER_LAST indicate the range of symtabs to search.
258 AFTER_LAST is one past the last symtab to search; NULL means to
259 search until the end of the list. */
260
261 int
262 iterate_over_some_symtabs (const char *name,
263 const char *real_path,
264 int (*callback) (struct symtab *symtab,
265 void *data),
266 void *data,
267 struct symtab *first,
268 struct symtab *after_last)
269 {
270 struct symtab *s = NULL;
271 const char* base_name = lbasename (name);
272
273 for (s = first; s != NULL && s != after_last; s = s->next)
274 {
275 if (compare_filenames_for_search (s->filename, name))
276 {
277 if (callback (s, data))
278 return 1;
279 continue;
280 }
281
282 /* Before we invoke realpath, which can get expensive when many
283 files are involved, do a quick comparison of the basenames. */
284 if (! basenames_may_differ
285 && FILENAME_CMP (base_name, lbasename (s->filename)) != 0)
286 continue;
287
288 if (compare_filenames_for_search (symtab_to_fullname (s), name))
289 {
290 if (callback (s, data))
291 return 1;
292 continue;
293 }
294
295 /* If the user gave us an absolute path, try to find the file in
296 this symtab and use its absolute path. */
297 if (real_path != NULL)
298 {
299 const char *fullname = symtab_to_fullname (s);
300
301 gdb_assert (IS_ABSOLUTE_PATH (real_path));
302 gdb_assert (IS_ABSOLUTE_PATH (name));
303 if (FILENAME_CMP (real_path, fullname) == 0)
304 {
305 if (callback (s, data))
306 return 1;
307 continue;
308 }
309 }
310 }
311
312 return 0;
313 }
314
315 /* Check for a symtab of a specific name; first in symtabs, then in
316 psymtabs. *If* there is no '/' in the name, a match after a '/'
317 in the symtab filename will also work.
318
319 Calls CALLBACK with each symtab that is found and with the supplied
320 DATA. If CALLBACK returns true, the search stops. */
321
322 void
323 iterate_over_symtabs (const char *name,
324 int (*callback) (struct symtab *symtab,
325 void *data),
326 void *data)
327 {
328 struct objfile *objfile;
329 char *real_path = NULL;
330 struct cleanup *cleanups = make_cleanup (null_cleanup, NULL);
331
332 /* Here we are interested in canonicalizing an absolute path, not
333 absolutizing a relative path. */
334 if (IS_ABSOLUTE_PATH (name))
335 {
336 real_path = gdb_realpath (name);
337 make_cleanup (xfree, real_path);
338 gdb_assert (IS_ABSOLUTE_PATH (real_path));
339 }
340
341 ALL_OBJFILES (objfile)
342 {
343 if (iterate_over_some_symtabs (name, real_path, callback, data,
344 objfile->symtabs, NULL))
345 {
346 do_cleanups (cleanups);
347 return;
348 }
349 }
350
351 /* Same search rules as above apply here, but now we look thru the
352 psymtabs. */
353
354 ALL_OBJFILES (objfile)
355 {
356 if (objfile->sf
357 && objfile->sf->qf->map_symtabs_matching_filename (objfile,
358 name,
359 real_path,
360 callback,
361 data))
362 {
363 do_cleanups (cleanups);
364 return;
365 }
366 }
367
368 do_cleanups (cleanups);
369 }
370
371 /* The callback function used by lookup_symtab. */
372
373 static int
374 lookup_symtab_callback (struct symtab *symtab, void *data)
375 {
376 struct symtab **result_ptr = data;
377
378 *result_ptr = symtab;
379 return 1;
380 }
381
382 /* A wrapper for iterate_over_symtabs that returns the first matching
383 symtab, or NULL. */
384
385 struct symtab *
386 lookup_symtab (const char *name)
387 {
388 struct symtab *result = NULL;
389
390 iterate_over_symtabs (name, lookup_symtab_callback, &result);
391 return result;
392 }
393
394 \f
395 /* Mangle a GDB method stub type. This actually reassembles the pieces of the
396 full method name, which consist of the class name (from T), the unadorned
397 method name from METHOD_ID, and the signature for the specific overload,
398 specified by SIGNATURE_ID. Note that this function is g++ specific. */
399
400 char *
401 gdb_mangle_name (struct type *type, int method_id, int signature_id)
402 {
403 int mangled_name_len;
404 char *mangled_name;
405 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
406 struct fn_field *method = &f[signature_id];
407 const char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
408 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
409 const char *newname = type_name_no_tag (type);
410
411 /* Does the form of physname indicate that it is the full mangled name
412 of a constructor (not just the args)? */
413 int is_full_physname_constructor;
414
415 int is_constructor;
416 int is_destructor = is_destructor_name (physname);
417 /* Need a new type prefix. */
418 char *const_prefix = method->is_const ? "C" : "";
419 char *volatile_prefix = method->is_volatile ? "V" : "";
420 char buf[20];
421 int len = (newname == NULL ? 0 : strlen (newname));
422
423 /* Nothing to do if physname already contains a fully mangled v3 abi name
424 or an operator name. */
425 if ((physname[0] == '_' && physname[1] == 'Z')
426 || is_operator_name (field_name))
427 return xstrdup (physname);
428
429 is_full_physname_constructor = is_constructor_name (physname);
430
431 is_constructor = is_full_physname_constructor
432 || (newname && strcmp (field_name, newname) == 0);
433
434 if (!is_destructor)
435 is_destructor = (strncmp (physname, "__dt", 4) == 0);
436
437 if (is_destructor || is_full_physname_constructor)
438 {
439 mangled_name = (char *) xmalloc (strlen (physname) + 1);
440 strcpy (mangled_name, physname);
441 return mangled_name;
442 }
443
444 if (len == 0)
445 {
446 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
447 }
448 else if (physname[0] == 't' || physname[0] == 'Q')
449 {
450 /* The physname for template and qualified methods already includes
451 the class name. */
452 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
453 newname = NULL;
454 len = 0;
455 }
456 else
457 {
458 xsnprintf (buf, sizeof (buf), "__%s%s%d", const_prefix,
459 volatile_prefix, len);
460 }
461 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
462 + strlen (buf) + len + strlen (physname) + 1);
463
464 mangled_name = (char *) xmalloc (mangled_name_len);
465 if (is_constructor)
466 mangled_name[0] = '\0';
467 else
468 strcpy (mangled_name, field_name);
469
470 strcat (mangled_name, buf);
471 /* If the class doesn't have a name, i.e. newname NULL, then we just
472 mangle it using 0 for the length of the class. Thus it gets mangled
473 as something starting with `::' rather than `classname::'. */
474 if (newname != NULL)
475 strcat (mangled_name, newname);
476
477 strcat (mangled_name, physname);
478 return (mangled_name);
479 }
480
481 /* Initialize the cplus_specific structure. 'cplus_specific' should
482 only be allocated for use with cplus symbols. */
483
484 static void
485 symbol_init_cplus_specific (struct general_symbol_info *gsymbol,
486 struct obstack *obstack)
487 {
488 /* A language_specific structure should not have been previously
489 initialized. */
490 gdb_assert (gsymbol->language_specific.cplus_specific == NULL);
491 gdb_assert (obstack != NULL);
492
493 gsymbol->language_specific.cplus_specific =
494 OBSTACK_ZALLOC (obstack, struct cplus_specific);
495 }
496
497 /* Set the demangled name of GSYMBOL to NAME. NAME must be already
498 correctly allocated. For C++ symbols a cplus_specific struct is
499 allocated so OBJFILE must not be NULL. If this is a non C++ symbol
500 OBJFILE can be NULL. */
501
502 void
503 symbol_set_demangled_name (struct general_symbol_info *gsymbol,
504 const char *name,
505 struct obstack *obstack)
506 {
507 if (gsymbol->language == language_cplus)
508 {
509 if (gsymbol->language_specific.cplus_specific == NULL)
510 symbol_init_cplus_specific (gsymbol, obstack);
511
512 gsymbol->language_specific.cplus_specific->demangled_name = name;
513 }
514 else if (gsymbol->language == language_ada)
515 {
516 if (name == NULL)
517 {
518 gsymbol->ada_mangled = 0;
519 gsymbol->language_specific.obstack = obstack;
520 }
521 else
522 {
523 gsymbol->ada_mangled = 1;
524 gsymbol->language_specific.mangled_lang.demangled_name = name;
525 }
526 }
527 else
528 gsymbol->language_specific.mangled_lang.demangled_name = name;
529 }
530
531 /* Return the demangled name of GSYMBOL. */
532
533 const char *
534 symbol_get_demangled_name (const struct general_symbol_info *gsymbol)
535 {
536 if (gsymbol->language == language_cplus)
537 {
538 if (gsymbol->language_specific.cplus_specific != NULL)
539 return gsymbol->language_specific.cplus_specific->demangled_name;
540 else
541 return NULL;
542 }
543 else if (gsymbol->language == language_ada)
544 {
545 if (!gsymbol->ada_mangled)
546 return NULL;
547 /* Fall through. */
548 }
549
550 return gsymbol->language_specific.mangled_lang.demangled_name;
551 }
552
553 \f
554 /* Initialize the language dependent portion of a symbol
555 depending upon the language for the symbol. */
556
557 void
558 symbol_set_language (struct general_symbol_info *gsymbol,
559 enum language language,
560 struct obstack *obstack)
561 {
562 gsymbol->language = language;
563 if (gsymbol->language == language_d
564 || gsymbol->language == language_go
565 || gsymbol->language == language_java
566 || gsymbol->language == language_objc
567 || gsymbol->language == language_fortran)
568 {
569 symbol_set_demangled_name (gsymbol, NULL, obstack);
570 }
571 else if (gsymbol->language == language_ada)
572 {
573 gdb_assert (gsymbol->ada_mangled == 0);
574 gsymbol->language_specific.obstack = obstack;
575 }
576 else if (gsymbol->language == language_cplus)
577 gsymbol->language_specific.cplus_specific = NULL;
578 else
579 {
580 memset (&gsymbol->language_specific, 0,
581 sizeof (gsymbol->language_specific));
582 }
583 }
584
585 /* Functions to initialize a symbol's mangled name. */
586
587 /* Objects of this type are stored in the demangled name hash table. */
588 struct demangled_name_entry
589 {
590 const char *mangled;
591 char demangled[1];
592 };
593
594 /* Hash function for the demangled name hash. */
595
596 static hashval_t
597 hash_demangled_name_entry (const void *data)
598 {
599 const struct demangled_name_entry *e = data;
600
601 return htab_hash_string (e->mangled);
602 }
603
604 /* Equality function for the demangled name hash. */
605
606 static int
607 eq_demangled_name_entry (const void *a, const void *b)
608 {
609 const struct demangled_name_entry *da = a;
610 const struct demangled_name_entry *db = b;
611
612 return strcmp (da->mangled, db->mangled) == 0;
613 }
614
615 /* Create the hash table used for demangled names. Each hash entry is
616 a pair of strings; one for the mangled name and one for the demangled
617 name. The entry is hashed via just the mangled name. */
618
619 static void
620 create_demangled_names_hash (struct objfile *objfile)
621 {
622 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
623 The hash table code will round this up to the next prime number.
624 Choosing a much larger table size wastes memory, and saves only about
625 1% in symbol reading. */
626
627 objfile->per_bfd->demangled_names_hash = htab_create_alloc
628 (256, hash_demangled_name_entry, eq_demangled_name_entry,
629 NULL, xcalloc, xfree);
630 }
631
632 /* Try to determine the demangled name for a symbol, based on the
633 language of that symbol. If the language is set to language_auto,
634 it will attempt to find any demangling algorithm that works and
635 then set the language appropriately. The returned name is allocated
636 by the demangler and should be xfree'd. */
637
638 static char *
639 symbol_find_demangled_name (struct general_symbol_info *gsymbol,
640 const char *mangled)
641 {
642 char *demangled = NULL;
643
644 if (gsymbol->language == language_unknown)
645 gsymbol->language = language_auto;
646
647 if (gsymbol->language == language_objc
648 || gsymbol->language == language_auto)
649 {
650 demangled =
651 objc_demangle (mangled, 0);
652 if (demangled != NULL)
653 {
654 gsymbol->language = language_objc;
655 return demangled;
656 }
657 }
658 if (gsymbol->language == language_cplus
659 || gsymbol->language == language_auto)
660 {
661 demangled =
662 gdb_demangle (mangled, DMGL_PARAMS | DMGL_ANSI);
663 if (demangled != NULL)
664 {
665 gsymbol->language = language_cplus;
666 return demangled;
667 }
668 }
669 if (gsymbol->language == language_java)
670 {
671 demangled =
672 gdb_demangle (mangled,
673 DMGL_PARAMS | DMGL_ANSI | DMGL_JAVA);
674 if (demangled != NULL)
675 {
676 gsymbol->language = language_java;
677 return demangled;
678 }
679 }
680 if (gsymbol->language == language_d
681 || gsymbol->language == language_auto)
682 {
683 demangled = d_demangle(mangled, 0);
684 if (demangled != NULL)
685 {
686 gsymbol->language = language_d;
687 return demangled;
688 }
689 }
690 /* FIXME(dje): Continually adding languages here is clumsy.
691 Better to just call la_demangle if !auto, and if auto then call
692 a utility routine that tries successive languages in turn and reports
693 which one it finds. I realize the la_demangle options may be different
694 for different languages but there's already a FIXME for that. */
695 if (gsymbol->language == language_go
696 || gsymbol->language == language_auto)
697 {
698 demangled = go_demangle (mangled, 0);
699 if (demangled != NULL)
700 {
701 gsymbol->language = language_go;
702 return demangled;
703 }
704 }
705
706 /* We could support `gsymbol->language == language_fortran' here to provide
707 module namespaces also for inferiors with only minimal symbol table (ELF
708 symbols). Just the mangling standard is not standardized across compilers
709 and there is no DW_AT_producer available for inferiors with only the ELF
710 symbols to check the mangling kind. */
711
712 /* Check for Ada symbols last. See comment below explaining why. */
713
714 if (gsymbol->language == language_auto)
715 {
716 const char *demangled = ada_decode (mangled);
717
718 if (demangled != mangled && demangled != NULL && demangled[0] != '<')
719 {
720 /* Set the gsymbol language to Ada, but still return NULL.
721 Two reasons for that:
722
723 1. For Ada, we prefer computing the symbol's decoded name
724 on the fly rather than pre-compute it, in order to save
725 memory (Ada projects are typically very large).
726
727 2. There are some areas in the definition of the GNAT
728 encoding where, with a bit of bad luck, we might be able
729 to decode a non-Ada symbol, generating an incorrect
730 demangled name (Eg: names ending with "TB" for instance
731 are identified as task bodies and so stripped from
732 the decoded name returned).
733
734 Returning NULL, here, helps us get a little bit of
735 the best of both worlds. Because we're last, we should
736 not affect any of the other languages that were able to
737 demangle the symbol before us; we get to correctly tag
738 Ada symbols as such; and even if we incorrectly tagged
739 a non-Ada symbol, which should be rare, any routing
740 through the Ada language should be transparent (Ada
741 tries to behave much like C/C++ with non-Ada symbols). */
742 gsymbol->language = language_ada;
743 return NULL;
744 }
745 }
746
747 return NULL;
748 }
749
750 /* Set both the mangled and demangled (if any) names for GSYMBOL based
751 on LINKAGE_NAME and LEN. Ordinarily, NAME is copied onto the
752 objfile's obstack; but if COPY_NAME is 0 and if NAME is
753 NUL-terminated, then this function assumes that NAME is already
754 correctly saved (either permanently or with a lifetime tied to the
755 objfile), and it will not be copied.
756
757 The hash table corresponding to OBJFILE is used, and the memory
758 comes from the per-BFD storage_obstack. LINKAGE_NAME is copied,
759 so the pointer can be discarded after calling this function. */
760
761 /* We have to be careful when dealing with Java names: when we run
762 into a Java minimal symbol, we don't know it's a Java symbol, so it
763 gets demangled as a C++ name. This is unfortunate, but there's not
764 much we can do about it: but when demangling partial symbols and
765 regular symbols, we'd better not reuse the wrong demangled name.
766 (See PR gdb/1039.) We solve this by putting a distinctive prefix
767 on Java names when storing them in the hash table. */
768
769 /* FIXME: carlton/2003-03-13: This is an unfortunate situation. I
770 don't mind the Java prefix so much: different languages have
771 different demangling requirements, so it's only natural that we
772 need to keep language data around in our demangling cache. But
773 it's not good that the minimal symbol has the wrong demangled name.
774 Unfortunately, I can't think of any easy solution to that
775 problem. */
776
777 #define JAVA_PREFIX "##JAVA$$"
778 #define JAVA_PREFIX_LEN 8
779
780 void
781 symbol_set_names (struct general_symbol_info *gsymbol,
782 const char *linkage_name, int len, int copy_name,
783 struct objfile *objfile)
784 {
785 struct demangled_name_entry **slot;
786 /* A 0-terminated copy of the linkage name. */
787 const char *linkage_name_copy;
788 /* A copy of the linkage name that might have a special Java prefix
789 added to it, for use when looking names up in the hash table. */
790 const char *lookup_name;
791 /* The length of lookup_name. */
792 int lookup_len;
793 struct demangled_name_entry entry;
794 struct objfile_per_bfd_storage *per_bfd = objfile->per_bfd;
795
796 if (gsymbol->language == language_ada)
797 {
798 /* In Ada, we do the symbol lookups using the mangled name, so
799 we can save some space by not storing the demangled name.
800
801 As a side note, we have also observed some overlap between
802 the C++ mangling and Ada mangling, similarly to what has
803 been observed with Java. Because we don't store the demangled
804 name with the symbol, we don't need to use the same trick
805 as Java. */
806 if (!copy_name)
807 gsymbol->name = linkage_name;
808 else
809 {
810 char *name = obstack_alloc (&per_bfd->storage_obstack, len + 1);
811
812 memcpy (name, linkage_name, len);
813 name[len] = '\0';
814 gsymbol->name = name;
815 }
816 symbol_set_demangled_name (gsymbol, NULL, &per_bfd->storage_obstack);
817
818 return;
819 }
820
821 if (per_bfd->demangled_names_hash == NULL)
822 create_demangled_names_hash (objfile);
823
824 /* The stabs reader generally provides names that are not
825 NUL-terminated; most of the other readers don't do this, so we
826 can just use the given copy, unless we're in the Java case. */
827 if (gsymbol->language == language_java)
828 {
829 char *alloc_name;
830
831 lookup_len = len + JAVA_PREFIX_LEN;
832 alloc_name = alloca (lookup_len + 1);
833 memcpy (alloc_name, JAVA_PREFIX, JAVA_PREFIX_LEN);
834 memcpy (alloc_name + JAVA_PREFIX_LEN, linkage_name, len);
835 alloc_name[lookup_len] = '\0';
836
837 lookup_name = alloc_name;
838 linkage_name_copy = alloc_name + JAVA_PREFIX_LEN;
839 }
840 else if (linkage_name[len] != '\0')
841 {
842 char *alloc_name;
843
844 lookup_len = len;
845 alloc_name = alloca (lookup_len + 1);
846 memcpy (alloc_name, linkage_name, len);
847 alloc_name[lookup_len] = '\0';
848
849 lookup_name = alloc_name;
850 linkage_name_copy = alloc_name;
851 }
852 else
853 {
854 lookup_len = len;
855 lookup_name = linkage_name;
856 linkage_name_copy = linkage_name;
857 }
858
859 entry.mangled = lookup_name;
860 slot = ((struct demangled_name_entry **)
861 htab_find_slot (per_bfd->demangled_names_hash,
862 &entry, INSERT));
863
864 /* If this name is not in the hash table, add it. */
865 if (*slot == NULL
866 /* A C version of the symbol may have already snuck into the table.
867 This happens to, e.g., main.init (__go_init_main). Cope. */
868 || (gsymbol->language == language_go
869 && (*slot)->demangled[0] == '\0'))
870 {
871 char *demangled_name = symbol_find_demangled_name (gsymbol,
872 linkage_name_copy);
873 int demangled_len = demangled_name ? strlen (demangled_name) : 0;
874
875 /* Suppose we have demangled_name==NULL, copy_name==0, and
876 lookup_name==linkage_name. In this case, we already have the
877 mangled name saved, and we don't have a demangled name. So,
878 you might think we could save a little space by not recording
879 this in the hash table at all.
