Simplify completion_list_add_name | remove sym_text / sym_text_len
[deliverable/binutils-gdb.git] / gdb / symtab.c
1 /* Symbol table lookup for the GNU debugger, GDB.
2
3 Copyright (C) 1986-2017 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "gdbcore.h"
24 #include "frame.h"
25 #include "target.h"
26 #include "value.h"
27 #include "symfile.h"
28 #include "objfiles.h"
29 #include "gdbcmd.h"
30 #include "gdb_regex.h"
31 #include "expression.h"
32 #include "language.h"
33 #include "demangle.h"
34 #include "inferior.h"
35 #include "source.h"
36 #include "filenames.h" /* for FILENAME_CMP */
37 #include "objc-lang.h"
38 #include "d-lang.h"
39 #include "ada-lang.h"
40 #include "go-lang.h"
41 #include "p-lang.h"
42 #include "addrmap.h"
43 #include "cli/cli-utils.h"
44 #include "fnmatch.h"
45 #include "hashtab.h"
46
47 #include "gdb_obstack.h"
48 #include "block.h"
49 #include "dictionary.h"
50
51 #include <sys/types.h>
52 #include <fcntl.h>
53 #include <sys/stat.h>
54 #include <ctype.h>
55 #include "cp-abi.h"
56 #include "cp-support.h"
57 #include "observer.h"
58 #include "solist.h"
59 #include "macrotab.h"
60 #include "macroscope.h"
61
62 #include "parser-defs.h"
63 #include "completer.h"
64 #include "progspace-and-thread.h"
65 #include "common/gdb_optional.h"
66 #include "filename-seen-cache.h"
67 #include "arch-utils.h"
68 #include <algorithm>
69
70 /* Forward declarations for local functions. */
71
72 static void rbreak_command (const char *, int);
73
74 static int find_line_common (struct linetable *, int, int *, int);
75
76 static struct block_symbol
77 lookup_symbol_aux (const char *name,
78 const struct block *block,
79 const domain_enum domain,
80 enum language language,
81 struct field_of_this_result *);
82
83 static
84 struct block_symbol lookup_local_symbol (const char *name,
85 const struct block *block,
86 const domain_enum domain,
87 enum language language);
88
89 static struct block_symbol
90 lookup_symbol_in_objfile (struct objfile *objfile, int block_index,
91 const char *name, const domain_enum domain);
92
93 /* See symtab.h. */
94 const struct block_symbol null_block_symbol = { NULL, NULL };
95
96 /* Program space key for finding name and language of "main". */
97
98 static const struct program_space_data *main_progspace_key;
99
100 /* Type of the data stored on the program space. */
101
102 struct main_info
103 {
104 /* Name of "main". */
105
106 char *name_of_main;
107
108 /* Language of "main". */
109
110 enum language language_of_main;
111 };
112
113 /* Program space key for finding its symbol cache. */
114
115 static const struct program_space_data *symbol_cache_key;
116
117 /* The default symbol cache size.
118 There is no extra cpu cost for large N (except when flushing the cache,
119 which is rare). The value here is just a first attempt. A better default
120 value may be higher or lower. A prime number can make up for a bad hash
121 computation, so that's why the number is what it is. */
122 #define DEFAULT_SYMBOL_CACHE_SIZE 1021
123
124 /* The maximum symbol cache size.
125 There's no method to the decision of what value to use here, other than
126 there's no point in allowing a user typo to make gdb consume all memory. */
127 #define MAX_SYMBOL_CACHE_SIZE (1024*1024)
128
129 /* symbol_cache_lookup returns this if a previous lookup failed to find the
130 symbol in any objfile. */
131 #define SYMBOL_LOOKUP_FAILED \
132 ((struct block_symbol) {(struct symbol *) 1, NULL})
133 #define SYMBOL_LOOKUP_FAILED_P(SIB) (SIB.symbol == (struct symbol *) 1)
134
135 /* Recording lookups that don't find the symbol is just as important, if not
136 more so, than recording found symbols. */
137
138 enum symbol_cache_slot_state
139 {
140 SYMBOL_SLOT_UNUSED,
141 SYMBOL_SLOT_NOT_FOUND,
142 SYMBOL_SLOT_FOUND
143 };
144
145 struct symbol_cache_slot
146 {
147 enum symbol_cache_slot_state state;
148
149 /* The objfile that was current when the symbol was looked up.
150 This is only needed for global blocks, but for simplicity's sake
151 we allocate the space for both. If data shows the extra space used
152 for static blocks is a problem, we can split things up then.
153
154 Global blocks need cache lookup to include the objfile context because
155 we need to account for gdbarch_iterate_over_objfiles_in_search_order
156 which can traverse objfiles in, effectively, any order, depending on
157 the current objfile, thus affecting which symbol is found. Normally,
158 only the current objfile is searched first, and then the rest are
159 searched in recorded order; but putting cache lookup inside
160 gdbarch_iterate_over_objfiles_in_search_order would be awkward.
161 Instead we just make the current objfile part of the context of
162 cache lookup. This means we can record the same symbol multiple times,
163 each with a different "current objfile" that was in effect when the
164 lookup was saved in the cache, but cache space is pretty cheap. */
165 const struct objfile *objfile_context;
166
167 union
168 {
169 struct block_symbol found;
170 struct
171 {
172 char *name;
173 domain_enum domain;
174 } not_found;
175 } value;
176 };
177
178 /* Symbols don't specify global vs static block.
179 So keep them in separate caches. */
180
181 struct block_symbol_cache
182 {
183 unsigned int hits;
184 unsigned int misses;
185 unsigned int collisions;
186
187 /* SYMBOLS is a variable length array of this size.
188 One can imagine that in general one cache (global/static) should be a
189 fraction of the size of the other, but there's no data at the moment
190 on which to decide. */
191 unsigned int size;
192
193 struct symbol_cache_slot symbols[1];
194 };
195
196 /* The symbol cache.
197
198 Searching for symbols in the static and global blocks over multiple objfiles
199 again and again can be slow, as can searching very big objfiles. This is a
200 simple cache to improve symbol lookup performance, which is critical to
201 overall gdb performance.
202
203 Symbols are hashed on the name, its domain, and block.
204 They are also hashed on their objfile for objfile-specific lookups. */
205
206 struct symbol_cache
207 {
208 struct block_symbol_cache *global_symbols;
209 struct block_symbol_cache *static_symbols;
210 };
211
212 /* When non-zero, print debugging messages related to symtab creation. */
213 unsigned int symtab_create_debug = 0;
214
215 /* When non-zero, print debugging messages related to symbol lookup. */
216 unsigned int symbol_lookup_debug = 0;
217
218 /* The size of the cache is staged here. */
219 static unsigned int new_symbol_cache_size = DEFAULT_SYMBOL_CACHE_SIZE;
220
221 /* The current value of the symbol cache size.
222 This is saved so that if the user enters a value too big we can restore
223 the original value from here. */
224 static unsigned int symbol_cache_size = DEFAULT_SYMBOL_CACHE_SIZE;
225
226 /* Non-zero if a file may be known by two different basenames.
227 This is the uncommon case, and significantly slows down gdb.
228 Default set to "off" to not slow down the common case. */
229 int basenames_may_differ = 0;
230
231 /* Allow the user to configure the debugger behavior with respect
232 to multiple-choice menus when more than one symbol matches during
233 a symbol lookup. */
234
235 const char multiple_symbols_ask[] = "ask";
236 const char multiple_symbols_all[] = "all";
237 const char multiple_symbols_cancel[] = "cancel";
238 static const char *const multiple_symbols_modes[] =
239 {
240 multiple_symbols_ask,
241 multiple_symbols_all,
242 multiple_symbols_cancel,
243 NULL
244 };
245 static const char *multiple_symbols_mode = multiple_symbols_all;
246
247 /* Read-only accessor to AUTO_SELECT_MODE. */
248
249 const char *
250 multiple_symbols_select_mode (void)
251 {
252 return multiple_symbols_mode;
253 }
254
255 /* Return the name of a domain_enum. */
256
257 const char *
258 domain_name (domain_enum e)
259 {
260 switch (e)
261 {
262 case UNDEF_DOMAIN: return "UNDEF_DOMAIN";
263 case VAR_DOMAIN: return "VAR_DOMAIN";
264 case STRUCT_DOMAIN: return "STRUCT_DOMAIN";
265 case MODULE_DOMAIN: return "MODULE_DOMAIN";
266 case LABEL_DOMAIN: return "LABEL_DOMAIN";
267 case COMMON_BLOCK_DOMAIN: return "COMMON_BLOCK_DOMAIN";
268 default: gdb_assert_not_reached ("bad domain_enum");
269 }
270 }
271
272 /* Return the name of a search_domain . */
273
274 const char *
275 search_domain_name (enum search_domain e)
276 {
277 switch (e)
278 {
279 case VARIABLES_DOMAIN: return "VARIABLES_DOMAIN";
280 case FUNCTIONS_DOMAIN: return "FUNCTIONS_DOMAIN";
281 case TYPES_DOMAIN: return "TYPES_DOMAIN";
282 case ALL_DOMAIN: return "ALL_DOMAIN";
283 default: gdb_assert_not_reached ("bad search_domain");
284 }
285 }
286
287 /* See symtab.h. */
288
289 struct symtab *
290 compunit_primary_filetab (const struct compunit_symtab *cust)
291 {
292 gdb_assert (COMPUNIT_FILETABS (cust) != NULL);
293
294 /* The primary file symtab is the first one in the list. */
295 return COMPUNIT_FILETABS (cust);
296 }
297
298 /* See symtab.h. */
299
300 enum language
301 compunit_language (const struct compunit_symtab *cust)
302 {
303 struct symtab *symtab = compunit_primary_filetab (cust);
304
305 /* The language of the compunit symtab is the language of its primary
306 source file. */
307 return SYMTAB_LANGUAGE (symtab);
308 }
309
310 /* See whether FILENAME matches SEARCH_NAME using the rule that we
311 advertise to the user. (The manual's description of linespecs
312 describes what we advertise). Returns true if they match, false
313 otherwise. */
314
315 int
316 compare_filenames_for_search (const char *filename, const char *search_name)
317 {
318 int len = strlen (filename);
319 size_t search_len = strlen (search_name);
320
321 if (len < search_len)
322 return 0;
323
324 /* The tail of FILENAME must match. */
325 if (FILENAME_CMP (filename + len - search_len, search_name) != 0)
326 return 0;
327
328 /* Either the names must completely match, or the character
329 preceding the trailing SEARCH_NAME segment of FILENAME must be a
330 directory separator.
331
332 The check !IS_ABSOLUTE_PATH ensures SEARCH_NAME "/dir/file.c"
333 cannot match FILENAME "/path//dir/file.c" - as user has requested
334 absolute path. The sama applies for "c:\file.c" possibly
335 incorrectly hypothetically matching "d:\dir\c:\file.c".
336
337 The HAS_DRIVE_SPEC purpose is to make FILENAME "c:file.c"
338 compatible with SEARCH_NAME "file.c". In such case a compiler had
339 to put the "c:file.c" name into debug info. Such compatibility
340 works only on GDB built for DOS host. */
341 return (len == search_len
342 || (!IS_ABSOLUTE_PATH (search_name)
343 && IS_DIR_SEPARATOR (filename[len - search_len - 1]))
344 || (HAS_DRIVE_SPEC (filename)
345 && STRIP_DRIVE_SPEC (filename) == &filename[len - search_len]));
346 }
347
348 /* Same as compare_filenames_for_search, but for glob-style patterns.
349 Heads up on the order of the arguments. They match the order of
350 compare_filenames_for_search, but it's the opposite of the order of
351 arguments to gdb_filename_fnmatch. */
352
353 int
354 compare_glob_filenames_for_search (const char *filename,
355 const char *search_name)
356 {
357 /* We rely on the property of glob-style patterns with FNM_FILE_NAME that
358 all /s have to be explicitly specified. */
359 int file_path_elements = count_path_elements (filename);
360 int search_path_elements = count_path_elements (search_name);
361
362 if (search_path_elements > file_path_elements)
363 return 0;
364
365 if (IS_ABSOLUTE_PATH (search_name))
366 {
367 return (search_path_elements == file_path_elements
368 && gdb_filename_fnmatch (search_name, filename,
369 FNM_FILE_NAME | FNM_NOESCAPE) == 0);
370 }
371
372 {
373 const char *file_to_compare
374 = strip_leading_path_elements (filename,
375 file_path_elements - search_path_elements);
376
377 return gdb_filename_fnmatch (search_name, file_to_compare,
378 FNM_FILE_NAME | FNM_NOESCAPE) == 0;
379 }
380 }
381
382 /* Check for a symtab of a specific name by searching some symtabs.
383 This is a helper function for callbacks of iterate_over_symtabs.
384
385 If NAME is not absolute, then REAL_PATH is NULL
386 If NAME is absolute, then REAL_PATH is the gdb_realpath form of NAME.
387
388 The return value, NAME, REAL_PATH and CALLBACK are identical to the
389 `map_symtabs_matching_filename' method of quick_symbol_functions.
390
391 FIRST and AFTER_LAST indicate the range of compunit symtabs to search.
392 Each symtab within the specified compunit symtab is also searched.
393 AFTER_LAST is one past the last compunit symtab to search; NULL means to
394 search until the end of the list. */
395
396 bool
397 iterate_over_some_symtabs (const char *name,
398 const char *real_path,
399 struct compunit_symtab *first,
400 struct compunit_symtab *after_last,
401 gdb::function_view<bool (symtab *)> callback)
402 {
403 struct compunit_symtab *cust;
404 struct symtab *s;
405 const char* base_name = lbasename (name);
406
407 for (cust = first; cust != NULL && cust != after_last; cust = cust->next)
408 {
409 ALL_COMPUNIT_FILETABS (cust, s)
410 {
411 if (compare_filenames_for_search (s->filename, name))
412 {
413 if (callback (s))
414 return true;
415 continue;
416 }
417
418 /* Before we invoke realpath, which can get expensive when many
419 files are involved, do a quick comparison of the basenames. */
420 if (! basenames_may_differ
421 && FILENAME_CMP (base_name, lbasename (s->filename)) != 0)
422 continue;
423
424 if (compare_filenames_for_search (symtab_to_fullname (s), name))
425 {
426 if (callback (s))
427 return true;
428 continue;
429 }
430
431 /* If the user gave us an absolute path, try to find the file in
432 this symtab and use its absolute path. */
433 if (real_path != NULL)
434 {
435 const char *fullname = symtab_to_fullname (s);
436
437 gdb_assert (IS_ABSOLUTE_PATH (real_path));
438 gdb_assert (IS_ABSOLUTE_PATH (name));
439 if (FILENAME_CMP (real_path, fullname) == 0)
440 {
441 if (callback (s))
442 return true;
443 continue;
444 }
445 }
446 }
447 }
448
449 return false;
450 }
451
452 /* Check for a symtab of a specific name; first in symtabs, then in
453 psymtabs. *If* there is no '/' in the name, a match after a '/'
454 in the symtab filename will also work.
455
456 Calls CALLBACK with each symtab that is found. If CALLBACK returns
457 true, the search stops. */
458
459 void
460 iterate_over_symtabs (const char *name,
461 gdb::function_view<bool (symtab *)> callback)
462 {
463 struct objfile *objfile;
464 gdb::unique_xmalloc_ptr<char> real_path;
465
466 /* Here we are interested in canonicalizing an absolute path, not
467 absolutizing a relative path. */
468 if (IS_ABSOLUTE_PATH (name))
469 {
470 real_path = gdb_realpath (name);
471 gdb_assert (IS_ABSOLUTE_PATH (real_path.get ()));
472 }
473
474 ALL_OBJFILES (objfile)
475 {
476 if (iterate_over_some_symtabs (name, real_path.get (),
477 objfile->compunit_symtabs, NULL,
478 callback))
479 return;
480 }
481
482 /* Same search rules as above apply here, but now we look thru the
483 psymtabs. */
484
485 ALL_OBJFILES (objfile)
486 {
487 if (objfile->sf
488 && objfile->sf->qf->map_symtabs_matching_filename (objfile,
489 name,
490 real_path.get (),
491 callback))
492 return;
493 }
494 }
495
496 /* A wrapper for iterate_over_symtabs that returns the first matching
497 symtab, or NULL. */
498
499 struct symtab *
500 lookup_symtab (const char *name)
501 {
502 struct symtab *result = NULL;
503
504 iterate_over_symtabs (name, [&] (symtab *symtab)
505 {
506 result = symtab;
507 return true;
508 });
509
510 return result;
511 }
512
513 \f
514 /* Mangle a GDB method stub type. This actually reassembles the pieces of the
515 full method name, which consist of the class name (from T), the unadorned
516 method name from METHOD_ID, and the signature for the specific overload,
517 specified by SIGNATURE_ID. Note that this function is g++ specific. */
518
519 char *
520 gdb_mangle_name (struct type *type, int method_id, int signature_id)
521 {
522 int mangled_name_len;
523 char *mangled_name;
524 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
525 struct fn_field *method = &f[signature_id];
526 const char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
527 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
528 const char *newname = type_name_no_tag (type);
529
530 /* Does the form of physname indicate that it is the full mangled name
531 of a constructor (not just the args)? */
532 int is_full_physname_constructor;
533
534 int is_constructor;
535 int is_destructor = is_destructor_name (physname);
536 /* Need a new type prefix. */
537 const char *const_prefix = method->is_const ? "C" : "";
538 const char *volatile_prefix = method->is_volatile ? "V" : "";
539 char buf[20];
540 int len = (newname == NULL ? 0 : strlen (newname));
541
542 /* Nothing to do if physname already contains a fully mangled v3 abi name
543 or an operator name. */
544 if ((physname[0] == '_' && physname[1] == 'Z')
545 || is_operator_name (field_name))
546 return xstrdup (physname);
547
548 is_full_physname_constructor = is_constructor_name (physname);
549
550 is_constructor = is_full_physname_constructor
551 || (newname && strcmp (field_name, newname) == 0);
552
553 if (!is_destructor)
554 is_destructor = (startswith (physname, "__dt"));
555
556 if (is_destructor || is_full_physname_constructor)
557 {
558 mangled_name = (char *) xmalloc (strlen (physname) + 1);
559 strcpy (mangled_name, physname);
560 return mangled_name;
561 }
562
563 if (len == 0)
564 {
565 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
566 }
567 else if (physname[0] == 't' || physname[0] == 'Q')
568 {
569 /* The physname for template and qualified methods already includes
570 the class name. */
571 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
572 newname = NULL;
573 len = 0;
574 }
575 else
576 {
577 xsnprintf (buf, sizeof (buf), "__%s%s%d", const_prefix,
578 volatile_prefix, len);
579 }
580 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
581 + strlen (buf) + len + strlen (physname) + 1);
582
583 mangled_name = (char *) xmalloc (mangled_name_len);
584 if (is_constructor)
585 mangled_name[0] = '\0';
586 else
587 strcpy (mangled_name, field_name);
588
589 strcat (mangled_name, buf);
590 /* If the class doesn't have a name, i.e. newname NULL, then we just
591 mangle it using 0 for the length of the class. Thus it gets mangled
592 as something starting with `::' rather than `classname::'. */
593 if (newname != NULL)
594 strcat (mangled_name, newname);
595
596 strcat (mangled_name, physname);
597 return (mangled_name);
598 }
599
600 /* Set the demangled name of GSYMBOL to NAME. NAME must be already
601 correctly allocated. */
602
603 void
604 symbol_set_demangled_name (struct general_symbol_info *gsymbol,
605 const char *name,
606 struct obstack *obstack)
607 {
608 if (gsymbol->language == language_ada)
609 {
610 if (name == NULL)
611 {
612 gsymbol->ada_mangled = 0;
613 gsymbol->language_specific.obstack = obstack;
614 }
615 else
616 {
617 gsymbol->ada_mangled = 1;
618 gsymbol->language_specific.demangled_name = name;
619 }
620 }
621 else
622 gsymbol->language_specific.demangled_name = name;
623 }
624
625 /* Return the demangled name of GSYMBOL. */
626
627 const char *
628 symbol_get_demangled_name (const struct general_symbol_info *gsymbol)
629 {
630 if (gsymbol->language == language_ada)
631 {
632 if (!gsymbol->ada_mangled)
633 return NULL;
634 /* Fall through. */
635 }
636
637 return gsymbol->language_specific.demangled_name;
638 }
639
640 \f
641 /* Initialize the language dependent portion of a symbol
642 depending upon the language for the symbol. */
643
644 void
645 symbol_set_language (struct general_symbol_info *gsymbol,
646 enum language language,
647 struct obstack *obstack)
648 {
649 gsymbol->language = language;
650 if (gsymbol->language == language_cplus
651 || gsymbol->language == language_d
652 || gsymbol->language == language_go
653 || gsymbol->language == language_objc
654 || gsymbol->language == language_fortran)
655 {
656 symbol_set_demangled_name (gsymbol, NULL, obstack);
657 }
658 else if (gsymbol->language == language_ada)
659 {
660 gdb_assert (gsymbol->ada_mangled == 0);
661 gsymbol->language_specific.obstack = obstack;
662 }
663 else
664 {
665 memset (&gsymbol->language_specific, 0,
666 sizeof (gsymbol->language_specific));
667 }
668 }
669
670 /* Functions to initialize a symbol's mangled name. */
671
672 /* Objects of this type are stored in the demangled name hash table. */
673 struct demangled_name_entry
674 {
675 const char *mangled;
676 char demangled[1];
677 };
678
679 /* Hash function for the demangled name hash. */
680
681 static hashval_t
682 hash_demangled_name_entry (const void *data)
683 {
684 const struct demangled_name_entry *e
685 = (const struct demangled_name_entry *) data;
686
687 return htab_hash_string (e->mangled);
688 }
689
690 /* Equality function for the demangled name hash. */
691
692 static int
693 eq_demangled_name_entry (const void *a, const void *b)
694 {
695 const struct demangled_name_entry *da
696 = (const struct demangled_name_entry *) a;
697 const struct demangled_name_entry *db
698 = (const struct demangled_name_entry *) b;
699
700 return strcmp (da->mangled, db->mangled) == 0;
701 }
702
703 /* Create the hash table used for demangled names. Each hash entry is
704 a pair of strings; one for the mangled name and one for the demangled
705 name. The entry is hashed via just the mangled name. */
706
707 static void
708 create_demangled_names_hash (struct objfile *objfile)
709 {
710 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
711 The hash table code will round this up to the next prime number.
712 Choosing a much larger table size wastes memory, and saves only about
713 1% in symbol reading. */
714
715 objfile->per_bfd->demangled_names_hash = htab_create_alloc
716 (256, hash_demangled_name_entry, eq_demangled_name_entry,
717 NULL, xcalloc, xfree);
718 }
719
720 /* Try to determine the demangled name for a symbol, based on the
721 language of that symbol. If the language is set to language_auto,
722 it will attempt to find any demangling algorithm that works and
723 then set the language appropriately. The returned name is allocated
724 by the demangler and should be xfree'd. */
725
726 static char *
727 symbol_find_demangled_name (struct general_symbol_info *gsymbol,
728 const char *mangled)
729 {
730 char *demangled = NULL;
731 int i;
732 int recognized;
733
734 if (gsymbol->language == language_unknown)
735 gsymbol->language = language_auto;
736
737 if (gsymbol->language != language_auto)
738 {
739 const struct language_defn *lang = language_def (gsymbol->language);
740
741 language_sniff_from_mangled_name (lang, mangled, &demangled);
742 return demangled;
743 }
744
745 for (i = language_unknown; i < nr_languages; ++i)
746 {
747 enum language l = (enum language) i;
748 const struct language_defn *lang = language_def (l);
749
750 if (language_sniff_from_mangled_name (lang, mangled, &demangled))
751 {
752 gsymbol->language = l;
753 return demangled;
754 }
755 }
756
757 return NULL;
758 }
759
760 /* Set both the mangled and demangled (if any) names for GSYMBOL based
761 on LINKAGE_NAME and LEN. Ordinarily, NAME is copied onto the
762 objfile's obstack; but if COPY_NAME is 0 and if NAME is
763 NUL-terminated, then this function assumes that NAME is already
764 correctly saved (either permanently or with a lifetime tied to the
765 objfile), and it will not be copied.