880
881 It turns out that it is actually important to still save such
882 an entry in the hash table, because storing this name gives
883 us better bcache hit rates for partial symbols. */
884 if (!copy_name && lookup_name == linkage_name)
885 {
886 *slot = obstack_alloc (&per_bfd->storage_obstack,
887 offsetof (struct demangled_name_entry,
888 demangled)
889 + demangled_len + 1);
890 (*slot)->mangled = lookup_name;
891 }
892 else
893 {
894 char *mangled_ptr;
895
896 /* If we must copy the mangled name, put it directly after
897 the demangled name so we can have a single
898 allocation. */
899 *slot = obstack_alloc (&per_bfd->storage_obstack,
900 offsetof (struct demangled_name_entry,
901 demangled)
902 + lookup_len + demangled_len + 2);
903 mangled_ptr = &((*slot)->demangled[demangled_len + 1]);
904 strcpy (mangled_ptr, lookup_name);
905 (*slot)->mangled = mangled_ptr;
906 }
907
908 if (demangled_name != NULL)
909 {
910 strcpy ((*slot)->demangled, demangled_name);
911 xfree (demangled_name);
912 }
913 else
914 (*slot)->demangled[0] = '\0';
915 }
916
917 gsymbol->name = (*slot)->mangled + lookup_len - len;
918 if ((*slot)->demangled[0] != '\0')
919 symbol_set_demangled_name (gsymbol, (*slot)->demangled,
920 &per_bfd->storage_obstack);
921 else
922 symbol_set_demangled_name (gsymbol, NULL, &per_bfd->storage_obstack);
923 }
924
925 /* Return the source code name of a symbol. In languages where
926 demangling is necessary, this is the demangled name. */
927
928 const char *
929 symbol_natural_name (const struct general_symbol_info *gsymbol)
930 {
931 switch (gsymbol->language)
932 {
933 case language_cplus:
934 case language_d:
935 case language_go:
936 case language_java:
937 case language_objc:
938 case language_fortran:
939 if (symbol_get_demangled_name (gsymbol) != NULL)
940 return symbol_get_demangled_name (gsymbol);
941 break;
942 case language_ada:
943 return ada_decode_symbol (gsymbol);
944 default:
945 break;
946 }
947 return gsymbol->name;
948 }
949
950 /* Return the demangled name for a symbol based on the language for
951 that symbol. If no demangled name exists, return NULL. */
952
953 const char *
954 symbol_demangled_name (const struct general_symbol_info *gsymbol)
955 {
956 const char *dem_name = NULL;
957
958 switch (gsymbol->language)
959 {
960 case language_cplus:
961 case language_d:
962 case language_go:
963 case language_java:
964 case language_objc:
965 case language_fortran:
966 dem_name = symbol_get_demangled_name (gsymbol);
967 break;
968 case language_ada:
969 dem_name = ada_decode_symbol (gsymbol);
970 break;
971 default:
972 break;
973 }
974 return dem_name;
975 }
976
977 /* Return the search name of a symbol---generally the demangled or
978 linkage name of the symbol, depending on how it will be searched for.
979 If there is no distinct demangled name, then returns the same value
980 (same pointer) as SYMBOL_LINKAGE_NAME. */
981
982 const char *
983 symbol_search_name (const struct general_symbol_info *gsymbol)
984 {
985 if (gsymbol->language == language_ada)
986 return gsymbol->name;
987 else
988 return symbol_natural_name (gsymbol);
989 }
990
991 /* Initialize the structure fields to zero values. */
992
993 void
994 init_sal (struct symtab_and_line *sal)
995 {
996 memset (sal, 0, sizeof (*sal));
997 }
998 \f
999
1000 /* Return 1 if the two sections are the same, or if they could
1001 plausibly be copies of each other, one in an original object
1002 file and another in a separated debug file. */
1003
1004 int
1005 matching_obj_sections (struct obj_section *obj_first,
1006 struct obj_section *obj_second)
1007 {
1008 asection *first = obj_first? obj_first->the_bfd_section : NULL;
1009 asection *second = obj_second? obj_second->the_bfd_section : NULL;
1010 struct objfile *obj;
1011
1012 /* If they're the same section, then they match. */
1013 if (first == second)
1014 return 1;
1015
1016 /* If either is NULL, give up. */
1017 if (first == NULL || second == NULL)
1018 return 0;
1019
1020 /* This doesn't apply to absolute symbols. */
1021 if (first->owner == NULL || second->owner == NULL)
1022 return 0;
1023
1024 /* If they're in the same object file, they must be different sections. */
1025 if (first->owner == second->owner)
1026 return 0;
1027
1028 /* Check whether the two sections are potentially corresponding. They must
1029 have the same size, address, and name. We can't compare section indexes,
1030 which would be more reliable, because some sections may have been
1031 stripped. */
1032 if (bfd_get_section_size (first) != bfd_get_section_size (second))
1033 return 0;
1034
1035 /* In-memory addresses may start at a different offset, relativize them. */
1036 if (bfd_get_section_vma (first->owner, first)
1037 - bfd_get_start_address (first->owner)
1038 != bfd_get_section_vma (second->owner, second)
1039 - bfd_get_start_address (second->owner))
1040 return 0;
1041
1042 if (bfd_get_section_name (first->owner, first) == NULL
1043 || bfd_get_section_name (second->owner, second) == NULL
1044 || strcmp (bfd_get_section_name (first->owner, first),
1045 bfd_get_section_name (second->owner, second)) != 0)
1046 return 0;
1047
1048 /* Otherwise check that they are in corresponding objfiles. */
1049
1050 ALL_OBJFILES (obj)
1051 if (obj->obfd == first->owner)
1052 break;
1053 gdb_assert (obj != NULL);
1054
1055 if (obj->separate_debug_objfile != NULL
1056 && obj->separate_debug_objfile->obfd == second->owner)
1057 return 1;
1058 if (obj->separate_debug_objfile_backlink != NULL
1059 && obj->separate_debug_objfile_backlink->obfd == second->owner)
1060 return 1;
1061
1062 return 0;
1063 }
1064
1065 struct symtab *
1066 find_pc_sect_symtab_via_partial (CORE_ADDR pc, struct obj_section *section)
1067 {
1068 struct objfile *objfile;
1069 struct bound_minimal_symbol msymbol;
1070
1071 /* If we know that this is not a text address, return failure. This is
1072 necessary because we loop based on texthigh and textlow, which do
1073 not include the data ranges. */
1074 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
1075 if (msymbol.minsym
1076 && (MSYMBOL_TYPE (msymbol.minsym) == mst_data
1077 || MSYMBOL_TYPE (msymbol.minsym) == mst_bss
1078 || MSYMBOL_TYPE (msymbol.minsym) == mst_abs
1079 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_data
1080 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_bss))
1081 return NULL;
1082
1083 ALL_OBJFILES (objfile)
1084 {
1085 struct symtab *result = NULL;
1086
1087 if (objfile->sf)
1088 result = objfile->sf->qf->find_pc_sect_symtab (objfile, msymbol,
1089 pc, section, 0);
1090 if (result)
1091 return result;
1092 }
1093
1094 return NULL;
1095 }
1096 \f
1097 /* Debug symbols usually don't have section information. We need to dig that
1098 out of the minimal symbols and stash that in the debug symbol. */
1099
1100 void
1101 fixup_section (struct general_symbol_info *ginfo,
1102 CORE_ADDR addr, struct objfile *objfile)
1103 {
1104 struct minimal_symbol *msym;
1105
1106 /* First, check whether a minimal symbol with the same name exists
1107 and points to the same address. The address check is required
1108 e.g. on PowerPC64, where the minimal symbol for a function will
1109 point to the function descriptor, while the debug symbol will
1110 point to the actual function code. */
1111 msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->name, objfile);
1112 if (msym)
1113 ginfo->section = MSYMBOL_SECTION (msym);
1114 else
1115 {
1116 /* Static, function-local variables do appear in the linker
1117 (minimal) symbols, but are frequently given names that won't
1118 be found via lookup_minimal_symbol(). E.g., it has been
1119 observed in frv-uclinux (ELF) executables that a static,
1120 function-local variable named "foo" might appear in the
1121 linker symbols as "foo.6" or "foo.3". Thus, there is no
1122 point in attempting to extend the lookup-by-name mechanism to
1123 handle this case due to the fact that there can be multiple
1124 names.
1125
1126 So, instead, search the section table when lookup by name has
1127 failed. The ``addr'' and ``endaddr'' fields may have already
1128 been relocated. If so, the relocation offset (i.e. the
1129 ANOFFSET value) needs to be subtracted from these values when
1130 performing the comparison. We unconditionally subtract it,
1131 because, when no relocation has been performed, the ANOFFSET
1132 value will simply be zero.
1133
1134 The address of the symbol whose section we're fixing up HAS
1135 NOT BEEN adjusted (relocated) yet. It can't have been since
1136 the section isn't yet known and knowing the section is
1137 necessary in order to add the correct relocation value. In
1138 other words, we wouldn't even be in this function (attempting
1139 to compute the section) if it were already known.
1140
1141 Note that it is possible to search the minimal symbols
1142 (subtracting the relocation value if necessary) to find the
1143 matching minimal symbol, but this is overkill and much less
1144 efficient. It is not necessary to find the matching minimal
1145 symbol, only its section.
1146
1147 Note that this technique (of doing a section table search)
1148 can fail when unrelocated section addresses overlap. For
1149 this reason, we still attempt a lookup by name prior to doing
1150 a search of the section table. */
1151
1152 struct obj_section *s;
1153 int fallback = -1;
1154
1155 ALL_OBJFILE_OSECTIONS (objfile, s)
1156 {
1157 int idx = s - objfile->sections;
1158 CORE_ADDR offset = ANOFFSET (objfile->section_offsets, idx);
1159
1160 if (fallback == -1)
1161 fallback = idx;
1162
1163 if (obj_section_addr (s) - offset <= addr
1164 && addr < obj_section_endaddr (s) - offset)
1165 {
1166 ginfo->section = idx;
1167 return;
1168 }
1169 }
1170
1171 /* If we didn't find the section, assume it is in the first
1172 section. If there is no allocated section, then it hardly
1173 matters what we pick, so just pick zero. */
1174 if (fallback == -1)
1175 ginfo->section = 0;
1176 else
1177 ginfo->section = fallback;
1178 }
1179 }
1180
1181 struct symbol *
1182 fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
1183 {
1184 CORE_ADDR addr;
1185
1186 if (!sym)
1187 return NULL;
1188
1189 /* We either have an OBJFILE, or we can get at it from the sym's
1190 symtab. Anything else is a bug. */
1191 gdb_assert (objfile || SYMBOL_SYMTAB (sym));
1192
1193 if (objfile == NULL)
1194 objfile = SYMBOL_SYMTAB (sym)->objfile;
1195
1196 if (SYMBOL_OBJ_SECTION (objfile, sym))
1197 return sym;
1198
1199 /* We should have an objfile by now. */
1200 gdb_assert (objfile);
1201
1202 switch (SYMBOL_CLASS (sym))
1203 {
1204 case LOC_STATIC:
1205 case LOC_LABEL:
1206 addr = SYMBOL_VALUE_ADDRESS (sym);
1207 break;
1208 case LOC_BLOCK:
1209 addr = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
1210 break;
1211
1212 default:
1213 /* Nothing else will be listed in the minsyms -- no use looking
1214 it up. */
1215 return sym;
1216 }
1217
1218 fixup_section (&sym->ginfo, addr, objfile);
1219
1220 return sym;
1221 }
1222
1223 /* Compute the demangled form of NAME as used by the various symbol
1224 lookup functions. The result is stored in *RESULT_NAME. Returns a
1225 cleanup which can be used to clean up the result.
1226
1227 For Ada, this function just sets *RESULT_NAME to NAME, unmodified.
1228 Normally, Ada symbol lookups are performed using the encoded name
1229 rather than the demangled name, and so it might seem to make sense
1230 for this function to return an encoded version of NAME.
1231 Unfortunately, we cannot do this, because this function is used in
1232 circumstances where it is not appropriate to try to encode NAME.
1233 For instance, when displaying the frame info, we demangle the name
1234 of each parameter, and then perform a symbol lookup inside our
1235 function using that demangled name. In Ada, certain functions
1236 have internally-generated parameters whose name contain uppercase
1237 characters. Encoding those name would result in those uppercase
1238 characters to become lowercase, and thus cause the symbol lookup
1239 to fail. */
1240
1241 struct cleanup *
1242 demangle_for_lookup (const char *name, enum language lang,
1243 const char **result_name)
1244 {
1245 char *demangled_name = NULL;
1246 const char *modified_name = NULL;
1247 struct cleanup *cleanup = make_cleanup (null_cleanup, 0);
1248
1249 modified_name = name;
1250
1251 /* If we are using C++, D, Go, or Java, demangle the name before doing a
1252 lookup, so we can always binary search. */
1253 if (lang == language_cplus)
1254 {
1255 demangled_name = gdb_demangle (name, DMGL_ANSI | DMGL_PARAMS);
1256 if (demangled_name)
1257 {
1258 modified_name = demangled_name;
1259 make_cleanup (xfree, demangled_name);
1260 }
1261 else
1262 {
1263 /* If we were given a non-mangled name, canonicalize it
1264 according to the language (so far only for C++). */
1265 demangled_name = cp_canonicalize_string (name);
1266 if (demangled_name)
1267 {
1268 modified_name = demangled_name;
1269 make_cleanup (xfree, demangled_name);
1270 }
1271 }
1272 }
1273 else if (lang == language_java)
1274 {
1275 demangled_name = gdb_demangle (name,
1276 DMGL_ANSI | DMGL_PARAMS | DMGL_JAVA);
1277 if (demangled_name)
1278 {
1279 modified_name = demangled_name;
1280 make_cleanup (xfree, demangled_name);
1281 }
1282 }
1283 else if (lang == language_d)
1284 {
1285 demangled_name = d_demangle (name, 0);
1286 if (demangled_name)
1287 {
1288 modified_name = demangled_name;
1289 make_cleanup (xfree, demangled_name);
1290 }
1291 }
1292 else if (lang == language_go)
1293 {
1294 demangled_name = go_demangle (name, 0);
1295 if (demangled_name)
1296 {
1297 modified_name = demangled_name;
1298 make_cleanup (xfree, demangled_name);
1299 }
1300 }
1301
1302 *result_name = modified_name;
1303 return cleanup;
1304 }
1305
1306 /* Find the definition for a specified symbol name NAME
1307 in domain DOMAIN, visible from lexical block BLOCK.
1308 Returns the struct symbol pointer, or zero if no symbol is found.
1309 C++: if IS_A_FIELD_OF_THIS is nonzero on entry, check to see if
1310 NAME is a field of the current implied argument `this'. If so set
1311 *IS_A_FIELD_OF_THIS to 1, otherwise set it to zero.
1312 BLOCK_FOUND is set to the block in which NAME is found (in the case of
1313 a field of `this', value_of_this sets BLOCK_FOUND to the proper value.) */
1314
1315 /* This function (or rather its subordinates) have a bunch of loops and
1316 it would seem to be attractive to put in some QUIT's (though I'm not really
1317 sure whether it can run long enough to be really important). But there
1318 are a few calls for which it would appear to be bad news to quit
1319 out of here: e.g., find_proc_desc in alpha-mdebug-tdep.c. (Note
1320 that there is C++ code below which can error(), but that probably
1321 doesn't affect these calls since they are looking for a known
1322 variable and thus can probably assume it will never hit the C++
1323 code). */
1324
1325 struct symbol *
1326 lookup_symbol_in_language (const char *name, const struct block *block,
1327 const domain_enum domain, enum language lang,
1328 struct field_of_this_result *is_a_field_of_this)
1329 {
1330 const char *modified_name;
1331 struct symbol *returnval;
1332 struct cleanup *cleanup = demangle_for_lookup (name, lang, &modified_name);
1333
1334 returnval = lookup_symbol_aux (modified_name, block, domain, lang,
1335 is_a_field_of_this);
1336 do_cleanups (cleanup);
1337
1338 return returnval;
1339 }
1340
1341 /* Behave like lookup_symbol_in_language, but performed with the
1342 current language. */
1343
1344 struct symbol *
1345 lookup_symbol (const char *name, const struct block *block,
1346 domain_enum domain,
1347 struct field_of_this_result *is_a_field_of_this)
1348 {
1349 return lookup_symbol_in_language (name, block, domain,
1350 current_language->la_language,
1351 is_a_field_of_this);
1352 }
1353
1354 /* Look up the `this' symbol for LANG in BLOCK. Return the symbol if
1355 found, or NULL if not found. */
1356
1357 struct symbol *
1358 lookup_language_this (const struct language_defn *lang,
1359 const struct block *block)
1360 {
1361 if (lang->la_name_of_this == NULL || block == NULL)
1362 return NULL;
1363
1364 while (block)
1365 {
1366 struct symbol *sym;
1367
1368 sym = lookup_block_symbol (block, lang->la_name_of_this, VAR_DOMAIN);
1369 if (sym != NULL)
1370 {
1371 block_found = block;
1372 return sym;
1373 }
1374 if (BLOCK_FUNCTION (block))
1375 break;
1376 block = BLOCK_SUPERBLOCK (block);
1377 }
1378
1379 return NULL;
1380 }
1381
1382 /* Given TYPE, a structure/union,
1383 return 1 if the component named NAME from the ultimate target
1384 structure/union is defined, otherwise, return 0. */
1385
1386 static int
1387 check_field (struct type *type, const char *name,
1388 struct field_of_this_result *is_a_field_of_this)
1389 {
1390 int i;
1391
1392 /* The type may be a stub. */
1393 CHECK_TYPEDEF (type);
1394
1395 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1396 {
1397 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1398
1399 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1400 {
1401 is_a_field_of_this->type = type;
1402 is_a_field_of_this->field = &TYPE_FIELD (type, i);
1403 return 1;
1404 }
1405 }
1406
1407 /* C++: If it was not found as a data field, then try to return it
1408 as a pointer to a method. */
1409
1410 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
1411 {
1412 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
1413 {
1414 is_a_field_of_this->type = type;
1415 is_a_field_of_this->fn_field = &TYPE_FN_FIELDLIST (type, i);
1416 return 1;
1417 }
1418 }
1419
1420 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1421 if (check_field (TYPE_BASECLASS (type, i), name, is_a_field_of_this))
1422 return 1;
1423
1424 return 0;
1425 }
1426
1427 /* Behave like lookup_symbol except that NAME is the natural name
1428 (e.g., demangled name) of the symbol that we're looking for. */
1429
1430 static struct symbol *
1431 lookup_symbol_aux (const char *name, const struct block *block,
1432 const domain_enum domain, enum language language,
1433 struct field_of_this_result *is_a_field_of_this)
1434 {
1435 struct symbol *sym;
1436 const struct language_defn *langdef;
1437
1438 /* Make sure we do something sensible with is_a_field_of_this, since
1439 the callers that set this parameter to some non-null value will
1440 certainly use it later. If we don't set it, the contents of
1441 is_a_field_of_this are undefined. */
1442 if (is_a_field_of_this != NULL)
1443 memset (is_a_field_of_this, 0, sizeof (*is_a_field_of_this));
1444
1445 /* Search specified block and its superiors. Don't search
1446 STATIC_BLOCK or GLOBAL_BLOCK. */
1447
1448 sym = lookup_symbol_aux_local (name, block, domain, language);
1449 if (sym != NULL)
1450 return sym;
1451
1452 /* If requested to do so by the caller and if appropriate for LANGUAGE,
1453 check to see if NAME is a field of `this'. */
1454
1455 langdef = language_def (language);
1456
1457 /* Don't do this check if we are searching for a struct. It will
1458 not be found by check_field, but will be found by other
1459 means. */
1460 if (is_a_field_of_this != NULL && domain != STRUCT_DOMAIN)
1461 {
1462 struct symbol *sym = lookup_language_this (langdef, block);
1463
1464 if (sym)
1465 {
1466 struct type *t = sym->type;
1467
1468 /* I'm not really sure that type of this can ever
1469 be typedefed; just be safe. */
1470 CHECK_TYPEDEF (t);
1471 if (TYPE_CODE (t) == TYPE_CODE_PTR
1472 || TYPE_CODE (t) == TYPE_CODE_REF)
1473 t = TYPE_TARGET_TYPE (t);
1474
1475 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
1476 && TYPE_CODE (t) != TYPE_CODE_UNION)
1477 error (_("Internal error: `%s' is not an aggregate"),
1478 langdef->la_name_of_this);
1479
1480 if (check_field (t, name, is_a_field_of_this))
1481 return NULL;
1482 }
1483 }
1484
1485 /* Now do whatever is appropriate for LANGUAGE to look
1486 up static and global variables. */
1487
1488 sym = langdef->la_lookup_symbol_nonlocal (name, block, domain);
1489 if (sym != NULL)
1490 return sym;
1491
1492 /* Now search all static file-level symbols. Not strictly correct,
1493 but more useful than an error. */
1494
1495 return lookup_static_symbol_aux (name, domain);
1496 }
1497
1498 /* Search all static file-level symbols for NAME from DOMAIN. Do the symtabs
1499 first, then check the psymtabs. If a psymtab indicates the existence of the
1500 desired name as a file-level static, then do psymtab-to-symtab conversion on
1501 the fly and return the found symbol. */
1502
1503 struct symbol *
1504 lookup_static_symbol_aux (const char *name, const domain_enum domain)
1505 {
1506 struct objfile *objfile;
1507 struct symbol *sym;
1508
1509 sym = lookup_symbol_aux_symtabs (STATIC_BLOCK, name, domain);
1510 if (sym != NULL)
1511 return sym;
1512
1513 ALL_OBJFILES (objfile)
1514 {
1515 sym = lookup_symbol_aux_quick (objfile, STATIC_BLOCK, name, domain);
1516 if (sym != NULL)
1517 return sym;
1518 }
1519
1520 return NULL;
1521 }
1522
1523 /* Check to see if the symbol is defined in BLOCK or its superiors.