766
767 The hash table corresponding to OBJFILE is used, and the memory
768 comes from the per-BFD storage_obstack. LINKAGE_NAME is copied,
769 so the pointer can be discarded after calling this function. */
770
771 void
772 symbol_set_names (struct general_symbol_info *gsymbol,
773 const char *linkage_name, int len, int copy_name,
774 struct objfile *objfile)
775 {
776 struct demangled_name_entry **slot;
777 /* A 0-terminated copy of the linkage name. */
778 const char *linkage_name_copy;
779 struct demangled_name_entry entry;
780 struct objfile_per_bfd_storage *per_bfd = objfile->per_bfd;
781
782 if (gsymbol->language == language_ada)
783 {
784 /* In Ada, we do the symbol lookups using the mangled name, so
785 we can save some space by not storing the demangled name. */
786 if (!copy_name)
787 gsymbol->name = linkage_name;
788 else
789 {
790 char *name = (char *) obstack_alloc (&per_bfd->storage_obstack,
791 len + 1);
792
793 memcpy (name, linkage_name, len);
794 name[len] = '\0';
795 gsymbol->name = name;
796 }
797 symbol_set_demangled_name (gsymbol, NULL, &per_bfd->storage_obstack);
798
799 return;
800 }
801
802 if (per_bfd->demangled_names_hash == NULL)
803 create_demangled_names_hash (objfile);
804
805 if (linkage_name[len] != '\0')
806 {
807 char *alloc_name;
808
809 alloc_name = (char *) alloca (len + 1);
810 memcpy (alloc_name, linkage_name, len);
811 alloc_name[len] = '\0';
812
813 linkage_name_copy = alloc_name;
814 }
815 else
816 linkage_name_copy = linkage_name;
817
818 entry.mangled = linkage_name_copy;
819 slot = ((struct demangled_name_entry **)
820 htab_find_slot (per_bfd->demangled_names_hash,
821 &entry, INSERT));
822
823 /* If this name is not in the hash table, add it. */
824 if (*slot == NULL
825 /* A C version of the symbol may have already snuck into the table.
826 This happens to, e.g., main.init (__go_init_main). Cope. */
827 || (gsymbol->language == language_go
828 && (*slot)->demangled[0] == '\0'))
829 {
830 char *demangled_name = symbol_find_demangled_name (gsymbol,
831 linkage_name_copy);
832 int demangled_len = demangled_name ? strlen (demangled_name) : 0;
833
834 /* Suppose we have demangled_name==NULL, copy_name==0, and
835 linkage_name_copy==linkage_name. In this case, we already have the
836 mangled name saved, and we don't have a demangled name. So,
837 you might think we could save a little space by not recording
838 this in the hash table at all.
839
840 It turns out that it is actually important to still save such
841 an entry in the hash table, because storing this name gives
842 us better bcache hit rates for partial symbols. */
843 if (!copy_name && linkage_name_copy == linkage_name)
844 {
845 *slot
846 = ((struct demangled_name_entry *)
847 obstack_alloc (&per_bfd->storage_obstack,
848 offsetof (struct demangled_name_entry, demangled)
849 + demangled_len + 1));
850 (*slot)->mangled = linkage_name;
851 }
852 else
853 {
854 char *mangled_ptr;
855
856 /* If we must copy the mangled name, put it directly after
857 the demangled name so we can have a single
858 allocation. */
859 *slot
860 = ((struct demangled_name_entry *)
861 obstack_alloc (&per_bfd->storage_obstack,
862 offsetof (struct demangled_name_entry, demangled)
863 + len + demangled_len + 2));
864 mangled_ptr = &((*slot)->demangled[demangled_len + 1]);
865 strcpy (mangled_ptr, linkage_name_copy);
866 (*slot)->mangled = mangled_ptr;
867 }
868
869 if (demangled_name != NULL)
870 {
871 strcpy ((*slot)->demangled, demangled_name);
872 xfree (demangled_name);
873 }
874 else
875 (*slot)->demangled[0] = '\0';
876 }
877
878 gsymbol->name = (*slot)->mangled;
879 if ((*slot)->demangled[0] != '\0')
880 symbol_set_demangled_name (gsymbol, (*slot)->demangled,
881 &per_bfd->storage_obstack);
882 else
883 symbol_set_demangled_name (gsymbol, NULL, &per_bfd->storage_obstack);
884 }
885
886 /* Return the source code name of a symbol. In languages where
887 demangling is necessary, this is the demangled name. */
888
889 const char *
890 symbol_natural_name (const struct general_symbol_info *gsymbol)
891 {
892 switch (gsymbol->language)
893 {
894 case language_cplus:
895 case language_d:
896 case language_go:
897 case language_objc:
898 case language_fortran:
899 if (symbol_get_demangled_name (gsymbol) != NULL)
900 return symbol_get_demangled_name (gsymbol);
901 break;
902 case language_ada:
903 return ada_decode_symbol (gsymbol);
904 default:
905 break;
906 }
907 return gsymbol->name;
908 }
909
910 /* Return the demangled name for a symbol based on the language for
911 that symbol. If no demangled name exists, return NULL. */
912
913 const char *
914 symbol_demangled_name (const struct general_symbol_info *gsymbol)
915 {
916 const char *dem_name = NULL;
917
918 switch (gsymbol->language)
919 {
920 case language_cplus:
921 case language_d:
922 case language_go:
923 case language_objc:
924 case language_fortran:
925 dem_name = symbol_get_demangled_name (gsymbol);
926 break;
927 case language_ada:
928 dem_name = ada_decode_symbol (gsymbol);
929 break;
930 default:
931 break;
932 }
933 return dem_name;
934 }
935
936 /* Return the search name of a symbol---generally the demangled or
937 linkage name of the symbol, depending on how it will be searched for.
938 If there is no distinct demangled name, then returns the same value
939 (same pointer) as SYMBOL_LINKAGE_NAME. */
940
941 const char *
942 symbol_search_name (const struct general_symbol_info *gsymbol)
943 {
944 if (gsymbol->language == language_ada)
945 return gsymbol->name;
946 else
947 return symbol_natural_name (gsymbol);
948 }
949
950 /* See symtab.h. */
951
952 bool
953 symbol_matches_search_name (const struct general_symbol_info *gsymbol,
954 const lookup_name_info &name)
955 {
956 symbol_name_matcher_ftype *name_match
957 = language_get_symbol_name_matcher (language_def (gsymbol->language),
958 name);
959 return name_match (symbol_search_name (gsymbol), name, NULL);
960 }
961
962 \f
963
964 /* Return 1 if the two sections are the same, or if they could
965 plausibly be copies of each other, one in an original object
966 file and another in a separated debug file. */
967
968 int
969 matching_obj_sections (struct obj_section *obj_first,
970 struct obj_section *obj_second)
971 {
972 asection *first = obj_first? obj_first->the_bfd_section : NULL;
973 asection *second = obj_second? obj_second->the_bfd_section : NULL;
974 struct objfile *obj;
975
976 /* If they're the same section, then they match. */
977 if (first == second)
978 return 1;
979
980 /* If either is NULL, give up. */
981 if (first == NULL || second == NULL)
982 return 0;
983
984 /* This doesn't apply to absolute symbols. */
985 if (first->owner == NULL || second->owner == NULL)
986 return 0;
987
988 /* If they're in the same object file, they must be different sections. */
989 if (first->owner == second->owner)
990 return 0;
991
992 /* Check whether the two sections are potentially corresponding. They must
993 have the same size, address, and name. We can't compare section indexes,
994 which would be more reliable, because some sections may have been
995 stripped. */
996 if (bfd_get_section_size (first) != bfd_get_section_size (second))
997 return 0;
998
999 /* In-memory addresses may start at a different offset, relativize them. */
1000 if (bfd_get_section_vma (first->owner, first)
1001 - bfd_get_start_address (first->owner)
1002 != bfd_get_section_vma (second->owner, second)
1003 - bfd_get_start_address (second->owner))
1004 return 0;
1005
1006 if (bfd_get_section_name (first->owner, first) == NULL
1007 || bfd_get_section_name (second->owner, second) == NULL
1008 || strcmp (bfd_get_section_name (first->owner, first),
1009 bfd_get_section_name (second->owner, second)) != 0)
1010 return 0;
1011
1012 /* Otherwise check that they are in corresponding objfiles. */
1013
1014 ALL_OBJFILES (obj)
1015 if (obj->obfd == first->owner)
1016 break;
1017 gdb_assert (obj != NULL);
1018
1019 if (obj->separate_debug_objfile != NULL
1020 && obj->separate_debug_objfile->obfd == second->owner)
1021 return 1;
1022 if (obj->separate_debug_objfile_backlink != NULL
1023 && obj->separate_debug_objfile_backlink->obfd == second->owner)
1024 return 1;
1025
1026 return 0;
1027 }
1028
1029 /* See symtab.h. */
1030
1031 void
1032 expand_symtab_containing_pc (CORE_ADDR pc, struct obj_section *section)
1033 {
1034 struct objfile *objfile;
1035 struct bound_minimal_symbol msymbol;
1036
1037 /* If we know that this is not a text address, return failure. This is
1038 necessary because we loop based on texthigh and textlow, which do
1039 not include the data ranges. */
1040 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
1041 if (msymbol.minsym
1042 && (MSYMBOL_TYPE (msymbol.minsym) == mst_data
1043 || MSYMBOL_TYPE (msymbol.minsym) == mst_bss
1044 || MSYMBOL_TYPE (msymbol.minsym) == mst_abs
1045 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_data
1046 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_bss))
1047 return;
1048
1049 ALL_OBJFILES (objfile)
1050 {
1051 struct compunit_symtab *cust = NULL;
1052
1053 if (objfile->sf)
1054 cust = objfile->sf->qf->find_pc_sect_compunit_symtab (objfile, msymbol,
1055 pc, section, 0);
1056 if (cust)
1057 return;
1058 }
1059 }
1060 \f
1061 /* Hash function for the symbol cache. */
1062
1063 static unsigned int
1064 hash_symbol_entry (const struct objfile *objfile_context,
1065 const char *name, domain_enum domain)
1066 {
1067 unsigned int hash = (uintptr_t) objfile_context;
1068
1069 if (name != NULL)
1070 hash += htab_hash_string (name);
1071
1072 /* Because of symbol_matches_domain we need VAR_DOMAIN and STRUCT_DOMAIN
1073 to map to the same slot. */
1074 if (domain == STRUCT_DOMAIN)
1075 hash += VAR_DOMAIN * 7;
1076 else
1077 hash += domain * 7;
1078
1079 return hash;
1080 }
1081
1082 /* Equality function for the symbol cache. */
1083
1084 static int
1085 eq_symbol_entry (const struct symbol_cache_slot *slot,
1086 const struct objfile *objfile_context,
1087 const char *name, domain_enum domain)
1088 {
1089 const char *slot_name;
1090 domain_enum slot_domain;
1091
1092 if (slot->state == SYMBOL_SLOT_UNUSED)
1093 return 0;
1094
1095 if (slot->objfile_context != objfile_context)
1096 return 0;
1097
1098 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1099 {
1100 slot_name = slot->value.not_found.name;
1101 slot_domain = slot->value.not_found.domain;
1102 }
1103 else
1104 {
1105 slot_name = SYMBOL_SEARCH_NAME (slot->value.found.symbol);
1106 slot_domain = SYMBOL_DOMAIN (slot->value.found.symbol);
1107 }
1108
1109 /* NULL names match. */
1110 if (slot_name == NULL && name == NULL)
1111 {
1112 /* But there's no point in calling symbol_matches_domain in the
1113 SYMBOL_SLOT_FOUND case. */
1114 if (slot_domain != domain)
1115 return 0;
1116 }
1117 else if (slot_name != NULL && name != NULL)
1118 {
1119 /* It's important that we use the same comparison that was done
1120 the first time through. If the slot records a found symbol,
1121 then this means using the symbol name comparison function of
1122 the symbol's language with SYMBOL_SEARCH_NAME. See
1123 dictionary.c. It also means using symbol_matches_domain for
1124 found symbols. See block.c.
1125
1126 If the slot records a not-found symbol, then require a precise match.
1127 We could still be lax with whitespace like strcmp_iw though. */
1128
1129 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1130 {
1131 if (strcmp (slot_name, name) != 0)
1132 return 0;
1133 if (slot_domain != domain)
1134 return 0;
1135 }
1136 else
1137 {
1138 struct symbol *sym = slot->value.found.symbol;
1139 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
1140
1141 if (!SYMBOL_MATCHES_SEARCH_NAME (sym, lookup_name))
1142 return 0;
1143
1144 if (!symbol_matches_domain (SYMBOL_LANGUAGE (sym),
1145 slot_domain, domain))
1146 return 0;
1147 }
1148 }
1149 else
1150 {
1151 /* Only one name is NULL. */
1152 return 0;
1153 }
1154
1155 return 1;
1156 }
1157
1158 /* Given a cache of size SIZE, return the size of the struct (with variable
1159 length array) in bytes. */
1160
1161 static size_t
1162 symbol_cache_byte_size (unsigned int size)
1163 {
1164 return (sizeof (struct block_symbol_cache)
1165 + ((size - 1) * sizeof (struct symbol_cache_slot)));
1166 }
1167
1168 /* Resize CACHE. */
1169
1170 static void
1171 resize_symbol_cache (struct symbol_cache *cache, unsigned int new_size)
1172 {
1173 /* If there's no change in size, don't do anything.
1174 All caches have the same size, so we can just compare with the size
1175 of the global symbols cache. */
1176 if ((cache->global_symbols != NULL
1177 && cache->global_symbols->size == new_size)
1178 || (cache->global_symbols == NULL
1179 && new_size == 0))
1180 return;
1181
1182 xfree (cache->global_symbols);
1183 xfree (cache->static_symbols);
1184
1185 if (new_size == 0)
1186 {
1187 cache->global_symbols = NULL;
1188 cache->static_symbols = NULL;
1189 }
1190 else
1191 {
1192 size_t total_size = symbol_cache_byte_size (new_size);
1193
1194 cache->global_symbols
1195 = (struct block_symbol_cache *) xcalloc (1, total_size);
1196 cache->static_symbols
1197 = (struct block_symbol_cache *) xcalloc (1, total_size);
1198 cache->global_symbols->size = new_size;
1199 cache->static_symbols->size = new_size;
1200 }
1201 }
1202
1203 /* Make a symbol cache of size SIZE. */
1204
1205 static struct symbol_cache *
1206 make_symbol_cache (unsigned int size)
1207 {
1208 struct symbol_cache *cache;
1209
1210 cache = XCNEW (struct symbol_cache);
1211 resize_symbol_cache (cache, symbol_cache_size);
1212 return cache;
1213 }
1214
1215 /* Free the space used by CACHE. */
1216
1217 static void
1218 free_symbol_cache (struct symbol_cache *cache)
1219 {
1220 xfree (cache->global_symbols);
1221 xfree (cache->static_symbols);
1222 xfree (cache);
1223 }
1224
1225 /* Return the symbol cache of PSPACE.
1226 Create one if it doesn't exist yet. */
1227
1228 static struct symbol_cache *
1229 get_symbol_cache (struct program_space *pspace)
1230 {
1231 struct symbol_cache *cache
1232 = (struct symbol_cache *) program_space_data (pspace, symbol_cache_key);
1233
1234 if (cache == NULL)
1235 {
1236 cache = make_symbol_cache (symbol_cache_size);
1237 set_program_space_data (pspace, symbol_cache_key, cache);
1238 }
1239
1240 return cache;
1241 }
1242
1243 /* Delete the symbol cache of PSPACE.
1244 Called when PSPACE is destroyed. */
1245
1246 static void
1247 symbol_cache_cleanup (struct program_space *pspace, void *data)
1248 {
1249 struct symbol_cache *cache = (struct symbol_cache *) data;
1250
1251 free_symbol_cache (cache);
1252 }
1253
1254 /* Set the size of the symbol cache in all program spaces. */
1255
1256 static void
1257 set_symbol_cache_size (unsigned int new_size)
1258 {
1259 struct program_space *pspace;
1260
1261 ALL_PSPACES (pspace)
1262 {
1263 struct symbol_cache *cache
1264 = (struct symbol_cache *) program_space_data (pspace, symbol_cache_key);
1265
1266 /* The pspace could have been created but not have a cache yet. */
1267 if (cache != NULL)
1268 resize_symbol_cache (cache, new_size);
1269 }
1270 }
1271
1272 /* Called when symbol-cache-size is set. */
1273
1274 static void
1275 set_symbol_cache_size_handler (const char *args, int from_tty,
1276 struct cmd_list_element *c)
1277 {
1278 if (new_symbol_cache_size > MAX_SYMBOL_CACHE_SIZE)
1279 {
1280 /* Restore the previous value.
1281 This is the value the "show" command prints. */
1282 new_symbol_cache_size = symbol_cache_size;
1283
1284 error (_("Symbol cache size is too large, max is %u."),
1285 MAX_SYMBOL_CACHE_SIZE);
1286 }
1287 symbol_cache_size = new_symbol_cache_size;
1288
1289 set_symbol_cache_size (symbol_cache_size);
1290 }
1291
1292 /* Lookup symbol NAME,DOMAIN in BLOCK in the symbol cache of PSPACE.
1293 OBJFILE_CONTEXT is the current objfile, which may be NULL.
1294 The result is the symbol if found, SYMBOL_LOOKUP_FAILED if a previous lookup
1295 failed (and thus this one will too), or NULL if the symbol is not present
1296 in the cache.
1297 If the symbol is not present in the cache, then *BSC_PTR and *SLOT_PTR are
1298 set to the cache and slot of the symbol to save the result of a full lookup
1299 attempt. */
1300
1301 static struct block_symbol
1302 symbol_cache_lookup (struct symbol_cache *cache,
1303 struct objfile *objfile_context, int block,
1304 const char *name, domain_enum domain,
1305 struct block_symbol_cache **bsc_ptr,
1306 struct symbol_cache_slot **slot_ptr)
1307 {
1308 struct block_symbol_cache *bsc;
1309 unsigned int hash;
1310 struct symbol_cache_slot *slot;
1311
1312 if (block == GLOBAL_BLOCK)
1313 bsc = cache->global_symbols;
1314 else
1315 bsc = cache->static_symbols;
1316 if (bsc == NULL)
1317 {
1318 *bsc_ptr = NULL;
1319 *slot_ptr = NULL;
1320 return (struct block_symbol) {NULL, NULL};
1321 }
1322
1323 hash = hash_symbol_entry (objfile_context, name, domain);
1324 slot = bsc->symbols + hash % bsc->size;
1325
1326 if (eq_symbol_entry (slot, objfile_context, name, domain))
1327 {
1328 if (symbol_lookup_debug)
1329 fprintf_unfiltered (gdb_stdlog,
1330 "%s block symbol cache hit%s for %s, %s\n",
1331 block == GLOBAL_BLOCK ? "Global" : "Static",
1332 slot->state == SYMBOL_SLOT_NOT_FOUND
1333 ? " (not found)" : "",
1334 name, domain_name (domain));
1335 ++bsc->hits;
1336 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1337 return SYMBOL_LOOKUP_FAILED;
1338 return slot->value.found;
1339 }
1340
1341 /* Symbol is not present in the cache. */
1342
1343 *bsc_ptr = bsc;
1344 *slot_ptr = slot;
1345
1346 if (symbol_lookup_debug)
1347 {
1348 fprintf_unfiltered (gdb_stdlog,
1349 "%s block symbol cache miss for %s, %s\n",
1350 block == GLOBAL_BLOCK ? "Global" : "Static",
1351 name, domain_name (domain));
1352 }
1353 ++bsc->misses;
1354 return (struct block_symbol) {NULL, NULL};
1355 }
1356
1357 /* Clear out SLOT. */
1358
1359 static void
1360 symbol_cache_clear_slot (struct symbol_cache_slot *slot)
1361 {
1362 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1363 xfree (slot->value.not_found.name);
1364 slot->state = SYMBOL_SLOT_UNUSED;
1365 }
1366
1367 /* Mark SYMBOL as found in SLOT.
1368 OBJFILE_CONTEXT is the current objfile when the lookup was done, or NULL
1369 if it's not needed to distinguish lookups (STATIC_BLOCK). It is *not*
1370 necessarily the objfile the symbol was found in. */
1371
1372 static void
1373 symbol_cache_mark_found (struct block_symbol_cache *bsc,
1374 struct symbol_cache_slot *slot,
1375 struct objfile *objfile_context,
1376 struct symbol *symbol,
1377 const struct block *block)
1378 {
1379 if (bsc == NULL)
1380 return;
1381 if (slot->state != SYMBOL_SLOT_UNUSED)
1382 {
1383 ++bsc->collisions;
1384 symbol_cache_clear_slot (slot);
1385 }
1386 slot->state = SYMBOL_SLOT_FOUND;
1387 slot->objfile_context = objfile_context;
1388 slot->value.found.symbol = symbol;
1389 slot->value.found.block = block;
1390 }
1391
1392 /* Mark symbol NAME, DOMAIN as not found in SLOT.
1393 OBJFILE_CONTEXT is the current objfile when the lookup was done, or NULL
1394 if it's not needed to distinguish lookups (STATIC_BLOCK). */
1395
1396 static void
1397 symbol_cache_mark_not_found (struct block_symbol_cache *bsc,
1398 struct symbol_cache_slot *slot,
1399 struct objfile *objfile_context,
1400 const char *name, domain_enum domain)
1401 {
1402 if (bsc == NULL)
1403 return;
1404 if (slot->state != SYMBOL_SLOT_UNUSED)
1405 {
1406 ++bsc->collisions;
1407 symbol_cache_clear_slot (slot);
1408 }
1409 slot->state = SYMBOL_SLOT_NOT_FOUND;
1410 slot->objfile_context = objfile_context;
1411 slot->value.not_found.name = xstrdup (name);
1412 slot->value.not_found.domain = domain;
1413 }
1414
1415 /* Flush the symbol cache of PSPACE. */
1416
1417 static void
1418 symbol_cache_flush (struct program_space *pspace)
1419 {
1420 struct symbol_cache *cache
1421 = (struct symbol_cache *) program_space_data (pspace, symbol_cache_key);
1422 int pass;
1423
1424 if (cache == NULL)
1425 return;
1426 if (cache->global_symbols == NULL)
1427 {
1428 gdb_assert (symbol_cache_size == 0);
1429 gdb_assert (cache->static_symbols == NULL);
1430 return;
1431 }
1432
1433 /* If the cache is untouched since the last flush, early exit.
1434 This is important for performance during the startup of a program linked
1435 with 100s (or 1000s) of shared libraries. */
1436 if (cache->global_symbols->misses == 0
1437 && cache->static_symbols->misses == 0)
1438 return;
1439
1440 gdb_assert (cache->global_symbols->size == symbol_cache_size);
1441 gdb_assert (cache->static_symbols->size == symbol_cache_size);
1442
1443 for (pass = 0; pass < 2; ++pass)
1444 {
1445 struct block_symbol_cache *bsc
1446 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1447 unsigned int i;
1448
1449 for (i = 0; i < bsc->size; ++i)
1450 symbol_cache_clear_slot (&bsc->symbols[i]);
1451 }
1452
1453 cache->global_symbols->hits = 0;
1454 cache->global_symbols->misses = 0;
1455 cache->global_symbols->collisions = 0;
1456 cache->static_symbols->hits = 0;
1457 cache->static_symbols->misses = 0;
1458 cache->static_symbols->collisions = 0;
1459 }
1460
1461 /* Dump CACHE. */
1462
1463 static void
1464 symbol_cache_dump (const struct symbol_cache *cache)
1465 {
1466 int pass;
1467
1468 if (cache->global_symbols == NULL)
1469 {
1470 printf_filtered (" <disabled>\n");
1471 return;
1472 }
1473
1474 for (pass = 0; pass < 2; ++pass)
1475 {
1476 const struct block_symbol_cache *bsc
1477 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1478 unsigned int i;
1479
1480 if (pass == 0)
1481 printf_filtered ("Global symbols:\n");
1482 else
1483 printf_filtered ("Static symbols:\n");
1484
1485 for (i = 0; i < bsc->size; ++i)
1486 {
1487 const struct symbol_cache_slot *slot = &bsc->symbols[i];
1488
1489 QUIT;
1490
1491 switch (slot->state)
1492 {
1493 case SYMBOL_SLOT_UNUSED:
1494 break;
1495 case SYMBOL_SLOT_NOT_FOUND:
1496 printf_filtered (" [%4u] = %s, %s %s (not found)\n", i,
1497 host_address_to_string (slot->objfile_context),
1498 slot->value.not_found.name,
1499 domain_name (slot->value.not_found.domain));
1500 break;
1501 case SYMBOL_SLOT_FOUND:
1502 {
1503 struct symbol *found = slot->value.found.symbol;
1504 const struct objfile *context = slot->objfile_context;
1505
1506 printf_filtered (" [%4u] = %s, %s %s\n", i,
1507 host_address_to_string (context),
1508 SYMBOL_PRINT_NAME (found),
1509 domain_name (SYMBOL_DOMAIN (found)));
1510 break;
1511 }
1512 }
1513 }
1514 }
1515 }
1516
1517 /* The "mt print symbol-cache" command. */
1518
1519 static void
1520 maintenance_print_symbol_cache (const char *args, int from_tty)
1521 {
1522 struct program_space *pspace;
1523
1524 ALL_PSPACES (pspace)
1525 {
1526 struct symbol_cache *cache;
1527
1528 printf_filtered (_("Symbol cache for pspace %d\n%s:\n"),
1529 pspace->num,
1530 pspace->symfile_object_file != NULL
1531 ? objfile_name (pspace->symfile_object_file)
1532 : "(no object file)");
1533
1534 /* If the cache hasn't been created yet, avoid creating one. */
1535 cache
1536 = (struct symbol_cache *) program_space_data (pspace, symbol_cache_key);
1537 if (cache == NULL)
1538 printf_filtered (" <empty>\n");
1539 else
1540 symbol_cache_dump (cache);
1541 }
1542 }
1543
1544 /* The "mt flush-symbol-cache" command. */
1545
1546 static void
1547 maintenance_flush_symbol_cache (const char *args, int from_tty)
1548 {
1549 struct program_space *pspace;
1550
1551 ALL_PSPACES (pspace)
1552 {
1553 symbol_cache_flush (pspace);
1554 }
1555 }
1556
1557 /* Print usage statistics of CACHE. */
1558
1559 static void
1560 symbol_cache_stats (struct symbol_cache *cache)
1561 {
1562 int pass;
1563
1564 if (cache->global_symbols == NULL)
1565 {
1566 printf_filtered (" <disabled>\n");
1567 return;
1568 }
1569
1570 for (pass = 0; pass < 2; ++pass)
1571 {
1572 const struct block_symbol_cache *bsc
1573 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1574
1575 QUIT;
1576
1577 if (pass == 0)
1578 printf_filtered ("Global block cache stats:\n");
1579 else
1580 printf_filtered ("Static block cache stats:\n");
1581
1582 printf_filtered (" size: %u\n", bsc->size);
1583 printf_filtered (" hits: %u\n", bsc->hits);
1584 printf_filtered (" misses: %u\n", bsc->misses);
1585 printf_filtered (" collisions: %u\n", bsc->collisions);
1586 }
1587 }
1588
1589 /* The "mt print symbol-cache-statistics" command. */
1590
1591 static void
1592 maintenance_print_symbol_cache_statistics (const char *args, int from_tty)
1593 {
1594 struct program_space *pspace;
1595
1596 ALL_PSPACES (pspace)
1597 {
1598 struct symbol_cache *cache;
1599
1600 printf_filtered (_("Symbol cache statistics for pspace %d\n%s:\n"),
1601 pspace->num,
1602 pspace->symfile_object_file != NULL
1603 ? objfile_name (pspace->symfile_object_file)
1604 : "(no object file)");
1605
1606 /* If the cache hasn't been created yet, avoid creating one. */
1607 cache
1608 = (struct symbol_cache *) program_space_data (pspace, symbol_cache_key);
1609 if (cache == NULL)
1610 printf_filtered (" empty, no stats available\n");
1611 else
1612 symbol_cache_stats (cache);
1613 }
1614 }
1615
1616 /* This module's 'new_objfile' observer. */
1617
1618 static void
1619 symtab_new_objfile_observer (struct objfile *objfile)
1620 {
1621 /* Ideally we'd use OBJFILE->pspace, but OBJFILE may be NULL. */
1622 symbol_cache_flush (current_program_space);
1623 }
1624
1625 /* This module's 'free_objfile' observer. */
1626
1627 static void
1628 symtab_free_objfile_observer (struct objfile *objfile)
1629 {
1630 symbol_cache_flush (objfile->pspace);
1631 }
1632 \f
1633 /* Debug symbols usually don't have section information. We need to dig that
1634 out of the minimal symbols and stash that in the debug symbol. */
1635
1636 void
1637 fixup_section (struct general_symbol_info *ginfo,
1638 CORE_ADDR addr, struct objfile *objfile)
1639 {
1640 struct minimal_symbol *msym;
1641
1642 /* First, check whether a minimal symbol with the same name exists
1643 and points to the same address. The address check is required
1644 e.g. on PowerPC64, where the minimal symbol for a function will
1645 point to the function descriptor, while the debug symbol will
1646 point to the actual function code. */
1647 msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->name, objfile);
1648 if (msym)
1649 ginfo->section = MSYMBOL_SECTION (msym);
1650 else
1651 {
1652 /* Static, function-local variables do appear in the linker
1653 (minimal) symbols, but are frequently given names that won't
1654 be found via lookup_minimal_symbol(). E.g., it has been
1655 observed in frv-uclinux (ELF) executables that a static,
1656 function-local variable named "foo" might appear in the
1657 linker symbols as "foo.6" or "foo.3". Thus, there is no
1658 point in attempting to extend the lookup-by-name mechanism to
1659 handle this case due to the fact that there can be multiple
1660 names.
1661
1662 So, instead, search the section table when lookup by name has
1663 failed. The ``addr'' and ``endaddr'' fields may have already
1664 been relocated. If so, the relocation offset (i.e. the
1665 ANOFFSET value) needs to be subtracted from these values when
1666 performing the comparison. We unconditionally subtract it,
1667 because, when no relocation has been performed, the ANOFFSET
1668 value will simply be zero.
1669
1670 The address of the symbol whose section we're fixing up HAS
1671 NOT BEEN adjusted (relocated) yet. It can't have been since
1672 the section isn't yet known and knowing the section is
1673 necessary in order to add the correct relocation value. In
1674 other words, we wouldn't even be in this function (attempting
1675 to compute the section) if it were already known.
1676
1677 Note that it is possible to search the minimal symbols
1678 (subtracting the relocation value if necessary) to find the
1679 matching minimal symbol, but this is overkill and much less
1680 efficient. It is not necessary to find the matching minimal
1681 symbol, only its section.
1682
1683 Note that this technique (of doing a section table search)
1684 can fail when unrelocated section addresses overlap. For
1685 this reason, we still attempt a lookup by name prior to doing
1686 a search of the section table. */
1687
1688 struct obj_section *s;
1689 int fallback = -1;
1690
1691 ALL_OBJFILE_OSECTIONS (objfile, s)
1692 {
1693 int idx = s - objfile->sections;
1694 CORE_ADDR offset = ANOFFSET (objfile->section_offsets, idx);
1695
1696 if (fallback == -1)
1697 fallback = idx;
1698
1699 if (obj_section_addr (s) - offset <= addr
1700 && addr < obj_section_endaddr (s) - offset)
1701 {
1702 ginfo->section = idx;
1703 return;
1704 }
1705 }
1706
1707 /* If we didn't find the section, assume it is in the first
1708 section. If there is no allocated section, then it hardly
1709 matters what we pick, so just pick zero. */
1710 if (fallback == -1)
1711 ginfo->section = 0;
1712 else
1713 ginfo->section = fallback;
1714 }
1715 }
1716
1717 struct symbol *
1718 fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
1719 {
1720 CORE_ADDR addr;
1721
1722 if (!sym)
1723 return NULL;
1724
1725 if (!SYMBOL_OBJFILE_OWNED (sym))
1726 return sym;
1727
1728 /* We either have an OBJFILE, or we can get at it from the sym's
1729 symtab. Anything else is a bug. */
1730 gdb_assert (objfile || symbol_symtab (sym));
1731
1732 if (objfile == NULL)
1733 objfile = symbol_objfile (sym);
1734
1735 if (SYMBOL_OBJ_SECTION (objfile, sym))
1736 return sym;
1737
1738 /* We should have an objfile by now. */
1739 gdb_assert (objfile);
1740
1741 switch (SYMBOL_CLASS (sym))
1742 {
1743 case LOC_STATIC:
1744 case LOC_LABEL:
1745 addr = SYMBOL_VALUE_ADDRESS (sym);
1746 break;
1747 case LOC_BLOCK:
1748 addr = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
1749 break;
1750
1751 default:
1752 /* Nothing else will be listed in the minsyms -- no use looking
1753 it up. */
1754 return sym;
1755 }
1756
1757 fixup_section (&sym->ginfo, addr, objfile);
1758
1759 return sym;
1760 }
1761
1762 /* See symtab.h. */
1763
1764 demangle_for_lookup_info::demangle_for_lookup_info
1765 (const lookup_name_info &lookup_name, language lang)
1766 {
1767 demangle_result_storage storage;
1768
1769 if (lookup_name.ignore_parameters () && lang == language_cplus)
1770 {
1771 gdb::unique_xmalloc_ptr<char> without_params
1772 = cp_remove_params_if_any (lookup_name.name ().c_str (),
1773 lookup_name.completion_mode ());
1774
1775 if (without_params != NULL)
1776 {
1777 m_demangled_name = demangle_for_lookup (without_params.get (),
1778 lang, storage);
1779 return;
1780 }
1781 }
1782
1783 m_demangled_name = demangle_for_lookup (lookup_name.name ().c_str (),
1784 lang, storage);
1785 }
1786
1787 /* See symtab.h. */
1788
1789 const lookup_name_info &
1790 lookup_name_info::match_any ()
1791 {
1792 /* Lookup any symbol that "" would complete. I.e., this matches all
1793 symbol names. */
1794 static const lookup_name_info lookup_name ({}, symbol_name_match_type::FULL,
1795 true);
1796
1797 return lookup_name;
1798 }
1799
1800 /* Compute the demangled form of NAME as used by the various symbol
1801 lookup functions. The result can either be the input NAME
1802 directly, or a pointer to a buffer owned by the STORAGE object.
1803
1804 For Ada, this function just returns NAME, unmodified.
1805 Normally, Ada symbol lookups are performed using the encoded name
1806 rather than the demangled name, and so it might seem to make sense
1807 for this function to return an encoded version of NAME.
1808 Unfortunately, we cannot do this, because this function is used in
1809 circumstances where it is not appropriate to try to encode NAME.
1810 For instance, when displaying the frame info, we demangle the name
1811 of each parameter, and then perform a symbol lookup inside our
1812 function using that demangled name. In Ada, certain functions
1813 have internally-generated parameters whose name contain uppercase
1814 characters. Encoding those name would result in those uppercase
1815 characters to become lowercase, and thus cause the symbol lookup
1816 to fail. */
1817
1818 const char *
1819 demangle_for_lookup (const char *name, enum language lang,
1820 demangle_result_storage &storage)
1821 {
1822 /* If we are using C++, D, or Go, demangle the name before doing a
1823 lookup, so we can always binary search. */
1824 if (lang == language_cplus)
1825 {
1826 char *demangled_name = gdb_demangle (name, DMGL_ANSI | DMGL_PARAMS);
1827 if (demangled_name != NULL)
1828 return storage.set_malloc_ptr (demangled_name);
1829
1830 /* If we were given a non-mangled name, canonicalize it
1831 according to the language (so far only for C++). */
1832 std::string canon = cp_canonicalize_string (name);
1833 if (!canon.empty ())
1834 return storage.swap_string (canon);
1835 }
1836 else if (lang == language_d)
1837 {
1838 char *demangled_name = d_demangle (name, 0);
1839 if (demangled_name != NULL)
1840 return storage.set_malloc_ptr (demangled_name);
1841 }
1842 else if (lang == language_go)
1843 {
1844 char *demangled_name = go_demangle (name, 0);
1845 if (demangled_name != NULL)
1846 return storage.set_malloc_ptr (demangled_name);
1847 }
1848
1849 return name;
1850 }
1851
1852 /* See symtab.h. */
1853
1854 unsigned int
1855 search_name_hash (enum language language, const char *search_name)
1856 {
1857 return language_def (language)->la_search_name_hash (search_name);
1858 }
1859
1860 /* See symtab.h.
1861
1862 This function (or rather its subordinates) have a bunch of loops and
1863 it would seem to be attractive to put in some QUIT's (though I'm not really
1864 sure whether it can run long enough to be really important). But there
1865 are a few calls for which it would appear to be bad news to quit
1866 out of here: e.g., find_proc_desc in alpha-mdebug-tdep.c. (Note
1867 that there is C++ code below which can error(), but that probably
1868 doesn't affect these calls since they are looking for a known
1869 variable and thus can probably assume it will never hit the C++
1870 code). */
1871
1872 struct block_symbol
1873 lookup_symbol_in_language (const char *name, const struct block *block,
1874 const domain_enum domain, enum language lang,
1875 struct field_of_this_result *is_a_field_of_this)
1876 {
1877 demangle_result_storage storage;
1878 const char *modified_name = demangle_for_lookup (name, lang, storage);
1879
1880 return lookup_symbol_aux (modified_name, block, domain, lang,
1881 is_a_field_of_this);
1882 }
1883
1884 /* See symtab.h. */
1885
1886 struct block_symbol
1887 lookup_symbol (const char *name, const struct block *block,
1888 domain_enum domain,
1889 struct field_of_this_result *is_a_field_of_this)
1890 {
1891 return lookup_symbol_in_language (name, block, domain,
1892 current_language->la_language,
1893 is_a_field_of_this);
1894 }
1895
1896 /* See symtab.h. */
1897
1898 struct block_symbol
1899 lookup_language_this (const struct language_defn *lang,
1900 const struct block *block)
1901 {
1902 if (lang->la_name_of_this == NULL || block == NULL)
1903 return (struct block_symbol) {NULL, NULL};
1904
1905 if (symbol_lookup_debug > 1)
1906 {
1907 struct objfile *objfile = lookup_objfile_from_block (block);
1908
1909 fprintf_unfiltered (gdb_stdlog,
1910 "lookup_language_this (%s, %s (objfile %s))",
1911 lang->la_name, host_address_to_string (block),
1912 objfile_debug_name (objfile));
1913 }
1914
1915 while (block)
1916 {
1917 struct symbol *sym;
1918
1919 sym = block_lookup_symbol (block, lang->la_name_of_this, VAR_DOMAIN);
1920 if (sym != NULL)
1921 {
1922 if (symbol_lookup_debug > 1)
1923 {
1924 fprintf_unfiltered (gdb_stdlog, " = %s (%s, block %s)\n",
1925 SYMBOL_PRINT_NAME (sym),
1926 host_address_to_string (sym),
1927 host_address_to_string (block));
1928 }
1929 return (struct block_symbol) {sym, block};
1930 }
1931 if (BLOCK_FUNCTION (block))
1932 break;
1933 block = BLOCK_SUPERBLOCK (block);
1934 }
1935
1936 if (symbol_lookup_debug > 1)
1937 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
1938 return (struct block_symbol) {NULL, NULL};
1939 }
1940
1941 /* Given TYPE, a structure/union,
1942 return 1 if the component named NAME from the ultimate target
1943 structure/union is defined, otherwise, return 0. */
1944
1945 static int
1946 check_field (struct type *type, const char *name,
1947 struct field_of_this_result *is_a_field_of_this)
1948 {
1949 int i;
1950
1951 /* The type may be a stub. */
1952 type = check_typedef (type);
1953
1954 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1955 {
1956 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1957
1958 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1959 {
1960 is_a_field_of_this->type = type;
1961 is_a_field_of_this->field = &TYPE_FIELD (type, i);
1962 return 1;
1963 }
1964 }
1965
1966 /* C++: If it was not found as a data field, then try to return it
1967 as a pointer to a method. */
1968
1969 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
1970 {
1971 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
1972 {
1973 is_a_field_of_this->type = type;
1974 is_a_field_of_this->fn_field = &TYPE_FN_FIELDLIST (type, i);
1975 return 1;
1976 }
1977 }
1978
1979 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1980 if (check_field (TYPE_BASECLASS (type, i), name, is_a_field_of_this))
1981 return 1;
1982
1983 return 0;
1984 }
1985
1986 /* Behave like lookup_symbol except that NAME is the natural name
1987 (e.g., demangled name) of the symbol that we're looking for. */
1988
1989 static struct block_symbol
1990 lookup_symbol_aux (const char *name, const struct block *block,
1991 const domain_enum domain, enum language language,
1992 struct field_of_this_result *is_a_field_of_this)
1993 {
1994 struct block_symbol result;
1995 const struct language_defn *langdef;
1996
1997 if (symbol_lookup_debug)
1998 {
1999 struct objfile *objfile = lookup_objfile_from_block (block);
2000
2001 fprintf_unfiltered (gdb_stdlog,
2002 "lookup_symbol_aux (%s, %s (objfile %s), %s, %s)\n",
2003 name, host_address_to_string (block),
2004 objfile != NULL
2005 ? objfile_debug_name (objfile) : "NULL",
2006 domain_name (domain), language_str (language));
2007 }
2008
2009 /* Make sure we do something sensible with is_a_field_of_this, since
2010 the callers that set this parameter to some non-null value will
2011 certainly use it later. If we don't set it, the contents of
2012 is_a_field_of_this are undefined. */
2013 if (is_a_field_of_this != NULL)
2014 memset (is_a_field_of_this, 0, sizeof (*is_a_field_of_this));
2015
2016 /* Search specified block and its superiors. Don't search
2017 STATIC_BLOCK or GLOBAL_BLOCK. */
2018
2019 result = lookup_local_symbol (name, block, domain, language);
2020 if (result.symbol != NULL)
2021 {
2022 if (symbol_lookup_debug)
2023 {
2024 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2025 host_address_to_string (result.symbol));
2026 }
2027 return result;
2028 }
2029
2030 /* If requested to do so by the caller and if appropriate for LANGUAGE,
2031 check to see if NAME is a field of `this'. */
2032
2033 langdef = language_def (language);
2034
2035 /* Don't do this check if we are searching for a struct. It will
2036 not be found by check_field, but will be found by other
2037 means. */
2038 if (is_a_field_of_this != NULL && domain != STRUCT_DOMAIN)
2039 {
2040 result = lookup_language_this (langdef, block);
2041
2042 if (result.symbol)
2043 {
2044 struct type *t = result.symbol->type;
2045
2046 /* I'm not really sure that type of this can ever
2047 be typedefed; just be safe. */
2048 t = check_typedef (t);
2049 if (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_IS_REFERENCE (t))
2050 t = TYPE_TARGET_TYPE (t);
2051
2052 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2053 && TYPE_CODE (t) != TYPE_CODE_UNION)
2054 error (_("Internal error: `%s' is not an aggregate"),
2055 langdef->la_name_of_this);
2056
2057 if (check_field (t, name, is_a_field_of_this))
2058 {
2059 if (symbol_lookup_debug)
2060 {
2061 fprintf_unfiltered (gdb_stdlog,
2062 "lookup_symbol_aux (...) = NULL\n");
2063 }
2064 return (struct block_symbol) {NULL, NULL};
2065 }
2066 }
2067 }
2068
2069 /* Now do whatever is appropriate for LANGUAGE to look
2070 up static and global variables. */
2071
2072 result = langdef->la_lookup_symbol_nonlocal (langdef, name, block, domain);
2073 if (result.symbol != NULL)
2074 {
2075 if (symbol_lookup_debug)
2076 {
2077 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2078 host_address_to_string (result.symbol));
2079 }
2080 return result;
2081 }
2082
2083 /* Now search all static file-level symbols. Not strictly correct,
2084 but more useful than an error. */
2085
2086 result = lookup_static_symbol (name, domain);
2087 if (symbol_lookup_debug)
2088 {
2089 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2090 result.symbol != NULL
2091 ? host_address_to_string (result.symbol)
2092 : "NULL");
2093 }
2094 return result;
2095 }
2096
2097 /* Check to see if the symbol is defined in BLOCK or its superiors.
2098 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
2099
2100 static struct block_symbol
2101 lookup_local_symbol (const char *name, const struct block *block,
2102 const domain_enum domain,
2103 enum language language)
2104 {
2105 struct symbol *sym;
2106 const struct block *static_block = block_static_block (block);
2107 const char *scope = block_scope (block);
2108
2109 /* Check if either no block is specified or it's a global block. */
2110
2111 if (static_block == NULL)
2112 return (struct block_symbol) {NULL, NULL};
2113
2114 while (block != static_block)
2115 {
2116 sym = lookup_symbol_in_block (name, block, domain);
2117 if (sym != NULL)
2118 return (struct block_symbol) {sym, block};
2119
2120 if (language == language_cplus || language == language_fortran)
2121 {
2122 struct block_symbol sym
2123 = cp_lookup_symbol_imports_or_template (scope, name, block,
2124 domain);
2125
2126 if (sym.symbol != NULL)
2127 return sym;
2128 }
2129
2130 if (BLOCK_FUNCTION (block) != NULL && block_inlined_p (block))
2131 break;
2132 block = BLOCK_SUPERBLOCK (block);
2133 }
2134
2135 /* We've reached the end of the function without finding a result. */
2136
2137 return (struct block_symbol) {NULL, NULL};
2138 }
2139
2140 /* See symtab.h. */
2141
2142 struct objfile *
2143 lookup_objfile_from_block (const struct block *block)
2144 {
2145 struct objfile *obj;
2146 struct compunit_symtab *cust;
2147
2148 if (block == NULL)
2149 return NULL;
2150
2151 block = block_global_block (block);
2152 /* Look through all blockvectors. */
2153 ALL_COMPUNITS (obj, cust)
2154 if (block == BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust),
2155 GLOBAL_BLOCK))
2156 {
2157 if (obj->separate_debug_objfile_backlink)
2158 obj = obj->separate_debug_objfile_backlink;
2159
2160 return obj;
2161 }
2162
2163 return NULL;
2164 }
2165
2166 /* See symtab.h. */
2167
2168 struct symbol *
2169 lookup_symbol_in_block (const char *name, const struct block *block,
2170 const domain_enum domain)
2171 {
2172 struct symbol *sym;
2173
2174 if (symbol_lookup_debug > 1)
2175 {
2176 struct objfile *objfile = lookup_objfile_from_block (block);
2177
2178 fprintf_unfiltered (gdb_stdlog,
2179 "lookup_symbol_in_block (%s, %s (objfile %s), %s)",
2180 name, host_address_to_string (block),
2181 objfile_debug_name (objfile),
2182 domain_name (domain));
2183 }
2184
2185 sym = block_lookup_symbol (block, name, domain);
2186 if (sym)
2187 {
2188 if (symbol_lookup_debug > 1)
2189 {
2190 fprintf_unfiltered (gdb_stdlog, " = %s\n",
2191 host_address_to_string (sym));
2192 }
2193 return fixup_symbol_section (sym, NULL);
2194 }
2195
2196 if (symbol_lookup_debug > 1)
2197 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
2198 return NULL;
2199 }
2200
2201 /* See symtab.h. */
2202
2203 struct block_symbol
2204 lookup_global_symbol_from_objfile (struct objfile *main_objfile,
2205 const char *name,
2206 const domain_enum domain)
2207 {
2208 struct objfile *objfile;
2209
2210 for (objfile = main_objfile;
2211 objfile;
2212 objfile = objfile_separate_debug_iterate (main_objfile, objfile))
2213 {
2214 struct block_symbol result
2215 = lookup_symbol_in_objfile (objfile, GLOBAL_BLOCK, name, domain);
2216
2217 if (result.symbol != NULL)
2218 return result;
2219 }
2220
2221 return (struct block_symbol) {NULL, NULL};
2222 }
2223
2224 /* Check to see if the symbol is defined in one of the OBJFILE's
2225 symtabs. BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
2226 depending on whether or not we want to search global symbols or
2227 static symbols. */
2228
2229 static struct block_symbol
2230 lookup_symbol_in_objfile_symtabs (struct objfile *objfile, int block_index,
2231 const char *name, const domain_enum domain)
2232 {
2233 struct compunit_symtab *cust;
2234
2235 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2236
2237 if (symbol_lookup_debug > 1)
2238 {
2239 fprintf_unfiltered (gdb_stdlog,
2240 "lookup_symbol_in_objfile_symtabs (%s, %s, %s, %s)",
2241 objfile_debug_name (objfile),
2242 block_index == GLOBAL_BLOCK
2243 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2244 name, domain_name (domain));
2245 }
2246
2247 ALL_OBJFILE_COMPUNITS (objfile, cust)
2248 {
2249 const struct blockvector *bv;
2250 const struct block *block;
2251 struct block_symbol result;
2252
2253 bv = COMPUNIT_BLOCKVECTOR (cust);
2254 block = BLOCKVECTOR_BLOCK (bv, block_index);
2255 result.symbol = block_lookup_symbol_primary (block, name, domain);
2256 result.block = block;
2257 if (result.symbol != NULL)
2258 {
2259 if (symbol_lookup_debug > 1)
2260 {
2261 fprintf_unfiltered (gdb_stdlog, " = %s (block %s)\n",
2262 host_address_to_string (result.symbol),
2263 host_address_to_string (block));
2264 }
2265 result.symbol = fixup_symbol_section (result.symbol, objfile);
2266 return result;
2267
2268 }
2269 }
2270
2271 if (symbol_lookup_debug > 1)
2272 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
2273 return (struct block_symbol) {NULL, NULL};
2274 }
2275
2276 /* Wrapper around lookup_symbol_in_objfile_symtabs for search_symbols.
2277 Look up LINKAGE_NAME in DOMAIN in the global and static blocks of OBJFILE
2278 and all associated separate debug objfiles.