1524 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
1525
1526 static struct symbol *
1527 lookup_symbol_aux_local (const char *name, const struct block *block,
1528 const domain_enum domain,
1529 enum language language)
1530 {
1531 struct symbol *sym;
1532 const struct block *static_block = block_static_block (block);
1533 const char *scope = block_scope (block);
1534
1535 /* Check if either no block is specified or it's a global block. */
1536
1537 if (static_block == NULL)
1538 return NULL;
1539
1540 while (block != static_block)
1541 {
1542 sym = lookup_symbol_aux_block (name, block, domain);
1543 if (sym != NULL)
1544 return sym;
1545
1546 if (language == language_cplus || language == language_fortran)
1547 {
1548 sym = cp_lookup_symbol_imports_or_template (scope, name, block,
1549 domain);
1550 if (sym != NULL)
1551 return sym;
1552 }
1553
1554 if (BLOCK_FUNCTION (block) != NULL && block_inlined_p (block))
1555 break;
1556 block = BLOCK_SUPERBLOCK (block);
1557 }
1558
1559 /* We've reached the edge of the function without finding a result. */
1560
1561 return NULL;
1562 }
1563
1564 /* Look up OBJFILE to BLOCK. */
1565
1566 struct objfile *
1567 lookup_objfile_from_block (const struct block *block)
1568 {
1569 struct objfile *obj;
1570 struct symtab *s;
1571
1572 if (block == NULL)
1573 return NULL;
1574
1575 block = block_global_block (block);
1576 /* Go through SYMTABS. */
1577 ALL_SYMTABS (obj, s)
1578 if (block == BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK))
1579 {
1580 if (obj->separate_debug_objfile_backlink)
1581 obj = obj->separate_debug_objfile_backlink;
1582
1583 return obj;
1584 }
1585
1586 return NULL;
1587 }
1588
1589 /* Look up a symbol in a block; if found, fixup the symbol, and set
1590 block_found appropriately. */
1591
1592 struct symbol *
1593 lookup_symbol_aux_block (const char *name, const struct block *block,
1594 const domain_enum domain)
1595 {
1596 struct symbol *sym;
1597
1598 sym = lookup_block_symbol (block, name, domain);
1599 if (sym)
1600 {
1601 block_found = block;
1602 return fixup_symbol_section (sym, NULL);
1603 }
1604
1605 return NULL;
1606 }
1607
1608 /* Check all global symbols in OBJFILE in symtabs and
1609 psymtabs. */
1610
1611 struct symbol *
1612 lookup_global_symbol_from_objfile (const struct objfile *main_objfile,
1613 const char *name,
1614 const domain_enum domain)
1615 {
1616 const struct objfile *objfile;
1617 struct symbol *sym;
1618 struct blockvector *bv;
1619 const struct block *block;
1620 struct symtab *s;
1621
1622 for (objfile = main_objfile;
1623 objfile;
1624 objfile = objfile_separate_debug_iterate (main_objfile, objfile))
1625 {
1626 /* Go through symtabs. */
1627 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
1628 {
1629 bv = BLOCKVECTOR (s);
1630 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1631 sym = lookup_block_symbol (block, name, domain);
1632 if (sym)
1633 {
1634 block_found = block;
1635 return fixup_symbol_section (sym, (struct objfile *)objfile);
1636 }
1637 }
1638
1639 sym = lookup_symbol_aux_quick ((struct objfile *) objfile, GLOBAL_BLOCK,
1640 name, domain);
1641 if (sym)
1642 return sym;
1643 }
1644
1645 return NULL;
1646 }
1647
1648 /* Check to see if the symbol is defined in one of the OBJFILE's
1649 symtabs. BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
1650 depending on whether or not we want to search global symbols or
1651 static symbols. */
1652
1653 static struct symbol *
1654 lookup_symbol_aux_objfile (struct objfile *objfile, int block_index,
1655 const char *name, const domain_enum domain)
1656 {
1657 struct symbol *sym = NULL;
1658 struct blockvector *bv;
1659 const struct block *block;
1660 struct symtab *s;
1661
1662 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
1663 {
1664 bv = BLOCKVECTOR (s);
1665 block = BLOCKVECTOR_BLOCK (bv, block_index);
1666 sym = lookup_block_symbol (block, name, domain);
1667 if (sym)
1668 {
1669 block_found = block;
1670 return fixup_symbol_section (sym, objfile);
1671 }
1672 }
1673
1674 return NULL;
1675 }
1676
1677 /* Same as lookup_symbol_aux_objfile, except that it searches all
1678 objfiles. Return the first match found. */
1679
1680 static struct symbol *
1681 lookup_symbol_aux_symtabs (int block_index, const char *name,
1682 const domain_enum domain)
1683 {
1684 struct symbol *sym;
1685 struct objfile *objfile;
1686
1687 ALL_OBJFILES (objfile)
1688 {
1689 sym = lookup_symbol_aux_objfile (objfile, block_index, name, domain);
1690 if (sym)
1691 return sym;
1692 }
1693
1694 return NULL;
1695 }
1696
1697 /* Wrapper around lookup_symbol_aux_objfile for search_symbols.
1698 Look up LINKAGE_NAME in DOMAIN in the global and static blocks of OBJFILE
1699 and all related objfiles. */
1700
1701 static struct symbol *
1702 lookup_symbol_in_objfile_from_linkage_name (struct objfile *objfile,
1703 const char *linkage_name,
1704 domain_enum domain)
1705 {
1706 enum language lang = current_language->la_language;
1707 const char *modified_name;
1708 struct cleanup *cleanup = demangle_for_lookup (linkage_name, lang,
1709 &modified_name);
1710 struct objfile *main_objfile, *cur_objfile;
1711
1712 if (objfile->separate_debug_objfile_backlink)
1713 main_objfile = objfile->separate_debug_objfile_backlink;
1714 else
1715 main_objfile = objfile;
1716
1717 for (cur_objfile = main_objfile;
1718 cur_objfile;
1719 cur_objfile = objfile_separate_debug_iterate (main_objfile, cur_objfile))
1720 {
1721 struct symbol *sym;
1722
1723 sym = lookup_symbol_aux_objfile (cur_objfile, GLOBAL_BLOCK,
1724 modified_name, domain);
1725 if (sym == NULL)
1726 sym = lookup_symbol_aux_objfile (cur_objfile, STATIC_BLOCK,
1727 modified_name, domain);
1728 if (sym != NULL)
1729 {
1730 do_cleanups (cleanup);
1731 return sym;
1732 }
1733 }
1734
1735 do_cleanups (cleanup);
1736 return NULL;
1737 }
1738
1739 /* A helper function that throws an exception when a symbol was found
1740 in a psymtab but not in a symtab. */
1741
1742 static void ATTRIBUTE_NORETURN
1743 error_in_psymtab_expansion (int kind, const char *name, struct symtab *symtab)
1744 {
1745 error (_("\
1746 Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n\
1747 %s may be an inlined function, or may be a template function\n \
1748 (if a template, try specifying an instantiation: %s<type>)."),
1749 kind == GLOBAL_BLOCK ? "global" : "static",
1750 name, symtab_to_filename_for_display (symtab), name, name);
1751 }
1752
1753 /* A helper function for lookup_symbol_aux that interfaces with the
1754 "quick" symbol table functions. */
1755
1756 static struct symbol *
1757 lookup_symbol_aux_quick (struct objfile *objfile, int kind,
1758 const char *name, const domain_enum domain)
1759 {
1760 struct symtab *symtab;
1761 struct blockvector *bv;
1762 const struct block *block;
1763 struct symbol *sym;
1764
1765 if (!objfile->sf)
1766 return NULL;
1767 symtab = objfile->sf->qf->lookup_symbol (objfile, kind, name, domain);
1768 if (!symtab)
1769 return NULL;
1770
1771 bv = BLOCKVECTOR (symtab);
1772 block = BLOCKVECTOR_BLOCK (bv, kind);
1773 sym = lookup_block_symbol (block, name, domain);
1774 if (!sym)
1775 error_in_psymtab_expansion (kind, name, symtab);
1776 return fixup_symbol_section (sym, objfile);
1777 }
1778
1779 /* A default version of lookup_symbol_nonlocal for use by languages
1780 that can't think of anything better to do. This implements the C
1781 lookup rules. */
1782
1783 struct symbol *
1784 basic_lookup_symbol_nonlocal (const char *name,
1785 const struct block *block,
1786 const domain_enum domain)
1787 {
1788 struct symbol *sym;
1789
1790 /* NOTE: carlton/2003-05-19: The comments below were written when
1791 this (or what turned into this) was part of lookup_symbol_aux;
1792 I'm much less worried about these questions now, since these
1793 decisions have turned out well, but I leave these comments here
1794 for posterity. */
1795
1796 /* NOTE: carlton/2002-12-05: There is a question as to whether or
1797 not it would be appropriate to search the current global block
1798 here as well. (That's what this code used to do before the
1799 is_a_field_of_this check was moved up.) On the one hand, it's
1800 redundant with the lookup_symbol_aux_symtabs search that happens
1801 next. On the other hand, if decode_line_1 is passed an argument
1802 like filename:var, then the user presumably wants 'var' to be
1803 searched for in filename. On the third hand, there shouldn't be
1804 multiple global variables all of which are named 'var', and it's
1805 not like decode_line_1 has ever restricted its search to only
1806 global variables in a single filename. All in all, only
1807 searching the static block here seems best: it's correct and it's
1808 cleanest. */
1809
1810 /* NOTE: carlton/2002-12-05: There's also a possible performance
1811 issue here: if you usually search for global symbols in the
1812 current file, then it would be slightly better to search the
1813 current global block before searching all the symtabs. But there
1814 are other factors that have a much greater effect on performance
1815 than that one, so I don't think we should worry about that for
1816 now. */
1817
1818 sym = lookup_symbol_static (name, block, domain);
1819 if (sym != NULL)
1820 return sym;
1821
1822 return lookup_symbol_global (name, block, domain);
1823 }
1824
1825 /* Lookup a symbol in the static block associated to BLOCK, if there
1826 is one; do nothing if BLOCK is NULL or a global block. */
1827
1828 struct symbol *
1829 lookup_symbol_static (const char *name,
1830 const struct block *block,
1831 const domain_enum domain)
1832 {
1833 const struct block *static_block = block_static_block (block);
1834
1835 if (static_block != NULL)
1836 return lookup_symbol_aux_block (name, static_block, domain);
1837 else
1838 return NULL;
1839 }
1840
1841 /* Private data to be used with lookup_symbol_global_iterator_cb. */
1842
1843 struct global_sym_lookup_data
1844 {
1845 /* The name of the symbol we are searching for. */
1846 const char *name;
1847
1848 /* The domain to use for our search. */
1849 domain_enum domain;
1850
1851 /* The field where the callback should store the symbol if found.
1852 It should be initialized to NULL before the search is started. */
1853 struct symbol *result;
1854 };
1855
1856 /* A callback function for gdbarch_iterate_over_objfiles_in_search_order.
1857 It searches by name for a symbol in the GLOBAL_BLOCK of the given
1858 OBJFILE. The arguments for the search are passed via CB_DATA,
1859 which in reality is a pointer to struct global_sym_lookup_data. */
1860
1861 static int
1862 lookup_symbol_global_iterator_cb (struct objfile *objfile,
1863 void *cb_data)
1864 {
1865 struct global_sym_lookup_data *data =
1866 (struct global_sym_lookup_data *) cb_data;
1867
1868 gdb_assert (data->result == NULL);
1869
1870 data->result = lookup_symbol_aux_objfile (objfile, GLOBAL_BLOCK,
1871 data->name, data->domain);
1872 if (data->result == NULL)
1873 data->result = lookup_symbol_aux_quick (objfile, GLOBAL_BLOCK,
1874 data->name, data->domain);
1875
1876 /* If we found a match, tell the iterator to stop. Otherwise,
1877 keep going. */
1878 return (data->result != NULL);
1879 }
1880
1881 /* Lookup a symbol in all files' global blocks (searching psymtabs if
1882 necessary). */
1883
1884 struct symbol *
1885 lookup_symbol_global (const char *name,
1886 const struct block *block,
1887 const domain_enum domain)
1888 {
1889 struct symbol *sym = NULL;
1890 struct objfile *objfile = NULL;
1891 struct global_sym_lookup_data lookup_data;
1892
1893 /* Call library-specific lookup procedure. */
1894 objfile = lookup_objfile_from_block (block);
1895 if (objfile != NULL)
1896 sym = solib_global_lookup (objfile, name, domain);
1897 if (sym != NULL)
1898 return sym;
1899
1900 memset (&lookup_data, 0, sizeof (lookup_data));
1901 lookup_data.name = name;
1902 lookup_data.domain = domain;
1903 gdbarch_iterate_over_objfiles_in_search_order
1904 (objfile != NULL ? get_objfile_arch (objfile) : target_gdbarch (),
1905 lookup_symbol_global_iterator_cb, &lookup_data, objfile);
1906
1907 return lookup_data.result;
1908 }
1909
1910 int
1911 symbol_matches_domain (enum language symbol_language,
1912 domain_enum symbol_domain,
1913 domain_enum domain)
1914 {
1915 /* For C++ "struct foo { ... }" also defines a typedef for "foo".
1916 A Java class declaration also defines a typedef for the class.
1917 Similarly, any Ada type declaration implicitly defines a typedef. */
1918 if (symbol_language == language_cplus
1919 || symbol_language == language_d
1920 || symbol_language == language_java
1921 || symbol_language == language_ada)
1922 {
1923 if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN)
1924 && symbol_domain == STRUCT_DOMAIN)
1925 return 1;
1926 }
1927 /* For all other languages, strict match is required. */
1928 return (symbol_domain == domain);
1929 }
1930
1931 /* Look up a type named NAME in the struct_domain. The type returned
1932 must not be opaque -- i.e., must have at least one field
1933 defined. */
1934
1935 struct type *
1936 lookup_transparent_type (const char *name)
1937 {
1938 return current_language->la_lookup_transparent_type (name);
1939 }
1940
1941 /* A helper for basic_lookup_transparent_type that interfaces with the
1942 "quick" symbol table functions. */
1943
1944 static struct type *
1945 basic_lookup_transparent_type_quick (struct objfile *objfile, int kind,
1946 const char *name)
1947 {
1948 struct symtab *symtab;
1949 struct blockvector *bv;
1950 struct block *block;
1951 struct symbol *sym;
1952
1953 if (!objfile->sf)
1954 return NULL;
1955 symtab = objfile->sf->qf->lookup_symbol (objfile, kind, name, STRUCT_DOMAIN);
1956 if (!symtab)
1957 return NULL;
1958
1959 bv = BLOCKVECTOR (symtab);
1960 block = BLOCKVECTOR_BLOCK (bv, kind);
1961 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1962 if (!sym)
1963 error_in_psymtab_expansion (kind, name, symtab);
1964
1965 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1966 return SYMBOL_TYPE (sym);
1967
1968 return NULL;
1969 }
1970
1971 /* The standard implementation of lookup_transparent_type. This code
1972 was modeled on lookup_symbol -- the parts not relevant to looking
1973 up types were just left out. In particular it's assumed here that
1974 types are available in struct_domain and only at file-static or
1975 global blocks. */
1976
1977 struct type *
1978 basic_lookup_transparent_type (const char *name)
1979 {
1980 struct symbol *sym;
1981 struct symtab *s = NULL;
1982 struct blockvector *bv;
1983 struct objfile *objfile;
1984 struct block *block;
1985 struct type *t;
1986
1987 /* Now search all the global symbols. Do the symtab's first, then
1988 check the psymtab's. If a psymtab indicates the existence
1989 of the desired name as a global, then do psymtab-to-symtab
1990 conversion on the fly and return the found symbol. */
1991
1992 ALL_OBJFILES (objfile)
1993 {
1994 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
1995 {
1996 bv = BLOCKVECTOR (s);
1997 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1998 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1999 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
2000 {
2001 return SYMBOL_TYPE (sym);
2002 }
2003 }
2004 }
2005
2006 ALL_OBJFILES (objfile)
2007 {
2008 t = basic_lookup_transparent_type_quick (objfile, GLOBAL_BLOCK, name);
2009 if (t)
2010 return t;
2011 }
2012
2013 /* Now search the static file-level symbols.
2014 Not strictly correct, but more useful than an error.
2015 Do the symtab's first, then
2016 check the psymtab's. If a psymtab indicates the existence
2017 of the desired name as a file-level static, then do psymtab-to-symtab
2018 conversion on the fly and return the found symbol. */
2019
2020 ALL_OBJFILES (objfile)
2021 {
2022 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
2023 {
2024 bv = BLOCKVECTOR (s);
2025 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
2026 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
2027 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
2028 {
2029 return SYMBOL_TYPE (sym);
2030 }
2031 }
2032 }
2033
2034 ALL_OBJFILES (objfile)
2035 {
2036 t = basic_lookup_transparent_type_quick (objfile, STATIC_BLOCK, name);
2037 if (t)
2038 return t;
2039 }
2040
2041 return (struct type *) 0;
2042 }
2043
2044 /* Search BLOCK for symbol NAME in DOMAIN.
2045
2046 Note that if NAME is the demangled form of a C++ symbol, we will fail
2047 to find a match during the binary search of the non-encoded names, but
2048 for now we don't worry about the slight inefficiency of looking for
2049 a match we'll never find, since it will go pretty quick. Once the
2050 binary search terminates, we drop through and do a straight linear
2051 search on the symbols. Each symbol which is marked as being a ObjC/C++
2052 symbol (language_cplus or language_objc set) has both the encoded and
2053 non-encoded names tested for a match. */
2054
2055 struct symbol *
2056 lookup_block_symbol (const struct block *block, const char *name,
2057 const domain_enum domain)
2058 {
2059 struct block_iterator iter;
2060 struct symbol *sym;
2061
2062 if (!BLOCK_FUNCTION (block))
2063 {
2064 for (sym = block_iter_name_first (block, name, &iter);
2065 sym != NULL;
2066 sym = block_iter_name_next (name, &iter))
2067 {
2068 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
2069 SYMBOL_DOMAIN (sym), domain))
2070 return sym;
2071 }
2072 return NULL;
2073 }
2074 else
2075 {
2076 /* Note that parameter symbols do not always show up last in the
2077 list; this loop makes sure to take anything else other than
2078 parameter symbols first; it only uses parameter symbols as a
2079 last resort. Note that this only takes up extra computation
2080 time on a match. */
2081
2082 struct symbol *sym_found = NULL;
2083
2084 for (sym = block_iter_name_first (block, name, &iter);
2085 sym != NULL;
2086 sym = block_iter_name_next (name, &iter))
2087 {
2088 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
2089 SYMBOL_DOMAIN (sym), domain))
2090 {
2091 sym_found = sym;
2092 if (!SYMBOL_IS_ARGUMENT (sym))
2093 {
2094 break;
2095 }
2096 }
2097 }
2098 return (sym_found); /* Will be NULL if not found. */
2099 }
2100 }
2101
2102 /* Iterate over the symbols named NAME, matching DOMAIN, in BLOCK.
2103
2104 For each symbol that matches, CALLBACK is called. The symbol and
2105 DATA are passed to the callback.
2106
2107 If CALLBACK returns zero, the iteration ends. Otherwise, the
2108 search continues. */
2109
2110 void
2111 iterate_over_symbols (const struct block *block, const char *name,
2112 const domain_enum domain,
2113 symbol_found_callback_ftype *callback,
2114 void *data)
2115 {
2116 struct block_iterator iter;
2117 struct symbol *sym;
2118
2119 for (sym = block_iter_name_first (block, name, &iter);
2120 sym != NULL;
2121 sym = block_iter_name_next (name, &iter))
2122 {
2123 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
2124 SYMBOL_DOMAIN (sym), domain))
2125 {
2126 if (!callback (sym, data))
2127 return;
2128 }
2129 }
2130 }
2131
2132 /* Find the symtab associated with PC and SECTION. Look through the
2133 psymtabs and read in another symtab if necessary. */
2134
2135 struct symtab *
2136 find_pc_sect_symtab (CORE_ADDR pc, struct obj_section *section)
2137 {
2138 struct block *b;
2139 struct blockvector *bv;
2140 struct symtab *s = NULL;
2141 struct symtab *best_s = NULL;
2142 struct objfile *objfile;
2143 CORE_ADDR distance = 0;
2144 struct bound_minimal_symbol msymbol;
2145
2146 /* If we know that this is not a text address, return failure. This is
2147 necessary because we loop based on the block's high and low code
2148 addresses, which do not include the data ranges, and because
2149 we call find_pc_sect_psymtab which has a similar restriction based
2150 on the partial_symtab's texthigh and textlow. */
2151 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
2152 if (msymbol.minsym
2153 && (MSYMBOL_TYPE (msymbol.minsym) == mst_data
2154 || MSYMBOL_TYPE (msymbol.minsym) == mst_bss
2155 || MSYMBOL_TYPE (msymbol.minsym) == mst_abs
2156 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_data
2157 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_bss))
2158 return NULL;
2159
2160 /* Search all symtabs for the one whose file contains our address, and which
2161 is the smallest of all the ones containing the address. This is designed
2162 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
2163 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
2164 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
2165
2166 This happens for native ecoff format, where code from included files
2167 gets its own symtab. The symtab for the included file should have
2168 been read in already via the dependency mechanism.
2169 It might be swifter to create several symtabs with the same name
2170 like xcoff does (I'm not sure).
2171
2172 It also happens for objfiles that have their functions reordered.
2173 For these, the symtab we are looking for is not necessarily read in. */
2174
2175 ALL_PRIMARY_SYMTABS (objfile, s)
2176 {
2177 bv = BLOCKVECTOR (s);
2178 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
2179
2180 if (BLOCK_START (b) <= pc
2181 && BLOCK_END (b) > pc
2182 && (distance == 0
2183 || BLOCK_END (b) - BLOCK_START (b) < distance))
2184 {
2185 /* For an objfile that has its functions reordered,
2186 find_pc_psymtab will find the proper partial symbol table
2187 and we simply return its corresponding symtab. */
2188 /* In order to better support objfiles that contain both
2189 stabs and coff debugging info, we continue on if a psymtab
2190 can't be found. */
2191 if ((objfile->flags & OBJF_REORDERED) && objfile->sf)
2192 {
2193 struct symtab *result;
2194
2195 result
2196 = objfile->sf->qf->find_pc_sect_symtab (objfile,
2197 msymbol,
2198 pc, section,
2199 0);
2200 if (result)
2201 return result;
2202 }
2203 if (section != 0)
2204 {
2205 struct block_iterator iter;
2206 struct symbol *sym = NULL;
2207
2208 ALL_BLOCK_SYMBOLS (b, iter, sym)
2209 {
2210 fixup_symbol_section (sym, objfile);
2211 if (matching_obj_sections (SYMBOL_OBJ_SECTION (objfile, sym),
2212 section))
2213 break;
2214 }
2215 if (sym == NULL)
2216 continue; /* No symbol in this symtab matches
2217 section. */
2218 }
2219 distance = BLOCK_END (b) - BLOCK_START (b);
2220 best_s = s;
2221 }
2222 }
2223
2224 if (best_s != NULL)
2225 return (best_s);
2226
2227 /* Not found in symtabs, search the "quick" symtabs (e.g. psymtabs). */
2228
2229 ALL_OBJFILES (objfile)
2230 {
2231 struct symtab *result;
2232
2233 if (!objfile->sf)
2234 continue;
2235 result = objfile->sf->qf->find_pc_sect_symtab (objfile,
2236 msymbol,
2237 pc, section,
2238 1);
2239 if (result)
2240 return result;
2241 }
2242
2243 return NULL;
2244 }
2245
2246 /* Find the symtab associated with PC. Look through the psymtabs and read
2247 in another symtab if necessary. Backward compatibility, no section. */
2248
2249 struct symtab *
2250 find_pc_symtab (CORE_ADDR pc)
2251 {
2252 return find_pc_sect_symtab (pc, find_pc_mapped_section (pc));
2253 }
2254 \f
2255
2256 /* Find the source file and line number for a given PC value and SECTION.