2279
2280 Normally we only look in OBJFILE, and not any separate debug objfiles
2281 because the outer loop will cause them to be searched too. This case is
2282 different. Here we're called from search_symbols where it will only
2283 call us for the the objfile that contains a matching minsym. */
2284
2285 static struct block_symbol
2286 lookup_symbol_in_objfile_from_linkage_name (struct objfile *objfile,
2287 const char *linkage_name,
2288 domain_enum domain)
2289 {
2290 enum language lang = current_language->la_language;
2291 struct objfile *main_objfile, *cur_objfile;
2292
2293 demangle_result_storage storage;
2294 const char *modified_name = demangle_for_lookup (linkage_name, lang, storage);
2295
2296 if (objfile->separate_debug_objfile_backlink)
2297 main_objfile = objfile->separate_debug_objfile_backlink;
2298 else
2299 main_objfile = objfile;
2300
2301 for (cur_objfile = main_objfile;
2302 cur_objfile;
2303 cur_objfile = objfile_separate_debug_iterate (main_objfile, cur_objfile))
2304 {
2305 struct block_symbol result;
2306
2307 result = lookup_symbol_in_objfile_symtabs (cur_objfile, GLOBAL_BLOCK,
2308 modified_name, domain);
2309 if (result.symbol == NULL)
2310 result = lookup_symbol_in_objfile_symtabs (cur_objfile, STATIC_BLOCK,
2311 modified_name, domain);
2312 if (result.symbol != NULL)
2313 return result;
2314 }
2315
2316 return (struct block_symbol) {NULL, NULL};
2317 }
2318
2319 /* A helper function that throws an exception when a symbol was found
2320 in a psymtab but not in a symtab. */
2321
2322 static void ATTRIBUTE_NORETURN
2323 error_in_psymtab_expansion (int block_index, const char *name,
2324 struct compunit_symtab *cust)
2325 {
2326 error (_("\
2327 Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n\
2328 %s may be an inlined function, or may be a template function\n \
2329 (if a template, try specifying an instantiation: %s<type>)."),
2330 block_index == GLOBAL_BLOCK ? "global" : "static",
2331 name,
2332 symtab_to_filename_for_display (compunit_primary_filetab (cust)),
2333 name, name);
2334 }
2335
2336 /* A helper function for various lookup routines that interfaces with
2337 the "quick" symbol table functions. */
2338
2339 static struct block_symbol
2340 lookup_symbol_via_quick_fns (struct objfile *objfile, int block_index,
2341 const char *name, const domain_enum domain)
2342 {
2343 struct compunit_symtab *cust;
2344 const struct blockvector *bv;
2345 const struct block *block;
2346 struct block_symbol result;
2347
2348 if (!objfile->sf)
2349 return (struct block_symbol) {NULL, NULL};
2350
2351 if (symbol_lookup_debug > 1)
2352 {
2353 fprintf_unfiltered (gdb_stdlog,
2354 "lookup_symbol_via_quick_fns (%s, %s, %s, %s)\n",
2355 objfile_debug_name (objfile),
2356 block_index == GLOBAL_BLOCK
2357 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2358 name, domain_name (domain));
2359 }
2360
2361 cust = objfile->sf->qf->lookup_symbol (objfile, block_index, name, domain);
2362 if (cust == NULL)
2363 {
2364 if (symbol_lookup_debug > 1)
2365 {
2366 fprintf_unfiltered (gdb_stdlog,
2367 "lookup_symbol_via_quick_fns (...) = NULL\n");
2368 }
2369 return (struct block_symbol) {NULL, NULL};
2370 }
2371
2372 bv = COMPUNIT_BLOCKVECTOR (cust);
2373 block = BLOCKVECTOR_BLOCK (bv, block_index);
2374 result.symbol = block_lookup_symbol (block, name, domain);
2375 if (result.symbol == NULL)
2376 error_in_psymtab_expansion (block_index, name, cust);
2377
2378 if (symbol_lookup_debug > 1)
2379 {
2380 fprintf_unfiltered (gdb_stdlog,
2381 "lookup_symbol_via_quick_fns (...) = %s (block %s)\n",
2382 host_address_to_string (result.symbol),
2383 host_address_to_string (block));
2384 }
2385
2386 result.symbol = fixup_symbol_section (result.symbol, objfile);
2387 result.block = block;
2388 return result;
2389 }
2390
2391 /* See symtab.h. */
2392
2393 struct block_symbol
2394 basic_lookup_symbol_nonlocal (const struct language_defn *langdef,
2395 const char *name,
2396 const struct block *block,
2397 const domain_enum domain)
2398 {
2399 struct block_symbol result;
2400
2401 /* NOTE: carlton/2003-05-19: The comments below were written when
2402 this (or what turned into this) was part of lookup_symbol_aux;
2403 I'm much less worried about these questions now, since these
2404 decisions have turned out well, but I leave these comments here
2405 for posterity. */
2406
2407 /* NOTE: carlton/2002-12-05: There is a question as to whether or
2408 not it would be appropriate to search the current global block
2409 here as well. (That's what this code used to do before the
2410 is_a_field_of_this check was moved up.) On the one hand, it's
2411 redundant with the lookup in all objfiles search that happens
2412 next. On the other hand, if decode_line_1 is passed an argument
2413 like filename:var, then the user presumably wants 'var' to be
2414 searched for in filename. On the third hand, there shouldn't be
2415 multiple global variables all of which are named 'var', and it's
2416 not like decode_line_1 has ever restricted its search to only
2417 global variables in a single filename. All in all, only
2418 searching the static block here seems best: it's correct and it's
2419 cleanest. */
2420
2421 /* NOTE: carlton/2002-12-05: There's also a possible performance
2422 issue here: if you usually search for global symbols in the
2423 current file, then it would be slightly better to search the
2424 current global block before searching all the symtabs. But there
2425 are other factors that have a much greater effect on performance
2426 than that one, so I don't think we should worry about that for
2427 now. */
2428
2429 /* NOTE: dje/2014-10-26: The lookup in all objfiles search could skip
2430 the current objfile. Searching the current objfile first is useful
2431 for both matching user expectations as well as performance. */
2432
2433 result = lookup_symbol_in_static_block (name, block, domain);
2434 if (result.symbol != NULL)
2435 return result;
2436
2437 /* If we didn't find a definition for a builtin type in the static block,
2438 search for it now. This is actually the right thing to do and can be
2439 a massive performance win. E.g., when debugging a program with lots of
2440 shared libraries we could search all of them only to find out the
2441 builtin type isn't defined in any of them. This is common for types
2442 like "void". */
2443 if (domain == VAR_DOMAIN)
2444 {
2445 struct gdbarch *gdbarch;
2446
2447 if (block == NULL)
2448 gdbarch = target_gdbarch ();
2449 else
2450 gdbarch = block_gdbarch (block);
2451 result.symbol = language_lookup_primitive_type_as_symbol (langdef,
2452 gdbarch, name);
2453 result.block = NULL;
2454 if (result.symbol != NULL)
2455 return result;
2456 }
2457
2458 return lookup_global_symbol (name, block, domain);
2459 }
2460
2461 /* See symtab.h. */
2462
2463 struct block_symbol
2464 lookup_symbol_in_static_block (const char *name,
2465 const struct block *block,
2466 const domain_enum domain)
2467 {
2468 const struct block *static_block = block_static_block (block);
2469 struct symbol *sym;
2470
2471 if (static_block == NULL)
2472 return (struct block_symbol) {NULL, NULL};
2473
2474 if (symbol_lookup_debug)
2475 {
2476 struct objfile *objfile = lookup_objfile_from_block (static_block);
2477
2478 fprintf_unfiltered (gdb_stdlog,
2479 "lookup_symbol_in_static_block (%s, %s (objfile %s),"
2480 " %s)\n",
2481 name,
2482 host_address_to_string (block),
2483 objfile_debug_name (objfile),
2484 domain_name (domain));
2485 }
2486
2487 sym = lookup_symbol_in_block (name, static_block, domain);
2488 if (symbol_lookup_debug)
2489 {
2490 fprintf_unfiltered (gdb_stdlog,
2491 "lookup_symbol_in_static_block (...) = %s\n",
2492 sym != NULL ? host_address_to_string (sym) : "NULL");
2493 }
2494 return (struct block_symbol) {sym, static_block};
2495 }
2496
2497 /* Perform the standard symbol lookup of NAME in OBJFILE:
2498 1) First search expanded symtabs, and if not found
2499 2) Search the "quick" symtabs (partial or .gdb_index).
2500 BLOCK_INDEX is one of GLOBAL_BLOCK or STATIC_BLOCK. */
2501
2502 static struct block_symbol
2503 lookup_symbol_in_objfile (struct objfile *objfile, int block_index,
2504 const char *name, const domain_enum domain)
2505 {
2506 struct block_symbol result;
2507
2508 if (symbol_lookup_debug)
2509 {
2510 fprintf_unfiltered (gdb_stdlog,
2511 "lookup_symbol_in_objfile (%s, %s, %s, %s)\n",
2512 objfile_debug_name (objfile),
2513 block_index == GLOBAL_BLOCK
2514 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2515 name, domain_name (domain));
2516 }
2517
2518 result = lookup_symbol_in_objfile_symtabs (objfile, block_index,
2519 name, domain);
2520 if (result.symbol != NULL)
2521 {
2522 if (symbol_lookup_debug)
2523 {
2524 fprintf_unfiltered (gdb_stdlog,
2525 "lookup_symbol_in_objfile (...) = %s"
2526 " (in symtabs)\n",
2527 host_address_to_string (result.symbol));
2528 }
2529 return result;
2530 }
2531
2532 result = lookup_symbol_via_quick_fns (objfile, block_index,
2533 name, domain);
2534 if (symbol_lookup_debug)
2535 {
2536 fprintf_unfiltered (gdb_stdlog,
2537 "lookup_symbol_in_objfile (...) = %s%s\n",
2538 result.symbol != NULL
2539 ? host_address_to_string (result.symbol)
2540 : "NULL",
2541 result.symbol != NULL ? " (via quick fns)" : "");
2542 }
2543 return result;
2544 }
2545
2546 /* See symtab.h. */
2547
2548 struct block_symbol
2549 lookup_static_symbol (const char *name, const domain_enum domain)
2550 {
2551 struct symbol_cache *cache = get_symbol_cache (current_program_space);
2552 struct objfile *objfile;
2553 struct block_symbol result;
2554 struct block_symbol_cache *bsc;
2555 struct symbol_cache_slot *slot;
2556
2557 /* Lookup in STATIC_BLOCK is not current-objfile-dependent, so just pass
2558 NULL for OBJFILE_CONTEXT. */
2559 result = symbol_cache_lookup (cache, NULL, STATIC_BLOCK, name, domain,
2560 &bsc, &slot);
2561 if (result.symbol != NULL)
2562 {
2563 if (SYMBOL_LOOKUP_FAILED_P (result))
2564 return (struct block_symbol) {NULL, NULL};
2565 return result;
2566 }
2567
2568 ALL_OBJFILES (objfile)
2569 {
2570 result = lookup_symbol_in_objfile (objfile, STATIC_BLOCK, name, domain);
2571 if (result.symbol != NULL)
2572 {
2573 /* Still pass NULL for OBJFILE_CONTEXT here. */
2574 symbol_cache_mark_found (bsc, slot, NULL, result.symbol,
2575 result.block);
2576 return result;
2577 }
2578 }
2579
2580 /* Still pass NULL for OBJFILE_CONTEXT here. */
2581 symbol_cache_mark_not_found (bsc, slot, NULL, name, domain);
2582 return (struct block_symbol) {NULL, NULL};
2583 }
2584
2585 /* Private data to be used with lookup_symbol_global_iterator_cb. */
2586
2587 struct global_sym_lookup_data
2588 {
2589 /* The name of the symbol we are searching for. */
2590 const char *name;
2591
2592 /* The domain to use for our search. */
2593 domain_enum domain;
2594
2595 /* The field where the callback should store the symbol if found.
2596 It should be initialized to {NULL, NULL} before the search is started. */
2597 struct block_symbol result;
2598 };
2599
2600 /* A callback function for gdbarch_iterate_over_objfiles_in_search_order.
2601 It searches by name for a symbol in the GLOBAL_BLOCK of the given
2602 OBJFILE. The arguments for the search are passed via CB_DATA,
2603 which in reality is a pointer to struct global_sym_lookup_data. */
2604
2605 static int
2606 lookup_symbol_global_iterator_cb (struct objfile *objfile,
2607 void *cb_data)
2608 {
2609 struct global_sym_lookup_data *data =
2610 (struct global_sym_lookup_data *) cb_data;
2611
2612 gdb_assert (data->result.symbol == NULL
2613 && data->result.block == NULL);
2614
2615 data->result = lookup_symbol_in_objfile (objfile, GLOBAL_BLOCK,
2616 data->name, data->domain);
2617
2618 /* If we found a match, tell the iterator to stop. Otherwise,
2619 keep going. */
2620 return (data->result.symbol != NULL);
2621 }
2622
2623 /* See symtab.h. */
2624
2625 struct block_symbol
2626 lookup_global_symbol (const char *name,
2627 const struct block *block,
2628 const domain_enum domain)
2629 {
2630 struct symbol_cache *cache = get_symbol_cache (current_program_space);
2631 struct block_symbol result;
2632 struct objfile *objfile;
2633 struct global_sym_lookup_data lookup_data;
2634 struct block_symbol_cache *bsc;
2635 struct symbol_cache_slot *slot;
2636
2637 objfile = lookup_objfile_from_block (block);
2638
2639 /* First see if we can find the symbol in the cache.
2640 This works because we use the current objfile to qualify the lookup. */
2641 result = symbol_cache_lookup (cache, objfile, GLOBAL_BLOCK, name, domain,
2642 &bsc, &slot);
2643 if (result.symbol != NULL)
2644 {
2645 if (SYMBOL_LOOKUP_FAILED_P (result))
2646 return (struct block_symbol) {NULL, NULL};
2647 return result;
2648 }
2649
2650 /* Call library-specific lookup procedure. */
2651 if (objfile != NULL)
2652 result = solib_global_lookup (objfile, name, domain);
2653
2654 /* If that didn't work go a global search (of global blocks, heh). */
2655 if (result.symbol == NULL)
2656 {
2657 memset (&lookup_data, 0, sizeof (lookup_data));
2658 lookup_data.name = name;
2659 lookup_data.domain = domain;
2660 gdbarch_iterate_over_objfiles_in_search_order
2661 (objfile != NULL ? get_objfile_arch (objfile) : target_gdbarch (),
2662 lookup_symbol_global_iterator_cb, &lookup_data, objfile);
2663 result = lookup_data.result;
2664 }
2665
2666 if (result.symbol != NULL)
2667 symbol_cache_mark_found (bsc, slot, objfile, result.symbol, result.block);
2668 else
2669 symbol_cache_mark_not_found (bsc, slot, objfile, name, domain);
2670
2671 return result;
2672 }
2673
2674 int
2675 symbol_matches_domain (enum language symbol_language,
2676 domain_enum symbol_domain,
2677 domain_enum domain)
2678 {
2679 /* For C++ "struct foo { ... }" also defines a typedef for "foo".
2680 Similarly, any Ada type declaration implicitly defines a typedef. */
2681 if (symbol_language == language_cplus
2682 || symbol_language == language_d
2683 || symbol_language == language_ada
2684 || symbol_language == language_rust)
2685 {
2686 if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN)
2687 && symbol_domain == STRUCT_DOMAIN)
2688 return 1;
2689 }
2690 /* For all other languages, strict match is required. */
2691 return (symbol_domain == domain);
2692 }
2693
2694 /* See symtab.h. */
2695
2696 struct type *
2697 lookup_transparent_type (const char *name)
2698 {
2699 return current_language->la_lookup_transparent_type (name);
2700 }
2701
2702 /* A helper for basic_lookup_transparent_type that interfaces with the
2703 "quick" symbol table functions. */
2704
2705 static struct type *
2706 basic_lookup_transparent_type_quick (struct objfile *objfile, int block_index,
2707 const char *name)
2708 {
2709 struct compunit_symtab *cust;
2710 const struct blockvector *bv;
2711 struct block *block;
2712 struct symbol *sym;
2713
2714 if (!objfile->sf)
2715 return NULL;
2716 cust = objfile->sf->qf->lookup_symbol (objfile, block_index, name,
2717 STRUCT_DOMAIN);
2718 if (cust == NULL)
2719 return NULL;
2720
2721 bv = COMPUNIT_BLOCKVECTOR (cust);
2722 block = BLOCKVECTOR_BLOCK (bv, block_index);
2723 sym = block_find_symbol (block, name, STRUCT_DOMAIN,
2724 block_find_non_opaque_type, NULL);
2725 if (sym == NULL)
2726 error_in_psymtab_expansion (block_index, name, cust);
2727 gdb_assert (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)));
2728 return SYMBOL_TYPE (sym);
2729 }
2730
2731 /* Subroutine of basic_lookup_transparent_type to simplify it.
2732 Look up the non-opaque definition of NAME in BLOCK_INDEX of OBJFILE.
2733 BLOCK_INDEX is either GLOBAL_BLOCK or STATIC_BLOCK. */
2734
2735 static struct type *
2736 basic_lookup_transparent_type_1 (struct objfile *objfile, int block_index,
2737 const char *name)
2738 {
2739 const struct compunit_symtab *cust;
2740 const struct blockvector *bv;
2741 const struct block *block;
2742 const struct symbol *sym;
2743
2744 ALL_OBJFILE_COMPUNITS (objfile, cust)
2745 {
2746 bv = COMPUNIT_BLOCKVECTOR (cust);
2747 block = BLOCKVECTOR_BLOCK (bv, block_index);
2748 sym = block_find_symbol (block, name, STRUCT_DOMAIN,
2749 block_find_non_opaque_type, NULL);
2750 if (sym != NULL)
2751 {
2752 gdb_assert (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)));
2753 return SYMBOL_TYPE (sym);
2754 }
2755 }
2756
2757 return NULL;
2758 }
2759
2760 /* The standard implementation of lookup_transparent_type. This code
2761 was modeled on lookup_symbol -- the parts not relevant to looking
2762 up types were just left out. In particular it's assumed here that
2763 types are available in STRUCT_DOMAIN and only in file-static or
2764 global blocks. */
2765
2766 struct type *
2767 basic_lookup_transparent_type (const char *name)
2768 {
2769 struct objfile *objfile;
2770 struct type *t;
2771
2772 /* Now search all the global symbols. Do the symtab's first, then
2773 check the psymtab's. If a psymtab indicates the existence
2774 of the desired name as a global, then do psymtab-to-symtab
2775 conversion on the fly and return the found symbol. */
2776
2777 ALL_OBJFILES (objfile)
2778 {
2779 t = basic_lookup_transparent_type_1 (objfile, GLOBAL_BLOCK, name);
2780 if (t)
2781 return t;
2782 }
2783
2784 ALL_OBJFILES (objfile)
2785 {
2786 t = basic_lookup_transparent_type_quick (objfile, GLOBAL_BLOCK, name);
2787 if (t)
2788 return t;
2789 }
2790
2791 /* Now search the static file-level symbols.
2792 Not strictly correct, but more useful than an error.
2793 Do the symtab's first, then
2794 check the psymtab's. If a psymtab indicates the existence
2795 of the desired name as a file-level static, then do psymtab-to-symtab
2796 conversion on the fly and return the found symbol. */
2797
2798 ALL_OBJFILES (objfile)
2799 {
2800 t = basic_lookup_transparent_type_1 (objfile, STATIC_BLOCK, name);
2801 if (t)
2802 return t;
2803 }
2804
2805 ALL_OBJFILES (objfile)
2806 {
2807 t = basic_lookup_transparent_type_quick (objfile, STATIC_BLOCK, name);
2808 if (t)
2809 return t;
2810 }
2811
2812 return (struct type *) 0;
2813 }
2814
2815 /* Iterate over the symbols named NAME, matching DOMAIN, in BLOCK.
2816
2817 For each symbol that matches, CALLBACK is called. The symbol is
2818 passed to the callback.
2819
2820 If CALLBACK returns false, the iteration ends. Otherwise, the
2821 search continues. */
2822
2823 void
2824 iterate_over_symbols (const struct block *block,
2825 const lookup_name_info &name,
2826 const domain_enum domain,
2827 gdb::function_view<symbol_found_callback_ftype> callback)
2828 {
2829 struct block_iterator iter;
2830 struct symbol *sym;
2831
2832 ALL_BLOCK_SYMBOLS_WITH_NAME (block, name, iter, sym)
2833 {
2834 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
2835 SYMBOL_DOMAIN (sym), domain))
2836 {
2837 if (!callback (sym))
2838 return;
2839 }
2840 }
2841 }
2842
2843 /* Find the compunit symtab associated with PC and SECTION.
2844 This will read in debug info as necessary. */
2845
2846 struct compunit_symtab *
2847 find_pc_sect_compunit_symtab (CORE_ADDR pc, struct obj_section *section)
2848 {
2849 struct compunit_symtab *cust;
2850 struct compunit_symtab *best_cust = NULL;
2851 struct objfile *objfile;
2852 CORE_ADDR distance = 0;
2853 struct bound_minimal_symbol msymbol;
2854
2855 /* If we know that this is not a text address, return failure. This is
2856 necessary because we loop based on the block's high and low code
2857 addresses, which do not include the data ranges, and because
2858 we call find_pc_sect_psymtab which has a similar restriction based
2859 on the partial_symtab's texthigh and textlow. */
2860 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
2861 if (msymbol.minsym
2862 && (MSYMBOL_TYPE (msymbol.minsym) == mst_data
2863 || MSYMBOL_TYPE (msymbol.minsym) == mst_bss
2864 || MSYMBOL_TYPE (msymbol.minsym) == mst_abs
2865 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_data
2866 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_bss))
2867 return NULL;
2868
2869 /* Search all symtabs for the one whose file contains our address, and which
2870 is the smallest of all the ones containing the address. This is designed
2871 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
2872 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
2873 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
2874
2875 This happens for native ecoff format, where code from included files
2876 gets its own symtab. The symtab for the included file should have
2877 been read in already via the dependency mechanism.
2878 It might be swifter to create several symtabs with the same name
2879 like xcoff does (I'm not sure).
2880
2881 It also happens for objfiles that have their functions reordered.
2882 For these, the symtab we are looking for is not necessarily read in. */
2883
2884 ALL_COMPUNITS (objfile, cust)
2885 {
2886 struct block *b;
2887 const struct blockvector *bv;
2888
2889 bv = COMPUNIT_BLOCKVECTOR (cust);
2890 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
2891
2892 if (BLOCK_START (b) <= pc
2893 && BLOCK_END (b) > pc
2894 && (distance == 0
2895 || BLOCK_END (b) - BLOCK_START (b) < distance))
2896 {
2897 /* For an objfile that has its functions reordered,
2898 find_pc_psymtab will find the proper partial symbol table
2899 and we simply return its corresponding symtab. */
2900 /* In order to better support objfiles that contain both
2901 stabs and coff debugging info, we continue on if a psymtab
2902 can't be found. */
2903 if ((objfile->flags & OBJF_REORDERED) && objfile->sf)
2904 {
2905 struct compunit_symtab *result;
2906
2907 result
2908 = objfile->sf->qf->find_pc_sect_compunit_symtab (objfile,
2909 msymbol,
2910 pc, section,
2911 0);
2912 if (result != NULL)
2913 return result;
2914 }
2915 if (section != 0)
2916 {
2917 struct block_iterator iter;
2918 struct symbol *sym = NULL;
2919
2920 ALL_BLOCK_SYMBOLS (b, iter, sym)
2921 {
2922 fixup_symbol_section (sym, objfile);
2923 if (matching_obj_sections (SYMBOL_OBJ_SECTION (objfile, sym),
2924 section))
2925 break;
2926 }
2927 if (sym == NULL)
2928 continue; /* No symbol in this symtab matches
2929 section. */
2930 }
2931 distance = BLOCK_END (b) - BLOCK_START (b);
2932 best_cust = cust;
2933 }
2934 }
2935
2936 if (best_cust != NULL)
2937 return best_cust;
2938
2939 /* Not found in symtabs, search the "quick" symtabs (e.g. psymtabs). */
2940
2941 ALL_OBJFILES (objfile)
2942 {
2943 struct compunit_symtab *result;
2944
2945 if (!objfile->sf)
2946 continue;
2947 result = objfile->sf->qf->find_pc_sect_compunit_symtab (objfile,
2948 msymbol,
2949 pc, section,
2950 1);
2951 if (result != NULL)
2952 return result;
2953 }
2954
2955 return NULL;
2956 }
2957
2958 /* Find the compunit symtab associated with PC.
2959 This will read in debug info as necessary.
2960 Backward compatibility, no section. */
2961
2962 struct compunit_symtab *
2963 find_pc_compunit_symtab (CORE_ADDR pc)
2964 {
2965 return find_pc_sect_compunit_symtab (pc, find_pc_mapped_section (pc));
2966 }
2967 \f
2968
2969 /* Find the source file and line number for a given PC value and SECTION.