2257 Return a structure containing a symtab pointer, a line number,
2258 and a pc range for the entire source line.
2259 The value's .pc field is NOT the specified pc.
2260 NOTCURRENT nonzero means, if specified pc is on a line boundary,
2261 use the line that ends there. Otherwise, in that case, the line
2262 that begins there is used. */
2263
2264 /* The big complication here is that a line may start in one file, and end just
2265 before the start of another file. This usually occurs when you #include
2266 code in the middle of a subroutine. To properly find the end of a line's PC
2267 range, we must search all symtabs associated with this compilation unit, and
2268 find the one whose first PC is closer than that of the next line in this
2269 symtab. */
2270
2271 /* If it's worth the effort, we could be using a binary search. */
2272
2273 struct symtab_and_line
2274 find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent)
2275 {
2276 struct symtab *s;
2277 struct linetable *l;
2278 int len;
2279 int i;
2280 struct linetable_entry *item;
2281 struct symtab_and_line val;
2282 struct blockvector *bv;
2283 struct bound_minimal_symbol msymbol;
2284 struct objfile *objfile;
2285
2286 /* Info on best line seen so far, and where it starts, and its file. */
2287
2288 struct linetable_entry *best = NULL;
2289 CORE_ADDR best_end = 0;
2290 struct symtab *best_symtab = 0;
2291
2292 /* Store here the first line number
2293 of a file which contains the line at the smallest pc after PC.
2294 If we don't find a line whose range contains PC,
2295 we will use a line one less than this,
2296 with a range from the start of that file to the first line's pc. */
2297 struct linetable_entry *alt = NULL;
2298
2299 /* Info on best line seen in this file. */
2300
2301 struct linetable_entry *prev;
2302
2303 /* If this pc is not from the current frame,
2304 it is the address of the end of a call instruction.
2305 Quite likely that is the start of the following statement.
2306 But what we want is the statement containing the instruction.
2307 Fudge the pc to make sure we get that. */
2308
2309 init_sal (&val); /* initialize to zeroes */
2310
2311 val.pspace = current_program_space;
2312
2313 /* It's tempting to assume that, if we can't find debugging info for
2314 any function enclosing PC, that we shouldn't search for line
2315 number info, either. However, GAS can emit line number info for
2316 assembly files --- very helpful when debugging hand-written
2317 assembly code. In such a case, we'd have no debug info for the
2318 function, but we would have line info. */
2319
2320 if (notcurrent)
2321 pc -= 1;
2322
2323 /* elz: added this because this function returned the wrong
2324 information if the pc belongs to a stub (import/export)
2325 to call a shlib function. This stub would be anywhere between
2326 two functions in the target, and the line info was erroneously
2327 taken to be the one of the line before the pc. */
2328
2329 /* RT: Further explanation:
2330
2331 * We have stubs (trampolines) inserted between procedures.
2332 *
2333 * Example: "shr1" exists in a shared library, and a "shr1" stub also
2334 * exists in the main image.
2335 *
2336 * In the minimal symbol table, we have a bunch of symbols
2337 * sorted by start address. The stubs are marked as "trampoline",
2338 * the others appear as text. E.g.:
2339 *
2340 * Minimal symbol table for main image
2341 * main: code for main (text symbol)
2342 * shr1: stub (trampoline symbol)
2343 * foo: code for foo (text symbol)
2344 * ...
2345 * Minimal symbol table for "shr1" image:
2346 * ...
2347 * shr1: code for shr1 (text symbol)
2348 * ...
2349 *
2350 * So the code below is trying to detect if we are in the stub
2351 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
2352 * and if found, do the symbolization from the real-code address
2353 * rather than the stub address.
2354 *
2355 * Assumptions being made about the minimal symbol table:
2356 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
2357 * if we're really in the trampoline.s If we're beyond it (say
2358 * we're in "foo" in the above example), it'll have a closer
2359 * symbol (the "foo" text symbol for example) and will not
2360 * return the trampoline.
2361 * 2. lookup_minimal_symbol_text() will find a real text symbol
2362 * corresponding to the trampoline, and whose address will
2363 * be different than the trampoline address. I put in a sanity
2364 * check for the address being the same, to avoid an
2365 * infinite recursion.
2366 */
2367 msymbol = lookup_minimal_symbol_by_pc (pc);
2368 if (msymbol.minsym != NULL)
2369 if (MSYMBOL_TYPE (msymbol.minsym) == mst_solib_trampoline)
2370 {
2371 struct bound_minimal_symbol mfunsym
2372 = lookup_minimal_symbol_text (MSYMBOL_LINKAGE_NAME (msymbol.minsym),
2373 NULL);
2374
2375 if (mfunsym.minsym == NULL)
2376 /* I eliminated this warning since it is coming out
2377 * in the following situation:
2378 * gdb shmain // test program with shared libraries
2379 * (gdb) break shr1 // function in shared lib
2380 * Warning: In stub for ...
2381 * In the above situation, the shared lib is not loaded yet,
2382 * so of course we can't find the real func/line info,
2383 * but the "break" still works, and the warning is annoying.
2384 * So I commented out the warning. RT */
2385 /* warning ("In stub for %s; unable to find real function/line info",
2386 SYMBOL_LINKAGE_NAME (msymbol)); */
2387 ;
2388 /* fall through */
2389 else if (BMSYMBOL_VALUE_ADDRESS (mfunsym)
2390 == BMSYMBOL_VALUE_ADDRESS (msymbol))
2391 /* Avoid infinite recursion */
2392 /* See above comment about why warning is commented out. */
2393 /* warning ("In stub for %s; unable to find real function/line info",
2394 SYMBOL_LINKAGE_NAME (msymbol)); */
2395 ;
2396 /* fall through */
2397 else
2398 return find_pc_line (BMSYMBOL_VALUE_ADDRESS (mfunsym), 0);
2399 }
2400
2401
2402 s = find_pc_sect_symtab (pc, section);
2403 if (!s)
2404 {
2405 /* If no symbol information, return previous pc. */
2406 if (notcurrent)
2407 pc++;
2408 val.pc = pc;
2409 return val;
2410 }
2411
2412 bv = BLOCKVECTOR (s);
2413 objfile = s->objfile;
2414
2415 /* Look at all the symtabs that share this blockvector.
2416 They all have the same apriori range, that we found was right;
2417 but they have different line tables. */
2418
2419 ALL_OBJFILE_SYMTABS (objfile, s)
2420 {
2421 if (BLOCKVECTOR (s) != bv)
2422 continue;
2423
2424 /* Find the best line in this symtab. */
2425 l = LINETABLE (s);
2426 if (!l)
2427 continue;
2428 len = l->nitems;
2429 if (len <= 0)
2430 {
2431 /* I think len can be zero if the symtab lacks line numbers
2432 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
2433 I'm not sure which, and maybe it depends on the symbol
2434 reader). */
2435 continue;
2436 }
2437
2438 prev = NULL;
2439 item = l->item; /* Get first line info. */
2440
2441 /* Is this file's first line closer than the first lines of other files?
2442 If so, record this file, and its first line, as best alternate. */
2443 if (item->pc > pc && (!alt || item->pc < alt->pc))
2444 alt = item;
2445
2446 for (i = 0; i < len; i++, item++)
2447 {
2448 /* Leave prev pointing to the linetable entry for the last line
2449 that started at or before PC. */
2450 if (item->pc > pc)
2451 break;
2452
2453 prev = item;
2454 }
2455
2456 /* At this point, prev points at the line whose start addr is <= pc, and
2457 item points at the next line. If we ran off the end of the linetable
2458 (pc >= start of the last line), then prev == item. If pc < start of
2459 the first line, prev will not be set. */
2460
2461 /* Is this file's best line closer than the best in the other files?
2462 If so, record this file, and its best line, as best so far. Don't
2463 save prev if it represents the end of a function (i.e. line number
2464 0) instead of a real line. */
2465
2466 if (prev && prev->line && (!best || prev->pc > best->pc))
2467 {
2468 best = prev;
2469 best_symtab = s;
2470
2471 /* Discard BEST_END if it's before the PC of the current BEST. */
2472 if (best_end <= best->pc)
2473 best_end = 0;
2474 }
2475
2476 /* If another line (denoted by ITEM) is in the linetable and its
2477 PC is after BEST's PC, but before the current BEST_END, then
2478 use ITEM's PC as the new best_end. */
2479 if (best && i < len && item->pc > best->pc
2480 && (best_end == 0 || best_end > item->pc))
2481 best_end = item->pc;
2482 }
2483
2484 if (!best_symtab)
2485 {
2486 /* If we didn't find any line number info, just return zeros.
2487 We used to return alt->line - 1 here, but that could be
2488 anywhere; if we don't have line number info for this PC,
2489 don't make some up. */
2490 val.pc = pc;
2491 }
2492 else if (best->line == 0)
2493 {
2494 /* If our best fit is in a range of PC's for which no line
2495 number info is available (line number is zero) then we didn't
2496 find any valid line information. */
2497 val.pc = pc;
2498 }
2499 else
2500 {
2501 val.symtab = best_symtab;
2502 val.line = best->line;
2503 val.pc = best->pc;
2504 if (best_end && (!alt || best_end < alt->pc))
2505 val.end = best_end;
2506 else if (alt)
2507 val.end = alt->pc;
2508 else
2509 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
2510 }
2511 val.section = section;
2512 return val;
2513 }
2514
2515 /* Backward compatibility (no section). */
2516
2517 struct symtab_and_line
2518 find_pc_line (CORE_ADDR pc, int notcurrent)
2519 {
2520 struct obj_section *section;
2521
2522 section = find_pc_overlay (pc);
2523 if (pc_in_unmapped_range (pc, section))
2524 pc = overlay_mapped_address (pc, section);
2525 return find_pc_sect_line (pc, section, notcurrent);
2526 }
2527 \f
2528 /* Find line number LINE in any symtab whose name is the same as
2529 SYMTAB.
2530
2531 If found, return the symtab that contains the linetable in which it was
2532 found, set *INDEX to the index in the linetable of the best entry
2533 found, and set *EXACT_MATCH nonzero if the value returned is an
2534 exact match.
2535
2536 If not found, return NULL. */
2537
2538 struct symtab *
2539 find_line_symtab (struct symtab *symtab, int line,
2540 int *index, int *exact_match)
2541 {
2542 int exact = 0; /* Initialized here to avoid a compiler warning. */
2543
2544 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
2545 so far seen. */
2546
2547 int best_index;
2548 struct linetable *best_linetable;
2549 struct symtab *best_symtab;
2550
2551 /* First try looking it up in the given symtab. */
2552 best_linetable = LINETABLE (symtab);
2553 best_symtab = symtab;
2554 best_index = find_line_common (best_linetable, line, &exact, 0);
2555 if (best_index < 0 || !exact)
2556 {
2557 /* Didn't find an exact match. So we better keep looking for
2558 another symtab with the same name. In the case of xcoff,
2559 multiple csects for one source file (produced by IBM's FORTRAN
2560 compiler) produce multiple symtabs (this is unavoidable
2561 assuming csects can be at arbitrary places in memory and that
2562 the GLOBAL_BLOCK of a symtab has a begin and end address). */
2563
2564 /* BEST is the smallest linenumber > LINE so far seen,
2565 or 0 if none has been seen so far.
2566 BEST_INDEX and BEST_LINETABLE identify the item for it. */
2567 int best;
2568
2569 struct objfile *objfile;
2570 struct symtab *s;
2571
2572 if (best_index >= 0)
2573 best = best_linetable->item[best_index].line;
2574 else
2575 best = 0;
2576
2577 ALL_OBJFILES (objfile)
2578 {
2579 if (objfile->sf)
2580 objfile->sf->qf->expand_symtabs_with_fullname (objfile,
2581 symtab_to_fullname (symtab));
2582 }
2583
2584 ALL_SYMTABS (objfile, s)
2585 {
2586 struct linetable *l;
2587 int ind;
2588
2589 if (FILENAME_CMP (symtab->filename, s->filename) != 0)
2590 continue;
2591 if (FILENAME_CMP (symtab_to_fullname (symtab),
2592 symtab_to_fullname (s)) != 0)
2593 continue;
2594 l = LINETABLE (s);
2595 ind = find_line_common (l, line, &exact, 0);
2596 if (ind >= 0)
2597 {
2598 if (exact)
2599 {
2600 best_index = ind;
2601 best_linetable = l;
2602 best_symtab = s;
2603 goto done;
2604 }
2605 if (best == 0 || l->item[ind].line < best)
2606 {
2607 best = l->item[ind].line;
2608 best_index = ind;
2609 best_linetable = l;
2610 best_symtab = s;
2611 }
2612 }
2613 }
2614 }
2615 done:
2616 if (best_index < 0)
2617 return NULL;
2618
2619 if (index)
2620 *index = best_index;
2621 if (exact_match)
2622 *exact_match = exact;
2623
2624 return best_symtab;
2625 }
2626
2627 /* Given SYMTAB, returns all the PCs function in the symtab that
2628 exactly match LINE. Returns NULL if there are no exact matches,
2629 but updates BEST_ITEM in this case. */
2630
2631 VEC (CORE_ADDR) *
2632 find_pcs_for_symtab_line (struct symtab *symtab, int line,
2633 struct linetable_entry **best_item)
2634 {
2635 int start = 0;
2636 VEC (CORE_ADDR) *result = NULL;
2637
2638 /* First, collect all the PCs that are at this line. */
2639 while (1)
2640 {
2641 int was_exact;
2642 int idx;
2643
2644 idx = find_line_common (LINETABLE (symtab), line, &was_exact, start);
2645 if (idx < 0)
2646 break;
2647
2648 if (!was_exact)
2649 {
2650 struct linetable_entry *item = &LINETABLE (symtab)->item[idx];
2651
2652 if (*best_item == NULL || item->line < (*best_item)->line)
2653 *best_item = item;
2654
2655 break;
2656 }
2657
2658 VEC_safe_push (CORE_ADDR, result, LINETABLE (symtab)->item[idx].pc);
2659 start = idx + 1;
2660 }
2661
2662 return result;
2663 }
2664
2665 \f
2666 /* Set the PC value for a given source file and line number and return true.
2667 Returns zero for invalid line number (and sets the PC to 0).
2668 The source file is specified with a struct symtab. */
2669
2670 int
2671 find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
2672 {
2673 struct linetable *l;
2674 int ind;
2675
2676 *pc = 0;
2677 if (symtab == 0)
2678 return 0;
2679
2680 symtab = find_line_symtab (symtab, line, &ind, NULL);
2681 if (symtab != NULL)
2682 {
2683 l = LINETABLE (symtab);
2684 *pc = l->item[ind].pc;
2685 return 1;
2686 }
2687 else
2688 return 0;
2689 }
2690
2691 /* Find the range of pc values in a line.
2692 Store the starting pc of the line into *STARTPTR
2693 and the ending pc (start of next line) into *ENDPTR.
2694 Returns 1 to indicate success.
2695 Returns 0 if could not find the specified line. */
2696
2697 int
2698 find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
2699 CORE_ADDR *endptr)
2700 {
2701 CORE_ADDR startaddr;
2702 struct symtab_and_line found_sal;
2703
2704 startaddr = sal.pc;
2705 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
2706 return 0;
2707
2708 /* This whole function is based on address. For example, if line 10 has
2709 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
2710 "info line *0x123" should say the line goes from 0x100 to 0x200
2711 and "info line *0x355" should say the line goes from 0x300 to 0x400.
2712 This also insures that we never give a range like "starts at 0x134
2713 and ends at 0x12c". */
2714
2715 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
2716 if (found_sal.line != sal.line)
2717 {
2718 /* The specified line (sal) has zero bytes. */
2719 *startptr = found_sal.pc;
2720 *endptr = found_sal.pc;
2721 }
2722 else
2723 {
2724 *startptr = found_sal.pc;
2725 *endptr = found_sal.end;
2726 }
2727 return 1;
2728 }
2729
2730 /* Given a line table and a line number, return the index into the line
2731 table for the pc of the nearest line whose number is >= the specified one.
2732 Return -1 if none is found. The value is >= 0 if it is an index.
2733 START is the index at which to start searching the line table.
2734
2735 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
2736
2737 static int
2738 find_line_common (struct linetable *l, int lineno,
2739 int *exact_match, int start)
2740 {
2741 int i;
2742 int len;
2743
2744 /* BEST is the smallest linenumber > LINENO so far seen,
2745 or 0 if none has been seen so far.
2746 BEST_INDEX identifies the item for it. */
2747
2748 int best_index = -1;
2749 int best = 0;
2750
2751 *exact_match = 0;
2752
2753 if (lineno <= 0)
2754 return -1;
2755 if (l == 0)
2756 return -1;
2757
2758 len = l->nitems;
2759 for (i = start; i < len; i++)
2760 {
2761 struct linetable_entry *item = &(l->item[i]);
2762
2763 if (item->line == lineno)
2764 {
2765 /* Return the first (lowest address) entry which matches. */
2766 *exact_match = 1;
2767 return i;
2768 }
2769
2770 if (item->line > lineno && (best == 0 || item->line < best))
2771 {
2772 best = item->line;
2773 best_index = i;
2774 }
2775 }
2776
2777 /* If we got here, we didn't get an exact match. */
2778 return best_index;
2779 }
2780
2781 int
2782 find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
2783 {
2784 struct symtab_and_line sal;
2785
2786 sal = find_pc_line (pc, 0);
2787 *startptr = sal.pc;
2788 *endptr = sal.end;
2789 return sal.symtab != 0;
2790 }
2791
2792 /* Given a function start address FUNC_ADDR and SYMTAB, find the first
2793 address for that function that has an entry in SYMTAB's line info
2794 table. If such an entry cannot be found, return FUNC_ADDR
2795 unaltered. */
2796
2797 static CORE_ADDR
2798 skip_prologue_using_lineinfo (CORE_ADDR func_addr, struct symtab *symtab)
2799 {
2800 CORE_ADDR func_start, func_end;
2801 struct linetable *l;
2802 int i;
2803
2804 /* Give up if this symbol has no lineinfo table. */
2805 l = LINETABLE (symtab);
2806 if (l == NULL)
2807 return func_addr;
2808
2809 /* Get the range for the function's PC values, or give up if we
2810 cannot, for some reason. */
2811 if (!find_pc_partial_function (func_addr, NULL, &func_start, &func_end))
2812 return func_addr;
2813
2814 /* Linetable entries are ordered by PC values, see the commentary in
2815 symtab.h where `struct linetable' is defined. Thus, the first
2816 entry whose PC is in the range [FUNC_START..FUNC_END[ is the
2817 address we are looking for. */
2818 for (i = 0; i < l->nitems; i++)
2819 {
2820 struct linetable_entry *item = &(l->item[i]);
2821
2822 /* Don't use line numbers of zero, they mark special entries in
2823 the table. See the commentary on symtab.h before the
2824 definition of struct linetable. */
2825 if (item->line > 0 && func_start <= item->pc && item->pc < func_end)
2826 return item->pc;
2827 }
2828
2829 return func_addr;
2830 }
2831
2832 /* Given a function symbol SYM, find the symtab and line for the start
2833 of the function.
2834 If the argument FUNFIRSTLINE is nonzero, we want the first line
2835 of real code inside the function. */
2836
2837 struct symtab_and_line
2838 find_function_start_sal (struct symbol *sym, int funfirstline)
2839 {
2840 struct symtab_and_line sal;
2841
2842 fixup_symbol_section (sym, NULL);
2843 sal = find_pc_sect_line (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)),
2844 SYMBOL_OBJ_SECTION (SYMBOL_OBJFILE (sym), sym), 0);
2845
2846 /* We always should have a line for the function start address.
2847 If we don't, something is odd. Create a plain SAL refering
2848 just the PC and hope that skip_prologue_sal (if requested)
2849 can find a line number for after the prologue. */
2850 if (sal.pc < BLOCK_START (SYMBOL_BLOCK_VALUE (sym)))
2851 {
2852 init_sal (&sal);
2853 sal.pspace = current_program_space;
2854 sal.pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
2855 sal.section = SYMBOL_OBJ_SECTION (SYMBOL_OBJFILE (sym), sym);
2856 }
2857
2858 if (funfirstline)
2859 skip_prologue_sal (&sal);
2860
2861 return sal;
2862 }
2863
2864 /* Adjust SAL to the first instruction past the function prologue.