2970 Return a structure containing a symtab pointer, a line number,
2971 and a pc range for the entire source line.
2972 The value's .pc field is NOT the specified pc.
2973 NOTCURRENT nonzero means, if specified pc is on a line boundary,
2974 use the line that ends there. Otherwise, in that case, the line
2975 that begins there is used. */
2976
2977 /* The big complication here is that a line may start in one file, and end just
2978 before the start of another file. This usually occurs when you #include
2979 code in the middle of a subroutine. To properly find the end of a line's PC
2980 range, we must search all symtabs associated with this compilation unit, and
2981 find the one whose first PC is closer than that of the next line in this
2982 symtab. */
2983
2984 /* If it's worth the effort, we could be using a binary search. */
2985
2986 struct symtab_and_line
2987 find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent)
2988 {
2989 struct compunit_symtab *cust;
2990 struct symtab *iter_s;
2991 struct linetable *l;
2992 int len;
2993 int i;
2994 struct linetable_entry *item;
2995 const struct blockvector *bv;
2996 struct bound_minimal_symbol msymbol;
2997
2998 /* Info on best line seen so far, and where it starts, and its file. */
2999
3000 struct linetable_entry *best = NULL;
3001 CORE_ADDR best_end = 0;
3002 struct symtab *best_symtab = 0;
3003
3004 /* Store here the first line number
3005 of a file which contains the line at the smallest pc after PC.
3006 If we don't find a line whose range contains PC,
3007 we will use a line one less than this,
3008 with a range from the start of that file to the first line's pc. */
3009 struct linetable_entry *alt = NULL;
3010
3011 /* Info on best line seen in this file. */
3012
3013 struct linetable_entry *prev;
3014
3015 /* If this pc is not from the current frame,
3016 it is the address of the end of a call instruction.
3017 Quite likely that is the start of the following statement.
3018 But what we want is the statement containing the instruction.
3019 Fudge the pc to make sure we get that. */
3020
3021 /* It's tempting to assume that, if we can't find debugging info for
3022 any function enclosing PC, that we shouldn't search for line
3023 number info, either. However, GAS can emit line number info for
3024 assembly files --- very helpful when debugging hand-written
3025 assembly code. In such a case, we'd have no debug info for the
3026 function, but we would have line info. */
3027
3028 if (notcurrent)
3029 pc -= 1;
3030
3031 /* elz: added this because this function returned the wrong
3032 information if the pc belongs to a stub (import/export)
3033 to call a shlib function. This stub would be anywhere between
3034 two functions in the target, and the line info was erroneously
3035 taken to be the one of the line before the pc. */
3036
3037 /* RT: Further explanation:
3038
3039 * We have stubs (trampolines) inserted between procedures.
3040 *
3041 * Example: "shr1" exists in a shared library, and a "shr1" stub also
3042 * exists in the main image.
3043 *
3044 * In the minimal symbol table, we have a bunch of symbols
3045 * sorted by start address. The stubs are marked as "trampoline",
3046 * the others appear as text. E.g.:
3047 *
3048 * Minimal symbol table for main image
3049 * main: code for main (text symbol)
3050 * shr1: stub (trampoline symbol)
3051 * foo: code for foo (text symbol)
3052 * ...
3053 * Minimal symbol table for "shr1" image:
3054 * ...
3055 * shr1: code for shr1 (text symbol)
3056 * ...
3057 *
3058 * So the code below is trying to detect if we are in the stub
3059 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
3060 * and if found, do the symbolization from the real-code address
3061 * rather than the stub address.
3062 *
3063 * Assumptions being made about the minimal symbol table:
3064 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
3065 * if we're really in the trampoline.s If we're beyond it (say
3066 * we're in "foo" in the above example), it'll have a closer
3067 * symbol (the "foo" text symbol for example) and will not
3068 * return the trampoline.
3069 * 2. lookup_minimal_symbol_text() will find a real text symbol
3070 * corresponding to the trampoline, and whose address will
3071 * be different than the trampoline address. I put in a sanity
3072 * check for the address being the same, to avoid an
3073 * infinite recursion.
3074 */
3075 msymbol = lookup_minimal_symbol_by_pc (pc);
3076 if (msymbol.minsym != NULL)
3077 if (MSYMBOL_TYPE (msymbol.minsym) == mst_solib_trampoline)
3078 {
3079 struct bound_minimal_symbol mfunsym
3080 = lookup_minimal_symbol_text (MSYMBOL_LINKAGE_NAME (msymbol.minsym),
3081 NULL);
3082
3083 if (mfunsym.minsym == NULL)
3084 /* I eliminated this warning since it is coming out
3085 * in the following situation:
3086 * gdb shmain // test program with shared libraries
3087 * (gdb) break shr1 // function in shared lib
3088 * Warning: In stub for ...
3089 * In the above situation, the shared lib is not loaded yet,
3090 * so of course we can't find the real func/line info,
3091 * but the "break" still works, and the warning is annoying.
3092 * So I commented out the warning. RT */
3093 /* warning ("In stub for %s; unable to find real function/line info",
3094 SYMBOL_LINKAGE_NAME (msymbol)); */
3095 ;
3096 /* fall through */
3097 else if (BMSYMBOL_VALUE_ADDRESS (mfunsym)
3098 == BMSYMBOL_VALUE_ADDRESS (msymbol))
3099 /* Avoid infinite recursion */
3100 /* See above comment about why warning is commented out. */
3101 /* warning ("In stub for %s; unable to find real function/line info",
3102 SYMBOL_LINKAGE_NAME (msymbol)); */
3103 ;
3104 /* fall through */
3105 else
3106 return find_pc_line (BMSYMBOL_VALUE_ADDRESS (mfunsym), 0);
3107 }
3108
3109 symtab_and_line val;
3110 val.pspace = current_program_space;
3111
3112 cust = find_pc_sect_compunit_symtab (pc, section);
3113 if (cust == NULL)
3114 {
3115 /* If no symbol information, return previous pc. */
3116 if (notcurrent)
3117 pc++;
3118 val.pc = pc;
3119 return val;
3120 }
3121
3122 bv = COMPUNIT_BLOCKVECTOR (cust);
3123
3124 /* Look at all the symtabs that share this blockvector.
3125 They all have the same apriori range, that we found was right;
3126 but they have different line tables. */
3127
3128 ALL_COMPUNIT_FILETABS (cust, iter_s)
3129 {
3130 /* Find the best line in this symtab. */
3131 l = SYMTAB_LINETABLE (iter_s);
3132 if (!l)
3133 continue;
3134 len = l->nitems;
3135 if (len <= 0)
3136 {
3137 /* I think len can be zero if the symtab lacks line numbers
3138 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
3139 I'm not sure which, and maybe it depends on the symbol
3140 reader). */
3141 continue;
3142 }
3143
3144 prev = NULL;
3145 item = l->item; /* Get first line info. */
3146
3147 /* Is this file's first line closer than the first lines of other files?
3148 If so, record this file, and its first line, as best alternate. */
3149 if (item->pc > pc && (!alt || item->pc < alt->pc))
3150 alt = item;
3151
3152 for (i = 0; i < len; i++, item++)
3153 {
3154 /* Leave prev pointing to the linetable entry for the last line
3155 that started at or before PC. */
3156 if (item->pc > pc)
3157 break;
3158
3159 prev = item;
3160 }
3161
3162 /* At this point, prev points at the line whose start addr is <= pc, and
3163 item points at the next line. If we ran off the end of the linetable
3164 (pc >= start of the last line), then prev == item. If pc < start of
3165 the first line, prev will not be set. */
3166
3167 /* Is this file's best line closer than the best in the other files?
3168 If so, record this file, and its best line, as best so far. Don't
3169 save prev if it represents the end of a function (i.e. line number
3170 0) instead of a real line. */
3171
3172 if (prev && prev->line && (!best || prev->pc > best->pc))
3173 {
3174 best = prev;
3175 best_symtab = iter_s;
3176
3177 /* Discard BEST_END if it's before the PC of the current BEST. */
3178 if (best_end <= best->pc)
3179 best_end = 0;
3180 }
3181
3182 /* If another line (denoted by ITEM) is in the linetable and its
3183 PC is after BEST's PC, but before the current BEST_END, then
3184 use ITEM's PC as the new best_end. */
3185 if (best && i < len && item->pc > best->pc
3186 && (best_end == 0 || best_end > item->pc))
3187 best_end = item->pc;
3188 }
3189
3190 if (!best_symtab)
3191 {
3192 /* If we didn't find any line number info, just return zeros.
3193 We used to return alt->line - 1 here, but that could be
3194 anywhere; if we don't have line number info for this PC,
3195 don't make some up. */
3196 val.pc = pc;
3197 }
3198 else if (best->line == 0)
3199 {
3200 /* If our best fit is in a range of PC's for which no line
3201 number info is available (line number is zero) then we didn't
3202 find any valid line information. */
3203 val.pc = pc;
3204 }
3205 else
3206 {
3207 val.symtab = best_symtab;
3208 val.line = best->line;
3209 val.pc = best->pc;
3210 if (best_end && (!alt || best_end < alt->pc))
3211 val.end = best_end;
3212 else if (alt)
3213 val.end = alt->pc;
3214 else
3215 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
3216 }
3217 val.section = section;
3218 return val;
3219 }
3220
3221 /* Backward compatibility (no section). */
3222
3223 struct symtab_and_line
3224 find_pc_line (CORE_ADDR pc, int notcurrent)
3225 {
3226 struct obj_section *section;
3227
3228 section = find_pc_overlay (pc);
3229 if (pc_in_unmapped_range (pc, section))
3230 pc = overlay_mapped_address (pc, section);
3231 return find_pc_sect_line (pc, section, notcurrent);
3232 }
3233
3234 /* See symtab.h. */
3235
3236 struct symtab *
3237 find_pc_line_symtab (CORE_ADDR pc)
3238 {
3239 struct symtab_and_line sal;
3240
3241 /* This always passes zero for NOTCURRENT to find_pc_line.
3242 There are currently no callers that ever pass non-zero. */
3243 sal = find_pc_line (pc, 0);
3244 return sal.symtab;
3245 }
3246 \f
3247 /* Find line number LINE in any symtab whose name is the same as
3248 SYMTAB.
3249
3250 If found, return the symtab that contains the linetable in which it was
3251 found, set *INDEX to the index in the linetable of the best entry
3252 found, and set *EXACT_MATCH nonzero if the value returned is an
3253 exact match.
3254
3255 If not found, return NULL. */
3256
3257 struct symtab *
3258 find_line_symtab (struct symtab *symtab, int line,
3259 int *index, int *exact_match)
3260 {
3261 int exact = 0; /* Initialized here to avoid a compiler warning. */
3262
3263 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
3264 so far seen. */
3265
3266 int best_index;
3267 struct linetable *best_linetable;
3268 struct symtab *best_symtab;
3269
3270 /* First try looking it up in the given symtab. */
3271 best_linetable = SYMTAB_LINETABLE (symtab);
3272 best_symtab = symtab;
3273 best_index = find_line_common (best_linetable, line, &exact, 0);
3274 if (best_index < 0 || !exact)
3275 {
3276 /* Didn't find an exact match. So we better keep looking for
3277 another symtab with the same name. In the case of xcoff,
3278 multiple csects for one source file (produced by IBM's FORTRAN
3279 compiler) produce multiple symtabs (this is unavoidable
3280 assuming csects can be at arbitrary places in memory and that
3281 the GLOBAL_BLOCK of a symtab has a begin and end address). */
3282
3283 /* BEST is the smallest linenumber > LINE so far seen,
3284 or 0 if none has been seen so far.
3285 BEST_INDEX and BEST_LINETABLE identify the item for it. */
3286 int best;
3287
3288 struct objfile *objfile;
3289 struct compunit_symtab *cu;
3290 struct symtab *s;
3291
3292 if (best_index >= 0)
3293 best = best_linetable->item[best_index].line;
3294 else
3295 best = 0;
3296
3297 ALL_OBJFILES (objfile)
3298 {
3299 if (objfile->sf)
3300 objfile->sf->qf->expand_symtabs_with_fullname (objfile,
3301 symtab_to_fullname (symtab));
3302 }
3303
3304 ALL_FILETABS (objfile, cu, s)
3305 {
3306 struct linetable *l;
3307 int ind;
3308
3309 if (FILENAME_CMP (symtab->filename, s->filename) != 0)
3310 continue;
3311 if (FILENAME_CMP (symtab_to_fullname (symtab),
3312 symtab_to_fullname (s)) != 0)
3313 continue;
3314 l = SYMTAB_LINETABLE (s);
3315 ind = find_line_common (l, line, &exact, 0);
3316 if (ind >= 0)
3317 {
3318 if (exact)
3319 {
3320 best_index = ind;
3321 best_linetable = l;
3322 best_symtab = s;
3323 goto done;
3324 }
3325 if (best == 0 || l->item[ind].line < best)
3326 {
3327 best = l->item[ind].line;
3328 best_index = ind;
3329 best_linetable = l;
3330 best_symtab = s;
3331 }
3332 }
3333 }
3334 }
3335 done:
3336 if (best_index < 0)
3337 return NULL;
3338
3339 if (index)
3340 *index = best_index;
3341 if (exact_match)
3342 *exact_match = exact;
3343
3344 return best_symtab;
3345 }
3346
3347 /* Given SYMTAB, returns all the PCs function in the symtab that
3348 exactly match LINE. Returns an empty vector if there are no exact
3349 matches, but updates BEST_ITEM in this case. */
3350
3351 std::vector<CORE_ADDR>
3352 find_pcs_for_symtab_line (struct symtab *symtab, int line,
3353 struct linetable_entry **best_item)
3354 {
3355 int start = 0;
3356 std::vector<CORE_ADDR> result;
3357
3358 /* First, collect all the PCs that are at this line. */
3359 while (1)
3360 {
3361 int was_exact;
3362 int idx;
3363
3364 idx = find_line_common (SYMTAB_LINETABLE (symtab), line, &was_exact,
3365 start);
3366 if (idx < 0)
3367 break;
3368
3369 if (!was_exact)
3370 {
3371 struct linetable_entry *item = &SYMTAB_LINETABLE (symtab)->item[idx];
3372
3373 if (*best_item == NULL || item->line < (*best_item)->line)
3374 *best_item = item;
3375
3376 break;
3377 }
3378
3379 result.push_back (SYMTAB_LINETABLE (symtab)->item[idx].pc);
3380 start = idx + 1;
3381 }
3382
3383 return result;
3384 }
3385
3386 \f
3387 /* Set the PC value for a given source file and line number and return true.
3388 Returns zero for invalid line number (and sets the PC to 0).
3389 The source file is specified with a struct symtab. */
3390
3391 int
3392 find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
3393 {
3394 struct linetable *l;
3395 int ind;
3396
3397 *pc = 0;
3398 if (symtab == 0)
3399 return 0;
3400
3401 symtab = find_line_symtab (symtab, line, &ind, NULL);
3402 if (symtab != NULL)
3403 {
3404 l = SYMTAB_LINETABLE (symtab);
3405 *pc = l->item[ind].pc;
3406 return 1;
3407 }
3408 else
3409 return 0;
3410 }
3411
3412 /* Find the range of pc values in a line.
3413 Store the starting pc of the line into *STARTPTR
3414 and the ending pc (start of next line) into *ENDPTR.
3415 Returns 1 to indicate success.
3416 Returns 0 if could not find the specified line. */
3417
3418 int
3419 find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
3420 CORE_ADDR *endptr)
3421 {
3422 CORE_ADDR startaddr;
3423 struct symtab_and_line found_sal;
3424
3425 startaddr = sal.pc;
3426 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
3427 return 0;
3428
3429 /* This whole function is based on address. For example, if line 10 has
3430 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
3431 "info line *0x123" should say the line goes from 0x100 to 0x200
3432 and "info line *0x355" should say the line goes from 0x300 to 0x400.
3433 This also insures that we never give a range like "starts at 0x134
3434 and ends at 0x12c". */
3435
3436 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
3437 if (found_sal.line != sal.line)
3438 {
3439 /* The specified line (sal) has zero bytes. */
3440 *startptr = found_sal.pc;
3441 *endptr = found_sal.pc;
3442 }
3443 else
3444 {
3445 *startptr = found_sal.pc;
3446 *endptr = found_sal.end;
3447 }
3448 return 1;
3449 }
3450
3451 /* Given a line table and a line number, return the index into the line
3452 table for the pc of the nearest line whose number is >= the specified one.
3453 Return -1 if none is found. The value is >= 0 if it is an index.
3454 START is the index at which to start searching the line table.
3455
3456 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
3457
3458 static int
3459 find_line_common (struct linetable *l, int lineno,
3460 int *exact_match, int start)
3461 {
3462 int i;
3463 int len;
3464
3465 /* BEST is the smallest linenumber > LINENO so far seen,
3466 or 0 if none has been seen so far.
3467 BEST_INDEX identifies the item for it. */
3468
3469 int best_index = -1;
3470 int best = 0;
3471
3472 *exact_match = 0;
3473
3474 if (lineno <= 0)
3475 return -1;
3476 if (l == 0)
3477 return -1;
3478
3479 len = l->nitems;
3480 for (i = start; i < len; i++)
3481 {
3482 struct linetable_entry *item = &(l->item[i]);
3483
3484 if (item->line == lineno)
3485 {
3486 /* Return the first (lowest address) entry which matches. */
3487 *exact_match = 1;
3488 return i;
3489 }
3490
3491 if (item->line > lineno && (best == 0 || item->line < best))
3492 {
3493 best = item->line;
3494 best_index = i;
3495 }
3496 }
3497
3498 /* If we got here, we didn't get an exact match. */
3499 return best_index;
3500 }
3501
3502 int
3503 find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
3504 {
3505 struct symtab_and_line sal;
3506
3507 sal = find_pc_line (pc, 0);
3508 *startptr = sal.pc;
3509 *endptr = sal.end;
3510 return sal.symtab != 0;
3511 }
3512
3513 /* Given a function symbol SYM, find the symtab and line for the start
3514 of the function.
3515 If the argument FUNFIRSTLINE is nonzero, we want the first line
3516 of real code inside the function.
3517 This function should return SALs matching those from minsym_found,
3518 otherwise false multiple-locations breakpoints could be placed. */
3519
3520 struct symtab_and_line
3521 find_function_start_sal (struct symbol *sym, int funfirstline)
3522 {
3523 fixup_symbol_section (sym, NULL);
3524
3525 obj_section *section = SYMBOL_OBJ_SECTION (symbol_objfile (sym), sym);
3526 symtab_and_line sal
3527 = find_pc_sect_line (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)), section, 0);
3528 sal.symbol = sym;
3529
3530 if (funfirstline && sal.symtab != NULL
3531 && (COMPUNIT_LOCATIONS_VALID (SYMTAB_COMPUNIT (sal.symtab))
3532 || SYMTAB_LANGUAGE (sal.symtab) == language_asm))
3533 {
3534 struct gdbarch *gdbarch = symbol_arch (sym);
3535
3536 sal.pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
3537 if (gdbarch_skip_entrypoint_p (gdbarch))
3538 sal.pc = gdbarch_skip_entrypoint (gdbarch, sal.pc);
3539 return sal;
3540 }
3541
3542 /* We always should have a line for the function start address.
3543 If we don't, something is odd. Create a plain SAL refering
3544 just the PC and hope that skip_prologue_sal (if requested)
3545 can find a line number for after the prologue. */
3546 if (sal.pc < BLOCK_START (SYMBOL_BLOCK_VALUE (sym)))
3547 {
3548 sal = {};
3549 sal.pspace = current_program_space;
3550 sal.pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
3551 sal.section = section;
3552 sal.symbol = sym;
3553 }
3554
3555 if (funfirstline)
3556 skip_prologue_sal (&sal);
3557
3558 return sal;
3559 }
3560
3561 /* Given a function start address FUNC_ADDR and SYMTAB, find the first
3562 address for that function that has an entry in SYMTAB's line info
3563 table. If such an entry cannot be found, return FUNC_ADDR
3564 unaltered. */
3565
3566 static CORE_ADDR
3567 skip_prologue_using_lineinfo (CORE_ADDR func_addr, struct symtab *symtab)
3568 {
3569 CORE_ADDR func_start, func_end;
3570 struct linetable *l;
3571 int i;
3572
3573 /* Give up if this symbol has no lineinfo table. */
3574 l = SYMTAB_LINETABLE (symtab);
3575 if (l == NULL)
3576 return func_addr;
3577
3578 /* Get the range for the function's PC values, or give up if we
3579 cannot, for some reason. */
3580 if (!find_pc_partial_function (func_addr, NULL, &func_start, &func_end))
3581 return func_addr;
3582
3583 /* Linetable entries are ordered by PC values, see the commentary in
3584 symtab.h where `struct linetable' is defined. Thus, the first
3585 entry whose PC is in the range [FUNC_START..FUNC_END[ is the
3586 address we are looking for. */
3587 for (i = 0; i < l->nitems; i++)
3588 {
3589 struct linetable_entry *item = &(l->item[i]);
3590
3591 /* Don't use line numbers of zero, they mark special entries in
3592 the table. See the commentary on symtab.h before the
3593 definition of struct linetable. */
3594 if (item->line > 0 && func_start <= item->pc && item->pc < func_end)
3595 return item->pc;
3596 }
3597
3598 return func_addr;
3599 }
3600
3601 /* Adjust SAL to the first instruction past the function prologue.