2865 If the PC was explicitly specified, the SAL is not changed.
2866 If the line number was explicitly specified, at most the SAL's PC
2867 is updated. If SAL is already past the prologue, then do nothing. */
2868
2869 void
2870 skip_prologue_sal (struct symtab_and_line *sal)
2871 {
2872 struct symbol *sym;
2873 struct symtab_and_line start_sal;
2874 struct cleanup *old_chain;
2875 CORE_ADDR pc, saved_pc;
2876 struct obj_section *section;
2877 const char *name;
2878 struct objfile *objfile;
2879 struct gdbarch *gdbarch;
2880 const struct block *b, *function_block;
2881 int force_skip, skip;
2882
2883 /* Do not change the SAL if PC was specified explicitly. */
2884 if (sal->explicit_pc)
2885 return;
2886
2887 old_chain = save_current_space_and_thread ();
2888 switch_to_program_space_and_thread (sal->pspace);
2889
2890 sym = find_pc_sect_function (sal->pc, sal->section);
2891 if (sym != NULL)
2892 {
2893 fixup_symbol_section (sym, NULL);
2894
2895 pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
2896 section = SYMBOL_OBJ_SECTION (SYMBOL_OBJFILE (sym), sym);
2897 name = SYMBOL_LINKAGE_NAME (sym);
2898 objfile = SYMBOL_SYMTAB (sym)->objfile;
2899 }
2900 else
2901 {
2902 struct bound_minimal_symbol msymbol
2903 = lookup_minimal_symbol_by_pc_section (sal->pc, sal->section);
2904
2905 if (msymbol.minsym == NULL)
2906 {
2907 do_cleanups (old_chain);
2908 return;
2909 }
2910
2911 objfile = msymbol.objfile;
2912 pc = BMSYMBOL_VALUE_ADDRESS (msymbol);
2913 section = MSYMBOL_OBJ_SECTION (objfile, msymbol.minsym);
2914 name = MSYMBOL_LINKAGE_NAME (msymbol.minsym);
2915 }
2916
2917 gdbarch = get_objfile_arch (objfile);
2918
2919 /* Process the prologue in two passes. In the first pass try to skip the
2920 prologue (SKIP is true) and verify there is a real need for it (indicated
2921 by FORCE_SKIP). If no such reason was found run a second pass where the
2922 prologue is not skipped (SKIP is false). */
2923
2924 skip = 1;
2925 force_skip = 1;
2926
2927 /* Be conservative - allow direct PC (without skipping prologue) only if we
2928 have proven the CU (Compilation Unit) supports it. sal->SYMTAB does not
2929 have to be set by the caller so we use SYM instead. */
2930 if (sym && SYMBOL_SYMTAB (sym)->locations_valid)
2931 force_skip = 0;
2932
2933 saved_pc = pc;
2934 do
2935 {
2936 pc = saved_pc;
2937
2938 /* If the function is in an unmapped overlay, use its unmapped LMA address,
2939 so that gdbarch_skip_prologue has something unique to work on. */
2940 if (section_is_overlay (section) && !section_is_mapped (section))
2941 pc = overlay_unmapped_address (pc, section);
2942
2943 /* Skip "first line" of function (which is actually its prologue). */
2944 pc += gdbarch_deprecated_function_start_offset (gdbarch);
2945 if (gdbarch_skip_entrypoint_p (gdbarch))
2946 pc = gdbarch_skip_entrypoint (gdbarch, pc);
2947 if (skip)
2948 pc = gdbarch_skip_prologue (gdbarch, pc);
2949
2950 /* For overlays, map pc back into its mapped VMA range. */
2951 pc = overlay_mapped_address (pc, section);
2952
2953 /* Calculate line number. */
2954 start_sal = find_pc_sect_line (pc, section, 0);
2955
2956 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
2957 line is still part of the same function. */
2958 if (skip && start_sal.pc != pc
2959 && (sym ? (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) <= start_sal.end
2960 && start_sal.end < BLOCK_END (SYMBOL_BLOCK_VALUE (sym)))
2961 : (lookup_minimal_symbol_by_pc_section (start_sal.end, section).minsym
2962 == lookup_minimal_symbol_by_pc_section (pc, section).minsym)))
2963 {
2964 /* First pc of next line */
2965 pc = start_sal.end;
2966 /* Recalculate the line number (might not be N+1). */
2967 start_sal = find_pc_sect_line (pc, section, 0);
2968 }
2969
2970 /* On targets with executable formats that don't have a concept of
2971 constructors (ELF with .init has, PE doesn't), gcc emits a call
2972 to `__main' in `main' between the prologue and before user
2973 code. */
2974 if (gdbarch_skip_main_prologue_p (gdbarch)
2975 && name && strcmp_iw (name, "main") == 0)
2976 {
2977 pc = gdbarch_skip_main_prologue (gdbarch, pc);
2978 /* Recalculate the line number (might not be N+1). */
2979 start_sal = find_pc_sect_line (pc, section, 0);
2980 force_skip = 1;
2981 }
2982 }
2983 while (!force_skip && skip--);
2984
2985 /* If we still don't have a valid source line, try to find the first
2986 PC in the lineinfo table that belongs to the same function. This
2987 happens with COFF debug info, which does not seem to have an
2988 entry in lineinfo table for the code after the prologue which has
2989 no direct relation to source. For example, this was found to be
2990 the case with the DJGPP target using "gcc -gcoff" when the
2991 compiler inserted code after the prologue to make sure the stack
2992 is aligned. */
2993 if (!force_skip && sym && start_sal.symtab == NULL)
2994 {
2995 pc = skip_prologue_using_lineinfo (pc, SYMBOL_SYMTAB (sym));
2996 /* Recalculate the line number. */
2997 start_sal = find_pc_sect_line (pc, section, 0);
2998 }
2999
3000 do_cleanups (old_chain);
3001
3002 /* If we're already past the prologue, leave SAL unchanged. Otherwise
3003 forward SAL to the end of the prologue. */
3004 if (sal->pc >= pc)
3005 return;
3006
3007 sal->pc = pc;
3008 sal->section = section;
3009
3010 /* Unless the explicit_line flag was set, update the SAL line
3011 and symtab to correspond to the modified PC location. */
3012 if (sal->explicit_line)
3013 return;
3014
3015 sal->symtab = start_sal.symtab;
3016 sal->line = start_sal.line;
3017 sal->end = start_sal.end;
3018
3019 /* Check if we are now inside an inlined function. If we can,
3020 use the call site of the function instead. */
3021 b = block_for_pc_sect (sal->pc, sal->section);
3022 function_block = NULL;
3023 while (b != NULL)
3024 {
3025 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
3026 function_block = b;
3027 else if (BLOCK_FUNCTION (b) != NULL)
3028 break;
3029 b = BLOCK_SUPERBLOCK (b);
3030 }
3031 if (function_block != NULL
3032 && SYMBOL_LINE (BLOCK_FUNCTION (function_block)) != 0)
3033 {
3034 sal->line = SYMBOL_LINE (BLOCK_FUNCTION (function_block));
3035 sal->symtab = SYMBOL_SYMTAB (BLOCK_FUNCTION (function_block));
3036 }
3037 }
3038
3039 /* If P is of the form "operator[ \t]+..." where `...' is
3040 some legitimate operator text, return a pointer to the
3041 beginning of the substring of the operator text.
3042 Otherwise, return "". */
3043
3044 static char *
3045 operator_chars (char *p, char **end)
3046 {
3047 *end = "";
3048 if (strncmp (p, "operator", 8))
3049 return *end;
3050 p += 8;
3051
3052 /* Don't get faked out by `operator' being part of a longer
3053 identifier. */
3054 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
3055 return *end;
3056
3057 /* Allow some whitespace between `operator' and the operator symbol. */
3058 while (*p == ' ' || *p == '\t')
3059 p++;
3060
3061 /* Recognize 'operator TYPENAME'. */
3062
3063 if (isalpha (*p) || *p == '_' || *p == '$')
3064 {
3065 char *q = p + 1;
3066
3067 while (isalnum (*q) || *q == '_' || *q == '$')
3068 q++;
3069 *end = q;
3070 return p;
3071 }
3072
3073 while (*p)
3074 switch (*p)
3075 {
3076 case '\\': /* regexp quoting */
3077 if (p[1] == '*')
3078 {
3079 if (p[2] == '=') /* 'operator\*=' */
3080 *end = p + 3;
3081 else /* 'operator\*' */
3082 *end = p + 2;
3083 return p;
3084 }
3085 else if (p[1] == '[')
3086 {
3087 if (p[2] == ']')
3088 error (_("mismatched quoting on brackets, "
3089 "try 'operator\\[\\]'"));
3090 else if (p[2] == '\\' && p[3] == ']')
3091 {
3092 *end = p + 4; /* 'operator\[\]' */
3093 return p;
3094 }
3095 else
3096 error (_("nothing is allowed between '[' and ']'"));
3097 }
3098 else
3099 {
3100 /* Gratuitous qoute: skip it and move on. */
3101 p++;
3102 continue;
3103 }
3104 break;
3105 case '!':
3106 case '=':
3107 case '*':
3108 case '/':
3109 case '%':
3110 case '^':
3111 if (p[1] == '=')
3112 *end = p + 2;
3113 else
3114 *end = p + 1;
3115 return p;
3116 case '<':
3117 case '>':
3118 case '+':
3119 case '-':
3120 case '&':
3121 case '|':
3122 if (p[0] == '-' && p[1] == '>')
3123 {
3124 /* Struct pointer member operator 'operator->'. */
3125 if (p[2] == '*')
3126 {
3127 *end = p + 3; /* 'operator->*' */
3128 return p;
3129 }
3130 else if (p[2] == '\\')
3131 {
3132 *end = p + 4; /* Hopefully 'operator->\*' */
3133 return p;
3134 }
3135 else
3136 {
3137 *end = p + 2; /* 'operator->' */
3138 return p;
3139 }
3140 }
3141 if (p[1] == '=' || p[1] == p[0])
3142 *end = p + 2;
3143 else
3144 *end = p + 1;
3145 return p;
3146 case '~':
3147 case ',':
3148 *end = p + 1;
3149 return p;
3150 case '(':
3151 if (p[1] != ')')
3152 error (_("`operator ()' must be specified "
3153 "without whitespace in `()'"));
3154 *end = p + 2;
3155 return p;
3156 case '?':
3157 if (p[1] != ':')
3158 error (_("`operator ?:' must be specified "
3159 "without whitespace in `?:'"));
3160 *end = p + 2;
3161 return p;
3162 case '[':
3163 if (p[1] != ']')
3164 error (_("`operator []' must be specified "
3165 "without whitespace in `[]'"));
3166 *end = p + 2;
3167 return p;
3168 default:
3169 error (_("`operator %s' not supported"), p);
3170 break;
3171 }
3172
3173 *end = "";
3174 return *end;
3175 }
3176 \f
3177
3178 /* Cache to watch for file names already seen by filename_seen. */
3179
3180 struct filename_seen_cache
3181 {
3182 /* Table of files seen so far. */
3183 htab_t tab;
3184 /* Initial size of the table. It automagically grows from here. */
3185 #define INITIAL_FILENAME_SEEN_CACHE_SIZE 100
3186 };
3187
3188 /* filename_seen_cache constructor. */
3189
3190 static struct filename_seen_cache *
3191 create_filename_seen_cache (void)
3192 {
3193 struct filename_seen_cache *cache;
3194
3195 cache = XNEW (struct filename_seen_cache);
3196 cache->tab = htab_create_alloc (INITIAL_FILENAME_SEEN_CACHE_SIZE,
3197 filename_hash, filename_eq,
3198 NULL, xcalloc, xfree);
3199
3200 return cache;
3201 }
3202
3203 /* Empty the cache, but do not delete it. */
3204
3205 static void
3206 clear_filename_seen_cache (struct filename_seen_cache *cache)
3207 {
3208 htab_empty (cache->tab);
3209 }
3210
3211 /* filename_seen_cache destructor.
3212 This takes a void * argument as it is generally used as a cleanup. */
3213
3214 static void
3215 delete_filename_seen_cache (void *ptr)
3216 {
3217 struct filename_seen_cache *cache = ptr;
3218
3219 htab_delete (cache->tab);
3220 xfree (cache);
3221 }
3222
3223 /* If FILE is not already in the table of files in CACHE, return zero;
3224 otherwise return non-zero. Optionally add FILE to the table if ADD
3225 is non-zero.
3226
3227 NOTE: We don't manage space for FILE, we assume FILE lives as long
3228 as the caller needs. */
3229
3230 static int
3231 filename_seen (struct filename_seen_cache *cache, const char *file, int add)
3232 {
3233 void **slot;
3234
3235 /* Is FILE in tab? */
3236 slot = htab_find_slot (cache->tab, file, add ? INSERT : NO_INSERT);
3237 if (*slot != NULL)
3238 return 1;
3239
3240 /* No; maybe add it to tab. */
3241 if (add)
3242 *slot = (char *) file;
3243
3244 return 0;
3245 }
3246
3247 /* Data structure to maintain printing state for output_source_filename. */
3248
3249 struct output_source_filename_data
3250 {
3251 /* Cache of what we've seen so far. */
3252 struct filename_seen_cache *filename_seen_cache;
3253
3254 /* Flag of whether we're printing the first one. */
3255 int first;
3256 };
3257
3258 /* Slave routine for sources_info. Force line breaks at ,'s.
3259 NAME is the name to print.
3260 DATA contains the state for printing and watching for duplicates. */
3261
3262 static void
3263 output_source_filename (const char *name,
3264 struct output_source_filename_data *data)
3265 {
3266 /* Since a single source file can result in several partial symbol
3267 tables, we need to avoid printing it more than once. Note: if
3268 some of the psymtabs are read in and some are not, it gets
3269 printed both under "Source files for which symbols have been
3270 read" and "Source files for which symbols will be read in on
3271 demand". I consider this a reasonable way to deal with the
3272 situation. I'm not sure whether this can also happen for
3273 symtabs; it doesn't hurt to check. */
3274
3275 /* Was NAME already seen? */
3276 if (filename_seen (data->filename_seen_cache, name, 1))
3277 {
3278 /* Yes; don't print it again. */
3279 return;
3280 }
3281
3282 /* No; print it and reset *FIRST. */
3283 if (! data->first)
3284 printf_filtered (", ");
3285 data->first = 0;
3286
3287 wrap_here ("");
3288 fputs_filtered (name, gdb_stdout);
3289 }
3290
3291 /* A callback for map_partial_symbol_filenames. */
3292
3293 static void
3294 output_partial_symbol_filename (const char *filename, const char *fullname,
3295 void *data)
3296 {
3297 output_source_filename (fullname ? fullname : filename, data);
3298 }
3299
3300 static void
3301 sources_info (char *ignore, int from_tty)
3302 {
3303 struct symtab *s;
3304 struct objfile *objfile;
3305 struct output_source_filename_data data;
3306 struct cleanup *cleanups;
3307
3308 if (!have_full_symbols () && !have_partial_symbols ())
3309 {
3310 error (_("No symbol table is loaded. Use the \"file\" command."));
3311 }
3312
3313 data.filename_seen_cache = create_filename_seen_cache ();
3314 cleanups = make_cleanup (delete_filename_seen_cache,
3315 data.filename_seen_cache);
3316
3317 printf_filtered ("Source files for which symbols have been read in:\n\n");
3318
3319 data.first = 1;
3320 ALL_SYMTABS (objfile, s)
3321 {
3322 const char *fullname = symtab_to_fullname (s);
3323
3324 output_source_filename (fullname, &data);
3325 }
3326 printf_filtered ("\n\n");
3327
3328 printf_filtered ("Source files for which symbols "
3329 "will be read in on demand:\n\n");
3330
3331 clear_filename_seen_cache (data.filename_seen_cache);
3332 data.first = 1;
3333 map_symbol_filenames (output_partial_symbol_filename, &data,
3334 1 /*need_fullname*/);
3335 printf_filtered ("\n");
3336
3337 do_cleanups (cleanups);
3338 }
3339
3340 /* Compare FILE against all the NFILES entries of FILES. If BASENAMES is
3341 non-zero compare only lbasename of FILES. */
3342
3343 static int
3344 file_matches (const char *file, char *files[], int nfiles, int basenames)
3345 {
3346 int i;
3347
3348 if (file != NULL && nfiles != 0)
3349 {
3350 for (i = 0; i < nfiles; i++)
3351 {
3352 if (compare_filenames_for_search (file, (basenames
3353 ? lbasename (files[i])
3354 : files[i])))
3355 return 1;
3356 }
3357 }
3358 else if (nfiles == 0)
3359 return 1;
3360 return 0;
3361 }
3362
3363 /* Free any memory associated with a search. */
3364
3365 void
3366 free_search_symbols (struct symbol_search *symbols)
3367 {
3368 struct symbol_search *p;
3369 struct symbol_search *next;
3370
3371 for (p = symbols; p != NULL; p = next)
3372 {
3373 next = p->next;
3374 xfree (p);
3375 }
3376 }
3377
3378 static void
3379 do_free_search_symbols_cleanup (void *symbolsp)
3380 {
3381 struct symbol_search *symbols = *(struct symbol_search **) symbolsp;
3382
3383 free_search_symbols (symbols);
3384 }
3385
3386 struct cleanup *
3387 make_cleanup_free_search_symbols (struct symbol_search **symbolsp)
3388 {
3389 return make_cleanup (do_free_search_symbols_cleanup, symbolsp);
3390 }
3391
3392 /* Helper function for sort_search_symbols_remove_dups and qsort. Can only
3393 sort symbols, not minimal symbols. */
3394
3395 static int
3396 compare_search_syms (const void *sa, const void *sb)
3397 {
3398 struct symbol_search *sym_a = *(struct symbol_search **) sa;
3399 struct symbol_search *sym_b = *(struct symbol_search **) sb;
3400 int c;
3401
3402 c = FILENAME_CMP (sym_a->symtab->filename, sym_b->symtab->filename);
3403 if (c != 0)
3404 return c;
3405
3406 if (sym_a->block != sym_b->block)
3407 return sym_a->block - sym_b->block;
3408
3409 return strcmp (SYMBOL_PRINT_NAME (sym_a->symbol),
3410 SYMBOL_PRINT_NAME (sym_b->symbol));
3411 }
3412
3413 /* Sort the NFOUND symbols in list FOUND and remove duplicates.
3414 The duplicates are freed, and the new list is returned in
3415 *NEW_HEAD, *NEW_TAIL. */
3416
3417 static void
3418 sort_search_symbols_remove_dups (struct symbol_search *found, int nfound,
3419 struct symbol_search **new_head,
3420 struct symbol_search **new_tail)
3421 {
3422 struct symbol_search **symbols, *symp, *old_next;
3423 int i, j, nunique;
3424
3425 gdb_assert (found != NULL && nfound > 0);
3426
3427 /* Build an array out of the list so we can easily sort them. */
3428 symbols = (struct symbol_search **) xmalloc (sizeof (struct symbol_search *)
3429 * nfound);
3430 symp = found;
3431 for (i = 0; i < nfound; i++)
3432 {
3433 gdb_assert (symp != NULL);
3434 gdb_assert (symp->block >= 0 && symp->block <= 1);
3435 symbols[i] = symp;
3436 symp = symp->next;
3437 }
3438 gdb_assert (symp == NULL);
3439
3440 qsort (symbols, nfound, sizeof (struct symbol_search *),
3441 compare_search_syms);
3442
3443 /* Collapse out the dups. */
3444 for (i = 1, j = 1; i < nfound; ++i)
3445 {
3446 if (compare_search_syms (&symbols[j - 1], &symbols[i]) != 0)
3447 symbols[j++] = symbols[i];
3448 else
3449 xfree (symbols[i]);
3450 }
3451 nunique = j;
3452 symbols[j - 1]->next = NULL;
3453
3454 /* Rebuild the linked list. */
3455 for (i = 0; i < nunique - 1; i++)
3456 symbols[i]->next = symbols[i + 1];
3457 symbols[nunique - 1]->next = NULL;
3458
3459 *new_head = symbols[0];
3460 *new_tail = symbols[nunique - 1];
3461 xfree (symbols);
3462 }
3463
3464 /* An object of this type is passed as the user_data to the
3465 expand_symtabs_matching method. */
3466 struct search_symbols_data
3467 {
3468 int nfiles;
3469 char **files;
3470
3471 /* It is true if PREG contains valid data, false otherwise. */
3472 unsigned preg_p : 1;
3473 regex_t preg;
3474 };
3475
3476 /* A callback for expand_symtabs_matching. */
3477
3478 static int
3479 search_symbols_file_matches (const char *filename, void *user_data,
3480 int basenames)
3481 {
3482 struct search_symbols_data *data = user_data;
3483
3484 return file_matches (filename, data->files, data->nfiles, basenames);
3485 }
3486
3487 /* A callback for expand_symtabs_matching. */
3488
3489 static int
3490 search_symbols_name_matches (const char *symname, void *user_data)
3491 {
3492 struct search_symbols_data *data = user_data;
3493
3494 return !data->preg_p || regexec (&data->preg, symname, 0, NULL, 0) == 0;
3495 }
3496
3497 /* Search the symbol table for matches to the regular expression REGEXP,
3498 returning the results in *MATCHES.
3499
3500 Only symbols of KIND are searched:
3501 VARIABLES_DOMAIN - search all symbols, excluding functions, type names,
3502 and constants (enums)
3503 FUNCTIONS_DOMAIN - search all functions
3504 TYPES_DOMAIN - search all type names
3505 ALL_DOMAIN - an internal error for this function
3506
3507 free_search_symbols should be called when *MATCHES is no longer needed.
3508
3509 Within each file the results are sorted locally; each symtab's global and
3510 static blocks are separately alphabetized.
3511 Duplicate entries are removed. */
3512
3513 void
3514 search_symbols (char *regexp, enum search_domain kind,
3515 int nfiles, char *files[],
3516 struct symbol_search **matches)
3517 {
3518 struct symtab *s;
3519 struct blockvector *bv;
3520 struct block *b;
3521 int i = 0;
3522 struct block_iterator iter;
3523 struct symbol *sym;
3524 struct objfile *objfile;
3525 struct minimal_symbol *msymbol;
3526 int found_misc = 0;
3527 static const enum minimal_symbol_type types[]
3528 = {mst_data, mst_text, mst_abs};
3529 static const enum minimal_symbol_type types2[]
3530 = {mst_bss, mst_file_text, mst_abs};
3531 static const enum minimal_symbol_type types3[]
3532 = {mst_file_data, mst_solib_trampoline, mst_abs};
3533 static const enum minimal_symbol_type types4[]
3534 = {mst_file_bss, mst_text_gnu_ifunc, mst_abs};
3535 enum minimal_symbol_type ourtype;
3536 enum minimal_symbol_type ourtype2;
3537 enum minimal_symbol_type ourtype3;
3538 enum minimal_symbol_type ourtype4;
3539 struct symbol_search *found;
3540 struct symbol_search *tail;
3541 struct search_symbols_data datum;
3542 int nfound;
3543
3544 /* OLD_CHAIN .. RETVAL_CHAIN is always freed, RETVAL_CHAIN .. current
3545 CLEANUP_CHAIN is freed only in the case of an error. */
3546 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
3547 struct cleanup *retval_chain;
3548
3549 gdb_assert (kind <= TYPES_DOMAIN);
3550
3551 ourtype = types[kind];
3552 ourtype2 = types2[kind];
3553 ourtype3 = types3[kind];
3554 ourtype4 = types4[kind];
3555
3556 *matches = NULL;
3557 datum.preg_p = 0;
3558
3559 if (regexp != NULL)
3560 {
3561 /* Make sure spacing is right for C++ operators.
3562 This is just a courtesy to make the matching less sensitive
3563 to how many spaces the user leaves between 'operator'
3564 and <TYPENAME> or <OPERATOR>. */
3565 char *opend;
3566 char *opname = operator_chars (regexp, &opend);
3567 int errcode;
3568
3569 if (*opname)
3570 {
3571 int fix = -1; /* -1 means ok; otherwise number of
3572 spaces needed. */
3573
3574 if (isalpha (*opname) || *opname == '_' || *opname == '$')
3575 {
3576 /* There should 1 space between 'operator' and 'TYPENAME'. */
3577 if (opname[-1] != ' ' || opname[-2] == ' ')
3578 fix = 1;
3579 }
3580 else
3581 {
3582 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
3583 if (opname[-1] == ' ')
3584 fix = 0;
3585 }
3586 /* If wrong number of spaces, fix it. */
3587 if (fix >= 0)
3588 {
3589 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
3590
3591 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
3592 regexp = tmp;
3593 }
3594 }
3595
3596 errcode = regcomp (&datum.preg, regexp,
3597 REG_NOSUB | (case_sensitivity == case_sensitive_off
3598 ? REG_ICASE : 0));
3599 if (errcode != 0)
3600 {
3601 char *err = get_regcomp_error (errcode, &datum.preg);
3602
3603 make_cleanup (xfree, err);
3604 error (_("Invalid regexp (%s): %s"), err, regexp);
3605 }
3606 datum.preg_p = 1;
3607 make_regfree_cleanup (&datum.preg);
3608 }
3609
3610 /* Search through the partial symtabs *first* for all symbols
3611 matching the regexp. That way we don't have to reproduce all of
3612 the machinery below. */
3613
3614 datum.nfiles = nfiles;
3615 datum.files = files;
3616 expand_symtabs_matching ((nfiles == 0
3617 ? NULL
3618 : search_symbols_file_matches),
3619 search_symbols_name_matches,
3620 kind, &datum);
3621
3622 /* Here, we search through the minimal symbol tables for functions
3623 and variables that match, and force their symbols to be read.
3624 This is in particular necessary for demangled variable names,
3625 which are no longer put into the partial symbol tables.
3626 The symbol will then be found during the scan of symtabs below.
3627
3628 For functions, find_pc_symtab should succeed if we have debug info
3629 for the function, for variables we have to call
3630 lookup_symbol_in_objfile_from_linkage_name to determine if the variable
3631 has debug info.
3632 If the lookup fails, set found_misc so that we will rescan to print
3633 any matching symbols without debug info.
3634 We only search the objfile the msymbol came from, we no longer search
3635 all objfiles. In large programs (1000s of shared libs) searching all
3636 objfiles is not worth the pain. */
3637
3638 if (nfiles == 0 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
3639 {
3640 ALL_MSYMBOLS (objfile, msymbol)
3641 {
3642 QUIT;
3643
3644 if (msymbol->created_by_gdb)
3645 continue;
3646
3647 if (MSYMBOL_TYPE (msymbol) == ourtype
3648 || MSYMBOL_TYPE (msymbol) == ourtype2
3649 || MSYMBOL_TYPE (msymbol) == ourtype3
3650 || MSYMBOL_TYPE (msymbol) == ourtype4)
3651 {
3652 if (!datum.preg_p
3653 || regexec (&datum.preg, MSYMBOL_NATURAL_NAME (msymbol), 0,
3654 NULL, 0) == 0)
3655 {
3656 /* Note: An important side-effect of these lookup functions
3657 is to expand the symbol table if msymbol is found, for the
3658 benefit of the next loop on ALL_PRIMARY_SYMTABS. */
3659 if (kind == FUNCTIONS_DOMAIN
3660 ? find_pc_symtab (MSYMBOL_VALUE_ADDRESS (objfile,
3661 msymbol)) == NULL
3662 : (lookup_symbol_in_objfile_from_linkage_name
3663 (objfile, MSYMBOL_LINKAGE_NAME (msymbol), VAR_DOMAIN)
3664 == NULL))
3665 found_misc = 1;
3666 }
3667 }
3668 }
3669 }
3670
3671 found = NULL;
3672 tail = NULL;
3673 nfound = 0;
3674 retval_chain = make_cleanup_free_search_symbols (&found);
3675
3676 ALL_PRIMARY_SYMTABS (objfile, s)
3677 {
3678 bv = BLOCKVECTOR (s);
3679 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
3680 {
3681 b = BLOCKVECTOR_BLOCK (bv, i);
3682 ALL_BLOCK_SYMBOLS (b, iter, sym)
3683 {
3684 struct symtab *real_symtab = SYMBOL_SYMTAB (sym);
3685
3686 QUIT;
3687
3688 /* Check first sole REAL_SYMTAB->FILENAME. It does not need to be
3689 a substring of symtab_to_fullname as it may contain "./" etc. */
3690 if ((file_matches (real_symtab->filename, files, nfiles, 0)
3691 || ((basenames_may_differ
3692 || file_matches (lbasename (real_symtab->filename),
3693 files, nfiles, 1))
3694 && file_matches (symtab_to_fullname (real_symtab),
3695 files, nfiles, 0)))
3696 && ((!datum.preg_p
3697 || regexec (&datum.preg, SYMBOL_NATURAL_NAME (sym), 0,
3698 NULL, 0) == 0)
3699 && ((kind == VARIABLES_DOMAIN
3700 && SYMBOL_CLASS (sym) != LOC_TYPEDEF
3701 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
3702 && SYMBOL_CLASS (sym) != LOC_BLOCK
3703 /* LOC_CONST can be used for more than just enums,
3704 e.g., c++ static const members.
3705 We only want to skip enums here. */
3706 && !(SYMBOL_CLASS (sym) == LOC_CONST
3707 && TYPE_CODE (SYMBOL_TYPE (sym))
3708 == TYPE_CODE_ENUM))
3709 || (kind == FUNCTIONS_DOMAIN
3710 && SYMBOL_CLASS (sym) == LOC_BLOCK)
3711 || (kind == TYPES_DOMAIN
3712 && SYMBOL_CLASS (sym) == LOC_TYPEDEF))))
3713 {
3714 /* match */
3715 struct symbol_search *psr = (struct symbol_search *)
3716 xmalloc (sizeof (struct symbol_search));
3717 psr->block = i;
3718 psr->symtab = real_symtab;
3719 psr->symbol = sym;
3720 memset (&psr->msymbol, 0, sizeof (psr->msymbol));
3721 psr->next = NULL;
3722 if (tail == NULL)
3723 found = psr;
3724 else
3725 tail->next = psr;
3726 tail = psr;
3727 nfound ++;
3728 }
3729 }
3730 }
3731 }
3732
3733 if (found != NULL)
3734 {
3735 sort_search_symbols_remove_dups (found, nfound, &found, &tail);
3736 /* Note: nfound is no longer useful beyond this point. */
3737 }
3738
3739 /* If there are no eyes, avoid all contact. I mean, if there are
3740 no debug symbols, then print directly from the msymbol_vector. */
3741
3742 if (found_misc || (nfiles == 0 && kind != FUNCTIONS_DOMAIN))
3743 {
3744 ALL_MSYMBOLS (objfile, msymbol)
3745 {
3746 QUIT;
3747
3748 if (msymbol->created_by_gdb)
3749 continue;
3750
3751 if (MSYMBOL_TYPE (msymbol) == ourtype
3752 || MSYMBOL_TYPE (msymbol) == ourtype2
3753 || MSYMBOL_TYPE (msymbol) == ourtype3
3754 || MSYMBOL_TYPE (msymbol) == ourtype4)
3755 {
3756 if (!datum.preg_p
3757 || regexec (&datum.preg, MSYMBOL_NATURAL_NAME (msymbol), 0,
3758 NULL, 0) == 0)
3759 {
3760 /* For functions we can do a quick check of whether the
3761 symbol might be found via find_pc_symtab. */
3762 if (kind != FUNCTIONS_DOMAIN
3763 || find_pc_symtab (MSYMBOL_VALUE_ADDRESS (objfile,
3764 msymbol)) == NULL)
3765 {
3766 if (lookup_symbol_in_objfile_from_linkage_name
3767 (objfile, MSYMBOL_LINKAGE_NAME (msymbol), VAR_DOMAIN)
3768 == NULL)
3769 {
3770 /* match */
3771 struct symbol_search *psr = (struct symbol_search *)
3772 xmalloc (sizeof (struct symbol_search));
3773 psr->block = i;
3774 psr->msymbol.minsym = msymbol;
3775 psr->msymbol.objfile = objfile;
3776 psr->symtab = NULL;
3777 psr->symbol = NULL;
3778 psr->next = NULL;
3779 if (tail == NULL)
3780 found = psr;
3781 else
3782 tail->next = psr;
3783 tail = psr;
3784 }
3785 }
3786 }
3787 }
3788 }
3789 }
3790
3791 discard_cleanups (retval_chain);
3792 do_cleanups (old_chain);
3793 *matches = found;
3794 }
3795
3796 /* Helper function for symtab_symbol_info, this function uses
3797 the data returned from search_symbols() to print information
3798 regarding the match to gdb_stdout. */
3799
3800 static void
3801 print_symbol_info (enum search_domain kind,
3802 struct symtab *s, struct symbol *sym,
3803 int block, const char *last)
3804 {
3805 const char *s_filename = symtab_to_filename_for_display (s);
3806
3807 if (last == NULL || filename_cmp (last, s_filename) != 0)
3808 {
3809 fputs_filtered ("\nFile ", gdb_stdout);
3810 fputs_filtered (s_filename, gdb_stdout);
3811 fputs_filtered (":\n", gdb_stdout);
3812 }
3813
3814 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
3815 printf_filtered ("static ");
3816
3817 /* Typedef that is not a C++ class. */
3818 if (kind == TYPES_DOMAIN
3819 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
3820 typedef_print (SYMBOL_TYPE (sym), sym, gdb_stdout);
3821 /* variable, func, or typedef-that-is-c++-class. */
3822 else if (kind < TYPES_DOMAIN
3823 || (kind == TYPES_DOMAIN
3824 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
3825 {
3826 type_print (SYMBOL_TYPE (sym),
3827 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
3828 ? "" : SYMBOL_PRINT_NAME (sym)),
3829 gdb_stdout, 0);
3830
3831 printf_filtered (";\n");
3832 }
3833 }
3834
3835 /* This help function for symtab_symbol_info() prints information
3836 for non-debugging symbols to gdb_stdout. */
3837
3838 static void
3839 print_msymbol_info (struct bound_minimal_symbol msymbol)
3840 {
3841 struct gdbarch *gdbarch = get_objfile_arch (msymbol.objfile);
3842 char *tmp;
3843
3844 if (gdbarch_addr_bit (gdbarch) <= 32)
3845 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol)
3846 & (CORE_ADDR) 0xffffffff,
3847 8);
3848 else
3849 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol),
3850 16);
3851 printf_filtered ("%s %s\n",
3852 tmp, MSYMBOL_PRINT_NAME (msymbol.minsym));
3853 }
3854
3855 /* This is the guts of the commands "info functions", "info types", and
3856 "info variables". It calls search_symbols to find all matches and then
3857 print_[m]symbol_info to print out some useful information about the
3858 matches. */
3859
3860 static void
3861 symtab_symbol_info (char *regexp, enum search_domain kind, int from_tty)
3862 {
3863 static const char * const classnames[] =
3864 {"variable", "function", "type"};
3865 struct symbol_search *symbols;
3866 struct symbol_search *p;
3867 struct cleanup *old_chain;
3868 const char *last_filename = NULL;
3869 int first = 1;
3870
3871 gdb_assert (kind <= TYPES_DOMAIN);
3872
3873 /* Must make sure that if we're interrupted, symbols gets freed. */
3874 search_symbols (regexp, kind, 0, (char **) NULL, &symbols);
3875 old_chain = make_cleanup_free_search_symbols (&symbols);
3876
3877 if (regexp != NULL)
3878 printf_filtered (_("All %ss matching regular expression \"%s\":\n"),
3879 classnames[kind], regexp);
3880 else
3881 printf_filtered (_("All defined %ss:\n"), classnames[kind]);
3882
3883 for (p = symbols; p != NULL; p = p->next)
3884 {
3885 QUIT;
3886
3887 if (p->msymbol.minsym != NULL)
3888 {
3889 if (first)
3890 {
3891 printf_filtered (_("\nNon-debugging symbols:\n"));
3892 first = 0;
3893 }
3894 print_msymbol_info (p->msymbol);
3895 }
3896 else
3897 {
3898 print_symbol_info (kind,
3899 p->symtab,
3900 p->symbol,
3901 p->block,
3902 last_filename);
3903 last_filename = symtab_to_filename_for_display (p->symtab);
3904 }
3905 }
3906
3907 do_cleanups (old_chain);
3908 }
3909
3910 static void
3911 variables_info (char *regexp, int from_tty)
3912 {
3913 symtab_symbol_info (regexp, VARIABLES_DOMAIN, from_tty);
3914 }
3915
3916 static void
3917 functions_info (char *regexp, int from_tty)
3918 {
3919 symtab_symbol_info (regexp, FUNCTIONS_DOMAIN, from_tty);
3920 }
3921
3922
3923 static void
3924 types_info (char *regexp, int from_tty)
3925 {
3926 symtab_symbol_info (regexp, TYPES_DOMAIN, from_tty);
3927 }
3928
3929 /* Breakpoint all functions matching regular expression. */
3930
3931 void
3932 rbreak_command_wrapper (char *regexp, int from_tty)
3933 {
3934 rbreak_command (regexp, from_tty);
3935 }
3936
3937 /* A cleanup function that calls end_rbreak_breakpoints. */
3938
3939 static void
3940 do_end_rbreak_breakpoints (void *ignore)
3941 {
3942 end_rbreak_breakpoints ();
3943 }
3944
3945 static void
3946 rbreak_command (char *regexp, int from_tty)
3947 {
3948 struct symbol_search *ss;
3949 struct symbol_search *p;
3950 struct cleanup *old_chain;
3951 char *string = NULL;
3952 int len = 0;
3953 char **files = NULL, *file_name;
3954 int nfiles = 0;
3955
3956 if (regexp)
3957 {
3958 char *colon = strchr (regexp, ':');
3959
3960 if (colon && *(colon + 1) != ':')
3961 {
3962 int colon_index;
3963
3964 colon_index = colon - regexp;
3965 file_name = alloca (colon_index + 1);
3966 memcpy (file_name, regexp, colon_index);
3967 file_name[colon_index--] = 0;
3968 while (isspace (file_name[colon_index]))
3969 file_name[colon_index--] = 0;
3970 files = &file_name;
3971 nfiles = 1;
3972 regexp = skip_spaces (colon + 1);
3973 }
3974 }
3975
3976 search_symbols (regexp, FUNCTIONS_DOMAIN, nfiles, files, &ss);
3977 old_chain = make_cleanup_free_search_symbols (&ss);
3978 make_cleanup (free_current_contents, &string);
3979
3980 start_rbreak_breakpoints ();
3981 make_cleanup (do_end_rbreak_breakpoints, NULL);
3982 for (p = ss; p != NULL; p = p->next)
3983 {
3984 if (p->msymbol.minsym == NULL)
3985 {
3986 const char *fullname = symtab_to_fullname (p->symtab);
3987
3988 int newlen = (strlen (fullname)
3989 + strlen (SYMBOL_LINKAGE_NAME (p->symbol))
3990 + 4);
3991
3992 if (newlen > len)
3993 {
3994 string = xrealloc (string, newlen);
3995 len = newlen;
3996 }
3997 strcpy (string, fullname);
3998 strcat (string, ":'");
3999 strcat (string, SYMBOL_LINKAGE_NAME (p->symbol));
4000 strcat (string, "'");
4001 break_command (string, from_tty);
4002 print_symbol_info (FUNCTIONS_DOMAIN,
4003 p->symtab,
4004 p->symbol,
4005 p->block,
4006 symtab_to_filename_for_display (p->symtab));
4007 }
4008 else
4009 {
4010 int newlen = (strlen (MSYMBOL_LINKAGE_NAME (p->msymbol.minsym)) + 3);
4011
4012 if (newlen > len)
4013 {
4014 string = xrealloc (string, newlen);
4015 len = newlen;
4016 }
4017 strcpy (string, "'");
4018 strcat (string, MSYMBOL_LINKAGE_NAME (p->msymbol.minsym));
4019 strcat (string, "'");
4020
4021 break_command (string, from_tty);
4022 printf_filtered ("<function, no debug info> %s;\n",
4023 MSYMBOL_PRINT_NAME (p->msymbol.minsym));
4024 }
4025 }
4026
4027 do_cleanups (old_chain);
4028 }
4029 \f
4030
4031 /* Evaluate if NAME matches SYM_TEXT and SYM_TEXT_LEN.
4032
4033 Either sym_text[sym_text_len] != '(' and then we search for any
4034 symbol starting with SYM_TEXT text.
4035
4036 Otherwise sym_text[sym_text_len] == '(' and then we require symbol name to
4037 be terminated at that point. Partial symbol tables do not have parameters
4038 information. */
4039
4040 static int
4041 compare_symbol_name (const char *name, const char *sym_text, int sym_text_len)
4042 {
4043 int (*ncmp) (const char *, const char *, size_t);
4044
4045 ncmp = (case_sensitivity == case_sensitive_on ? strncmp : strncasecmp);
4046
4047 if (ncmp (name, sym_text, sym_text_len) != 0)
4048 return 0;
4049
4050 if (sym_text[sym_text_len] == '(')
4051 {
4052 /* User searches for `name(someth...'. Require NAME to be terminated.
4053 Normally psymtabs and gdbindex have no parameter types so '\0' will be
4054 present but accept even parameters presence. In this case this
4055 function is in fact strcmp_iw but whitespace skipping is not supported
4056 for tab completion. */
4057
4058 if (name[sym_text_len] != '\0' && name[sym_text_len] != '(')
4059 return 0;
4060 }
4061
4062 return 1;
4063 }
4064
4065 /* Free any memory associated with a completion list. */
4066
4067 static void
4068 free_completion_list (VEC (char_ptr) **list_ptr)
4069 {
4070 int i;
4071 char *p;
4072
4073 for (i = 0; VEC_iterate (char_ptr, *list_ptr, i, p); ++i)
4074 xfree (p);
4075 VEC_free (char_ptr, *list_ptr);
4076 }
4077
4078 /* Callback for make_cleanup. */
4079
4080 static void
4081 do_free_completion_list (void *list)
4082 {
4083 free_completion_list (list);
4084 }
4085
4086 /* Helper routine for make_symbol_completion_list. */
4087
4088 static VEC (char_ptr) *return_val;
4089
4090 #define COMPLETION_LIST_ADD_SYMBOL(symbol, sym_text, len, text, word) \
4091 completion_list_add_name \
4092 (SYMBOL_NATURAL_NAME (symbol), (sym_text), (len), (text), (word))
4093
4094 #define MCOMPLETION_LIST_ADD_SYMBOL(symbol, sym_text, len, text, word) \
4095 completion_list_add_name \
4096 (MSYMBOL_NATURAL_NAME (symbol), (sym_text), (len), (text), (word))
4097
4098 /* Test to see if the symbol specified by SYMNAME (which is already
4099 demangled for C++ symbols) matches SYM_TEXT in the first SYM_TEXT_LEN
4100 characters. If so, add it to the current completion list. */
4101
4102 static void
4103 completion_list_add_name (const char *symname,
4104 const char *sym_text, int sym_text_len,
4105 const char *text, const char *word)
4106 {
4107 /* Clip symbols that cannot match. */
4108 if (!compare_symbol_name (symname, sym_text, sym_text_len))
4109 return;
4110
4111 /* We have a match for a completion, so add SYMNAME to the current list
4112 of matches. Note that the name is moved to freshly malloc'd space. */
4113
4114 {
4115 char *new;
4116
4117 if (word == sym_text)
4118 {
4119 new = xmalloc (strlen (symname) + 5);
4120 strcpy (new, symname);
4121 }
4122 else if (word > sym_text)
4123 {
4124 /* Return some portion of symname. */
4125 new = xmalloc (strlen (symname) + 5);
4126 strcpy (new, symname + (word - sym_text));
4127 }
4128 else
4129 {
4130 /* Return some of SYM_TEXT plus symname. */
4131 new = xmalloc (strlen (symname) + (sym_text - word) + 5);
4132 strncpy (new, word, sym_text - word);
4133 new[sym_text - word] = '\0';
4134 strcat (new, symname);
4135 }
4136
4137 VEC_safe_push (char_ptr, return_val, new);
4138 }
4139 }
4140
4141 /* ObjC: In case we are completing on a selector, look as the msymbol
4142 again and feed all the selectors into the mill. */
4143
4144 static void
4145 completion_list_objc_symbol (struct minimal_symbol *msymbol,
4146 const char *sym_text, int sym_text_len,
4147 const char *text, const char *word)
4148 {
4149 static char *tmp = NULL;
4150 static unsigned int tmplen = 0;
4151
4152 const char *method, *category, *selector;
4153 char *tmp2 = NULL;
4154
4155 method = MSYMBOL_NATURAL_NAME (msymbol);
4156
4157 /* Is it a method? */
4158 if ((method[0] != '-') && (method[0] != '+'))
4159 return;
4160
4161 if (sym_text[0] == '[')
4162 /* Complete on shortened method method. */
4163 completion_list_add_name (method + 1, sym_text, sym_text_len, text, word);
4164
4165 while ((strlen (method) + 1) >= tmplen)
4166 {
4167 if (tmplen == 0)
4168 tmplen = 1024;
4169 else
4170 tmplen *= 2;
4171 tmp = xrealloc (tmp, tmplen);
4172 }
4173 selector = strchr (method, ' ');
4174 if (selector != NULL)
4175 selector++;
4176
4177 category = strchr (method, '(');
4178
4179 if ((category != NULL) && (selector != NULL))
4180 {
4181 memcpy (tmp, method, (category - method));
4182 tmp[category - method] = ' ';
4183 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
4184 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
4185 if (sym_text[0] == '[')
4186 completion_list_add_name (tmp + 1, sym_text, sym_text_len, text, word);
4187 }
4188
4189 if (selector != NULL)
4190 {
4191 /* Complete on selector only. */
4192 strcpy (tmp, selector);
4193 tmp2 = strchr (tmp, ']');
4194 if (tmp2 != NULL)
4195 *tmp2 = '\0';
4196
4197 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
4198 }
4199 }
4200
4201 /* Break the non-quoted text based on the characters which are in
4202 symbols. FIXME: This should probably be language-specific. */
4203
4204 static const char *
4205 language_search_unquoted_string (const char *text, const char *p)
4206 {
4207 for (; p > text; --p)
4208 {
4209 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
4210 continue;
4211 else
4212 {
4213 if ((current_language->la_language == language_objc))
4214 {
4215 if (p[-1] == ':') /* Might be part of a method name. */
4216 continue;
4217 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
4218 p -= 2; /* Beginning of a method name. */
4219 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
4220 { /* Might be part of a method name. */
4221 const char *t = p;
4222
4223 /* Seeing a ' ' or a '(' is not conclusive evidence
4224 that we are in the middle of a method name. However,
4225 finding "-[" or "+[" should be pretty un-ambiguous.