3602 If the PC was explicitly specified, the SAL is not changed.
3603 If the line number was explicitly specified, at most the SAL's PC
3604 is updated. If SAL is already past the prologue, then do nothing. */
3605
3606 void
3607 skip_prologue_sal (struct symtab_and_line *sal)
3608 {
3609 struct symbol *sym;
3610 struct symtab_and_line start_sal;
3611 CORE_ADDR pc, saved_pc;
3612 struct obj_section *section;
3613 const char *name;
3614 struct objfile *objfile;
3615 struct gdbarch *gdbarch;
3616 const struct block *b, *function_block;
3617 int force_skip, skip;
3618
3619 /* Do not change the SAL if PC was specified explicitly. */
3620 if (sal->explicit_pc)
3621 return;
3622
3623 scoped_restore_current_pspace_and_thread restore_pspace_thread;
3624
3625 switch_to_program_space_and_thread (sal->pspace);
3626
3627 sym = find_pc_sect_function (sal->pc, sal->section);
3628 if (sym != NULL)
3629 {
3630 fixup_symbol_section (sym, NULL);
3631
3632 objfile = symbol_objfile (sym);
3633 pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
3634 section = SYMBOL_OBJ_SECTION (objfile, sym);
3635 name = SYMBOL_LINKAGE_NAME (sym);
3636 }
3637 else
3638 {
3639 struct bound_minimal_symbol msymbol
3640 = lookup_minimal_symbol_by_pc_section (sal->pc, sal->section);
3641
3642 if (msymbol.minsym == NULL)
3643 return;
3644
3645 objfile = msymbol.objfile;
3646 pc = BMSYMBOL_VALUE_ADDRESS (msymbol);
3647 section = MSYMBOL_OBJ_SECTION (objfile, msymbol.minsym);
3648 name = MSYMBOL_LINKAGE_NAME (msymbol.minsym);
3649 }
3650
3651 gdbarch = get_objfile_arch (objfile);
3652
3653 /* Process the prologue in two passes. In the first pass try to skip the
3654 prologue (SKIP is true) and verify there is a real need for it (indicated
3655 by FORCE_SKIP). If no such reason was found run a second pass where the
3656 prologue is not skipped (SKIP is false). */
3657
3658 skip = 1;
3659 force_skip = 1;
3660
3661 /* Be conservative - allow direct PC (without skipping prologue) only if we
3662 have proven the CU (Compilation Unit) supports it. sal->SYMTAB does not
3663 have to be set by the caller so we use SYM instead. */
3664 if (sym != NULL
3665 && COMPUNIT_LOCATIONS_VALID (SYMTAB_COMPUNIT (symbol_symtab (sym))))
3666 force_skip = 0;
3667
3668 saved_pc = pc;
3669 do
3670 {
3671 pc = saved_pc;
3672
3673 /* If the function is in an unmapped overlay, use its unmapped LMA address,
3674 so that gdbarch_skip_prologue has something unique to work on. */
3675 if (section_is_overlay (section) && !section_is_mapped (section))
3676 pc = overlay_unmapped_address (pc, section);
3677
3678 /* Skip "first line" of function (which is actually its prologue). */
3679 pc += gdbarch_deprecated_function_start_offset (gdbarch);
3680 if (gdbarch_skip_entrypoint_p (gdbarch))
3681 pc = gdbarch_skip_entrypoint (gdbarch, pc);
3682 if (skip)
3683 pc = gdbarch_skip_prologue_noexcept (gdbarch, pc);
3684
3685 /* For overlays, map pc back into its mapped VMA range. */
3686 pc = overlay_mapped_address (pc, section);
3687
3688 /* Calculate line number. */
3689 start_sal = find_pc_sect_line (pc, section, 0);
3690
3691 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
3692 line is still part of the same function. */
3693 if (skip && start_sal.pc != pc
3694 && (sym ? (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) <= start_sal.end
3695 && start_sal.end < BLOCK_END (SYMBOL_BLOCK_VALUE (sym)))
3696 : (lookup_minimal_symbol_by_pc_section (start_sal.end, section).minsym
3697 == lookup_minimal_symbol_by_pc_section (pc, section).minsym)))
3698 {
3699 /* First pc of next line */
3700 pc = start_sal.end;
3701 /* Recalculate the line number (might not be N+1). */
3702 start_sal = find_pc_sect_line (pc, section, 0);
3703 }
3704
3705 /* On targets with executable formats that don't have a concept of
3706 constructors (ELF with .init has, PE doesn't), gcc emits a call
3707 to `__main' in `main' between the prologue and before user
3708 code. */
3709 if (gdbarch_skip_main_prologue_p (gdbarch)
3710 && name && strcmp_iw (name, "main") == 0)
3711 {
3712 pc = gdbarch_skip_main_prologue (gdbarch, pc);
3713 /* Recalculate the line number (might not be N+1). */
3714 start_sal = find_pc_sect_line (pc, section, 0);
3715 force_skip = 1;
3716 }
3717 }
3718 while (!force_skip && skip--);
3719
3720 /* If we still don't have a valid source line, try to find the first
3721 PC in the lineinfo table that belongs to the same function. This
3722 happens with COFF debug info, which does not seem to have an
3723 entry in lineinfo table for the code after the prologue which has
3724 no direct relation to source. For example, this was found to be
3725 the case with the DJGPP target using "gcc -gcoff" when the
3726 compiler inserted code after the prologue to make sure the stack
3727 is aligned. */
3728 if (!force_skip && sym && start_sal.symtab == NULL)
3729 {
3730 pc = skip_prologue_using_lineinfo (pc, symbol_symtab (sym));
3731 /* Recalculate the line number. */
3732 start_sal = find_pc_sect_line (pc, section, 0);
3733 }
3734
3735 /* If we're already past the prologue, leave SAL unchanged. Otherwise
3736 forward SAL to the end of the prologue. */
3737 if (sal->pc >= pc)
3738 return;
3739
3740 sal->pc = pc;
3741 sal->section = section;
3742
3743 /* Unless the explicit_line flag was set, update the SAL line
3744 and symtab to correspond to the modified PC location. */
3745 if (sal->explicit_line)
3746 return;
3747
3748 sal->symtab = start_sal.symtab;
3749 sal->line = start_sal.line;
3750 sal->end = start_sal.end;
3751
3752 /* Check if we are now inside an inlined function. If we can,
3753 use the call site of the function instead. */
3754 b = block_for_pc_sect (sal->pc, sal->section);
3755 function_block = NULL;
3756 while (b != NULL)
3757 {
3758 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
3759 function_block = b;
3760 else if (BLOCK_FUNCTION (b) != NULL)
3761 break;
3762 b = BLOCK_SUPERBLOCK (b);
3763 }
3764 if (function_block != NULL
3765 && SYMBOL_LINE (BLOCK_FUNCTION (function_block)) != 0)
3766 {
3767 sal->line = SYMBOL_LINE (BLOCK_FUNCTION (function_block));
3768 sal->symtab = symbol_symtab (BLOCK_FUNCTION (function_block));
3769 }
3770 }
3771
3772 /* Given PC at the function's start address, attempt to find the
3773 prologue end using SAL information. Return zero if the skip fails.
3774
3775 A non-optimized prologue traditionally has one SAL for the function
3776 and a second for the function body. A single line function has
3777 them both pointing at the same line.
3778
3779 An optimized prologue is similar but the prologue may contain
3780 instructions (SALs) from the instruction body. Need to skip those
3781 while not getting into the function body.
3782
3783 The functions end point and an increasing SAL line are used as
3784 indicators of the prologue's endpoint.
3785
3786 This code is based on the function refine_prologue_limit
3787 (found in ia64). */
3788
3789 CORE_ADDR
3790 skip_prologue_using_sal (struct gdbarch *gdbarch, CORE_ADDR func_addr)
3791 {
3792 struct symtab_and_line prologue_sal;
3793 CORE_ADDR start_pc;
3794 CORE_ADDR end_pc;
3795 const struct block *bl;
3796
3797 /* Get an initial range for the function. */
3798 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
3799 start_pc += gdbarch_deprecated_function_start_offset (gdbarch);
3800
3801 prologue_sal = find_pc_line (start_pc, 0);
3802 if (prologue_sal.line != 0)
3803 {
3804 /* For languages other than assembly, treat two consecutive line
3805 entries at the same address as a zero-instruction prologue.
3806 The GNU assembler emits separate line notes for each instruction
3807 in a multi-instruction macro, but compilers generally will not
3808 do this. */
3809 if (prologue_sal.symtab->language != language_asm)
3810 {
3811 struct linetable *linetable = SYMTAB_LINETABLE (prologue_sal.symtab);
3812 int idx = 0;
3813
3814 /* Skip any earlier lines, and any end-of-sequence marker
3815 from a previous function. */
3816 while (linetable->item[idx].pc != prologue_sal.pc
3817 || linetable->item[idx].line == 0)
3818 idx++;
3819
3820 if (idx+1 < linetable->nitems
3821 && linetable->item[idx+1].line != 0
3822 && linetable->item[idx+1].pc == start_pc)
3823 return start_pc;
3824 }
3825
3826 /* If there is only one sal that covers the entire function,
3827 then it is probably a single line function, like
3828 "foo(){}". */
3829 if (prologue_sal.end >= end_pc)
3830 return 0;
3831
3832 while (prologue_sal.end < end_pc)
3833 {
3834 struct symtab_and_line sal;
3835
3836 sal = find_pc_line (prologue_sal.end, 0);
3837 if (sal.line == 0)
3838 break;
3839 /* Assume that a consecutive SAL for the same (or larger)
3840 line mark the prologue -> body transition. */
3841 if (sal.line >= prologue_sal.line)
3842 break;
3843 /* Likewise if we are in a different symtab altogether
3844 (e.g. within a file included via #include).  */
3845 if (sal.symtab != prologue_sal.symtab)
3846 break;
3847
3848 /* The line number is smaller. Check that it's from the
3849 same function, not something inlined. If it's inlined,
3850 then there is no point comparing the line numbers. */
3851 bl = block_for_pc (prologue_sal.end);
3852 while (bl)
3853 {
3854 if (block_inlined_p (bl))
3855 break;
3856 if (BLOCK_FUNCTION (bl))
3857 {
3858 bl = NULL;
3859 break;
3860 }
3861 bl = BLOCK_SUPERBLOCK (bl);
3862 }
3863 if (bl != NULL)
3864 break;
3865
3866 /* The case in which compiler's optimizer/scheduler has
3867 moved instructions into the prologue. We look ahead in
3868 the function looking for address ranges whose
3869 corresponding line number is less the first one that we
3870 found for the function. This is more conservative then
3871 refine_prologue_limit which scans a large number of SALs
3872 looking for any in the prologue. */
3873 prologue_sal = sal;
3874 }
3875 }
3876
3877 if (prologue_sal.end < end_pc)
3878 /* Return the end of this line, or zero if we could not find a
3879 line. */
3880 return prologue_sal.end;
3881 else
3882 /* Don't return END_PC, which is past the end of the function. */
3883 return prologue_sal.pc;
3884 }
3885
3886 /* See symtab.h. */
3887
3888 symbol *
3889 find_function_alias_target (bound_minimal_symbol msymbol)
3890 {
3891 if (!msymbol_is_text (msymbol.minsym))
3892 return NULL;
3893
3894 CORE_ADDR addr = BMSYMBOL_VALUE_ADDRESS (msymbol);
3895 symbol *sym = find_pc_function (addr);
3896 if (sym != NULL
3897 && SYMBOL_CLASS (sym) == LOC_BLOCK
3898 && BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) == addr)
3899 return sym;
3900
3901 return NULL;
3902 }
3903
3904 \f
3905 /* If P is of the form "operator[ \t]+..." where `...' is
3906 some legitimate operator text, return a pointer to the
3907 beginning of the substring of the operator text.
3908 Otherwise, return "". */
3909
3910 static const char *
3911 operator_chars (const char *p, const char **end)
3912 {
3913 *end = "";
3914 if (!startswith (p, CP_OPERATOR_STR))
3915 return *end;
3916 p += CP_OPERATOR_LEN;
3917
3918 /* Don't get faked out by `operator' being part of a longer
3919 identifier. */
3920 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
3921 return *end;
3922
3923 /* Allow some whitespace between `operator' and the operator symbol. */
3924 while (*p == ' ' || *p == '\t')
3925 p++;
3926
3927 /* Recognize 'operator TYPENAME'. */
3928
3929 if (isalpha (*p) || *p == '_' || *p == '$')
3930 {
3931 const char *q = p + 1;
3932
3933 while (isalnum (*q) || *q == '_' || *q == '$')
3934 q++;
3935 *end = q;
3936 return p;
3937 }
3938
3939 while (*p)
3940 switch (*p)
3941 {
3942 case '\\': /* regexp quoting */
3943 if (p[1] == '*')
3944 {
3945 if (p[2] == '=') /* 'operator\*=' */
3946 *end = p + 3;
3947 else /* 'operator\*' */
3948 *end = p + 2;
3949 return p;
3950 }
3951 else if (p[1] == '[')
3952 {
3953 if (p[2] == ']')
3954 error (_("mismatched quoting on brackets, "
3955 "try 'operator\\[\\]'"));
3956 else if (p[2] == '\\' && p[3] == ']')
3957 {
3958 *end = p + 4; /* 'operator\[\]' */
3959 return p;
3960 }
3961 else
3962 error (_("nothing is allowed between '[' and ']'"));
3963 }
3964 else
3965 {
3966 /* Gratuitous qoute: skip it and move on. */
3967 p++;
3968 continue;
3969 }
3970 break;
3971 case '!':
3972 case '=':
3973 case '*':
3974 case '/':
3975 case '%':
3976 case '^':
3977 if (p[1] == '=')
3978 *end = p + 2;
3979 else
3980 *end = p + 1;
3981 return p;
3982 case '<':
3983 case '>':
3984 case '+':
3985 case '-':
3986 case '&':
3987 case '|':
3988 if (p[0] == '-' && p[1] == '>')
3989 {
3990 /* Struct pointer member operator 'operator->'. */
3991 if (p[2] == '*')
3992 {
3993 *end = p + 3; /* 'operator->*' */
3994 return p;
3995 }
3996 else if (p[2] == '\\')
3997 {
3998 *end = p + 4; /* Hopefully 'operator->\*' */
3999 return p;
4000 }
4001 else
4002 {
4003 *end = p + 2; /* 'operator->' */
4004 return p;
4005 }
4006 }
4007 if (p[1] == '=' || p[1] == p[0])
4008 *end = p + 2;
4009 else
4010 *end = p + 1;
4011 return p;
4012 case '~':
4013 case ',':
4014 *end = p + 1;
4015 return p;
4016 case '(':
4017 if (p[1] != ')')
4018 error (_("`operator ()' must be specified "
4019 "without whitespace in `()'"));
4020 *end = p + 2;
4021 return p;
4022 case '?':
4023 if (p[1] != ':')
4024 error (_("`operator ?:' must be specified "
4025 "without whitespace in `?:'"));
4026 *end = p + 2;
4027 return p;
4028 case '[':
4029 if (p[1] != ']')
4030 error (_("`operator []' must be specified "
4031 "without whitespace in `[]'"));
4032 *end = p + 2;
4033 return p;
4034 default:
4035 error (_("`operator %s' not supported"), p);
4036 break;
4037 }
4038
4039 *end = "";
4040 return *end;
4041 }
4042 \f
4043
4044 /* Data structure to maintain printing state for output_source_filename. */
4045
4046 struct output_source_filename_data
4047 {
4048 /* Cache of what we've seen so far. */
4049 struct filename_seen_cache *filename_seen_cache;
4050
4051 /* Flag of whether we're printing the first one. */
4052 int first;
4053 };
4054
4055 /* Slave routine for sources_info. Force line breaks at ,'s.
4056 NAME is the name to print.
4057 DATA contains the state for printing and watching for duplicates. */
4058
4059 static void
4060 output_source_filename (const char *name,
4061 struct output_source_filename_data *data)
4062 {
4063 /* Since a single source file can result in several partial symbol
4064 tables, we need to avoid printing it more than once. Note: if
4065 some of the psymtabs are read in and some are not, it gets
4066 printed both under "Source files for which symbols have been
4067 read" and "Source files for which symbols will be read in on
4068 demand". I consider this a reasonable way to deal with the
4069 situation. I'm not sure whether this can also happen for
4070 symtabs; it doesn't hurt to check. */
4071
4072 /* Was NAME already seen? */
4073 if (data->filename_seen_cache->seen (name))
4074 {
4075 /* Yes; don't print it again. */
4076 return;
4077 }
4078
4079 /* No; print it and reset *FIRST. */
4080 if (! data->first)
4081 printf_filtered (", ");
4082 data->first = 0;
4083
4084 wrap_here ("");
4085 fputs_filtered (name, gdb_stdout);
4086 }
4087
4088 /* A callback for map_partial_symbol_filenames. */
4089
4090 static void
4091 output_partial_symbol_filename (const char *filename, const char *fullname,
4092 void *data)
4093 {
4094 output_source_filename (fullname ? fullname : filename,
4095 (struct output_source_filename_data *) data);
4096 }
4097
4098 static void
4099 info_sources_command (const char *ignore, int from_tty)
4100 {
4101 struct compunit_symtab *cu;
4102 struct symtab *s;
4103 struct objfile *objfile;
4104 struct output_source_filename_data data;
4105
4106 if (!have_full_symbols () && !have_partial_symbols ())
4107 {
4108 error (_("No symbol table is loaded. Use the \"file\" command."));
4109 }
4110
4111 filename_seen_cache filenames_seen;
4112
4113 data.filename_seen_cache = &filenames_seen;
4114
4115 printf_filtered ("Source files for which symbols have been read in:\n\n");
4116
4117 data.first = 1;
4118 ALL_FILETABS (objfile, cu, s)
4119 {
4120 const char *fullname = symtab_to_fullname (s);
4121
4122 output_source_filename (fullname, &data);
4123 }
4124 printf_filtered ("\n\n");
4125
4126 printf_filtered ("Source files for which symbols "
4127 "will be read in on demand:\n\n");
4128
4129 filenames_seen.clear ();
4130 data.first = 1;
4131 map_symbol_filenames (output_partial_symbol_filename, &data,
4132 1 /*need_fullname*/);
4133 printf_filtered ("\n");
4134 }
4135
4136 /* Compare FILE against all the NFILES entries of FILES. If BASENAMES is
4137 non-zero compare only lbasename of FILES. */
4138
4139 static int
4140 file_matches (const char *file, const char *files[], int nfiles, int basenames)
4141 {
4142 int i;
4143
4144 if (file != NULL && nfiles != 0)
4145 {
4146 for (i = 0; i < nfiles; i++)
4147 {
4148 if (compare_filenames_for_search (file, (basenames
4149 ? lbasename (files[i])
4150 : files[i])))
4151 return 1;
4152 }
4153 }
4154 else if (nfiles == 0)
4155 return 1;
4156 return 0;
4157 }
4158
4159 /* Helper function for sort_search_symbols_remove_dups and qsort. Can only
4160 sort symbols, not minimal symbols. */
4161
4162 int
4163 symbol_search::compare_search_syms (const symbol_search &sym_a,
4164 const symbol_search &sym_b)
4165 {
4166 int c;
4167
4168 c = FILENAME_CMP (symbol_symtab (sym_a.symbol)->filename,
4169 symbol_symtab (sym_b.symbol)->filename);
4170 if (c != 0)
4171 return c;
4172
4173 if (sym_a.block != sym_b.block)
4174 return sym_a.block - sym_b.block;
4175
4176 return strcmp (SYMBOL_PRINT_NAME (sym_a.symbol),
4177 SYMBOL_PRINT_NAME (sym_b.symbol));
4178 }
4179
4180 /* Sort the symbols in RESULT and remove duplicates. */
4181
4182 static void
4183 sort_search_symbols_remove_dups (std::vector<symbol_search> *result)
4184 {
4185 std::sort (result->begin (), result->end ());
4186 result->erase (std::unique (result->begin (), result->end ()),
4187 result->end ());
4188 }
4189
4190 /* Search the symbol table for matches to the regular expression REGEXP,
4191 returning the results.
4192
4193 Only symbols of KIND are searched:
4194 VARIABLES_DOMAIN - search all symbols, excluding functions, type names,
4195 and constants (enums)
4196 FUNCTIONS_DOMAIN - search all functions
4197 TYPES_DOMAIN - search all type names
4198 ALL_DOMAIN - an internal error for this function
4199
4200 Within each file the results are sorted locally; each symtab's global and
4201 static blocks are separately alphabetized.
4202 Duplicate entries are removed. */
4203
4204 std::vector<symbol_search>
4205 search_symbols (const char *regexp, enum search_domain kind,
4206 int nfiles, const char *files[])
4207 {
4208 struct compunit_symtab *cust;
4209 const struct blockvector *bv;
4210 struct block *b;
4211 int i = 0;
4212 struct block_iterator iter;
4213 struct symbol *sym;
4214 struct objfile *objfile;
4215 struct minimal_symbol *msymbol;
4216 int found_misc = 0;
4217 static const enum minimal_symbol_type types[]
4218 = {mst_data, mst_text, mst_abs};
4219 static const enum minimal_symbol_type types2[]
4220 = {mst_bss, mst_file_text, mst_abs};
4221 static const enum minimal_symbol_type types3[]
4222 = {mst_file_data, mst_solib_trampoline, mst_abs};
4223 static const enum minimal_symbol_type types4[]
4224 = {mst_file_bss, mst_text_gnu_ifunc, mst_abs};
4225 enum minimal_symbol_type ourtype;
4226 enum minimal_symbol_type ourtype2;
4227 enum minimal_symbol_type ourtype3;
4228 enum minimal_symbol_type ourtype4;
4229 std::vector<symbol_search> result;
4230 gdb::optional<compiled_regex> preg;
4231
4232 gdb_assert (kind <= TYPES_DOMAIN);
4233
4234 ourtype = types[kind];
4235 ourtype2 = types2[kind];
4236 ourtype3 = types3[kind];
4237 ourtype4 = types4[kind];
4238
4239 if (regexp != NULL)
4240 {
4241 /* Make sure spacing is right for C++ operators.
4242 This is just a courtesy to make the matching less sensitive
4243 to how many spaces the user leaves between 'operator'
4244 and <TYPENAME> or <OPERATOR>. */
4245 const char *opend;
4246 const char *opname = operator_chars (regexp, &opend);
4247 int errcode;
4248
4249 if (*opname)
4250 {
4251 int fix = -1; /* -1 means ok; otherwise number of
4252 spaces needed. */
4253
4254 if (isalpha (*opname) || *opname == '_' || *opname == '$')
4255 {
4256 /* There should 1 space between 'operator' and 'TYPENAME'. */
4257 if (opname[-1] != ' ' || opname[-2] == ' ')
4258 fix = 1;
4259 }
4260 else
4261 {
4262 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
4263 if (opname[-1] == ' ')
4264 fix = 0;
4265 }
4266 /* If wrong number of spaces, fix it. */
4267 if (fix >= 0)
4268 {
4269 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
4270
4271 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
4272 regexp = tmp;
4273 }
4274 }
4275
4276 int cflags = REG_NOSUB | (case_sensitivity == case_sensitive_off
4277 ? REG_ICASE : 0);
4278 preg.emplace (regexp, cflags, _("Invalid regexp"));
4279 }
4280
4281 /* Search through the partial symtabs *first* for all symbols
4282 matching the regexp. That way we don't have to reproduce all of
4283 the machinery below. */
4284 expand_symtabs_matching ([&] (const char *filename, bool basenames)
4285 {
4286 return file_matches (filename, files, nfiles,
4287 basenames);
4288 },
4289 lookup_name_info::match_any (),
4290 [&] (const char *symname)
4291 {
4292 return (!preg || preg->exec (symname,
4293 0, NULL, 0) == 0);
4294 },
4295 NULL,
4296 kind);
4297
4298 /* Here, we search through the minimal symbol tables for functions
4299 and variables that match, and force their symbols to be read.
4300 This is in particular necessary for demangled variable names,
4301 which are no longer put into the partial symbol tables.
4302 The symbol will then be found during the scan of symtabs below.
4303
4304 For functions, find_pc_symtab should succeed if we have debug info
4305 for the function, for variables we have to call
4306 lookup_symbol_in_objfile_from_linkage_name to determine if the variable
4307 has debug info.
4308 If the lookup fails, set found_misc so that we will rescan to print
4309 any matching symbols without debug info.
4310 We only search the objfile the msymbol came from, we no longer search
4311 all objfiles. In large programs (1000s of shared libs) searching all
4312 objfiles is not worth the pain. */
4313
4314 if (nfiles == 0 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
4315 {
4316 ALL_MSYMBOLS (objfile, msymbol)
4317 {
4318 QUIT;
4319
4320 if (msymbol->created_by_gdb)
4321 continue;
4322
4323 if (MSYMBOL_TYPE (msymbol) == ourtype
4324 || MSYMBOL_TYPE (msymbol) == ourtype2
4325 || MSYMBOL_TYPE (msymbol) == ourtype3
4326 || MSYMBOL_TYPE (msymbol) == ourtype4)
4327 {
4328 if (!preg
4329 || preg->exec (MSYMBOL_NATURAL_NAME (msymbol), 0,
4330 NULL, 0) == 0)
4331 {
4332 /* Note: An important side-effect of these lookup functions
4333 is to expand the symbol table if msymbol is found, for the
4334 benefit of the next loop on ALL_COMPUNITS. */
4335 if (kind == FUNCTIONS_DOMAIN
4336 ? (find_pc_compunit_symtab
4337 (MSYMBOL_VALUE_ADDRESS (objfile, msymbol)) == NULL)
4338 : (lookup_symbol_in_objfile_from_linkage_name
4339 (objfile, MSYMBOL_LINKAGE_NAME (msymbol), VAR_DOMAIN)
4340 .symbol == NULL))
4341 found_misc = 1;
4342 }
4343 }
4344 }
4345 }
4346
4347 ALL_COMPUNITS (objfile, cust)
4348 {
4349 bv = COMPUNIT_BLOCKVECTOR (cust);
4350 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
4351 {
4352 b = BLOCKVECTOR_BLOCK (bv, i);
4353 ALL_BLOCK_SYMBOLS (b, iter, sym)
4354 {
4355 struct symtab *real_symtab = symbol_symtab (sym);
4356
4357 QUIT;
4358
4359 /* Check first sole REAL_SYMTAB->FILENAME. It does not need to be
4360 a substring of symtab_to_fullname as it may contain "./" etc. */
4361 if ((file_matches (real_symtab->filename, files, nfiles, 0)
4362 || ((basenames_may_differ
4363 || file_matches (lbasename (real_symtab->filename),
4364 files, nfiles, 1))
4365 && file_matches (symtab_to_fullname (real_symtab),
4366 files, nfiles, 0)))
4367 && ((!preg
4368 || preg->exec (SYMBOL_NATURAL_NAME (sym), 0,
4369 NULL, 0) == 0)
4370 && ((kind == VARIABLES_DOMAIN
4371 && SYMBOL_CLASS (sym) != LOC_TYPEDEF
4372 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
4373 && SYMBOL_CLASS (sym) != LOC_BLOCK
4374 /* LOC_CONST can be used for more than just enums,
4375 e.g., c++ static const members.
4376 We only want to skip enums here. */
4377 && !(SYMBOL_CLASS (sym) == LOC_CONST
4378 && (TYPE_CODE (SYMBOL_TYPE (sym))
4379 == TYPE_CODE_ENUM)))
4380 || (kind == FUNCTIONS_DOMAIN
4381 && SYMBOL_CLASS (sym) == LOC_BLOCK)
4382 || (kind == TYPES_DOMAIN
4383 && SYMBOL_CLASS (sym) == LOC_TYPEDEF))))
4384 {
4385 /* match */
4386 result.emplace_back (i, sym);
4387 }
4388 }
4389 }
4390 }
4391
4392 if (!result.empty ())
4393 sort_search_symbols_remove_dups (&result);
4394
4395 /* If there are no eyes, avoid all contact. I mean, if there are
4396 no debug symbols, then add matching minsyms. */
4397
4398 if (found_misc || (nfiles == 0 && kind != FUNCTIONS_DOMAIN))
4399 {
4400 ALL_MSYMBOLS (objfile, msymbol)
4401 {
4402 QUIT;
4403
4404 if (msymbol->created_by_gdb)
4405 continue;
4406
4407 if (MSYMBOL_TYPE (msymbol) == ourtype
4408 || MSYMBOL_TYPE (msymbol) == ourtype2
4409 || MSYMBOL_TYPE (msymbol) == ourtype3
4410 || MSYMBOL_TYPE (msymbol) == ourtype4)
4411 {
4412 if (!preg || preg->exec (MSYMBOL_NATURAL_NAME (msymbol), 0,
4413 NULL, 0) == 0)
4414 {
4415 /* For functions we can do a quick check of whether the
4416 symbol might be found via find_pc_symtab. */
4417 if (kind != FUNCTIONS_DOMAIN
4418 || (find_pc_compunit_symtab
4419 (MSYMBOL_VALUE_ADDRESS (objfile, msymbol)) == NULL))
4420 {
4421 if (lookup_symbol_in_objfile_from_linkage_name
4422 (objfile, MSYMBOL_LINKAGE_NAME (msymbol), VAR_DOMAIN)
4423 .symbol == NULL)
4424 {
4425 /* match */
4426 result.emplace_back (i, msymbol, objfile);
4427 }
4428 }
4429 }
4430 }
4431 }
4432 }
4433
4434 return result;
4435 }
4436
4437 /* Helper function for symtab_symbol_info, this function uses
4438 the data returned from search_symbols() to print information
4439 regarding the match to gdb_stdout. */
4440
4441 static void
4442 print_symbol_info (enum search_domain kind,
4443 struct symbol *sym,
4444 int block, const char *last)
4445 {
4446 struct symtab *s = symbol_symtab (sym);
4447 const char *s_filename = symtab_to_filename_for_display (s);
4448
4449 if (last == NULL || filename_cmp (last, s_filename) != 0)
4450 {
4451 fputs_filtered ("\nFile ", gdb_stdout);
4452 fputs_filtered (s_filename, gdb_stdout);
4453 fputs_filtered (":\n", gdb_stdout);
4454 }
4455
4456 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
4457 printf_filtered ("static ");
4458
4459 /* Typedef that is not a C++ class. */
4460 if (kind == TYPES_DOMAIN
4461 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
4462 typedef_print (SYMBOL_TYPE (sym), sym, gdb_stdout);
4463 /* variable, func, or typedef-that-is-c++-class. */
4464 else if (kind < TYPES_DOMAIN
4465 || (kind == TYPES_DOMAIN
4466 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
4467 {
4468 type_print (SYMBOL_TYPE (sym),
4469 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
4470 ? "" : SYMBOL_PRINT_NAME (sym)),
4471 gdb_stdout, 0);
4472
4473 printf_filtered (";\n");
4474 }
4475 }
4476
4477 /* This help function for symtab_symbol_info() prints information
4478 for non-debugging symbols to gdb_stdout. */
4479
4480 static void
4481 print_msymbol_info (struct bound_minimal_symbol msymbol)
4482 {
4483 struct gdbarch *gdbarch = get_objfile_arch (msymbol.objfile);
4484 char *tmp;
4485
4486 if (gdbarch_addr_bit (gdbarch) <= 32)
4487 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol)
4488 & (CORE_ADDR) 0xffffffff,
4489 8);
4490 else
4491 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol),
4492 16);
4493 printf_filtered ("%s %s\n",
4494 tmp, MSYMBOL_PRINT_NAME (msymbol.minsym));
4495 }
4496
4497 /* This is the guts of the commands "info functions", "info types", and
4498 "info variables". It calls search_symbols to find all matches and then
4499 print_[m]symbol_info to print out some useful information about the
4500 matches. */
4501
4502 static void
4503 symtab_symbol_info (const char *regexp, enum search_domain kind, int from_tty)
4504 {
4505 static const char * const classnames[] =
4506 {"variable", "function", "type"};
4507 const char *last_filename = NULL;
4508 int first = 1;
4509
4510 gdb_assert (kind <= TYPES_DOMAIN);
4511
4512 /* Must make sure that if we're interrupted, symbols gets freed. */
4513 std::vector<symbol_search> symbols = search_symbols (regexp, kind, 0, NULL);
4514
4515 if (regexp != NULL)
4516 printf_filtered (_("All %ss matching regular expression \"%s\":\n"),
4517 classnames[kind], regexp);
4518 else
4519 printf_filtered (_("All defined %ss:\n"), classnames[kind]);
4520
4521 for (const symbol_search &p : symbols)
4522 {
4523 QUIT;
4524
4525 if (p.msymbol.minsym != NULL)
4526 {
4527 if (first)
4528 {
4529 printf_filtered (_("\nNon-debugging symbols:\n"));
4530 first = 0;
4531 }
4532 print_msymbol_info (p.msymbol);
4533 }
4534 else
4535 {
4536 print_symbol_info (kind,
4537 p.symbol,
4538 p.block,
4539 last_filename);
4540 last_filename
4541 = symtab_to_filename_for_display (symbol_symtab (p.symbol));
4542 }
4543 }
4544 }
4545
4546 static void
4547 info_variables_command (const char *regexp, int from_tty)
4548 {
4549 symtab_symbol_info (regexp, VARIABLES_DOMAIN, from_tty);
4550 }
4551
4552 static void
4553 info_functions_command (const char *regexp, int from_tty)
4554 {
4555 symtab_symbol_info (regexp, FUNCTIONS_DOMAIN, from_tty);
4556 }
4557
4558
4559 static void
4560 info_types_command (const char *regexp, int from_tty)
4561 {
4562 symtab_symbol_info (regexp, TYPES_DOMAIN, from_tty);
4563 }
4564
4565 /* Breakpoint all functions matching regular expression. */
4566
4567 void
4568 rbreak_command_wrapper (char *regexp, int from_tty)
4569 {
4570 rbreak_command (regexp, from_tty);
4571 }
4572
4573 static void
4574 rbreak_command (const char *regexp, int from_tty)
4575 {
4576 std::string string;
4577 const char **files = NULL;
4578 const char *file_name;
4579 int nfiles = 0;
4580
4581 if (regexp)
4582 {
4583 const char *colon = strchr (regexp, ':');
4584
4585 if (colon && *(colon + 1) != ':')
4586 {
4587 int colon_index;
4588 char *local_name;
4589
4590 colon_index = colon - regexp;
4591 local_name = (char *) alloca (colon_index + 1);
4592 memcpy (local_name, regexp, colon_index);
4593 local_name[colon_index--] = 0;
4594 while (isspace (local_name[colon_index]))
4595 local_name[colon_index--] = 0;
4596 file_name = local_name;
4597 files = &file_name;
4598 nfiles = 1;
4599 regexp = skip_spaces (colon + 1);
4600 }
4601 }
4602
4603 std::vector<symbol_search> symbols = search_symbols (regexp,
4604 FUNCTIONS_DOMAIN,
4605 nfiles, files);
4606
4607 scoped_rbreak_breakpoints finalize;
4608 for (const symbol_search &p : symbols)
4609 {
4610 if (p.msymbol.minsym == NULL)
4611 {
4612 struct symtab *symtab = symbol_symtab (p.symbol);
4613 const char *fullname = symtab_to_fullname (symtab);
4614
4615 string = string_printf ("%s:'%s'", fullname,
4616 SYMBOL_LINKAGE_NAME (p.symbol));
4617 break_command (&string[0], from_tty);
4618 print_symbol_info (FUNCTIONS_DOMAIN,
4619 p.symbol,
4620 p.block,
4621 symtab_to_filename_for_display (symtab));
4622 }
4623 else
4624 {
4625 string = string_printf ("'%s'",
4626 MSYMBOL_LINKAGE_NAME (p.msymbol.minsym));
4627
4628 break_command (&string[0], from_tty);
4629 printf_filtered ("<function, no debug info> %s;\n",
4630 MSYMBOL_PRINT_NAME (p.msymbol.minsym));
4631 }
4632 }
4633 }
4634 \f
4635
4636 /* Evaluate if SYMNAME matches LOOKUP_NAME. */
4637
4638 static int
4639 compare_symbol_name (const char *symbol_name, language symbol_language,
4640 const lookup_name_info &lookup_name,
4641 completion_match_result &match_res)
4642 {
4643 const language_defn *lang;
4644
4645 /* If we're completing for an expression and the symbol doesn't have
4646 an explicit language set, fallback to the current language. Ada
4647 minimal symbols won't have their language set to Ada, for
4648 example, and if we compared using the default/C-like matcher,
4649 then when completing e.g., symbols in a package named "pck", we'd
4650 match internal Ada symbols like "pckS", which are invalid in an
4651 Ada expression, unless you wrap them in '<' '>' to request a
4652 verbatim match. */
4653 if (symbol_language == language_auto
4654 && lookup_name.match_type () == symbol_name_match_type::EXPRESSION)
4655 lang = current_language;
4656 else
4657 lang = language_def (symbol_language);
4658
4659 symbol_name_matcher_ftype *name_match
4660 = language_get_symbol_name_matcher (lang, lookup_name);
4661
4662 return name_match (symbol_name, lookup_name, &match_res.match);
4663 }
4664
4665 /* See symtab.h. */
4666
4667 void
4668 completion_list_add_name (completion_tracker &tracker,
4669 language symbol_language,
4670 const char *symname,
4671 const lookup_name_info &lookup_name,
4672 const char *text, const char *word)
4673 {
4674 completion_match_result &match_res
4675 = tracker.reset_completion_match_result ();
4676
4677 /* Clip symbols that cannot match. */
4678 if (!compare_symbol_name (symname, symbol_language, lookup_name, match_res))
4679 return;
4680
4681 /* Refresh SYMNAME from the match string. It's potentially
4682 different depending on language. (E.g., on Ada, the match may be
4683 the encoded symbol name wrapped in "<>"). */
4684 symname = match_res.match.match ();
4685 gdb_assert (symname != NULL);
4686
4687 /* We have a match for a completion, so add SYMNAME to the current list
4688 of matches. Note that the name is moved to freshly malloc'd space. */
4689
4690 {
4691 char *newobj;
4692
4693 if (word == text)
4694 {
4695 newobj = (char *) xmalloc (strlen (symname) + 5);
4696 strcpy (newobj, symname);
4697 }
4698 else if (word > text)
4699 {
4700 /* Return some portion of symname. */
4701 newobj = (char *) xmalloc (strlen (symname) + 5);
4702 strcpy (newobj, symname + (word - text));
4703 }
4704 else
4705 {
4706 /* Return some of SYM_TEXT plus symname. */
4707 newobj = (char *) xmalloc (strlen (symname) + (text - word) + 5);
4708 strncpy (newobj, word, text - word);
4709 newobj[text - word] = '\0';
4710 strcat (newobj, symname);
4711 }
4712
4713 gdb::unique_xmalloc_ptr<char> completion (newobj);
4714
4715 tracker.add_completion (std::move (completion));
4716 }
4717 }
4718
4719 /* completion_list_add_name wrapper for struct symbol. */
4720
4721 static void
4722 completion_list_add_symbol (completion_tracker &tracker,
4723 symbol *sym,
4724 const lookup_name_info &lookup_name,
4725 const char *text, const char *word)
4726 {
4727 completion_list_add_name (tracker, SYMBOL_LANGUAGE (sym),
4728 SYMBOL_NATURAL_NAME (sym),
4729 lookup_name, text, word);
4730 }
4731
4732 /* completion_list_add_name wrapper for struct minimal_symbol. */
4733
4734 static void
4735 completion_list_add_msymbol (completion_tracker &tracker,
4736 minimal_symbol *sym,
4737 const lookup_name_info &lookup_name,
4738 const char *text, const char *word)
4739 {
4740 completion_list_add_name (tracker, MSYMBOL_LANGUAGE (sym),
4741 MSYMBOL_NATURAL_NAME (sym),
4742 lookup_name, text, word);
4743 }
4744
4745
4746 /* ObjC: In case we are completing on a selector, look as the msymbol
4747 again and feed all the selectors into the mill. */
4748
4749 static void
4750 completion_list_objc_symbol (completion_tracker &tracker,
4751 struct minimal_symbol *msymbol,
4752 const lookup_name_info &lookup_name,
4753 const char *text, const char *word)
4754 {
4755 static char *tmp = NULL;
4756 static unsigned int tmplen = 0;
4757
4758 const char *method, *category, *selector;
4759 char *tmp2 = NULL;
4760
4761 method = MSYMBOL_NATURAL_NAME (msymbol);
4762
4763 /* Is it a method? */
4764 if ((method[0] != '-') && (method[0] != '+'))
4765 return;
4766
4767 if (text[0] == '[')
4768 /* Complete on shortened method method. */
4769 completion_list_add_name (tracker, language_objc,
4770 method + 1,
4771 lookup_name,
4772 text, word);
4773
4774 while ((strlen (method) + 1) >= tmplen)
4775 {
4776 if (tmplen == 0)
4777 tmplen = 1024;
4778 else
4779 tmplen *= 2;
4780 tmp = (char *) xrealloc (tmp, tmplen);
4781 }
4782 selector = strchr (method, ' ');
4783 if (selector != NULL)
4784 selector++;
4785
4786 category = strchr (method, '(');
4787
4788 if ((category != NULL) && (selector != NULL))
4789 {
4790 memcpy (tmp, method, (category - method));
4791 tmp[category - method] = ' ';
4792 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
4793 completion_list_add_name (tracker, language_objc, tmp,
4794 lookup_name, text, word);
4795 if (text[0] == '[')
4796 completion_list_add_name (tracker, language_objc, tmp + 1,
4797 lookup_name, text, word);
4798 }
4799
4800 if (selector != NULL)
4801 {
4802 /* Complete on selector only. */
4803 strcpy (tmp, selector);
4804 tmp2 = strchr (tmp, ']');
4805 if (tmp2 != NULL)
4806 *tmp2 = '\0';
4807
4808 completion_list_add_name (tracker, language_objc, tmp,
4809 lookup_name, text, word);
4810 }
4811 }
4812
4813 /* Break the non-quoted text based on the characters which are in
4814 symbols. FIXME: This should probably be language-specific. */
4815
4816 static const char *
4817 language_search_unquoted_string (const char *text, const char *p)
4818 {
4819 for (; p > text; --p)
4820 {
4821 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
4822 continue;
4823 else
4824 {
4825 if ((current_language->la_language == language_objc))
4826 {
4827 if (p[-1] == ':') /* Might be part of a method name. */
4828 continue;
4829 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
4830 p -= 2; /* Beginning of a method name. */
4831 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
4832 { /* Might be part of a method name. */
4833 const char *t = p;
4834
4835 /* Seeing a ' ' or a '(' is not conclusive evidence
4836 that we are in the middle of a method name. However,
4837 finding "-[" or "+[" should be pretty un-ambiguous.
4838 Unfortunately we have to find it now to decide. */
4839
4840 while (t > text)
4841 if (isalnum (t[-1]) || t[-1] == '_' ||
4842 t[-1] == ' ' || t[-1] == ':' ||
4843 t[-1] == '(' || t[-1] == ')')
4844 --t;
4845 else
4846 break;
4847
4848 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
4849 p = t - 2; /* Method name detected. */
4850 /* Else we leave with p unchanged. */
4851 }
4852 }
4853 break;
4854 }
4855 }
4856 return p;
4857 }
4858
4859 static void
4860 completion_list_add_fields (completion_tracker &tracker,
4861 struct symbol *sym,
4862 const lookup_name_info &lookup_name,
4863 const char *text, const char *word)
4864 {
4865 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4866 {
4867 struct type *t = SYMBOL_TYPE (sym);
4868 enum type_code c = TYPE_CODE (t);
4869 int j;
4870
4871 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
4872 for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++)
4873 if (TYPE_FIELD_NAME (t, j))
4874 completion_list_add_name (tracker, SYMBOL_LANGUAGE (sym),
4875 TYPE_FIELD_NAME (t, j),
4876 lookup_name, text, word);
4877 }
4878 }
4879
4880 /* Add matching symbols from SYMTAB to the current completion list. */
4881
4882 static void
4883 add_symtab_completions (struct compunit_symtab *cust,
4884 completion_tracker &tracker,
4885 const lookup_name_info &lookup_name,
4886 const char *text, const char *word,
4887 enum type_code code)
4888 {
4889 struct symbol *sym;
4890 const struct block *b;
4891 struct block_iterator iter;
4892 int i;
4893
4894 if (cust == NULL)
4895 return;
4896
4897 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
4898 {
4899 QUIT;
4900 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust), i);
4901 ALL_BLOCK_SYMBOLS (b, iter, sym)
4902 {
4903 if (code == TYPE_CODE_UNDEF
4904 || (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4905 && TYPE_CODE (SYMBOL_TYPE (sym)) == code))
4906 completion_list_add_symbol (tracker, sym,
4907 lookup_name,
4908 text, word);
4909 }
4910 }
4911 }
4912
4913 void
4914 default_collect_symbol_completion_matches_break_on
4915 (completion_tracker &tracker, complete_symbol_mode mode,
4916 symbol_name_match_type name_match_type,
4917 const char *text, const char *word,
4918 const char *break_on, enum type_code code)
4919 {
4920 /* Problem: All of the symbols have to be copied because readline
4921 frees them. I'm not going to worry about this; hopefully there
4922 won't be that many. */
4923
4924 struct symbol *sym;
4925 struct compunit_symtab *cust;
4926 struct minimal_symbol *msymbol;
4927 struct objfile *objfile;
4928 const struct block *b;
4929 const struct block *surrounding_static_block, *surrounding_global_block;
4930 struct block_iterator iter;
4931 /* The symbol we are completing on. Points in same buffer as text. */
4932 const char *sym_text;
4933
4934 /* Now look for the symbol we are supposed to complete on. */
4935 if (mode == complete_symbol_mode::LINESPEC)
4936 sym_text = text;
4937 else
4938 {
4939 const char *p;
4940 char quote_found;
4941 const char *quote_pos = NULL;
4942
4943 /* First see if this is a quoted string. */
4944 quote_found = '\0';
4945 for (p = text; *p != '\0'; ++p)
4946 {
4947 if (quote_found != '\0')
4948 {
4949 if (*p == quote_found)
4950 /* Found close quote. */
4951 quote_found = '\0';
4952 else if (*p == '\\' && p[1] == quote_found)
4953 /* A backslash followed by the quote character
4954 doesn't end the string. */
4955 ++p;
4956 }
4957 else if (*p == '\'' || *p == '"')
4958 {
4959 quote_found = *p;
4960 quote_pos = p;
4961 }
4962 }
4963 if (quote_found == '\'')
4964 /* A string within single quotes can be a symbol, so complete on it. */
4965 sym_text = quote_pos + 1;
4966 else if (quote_found == '"')
4967 /* A double-quoted string is never a symbol, nor does it make sense
4968 to complete it any other way. */
4969 {
4970 return;
4971 }
4972 else
4973 {
4974 /* It is not a quoted string. Break it based on the characters
4975 which are in symbols. */
4976 while (p > text)
4977 {
4978 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0'
4979 || p[-1] == ':' || strchr (break_on, p[-1]) != NULL)
4980 --p;
4981 else
4982 break;
4983 }
4984 sym_text = p;
4985 }
4986 }
4987
4988 lookup_name_info lookup_name (sym_text, name_match_type, true);
4989
4990 /* At this point scan through the misc symbol vectors and add each
4991 symbol you find to the list. Eventually we want to ignore
4992 anything that isn't a text symbol (everything else will be
4993 handled by the psymtab code below). */
4994
4995 if (code == TYPE_CODE_UNDEF)
4996 {
4997 ALL_MSYMBOLS (objfile, msymbol)
4998 {
4999 QUIT;
5000
5001 completion_list_add_msymbol (tracker, msymbol, lookup_name,
5002 sym_text, word);
5003
5004 completion_list_objc_symbol (tracker, msymbol, lookup_name,
5005 sym_text, word);
5006 }
5007 }
5008
5009 /* Add completions for all currently loaded symbol tables. */
5010 ALL_COMPUNITS (objfile, cust)
5011 add_symtab_completions (cust, tracker, lookup_name,
5012 sym_text, word, code);
5013
5014 /* Look through the partial symtabs for all symbols which begin by
5015 matching SYM_TEXT. Expand all CUs that you find to the list. */
5016 expand_symtabs_matching (NULL,
5017 lookup_name,
5018 NULL,
5019 [&] (compunit_symtab *symtab) /* expansion notify */
5020 {
5021 add_symtab_completions (symtab,
5022 tracker, lookup_name,
5023 sym_text, word, code);
5024 },
5025 ALL_DOMAIN);
5026
5027 /* Search upwards from currently selected frame (so that we can
5028 complete on local vars). Also catch fields of types defined in
5029 this places which match our text string. Only complete on types
5030 visible from current context. */
5031
5032 b = get_selected_block (0);
5033 surrounding_static_block = block_static_block (b);
5034 surrounding_global_block = block_global_block (b);
5035 if (surrounding_static_block != NULL)
5036 while (b != surrounding_static_block)
5037 {
5038 QUIT;
5039
5040 ALL_BLOCK_SYMBOLS (b, iter, sym)
5041 {
5042 if (code == TYPE_CODE_UNDEF)
5043 {
5044 completion_list_add_symbol (tracker, sym, lookup_name,
5045 sym_text, word);
5046 completion_list_add_fields (tracker, sym, lookup_name,
5047 sym_text, word);
5048 }
5049 else if (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
5050 && TYPE_CODE (SYMBOL_TYPE (sym)) == code)
5051 completion_list_add_symbol (tracker, sym, lookup_name,
5052 sym_text, word);
5053 }
5054
5055 /* Stop when we encounter an enclosing function. Do not stop for
5056 non-inlined functions - the locals of the enclosing function
5057 are in scope for a nested function. */
5058 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
5059 break;
5060 b = BLOCK_SUPERBLOCK (b);
5061 }
5062
5063 /* Add fields from the file's types; symbols will be added below. */
5064
5065 if (code == TYPE_CODE_UNDEF)
5066 {
5067 if (surrounding_static_block != NULL)
5068 ALL_BLOCK_SYMBOLS (surrounding_static_block, iter, sym)
5069 completion_list_add_fields (tracker, sym, lookup_name,
5070 sym_text, word);
5071
5072 if (surrounding_global_block != NULL)
5073 ALL_BLOCK_SYMBOLS (surrounding_global_block, iter, sym)
5074 completion_list_add_fields (tracker, sym, lookup_name,
5075 sym_text, word);
5076 }
5077
5078 /* Skip macros if we are completing a struct tag -- arguable but
5079 usually what is expected. */
5080 if (current_language->la_macro_expansion == macro_expansion_c
5081 && code == TYPE_CODE_UNDEF)
5082 {
5083 struct macro_scope *scope;
5084
5085 /* This adds a macro's name to the current completion list. */
5086 auto add_macro_name = [&] (const char *macro_name,
5087 const macro_definition *,
5088 macro_source_file *,
5089 int)
5090 {
5091 completion_list_add_name (tracker, language_c, macro_name,
5092 lookup_name, sym_text, word);
5093 };
5094
5095 /* Add any macros visible in the default scope. Note that this
5096 may yield the occasional wrong result, because an expression
5097 might be evaluated in a scope other than the default. For
5098 example, if the user types "break file:line if <TAB>", the
5099 resulting expression will be evaluated at "file:line" -- but
5100 at there does not seem to be a way to detect this at
5101 completion time. */
5102 scope = default_macro_scope ();
5103 if (scope)
5104 {
5105 macro_for_each_in_scope (scope->file, scope->line,
5106 add_macro_name);
5107 xfree (scope);
5108 }
5109
5110 /* User-defined macros are always visible. */
5111 macro_for_each (macro_user_macros, add_macro_name);
5112 }
5113 }
5114
5115 void
5116 default_collect_symbol_completion_matches (completion_tracker &tracker,
5117 complete_symbol_mode mode,
5118 symbol_name_match_type name_match_type,
5119 const char *text, const char *word,
5120 enum type_code code)
5121 {
5122 return default_collect_symbol_completion_matches_break_on (tracker, mode,
5123 name_match_type,
5124 text, word, "",
5125 code);
5126 }
5127
5128 /* Collect all symbols (regardless of class) which begin by matching
5129 TEXT. */
5130
5131 void
5132 collect_symbol_completion_matches (completion_tracker &tracker,
5133 complete_symbol_mode mode,
5134 symbol_name_match_type name_match_type,
5135 const char *text, const char *word)
5136 {
5137 current_language->la_collect_symbol_completion_matches (tracker, mode,
5138 name_match_type,
5139 text, word,
5140 TYPE_CODE_UNDEF);
5141 }
5142
5143 /* Like collect_symbol_completion_matches, but only collect
5144 STRUCT_DOMAIN symbols whose type code is CODE. */
5145
5146 void
5147 collect_symbol_completion_matches_type (completion_tracker &tracker,
5148 const char *text, const char *word,
5149 enum type_code code)
5150 {
5151 complete_symbol_mode mode = complete_symbol_mode::EXPRESSION;
5152 symbol_name_match_type name_match_type = symbol_name_match_type::EXPRESSION;
5153
5154 gdb_assert (code == TYPE_CODE_UNION
5155 || code == TYPE_CODE_STRUCT
5156 || code == TYPE_CODE_ENUM);
5157 current_language->la_collect_symbol_completion_matches (tracker, mode,
5158 name_match_type,
5159 text, word, code);
5160 }
5161
5162 /* Like collect_symbol_completion_matches, but collects a list of
5163 symbols defined in all source files named SRCFILE. */
5164
5165 void
5166 collect_file_symbol_completion_matches (completion_tracker &tracker,
5167 complete_symbol_mode mode,
5168 symbol_name_match_type name_match_type,
5169 const char *text, const char *word,
5170 const char *srcfile)
5171 {
5172 /* The symbol we are completing on. Points in same buffer as text. */
5173 const char *sym_text;
5174
5175 /* Now look for the symbol we are supposed to complete on.