4226 Unfortunately we have to find it now to decide. */
4227
4228 while (t > text)
4229 if (isalnum (t[-1]) || t[-1] == '_' ||
4230 t[-1] == ' ' || t[-1] == ':' ||
4231 t[-1] == '(' || t[-1] == ')')
4232 --t;
4233 else
4234 break;
4235
4236 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
4237 p = t - 2; /* Method name detected. */
4238 /* Else we leave with p unchanged. */
4239 }
4240 }
4241 break;
4242 }
4243 }
4244 return p;
4245 }
4246
4247 static void
4248 completion_list_add_fields (struct symbol *sym, const char *sym_text,
4249 int sym_text_len, const char *text,
4250 const char *word)
4251 {
4252 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4253 {
4254 struct type *t = SYMBOL_TYPE (sym);
4255 enum type_code c = TYPE_CODE (t);
4256 int j;
4257
4258 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
4259 for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++)
4260 if (TYPE_FIELD_NAME (t, j))
4261 completion_list_add_name (TYPE_FIELD_NAME (t, j),
4262 sym_text, sym_text_len, text, word);
4263 }
4264 }
4265
4266 /* Type of the user_data argument passed to add_macro_name or
4267 symbol_completion_matcher. The contents are simply whatever is
4268 needed by completion_list_add_name. */
4269 struct add_name_data
4270 {
4271 const char *sym_text;
4272 int sym_text_len;
4273 const char *text;
4274 const char *word;
4275 };
4276
4277 /* A callback used with macro_for_each and macro_for_each_in_scope.
4278 This adds a macro's name to the current completion list. */
4279
4280 static void
4281 add_macro_name (const char *name, const struct macro_definition *ignore,
4282 struct macro_source_file *ignore2, int ignore3,
4283 void *user_data)
4284 {
4285 struct add_name_data *datum = (struct add_name_data *) user_data;
4286
4287 completion_list_add_name (name,
4288 datum->sym_text, datum->sym_text_len,
4289 datum->text, datum->word);
4290 }
4291
4292 /* A callback for expand_symtabs_matching. */
4293
4294 static int
4295 symbol_completion_matcher (const char *name, void *user_data)
4296 {
4297 struct add_name_data *datum = (struct add_name_data *) user_data;
4298
4299 return compare_symbol_name (name, datum->sym_text, datum->sym_text_len);
4300 }
4301
4302 VEC (char_ptr) *
4303 default_make_symbol_completion_list_break_on (const char *text,
4304 const char *word,
4305 const char *break_on,
4306 enum type_code code)
4307 {
4308 /* Problem: All of the symbols have to be copied because readline
4309 frees them. I'm not going to worry about this; hopefully there
4310 won't be that many. */
4311
4312 struct symbol *sym;
4313 struct symtab *s;
4314 struct minimal_symbol *msymbol;
4315 struct objfile *objfile;
4316 const struct block *b;
4317 const struct block *surrounding_static_block, *surrounding_global_block;
4318 struct block_iterator iter;
4319 /* The symbol we are completing on. Points in same buffer as text. */
4320 const char *sym_text;
4321 /* Length of sym_text. */
4322 int sym_text_len;
4323 struct add_name_data datum;
4324 struct cleanup *back_to;
4325
4326 /* Now look for the symbol we are supposed to complete on. */
4327 {
4328 const char *p;
4329 char quote_found;
4330 const char *quote_pos = NULL;
4331
4332 /* First see if this is a quoted string. */
4333 quote_found = '\0';
4334 for (p = text; *p != '\0'; ++p)
4335 {
4336 if (quote_found != '\0')
4337 {
4338 if (*p == quote_found)
4339 /* Found close quote. */
4340 quote_found = '\0';
4341 else if (*p == '\\' && p[1] == quote_found)
4342 /* A backslash followed by the quote character
4343 doesn't end the string. */
4344 ++p;
4345 }
4346 else if (*p == '\'' || *p == '"')
4347 {
4348 quote_found = *p;
4349 quote_pos = p;
4350 }
4351 }
4352 if (quote_found == '\'')
4353 /* A string within single quotes can be a symbol, so complete on it. */
4354 sym_text = quote_pos + 1;
4355 else if (quote_found == '"')
4356 /* A double-quoted string is never a symbol, nor does it make sense
4357 to complete it any other way. */
4358 {
4359 return NULL;
4360 }
4361 else
4362 {
4363 /* It is not a quoted string. Break it based on the characters
4364 which are in symbols. */
4365 while (p > text)
4366 {
4367 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0'
4368 || p[-1] == ':' || strchr (break_on, p[-1]) != NULL)
4369 --p;
4370 else
4371 break;
4372 }
4373 sym_text = p;
4374 }
4375 }
4376
4377 sym_text_len = strlen (sym_text);
4378
4379 /* Prepare SYM_TEXT_LEN for compare_symbol_name. */
4380
4381 if (current_language->la_language == language_cplus
4382 || current_language->la_language == language_java
4383 || current_language->la_language == language_fortran)
4384 {
4385 /* These languages may have parameters entered by user but they are never
4386 present in the partial symbol tables. */
4387
4388 const char *cs = memchr (sym_text, '(', sym_text_len);
4389
4390 if (cs)
4391 sym_text_len = cs - sym_text;
4392 }
4393 gdb_assert (sym_text[sym_text_len] == '\0' || sym_text[sym_text_len] == '(');
4394
4395 return_val = NULL;
4396 back_to = make_cleanup (do_free_completion_list, &return_val);
4397
4398 datum.sym_text = sym_text;
4399 datum.sym_text_len = sym_text_len;
4400 datum.text = text;
4401 datum.word = word;
4402
4403 /* Look through the partial symtabs for all symbols which begin
4404 by matching SYM_TEXT. Expand all CUs that you find to the list.
4405 The real names will get added by COMPLETION_LIST_ADD_SYMBOL below. */
4406 expand_symtabs_matching (NULL, symbol_completion_matcher, ALL_DOMAIN,
4407 &datum);
4408
4409 /* At this point scan through the misc symbol vectors and add each
4410 symbol you find to the list. Eventually we want to ignore
4411 anything that isn't a text symbol (everything else will be
4412 handled by the psymtab code above). */
4413
4414 if (code == TYPE_CODE_UNDEF)
4415 {
4416 ALL_MSYMBOLS (objfile, msymbol)
4417 {
4418 QUIT;
4419 MCOMPLETION_LIST_ADD_SYMBOL (msymbol, sym_text, sym_text_len, text,
4420 word);
4421
4422 completion_list_objc_symbol (msymbol, sym_text, sym_text_len, text,
4423 word);
4424 }
4425 }
4426
4427 /* Search upwards from currently selected frame (so that we can
4428 complete on local vars). Also catch fields of types defined in
4429 this places which match our text string. Only complete on types
4430 visible from current context. */
4431
4432 b = get_selected_block (0);
4433 surrounding_static_block = block_static_block (b);
4434 surrounding_global_block = block_global_block (b);
4435 if (surrounding_static_block != NULL)
4436 while (b != surrounding_static_block)
4437 {
4438 QUIT;
4439
4440 ALL_BLOCK_SYMBOLS (b, iter, sym)
4441 {
4442 if (code == TYPE_CODE_UNDEF)
4443 {
4444 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text,
4445 word);
4446 completion_list_add_fields (sym, sym_text, sym_text_len, text,
4447 word);
4448 }
4449 else if (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4450 && TYPE_CODE (SYMBOL_TYPE (sym)) == code)
4451 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text,
4452 word);
4453 }
4454
4455 /* Stop when we encounter an enclosing function. Do not stop for
4456 non-inlined functions - the locals of the enclosing function
4457 are in scope for a nested function. */
4458 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
4459 break;
4460 b = BLOCK_SUPERBLOCK (b);
4461 }
4462
4463 /* Add fields from the file's types; symbols will be added below. */
4464
4465 if (code == TYPE_CODE_UNDEF)
4466 {
4467 if (surrounding_static_block != NULL)
4468 ALL_BLOCK_SYMBOLS (surrounding_static_block, iter, sym)
4469 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
4470
4471 if (surrounding_global_block != NULL)
4472 ALL_BLOCK_SYMBOLS (surrounding_global_block, iter, sym)
4473 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
4474 }
4475
4476 /* Go through the symtabs and check the externs and statics for
4477 symbols which match. */
4478
4479 ALL_PRIMARY_SYMTABS (objfile, s)
4480 {
4481 QUIT;
4482 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
4483 ALL_BLOCK_SYMBOLS (b, iter, sym)
4484 {
4485 if (code == TYPE_CODE_UNDEF
4486 || (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4487 && TYPE_CODE (SYMBOL_TYPE (sym)) == code))
4488 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4489 }
4490 }
4491
4492 ALL_PRIMARY_SYMTABS (objfile, s)
4493 {
4494 QUIT;
4495 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
4496 ALL_BLOCK_SYMBOLS (b, iter, sym)
4497 {
4498 if (code == TYPE_CODE_UNDEF
4499 || (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4500 && TYPE_CODE (SYMBOL_TYPE (sym)) == code))
4501 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4502 }
4503 }
4504
4505 /* Skip macros if we are completing a struct tag -- arguable but
4506 usually what is expected. */
4507 if (current_language->la_macro_expansion == macro_expansion_c
4508 && code == TYPE_CODE_UNDEF)
4509 {
4510 struct macro_scope *scope;
4511
4512 /* Add any macros visible in the default scope. Note that this
4513 may yield the occasional wrong result, because an expression
4514 might be evaluated in a scope other than the default. For
4515 example, if the user types "break file:line if <TAB>", the
4516 resulting expression will be evaluated at "file:line" -- but
4517 at there does not seem to be a way to detect this at
4518 completion time. */
4519 scope = default_macro_scope ();
4520 if (scope)
4521 {
4522 macro_for_each_in_scope (scope->file, scope->line,
4523 add_macro_name, &datum);
4524 xfree (scope);
4525 }
4526
4527 /* User-defined macros are always visible. */
4528 macro_for_each (macro_user_macros, add_macro_name, &datum);
4529 }
4530
4531 discard_cleanups (back_to);
4532 return (return_val);
4533 }
4534
4535 VEC (char_ptr) *
4536 default_make_symbol_completion_list (const char *text, const char *word,
4537 enum type_code code)
4538 {
4539 return default_make_symbol_completion_list_break_on (text, word, "", code);
4540 }
4541
4542 /* Return a vector of all symbols (regardless of class) which begin by
4543 matching TEXT. If the answer is no symbols, then the return value
4544 is NULL. */
4545
4546 VEC (char_ptr) *
4547 make_symbol_completion_list (const char *text, const char *word)
4548 {
4549 return current_language->la_make_symbol_completion_list (text, word,
4550 TYPE_CODE_UNDEF);
4551 }
4552
4553 /* Like make_symbol_completion_list, but only return STRUCT_DOMAIN
4554 symbols whose type code is CODE. */
4555
4556 VEC (char_ptr) *
4557 make_symbol_completion_type (const char *text, const char *word,
4558 enum type_code code)
4559 {
4560 gdb_assert (code == TYPE_CODE_UNION
4561 || code == TYPE_CODE_STRUCT
4562 || code == TYPE_CODE_CLASS
4563 || code == TYPE_CODE_ENUM);
4564 return current_language->la_make_symbol_completion_list (text, word, code);
4565 }
4566
4567 /* Like make_symbol_completion_list, but suitable for use as a
4568 completion function. */
4569
4570 VEC (char_ptr) *
4571 make_symbol_completion_list_fn (struct cmd_list_element *ignore,
4572 const char *text, const char *word)
4573 {
4574 return make_symbol_completion_list (text, word);
4575 }
4576
4577 /* Like make_symbol_completion_list, but returns a list of symbols
4578 defined in a source file FILE. */
4579
4580 VEC (char_ptr) *
4581 make_file_symbol_completion_list (const char *text, const char *word,
4582 const char *srcfile)
4583 {
4584 struct symbol *sym;
4585 struct symtab *s;
4586 struct block *b;
4587 struct block_iterator iter;
4588 /* The symbol we are completing on. Points in same buffer as text. */
4589 const char *sym_text;
4590 /* Length of sym_text. */
4591 int sym_text_len;
4592
4593 /* Now look for the symbol we are supposed to complete on.
4594 FIXME: This should be language-specific. */
4595 {
4596 const char *p;
4597 char quote_found;
4598 const char *quote_pos = NULL;
4599
4600 /* First see if this is a quoted string. */
4601 quote_found = '\0';
4602 for (p = text; *p != '\0'; ++p)
4603 {
4604 if (quote_found != '\0')
4605 {
4606 if (*p == quote_found)
4607 /* Found close quote. */
4608 quote_found = '\0';
4609 else if (*p == '\\' && p[1] == quote_found)
4610 /* A backslash followed by the quote character
4611 doesn't end the string. */
4612 ++p;
4613 }
4614 else if (*p == '\'' || *p == '"')
4615 {
4616 quote_found = *p;
4617 quote_pos = p;
4618 }
4619 }
4620 if (quote_found == '\'')
4621 /* A string within single quotes can be a symbol, so complete on it. */
4622 sym_text = quote_pos + 1;
4623 else if (quote_found == '"')
4624 /* A double-quoted string is never a symbol, nor does it make sense
4625 to complete it any other way. */
4626 {
4627 return NULL;
4628 }
4629 else
4630 {
4631 /* Not a quoted string. */
4632 sym_text = language_search_unquoted_string (text, p);
4633 }
4634 }
4635
4636 sym_text_len = strlen (sym_text);
4637
4638 return_val = NULL;
4639
4640 /* Find the symtab for SRCFILE (this loads it if it was not yet read
4641 in). */
4642 s = lookup_symtab (srcfile);
4643 if (s == NULL)
4644 {
4645 /* Maybe they typed the file with leading directories, while the
4646 symbol tables record only its basename. */
4647 const char *tail = lbasename (srcfile);
4648
4649 if (tail > srcfile)
4650 s = lookup_symtab (tail);
4651 }
4652
4653 /* If we have no symtab for that file, return an empty list. */
4654 if (s == NULL)
4655 return (return_val);
4656
4657 /* Go through this symtab and check the externs and statics for
4658 symbols which match. */
4659
4660 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
4661 ALL_BLOCK_SYMBOLS (b, iter, sym)
4662 {
4663 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4664 }
4665
4666 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
4667 ALL_BLOCK_SYMBOLS (b, iter, sym)
4668 {
4669 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4670 }
4671
4672 return (return_val);
4673 }
4674
4675 /* A helper function for make_source_files_completion_list. It adds
4676 another file name to a list of possible completions, growing the
4677 list as necessary. */
4678
4679 static void
4680 add_filename_to_list (const char *fname, const char *text, const char *word,
4681 VEC (char_ptr) **list)
4682 {
4683 char *new;
4684 size_t fnlen = strlen (fname);
4685
4686 if (word == text)
4687 {
4688 /* Return exactly fname. */
4689 new = xmalloc (fnlen + 5);
4690 strcpy (new, fname);
4691 }
4692 else if (word > text)
4693 {
4694 /* Return some portion of fname. */
4695 new = xmalloc (fnlen + 5);
4696 strcpy (new, fname + (word - text));
4697 }
4698 else
4699 {
4700 /* Return some of TEXT plus fname. */
4701 new = xmalloc (fnlen + (text - word) + 5);
4702 strncpy (new, word, text - word);
4703 new[text - word] = '\0';
4704 strcat (new, fname);
4705 }
4706 VEC_safe_push (char_ptr, *list, new);
4707 }
4708
4709 static int
4710 not_interesting_fname (const char *fname)
4711 {
4712 static const char *illegal_aliens[] = {
4713 "_globals_", /* inserted by coff_symtab_read */
4714 NULL
4715 };
4716 int i;
4717
4718 for (i = 0; illegal_aliens[i]; i++)
4719 {
4720 if (filename_cmp (fname, illegal_aliens[i]) == 0)
4721 return 1;
4722 }
4723 return 0;
4724 }
4725
4726 /* An object of this type is passed as the user_data argument to
4727 map_partial_symbol_filenames. */
4728 struct add_partial_filename_data
4729 {
4730 struct filename_seen_cache *filename_seen_cache;
4731 const char *text;
4732 const char *word;
4733 int text_len;
4734 VEC (char_ptr) **list;
4735 };
4736
4737 /* A callback for map_partial_symbol_filenames. */
4738
4739 static void
4740 maybe_add_partial_symtab_filename (const char *filename, const char *fullname,
4741 void *user_data)
4742 {
4743 struct add_partial_filename_data *data = user_data;
4744
4745 if (not_interesting_fname (filename))
4746 return;
4747 if (!filename_seen (data->filename_seen_cache, filename, 1)
4748 && filename_ncmp (filename, data->text, data->text_len) == 0)
4749 {
4750 /* This file matches for a completion; add it to the
4751 current list of matches. */
4752 add_filename_to_list (filename, data->text, data->word, data->list);
4753 }
4754 else
4755 {
4756 const char *base_name = lbasename (filename);
4757
4758 if (base_name != filename
4759 && !filename_seen (data->filename_seen_cache, base_name, 1)
4760 && filename_ncmp (base_name, data->text, data->text_len) == 0)
4761 add_filename_to_list (base_name, data->text, data->word, data->list);
4762 }
4763 }
4764
4765 /* Return a vector of all source files whose names begin with matching
4766 TEXT. The file names are looked up in the symbol tables of this
4767 program. If the answer is no matchess, then the return value is
4768 NULL. */
4769
4770 VEC (char_ptr) *
4771 make_source_files_completion_list (const char *text, const char *word)
4772 {
4773 struct symtab *s;
4774 struct objfile *objfile;
4775 size_t text_len = strlen (text);
4776 VEC (char_ptr) *list = NULL;
4777 const char *base_name;
4778 struct add_partial_filename_data datum;
4779 struct filename_seen_cache *filename_seen_cache;
4780 struct cleanup *back_to, *cache_cleanup;
4781
4782 if (!have_full_symbols () && !have_partial_symbols ())
4783 return list;
4784
4785 back_to = make_cleanup (do_free_completion_list, &list);
4786
4787 filename_seen_cache = create_filename_seen_cache ();
4788 cache_cleanup = make_cleanup (delete_filename_seen_cache,
4789 filename_seen_cache);
4790
4791 ALL_SYMTABS (objfile, s)
4792 {
4793 if (not_interesting_fname (s->filename))
4794 continue;
4795 if (!filename_seen (filename_seen_cache, s->filename, 1)
4796 && filename_ncmp (s->filename, text, text_len) == 0)
4797 {
4798 /* This file matches for a completion; add it to the current
4799 list of matches. */
4800 add_filename_to_list (s->filename, text, word, &list);
4801 }
4802 else
4803 {
4804 /* NOTE: We allow the user to type a base name when the
4805 debug info records leading directories, but not the other
4806 way around. This is what subroutines of breakpoint
4807 command do when they parse file names. */
4808 base_name = lbasename (s->filename);
4809 if (base_name != s->filename
4810 && !filename_seen (filename_seen_cache, base_name, 1)
4811 && filename_ncmp (base_name, text, text_len) == 0)
4812 add_filename_to_list (base_name, text, word, &list);
4813 }
4814 }
4815
4816 datum.filename_seen_cache = filename_seen_cache;
4817 datum.text = text;
4818 datum.word = word;
4819 datum.text_len = text_len;
4820 datum.list = &list;
4821 map_symbol_filenames (maybe_add_partial_symtab_filename, &datum,
4822 0 /*need_fullname*/);
4823
4824 do_cleanups (cache_cleanup);
4825 discard_cleanups (back_to);
4826
4827 return list;
4828 }
4829
4830 /* Determine if PC is in the prologue of a function. The prologue is the area
4831 between the first instruction of a function, and the first executable line.