5176 FIXME: This should be language-specific. */
5177 if (mode == complete_symbol_mode::LINESPEC)
5178 sym_text = text;
5179 else
5180 {
5181 const char *p;
5182 char quote_found;
5183 const char *quote_pos = NULL;
5184
5185 /* First see if this is a quoted string. */
5186 quote_found = '\0';
5187 for (p = text; *p != '\0'; ++p)
5188 {
5189 if (quote_found != '\0')
5190 {
5191 if (*p == quote_found)
5192 /* Found close quote. */
5193 quote_found = '\0';
5194 else if (*p == '\\' && p[1] == quote_found)
5195 /* A backslash followed by the quote character
5196 doesn't end the string. */
5197 ++p;
5198 }
5199 else if (*p == '\'' || *p == '"')
5200 {
5201 quote_found = *p;
5202 quote_pos = p;
5203 }
5204 }
5205 if (quote_found == '\'')
5206 /* A string within single quotes can be a symbol, so complete on it. */
5207 sym_text = quote_pos + 1;
5208 else if (quote_found == '"')
5209 /* A double-quoted string is never a symbol, nor does it make sense
5210 to complete it any other way. */
5211 {
5212 return;
5213 }
5214 else
5215 {
5216 /* Not a quoted string. */
5217 sym_text = language_search_unquoted_string (text, p);
5218 }
5219 }
5220
5221 lookup_name_info lookup_name (sym_text, name_match_type, true);
5222
5223 /* Go through symtabs for SRCFILE and check the externs and statics
5224 for symbols which match. */
5225 iterate_over_symtabs (srcfile, [&] (symtab *s)
5226 {
5227 add_symtab_completions (SYMTAB_COMPUNIT (s),
5228 tracker, lookup_name,
5229 sym_text, word, TYPE_CODE_UNDEF);
5230 return false;
5231 });
5232 }
5233
5234 /* A helper function for make_source_files_completion_list. It adds
5235 another file name to a list of possible completions, growing the
5236 list as necessary. */
5237
5238 static void
5239 add_filename_to_list (const char *fname, const char *text, const char *word,
5240 completion_list *list)
5241 {
5242 char *newobj;
5243 size_t fnlen = strlen (fname);
5244
5245 if (word == text)
5246 {
5247 /* Return exactly fname. */
5248 newobj = (char *) xmalloc (fnlen + 5);
5249 strcpy (newobj, fname);
5250 }
5251 else if (word > text)
5252 {
5253 /* Return some portion of fname. */
5254 newobj = (char *) xmalloc (fnlen + 5);
5255 strcpy (newobj, fname + (word - text));
5256 }
5257 else
5258 {
5259 /* Return some of TEXT plus fname. */
5260 newobj = (char *) xmalloc (fnlen + (text - word) + 5);
5261 strncpy (newobj, word, text - word);
5262 newobj[text - word] = '\0';
5263 strcat (newobj, fname);
5264 }
5265 list->emplace_back (newobj);
5266 }
5267
5268 static int
5269 not_interesting_fname (const char *fname)
5270 {
5271 static const char *illegal_aliens[] = {
5272 "_globals_", /* inserted by coff_symtab_read */
5273 NULL
5274 };
5275 int i;
5276
5277 for (i = 0; illegal_aliens[i]; i++)
5278 {
5279 if (filename_cmp (fname, illegal_aliens[i]) == 0)
5280 return 1;
5281 }
5282 return 0;
5283 }
5284
5285 /* An object of this type is passed as the user_data argument to
5286 map_partial_symbol_filenames. */
5287 struct add_partial_filename_data
5288 {
5289 struct filename_seen_cache *filename_seen_cache;
5290 const char *text;
5291 const char *word;
5292 int text_len;
5293 completion_list *list;
5294 };
5295
5296 /* A callback for map_partial_symbol_filenames. */
5297
5298 static void
5299 maybe_add_partial_symtab_filename (const char *filename, const char *fullname,
5300 void *user_data)
5301 {
5302 struct add_partial_filename_data *data
5303 = (struct add_partial_filename_data *) user_data;
5304
5305 if (not_interesting_fname (filename))
5306 return;
5307 if (!data->filename_seen_cache->seen (filename)
5308 && filename_ncmp (filename, data->text, data->text_len) == 0)
5309 {
5310 /* This file matches for a completion; add it to the
5311 current list of matches. */
5312 add_filename_to_list (filename, data->text, data->word, data->list);
5313 }
5314 else
5315 {
5316 const char *base_name = lbasename (filename);
5317
5318 if (base_name != filename
5319 && !data->filename_seen_cache->seen (base_name)
5320 && filename_ncmp (base_name, data->text, data->text_len) == 0)
5321 add_filename_to_list (base_name, data->text, data->word, data->list);
5322 }
5323 }
5324
5325 /* Return a list of all source files whose names begin with matching
5326 TEXT. The file names are looked up in the symbol tables of this
5327 program. */
5328
5329 completion_list
5330 make_source_files_completion_list (const char *text, const char *word)
5331 {
5332 struct compunit_symtab *cu;
5333 struct symtab *s;
5334 struct objfile *objfile;
5335 size_t text_len = strlen (text);
5336 completion_list list;
5337 const char *base_name;
5338 struct add_partial_filename_data datum;
5339
5340 if (!have_full_symbols () && !have_partial_symbols ())
5341 return list;
5342
5343 filename_seen_cache filenames_seen;
5344
5345 ALL_FILETABS (objfile, cu, s)
5346 {
5347 if (not_interesting_fname (s->filename))
5348 continue;
5349 if (!filenames_seen.seen (s->filename)
5350 && filename_ncmp (s->filename, text, text_len) == 0)
5351 {
5352 /* This file matches for a completion; add it to the current
5353 list of matches. */
5354 add_filename_to_list (s->filename, text, word, &list);
5355 }
5356 else
5357 {
5358 /* NOTE: We allow the user to type a base name when the
5359 debug info records leading directories, but not the other
5360 way around. This is what subroutines of breakpoint
5361 command do when they parse file names. */
5362 base_name = lbasename (s->filename);
5363 if (base_name != s->filename
5364 && !filenames_seen.seen (base_name)
5365 && filename_ncmp (base_name, text, text_len) == 0)
5366 add_filename_to_list (base_name, text, word, &list);
5367 }
5368 }
5369
5370 datum.filename_seen_cache = &filenames_seen;
5371 datum.text = text;
5372 datum.word = word;
5373 datum.text_len = text_len;
5374 datum.list = &list;
5375 map_symbol_filenames (maybe_add_partial_symtab_filename, &datum,
5376 0 /*need_fullname*/);
5377
5378 return list;
5379 }
5380 \f
5381 /* Track MAIN */
5382
5383 /* Return the "main_info" object for the current program space. If
5384 the object has not yet been created, create it and fill in some
5385 default values. */
5386
5387 static struct main_info *
5388 get_main_info (void)
5389 {
5390 struct main_info *info
5391 = (struct main_info *) program_space_data (current_program_space,
5392 main_progspace_key);
5393
5394 if (info == NULL)
5395 {
5396 /* It may seem strange to store the main name in the progspace
5397 and also in whatever objfile happens to see a main name in
5398 its debug info. The reason for this is mainly historical:
5399 gdb returned "main" as the name even if no function named
5400 "main" was defined the program; and this approach lets us
5401 keep compatibility. */
5402 info = XCNEW (struct main_info);
5403 info->language_of_main = language_unknown;
5404 set_program_space_data (current_program_space, main_progspace_key,
5405 info);
5406 }
5407
5408 return info;
5409 }
5410
5411 /* A cleanup to destroy a struct main_info when a progspace is
5412 destroyed. */
5413
5414 static void
5415 main_info_cleanup (struct program_space *pspace, void *data)
5416 {
5417 struct main_info *info = (struct main_info *) data;
5418
5419 if (info != NULL)
5420 xfree (info->name_of_main);
5421 xfree (info);
5422 }
5423
5424 static void
5425 set_main_name (const char *name, enum language lang)
5426 {
5427 struct main_info *info = get_main_info ();
5428
5429 if (info->name_of_main != NULL)
5430 {
5431 xfree (info->name_of_main);
5432 info->name_of_main = NULL;
5433 info->language_of_main = language_unknown;
5434 }
5435 if (name != NULL)
5436 {
5437 info->name_of_main = xstrdup (name);
5438 info->language_of_main = lang;
5439 }
5440 }
5441
5442 /* Deduce the name of the main procedure, and set NAME_OF_MAIN
5443 accordingly. */
5444
5445 static void
5446 find_main_name (void)
5447 {
5448 const char *new_main_name;
5449 struct objfile *objfile;
5450
5451 /* First check the objfiles to see whether a debuginfo reader has
5452 picked up the appropriate main name. Historically the main name
5453 was found in a more or less random way; this approach instead
5454 relies on the order of objfile creation -- which still isn't
5455 guaranteed to get the correct answer, but is just probably more
5456 accurate. */
5457 ALL_OBJFILES (objfile)
5458 {
5459 if (objfile->per_bfd->name_of_main != NULL)
5460 {
5461 set_main_name (objfile->per_bfd->name_of_main,
5462 objfile->per_bfd->language_of_main);
5463 return;
5464 }
5465 }
5466
5467 /* Try to see if the main procedure is in Ada. */
5468 /* FIXME: brobecker/2005-03-07: Another way of doing this would
5469 be to add a new method in the language vector, and call this
5470 method for each language until one of them returns a non-empty
5471 name. This would allow us to remove this hard-coded call to
5472 an Ada function. It is not clear that this is a better approach
5473 at this point, because all methods need to be written in a way
5474 such that false positives never be returned. For instance, it is
5475 important that a method does not return a wrong name for the main
5476 procedure if the main procedure is actually written in a different
5477 language. It is easy to guaranty this with Ada, since we use a
5478 special symbol generated only when the main in Ada to find the name
5479 of the main procedure. It is difficult however to see how this can
5480 be guarantied for languages such as C, for instance. This suggests
5481 that order of call for these methods becomes important, which means
5482 a more complicated approach. */
5483 new_main_name = ada_main_name ();
5484 if (new_main_name != NULL)
5485 {
5486 set_main_name (new_main_name, language_ada);
5487 return;
5488 }
5489
5490 new_main_name = d_main_name ();
5491 if (new_main_name != NULL)
5492 {
5493 set_main_name (new_main_name, language_d);
5494 return;
5495 }
5496
5497 new_main_name = go_main_name ();
5498 if (new_main_name != NULL)
5499 {
5500 set_main_name (new_main_name, language_go);
5501 return;
5502 }
5503
5504 new_main_name = pascal_main_name ();
5505 if (new_main_name != NULL)
5506 {
5507 set_main_name (new_main_name, language_pascal);
5508 return;
5509 }
5510
5511 /* The languages above didn't identify the name of the main procedure.
5512 Fallback to "main". */
5513 set_main_name ("main", language_unknown);
5514 }
5515
5516 char *
5517 main_name (void)
5518 {
5519 struct main_info *info = get_main_info ();
5520
5521 if (info->name_of_main == NULL)
5522 find_main_name ();
5523
5524 return info->name_of_main;
5525 }
5526
5527 /* Return the language of the main function. If it is not known,
5528 return language_unknown. */
5529
5530 enum language
5531 main_language (void)
5532 {
5533 struct main_info *info = get_main_info ();
5534
5535 if (info->name_of_main == NULL)
5536 find_main_name ();
5537
5538 return info->language_of_main;
5539 }
5540
5541 /* Handle ``executable_changed'' events for the symtab module. */
5542
5543 static void
5544 symtab_observer_executable_changed (void)
5545 {
5546 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
5547 set_main_name (NULL, language_unknown);
5548 }
5549
5550 /* Return 1 if the supplied producer string matches the ARM RealView
5551 compiler (armcc). */
5552
5553 int
5554 producer_is_realview (const char *producer)
5555 {
5556 static const char *const arm_idents[] = {
5557 "ARM C Compiler, ADS",
5558 "Thumb C Compiler, ADS",
5559 "ARM C++ Compiler, ADS",
5560 "Thumb C++ Compiler, ADS",
5561 "ARM/Thumb C/C++ Compiler, RVCT",
5562 "ARM C/C++ Compiler, RVCT"
5563 };
5564 int i;
5565
5566 if (producer == NULL)
5567 return 0;
5568
5569 for (i = 0; i < ARRAY_SIZE (arm_idents); i++)
5570 if (startswith (producer, arm_idents[i]))
5571 return 1;
5572
5573 return 0;
5574 }
5575
5576 \f
5577
5578 /* The next index to hand out in response to a registration request. */
5579
5580 static int next_aclass_value = LOC_FINAL_VALUE;
5581
5582 /* The maximum number of "aclass" registrations we support. This is
5583 constant for convenience. */
5584 #define MAX_SYMBOL_IMPLS (LOC_FINAL_VALUE + 10)
5585
5586 /* The objects representing the various "aclass" values. The elements
5587 from 0 up to LOC_FINAL_VALUE-1 represent themselves, and subsequent
5588 elements are those registered at gdb initialization time. */
5589
5590 static struct symbol_impl symbol_impl[MAX_SYMBOL_IMPLS];
5591
5592 /* The globally visible pointer. This is separate from 'symbol_impl'
5593 so that it can be const. */
5594
5595 const struct symbol_impl *symbol_impls = &symbol_impl[0];
5596
5597 /* Make sure we saved enough room in struct symbol. */
5598
5599 gdb_static_assert (MAX_SYMBOL_IMPLS <= (1 << SYMBOL_ACLASS_BITS));
5600
5601 /* Register a computed symbol type. ACLASS must be LOC_COMPUTED. OPS
5602 is the ops vector associated with this index. This returns the new
5603 index, which should be used as the aclass_index field for symbols
5604 of this type. */
5605
5606 int
5607 register_symbol_computed_impl (enum address_class aclass,
5608 const struct symbol_computed_ops *ops)
5609 {
5610 int result = next_aclass_value++;
5611
5612 gdb_assert (aclass == LOC_COMPUTED);
5613 gdb_assert (result < MAX_SYMBOL_IMPLS);
5614 symbol_impl[result].aclass = aclass;
5615 symbol_impl[result].ops_computed = ops;
5616
5617 /* Sanity check OPS. */
5618 gdb_assert (ops != NULL);
5619 gdb_assert (ops->tracepoint_var_ref != NULL);
5620 gdb_assert (ops->describe_location != NULL);
5621 gdb_assert (ops->get_symbol_read_needs != NULL);
5622 gdb_assert (ops->read_variable != NULL);
5623
5624 return result;
5625 }
5626
5627 /* Register a function with frame base type. ACLASS must be LOC_BLOCK.
5628 OPS is the ops vector associated with this index. This returns the
5629 new index, which should be used as the aclass_index field for symbols
5630 of this type. */
5631
5632 int
5633 register_symbol_block_impl (enum address_class aclass,
5634 const struct symbol_block_ops *ops)
5635 {
5636 int result = next_aclass_value++;
5637
5638 gdb_assert (aclass == LOC_BLOCK);
5639 gdb_assert (result < MAX_SYMBOL_IMPLS);
5640 symbol_impl[result].aclass = aclass;
5641 symbol_impl[result].ops_block = ops;
5642
5643 /* Sanity check OPS. */
5644 gdb_assert (ops != NULL);
5645 gdb_assert (ops->find_frame_base_location != NULL);
5646
5647 return result;
5648 }
5649
5650 /* Register a register symbol type. ACLASS must be LOC_REGISTER or
5651 LOC_REGPARM_ADDR. OPS is the register ops vector associated with
5652 this index. This returns the new index, which should be used as
5653 the aclass_index field for symbols of this type. */
5654
5655 int
5656 register_symbol_register_impl (enum address_class aclass,
5657 const struct symbol_register_ops *ops)
5658 {
5659 int result = next_aclass_value++;
5660
5661 gdb_assert (aclass == LOC_REGISTER || aclass == LOC_REGPARM_ADDR);
5662 gdb_assert (result < MAX_SYMBOL_IMPLS);
5663 symbol_impl[result].aclass = aclass;
5664 symbol_impl[result].ops_register = ops;
5665
5666 return result;
5667 }
5668
5669 /* Initialize elements of 'symbol_impl' for the constants in enum
5670 address_class. */
5671
5672 static void
5673 initialize_ordinary_address_classes (void)
5674 {
5675 int i;
5676
5677 for (i = 0; i < LOC_FINAL_VALUE; ++i)
5678 symbol_impl[i].aclass = (enum address_class) i;
5679 }
5680
5681 \f
5682
5683 /* Helper function to initialize the fields of an objfile-owned symbol.
5684 It assumed that *SYM is already all zeroes. */
5685
5686 static void
5687 initialize_objfile_symbol_1 (struct symbol *sym)
5688 {
5689 SYMBOL_OBJFILE_OWNED (sym) = 1;
5690 SYMBOL_SECTION (sym) = -1;
5691 }
5692
5693 /* Initialize the symbol SYM, and mark it as being owned by an objfile. */
5694
5695 void
5696 initialize_objfile_symbol (struct symbol *sym)
5697 {
5698 memset (sym, 0, sizeof (*sym));
5699 initialize_objfile_symbol_1 (sym);
5700 }
5701
5702 /* Allocate and initialize a new 'struct symbol' on OBJFILE's
5703 obstack. */
5704
5705 struct symbol *
5706 allocate_symbol (struct objfile *objfile)
5707 {
5708 struct symbol *result;
5709
5710 result = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symbol);
5711 initialize_objfile_symbol_1 (result);
5712
5713 return result;
5714 }
5715
5716 /* Allocate and initialize a new 'struct template_symbol' on OBJFILE's
5717 obstack. */
5718
5719 struct template_symbol *
5720 allocate_template_symbol (struct objfile *objfile)
5721 {
5722 struct template_symbol *result;
5723
5724 result = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct template_symbol);
5725 initialize_objfile_symbol_1 (&result->base);
5726
5727 return result;
5728 }
5729
5730 /* See symtab.h. */
5731
5732 struct objfile *
5733 symbol_objfile (const struct symbol *symbol)
5734 {
5735 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
5736 return SYMTAB_OBJFILE (symbol->owner.symtab);
5737 }
5738
5739 /* See symtab.h. */
5740
5741 struct gdbarch *
5742 symbol_arch (const struct symbol *symbol)
5743 {
5744 if (!SYMBOL_OBJFILE_OWNED (symbol))
5745 return symbol->owner.arch;
5746 return get_objfile_arch (SYMTAB_OBJFILE (symbol->owner.symtab));
5747 }
5748
5749 /* See symtab.h. */
5750
5751 struct symtab *
5752 symbol_symtab (const struct symbol *symbol)
5753 {
5754 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
5755 return symbol->owner.symtab;
5756 }
5757
5758 /* See symtab.h. */
5759
5760 void
5761 symbol_set_symtab (struct symbol *symbol, struct symtab *symtab)
5762 {
5763 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
5764 symbol->owner.symtab = symtab;
5765 }
5766
5767 \f
5768
5769 void
5770 _initialize_symtab (void)
5771 {
5772 initialize_ordinary_address_classes ();
5773
5774 main_progspace_key
5775 = register_program_space_data_with_cleanup (NULL, main_info_cleanup);
5776
5777 symbol_cache_key
5778 = register_program_space_data_with_cleanup (NULL, symbol_cache_cleanup);
5779
5780 add_info ("variables", info_variables_command, _("\
5781 All global and static variable names, or those matching REGEXP."));
5782 if (dbx_commands)
5783 add_com ("whereis", class_info, info_variables_command, _("\
5784 All global and static variable names, or those matching REGEXP."));
5785
5786 add_info ("functions", info_functions_command,
5787 _("All function names, or those matching REGEXP."));
5788
5789 /* FIXME: This command has at least the following problems:
5790 1. It prints builtin types (in a very strange and confusing fashion).
5791 2. It doesn't print right, e.g. with
5792 typedef struct foo *FOO
5793 type_print prints "FOO" when we want to make it (in this situation)
5794 print "struct foo *".
5795 I also think "ptype" or "whatis" is more likely to be useful (but if
5796 there is much disagreement "info types" can be fixed). */
5797 add_info ("types", info_types_command,
5798 _("All type names, or those matching REGEXP."));
5799
5800 add_info ("sources", info_sources_command,
5801 _("Source files in the program."));
5802
5803 add_com ("rbreak", class_breakpoint, rbreak_command,
5804 _("Set a breakpoint for all functions matching REGEXP."));
5805
5806 add_setshow_enum_cmd ("multiple-symbols", no_class,
5807 multiple_symbols_modes, &multiple_symbols_mode,
5808 _("\
5809 Set the debugger behavior when more than one symbol are possible matches\n\
5810 in an expression."), _("\
5811 Show how the debugger handles ambiguities in expressions."), _("\
5812 Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
5813 NULL, NULL, &setlist, &showlist);
5814
5815 add_setshow_boolean_cmd ("basenames-may-differ", class_obscure,
5816 &basenames_may_differ, _("\
5817 Set whether a source file may have multiple base names."), _("\
5818 Show whether a source file may have multiple base names."), _("\
5819 (A \"base name\" is the name of a file with the directory part removed.\n\
5820 Example: The base name of \"/home/user/hello.c\" is \"hello.c\".)\n\
5821 If set, GDB will canonicalize file names (e.g., expand symlinks)\n\
5822 before comparing them. Canonicalization is an expensive operation,\n\
5823 but it allows the same file be known by more than one base name.\n\
5824 If not set (the default), all source files are assumed to have just\n\
5825 one base name, and gdb will do file name comparisons more efficiently."),
5826 NULL, NULL,
5827 &setlist, &showlist);
5828
5829 add_setshow_zuinteger_cmd ("symtab-create", no_class, &symtab_create_debug,
5830 _("Set debugging of symbol table creation."),
5831 _("Show debugging of symbol table creation."), _("\
5832 When enabled (non-zero), debugging messages are printed when building\n\
5833 symbol tables. A value of 1 (one) normally provides enough information.\n\
5834 A value greater than 1 provides more verbose information."),
5835 NULL,
5836 NULL,
5837 &setdebuglist, &showdebuglist);
5838
5839 add_setshow_zuinteger_cmd ("symbol-lookup", no_class, &symbol_lookup_debug,
5840 _("\
5841 Set debugging of symbol lookup."), _("\
5842 Show debugging of symbol lookup."), _("\
5843 When enabled (non-zero), symbol lookups are logged."),
5844 NULL, NULL,
5845 &setdebuglist, &showdebuglist);
5846
5847 add_setshow_zuinteger_cmd ("symbol-cache-size", no_class,
5848 &new_symbol_cache_size,
5849 _("Set the size of the symbol cache."),
5850 _("Show the size of the symbol cache."), _("\
5851 The size of the symbol cache.\n\
5852 If zero then the symbol cache is disabled."),
5853 set_symbol_cache_size_handler, NULL,
5854 &maintenance_set_cmdlist,
5855 &maintenance_show_cmdlist);
5856
5857 add_cmd ("symbol-cache", class_maintenance, maintenance_print_symbol_cache,
5858 _("Dump the symbol cache for each program space."),
5859 &maintenanceprintlist);
5860
5861 add_cmd ("symbol-cache-statistics", class_maintenance,
5862 maintenance_print_symbol_cache_statistics,
5863 _("Print symbol cache statistics for each program space."),
5864 &maintenanceprintlist);
5865
5866 add_cmd ("flush-symbol-cache", class_maintenance,
5867 maintenance_flush_symbol_cache,
5868 _("Flush the symbol cache for each program space."),
5869 &maintenancelist);
5870
5871 observer_attach_executable_changed (symtab_observer_executable_changed);
5872 observer_attach_new_objfile (symtab_new_objfile_observer);
5873 observer_attach_free_objfile (symtab_free_objfile_observer);
5874 }
This page took 0.146242 seconds and 5 git commands to generate.