4832 Returns 1 if PC *might* be in prologue, 0 if definately *not* in prologue.
4833
4834 If non-zero, func_start is where we think the prologue starts, possibly
4835 by previous examination of symbol table information. */
4836
4837 int
4838 in_prologue (struct gdbarch *gdbarch, CORE_ADDR pc, CORE_ADDR func_start)
4839 {
4840 struct symtab_and_line sal;
4841 CORE_ADDR func_addr, func_end;
4842
4843 /* We have several sources of information we can consult to figure
4844 this out.
4845 - Compilers usually emit line number info that marks the prologue
4846 as its own "source line". So the ending address of that "line"
4847 is the end of the prologue. If available, this is the most
4848 reliable method.
4849 - The minimal symbols and partial symbols, which can usually tell
4850 us the starting and ending addresses of a function.
4851 - If we know the function's start address, we can call the
4852 architecture-defined gdbarch_skip_prologue function to analyze the
4853 instruction stream and guess where the prologue ends.
4854 - Our `func_start' argument; if non-zero, this is the caller's
4855 best guess as to the function's entry point. At the time of
4856 this writing, handle_inferior_event doesn't get this right, so
4857 it should be our last resort. */
4858
4859 /* Consult the partial symbol table, to find which function
4860 the PC is in. */
4861 if (! find_pc_partial_function (pc, NULL, &func_addr, &func_end))
4862 {
4863 CORE_ADDR prologue_end;
4864
4865 /* We don't even have minsym information, so fall back to using
4866 func_start, if given. */
4867 if (! func_start)
4868 return 1; /* We *might* be in a prologue. */
4869
4870 prologue_end = gdbarch_skip_prologue (gdbarch, func_start);
4871
4872 return func_start <= pc && pc < prologue_end;
4873 }
4874
4875 /* If we have line number information for the function, that's
4876 usually pretty reliable. */
4877 sal = find_pc_line (func_addr, 0);
4878
4879 /* Now sal describes the source line at the function's entry point,
4880 which (by convention) is the prologue. The end of that "line",
4881 sal.end, is the end of the prologue.
4882
4883 Note that, for functions whose source code is all on a single
4884 line, the line number information doesn't always end up this way.
4885 So we must verify that our purported end-of-prologue address is
4886 *within* the function, not at its start or end. */
4887 if (sal.line == 0
4888 || sal.end <= func_addr
4889 || func_end <= sal.end)
4890 {
4891 /* We don't have any good line number info, so use the minsym
4892 information, together with the architecture-specific prologue
4893 scanning code. */
4894 CORE_ADDR prologue_end = gdbarch_skip_prologue (gdbarch, func_addr);
4895
4896 return func_addr <= pc && pc < prologue_end;
4897 }
4898
4899 /* We have line number info, and it looks good. */
4900 return func_addr <= pc && pc < sal.end;
4901 }
4902
4903 /* Given PC at the function's start address, attempt to find the
4904 prologue end using SAL information. Return zero if the skip fails.
4905
4906 A non-optimized prologue traditionally has one SAL for the function
4907 and a second for the function body. A single line function has
4908 them both pointing at the same line.
4909
4910 An optimized prologue is similar but the prologue may contain
4911 instructions (SALs) from the instruction body. Need to skip those
4912 while not getting into the function body.
4913
4914 The functions end point and an increasing SAL line are used as
4915 indicators of the prologue's endpoint.
4916
4917 This code is based on the function refine_prologue_limit
4918 (found in ia64). */
4919
4920 CORE_ADDR
4921 skip_prologue_using_sal (struct gdbarch *gdbarch, CORE_ADDR func_addr)
4922 {
4923 struct symtab_and_line prologue_sal;
4924 CORE_ADDR start_pc;
4925 CORE_ADDR end_pc;
4926 const struct block *bl;
4927
4928 /* Get an initial range for the function. */
4929 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
4930 start_pc += gdbarch_deprecated_function_start_offset (gdbarch);
4931
4932 prologue_sal = find_pc_line (start_pc, 0);
4933 if (prologue_sal.line != 0)
4934 {
4935 /* For languages other than assembly, treat two consecutive line
4936 entries at the same address as a zero-instruction prologue.
4937 The GNU assembler emits separate line notes for each instruction
4938 in a multi-instruction macro, but compilers generally will not
4939 do this. */
4940 if (prologue_sal.symtab->language != language_asm)
4941 {
4942 struct linetable *linetable = LINETABLE (prologue_sal.symtab);
4943 int idx = 0;
4944
4945 /* Skip any earlier lines, and any end-of-sequence marker
4946 from a previous function. */
4947 while (linetable->item[idx].pc != prologue_sal.pc
4948 || linetable->item[idx].line == 0)
4949 idx++;
4950
4951 if (idx+1 < linetable->nitems
4952 && linetable->item[idx+1].line != 0
4953 && linetable->item[idx+1].pc == start_pc)
4954 return start_pc;
4955 }
4956
4957 /* If there is only one sal that covers the entire function,
4958 then it is probably a single line function, like
4959 "foo(){}". */
4960 if (prologue_sal.end >= end_pc)
4961 return 0;
4962
4963 while (prologue_sal.end < end_pc)
4964 {
4965 struct symtab_and_line sal;
4966
4967 sal = find_pc_line (prologue_sal.end, 0);
4968 if (sal.line == 0)
4969 break;
4970 /* Assume that a consecutive SAL for the same (or larger)
4971 line mark the prologue -> body transition. */
4972 if (sal.line >= prologue_sal.line)
4973 break;
4974 /* Likewise if we are in a different symtab altogether
4975 (e.g. within a file included via #include).  */
4976 if (sal.symtab != prologue_sal.symtab)
4977 break;
4978
4979 /* The line number is smaller. Check that it's from the
4980 same function, not something inlined. If it's inlined,
4981 then there is no point comparing the line numbers. */
4982 bl = block_for_pc (prologue_sal.end);
4983 while (bl)
4984 {
4985 if (block_inlined_p (bl))
4986 break;
4987 if (BLOCK_FUNCTION (bl))
4988 {
4989 bl = NULL;
4990 break;
4991 }
4992 bl = BLOCK_SUPERBLOCK (bl);
4993 }
4994 if (bl != NULL)
4995 break;
4996
4997 /* The case in which compiler's optimizer/scheduler has
4998 moved instructions into the prologue. We look ahead in
4999 the function looking for address ranges whose
5000 corresponding line number is less the first one that we
5001 found for the function. This is more conservative then
5002 refine_prologue_limit which scans a large number of SALs
5003 looking for any in the prologue. */
5004 prologue_sal = sal;
5005 }
5006 }
5007
5008 if (prologue_sal.end < end_pc)
5009 /* Return the end of this line, or zero if we could not find a
5010 line. */
5011 return prologue_sal.end;
5012 else
5013 /* Don't return END_PC, which is past the end of the function. */
5014 return prologue_sal.pc;
5015 }
5016 \f
5017 /* Track MAIN */
5018
5019 /* Return the "main_info" object for the current program space. If
5020 the object has not yet been created, create it and fill in some
5021 default values. */
5022
5023 static struct main_info *
5024 get_main_info (void)
5025 {
5026 struct main_info *info = program_space_data (current_program_space,
5027 main_progspace_key);
5028
5029 if (info == NULL)
5030 {
5031 /* It may seem strange to store the main name in the progspace
5032 and also in whatever objfile happens to see a main name in
5033 its debug info. The reason for this is mainly historical:
5034 gdb returned "main" as the name even if no function named
5035 "main" was defined the program; and this approach lets us
5036 keep compatibility. */
5037 info = XCNEW (struct main_info);
5038 info->language_of_main = language_unknown;
5039 set_program_space_data (current_program_space, main_progspace_key,
5040 info);
5041 }
5042
5043 return info;
5044 }
5045
5046 /* A cleanup to destroy a struct main_info when a progspace is
5047 destroyed. */
5048
5049 static void
5050 main_info_cleanup (struct program_space *pspace, void *data)
5051 {
5052 struct main_info *info = data;
5053
5054 if (info != NULL)
5055 xfree (info->name_of_main);
5056 xfree (info);
5057 }
5058
5059 static void
5060 set_main_name (const char *name, enum language lang)
5061 {
5062 struct main_info *info = get_main_info ();
5063
5064 if (info->name_of_main != NULL)
5065 {
5066 xfree (info->name_of_main);
5067 info->name_of_main = NULL;
5068 info->language_of_main = language_unknown;
5069 }
5070 if (name != NULL)
5071 {
5072 info->name_of_main = xstrdup (name);
5073 info->language_of_main = lang;
5074 }
5075 }
5076
5077 /* Deduce the name of the main procedure, and set NAME_OF_MAIN
5078 accordingly. */
5079
5080 static void
5081 find_main_name (void)
5082 {
5083 const char *new_main_name;
5084 struct objfile *objfile;
5085
5086 /* First check the objfiles to see whether a debuginfo reader has
5087 picked up the appropriate main name. Historically the main name
5088 was found in a more or less random way; this approach instead
5089 relies on the order of objfile creation -- which still isn't
5090 guaranteed to get the correct answer, but is just probably more
5091 accurate. */
5092 ALL_OBJFILES (objfile)
5093 {
5094 if (objfile->per_bfd->name_of_main != NULL)
5095 {
5096 set_main_name (objfile->per_bfd->name_of_main,
5097 objfile->per_bfd->language_of_main);
5098 return;
5099 }
5100 }
5101
5102 /* Try to see if the main procedure is in Ada. */
5103 /* FIXME: brobecker/2005-03-07: Another way of doing this would
5104 be to add a new method in the language vector, and call this
5105 method for each language until one of them returns a non-empty
5106 name. This would allow us to remove this hard-coded call to
5107 an Ada function. It is not clear that this is a better approach
5108 at this point, because all methods need to be written in a way
5109 such that false positives never be returned. For instance, it is
5110 important that a method does not return a wrong name for the main
5111 procedure if the main procedure is actually written in a different
5112 language. It is easy to guaranty this with Ada, since we use a
5113 special symbol generated only when the main in Ada to find the name
5114 of the main procedure. It is difficult however to see how this can
5115 be guarantied for languages such as C, for instance. This suggests
5116 that order of call for these methods becomes important, which means
5117 a more complicated approach. */
5118 new_main_name = ada_main_name ();
5119 if (new_main_name != NULL)
5120 {
5121 set_main_name (new_main_name, language_ada);
5122 return;
5123 }
5124
5125 new_main_name = d_main_name ();
5126 if (new_main_name != NULL)
5127 {
5128 set_main_name (new_main_name, language_d);
5129 return;
5130 }
5131
5132 new_main_name = go_main_name ();
5133 if (new_main_name != NULL)
5134 {
5135 set_main_name (new_main_name, language_go);
5136 return;
5137 }
5138
5139 new_main_name = pascal_main_name ();
5140 if (new_main_name != NULL)
5141 {
5142 set_main_name (new_main_name, language_pascal);
5143 return;
5144 }
5145
5146 /* The languages above didn't identify the name of the main procedure.
5147 Fallback to "main". */
5148 set_main_name ("main", language_unknown);
5149 }
5150
5151 char *
5152 main_name (void)
5153 {
5154 struct main_info *info = get_main_info ();
5155
5156 if (info->name_of_main == NULL)
5157 find_main_name ();
5158
5159 return info->name_of_main;
5160 }
5161
5162 /* Return the language of the main function. If it is not known,
5163 return language_unknown. */
5164
5165 enum language
5166 main_language (void)
5167 {
5168 struct main_info *info = get_main_info ();
5169
5170 if (info->name_of_main == NULL)
5171 find_main_name ();
5172
5173 return info->language_of_main;
5174 }
5175
5176 /* Handle ``executable_changed'' events for the symtab module. */
5177
5178 static void
5179 symtab_observer_executable_changed (void)
5180 {
5181 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
5182 set_main_name (NULL, language_unknown);
5183 }
5184
5185 /* Return 1 if the supplied producer string matches the ARM RealView
5186 compiler (armcc). */
5187
5188 int
5189 producer_is_realview (const char *producer)
5190 {
5191 static const char *const arm_idents[] = {
5192 "ARM C Compiler, ADS",
5193 "Thumb C Compiler, ADS",
5194 "ARM C++ Compiler, ADS",
5195 "Thumb C++ Compiler, ADS",
5196 "ARM/Thumb C/C++ Compiler, RVCT",
5197 "ARM C/C++ Compiler, RVCT"
5198 };
5199 int i;
5200
5201 if (producer == NULL)
5202 return 0;
5203
5204 for (i = 0; i < ARRAY_SIZE (arm_idents); i++)
5205 if (strncmp (producer, arm_idents[i], strlen (arm_idents[i])) == 0)
5206 return 1;
5207
5208 return 0;
5209 }
5210
5211 \f
5212
5213 /* The next index to hand out in response to a registration request. */
5214
5215 static int next_aclass_value = LOC_FINAL_VALUE;
5216
5217 /* The maximum number of "aclass" registrations we support. This is
5218 constant for convenience. */
5219 #define MAX_SYMBOL_IMPLS (LOC_FINAL_VALUE + 10)
5220
5221 /* The objects representing the various "aclass" values. The elements
5222 from 0 up to LOC_FINAL_VALUE-1 represent themselves, and subsequent
5223 elements are those registered at gdb initialization time. */
5224
5225 static struct symbol_impl symbol_impl[MAX_SYMBOL_IMPLS];
5226
5227 /* The globally visible pointer. This is separate from 'symbol_impl'
5228 so that it can be const. */
5229
5230 const struct symbol_impl *symbol_impls = &symbol_impl[0];
5231
5232 /* Make sure we saved enough room in struct symbol. */
5233
5234 gdb_static_assert (MAX_SYMBOL_IMPLS <= (1 << SYMBOL_ACLASS_BITS));
5235
5236 /* Register a computed symbol type. ACLASS must be LOC_COMPUTED. OPS
5237 is the ops vector associated with this index. This returns the new
5238 index, which should be used as the aclass_index field for symbols
5239 of this type. */
5240
5241 int
5242 register_symbol_computed_impl (enum address_class aclass,
5243 const struct symbol_computed_ops *ops)
5244 {
5245 int result = next_aclass_value++;
5246
5247 gdb_assert (aclass == LOC_COMPUTED);
5248 gdb_assert (result < MAX_SYMBOL_IMPLS);
5249 symbol_impl[result].aclass = aclass;
5250 symbol_impl[result].ops_computed = ops;
5251
5252 /* Sanity check OPS. */
5253 gdb_assert (ops != NULL);
5254 gdb_assert (ops->tracepoint_var_ref != NULL);
5255 gdb_assert (ops->describe_location != NULL);
5256 gdb_assert (ops->read_needs_frame != NULL);
5257 gdb_assert (ops->read_variable != NULL);
5258
5259 return result;
5260 }
5261
5262 /* Register a function with frame base type. ACLASS must be LOC_BLOCK.
5263 OPS is the ops vector associated with this index. This returns the
5264 new index, which should be used as the aclass_index field for symbols
5265 of this type. */
5266
5267 int
5268 register_symbol_block_impl (enum address_class aclass,
5269 const struct symbol_block_ops *ops)
5270 {
5271 int result = next_aclass_value++;
5272
5273 gdb_assert (aclass == LOC_BLOCK);
5274 gdb_assert (result < MAX_SYMBOL_IMPLS);
5275 symbol_impl[result].aclass = aclass;
5276 symbol_impl[result].ops_block = ops;
5277
5278 /* Sanity check OPS. */
5279 gdb_assert (ops != NULL);
5280 gdb_assert (ops->find_frame_base_location != NULL);
5281
5282 return result;
5283 }
5284
5285 /* Register a register symbol type. ACLASS must be LOC_REGISTER or
5286 LOC_REGPARM_ADDR. OPS is the register ops vector associated with
5287 this index. This returns the new index, which should be used as
5288 the aclass_index field for symbols of this type. */
5289
5290 int
5291 register_symbol_register_impl (enum address_class aclass,
5292 const struct symbol_register_ops *ops)
5293 {
5294 int result = next_aclass_value++;
5295
5296 gdb_assert (aclass == LOC_REGISTER || aclass == LOC_REGPARM_ADDR);
5297 gdb_assert (result < MAX_SYMBOL_IMPLS);
5298 symbol_impl[result].aclass = aclass;
5299 symbol_impl[result].ops_register = ops;
5300
5301 return result;
5302 }
5303
5304 /* Initialize elements of 'symbol_impl' for the constants in enum
5305 address_class. */
5306
5307 static void
5308 initialize_ordinary_address_classes (void)
5309 {
5310 int i;
5311
5312 for (i = 0; i < LOC_FINAL_VALUE; ++i)
5313 symbol_impl[i].aclass = i;
5314 }
5315
5316 \f
5317
5318 /* Initialize the symbol SYM. */
5319
5320 void
5321 initialize_symbol (struct symbol *sym)
5322 {
5323 memset (sym, 0, sizeof (*sym));
5324 SYMBOL_SECTION (sym) = -1;
5325 }
5326
5327 /* Allocate and initialize a new 'struct symbol' on OBJFILE's
5328 obstack. */
5329
5330 struct symbol *
5331 allocate_symbol (struct objfile *objfile)
5332 {
5333 struct symbol *result;
5334
5335 result = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symbol);
5336 SYMBOL_SECTION (result) = -1;
5337
5338 return result;
5339 }
5340
5341 /* Allocate and initialize a new 'struct template_symbol' on OBJFILE's
5342 obstack. */
5343
5344 struct template_symbol *
5345 allocate_template_symbol (struct objfile *objfile)
5346 {
5347 struct template_symbol *result;
5348
5349 result = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct template_symbol);
5350 SYMBOL_SECTION (&result->base) = -1;
5351
5352 return result;
5353 }
5354
5355 \f
5356
5357 void
5358 _initialize_symtab (void)
5359 {
5360 initialize_ordinary_address_classes ();
5361
5362 main_progspace_key
5363 = register_program_space_data_with_cleanup (NULL, main_info_cleanup);
5364
5365 add_info ("variables", variables_info, _("\
5366 All global and static variable names, or those matching REGEXP."));
5367 if (dbx_commands)
5368 add_com ("whereis", class_info, variables_info, _("\
5369 All global and static variable names, or those matching REGEXP."));
5370
5371 add_info ("functions", functions_info,
5372 _("All function names, or those matching REGEXP."));
5373
5374 /* FIXME: This command has at least the following problems:
5375 1. It prints builtin types (in a very strange and confusing fashion).
5376 2. It doesn't print right, e.g. with
5377 typedef struct foo *FOO
5378 type_print prints "FOO" when we want to make it (in this situation)
5379 print "struct foo *".
5380 I also think "ptype" or "whatis" is more likely to be useful (but if
5381 there is much disagreement "info types" can be fixed). */
5382 add_info ("types", types_info,
5383 _("All type names, or those matching REGEXP."));
5384
5385 add_info ("sources", sources_info,
5386 _("Source files in the program."));
5387
5388 add_com ("rbreak", class_breakpoint, rbreak_command,
5389 _("Set a breakpoint for all functions matching REGEXP."));
5390
5391 if (xdb_commands)
5392 {
5393 add_com ("lf", class_info, sources_info,
5394 _("Source files in the program"));
5395 add_com ("lg", class_info, variables_info, _("\
5396 All global and static variable names, or those matching REGEXP."));
5397 }
5398
5399 add_setshow_enum_cmd ("multiple-symbols", no_class,
5400 multiple_symbols_modes, &multiple_symbols_mode,
5401 _("\
5402 Set the debugger behavior when more than one symbol are possible matches\n\
5403 in an expression."), _("\
5404 Show how the debugger handles ambiguities in expressions."), _("\
5405 Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
5406 NULL, NULL, &setlist, &showlist);
5407
5408 add_setshow_boolean_cmd ("basenames-may-differ", class_obscure,
5409 &basenames_may_differ, _("\
5410 Set whether a source file may have multiple base names."), _("\
5411 Show whether a source file may have multiple base names."), _("\
5412 (A \"base name\" is the name of a file with the directory part removed.\n\
5413 Example: The base name of \"/home/user/hello.c\" is \"hello.c\".)\n\
5414 If set, GDB will canonicalize file names (e.g., expand symlinks)\n\
5415 before comparing them. Canonicalization is an expensive operation,\n\
5416 but it allows the same file be known by more than one base name.\n\
5417 If not set (the default), all source files are assumed to have just\n\
5418 one base name, and gdb will do file name comparisons more efficiently."),
5419 NULL, NULL,
5420 &setlist, &showlist);
5421
5422 add_setshow_zuinteger_cmd ("symtab-create", no_class, &symtab_create_debug,
5423 _("Set debugging of symbol table creation."),
5424 _("Show debugging of symbol table creation."), _("\
5425 When enabled (non-zero), debugging messages are printed when building\n\
5426 symbol tables. A value of 1 (one) normally provides enough information.\n\
5427 A value greater than 1 provides more verbose information."),
5428 NULL,
5429 NULL,
5430 &setdebuglist, &showdebuglist);
5431
5432 observer_attach_executable_changed (symtab_observer_executable_changed);
5433 }
This page took 0.134996 seconds and 5 git commands to generate.